
44th International Colloquium on
Automata, Languages, and
Programming

ICALP 2017, Warsaw, Poland, July 10–14, 2017

Edited by

Ioannis Chatzigiannakis
Piotr Indyk
Fabian Kuhn
Anca Muscholl

EA
T

C
S

LIPIcs – Vo l . 80 – ICALP 2017 www.dagstuh l .de/ l ip i c s

Editors
Ioannis Chatzigiannakis Piotr Indyk
Department of Computer, Control, Computer Science and
and Management Engineering Artificial Intelligence Lab
Sapienza University of Rome Massachusetts Institute of Technology
Italy USA
ichatz@dis.uniroma1.it indyk@mit.edu

Fabian Kuhn Anca Muscholl
Institut für Informatik LaBRI
Albert-Ludwigs-Universität Université Bordeaux
Germany France
kuhn@cs.uni-freiburg.de anca@labri.fr

ACM Classification 1998
F. Theory of Computation

ISBN 978-3-95977-041-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-041-5.

Publication date
July, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICALP.2017.0

ISBN 978-3-95977-041-5 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-041-5
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

ICALP 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl 0:xv–0:xvi

Invited Talks

Orbit-Finite Sets and Their Algorithms
Mikołaj Bojańczyk . 1:1–1:14

Efficient Algorithms for Graph-Related Problems in Computer-Aided Verification
Monika Henzinger . 2:1–2:1

Local Computation Algorithms
Ronitt Rubinfeld . 3:1–3:1

Fast and Powerful Hashing Using Tabulation
Mikkel Thorup . 4:1–4:2

Regular Papers

Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps
Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor,
Sofya Raskhodnikova, and C. Seshadhri . 5:1–5:14

Sublinear Random Access Generators for Preferential Attachment Graphs
Guy Even, Reut Levi, Moti Medina, and Adi Rosén . 6:1–6:15

Sublinear Time Estimation of Degree Distribution Moments: The Degeneracy
Connection

Talya Eden, Dana Ron, and C. Seshadhri . 7:1–7:13

Near-Optimal Closeness Testing of Discrete Histogram Distributions
Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin . 8:1–8:15

Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays
Omri Ben-Eliezer, Simon Korman, and Daniel Reichman . 9:1–9:14

On the Value of Penalties in Time-Inconsistent Planning
Susanne Albers and Dennis Kraft . 10:1–10:12

Efficient Approximations for the Online Dispersion Problem
Jing Chen, Bo Li, and Yingkai Li . 11:1–11:15

Online Covering with Sum of `q-Norm Objectives
Viswanath Nagarajan and Xiangkun Shen . 12:1–12:12

Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration
Marcin Bienkowski, Jarosław Byrka, and Marcin Mucha . 13:1–13:14

The Infinite Server Problem
Christian Coester, Elias Koutsoupias, and Philip Lazos . 14:1–14:14

EA
T

C
S

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Quantum Automata Cannot Detect Biased Coins, Even in the Limit
Guy Kindler and Ryan O’Donnell . 15:1–15:8

A New Holant Dichotomy Inspired by Quantum Computation
Miriam Backens . 16:1–16:14

Efficient Quantum Algorithms for Simulating Lindblad Evolution
Richard Cleve and Chunhao Wang . 17:1–17:14

Controlled Quantum Amplification
Cătălin Dohotaru and Peter Høyer . 18:1–18:13

Approximating Language Edit Distance Beyond Fast Matrix Multiplication:
Ultralinear Grammars Are Where Parsing Becomes Hard!

Rajesh Jayaram and Barna Saha . 19:1–19:15

Conditional Lower Bounds for All-Pairs Max-Flow
Robert Krauthgamer and Ohad Trabelsi . 20:1–20:13

On the Fine-Grained Complexity of One-Dimensional Dynamic Programming
Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider 21:1–21:15

On Problems Equivalent to (min,+)-Convolution
Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk 22:1–22:15

On Finding the Jaccard Center
Marc Bury and Chris Schwiegelshohn . 23:1–23:14

The Polytope-Collision Problem
Shaull Almagor, Joël Ouaknine, and James Worrell . 24:1–24:14

Dynamic Time Warping and Geometric Edit Distance: Breaking the Quadratic
Barrier

Omer Gold and Micha Sharir . 25:1–25:14

Efficient Construction of Probabilistic Tree Embeddings
Guy E. Blelloch, Yan Gu, and Yihan Sun . 26:1–26:14

Approximating Partition Functions of Bounded-Degree Boolean Counting
Constraint Satisfaction Problems

Andreas Galanis, Leslie Ann Goldberg, and Kuan Yang . 27:1–27:14

Inapproximability of the Independent Set Polynomial Below the Shearer
Threshold

Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič 28:1–28:13

The Complexity of Holant Problems over Boolean Domain with Non-Negative
Weights

Jiabao Lin and Hanpin Wang . 29:1–29:14

Polynomial-Time Rademacher Theorem, Porosity and Randomness
Alex Galicki . 30:1–30:13

A QPTAS for the General Scheduling Problem with Identical Release Dates
Antonios Antoniadis, Ruben Hoeksma, Julie Meißner, José Verschae, and
Andreas Wiese . 31:1–31:14

Contents 0:vii

Improved Algorithms for MST and Metric-TSP Interdiction
André Linhares and Chaitanya Swamy . 32:1–32:14

Reordering Buffer Management with a Logarithmic Guarantee in General Metric
Spaces

Matthias Kohler and Harald Räcke . 33:1–33:12

Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification
Shahar Chen, Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan,
Joseph (Seffi) Naor, and Roy Schwartz . 34:1–34:15

When the Optimum is also Blind: a New Perspective on Universal Optimization
Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michał Włodarczyk . . 35:1–35:15

Reusable Garbled Deterministic Finite Automata from Learning With Errors
Shweta Agrawal and Ishaan Preet Singh . 36:1–36:13

Round-Preserving Parallel Composition of Probabilistic-Termination
Cryptographic Protocols

Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas . 37:1–37:15

Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13
Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee 38:1–38:16

Non-Uniform Attacks Against Pseudoentropy
Krzysztof Pietrzak and Maciej Skorski . 39:1–39:13

Interactive Oracle Proofs with Constant Rate and Query Complexity
Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and
Nicholas Spooner . 40:1–40:15

Dynamic Parameterized Problems and Algorithms
Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams 41:1–41:16

Decremental Data Structures for Connectivity and Dominators in Directed
Graphs

Loukas Georgiadis, Thomas Dueholm Hansen, Giuseppe F. Italiano,
Sebastian Krinninger, and Nikos Parotsidis . 42:1–42:15

General Bounds for Incremental Maximization
Aaron Bernstein, Yann Disser, and Martin Groß . 43:1–43:14

Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs
Aaron Bernstein . 44:1–44:14

Testing Core Membership in Public Goods Economies
Greg Bodwin . 45:1–45:14

Revenue Maximization in Stackelberg Pricing Games: Beyond the Combinatorial
Setting

Toni Böhnlein, Stefan Kratsch, and Oliver Schaudt . 46:1–46:13

Online Market Intermediation
Yiannis Giannakopoulos, Elias Koutsoupias, and Philip Lazos . 47:1–47:14

Tight Lower Bounds for Multiplicative Weights Algorithmic Families
Nick Gravin, Yuval Peres, and Balasubramanian Sivan . 48:1–48:14

ICALP 2017

0:viii Contents

The Power of Shared Randomness in Uncertain Communication
Badih Ghazi and Madhu Sudan . 49:1–49:14

Separation of AC0[⊕] Formulas and Circuits
Benjamin Rossman and Srikanth Srinivasan . 50:1–50:13

Sensitivity Conjecture and Log-Rank Conjecture for Functions with Small
Alternating Numbers

Chengyu Lin and Shengyu Zhang . 51:1–51:15

Randomized Communication vs. Partition Number
Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson 52:1–52:15

Approximate Bounded Indistinguishability
Andrej Bogdanov and Christopher Williamson . 53:1–53:11

Finding Detours is Fixed-Parameter Tractable
Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin 54:1–54:14

Further Approximations for Demand Matching: Matroid Constraints and
Minor-Closed Graphs

Sara Ahmadian and Zachary Friggstad . 55:1–55:13

Covering Vectors by Spaces: Regular Matroids
Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh 56:1–56:15

Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes
Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond,
Dimitrios M. Thilikos, and Marcin Wrochna . 57:1–57:15

k-Distinct In- and Out-Branchings in Digraphs
Gregory Gutin, Felix Reidl, and Magnus Wahlström . 58:1–58:13

Fast Regression with an `∞ Guarantee
Eric Price, Zhao Song, and David P. Woodruff . 59:1–59:14

Embeddings of Schatten Norms with Applications to Data Streams
Yi Li and David P. Woodruff . 60:1–60:14

On Fast Decoding of High-Dimensional Signals from One-Bit Measurements
Vasileios Nakos . 61:1–61:14

String Inference from Longest-Common-Prefix Array
Juha Kärkkäinen, Marcin Pia̧tkowski, and Simon J. Puglisi . 62:1–62:14

Neighborhood Complexity and Kernelization for Nowhere Dense Classes of
Graphs

Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon,
Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz . 63:1–63:14

Additive Spanners and Distance Oracles in Quadratic Time
Mathias Bæk Tejs Knudsen . 64:1–64:12

Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi . 65:1–65:15

Contents 0:ix

A Polynomial-Time Randomized Reduction from Tournament Isomorphism to
Tournament Asymmetry

Pascal Schweitzer . 66:1–66:14

A (1 + ε)-Approximation for Unsplittable Flow on a Path in Fixed-Parameter
Running Time

Andreas Wiese . 67:1–67:13

Linear-Time Kernelization for Feedback Vertex Set
Yoichi Iwata . 68:1–68:14

Exact Algorithms via Multivariate Subroutines
Serge Gaspers and Edward J. Lee . 69:1–69:13

Exploring the Complexity of Layout Parameters in Tournaments and
Semi-Complete Digraphs

Florian Barbero, Christophe Paul, and Michał Pilipczuk . 70:1–70:13

Packing Cycles Faster Than Erdős-Pósa
Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi 71:1–71:15

An Efficient Strongly Connected Components Algorithm in the Fault Tolerant
Model

Surender Baswana, Keerti Choudhary, and Liam Roditty . 72:1–72:15

Preserving Distances in Very Faulty Graphs
Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams 73:1–73:14

All-Pairs 2-Reachability in O(nω logn) Time
Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and
Przemysław Uznański . 74:1–74:14

Edge-Orders
Lena Schlipf and Jens M. Schmidt . 75:1–75:14

Relaxations of Graph Isomorphism
Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and
Antonios Varvitsiotis . 76:1–76:14

Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder
Aviad Rubinstein . 77:1–77:13

A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs
Pasin Manurangsi and Prasad Raghavendra . 78:1–78:15

Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and
Minimum k-Cut from the Small Set Expansion Hypothesis

Pasin Manurangsi . 79:1–79:14

On the Bit Complexity of Sum-of-Squares Proofs
Prasad Raghavendra and Benjamin Weitz . 80:1–80:13

The Dependent Doors Problem: An Investigation into Sequential Decisions
without Feedback

Amos Korman and Yoav Rodeh . 81:1–81:13

ICALP 2017

0:x Contents

A Tight Lower Bound for the Capture Time of the Cops and Robbers Game
Sebastian Brandt, Yuval Emek, Jara Uitto, and Roger Wattenhofer 82:1–82:13

Stochastic Control via Entropy Compression
Dimitris Achlioptas, Fotis Iliopoulos, and Nikos Vlassis . 83:1–83:13

Approximation Strategies for Generalized Binary Search in Weighted Trees
Dariusz Dereniowski, Adrian Kosowski, Przemysław Uznański, and
Mengchuan Zou . 84:1–84:14

Tighter Hard Instances for PPSZ
Pavel Pudlák, Dominik Scheder, and Navid Talebanfard . 85:1–85:13

Subspace Designs Based on Algebraic Function Fields
Venkatesan Guruswami, Chaoping Xing, and Chen Yuan . 86:1–86:10

Bipartite Perfect Matching in Pseudo-Deterministic NC
Shafi Goldwasser and Ofer Grossman . 87:1–87:13

A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation
in the Bit-Probe Model

Mikhail Raskin . 88:1–88:12

Rerouting Flows When Links Fail
Jannik Matuschke, S. Thomas McCormick, and Gianpaolo Oriolo 89:1–89:13

The Parameterized Complexity of Positional Games
Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele, and
Abdallah Saffidine . 90:1–90:14

Directed Hamiltonicity and Out-Branchings via Generalized Laplacians
Andreas Björklund, Petteri Kaski, and Ioannis Koutis . 91:1–91:14

Improved Hardness for Cut, Interdiction, and Firefighter Problems
Euiwoong Lee . 92:1–92:14

Subspace-Invariant AC0 Formulas
Benjamin Rossman . 93:1–93:11

On the Complexity of Quantified Integer Programming
Dmitry Chistikov and Christoph Haase . 94:1–94:13

Word Equations in Nondeterministic Linear Space
Artur Jeż . 95:1–95:13

Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free
Groups

Volker Diekert and Murray Elder . 96:1–96:14

Pumping Lemma for Higher-Order Languages
Kazuyuki Asada and Naoki Kobayashi . 97:1–97:14

A Strategy for Dynamic Programs: Start over and Muddle Through
Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and
Thomas Zeume . 98:1–98:14

Contents 0:xi

Definability by Horn Formulas and Linear Time on Cellular Automata
Nicolas Bacquey, Etienne Grandjean, and Frédéric Olive . 99:1–99:14

Asynchronous Distributed Automata: A Characterization of the Modal
Mu-Fragment

Fabian Reiter . 100:1–100:14

A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures
Jérémie Chalopin and Victor Chepoi . 101:1–101:14

?-Liftings for Differential Privacy
Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, and
Pierre-Yves Strub . 102:1–102:12

Bisimulation Metrics for Weighted Automata
Borja Balle, Pascale Gourdeau, and Prakash Panangaden . 103:1–103:14

On the Metric-Based Approximate Minimization of Markov Chains
Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare 104:1–104:14

Expressiveness of Probabilistic Modal Logics
Nathanaël Fijalkow, Bartek Klin, and Prakash Panangaden . 105:1–105:12

Emptiness of Zero Automata Is Decidable
Mikołaj Bojańczyk, Hugo Gimbert, and Edon Kelmendi . 106:1–106:13

Characterizing Definability in Decidable Fixpoint Logics
Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom . 107:1–107:14

Conservative Extensions in Guarded and Two-Variable Fragments
Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Thomas Schneider, and
Frank Wolter . 108:1–108:14

Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory
Gilles Dowek . 109:1–109:14

Proof Complexity Meets Algebra
Albert Atserias and Joanna Ochremiak . 110:1–110:14

A Circuit-Based Approach to Efficient Enumeration
Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel 111:1–111:15

Automata-Based Stream Processing
Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford . 112:1–112:15

On Reversible Transducers
Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote 113:1–113:12

Which Classes of Origin Graphs Are Generated by Transducers?
Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle 114:1–114:13

Continuity and Rational Functions
Michaël Cadilhac, Olivier Carton, and Charles Paperman . 115:1–115:14

A Universal Ordinary Differential Equation
Olivier Bournez and Amaury Pouly . 116:1–116:14

ICALP 2017

0:xii Contents

Regular Separability of Parikh Automata
Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and
Charles Paperman . 117:1–117:13

An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets Using
MSDF Convention

Bernard Boigelot, Isabelle Mainz, Victor Marsault, and Michel Rigo 118:1–118:14

Polynomial-Space Completeness of Reachability for Succinct Branching VASS in
Dimension One

Diego Figueira, Ranko Lazić, Jérôme Leroux, Filip Mazowiecki, and
Grégoire Sutre . 119:1–119:14

Satisfiability and Model Checking for the Logic of Sub-Intervals under the
Homogeneity Assumption

Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and
Pietro Sala . 120:1–120:14

Threshold Constraints with Guarantees for Parity Objectives in Markov Decision
Processes

Raphaël Berthon, Mickael Randour, and Jean-François Raskin 121:1–121:15

Synchronizability of Communicating Finite State Machines is not Decidable
Alain Finkel and Etienne Lozes . 122:1–122:14

Admissibility in Concurrent Games
Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur 123:1–123:14

Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio
in Directed Graphs

Karl Bringmann, Thomas Dueholm Hansen, and Sebastian Krinninger 124:1–124:16

Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems
Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, Michele Flammini, and
Gianpiero Monaco . 125:1–125:13

Stochastic k-Server: How Should Uber Work?
Sina Dehghani, Soheil Ehsani, Mohammad Hajiaghayi, Vahid Liaghat, and
Saeed Seddighin . 126:1–126:14

Multiple Source Dual Fault Tolerant BFS Trees
Manoj Gupta and Shahbaz Khan . 127:1–127:15

Near-Optimal Induced Universal Graphs for Bounded Degree Graphs
Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen,
and Morten Stöckel . 128:1–128:14

Universal Framework for Wireless Scheduling Problems
Eyjólfur I. Ásgeirsson, Magnús M. Halldórsson, and Tigran Tonoyan 129:1–129:15

Streaming Communication Protocols
Lucas Boczkowski, Iordanis Kerenidis, and Frédéric Magniez . 130:1–130:14

Testable Bounded Degree Graph Properties Are Random Order Streamable
Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler 131:1–131:14

Contents 0:xiii

Deterministic Graph Exploration with Advice
Barun Gorain and Andrzej Pelc . 132:1–132:14

Combinatorial Secretary Problems with Ordinal Information
Martin Hoefer and Bojana Kodric . 133:1–133:14

Selling Complementary Goods: Dynamics, Efficiency and Revenue
Moshe Babaioff, Liad Blumrosen, and Noam Nisan . 134:1–134:14

Saving Critical Nodes with Firefighters is FPT
Jayesh Choudhari, Anirban Dasgupta, Neeldhara Misra, and M. S. Ramanujan . . . 135:1–135:13

On the Transformation Capability of Feasible Mechanisms for Programmable
Matter

Othon Michail, George Skretas, and Paul G. Spirakis . 136:1–136:15

Distributed Monitoring of Network Properties: The Power of Hybrid Networks
Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler . . . 137:1–137:15

Randomized Rumor Spreading Revisited
Benjamin Doerr and Anatolii Kostrygin . 138:1–138:14

Randomized Load Balancing on Networks with Stochastic Inputs
Leran Cai and Thomas Sauerwald . 139:1–139:14

Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion
Tung Mai, Ioannis Panageas, and Vijay V. Vazirani . 140:1–140:14

Hardness of Computing and Approximating Predicates and Functions with
Leaderless Population Protocols

Amanda Belleville, David Doty, and David Soloveichik . 141:1–141:14

ICALP 2017

Preface

This volume contains the papers presented at ICALP 2017, the 44th edition of the Inter-
national Colloquium on Automata, Languages and Programming, held in Warsaw, Poland
during July 10–14, 2017. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS), which first took place in 1972. This year, the
ICALP program consisted of three tracks:

Track A: Algorithms, Complexity, and Games,
Track B: Logic, Semantics, Automata and Theory of Programming,
Track C: Foundations of Networked Computation: Models, Algorithms, and Information
Management.

In response to the call for papers, a total 459 submissions were received: 296 for track A,
108 for track B, and 55 for track C. Each submission was reviewed by at least three Program
Committee members, aided by many subreviewers. Out of these, the committee decided
to accept 137 papers for inclusion in the scientific program: 88 papers for Track A, 32 for
Track B, and 17 for Track C. The selection was made by the Program Committees based
on originality, quality, and relevance to theoretical computer science. The quality of the
manuscripts was very high, and many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper for each of
the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:
Track A: Andreas Björklund, Petteri Kaski and Ioannis Koutis. “Directed Hamiltonicity
and Out-Branchings via Generalized Laplacians”.
Track B: Michael Benedikt, Pierre Bourhis and Michael Vanden Boom. “Characterizing
Definability in Decidable Fixpoint Logics”.
Track C: Eyjólfur Ingi Ásgeirsson, Magnus M. Halldorsson and Tigran Tonoyan. “Universal
Framework for Wireless Scheduling Problems”.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

Track A: Euiwoong Lee. “Improved Hardness for Cut, Interdiction, and Firefighter
Problems”.
Track B: Fabian Reiter. “Asynchronous Distributed Automata: A Characterization of
the Modal Mu-Fragment”.

Apart from the contributed talks, ICALP 2017 included invited presentations by Mikołaj
Bojańczyk, Monika Henzinger, Ronitt Rubinfeld and Mikkel Thorup. This volume of the
proceedings contains all contributed papers presented at the conference together with the
papers and abstracts of the invited speakers.

The program of ICALP 2017 also included presentation of the EATCS Award 2017 to
Eva Tardos, the Presburger Award 2017 to Alexandra Silva and the EATCS Distinguished
Dissertation Award to Vincent Cohen-Addad, Mika Göös and Steen Vester.

Three satellite events of ICALP were held on 14 July, 2017:
SSG: Algorithms and Structure for Sparse Graphs
AVeRTS: Algorithmic Verification of Real-Time Systems
SP: Separability Problems

EA
T

C
S

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xvi Preface

The Lipa Summer School was organized on topics connected to logic in computer science
during 3–6 July, 2017.

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all referees who assisted the Program
Committees in the evaluation process. We are also grateful to Mikołaj Bojańczyk, Piotr
Sankowski, Bartek Klin and Filip Murlak for organizing ICALP 2017 and all the support
staff of the Organizing Committee, especially Hanna Bargieł and Alicja Kosińska from Global
Congress.

We would like to thank Paul Spirakis, the president of EATCS, for his generous advice
on the organization of the conference.

July 2017 Ioannis Chatzigiannakis
Piotr Indyk
Fabian Kuhn
Anca Muscholl

Organization

Program Committee

Track A

Indyk Piotr MIT, USA, Chair
Afshani Peyman Aarhus University, Denmark
Agarwal Pankaj Duke University, USA
Bringmann Karl Max Planck Institute for Informatics, Germany
Chattopadhyay Arkadev Tata Institute of Fundamental Research, India
Chechik Shiri Tel-Aviv University, Israel
Ene Alina Boston University, USA
Filmus Yuval Technion – Israel Institute of Technology, Israel
Gopalan Parikshit VMware Research, USA
Grossi Roberto Universita’ di Pisa, Italy
Gupta Anupam Carnegie Mellon University, USA
Ishai Yuval Technion, Israel
Kapralov Michael EPFL, Switzerland
Kleinberg Robert Cornell University, USA
Lu Pinyan Shanghai University of Finance and Economics, China
Magniez Frederic CNRS, Univ. Paris Diderot, France
Mahdian Mohammad Google, USA
Marx Daniel Computer and Automation Research Institute,

Hungarian Academy of Sciences, Hungary
Nanongkai Danupon KTH Royal Institute of Technology, Sweden, Sweden
Nelson Jelani Harvard, USA
Pilipczuk Marcin Institute of Informatics, University of Warsaw, Poland
Sankowski Piotr University of Warsaw, Poland
Sauerwald Thomas University of Cambridge, United Kingdom
Scheideler Christian University of Paderborn, Germany
Sohler Christian TU Dortmund, Germany
Telikepalli Kavitha Tata Institute of Fundamental Research, Mumbai, India
Vaikuntanathan Vinod University of Toronto, Canada
Vegh Laszlo A. London School of Economics, United Kingdom
Venkatasubramanian Suresh University of Utah, USA
Vidick Thomas Caltech, USA
Wee Hoeteck ENS, France
Weimann Oren University of Haifa, Israel
Weinberg Seth MIT, USA

EA
T

C
S

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xviii Organization

Track B

Muscholl Anca LaBRI, Universite Bordeaux, France, Chair
Barcelo Pablo Universidad de Chile, Chile
Blumensath Achim Masaryk University, Brno, Czech Republic
Brihaye Thomas Université de Mons, Belgium
Chatterjee Krishnendu Institute of Science and Technology (IST), Austria
Coquand Thierry Chalmers University, Sweden
Dawar Anuj University of Cambridge, United Kingdom
Endrullis Jörg Vrije Universiteit Amsterdam, Netherlands
Fisman Dana University of Pennsylvania, USA
Hofmann Martin LMU Munich, Germany
Jagadeesan Radha DePaul University, USA
Kiefer Stefan University of Oxford, United Kingdom
Kieronski Emanuel University of Wroclaw, Poland
Kreutzer Stephan Technical University Berlin, Germany
La Torre Salvatore Dipartimento di Informatica,

Università degli studi di Salerno, Italy
Lin Anthony Widjaja Department of Computer Science,

University of Oxford, United Kingdom
Martens Wim University of Bayreuth, Germany
Mellies Paul-André CNRS, Université Paris Diderot, France
Padovani Luca Università di Torino, Italy
Palamidessi Catuscia INRIA, France
Pighizzini Giovanni Dipartimento di Informatica,

Università degli Studi di Milano, Italy
Pin Jean-Éric LIAFA, CNRS and University Paris 7, France
Silva Alexandra University College London, United Kingdom
Talbot Jean-Marc LIF, Universite d’Aix-Marseille, France
Viswanathan Mahesh University of Illinois, Urbana-Champaign, USA
Wilke Thomas University of Kiel, Germany
Worell James Oxford University, United Kingdom

Organization 0:xix

Track C

Kuhn Fabian University of Freiburg, Germany, Chair
Abraham Ittai VMware Research, USA
Anta Antonio Fernandez IMDEA Networks Institute, Spain
Aspnes James Yale, USA
Censor-Hillel Keren Technion, Israel
Emek Yuval Technion, Israel
Ghaffari Mohsen ETH Zurich, Switzerland
Giakkoupis George INRIA Rennes, France
Gilbert Seth N/A, Singapore
Haeupler Bernhard CMU, USA
Korman Amos CNRS and Université Paris Diderot - Paris 7, France
Kosowski Adrian IRIF (LIAFA) / Inria Paris, France
Lenzen Christoph MPI for Informatics, Germany
Masuzawa Toshimitsu Osaka University, Japan
Panagiotou Konstantinos University of Munich (LMU), Germany
Panconesi Alessandro Sapienza University of Rome, Italy
Parter Merav MIT, CSAIL, USA
Patt-Shamir Boaz Tel Aviv University, Israel
Pigonlet Yvonne-Anne ABB Corporate Research, Switzerland
Rajsbaum Sergio Instituto de Matematicas, UNAM, Mexico
Richa Andrea Arizona State University, USA
Su Hsin-Hao MIT, USA
Suomela Jukka Aalto University, Finland
Woelfel Philipp University of Calgary, Canada

ICALP 2017

0:xx Organization

Organizing Committee

Mikołaj Bojańczyk University of Warsaw, Poland
Piotr Sankowski University of Warsaw, Poland
Bartek Klin University of Warsaw, Poland
Filip Murlak University of Warsaw, Poland

Financial Sponsors

Microsoft
Microsoft Research
AICA
Facebook
Department of Informatics, Sapienza University of Rome
Austrian

Additional Reviewers

Abboud Amir Abdollahi Azgomi Mohammad Abdullah Amirali
Aceto Luca Acharya Jayadev Adjiashvili David
Agrawal Akanksha Akhavi Ali Alaei Saeed
Allender Eric Ambainis Andris Amir Amihood
Andoni Alexandr Angelidakis Haris Angelopoulos Spyros
Anshu Anurag Antonopoulos Timos Arroyuelo Diego
Assadi Sepehr Atig Mohamed Faouzi Atkey Robert
Backurs Arturs Baillot Patrick Balbiani Philippe
Ball Marshall Bampas Evangelos Bannai Hideo
Barman Siddharth Barmpalias Georgios Barrington David Mix
Barth Stephan Basu Samik Bauer Matthew
Behnezhad Soheil Bei Xiaohui Belovs Aleksandrs
Ben-Amram Amir Bérczi Kristóf Berkholz Christoph
Berman Itay Beyersdorff Olaf Bhaskar Umang
Bhaskara Aditya Bienkowski Marcin Bille Philip
Björklund Andreas Blondin Michael Bodini Olivier
Bodlaender Hans L. Bodwin Greg Bonchi Filippo
Bonnet Edouard Boreale Michele Borradaile Glencora
Bouland Adam Briggs Keith Brody Joshua
Brunet Paul Byrka Jaroslaw Cannon Sarah
Canonne Clément Cao Yixin Carayol Arnaud
Carlier Pierre Caskurlu Bugra Chakraborty Sourav
Chalermsook Parinya Chang Hsien-Chih Chang Yi-Jun
Chaplick Steven Charron-Bost Bernadette Chen Hubie
Chen Sitan Chen Yi-Hsiu Chen Yijia
Chen Yilei Chen Yu-Fang Chestnut Stephen
Chiplunkar Ashish Chistikov Dmitry Chitnis Rajesh
Chlamtac Eden Choffrut Christian Choudhary Keerti
Cicalese Ferdinando Clemente Lorenzo Cohen Alon
Cohen Ilan Coja-Oghlan Amin Colella Feliciano

Organization 0:xxi

Collet Simon Cormode Graham Couteau Geoffroy
Crespi Reghizzi Stefano Cui Shawn Curticapean Radu
Cygan Marek Czerwiński Wojciech Czyzowicz Jurek
Dahlgaard Søren Dantchev Stefan Dartois Luc
Daruki Samira Das Bireswar Das Shantanu
Das Syamantak Daviaud Laure de Brecht Matthew
de Laat David De Nivelle Hans De Rougemont Michel
Degwekar Akshay Dehghani Sina Dell Holger
Della Monica Dario Deshpande Amit Dieudonne Yoann
Dima Catalin Dinitz Michael Dondi Riccardo
Doty David Doyen Laurent Duchon Philippe
Duetting Paul Dürr Christoph Dvorak Zdenek
Eisner Cindy Eldar Lior Elias Marek
Elkind Edith Elmasry Amr Emamjomeh-Zadeh Ehsan
Epping Michael Epstein Leah Esfandiari Hossein
Függer Matthias Gaboardi Marco Ganian Robert
Faella Marco Fakcharooenphol Jittat Fates Nazim
Fearnley John Fekete Sándor Feldman Moran
Feldmann Michael Felmdan Dan Fernau Henning
Fiat Amos Fichtenberger Hendrik Fijalkow Nathanaël
Filiot Emmanuel Finkbeiner Bernd Fiore Dario
Fiorini Samuel Fischer Johannes Forbes Michael A.
Fotakis Dimitris Fox Kyle Franceschini Gianni
Freedman Ofer Friedrichs Stephan Fuchsbauer Georg
Garg Ankit Gasieniec Leszek Gauwin Olivier
Gawrychowski Pawel Geeraerts Gilles Gelashvili Rati
Gentilini Raffaella Giannopoulou Archontia Gimbert Hugo
Gkatzelis Vasilis Glasser Christian Gmyr Robert
Goldner Kira Goldwurm Massimiliano Göller Stefan
Golovach Petr Golub Benjamin Gopi Sivakanth
Goranci Gramoz Gordon Spencer Gouleakis Themistoklis
Grandoni Fabrizio Gravin Nikolai Gribling Sander
Grier Daniel Grohe Martin Grønlund Allan
Guha Shibashis Guillon Bruno Guillon Pierre
Guinard Breuc Guo Heng Guo Siyao
Gupta Manoj Gurjar Rohit Guruganesh Guru
Gutin Gregory Haase Christoph Haghpanah Nima
Høyer Peter Hsu Justin Huang Chien-Chung
Hallgren Sean Han Xin Hansen Kristoffer Arnsfelt
Hansen Thomas Dueholm Haramaty Elad Harsha Prahladh
Harvey Nick Harwath Frederik Hassin Refael
He Meng Hermelin Danny Hinnenthal Kristian
Hlineny Petr Ho Hsi-Ming Hodkinson Ian
Hoefer Martin Hoffmann Jan Hofman Piotr
Holmgren Justin Hoshino Naohiko Houshmand Mahboobeh
Huang Dawei Huang Sangxia Huang Shang-En
Huang Zengfeng Huang Zhiyi Hubacek Pavel
I Tomohiro Iacono John Ikenmeyer Christian

ICALP 2017

0:xxii Organization

Immerman Neil Inenaga Shunsuke Iwata Yoichi
Jain Rahul Jancar Petr Jansen Bart M. P.
Jansen Klaus Jeffery Stacey Jeż Artur
Ji Zhengfeng Jiamjitrak Wanchote Johnson Matthew P.
Jones Mark Jost Steffen Jowhari Hossein
Kalaitzis Christos Kamath Gautam Kamath Pritish
Kammar Ohad Kanazawa Makoto Kannan Ravindran
Kapralov Michael Karczmarz Adam Kärkkäinen Juha
Katsumata Shin-Ya Kazda Alexandr Keiren Jeroen J.A.
Kempe David Kesselheim Thomas Khan Arindam
Kim Anthony Kimelfeld Benny King Valerie
Kini Dileep Kiraly Tamas Klasing Ralf
Klavzar Sandi Kling Peter Knudsen Mathias Bæk Tejs
Kociumaka Tomasz Koebler Johannes Koiran Pascal
Kolb Christina Kolev Pavel Komusiewicz Christian
Konrad Christian Konur Savas Kothari Robin
Kotrbcik Michal Kowalik Lukasz Kranakis Evangelos
Krasnopolsky Nadav Kratsch Stefan Krinninger Sebastian
Krishnaswamy Ravishankar Krivosija Amer Kufleitner Manfred
Kulikov Alexander Kulkarni Janardhan Kumar Amit
Kumar Mrinal Kumaresan Ranjit Künnemann Marvin
Kuusisto Antti Kwon O-Joung Kyng Rasmus
Löding Christof Loff Bruno Lohrey Markus
Laber Eduardo Łącki Jakub Laekhanukit Bundit
Laird James Lang Harry Lange Julien
Lapinskas John Lasota SŁawomir Laurenti Luca
Lauriere Mathieu Le Gall Francois Lecroq Thierry
Lee Euiwoong Leroux Jérôme Leverrier Anthony
Levin Asaf Li Shi Li Yi
Liaghat Vahid Liao Chao Libkin Leonid
Lin Bingkai Lingas Andrzej Lingxiao Huang
Liu Jingcheng Liu Tianren Lodaya Kamal
Lokshtanov Daniel Longley John Lotker Zvi
Luttik Bas M. S. Ramanujan Madan Vivek
Makarychev Konstantin Mamouras Konstantinos Mande Nikhil
Manea Florin Manthey Bodo Manurangsi Pasin
Mao Jieming Mardare Radu Marino Andrea
Markatou Evangelia Anna Markey Nicolas Markham Damian
Martin Barnaby Mathieu Claire Mathur Umang
Matuschke Jannik Maus Yannic McCusker Guy
McGregor Andrew Medina Moti Mehraban Saeed
Mehta Aranyak Mendler Michael Mengel Stefan
Meunier Pierre-étienne Mezlaf David Michaliszyn Jakub
Milius Stefan Mimram Samuel Misra Neeldhara
Mittal Rajat Mnich Matthias Mogavero Fabio
Monaco Gianpiero Monemizadeh Morteza Monmege Benjamin
Montanaro Ashley Moseley Benjamin Mozes Shay
Mucha Marcin Mukherjee Pratyay Munro Ian

Organization 0:xxiii

Munteanu Alexander Murlak Filip Musco Cameron
Musco Christopher Nagarajan Viswanath Narayanan Hariharan
Natarajan Ramamoorthy
Sivaramakrishnan

Nekrich Yakov Nenadov Rajko

Newman Ilan Nguyen Huy Niazadeh Rad
Nicholson Patrick K. Nichterlein André Nielsen Jesper Sindahl
Nies Andre Niewerth Matthias Nigam Vivek
Norouzi Fard Ashkan Novotný Petr Ochremiak Joanna
Oertel Timm Okhotin Alexander Onak Krzysztof
Oren Sigal Otop Jan Otto Martin
Paes Leme Renato Pajak Dominik Pakusa Wied
Panangaden Prakash Panigrahi Debmalya Panolan Fahad
Parotsidis Nikos Paz Ami Peng Pan
Peng Richard Perakis Georgia Perifel Sylvain
Perkins Will Perry Mor Persiano Giuseppe
Petri Gustavo Petrisan Daniela Phillips Jeff
Pilipczuk MichaŁ Plandowski Wojciech Polonsky Andrew
Porter Timothy Pountourakis Emmanouil Pous Damien
Prigioniero Luca Psomas Christos-Alexandros Puglisi Simon
Quaas Karin Quanrud Kent Rabani Yuval
Rabinovich Roman Räcke Harald Radoszewski Jakub
Raghavan Manish Raghothaman Mukund Raman Rajiv
Randour Mickael Rao Anup Rapaport Ivan
Raskin Jean-Francois Reidl Felix Ren Ling
Renault Marc Rey Anja Reynier Pierre-Alain
Richerby David Rika Inbal Riveros Cristian
Rizzi Romeo Roditty Liam Rolínek Michal
Romashchenko Andrei Romero Orth Miguel Roohi Nima
Rosén Adi Rosenbaum Will Rothenberger Ralf
Rubinstein Aviad Rutten Jan Saarela Aleksi
Sadakane Kunihiko Salcedo-Sanz Sancho Sangnier Arnaud
Santhanam Rahul Santocanale Luigi Saranurak Thatchaphol
Satti Srinivasa Rao Sau Ignasi Saurabh Saket
Sawa Zdenek Scagnetto Ivan Scarlett Jonathan
Schaeffer Luke Schmid Andreas Schmidt Jens M.
Schmidt Ludwig Schmidt Melanie Schmitz Sylvain
Schöpp Ulrich Schwartz Roy Schweitzer Pascal
Schwiegelshohn Chris Seddighin Saeed Segala Roberto
Sen Pranab Setzer Alexander Shirmohammadi Mahsa
Siebertz Sebastian Silva Pedro V. Singer Yaron
Singla Sahil Sinha Makrand Skiena Steven
SocaŁa Arkadiusz Sokol Dina Sokolova Ana
Song Zhao Sorge Manuel Spoerhase Joachim
Srivastava Piyush Staals Frank Stachowiak Grzegorz
Starikovskaya Tatiana Stefankovic Daniel Stehle Damien
Stepanovs Igors Stephens-Davidowitz Noah Strothmann Thim
Sun He Sun Nike Svensson Ola
Talwar Kunal Tamaki Suguru Tan Li-Yang

ICALP 2017

0:xxiv Organization

Tang Bo Tang Qiyi Tendera Lidia
Terwijn Sebastiaan Tirodkar Sumedh Tiu Alwen
Tonoyan Tigran Torán Jacobo Toruńczyk Szymon
Totzke Patrick Tsur Dekel Tulsiani Madhur
Tzamos Christos Uniyal Sumedha Valencia Frank
van Leeuwen Erik Jan van Stee Rob Vardi Adi
Varma Nithin Mahendra Vassilevska Williams Virginia Vasudev Yadu
Vasudevan Prashant Vaz Daniel Velingker Ameya
Venema Yde Venturini Rossano Vergnaud Damien
Versari Luca Vialette Stéphane Vickers Steve
Viglietta Giovanni Vinyals Marc Vladu Adrian
Vondrak Jan Wahlström Magnus Wajc David
Wang Zhengyu Wang Zihe Ward Justin
Wellnitz Philip Westermann Matthias Whistler William
Widder Josef Wieder Udi Wiese Andreas
Wijs Anton Will Sebastian Winter Joost
Wlodarczyk Michal Woeginger Gerhard J. Wötzel Maximilian
Wrochna Marcin Wrona MichaŁ Wu Zhiwei Steven
Wulff-Nilsen Christian Xia Mingji Xu Haifeng
Xu Jiaming Xu Shen Chen Yakovlev Alex
Yang Dejun Yang Kuan Yang Lin
Yaroslavtsev Grigory Yazdanbod Sadra Yin Xiang
Yogev Eylon Yoshida Yuichi Young Neal
Yu Fang-Yi Yu Huacheng Yuster Raphael
Zanasi Fabio Zandieh Amir Zanetti Luca
Zehavi Meirav Zeitoun Marc Zetzsche Georg
Zeume Thomas Zhandry Mark Zhang Chihao
Zhang Jialin Zhang Qin Zhang Yumeng
Zhou Hang Zhou Yuan Ziegler Martin

List of Authors

Aarthi Sundaram
Centre for Quantum Technologies
Singapore
aarthims@gmail.com

Abrahamsen Mikkel
University of Copenhagen
Denmark
mikkel.abrahamsen@gmail.com

Achlioptas Dimitris
University of California Santa Cruz
USA
optas@soe.ucsc.edu

Adamczyk Marek
University of Bremen
Germany
adamczyk@dis.uniroma1.it

Agrawal Shweta
IIT Madras
India
shweta.a@gmail.com

Ahmadian Sara
University of Waterloo
Canada
sahmadian@uwaterloo.ca

Albers Susanne
TU Muenchen
Germany
albers@in.tum.de

Almagor Shaull
Department of Computer Science, Oxford
University, UK
Israel
shaull.almagor@cs.ox.ac.uk

Alman Josh
MIT CSAIL
USA
jalman@mit.edu

Alstrup Stephen
University of Copenhagen
Denmark
stephen.alstrup.private@gmail.com

Alur Rajeev
University of Pennsylvania
USA
alur@cis.upenn.edu

Amarilli Antoine
LTCI, CNRS, Télécom ParisTech, Université
Paris-Saclay
France
antoine.amarilli@telecom-paristech.fr

Antoniadis Antonios
Bonn University
Germany
antonios.antoniadis@mpi-inf.mpg.de

Apon Daniel
University of Maryland, College Park
USA
dapon@cs.umd.edu

Asada Kazuyuki
University of Tokyo
Japan
kzykasd+easychair@gmail.com

Ásgeirsson Eyjólfur Ingi
Reykjavik University
Iceland
eyjo@ru.is

Atserias Albert
Universitat Politecnica de Catalunya
Spain
atserias@cs.upc.edu

Babaioff Moshe
Microsoft Research
Israel
moshe@microsoft.com

Bacci Giorgio
Dept. of Computer Science, Aalborg
University
Denmark
grbacci@cs.aau.dk

EA
T

C
S

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xxvi Authors

Bacci Giovanni
Dept. of Computer Science, Aalborg
University
Denmark
giovbacci@cs.aau.dk

Backens Miriam
University of Bristol
United Kingdom
m.backens@bristol.ac.uk

Bacquey Nicolas
INRIA Lille - CRIStAL - University of Lille
France
nicolas.bacquey@inria.fr

Baleshzar Roksana
Pennsylvania State University
USA
rxb5410@cse.psu.edu

Balle Borja
Lancaster University
United Kingdom
bballe@cs.mcgill.ca

Barbero Florian
LIRMM
France
Florian.Barbero@lirmm.fr

Barthe Gilles
IMDEA Software Institute
Spain
gjbarthe@gmail.com

Basset Nicolas
Université Libre de Bruxelles
Belgium
nicolas.basset@ulb.ac.be

Baswana Surender
I.I.T. Kanpur
India
sbaswana@cse.iitk.ac.in

Belleville Amanda
UC Davis
USA
acbelleville@ucdavis.edu

Ben Eliezer Omri
Tel Aviv University
Israel
omribene@gmail.com

Ben-Sasson Eli
Technion
Israel
eli@cs.technion.ac.il

Benedikt Michael
Oxford University
United Kingdom
Michael.Benedikt@cs.ox.ac.uk

Bernstein Aaron
TU Berlin
Germany
bernstei@gmail.com

Berthon Raphaël
ENS Rennes
France
raphael.berthon@ens-rennes.fr

Bezakova Ivona
Rochester Institute of Technology
USA
ib@cs.rit.edu

Bienkowski Marcin
Institute of Computer Science, University of
Wroclaw
Poland
marcin.bienkowski@cs.uni.wroc.pl

Bilò Vittorio
University of Salento
Italy
vittorio.bilo@unisalento.it

Björklund Andreas
Lund University
Sweden
andreas.bjorklund@yahoo.se

Blelloch Guy
Computer Science Department, Carnegie
Mellon University
USA
guyb@cs.cmu.edu

Authors 0:xxvii

Blumrosen Liad
School of Business, The Hebrew University
Israel
blumrosen@gmail.com

Boczkowski Lucas
CNRS, IRIF, University Paris 7
France
lucasboczko@gmail.com

Bodwin Greg
CSAIL, MIT
USA
gbodwin@mit.edu

Bogdanov Andrej
Chinese University of Hong Kong
Hong Kong
andrejb@cse.cuhk.edu.hk

Böhnlein Toni
Universität zu Köln
Germany
boehnlein@zpr.uni-koeln.de

Boigelot Bernard
Montefiore Institute, Université de Liège
Belgium
bernard.boigelot@ulg.ac.be

Bojańczyk Mikołaj
University of Warsaw
Poland
bojan@mimuw.edu.pl

Bonnet Édouard
Middlesex University
United Kingdom
edouard.bonnet@dauphine.fr

Bourhis Pierre
CNRS CRIStAL
France
pierre.bourhis@univ-lille1.fr

Bournez Olivier
LIX & Ecole Polytechnique
France
bournez@lix.polytechnique.fr

Bozzelli Laura
University of Napoli
Italy
lr.bozzelli@gmail.com

Brandt Sebastian
ETH Zurich
Switzerland
brandts@ethz.ch

Bringmann Karl
Max Planck Institute for Informatics
Germany
kbringma@mpi-inf.mpg.de

Bury Marc
Thyssenkrupp Industrial Solutions AG
Germany
marc.bury@thyssenkrupp.com

Byrka Jaroslaw
Institute of Computer Science, University of
Wroclaw
Poland
jby@cs.uni.wroc.pl

Cadilhac Michaël
WSI, Universität Tübingen
Germany
michael@cadilhac.name

Cai Leran
University of Cambridge
United Kingdom
leran.cai@cl.cam.ac.uk

Caragiannis Ioannis
University of Patras
Greece
caragian@ceid.upatras.gr

Carton Olivier
IRIF, Université Paris-Diderot
France
olivier.carton@irif.fr

Chakrabarty Deeparnab
Microsoft Research, Bangalore
India
deeparnab@gmail.com

Chalopin Jérémie
LIF, CNRS & Aix Marseille Université
France
jeremie.chalopin@lif.univ-mrs.fr

ICALP 2017

0:xxviii Authors

Chen Jing
Stony Brook University
USA
jingchen@cs.stonybrook.edu

Chen Shahar
Technion
Israel
shahar.chen11@gmail.com

Chepoi Victor
LIF, Aix Marseille Université & CNRS
France
chepoi@lif.univ-mrs.fr

Chiesa Alessandro
UC Berkeley
USA
alexch@berkeley.edu

Chistikov Dmitry
University of Oxford
United Kingdom
dch@mpi-sws.org

Choudhari Jayesh
IIT Gandhinagar
India
choudhari.jayesh@iitgn.ac.in

Choudhary Keerti
I.I.T. Kanpur
India
keerti@cse.iitk.ac.in

Clemente Lorenzo
University of Warsaw
Poland
clementelorenzo@gmail.com

Cleve Richard
University of Waterloo
Canada
cleve@uwaterloo.ca

Coester Christian
University of Oxford
United Kingdom
christian.coester@cs.ox.ac.uk

Cohen Ran
Tel-Aviv University
Israel
cohenran@yahoo.com

Coretti Sandro
New York University
USA
corettis@gmail.com

Curticapean Radu
Institute for Computer Science and Control
of the Hungarian Academy of Sciences (MTA
SZTAKI)
Hungary
radu.curticapean@gmail.com

Cygan Marek
Institute of Informatics, University of
Warsaw, Poland
Poland
cygan@mimuw.edu.pl

Czerwiński Wojciech
University of Warsaw
Poland
wczerwin@mimuw.edu.pl

Dartois Luc
Université Libre de Bruxelles
Belgium
ldartois@ulb.ac.be

Dasgupta Anirban
IIT Gandhinagar
India
anirbandg@iitgn.ac.in

Datta Samir
Chennai Mathematical Institute
India
sdatta@cmi.ac.in

Daviaud Laure
University of Warsaw
Poland
ldaviaud@mimuw.edu.pl

Dehghani Sina
University of Maryland
USA
dehghani@umd.edu

Dell Holger
Saarland University and Cluster of
Excellence, MMCI
Germany
holger.dell@gmail.com

Authors 0:xxix

Dereniowski Dariusz
Gdansk University of Technology
Poland
deren@eti.pg.gda.pl

Di Castro Dotan
Technion
Israel
dotan.dicastro@gmail.com

Diakonikolas Ilias
University of Southern California
USA
ilias.diakonikolas@gmail.com

Diekert Volker
University Stuttgart
Germany
diekert@fmi.uni-stuttgart.de

Disser Yann
TU Darmstadt
Germany
yanndisser@gmail.com

Doerr Benjamin
Max-Planck Institute for Informatics
Germany
doerr@mpi-inf.mpg.de

Dohotaru Cǎtǎlin
University of Calgary
Canada
cdohotaru@gmail.com

Döttling Nico
UC Berkeley
USA
nico.doettling@gmail.com

Doty David
UC Davis
USA
doty@ucdavis.edu

Dowek Gilles
INRIA and ENS Paris-Saclay
France
gilles.dowek@inria.fr

Eden Talya
Tel Aviv University
Israel
talyaa01@gmail.com

Ehsani Soheil
UMD
USA
soheilehsani@gmail.com

Eickmeyer Kord
TU Darmstadt
Germany
eickmeyer@mathematik.tu-darmstadt.de

Elder Murray
The University of Newcastle, Australia
Australia
murrayelder@gmail.com

Emek Yuval
Technion
Israel
yemek@ie.technion.ac.il

Espitau Thomas
Université Paris 6
France
t.espitau@gmail.com

Even Guy
Tel-Aviv University
Israel
guy@eng.tau.ac.il

Fanelli Angelo
CNRS
France
angelo.fanelli@gmail.com

Figueira Diego
LaBRI, CNRS
France
dfigueir@labri.fr

Fijalkow Nathanaël
University of Oxford
United Kingdom
nathanael.fijalkow@gmail.com

Finkel Alain
LSV, ENS Cachan, CNRS
France
finkel@lsv.fr

Flammini Michele
University of L’Aquila
Italy
michele.flammini@univaq.it

ICALP 2017

0:xxx Authors

Fomin Fedor
Department of Informatics, University of
Bergen
Norway
fomin@ii.uib.no

Fournier Paulin
Université de Bordeaux
France
paulin.fournier@labri.fr

Friggstad Zachary
University of Alberta
Canada
zacharyf@ualberta.ca

Gabizon Ariel
Technion
Israel
arielga@cs.technion.ac.il

Galanis Andreas
University of Oxford
United Kingdom
andreas.galanis@cs.ox.ac.uk

Galicki Alex
The University of Auckland
New Zealand
agal629@aucklanduni.ac.nz

Garay Juan
Yahoo Research
USA
garay@yahoo-inc.com

Garg Sanjam
UC Berkeley
USA
sanjamg@berkeley.edu

Gaspers Serge
University of New South Wales
Australia
sergeg@cse.unsw.edu.au

Geeraerts Gilles
Université Libre de Bruxelles
Belgium
gigeerae@ulb.ac.be

Georgiadis Loukas
University of Ioannina
Greece
loukas@gmail.com

Ghazi Badih
MIT
USA
badih@mit.edu

Giannakopoulos Yiannis
TU Munich
Germany
giannako@in.tum.de

Giannopoulou Archontia
Technische Universität Berlin
Germany
archontia.giannopoulou@gmail.com

Gimbert Hugo
CNRS, LABRI
France
hugo.gimbert@labri.fr

Gmyr Robert
Paderborn University
Germany
gmyr@mail.upb.de

Gold Omer
Tel Aviv University
Israel
omergolden@gmail.com

Goldberg Leslie Ann
University of Oxford
United Kingdom
leslie.goldberg@cs.ox.ac.uk

Goldwasser Shafi
MIT
USA
shafi@theory.csail.mit.edu

Golovach Petr
Department of Informatics, Bergen
University
Norway
pgo041@uib.no

Authors 0:xxxi

Göös Mika
Harvard
USA
mika@seas.harvard.edu

Gorain Barun
Université du Québec en Outaouais
Canada
baruniitg123@gmail.com

Gourdeau Pascale
McGill University
Canada
pascale.gourdeau@mail.mcgill.ca

Graf Daniel
ETH Zürich
Switzerland
grafdan@ethz.ch

Grandjean Etienne
GREYC, University of Caen
France
etienne.grandjean@unicaen.fr

Grandoni Fabrizio
IDSIA, USI-SUPSI, Lugano
Switzerland
fabrizio@idsia.ch

Gravin Nick
MIT
USA
ngravin@mit.edu

Groß Martin
University of Waterloo
Canada
gross@math.TU-Berlin.DE

Grossman Ofer
MIT
USA
ofer.grossman@gmail.com

Gu Yan
Carnegie Mellon University
USA
yan.gu@cs.cmu.edu

Guillon Bruno
University of Warsaw
Poland
guillon.bruno+cs@gmail.com

Guldstrand Larsen Kim
Dept. of Computer Science, Aalborg
University
Denmark
kgl@cs.aau.dk

Gupta Manoj
Indian Institute of Technology, Gandhinagar
India
gmanoj@iitgn.ac.in

Guruswami Venkatesan
Carnegie Mellon University
USA
guruswami@cmu.edu

Gutin Gregory
Royal Holloway
United Kingdom
g.gutin@rhul.ac.uk

Haase Christoph
University of Oxford
United Kingdom
Christoph.Haase@cs.ox.ac.uk

Hajiaghayi Mohammadtaghi
University of Maryland, College Park
USA
hajiagha@cs.umd.edu

Halldorsson Magnus M.
Reykjavik University
Iceland
magnusmh@gmail.com

Hansen Thomas Dueholm
Aarhus University
Denmark
tdh@cs.au.dk

Henzinger Monika
Faculty of Computer Science, Universität
Wien
Austria
monika.henzinger@univie.ac.at

Hinnenthal Kristian
Paderborn University
Germany
krijan@mail.upb.de

ICALP 2017

0:xxxii Authors

Hoefer Martin
Goethe University Frankfurt/Main
Germany
mhoefer@mpi-inf.mpg.de

Hoeksma Ruben
Universidad de Chile
Netherlands
rphoeksma@gmail.com

Holm Jacob
Department of Computer Science, University
of Copenhagen
Denmark
jaho@di.ku.dk

Høyer Peter
University of Calgary
Canada
hoyer@ucalgary.ca

Hsu Justin
University of Pennsylvania
USA
email@justinh.su

Iliopoulos Fotis
University of California Berkeley
USA
fotis.iliopoulos@berkeley.edu

Italiano Giuseppe F.
University of Rome Tor Vergata
Italy
pino.italiano@gmail.com

Iwata Yoichi
National Institute of Informatics
Japan
yiwata@nii.ac.jp

Jayaram Rajesh
Brown University
USA
rajesh_jayaram@brown.edu

Jayram T.S.
IBM Almaden
USA
jayram@us.ibm.com

Jecker Ismaël
Université libre de Bruxelles
Belgium
ismael.jecker@gmail.com

Jeż Artur
University of Wroclaw, Institute of
Computer Science
Poland
aje@cs.uni.wroc.pl

Jung Jean Christoph
Universität Bremen
Germany
jeanjung@informatik.uni-bremen.de

Kane Daniel
University of California, San Diego
USA
aladkeenin@gmail.com

Kärkkäinen Juha
University of Helsinki
Finland
juha.karkkainen@cs.helsinki.fi

Karnin Zohar
Yahoo Labs
USA
zkarnin@gmail.com

Kaski Petteri
Department of Computer Science, Aalto
University, Helsinki, Finland
Finland
petteri.kaski@aalto.fi

Kelmendi Edon
LaBRI
France
edon.kelmendi@labri.Fr

Kerenidis Iordanis
CNRS, IRIF, University Paris 7
France
iordanis.kerenidis@irif.fr

Khan Shahbaz
Indian Institute of Technology, Kanpur
India
amus_hawk@yahoo.co.in

Authors 0:xxxiii

Kindler Guy
The Weizmann Institute of Science
Israel
guy.kindler@weizmann.ac.il

Klin Bartek
University of Warsaw
Poland
klin@mimuw.edu.pl

Knudsen Mathias Bæk Tejs
University of Copenhagen
Denmark
mathias@tejs.dk

Kobayashi Naoki
University of Tokyo
Japan
koba@is.s.u-tokyo.ac.jp

Kodric Bojana
Max-Planck-Institut für Informatik
Germany
bojana@mpi-inf.mpg.de

Kohler Matthias
Technical University of Munich
Germany
kohler@in.tum.de

Korman Amos
CNRS and Université Paris Diderot - Paris 7
France
amos.korman@gmail.com

Korman Simon
Weizmann Institute of Science
Israel
simon.korman@gmail.com

Kosowski Adrian
Inria and IRIF, Paris
France
adrian.kosowski@inria.fr

Kostrygin Anatolii
Ecole Polytechnique
France
anatolii.kostrygin@gmail.com

Koutis Ioannis
Department of Computer Science, University
of Puerto Rico – Rio Piedras
Puerto Rico
i.koutis@gmail.com

Koutsoupias Elias
University of Oxford
United Kingdom
elias@cs.ox.ac.uk

Kraft Dennis
TU Muenchen
Germany
dennis.kraft@in.tum.de

Kratsch Stefan
University of Bonn
Germany
kratsch@cs.uni-bonn.de

Krauthgamer Robert
Weizmann Institute of Science, Israel
Israel
robert.krauthgamer@weizmann.ac.il

Kreutzer Stephan
TU Berlin
Germany
stephan.kreutzer@tu-berlin.de

Krinninger Sebastian
University of Vienna
Austria
sebastian.krinninger@univie.ac.at

Künnemann Marvin
University of California, San Diego
USA
mkuennemann@eng.ucsd.edu

Kwon O-Joung
TU Berlin
Germany
o.kwon@tu-berlin.de

Lambilliotte Antonin
École Normale Supérieure de Lyon
France
antonin.lambilliotte@ens-lyon.fr

ICALP 2017

0:xxxiv Authors

Lasota Sławomir
Warsaw University
Poland
sl@mimuw.edu.pl

Lazic Ranko
University of Warwick
United Kingdom
R.S.Lazic@warwick.ac.uk

Lazos Philip
University of Oxford
United Kingdom
filzos@cs.ox.ac.uk

Lee Edward J.
UNSW / Data61
Australia
edward.jay.lee@gmail.com

Lee Euiwoong
Carnegie Mellon University
USA
euiwoonl@cs.cmu.edu

Leonardi Stefano
Sapienza University of Rome
Italy
leonardi@dis.uniroma1.it

Leroux Jerome
LaBRI, CNRS
France
jerome.leroux@labri.fr

Levi Reut
MPI
Germany
reuti.levi@googlemail.com

Lewin-Eytan Liane
Yahoo Labs
Israel
liane@yahoo-inc.com

Lhote Nathan
Université de Bordeaux
France
nlhote@labri.fr

Li Bo
Stony Brook University
USA
boli2@cs.stonybrook.edu

Li Yi
Nanyang Technological University
Singapore
leeyi@umich.edu

Li Yingkai
Stony Brook University
USA
yingkli@cs.stonybrook.edu

Lin Chengyu
Columbia University
USA
chengyu@cs.columbia.edu

Lin Jiabao
Peking University
China
joblin@pku.edu.cn

Linhares Andre
University of Waterloo
Canada
andre.linhares@gmail.com

Lokshtanov Daniel
UiB
Norway
daniello@ii.uib.no

Louis Jachiet
Université Grenoble Alpes
France
louis.jachiet@inria.fr

Lozes Etienne
LSV, ENS Cachan, CNRS
France
lozes@lsv.ens-cachan.fr

Lutz Carsten
Universität Bremen
Germany
clu@informatik.uni-bremen.de

M. S. Ramanujan
TU Wien
India
msramanujan@gmail.com

Magniez Frédéric
CNRS, IRIF, University Paris 7
France
magniez@cnrs.fr

Authors 0:xxxv

Mai Tung
Georgia Institute of Technology
USA
Maithanhtung89@gmail.com

Mainz Isabelle
Montefiore Institute, Université de Liège
Belgium
isabelle.mainz@ulg.ac.be

Mamouras Konstantinos
University of Pennsylvania
USA
kmamouras@gmail.com

Mancinska Laura
University of Bristol
United Kingdom
laura.mancinska@gmail.com

Manurangsi Pasin
University of California, Berkeley
USA
pasin@berkeley.edu

Mardare Radu
Dept. of Computer Science, Aalborg
University
Denmark
mardare@cs.aau.dk

Marsault Victor
Department of Mathematics, Université de
Liège
Belgium
victor.marsault@ulg.ac.be

Martel Mauricio
Universität Bremen
Germany
mauricio.martel@gmail.com

Matuschke Jannik
TU Berlin
Germany
matuschke@math.tu-berlin.de

Mazowiecki Filip
University of Warwick
United Kingdom
F.Mazowiecki@warwick.ac.uk

Mccormick Tom
Sauder School of Business, UBC
Canada
tom.mccormick@sauder.ubc.ca

Medina Moti
MPI
Germany
moti.medina@gmail.com

Meissner Julie
TU Berlin MA Sek. 5-2
Germany
jmeiss@math.tu-berlin.de

Michail Othon
Department of Computer Science, University
of Liverpool, UK
United Kingdom
Othon.Michail@liverpool.ac.uk

Misra Neeldhara
Indian Institute of Science
India
mail@neeldhara.com

Mnich Matthias
Universität Bonn
Germany
mmnich@uni-bonn.de

Molinari Alberto
University of Udine
Italy
molinari.alberto@gmail.com

Monaco Gianpiero
DISIM. University of L’Aquila
Italy
gianpiero.monaco@di.univaq.it

Monemizadeh Morteza
Rutgers University
USA
mortezam@dimacs.rutgers.edu

Montanari Angelo
University of Udine
Italy
angelo.montanari@uniud.it

ICALP 2017

0:xxxvi Authors

Mouawad Amer
University of Bergen
Norway
amer.mouawad@gmail.com

Mucha Marcin
Institute of Informatics, University of
Warsaw, Poland
Poland
mucha@mimuw.edu.pl

Mukherjee Anish
Chennai Mathematical Institute
India
anish@cmi.ac.in

Mukherjee Pratyay
UC Berkeley
USA
pratyay85@gmail.com

Muthukrishnan S.
Rutgers University
USA
muthu@cs.rutgers.edu

Nagarajan Viswanath
University of Michigan
USA
viswa@umich.edu

Nakos Vasileios
Harvard University
USA
vasileiosnakos@g.harvard.edu

Naor Seffi
Computer Science Dept., Technion, Haifa,
Israel
Israel
naor@cs.technion.ac.il

Nikishkin Vladimir
University of Edinburgh
United Kingdom
v.nikishkin@sms.ed.ac.uk

Nisan Noam
Microsoft Reserach and Hebrew University
Israel
noam@cs.huji.ac.il

O’Donnell Ryan
Carnegie Mellon University
USA
odonnell@cs.cmu.edu

Ochremiak Joanna
Universite de Paris VII
France
ochremiak@mimuw.edu.pl

Olive Frédéric
LIF, Aix-Marseille Université
France
Frederic.Olive@lif.univ-mrs.fr

Oriolo Gianpaolo
Universita di Roma "Tor Vergata"
Italy
oriolo@disp.uniroma2.it

Ouaknine Joel
Department of Computer Science, Oxford
University, UK
United Kingdom
joel@cs.ox.ac.uk

Pallavoor Ramesh Krishnan S.
Pennsylvania State University
USA
ramesh@psu.edu

Panageas Ioannis
MIT and SUTD
USA
panageasj@gmail.com

Panangaden Prakash
McGill University
Canada
prakash@cs.mcgill.ca

Panolan Fahad
Department of Informatics, University of
Bergen, Norway
Norway
fahad.panolan@ii.uib.no

Paperman Charles
WSI, Universität Tübingen
Germany
charles.paperman@gmail.com

Authors 0:xxxvii

Parotsidis Nikos
University of Rome Tor Vergata
Italy
nickparo1@gmail.com

Parter Merav
CSAIL, MIT
USA
parter@mit.edu

Paturi Ramamohan
University of California, San Diego
USA
paturi@cs.ucsd.edu

Paul Christophe
CNRS - LIRMM
France
paul@lirmm.fr

Pelc Andrzej
Université du Québec en Outaouais
Canada
Andrzej.Pelc@uqo.ca

Penelle Vincent
University of Warsaw
Poland
penelle@univ-mlv.fr

Peng Pan
Faculty of Computer Science, University of
Vienna
Austria
pan.peng@univie.ac.at

Peres Yuval
Microsoft Research
USA
peres@microsoft.com

Peron Adriano
University of Napoli
Italy
adrperon@unina.it

Piątkowski Marcin
Nicolaus Copernicus University, Toruń,
Poland
Poland
martinp@mat.uni.torun.pl

Pietrzak Krzysztof
IST Austria
Austria
krzpie@gmail.com

Pilipczuk Michał
University of Warsaw
Poland
michal.pilipczuk@mimuw.edu.pl

Pitassi Toniann
University of Toronto
Canada
toni@cs.toronto.edu

Pouly Amaury
LIX & FCT
France
amaury.pouly@gmail.com

Preet Singh Ishaan
IIT Delhi
India
ishaanps92@gmail.com

Price Eric
The University of Texas at Austin
USA
ecprice@cs.utexas.edu

Pudlák Pavel
The Czech Academy of Sciences
Czech Republic
pudlak@math.cas.cz

Puglisi Simon
University of Helsinki
Finland
simon.j.puglisi@gmail.com

Rabinovich Roman
TU Berlin
Germany
roman.rabinovich@tu-berlin.de

Räcke Harald
Technical University of Munich
Germany
raecke@in.tum.de

Raghavendra Prasad
UC Berkeley
USA
raghavendra@berkeley.edu

ICALP 2017

0:xxxviii Authors

Randour Mickael
ULB - Université libre de Bruxelles
Belgium
mickael.randour@gmail.com

Raskhodnikova Sofya
Pennsylvania State University
USA
sofya@cse.psu.edu

Raskin Jean-Francois
Université Libre de Bruxelles (U.L.B.)
Belgium
jraskin@ulb.ac.be

Raskin Mikhail
Aarhus University
Denmark
raskin@mccme.ru

Raymond Jean-Florent
MIMUW, University of Warsaw and
LIRMM, University Montpellier
France
jean-florent.raymond@mimuw.edu.pl

Reichman Daniel
University of California, Berkeley
Israel
daniel.reichman@gmail.com

Reidl Felix
NC State
USA
felix.reidl@gmail.com

Reiter Fabian
IRIF, Université Paris Diderot
France
fabian.reiter@gmail.com

Riabzev Michael
Technion
Israel
mriabzev@cs.technion.ac.il

Rigo Michel
Department of Mathematics, Université de
Liège
Belgium
m.rigo@ulg.ac.be

Roberson David
University College London
United Kingdom
davideroberson@gmail.com

Rodeh Yoav
Weizmann Institute
Israel
yoav.rodeh@gmail.com

Roditty Liam
Bar-Ilan University
Israel
liam.roditty@gmail.com

Ron Dana
Tel Aviv University
Israel
danaron@tau.ac.il

Rosén Adi
CNRS and Université Paris Diderot
France
adiro@liafa.univ-paris-diderot.fr

Rossman Benjamin
University of Toronto
Canada
rossman@cs.toronto.edu

Ronitt Rubinfeld
MIT and Tel Aviv University
USA and Israel
ronitt@csail.mit.edu

Rubinstein Aviad
UC Berkeley
USA
aviad@eecs.berkeley.edu

Rümmele Stefan
University of Sydney
Australia
stefan.rummele@sydney.edu.au

Saffidine Abdallah
University of New South Wales
Australia
abdallah.saffidine@gmail.com

Saha Barna
University of Massachussets, Amherst
USA
Barna@cs.umass.edu

Authors 0:xxxix

Sala Pietro
University of Verona
Italy
pietro.sala@univr.it

Samal Robert
Charles University
Czech Republic
samal@iuuk.mff.cuni.cz

Sankur Ocan
CNRS
France
ocan.sankur@irisa.fr

Sato Tetsuya
Research Institute for Mathematical
Sciences, Kyoto University
Japan
satoutet@kurims.kyoto-u.ac.jp

Sauerwald Thomas
University of Cambridge
United Kingdom
thomas.sauerwald@cl.cam.ac.uk

Saurabh Saket
The Institute of Mathematical Sciences,
Chennai
India
saket@imsc.res.in

Schaudt Oliver
University of Cologne
Germany
schaudto@uni-koeln.de

Scheder Dominik
Shanghai Jiaotong University
China
dominik@cs.sjtu.edu.cn

Scheideler Christian
Paderborn University
Germany
scheideler@mail.upb.de

Schlipf Lena
FernUniversität in Hagen
Germany
lena.schlipf@fernuni-hagen.de

Schmidt Jens M.
TU Ilmenau
Germany
jens.schmidt@tu-ilmenau.de

Schneider Stefan
University of California, San Diego
USA
stschnei@cs.ucsd.edu

Schneider Thomas
University of Bremen
Germany
tschneider@informatik.uni-bremen.de

Schwartz Roy
Technion
Israel
schwartz.roi@gmail.com

Schweitzer Pascal
RWTH Aachen University
Germany
schweitzer@informatik.rwth-aachen.de

Schwentick Thomas
TU Dortmund University
Germany
thomas.schwentick@udo.edu

Schwiegelshohn Chris
TU Dortmund
Germany
chris.schwiegelshohn@tu-dortmund.de

Seddighin Saeed
University of Maryland
USA
saeedreza.seddighin@gmail.com

Seshadhri C.
University of California, Santa Cruz
USA
sesh@ucsc.edu

Severini Simone
University College London
United Kingdom
simoseve@gmail.com

ICALP 2017

0:xl Authors

Sharir Micha
Tel-Aviv University, School of Computer
Science, and Courant Institute of
Mathematical Science, New York University
Israel
michas@post.tau.ac.il

Shen Xiangkun
University of Michigan
USA
xkshen@umich.edu

Siebertz Sebastian
University of Warsaw
Poland
siebertz@mimuw.edu.pl

Sivan Balasubramanian
Google Research, New York
USA
balusivan@google.com

Skorski Maciej
IST Austria
Poland
maciej.skorski@gmail.com

Skretas George
Computer Engineering and Informatics
Department (CEID), University of Patras,
Greece
Greece
skretasg8@gmail.com

Sohler Christian
TU Dortmund
Germany
christian.sohler@tu-dortmund.de

Soloveichik David
University of Texas at Austin
USA
david.soloveichik@utexas.edu

Song Zhao
The University of Texas at Austin
USA
zhaos@utexas.edu

Spirakis Paul
University of Liverpool, Computer
Technology Institute, and University of
Patras
UK and Greece
P.Spirakis@liverpool.ac.uk

Spooner Nicholas
University of Toronto
Canada
spooner@cs.toronto.edu

Srinivasan Srikanth
IIT Bombay
India
srinivasan.srikanth@gmail.com

Stanford Caleb
University of Pennsylvania
USA
castan@cis.upenn.edu

Stefan Mengel
CNRS, CRIL UMR 8188; France
France
mengel@cril.fr

Stefankovic Daniel
University of Rochester
USA
stefanko@cs.rochester.edu

Stöckel Morten
University of Copenhagen
Denmark
morten.stockel@gmail.com

Strub Pierre-Yves
École Polytechnique - Paris Saclay
Spain
pierre-yves@strub.nu

Sudan Madhu
Harvard University
USA
madhu@cs.harvard.edu

Sun Yihan
Carnegie Mellon University
USA
yihans@cs.cmu.edu

Authors 0:xli

Sutre Gregoire
LaBRI, CNRS
France
sutre@labri.fr

Swamy Chaitanya
University of Waterloo
Canada
cswamy@uwaterloo.ca

Talebanfard Navid
The Czech Academy of Sciences
Czech Republic
talebanfard@math.cas.cz

Thilikos Dimitrios
Department of Mathematics, National and
Kapodistrian University of Athens
Greece
sedthilk@thilikos.info

Thorup Mikkel
Department of Computer Science, University
of Copenhagen
Denmark
mikkel2thorup@gmail.com

Tonoyan Tigran
Reykjavik University
Iceland
ttonoyan@gmail.com

Trabelsi Ohad
Weizmann Institute of Science, Israel
Israel
ohad_trabelsi@yahoo.com

Uitto Jara
University of Freiburg
Germany
jara.uitto@gmail.com

Uznański Przemysław
ETH Zürich
Switzerland
izulin@gmail.com

Vanden Boom Michael
Department of Computer Science, University
of Oxford
United Kingdom
michael.vandenboom@cs.ox.ac.uk

Varvitsiotis Antonios
Centre for Quantum Technologies and
Nanyang Technological University
Singapore
avarvits@gmail.com

Vassilevska Williams Virginia
CSAIL, MIT
USA
virgi@mit.edu

Vazirani Vijay
Georgia Tech
USA
vazirani@cc.gatech.edu

Verschae José
Pontifical Catholic University of Chile
Chile
jverscha@gmail.com

Vlassis Nikos
Adobe Inc
USA
vlassis@adobe.com

Vortmeier Nils
TU Dortmund University
Germany
nils.vortmeier@uni-dortmund.de

Wahlström Magnus
Royal Holloway
United Kingdom
Magnus.Wahlstrom@rhul.ac.uk

Wang Chunhao
University of Waterloo
Canada
c265wang@uwaterloo.ca

Wang Hanpin
Peking University
China
whpxhy@pku.edu.cn

Watson Thomas
University of Memphis
USA
Thomas.Watson@memphis.edu

ICALP 2017

0:xlii Authors

Wattenhofer Roger
ETH Zurich
Switzerland
wattenhofer@ethz.ch

Węgrzycki Karol
Institute of Informatics, University of
Warsaw, Poland
Poland
k.wegrzycki@mimuw.edu.pl

Weitz Benjamin
UC Berkeley
USA
bsweitz123@gmail.com

Wiese Andreas
Max Planck Institute for Informatics
Germany
awiese@mpi-inf.mpg.de

Williamson Christopher
Chinese University of Hong Kong
Hong Kong
chris@cse.cuhk.edu.hk

Włodarczyk Michał
University of Warsaw
Poland
m.wlodarczyk@mimuw.edu.pl

Wolter Frank
University of Liverpool
United Kingdom
wolter@liverpool.ac.uk

Woodruff David P.
IBM Almaden
USA
dpwoodru@us.ibm.com

Worrell James
Department of Computer Science, Oxford
University, UK
United Kingdom
jbw@cs.ox.ac.uk

Wrochna Marcin
University of Warsaw
Poland
m.wrochna@mimuw.edu.pl

Xing Chaoping
Nanyang Technological Univeristy
Singapore
xingcp@ntu.edu.sg

Yang Kuan
University of Oxford
United Kingdom
kuan.yang.6@gmail.com

Yuan Chen
Nanyang Technological Univeristy
Singapore
yuan0064@e.ntu.edu.sg

Zehavi Meirav
University of Bergen
Norway
zehavimeirav@gmail.com

Zeume Thomas
TU Dortmund University
Germany
thomas.zeume@cs.tu-dortmund.de

Zhang Shengyu
Chinese University of Hong Kong
Hong Kong
syzhang@cse.cuhk.edu.hk

Zikas Vassilis
RPI
USA
vzikas@cs.rpi.edu

Zou Mengchuan
Inria and IRIF, Paris
France
mengchuan.zou@inria.fr

Orbit-Finite Sets and Their Algorithms∗†

Mikołaj Bojańczyk

University of Warsaw, Warsaw, Poland
bojan@mimuw.edu.pl

Abstract
An introduction to orbit-finite sets, which are a type of sets that are infinite enough to describe
interesting examples, and finite enough to have algorithms running on them. The notion of orbit-
finiteness is illustrated on the example of register automata, an automaton model dealing with
infinite alphabets.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Orbit-finite sets, sets with atoms, data words, register automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.1

Category Invited Talk

1 Introduction

An orbit-finite set is a set that is constructed using some infinite logical structure, such as
(N,=) or (Q, <), and which is finite up to automorphisms of that structure. For example, if
the structure is (N,=), then

{X : X ⊆ N and |X| ≤ 3}

is an orbit-finite set, because automorphisms of the structure (i.e. permutations of N) can be
used to map any subset X ⊆ N to any other subset of same cardinality, and therefore the set
has four elements (cardinalities 0, 1, 2, 3) up to automorphisms.

The goal of this paper is to give a gentle introduction to orbit-finite sets, in particular
to explain how they can be represented and manipulated using algorithms. As a running
example we use register automata over infinite alphabets. A more detailed description can
be found in the lecture notes [5].

2 The running example: register automata

As our running example for describing orbit-finite sets, we consider register automata over
data words, and their associated decision problems such as emptiness or minimisation.

Typically, formal language theory uses finite alphabets. Here is an example which uses
an infinite alphabet.

I Running Example. Let A be some infinite set. As our running example, consider the
language

{w ∈ A∗ : at most two distinct letters appear in w}. (1)

∗ This paper is part of lipa, a project funded by the European Research Council (erc) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement no. 683080).

† I would like to thank Thomas Colcombet and Szymon Toruńczyk for comments on a first draft.

EA
T

C
S

© Mikołaj Bojańczyk;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Orbit-Finite Sets and Their Algorithms

Figure 1 There are two possible values for the control state, q and ⊥. A configuration of the
automaton consists of a value for the control plus a valuation of the registers. Dangling arrows
indicate initial and accepting configurations. The variables a, b, c range over distinct atoms, i.e. to
get the automaton one should instantiate the picture for every triple (a, b, c) ∈ A3 of distinct atoms.

In our running example, the letters are only compared with respect to equality. Words
as in the example are called languages of data words. The most common type of alphabet
for data words is of the form Σ× A, where Σ is a finite set and A is an infinite set whose
elements can only be compared for equality. We will use the name atoms for A; to underline
that they have no structure except for equality. Automata that process data words (and more
complicated objects, such as data trees) are a popular model in database theory (e.g. an xml
document is conveniently described as a type of data tree) or in the theory of verification.
See the survey [25] for more on such automata.

One of the most basic automata models for data words is register automata (introduced
in [17] under the name of finite memory automata). This is a type of automaton which uses
finitely many registers to store some of the atoms that have been seen so far. We will use
register automata as our running example of orbit-finite sets.

I Running Example. This language in the running example, namely “at most two letters
(atoms) appear” is recognised by a register automaton with two registers. The registers are
used to store the at most two distinct atoms in the input. Once the two registers are filled up
and a fresh third atom appears, the automaton enters a rejecting sink state. The automaton
is shown in Figure 1.

In general, the space of configurations of a register automaton is defined by giving a finite
set of control states and a set of register names. A configuration is then a pair: (control
state, partial function from register names to atoms). For the precise syntax of the transition
relation (and notions of initial and final configurations), we refer to [17]; for the purposes of
this paper it suffices to say that the syntax is designed so that transitions depend on the
atoms in a way which only uses equality. Register automata, and especially deterministic
register automata, are one of the simplest automaton models for data words, e.g. they are
not expressive enough to recognise the language “all input letters are different”. For more
expressive models, see [25].

3 Mild extensions of register automata

To motivate the introduction of orbit-finite and definable sets, which are the topic of this
paper, we present three mild requirements for extending the model of register automata.
We will then show that these requirements can be met by automata with definable (or
equivalently, orbit-finite) descriptions.

M. Bojańczyk 1:3

3.1 Minimisation
One natural thing to do with (deterministic) register automata is to minimise them. As we
will see, the register mechanism is not well suited to this task.

I Running Example. Consider the automaton from Figure 1, which uses two registers to
recognise words with at most two distinct atoms. This automaton has different configurations
after reading inputs ab and ba, because its configuration implicitly remembers which letter
was read first. A minimal automaton, on the other hand, should have the same configuration
after reading these two inputs, because the language is commutative. In a minimal automaton,
the set of reachable configurations should be something like:

{ε,⊥}︸ ︷︷ ︸
initial state and rejecting sink

∪ {a : a ∈ A}︸ ︷︷ ︸
words that have exactly one atom

∪ {{a, b} : a 6= b ∈ A}︸ ︷︷ ︸
word that have exactly two atoms

.

Such a configuration set cannot be achieved with the register mechanism.

A workaround for the problems described above would be to allow registers which store
unordered sets of atoms. Here is another example language, where the workaround with
unordered sets of atoms fails.

I Example 1. Consider the following language

{wv : w, v ∈ A3 are equal up to cyclic shift}. (2)

For this language, the set of configurations of a minimal automaton reachable after reading
three letters should be

{ {abc, bca, cab}︸ ︷︷ ︸
equivalence class of a
three letter word up

to cyclic shifts

: a, b, c ∈ A}.

Example 1 and the running example essentially exhaust the possible problems with
miminisation: to minimise register automata it suffices to consider a model where each
control state has a varying number of registers, and there might be some group acting on
the registers (e.g. so that the registers form an unordered set, or can be shifted cyclically,
etc.), see [8, Section 6]. The idea to use groups acting on registers dates back to [23].

Why is it so important to minimise automata? A minimal automaton is not just small –
with the obvious efficiency advantages – but more importantly it is a canonical representation
of its recognised language.

One use for canonical automata is that for the correctness of certain algorithms, it is
useful to assume that the input is a canonical automaton. An example is learning algorithms,
whose running time bounds and correctness proofs are based on minimal automata, see
e.g. [20] for a variant of the Angluin algorithm for register automata. Another example is
algorithms which input an automaton and decide if its recognised language is definable in
some logic, see [2, 6]; here non-definability is typically equivalent to some kind of forbidden
pattern in the canonical automaton.

Another use for canonical automata is that they can be useful when trying to better
understand “regularity” for languages over infinite an alphabet. There is a multitude of
automata models for infinite alphabets, see [22, 25], most of them with different expressive
powers, and one naturally asks [4]: which model defines the “regular languages”? Over finite

ICALP 2017

1:4 Orbit-Finite Sets and Their Algorithms

alphabets, the Myhill-Nerode theorem gives a convincing machine independent characterisa-
tion of regular languages in terms of minimisation: a language is regular if and only if it has
finitely many equivalence classes in their syntactic congruence (and these equivalence classes
form the states of the canonical minimal automaton). Therefore, a natural idea is to study
the syntactic congruences of languages such as the one in the running example, and try to
find devices which store the information from the syntactic congruence and nothing else. This
idea was pursued for monoids (corresponding to a two-sided syntactic congruence) in [6], for
deterministic automata (corresponding to a one-sided syntactic congruence, which is different
from the two-side one in the presence of infinite alphabets) in [8], and for deterministic timed
automata in [3, 10]. In all of these cases the straightforward register mechanism (without
group actions and other features) is insufficient to allow minimisation. See also [21] for
algorithmic aspects of minimising register automata.

3.2 More general input alphabets
In data words and register automata, the input alphabet is typically assumed to be of the
form Σ×A for some finite set Σ. Why not allow slightly more general input alphabets, such
as pairs of atoms A2 or unordered pairs of atoms

(A
2
)
? At first sight this seems like a needless

generalisation, but it turns out that some interesting theoretical issues appear only for the
more general alphabets. As an example [18, Example 2.5], which admittedly goes far beyond
register automata because it uses Turing machines, consider the following set:

{{{a, b, c}, {d, e, f}} : a, b, c, d, e, f ∈ A are pairwise different}.

Suppose that the input alphabet Σ is the above set, and consider the language:

{wv : w, v ∈ Σ∗ are such that π(w) = v for some permutation of the atoms π}.

In [18] it is shown that the above language witnesses that deterministic and nondeterministic
Turing machines (in a suitable generalisation for infinite alphabets using atoms) have different
expressive powers, and simpler alphabets (e.g. alphabets which talk about less than six
atoms) do not witness this. This result builds on [9], which in turn builds on the seminal
Cai-Fürer-Immermann [27] construction. The readers familiar with [27] will recognise the
use of six atoms in the alphabet Σ.

3.3 Atoms with more structure than just equality
In our definition of data words and register automata, the atoms A had equality as the
only available structure. Why not allow for more structure? Data words with additional
structure, such as a total order, have long been present in the literature on data words.
For example, [13] shows that emptiness is decidable for register automata where the input
alphabet is (N, <) and the register operations can compare letters with respect to the order.
Another important example is timed automata [1], which can be viewed as a special kind
of register automata where the atoms are (Q, <,+1), see [10] and [14, 15] for the case of
pushdown automata. Other examples come from modelling programs interacting with a
database, see e.g. [26, 11]; in these applications the atoms might have e.g. an arbitrary graph
structure.

4 Definable sets

In Section 2 we described register automata, and in Section 3 we discussed three requirements
for a more general model: it should minimise (Section 3.1); it should allow more general

M. Bojańczyk 1:5

input alphabets than only the atoms (Section 3.2); and it should allow more structure on
the atoms than just equality (Section 3.3). In this section we present such a model, using
the notion of definable sets. The general idea is that definable sets are those that can be
constructed using set-builder notation. Before giving the precise definition, consider some
examples.

I Example 2. Here are some of the sets that we have seen so far:

atoms A

ordered pairs of atoms A2

unordered pairs of atoms {{a, b} : a, b ∈ A}

states in the minimal automaton
from the running example {ε,⊥} ∪ {a : a ∈ A} ∪ {{a, b} : a 6= b ∈ A}

triples of atoms modulo cyclic shift {{abc, bca, cab} : a, b, c ∈ A}

input alphabet for a language which
witnesses that Turing machines with

atoms do not determinise

{{{a, b, c}, {d, e, f} :
a, b, c, d, e, f ∈ A are distinct}

The above examples used only equality. In the spirit of Section 3.3, let us consider some
examples which assume that the atoms are equipped with structure other than equality.

I Example 3. Assume that the atoms are equipped with a total order, and assume that 5 is
one of the atoms. Here are some examples of sets defined using set builder notation:

atoms smaller than 5 {a : a ∈ A with a < 5}

all closed intervals {{c : c ∈ A with a ≤ c ≤ b} : a, b ∈ A with a < b}

We now give a more formal description of set-builder notation and sets defined by it. A
parameter is an underlying logical structure A, i.e. a universe equipped with some relations
and functions (equality is for free), which will be referred to as the atoms.

I Example 4. Here are some examples of logical structures that we will use as atoms:

A = (N,=)︸ ︷︷ ︸
equality only

A = (Q, <)︸ ︷︷ ︸
ordered rationals

A = (N,+)︸ ︷︷ ︸
Presburger arithmetic

A = (N,+,×)︸ ︷︷ ︸
arithmetic

In the first structure, we write the equality symbol (which is implicitly assumed to be always
available) just to underline that it is the only structure available.

Given a logical structure A, we define set-builder expressions over A by induction as follows.
Fix some infinite set of variables {a, b, c, . . .}, which will be used in the set-builder expressions,
and which are intended to range over atoms, i.e. elements of the universe of A. Subexpressions
in set-builder expression can have free variables, but in the end we are interested in an
outermost expression with no free variables. There are four constructions: each element of A is
an expression (constant expression); each variable is an expression (variable expression); and
expressions can be combined using binary union and set comprehension. These constructions
are illustrated in Figure 2.

ICALP 2017

1:6 Orbit-Finite Sets and Their Algorithms

Figure 2 A set-builder expression over A = (N, =).

The semantics of a set-builder expression is a function which inputs a valuation of its
free variables (i.e. a function from the free variables to the universe of A) and outputs an
atom, a set, a set of sets, etc. defined in the obvious way. A definable set over A is the
semantics of a set-builder expression without free variables. The reader will readily see that
all sets mentioned in Example 2 are definable regardless of the choice of A (see the running
example below for an explanation of how pairing and elements such as ⊥ are encoded) and
the sets mentioned in Example 3 are definable as long as the vocabulary of A contains a
binary relation < and the universe contains an element 5.

Our proposed solution to the requirements raised in Section 3 is to consider automata
where all components (the input alphabet, the states, the transition relation, the initial and
accepting states) are definable over some structure A. Call these definable automata over
some structure A [8, 11].

I Running Example. Assume that the atoms are A = (N,=), i.e. some countably infinite
set with equality only. Here is a deterministic automaton which recognises the language from
our running example, i.e. words in A∗ with at most two distinct letters. The input alphabet is
A, which is clearly a definable set, as defined by the set-builder expression {a : a ∈ A}. The
set of states Q is

{∅,⊥} ∪ {a : a ∈ A} ∪ {{a, b} : a 6= b ∈ A},

which is also definable as long as we assume that ⊥ is syntactic sugar for some definable set
like {∅}. The initial state is ∅, which is clearly definable, and all states states are final except
⊥. Here is the set of transitions, which happens to be a total function of type Q× A→ Q as
required in a deterministic automaton:

{(∅, a, {a}) : a ∈ A}∪
{({a}, b, {a, b}) : a, b ∈ A}∪
{({a, b}, a, {a, b}) : a, b ∈ A}∪
{({a, b}, c,⊥) : a, b, c ∈ A with a 6= b ∧ a 6= c ∧ b 6= c}∪
{(⊥, a,⊥) : a ∈ A}

The above description uses ordered triples, which are formally not part of the syntax of set-
builder expressions. However, triples and other tuples can encoded in sets using Kuratowski
pairing:

(x, y) def= {x, {x, y}} (x, y, z) def= ((x, y), z).

M. Bojańczyk 1:7

Under the above encoding of triples as sets, it is clear that the transition relation defined
above is an example of a definable set.

Based on the above example, it is easy to see that definable automata generalise register
automata. What is more, the added flexibility of definable automata is sufficient to satisfy
the requirements mentioned in Section 3, in particular minimisation, i.e. for every determin-
istic definable automaton there exists a unique (up to isomorphism of automata) minimal
deterministic definable automaton which recognises the same language [8, Theorem 3.8].
(This minimisation requires an additional assumption on the atoms, called oligomorphism,
which will be discussed in Section 6.)

Without further restrictions on the atoms A, definable automata are too general to be
useful, as shown in the following example.

I Example 5. Assume that the atoms are Presburger arithmetic A = (N,+). Consider an
automaton where the input alphabet has one letter only, say the input alphabet is {∅}, and
the set of states is the definable set of all atoms (i.e. natural numbers). Assume that there is
only one final state, namely the natural number 0. Since there is only one input letter, the
transition function can be viewed as a function A→ A. As the transition function, consider
the function

a 7→

{
a/2 if a is even
3a+ 1 otherwise

which is a definable set as witnessed by the following set-builder expression for its graph:

{(a, b) : a, b ∈ A with a = b+ b} ∪
{(a, b) : a, b ∈ A with ¬(∃c a = c+ c) ∧ b = a+ a+ a+ 1}.

The transition function is based on the famous Collatz conjecture, which in the terminology
of this example says: for every choice of initial state, at least one input word is accepted. In
fact, all decision problems, such as emptiness or equivalence, are going to be undecidable
for this particular choice of atoms (Presburger arithmetic, or even (N, <) or (N,+1)), which
follows from the fact that Minsky machines are a special case of definable automata.

I Example 6. Assume that the atoms are arithmetic A = (N,+,×), and consider a set-builder
expression of the form

{a : a ∈ A with ϕ(a)}.

The above set is empty if and only if ϕ(a) is unsatisfiable. Since satisfiability in arithmetic
is undecidable, it follows that one cannot even decide if a set-builder expression describes
an empty set. (This is in contrast with Presburger arithmetic from Example 5, where at
least emptiness for set-builder expressions is definable, by virtue of Presburger arithmetic
having a decidable theory, see [19, Proposition 2].) Other problems, such as nonemptiness
or equivalence for automata are clearly also going to be undecidable when the atoms are
arithmetic.

5 Graph reachability for definable sets

In the previous section, we introduced definable sets, and discussed definable automata,
i.e. automata where all components are definable sets. In Examples 5 and 6 we argued

ICALP 2017

1:8 Orbit-Finite Sets and Their Algorithms

input V, E, s, t given by set-builder expressions

R := {s}
repeat
for v in R do
for w in V do

if {v,w} in E then
R += {w}

until R does not grow

if t in R then
print "reachable"

else
print "unreachable"

Figure 3 A naive algorithm for reachability.

that emptiness for automata is undecidable when the atoms are (N,+) or (N,+,×). In this
section, we discuss algorithmic problems like emptiness of automata in more detail. Instead
of automata emptiness, we will discuss the essentially equivalent but more fundamental
problem of graph reachability. We formalise the problem and present a condition on the atom
structure A which guarantees the graph reachability problem is decidable. This condition is
going to be violated for atoms like (N, <), (N,+) and (N,+,×) but it is going to be satisfied
for atoms like (N,=) or (Q, <).

The graph reachability problem

For a logical structure A, define reachability for definable graphs over A to be the following
decision problem:

Input. A graph (V,E) where V,E are definable sets and two vertices s, t ∈ V .
Question. Is there a path from s to t?

In the decision problem above, the inputs are represented by set-builder expressions. This
representation assumes that there is some way of representing the universe of A, which is the
case for all atom structures we have discussed so far, where the universe consists of natural or
rational numbers. We are mainly interested in decidability and not in the precise complexity
of the decision problem.

I Example 7. Assume that the atoms A are (N,+). A valid input for the reachability
problem for definable graphs over A is

V = N E = {(a, b) : a, b ∈ A with a = b+ b ∨ a+ 1 = b} s = 7 t = 2.

For this particular input the answer is “yes” because one can go from 7 to 2 by doing
several steps of the form “divide by two or add one”. For the same reason as discussed in
Example 5, i.e. encoding Minsky machines, reachability is undecidable for definable graphs
over Presburger arithmetic (N,+). Actually, the undecidability holds already for atoms
(N, <), since Minsky machines use only increments and decrements on the counters, and
these can be defined in first-order logic using only the order. Note that to get undecidability
for (N, <) it is important that formulas in the guards of definable sets are allowed to use

M. Bojańczyk 1:9

quantifiers. If only quantifier-free formulas would be allowed in the guards, then graph
reachability for (N, <) would be decidable [13].

Example 7 shows that the reachability problem is undecidable when the atoms are natural
numbers with order, or any other richer structure such as addition or multiplication. What
about definable graphs over atoms with equality only, or atoms such as (Q, <)? It turns out
that for these atoms, reachability is decidable, and the algorithm is quite straightforward.
Define Rn to be the vertices which can be reached from the source by path of at most n edges.
A naive algorithm to solve graph reachability (see Figure 3) would be to simply compute
the sequence R0 ⊆ R1 ⊆ R2 ⊆ · · · until it stabilises, and then test if the target vertex is in
the stable set. Here is a key property of the program in Figure 3. Assuming that the atoms
have decidable first-order theory (which assumption is true Presburger arithmetic (N,+) but
not for general arithmetic (N,+,×)), then at least each step (both for loops) of the naive
algorithm can be carried out in finite time, but the number of steps (repeat loop) might be
unbounded:

repeat
 for v in R do
 for w in V do
 if {v,w} in E then
 R += {w}
until R does not grow

A more formal statement is in the following lemma.

I Lemma 8. Let A be a logical structure. Suppose that E ⊆ V × V and R ⊆ V are given by
set-builder expressions over A. Then one can compute a set-builder expression representing

R ∪ {v ∈ V : {v, w} ∈ E for some w ∈ R}.

Assume furthermore that A has decidable first-order theory. Then one can decide, given R′
and R represented using set-builder expressions, if R′ ⊆ R.

The above lemma can be shown using [19, Proposition 2]; but it is mainly interesting as
part of a more general framework, namely programming languages that deal with definable sets.
There are currently two programming languages: a functional one [7], with an implementation
as a Haskell library [20]; and an imperative one [12] with an implementation as a C++
library [19]. The example reachability program in Figure 3 is based on the imperative
approach. The original version of the imperative programming language [12] assumed that
the atoms were oligomorphic (see below), but the version from [19] relaxed this assumption to
having a decidable first-order theory (which captures additional examples such as Presburger
arithmetic). The semantics of both languages are designed so that one does not need to
prove results like Lemma 8 by hand; but one can simply use more general principles like
the following: every program without repeat can be simulated in finite time, assuming the
inputs (i.e. program state before) and outputs (i.e. program state after) are represented using
set-builder expressions.

As follows from Example 7, decidability of the first-order theory of A alone does not
guarantee that the repeat loop in the program from Firgure 3 will terminate in finitely
many steps. Remarkably, when the atoms have equality only, or they are (Q, <), then the
repeat loop necessarily terminates. The reason is that atoms with equality only or (Q, <)
are examples of oligomorphic structures. In the next two sections, we discuss oligomorphic
structures and prove this termination (Theorem 13). The assumption that the atoms are
oligomorphic is what makes the theory of definable sets robustly well behaved.

ICALP 2017

1:10 Orbit-Finite Sets and Their Algorithms

6 Oligomorphism and orbit-finiteness

In this section we describe what it means for a logical structure to be oligomorphic. The
main use of this assumption is that it allows us to use relaxed notion of finiteness for sets,
called orbit-finiteness; in particular all definable sets will turn out to be orbit-finite.

Definition of oligomorphism

If A is a logical structure, then an automorphism is defined to be any permutation of
its universe which is consistent with all the relations and functions in the vocabulary of
A. For example, when A has only equality in its signature then an automorphism is any
permutation; while if A is (Q, <) then an automorphism is any order-preserving permutation.
The structures (N, <) and (N,+) have no automorphisms, while (Z, <) has only translations
as automorphisms.

I Definition 9 (Oligomorphism). Consider a logical structure A. We say that two tuples
ā, b̄ ∈ Ak are in the same orbit if there exists an automorphism of A which takes ā to b̄
componentwise. The structure A is called oligomorphic if for every k, the “same orbit”
equivalence relation on Ak has finitely many equivalence classes.

The notion of oligomorphism made its appearance in model theory in 1959, thanks to a
theorem proved independently by Engeler, Ryll-Nardzewski and Svenonius: for a countable
structure, being oligomorphic is equivalent to having an ω-categorical theory, see [16, Theorem
7.3.1]. One important corollary of this theorem (and its proof) is that in an oligomorphic
structure, every orbit of Ak can be defined by a formula of first-order logic with k free
variables; we will use this property later on.

I Example 10. Here are some examples and non-examples of oligormophic structures.
Assume that A = (N, <). This structure has no automorphisms, and therefore the
“same orbit” equivalence relation on A has infinitely many equivalence classes (which are
singletons). Therefore A is not oligomorphic.
Assume that A = (Z, <). The automorphisms are translations, and hence the “same
orbit” equivalence relation has one equivalence class on A. However, there are infinitely
many equivalence classes for A2, because

(a1, a2), (b1, b2) are in the same orbit iff a1 − a2 = b1 − b2.

Therefore A is not oligomorphic.
Assume that A = (N,=), i.e. a countably infinite set with equality only. For every k,
tuples in Ak are in the same orbit if and only if they have the same equality types, and
there are finitely many equality types. Therefore, A is oligomorphic.
Assume that A = (Q, <). It is not difficult to see that for every k, tuples ā, b̄ satisfy ā ∼ b̄
if and only if they have the same order types, and there are finitely many order types.
Therefore, A is oligomorphic.
Every structure over a finite vocabulary without functions that is homogeneous is oligo-
morphic. This covers Fraïssé limits of classes of finite relational structures, such as the
previous two items, or the countable random graph. For more on homogeneous structures,
the Fraïssé limit and the random graph, see [16, Section 7].

M. Bojańczyk 1:11

Orbit-finiteness

Oligomorphic structures turn out to be exceptionally well-behaved with respect to definable
sets. The reason for this is that in an oligomorphic structure one can distinguish a relaxed
notion of finiteness, called orbit-finiteness, which is well behaved and can be used to prove
results such as the termination of the algorithm Figure 3.

To define orbit-finiteness, we need to introduce a little set terminology. Fix a logical
structure A. Define the cumulative hierarchy over A to be objects that are built using atoms
(i.e. elements of A) and set brackets in a well-founded way. More precisely, for an ordinal
number we define the rank α objects of the the cumulative hierarchy as follows: for α = 0
the rank α objects are the empty set and every atom; for α > 0 the rank α objects sets
whose elements are objects of rank < α. The cumulative hierarchy is the union of all ranks.
For example, every definable set over A is in the cumulative hierarchy, but there are many
more sets in the cumulative hierarchy (e.g. the cumulative hierarchy is closed under taking
arbitrary subsets, unlike definable sets).

If π is an automorphism of A (actually, any function of type A→ A), then one can apply
π to an object x in the cumulative hierarchy, by simply applying to the atoms that are used
in x; the result is a new object π(x) in the cumulative hierarchy with the same rank.

I Definition 11 (Finite support and orbit-finiteness). Let A be a logical structure. For x in
the cumulative hierarchy over A, we say that x is finitely supported if there exists a tuple of
atoms ā (which is called a support of x) such that

π(ā) = σ(ā) implies π(y) = σ(y) for every automorphisms π, σ of A.

We say that x is orbit-finite if the following equivalence relation on elements of x has finitely
many equivalence classes:

y ∼ z if y = π(z) for some automorphism π of A.

The notion of finite supports is fundamental to set theories such as Fraenkel-Mostowski,
and more recently to the theory of nominal sets [24]. To the author’s best knowledge, the
notion of orbit-finiteness was first explicitly proposed in [6]. In the terminology of the above
definition, A is oligomorphic if and only if Ak is orbit-finite for every k. The following
theorem shows that, under the assumption that the atoms are oligomorphic, then the notion
of orbit-finiteness is well behaved and definable sets are the same as sets which are hereditarily
orbit-finite. For a proof of the following theorem, see [5].

I Theorem 12. Let A be a logical structure which is oligomorphic, and let x be in the
cumulative hierarchy over A.
1. x is orbit-finite if and only if for every tuple of atoms ā, the following equivalence relation

has finitely many equivalence classes:

y ∼ā z if y = π(z) for some automorphism π of A which satisfies π(ā) = ā.

2. x is definable if and only if it is hereditarily orbit-finite (i.e. x finitely supported and
orbit-finite, and both these properties also hold for elements of x, their elements, and so
on recursively).

The equivalence in item 2 of the above theorem is very useful for computation: in some
cases it is more convenient to use definable sets (e.g. to represent sets in a finite way), and in
some cases it is more convenient to use orbit-finite sets (e.g. in termination proofs). We now
show an example of this usefulness.

ICALP 2017

1:12 Orbit-Finite Sets and Their Algorithms

Termination of the reachability algorithm

In Figure 3 from Section 5, we presented a naive reachability algorithm for definable graphs.
We also remarked that, as long as the atoms have decidable first-order theory, then each
iteration of the repeat loop could be evaluated in finite time. We are now ready to show that,
as long as the atoms are oligomorphic, then the repeat loop will be be performed finitely
often.

I Theorem 13. Assume that A is oligomorphic. Then the reachability algorithm in Figure 3
terminates on every input.

Proof. Assume that the input to is a graph with distinguished source and target, and that
each part of the input (vertices, edges, source and target) is a definable set represented by a
set-builder expression. By item 2 in Theorem 12, each part of the input has a finite support.
By combining these finite supports into a single tuple, we can conclude there is some tuple
of atoms ā which supports all parts of the input, i.e. ā supports the vertices, the edges and
the source and target vertices. For n ∈ {0, 1, . . .} define Rn to be the vertices which are
reachable from the source vertex by a path with at most n edges. Recall the equivalence
relation ∼ā mentioned in item 1 of Theorem 12. Using induction on n and the assumption
that ā supports the source vertex and the edges, we get the following observation:

(*) each set Rn is a union of equivalence classes of the ∼ā.

By item 1 of Theorem 12, there are finitely many equivalence classes. By (*) each step of
the reachability algorithm adds some new equivalence classes, and therefore the algorithm
must terminate in a finite number of steps. J

The goal of the above proof was to illustrate the interplay between definability (as a
way of representing infinite inputs) and orbit-finiteness (as a way of proving termination
for algorithms). Other examples of this interplay include algorithms which uses a fixpoint
computation, such as the standard algorithm for emptiness of a context-free grammar (which
works if the grammar is definable over oligomorphic atoms) or the Moore minimisation
algorithm for deterministic automata (which works for definable automata over oligomorphic
atoms).

References
1 Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.
2 Michael Benedikt, Clemens Ley, and Gabriele Puppis. Automata vs. logics on data words. In

Computer Science Logic, 24th International Workshop, CSL 2010, 19th Annual Conference
of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings, pages 110–124,
2010. doi:10.1007/978-3-642-15205-4_12.

3 Michael Benedikt, Clemens Ley, and Gabriele Puppis. What you must remember when
processing data words. In Proceedings of the 4th Alberto Mendelzon International Workshop
on Foundations of Data Management, Buenos Aires, Argentina, May 17-20, 2010, 2010.
URL: http://ceur-ws.org/Vol-619/paper11.pdf.

4 Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages.
Theor. Comput. Sci., 411(4-5):702–715, 2010. doi:10.1016/j.tcs.2009.10.009.

5 Mikołaj Bojańczyk. Atom book [online]. https://www.mimuw.edu.pl/~bojan/paper/
atom-book.

http://dx.doi.org/10.1007/978-3-642-15205-4_12
http://ceur-ws.org/Vol-619/paper11.pdf
http://dx.doi.org/10.1016/j.tcs.2009.10.009
https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book

M. Bojańczyk 1:13

6 Mikołaj Bojańczyk. Nominal monoids. Theory Comput. Syst., 53(2):194–222, 2013. doi:
10.1007/s00224-013-9464-1.

7 Mikołaj Bojańczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. Towards nominal
computation. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012, pages 401–412, 2012. doi:10.1145/2103656.2103704.

8 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets.
Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

9 Mikołaj Bojańczyk, Bartek Klin, Slawomir Lasota, and Szymon Toruńczyk. Turing
machines with atoms. In 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 183–192, 2013.
doi:10.1109/LICS.2013.24.

10 Mikołaj Bojańczyk and Slawomir Lasota. A machine-independent characterization of timed
languages. In Automata, Languages, and Programming – 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 92–103, 2012.
doi:10.1007/978-3-642-31585-5_12.

11 Mikołaj Bojańczyk, Luc Segoufin, and Szymon Toruńczyk. Verification of database-driven
systems via amalgamation. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA – June
22-27, 2013, pages 63–74, 2013. doi:10.1145/2463664.2465228.

12 Mikołaj Bojańczyk and Szymon Toruńczyk. Imperative programming in sets with atoms.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, pages 4–15, 2012.
doi:10.4230/LIPIcs.FSTTCS.2012.4.

13 Karlis Cerans. Deciding properties of integral relational automata. In Automata, Languages
and Programming, 21st International Colloquium, ICALP94, Jerusalem, Israel, July 11-14,
1994, Proceedings, pages 35–46, 1994. doi:10.1007/3-540-58201-0_56.

14 Lorenzo Clemente and Slawomir Lasota. Reachability analysis of first-order definable push-
down systems. In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015,
September 7-10, 2015, Berlin, Germany, pages 244–259, 2015. doi:10.4230/LIPIcs.CSL.
2015.244.

15 Lorenzo Clemente and Slawomir Lasota. Timed pushdown automata revisited. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 738–749, 2015. doi:10.1109/LICS.2015.73.

16 W. Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1993.

17 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

18 Bartek Klin, Slawomir Lasota, Joanna Ochremiak, and Szymon Toruńczyk. Turing ma-
chines with atoms, constraint satisfaction problems, and descriptive complexity. In Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS), CSL-LICS’14, Vienna, Austria, July 14-18, 2014, pages 58:1–58:10, 2014.
doi:10.1145/2603088.2603135.

19 Eryk Kopczynski and Szymon Toruńczyk. LOIS: syntax and semantics. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 586–598, 2017. URL: http://dl.acm.
org/citation.cfm?id=3009876.

20 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michal Szynwel-
ski. Learning nominal automata. In Proceedings of the 44th ACM SIGPLAN Symposium on

ICALP 2017

http://dx.doi.org/10.1007/s00224-013-9464-1
http://dx.doi.org/10.1007/s00224-013-9464-1
http://dx.doi.org/10.1145/2103656.2103704
http://dx.doi.org/10.2168/LMCS-10(3:4)2014
http://dx.doi.org/10.1109/LICS.2013.24
http://dx.doi.org/10.1007/978-3-642-31585-5_12
http://dx.doi.org/10.1145/2463664.2465228
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.4
http://dx.doi.org/10.1007/3-540-58201-0_56
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.244
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.244
http://dx.doi.org/10.1109/LICS.2015.73
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1145/2603088.2603135
http://dl.acm.org/citation.cfm?id=3009876
http://dl.acm.org/citation.cfm?id=3009876

1:14 Orbit-Finite Sets and Their Algorithms

Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
pages 613–625, 2017. URL: http://dl.acm.org/citation.cfm?id=3009879.

21 Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. Bisimilarity in fresh-register
automata. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2015, Kyoto, Japan, July 6-10, 2015, pages 156–167, 2015. doi:10.1109/LICS.2015.24.

22 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

23 M. Pistore. History Dependent Automata. PhD thesis, University of Pisa, 1999.
24 A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.
25 Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In

Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference
of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 41–57, 2006.
doi:10.1007/11874683_3.

26 Victor Vianu. Automatic verification of database-driven systems: a new frontier. In Intl.
Conf. on Database Theory (ICDT), pages 1–13, 2009. doi:10.1145/1514894.1514896.

27 Jin yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identifications. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

http://dl.acm.org/citation.cfm?id=3009879
http://dx.doi.org/10.1109/LICS.2015.24
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1145/1013560.1013562
http://dx.doi.org/10.1007/11874683_3
http://dx.doi.org/10.1145/1514894.1514896
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232

Efficient Algorithms for Graph-Related Problems
in Computer-Aided Verification
Monika Henzinger

Faculty of Computer Science, University of Vienna, Vienna, Austria
monika.henzinger@univie.ac.at

Abstract
Fundamental algorithmic problems that lie in the core of many application in formal verification
and analysis of systems can be described as graph-related algorithmic problems. Nodes in these
problems are of one of two (or three) types, giving rise to a game-theoretic viewpoint: Player
one nodes are under the control of the algorithm that wants to accomplish a goal, player two
nodes are under the control of a worst-case adversary that tries to keep player one to achieve her
goal, and random nodes are under the control of a random process that is oblivious to the goal
of player one. A graph containing only player one and random nodes is called a Markov Decision
Process, a graph containing only player one and player two nodes is called a game graph. A
variety of goals on these graphs are of interest, the simplest being whether a fixed set of nodes
can be reached. The algorithmic question is then whether there is a strategy for player one to
achieve her goal from a given starting node. In this talk we give an overview of a variety of goals
that are interesting in computer-aided verification and present upper and (conditional) lower
bounds on the time complexity for deciding whether a winning strategy for player one exists.

1998 ACM Subject Classification F.1.1 Models of Computation, D.2.4 Software/Program Veri-
fication, I.1.2 Algorithms

Keywords and phrases Computer-aided Verification, Game Theory, Markov Decision Process

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.2

Category Invited Talk

EA
T

C
S

© Monika Henzinger;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Local Computation Algorithms
Ronitt Rubinfeld

MIT, Cambridge, MA, USA; and
Tel Aviv University, Tel Aviv, Israel
ronitt@csail.mit.edu

Abstract
Consider a setting in which inputs to and outputs from a computational problem are so large,
that there is not time to read them in their entirety. However, if one is only interested in small
parts of the output at any given time, is it really necessary to solve the entire computational
problem? Is it even necessary to view the whole input? We survey recent work in the model
of local computation algorithms which for a given input, supports queries by a user to values of
specified bits of a legal output. The goal is to design local computation algorithms in such a
way that very little of the input needs to be seen in order to determine the value of any single
bit of the output. In this talk, we describe results on a variety of problems for which sublinear
time and space local computation algorithms have been developed – we will give special focus to
finding maximal independent sets and sparse spanning graphs.

1998 ACM Subject Classification E.1 Data Structures, F.2 Analysis of Algorithms and Problem
Complexity, I.1.2 Algorithms

Keywords and phrases Massive Data Sets, Approximate Solutions, Maximal Independent Set,
Sparse Spanning Graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.3

Category Invited Talk

EA
T

C
S

© Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Fast and Powerful Hashing Using Tabulation∗†

Mikkel Thorup

Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark
mikkel2thorup@gmail.com

Abstract
Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed
to yield the desired probabilistic guarantees are often too complicated to be practical. Here we
survey recent results on how simple hashing schemes based on tabulation provide unexpectedly
strong guarantees.

Simple tabulation hashing dates back to Zobrist [1970]. Keys are viewed as consisting of c

characters and we have precomputed character tables h1, ..., hq mapping characters to random
hash values. A key x = (x1, ..., xc) is hashed to h1[x1] ⊕ h2[x2]..... ⊕ hc[xc]. This schemes is very
fast with character tables in cache. While simple tabulation is not even 4-independent, it does
provide many of the guarantees that are normally obtained via higher independence, e.g., linear
probing and Cuckoo hashing.

Next we consider twisted tabulation where one character is “twisted” with some simple oper-
ations. The resulting hash function has powerful distributional properties: Chernoff-Hoeffding
type tail bounds and a very small bias for min-wise hashing.

Finally, we consider double tabulation where we compose two simple tabulation functions,
applying one to the output of the other, and show that this yields very high independence in
the classic framework of Carter and Wegman [1977]. In fact, w.h.p., for a given set of size
proportional to that of the space consumed, double tabulation gives fully-random hashing.

While these tabulation schemes are all easy to implement and use, their analysis is not.

This keynote talk surveys results from the papers in the reference list.

1998 ACM Subject Classification E.1 [Data Structures] Tables, E.2 [Data Storage Represent-
ations] Hash Table Representations, F.2.2 [Analysis of Algorithms and Problem Complexity]
Nonnumerical Algorithms and Problems – Sorting and Searching, H.3 [Information Storage and
Retrieval] Information Search and Retrieval – Search Process

Keywords and phrases Hashing, Randomized Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.4

Category Invited Talk

∗ Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Inde-
pendent Research.

† A similar talk abstract also appears in Proceedings of the 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), pages 1:1–1:2, 2016 – http://dx.
doi.org/10.4230/LIPIcs.FSTTCS.2016.1 –, and in Proceeding of the 14th ACM/SIGEVO Conference
on Foundations of Genetic Algorithms (FOGA), page 1–1, 2017.

EA
T

C
S

© Mikkel Thorup;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 4; pp. 4:1–4:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.4
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Fast and Powerful Hashing using Tabulation

References
1 Tobias Christiani, Rasmus Pagh, and Mikkel Thorup. From independence to expansion and

back again. In Proceedings of the 47th ACM Symposium on Theory of Computing (STOC),
pages 813–820, 2015.

2 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. The
power of two choices with simple tabulation. In Proceedings of the 27th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 1631–1642, 2016.

3 Søren Dahlgaard and Mikkel Thorup. Approximately minwise independence with twisted
tabulation. In Proc. 14th Scandinavian Workshop on Algorithm Theory (SWAT), pages
134–145, 2014.

4 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva Rotenberg, and Mikkel Thorup. Hashing
for statistics over k-partitions. In Proceedings of the 56th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 1292–1310, 2015.

5 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation-based hashing. Journal
of the ACM, 59(3):Article 14, 2012. Announced at STOC’11.

6 Mihai Pǎtraşcu and Mikkel Thorup. Twisted tabulation hashing. In Proc. 24th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pages 209–228, 2013.

7 Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high independ-
ence. In Proc. 54th IEEE Symposium on Foundations of Computer Science (FOCS), pages
90–99, 2013.

Optimal Unateness Testers for Real-Valued
Functions: Adaptivity Helps∗†

Roksana Baleshzar1, Deeparnab Chakrabarty2,
Ramesh Krishnan S. Pallavoor3, Sofya Raskhodnikova4, and
C. Seshadhri5

1 Department of Computer Science and Engineering, Pennsylvania State
University, State College, PA, USA
rxb5410@cse.psu.edu

2 Department of Computer Science, Dartmouth College, Hanover, NH, USA
deeparnab@dartmouth.edu

3 Department of Computer Science and Engineering, Pennsylvania State
University, State College, PA, USA
ramesh@psu.edu

4 Department of Computer Science and Engineering, Pennsylvania State
University, State College, PA, USA
sofya@cse.psu.edu

5 Department of Computer Science, University of California – Santa Cruz, Santa
Cruz, CA, USA
sesh@ucsc.edu

Abstract
We study the problem of testing unateness of functions f : {0, 1}d → R. We give an O(dε · log d

ε)-
query nonadaptive tester and an O(dε)-query adaptive tester and show that both testers are
optimal for a fixed distance parameter ε. Previously known unateness testers worked only for
Boolean functions, and their query complexity had worse dependence on the dimension both for
the adaptive and the nonadaptive case. Moreover, no lower bounds for testing unateness were
known. We generalize our results to obtain optimal unateness testers for functions f : [n]d → R.

Our results establish that adaptivity helps with testing unateness of real-valued functions on
domains of the form {0, 1}d and, more generally, [n]d. This stands in contrast to the situation
for monotonicity testing where there is no adaptivity gap for functions f : [n]d → R.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Property testing, unate and monotone functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.5

1 Introduction

We study the problem of testing whether a given real-valued function f on domain [n]d,
where n, d ∈ N, is unate. A function f : [n]d → R is unate if for every coordinate i ∈ [d],
the function is either nonincreasing in the coordinate i or nondecreasing in the coordinate i.
Unate functions naturally generalize monotone functions, which are nondecreasing in all

∗ A preliminary full version of this paper appears in ECCC [2], https://eccc.weizmann.ac.il/report/
2017/049/.

† The authors R.B., R.P. and S.R. were partially supported by NSF award CCF-1422975. This work was
done while D.C. was at Microsoft Research, India.

EA
T

C
S

© Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor,
Sofya Raskhodnikova, and C. Seshadhri;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.5
https://eccc.weizmann.ac.il/report/2017/049/
https://eccc.weizmann.ac.il/report/2017/049/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

coordinates, and b-monotone functions, which have a particular direction in each coordinate
(either nonincreasing or nondecreasing), specified by a bit-vector b ∈ {0, 1}d. More precisely,
a function is b-monotone if it is nondecreasing in coordinates i with bi = 0 and nonincreasing
in the other coordinates. Observe that a function f is unate iff there exists some b ∈ {0, 1}d
for which f is b-monotone.

A tester [33, 25] for a property P of a function f is an algorithm that gets a distance
parameter ε ∈ (0, 1) and query access to f . It has to accept with probability at least 2/3 if f
has property P and reject with probability at least 2/3 if f is ε-far (in Hamming distance)
from P . We say that f is ε-far from P if at least an ε fraction of values of f must be modified
to make f satisfy P . A tester has one-sided error if it always accepts a function satisfying P ,
and has two-sided error otherwise. A nonadaptive tester makes all its queries at once, while
an adaptive tester can make queries after seeing answers to the previous ones.

Testing of various properties of functions, including monotonicity (see, e.g., [24, 19,
20, 31, 22, 21, 26, 1, 27, 3, 8, 7, 10, 13, 9, 6, 14, 15, 12, 17, 16, 29, 4, 5, 18] and recent
surveys [32, 11]), the Lipschitz property [28, 13, 9, 16], bounded-derivative properties [12],
and unateness [24, 30], has been studied extensively over the past two decades. Even though
unateness testing was initially discussed in the seminal paper by Goldreich et al. [24] that gave
first testers for properties of functions, relatively little is known about testing this property.
All previous work on unateness testing focused on the special case of Boolean functions on
domain {0, 1}d. The domain {0, 1}d is called the hypercube and the more general domain [n]d

is called the hypergrid. Goldreich et al. [24] provided a O(d
3/2

ε)-query nonadaptive tester for
unateness of Boolean functions on the hypercube. Recently, Khot and Shinkar [30] improved
the query complexity to O(d log d

ε), albeit with an adaptive tester.
In this paper, we improve upon both these works, and our results hold for a more general

class of functions. Specifically, we show that unateness of real-valued functions on hypercubes
can be tested nonadaptively with O(dε log d

ε) queries and adaptively with O(dε) queries. More
generally, we describe a O(dε · (log d

ε + logn))-query nonadaptive tester and a O(d logn
ε)-query

adaptive tester of unateness of real-valued functions over hypergrids.
In contrast to the state of knowledge for unateness testing, the complexity of testing

monotonicity of real-valued functions over the hypercube and the hypergrid has been resolved.
For constant distance parameter ε, it is known to be Θ(d logn). Moreover, this bound holds
for all bounded-derivative properties [12], a large class that includes b-monotonicity and
some properties quite different from monotonicity, such as the Lipschitz property. Amazingly,
the upper bound for all these properties is achieved by the same simple and, in particular,
nonadaptive, tester. Even though proving lower bounds for adaptive testers has been
challenging in general, a line of work, starting from Fischer [21] and including [8, 14, 12], has
established that adaptivity does not help for this large class of properties. Since unateness is
so closely related, it is natural to ask whether the same is true for testing unateness.

We answer this in the negative: we prove that any non-adaptive tester of real valued
functions over the hypercube (for some constant distance parameter) must make Ω(d log d)
queries. More generally, it needs Ω(d(log d+ logn)) queries for the hypergrid domain. These
lower bounds complement our algorithms, completing the picture for unateness testing of
real-valued functions. From a property testing standpoint, our results establish that unateness
is different from monotonicity and, more generally, any derivative-bounded property.

1.1 Formal Statements and Technical Overview
Our upper bounds are summarized in the following theorem, stated for functions over the
hypergrid domains. (Recall that the hypercube is a special case of the hypergrid with n = 2.)

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:3

I Theorem 1.1. Consider functions f : [n]d → R and a distance parameter ε ∈ (0, 1/2).
1. There is a nonadaptive unateness tester that makes O(dε (log d

ε + logn)) queries1.
2. There is an adaptive unateness tester that makes O(d logn

ε) queries.
Both testers have one-sided error.

Our main technical contribution is the proof that the extra Ω(log d) is needed for nonadaptive
testers. This result demonstrates a gap between adaptive and nonadaptive unateness testing.

I Theorem 1.2. Any nonadaptive unateness tester (even with two-sided error) for real-valued
functions f : {0, 1}d → R with distance parameter ε = 1/8 must make Ω(d log d) queries.

The lower bound for adaptive testers is an easy adaptation of the monotonicity lower bound
in [14]. We state this theorem for completeness and prove it in the full version [2].

I Theorem 1.3. Any unateness tester for functions f : [n]d → R with distance parameter
ε ∈ (0, 1/4) must make Ω

(
d logn
ε − log 1/ε

ε

)
queries.

Theorems 1.2 and 1.3 directly imply that our nonadaptive tester is optimal for constant ε,
even for the hypergrid domain. All missing proofs and details from the technical sections
appear in the full version of this paper [2].

1.1.1 Overview of Techniques
We first consider the hypercube domain. For each i ∈ [d], an i-edge of the hypercube is
a pair (x, y) of points in {0, 1}d, where xi = 0, yi = 1, and xj = yj for all j ∈ ([d] \ {i}).
Given an input function f : {0, 1}d → R, we say an i-edge (x, y) is increasing if f(x) < f(y),
decreasing if f(x) > f(y), and constant if f(x) = f(y).

Our nonadaptive unateness tester on the hypercube uses the work investment strategy
from [6] (also refer to Section 8.2.4 of Goldreich’s book [23]) to “guess” a good dimension
where to look for violations of unateness (specifically, both increasing and decreasing edges).
For all i ∈ [d], let αi be the fraction of the i-edges that are decreasing, βi be the fraction
of the i-edges that are increasing, and µi = min(αi, βi). The dimension reduction theorem
from [12] implies that if the input function is ε-far from unate, then the average of µi over
all dimensions is at least ε

4d . If the tester knew which dimension had µi = Ω(ε/d), it could
detect a violation with high probability by querying the endpoints of O(1/µi) = O(d/ε)
uniformly random edges. However, the tester does not know which µi is large and, intuitively,
nonadaptively checks the following log d different scenarios, one for each k ∈ [log d]: exactly
2k different µi’s are ε/2k, and all others are 0. This leads to the query complexity of O(d log d

ε).
With adaptivity, this search through log d different scenarios is not required. A pair

of queries in each dimension detects influential coordinates (i.e., dimensions with many
non-constant edges), and the algorithm focuses on finding violations among those coordinates.
This leads to the query complexity of O(d/ε), removing the log d factor.

It is relatively easy to extend (both adaptive and nonadaptive) testers from hypercubes
to hypergrids by incurring an extra factor of logn in the query complexity. The role of
i-edges is now played by i-lines. An i-line is a set of n domain points that differ only on
coordinate i. The domain [n] is called a line. Monotonicity on the line (a.k.a. sortedness)
can be tested with O(logn

ε) queries, using, for example, the classical tree tester from [20].

1 For many properties, when the domain is extended from the hypercube to the hypergrid, testers incur an extra
multiplicative factor of logn in the query complexity. This is the case for our adaptive tester. However, note that
the complexity of nonadaptive unateness testing (for constant ε) is Θ(d(log d+logn)) rather than Θ(d log d logn).

ICALP 2017

5:4 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

Instead of sampling a random i-edge, we sample a random i-line ` and run the tree tester
on the restriction f|` of function f to the line `. This is optimal for adaptive testers, but,
interestingly, not for nonadaptive testers. We show that for each function f on the line that
is ε-far from unateness, one of the two scenarios happen: (1) the tree tester is likely to find
a violation of unateness; (2) function f is increasing (and also decreasing) on a constant
fraction of pairs in [n]. This new angle on the classical tester allows us to replace the factor
(log d)(logn) with log d+ logn in the query complexity. Thus, the nonadaptive complexity
becomes O(d(log d+ logn)), which we show is optimal.

The nonadaptive lower bound. Our most significant finding is the log d gap in the query
complexity between adaptive and nonadaptive testing of unateness. By previous work [21, 14],
it suffices to prove lower bounds for comparison-based testers, i.e., testers that can only
perform comparisons of the function values at queried points, but cannot use the values
themselves. Our main technical contribution is the Ω(d log d) lower bound for nonadaptive
comparison-based testers of unateness on hypercube domains.

Intuitively, we wish to construct K = Θ(log d) families of functions where, for each
k ∈ [K], functions in the kth family have 2k dimensions i with µi = Θ(1/2k), while µi = 0 for
all other dimensions. What makes the construction challenging is the existence of a single,
universal nonadaptive O(d)-tester for all b-monotonicity properties, proven in [12]. In other
words, there is a single distribution on O(d) queries that defines a nonadaptive property
tester for b-monotonicity, regardless of b. Since unateness is the union of all b-monotonicity
properties, our construction must be able to fool such algorithms. Furthermore, nonadaptivity
must be critical, since we obtained a O(d)-query adaptive tester for unateness.

Another obstacle is that once a tester finds a non-constant edge in each dimension, the
problem reduces to testing b-monotonicity for a vector b determined by the directions
(increasing or decreasing) of the non-constant edges. That is, intuitively, most edges in our
construction must be constant. This is one of the main technical challenges. The previous
lower bound constructions for monotonicity testing [8, 14] crucially used the fact that all
edges in the hard functions were non-constant.

We briefly describe how we overcome the problems mentioned above. By Yao’s minimax
principle, it suffices to construct Yes and No distributions that a deterministic nonadaptive
tester cannot distinguish. First, for some parameter m, we partition the hypercube into m
subcubes based of the first log2m most significant coordinates. Both distributions, Yes and
No, sample a uniform k from [K], where K = Θ(log d), and a set R ⊆ [d] of cardinality
2k. Furthermore, each subcube j ∈ [m] selects an “action dimension” rj ∈ R uniformly at
random. For both distributions, in any particular subcube j, the function value is completely
determined by the coordinates not in R, and the random coordinate rj ∈ R. Note that all the
i-edges for i ∈ (R \ {rj}) are constant. Within the subcube, the function is a linear function
with exponentially increasing coefficients. In the Yes distribution, any two cubes j, j′ with
the same action dimension orient the edges in that dimension the same way (both increasing
or both decreasing), while in the No distribution each cube decides on the orientation
independently. The former correlation maintains unateness while the latter independence
creates distance to unateness. We prove that to distinguish the distributions, any comparison-
based nonadaptive tester must find two distinct subcubes with the same action dimension rj
and, furthermore, make a specific query (in both) that reveals the coefficient of rj . We show
that, with o(d log d) queries, the probability of this event is negligible.

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:5

Algorithm 1: The Nonadaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 for r = 1 to d3 log(4d/ε)e do
2 repeat sr = d 16d ln 4

ε·2r e times
3 Sample a dimension i ∈ [d] uniformly at random.
4 Sample 3 · 2r i-edges uniformly and independently at random and reject if there

exists an increasing edge and a decreasing edge among the sampled edges.
5 accept

2 Upper Bounds

In this section, we prove parts 1–2 of Theorem 1.1, starting from the hypercube domain.
Recall the definition of i-edges and i-lines from Section 1.1.1 and what it means for an

edge to be increasing, decreasing, and constant.
The starting point for our algorithms is the dimension reduction theorem from [12].

It bounds the distance of f : [n]d → R to monotonicity in terms of average distances of
restrictions of f to one-dimensional functions.

I Theorem 2.1 (Dimension Reduction, Theorem 1.8 in [12]). Fix a bit vector b ∈ {0, 1}d and
a function f : [n]d → R which is ε-far from b-monotonicity. For all i ∈ [d], let µi be the
average distance of f|` to bi-monotonicity over all i-lines `. Then

∑d
i=1 µi ≥ ε/4.

For the special case of the hypercube domains, i-lines become i-edges, and the average distance
µi to bi-monotonicity is the fraction of i-edges on which the function is not bi-monotone.

2.1 The Nonadaptive Tester over the Hypercube

We now describe Algorithm 1, the nonadaptive tester for unateness over the hypercubes.
It is evident that Algorithm 1 is a nonadaptive, one-sided error tester. Furthermore, its

query complexity is O
(
d
ε log d

ε

)
. It suffices to prove the following.

I Lemma 2.2. If f is ε-far from unate, Algorithm 1 rejects with probability at least 2/3.

Proof. Recall that αi is the fraction of i-edges that are decreasing, βi is the fraction of
i-edges that are increasing and µi = min(αi, βi).

Define the d-dimensional bit vector b as follows: for each i ∈ [d], let bi = 0 if αi < βi
and bi = 1 otherwise. Observe that the average distance of f to bi-monotonicity over a
random i-edge is precisely µi. Since f is ε-far from being unate, f is also ε-far from being
b-monotone. By Theorem 2.1,

∑
i∈[d] µi ≥

ε
4 . Hence, Ei∈[d][µi] ≥ ε

4d . We now apply the
work investment strategy due to Berman et al. [6] to get an upper bound on the probability
that Algorithm 1 fails to reject.

I Theorem 2.3 ([6]). For a random variable X ∈ [0, 1] with E[X] ≥ µ for µ < 1
2 , let

pr = Pr[X ≥ 2−r] and δ ∈ (0, 1) be the desired error probability. Let sr = 4 ln 1/δ
µ·2r . Then,

d3 log(1/µ)e∏
r=1

(1− pr)sr ≤ δ.

ICALP 2017

5:6 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

Algorithm 2: The Adaptive Unateness Tester over Hypercubes
input : distance parameter ε ∈ (0, 1/2); query access to a function f : {0, 1}d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-edge ei uniformly at random.
4 if ei is non-constant (i.e., increasing or decreasing) then
5 Sample i-edges uniformly at random till we obtain a non-constant edge e′i.
6 reject if one of the edges ei, e′i is increasing and the other is decreasing.
7 accept

Consider running Algorithm 1 on a function f that is ε-far from unate. Let X = µi where i
is sampled uniformly at random from [d]. Then E[X] ≥ ε

4d . Applying the work investment
strategy (Theorem 2.3) on X with µ = ε

4d , we get that the probability that, in some iteration,
Step 3 samples a dimension i such that µi ≥ 2−r is at least 1−δ. We set δ = 1/4. Conditioned
on sampling such a dimension, the probability that Step 4 fails to obtain an increasing edge
and a decreasing edge among its 3 · 2r samples is at most 2 (1− 1/2r)3·2r

≤ 2e−3 < 1/9, as
the fraction of both increasing and decreasing edges is at least 1/2r. Hence, the probability
that Algorithm 1 rejects f is at least 3

4 ·
8
9 = 2

3 . This completes the proof of Lemma 2.2. J

2.2 The Adaptive Tester over the Hypercube
We now describe Algorithm 2, an adaptive tester for unateness over the hypercube domain
with good expected query complexity. The final tester is obtained by repeating this tester
and accepting if the number of queries exceeds a specified bound.

I Claim 2.4. The expected number of queries made by Algorithm 2 is 40d/ε.

Proof. Consider one iteration of the repeat-loop in Step 1. We prove that the expected
number of queries in this iteration is 4d. The number of queries in Step 3 is 2d, as 2 points
per dimension are queried. Let Ei be the event that edge ei is non-constant and Ti be the
random variable for the number of i-edges sampled in Step 5. Then E[Ti] = 1

αi+βi
= 1

Pr[Ei] .
Therefore, the expected number of all edges sampled in Step 5 is

∑d
i=1 Pr[Ei] · E[Ti] =∑d

i=1 Pr[Ei] · 1
Pr[Ei] = d. Hence, the expected number of queries in Step 5 is 2d. Since there

are 10/ε iterations in Step 1, the expected number of queries in Algorithm 2 is 40d/ε. J

I Claim 2.5. If f is ε-far from unate, Algorithm 2 accepts with probability at most 1/6.

Proof. First, we bound the probability that a violation of unateness is detected in some
dimension i ∈ [d] in one iteration of the repeat-loop. Consider the probability of finding a
decreasing i-edge in Step 3, and an increasing i-edge in Step 5. The former is exactly αi, and
the latter is βi/(αi + βi). Therefore, the probability we detect a violation from dimension i
is 2αiβi/(αi + βi) ≥ min(αi, βi) = µi. The probability that we fail to detect a violation in
any of the d dimensions is at most

∏d
i=1(1− µi) ≤ exp

(
−
∑d
i=1 µi

)
, which is at most e−ε/4

by Theorem 2.1 (Dimension Reduction). By Taylor expansion of e−ε/4, the probability of
finding a violation in one iteration is at least 1− e−ε/4 ≥ ε

4 −
ε2

32 ≥
ε
5 . The probability that

Algorithm 2 does not reject in any iteration is at most (1− ε/5)10/ε < 1/6. J

Proof of Theorem 1.1, part 2 (the special case of the hypercube domain). We run Algo-
rithm 2, aborting and accepting if we ever make more than 240d/ε queries. By Markov’s

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:7

Algorithm 3: Tree Tester
input :Query access to a function h : [n] 7→ R.

1 Pick x ∈ [n] uniformly at random.
2 Let Qx ⊆ [n] be the set of points visited in a binary search for x. Query h on all points

in Qx.
3 If there is an increasing pair in Qx, set dir← {↑}; otherwise, dir← ∅.
4 If there is a decreasing pair in Qx, update dir← dir ∪ {↓}.
5 Return dir.

Algorithm 4: The Adaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 10/ε times
2 for i = 1 to d do
3 Sample an i-line `i uniformly at random.
4 Let diri be the output of Algorithm 3 on f|`i

.
5 if diri 6= ∅ then
6 Sample i-lines uniformly at random and run Algorithm 3 on f restricted to

each line until it returns a non-empty set. Call it dir′i.
7 If diri ∪ dir′i = {↑, ↓}, reject.
8 accept

inequality, the probability of aborting is at most 1/6. By Claim 2.5, if f is ε-far from unate,
Algorithm 2 accepts with probability at most 1/6. The theorem follows by a union bound. J

2.3 Extension to Hypergrids
We start by establishing terminology for lines and pairs. Consider a function f : [n]d → R.
Recall the definition of i-lines from Section 1.1.1. A pair of points that differ only in coordinate
i is called an i-pair. An i-pair (x, y) with xi < yi is called increasing if f(x) < f(y), decreasing
if f(x) > f(y), and constant if f(x) = f(y).

The main tool for extending Algorithms 1 and 2 to work on hypergrids is the tree tester,
designed by Ergun et al. [20] to test monotonicity of functions h : [n]→ R. We modify the
tree tester to return information about directions it observed instead of just accepting or
rejecting. See Algorithm 3. We call a function h : [n]→ R antimonotone if f(x) ≥ f(y) for
all x < y. The following lemma summarizes the guarantee of the tree tester.

I Lemma 2.6 ([20, 12]). If h : [n] 7→ R is ε-far from monotone (respectively, antimonotone),
then the output of Algorithm 3 on h contains ↓ (respectively, ↑) with probability at least ε.

Our hypergrid testers are stated in Algorithms 4 and 5. Next, we explain how Lemma 2.6
and Theorem 2.1 are used in the analysis of the adaptive tester. For a dimension i ∈ [d], let αi
and βi denote the average distance of f|` to monotonicity and antimonotonicity, respectively,
over all i-lines `. Then µi := min(αi, βi) is the average fraction of points per i-line that
needs to change to make f unate. Define the b-vector with bi = 0 if αi < βi, and bi = 1
otherwise. By Theorem 2.1, if f is ε-far from unate, and thus ε-far from b-monotone, then∑d
i=1 µi ≥ ε/4. By Lemma 2.6, the probability that the output of Algorithm 3 on f|` contains

ICALP 2017

5:8 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

Algorithm 5: The Nonadaptive Unateness Tester over Hypergrids
input : distance parameter ε ∈ (0, 1/2); query access to a function f : [n]d → R.

1 repeat 220/ε times
2 for i = 1 to d do
3 Sample an i-line ` uniformly at random.
4 Reject if Algorithm 3, on input f|`, returns {↑, ↓}.
5 for r = 1 to d3 log(200d/ε)e do
6 repeat sr = d 800d ln 4

ε·2r e times
7 Sample a dimension i ∈ [d] uniformly at random.
8 Sample 3 · 2r i-pairs uniformly and independently at random.
9 If we find an increasing and a decreasing pair among the sampled pairs, reject.

10 accept

↓ (respectively, ↑), where ` is a uniformly random i-line, is at least αi (respectively, βi). The
rest of the analysis of Algorithm 4 is similar to that in the hypercube case.

To analyze the nonadaptive tester, we prove Lemma 2.7, which demonstrates the power
of the tree tester and may be of independent interest.

I Lemma 2.7. Consider a function h : [n]→ R which is ε-far from monotone (respectively,
antimonotone). At least one of the following holds:
1. Pr[Algorithm 3, on input h, returns {↑, ↓}] ≥ ε/25.
2. Pru,v∈[n][(u, v) is a decreasing (respectively, increasing) pair] ≥ ε/25.

3 The Lower Bound for Nonadaptive Testers over Hypercubes

In this section, we prove Theorem 1.2, which gives a lower bound for nonadaptive unateness
testers for functions over the hypercube.

Previous work of [14] on lower bounds for monotonicity testing shows that, for a special
class of properties, which includes unateness, it is sufficient to prove lower bounds for
comparison-based testers. Comparison-based testers base their decisions only on the order of
the function values at queried points, and not on the values themselves.

We first state the reduction to comparison-based testers from [14]. Let a (t, ε, δ)-tester
for a property P be a 2-sided error t-query tester, with distance parameter ε, that errs with
probability at most δ. Consider functions of the form f : D → R, where D is an arbitrary
partial order (in particular the hypergrid/hypercube). A property P is invariant under
monotone transformations if, for all strictly increasing maps φ : R→ R and all functions f ,
it holds that dist(f,P) = dist(φ ◦ f,P). In particular, unateness is invariant under monotone
transformations. The following theorem is implicitly proven in [14]. Specifically, Theorem 2.1
of [14] is stated for monotonicity, but the proof only uses the fact that monotonicity is a
property invariant under monotone transformations, so it applies to all such properties.

I Theorem 3.1 (implicit in [21, 14]). Let P be a property invariant under monotone trans-
formations. Suppose there exists a nonadaptive (resp., adaptive) (t, ε, δ)-tester for P. Then
there exists a nonadaptive (resp., adaptive) comparison-based (t, ε, 2δ)-tester for P.

Our main lower bound theorem is stated next. In the light of the previous discussion, it
implies Theorem 1.2.

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:9

I Theorem 3.2. Any nonadaptive comparison-based tester for unateness of functions f :
{0, 1}d → R must make Ω(d log d) queries.

By Theorem 3.1 and Yao’s minimax principle [34], it suffices to prove the lower bound for
deterministic, nonadaptive, comparison-based testers over a known distribution of functions.
It may be useful for the reader to recall the sketch of the main ideas given in Section 1.1.1.
For convenience, assume d is a power of 2 and let d′ := d+ log2 d. We will focus on proving
the lower bound for functions h : {0, 1}d′ → R, as d log d = Θ(d′ log d′).

3.1 The Hard Distributions
We partition {0, 1}d′ into d subcubes based on the log2 d most significant bits. Specifically, for
i ∈ [d], the ith subcube is defined as Ci := {x ∈ {0, 1}d′ : val(xd′xd′−1 · · ·xd+1) = i−1}, where
val(zpzp−1 . . . z1) :=

∑p
i=1 zi2i−1 is the integer equivalent of the binary string zpzp−1 . . . z1.

Let m := d. We denote the set of indices of the subcube by [m] and the set of dimensions
by [d]. We use i, j ∈ [m] to index subcubes and a, b ∈ [d] to index dimensions. We define a
series of random variables, where each subsequent variable may depend on the previous ones:

k: a number picked uniformly at random from {1, 2, . . . , 1
2 log2 d}.

R: a uniformly random subset of [d] of size 2k.
ri: for each i ∈ [m], ri is picked from R uniformly and independently at random.
αb: for each b ∈ [d], αb is picked from {−1,+1} uniformly and independently at random.
βi: for each i ∈ [m], βi is picked from {−1,+1} uniformly and independently at random.

We denote by S the tuple (k,R, {ri}), also referred to as the shared randomness. We use T

to refer to the entire set of random variables. Given T , define the following functions:

fT (x) :=
∑

b∈[d′]\R

xb3b + αri
· xri

3ri , where i is the subcube with x ∈ Ci.

gT (x) :=
∑

b∈[d′]\R

xb3b + βi · xri
3ri , where i is the subcube with x ∈ Ci.

The distribution Yes generates fT and the distribution No generates gT .
In all cases, the function restricted to any subcube Ci is linear. Consider some dimension

b ∈ R. There can be numerous ri’s that are equal to b. For fT , in all of these subcubes,
the coefficient of xri

has the same sign, namely αri
. For gT , the coefficient βi is potentially

different, as it depends on the actual subcube. We write f ∼ D to denote that f is sampled
from distribution D.

I Claim 3.3. Every function f ∈ supp(Yes) is unate. A function g ∼ No is 1
8 -far from

unate with probability at least 9/10.

3.2 From Functions to Signed Graphs that are Hard to Distinguish
For convenience, denote x ≺ y if val(x) < val(y). Note that ≺ forms a total ordering on
{0, 1}d′ . Given x ≺ y ∈ {0, 1}d′ and a function h : {0, 1}d′ → R, define sgnh(x, y) to be 1 if
h(x) < h(y), 0 if h(x) = h(y), and −1 if h(x) > h(y).

Any deterministic, nonadaptive, comparison-based tester is defined as follows: It makes
a set of queries Q and decides whether or not the input function h is unate depending on
the

(|Q|
2
)
-comparisons in Q. More precisely, for every pair (x, y) ∈ Q×Q, x ≺ y, we insert

an edge labelled with sgnh(x, y). Let this signed graph be called GQh . Any nonadaptive,

ICALP 2017

5:10 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

comparison-based algorithm can be described as a partition of the universe of all signed
graphs over Q into GY and GN . The algorithm accepts the function h iff GQh ∈ GY .

Let GQ
Y be the distribution of the signed graphs GQh when h ∼ Yes. Similarly, define GQ

N

when h ∼ No. Our main technical theorem is Theorem 3.4, which is proved in Section 3.3.

I Theorem 3.4. For small enough δ > 0 and large enough d, if |Q| ≤ δd log d, then
‖GQ

Y −GQ
N‖TV = O(δ).

The proof of Theorem 3.4 is naturally tied to the behavior of sgnh. Ideally, we would like
to say that sgnh(x, y) is almost identical regardless of whether h ∼ Yes or h ∼ No. Towards
this, we determine exactly the set of pairs (x, y) that potentially differentiate Yes and No.

I Claim 3.5. For all h ∈ supp(Yes) ∪ supp(No), for all x ∈ Ci and y ∈ Cj such that i < j,
we have sgnh(x, y) = 1.

Thus, comparisons between points in different subcubes reveal no information about which
distribution h was generated from. Thus the “interesting” pairs that can distinguish whether
h ∼ Yes or h ∼ No must lie in the same subcube. The next claim shows a further criterion
that is needed for a pair to be interesting. We first define another notation.

I Definition 3.6. For any setting of the shared randomness S, subcube Ci, and points
x, y ∈ Ci, we define tiS(x, y) to be the most significant coordinate of difference (between x, y)
in ([d] \R) ∪ {ri}.

Note that S determines R and {ri}. For any T that extends S and any function, the
restriction to Ci is unaffected by the coordinates in R \ ri. Thus, tiS(x, y) is the first
coordinate of difference that is influential in Ci.

I Claim 3.7. Fix some S, subcube Ci, and points x, y ∈ Ci. Let c = tiS(x, y), and assume
x ≺ y. For any T that extends S:

If c 6= ri, then sgnfT
(x, y) = sgngT

(x, y) = 1.
If c = ri, sgnfT

(x, y) = αc and sgngT
(x, y) = βi.

3.3 Proving Theorem 3.4: Good and Bad Events
For a given Q, we first identify certain “bad” values for S, on which Q could potentially
distinguish between fS and gS . We will prove that the probability of a bad S is small for a
given Q. Furthermore, we show that Q cannot distinguish between fS and gS for any good
S. We set up some definitions.

IDefinition 3.8. Given a pair (x, y), define cap(x, y) to be the 5 most significant coordinates2
in which they differ. We say (x, y) captures these coordinates. For any set S ⊆ {0, 1}d′ ,
define cap(S) :=

⋃
x,y∈S cap(x, y) to be the coordinates captured by the set S.

Fix any Q. We set Qi := Q ∩ Ci. We define two bad events for S.

Abort Event A: There exist x, y ∈ Q with cap(x, y) ⊆ R.
Collision Event C: There exist i, j ∈ [d] with ri = rj , ri ∈ cap(Qi) and rj ∈ cap(Qj).

If the abort event doesn’t occur, then for any pair (x, y), the sign sgnh(x, y) is determined by
cap(x, y) for any h ∈ supp(Yes) ∪ supp(No). The heart of the analysis lies in Theorem 3.9,
which states that the bad events happen rarely. Theorem 3.9 is proved in Section 3.4.

2 There is nothing special about the constant 5. It just needs to be sufficiently large.

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:11

I Theorem 3.9. If |Q| ≤ δd log d, then Pr[A ∪ C] = O(δ).

When neither the abort nor the collision events happen, we say S is good for Q. Next, we
show that conditioned on a good S, the set Q cannot distinguish f ∼ Yes from g ∼ No.

I Lemma 3.10. For any signed graph G over Q,

Pr
f∼Yes

[GQf = G|S is good]= Pr
g∼No

[GQg = G|S is good].

Proof Sketch. As stated above, when the abort event doesn’t happen, the sign sgnh(x, y)
is determined by cap(x, y) for any h ∈ supp(Yes) ∪ supp(No). Furthermore, a pair (x, y)
has a possibility of distinguishing (that is, the pair is interesting) only if x, y ∈ Ci and
ri ∈ cap(x, y). Focus on such interesting pairs. For such a pair, both sgnfT

(x, y) and
sgngT

(x, y) are equally likely to be +1 or −1. Therefore, to distinguish, we would need two
interesting pairs, (x, y) ∈ Ci and (x′, y′) ∈ Cj with i 6= j. Note that, when g ∼ No, the signs
sgngT

(x, y) and sgngT
(x′, y′) are independently set, whereas when f ∼ Yes, the signs are

either the same when ri = rj , or independently set. But if the collision event doesn’t occur,
we have ri 6= rj for interesting pairs in different subcubes. Therefore, the probabilities are
the same. J

Now, we are armed to prove Theorem 3.4.

Proof of Theorem 3.4. Given any subset of signed graphs, G, it suffices to upper bound∣∣∣∣ Pr
f∼Yes

[GQ
f ∈ G]− Pr

f∼No
[GQ

f ∈ G]
∣∣∣∣ ≤ sumgood S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQ
f ∈ G|S]− Pr

f∼No
[GQ

f ∈ G|S]
)∣∣∣∣

+
∑

bad S

∣∣∣∣Pr[S] ·
(

Pr
f∼Yes

[GQ
f ∈ G|S]− Pr

f∼No
[GQ

f ∈ G|S]
)∣∣∣∣ .

The first term of the RHS is 0 by Lemma 3.10. The second term is at most the probability
of bad events, which is O(δ) by Theorem 3.9. J

3.4 Bounding the Probability of Bad Events: Proof of Theorem 3.9
We prove Theorem 3.9 by individually bounding Pr[A] and Pr[C].

I Lemma 3.11. If |Q| ≤ δd log d, then Pr[A] ≤ d−1/4.

Proof. Fix any choice of k (in S). For any pair of points x, y ∈ Q, we have Pr[cap(x, y) ⊆
R] ≤ (2k

d−5)5. Since d− 5 ≥ d/2 for all d ≥ 10 and k ≤ (log2 d)/2, the probability is at most
32d−5/2. For a large enough d, a union bound over all pairs in Q ×Q, which are at most
d2 log2 d in number, completes the proof. J

The collision event is more challenging to bound. Bounding it is the heart of the lower bound.
We start by showing that, if each Qi captures few coordinates, then the collision event has
low probability. A critical point is the appearance of d log d in this bound.

I Lemma 3.12. If
∑
i |cap(Qi)| ≤M , then Pr[C] = O

(
M

d log d

)
.

Proof. For any r ∈ [d], define Ar := {j : r ∈ cap(Qj)} to be the set of indices of Qj ’s that
capture coordinate r. Let ar := |Ar|. Define n` := |{r : ar ∈ (2`−1, 2`]}|. Observe that∑
`≤log2 d

n`2` ≤ 2
∑
r∈[d] ar ≤ 2M .

ICALP 2017

5:12 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

Fix k. For r ∈ [d], we say the event Cr occurs if (a) r ∈ R, and (b) there exists
i, j ∈ [d] such that ri = rj = r, and ri ∈ cap(Qi) and rj ∈ cap(Qj). By the union bound,
Pr[C|k] ≤

∑d
r=1 Pr[Cr|k].

Let us now compute Pr[Cr|k]. Only sets Qj ’s with j ∈ Ar are of interest, since the others
do not capture r. Event Cr occurs if at least two of these sets have ri = rj = r. Hence,

Pr[Cr|k] = Pr[r ∈ R] · Pr[∃i, j ∈ Ar : ri = rj = r | r ∈ R]

= 2k

d
·
∑
c≥2

(
ar
c

)(
1
2k

)c(
1− 1

2k

)ar−c

. (1)

A fixed r is in R with probability
(
d−1
2k−1

)
/
(
d
2k

)
= 2k

d . Given that |R| = 2k, the probability
that ri = r is precisely 2−k.

If ar ≥ 2k

4 , then we simply upper bound (1) by 2k

d . For ar <
2k

4 , we upper bound (1) by

2k

d

(
1− 1

2k

)ar ∑
c≥2

(
ar ·

1
2k ·

(
1− 1

2k

)−1
)c
≤ 2k

d

∑
c≥2

(ar
2k−1

)c
≤ 8a2

r

2kd .

Summing over all r and grouping according to n`, we get

Pr[C|k] ≤
d∑
r=1

Pr[Cr|k] ≤
∑

r:ar≥2k−2

2k

d
+ 8
d

∑
r:ar<2k−2

a2
r

2k ≤
2k

d

∑
`>k−2

n` + 8
d

k−2∑
`=1

n`22`−k.

Averaging over all k, we get

Pr[C] = 2
log2 d

(log2 d)/2∑
k=1

Pr[C|k] ≤ 16
d log2 d

(log2 d)/2∑
k=1

(
k−2∑
`=1

n`22`−k +
∑
`>k−2

n`2k
)

= 16
d log2 d

(log2 d)/2∑
`=1

n`
∑
k≥`+2

22`−k +
log2 d∑
`=1

n`
∑
k<`+2

2k
 . (2)

Now,
∑
k≥`+2 22`−k ≤ 2` and

∑
k<`+2 2k ≤ 4 ·2`. Substituting, Pr[C] ≤ 80

d log2 d

∑log2 d
`=1 n`2` ≤

160M
d log2 d

, proving the lemma. J

We are now left to bound
∑
i |cap(Qi)|. This is done by the following combinatorial lemma.

I Lemma 3.13. Let V be a set of vectors over an arbitrary alphabet and any number of
dimensions. For any natural number c and x, y ∈ V , let capc(x, y) denote the (set of) first c
coordinates at which x and y differ. Then |capc(V)| ≤ c(|V | − 1).

Proof. We construct c different edge-coloured graphs G1, . . . , Gc over the vertex set V . For
every coordinate i ∈ capc(V), there must exist at least one pair of vectors x, y such that
i ∈ capc(x, y). Thinking of each capc(x, y) as an ordered set, find a pair (x, y) where i
appears “earliest” in capc(x, y). Let the position of i in this capc(x, y) be denoted t. We
add edge (x, y) to Gt, and colour it i. Note that the same edge (x, y) cannot be added to Gt
with multiple colours, and hence all Gt’s are simple graphs. Furthermore, observe that each
colour is present only once over all Gt’s.

We claim that each Gt is acyclic. Suppose not. Let there be a cycle C and let (x, y) be
the edge in C with the smallest colour i. Clearly, xi 6= yi since i ∈ capc(x, y). There must
exist another edge (u, v) in C such that ui 6= vi. Furthermore, the colour of (u, v) is j > i.
Thus, j is the tth entry in capc(u, v). Note that i ∈ capc(u, v) and must be the sth entry for
some s < t. But this means that the edge (u, v) coloured i should be in Gs, contradicting
the presence of (x, y) ∈ Gt. J

R. Baleshzar, D. Chakrabarty, R. Pallavoor, S. Raskhodnikova, and C. Seshadhri 5:13

We wrap up the bound now.

I Lemma 3.14. If |Q| ≤ δd log d, then Pr[C] = O(δ).

Proof. Lemma 3.13 applied to each Qi, yields
∑
i |cap(Qi)| ≤ 5|Qi| = 5|Q|. An application

of Lemma 3.12 completes the proof. J

Acknowledgments. We thank Oded Goldreich for useful discussions and Meiram Murzabu-
latov for participation in initial discussions on this work.

References
1 Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity

testing in higher dimension. Inf. Comput., 204(11):1704–1717, 2006.
2 Roksana Baleshzar, Deeparnab Chakrabarty, Ramesh Krishnan S. Pallavoor, Sofya Rask-

hodnikova, and C. Seshadhri. Optimal unateness testers for real-valued functions: Ad-
aptivity helps. Electronic Colloquium on Computational Complexity (ECCC), 2017, 2017.
Also appeared as arXiv report 1703.05199 (https://arxiv.org/abs/1703.05199). URL:
https://eccc.weizmann.ac.il/report/2017/049/.

3 Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate PCPs for multidi-
mensional bin-packing problems. Inf. Comput., 196(1):42–56, 2005.

4 Aleksandrs Belovs and Eric Blais. Quantum algorithm for monotonicity testing on the
hypercube. Theory of Computing, 11:403–412, 2015.

5 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings, ACM Symposium on Theory of Computing (STOC), pages 1021–1032, 2016.

6 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings,
ACM Symposium on Theory of Computing (STOC), pages 164–173, 2014.

7 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

8 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via commu-
nication complexity. Computational Complexity, 21(2):311–358, 2012.

9 Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing
properties of functions over hypergrid domains. In Proceedings, IEEE Conference on Com-
putational Complexity (CCC), pages 309–320, 2014.

10 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

11 Deeparnab Chakrabarty. Monotonicity testing. In Encyclopedia of Algorithms, pages 1352–
1356. Springer, 2016.

12 Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. In Proceedings,
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1809–1828, 2015.

13 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings, ACM Symposium on Theory of
Computing (STOC), pages 419–428, 2013.

14 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity test-
ing over hypergrids. Theory of Computing, 10:453–464, 2014.

15 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean func-
tions over the hypercube. SIAM J. Comput., 45(2):461–472, 2016.

16 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) O(n1/2) non-adaptive queries. In Proceedings, ACM Symposium
on Theory of Computing (STOC), pages 519–528, 2015.

ICALP 2017

https://arxiv.org/abs/1703.05199
https://eccc.weizmann.ac.il/report/2017/049/

5:14 Optimal Unateness Testers for Real-Valued Functions: Adaptivity Helps

17 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 286–295, 2014.

18 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin M. Varma. Erasure-
resilient property testing. In Proceedings, International Colloquium on Automata, Lan-
guages and Processing (ICALP), pages 91:1–91:15, 2016.

19 Yevgeny Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. Proceedings, International
Workshop on Randomization and Approximation Techniques in Computer Science (RAN-
DOM), pages 97–108, 1999.

20 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. System Sci., 60(3):717–751, 2000.

21 Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput.,
189(1):107–116, 2004.

22 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings,
ACM Symposium on Theory of Computing (STOC), pages 474–483, 2002.

23 Oded Goldreich. Introduction to property testing (working draft), 2015. URL: http:
//www.wisdom.weizmann.ac.il/~oded/PDF/pt-v1.pdf.

24 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20:301–337, 2000.

25 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

26 Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007.

27 Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Struct. Algorithms, 33(1):44–67, 2008.

28 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of Lipschitz functions
with applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013.

29 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean iso-
perimetric type theorems. In Proceedings, IEEE Symposium on Foundations of Computer
Science (FOCS), pages 52–58, 2015.

30 Subhash Khot and Igor Shinkar. An Õ(n) queries adaptive tester for unateness. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, pages 37:1–37:7, 2016.

31 Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Combin. Theory Ser. A,
94(2):399–404, 2001.

32 Sofya Raskhodnikova. Testing if an array is sorted. In Encyclopedia of Algorithms, pages
2219–2222. Springer, 2016.

33 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-
ations to program testing. SIAM J. Comput., 25(2):252–271, 1996.

34 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 222–227, 1977.

http://www.wisdom.weizmann.ac.il/~oded/PDF/pt-v1.pdf
http://www.wisdom.weizmann.ac.il/~oded/PDF/pt-v1.pdf

Sublinear Random Access Generators for
Preferential Attachment Graphs
Guy Even1, Reut Levi2, Moti Medina3, and Adi Rosén∗4

1 Tel Aviv University, Tel Aviv, Israel
guy@eng.tau.ac.il

2 MPI for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
reuti.levi@gmail.com

3 MPI for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
moti.medina@gmail.com

4 CNRS and Université Paris Diderot, Paris, France
adiro@liafa.univ-paris-diderot.fr

Abstract
We consider the problem of sampling from a distribution on graphs, specifically when the dis-
tribution is defined by an evolving graph model, and consider the time, space and randomness
complexities of such samplers.

In the standard approach, the whole graph is chosen randomly according to the randomized
evolving process, stored in full, and then queries on the sampled graph are answered by simply
accessing the stored graph. This may require prohibitive amounts of time, space and random
bits, especially when only a small number of queries are actually issued. Instead, we propose to
generate the graph on-the-fly, in response to queries, and therefore to require amounts of time,
space, and random bits which are a function of the actual number of queries.

We focus on two random graph models: the Barabási-Albert Preferential Attachment model
(BA-graphs) [3] and the random recursive tree model [24]. We give on-the-fly generation algo-
rithms for both models. With probability 1 − 1/poly(n), each and every query is answered in
polylog(n) time, and the increase in space and the number of random bits consumed by any
single query are both polylog(n), where n denotes the number of vertices in the graph.

Our results show that, although the BA random graph model is defined by a sequential
process, efficient random access to the graph’s nodes is possible. In addition to the conceptual
contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient
simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their
performance on such graphs.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases local computation algorithms, preferential attachment graphs, random
recursive trees, sublinear algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.6

1 Introduction

Consider a Markov process in which a sequence {St}t of states, St ∈ S, evolves over time
t ≥ 1. Suppose there is a set P of predicates defined over the state space S. Namely, for
every predicate P ∈ P and state S ∈ S, the value of P (S) is well defined. A query is a pair

∗ Research supported in part by ANR projet RDAM.

EA
T

C
S

© Guy Even, Reut Levi, Moti Medina, and Adi Rosén;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Sublinear Random Access Generators for Preferential Attachment Graphs

(P, t) and the answer to the query is P (St). In the general case, answering a query (P, t)
requires letting the Markov process run for t steps until St is generated. In this paper we
are interested in ways to reduce the dependency, on t, of the computation time time, the
memory space, and the number of used random bits, required to answer a query (P, t).

We focus on the case of generative models for random graphs, and in particular, on
the Barabási-Albert Preferential Attachment model [3] (which we call BA-graphs), on the
equivalent linear evolving copying model of Kumar et al. [10], and on the random recursive
tree model [24]. The question we address is whether one can design a randomized on-the-fly
graph generator that answers adjacency list queries of BA-graphs (or random recursive
trees), without having to generate the complete graph. Such a generator outputs answers
to adjacency list queries as if it first selected the whole graph at random (according the
appropriate distribution) and then answered the queries based on the samples graph.

We are interested in the following resources of a graph generator: (1) the number of
random bits consumed per query, (2) the running time per query, and (3) the increase in
memory space per query.

Our main result is a randomized on-the-fly graph generator for BA-graphs over n vertices
that answers adjacency list queries. The generated graph is sampled according to the
distribution defined for BA-graphs over n vertices, and the complexity upper bounds that
we prove hold with probability 1− 1/poly(n). That is, with probability 1− 1/poly(n) each
and every query is answered in polylog(n) time, and the increase in space, and the number
of random bits consumed during that query are polylog(n). Our result refutes (definitely
for polylog(n) queries) the recent statement of Kolda et al. [9] that: “The majority of graph
models add edges one at a time in a way that each random edge influences the formation of
future edges, making them inherently serial and therefore unscalable. The classic example is
Preferential Attachment, but there are a variety of related models...”

We remark that the entropy of the edges in BA-graphs is Θ(logn) per edge in the second
half of the graph [23]. Hence it is not possible to consume a sublogarithmic number of
random bits per query in the worst case if one wants to sample according to the BA-graph
distribution. Similarly, to insure consistency (i.e., answer the same query twice in the same
way) one must use Ω(logn) space per query.

From a conceptual point of view, the main ingredient of our result are techniques to
“invert” the sequential process where each new vertex randomly selects its “parent” in the
graph among the previous vertices. Instead, vertices randomly select their “children” among
the “future” vertices, while maintaining the same probability distribution as if each child
picked “in the future” its parent. We apply these techniques in the related model of random
recursive trees [24] (also used within the evolving copying model [10]), and use them as a
building block for our main result for BA-graphs.

Due to space limitations, some of the proofs are omitted from this extended abstract.

Related work. A linear time randomized algorithm for efficiently generating BA-graphs
is given in Betagelj and Brandes [4]. See also Kumar et al. [10] and Nobari et al. [18]. A
parallel algorithm is given in Alam et al. [1]. See also Yoo and Henderson [25]. An external
memory algorithm was presented by Meyer and Peneschuck [16]. Generating huge random
objects while using “small” amounts of randomness was studied by Goldreich, Goldwasser
and Nussboim [8]. Mansour et al. [14] consider local generation of bipartite graphs in the
context of local simulation of Balls into Bins online algorithms.

Applications. One reason for generating large BA-graphs is to simulate algorithms over
them. Such algorithms often access only small portions of the graphs. In such instances, it is

G. Even, R. Levi, M. Medina, and A. Rosén 6:3

wasteful to generate the whole graph. An interesting example is sublinear approximation
algorithms [20, 26, 17, 19] which probe a constant number of neighbors. In addition, local
computation algorithms probe a small number of neighbors to provide answers to optimization
problems such as maximal independent sets and approximate maximum matchings [6, 7, 21,
22, 2, 14, 15, 11, 12, 13]. Support of adjacency list queries is especially useful for simulating
(partial) DFS and BFS over graphs.

2 Preliminaries

Let Vn , {v1, . . . , vn}. Let G = (Vn, E) denote a directed graph on n nodes.1 We refer to
the endpoints of a directed edge (u, v) as the head v and the tail u. Let deg(vi, G) denote the
degree of the vertex vi in G (both incoming and outgoing edges). Similarly, let degin(vi, G)
and degout(vi, G) denote the in-degree and out-degree, respectively, of the vertex vi in G.

In the sequel, when we say that an event occurs with high probability (or w.h.p) we mean
that it occurs with probability at least 1− 1

nc , for some constant c.
For ease of presentation, we extensively use in the algorithms arrays of size n. However,

in order to keep the space complexity low, we implement these arrays by means of balanced
search trees, with keys in [1, n]. Thus, the space used by the “arrays” is the number of keys
stored. The time complexities that we give are therefore to be multiplied by a factor of
O(logn).

3 Queries and On-the-Fly Generators

Consider an undirected graph G = (Vn, E), where Vn = {v1, . . . , vn}. Slightly abusing
notation, we sometimes consider and denote node vi as the integer number i and so we
have a natural order on the nodes. The access to the graph is done by means of a user-
query BA-next-neighbor : [1, n]→ [1, n+ 1], where n+ 1 denotes “no additional neighbor”.
We number the queries according to the order they are issued, and call this number the
time of the query. Let qt be the node on which the query at time t was issued, i.e, at
time t the query BA-next-neighbor(qt) is issued by the user. For each node v ∈ V

and any time t, let lastt(j) be the largest numbered node which was previously returned
as the value of BA-next-neighbor(j), or 0 if no such query was issued before time t.
That is, lastt(v) = min{0,mint′<t{BA-next-neighbor(qt′)|qt′ = v}. At time t the query
BA-next-neighbor(v) returns arg mini>lastt(j){(i, j) ∈ E}, or n+1 if no such i exists. When
the implementation of the query has access to a data structure holding the whole of E,
then the implementation of BA-next-neighbor is straightforward just by accessing this data
structure.

An on-the-fly graph generator is an algorithm that gives access to a graph by means
of the BA-next-neighbor query defined above, but itself does not have access to a data
structure that encodes the whole graph. Instead, in response to the queries issued by the
user, the generator modifies its internal data structure (a.k.a state), which is initially some
empty (constant) state. The generator must ensure however that its answers are consistent
with some graph G. An on-the-fly graph generator for a given distribution on a family of
graphs (such as the family of Preferential Attachment graphs on n nodes) must in addition

1 Preferential attachment graphs are usually presented as undirected graphs. For convenience of discussion
we orient each edge from the high index vertex to the low index vertex, but the graphs we consider
remain undirected graphs.

ICALP 2017

6:4 Sublinear Random Access Generators for Preferential Attachment Graphs

ensure that it samples the graphs according to the required distribution. That is, its answers
to a sequence of queries must be distributed identically to those returned when a graph
was first sampled (according to the desired distribution), stored, and then accessed (See
Definition 16 and Theorem 17).

4 Random Graph Models

Preferential attachment [3]. We restrict our attention to the case in which each vertex is
connected to the previous vertices by a single edge (i.e., m = 1 in the terminology of [3]). We
thus denote the random process that generates a graph over Vn according to the preferential
attachment model by BAn. The random process BAn generates a sequence of n directed
edges En , {e1, . . . , en}, where the tail of ei is vi, for every i ∈ [1, n]. (We abuse notation
and let BAn = (Vn, En) also denote the graph generated by the random process.) We refer
to the head of ei as the parent of vi.

The process BAn draws the edges sequentially starting with the self-loop e1 = (v1, v1).
Suppose we have selected BAj−1, namely, we have drawn the edges e1, . . . , ej−1, for j > 1.
The edge ej is drawn such its head is node vi with probability deg(vi,G)

2(j−1) .
Note that the out-degree of every vertex in (the directed graph representation of) BAn is

exactly one, with only one self-loop in v1. Hence BAn (without the self-loop) is an in-tree
rooted at v1.

Evolving copying model [10]. Let Zn denote the evolving copying model with out-degree
d = 1 and copy factor α = 1/2. As in the case of BAn, the process Zn selects the edges
E′n = {e′1, . . . , e′n} one-by-one starting with a self-loop e′1 = (v1, v1). Given the graph
Zn−1 = (Vn, E

′
n), the next edge e′n emanates from vn. The head of edge e′n is chosen as

follows. Let bn ∈ {0, 1} be an unbiased random bit. Let u(n) ∈ [1, n − 1] be a uniformly
distributed random variable (the random variables b1, . . . , bn and u(1), . . . , u(n) are all
pairwise independent.) The head vi of e′n is determined as follows: head(e′n) , u(n), if bn = 1;
and head(e′n) , head(eu(n)), if bn = 0.

Random recursive tree model [24]. If we eliminate from the evolving copying model the
bits bi and the “copying effect” we get a model where each new node n is connected to one
of the previous nodes, chosen uniformly at random. This is the extensively studied (random)
recursive tree model [24].

We now relate the various models. Proof omitted from this extended abstract.
I Claim 1 ([1]). The random graphs BAn and Zn are identically distributed.

We use the following claim in the sequel.
I Claim 2 (cf. [5], Thm. 6.12 and Thm. 6.32). Let T be a rooted directed tree on n nodes
denoted 1, . . . , n, and where node 1 is the root of the tree. If the head of the edge emanating
from node j > 1 is uniformly distributed among the nodes in [1, j − 1], then, with high
probability, the following two properties hold:
1. The maximum in-degree of a node in the tree is O(logn).
2. The height of the tree is O(logn).

5 The Pointers Tree

We now consider a graph inspired by the the random recursive tree model [24] and the
evolving copying model [10]. Each vertex i has a variable u(i) that is uniformly distributed

G. Even, R. Levi, M. Medina, and A. Rosén 6:5

over [1, i− 1], and can be viewed as a directed edge (or pointer) from i to u(i). We denote
this random rooted directed in-tree by UT . Let u−1(j) denote the set {i : u(i) = j}. We refer
to the set u−1(i) as the u-children of i and to u(i) as the u-parent of i. In conjunction with
each pointer, we keep a flag indicating whether this pointer is to be used as a dir (direct)
pointer or as a rec (recursive) pointer. We thus use the directed pointer tree to represent a
graph in the evolving copying model (which is equivalent, when the flag of each pointer is
equality distributed between rec and dir, to the BA model).

In this section we consider the subtask of giving access to a random UT , together with
the flags of each pointer. Ignoring the flags, this section thus gives an on-the-fly random
access generator for the extensively studied model of random recursive trees (cf. [24]). We
define the following queries.

(i, f lag)← parent(j): i is the parent of j in the tree, and flag is the associated flag.
i ← next-child-tp(j, k, type), where k ≥ j: i is the least numbered node i > k such
that the parent of i is j and the flag of that pointer is of type “type”. If no such node
exists then i is n+ 1.

The “ideal” way to implement this task is to go over all n nodes, and for each node j
(1) uniformly at random choose its parent in [1, j − 1], (2) uniformly at random chose the
associated flag in {dir, rec}. Then store the pointers and flags, and answer the queries by
accessing this data structure.

In this section we give an on-the-fly generator that answers the above queries. We
start with some notations. We say that j is exposed if u(j) 6= nil (initially all pointers u(j)
are set to nil). We denote the set of all exposed vertices by F . We say that j is directly
exposed if u(j) was set during an invocation of next-child-tp(i, ·, ·). We say that j is
indirectly exposed if u(j) was determined during an invocation of parent(j). As a result
of answering and processing next-child-tp and parent queries, the on-the-fly generator
commits to various decisions (e.g., prefixes of adjacency lists). These commitments include
edges but also non-edges (i.e., vertices that can no longer serve as u(j) for a certain j). For
a node i, front(i) denotes the largest value (node) k ∈ [1, n+ 1] such that k was returned
by a next-child-tp(i, ·, ·) query, and nil if no such returned value exists. Observe that
front(i) = k implies that (1) u(k) = i; and (2) we know already for each node j ∈ [j+1, k−1]
if u(j) = i or not. We denote - roughly speaking - the set of vertices that cannot serve as
u-parents of j by not-u-parent-candidate(j), the nodes that can still be u-parents of j by
Φ(j), and their number by ϕ(j) = |Φ(j)|. The formal definitions are:

not-u-parent-candidate(j) , {i ∈ [1, j − 1] : front(i) ≥ j} ,
Φ(j) , [1, j − 1] \ not-u-parent-candidate(j) ,
ϕ(j) , |Φ(j)| .

5.1 An efficient implementation of next-child

We first shortly discuss the challenges on the way to an efficient implementation of next-child.
Observe that before the first next-child(j) query, for a given j, is issued, the probability for
any x > j to be a u-child of j is 1/ϕ(x), because all nodes x′ < x can still be the u-parent of
x. But once next-child(·) queries are issued, this may no longer be the case. For example,
if x > front(j′), then, even if the u-parent of x is not yet determined, j′ is no longer an option
to be the u-parent of x. This renders the calculation of Pr[u(x) = j] more complicated
and more computation-time consuming, which renders the process of selecting the next
child of a node j non-efficient. In the rest of this section we show how to overcome these

ICALP 2017

6:6 Sublinear Random Access Generators for Preferential Attachment Graphs

difficulties and give a procedure that selects the next child, with the appropriate probability
distribution, using polylog(n) random bits and in polylog(n) time, and while increasing the
space by polylog(n). This procedure will be at the heart of our efficient implementation of
next-child.

The efficient implementation of next-child (and of parent) makes use of the following
data structures.

An array of length n, u(j)
An array of length n, type(j)
An array of length n, front(j) (We also maintain an array front−1(i) with the natural
definition.)
An array of n balanced search trees, called child(j), each holding a set of nodes i > j

such that u(i) = j (not necessarily all such nodes). For technical reasons we initiate all
trees child(j) with n+ 1 ∈ child(j).
A number of additional data structures that are implicit in the listing, described and
analyzed in the sequel.

In the implementation we maintain the following two invariant.

I Invariant 3. For every node j, the first next-child-tp(j, ·, ·) query is always preceded by
a parent(j) query.

We will use this invariant to infer that front(j) 6= nil implies that u(j) 6= nil. One can
easily maintain this invariant by introducing a parent(j) query as the first step of the
implementation of the next-child-tp(j, ·, ·) query (for technical reasons we do that in a
lower-level procedure next-child.)

I Invariant 4. For every vertex j, front(j) 6= nil implies that front(front(j)) 6= nil.

The second invariant is maintained by issuing an “internal” next-child(front(j), front(j))
query whenever front(j) is updated. This is done recursively, the base of the recursion being
node n+ 1. Let front−1(j) denote the vertex i such that front(i) = j, if such a vertex i exists;
otherwise front−1(j) = nil. We get that if front−1(j) 6= nil, then u(j) 6= nil.

I Definition 5. At a given time t, and for any node j, let Φ(j) and φ(j) be defined as follows:
Φ(j) , {i | i < j and (front(i) < j or front(i) = nil)}, and φ(j) = |Φ(j)|.

The following lemma gives properties of the series {Φ(x)}x. Proof omitted.

I Lemma 6. For every x ∈ [1, n− 1]:
1. Φ(x) ⊆ Φ(x+ 1) ⊆ Φ(x) ∪ {x, front−1(x)}.
2. Φ(x+ 1) = Φ(x) iff x ∈ K.
3. ϕ(x+ 1)− ϕ(x) ≤ 1.

We now describe the implementation of next-child-tp(j, k, type) and next-child(j).
next-child-tp(j, k, type) is a loop of next-child-from(j, k) until the right type is found,
and next-child-from(j, k) is essentially a call to next-child(j) (see Figure 1). Note that
if j does not have children larger than k, then next-child-from(j, k) returns n+ 1.

If front(j) > k when next-child-from(j, k) is called, then the next child is already fixed
and it is just extracted from the data structures. Otherwise, an interval I = [a, b] is defined,
and it will contain the answer of next-child(j). Let a = front(j) + 1 if front(j) 6= nil;
otherwise a = j + 1. Let b denote the smallest, larger than front(j), indirectly exposed child
of j if one exists (i.e., if front(j) 6= nil then b = min{` > front(j) | u(`) = j}); if no such b

G. Even, R. Levi, M. Medina, and A. Rosén 6:7

exists then b = n+ 1. By the definition of K, K ⊆ F , and no vertex x ∈ F ∩ [a, b) can satisfy
u(x) = j. Hence, the answer is in I \ (F \ {b}).

The next child can be sampled according to the desired distribution in a straightforward
way by going sequentially over the vertices in I \ F \ {b}, and tossing for each vertex x a
coin that has probability 1/ϕ(x) to be 1, until indeed one of those coins comes out 1, or
all vertices are exhausted (in which case node b is taken as the next child). However, this
procedure takes linear time. We denote by D(x), x ∈ I \ F , the probability that x is chosen
according to the above procedure. In order to start building our efficient implementation for
next-child we consider the same process, with the same probabilities 1/ϕ(x), but this time
for [a, b) \K, rather than [a, b) \ F . The vertex on which we stop, denote is x, is a candidate
next u-child. If x ∈ F \K, then x cannot be a child of j so we proceed in the same way, but
with the interval [x+ 1, b].

We now build our efficient procedure that selects the candidate, without sequentially going
over the nodes. To this end, observe that the sequence of probabilities of the coins tossed in
the last-described process behaves “nicely”. Namely, the probabilities 1/ϕ(x), for x ∈ [a, b)\K,
form the harmonic sequence starting from 1/ϕ(a) and ending in 1/(ϕ(a) + |[a, b) \K| − 1).
Indeed, Lemma 6 implies that if vertex i is the smallest vertex in I \K, then ϕ(i) = ϕ(a)
and an increment between ϕ(x) and ϕ(x+ 1) occurs if and only if x /∈ K. Let s = |I \K|
and let Pq, 0 ≤ q ≤ s− 1 be the probability that the node of rank q in I \K is chosen as
candidate in the sequential procedure defined above. Since ϕ(x) form the harmonic sequence
for x ∈ [a, b) \ K, we can calculate in O(1) time, for any 0 ≤ i ≤ s − 1, the probability
P ′i =

∑
q<i Pq (i.e., a node of some rank q, q < i, is chosen). Indeed, for i = 0, Pi = 1

ϕ(a) ;

for 0 < i < s − 1, Pi = 1
ϕ(a)+i ·

∏i−1
`=0

(
1− 1

ϕ(a)+`

)
= ϕ(a)−1

(ϕ(a)+i−1)(ϕ(a)+i) ; and for i = s − 1,

Ps−1 =
∏s−2

`=0

(
1− 1

ϕ(a)+`

)
= ϕ(a)−1

ϕ(a)+s−2 . Hence, for 0 ≤ i ≤ s− 1, P ′i = 1− ϕ(a)−1
ϕ(a)+(i−1) , and

for i = s, P ′s = 1. This allows us to simulate one iteration (i.e., choosing the next candidate
next u-child) by choosing uniformly at random a single number in [0, 1], and then performing
a binary search over 0 to s− 1 to decide what rank h this number “represents”. After we
randomly chose a rank h ∈ [0, s − 1], h is then mapped to the vertex of rank h in I \K,
denote it x, and this is the candidate next u-child. As before, if x ∈ (F \K), then x cannot
be a child of j so we ignore it and proceed in the same way, this time with the interval
[x+ 1, b]. See the pseudo code of of next-child and toss (Figure 1). We denote by D̂(x),
x ∈ I \ F the probability that x is chosen according to this third procedure. See Figure 1 for
a formal definition of this procedure.

Observe that this procedure takes O(log s) time (see Section 5.2 for a formal statement
of the time and randomness complexities). We note that we cannot perform this selection
procedure in the same time complexity for the set [a, b) \ F , because we do not have a way
to calculate each and every probability P ′i , i ∈ [a, b) \ F , in O(1) time.

To conclude the description of the implementation of next-child, we give the following
lemma which states that the probability distribution on the next child is the same for all
three processes described above. The (technical) proof is omitted.

I Lemma 7. For all x ∈ I \ F , D̂(x) = D(x).

The implementation of parent is straightforward (see Figure 1). However, note that
updating the various data structures, while implicit in the listing, is accounted for in the
time analysis.

ICALP 2017

6:8 Sublinear Random Access Generators for Preferential Attachment Graphs

1: procedure next-child-tp(j, k, type)
2: x← k
3: repeat
4: x← next-child-from(j, x)
5: until flag(x) = type or x = n+ 1
6: return x

7: end procedure

1: procedure next-child-from(j, k)
2: If (k ≥ n) return (n+ 1)
3: q ← succ(child(j), k)
4: if q ≤ front(j) then
5: return q
6: else
7: return next-child(j)
8: end if
9: end procedure

1: procedure parent(j)
2: if u(j) = nil then
3: u(j)←R [1, j − 1]
4: type(j)←R {dir, rec}
5: end if
6: return (u(j), type(j))
7: end procedure

1: procedure next-child(j)
2: (p, t)← parent(j)
3: If (front(j) ≥ n) return (n+ 1)

4: a←
{

front(j) + 1 if front(j) 6= nil
j + 1 if front(j) = nil

5: b←
{

succ(child(j), front(j)) if front(j) 6= nil
n+ 1 if front(j) = nil

6: repeat
7: s← |[a, b] \K|
8: h← toss(ϕ(a), s)
9: x← the vertex of rank h in [a, b] \K

10: if x = b then
11: return b
12: else
13: if u(x) = nil then
14: u(x) = j
15: type(x)←R {dir, rec}
16: front(j)← x
17: front−1(x)← j
18: if (front(x) = nil) next-child(x)
19: return (x)
20: else
21: if u(x) = j then
22: front(j)← x
23: front−1(x)← j
24: if (front(x) = nil) next-child(x)
25: return(x)
26: else
27: a← x+ 1
28: end if
29: end if
30: end if
31: until forever
32: end procedure

1: procedure toss(ϕ, s)
2: α← nc (for some constant c > 1).
3: Choose uniformly at random an integer H ∈ [0, α]
4: M ← H · 1

α

5: Using binary search on [0, s− 1] find y such that P ′y ≤M < P ′y+1
6: (where, for 0 ≤ y ≤ s− 1, P ′y = 1− ϕ−1

ϕ+(y−1) , and P ′s = 1)
7: if (H + 1) 1

α ≤ Pry+1 then
8: return y
9: else
10: α← α ·Πs−1

y=0(P ′y+1 − P ′y)
11: Choose uniformly at random an integer H ∈ [0, α]
12: M ← H · 1

α

13: Using binary search on [0, s− 1] find y such that P ′y ≤ H < P ′y+1
14: (where, for 0 ≤ y ≤ s− 1, P ′y = 1− ϕ−1

ϕ+(y−1) , and P ′s = 1)
15: return y
16: end if
17: end procedure

Figure 1 Pseudo code of the pointers tree generator.

G. Even, R. Levi, M. Medina, and A. Rosén 6:9

5.2 Analysis of the pointer tree generator

We first give the following claim that we later use a number of times.

I Lemma 8. With high probability, for each and every invocation of next-child, the size
of the recursion tree of that invocation for calls to next-child is O(logn).

Proof. Consider the recursive invocation tree that results from a call to next-child. Observe
that (1) by the code of next-child this tree is in fact a path; and (2) this path corresponds
to a path in the pointers tree, where each edge of this tree-path is “discovered” by the
corresponding call to next-child. That is, the maximum size of an invocation tree of a call
of next-child is bounded from above by the height of the pointers tree. By Claim 2, with
high probability, this is O(logn). J

5.2.1 Data structures and space complexity

The efficient implementation of next-child makes use of the following data structures.
A number of arrays of length n, u(j) and type(j), front(j) and front−1(j), used to store
various values for nodes j. Since we implement arrays by means of search trees, the space
complexity of each array is O(m), where m is the maximum number of distinct keys
stored with a non-null value in that array, at any given time. The time complexity for
each operation is O(logm) = O(logn).
For each node j, a balanced binary search tree called child(j), where child(j) stores
(some of the known) children of node j. (for technical reasons we define child(j) to
always include node n + 1.) Observe that for each child i stored in one of these trees,
u(i) is already determined. Thus, the increase, during a given period, in the space used
by the child trees is bounded from above by the the number of nodes i for which u(i)
got determined during that period. For the time complexity of the operations on these
trees we use a coarse standard upper bound of O(logn).

The listings of the implementations of the various procedures leave implicit the mainte-
nance of two data structures, related to the set K and to the computation of ϕ(·):

A data structure that allows one to retrieve the value of ϕ(a) for a given vertex a. This
data structure is implemented by retrieving the cardinality of not-u-parent-candidate(a)
for a given node a. The latter is equivalent to counting how many nodes i < a have
front(i) 6= nil and front(i) ≥ a. We use two balanced binary search trees (or order statistics
trees) in a specific way and have that by standard implementations of balanced search trees
the space complexity is O(k) (and all operations are done in time O(log k) = O(logn)).
Here k denotes the number of nodes i such that front(i) 6= nil. The details of the
implementation are omitted from this extended abstract.
A data structure that allows one to find the vertex of rank h in the ordered set [a, n+1]\K.
This data structure is implemented by a balanced binary search tree storing the nodes
in K, augmented with the queries rankK(i) (as in an order-statistics tree) as well as
rankK̄(i) and selectK̄(s), i.e., finding the element of rank s in the complement of K. To
find the vertex of rank h in [a, n+ 1] \K we use the query selectK̄(rankK̄(a) + h). The
space complexity of this data structure is O(k), and all operations are done in time
O(log k) = O(logn) or O(log2 k) = O(log2 n) (for the selectK̄(i) query). Here k denotes
the number of nodes in K, which is upper bounded by the number of nodes i such that
front(i) 6= nil. The details of the implementation are omitted from this extended abstract.

ICALP 2017

6:10 Sublinear Random Access Generators for Preferential Attachment Graphs

5.2.2 Time complexity
Time complexity of toss(ϕ, s). The time complexity of this procedure is O(1) regardless
of whether or not the if condition holds or not.

Time complexity of “x ← the vertex of rank h in [a, n + 1] \ K”. This operation is
implemented using the data structure defined above, and takes O(log2 n) time.

Time complexity of parent(j). Examining the listing (Figure 1), one observes that the
number of operations is constant. However, though implicit in the listing, one should take
into account the update of the data structures child(j) as well as the data structure that
stores the set K, each taking O(logn) time.

Time complexity of next-child. First consider the time complexity of a single invocation
of next-child, involving the update of the various data structures: The call to parent takes
O(logn) time. Therefore, until the start of the repeat loop, the time is O(logn) (the time
complexity of succ is O(logn)). Now, the time complexity of a single iteration of the loop
(without taking into account recursive calls to next-child) is (O log2 n) because:

The call to toss takes O(1) time.
Finding the vertex of rank h in [a, n+ 1] \K takes O(log2 n) time.
Each of the O(1) updates of front(·) or front−1(·) may change the set K, and therefore
may take O(logn) time to update the data structure involving K.
Each update of a pointer u(·) results also in an (implicit) update in a certain child
search tree, taking O(logn) time.

We now examine the number of iterations of the loop.

I Claim 9. With high probability, the number of iterations of the loop in a single invocation
of next-child is O(logn).

Proof. We consider a process where the iterations continue until the selected node is node
b. A random variable, R, depicting this number dominates a random variable that depicts
the actual number of iterations. For each iteration, an additional node is selected by toss.
By Lemma 7 the probability that a node j < b is selected by toss is 1/ϕ(j), and we have
that 1/ϕ(j) ≤ 1

j−1 . Thus, R = 1 +
∑b−1

j=a Xj , where Xj is 1 iff node j was selected, 0
otherwise. Since µ =

∑b−1
j=a

1
ϕ(j) ≤ logn, using Chernoff bound we have, for any constant

c > 6, P [R > c · logn] ≤ 2−c·log n = n−Ω(1). J

We thus have the following.

I Lemma 10. For any given invocation of next-child, with high probability, the time
complexity is O(log3 n).

5.2.3 Randomness complexity
In procedure parent we use O(logn) random bits whenever, for a given j, this procedure is
called with parameter j for the first time.

In procedure toss the if condition holds with probability 1 − 1/nc−1 (where c is the
constant used in that procedure). Therefore, given an invocation of toss, with probability
1− 1/nc−1 this procedure uses O(logn) bits. By Claim 9, in each invocation of next-child
the number of times that toss is called is, w.h.p., O(logn). We thus have the following.

G. Even, R. Levi, M. Medina, and A. Rosén 6:11

I Lemma 11. During a given call to next-child, w.h.p., O(log2 n) random bits are used.

The following lemma states the time, space, and randomness complexities of the queries.

I Lemma 12. The complexities of next-child-tp and parent are as follows.
Given an invocation of parent the following hold for this invocation:
1. The increase, during that invocation, of the space used by our algorithm is O(1).
2. The number of random bits used during that invocation is O(logn).
3. The time complexity of that invocation is O(logn).
Given an invocation of next-child-tp, with high probability, all of the following hold
for this invocation:
1. The increase, during that invocation, of the space used by our algorithm is O(log2 n).
2. The number of random bits used during that invocation is O(log4 n).
3. The time complexity of that invocation is O(log5 n).

Proof.
parent. During an invocation of parent(j) the size of the used space increases when a
pointer u(j) becomes non-nul or when additional values are stored in child(u(j)). To select
u(j), O(logn) random bits are used, and O(logn) time is consumed to insert j in child(u(j))
and to update the data structure for the set K (this is implicit in the listing).

next-child-tp. We first consider next-child. Observe that by Lemma 8, w.h.p., each and
every root (non-recursive) invocation of next-child has a recursion tree of size O(logn). In
each invocation of next-child, O(1) variables front(j) and u(j) may be updated. Therefore,
w.h.p., for all root (non-recursive) calls to next-child it holds that the increase in space
during this invocation is O(logn) (see Section 5.2.1). Using Lemmas 11 and 8 we have that,
w.h.p., each root invocation of next-child uses O(log3 n) random bits. Using Lemmas 10
and 8, we have that, w.h.p., the time complexity of each root invocation of next-child is
O(log4 n).

Because the types of the pointers are uniformly distributed in {dir, rec}, each call to
next-child-tp results, w.h.p., in O(logn) calls to next-child. The above complexities are
thus multiplied by an O(logn) factor to get the (w.h.p.) complexities of next-child-tp. J

6 On-the-fly Generator for BA-Graphs

Our on-the-fly generator for BA-graphs is called O-t-F-BA, and simply calls
BA-next-neighbor(v) for each query on node v. We present an implementation for the
BA-next-neighbor query, and prove its correctness, as well as analyze its time, space, and
randomness complexities. The on-the-fly BA generator maintains n standard heaps, one
for each node. The heaps store nodes, where the order is the natural order of their serial
numbers. The heap of node j stores some of the nodes already known to be neighbors of j.

For the first BA-next-neighbor(v) query, for a given v, we proceed as follows. We find
the parent of v in the BA-graph, which is done by following, in the pointers tree, the
pointers of the ancestors of v until we find an ancestor pointed to by a dir pointer (and
not a rec pointer). See Figure 2. In addition, we initialize the process of finding neighbors
of v to its right (i.e., with a bigger serial number) by inserting into the heap of v the
“final node” n+ 1 as well as the first child of v.
Observe that any subsequent BA-next-neighbor(v) query is to return a child of v in the
BA-graph. The children x of v in the BA-graph have, in the pointers tree, a path of u(·)
pointers starting at x and ending at v with all pointers, except the last one, being rec

ICALP 2017

6:12 Sublinear Random Access Generators for Preferential Attachment Graphs

1: procedure BA-next-neighbor(v)
2: if first_query(v) = true then
3: /* first query for v */
4: first_query(v)← false
5: heap-insert(heapv, n+ 1)
6: heap-insert(heapv, next-child-tp(v, v, dir))
7: return BA-parent(v)
8: else
9: /* all subsequent queries for v */

10: r ← heap-extract-min(heapv)
11: if r = n+ 1 then
12: heap-insert(heapv, n+ 1)
13: return n+ 1
14: else
15: if type(r) = dir then
16: heap-insert(heapv, next-child-tp(v, r, dir))
17: heap-insert(heapv, next-child-tp(r, r, rec))
18: else
19: (q, type)← parent(r)
20: heap-insert(heapv, next-child-tp(q, r, rec))
21: end if
22: return r
23: end if
24: end if
25: end procedure

1: procedure BA-parent(v)
2: (i, f lag)← parent(v)
3: if flag = dir then
4: return i
5: else
6: return BA-parent(i)
7: end if
8: end procedure

Figure 2 Pseudo code of the on-the-fly BA generator.

(the last being dir). The query has to report the children in increasing index number.
To this end the heap of v is used; it stores some of the children of v, not yet returned by
a BA-next-neighbor(v) query. This heap is also updated so that BA-next-neighbor(v)
will continue to return the next child according to the index order. To do so, whenever a
node, r, is extracted from the heap, the heap is updated to include the following:

If r has a dir pointer to v, then we add to the heap (1) the next, after r, node with a
dir pointer to v, and (2) the first node that has a rec pointer to r.
If r has a rec pointer to a node r′, then we add to the heap the first, after r, node
with a rec pointer to r′.

The proof of the next lemma, by induction on the number of queries, is omitted.

I Lemma 13. The procedure BA-next-neighbor returns the next neighbor of v.

Since the flags in the pointers tree are uniformly distributed, and by Lemma 12, we have:

I Lemma 14. For any given root (non-recursive) invocation of BA-parent, with high proba-
bility, that invocation takes O(log2 n) time.

The next theorem follows from the code, standard heap implementation, and Lemma 12.

I Theorem 15. For any given invocation of BA-next-neighbor, with high probability, all
of the following hold for that invocation:
1. The increase, during that invocation, of the space used by our algorithm O(log2 n).
2. The number of random bits used during that invocation is O(log4 n).
3. The time complexity of that invocation is O(log5 n).

We now state the properties of our on-the-fly graph generator for BA-graphs.

G. Even, R. Levi, M. Medina, and A. Rosén 6:13

I Definition 16. For a number of queries T > 0 and a sequence of BA-next-neighbor
queries Q = (q1, . . . , qT), let A(Q) be the sequence of answers returned by an algorithm A

on Q. If A is randomized then A(Q) is a probability distribution on sequences of answers.

Let Opt-BAn be the (randomized) algorithm that first runs the Markov process to generate
a graph G on n nodes according to the BA model, stores G, and then answers queries by
accessing the stored G. Let O-t-F-BAn be the algorithm O-t-F-BA run with graph-size n.

I Theorem 17. For any sequence of queries Q, Opt-BAn(Q) = O-t-F-BAn(Q).

I Theorem 18. For any T > 0 and any sequence of queries Q = (q1, . . . , qT), when using
O-t-F-BAn it holds w.h.p. that, for all 1 ≤ t ≤ T :
1. The increase in the used space, while processing query t, is O(log2 n).
2. The number of random bits used while processing query t is O(log4 n).
3. The time complexity for processing query t is O(log5 n).

Proof. A query BA-next-neighbor(v) at time t is a trivial if at some t′ < t a query
BA-next-neighbor(v) returns n+ 1. Observe that trivial queries take O(logn) deterministic
time, do not use randomness, and do not increase the used space. Since there are less than
n2 non-trivial queries, the theorem follows from Theorem 15 and a union bound. J

Acknowledgments. We thank Yishay Mansour for raising the question of whether one can
locally generate preferential attachment graphs, and Dimitri Achlioptas and Matya Katz for
useful discussions. We further thank an anonymous ICALP reviewer for a comment that
helped us simplify one of the data structure implementations.

References
1 Md. Maksudul Alam, Maleq Khan, and Madhav V. Marathe. Distributed-memory parallel

algorithms for generating massive scale-free networks using preferential attachment model.
In International Conference for High Performance Computing, Networking, Storage and
Analysis, SC’13, Denver, CO, USA – November 17-21, 2013, pages 91:1–91:12, 2013. doi:
10.1145/2503210.2503291.

2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132–1139, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095205.

3 Albert-László Barabási and Reka Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.

4 Vladimir Batagelj and Ulrik Brandes. Efficient generation of large random networks. Phys-
ical Review E, 71(3):036113, 2005.

5 Michael Drmota. Random Trees: An Interplay Between Combinatorics and Probability.
Springer Publishing Company, Incorporated, 1st edition, 2009.

6 Guy Even, Moti Medina, and Dana Ron. Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796, 2014. URL: http://arxiv.org/abs/
1402.3796.

7 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Algorithms – ESA 2014 – 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 394–405, 2014. doi:10.1007/
978-3-662-44777-2_33.

8 Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM J. Comput., 39(7):2761–2822, 2010. doi:10.1137/080722771.

ICALP 2017

http://dx.doi.org/10.1145/2503210.2503291
http://dx.doi.org/10.1145/2503210.2503291
http://dl.acm.org/citation.cfm?id=2095205
http://dx.doi.org/10.1126/science.286.5439.509
http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1402.3796
http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1137/080722771

6:14 Sublinear Random Access Generators for Preferential Attachment Graphs

9 Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. A scalable generative
graph model with community structure. SIAM J. Scientific Computing, 36(5), 2014. doi:
10.1137/130914218.

10 Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivakumar, Andrew Tomkins,
and Eli Upfal. Random graph models for the web graph. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach,
California, USA, pages 57–65, 2000. doi:10.1109/SFCS.2000.892065.

11 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing
near spanning trees with few local inspections. CoRR, abs/1502.00413, 2015. URL: http:
//arxiv.org/abs/1502.00413.

12 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, pages 826–842,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.826.

13 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Brief announcement: Local com-
putation algorithms for graphs of non-constant degrees. In Proceedings of the 27th ACM
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, OR,
USA, June 13-15, 2015, pages 59–61, 2015. doi:10.1145/2755573.2755615.

14 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms
to local computation algorithms. In Automata, Languages, and Programming – 39th In-
ternational Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I,
pages 653–664, 2012. doi:10.1007/978-3-642-31594-7_55.

15 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maximum
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques – 16th International Workshop, APPROX 2013, and 17th International
Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings, pages
260–273, 2013. doi:10.1007/978-3-642-40328-6_19.

16 Ulrich Meyer and Manuel Penschuck. Generating massive scale-free networks under resource
constraints. In Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments, ALENEX 2016, Arlington, Virginia, USA, January 10, 2016, pages 39–52,
2016. doi:10.1137/1.9781611974317.4.

17 Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, pages 327–336. IEEE, 2008.

18 Sadegh Nobari, Xuesong Lu, Panagiotis Karras, and Stéphane Bressan. Fast random graph
generation. In Proceedings of the 14th international conference on extending database tech-
nology, pages 331–342. ACM, 2011.

19 Krzysztof Onak. New sublinear methods in the struggle against classical problems. Mas-
sachusetts Institute of Technology, PhD Thesis, September 2010.

20 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 1123–1131, 2012. URL: http://dl.acm.org/citation.
cfm?id=2095204.

21 Omer Reingold and Shai Vardi. New techniques and tighter bounds for local computation
algorithms. J. Comput. Syst. Sci., 82(7):1180–1200, 2016. doi:10.1016/j.jcss.2016.05.
007.

22 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Innovations in Computer Science – ICS 2010, Tsinghua University, Beijing, China,

http://dx.doi.org/10.1137/130914218
http://dx.doi.org/10.1137/130914218
http://dx.doi.org/10.1109/SFCS.2000.892065
http://arxiv.org/abs/1502.00413
http://arxiv.org/abs/1502.00413
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.826
http://dx.doi.org/10.1145/2755573.2755615
http://dx.doi.org/10.1007/978-3-642-31594-7_55
http://dx.doi.org/10.1007/978-3-642-40328-6_19
http://dx.doi.org/10.1137/1.9781611974317.4
http://dl.acm.org/citation.cfm?id=2095204
http://dl.acm.org/citation.cfm?id=2095204
http://dx.doi.org/10.1016/j.jcss.2016.05.007
http://dx.doi.org/10.1016/j.jcss.2016.05.007

G. Even, R. Levi, M. Medina, and A. Rosén 6:15

January 7-9, 2011. Proceedings, pages 223–238, 2011. URL: http://conference.itcs.
tsinghua.edu.cn/ICS2011/content/papers/36.html.

23 Martin Sauerhoff. On the entropy of models for the web graph. Manuscript. URL: http:
//ls2-www.cs.uni-dortmund.de/~sauerhof/papers/ent.pdf.

24 Robert T. Smythe and Hosam M. Mahmoud. A survey of recursive trees. Theory of
Probability and Mathematical Statistics, (51):1–28, 1995.

25 Andy Yoo and Keith W. Henderson. Parallel generation of massive scale-free graphs. CoRR,
abs/1003.3684, 2010. URL: http://arxiv.org/abs/1003.3684.

26 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approximation
algorithms for maximum matchings and other optimization problems. SIAM J. Comput.,
41(4):1074–1093, 2012. doi:10.1137/110828691.

ICALP 2017

http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/36.html
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/36.html
http://ls2-www.cs.uni-dortmund.de/~sauerhof/papers/ent.pdf
http://ls2-www.cs.uni-dortmund.de/~sauerhof/papers/ent.pdf
http://arxiv.org/abs/1003.3684
http://dx.doi.org/10.1137/110828691

Sublinear Time Estimation of Degree Distribution
Moments: The Degeneracy Connection∗

Talya Eden†1, Dana Ron‡2, and C. Seshadhri3

1 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
talyaa01@gmail.com

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
danaron@tau.ac.il

3 Department of Computer Science, University of California – Santa Cruz, Santa
Cruz, CA, USA
sesh@ucsc.edu

Abstract
We revisit the classic problem of estimating the degree distribution moments of an undirected
graph. Consider an undirected graph G = (V,E) with n (non-isolated) vertices, and define (for
s > 0) µs = 1

n ·
∑

v∈V d
s
v. Our aim is to estimate µs within a multiplicative error of (1 + ε) (for a

given approximation parameter ε > 0) in sublinear time. We consider the sparse graph model that
allows access to: uniform random vertices, queries for the degree of any vertex, and queries for a
neighbor of any vertex. For the case of s = 1 (the average degree), Õ(

√
n) queries suffice for any

constant ε (Feige, SICOMP 06 and Goldreich-Ron, RSA 08). Gonen-Ron-Shavitt (SIDMA 11)
extended this result to all integral s > 0, by designing an algorithms that performs Õ(n1−1/(s+1))
queries. (Strictly speaking, their algorithm approximates the number of star-subgraphs of a given
size, but a slight modification gives an algorithm for moments.)

We design a new, significantly simpler algorithm for this problem. In the worst-case, it exactly
matches the bounds of Gonen-Ron-Shavitt, and has a much simpler proof. More importantly,
the running time of this algorithm is connected to the degeneracy of G. This is (essentially) the
maximum density of an induced subgraph. For the family of graphs with degeneracy at most α,
it has a query complexity of Õ

(
n1−1/s

µ
1/s
s

(
α1/s + min{α, µ1/s

s }
))

= Õ(n1−1/sα/µ
1/s
s). Thus, for

the class of bounded degeneracy graphs (which includes all minor closed families and preferential
attachment graphs), we can estimate the average degree in Õ(1) queries, and can estimate the
variance of the degree distribution in Õ(

√
n) queries. This is a major improvement over the

previous worst-case bounds. Our key insight is in designing an estimator for µs that has low
variance when G does not have large dense subgraphs.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, F.2.2
Nonnumerical Algorithms and Problems, G.2.2 Graph Theory

Keywords and phrases Sublinear algorithms, Degree distribution, Graph moments

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.7

∗ The full version of this extended abstract is available at https://arxiv.org/abs/1604.03661.
† This research was partially supported by a grant from the Blavatnik fund. The author is grateful to the

Azrieli Foundation for the award of an Azrieli Fellowship.
‡ This research was partially supported by the Israel Science Foundation grant No. 671/13 and by a grant

from the Blavatnik fund.

EA
T

C
S

© Talya Eden, Dana Ron, and C. Seshadhri;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 7; pp. 7:1–7:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.7
https://arxiv.org/abs/1604.03661
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Sublinear Time Estimation of Degree Distribution Moments

1 Introduction

Estimating the mean and moments of a sequence of n integers d1, d2, . . . , dn is a classic
problem in statistics that requires little introduction. In the absence of any knowledge of the
moments of the sequence, it is not possible to prove anything non-trivial. But suppose these
integers formed the degree sequence of a graph. Formally, let G = (V,E) be an undirected
graph over n vertices, and let dv denote the degree of vertex v ∈ V , where we assume
that dv ≥ 1 for every v.1 Feige proved that O∗(

√
n) uniform random vertex degrees (in

expectation) suffice to provide a (2 + ε)-approximation to the average degree [23]. (We use
O∗(·) to suppress poly(logn, 1/ε) factors.) The variance can be as large as n for graphs of
constant average degree (simply consider a star), but the constraints of a degree distribution
allow for non-trivial approximations. Classic theorems of Erdős-Gallai and Havel-Hakimi
characterize such sequences [29, 21, 27].

Again, the star graph shows that the (2 + ε)-approximation cannot be beaten in sublinear
time through pure vertex sampling. Suppose we could also access random neighbors of a
given vertex. In this setting, Goldreich and Ron showed it is possible to obtain a (1 + ε)-
approximation to the average degree in O∗(

√
n) expected time [24].

In a substantial (and complex) generalization, Gonen, Ron, and Shavitt (henceforth,
GRS) gave a sublinear-time algorithm that estimates the higher moments of the degree
distribution [25]. Technically, GRS gave an algorithm for approximating the number of
stars in a graph, but a simple modification yields an algorithm for moments estimation. For
precision, let us formally define this problem. The degree distribution is the distribution
over the degree of a uniform random vertex. The s-th moment of the degree distribution is
µs , 1

n ·
∑
v∈V d

s
v.

The Degree Distribution Moment Estimation (DDME) Problem. Let G = (V,E) be a
graph over n vertices, where n is known. Access to G is provided through the following
queries. We can (i) get the id (label) of a uniform random vertex, (ii) query the degree dv of
any vertex v, (iii) query a uniform random neighbor of any vertex v. Given ε > 0 and s ≥ 1,
output a (1 + ε)-multiplicative approximation to µs with probability2 > 2/3.

The DDME problem has important connections to network science, which is the study
of properties of real-world graphs. There have been numerous results on the significance
of heavy-tailed/power-law degree distributions in such graphs, since the seminal results of
Barabási-Albert [5, 10, 22]. The degree distribution and its moments are commonly used
to characterize and model graphs appearing in varied applications [7, 36, 14, 37, 8]. On
the theoretical side, recent results provide faster algorithms for graphs where the degree
distribution has some specified form [6, 9]. Practical algorithms for specific cases of DDME
have been studied by Dasgupta et al and Chierichetti et al. [17, 13]. (These results requires
bounds on the mixing time of the random walk on G.)

1.1 Results
Letm denote the number of edges in the graph (wherem is not provided to the algorithm). For
the sake of simplicity, we restrict the discussion in the introduction to case when µs ≤ ns−1.

1 The assumption on there being no isolated vertices is made here only for the sake of simplicity of the
presentation, as it ensures a basic lower bound on the moments.

2 The constant 2/3 is a matter of convenience. It can be increased to at least 1 − δ by taking the median
value of log(1/δ) independent invocations.

T. Eden, D. Ron, and C. Seshadhri 7:3

As observed by GRS, the complexity of the DDME problem is smaller when µs is significantly
larger. GRS designed an (expected) O∗

(
n1−1/(s+1)/µ

1/(s+1)
s + n1−1/s

)
-query algorithm for

DDME and proved this expression was optimal up to poly(logn, 1/ε) dependencies. (Here
O∗(·) also suppresses additional factors that depend only on s). Note that for a graph
without isolated vertices, µs ≥ 1 for every s > 0, so this yields a worst-case O∗(n1−1/(s+1))
bound. The s = 1 case is estimating the average degree, so this recovers the O∗(

√
n) bounds

of Goldreich-Ron. We mention a recent result by Aliakbarpour et al. [1] for DDME, in
a stronger model that assumes additional access to uniform random edges. They get a
better bound of O∗(m/(nµs)1/s) in this stronger model, for s > 1 (and µs ≤ ns−1). Note
that the main challenge of DDME is in measuring the contribution of high-degree vertices,
which becomes substantially easier when random edges are provided. In the DDME problem
without such samples, it is quite non-trivial to even detect high degree vertices.

All the bounds given above are known to be optimal, up to poly(logn, 1/ε) dependencies,
and at first blush, this problem appears to be solved. We unearth a connection between
DDME and the degeneracy of G. The degeneracy of G is (up to a factor 2) the maximum
density over all subgraphs of G. We design an algorithm that has a nuanced query complexity,
depending on the degeneracy of G. Our result subsumes all existing results, and provides
substantial improvements in many interesting cases. Furthermore, our algorithm and its
analysis are significantly simpler and more concise than in the GRS result.

We begin with a convenient corollary of our main theorem. A tighter, more precise bound
appears as Theorem 3.

I Theorem 1. Consider the family of graphs with degeneracy at most α. The DDME problem
can be solved on this family using O∗

(
n1−1/s

µ
1/s
s

(
α1/s + min{α, µ1/s

s }
))

queries in expectation.
The running time is linear in the number of queries.

Consider the case of bounded degeneracy graphs, where α = O(1). This is a rich class of
graphs. Every minor-closed family of graphs has bounded degeneracy, as do graphs generated
by the Barabási-Albert preferential attachment process [5]. There is a rich theory of bounded
expansion graphs, which spans logic, graph minor theory, and fixed-parameter tractability [32].
All these graph classes have bounded degeneracy. For every such class of graphs, we get a
(1 + ε)-estimate of µs in O∗(n1−1/s/µ

1/s
s) time. We stress that bounded degeneracy does not

imply any bounds on the maximum degree or the moments. The star graph has degeneracy
1, but has extremely large moments due to the central vertex.

Consider any bounded degeneracy graph without isolated vertices. We can accurately
estimate the average degree (s = 1) in poly(logn) queries, and estimate the variance of the
degree distribution (s = 2) in

√
n · poly(logn) queries. Contrast this with the (worst-case

optimal)
√
n bounds of Feige and Goldreich-Ron for average degree, and the O∗(n2/3) bound

of GRS for variance estimation. For general s, our bound is a significant improvement over
the O∗(n1−1/(s+1)/µ

1/(s+1)
s) bound of GRS.

The algorithm attaining Theorem 1 requires an upper bound on the degeneracy of the
graph. When an degeneracy bound is not given, the algorithm recovers the bounds of GRS,
with an improvement on the extra poly(logn)/ε factors. More details are in Theorem 3. We
note that the degeneracy-dependent bound in Theorem 1 cannot be attained by an algorithm
that is only given n as a parameter. In particular, if an algorithm is only provided with n
and must work on all graphs with n vertices, then it must perform Ω(

√
n) queries in order

to approximate the average degree even for graphs of constant degeneracy (and constant
average degree). Details are given in Subsection 7.1 in the full version of the paper.

ICALP 2017

7:4 Sublinear Time Estimation of Degree Distribution Moments

The bound of Theorem 1 may appear artificial, but we prove that it is optimal when
µs ≤ ns−1. (For the general case, we also have optimal upper and lower bounds.) This
construction is an extension of the lower bound proof of GRS.

I Theorem 2. Consider the family of graphs with degeneracy α and where µs ≤ ns−1. Any
algorithm for the DDME problem on this family requires Ω

(
n1−1/s

µ
1/s
s

·
(
α1/s + min{α, µ1/s

s }
))

queries.

1.2 From degeneracy to moment estimation
We begin with a closer look at the lower bound examples of Feige, Goldreich-Ron, and GRS.
The core idea is quite simple: DDME is hard when the overall graph is sparse, but there are
small dense subgraphs. Consider the case of a clique of size 100

√
n connected to a tree of

size n. The small clique dominates the average degree, but any sublinear algorithm with
access only to random vertices pays Ω(

√
n) for a non-trivial approximation. GRS use more

complex constructions to get an Ω(n1−1/(s+1)) lower bound for general s. This also involves
embedding small dense subgraphs that dominate the moments.

Can we prove a converse to these lower bound constructions? In other words, prove
that the non-existence of dense subgraphs must imply that DDME is easier? A convenient
parameter for this non-existence is the degeneracy.

But the degeneracy is a global parameter, and it is not clear how a sublinear algorithm
can exploit it. Furthermore, DDME algorithms are typically very local; they sample random
vertices, query the degrees of these vertices and maybe also query the degrees of some of
their neighbors. We need a local property that sublinear algorithms can exploit, but can
also be linked to the degeneracy. We achieve this connection via the degree ordering of
G. Consider the DAG obtained by directing all edges from lower to higher degree vertices.
Chiba-Nishizeki related the properties of the out-degree distribution to the degeneracy, and
exploited this for clique counting [12]. Nonetheless, there is no clear link to DDME. (Nor do
we use any of their techniques; we state this result merely to show what led us to use the
degree ordering).

Our main insight is the construction of an estimator for DDME whose variance depends
on the degeneracy of G. This estimator critically uses the degree ordering. Our proof relates
the variance of this estimator to the density of subgraphs in G, which can be bounded by
the degeneracy. We stress that our algorithm is quite simple, and the technicalities are in
the analysis and setting of certain parameters.

1.3 Designing the algorithm
Designate the weight of an edge (u, v) to be ds−1

u + ds−1
v . A simple calculation yields that the

sum of the weights of all edges is exactly Ms ,
∑
v d

s
v = n · µs. Suppose we could sample

uniform random edges (and knew the total number of edges). Then we could hope to estimate
Ms through uniform edge sampling. The variance of the edge weights can be bounded, and
this yields an O∗(m/(nµs)1/s) = O∗(n1−1/s) algorithm (when no vertex is isolated). Indeed,
this is very similar to the approach of Aliakbarpour et al. [1]. Such variance calculations
were also used in the classic Alon-Matias-Szegedy result of frequency moment estimation [3].

Our approach is to simulate uniform edge samples using uniform vertex samples. Suppose
we sampled a set R of uniform random vertices. By querying the degrees of all these vertices,
we can select vertices in R with probability proportional to their degrees, which allows us to
uniformly sample edges that are incident to vertices in R. Now, we simply run the uniform

T. Eden, D. Ron, and C. Seshadhri 7:5

edge sampling algorithm on these edges. This algorithmic structure was recently used for
sublinear triangle counting algorithms by Eden et al. [19].

Here lies the core technical challenge. How to bound the number of random vertices that
is sufficient for effectively simulating the random edge algorithm? This boils down to the
behavior of the variance of the “vertex weight" distribution. Let the weight of a vertex be the
sum of weights of its incident edges. The weight distribution over vertices can be extremely
skewed, and this approach would require a forbiddingly large R.

A standard technique from triangle counting (first introduced by Chiba-Nishizeki [12])
helps reduce the variance. Direct all edges from lower degree to higher degree vertices,
breaking ties consistently. Now, set the weight of a vertex to be the sum of weights
on incident out-edges. Thus, a high-degree vertex with lower degree neighbors will have
a significantly reduced weight, reducing overall variance. In the general case (ignoring
degeneracy), a relatively simple argument bounds the maximum weight of a vertex, which
enables us to bound the variance of the weight distribution. This yields a much simpler
algorithm and proof of the GRS bound.

In the case of graphs with bounded degeneracy, we need a more refined approach. Our key
insight is an intimate connection between the variance and the existence of dense subgraphs
in G. We basically show that the main structure that leads to high variance is the existence
of dense subgraphs. Formally, we can translate a small upper bound on the density of any
subgraph to a bound on the variance of the vertex weights. This establishes the connection
to the graph degeneracy.

1.4 Simplicity of our algorithm
Our viewpoint on DDME is quite different from GRS and its precursor [24], which proceed
by bucketing the vertices based on their degree. This leads to a complicated algorithm, which
essentially samples to estimate the size of the buckets, and also the number of edges between
various buckets (and “sub-buckets”). We make use of buckets in out analysis, in order to
obtain the upper bound that depends on the degeneracy α (in order to achieve the GRS
upper bound, our analysis does not use bucketing).

As explained above, our main DDME procedure, Moment-estimator is simple enough
to present in a few lines of pseudocode (see Figure 1). We feel that the structural simplicity
of Moment-estimator is an important contribution of our work.

Moment-estimator takes two sampling parameters r and q. The main result Theorem 3
follows from running Moment-estimator with a standard geometric search for the right
setting of r and q. In Moment-estimator we use id(v) to denote the label of a vertex v,
where vertices have unique ids and there is a complete order over the ids.

1.5 Other related work
As mentioned at the beginning of this section, Aliakbarpour et al. [1] consider the problem
of approximating the number of s-stars for s ≥ 2 when given access to uniformly selected
edges. Given the ability to uniformly select edges, they can select vertices with probability
proportional to their degree (rather than uniformly). This can be used to get an unbiased
estimator of µs (or the s-star count) with low variance. This leads to an O(m/(nµs)1/s)
bound, which is optimal (for µs ≤ ns−1).

Dasgupta, Kumar, and Sarlos give practical algorithms for average degree estimation,
though they assume bounds on the mixing time of the random walk on the graph [17]. A
recent paper of Chierichetti et al. build on these methods to sample nodes according to

ICALP 2017

7:6 Sublinear Time Estimation of Degree Distribution Moments

Moment-estimators(r, q)
1. Select r vertices, uniformly, independently, at random and let the resulting multi-set

be denoted by R. Query the degree of each vertex in R, and let dR =
∑
v∈R dv.

2. For i = 1, . . . , q do:
a. Select a vertex vi with probability proportional to its degree (i.e., with probability
dvi
/dR), and query for a random neighbor ui of vi.

b. If dvi < dui or dvi = dui and id(vi) < id(ui), set Xi = (ds−1
vi

+ ds−1
ui

). Else, set
Xi = 0.

3. Return X = 1
r ·

dR

q ·
q∑
i=1

Xi .

Figure 1 Algorithm Moment-estimators for approximating µs.

powers of their degree (which is closely related to DDME) [13]. Simpson, Seshadhri, and
McGregor give practical algorithms to estimate the entire cumulative degree distribution in
the streaming setting [38]. This is different from the sublinear query model we consider, and
the results are mostly empirical.

In [19], Eden et al. present an algorithm for approximating the number of triangles in a
graph. Although this is a very different problem than DDME, there are similar challenges
regarding high-degree vertices. Indeed, as mentioned earlier, the approach of sampling
random edges through a set of random vertices was used in [19].

The degeneracy is closely related to other “density" notions, such as the arboricity,
thickness, and strength of a graph [4]. There is a rich history of algorithmic results where
run time depends on the degeneracy [31, 12, 2, 20].

Other sublinear algorithms for estimating various graph parameters include: approximat-
ing the size of the minimum-weight spanning tree [11, 16, 15], maximum matching [33, 39]
and of the minimum vertex cover [35, 33, 30, 39, 28, 34].

A Comment regarding this extended abstract
We defer some of the details of the analysis of the algorithm, as well as the lower bound
proof, to the accompanying full version of the paper.

2 The main theorem

I Theorem 3. For every graph G, there exists an algorithm that returns a value Z such
that Z ∈ [(1− ε)µs(G), (1 + ε)µs(G)] with probability at least 2/3. Assume that algorithm is
given α, an upper bound on the degeneracy of G. (If no such bound is provided, the algorithm
assumes a trivial bound of α = ∞.) The expected running time is the minimum of the
following two expressions.

O
(

2s · n1−1/s · log2 n ·
(α
µs

)1/s
+ min

{n1−1/s · α
µ

1/s
s

,
ns−1 · α
µs

})
· s logn · log(s logn)

ε2 (1)

O
(n1−1/(s+1)

µ
1/(s+1)
s

+ min
{
n1−1/s,

ns−1−1/s

µ
1−1/s
s

})
· s logn · log(s logn)

ε2 (2)

Equation (2) is essentially the query complexity of GRS (albeit with a better dependence
on s, logn, and 1/ε). Thus, our algorithm is guaranteed to be at least as good as that. If α is

T. Eden, D. Ron, and C. Seshadhri 7:7

exactly the degeneracy of G, then we can prove that Equation (1) is less than Equation (2).
Within each expression, there is a min of two terms. The first term is smaller iff µs ≤ ns−1.

The mechanism of deriving this rather cumbersome running time is the following. The
algorithm of Theorem 3 runs Moment-estimator for geometrically increasing values of r
and q, which is in turn derived from a geometrically decreasing guess of µs. It uses this guess
to set r and q. There is a setting of values depending on α, and a setting independent of it.
The algorithm simply picks the minimum of these settings to achieve the smaller running
time.

3 Sufficient conditions for r and q in Moment-estimator

In this section we provide sufficient conditions on the parameters r and q that are used
by Moment-estimator (Figure 1), in order for the algorithm to return a (1 + ε) estimate
of µs. First we introduce some notations. For a graph G = (V,E) and a vertex v ∈ V ,
let Γ(v) denote the set of neighbors of v in G (so that dv = |Γ(v)|). For any (multi-
)set R of vertices, let ER be the (multi-)set of edges incident to the vertices in R. We
will think of the edges in ER as ordered pairs; thus (v, u) is distinct from (u, v), and so
ER , {(v, u) : v ∈ R, u ∈ Γ(v)}. Observe that dR, as defined in Step 1 of Moment-
estimator equals |ER|. Let Ms = Ms(G) ,

∑
v∈V d

s
v, so that µs = Ms/n. In the analysis

of the algorithm, it is convenient to work with Ms instead of µs.
A critical aspect of our algorithm (and proof) is the degree ordering on vertices. Formally,

we set u ≺ v if du < dv or, du = dv and id(u) < id(v). Given the degree ordering, we let
Γ+(v) , {u ∈ Γ(v) : v ≺ u}, d+

v , |Γ+(v)|, and E+ , {(v, u) : v ∈ V, u ∈ Γ+(v)}. Here
and elsewhere, we use

∑
v as a shorthand for

∑
v∈V .

I Definition 4. We define the weight of an edge e = (v, u) as follows: if v ≺ u define
wt(e) , (ds−1

v + ds−1
u). Otherwise, wt(e) , 0.

For a vertex v ∈ V , wt(v) ,
∑

u∈Γ(v)
wt((v, u)) =

∑
u∈Γ+(v)

wt((v, u)), and for a (multi-)set of

vertices R, wt(R) ,
∑
v∈R

wt(v).

Observe that given the above notations and definition, Moment-estimator selects uniform
edges from ER and sets each Xi (in Step 2b) to wt((vi, ui)). The next two claims readily
follow from Definition 4 (and the description of the algorithm).

I Claim 5.
∑
v wt(v) = Ms.

I Claim 6. Ex[X] = µs, where X is as defined in Step 3 of the algorithm.

3.1 Conditions on the parameters r and q

We next state two conditions on the parameters r and q, which are used in the algorithm,
and then establish several claims, based on the conditions holding. The conditions are stated
in terms of properties of the graph as well as the approximation parameter ε and a confidence
parameter δ.

1. The vertex condition: r ≥ (120 · n ·
∑
v wt(v)2)/(ε2 · δ ·M2

s),
2. The edge condition: q ≥ 2000 ·m ·M2s−1/(ε2 · δ3 ·M2

s) .

ICALP 2017

7:8 Sublinear Time Estimation of Degree Distribution Moments

I Lemma 7. If Condition 1 holds, then with probability at least 1− δ/2, all the following
hold.
1. wt(R) ∈

[(
1− ε

2
)
· rn ·Ms,

(
1 + ε

2
)
· rn ·Ms

]
.

2. |ER| ≤ 12
δ ·

r
n ·m.

3.
∑

(v,u)∈E+
R

wt ((v, u))2 ≤ 18
δ ·

r
n ·M2s−1.

The proof of the first item in Lemma 7 follows from Chebyshev’s inequality (using Var[wt(R)] ≤
r
n ·
∑
v wt(v)2), and the proofs of the other two items follow from Markov’s inequality (as

well as the definition of M2s−1).

I Theorem 8. If Conditions 1 and 2 hold, then X ∈ [(1− ε)µs, (1 + ε)µs] with probability
at least 1− δ.

Proof. Condition on any choice of R. We have Ex[X|R] = (1/r)wt(R). Turning to the
variance, since the edges (vi, ui) are chosen from ER uniformly at random, it is not hard to
verify that

Var[X|R] =
(

1
r

)2
·
(
|ER|
q

)2
·Var

[
q∑
i=1

Xi

∣∣∣ R] = 1
q
· |ER|

r
·
∑

(v,u)∈E+
R

wt ((v, u))2

r
.

Let us now condition on R such that the bounds of Lemma 7 hold. Note that such an R is
chosen with probability at least 1− δ/2. We get Var[X|R] ≤ 250

δ2 · 1
q ·

m
n ·

M2s−1
n . We apply

Chebyshev’s inequality and invoke Condition 2:

Pr
[∣∣∣(X|R)− Ex[X|R]

∣∣∣ ≤ ε

2 · µs
]
≤ 4 ·Var[X|R]

ε2 · µ2
s

≤ 1
q
· 4 · (250/δ2) ·m ·M2s−1

ε2 ·M2
s

≤ δ

2 .

By Lemma 7, Ex[X|R] = (1/r)wt(R) ∈ [(1− ε/2)µs, (1 + ε/2)µs]. The theorem follows by
applying the union bound. J

4 Satisfying Conditions 1 and 2 in general graphs

We show how to set r and q to satisfy Conditions 1 and 2 in general graphs. Our setting of r
and q will give us the same query complexity as [25] (up to the dependence on 1/ε and logn,
on which we improve, and the exponential dependence on s in [25], which we do not incur).
In the next section we show how the setting of r and q can be improved using a degeneracy
bound.

For cr and cq that are sufficiently large constants, we set

r = cr
ε2 · δ

· n

M
1/(s+1)
s

, q = cq
ε2 · δ3 ·min

{
n1−1/s,

ns−1/s

M
1−1/s
s

}
. (3)

This setting of parameters requires the knowledge of Ms, which is exactly what we are trying
to approximate (up to the normalization factor of n). A simple geometric search argument
alleviates the need to know Ms. For details see Section 6.

In order to assert that r as set in Equation (3) satisfies Condition 1, it suffices to establish
the next lemma.

I Lemma 9 (Condition 1 holds).
∑
v wt(v)2 ≤ 4M2− 1

s+1
s .

T. Eden, D. Ron, and C. Seshadhri 7:9

Proof. Let θ = M
1/(s+1)
s be a degree threshold. We define H , {v : dv > θ}, L , V \H.

This partition into “high-degree” vertices (H) and “low-degree” vertices (L) will be useful
in upper bounding the maximum weight wt(v) of a vertex v, and hence upper bounding∑
v wt(v)2. Details follow.
We first observe that |H| ≤M1/(s+1)

s . This is true since otherwise,
∑
v∈H d

s
v > M

1/(s+1)
s ·

M
s

s+1
s = Ms, which is a contradiction. We claim that this upper bound on |H| implies that

max
v

d+
v ≤M1/(s+1)

s . (4)

To verify this, assume, contrary of the claim, that for some v, d+
v > M

1/(s+1)
s . But then

there are at least M1/(s+1)
s vertices u such that du ≥ dv ≥ d+

v > M
1/(s+1)
s . This contradicts

the bound on |H|.
It will also be useful to bound

∑
u∈H d

s−1
u . By Hölder’s inequality with conjugates s and

s/(s− 1) (a statement of Hölder’s inequality can be found in the full version of the paper)
and the bound on |H|,

∑
u∈H

ds−1
u =

∑
u∈H

1 · ds−1
u ≤ |H|1/s

(∑
u∈H

dsu

) s−1
s

≤M
1

s(s+1)
s ·M

s−1
s

s ≤M
s

s+1
s . (5)

We now turn to bounding maxv{wt(v)}. By the definition of wt(v) and the degree
ordering,

wt(v) =
∑

u∈Γ+(v)

(ds−1
v +ds−1

u) ≤ 2
∑

u∈Γ+(v)

ds−1
u = 2

∑
u∈Γ+(v)∩L

ds−1
u + 2

∑
u∈Γ+(v)∩H

ds−1
u . (6)

For the first term on the right-hand-side of Equation (6), recall that du ≤M1/(s+1)
s for u ∈ L.

Thus, by Equation (4),∑
u∈Γ+(v)∩L

ds−1
u ≤ d+

v ·M
s−1
s+1
s ≤M

s
s+1
s . (7)

For the second term, using Γ+(v) ∩H ⊆ H and applying Equation (5),∑
u∈Γ+(v)∩H

ds−1
u ≤

∑
u∈H

ds−1
u ≤M

s
s+1
s . (8)

Finally,∑
v

wt(v)2 ≤ max
v
{wt(v)} ·

∑
v

wt(v) ≤M2−1/(s+1)
s ,

where the second inequality follows by combining Equations (6)–(8) to get an upper bound
on maxv{wt(v)} and applying Claim 5. J

The next lemma implies that Condition 2 holds for q as set in Equation (3).

I Lemma 10 (Condition 2 holds). min
{
n1−1/s, n

s−1/s

M
1−1/s
s

}
≥ 2m · M2s−1

M2
s

.

Proof. We can bound M2s−1 in two ways. First, by a standard norm inequality, since s ≥ 1,

M2s−1 =
∑
v

d2s−1
v ≤

(∑
v

dsv

)(2s−1)/s

= M2−1/s
s . (9)

ICALP 2017

7:10 Sublinear Time Estimation of Degree Distribution Moments

We can also use the trivial bound dv ≤ n and get M2s−1 ≤ ns−1 ·Ms. Thus, M2s−1 ≤
min{M2−1/s

s , ns−1 ·Ms}. By applying Hölder’s inequality with conjugates s/(s− 1) and s
we get that

2m =
∑
v

1 · dv ≤ n(s−1)/s ·

(∑
v

dsv

)1/s

= n1−1/s ·M1/s
s . (10)

We multiply the bound by M2s−1 to complete the proof. J

5 The Degeneracy Connection

The degeneracy, or the coloring number, of a graph G = (V,E) is the maximum value, over
all subgraphs G′ of G, of the minimum degree in G′. In this definition, we can replace
“minimum" by “average” to get a 2-factor approximation to the degeneracy (refer to [26];
Theorem 2.4.4 and Corollary 5.2.3 of [18]). Abusing notation, it will be convenient for us to
define α(G) = maxS⊆V

{
|E(S)|
|S|

}
.

We also make the following observation regarding the relation between α(G) and Ms(G).

I Claim 11. For every graph G, α(G) ≤Ms(G)
1

s+1 .

In this section, we show that the following setting of parameters forMoment-estimators
satisfies Conditions 1 and 2, for every graph G with degeneracy at most α (i.e., α(G) ≤ α),
and for appropriate constants cr and cq.

r = cr
ε2 · δ

·min
{

n

M
1/(s+1)
s

, 2s · n · log2 n ·
(
α

Ms

)1/s
}
, (11)

q = cq
ε2 · δ3 ·min

{
n · α
M

1/s
s

,
ns · α
Ms

, n1−1/s,
ns−1/s

M
1−1/s
s

}
. (12)

Clearly the setting of r and q in Equation (11) and Equation (12) respectively, can only
improve on the setting of r and q for the general case in Equation (3) (Section 4).

Our main challenge is in proving that Condition 1 holds for r as set in Equation (11)
(when the graph has degeneracy at most α). Here too, the goal is to upper bound

∑
v wt(v)2.

However, as opposed to the proof of Lemma 9 in Section 4, where we simply obtained an
upper bound on maxv{wt(v)} (and bounded

∑
v wt(v)2 by maxv{wt(v)} ·Ms), here the

analysis is more refined, and uses the degeneracy bound. For details see the proof of our
main lemma, stated next.

I Lemma 12 (Condition 1 holds). For a sufficiently large constant c,
∑
v wt(v)2 ≤ c · 2s ·

α1/s ·M2−1/s
s · log2 n.

Proof Sketch. In this extended abstract we only provide the high-level structure of the
proof. By the definition of wt(v), and since dv ≤ du for every v and u ∈ Γ+(v),∑

v

wt(v)2 =
∑
v

(∑
u∈Γ+(v)

(
ds−1
v + ds−1

u

))2
≤ 4 ·

∑
v

(∑
u∈Γ+(v)

ds−1
u

)2
. (13)

In order to bound the expression on the right-hand-side of Equation (13) we partition
the vertices (with degree at least 1) according to their degree. Let Ui , {u ∈ V : du ∈

T. Eden, D. Ron, and C. Seshadhri 7:11

(2i−1, 2i]} for 0 ≤ i ≤ dlogne, and let Γ+
i (v) be a shorthand for Γ+(v) ∩ Ui. By considering

each Ui separately and applying Hölder’s inequality we get the following bound for every v.∑
u∈Γ+

i
(v)

1 · ds−1
u ≤ |Γ+

i (v)|1/s ·
(∑
u∈Γ+

i
(v)

dsu

)(s−1)/s
≤ |Γ+

i (v)|1/s ·M (s−1)/s
s . (14)

For each i, we also partition the vertices in V according to the number of outgoing edges
that they have to Ui. Specifically, for 1 ≤ j ≤ dlog(n/α)e, define Vi,j ,

{
v ∈ V : |Γ+

i (v)| ∈(
2j−1α, 2jα

] }
. Also define Vi,0 ,

{
v ∈ V : |Γ+

i (v)| ≤ α
}
. Hence, {Vi,j}dlog(n/α)e

j=0 is a
partition of V for each i.

For a vertex u, let Γ−(u) , {v : u ∈ Γ+(v)}. For two sets of vertices S and T (which are
not necessarily disjoint), let E+(S, T) , {(u, v) : (u, v) ∈ E+, u ∈ S, v ∈ T}. By applying
Equation (14) (to one term of the square

(∑
u∈Γ+

i
(v) d

s−1
u

)2
), and by the definition of Vi,j ,

it can be shown that

∑
v

(∑
u∈Γ+

i
(v)

ds−1
u

)2
≤ M (s−1)/s

s ·
dlogne∑
j=0

(∑
u∈Ui

ds−1
u ·

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s

)
. (15)

For j < 2 we can show that
∑
u∈Ui

ds−1
u

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s ≤ 2 ·α1/s ·Ms. Turning

to j ≥ 2, since all vertices in Ui have degree at most 2i, we get:∑
u∈Ui

ds−1
u ·

∑
v∈Γ−(u)∩Vi,j

|Γ+
i (v)|1/s ≤ 2j/s · α1/s · 2i(s−1) · |E+(Vi,j , Ui)| . (16)

Since G has degeneracy at most α and by the definition of Vi,j , it can be shown that
|E+(Vi,j , Ui)| ≤ 2α · |Ui|, where Ui = Ui ∩

(⋃
v∈Vi,j

Γ+(v)
)
. Furthermore, the definition

of Ui (together with the degeneracy bound and the definition of Ms) implies that |Ui| ≤
Ms ·2−((i−1)(s−1)+j) ·α−1. The lemma follows by combining Equation (13) with Equation (15)
and the above bounds for j < 2 and j ≥ 2. J

The next lemma, which establishes Condition 2, can be proved similarly to Lemma 10.

I Lemma 13 (Condition 2 holds).

min
{
n · α
M

1/s
s

,
ns · α
Ms

, n1−1/s,
ns−1/s

M
1−1/s
s

}
≥ m · M2s−1

M2
s

.

6 Wrapping things up

The proof of our final result, Theorem 3, follows by combining Theorem 8, Lemma 9,
Lemma 12 and Lemma 13, with a geometric search for a factor-2 estimate of Ms (which
determines the correct setting of r and q in the algorithm).

References
1 A. S. Aliakbarpour, M.and Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yod-

pinyanee. Sublinear-time algorithms for counting star subgraphs via edge sampling. Al-
gorithmica, pages 1–30, 2017. doi:10.1007/s00453-017-0287-3.

ICALP 2017

http://dx.doi.org/10.1007/s00453-017-0287-3

7:12 Sublinear Time Estimation of Degree Distribution Moments

2 N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of fixed size
in degenerated graphs. In Proceedings of the Annual International Conference Computing
and Combinatorics (COCOON), pages 394–405, 2008.

3 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

4 Arboricity. Wikipedia. https://en.wikipedia.org/wiki/Arboricity.
5 A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286:509–

512, October 1999.
6 J.W. Berry, L.A. Fostvedt, D. J. Nordman, C.A. Phillips, C. Seshadhri, and A.G. Wilson.

Why do simple algorithms for triangle enumeration work in the real world? Internet
Mathematics, 11(6):555–571, 2015.

7 Z. Bi, C. Faloutsos, and F. Korn. The dgx distribution for mining massive, skewed data.
In Proceedings of the International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 17–26. ACM, 2001.

8 P. Bickel, A. Chen, and E. Levina. The method of moments and degree distributions for
network models. Annals of Statistics, 39(5):2280–2301, 2011.

9 P. Brach, M. Cygan, J. Laccki, and P. Sankowski. Algorithmic complexity of power law
networks. In Proceedings of the Annual Symposium on Discrete Algorithms (SODA), pages
1306–1325, 2016.

10 A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins,
and J. Wiener. Graph structure in the web. Computer Networks, 33:309–320, 2000.

11 B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree
weight in sublinear time. SIAM Journal on Computing, 34(6):1370–1379, 2005.

12 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,
14:210–223, 1985.

13 F. Chierichetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlos. On sampling nodes in
a network. In Proceedings of the International Conference on World Wide Web (WWW),
pages 471–481, 2016.

14 A. Clauset, C.R. Shalizi, and M.E. J. Newman. Power-law distributions in empirical data.
SIAM Review, 51(4):661–703, 2009.

15 A. Czumaj, F. Ergun, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler.
Approximating the weight of the euclidean minimum spanning tree in sublinear time. SIAM
Journal on Computing, 35(1):91–109, 2005.

16 A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning trees in
sublinear time. SIAM Journal on Computing, 39(3):904–922, 2009.

17 A. Dasgupta, R. Kumar, and T. Sarlos. On estimating the average degree. In Proceedings
of the International Conference on World Wide Web (WWW), pages 795–806, 2014.

18 R. Diestel. Graph Theory. Springer, fourth edition edition, 2010.
19 T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublin-

ear time. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 614–633, 2015.

20 D. Eppstein, M. Loffler, and D. Strash. Listing all maximal cliques in sparse graphs in
near-optimal time. In International Symposium on Algorithms and Computation (ISAAC),
pages 403–413, 2010.

21 P. Erdos and T. Gallai. Graphs with prescribed degree of vertices (hungarian). Mat. Lapok,
11:264–274, 1960.

22 M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. In Proceedings of Computer Communication Review (SIGCOMM), pages 251–262.
ACM, 1999.

https://en.wikipedia.org/wiki/Arboricity

T. Eden, D. Ron, and C. Seshadhri 7:13

23 U. Feige. On sums of independent random variables with unbounded variance and estim-
ating the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

24 O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Structures
and Algorithms, 32(4):473–493, 2008.

25 M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small subgraphs in sublinear-
time. SIAM Journal on Discrete Math, 25(3):1365–1411, 2011.

26 Graph degeneracy. Wikipedia. https://en.wikipedia.org/wiki/Degeneracy_(graph_
theory).

27 S. L. Hakimi. On the realizability of a set of integers as degrees of the vertices of a graph.
SIAM Journal Applied Mathematics, 10:496–506, 1962.

28 A. Hassidim, J.A. Kelner, H.N. Nguyen, and K. Onak. Local graph partitions for approx-
imation and testing. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 22–31. IEEE, 2009.

29 V. Havel. A remark on the existence of finite graphs (czech). Casopis Pest. Mat., 80:477–
480, 1955.

30 S. Marko and D. Ron. Approximating the distance to properties in bounded-degree and
general sparse graphs. ACM Transactions on Algorithms, 5(2), 2009.

31 D. Matula and L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
Journal of the ACM (JACM), 30(3):417–427, 1983.

32 J. Nešetřil and P. Ossana de Mendez. Sparsity. Springer, 2010.
33 H.N. Nguyen and K. Onak. Constant-time approximation algorithms via local improve-

ments. In Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pages 327–336. IEEE, 2008.

34 K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time algorithm
for approximating the minimum vertex cover size. In Proceedings of the Annual Symposium
on Discrete Algorithms (SODA), pages 1123–1131. SIAM, 2012.

35 M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and
a connection to distributed algorithms. Theoretical Computer Science, 381(1-3):183–196,
2007.

36 D. Pennock, G. Flake, S. Lawrence, E. Glover, and C. L. Giles. Winners don’t take all:
Characterizing the competition for links on the web. Proceedings of the national academy
of sciences (PNAS), 99(8):5207–5211, 2002.

37 A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B.Y. Zhao. Measurement-calibrated
graph models for social network experiments. In Proceedings of the International Conference
on World Wide Web (WWW), pages 861–870. ACM, 2010.

38 O. Simpson, C. Seshadhri, and A. McGregor. Catching the head, tail, and everything
in between: A streaming algorithm for the degree distribution. In Proceedings on the
International Conference on Data Mining (ICDM), pages 979–984, 2015.

39 Y. Yoshida, M. Yamamoto, and H. Ito. An improved constant-time approximation al-
gorithm for maximum-matchings. In Proceedings of the Annual Symposium on the Theory
of Computing (STOC), pages 225–234. ACM, 2009.

ICALP 2017

https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)
https://en.wikipedia.org/wiki/Degeneracy_(graph_theory)

Near-Optimal Closeness Testing of Discrete
Histogram Distributions∗†

Ilias Diakonikolas1, Daniel M. Kane2, and Vladimir Nikishkin3

1 University of Southern California, Los Angeles, CA, USA
diakonik@usc.edu

2 University of California, San Diego, CA, USA
dakane@cs.ucsd.edu

2 University of Edinburgh, Edinburgh, UK
v.nikishkin@sms.ed.ac.uk

Abstract
We investigate the problem of testing the equivalence between two discrete histograms. A k-
histogram over [n] is a probability distribution that is piecewise constant over some set of k
intervals over [n]. Histograms have been extensively studied in computer science and statistics.
Given a set of samples from two k-histogram distributions p, q over [n], we want to distinguish
(with high probability) between the cases that p = q and ‖p − q‖1 ≥ ε. The main contribution
of this paper is a new algorithm for this testing problem and a nearly matching information-
theoretic lower bound. Specifically, the sample complexity of our algorithm matches our lower
bound up to a logarithmic factor, improving on previous work by polynomial factors in the
relevant parameters. Our algorithmic approach applies in a more general setting and yields
improved sample upper bounds for testing closeness of other structured distributions as well.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.3 Probabil-
ity and Statistics

Keywords and phrases distribution testing, histograms, closeness testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.8

1 Introduction

In this work, we study the problem of testing equivalence (closeness) between two discrete
structured distributions. Let D be a family of univariate distributions over [n] (or Z). The
problem of closeness testing for D is the following: Given sample access to two unknown
distribution p, q ∈ D, we want to distinguish between the case that p = q versus ‖p− q‖1 ≥ ε.
(Here, ‖p−q‖1 denotes the `1-distance between the distributions p, q.) The sample complexity
of this problem depends on the underlying family D.

For example, if D is the class of all distributions over [n], then it is known [13] that
the optimal sample complexity is Θ(max{n2/3/ε4/3, n1/2/ε2}). This sample bound is best
possible only if the family D includes all possible distributions over [n], and we may be able
to obtain significantly better upper bounds for most natural settings. For example, if both
p, q are promised to be (approximately) log-concave over [n], there is an algorithm to test

∗ A full version of this paper is available at https://arxiv.org/abs/1703.01913.
† I. D. was supported by NSF Award CCF-1652862 (CAREER) and a Sloan Research Fellowship. D. K.

was supported by NSF Award CCF-1553288 (CAREER) and a Sloan Research Fellowship. V. N. was
supported by a University of Edinburgh PCD Scholarship.

EA
T

C
S

© Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.8
https://arxiv.org/abs/1703.01913
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Near-Optimal Closeness Testing of Discrete Histogram Distributions

equivalence between them using O(1/ε9/4) samples [25]. This sample bound is independent
of the support size n, and is dramatically better than the worst-case tight bound [13] when
n is large.

More generally, [25] described a framework to obtain sample-efficient equivalence testers
for various families of structured distributions over both continuous and discrete domains.
While the results of [25] are sample-optimal for some families of distributions (in particular,
over continuous domains), it was not known whether they can be improved for natural
families of discrete distributions. In this paper, we work in the framework of [25] and obtain
new nearly-matching algorithms and lower bounds.

Before we state our results in full generality, we describe in detail a concrete application
of our techniques to the case of histograms – a well-studied family of structured discrete
distributions with a plethora of applications.

Testing Closeness of Histograms. A k-histogram over [n] is a probability distribution
p : [n]→ [0, 1] that is piecewise constant over some set of k intervals over [n]. The algorithmic
difficulty in testing properties of such distributions lies in the fact that the location and “size”
of these intervals is a priori unknown. Histograms have been extensively studied in statistics
and computer science. In the database community, histograms [37, 14, 46, 33, 35, 36, 1]
constitute the most common tool for the succinct approximation of data. In statistics, many
methods have been proposed to estimate histogram distributions [44, 32, 45, 40, 21, 48, 38]
in a variety of settings.

In recent years, histogram distributions have attracted renewed interested from the
theoretical computer science community in the context of learning [18, 10, 11, 12, 23, 2, 3, 27]
and testing [36, 17, 26, 8, 9]. Here we study the following testing problem: Given sample
access to two distributions p, q over [n] that are promised to be (approximately) k-histograms,
distinguish between the cases that p = q versus ‖p− q‖1 ≥ ε. As the main application of our
techniques, we give a new testing algorithm and a nearly-matching information-theoretic
lower bound for this problem.

We now provide a summary of previous work on this problem followed by a description
of our new upper and lower bounds. We want to ε-test closeness in `1-distance between two
k-histograms over [n], where k ≤ n. Our goal is to understand the optimal sample complexity
of this problem as a function of k, n, 1/ε. Previous work is summarized as follows:

In [25], the authors gave a closeness tester with sample complexity
O(max{k4/5/ε6/5, k1/2/ε2}).
The best known sample lower bound is Ω(max{k2/3/ε4/3, k1/2/ε2}). This straightfor-
wardly follows from [13], since k-histograms can simulate any support k distribution.

Notably, none of the two bounds depends on the domain size n. Observe that the upper
bound of O(max{k4/5/ε6/5, k1/2/ε2}) cannot be tight for the entire range of parameters.
For example, for n = O(k), the algorithm of [13] for testing closeness between arbitrary
support n distributions has sample size O(max{k2/3/ε4/3, k1/2/ε2}), matching the above
sample complexity lower bound, up to a constant factor.

This simple example might suggest that the Ω(max{k2/3/ε4/3, k1/2/ε2}) lower bound is
tight in general. We prove that this is not the case. The main conceptual message of our
new upper bound and nearly-matching lower bound is the following:

The sample complexity of ε-testing closeness between two k-histograms over [n] depends
in a subtle way on the relation between the relevant parameters k, n and 1/ε.

We find this fact rather surprising because such a phenomenon does not occur for the sample
complexities of closely related problems. Specifically, testing the identity of a k-histogram

I. Diakonikolas, D. Kane, and V. Nikishkin 8:3

over [n] to a fixed distribution has sample complexity Θ(k1/2/ε2) [26]; and learning a k-
histogram over [n] has sample complexity Θ(k/ε2) [11]. Note that both these sample bounds
are independent of n and are known to be tight for the entire range of parameters k, n, 1/ε.

Our main positive result is a new closeness testing algorithm for k-histograms over [n]
with sample complexity O

(
k2/3 · log4/3(2 + n/k) log(k)/ε4/3). Combined with the known

upper bound of [25], we obtain the sample upper bound of

O
(

max
(

min(k4/5/ε6/5, k2/3 log4/3(2 + n/k) log(k)/ε4/3), k1/2 log2(k) log log(k)/ε2
))
.

As our main negative result, we prove a lower bound of Ω(min(k2/3 log1/3(2 + n/k)/ε4/3,

k4/5/ε6/5)). The first term in this expression shows that the “log(2 + n/k)” factor that
appears in the sample complexity of our upper bound is in fact necessary, up to a constant
power. In summary, these bounds provide a nearly-tight characterization of the sample
complexity of our histogram testing problem for the entire range of parameters.

A few observations are in order to interpret the above bounds:
When n goes to infinity, the O(k4/5/ε6/5) upper bound of [25] is tight for k-histograms.
When n = poly(k) and ε is not too small (so that the k1/2/ε2 term does not kick in),
then the right answer for the sample complexity of our problem is (k2/3/ε4/3)polylog(k).
The terms “k4/5/ε6/5” and “k2/3 log4/3(2 + n/k) log(k)/ε4/3” appearing in the sample
complexity become equal when n is exponential in k. Therefore, our new algorithm has
better sample complexity than that of [25] for all n ≤ 2O(k).

In the following subsection, we state our results in a general setting and explain how the
aforementioned applications are obtained from them.

1.1 Our Results and Comparison to Prior Work
For a given family D of discrete distributions over [n], we are interested in designing a closeness
tester for distributions in D. We work in the general framework introduced by [26, 25].
Instead of designing a different tester for any given family D, the approach of [26, 25] proceeds
by designing a generic equivalence tester under a different metric than the `1-distance. This
metric, termed Ak-distance [20], where k ≥ 2 is a positive integer, interpolates between
Kolmogorov distance (when k = 2) and the `1-distance (when k = n). It turns out that, for
a range of structured distribution families D, the Ak-distance can be used as a proxy for the
`1-distance for a value of k � n [11]. For example, if D is the family of k-histograms over [n],
the A2k distance between them is tantamount to their `1 distance. We can thus obtain an `1
closeness tester for D by plugging in the right value of k in a general Ak closeness tester.

To formally state our results, we will need some terminology.

Notation. We will use p, q to denote the probability mass functions of our distributions.
If p is discrete over support [n] := {1, . . . , n}, we denote by pi the probability of element
i in the distribution. For two discrete distributions p, q, their `1 and `2 distances are
‖p−q‖1 =

∑n
i=1 |pi−qi| and ‖p−q‖2 =

√∑n
i=1(pi − qi)2. Fix a partition of the domain I into

disjoint intervals I := (Ii)`
i=1. For such a partition I, the reduced distribution pIr corresponding

to p and I is the discrete distribution over [`] that assigns the i-th “point” the mass that p
assigns to the interval Ii; i.e., for i ∈ [`], pIr (i) = p(Ii). Let Jk be the collection of all partitions
of the domain I into k intervals. For p, q : I → R+ and k ∈ Z+, we define the Ak-distance
between p and q by ‖p−q‖Ak

def= maxI=(Ii)k
i=1∈Jk

∑k
i=1 |p(Ii)−q(Ii)| = maxI∈Jk

‖pIr −qIr ‖1.

ICALP 2017

8:4 Near-Optimal Closeness Testing of Discrete Histogram Distributions

In this context, [25] gave a closeness testing algorithm under the Ak-distance using
O(max{k4/5/ε6/5, k1/2/ε2}) samples. It was also shown that this sample bound is information–
theoretically optimal (up to constant factors) for some adversarially constructed continuous
distributions, or discrete distributions of support size n sufficiently large as a function of k.
These results raised two natural questions: (1) What is the optimal sample complexity of
the Ak-closeness testing problem as a function of n, k, 1/ε? (2) Can we obtain tight sample
lower bounds for natural families of structured distributions?

We resolve both these open questions. Our main algorithmic result is the following:

I Theorem 1. Given sample access to distributions p and q on [n] and ε > 0 there exists an
algorithm that takes

O
(

max
(

min
(
k4/5/ε6/5, k2/3 log4/3(2 + n/k) log(2 + k)/ε4/3

)
, k1/2 log2(k) log log(k)/ε2

))
samples from each of p and q and distinguishes with 2/3 probability between the cases that
p = q and ‖p− q‖Ak

≥ ε.

As explained in [26, 25], using Theorem 1 one can obtain testing algorithms for the `1
closeness testing of various distribution families D, by using the Ak distance as a “proxy” for
the `1 distance:

I Fact 2. For a univariate distribution family D and ε > 0, let k = k(D, ε) be the smallest
integer such that for any f1, f2 ∈ D it holds that ‖f1 − f2‖1 ≤ ‖f1 − f2‖Ak

+ ε/2. Then there
exists an `1 closeness testing algorithm for D with the sample complexity of Theorem 1.

Applications

Our upper bound for `1-testing of k-histogram distributions follows from the above by noting
that for any k-histograms p, q we have ‖p − q‖1 = ‖p − q‖A2k

. Also note that our upper
bound is robust: it applies even if p, q are O(ε)-close in `1-norm to being k-histograms.

Finally, we remark that our general Ak closeness tester yields improved upper bounds
for various other families of structured distributions. Consider for example the case that D
consists of all k-mixtures of some simple family (e.g., discrete Gaussians or log-concave),
where the parameter k is large. The algorithm of [25] leads to a tester whose sample
complexity scales with O(k4/5), while Theorem 1 implies a Õ(k2/3) bound.

On the lower bound side, we show:

I Theorem 3. Let p and q be distributions on [n] and let ε > 0 be less than a sufficiently
small constant. Any tester that distinguishes between p = q and ‖p − q‖Ak

≥ ε for some
k ≤ n must use Ω(m) samples for m = min(k2/3 log4/3(2 + n/k)/ε4/3, k4/5/ε6/5).

Furthermore, for m = min(k2/3 log1/3(2 + n/k)/ε4/3, k4/5/ε6/5), any tester that distin-
guishes between p = q and ‖p− q‖Ak

≥ ε must use Ω(m) samples even if p and q are both
guaranteed to be piecewise constant distributions on O(k +m) pieces.

Note that a lower bound of Ω(
√
k/ε2) straightforwardly applies even for p and q being

k-histograms. This dominates the above bounds for ε < k−3/8.
We also note that our general lower bound with respect to the Ak distance is somewhat

stronger, matching the term “log4/3(2 + n/k)” in our upper bound.

I. Diakonikolas, D. Kane, and V. Nikishkin 8:5

1.2 Related Work
During the past two decades, distribution property testing [5] – whose roots lie in statistical
hypothesis testing [41, 39] – has received considerable attention by the computer science
community, see [43, 7] for two recent surveys. The majority of the early work in this
field has focused on characterizing the sample size needed to test properties of arbitrary
distributions of a given support size. After two decades of study, this “worst-case” regime is
well-understood: for many properties of interest there exist sample-optimal testers (matched
by information-theoretic lower bounds) [42, 13, 47, 26, 24, 22].

In many settings of interest, we know a priori that the underlying distributions have
some “nice structure” (exactly or approximately). The problem of learning a probability
distribution under such structural assumptions is a classical topic in statistics, see [4] for
a classical book, and [34] for a recent book on the topic, that has recently attracted the
interest of computer scientists [18, 19, 10, 16, 11, 12, 1, 30, 31, 28, 15, 3, 27, 29].

On the other hand, the theory of distribution testing under structural assumptions is
less fully developed. More than a decade ago, Batu, Kumar, and Rubinfeld [6] considered a
specific instantiation of this question – testing the equivalence between two unknown discrete
monotone distributions – and obtained a tester whose sample complexity is poly-logarithmic
in the domain size. A recent sequence of works [17, 26, 25] developed a framework to leverage
such structural assumptions and obtained more efficient testers for a number of natural
settings. However, for several natural properties of interest there is still a substantial gap
between known sample upper and lower bounds.

1.3 Overview of Techniques
To prove our upper bound, we use a technique of iteratively reducing the number of bins
(domain elements). In particular, we show that if we merge bins together in consecutive pairs,
this does not significantly affect the Ak distance between the distributions, unless a large
fraction of the discrepancy between our distributions is supported on O(k) bins near the
boundaries in the optimal partition. In order to take advantage of this, we provide a novel
identity tester that requires few samples to distinguish between the cases where p = q and
the case where p and q have a large `1 distance supported on only k of the bins. We are able
to take advantage of the small support essentially because having a discrepancy supported
on few bins implies that the `2 distance between the distributions must be reasonably large.

Our new lower bounds are somewhat more involved. We prove them by exhibiting explicit
families of pairs of distributions, where in one case p = q and in the other p and q have large
Ak distance, but so that it is information-theoretically impossible to distinguish between
these two families with a small number of samples. In both cases, p and q are explicit
piecewise constant distributions with a small number of pieces. In both cases, our domain is
partitioned into a small number of bins and the restrictions of the distributions to different
bins are independent, making our analysis easier. In some bins we will have p = q each with
mass about 1/m (where m is the number of samples). These bins will serve the purpose of
adding “noise” making harder to read the “signal” from the other bins. In the remaining bins,
we will have either that p = q being supported on some interval, or p and q will be supported
on consecutive, non-overlapping intervals. If three samples are obtained from any one of these
intervals, the order of the samples and the distributions that they come from will provide us
with information about which family we came from. Unfortunately, since triple collisions are
relatively uncommon, this will not be useful unless m� max(k4/5/ε6/5, k1/2/ε2). Bins from
which we have one or zero samples will tell us nothing, but bins from which we have exactly
two samples may provide information.

ICALP 2017

8:6 Near-Optimal Closeness Testing of Discrete Histogram Distributions

For these bins, it can be seen that we learn nothing from the ordering of the samples,
but we may learn something from their spacing. In particular, in the case where p and q
are supported on disjoint intervals, we would suspect that two samples very close to each
other are far more likely to be taken from the same distribution rather than from opposite
distributions. On the other hand, in order to properly interpret this information, we will
need to know something about the scale of the distributions involved in order to know when
two points should be considered to be “close”. To overcome this difficulty, we will stretch
each of our distributions by a random exponential amount. This will effectively conceal any
information about the scales involved so long as the total support size of our distributions is
exponentially large.

2 A Near-Optimal Closeness Tester over Discrete Domains

2.1 Warmup: A Simpler Algorithm
We start by giving a simpler algorithm establishing a basic version of Theorem 1 with slightly
worse parameters:

I Proposition 4. Given sample access to distributions p and q on [n] and ε > 0 there exists
an algorithm that takes

O
(
k2/3 log4/3(3 + n/k) log log(3 + n/k)/ε4/3 +

√
k log2(3 + n/k) log log(3 + n/k)/ε2

)
samples from each of p and q and distinguishes with 2/3 probability between the cases that
p = q and ‖p− q‖Ak

≥ ε.

The basic idea of our algorithm is the following: From the distributions p and q construct
new distributions p′ and q′ by merging pairs of consecutive buckets. Note that p′ and
q′ each have much smaller domains (of size about n/2). Furthermore, note that the Ak

distance between p and q is
∑

I∈I |p(I) − q(I)| for some partition I into k intervals. By
using essentially the same partition, we can show that ‖p′ − q′‖Ak

should be almost as large
as ‖p− q‖Ak

. This will in fact hold unless much of the error between p and q is supported at
points near the endpoints of intervals in I. If this is the case, it turns out there is an easy
algorithm to detect this discrepancy. We require the following definitions:

I Definition 5. For a discrete distribution p on [n], the merged distribution obtained from
p is the distribution p′ on dn/2e, so that p′(i) def= p(2i) + p(2i+ 1). For a partition I of [n] ,
define the divided partition I ′ of domain dn/2e, so that I ′i ∈ I ′ has the points obtained by
point-wise gluing together odd points and even points.

Note that one can simulate a sample from p′ given a sample from p by letting p′ = dp/2e.

I Definition 6. Let p and q be distributions on [n]. For integers k ≥ 1, let ‖p− q‖1,k be the
sum of the largest k values of |p(i)− q(i)| over i ∈ [n].

We begin by showing that either ‖p′ − q′‖Ak
is close to ‖p− q‖Ak

or ‖p− q‖1,k is large.

I Lemma 7. For any two distributions p and q on [n], let p′ and q′ be the merged distributions.
Then,

‖p− q‖Ak
≤ ‖p′ − q′‖Ak

+ 2‖p− q‖1,k .

I. Diakonikolas, D. Kane, and V. Nikishkin 8:7

Proof. Let I be the partition of [n] into k intervals so that ‖p− q‖Ak
=
∑

I∈I |p(I)− q(I)|.
Let I ′ be obtained from I by rounding each upper endpoint of each interval except for the
last down to the nearest even integer, and rounding the lower endpoint of each interval up to
the nearest odd integer. Note that∑

I∈I′

|p(I)− q(I)| =
∑
I∈I′

|p′(I/2)− q′(I/2)| ≤ ‖p′ − q′‖Ak
.

The partition I ′ is obtained from I by taking at most k points and moving them from one
interval to another. Therefore, the difference∣∣∣∣∣∑

I∈I
|p(I)− q(I)| −

∑
I∈I′

|p(I)− q(I)|

∣∣∣∣∣ ,
is at most twice the sum of |p(i)− q(i)| over these k points, and therefore at most 2‖p− q‖1,k.
Combing this with the above gives our result. J

Next, we need to show that if two distributions have ‖p − q‖1,k large that this can be
detected easily.

I Lemma 8. Let p and q be distributions on [n]. Let k > 0 be a positive integer, and ε > 0.
There exists an algorithm which takes O(k2/3/ε4/3 +

√
k/ε2) samples from each of p and q and,

with probability at least 2/3, distinguishes between the cases that p = q and ‖p− q‖1,k > ε.

Note that if we needed to distinguish between p = q and ‖p− q‖1 > ε, this would require
Ω(n2/3/ε4/3 +

√
n/ε2) samples. However, the optimal testers for this problem are morally

`2-testers. That is, roughly, they actually distinguish between p = q and ‖p− q‖2 > ε/
√
n.

From this viewpoint, it is clear why it would be easier to test for discrepancies in ‖ − ‖1,k-
distance, since if ‖p− q‖1,k > ε, then ‖p− q‖2 > ε/

√
k, making it easier for our `2-type tester

to detect the difference.
Our general approach will be by way of the techniques developed in [24]. We begin by

giving the definition of a split distribution coming from that paper:

I Definition 9. Given a distribution p on [n] and a multiset S of elements of [n], define the
split distribution pS on [n+ |S|] as follows: For 1 ≤ i ≤ n, let ai denote 1 plus the number of
elements of S that are equal to i. Thus,

∑n
i=1 ai = n+ |S|. We can therefore associate the

elements of [n+ |S|] to elements of the set B = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai}. We now define
a distribution pS with support B, by letting a random sample from pS be given by (i, j),
where i is drawn randomly from p and j is drawn randomly from [ai].

We now recall two basic facts about split distributions:

I Fact 10 ([24]). Let p and q be probability distributions on [n], and S a given multiset of
[n]. Then:
(i) We can simulate a sample from pS or qS by taking a single sample from p or q, respect-

ively.
(ii) It holds ‖pS − qS‖1 = ‖p− q‖1.

I Lemma 11 ([24]). Let p be a distribution on [n]. Then:
(i) For any multisets S ⊆ S′ of [n], ‖pS′‖2 ≤ ‖pS‖2, and
(ii) If S is obtained by taking m samples from p, then E[‖pS‖2

2] ≤ 1/m.

We also recall an optimal `2 closeness tester under the promise that one of the distributions
has smal `2 norm:

ICALP 2017

8:8 Near-Optimal Closeness Testing of Discrete Histogram Distributions

I Lemma 12 ([13]). Let p and q be two unknown distributions on [n]. There exists an
algorithm that on input n, b ≥ min{‖p‖2, ‖q‖2} and 0 < ε <

√
2b, draws O(b/ε2) samples

from each of p and q and, with probability at least 2/3, distinguishes between the cases that
p = q and ‖p− q‖2 > ε.

Proof of Lemma 8: We begin by presenting the algorithm:

Algorithm Small-Support-Discrepancy-Tester
Input: sample access to pdf’s p, q : [n]→ [0, 1], k ∈ Z+, and ε > 0.
Output: “YES” if q = p; “NO” if ‖q − p‖1,k ≥ ε.

1. Let m = min(k2/3/ε4/3, k).
2. Let S be the multiset obtained by taking m independent samples from p.
3. Use the `2 tester of Lemma 12 to distinguish between the cases that pS = qS

and ‖pS − qS‖2
2 ≥ k−1ε2/2 and return the result.

The analysis is simple. By Lemma 11, with 90% probability ‖pS‖2 = O(m−1/2), and
therefore the number of samples needed (using the `2 tester from Lemma 12) is O(m +
km−1/2/ε2) = O(k2/3/ε4/3 +

√
k/ε2). If p = q, then pS = qS and the algorithm will return

“YES” with appropriate probability. If ‖q − p‖1,k ≥ ε, then ‖pS − qS‖1,k+m ≥ ε. Since
k + m elements contribute to total `1 error at least ε, by Cauchy-Schwarz, we have that
‖pS − qS‖2

2 ≥ ε2/(k + m) ≥ k−1ε2/2. Therefore, in this case, the algorithm returns “NO”
with appropriate probability. J

Proof of Proposition 4: The basic idea of our algorithm is the following: By Lemma 8, if
‖p − q‖Ak

is large, then so is either ‖p − q‖1,k or ‖p′ − q′‖Ak
. Our algorithm then tests

whether ‖p − q‖1,k is large, and recursively tests whether ‖p′ − q′‖Ak
is large. Since p′, q′

have half the support size, we will only need to do this for log(n/k) rounds, losing only a
poly-logarithmic factor in the sample complexity. We present the algorithm here:

Algorithm Small-Domain-Ak-tester
Input: sample access to pdf’s p, q : [n]→ [0, 1], k ∈ Z+, and ε > 0.
Output: “YES” if q = p; “NO” if ‖q − p‖Ak

≥ ε.

1. For i := 0 to t def= dlog2(n/k)e, let p(i), q(i) be distributions on [d2−ine] defined
by p(i) = d2−ipe and q(i) = d2−iqe.

2. Take Ck2/3 log4/3(3 +n/k) log log(3 +n/k)/ε4/3 samples, for C sufficiently large,
and use these samples to distinguish between the cases p(i) = q(i) and ‖p(i) −
q(i)‖1,k > ε/(4 log2(3+n/k)) with probability of error at most 1/(10 log2(3+n/k))
for each i from 0 to t, using the same samples for each test.

3. If any test yields that p(i) 6= q(i), return “NO”. Otherwise, return “YES”.

We now show correctness. In terms of sample complexity, we note that by taking a
majority over O(log log(3 + n/k)) independent runs of the tester from Lemma 8 we can run
this algorithm with the stated sample complexity. Taking a union bound, we can also assume
that all tests performed in Step 2 returned the correct answer. If p = q then p(i) = q(i) for
all i and thus, our algorithm returns “YES”. Otherwise, we have that ‖p − q‖Ak

≥ ε. By
repeated application of Lemma 7, we have that

‖p− q‖Ak
≤

t−1∑
i=0

2‖p(i) − q(i)‖1,k + ‖p(t) − q(t)‖Ak
≤ 2

t∑
i=0
‖p(i) − q(i)‖1,k ,

I. Diakonikolas, D. Kane, and V. Nikishkin 8:9

where the last step was because p(t) and q(t) have a support of size at most k and so
‖p(t) − q(t)‖Ak

= ‖p(t) − q(t)‖1 = ‖p(t) − q(t)‖1,k. Therefore, if this is at least ε, it must be
the case that ‖p(i)− q(i)‖1,k > ε/(4 log2(3 +n/k)) for some 0 ≤ i ≤ t, and thus our algorithm
returns “NO”. This completes our proof. J

2.2 Full Algorithm
The improvement to Proposition 4 is somewhat technical. The key idea involves looking
into the analysis of Lemma 8. Generally speaking, choosing a larger value of m (up to
the total sample complexity), will decrease the `2 norm of p, and thus the final complexity.
Unfortunately, taking m > k might lead to problems as it will subdivide the k original bins
on which the error is supported into ω(k) bins. This in turn could worsen the lower bounds
on ‖p− q‖2. However, this will only be the case if the total mass of these bins carrying the
difference is large. Thus, we can obtain an improvement to Lemma 8 when the mass of bins
on which the error is supported is small. The details are deferred to the full version.

3 Nearly Matching Information-Theoretic Lower Bound

We give a lower bound for k-histograms (k-flat distributions), postponing our slightly stronger
construction to the full version. Before moving to the discrete setting, we first establish a
lower bound for continuous histogram distributions. Our bound on discrete distributions
will follow from taking the adversarial distribution from this example and rounding its
values to the nearest integer. In order for this to work, we will need ensure to that our
adversarial distribution does not have its Ak-distance decrease by too much when we apply
this operation. To satisfy this requirement, we will guarantee that our distributions will be
piecewise constant with all the pieces of length at least 1.

I Proposition 13. Let k ∈ Z+, ε > 0 sufficiently small, and W > 2 . Fix

m = min(k2/3 log1/3(W)/ε4/3, k4/5/ε6/5) .

There exist distributions D,D′ over pairs of distributions p and q on [0, 2(m+ k)W], where p
and q are O(m + k)-flat with pieces of length at least 1, so that: (a) when drawn from D,
we have p = q deterministically, (b) when drawn from D′, we have ‖p− q‖Ak

> ε with 90%
probability, and so that o(m) samples are insufficient to distinguish whether or not the pair
is drawn from D or D′ with better than 2/3 probability.

At a high-level, our lower bound construction proceeds as follows: We will divide our
domain into m+ k bins so that no information about which distributions had samples drawn
from a given bin or the ordering of these samples will help to distinguish between the cases
of p = q and otherwise, unless at least three samples are taken from the bin in question.
Approximately k of these bins will each have mass ε/k and might convey this information if
at least three samples are taken from the bin. However, the other m bins will each have mass
approximately 1/m and will be used to add noise. In all, if we take s samples, we expect to
see approximately s3ε3/k2 of the lighter bins with at least three samples. However, we will
see approximately s3/m2 of our heavy bins with three samples. In order for the signal to
overwhelm the noise, we will need to ensure that we have (s3ε3/k2)2 > s3/m2.

The above intuitive sketch assumes that we cannot obtain information from the bins in
which only two samples are drawn. This naively should not be the case. If p = q, the distance
between two samples drawn from that bin will be independent of whether or not they are

ICALP 2017

8:10 Near-Optimal Closeness Testing of Discrete Histogram Distributions

drawn from the same distribution. However, if p and q are supported on disjoint intervals,
one would expect that points that are close to each other should be far more likely to be
drawn from the same distribution than from different distributions. In order to disguise this,
we will scale the length of the intervals by a random, exponential amount, essentially making
it impossible to determine what is meant by two points being close to each other. In effect,
this will imply that two points drawn from the same bin will only reveal O(1/ log(W)) bits of
information about whether p = q or not. Thus, in order for this information to be sufficient,
we will need that (s2ε2/k)2/ log(W) > (s2/m). We proceed with the formal proof below.

Proof of Proposition 13: We use ideas from [24] to obtain this lower bound using an in-
formation theoretic argument.

We may assume that ε > k1/2, because otherwise we may employ the standard lower
bound that Ω(

√
k/ε2) samples are required to distinguish two distributions on a support of

size k.
First, we note that it is sufficient to take D and D′ be distributions over pairs of non-

negative, piecewise constant distributions with total mass Θ(1) with 90% probability so that
running a Poisson process with parameter o(m) is insufficient to distinguish a pair from D
from a pair from D′ [24].

We construct these distributions as follows: We divide the domain into m + k bins of
length 2W . For each bin i, we independently generate a random `i, so that log(`i/2) is
uniformly distributed over [0, 2 log(W)/3]. We then produce an interval Ii within bin i of
total length `i and with random offset. In all cases, we will have p and q supported on the
union of the Ii’s.

For each i with probabilitym/(m+k), we have the restrictions of p and q to Ii both uniform
with p(Ii) = q(Ii) = 1/m. The other k/(m+ k) of the time we have p(Ii) = q(Ii) = ε/k. In
this latter case, if p and q are being drawn from D, p and q are each constant on this interval.
If they are being drawn from D′, then p+ q will be constant on the interval, with all of that
mass coming from p on a random half and coming from q on the other half.

Note that in all cases p and q are piecewise constant with O(m+ k) pieces of length at
least 1. It is easy to show that with high probability the total mass of each of p and q is
Θ(1), and that if drawn from D′ that ‖p− q‖Ak

� ε with at least 90% probability.
We will now show that if one is given m samples from each of p and q, taken randomly

from either D or D′, that the shared information between the samples and the source family
will be small. This implies that one is unable to consistently guess whether our pair was
taken from D or D′.

Let X be a random variable that is uniformly at random either 0 or 1. Let A be obtained
by applying a Poisson process with parameter s = o(m) on the pair of distributions p, q
drawn from D if X = 0 or from D′ if X = 1. We note that it suffices to show that the shared
information I(X : A) = o(1). In particular, by Fano’s inequality, we have:

I Lemma 14. If X is a uniform random bit and A is a correlated random variable, then if
f is any function so that f(A) = X with at least 51% probability, then I(X : A) ≥ 2 · 10−4.

Let Ai be the samples of A taken from the ith bin. Note that the Ai are conditionally
independent on X. Therefore, we have that I(X : A) ≤

∑
i I(X : Ai) = (m+ k)I(X : A1) .

We will proceed to bound I(X : A1).
We note that I(X : A1) is at most the integral over pairs of multisets a (representing a

set of samples from q and a set of samples from p), of

O

(
(Pr(A1 = a|X = 0)− Pr(A1 = a|X = 1))2

Pr(A1 = a)

)
.

I. Diakonikolas, D. Kane, and V. Nikishkin 8:11

Thus,

I(X : A1) =
∞∑

h=0

∫
|a|=h

O

(
(Pr(A1 = a|X = 0)− Pr(A1 = a|X = 1))2

Pr(A1 = a)

)
.

We will split this sum up based on the value of h.
For h = 0, we note that the distributions for p+ q are the same for X = 0 and X = 1.

Therefore, the probability of selecting no samples is the same. Therefore, this contributes 0
to the sum.

For h = 1, we note that the distributions for p + q are the same in both cases, and
conditioning on I1 and (p+ q)(I1) that E[p] and E[q] are the same in each of the cases X = 0
and X = 1. Therefore, again in this case, we have no contribution.

For h ≥ 3, we note that I(X : A1) ≤ I(X : A1, I1) ≤ I(X : A1|I1) , since I1 is independent
of X. We note that Pr(A1 = a|X = 0, p(I1) = 1/m) = Pr(A1 = a|X = 1, p(I1) = 1/m).
Therefore, we have that

Pr(A1 = a|X = 0)− Pr(A1 = a|X = 1)
= Pr(A1 = a|X = 0, p(I1) = ε/k)− Pr(A1 = a|X = 1, p(I1) = ε/k).

If p(I1) = ε/k, the probability that exactly h elements are selected in this bin is at most
k/(m+k)(2sε/k)h/h!, and if they are selected, they are uniformly distributed in I1 (although
which of the sets p and q they are taken from is non-uniform). However, the probability
that h elements are taken from I1 is at least Ω(m/(m+ k)(sm)−h/h!) from the case where
p(I1) = 1/m, and in this case the elements are uniformly distributed in I1 and uniformly
from each of p and q. Therefore, we have that this contribution to our shared information
is at most k2/(m(m+ k))O(sε2m/k2)h/h! . We note that ε2m/k2 < 1. Therefore, the sum
of this over all h ≥ 3 is k2/(m(m+ k))O(sε2m/k2)3. Summing over all m+ k bins, this is
k−4ε6s3m2 = o(1).

It remains to analyze the case where h = 2. Once again, we have that ignoring which of p
and q elements of A1 came from, A1 is identically distributed conditioned on p(I1) = 1/m and
|A1| = 2 as it is conditioned on p(I1) = ε/k and |A1| = 2. Since once again, the distributions
D and D′ are indistinguishable in the former case, we have that the contribution of the h = 2
terms to the shared information is at most

O

(
(k/(k +m)(εs/k)2)2

m/(k +m)(s/m)2

)
dTV ((A1|X = 0, p(I1)ε/k, |A1| = 2),

(A1|X = 1, p(I1) = ε/k, |A1| = 2))

or

O
(
s2mk−2ε4/(k +m)

)
dTV ((A1|X = 0, p(I1) = ε/k, |A1| = 2),

(A1|X = 1, p(I1) = ε/k, |A1| = 2)) .

It will suffice to show that conditioned upon p(I1) = ε/k and |A1| = 2 that

dTV ((A1|X = 0), (A1|X = 1)) = O(1/ log(W)).

Let f be the order preserving linear function from [0, 2] to I1. Notice that conditional on
|A1| = 2 and p(I1) = ε/k that we may sample from A1 as follows:

Pick two points x > y uniformly at random from [0, 2].
Assign the points to p and q as follows:

ICALP 2017

8:12 Near-Optimal Closeness Testing of Discrete Histogram Distributions

If X = 0 uniformly randomly assign these points to either distribution p or q.
If X = 1 randomly do either:
∗ Assign points in [0, 1] to q and other points to p.
∗ Assign points in [0, 1] to p and other points to q.

Randomly pick I1 and apply f to x and y to get outputs z = f(x), w = f(y).

Notice that the four cases:
(i) both points coming from p,
(ii) both points coming from q,
(iii) a point from p preceding a point from q,
(iv) a point from q preceding a point from p,
are all equally likely conditioned on either X = 0 or X = 1. However, we will note that this
ordering is no longer independent of the choice of x and y.

Therefore, we can sample from A1 subject to X = 0 and from A1 subject to X = 1 in
such a way that this ordering is the same deterministically. We consider running the above
sampling algorithm to select (x, y) while sampling from X = 0 and (x′, y′) when sampling
from X = 1 so that we are in the same one of the above four cases. We note that

dTV ((A1|X = 0), (A1|X = 1)) ≤ Ex,y,x′,y′ [dTV ((f(x), f(y)), (f(x′), f(y′)))] ,

where the variation distance is over the random choices of f .
To show that this is small, we note that |f(x) − f(y)| is distributed like `1(x − y).

This means that log(|f(x) − f(y)|) is uniform over [log(f(x) − f(y)), log(f(x) − f(y)) +
2 log(W)/3]. Similarly, log(|f ′(x′)− f ′(y′)|) is uniform over [log(f(x′)− f(y′)), log(f(x′)−
f(y′)) + 2 log(W)/3]. These differ in total variation distance by

O

(
| log(f(x)− f(y))|+ | log(f(x′)− f(y′))|

log(W)

)
.

Taking the expectation over x, y, x′, y′ we get O(1/ log(W)). Therefore, we may further
correlate the choices made in selecting our two samples, so that z − w = z′ − w′ except
with probability O(1/ log(W)). We note that after conditioning on this, z and z′ are
both uniformly distributed over subintervals of [0, 2W] of length at least 2(W − W 2/3).
Therefore, the distributions on z and z′ differ by at most O(W−1/3). Hence, the total
variation distance between A1 conditioned on |A1| = 2, p(I1) = ε/k,X = 0 and conditioned
on |A1| = 2, p(I1) = ε/k,X = 1 is at most O(1/ log(W)) +O(W−1/3) = O(1/ log(W)). This
completes our proof. J

We can now turn this into a lower bound for testing Ak distance on discrete domains.

Proof of second half of Theorem 3: Assume for sake of contradiction that this is not the
case, and that there exists a tester taking o(m) samples. We use this tester to come up with
a continuous tester that violates Proposition 13.

We begin by proving a few technical bounds on the parameters involved. Firstly, note
that we already have a lower bound of Ω(k1/2/ε2), so we may assume that this is much
less than m. We now claim that m = O(min(k2/3 log1/3(3 + n/(m+ k))/ε4/3, k4/5/ε6/5). If
m ≤ k, there is nothing to prove. Otherwise,

k2/3 log1/3(3 + n/(m+ k))/ε4/3 ≥ m(m/k)−1/3 log(3 + n/(m+ k))1/3.

Thus, there is nothing more to prove unless log(3 + n/(m+ k))� m/k. But, in this case,
log(3 + n/(m+ k))� log(m/k) and thus log(3 + n/(m+ k)) = Θ(log(3 + n/k)), and we are
done.

I. Diakonikolas, D. Kane, and V. Nikishkin 8:13

We now let W = n/(6(m+ k)), and let D and D′ be as specified in Proposition 13. We
claim that we have a tester to distinguish a p, q from D from ones taken from D′ in o(m)
samples. We do this as follows: By rounding p and q down to the nearest third of an integer,
we obtain p′,q′ supported on set of size n. Since p and q were piecewise constant on pieces of
size at least 1, it is not hard to see that ‖p′ − q′‖Ak

≥ ‖p− q‖Ak
/3. Therefore, a tester to

distinguish p′ = q′ from ‖p′−q′‖Ak
≥ ε can be used to distinguish p = q from ‖p−q‖Ak

≥ 3ε.
This is a contradiction and proves our lower bound. J

References
1 J. Acharya, I. Diakonikolas, C. Hegde, J. Li, and L. Schmidt. Fast and Near-Optimal

Algorithms for Approximating Distributions by Histograms. In 34th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2015, pages 249–
263, 2015.

2 J. Acharya, I. Diakonikolas, J. Li, and L. Schmidt. Fast algorithms for segmented regression.
In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
pages 2878–2886, 2016.

3 J. Acharya, I. Diakonikolas, J. Li, and L. Schmidt. Sample-optimal density estimation in
nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, pages 1278–1289, 2017. Full version available at
https://arxiv.org/abs/1506.00671.

4 R.E. Barlow, D. J. Bartholomew, J.M. Bremner, and H.D. Brunk. Statistical Inference
under Order Restrictions. Wiley, New York, 1972.

5 T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions
are close. In IEEE Symposium on Foundations of Computer Science, pages 259–269, 2000.
URL: citeseer.ist.psu.edu/batu00testing.html.

6 T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and
unimodal distributions. In ACM Symposium on Theory of Computing, pages 381–390,
2004.

7 C.L. Canonne. A survey on distribution testing: Your data is big. but is it blue? Electronic
Colloquium on Computational Complexity (ECCC), 22:63, 2015.

8 C.L. Canonne. Are few bins enough: Testing histogram distributions. In Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, pages 455–463, 2016.

9 C.L. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld. Testing shape restrictions
of discrete distributions. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, pages 25:1–25:14, 2016.

10 S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Learning mixtures of structured distri-
butions over discrete domains. In SODA, pages 1380–1394, 2013.

11 S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Efficient density estimation via piecewise
polynomial approximation. In STOC, pages 604–613, 2014.

12 S. Chan, I. Diakonikolas, R. Servedio, and X. Sun. Near-optimal density estimation in
near-linear time using variable-width histograms. In NIPS, pages 1844–1852, 2014.

13 S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. Optimal algorithms for testing close-
ness of discrete distributions. In SODA, pages 1193–1203, 2014.

14 S. Chaudhuri, R. Motwani, and V.R. Narasayya. Random sampling for histogram con-
struction: How much is enough? In SIGMOD Conference, pages 436–447, 1998.

15 C. Daskalakis, A. De, G. Kamath, and C. Tzamos. A size-free CLT for poisson multinomials
and its applications. In Proceedings of the 48th Annual ACM Symposium on the Theory of
Computing, STOC’16, New York, NY, USA, 2016. ACM.

ICALP 2017

citeseer.ist.psu.edu/batu00testing.html

8:14 Near-Optimal Closeness Testing of Discrete Histogram Distributions

16 C. Daskalakis, I. Diakonikolas, R. O’Donnell, R.A. Servedio, and L. Tan. Learning Sums
of Independent Integer Random Variables. In FOCS, pages 217–226, 2013.

17 C. Daskalakis, I. Diakonikolas, R. Servedio, G. Valiant, and P. Valiant. Testing k-modal
distributions: Optimal algorithms via reductions. In SODA, pages 1833–1852, 2013.

18 C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning k-modal distributions via
testing. In SODA, pages 1371–1385, 2012.

19 C. Daskalakis, I. Diakonikolas, and R.A. Servedio. Learning Poisson Binomial Distributions.
In STOC, pages 709–728, 2012.

20 L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Series
in Statistics, Springer, 2001.

21 L. Devroye and G. Lugosi. Bin width selection in multivariate histograms by the combin-
atorial method. Test, 13(1):129–145, 2004.

22 I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price. Collision-based testers are optimal
for uniformity and closeness. Electronic Colloquium on Computational Complexity (ECCC),
23:178, 2016.

23 I. Diakonikolas, M. Hardt, and L. Schmidt. Differentially private learning of structured
discrete distributions. In NIPS, pages 2566–2574, 2015.

24 I. Diakonikolas and D.M. Kane. A new approach for testing properties of discrete distri-
butions. In FOCS, pages 685–694, 2016. Full version available at abs/1601.05557.

25 I. Diakonikolas, D.M. Kane, and V. Nikishkin. Optimal algorithms and lower bounds
for testing closeness of structured distributions. In IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, pages 1183–1202, 2015.

26 I. Diakonikolas, D.M. Kane, and V. Nikishkin. Testing identity of structured distributions.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, pages 1841–1854, 2015.

27 I. Diakonikolas, D.M. Kane, and A. Stewart. Efficient robust proper learning of log-concave
distributions. CoRR, abs/1606.03077, 2016.

28 I. Diakonikolas, D.M. Kane, and A. Stewart. The fourier transform of poisson multinomial
distributions and its algorithmic applications. In Proceedings of STOC’16, 2016.

29 I. Diakonikolas, D.M. Kane, and A. Stewart. Learning multivariate log-concave distribu-
tions. CoRR, abs/1605.08188, 2016.

30 I. Diakonikolas, D.M. Kane, and A. Stewart. Optimal Learning via the Fourier Transform
for Sums of Independent Integer Random Variables. In COLT, volume 49, pages 831–849,
2016. Full version available at arXiv:1505.00662.

31 I. Diakonikolas, D.M. Kane, and A. Stewart. Properly learning poisson binomial distribu-
tions in almost polynomial time. In Proceedings of the 29th Conference on Learning Theory,
COLT 2016, pages 850–878, 2016. Full version available at arXiv:1511.04066.

32 D. Freedman and P. Diaconis. On the histogram as a density estimator:l2 theory. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4):453–476, 1981.

33 A.C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast,
small-space algorithms for approximate histogram maintenance. In STOC, pages 389–398,
2002.

34 P. Groeneboom and G. Jongbloed. Nonparametric Estimation under Shape Constraints:
Estimators, Algorithms and Asymptotics. Cambridge University Press, 2014.

35 S. Guha, N. Koudas, and K. Shim. Approximation and streaming algorithms for histogram
construction problems. ACM Trans. Database Syst., 31(1):396–438, 2006.

36 P. Indyk, R. Levi, and R. Rubinfeld. Approximating and Testing k-Histogram Distributions
in Sub-linear Time. In PODS, pages 15–22, 2012.

37 H.V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel.
Optimal histograms with quality guarantees. In VLDB, pages 275–286, 1998.

https://arxiv.org/abs/1505.00662
https://arxiv.org/abs/1511.04066

I. Diakonikolas, D. Kane, and V. Nikishkin 8:15

38 J. Klemela. Multivariate histograms with data-dependent partitions. Statistica Sinica,
19(1):159–176, 2009.

39 E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer Texts in Statistics.
Springer, 2005.

40 G. Lugosi and A. Nobel. Consistency of data-driven histogram methods for density estim-
ation and classification. Ann. Statist., 24(2):687–706, 04 1996.

41 J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statist-
ical hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 231(694-706):289–337, 1933.
doi:10.1098/rsta.1933.0009.

42 L. Paninski. A coincidence-based test for uniformity given very sparsely-sampled discrete
data. IEEE Transactions on Information Theory, 54:4750–4755, 2008.

43 R. Rubinfeld. Taming big probability distributions. XRDS, 19(1):24–28, 2012.
44 D.W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.
45 D.W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley,

New York, 1992.
46 N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional histograms. In

SIGMOD Conference, pages 428–439, 2002.
47 G. Valiant and P. Valiant. An automatic inequality prover and instance optimal identity

testing. In FOCS, 2014.
48 R. Willett and R.D. Nowak. Multiscale poisson intensity and density estimation. IEEE

Transactions on Information Theory, 53(9):3171–3187, 2007.

ICALP 2017

http://dx.doi.org/10.1098/rsta.1933.0009

Deleting and Testing Forbidden Patterns in
Multi-Dimensional Arrays
Omri Ben-Eliezer1, Simon Korman2, and Daniel Reichman3

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
omribene@gmail.com

2 Department of Computer Science and Applied Mathematics, Weizmann
Institute of Science, Rehovot, Israel
simon.korman@gmail.com

3 Electrical Engineering and Computer Science, University of California,
Berkeley, CA, USA
daniel.reichman@gmail.com

Abstract
Analyzing multi-dimensional data is a fundamental problem in various areas of computer science.
As the amount of data is often huge, it is desirable to obtain sublinear time algorithms to
understand local properties of the data.

We focus on the natural problem of testing pattern freeness: given a large d-dimensional array
A and a fixed d-dimensional pattern P over a finite alphabet Γ, we say that A is P -free if it does
not contain a copy of the forbidden pattern P as a consecutive subarray. The distance of A to
P -freeness is the fraction of the entries of A that need to be modified to make it P -free.

For any ε > 0 and any large enough pattern P over any alphabet – other than a very small
set of exceptional patterns – we design a tolerant tester that distinguishes between the case that
the distance is at least ε and the case that the distance is at most adε, with query complexity
and running time cdε−1, where ad < 1 and cd depend only on the dimension d. These testers
only need to access uniformly random blocks of samples from the input A.

To analyze the testers we establish several combinatorial results, including the following d-
dimensional modification lemma, which might be of independent interest: For any large enough
d-dimensional pattern P over any alphabet (excluding a small set of exceptional patterns for the
binary case), and any d-dimensional array A containing a copy of P , one can delete this copy by
modifying one of its locations without creating new P -copies in A.

Our results address an open question of Fischer and Newman, who asked whether there exist
efficient testers for properties related to tight substructures in multi-dimensional structured data.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Property testing, Sublinear algorithms, Pattern matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.9

1 Introduction

Pattern matching is the algorithmic problem of finding occurrences of a fixed pattern in a given
string. This problem appears in many settings and has applications in diverse domains such as
computational biology, computer vision, natural language processing and web search. There
has been extensive research concerned with developing algorithms that search for patterns in
strings, resulting with a wide range of efficient algorithms [12, 24, 19, 14, 26, 25]. Higher-
dimensional analogues where one searches for a d-dimensional pattern in a d-dimensional

EA
T

C
S

© Omri Ben-Eliezer, Simon Korman, and Daniel Reichman;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

array have received attention as well. For example, the 2D case arises in analyzing aerial
photographs [7, 8] and the 3D case has applications in medical imaging.

Given a string S of length n and a pattern P of length k ≤ n, any algorithm which
determines whether P occurs in S has running time Ω(n) [13, 29] and a linear lower bound
carries over to higher dimensions. For the 2D case, when an n × n image is concerned,
algorithms whose run time is O(n2) are known [8]. These algorithms have been generalized
to the 3D case to yield running time of O(n3) [18] for n × n × n arrays. Finally it is also
known (e.g., [21]) that for the d-dimensional case it is possible to solve the pattern matching
problem in time O(d2nd logm) (where the pattern is an array of size md). It is natural to ask
which tasks of this type can be performed in sublinear (namely o(nd)) time for d-dimensional
arrays.

The field of property testing [20, 30] deals with decision problems regarding discrete
objects (e.g., graphs, functions, images) that either satisfy a certain property P or are far
from satisfying P. Here, the property P consists of all d-dimensional arrays that avoid a
predetermined pattern P . Tolerant property testing [27] is a useful extension of the standard
notion, in which the tester needs to distinguish between objects that are close to satisfying
the property and those that are far from satisfying it.

A d-dimensional k1× . . .×kd array A over an alphabet Γ is a function from [k1]× . . .× [kd]
to Γ, where for an integer k > 0 we let [k] denote the set {0, . . . , k − 1} and write [k]d =
[k]× . . .× [k]. For simplicity of presentation, all results in this paper are presented for square
arrays in which k1 = . . . = kd, but they generalize to non-square arrays in a straightforward
manner. We consider the (tolerant) pattern-freeness problem. An (ε1, ε2)-tester Q for this
problem is a randomized algorithm that is given access to a d-dimensional array A, as well as
its size and proximity parameters 0 ≤ ε1 < ε2 < 1. Q needs to distinguish with probability
at least 2/3 between the case that A is ε1-close to being P -free and the case that A is ε2-far
from being P -free. The query complexity of Q is the number of queries it makes in A.

Our interest in the pattern-freeness problem stems from several applications. In certain
scenarios of interest, we might be interested in identifying quickly that an array is far from not
containing a given pattern. In the one dimensional case, being far from not containing a given
text may indicate a potential anomaly which requires attention (e.g., an offensive word in
social network media), hence such testing algorithms may provide useful in anomaly detection.
Many computer vision methods for classifying images are feature based; being far from not
containing a certain pattern associated with a feature may be useful in rejection methods
that enable us to quickly discard images that do not possess a certain visual property.

Beyond practical applications, devising property testing algorithms for the pattern
freeness problem is of theoretical interest. In the first place, it leads to a combinatorial
characterization of the distance from being P -free. Such a characterization has proved fruitful
in graph property testing [3, 4] where celebrated graph removal lemmas were developed en
route of devising algorithms for testing subgraph freeness. We encounter a similar phenomena
in studying patterns and arrays: at the core of our approach for testing pattern freeness lies
a modification lemma for patterns which we state next. We believe that this lemma may be
of independent interest and find applications beyond testing algorithms.

For a pattern P of size k × k × . . .× k, an entry whose location in P is in {0, k − 1} ×
. . .× {0, k− 1} is said to be a corner of P . We say that P is almost homogeneous if all of its
entries but one are equal, and the different entry lies in a corner of P . Finally, P is removable
(with respect to the alphabet Γ) if for any d-dimensional array A over Γ and any copy of P in
A, one can destroy the copy by modifying one of its entries without creating new P -copies in
A. The modification lemma states that for any d, and any large enough pattern P , when the

O. Ben-Eliezer, S. Korman, and D. Reichman 9:3

alphabet is binary it holds that P is removable if and only if it is not almost homogeneous,
and when the alphabet is not binary, P is removable provided that it is large enough.

Recent works [10, 11] have obtained tolerant testers for visual properties. As observed in
these works, tolerance is an attractive property for testing visual properties as real-world
images are often noisy. With the modification lemma at hand, we show that when P is
removable, the (relative) hitting number of P in A, which is the minimal size of a set of entries
that intersects all P -copies in A divided by |A|, differs from the distance of A from P -freeness
by a multiplicative factor that depends only on the dimension d of the array. This relation
allows us to devise very fast (5−dε, ε)-tolerant testers for P -freeness, as the hitting number
of P in A can be well approximated using only a very small sample of blocks of entries from
A. The query complexity of our tester is cd/ε, where cd is a positive constant depending
only on d. Note that our characterization in terms of the hitting number is crucial: Merely
building on the fact that A contains many occurrences of P (as can be derived directly from
the modification lemma) and randomly sampling O(1/ε) possible locations in A, checking
whether the sub-array starting at these locations equals P , would lead to query complexity
of O(kd/ε). Note that our tester is optimal (up to a multiplicative factor that depends on d),
as any tester for this problem must make Ω(1/ε) queries.

The one dimensional setting, where one seeks to determine quickly whether a string S is
ε-far from being P -free is of particular interest. We are able to leverage the modification
lemma and show that the distance of a string S from being P -free for a fixed pattern P

(that is not almost homogeneous) is exactly equal to the hitting number of P in A. For an
arbitrary constant 0 < c < 1, this characterization allows us to devise a ((1− c)ε, ε)-tolerant
tester making Oc(1/ε) queries for this case. For the case of almost homogeneous patterns,
and an arbitrary constant c > 0 , we devise a ((1/(16 + c))ε, ε)-tolerant tester that makes
Oc(1/ε) queries. Whether tolerant testers exist for almost homogenous patterns of dimension
larger than 1 is an open question.

2 Related Work

The problem of testing pattern freeness is related to the study of testing subgraph freeness
(see, for example, [1, 4, 2]). This line of work examines how one can test quickly whether a
given graph G is H-free or ε-far from being H-free, where H is a fixed subgraph. In this
problem, a graph is ε-far from being H-free if at least an ε-fraction of its edges and non-edges
need to be altered in order to ensure that the resulting graph does not contain H as a
(not necessarily induced) subgraph. A key component in these works are removal lemmas:
typically such lemmas imply that if G is ε-far from being H-free, then it contains a large
number of copies of H. For example, the triangle removal lemma asserts that for every ε > 0,
there exists δ = δ(ε) > 0 such that if an n-vertex graph G is ε-far from being triangle free,
then G contains at least δn3 triangles (see, e.g., [6] and the references within).

Alon et. al. [3] studied the problem of testing regular languages. Testing pattern-freeness
(1-dimensional, binary alphabet, constant pattern length k) is a special case of the former,
since the language L of all strings avoiding a fixed pattern is regular. The query complexity of
their tester is O

(
s3

ε · ln
3(1
ε)
)
, where s is the minimal size of a DFA that accepts the regular

language L. In the case of the regular language considered here a simple pumping-lemma
inspired argument shows that s ≥ Ω(k). Hence the upper bound on testing pattern freeness
implied by their algorithm is O

(
k3

ε · ln
3(1
ε)
)
. Our 1D tester solves a very restricted case of

the problem the tester of [3] deals with, but it achieves a query complexity of O(1/ε) in this
setting. Moreover, our tester is much simpler and can be applied in the more general high

ICALP 2017

9:4 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

dimensional setting, or when the pattern length k is allowed to grow as a function of the
string length n.

The problem of testing submatrix freeness is investigated in [15, 16, 5, 17, 2]. As opposed to
our case, which is concerned with tight submatrices, all of these results deal with submatrices
that are not necessarily tight (i.e. the rows and the columns need not be consecutive).
Quantitatively, the submatrix case is very different from our case: in our case P -freeness can
be testable using O(ε−1) queries, while in the submatrix case, for a binary submatrix of size
k× k a lower bound of ε−Ω(k2) on the needed number of queries is easy to obtain, and in the
non-binary case there exist 2× 2 matrices for which there exists a super polynomial lower
bound of ε−Ω(log 1/ε).

The 2D part of our work adds to a growing literature concerned with testing properties of
images [28, 31, 10]. Ideas and techniques from the property testing literature have recently
been used in the fields of computer vision and pattern recognition [22, 23].

3 Notation and definitions

An (n, d)-array A over an alphabet Γ is a function from [n]d to Γ. The x = (x1, . . . , xd) entry
of A, denoted by Ax, is the value of the function A at location x. Let P be a (k, d)-array
over an alphabet Γ of size at least two. We say that a d-dimensional array A contains a
copy of P (or a P -copy) starting in location x = (x1, . . . , xd) if for any y ∈ [k]d we have
Ax+y = Py. Finally, A is P -free if it does not contain copies of P .

A property P of d-dimensional arrays is simply a family of such arrays over an alphabet
Γ. For an array A and a property P, the absolute distance dP(A) of A to P is the minimal
number of entries that one needs to change in A to get an array that satisfies P . The relative
distance of A to P is δP(A) = dP(A)/|A|, where clearly 0 ≤ δP(A) ≤ 1 for any nontrivial P
and A. We say that A is ε-close to P if δP(A) ≤ ε, and ε-far if δP(A) ≥ ε. In this paper we
consider the property of P -freeness, which consists of all P -free arrays. The absolute and
relative distance to P -freeness are denoted by dP (A) and δP (A), respectively.

For an array A and a pattern P , a deletion set is a set of entries in A whose modification
can turn it to be P -free, and dP (A) is called the deletion number, since it is the size of a
minimal deletion set. Similarly, a given set of entries in A is a hitting set if every P -copy in
A contains at least one of these entries. The hitting number hP (A) is the size of the minimal
hitting set for P in A. For all notation here and above, in the 1-dimensional case we replace
A by S (for String).

We use several definitions from [27]. Let P be a property of arrays and let h1, h2 : [0, 1]→
[0, 1] be two monotone increasing functions. An (h1, h2)-distance approximation algorithm
for P is given query access to an unknown array A. The algorithm outputs an estimate δ̂
to δP (A), such that with probability at least 2/3 it holds that h1(δP (A)) ≤ δ̂ ≤ h2(δP (A)).
For a property P and for 0 ≤ ε1 < ε2 ≤ 1, an (ε1, ε2)-tolerant tester for P is given query
access to an array A. The tester accepts with probability at least 2/3 if A is ε1-close to P,
and rejects with probability at least 2/3 if A is ε2-far from P. In the “standard” notion of
property testing, ε1 = 0. Thus, any tolerant tester is also a tester in the standard notion.
Finally, we define the additive (multiplicative) tolerance of the tester above as ε2 − ε1 (ε2/ε1
respectively).

O. Ben-Eliezer, S. Korman, and D. Reichman 9:5

Table 1 Summary of results. 0 < τ < 1 and c > 0 are arbitrary constants. αc is a constant that
depends only on c. βd,τ is a constant that depends only on d and τ . ’modification lemma’ specifies
if patterns are classified as removable or not. The ’tester tolerance’ is multiplicative.

dim. template type modification lemma tester query
tolerance complexity

1D general removable for any k 1/(1 − τ) O(1/ετ3)
almost homog. not removable for any k 16 + c αc/ε

2+D general removable for k > 3 · 2d (1 − τ)−dαd βd,τ/ε

almost homog. not removable for any k − −

4 Main Results

The modification lemma presented is central in the study of minimal deletion sets. It classifies
the possible patterns into ones that are removable and ones that are not. The result that
the vast majority of patterns are removable is used extensively throughout the paper in
the design and proofs of algorithms for efficient testing of pattern freeness (in 1 and higher
dimensions).

Our 1-dimensional modification lemma (Lemma 1) gives the following full characterization
of 1-dimensional patterns (i.e. strings). A binary pattern is removable if and only if it is
not almost homogeneous, while any pattern over a larger alphabet is removable. The
multidimensional version of the lemma (Lemma 2) makes the exact same classification, but
for (k, d)-arrays for which k ≥ 3 · 2d.

The fact that most patterns are removable is very important for analyzing the deletion
number. For example, observe that a removable pattern appears at least dP (A) times
(possibly with overlaps) in the array A, so an ε-tester can simply check for the presence of
the d-dimensional pattern in 1/ε random locations in the array, using O(kd/ε) queries.

Another important part of our work makes explicit connections between the deletion
number and the hitting number for both 1 and higher dimensions. These are needed in order
to get improved testers (e.g. for getting rid of k in the sample complexity) in d-dimensions.

In the 1-dimensional removable case we show that the deletion number dP (S) equals the
hitting number hP (S). We derive a ((1− τ)ε, ε)-tolerant tester for any fixed τ > 0 and any
0 < ε ≤ 1, whose number of queries and running time are O(ε−1τ−3) (Corollary 13).

For higher dimensions, we show (Lemma 11) that hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αdk−d,
where αd = 4d + 2d depends only on the dimension d. This bound gives a ((1− τ)dα−1

d ε, ε)-
tolerant tester making Cτ ε−1 queries, where Cτ = O(1/τd(1 − (1 − τ)d)2) (Theorem 15).
The running time here is C ′τ ε−1 where C ′τ depends only on τ .

In the full version of the paper [9], for the 1-dimensional setting we also provide dedicated
algorithms to handle the almost homogeneous (non-removable) patterns, obtaining an O(n)
algorithm for computing the deletion number as well as an (ε/(16 + c), ε)-tolerant tester, for
any constant c > 0, using αcε−1 queries, where αc depends only on c.

Finally, we provide a lower bound of Ω(1/ε) (full proof in can be found in [9]) for any
general tester of pattern freeness. Our main results are summarized in Table 1.

A natural question is what happens if one is concerned with pattern freeness with respect
to several patterns simultaneously. Namely, testing quickly whether an array satisfies the
property of not containing a fixed set of patterns P1, . . . , Pr with r > 1, or is far from
satisfying this property. Our results do not apply to this setting, with the main obstacle
being our modification lemmas. Namely, the difficulty is that for several distinct patterns
P1 . . . Pr, modifying an occurrence of Pi may create an new occurrence of Pj (where i 6= j).

ICALP 2017

9:6 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

5 Modification Lemma

We begin with the proof of the 1-dimensional modification lemma. The main strategy here is
to consider the longest streaks of zeros and ones (0s and 1s) in the pattern - a strategy that
cannot be used in higher dimensions.

I Theorem 1 (1D Modification Lemma). For a 1-dimensional pattern P over an alpha-
bet Γ:
1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.
2. If |Γ| ≥ 3 then P is removable.

I Remark. The second statement of the theorem can be easily derived from the first statement.
If P does not contain all letters in Γ then it is clearly removable, as changing any of its
entries to any of the missing letters cannot create new P -copies. Otherwise, we can reduce
the problem to the binary case: let σ1, σ2 be the letters in Γ that appear the smallest number
of times in P (specifically, if P is of length 3 and has exactly three different letters, we pick
σ1 and σ2 to be the first letter and the last letter in P , respectively). Consider the following
pattern P ′ over {0, 1}: P ′x = 0 if Px ∈ {σ1, σ2} and P ′x = 1 otherwise. Observe that P ′ is
not almost homogeneous, implying that it is removable. It is not hard to verify now that P
is removable as well.

Proof of Theorem 1. As discussed above, it is enough to consider the binary case. Let
P = P0 . . . Pk−1 be a binary pattern of length k that is not almost homogeneous, and let S
be an arbitrary binary string containing P . We need to show that one can flip one of the
bits of P without creating a new P -copy in S. We assume that P contains both 0s and 1s
(i.e. it is not homogeneous) otherwise flipping any bit would work. We may assume that
k ≥ 3 (since for k = 1, 2 all patterns are homogeneous or almost homogeneous). Let us also
assume that P starts with a 1, i.e. P0 = 1 and let t ≤ k − 1 be the length of the longest
0-streak (sub-string of consecutive 0s) in P . Let i > 0 be the leftmost index in which such a
0-streak of length t begins. Clearly, Pi−1 = 1 and Pi = . . . = Pi+t−1 = 0.

If i+ t ≤ k − 1 (i.e. the streak is not at the end of P) then Pi+t = 1 and in such a case
if we modify Pi+t to 0, the copy of P is removed without creating new P -copies in S. To
see this, observe that a new copy cannot start at the bit flip location i + t or within the
0-streak at any of its locations i, . . . , i+ t− 1 since the bits in these locations are 0 while the
starting bit of P is 1. Note that flipping Pi+t does not create new P -copies starting after the
location of Pi+t in S. Furthermore, no new copy starting before Pi is created since otherwise
it would contain a 0-streak of length t+ 1.

Thus, we may assume that P contains exactly one 0-streak of length t, lying at its last t
locations, so Pk−1 = 0. Denote by s the length of the longest 1-streak in P ; a symmetric
reasoning shows that P begins with its only 1-streak of length s. If P is not of the form 1s0t,
it can be verified that flipping Ps (the leftmost 0 in P) to 1 does not create any P -copy. The
only case left is P = 1s0t, where s, t ≥ 2 since P is not almost homogeneous. Consider the
bit of the string S that is to the left of P . If it is a 0 then we flip P1 to 0 and otherwise, we
flip P0 to 0, where in both cases no new copy is created. J

We now turn to proving the high dimensional version of the modification lemma. Here,
as opposed to the 1-dimensional case, there exist patterns that are neither removable nor
almost-homogeneous. However, we show that if a pattern is large enough and not almost
homogeneous then it is removable.

O. Ben-Eliezer, S. Korman, and D. Reichman 9:7

I Theorem 2 (Modification Lemma). Let d > 1 and let P be a (k, d)-array over the alphabet
Γ where k ≥ 3 · 2d.
1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.
2. If |Γ| ≥ 3 then P is removable.

I Remark. Theorem 2 states that any large enough binary pattern which is not almost
homogeneous is removable. The requirement that the pattern is large enough is crucial, as
can be seen from the following 2-dimensional example. The 2× 2 pattern P = [01; 01] is in
the center of the 4× 4 matrix A = [0101; 0011; 0011; 0101] . Flipping any bit in P creates a
new P -copy in A. This example easily generalizes to a 2× . . .× 2 pattern in a 4× . . .× 4
array, while the dependence of k on d is exponential in the statement of Theorem 2. It will
be interesting to understand what is the correct order of magnitude of this dependence.

Proof of Theorem 2. The reduction from a general alphabet to a binary one, described after
the statement of Theorem 1, can be used here as well. Thus, it is enough to prove the first
statement of the theorem. If P is binary and almost homogeneous then it is not removable:
Without loss of generality P(0,...,0) = 1 and Px = 0 for any x 6= (0, . . . , 0). Consider a
(2k, d)-array A such that M(0,...,0) = M(1,...,1) = 1 and A = 0 elsewhere. Modifying any bit
of the P -copy starting at (1, . . . , 1) creates a new P -copy in A, hence P is not removable.

The rest of the proof is dedicated to the other direction. Suppose that P is a binary
(k, d)-array that is not removable. We would like to show that P must be almost homogeneous.
As P is not removable, there exists a binary array A containing a copy of P such that flipping
any single bit in this copy creates a new copy of P in A. This copy of P will be called the
template of P in A.

Clearly, all of the new copies created by flipping bits in the template must intersect the
template, so we may assume that A is of size (3k − 2)d and that the template starts in
location k̃ = (k − 1, . . . , k − 1). For convenience, let I = [k]d denote the set of indices of P .
For any x ∈ I let x̄ = x+ k̃; x̄ is the location in A of bit x of the template.

Roughly speaking, our general strategy for the proof is to show that there exist at most
two “special” entries in P such that when we flip a bit in the template (creating a new copy
of P in A) the flipped bit usually plays the role of one of the special entries in the new copy.
We then show that in fact, there must be exactly one special entry, which must lie in a
corner of P , and that all non-special entries are equal while the special entry is equal to their
negation. This will finish the proof that P is almost homogeneous.

I Definition 3. Let i ≤ d and let δ be positive integers. Let x = (x1, . . . , xd) and y =
(y1, . . . , yd) be d-dimensional points. The pair (x, y) is (i, δ)-related if yi−xi = δ and yj = xj
for any j 6= i. An (i, δ)-related pair (x, y) is said to be an (i, δ)-jump in P if Px 6= Py.

In other words, (x, y) is (i, δ)-related if there is an increasing path of length δ along
coordinate i in the hypergrid graph on [n]d.

I Lemma 4. For any 1 ≤ i ≤ d there exists 0 < ∆i < k/3 such that at most two of the
(i,∆i)-related pairs of points from I are (i,∆)-jumps in P .

Proof. Recall that, by our assumption, flipping any of the K = kd bits of the template creates
a new copy of P in A. Consider the following mapping m : I → [2k−1]d. m(x1, . . . , xd) is the
starting location of a new copy of P created in A as a result of flipping bit x = (x1, . . . , xd)
of the template (which is bit x̄ of A). If more than one copy is created by this flip, then we
choose the starting location of one of the copies arbitrarily.

ICALP 2017

9:8 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

Figure 1 Illustration for Lemma 4. A 2-dimensional example, where i is the vertical coordinate:
Flipping the bit (of the template P) at location ā creates the P -copy Qa at location m(a). Similarly,
the copy Qb is created at location m(b). Note that the pair of points (x̄, ȳ) (which is (x, y) in P)
and the copy locations pair (m(a),m(b)) are both (i,∆i)-related. The values Px and Py (Mx̄ and
Mȳ) must be equal.

Observe that m is injective, and let S be the image of m, where |S| = K. Let 1 ≤ i ≤ d
and consider the collection of (1-dimensional) lines

Li =
{
{x1} × . . .× {xi−1} × [2k − 1]× {xi+1} × . . .× {xd} | ∀j 6= i : xj ∈ [2k − 1]

}
.

Clearly
∑
`∈Li
|S∩`| = K. On the other hand, |Li| =

∏
j 6=i(2k−1) < 2d−1∏

j 6=i k = 2d−1K/k,
so there exists a line ` ∈ Li for which |S ∩ `| > k/2d−1 ≥ 6. Hence |S ∩ `| ≥ 7. Let
α1 < . . . < α7 be the smallest i-indices of elements in S ∩ `. Since α7 − α1 < 2k − 1 there
exists some 1 ≤ l ≤ 6 such that αl+1 − αl < k/3. That is, S contains an (i,∆i)-related pair
with 0 < ∆i < k/3. In other words, there are two points a, b ∈ I such that flipping ā (b̄)
would create a new P -copy, denoted by Qa (Qb respectively), which starts in location m(a)
(m(b) respectively) in A, and (m(a),m(b)) is an (i,∆i)-related pair.

The following claim finishes the proof of the lemma and will also be useful later on.

I Claim 5. For a and b as above, let (x, y) be a pair of points from I that are (i,∆i)-related
and suppose that y 6= ā−m(a) and that x 6= b̄−m(b). Then Px = Py.

Proof. The bits that were flipped in A to create Qa and Qb are ā, b̄ respectively. Since
y + m(a) 6= ā, the entry My+m(a) serves as the entry of the P -copy Qa in location y, so
Py = My+m(a). Similarly, since x+m(b) 6= b̄, we have Px = Mx+m(b). But since both pairs
(x, y) and (m(a),m(b)) are (i,∆i)-related, we get that m(b)−m(a) = y − x, implying that
x+m(b) = y +m(a), and therefore Px = Mx+m(b) = My+m(a) = Py, as desired. J

Clearly, the number of (i,∆i)-related pairs that do not satisfy the conditions of the claim
is at most two, finishing the proof of Lemma 4. J

Let ∆ = (∆1, . . . ,∆d) where for any 1 ≤ i ≤ d, we take ∆i that satisfies the statement of
Lemma 4 (its specific value will be determined later).

I Definition 6. Let x ∈ I. The set of ∆-neighbours of x is

Nx =
{
y ∈ I

∣∣ ∃i : (x, y) is (i,∆i)-related or (y, x) is (i,∆i)-related
}

O. Ben-Eliezer, S. Korman, and D. Reichman 9:9

Figure 2 Illustration for Definition 8. Recall that flipping a bit ā in A creates a new P -copy Qa
(which contains ā), located at the point m(a) in the coordinates of A. The bits x and a are mapped
to y and f(a) respectively.

and the number of ∆-neighbours of x is nx = |Nx|, where d ≤ nx ≤ 2d. We say that x
is a ∆-corner if nx(∆) = d and that it is ∆-internal if nx(∆) = 2d. Furthermore, x is
(∆, P)-isolated if Px 6= Py for any y ∈ Nx, while it is (∆, P)-generic if Px = Py for any
y ∈ Nx.

When using the above notation, we sometimes omit the parameters (e.g. simply writing
isolated instead of (∆, P)-isolated) as the context is usually clear.

The definition imposes a symmetric neighborhood relation, that is, x ∈ Ny holds if
and only if y ∈ Nx. If x ∈ Ny we say that x and y are ∆-neighbours. Note that a point
x = (x1, . . . , xd) ∈ I is a ∆-corner if xi < ∆i or xi ≥ k −∆i for any 1 ≤ i ≤ d, and that x is
∆-internal if ∆i ≤ xi < k −∆i for any 1 ≤ i ≤ d.

I Claim 7. Two (∆, P)-isolated points in I cannot be ∆-neighbors.

Proof. Suppose towards contradiction that x = (x1, . . . , xd) and y = (y1, . . . , yd) are two
distinct (∆, P)-isolated points and that (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d. Since
∆i < k/3, at least one of x or y participates in two different (i,∆i)-related pairs: if xi < k/3
then yi + ∆i = xi + 2∆i < k so y is in two such pairs, and otherwise xi ≥ ∆i, meaning that x
participates in two such pairs. Assume without loss of generality that the two (i,∆i)-related
pairs are (t, x) and (x, y), then Pt 6= Px and Px 6= Py as x is isolated. By Lemma 4, these
are the only (i,∆i)-jumps in P .

Choose an arbitrary j 6= i and take v = (v1, . . . , vd) where vj = ∆j and vl = 0 for any
l 6= j. Recall that ∆j < k/3, implying that either xj + vj < k or xj − vj ≥ 0. Without
loss of generality assume the former, and let x′ = x+ v and y′ = y + v. Since x and y are
(∆, P)-isolated, and since x′ ∈ Nx and y′ ∈ Ny, we get that Px′ 6= Px 6= Py 6= Py′ , and thus
Px′ 6= Py′ (as the alphabet is binary). Therefore, (x′, y′) is also an (i,∆i)-jump in P , a
contradiction. J

I Definition 8. For three points x, y, a ∈ I, we say that x is mapped to y as a result of
the flipping of a if x̄ = m(a) + y. Moreover, define the function f : I → I as follows:
f(x) = x̄−m(x) is the location to which x is mapped as a result of flipping x.

In other words, x is mapped to y as a result of flipping the bit a if bit x̄ of A “plays the
role” of bit y in the new P -copy Qa that is created by flipping a. Note that

If x̄ −m(a) /∈ I then x is not mapped to any point. However, this cannot hold when
x = a, so the function f is well defined.

ICALP 2017

9:10 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

For a fixed a, the mapping as a result of flipping a is linear: if x and y are mapped to x′
and y′ respectively, then y− x = y′ − x′. In particular, if (x, y) is (i,∆i)-related for some
1 ≤ i ≤ d then (x′, y′) is also (i,∆i)-related.
If x is mapped to y as a result of flipping a and x 6= a, then Px = Py.
On the other hand, we always have Px 6= Pf(x).
If x is ∆-internal and (∆, P)-generic, then f(x) must be (∆, P)-isolated.

The first four statements are easy to verify. To verify the last one, suppose that x is internal
and generic and let z ∈ Nf(x); we will show that Pf(x) 6= Pz. Since x is internal, there exists
y ∈ Nx such that y − x = z − f(x). Then y is mapped to z as a result of flipping x, since
ȳ = y+ k̃ = z + (x+ k̃)− f(x) = z + x̄− f(x) = z +m(x). Therefore Py = Pz. On the other
hand, Px = Py as x is generic and Px 6= Pf(x), and we conclude that Pz 6= Pf(x).

I Lemma 9. There is exactly one (∆, P)-isolated point in I.

Proof. Let S be the set of isolated points; our goal is to show that |S| = 1. Consider the set

C = {(x, y) : x, y ∈ I, (x, y) is an (i,∆i)-jump for some 1 ≤ i ≤ d}.

Clearly, each point in S is contained in at least d pairs from C. By claim 7 no pair of
isolated points are ∆-neighbours and therefore every pair in C contains at most one point
from S. By Lemma 4, |C| ≤ 2d which implies that |S| ≤ 2. On the other hand we have
|S| ≥ 1. To see this, observe that the number of (∆, P)-internal points in I is greater than∏d
i=1 k/3 ≥ 2d2 , while the number of non-∆-generic points is at most 2|C| ≤ 4d, implying

that at least 2d2 − 4d > 0 of the internal points are generic. Therefore, pick an internal
generic point z ∈ I. As we have seen before, f(z) must be isolated.

To complete the proof it remains to rule out the possibility that |S| = 2. If two
different (∆, P)-isolated points a = (a1, . . . , ad) and b = (b1, . . . , bd) exist, each of them must
participate in exactly d pairs in C. This implies that both of them are ∆-corners with d
neighbors. It follows that every ∆-internal point z must be generic (since an internal point
and a corner point cannot be neighbours), implying that either f(z) = a or f(z) = b.

Let 1 ≤ i ≤ d and define δi > 0 to be the smallest integer such that there exists an
(i, δi)-related pair (x, y) of generic internal points with f(x) = f(y). For this choice of x and
y we have m(y) −m(x) = ȳ − f(y) − (x̄ − f(x)) = ȳ − x̄ = y − x, so (m(x),m(y)) is also
(i, δi)-related. In particular, we may take ∆i = δi (Recall that until now, we only used the
fact that ∆i < k/3, without committing to a specific value). Without loss of generality we
may assume that f(x) = f(y) = a. By Claim 5, any pair (s, t) of (i,∆i)-related points for
which s 6= ȳ −m(y) = f(y) = a and t 6= x̄−m(x) = f(x) = a is not an (i,∆i)-jump. Since b
is not a ∆-neighbour of a, it does not participate in any (i,∆i)-jump, contradicting the fact
that it is (∆, P)-isolated. This finishes the proof of the lemma. J

Finally, we are ready to show that P is almost homogeneous. Let a = (a1, . . . , ad) be the
single (∆, P)-isolated point in I. Consider the set

J = {x = (x1, . . . , xd) ∈ I : ∆i ≤ xi < ∆i + 2d for any 1 ≤ i ≤ d}

and note that all points in J are ∆-internal. Let 1 ≤ i ≤ d and partition J into (i, 1)-related
pairs of points. There are 2d2−1 ≥ 4d pairs in the partition. On the other hand, the number
of non-generic points in J is at most 2|C| − (d − 1) < 4d (to see it, count the number of
elements in pairs from C and recall that a is contained in at least d pairs). Therefore, there
exists a pair (x, y) in the above partition such that x and y are both generic. As before,

O. Ben-Eliezer, S. Korman, and D. Reichman 9:11

f(x) and f(y) must be isolated, and thus f(x) = f(y) = a, implying that ∆i = δi = 1. We
conclude that ∆ = (1, . . . , 1).

Claim 5 now implies that any pair (s, t) of (i, 1)-related points for which s 6= ȳ −m(y) =
f(y) = a and t 6= x̄−m(x) = f(x) = a is not an (i, 1)-jump. That is, for any two neighbouring
points s, t 6= a in I, Ps = Pt, implying that Px = Py for any x, y 6= a (since ∆ = (1, . . . , 1),
a ∆-neighbour is a neighbour in the usual sense). To see this, observe that for any two
points x, y 6= a there exists a path x0x1 . . . xt in I where xj and xj+1 are neighbours for any
0 ≤ j ≤ t− 1, the endpoints are x0 = x and xt = y, and xj 6= a for any 0 < j < t. Since a is
isolated, it is also true that Pa 6= Px for any x 6= a.

To finish the proof that P is almost homogeneous, it remains to show that a is a corner.
Suppose to the contrary that 0 < ai < k − 1 for some 1 ≤ i ≤ d and let b, c ∈ I be the
unique points such that (a, b) and (c, a) are (i, 1)-related, respectively. Clearly f(b) = a, so a
is mapped to ā −m(b) = ā − b̄ + f(b) = c − a + a = c as a result of flipping b, which is a
contradiction - as Pa 6= Pc and b 6= a, c. This finishes the proof. J

6 From Deletion to Testing

We use the modification lemmas of Section 5 to investigate combinatorial characterizations
of the deletion number, which in turn allow efficient approximation and testing of pattern
freeness for removable patterns. In particular, we prove that minimal deletion sets and
minimal hitting sets are closely related. Due to space considerations, the proofs of all results
in this Section do not appear here, and are given in the full version of this paper [9].

The characterizations for almost homogeneous 1-dimensional patterns are also given in
the full version of the paper [9], along with an optimal tester for pattern freeness in that
case. The rest of this section deals with removable patterns, for both the 1-dimensional and
multi-dimensional settings.

In the 1-dimensional case, we show that for any removable pattern there exist certain
minimal hitting sets which are in fact minimal deletion sets. These are sets where none of
the flips create new occurrences. Our constructive proof shows how to build such a set.

I Theorem 10 (dP (S) equals hP (S)). For a binary string S of length n and a binary pattern
P of length k that is removable, the deletion number dP (S) equals the hitting number hP (S).

For the multidimensional case, we show that when P is removable, the hitting number
hP (A) of A approximates the deletion number up to a multiplicative constant that depends
only on the dimension d. This is done in two stages, the first of which involves the analysis
of a procedure that proves the existence of a large collection of P -copies with small pairwise
overlaps, among the set of all P -copies in A. This procedure heavily relies on the fact that P
is removable. The second stage shows that since these copies have small overlaps, their hitting
number cannot be much different than their deletion number. The result is summarized in
Lemma 11.

I Lemma 11 (Relation between distance and hitting number). Let P be a removable (k, d)-
array over an alphabet Γ, and let A be an (n, d)-array over Γ. Let αd = 4d + 2d. It holds
that: hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αd(n/k)d.

We describe efficient distance approximation algorithms and testers for both the 1-
dimensional and the d-dimensional removable patterns. The tolerance of the testers depends
only on d, and the query complexity is linear in ε−1 where the constant depends only on d
(and not on k; using a completely naive tester, it can be seen that the tolerance and the query

ICALP 2017

9:12 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

complexity depend on k). The distance approximation algorithms and the testers essentially
estimate the hitting number by sampling a small set of O(k)× . . .×O(k) uniformly chosen
consecutive subarrays of the input array, and calculating the hitting number of the pattern
P in each of these samples.

I Theorem 12 (Approximating the deletion number in 1-dimension). Let P be a removable string
of length k and fix constants 0 < τ < 1, 0 < δ < 1/k. Let h1, h2 : [0, 1] → [0, 1] be defined
as h1(ε) = (1− τ)ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance approximation
algorithm for P -freeness with query complexity and running time of O(1/kτδ2).

Note that dP (S) = hP (S) ≤ n/k always holds, so having an additive error parameter of
δ ≥ 1/k is pointless. The proof of Theorem 12 can be adapted to derive an (ε1, ε2)-tolerant
tester for any 0 ≤ ε1 < ε2 ≤ 1, yielding the following multiplicative-error tester.

I Corollary 13 (Multiplicative tolerant tester for pattern freeness in 1-dimension). Fix 0 < τ < 1.
For any 0 < ε ≤ 1 there exists a ((1 − τ)ε, ε)-tolerant tester whose number of queries and
running time are O(ε−1τ−3).

For the multidimensional case, our distance approximation algorithm and tolerant tester
for P -freeness are given in Theorems 14 and 15.

I Theorem 14 (Approximating the deletion number in multidimensional arrays). Let P be a
removable (k, d)-array and fix constants 0 < τ ≤ 1, 0 ≤ δ ≤ 1/kd. Let h1, h2 : [0, 1]→ [0, 1]
be defined as h1(ε) = (1− τ)dα−1

d ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance
approximation algorithm for P -freeness making at most γ/kdτdδ2 queries, where γ > 0 is an
absolute constant, and has running time ζτ/kdδ2 where ζτ is a constant depending only on τ .

I Theorem 15 (Multiplicative tolerant tester for pattern freeness in multidimensional arrays).
Fix 0 < τ ≤ 1 and let P be a removable (k, d)-array. For any 0 < ε ≤ 1 there exists a
((1− τ)dα−1

d ε, ε)-tolerant tester making Cτ ε−1 queries, where Cτ = O(1/τd(1− (1− τ)d)2).
The running time is C ′τ ε−1 where C ′τ depends only on τ .

7 Discussion and Open Questions

We have provided efficient algorithms for testing whether high-dimensional arrays do not
contain P for any fixed removable pattern P . The results suggest several interesting open
questions on the problem of pattern-freeness and more generally, on local properties - where
we say that a property P is k-local (for k � n) if for any array A not satisfying P, there
exists a consecutive subarray of A of size at most k× . . .× k which does not satisfy P as well.
That is, a property is local if any array not satisfying P contains a small ‘proof’ for this fact.
Note that P -freeness is indeed k-local where k is the side length of P , and that a property
P is k-local if and only if there exists a family F of arrays of size at most k × . . .× k each,
such that A satisfies P if and only if it does not contain any consecutive sub-array from F .
That is, to understand the general problem of testing local properties of arrays we will need
to understand the testing of F-freeness, where F is a family of forbidden patterns (rather
than a single forbidden pattern). As mentioned, it is not clear how to apply our methods to
develop testers for families of patterns. Devising testers for this case is an interesting open
question.

The problem of approximate pattern matching is of interest as well. The family of
forbidden patterns for this problem might consist of a pattern and all patterns that are
close enough to it, and the distance measures between patterns might also differ from the
Hamming distance (e.g., `1 distance for grey-scale patterns).

O. Ben-Eliezer, S. Korman, and D. Reichman 9:13

Finally, it is desirable to settle the problem of testing pattern freeness for the almost
homogenous case by either finding an efficient tester for the almost homogeneous multi-
dimensional case, or proving that an efficient tester cannot exist for such patterns. It is also
of interest to examine which of the [k]d patterns with k < 3 · 2d are removable.

Acknowledgements. We are grateful to Swastik Kopparty for numerous useful comments.
We are thankful to Sofya Raskhodnikova for her useful feedback.

References
1 N. Alon (2002). Testing subgraphs in large graphs, Random structures and algorithms,

21(3–4):359–370.
2 N. Alon, O. Ben-Eliezer and E. Fischer (2017). Testing hereditary properties of ordered

graphs and matrices, arXiv preprint 1704.02367.
3 N. Alon, M. Krivelevich, I. Newman and M. Szegedy (2001). Regular languages are testable

with a constant number of queries, SIAM Journal on Computing, 30, 1842–1862.
4 N. Alon, E. Fischer, M. Krivelevich and M. Szegedy (2000). Efficient testing of large graphs,

Combinatorica, 20, 451–476.
5 N. Alon, E. Fischer and I. Newman (2007). Efficient testing of bipartite graphs for forbidden

induced subgraphs, SIAM Journal on Computing, 37.3, 959–976.
6 N. Alon and J. Spencer (2008). The Probablistic Method. Wiley.
7 A. Amir, G. Benson (1998). Two-Dimensional Periodicity in Rectangular Arrays, SIAM

Journal on Computing, 27, 90–106.
8 A. Amir, G. Benson, M. Farach (1994). An Alphabet Independent Approach to Two-

Dimensional Pattern Matching, SIAM Journal on Computing, 23, 313–323.
9 O. Ben-Eliezer, S. Korman and D. Reichman (2017). Deleting and Testing Forbidden

Patterns in Multi-Dimensional Arrays, arXiv preprint 1607.03961.
10 P. Berman, M. Murzabulatov, S. Raskhodnikova (2015). Constant-Time Testing and Learn-

ing of Image Properties, arXiv prepreint 1503.01363.
11 P. Berman, M. Murzabulatov and Sofya Raskhodnikova (2016). Tolerant Testers of Image

Properties. ICALP, 1–90:14.
12 R.S. Boyer and J.S. Moore (1977). A fast string searching algorithm, Comm. ACM, 20(10),

762–772.
13 R. Cole (1991). Tight Bounds on the Complexity of the Boyer-Moore String Matching

Algorithm, SODA, 224–233.
14 C. Maxime, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and W.

Rytter (1994). Speeding up two string-matching algorithms, Algorithmica, 12, 247–267.
15 E. Fischer, and I. Newman (2001). Testing of matrix properties, STOC, 286–295
16 E. Fischer and I. Newman (2007). Testing of matrix-poset properties, Combinatorica, 27(3),

293–327.
17 E. Fischer, E. Rozenberg, Lower bounds for testing forbidden induced substructures in

bipartite-graph-like combinatorial objects, Proc. RANDOM 2007, 464–478.
18 Z. Galil, J. G. Park and K. Park. (2004). Three-dimensional periodicity and its application

to pattern matching. SIAM Journal on Discrete Mathematics, 18(2), 362–381.
19 Z. Galil and J. I. Seiferas (1983). Time-Space-Optimal String Matching, J. Comput. Syst.

Sci, 26(3), 280–294.
20 O. Goldreich, S. Goldwasser and D. Ron (1998). Property testing and its connection to

learning and approximation, JACM, 45, 653–750.
21 J. Kärkkäinen and E. Ukkonen (2008). Multidimensional string matching. In Encyclopedia

of Algorithms, 559–562.

ICALP 2017

9:14 Deleting and Testing Forbidden Patterns in Multi-Dimensional Arrays

22 I. Kleiner, D. Keren, I. Newman, O. Ben-Zwi (2011). Applying Property Testing to an
Image Partitioning Problem, IEEE Trans. Pattern Anal. Mach. Intell, 33(2), 256–265.

23 S. Korman, D. Reichman, G. Tsur and S. Avidan. Fast-Match: Fast Affine Template
Matching, International Journal of Computer Vision, to appear.

24 D.E. Knuth, J.H. Morris Jr. and V.R. Pratt (1977). Fast Pattern Matching in Strings,
SIAM J. Comput. 6(2): 323–350.

25 T. Lecroq (2007). Fast exact string matching algorithms, Information Processing Letters,
102(6), 229–235.

26 G. Navarro and M. Raffinot (2000). Fast and flexible string matching by combining bit-
parallelism and suffix automata, Journal of Experimental Algorithmics (JEA) 5:4.

27 M. Parnas, D. Ron and R. Rubinfeld (2006). Tolerant property testing and distance ap-
proximation. Journal of Computer and System Sciences, 72(6), 1012–1042.

28 S. Raskhodnikova (2003). Approximate testing of visual properties, RANDOM, 370–381.
29 R.L. Rivest (1977). On the Worst-Case Behavior of String-Searching Algorithms, SIAM

J. Comput. 6(4): 669–674.
30 R. Rubinfeld and M. Sudan (1996). Robust characterization of polynomials with applica-

tions to program testing, SIAM J. Comput. 25, 252–271.
31 G. Tsur and D. Ron (2014). Testing properties of sparse images, ACM Transactions on

Algorithms 4.
32 A.C. Yao (1977). Probabilistic computation, towards a unified measure of complexity,

FOCS, 222–227.

On the Value of Penalties in Time-Inconsistent
Planning∗†

Susanne Albers1 and Dennis Kraft2

1 Department of Computer Science, Technical University of Munich, Munich,
Germany
albers@in.tum.de

2 Department of Computer Science, Technical University of Munich, Munich,
Germany
kraftd@in.tum.de

Abstract
People tend to behave inconsistently over time due to an inherent present bias. As this may
impair performance, social and economic settings need to be adapted accordingly. Common
tools to reduce the impact of time-inconsistent behavior are penalties and prohibition. Such tools
are called commitment devices. In recent work Kleinberg and Oren [5] connect the design of a
prohibition-based commitment device to a combinatorial problem in which edges are removed
from a task graph G with n nodes. However, this problem is NP-hard to approximate within a
ratio less than

√
n/3 [2]. To address this issue, we propose a penalty-based commitment device

that does not delete edges, but raises their cost. The benefits of our approach are twofold. On the
conceptual side, we show that penalties are up to 1/β times more efficient than prohibition, where
β ∈ (0, 1] parameterizes the present bias. On the computational side, we improve approximability
by presenting a 2-approximation algorithm for allocating penalties. To complement this result,
we prove that optimal penalties are NP-hard to approximate within a ratio of 1.08192.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximation algorithms, behavioral economics, commitment devices,
computational complexity, time-inconsistent preferences

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.10

1 Introduction

Most people make long term plans. They intend to eat healthy, save money, prepare for
exams, exercise regularly and so on. Curiously, the same people often change their plans
at a later point in time. They indulge in fast food, squander their money, fail to study and
skip workouts. Although change may be necessary due to unforeseen events, people often
change their plans even if the circumstances stay the same. This type of time-inconsistent
behavior is a well-known phenomenon in behavioral economics and might impair a person’s
performance in social or economic domains [1, 8].

A sensible explanation for time-inconsistent behavior is that people are present biased
and assign disproportionately greater value to the present than to the future. Consider, for
instance, a scenario in which a student named Alice attends a course over several weeks.
To pass the course, Alice either needs to solve a homework exercise each week or give a

∗ The full version can be found at arXiv:1702.01677 [cs.DS], https://arxiv.org/abs/1702.01677.
† Work supported by the ERC, Grant Agreement No. 691672.

EA
T

C
S

© Susanne Albers and Dennis Kraft;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 10; pp. 10:1–10:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.10
https://arxiv.org/abs/1702.01677
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 On the Value of Penalties in Time-Inconsistent Planning

presentation once. The presentation incurs a onetime effort of 3, whereas each homework
exercise incurs an effort of 1. Furthermore, we assume that Alice immediately fails if she
misses a homework assignment before she has given a presentation. If the course lasts for
more than 3 weeks, she clearly minimizes her effort by giving a presentation in the first week.
Paradoxically, if Alice is present biased, she may solve all homework exercises instead. The
reason for this is the following:

Suppose Alice perceives present effort accurately, but discounts future effort by a factor
of β = 1/3. In the first week Alice must decide between solving the homework exercise or
giving a presentation. Remember that she automatically fails if she does neither of the two.
Clearly, the homework incurs less immediate effort than the presentation. Furthermore, Alice
can still give a presentation later on. Her perceived effort for doing the homework this week
and giving the presentation the week after is 1 + β3 = 2. To Alice this plan appears more
convenient than giving the presentation right away. Consequently, she does the homework.
However, come next week she changes this plan and postpones the presentation once more.
Her reasoning is the same as in the first week. Due to her time-inconsistent behavior, Alice
continues to postpone the presentation and ends up doing all the homework assignments.

Previous Work. Time-inconsistent behavior has been studied extensively in behavioral eco-
nomics. For an introduction to the topic refer for example to [1]. Alice’s scenario demonstrates
how time-inconsistency arises whenever people are present biased. Alice evaluates her prefer-
ences based on a well-established discounting model called quasi-hyperbolic-discounting [7].
As her story shows, quasi-hyperbolic-discounting tempts people to make poor decisions. To
prevent poor decisions, social and economic settings need to be adapted accordingly. De-
pending on the domain, such adaptations might be implemented by governments, companies,
teachers or people themselves. We call these entities designers and their motivation can be
benevolent or self-serving. In either case, the designer’s objective is to commit people to a
certain goal. Their tools are called commitment devices and may include rewards, penalty
fees and strict prohibition [3, 9].

Until recently, the study of time-inconsistent behavior lacked a unifying and expressive
framework. However, groundbreaking work by Kleinberg and Oren closed this gap by reducing
the behavior of a quasi-hyperbolic-discounting person to a simple planning problem in task
graphs [5]. Their framework has helped to identify various structural properties of social and
economic settings that affect the performance of present biased individuals [5, 10]. It has also
been extended to people whose present bias varies over time [4] as well as people who are
aware of their present bias and act accordingly [6]. We will formally introduce the framework
in Section 2. A significant part of Kleinberg and Oren’s work is concerned with the study
of a simple yet powerful commitment device based on prohibition [5]. In particular, they
demonstrate how performance can be improved by removing a strategically chosen set of
edges from the task graph. The drawback of their approach is its computational complexity.
As it turns out, an optimal commitment device is NP-hard to approximate within a ratio less
than

√
n/3, where n denotes the number nodes in the task graph [2]. Currently, the only

known polynomial-time algorithms achieve approximation ratios of 1/β and 1 + β/n, which
in combination yields a 1+

√
n approximation [2]. It should be mentioned that Kleinberg and

Oren’s framework has also been used to analyze reward-based commitment devices [2, 10].
Unfortunately, the computational complexity of such commitment devices does not permit a
polynomial-time approximation within a finite ratio unless P = NP [2].

Our Contribution. To circumvent the theoretical limitations mentioned above, we propose a
natural generalization of Kleinberg and Oren’s work. Instead of prohibition, our commitment

S. Albers and D. Kraft 10:3

device is based on penalty fees, a standard tool in the economic literature [3, 9]. This means
that the designer is free to raise the cost of arbitrary edges in the task graph. We call such
an assignment of penalties a cost configuration. The designer’s objective is to construct cost
configurations that are as efficient as possible.

In Section 3 we conduct a quantitative comparison between the efficiency of penalty fees
and prohibition. Assuming that optimal commitment devices can be computed, we show that
penalties are strictly more powerful than prohibition. In particular, we show that penalties
may outperform prohibition by a factor of 1/β where β parameterizes the present bias. This
result is tight. In Section 4 we investigate the computational complexity of our commitment
device. Using a reduction from 3-SAT, we argue that the construction of an efficient cost
configuration is NP-hard when posed as a decision problem. A generalization of this reduction
proves NP-hardness for approximations within a ratio of 1.08192. Unless P = NP, this
dismisses the existence of a polynomial-time approximation scheme. While analyzing the
complexity of our commitment device we also point to a remarkable structural property.
More specifically, we show that every cost configuration admits another cost configuration of
comparable efficiency that assigns its cost entirely along a single path. Assuming that the
path is known in advance, we provide an algorithm for constructing such a cost configuration
in polynomial-time. This result is important for the design of exact algorithms as it reduces
the search space to the set of paths through the task graph. Finally, Section 5 introduces
a 2-approximation algorithm for our commitment device. This is our main result and a
considerable improvement to the

√
n/3 approximability of the prohibition-based commitment

device [2]. It is interesting to note that the 1/β approximation algorithm of [2] can also be
applied to penalty fees. As a result, our penalty-based approach is particularly interesting
for highly present biased agents with β < 1/2.

2 The Formal Framework

In the following, we introduce Kleinberg and Oren’s framework [5]. Let G = (V,E) be a
directed acyclic graph with n nodes that models a given long-term project. The edges of
G correspond to the tasks of the project and the nodes represent the states. In particular,
there exists a start state s and a target state t. Each path from s to t corresponds to a
valid sequence of tasks to complete the project. The effort of a specific task is captured by a
non-negative cost c(e) assigned to the associated edge e.

To complete the project, an agent with a present bias of β ∈ (0, 1] incrementally constructs
a path from s to t as follows: At any node v different from t, the agent evaluates her lowest
perceived cost. For this purpose she considers all paths P leading from v to t. However, she
only anticipates the cost of the first edge of P correctly; all other edges of P are discounted by
her present bias. More formally, let d(w) denote the cost of a cheapest path from node w to t.
The agent’s lowest perceived cost at v is defined as ζ(v) = min{c(v, w) + βd(w) | (v, w) ∈ E}.
We assume that she only traverses edges (v, w) that minimize her anticipated cost, i.e. edges
for which c(v, w) + βd(w) = ζ(v). Ties are broken arbitrarily. For convenience, we define
the perceived cost of (v, w) as η(v, w) = c(v, w) + βd(w). The agent is motivated by an
intrinsic or extrinsic reward r collected at t. As she receives this reward in the future, she
perceives its value as βr at each node different from t. When located at v, she compares her
lowest perceived cost to the anticipated reward and continues moving if and only if ζ(v) ≤ βr.
Otherwise, if ζ(v) > βr, we assume she abandons the project. We call G motivating if she
does not abandon while constructing her path from s to t. Note that in some graphs the
agent can take several paths from s to t due to ties between incident edges. In this case, G
is considered motivating if she does not abandon on any of these paths.

ICALP 2017

10:4 On the Value of Penalties in Time-Inconsistent Planning

For the sake of a clear presentation, we will assume throughout this work that each node
of G is located on a path from s to t. This assumption is sensible for the following reason:
Clearly, the agent can only visit nodes that are reachable from s. Furthermore, she is not
willing to enter nodes that do not lead to the reward. Consequently, only nodes that are on
a path from s to t are relevant to her behavior. Note that all nodes that do not satisfy this
property can be removed from G in a simple preprocessing step.

To illustrate the model, we revisit Alice’s scenario from Section 1. Assume that the course
takes m weeks. We represent each week i by a distinct node vi and set s = v1. Furthermore,
we introduce a target node t that marks the passing of the course. Each week i < m Alice
can either give a presentation or proceed with the homework. We model the first case by an
edge (vi, t) of cost 3 and the latter case by an edge (vi, vi+1) of cost 1. In the last week, i.e.
i = m, Alice’s only sensible choice is to do the homework. Therefore, edge (vm, t) is of cost
1. Recall that Alice’s present bias is β = 1/3. Moreover, assume that her intrinsic reward for
passing is r = 6. For i < m her perceived cost of the edges (vi, t) is η(vi, t) = c(vi, t) = 3.
As this is less than her perceived reward, which is β6 = 2, she is never motivated to give
a presentation right away. However, her perceived cost of the edges (vi, vi+1) is at most
η(vi, vi+1) ≤ c(vi, vi+1) + βc(vi+1, t) ≤ 2. This matches her perceived reward. As a result,
she walks from v1 to vm along the edge (vi, vi+1). Once she reaches vm she traverses the
only remaining edge for a perceived cost of η(vm, t) = c(vm, t) = 1 and passes the course.
This matches our analysis from Section 1.

3 Prohibition versus Penalties

In this section we demonstrate how the designer can modify a given project to help the agent
reach t. For this purpose, the designer may have several commitment devices at her disposal.
A straightforward approach is to increase the reward that the agent collects at t. Although
this may keep the agent from abandoning the project prematurely, it has no influence on the
path taken by the agent. Furthermore, increasing the reward may be costly for the designer.
As a result, the designer has two conflicting objectives. On the one hand, she must ensure
that the agent reaches t. On the other hand, she needs to minimize the resources spent. To
deal with this dilemma, Kleinberg and Oren allow the designer to prohibit a strategically
chosen set of tasks [5]. This commitment device is readily implemented in their framework.
In fact, it is sufficient to remove all edges of prohibited tasks. The result is a subgraph G′
that may significantly reduce the reward required to motivate the agent. Unfortunately, an
optimal subgraph G′ is NP-hard to approximate within a ratio less than

√
n/3 [2].

To circumvent this theoretical limitation, we propose a different approach. Instead of
prohibiting certain tasks we allow the designer to charge penalty fees. Such fees could be
implemented in several ways; for instance in the form of donations to charity. Our only
assumption is that the designer does not benefit from the fees, i.e. there is no incentive to
maximize the fees payed by the agent. Similar to the prohibition-based commitment device,
our commitment device is readily implemented in Kleinberg and Oren’s framework. The
designer simply assigns a positive extra cost c̃(e) to the desired edges e. The new cost of e
is equal to c(e) + c̃(e). We call c̃ a cost configuration. Applying a cost configuration to G
yields a new task graph with increased edge cost. All concepts of the original framework
carry over immediately. Sometimes it will be necessary to compare different commitment
devices with each other. To clarify which commitment device we are talking about, we use
the following notation whenever necessary: If we consider a subgraph G′, we write dG′ , ηG′

and ζG′ . Similarly, if we consider a cost configuration c̃, we write dc̃, ηc̃ and ζc̃. Moreover,
we denote the trivial cost configuration, i.e. the one that assigns no extra cost, by 0̃.

S. Albers and D. Kraft 10:5

s
v2 v3 v2m

t

w

. . .

. . .

(1− β)ε2 (1− β)ε2 (1− β)ε2

0 0 0 0 1/β

Figure 1 Graph maximizing the ratio between the efficiency of subgraphs and cost configurations.

It is interesting to think of penalty fees as a natural generalization of prohibition. This
becomes particularly apparent in the context of Kleinberg and Oren’s framework as we can
recreate the properties of any subgraph G′ by a cost configuration c̃. For this purpose, it is
sufficient to assign an extra cost of c̃(e) = r+1 to any edge e not contained in G′. As a result,
the agent’s perceived cost of paths along e certainly exceeds her perceived reward. However,
this means that e is irrelevant to the agent’s planning and could be deleted from G altogether.
Consequently, penalties are at least as powerful as prohibition. But how much more efficient
are penalties in the best case? As the following theorem suggests, cost configurations may
outperform subgraphs by a factor of almost 1/β.

I Theorem 1. The ratio between the minimum reward r that admits a motivating subgraph
and the reward q of a motivating cost configuration is at most 1/β. This bound is tight.

Proof. To see that r/q ≤ 1/β, let G be an arbitrary task graph and consider a subgraph G′
whose only edges are those of a cheapest path P from s to t. Recall that d(s) denotes the cost
of P . In G′ the agent’s only choice is to follow P . Because her perceived cost is a discounted
version of the actual cost, she never perceives a cost greater than d(s) in G′. Consequently,
d(s)/β is an upper bound on r. Next, consider an arbitrary cost configuration c̃. As c̃ only
increases edge cost, the agent’s lowest perceived cost at s is at least βd(s). We conclude that
q must be at least d(s) to be motivating. This yields the desired ratio.

It remains to show the tightness of the result. For this purpose, we construct a task
graph G such that: (a) The minimum reward that admits a motivating subgraph is 1/β2.
(b) There exists a cost configuration that is motivating for a reward of (1 + ε)/β, where ε is
a positive value strictly less than 1. Our construction is a modified version of Alice’s task
graph. Let m = dβ−2(1− β)−1ε−2e and assume that G contains a path v1, . . . , v2m+1 whose
edges are all of cost (1− β)ε2. We call this the main path and set s = v1 and t = v2m+1. In
addition to the main path, each vi with i ≤ 2m has a shortcut to t via a common node w.
The edges (vi, w) are free, whereas (w, t) is of cost 1/β. Figure 1 illustrates the structure
of G. Note that the drawing merges some of the edges (vi, w) for a concise representation.

We proceed to argue that G satisfies (a). For the sake of contradiction, assume the
existence of a subgraph G′ that is motivating for a reward r < 1/β2. In this case the
agent must not take shortcuts as her perceived cost at w exceeds her perceived reward.
Therefore, she must follow the main path. In particular, she must visit each node vi on the
first half of the path, i.e. i ≤ m + 1. At each of these nodes, her lowest perceived cost is
realized along the edge (vi, vi+1). Essentially, there are two ways she can come up with this
cost. First, she might plan to take a shortcut at a later point in time. As a result, we get
ηG′(vi, vi+1) ≥ c(vi, vi+1) + βc(w, t) > 1. Secondly, she might plan to stay on the main path.
In this case she must traverse at least m edges, each of which contributes β(1− β)ε2 or more
to ηG′(vi, vi+1). Consequently, we get ηG′(vi, vi+1) ≥ mβ(1− β)ε2 ≥ 1/β ≥ 1. Either way
her perceived cost for taking the main path is at least 1. As this tempts her to take the
shortcut at vi, all of the first m+ 1 shortcuts must be interrupted in G′. This means she
must walk along at least m edges of the main path before taking the first shortcut. As a

ICALP 2017

10:6 On the Value of Penalties in Time-Inconsistent Planning

Algorithm 1: PathAndFence
Input: Task graph G, present bias β, path P = v1, . . . , vm, positive value ε
Output: Cost configuration c̃

1 c̃← 0̃;
2 for i from m− 1 to 1 do
3 foreach w ∈ {w′ | (vi, w′) ∈ E} do
4 if w 6= vi+1 then c̃(vi, w)← max{0, ηc̃(vi, vi+1)− ηc̃(vi, w) + βε/(m− 2)};

5 return c̃;

result, her lowest perceived cost at v1 is at least ζG′(v1) ≥ mβ(1 − β)ε2 ≥ 1/β. This is a
contradiction to the assumption that r is motivating.

Next we show how to construct a cost configuration c̃ that satisfies (b). For this purpose it
is sufficient to add an extra cost of ε to all edges (vi, w). To upper bound the agent’s perceived
cost of (vi, vi+1), assume she plans to take a shortcut in the next step, i.e. at vi+1. For
i < 2m we get ηc̃(vi, vi+1) ≤ c(vi, vi+1) + β(c̃(vi+1, w) + c(w, t)) = (1− β)ε2 + βε+ 1 < 1 + ε.
In the special case of i = 2m, the inequality ηc̃(vi, vi+1) < 1 + ε is still satisfied, this time via
the direct edge (v2m, t). In contrast, the agent’s perceived cost of an immediate shortcut is
ηc̃(vi, t) = ε+ βc(w, t) = 1 + ε for all i ≤ 2m. Therefore, she is never tempted to divert from
the main path. Furthermore, a reward of q = (1+ε)/β is sufficient to keep her motivated. J

4 Computing Motivating Cost Configurations

We now turn our attention to the computational aspects of designing efficient penalty fees.
In this section, we assume that the agent’s reward is fixed to some value r > 0. Our goal is
to compute cost configurations that are motivating for r whenever they exist. Similar to the
prohibition-based commitment device [2], this task is NP-hard whenever the agent is present
biased, i.e. β 6= 1. We will prove this claim at the end of the section. But first, assume that
we already have partial knowledge of the solution. More precisely, assume we know one of
the paths the agent might take in a motivating cost configuration provided a motivating
cost configuration exists. We call this path P . Based on P , Algorithm 1 constructs a cost
configuration c̃ that is motivating for a slightly larger reward r + ε.

The basic idea of Algorithm 1 is simple. Starting with vm−1, it considers all nodes vi of P in
reverse order. For each vi it assigns an extra cost of max{0, ηc̃(vi, vi+1)−ηc̃(vi, w)+βε/(m−2)}
to the edges (vi, w) that leave P , i.e. edges different from (vi, vi+1). As a result, the agent’s
perceived cost of (vi, w) is greater than that of (vi, vi+1) by at least βε/(m−2). Consequently,
she has no incentive to divert from P at vi. Since the algorithm runs in reverse order, extra
cost assigned in iteration i has no effect on the agent’s behavior at later nodes, i.e. nodes
vj with j > i. Figuratively speaking, the algorithm builds a fence of penalty fees along P
preventing the agent from leaving P . For this reason, we call the algorithm PathAndFence.
As the next proposition suggests, cost configurations of this particular fence structure can
achieve almost the same efficiency as any other cost configuration. Due to space constraints,
refer to the full version of this work for a proof.

I Proposition 2. Let P be the agent’s path from s to t with respect to a cost configuration
c̃∗ that is motivating for a reward r. PathAndFence constructs a cost configuration c̃ that
is motivating for a reward of r + ε, where ε is an arbitrary small but positive quantity.

Proposition 2 has some interesting implications. The first one is of conceptual nature.

S. Albers and D. Kraft 10:7

Note that PathAndFence constructs a cost configuration that never actually charges the
agent any extra cost. This suggests the existence of an efficient penalty-based commitment
device that does not require the designer to enforce penalties. The mere threat of repercussions
appears to be sufficient. The second implication is computational. Clearly, PathAndFence
runs in polynomial-time with respect to n. In particular, the number of iterations does
not depend on the choice of ε. Consequently, PathAndFence can be combined with an
exhaustive search algorithm that considers all paths from s to t to search for a motivating
cost configuration. Although the number of such paths can be exponential in n, this approach
still reduces the size of the search space considerably. Finally, it should be noted that a
similar result for the prohibition-based commitment device is unlikely to exist. The reason is
that subgraphs remain hard to approximate even if the agent’s optimal path is known [2],
indicating a favorable computational complexity for the design of penalty fees. Of course there
is another potential source of hardness: the computation of P . To prove that this is a limiting
factor, we introduce the decision problem MOTIVATING COST CONFIGURATION:

I Definition 3 (MCC). Given a task graph G, a reward r > 0 and a present bias β ∈ (0, 1],
decide the existence of a motivating cost configuration.

We propose a reduction from 3-SAT to show that MCC is NP-complete for arbitrary
β ∈ (0, 1). At a later point we will use the same reduction to establish a hardness of
approximation result.

I Theorem 4. MCC is NP-complete for any present bias β ∈ (0, 1).

Proof. According to [2], whether or not a given task graph is motivating for a fixed reward
can be verified in polynomial-time. Of course, this remains valid if the edges are assigned
extra cost. Consequently, any motivating cost configuration is a suitable certificate for a
“yes”-instance of MCC. We conclude that MCC is in NP. In the following, we present a
reduction from 3-SAT to show that MCC is also NP-hard. This establishes the theorem.

Let I be an arbitrary instance of 3-SAT consisting of ` clauses c1, . . . , c` over m variables
x1, . . . , xm. We construct a MCC instance J such that its task graph G admits a motivating
cost configuration for a reward of r = 1/β if and only if I has a satisfying variable assignment.
Figure 2 depicts G for a small sample instance of I. In general, G consists of a source s, a
target t and five nodes u1, . . . , u5. Depending on I, G also contains some extra nodes. For
each variable xk, there are two variable nodes wk,T and wk,F . The idea is to interpret xk as
true whenever the agent visits wk,T and as false whenever she visits wk,F . As a result, the
agent’s walk through G yields a variable assignment τ . Furthermore, for each clause ci there
is a literal node vi,j corresponding to the j-th literal of ci. Our goal is to construct G in such
a way that every motivating cost configuration guides the agent along literal nodes that are
satisfied with respect to τ .

All nodes vi,j and wk,y are connected via so-called forward edges. More specifically, for
all 1 ≤ i < ` and 1 ≤ j, j′ ≤ 3 there is a forward edge from vi,j to vi+1,j′ . Similarly, there
is a forward edge from wk,y to wk+1,y′ for all 1 ≤ k < m and y, y′ ∈ {T, F}. We also have
forward edges from s to each v1,j , from each v`,j to u1, from u2 to each w1,y and from each
wm,y to u3. For the sake of readability, some forward edges are merged in Figure 2. The
price of each forward edge is (1− β)3 − ε, where the encoding length of β is assumed to be
polynomial in I. Furthermore, ε denotes a small but positive quantity such that

ε < min
{

(1− β)2,
β(1− β)3

1 + β
,
β(1− β)2

1 + β

}
.

ICALP 2017

10:8 On the Value of Penalties in Time-Inconsistent Planning

s

v1,1 v1,2 v1,3 v2,1 v2,2 v2,3 v3,1 v3,2 v3,3

w1,T w1,F w2,T w2,F w3,T w3,F

u1u2

u3 u4 u5
t

(1− β)3 − ε (1− β)3 − ε (1− β)3 − ε

(1− β)3 − ε(1− β)2(1− β)3 − ε

(1− β)3 − ε (1− β)3 − ε (1− β)3 − ε (1− β)2 (1− β) 1

Figure 2 Reduction from the 3-SAT instance: (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3).

In addition to the forward edges, there are three types of shortcuts. The first type, which is
depicted as dashed edges in Figure 2, connects each literal node vi,j to a distinct variable
node via a single edge of cost (1−β)2. If the j-th literal of ci is equal to xk, the shortcut goes
to wk,F . Otherwise, if the literal is negated, i.e. x̄k, the shortcut goes to wk,T . The second
type of shortcut goes from u2 to t along a single edge of cost 2− β. For clear representation,
this shortcut is omitted in Figure 2. The third type of shortcut connects each variable node
wk,y to t via a distinct intermediate node. The first edge is free while the second costs 2− β.
Again, shortcuts of this type are omitted in Figure 2 to keep the drawing simple. Finally,
there are four more edges (u1, u2), (u3, u4), (u4, u5) and (u5, t) of cost (1 − β)2, (1 − β)2,
1− β and 1 respectively. Note that G is acyclic and its encoding length is polynomial in I.

To establish the theorem, we must show that I has a satisfying variable assignment if
and only if J has a motivating cost configuration. A detailed argument is described in the
full version of this work. At this point we only sketch the main ideas. For this purpose let c̃
be a cost configuration that is motivating for a reward of 1/β and let P be the agent’s path
through G with respect to c̃. Note that P cannot contain shortcuts of the second or third
type as their edges are too expensive. Furthermore, P cannot contain a shortcut of the first
type because the agent either perceives it as too expensive or is tempted to enter a shortcut of
the third type immediately afterwards. As a result, P contains exactly one of the two nodes
wk,T and wk,F for each variable xk. Let τ : {x1, . . . , xm} → {T, F} be the corresponding
variable assignment. To keep the agent on P , c̃ must assign extra cost to all shortcuts that
start at a variable node satisfied by τ . However, this raises the perceived cost of all paths via
literal nodes not satisfied by τ to values that are not motivating. Consequently, P cannot
contain such literal nodes. But P must contain exactly one literal node of each clause because
P takes no shortcuts. This means that τ satisfies at least one literal in each clause and is
therefore a feasible solution of I. Conversely, whenever I has a feasible solution τ , we can
construct a motivating cost configuration c̃ as follows: First, assign an appropriate extra cost,
e.g. (1− β)2, to the shortcuts of type three starting at the variable nodes wk,τ(xk). Secondly,
block the forward edges into the variable nodes wk,τ(x̄k) with high extra cost of e.g. 1. J

5 Approximating Motivating Cost Configurations

The previous section suggests that an optimal assignment of penalty fees is NP-hard to
compute. This section therefore focuses on an optimization version of the problem. Our goal
is to construct cost configurations that require the designer to raise the reward at t as little

S. Albers and D. Kraft 10:9

s
v1 v2 v3 v4

t

w

(1− β)3 (1− β)3 (1− β)2 1− β 1

(1− β)2 2− β

Figure 3 Task graph with no optimal cost configuration.

Algorithm 2: MinMaxPathApprox
Input: Task graph G, present bias β
Output: Cost configuration c̃

1 P ← minmax path from s to t with respect to η0̃;
2 %← max{η0̃(e) | e ∈ P};
3 foreach v ∈ V \ {t} do
4 ς(v)← successor node of v on a cheapest path from v to t;
5 foreach (v, w) ∈ E do
6 if (v, w) ∈ P ∨ (ς(v) = w ∧ v /∈ P) then c̃(v, w)← 0;
7 else if (v, w) 6= P ∧ ς(v) 6= w then c̃(v, w)← 3%/β;
8 else
9 P ′ ← v, ς(v), ς(ς(v)), . . . , t;

10 u← first node of P ′ different from v that is also a node of P ;
11 e← most expensive edge of P ′, between v and u;
12 c̃(v, w)← c(e);

13 return c̃;

as possible. However, before we provide a formal definition of the problem we should consider
a curious technical detail; namely, not all task graphs admit an optimal cost configuration.

Consider, for instance, the task graph in Figure 3. At v1 the agent is indifferent between
the edges (v1, v2) and (v1, w). In both cases her perceived cost is 1. If she chooses (v1, w),
she faces a perceived cost of 2 − β at w. Conversely, if she chooses (v1, v2), she perceives
a cost of 1 at v2, v3 and v4. Assuming that β < 1, (v1, v2) is the better choice. To break
the tie between (v1, w) and (v1, v2) we must place a positive extra cost of ε onto the upper
path. However, when located at s the agent’s perceived cost of the upper path is 1 + βε. In
contrast, her perceived cost of the lower path is 1 + β(1− β)3. Assuming that ε < (1− β)3,
she prefers the upper path. Consequently, we can construct a cost configuration that is
motivating for a reward arbitrarily close to 1/β, but no cost configuration is motivating for a
reward of exactly 1/β. To account for the potential lack of an optimal solution, we compare
our results to the infimum of all rewards that admit a motivating cost configuration. The
optimization problem MCC-OPT is defined accordingly:

I Definition 5 (MCC-OPT). Given a task graph G and a present bias β ∈ (0, 1), determine
the infimum of all rewards for which a motivating cost configuration exists.

We are now ready to introduce Algorithm 2. This algorithm enables us to construct
cost configurations that approximate MCC-OPT within a factor of 2. At a high level, the
algorithm proceeds in two phases. First, it computes a value % such that %/β is a lower
bound for any reward that admits a motivating cost configuration. Secondly, it constructs
a cost configuration c̃ that is motivating for a reward of 2%/β. This yields the promised
approximation ratio of 2.

ICALP 2017

10:10 On the Value of Penalties in Time-Inconsistent Planning

For a more detailed discussion of Algorithm 2 assume that each edge e is labeled with
its perceived cost η0̃(e). Furthermore, let c̃′ be an arbitrary cost configuration and P ′ the
agent’s corresponding path from s to t. Our goal is to lower bound the minimum reward that
is motivating for c̃′ by some value %/β. For this purpose, it is instructive to observe that any
motivating reward must be at least max{ηc̃′(e) | e ∈ P ′}/β ≥ max{η0̃(e) | e ∈ P ′}/β. Since
P ′ can be an arbitrary path from s to t, we set

% = min
{

max{η0̃(e) | e ∈ P}
∣∣ P is a path from s to t

}
.

In other words, % is the maximum edge cost of a minmax path P from s to t with respect to η0̃.
Note that P can be computed in polynomial-time by adding the edges of G in non-decreasing
order of perceived cost to an initially empty set E′ until s and t become connected for the
first time. Any path from s to t that only uses edges of E′ is a suitable minmax path.

We continue with the construction of c̃. To facilitate this task, Algorithm 2 sets up a
cheapest path successor relation ς. More precisely, it assigns a distinct successor node ς(v)
to each v ∈ V \ {t}. The successor is chosen in such a way that (v, ς(v)) is the initial edge
of a cheapest path from v to t. Since we may assume that t is reachable from each node
of G, all v 6= t must have at least one suitable successor. By construction of ς, any path
P ′ = v, ς(v), ς(ς(v)), . . . , t is a cheapest path from v to t. We call P ′ the ς-path of v.

Once ς has been created, Algorithm 2 starts to assign an appropriate extra cost to all
edges of G. The idea behind this assignment is to either keep the agent on P or guide her
along a suitable ς-path. For this reason, we also call the algorithm MinMaxPathApprox.
While iterating through the edges (v, w) of G the algorithm distinguishes between three
types of edges: First, (v, w) might be an edge of P or an edge of a ς-path. In the latter
case v must not be a node of P . Any (v, w) that satisfies these requirements is an edge we
want the agent to traverse or use in her plans. Consequently, (v, w) is assigned no extra cost.
Secondly, (v, w) might neither be an edge of P nor of a ς-path. Since we do not want the
agent to traverse or plan along such an edge, the algorithm assigns an extra cost of 3%/β
to (v, w). This is sufficiently expensive for the agent to lose interest in (v, w) provided that
the reward is 2%/β. Thirdly, (v, w) might not be an edge of P but of a ς-path such that v
is a node of P . This is the most involved case. To find an appropriate cost for (v, w), the
algorithm considers the ς-path P ′ of v. Let u be the first common node between P and P ′
that is different from v. Because P and P ′ both end in t, such a node must exist. Moreover,
let e be the most expensive edge of P ′ between v and u. The algorithm assigns an extra cost
of c(e) to (v, w). As we will show in Theorem 6, this cost is either high enough to keep the
agent on P or she travels to u along P ′ without encountering edges that are too expensive.

Clearly, Algorithm 2 can be implemented to run in polynomial-time with respect to
the size of G. It remains to show that the algorithm returns a cost configuration c̃ that
approximates MCC-OPT within a factor of 2.

I Theorem 6. MinMaxPathApprox has an approximation ratio of 2.

Proof. Recall that % denotes the maximum perceived edge cost along the minmax path P .
From the above description of MinMaxPathApprox, it should be evident that %/β is a
lower bound on the minimum motivating reward of any cost configuration. To prove the
theorem, we need to show that the algorithm returns a cost configuration c̃ that is motivating
for a reward of 2%/β.

As our first step we argue that the cost of a cheapest path from any node v to t with
respect to c̃ is at most twice the cost of a cheapest path with respect to 0̃. More formally,
we prove that dc̃(v) ≤ 2d0̃(v). For this purpose let P ′ be the ς-path of v. By construction

S. Albers and D. Kraft 10:11

of ς, P ′ is a cheapest path from v to t. It is crucial to observe that MinMaxApprox only
assigns extra cost to an edge (v′, ς(v′)) of P ′ if v′ is located on P . Consequently, there is
at most one edge with extra cost between any two consecutive intersections of P and P ′.
Furthermore, this extra cost is equal to the cost of an edge on P ′ between v′ and the next
intersection of P and P ′. Therefore, each edge of P ′ can contribute at most once to the total
extra cost assigned to P ′. This means that the price of P ′ with respect to c̃ is at most twice
the price of P ′ with respect to 0̃. Because the price of P ′ is an upper bound for dc̃(v), we
have shown that dc̃(v) ≤ 2d0̃(v).

We proceed to investigate the agent’s walk through G. Our goal is to show that her
lowest perceived cost is at most 2% at every node v on her way. This establishes the theorem.
Our analysis is based on the following case distinction: First, assume that v is located on P .
The immediate successor of v on P is denoted by w. Remember that c̃ assigns no extra cost
to (v, w). Using the result from the previous paragraph, we get

ζc̃(v) ≤ ηc̃(v, w) = c(v, w) + βdc̃(w) ≤ c(v, w) + β2d0̃(w) ≤ 2
(
c(v, w) + βd0̃(w)

)
= 2η0̃(v, w) ≤ 2%.

The last inequality is valid by definition of %.
Secondly, assume that v is not located on P and consider the last node v′ on P the agent

visited before v. Because she traversed (v′, ς(v′)) to get to v, we know that ηc̃(v′, ς(v′)) ≤ 2%
and dc̃(ς(v′)) ≤ 2%/β. We also know that she faces an extra cost of 3%/β whenever she tries
to leave the ς-path P ′ of v′ before the next intersection of P and P ′. Since she is not willing
to pay this much, v must be located on P ′. In particular, all paths from ς(v′) to t either
visit ς(v) or cross an edge that charges an extra cost of 3%/β. Consequently, a cheapest
path from ς(v′) to t with respect to c̃ costs at least dc̃(ς(v′)) ≥ min{3%/β, dc̃(ς(v))}. As
dc̃(ς(v′)) ≤ 2%/β, this implies that dc̃(ς(v′)) ≥ dc̃(ς(v)). Our proof is almost complete. For
the final part, recall that (v, ς(v)) is located on P ′ between v′ and the next intersection of P
and P ′. By construction of c̃ we have c̃(v′, ς(v′)) ≥ c(v, ς(v)). Furthermore, (v, ς(v)) has no
extra cost. Putting all the pieces together we get

ζc̃(v) ≤ ηc̃(v, ς(v)) = c(v, ς(v)) + βdc̃(ς(v)) ≤ c̃(v′, ς(v′)) + βdc̃(ς(v′))
≤ c(v′, ς(v′)) + c̃(v′, ς(v′)) + βdc̃(ς(v′)) = ηc̃(v′, ς(v′)) ≤ 2%. J

To complement this result, we argue that MCC-OPT is NP-hard to approximate within
any ratio of 1 + β(1 − β)4 or less. Choosing β = 1/5 maximizes this term and yields
inapproximability for constant ratios of 1.08192 or less. In particular, assuming that P 6= NP
this rules out the existence of a polynomial-time approximation scheme.

I Theorem 7. MCC-OPT is NP-hard to approximate within a ratio less or equal to 1.08192.

Proof. To establish the theorem, a reduction similar to the one from Theorem 4 can be used.
In fact, given a 3-SAT instance I we can construct the corresponding MCC-OPT instance J
the same way as in the proof of Theorem 4. The only difference is that our choice of ε is
slightly more restrictive as we require

ε < min
{
β(1− β)3, β(1− β)2(2− β), β

2(1− β)3

1 + β
,
β2(1− β)2(2− β)

1 + β

}
.

The proof can be structured around the following properties of J : (a) If I has a solution,
J admits a motivating cost configuration for a reward of 1/β. (b) If I has no solution, J
admits no motivating cost configuration for a reward of (1+β(1−β)4)/β or less. Consequently,

ICALP 2017

10:12 On the Value of Penalties in Time-Inconsistent Planning

any algorithm that approximates MCC-OPT within a ratio of 1 + β(1− β)4 or less must also
solve I. To maximize this ratio we choose β = 1/5 and obtain the desired approximability
bound, namely 1 + (1 − 1/5)4/5 = 1.08192. All that remains to show is that J indeed
satisfies (a) and (b). The correctness of (a) is an immediate consequence of the proof of
Theorem 4. A detailed proof of (b) can be found in the full version of this work. J

6 Conclusion

In this work we have used Kleinberg and Oren’s graph theoretic framework [5] to provide
a systematic analysis of a penalty-based commitment device. We have shown that penalty
fees are strictly more powerful than prohibition. In particular, we have shown that penalties
may outperform prohibition by a factor of up to 1/β. We have also been able to obtain
some of the first positive computational results for the algorithmic design of commitment
devices. We have given a polynomial-time algorithm to construct penalty fees that match
an optimal solution by a factor of 2. This is significant progress when compared to the
prohibition-based commitment device, whose approximation is known to be NP-hard within
a factor less than

√
n/3 [2]. Due to its versatility, expressiveness and favorable computational

properties, we believe that our penalty-based commitment device will prove to be a valuable
tool for addressing time-inconsistent behavior in complex social and economic settings.

References
1 George A. Akerlof. Procrastination and obedience. The American Economic Review,

81(2):1–19, 1991.
2 Susanne Albers and Dennis Kraft. Motivating time-inconsistent agents: A computational

approach. In Proceedings of the 12th Conference on Web and Internet Economics, pages
309–323. Springer, 2016.

3 Gharad Bryan, Dean Karlan, and Scott Nelson. Commitment devices. Annual Review of
Economics, 2:671–698, 2010.

4 Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Pountourakis. Procrastin-
ation with variable present bias. In Proceedings of the 17th ACM Conference on Economics
and Computation, pages 361–361, New York, NY, USA, 2016. ACM.

5 Jon Kleinberg and Sigal Oren. Time-inconsistent planning: A computational problem in
behavioral economics. In Proceedings of the 15th ACM Conference on Economics and
Computation, pages 547–564, New York, NY, USA, 2014. ACM.

6 Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning problems for sophisticated
agents with present bias. In Proceedings of the 17th ACM Conference on Economics and
Computation, pages 343–360, New York, NY, USA, 2016. ACM.

7 David Laibson. Golden eggs and hyperbolic discounting. The Quarterly Journal of Eco-
nomics, pages 443–477, 1997.

8 Ted O’Donoghue and Matthew Rabin. Doing it now or later. The American Economic
Review, 89:103–124, 1999.

9 Ted O’Donoghue and Matthew Rabin. Incentives and self control. Advances in Economics
and Econometrics: The 9th World Congress, 2:215–245, 2006.

10 Pingzhong Tang, Yifeng Teng, Zihe Wang, Shenke Xiao, and Yichong Xu. Computational
issues in time-inconsistent planning. In Proceedings of the 31st AAAI Conference on Arti-
ficial Intelligence, 2017. To appear.

Efficient Approximations for the Online Dispersion
Problem∗†

Jing Chen1, Bo Li2, and Yingkai Li3

1 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
jingchen@cs.stonybrook.edu

2 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
boli2@cs.stonybrook.edu

3 Department of Computer Science, Stony Brook University, Stony Brook, NY,
USA
yingkli@cs.stonybrook.edu

Abstract
The dispersion problem has been widely studied in computational geometry and facility location,
and is closely related to the packing problem. The goal is to locate n points (e.g., facilities or
persons) in a k-dimensional polytope, so that they are far away from each other and from the
boundary of the polytope. In many real-world scenarios however, the points arrive and depart at
different times, and decisions must be made without knowing future events. Therefore we study,
for the first time in the literature, the online dispersion problem in Euclidean space.

There are two natural objectives when time is involved: the all-time worst-case (ATWC)
problem tries to maximize the minimum distance that ever appears at any time; and the cumu-
lative distance (CD) problem tries to maximize the integral of the minimum distance throughout
the whole time interval. Interestingly, the online problems are highly non-trivial even on a seg-
ment. For cumulative distance, this remains the case even when the problem is time-dependent
but offline, with all the arriving and departure times given in advance.

For the online ATWC problem on a segment, we construct a deterministic polynomial-time al-
gorithm which is (2 ln 2+ε)-competitive, where ε > 0 can be arbitrarily small and the algorithm’s
running time is polynomial in 1

ε . We show this algorithm is actually optimal. For the same prob-
lem in a square, we provide a 1.591-competitive algorithm and a 1.183 lower-bound. Furthermore,
for arbitrary k-dimensional polytopes with k ≥ 2, we provide a 2

1−ε -competitive algorithm and
a 7

6 lower-bound. All our lower-bounds come from the structure of the online problems and hold
even when computational complexity is not a concern. Interestingly, for the offline CD problem
in arbitrary k-dimensional polytopes, we provide a polynomial-time black-box reduction to the
online ATWC problem, and the resulting competitive ratio increases by a factor of at most 2.
Our techniques also apply to online dispersion problems with different boundary conditions.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases dispersion, online algorithms, geometric optimization, packing, compet-
itive algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.11

∗ A full version of this extended abstract is available at http://arxiv.org/abs/1704.06823.
† The authors thank Joseph Mitchell for motivating us to study the online dispersion problem. We thank

Esther Arkin, Michael Bender, Rezaul A. Chowdhury, Jie Gao, Joseph Mitchell, Jelani Nelson, and the
participants of the Algorithm Reading Group for helpful discussions, and several anonymous reviewers
for helpful comments.

EA
T

C
S

© Jing Chen, Bo Li, and Yingkai Li;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.11
http://arxiv.org/abs/1704.06823
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Efficient Approximations for the Online Dispersion Problem

1 Introduction

The problem of assigning elements to locations in a given area comes up only too often in
real life: where to seat the customers in a restaurant, where to put certain facilities in a city,
where to build nuclear power stations in a country, etc. Different problems have different
features and constraints, but one common feature that appears in many of them is not to
locate the elements too close to each other : for people’s privacy, for environmental safety,
and/or for serving more users. Another feature is also common in many applications: that is,
not to locate the elements too close to the boundary of the area. Indeed, for security reasons,
important national industrial facilities in many countries are built at a safe distance away
from the border. Such problems have been widely studied in computational geometry and
facility location; see, e.g., [32, 3, 2, 4]. In particular, in the dispersion problem defined by [2],
there is a k-dimensional polytope P and an integer n, and the goal is to locate n points in P
so as to maximize the minimum distance among them and from them to the boundary of P .

However, there is another important feature in all the scenarios mentioned above and
many other real-world scenarios: the presence of elements is time-dependent and decisions
need to be made along time, without knowing when the elements will come and go in the
future. Indeed, it may be hard to move an element once it is located, making it infeasible
for the decision maker to relocate all the present elements according to the optimal static
solution when an arrival/departure event occurs. Online dispersion and facility location
problems have been studied when the underlying locations are vertices of a graph [28, 17, 27].
In this paper we consider, for the first time in the literature, the online dispersion problem
in Euclidean space. The arriving and departure times of points are chosen by an adversary
who knows everything and works adaptively. An online dispersion algorithm decides where
to locate a point upon its arrival, without any knowledge about future events.

1.1 Main Results
We focus on two natural objectives for the online problem: the all-time worst-case (ATWC)
problem, which aims at maximizing the minimum distance that ever appears at any time;
and the cumulative distance (CD) problem, which aims at maximizing the integral of the
minimum distance throughout the whole time interval. Although polynomial-time constant
approximations have been given when time is not involved [2, 4], nothing was known about
the online problem. As we will show, solutions for the online problem are already complex
even on a segment. For cumulative distance, even when the problem is time-dependent but
offline, with all the arriving and departure times given in advance, it remains unclear how to
efficiently compute the optimal solution. We formally define the problem in Section 2 and
summarize our results in Table 1 below.

The most technical parts are the online ATWC problem and the offline time-dependent
CD problem. Interestingly, we provide an efficient reduction from the offline CD problem
to the online ATWC problem, and show that in order to solve the former, one can use an
algorithm for the latter as a black-box. For the online ATWC problem, it is not hard to
see that a natural greedy algorithm provides a 2-competitive ratio. Our main contributions
for this problem are to provide an efficient algorithm that is optimal for the 1-dimensional
case, improve the competitive ratio and prove a lower-bound for squares, and provide an
efficient implementation of the greedy algorithm for the general case. We also prove a simple
lower-bound for the general case.

To establish our results, we show interesting new connections between dispersion and
ball-packing – both uniform packing (i.e., with balls of identical radius) and non-uniform

J. Chen, B. Li, and Y. Li 11:3

Table 1 Online and offline time-dependent dispersion problems in a k-dimensional polytope P .

Online Offline time-dependent

ATWC

k = 1: a 2 ln 2 (≈ 1.386) lower-bound and
an optimal algorithm; see Theorems 5 and 8.
k = 2: a 1.183 lower-bound and a 1.591-
competitive algorithm for squares; see Theor-
ems 11 and 12.
k ≥ 2: a 7

6 lower-bound and a 2
1−ε -

competitive algorithm for arbitrary poly-
topes P ; see Theorems 13 and 14.

Equivalent to dispersion without
time; see Claim 2.

CD No constant competitive algorithm even when
k = 1; see Claim 1.

A black-box reduction to online
ATWC for arbitrary k and P , with
the competitive ratio scaling up by
at most 2; see Theorem 15.

packing (i.e., with balls of different radii). All our algorithms are deterministic and of
polynomial time. Some of them take an arbitrarily small constant ε as a parameter and the
running time is polynomial in 1

ε . All inapproximability results hold even when running time
is not a concern. Due to lack of space, most proofs are given in the full version [8].

Discussion and future directions. An algorithm for high-dimensional polytopes may not
be directly applicable in dimension 1, because all locations are on the boundary when a
segment is treated as a high-dimensional polytope, and the minimum distance is always 0.
Accordingly, we do not know whether the lower-bound for dimension 1 carries through to
higher dimensions, and proving better lower-bounds will be an interesting problem for future
studies. In [8], we consider online dispersion without the boundary constraint, where the
lower-bound for dimension 1 indeed carries through. We show all our algorithms can be
adapted for this setting. Another important future direction is to understand the role of
randomized algorithms in the online dispersion problem. Finally, improving the (deterministic
or randomized) algorithms’ competitive ratios in various classes of polytopes is certainly a
long-lasting theme for the online dispersion problem. Special classes such as regular polytopes
and uniform polytopes may be reasonable starting points. Given the connections between
dispersion and ball-packing, it is conceivable that new competitive algorithms for online
dispersion may stem from and also imply new findings on ball-packing.

1.2 Related Work
Dispersion without time. In dispersion problems in general, the possible locations can be
either a continuous region or a set of discrete candidates. Two objectives have been studied
in the literature: the max-min distance as considered in this paper, and the maximum total
distance. In continuous settings, the authors of [2] consider the max-min distance with the
boundary condition. Under L∞-norm, they give a polynomial-time 1.5-approximation in
rectilinear polygons1 and show that a 14

13 -approximation in arbitrary polygons is NP-hard.
Moreover, they show there is no PTAS under any norm unless P=NP. [4] considers a similar
boundary condition under L2-norm and provides a 1.5-approximation in polygons with

1 A rectilinear polygon is a 2-dimensional polytope whose edges are axis-parallel.

ICALP 2017

11:4 Efficient Approximations for the Online Dispersion Problem

obstacles. [11] considers the problem of selecting n points in n given unit-disks, one per disk,
and the objective is to maximize the minimum distance.

In discrete settings, [32, 5] show that, if the distances among the candidate locations do
not satisfy triangle inequality, then there is no polynomial-time constant approximation for
either objective, unless P=NP; while if triangle inequality is satisfied, then there are efficient
2-approximations for both objectives. If the goal is to maximize total distance and the
candidate locations are in a k-dimensional space, [15] gives a PTAS under L1-norm; and [6, 7]
provide PTASes when locations need to satisfy matroid constraints. Finally, [3, 31, 25, 1]
consider various dispersion problems in obnoxious facility allocation.

Packing without time. It is well known that dispersion and packing are “dual” problems
of each other [26]. In this paper we show interesting new connections between them and
use several important results for packing in our analysis. Thus we briefly introduce this
literature. Indeed, the packing problem is one of the most extensively studied problems in
geometric optimization, and a huge amount of work has been done on different variants of
the problem; see [30, 21] for surveys on this topic.

One important problem is to pack circles with identical radius, as many as possible, in
a bounded region. [18] shows this problem to be strongly NP-hard and [22] gives a PTAS
for it. An APTAS for the circle bin packing problem is given in [29]. The dispersal packing
problem tries to maximize the radius of a given number of circles packed in a square. A lot
of effort has been made in finding the optimal radius and the corresponding packing when
the number of circles is a small constant; see [36, 35, 37, 30]. Heuristic methods have also
been used in finding approximations when the number of circles gets large [24, 41]. Finally,
an important packing problem is to understand the packing density: that is, the maximum
fraction of an infinite space covered by a packing of unit circles/spheres. The packing density
is solved for dimension 2 in [14] and for dimension 3 in [20]. Very recently, [42] and [9] solve
it for dimensions 8 and 24, respectively. Asymptotic lower bounds (as the dimension grows)
for the density of the densest packing are provided in [33].

Online geometric optimization. Many important geometric optimization problems have
been studied in online settings, although the settings and objectives are quite different from
ours. In particular, the seminal work of [38] provides a nearly-optimal competitive algorithm
for the classic online bin-packing problem. Algorithms for variants of the problem have been
considered ever since, such as a constant competitive ratio for packing circles in square bins
[23], and constant competitive ratios for bin-packing in higher dimensions [12, 13].

In online facility location [28], it is the demands rather than the facilities that come along
time. The facilities have open costs and the goal is to minimize the total open cost and the
total distance between demands and facilities. As shown in [28], when the demands arrive
adversarially, there is a randomized polynomial-time O(logn)-competitive algorithm, and a
constant competitive ratio is impossible. A deterministic O(logn

log logn)-competitive algorithm
and a matching lower-bound are provided in [17]. In incremental facility location [16], the
facilities can be opened, closed or merged, depending on the arriving demands. In [27, 34],
there is a cost for each location configuration and the goal is to minimize the cost when the
facilities arrive online. A constant competitive algorithm for this problem is provided in [27],
and [34] gives a reduction from the online problem to the offline version of the problem.

Dynamic resource division. Fair resource division is an important problem in economics
[39, 10, 40]. When the resource is 1-dimensional and homogenous, dynamic fair division

J. Chen, B. Li, and Y. Li 11:5

is in some sense the “dual” of online dispersion: locating n points as far as possible from
each other and from the boundary is the same as partitioning the segment into n+ 1 pieces
as evenly as possible. [19] provides an optimal d-disruptive mechanism for 1-dimensional
homogenous resource. Interestingly, our algorithm for the 1-dimensional case provides an
optimal mechanism when d = 1, although the techniques are quite different. Optimal
mechanisms for heterogenous or high-dimensional resource remain unknown. It would be
interesting to see if our techniques for dispersion can be used in resource division in general.

2 The Online Dispersion Problem

Given a k-dimensional polytope P , the dispersion problem [2] takes as input a positive
integer n and outputs n locations, X1, . . . , Xn ∈ P , for n points. For each point i, let
dis(Xi, ∂P) be the distance from Xi to ∂P , the boundary of P , measured by L2-norm. Also,
let dis(Xi, Xj) be the distance between Xi and Xj for any i 6= j. The objective is

Disp(n;P) , max
X1,...,Xn∈P

min
i,j∈[n]

{dis(Xi, ∂P), dis(Xi, Xj)}.

In [8], we also consider the dispersion problem where the distances to the boundary are not
taken into consideration. Most of our techniques can be applied there.

We now define the online dispersion problem, where each point i arrives at time si and
departs at time di, with di > si. Without loss of generality, 0 = s1 ≤ s2 ≤ · · · ≤ sn. An
online algorithm is notified upon an arrival/departure event. It must decide the location Xi

for i upon its arrival, knowing neither the future events nor the number n. An adversary
knows how the algorithm works and chooses future events after seeing the algorithm’s output
so far. In the time-dependent offline version of the problem, the times of all events, denoted
by a vector S = ((s1, d1), . . . , (sn, dn)), is given to the algorithm in advance.

Given such a vector S, let T = maxi∈[n] di be the last departure time. Moreover, given
locations X = (X1, . . . , Xn), for any t ≤ T , let

dmin(t;X) = min
i,j∈[n]:si≤t≤di,sj≤t≤di

{dis(Xi, ∂P), dis(Xi, Xj)}

be the minimum distance corresponding to the points that are present at time t. When X is
clear from the context, we may write dmin(t) for short. We consider two natural objectives:
the all-time worst-case (ATWC) problem, where the objective is

OPTA(S;P) , max
X1,...,Xn

min
t≤T

dmin(t);

and the cumulative distance (CD) problem, where the objective is

OPTC(S;P) , max
X1,...,Xn

∫ T

0
dmin(t)dt.

Note that both objectives are defined to be the optimum of the corresponding offline problems,
the same as the ex-post optimum for the online problems. Below we provide two simple
observations about the objectives.

I Claim 1. For the CD problem, even when k = 1 and P is the unit segment, no (randomized)
online algorithm achieves a competitive ratio to OPTC better than Ω(n).

Next, given any ex-post instance S = ((s1, d1), . . . , (sn, dn)), let m be the maximum number
of points simultaneously present at any time t: that is, m = maxt≤T |{i : si ≤ t ≤ di}|.

ICALP 2017

11:6 Efficient Approximations for the Online Dispersion Problem

I Claim 2. ∀ S = ((s1, d1), . . . , (sn, dn)), letting m = maxt≤T |{i : si ≤ t ≤ di}|, we have
OPTA(S;P) = Disp(m;P).

In light of the claims above, the online CD problem is highly inapproximable and the offline
ATWC problem is equivalent to the dispersion problem without time. Thus we will focus on
the online ATWC problem and the offline CD problem, especially the former. Our results
imply a simple O(n)-competitive algorithm for the online CD problem (see [8]), matching
the lower-bound in Claim 1.

Below we point out some connections between dispersion and ball-packing: they are
not hard to show, and similar results for the dispersion problem without the boundary
condition have been pointed out in [26]. More precisely, the (uniform) ball-packing problem
[22] in a polytope P takes as input a non-negative value r and outputs an integer n, the
maximum number of balls of radius r that can be packed non-overlappingly in P , together
with a corresponding packing. We denote the solution by Pack(r;P). The dispersal packing
problem [2] is a “mixture” of dispersion and packing: it takes as input an integer n and
outputs the maximum radius for n balls with identical radius that can be packed in P ,
together with a corresponding packing. That is, DP (n;P) , max{r : Pack(r;P) ≥ n}.

Recall that a k-dimensional convex polytope P has an insphere if the largest ball contained
wholly in P is tangent to all the facets (i.e., (k − 1)-faces) of P . Such a ball, if it exists,
is unique. It is referred to as the insphere of P . The center of the insphere maximizes the
minimum distance for any point in P to its facets, and has the same distance to all facets –
the radius of the insphere. We have the following two claims.

I Claim 3. For any k ≥ 1 and any k-dimensional convex polytope P with an insphere,
letting x be the radius of the insphere, we have Disp(n;P) = 2xDP (n;P)

x+DP (n;P) .

I Claim 4. For any k ≥ 1 and any k-dimensional convex polytope P with an insphere, given
the radius of the insphere,
(1) any polynomial-time algorithm for Disp(n;P) implies such an algorithm for Pack(r;P);
(2) any polynomial-time algorithm for Pack(r;P) implies an FPTAS for Disp(n;P).

To the best of our knowledge, it is still unknown whether ball-packing in regular polytopes
(which is a special case of convex polytopes with an insphere) is NP-hard or not. Therefore
the complexity of dispersion in regular polytopes remains open. Note that ball-packing in
arbitrary polytopes is NP-hard [18], so is a 14

13 -approximation for dispersion in rectilinear
polygons [2]. Moreover, a claim similar to Claim 4 applies to DP (n;P) and Pack(r;P) in
arbitrary polytopes. The relation between dispersion and packing in arbitrary polytopes is
not so clear and worth further investigation: for example, it would be interesting to know if
there exists a counterpart of Claim 4 when the polytope does not have an insphere.

Finally, the insert-only model, where all points have the same departure time, is a special
case of our general model. Interestingly, as will become clear in our analysis, the difficulty of
the general online ATWC problem is captured by the problem under this special model. The
insert-only model was also considered by [27, 34] in settings different from ours and with a
different objective function. We further discuss this model in [8].

3 The 1-Dimensional Online All-Time Worst-Case Problem

Note that a 1-dimensional polytope is simply a segment. Without loss of generality, we
consider the unit segment P = [0, 1]. Below we first provide a lower bound for the competitive
ratio of any algorithm, even computationally unbounded ones.

J. Chen, B. Li, and Y. Li 11:7

q
q0 = 0

q
q1

q
q2

q
q3 · · ·

q
qr−1

q
qr

q
qr+1 = 1

Figure 1 The pre-fixed positions in Q for dimension 1.

3.1 The Lower Bound
I Theorem 5. No online algorithm achieves a competitive ratio better than 2 ln 2 (≈ 1.386)
for the 1-dimensional ATWC problem.

Proof Ideas. Letting σ′r =
∑2r
i=r+1

1
i for any positive integer r, we show that no algorithm

achieves a competitive ratio better than 2σ′r. Roughly speaking, we construct an instance
(i.e., an adversary) for the online ATWC problem with three stages. In the first stage, r − 1
points arrive simultaneously; in the second stage, r new points arrive one by one; and finally,
all 2r − 1 points depart simultaneously. If an algorithm A is α-competitive to OPTA with
α < 2σ′r, it must be α-competitive after the arrival of each point, as it does not know the
total number of points. Thus for each arriving point, there must exist an interval long enough
such that putting the new point inside the interval does not violate the competitive ratio. We
show that in order for A to do so, the segment must be longer than P itself, a contradiction.
Theorem 5 holds by setting r →∞. The complete proof is in [8]. J

3.2 A Polynomial-Time Online Algorithm
Next, we provide a deterministic polynomial-time online algorithm whose competitive ratio
to OPTA can be arbitrarily close to 2 ln 2. Intuitively, a good algorithm should disperse the
points as evenly as possible. However, if at some point of time with m points present, the
resulting m+ 1 intervals on the segment have almost the same length, then the next arriving
point will force the minimum distance to drop by a factor of 2, while the optimum only
changes from 1

m+1 to 1
m+2 , causing the competitive ratio to drop by almost 2. To overcome

this problem, the algorithm must find a balance between two consecutive points, choosing a
sub-optimal solution for the former so as to leave enough space for the latter. The difficulty,
as for online algorithms in general, is that this balance needs to be kept for arbitrarily many
pairs of consecutive point, as the sequence of points is chosen by an adversary who observes
the algorithm’s output. Inspired by our lower bound, roughly speaking, our algorithm uses a
parameter r to pre-fix the locations of the first r points and the resulting r + 1 intervals,
and then inserts the next r + 1 points in the middle of these intervals. The idea is that,
when done properly, after these 2r + 1 points, the resulting configuration is almost the same
as if the algorithm has used parameter 2r + 1 to pre-fix the first 2r + 2 intervals: then the
procedure can repeat for arbitrary sequences.

More specifically, given a positive integer r, let Q = {q1, . . . , qr} be a set of positions
on the segment, such that the length ratios of the r + 1 intervals sliced by them are

1
r+1 : 1

r+2 : · · · : 1
2r+1 . That is, letting σr =

∑2r+1
i=r+1

1
i , the lengths of the intervals are

1
σr(r+1) ,

1
σr(r+2) , · · · ,

1
σr(2r+1) , and qi = 1

σr

∑r+i
j=r+1

1
j for each i ∈ [r], as illustrated by

Figure 1, with q0 = 0 and qr+1 = 1. Note that σr differs from σ′r in Theorem 5 by 1
2r+1 . Also,

σr is strictly decreasing in r and limr→∞ σr = ln 2. Moreover, for any two intervals (qj−1, qj)
and (qj′−1, qj′) with j < j′ ≤ r + 1, we have |(qj′−1, qj′)| < |(qj−1, qj)| < 2|(qj′−1, qj′)|.

Our algorithm, Algorithm 1, also takes as parameter an ordering for the positions in Q,
denoted by τ = (τ1, τ2, . . . , τr). We have the following two lemmas, whose main ideas are
sketched below. Recall that, given S = ((s1, d1), . . . , (sn, dn)), m is the maximum number of
points simultaneously present at any time t.

ICALP 2017

11:8 Efficient Approximations for the Online Dispersion Problem

Algorithm 1. A polynomial-time algorithm for the 1-dimensional online ATWC problem.
Parameter: A positive integer r, the corresponding set Q = {q1, . . . , qr}, and an ordering τ

for Q.
Input: A sequence of points arriving and departing along time.
1: Denote by Q̂ the set of positions ever occupied by a point. At any point of time, a

position in Q̂ is labeled occupied if currently there is a point there and vacant otherwise.
Initially Q̂ = ∅.

2: When a point i leaves, change the label of its position in Q̂ from occupied to vacant.
3: When a point i arrives:
4: if Q̂ = ∅ or all positions in Q̂ are labelled occupied then
5: if Q 6⊆ Q̂ then
6: Choose the first position q according to τ with q ∈ Q \ Q̂, add it to Q̂ and label it

occupied.
7: Put i at position q.
8: else
9: Find position q which is the middle of the largest interval created by the positions

in Q̂.
10: Put i at position q, add q to Q̂ and label it occupied.
11: end if
12: else
13: Arbitrarily choose a vacant position q from Q̂ and label it occupied.
14: Put i at position q.
15: end if

I Lemma 6. ∀ r and τ , Algorithm 1 is 2σr-competitive to OPTA for any S with m > r.

Proof Ideas. Since Algorithm 1 only creates a new position when the number of points
simultaneously present on the line increases, for any time t, the number of positions created
is exactly the maximum number of points that has appeared simultaneously on the line.
Thus only m positions is created for instance S. We prove that when m > r, the minimum
distance produced by our algorithm, denoted by dmin(m), is 1

2l+1σr(r+i) , where l, i are the
unique integers such that l ≥ 0, 0 ≤ i ≤ r + 1 and 2l(r + 1) + 2l(i− 1) ≤ m < 2l(r + 1) + 2li.
Note that the minimum distance only depends on m. By comparing OPTA with dmin(m),
we show that the competitive ratio 2σr holds for all m > r. J

I Lemma 7. For any integer l > 0 and r = 2l − 1, there exists an ordering τ for the
corresponding set Q, s.t. Algorithm 1 is 2σr-competitive to OPTA for any S with m ≤ r.

Proof Ideas. Interestingly, due to the structure of Algorithm 1, we only need to consider the
instance S = ((1, r + 1), (2, r + 1), . . . , (r, r + 1)). We construct an ordering τ = {τd}d∈[r] for
Q such that the competitive ratio at any time d ∈ [r] is smaller than 2σr. To do so, we fill in
a complete binary tree with r nodes as in Figure 2, and τ is obtained by traversing the tree in
a breadth-first manner starting from the root. Given any d = 2i + s with i ∈ {0, 1, . . . , l− 1}
and s ∈ {0, 1, . . . , 2i − 1}, we have τd = q2l−i−1(2s+1). Denoting the competitive ratio at time
d by apx(d), we prove that

apx(d) = σr

(2i + s+ 1) ·
∑2l−1+2l−i−1(2s+2)
j=2l+2l−i−1(2s+1)

1
j

.

J. Chen, B. Li, and Y. Li 11:9

0 2l2l−1

���
HHH

2l−2 3× 2l−2

�
��

A
AA

2l−3 3× 2l−3

�
��

A
AA

5× 2l−3 7× 2l−3

�
�
A
A
�
�
A
A

�
�
A
A
�
�
A
A..

.

0 84

J
J
JJ

2 6
�
�
��

B
B
BB

�
�
��

B
B
BB

1 3 5 7

Figure 2 The left-hand side shows the top three levels of the binary tree for a general l,
with τ = (q2l−1 , q2l−2 , q3×2l−2 , q2l−3 , q3×2l−3 , q5×2l−3 , q7×2l−3 , . . .). The right-hand side shows the
complete binary tree for l = 3, with τ = (q4, q2, q6, q1, q3, q5, q7).

Writing apx(d) as apx(i, s), we prove that, fixing i, apx(i, s) is strictly increasing in s; and
letting s = 2i− 1, apx(i, s) is strictly increasing in i. Thus the worst competitive ratio occurs
at i = l− 1 and s = 2l−1− 1. As apx(l− 1, 2l−1− 1) = (2− 1

2l)σr < 2σr, Lemma 7 holds. J

The theorem below follows easily from the above two lemmas.

I Theorem 8. There exists a deterministic polynomial-time online algorithm for the ATWC
problem, whose competitive ratio can be arbitrarily close to 2 ln 2. Moreover, the running
time is polynomial in 1

ε for competitive ratio 2 ln 2 + ε.

Remark. When the number of points is large but the maximum number m of simultaneously
present points is small, the running time of the algorithm for each arriving point is polynomial
in m and can be much faster than being polynomial in the size of the input.

Following Theorem 5, Algorithm 1 is essentially optimal. Inspired by our constructions of
Q and τ , we actually characterize the optimal solution for the online ATWC problem, whose
competitive ratio is exactly 2 ln 2: see Theorem 9. However, this solution involves irrational
numbers and cannot be exactly computed in polynomial time.

I Theorem 9. For any integer d = 2i+s with i ≥ 0 and 0 ≤ s ≤ 2i−1, let τd = log2(1+ 2s+1
2i+1).

If Algorithm 1 creates the d-th new position in Q̂ to be τd, the competitive ratio is 2 ln 2.

4 The 2-Dimensional Online All-Time Worst-Case Problem

We now consider the 2-dimensional online ATWC problem in a square – without loss of
generality, P = [0, 1]2. One difficulty is that, different from the 1-dimensional problem where
it is trivial to have Disp(n;P) = 1

n+1 for any n ≥ 1, here neither Disp(n;P) nor Pack(r;P)
has a known closed-form optimal solution (whether polynomial-time computable or not).
Accordingly, our lower-bound and our competitive algorithm must rely on some proper upper-
and lower-bounds for Disp(n;P), which is part of the reason why the resulting bounds are
not tight. In particular, we have the following.

I Lemma 10. For any n ≥ 1, 2
5+
√

2
√

3n
≤ Disp(n;P) ≤ 2

2+
√

2
√

3n
.

4.1 The Lower Bound
Interestingly, not only the dispersion problem is closely related to uniform packing (i.e., the
disks all have the same radius) as we have seen in Section 2, but we also obtain a lower bound
for the online ATWC problem by carefully fitting a non-uniform packing into the square.

ICALP 2017

11:10 Efficient Approximations for the Online Dispersion Problem

1

23

4

5

1

6

7

8

9

10

11

12

13

14

151617

18

19

20

21

22

23 24

252627282930

31

32

33

34

35 36

x x x cx cx cx cx

cx

cx

cx

cx

x

x

x

Figure 3 The set of pre-fixed positions, Q = {q1, . . . , q36}, and the grid created by Q. A grid
point labelled by i indicates the position qi. The colored areas are used in the algorithm’s description.
More specifically, denoting a rectangle by the position in Q at its lower-left corner, the green area
is (3, 10, 2; 18, 5, 9; 1, 19, 4); the two pink areas are (23, 6, 20; 28, 27, 26) and (34, 21; 33, 7; 32, 22);
the red area is (31, 8; 30, 29); the two blue areas are (35, 36) and (24, 25); the orange area is
(17, 16, 15, 11, 12, 13, 14); and finally the yellow area contains all the remaining rectangles: that is,
rectangles adjacent to the left boundary and the bottom boundary.

The idea is to imagine each position created in an online algorithm as a disk centered at that
position. The radius of each disk is a function of the algorithm’s competitive ratio and the
optimal solutions to specific dispersion problems without time. Note that the area covered
by the disks is upper-bounded by the area of the square containing them. Combining these
relations together gives us the following theorem.

I Theorem 11. No online algorithm achieves a competitive ratio better than 1.183 for the
2-dimensional ATWC problem in a square.

4.2 A Polynomial-Time Online Algorithm
Now we provide a deterministic polynomial-time online algorithm which is 1.591-competitive
to OPTA. Similar to Algorithm 1, we construct a set Q of pre-fixed positions. However, it is
unclear how to define Q of arbitrary size in the square, and we construct a set of 36 positions,
denoted by Q = {q1, . . . , q36}. It depends on a parameter 1 < c <

√
2 and x = 1

3+4c , as in
Figure 3. The qi’s indices specify the order according to which they should be occupied, thus
we do not need an extra ordering τ . Note these positions create a grid in P and split it into
multiple rectangles. The choice of c (and x, Q) will become clear in the analysis.

Whenever a new position needs to be created, we pick the first position in Q that has
never been occupied yet. When all positions in Q are occupied, we may (1) create a new
position in the center of a current rectangle with the largest area, split this rectangle into four
smaller ones accordingly, and add the vertices of the new rectangles into the grid; or (2) create
a new position at a grid point that has never been occupied yet. The main Algorithm 2 is
similar to Algorithm 1. It uses in Step 8 a sub-routine to implement (1) and (2) above: the
Position Creation Phase, as defined in [8], where we further provide some intuition on the
choices of Q, x, and c. Setting c = 1.271, we have the following.

J. Chen, B. Li, and Y. Li 11:11

Algorithm 2. A polynomial-time online algorithm for the ATWC problem in a square.

Parameter: c such that 1 < c <
√

2, the corresponding x = 1
3+4c , and Q.

Input: A sequence of points arriving and departing along time.
1: Denote by Q̂ the set of positions ever occupied by a point. At any point of time, a

position in Q̂ is labeled occupied if currently there is a point there and vacant otherwise.
Initially Q̂ = ∅.

2: When a point w leaves, change the label of its position in Q̂ from occupied to vacant.
3: When a point w arrives:
4: if Q̂ = ∅ or all positions in Q̂ are labelled occupied then
5: if |Q̂| < 36 then
6: Put w at position q|Q̂|+1, add this position to Q̂ and label it occupied.
7: else
8: Compute a position q according to the Position Creation Phase defined in [8].
9: Put w at position q, add q to Q̂ and label it occupied.

10: end if
11: else
12: Arbitrarily choose a vacant position q from Q̂ and label it occupied.
13: Put w at position q.
14: end if

I Theorem 12. Algorithm 2 runs in polynomial time and is 1.591-competitive for the
2-dimensional online ATWC problem in a square.

Note that the upper-bound for Disp(n;P) in Lemma 10 is not tight when n is small.
With better upper-bounds for Disp(n;P), better competitive ratios for our algorithm can be
directly obtained via a similar analysis. Moreover, we believe the competitive ratio can be
improved by using a larger set Q and the best ordering for positions in Q. Such a Q and a
rigorous analysis based on it are left for future studies. Finally, similar techniques can be
used when P is a rectangle, but the gap between the lower- and upper-bounds will be even
larger, and the analysis will be more complicated without adding much new insight to the
problem. Thus we leave a thorough study on rectangles for the future.

5 The General k-Dimensional Online ATWC Problem

Although the literature gives us little understanding about the optimal dispersion/packing
problem in an arbitrary k-dimensional polytope P with k ≥ 2, we are still able to provide a
simple lower-bound and a simple polynomial-time algorithm for the online ATWC problem.
Below we only state the theorems.

I Theorem 13. For any k ≥ 2, no online algorithm achieves a competitive ratio better than
7
6 for the ATWC problem for arbitrary polytopes.

For any polytope P , letting the covering rate be the ratio between the edge-lengths
of the maximum inscribed cube and the minimum bounding cube, we have the following
theorem. Note that, although a natural greedy algorithm provides a 2-competitive ratio,
the exact greedy solution may not be computable in polynomial time. Here we show the
greedy algorithm can be efficiently approximated arbitrarily closely. The geometric problems
of finding the minimum bounding cube, deciding whether a position is in P , and finding the
distance between a point in P and the boundary of P are given as oracles.

ICALP 2017

11:12 Efficient Approximations for the Online Dispersion Problem

Algorithm 3. Algorithm AI for computing I = {I1, I2} satisfying properties Φ.1 and Φ.2.
Input: A sequence S = ((s1, d1), . . . , (sn, dn)).
1: Let I1 = I2 = ∅, s = −1, d = 0 and T = maxi∈[n] di. (s and d are end-points of a

“sliding window” for the arriving times under consideration.)
2: Let index = 1.
3: while d 6= T do
4: Let Ŝ = {i|i ∈ S, si > s, si ≤ d, di > d}.
5: if Ŝ 6= ∅ then
6: Arbitrarily choose j ∈ arg max

i∈Ŝ
di and add j to Iindex; s = d; then d = dj .

7: else
8: s = d; then d = min

i∈S,si>d
si.

9: end if
10: index = 3− index.
11: end while
12: Output I = {I1, I2}.

I Theorem 14. For any constants γ, ε > 0, integer k ≥ 2 and k-dimensional polytope P
with covering rate at least γ, there exists a deterministic polynomial-time online algorithm
for the ATWC problem, with competitive ratio 2

1−ε and running time polynomial in 1
(γε)k .

6 The General k-Dimensional Offline CD Problem

By Claim 1, no online algorithm provides a good competitive ratio for the CD problem, thus
we focus on the offline problem. Given an input sequence S = ((s1, d1), . . . , (sn, dn)), we
first slice the whole time interval [0, T] into smaller ones by the arriving time si and the
departure time di of each point i ∈ [n]. Thus the set of present points only changes at the
end-points of the intervals and stays the same within an interval. Our algorithm will be such
that, in each time interval, the minimum distance is a good approximation to the optimal
dispersion problem without time, for the points present in this interval.

Interestingly, this is achieved by reducing the offline CD problem to the online ATWC
problem, for any dimension k and polytope P . To carry out this idea, we first provide a
polynomial-time algorithm AI (Algorithm 3) that, given a sequence S, selects a subset I of
points from S. The set I satisfies the following properties, as proved in [8].
(Φ.1) I can be partitioned into two groups I1 and I2 such that the points in the same group

have disjoint time intervals.
(Φ.2) For any time 0 ≤ t ≤ T , if there are points in S present at time t, then at least one of

them is selected to I.

The offline CD algorithm ACD uses algorithm AI to select I from its input S, eliminates
the selected points from S, and repeats on the remaining S. Recall that m is the maximum
number of points simultaneously present at any time. By property Φ.2, this procedure
ends in at most m iterations. Based on the partitions constructed by AI , ACD constructs
an instance of the online ATWC problem and uses any online algorithm AATWC for the
latter as a black-box, so as to decide how to locate the points. Algorithm ACD is defined in
Algorithm 4 and we have the following theorem. Below we sketch the main ideas.

J. Chen, B. Li, and Y. Li 11:13

Algorithm 4. ACD
Input: A sequence S = ((s1, d1), . . . , (sn, dn)).
1: Let r = 0.
2: while S 6= ∅ do
3: Run AI on S to obtain two disjoint sets I2r+1, I2r+2 ⊆ S.
4: S = S \ (I2r+1 ∪ I2r+2).
5: r = r + 1.
6: end while
7: Run AATWC on the following online sequence of 2r points: for all i ∈ {0, 1, . . . , r − 1},

points 2i+ 1 and 2i+ 2 arrive at time i. All points depart at time r.
8: Letting x2i+1, x2i+2 be the two positions returned by AATWC at time i, assign all points

in I2i+1 to x2i+1 and all points in I2i+2 to x2i+2.

I Theorem 15. ∀ k ≥ 1 and k-dimensional polytope P , given any polynomial-time σ-
competitive online algorithm AATWC for ATWC, there is a polynomial-time offline algorithm
ACD for CD with competitive ratio σmax

i≥1
Disp(i;P)
Disp(2i;P) ≤ 2σ, using AATWC as a black-box.

Proof Ideas. Given an input sequence S, we slice the whole time interval [0, T] into smaller
ones according to the arriving time and the departure time of each point. Denote these small
intervals by T1, . . . , Tl, where l is the number of small intervals created. For each interval Ti,
let Si be the set of points that overlap with Ti and ni = |Si|. By properties Φ.1 and Φ.2, all
points in Si are eliminated from S in the first ni iterations of AI , thus are located at the
first 2ni positions created by AATWC . The minimum distance among points in Ti (and to
the boundary) is at least Disp(2ni;P)

σ , since algorithm AATWC has competitive ratio σ. Thus,
within each Ti, the competitive ratio to the optimal solution is upper-bounded by σDisp(ni;P)

Disp(2ni;P) .
Taking summation over all Ti’s, the competitive ratio is upper-bounded by σmax

i≥1
Disp(i;P)

Disp(2i;P) .

Finally, we prove max
i≥1

Disp(i;P)
Disp(2i;P) ≤ 2, finishing the proof of Theorem 15. J

References

1 Shimon Abravaya and Michael Segal. Maximizing the number of obnoxious facilities to
locate within a bounded region. Computers & Operations Research, 37(1):163–171, 2010.

2 Christoph Baur and Sándor P. Fekete. Approximation of geometric dispersion problems.
Algorithmica, 30(3):451–470, 2001.

3 Boaz Ben-Moshe, Matthew J Katz, and Michael Segal. Obnoxious facility location: Com-
plete service with minimal harm. International Journal of Computational Geometry &
Applications, 10(06):581–592, 2000.

4 Marc Benkert, Joachim Gudmundsson, Christian Knauer, Esther Moet, René van Oostrum,
and Alexander Wolff. A polynomial-time approximation algorithm for a geometric disper-
sion problem. In International Computing and Combinatorics Conference, pages 166–175.
Springer, 2006.

5 Benjamin Birnbaum and Kenneth J. Goldman. An improved analysis for a greedy remote-
clique algorithm using factor-revealing LPs. Algorithmica, 55(1):42–59, 2009.

6 Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Max-sum diversity via convex
programming. In Proceedings of the 32nd Symposium on Computational Geometry (SoCG),
pages 26:1–26:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

ICALP 2017

11:14 Efficient Approximations for the Online Dispersion Problem

7 Alfonso Cevallos, Friedrich Eisenbrand, and Rico Zenklusen. Local search for max-sum
diversification. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 130–142. SIAM, 2017.

8 Jing Chen, Bo Li, and Yingkai Li. Efficient approximations for the online dispersion
problem. arXiv:1704.06823, 2017. Full version.

9 Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna
Viazovska. The sphere packing problem in dimension 24. arXiv:1603.06518, 2016.

10 Lester E. Dubins and Edwin H. Spanier. How to cut a cake fairly. The American Mathem-
atical Monthly, 68(1):1–17, 1961.

11 Adrian Dumitrescu and Minghui Jiang. Dispersion in disks. Theory of Computing Systems,
51(2):125–142, 2012.

12 Leah Epstein and Rob Van Stee. Optimal online algorithms for multidimensional packing
problems. SIAM Journal on Computing, 35(2):431–448, 2005.

13 Leah Epstein and Rob Van Stee. Bounds for online bounded space hypercube packing.
Discrete optimization, 4(2):185–197, 2007.

14 L. Fejes Tóth. Über die dichteste kugellagerung. Mathematische Zeitschrift, 48(1):676–684,
1942.

15 Sándor P. Fekete and Henk Meijer. Maximum dispersion and geometric maximum weight
cliques. Algorithmica, 38(3):501–511, 2004.

16 Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theoretical
Computer Science, 361(2):275–313, 2006.

17 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–
57, 2008.

18 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information processing letters, 12(3):133–137, 1981.

19 Eric Friedman, Christos-Alexandros Psomas, and Shai Vardi. Dynamic fair division with
minimal disruptions. In Proceedings of the sixteenth ACM conference on Economics and
Computation, pages 697–713. ACM, 2015.

20 Thomas C. Hales. A proof of the Kepler conjecture. Annals of mathematics, 162(3):1065–
1185, 2005.

21 Mhand Hifi and Rym M’hallah. A literature review on circle and sphere packing problems:
models and methodologies. Advances in Operations Research, 2009:150624:1–150624:22,
2009.

22 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

23 Pedro Hokama, Flávio K. Miyazawa, and Rafael C. S. Schouery. A bounded space algorithm
for online circle packing. Information Processing Letters, 116(5):337–342, 2016.

24 Wenqi Huang and Tao Ye. Greedy vacancy search algorithm for packing equal circles in a
square. Operations Research Letters, 38(5):378–382, 2010.

25 Matthew J. Katz, Klara Kedem, and Michael Segal. Improved algorithms for placing
undesirable facilities. Computers & Operations Research, 29(13):1859–1872, 2002.

26 Marco Locatelli and Ulrich Raber. Packing equal circles in a square: a deterministic global
optimization approach. Discrete Applied Mathematics, 122(1):139–166, 2002.

27 Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM Journal on
Computing, 32(3):816–832, 2003.

28 Adam Meyerson. Online facility location. In 42rd Annual IEEE Symposium on Foundations
of Computer Science, pages 426–431. IEEE, 2001.

29 Flávio K Miyazawa, Lehilton L.C. Pedrosa, Rafael C. S. Schouery, Maxim Sviridenko, and
Yoshiko Wakabayashi. Polynomial-time approximation schemes for circle packing problems.
In European Symposium on Algorithms, pages 713–724. Springer, 2014.

J. Chen, B. Li, and Y. Li 11:15

30 Ronald Peikert, Diethelm Würtz, Michael Monagan, and Claas de Groot. Packing circles in
a square: a review and new results. In System Modelling and Optimization: Proceedings of
the 15th IFIP Conference, Zurich, Switzerland, September 2–6, 1991, pages 45–54. Springer,
1992.

31 Zhongping Qin, Yinfeng Xu, and Binhai Zhu. On some optimization problems in obnoxious
facility location. In International Computing and Combinatorics Conference, pages 320–329.
Springer, 2000.

32 Sekharipuram S. Ravi, Daniel J. Rosenkrantz, and Giri K. Tayi. Heuristic and special case
algorithms for dispersion problems. Operations Research, 42(2):299–310, 1994.

33 Claude Ambrose Rogers. Existence theorems in the geometry of numbers. Annals of
Mathematics, pages 994–1002, 1947.

34 Daniel J. Rosenkrantz, Giri K. Tayi, and S. S. Ravi. Obtaining online approximation
algorithms for facility dispersion from offline algorithms. Networks, 47(4):206–217, 2006.

35 J. Schaer. The densest packing of nine circles in a square. Canad. Math. Bull, 8:273–277,
1965.

36 J. Schaer and A. Meir. On a geometric extremum problem. Canad. Math. Bull, 8:21–27,
1965.

37 B.L. Schwartz. Separating points in a square. J. Recr. Math, 3:195–204, 1970.
38 Steven S. Seiden. On the online bin packing problem. Journal of the ACM (JACM),

49(5):640–671, 2002.
39 Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.
40 Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly,

87(8):640–644, 1980.
41 Péter Gábor Szabó and Eckard Specht. Packing up to 200 equal circles in a square. In

Models and Algorithms for Global Optimization, pages 141–156. Springer, 2007.
42 Maryna Viazovska. The sphere packing problem in dimension 8. arXiv:1603.04246, 2016.

ICALP 2017

Online Covering with Sum of ¸q-Norm Objectives�

Viswanath Nagarajan1 and Xiangkun Shen2

1 University of Michigan, Ann Arbor, MI, USA

viswa@umich.edu

2 University of Michigan, Ann Arbor, MI, USA

xkshen@umich.edu

Abstract
We consider fractional online covering problems with ¸

q

-norm objectives. The problem of interest
is of the form min{f(x) : Ax Ø 1, x Ø 0} where f(x) =

q
e

c
e

Îx(S
e

)Î
qe is the weighted

sum of ¸
q

-norms and A is a non-negative matrix. The rows of A (i.e. covering constraints)
arrive online over time. We provide an online O(log d + log fl)-competitive algorithm where
fl = max aij

min aij
and d is the maximum of the row sparsity of A and max |S

e

|. This is based on the
online primal-dual framework where we use the dual of the above convex program. Our result
expands the class of convex objectives that admit good online algorithms: prior results required
a monotonicity condition on the objective f which is not satisfied here. This result is nearly tight
even for the linear special case. As direct applications we obtain (i) improved online algorithms
for non-uniform buy-at-bulk network design and (ii) the first online algorithm for throughput
maximization under ¸

p

-norm edge capacities.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases online algorithm, covering/packing problem, convex, buy-at-bulk,
throughput maximization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.12

1 Introduction

The online primal-dual approach is a widely used approach for online problems. This involves
solving a discrete optimization problem online as follows (i) formulate a linear programming
relaxation and obtain a primal-dual online algorithm for it; (ii) obtain an online rounding
algorithm for the resulting fractional solution. While this is similar to a linear programming
(LP) based approach for o�ine optimization problems, a key di�erence is that solving the LP
relaxation in the online setting is highly non-trivial. (Recall that there are general polynomial
time algorithms for solving LPs o�ine.) So there has been a lot of e�ort in obtaining good
online algorithms for various classes of LPs: see [1, 13, 23] for pure covering LPs, [13] for
pure packing LPs and [5] for certain mixed packing/covering LPs. Such online LP solvers
have been useful in obtaining online algorithms for various problems, eg. set cover [2], facility
location [1], machine scheduling [5], caching [8] and buy-at-bulk network design [21].

Recently, [6] initiated a systematic study of online fractional covering and packing with
convex objectives; see also the full versions [7, 11, 15]. These papers obtained good online
algorithms for a large class of fractional convex covering problems. They also demonstrated
the utility of this approach via many applications that could not be solved using just online
LPs. However these results were limited to convex objectives f : Rn

+

æ R
+

satisfying a

�
A full version of the paper is available at https://arxiv.org/abs/1705.02194.

EA
T
C
S

© Viswanath Nagarajan and Xiangkun Shen;

licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).

Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;

Article No. 12; pp. 12:1–12:12

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.12
https://arxiv.org/abs/1705.02194
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Online Covering with Sum of ¸q-Norm Objectives

monotone gradient property, i.e. Òf(z) Ø Òf(y) pointwise for all z, y œ Rn with z Ø y. There
are however many natural convex functions that do not satisfy such a gradient monotonicity
condition. Note that this condition requires the Hessian Ò2f(x) to be pointwise non-negative
in addition to convexity which only requires Ò2f(x) to be positive semidefinite.

In this paper, we focus on convex functions f that are sums of di�erent ¸
q

-norms. This is
a canonical class of convex functions with non-monotone gradients and prior results are not
applicable; see Section 1.1 for a more detailed comparison. We show that sum of ¸

q

-norm
functions admit a logarithmic competitive online algorithm. This result is nearly tight because
there is a logarithmic lower bound even for online covering LPs (which corresponds to an ¸

1

norm objective). We also provide two applications of our result (i) improved competitive
ratios (by two logarithmic factors) for some online non-uniform buy-at-bulk problems studied
in [21], and (ii) the first online algorithm for throughput maximization with ¸

p

-norm edge
capacities (the competitive ratio is logarithmic which is known to be best possible even in
the special case of individual edge capacities).

Given that we achieve log-competitive online algorithms for sums of ¸
q

-norms, a natural
question is whether such a result holds for all norms. Recall that any norm is a convex
function. It turns out that a log-competitive algorithm is not possible for general norms.
This follows from a result in [7] which shows an �(q log d) lower bound for minimizing the
objective ÎBxÎ

q

under covering constraints (where B is a non-negative matrix). It is still an
interesting open question to identify the correct competitive ratio for general norm functions.

1.1 Our Results and Techniques
We consider the online covering problem

min
I

rÿ

e=1

c
e

Îx(S
e

)Î
qe : Ax Ø 1, x œ Rn

+

J
, (1)

where each S
e

™ [n] := {1, 2, · · · n}, q
e

Ø 1, c
e

Ø 0 and A is a non-negative m ◊ n matrix.
For any S ™ [n] and q Ø 1 we use the standard notation Îx(S)Î

q

=
!q

iœS

xq

i

"
1/q. We also

consider the dual of this convex program, which is the following packing problem:

max
I

mÿ

k=1

y
k

: AT y = µ,

rÿ

e=1

µ
e

= µ, Îµ
e

(S
e

)Î
pe Æ c

e

’e œ [r], y Ø 0
J

. (2)

The values p
e

above satisfy 1

pe
+ 1

qe
= 1; so Î · Î

pe is the dual norm of Î · Î
qe . This dual can

be derived from (1) using Lagrangian duality.
Our framework captures the classic setting of packing/covering LPs when r = n and for

each e œ [n] we have S
e

= {e} and q
e

= 1. Our main result is:

I Theorem 1. There is an O(log d + log fl)-competitive online algorithm for (1) and (2)
where the covering constraints in (1) and variables y in (2) arrive over time. Here d is the
maximum of the row-sparsity of A and maxr

e=1

|S
e

| and fl = max{aij}
min{aij} .

We note that this bound is also the best possible, even in the linear case [13]. For just the
covering problem, a better O(log d) bound is known in the linear case [23] as well as for
convex functions with monotone gradients [6].

The algorithm in Theorem 1 is the natural extension of the primal-dual approach for
online LPs [13]. We use the gradient Òf(x) at the current primal solution x as the cost
function, and use this to define a multiplicative update for the primal. Simultaneously, the

V. Nagarajan and X. Shen 12:3

dual solution y is increased additively. This algorithm is in fact identical to the one in [6] for
convex functions with monotone gradients. See Algorithm 1 for the formal description. The
contribution of this paper is in the analysis of this algorithm, which requires new ideas to
deal with non-monotone gradients.

Limitations of previous approaches [6]

Recall that the general convex covering problem is

min
)

f(x) : Ax Ø 1, x œ Rn

+

*
,

where f : Rn

+

æ R
+

is a convex function. Its dual is:

max
I

mÿ

k=1

y
k

≠ fú(µ) : AT y = µ, y Ø 0
J

,

where fú(µ) = max
xœRn

+
{µT x ≠ f(x)} is the Fenchel conjugate of f . When f is the sum of

¸
q

-norms, these primal-dual convex programs reduce to (1) and (2).
We restrict the discussion of prior techniques to functions f with max

xœRn
+

x

T Òf(x)

f(x)

Æ 1
because this condition is satisfied by sums of ¸

q

norms.1 At a high level, the analysis in [6]
uses the gradient monotonicity to prove a pointwise upper bound AT y Æ Òf(x̄) where x̄ is
the final primal solution. This allows them to lower bound the dual objective by

q
m

k=1

y
k

because fú(Òf(x̄)) Æ 0 for any x̄ (see Lemma 4(d) in [6]). Moreover, proving the pointwise
upper bound AT y Æ Òf(x̄) is similar to the task of showing dual feasibility in the linear
case [13, 23] where Òf(x̄) corresponds to the (fixed) primal cost coe�cients.

Below we give a simple example with an ¸
q

-norm objective where the pointwise upper
bound AT y Æ Òf(x̄) is not satisfied by the online primal-dual algorithm unless the dual
solution y is scaled down by a large (i.e. polynomial) factor. This means that one cannot
obtain a sub-polynomial competitive ratio for (1) using this approach directly.

Consider an instance with objective function f(x) = ÎxÎ
2

=
q

n

i=1

x2

i

. There are
m =

Ô
n covering constraints, where the kth constraint is

q
km

i=k(m≠1)+1

x
i

Ø 1. Note that
each variable appears in only one constraint. Let P be the value of primal objective and D

be the value of dual objective at any time. Suppose that the rate of increase of the primal
objective is at most – times that of the dual; – corresponds to the competitive ratio in the
online primal-dual algorithm. Upon arrival of any constraint k, it follows from the primal
updates that all the variables {x

i

}km

i=k(m≠1)+1

increase from 0 to 1

m

. So the increase in P due
to constraint k is (

Ô
k ≠

Ô
k ≠ 1) 1Ô

m

for iteration k. This means that the increase in D is at
least 1

–

(
Ô

k ≠
Ô

k ≠ 1) 1Ô
m

, and so y
k

Ø 1

–

(
Ô

k ≠
Ô

k ≠ 1) 1Ô
m

. Finally, since x̄ = 1

m

1, we know
that Òf(x̄) = 1

m

1 (recall n = m2). On the other hand, (AT y)
1

= y
1

Ø 1

–

Ô
m

. Therefore, in
order to guarantee AT y Æ Òf(x̄) we must have – Ø

Ô
m = n1/4.

Our approach

First, we show that by duplicating variables and using an online separation oracle approach
(as in [1]) one can ensure that the sets {S

e

}r

e=1

are disjoint. This allows for a simple

1
The result in [6] also applies to other convex functions with monotone gradients, but the competitive

ratio depends exponentially on max

xœRn
+

x

T Òf(x)
f(x) .

ICALP 2017

12:4 Online Covering with Sum of ¸q-Norm Objectives

expression for Òf which is useful in the later analysis. Then we utilize the specific form of
the primal-dual convex programs (1) and (2) and an explicit expression for Òf to show that
the dual y is approximately feasible. In particular we show that ÎyT A(S

e

)Î
pe Æ O(log dfl) · c

e

for each e œ [r]; here A(S
e

) denotes the submatrix of A with columns from S
e

. Note that
this is a weaker requirement than upper bounding AT y pointwise by Òf(x̄).

In order to bound ÎyT A(S
e

)Î
pe , we analyze each e œ [r] separately. We partition the steps

of the algorithm into phases where phase j corresponds to steps where �
e

=
q

iœSe
xqe

i

¥ ◊j ;
here ◊ > 1 is a parameter that depends on q

e

. The number of phases can be bounded
using the fact that �

e

is monotonically increasing. By triangle inequality we upper bound
ÎyT A(S

e

)Î
pe by

q
j

ÎyT

(j)

A(S
e

)Î
pe where y

(j)

denotes the dual variables that arrive in phase
j. And in each phase j, we can upper bound ÎyT

(j)

A(S
e

)Î
pe using the di�erential equations

for the primal and dual updates.

Applications

We also provide two applications of Theorem 1.

Non-uniform multicommodity buy-at-bulk. This is a well-studied network design problem
in the o�ine setting [16, 17]. For its online version, the first poly-logarithmic competitive
ratio was obtained recently in [21]. A key step in this result was a fractional online algorithm
for a certain mixed packing-covering LP. We improve the competitive ratio of this step from
O(log3 n) to O(log n) which leads to a corresponding improvement in the final result of [21].
See Theorem 6.

Throughput maximization with ¸p-norm capacities. The online problem of maximizing
throughput subject to edge capacities is well studied and a tight logarithmic competitive ratio
is known [4, 13]. We consider the generalization where instead of individual edge capacities,
we can have capacity constraints on subsets as follows. A ¸

p

-norm capacity of c for some
subset S of edges means that the ¸

p

-norm of the loads on edges of S must be at most c. We
show that one can obtain a randomized log-competitive algorithm even in this setting, which
generalizes the case with edge-capacities. See Theorem 7.

1.2 Related Work
The online primal-dual framework for linear programs [14] is fairly well understood. Tight
results are known for the class of packing and covering LPs [13, 23], with competitive ratio
O(log d) for covering LPs and O(log dfl) for packing LPs; here d is the row-sparsity and fl is
the ratio of the maximum to minimum entries in the constraint matrix. Such LPs are very
useful because they correspond to the LP relaxations of many combinatorial optimization
problems. Combining the online LP solver with suitable online rounding schemes, good
online algorithms have been obtained for many problems, eg. set cover [2], group Steiner
tree [1], caching [8] and ad-auctions [12]. Online algorithms for LPs with mixed packing and
covering constraints were obtained in [5]; the competitive ratio was improved in [6]. Such
mixed packing/covering LPs were also used to obtain an online algorithm for capacitated
facility location [5]. A more complex mixed packing/covering LP was used recently in [21]
to obtain online algorithms for non-uniform buy-at-bulk network design: as an application
of our result, we obtain a simpler and better (by two log-factors) online algorithm for this
problem.

V. Nagarajan and X. Shen 12:5

There have also been a number of results utilizing the online primal-dual framework
with convex objectives for specific problems, eg. matching [19], caching [25], energy-e�cient
scheduling [18, 22] and welfare maximization [10, 24]. All of these results involve separable
convex/concave functions. Recently, [6] considered packing/covering problems with general
(non-separable) convex objectives, but (as discussed previously) this result requires a monotone
gradient assumption on the convex function. The sum of ¸

q

-norm objectives considered in
this paper does not satisfy this condition. While our primal-dual algorithm is identical to [6],
we need new techniques in the analysis.

All the results above (as well as ours) involve convex objectives and linear constraints. We
note that [20] obtained online primal-dual algorithms for certain semidefinite programs (i.e. in-
volving non-linear constraints). While both our result and [20] generalize packing/covering
LPs, they are not directly comparable.

We also note that online algorithms with ¸
q

-norm objectives have been studied previously
for many scheduling problems, eg. [3, 9]. These results use di�erent approaches and are
not directly comparable to ours. More recently [7] used ideas from the online primal-dual
approach in an online algorithm for unrelated machine scheduling with ¸

p

-norm objectives as
well as startup costs. However, the algorithm in [7] was tailored to their scheduling setting
and we do not currently see a connection between our result and [7].

2 Preliminaries

Recall the primal covering problem (1) and its dual packing problem (2). In the online
setting, the constraints in the primal and variables in the dual arrive over time. We need to
maintain monotonically increasing primal (x) and dual (y) solutions. The following lemma
shows that one can assume that the sets {S

e

}r

e=1

are disjoint without loss of generality. We
defer the proof of the lemma to the full version. This leads to a much simpler expression for
Òf that will be used in Section 3.

I Lemma 2. If there is a poly-time –-competitive algorithm for instances with disjoint S
e

,
then there is a poly-time O(–)-competitive algorithm for general instances.

Henceforth we will assume that the sets {S
e

}r

e=1

are disjoint. The dual program (2) in
this case reduces to:

max
I

mÿ

k=1

y
k

: AT y = µ, Îµ(S
e

)Î
pe Æ c

e

’e œ [r], y Ø 0
J

. (3)

It is easy to see that weak duality holds (Lemma 3). Strong duality also holds because (1)
satisfies Slater’s condition; however we do not use this fact.

I Lemma 3. For any pair of feasible solutions x to (1) and (y, µ) to (3), we have
rÿ

e=1

c
e

Îx(S
e

)Î
qe Ø

mÿ

k=1

y
k

.

Proof. This follows from the following inequalities:
mÿ

k=1

y
k

= yT

1 Æ yT Ax = µT x Æ
rÿ

e=1

ÿ

iœSe

µ
i

·x
i

Æ
rÿ

e=1

Îµ(S
e

)Î
pe ·Îx(S

e

)Î
qe Æ

rÿ

e=1

c
e

·Îx(S
e

)Î
qe .

The first inequality is by primal feasibility; the second and last are by dual feasibility; the
fourth is by Hölder’s inequality. J

ICALP 2017

12:6 Online Covering with Sum of ¸q-Norm Objectives

When the kth request
q

n

i=1

a
ki

x
i

Ø 1 arrives
Let · be a continuous variable denoting the current time.;
while the constraint is unsatisfied, i.e.,

q
n

i=1

a
ki

x
i

< 1 do

For each i with a
ki

> 0, increase x
i

at rate ˆxi
ˆ·

= akixi+

1
d

Òif(x)

= akixi+

1
d

cex

qe≠1
i

Îx(S
e

)Îqe≠1

qe
;

Increase y
k

at rate ˆyk

ˆ·

= 1;
Set µ = AT y;

end

Algorithm 1: Algorithm for ¸
q

-norm packing/covering.

3 Algorithm and analysis

Let f(x) =
q

r

e=1

c
e

Îx(S
e

)Î
qe denote the primal objective in (1).

In order to ensure that the gradient Òf is positive, the primal solution x starts o� as
” · 1 where ” > 0 is arbitrarily small. So we assume that the initial primal value is zero.

It is clear that the algorithm maintains a feasible and monotonically non-decreasing
primal solution x. The dual solution (y, µ) is also monotonically non-decreasing, but not
necessarily feasible. We will show that (y, µ) is O(log fld)-approximately feasible, i.e. the
packing constraints in (3) are violated by at most an O(log fld) factor.

I Lemma 4. The primal objective f(x) is at most twice the dual objective
q

m

k=1

y
k

.

Proof. We will show that the rate of increase of the primal is at most twice that of the dual.
Consider the algorithm upon the arrival of some constraint k. Then

df(x)
d·

=
ÿ

i:aki>0

Ò
i

f(x) · ˆx
i

ˆ·
=

ÿ

i:aki>0

(a
ki

x
i

+ 1
d

) Æ 2.

The inequality comes from the fact that (i) the process for the kth constraint is terminated
when

q
i

a
ki

x
i

= 1 and (ii) the number of non-zeroes in constraint k is at most d. Also it is
clear that the dual objective increases at rate one, which finishes the proof. J

I Lemma 5. The dual solution (y, µ) is O(log fld)-approximately feasible, i.e.

Îµ(S
e

)Î
pe Æ O(log fld) · c

e

, ’e œ [r].

Proof. Fix any e œ [r]. When q
e

= 1 the analysis is simple (details are deferred to the full
version). Here we only consider q

e

> 1 which is the main part of the analysis. In order to
prove the desired upper bound on Îµ(S

e

)Î
pe we use a potential function � =

q
iœSe

(xqe
i

).
Let phase zero denote the period where � Æ ’ := (1

max{aij}·d2)qe , and for each j Ø 1, phase j

is the period where ◊j≠1 · ’ Æ � < ◊j · ’. Here ◊ > 1 is a parameter depending on q
e

that
will be determined later. Note that � Æ d(1

min{aij})qe as variable x
i

will never be increased
beyond 1/ minm

j=1

a
ij

. So the number of phases is at most 3q
e

· log(dfl)/ log ◊. Next, we bound
the increase in Îµ(S

e

)Î
pe for each phase separately.

For any phase, we have the following equalities

ˆx
i

ˆ·
=

a
ki

x
i

+ 1

d

c
e

xqe≠1

i

Îx(S
e

)Îqe≠1

qe
,

ˆy
k

ˆ·
= 1,

ˆµ
i

ˆ·
= a

ki

∆ dµ
i

= c
e

a
ki

xqe≠1

i

(
q

jœSe
xqe

j

)1≠ 1
qe (a

ki

x
i

+ 1

d

)
dx

i

(4)

V. Nagarajan and X. Shen 12:7

Phase zero. Suppose that each x
i

increases to –
i

in phase zero. From (4) we have

dµ
i

Æ d c
e

a
ki

xqe≠1

i

(
q

jœSe
xqe

j

)1≠ 1
qe

dx
i

∆ 1
d c

e

a
ki

dµ
i

Æ xqe≠1

i

(
q

jœSe
xqe

j

)1≠ 1
qe

dx
i

.

This means that the increase �µ
i

in µ
i

can be bounded as:

1
d c

e

a
ki

�µ
i

Æ
⁄

–i

”

xqe≠1

i

(
q

jœSe
xqe

j

)1≠ 1
qe

dx
i

Æ
⁄

–i

0

1dx
i

Æ –
i

.

Since in phase zero, � Æ (1

max{aij}·d2)qe , we know that each –
i

Æ 1

max{aij}·d2 . So �µ
i

Æ ce
d

and at the end of phase zero, we have Îµ(S
e

)Î
pe Æ Îµ(S

e

)Î
1

Æ c
e

. The last inequality is
because d Ø max

e

|S
e

|.

Phase j Ø 1. Let �
0

and �
1

be the value of � at the beginning and end of this phase
respectively. In phase j, suppose that each x

i

increases from s
i

to t
i

. Then,

dµ
i

= c
e

a
ki

xqe≠1

i

(
q

jœSe
xqe

j

)1≠ 1
qe (a

ki

x
i

+ 1

d

)
dx

i

Æ c
e

xqe≠2

i

(
q

jœSe
xqe

j

)1≠ 1
qe

dx
i

.

So the increase �µ
i

in µ
i

during this phase is:

�µ
i

Æ
⁄

ti

si

c
e

xqe≠2

i

(
q

jœSe
xqe

j

)1≠ 1
qe

dx
i

.

Note that variables x
i

Õ for iÕ ”= i can also increase in this phase: so we cannot directly
bound the above integral. This is precisely where the potential � is useful. We know that
throughout this phase,

q
iœSe

xqe
i

Ø �
0

. So,

�µ
i

Æ c
e

⁄
ti

si

xqe≠2

i

�1≠ 1
qe

0

dx
i

= c
e

tqe≠1

i

≠ sqe≠1

i

(q
e

≠ 1)�1≠ 1
qe

0

= c
e

tqe≠1

i

≠ sqe≠1

i

(q
e

≠ 1)�
1

pe
0

.

Above we used the assumption that q
e

> 1 in evaluating the integral. Now,

(�µ
i

)pe Æ cpe
e

(q
e

≠ 1)pe �
0

·
1

tqe≠1

i

≠ sqe≠1

i

2
pe

Æ cpe
e

(q
e

≠ 1)pe �
0

·
1

t
(qe≠1)pe

i

≠ s
(qe≠1)pe

i

2

= cpe
e

(q
e

≠ 1)pe �
0

· (tqe
i

≠ sqe
i

) .

The first inequality above uses the fact that (z
1

+ z
2

)pe Ø zpe
1

+ zpe
2

for any p
e

Ø 1 and
z

1

, z
2

Ø 0, with z
1

= sqe≠1

i

and z
2

= tqe≠1

i

≠ sqe≠1

i

. The last equality uses 1

pe
+ 1

qe
= 1.

We can now bound
ÿ

iœSe

(�µ
i

)pe Æ cpe
e

(q
e

≠ 1)pe �
0

·
ÿ

iœSe

(tqe
i

≠ sqe
i

) = cpe
e

(q
e

≠ 1)pe �
0

(�
1

≠ �
0

) Æ cpe
e

(q
e

≠ 1)pe
(◊≠1) .

Let µ
j

œ R|Se| denote the increase in µ(S
e

) during phase j. It follows from the above
that Îµ

j

Î
pe Æ ce

qe≠1

(◊ ≠ 1)1/pe .

ICALP 2017

12:8 Online Covering with Sum of ¸q-Norm Objectives

Combining across phases. Note that µ =
q

jØ0

µ
j

. By triangle inequality, we have

ÎµÎ
pe Æ

ÿ

jØ0

Îµ
j

Î
pe Æ c

e

+
ÿ

jØ1

Îµ
j

Î
pe Æ c

e

3
1 + 3q

e

(◊ ≠ 1)1/pe

(q
e

≠ 1) log ◊
· log(dfl)

4
. (5)

To complete the proof we show next that for any q
e

> 1, there is some choice of ◊ > 1 such
that the right-hand-side above is O(log(dfl)) · c

e

.
If q

e

Ø 2 then setting ◊ = 2, we have 3qe

(qe≠1)

(◊ ≠ 1)1/pe/ log ◊ Æ 6.
If 1 < q

e

< 2 then set ◊ = 1 + (q
e

≠ 1)≠‘pe , where ‘ = 1

≠ log(qe≠1)

> 0. We have

(◊ ≠ 1)
1

pe

log ◊
Æ (◊ ≠ 1)

1
pe

log(q
e

≠ 1)≠‘pe
= (q

e

≠ 1)≠‘

log(q
e

≠ 1)≠‘pe
= (q

e

≠ 1)≠‘

≠‘p
e

log(q
e

≠ 1) = (q
e

≠ 1)≠‘

p
e

= 2
p

e

.

The first inequality above uses that ◊ ≠ 1 = (q
e

≠ 1)≠‘pe > 1. Thus we have

3q
e

(◊ ≠ 1)1/pe

(q
e

≠ 1) log ◊
Æ 6q

e

(q
e

≠ 1)p
e

= 6,

where the last equality uses 1

pe
+ 1

qe
= 1.

So in either case we have that the right-hand-side of (5) is at most (1 + 6 log(dfl)) · c
e

. J

Combining Lemmas 3, 4 and 5, we obtain Theorem 1.

4 Applications

4.1 Online Buy-at-Bulk Network Design

In the non-uniform buy-at-bulk problem, we are given a directed graph G = (V, E) with
a monotone subadditive cost function g

e

: R
+

æ R
+

on each edge e œ E and a collection
{(s

i

, t
i

)}m

i=1

of m source/destination pairs. The goal is to find an s
i

≠ t
i

path P
i

for each
i œ [m] such that the objective

q
eœE

g
e

(load
e

) is minimized; here load
e

is the number of
paths using e. An equivalent view of this problem involves two costs c

e

and ¸
e

for each edge
e œ E and the objective

q
eœfiPi

c
e

+
q

eœE

¸
e

· load
e

. In the online setting, the pairs (s
i

, t
i

)
arrive over time and we need to decide on the path P

i

immediately after the ith pair arrives.
Recently, [21] gave a modular online algorithm for non-uniform buy-at-bulk with competitive
ratio O(–—“ · log5 n) where:

– is the “junction tree” approximation ratio,
— is the integrality gap of the natural LP for single-sink instances,
“ is the competitive ratio of an online algorithm for single-sink instances.

See [21] for more details. One of the main components in this result was an O(log3 n)-
competitive fractional online algorithm for a certain mixed packing/covering LP. Here we
show that Theorem 1 can be used to provide a better (and tight) O(log n)-competitive ratio.
This leads to the following improvement:

I Theorem 6. There is an O(–—“ · log3 n)-competitive ratio for non-uniform buy-at-bulk,
where –, —, “ are as above.

V. Nagarajan and X. Shen 12:9

The LP relaxation. Let T = {s
i

, t
i

: i œ [m]} denote the set of all sources/destinations.
For each i œ [m] and root r œ V variable z

ir

denotes the extent to which both s
i

and t
i

route
to/from r. For each r œ V and e œ E, variable x

er

denotes the extent to which edge e is
used in the routing to root r. For each r œ V and u œ T , variables {f

r,u,e

: e œ E} represent
a flow between r and u. [21] relied on solving the following LP:

min
ÿ

rœV

ÿ

eœE

c
e

· x
e,r

+
ÿ

rœV

ÿ

eœE

¸
e

·
ÿ

uœT
f

r,u,e

s.t.
ÿ

rœV

z
ir

Ø 1, ’i œ [m]

{f
r,si,e

: e œ E} is a flow from s
i

to r of z
ir

units, ’r œ V, i œ [m]
{f

r,ti,e

: e œ E} is a flow from r to t
i

of z
ir

units, ’r œ V, i œ [m]
f

r,u,e

Æ x
e,r

, ’u œ T , e œ E

x, f, z Ø 0

The online algorithm in [21] for this LP has competitive ratio O(D · log n) w.r.t. the optimal
integral solution; here D is an upper bound on the length of any s

i

≠ t
i

path (note that D can
be as large as n). Using a height reduction operation, they could ensure that D = O(log n)
while incurring an additional O(log n)-factor loss in the objective. This lead to the O(log3 n)
factor for the fractional online algorithm. Here we provide an improved O(log n)-competitive
algorithm for this LP which does not require any bound on the path-lengths.

For any r œ V and u œ T , let MC(r, u) denote the u ≠ r (resp. r ≠ u) minimum cut in
the graph with edge capacities {f

r,u,e

: e œ E} if u is a source (resp. destination). By the
max-flow min-cut theorem, it follows that z

ir

Æ min {MC(r, s
i

) , MC(r, t
i

)}. Using this, we
can combine the first three constraints of the above LP into the following:

ÿ

rœV

min {MC(r, s
i

) , MC(r, t
i

)} Ø 1, ’i œ [m].

For a fixed i œ [m], this constraint is equivalent to the following. For each r œ V , pick either
an s

i

≠ r cut (under capacities f
r,si,ı

) or an r ≠ t
i

cut (under capacities f
r,ti,ı

), and check
if the total cost of these cuts is at least 1. This leads to the following reformulation that
eliminates the x and z variables.

min
ÿ

rœV

ÿ

eœE

c
e

·
3

max
uœT

f
r,u,e

4
+

ÿ

rœV

ÿ

eœE

¸
e

·
ÿ

uœT
f

r,u,e

s.t.
ÿ

rœRs

f
r,si(Sr

) +
ÿ

rœRt

f
r,ti(Tr

) Ø 1, ’i œ [m], ’(R
s

, R
t

) partition of V,

’S
r

: s
i

≠ r cut, ’r œ R
s

, ’T
r

: r ≠ t
i

cut, ’r œ R
t

f Ø 0.

Note that ¸
log(n)

-norm is a constant approximation for ¸Œ. Therefore we can reformulate
the above objective function (at the loss of a constant factor) as the sum of ¸

log(n)

and
¸

1

norms. Our fractional solver applies to this convex covering problem, and yields an
O(log n)-competitive ratio (note that fl = 1 for this instance). In order to get a polynomial
running time, we can use the natural “separation oracle” approach to produce violated
covering constraints.

Each iteration above runs in polynomial time since the minimum cuts can be computed
in polynomial time. In order to bound the number of iterations, consider the potential
Â =

q
eœE

(f
r,si,e

+ f
r,ti,e

). Note that 0 Æ Â Æ 2|E| and each iteration increases Â by at
least 1

2

. So the number of iterations is at most 4|E|.

ICALP 2017

12:10 Online Covering with Sum of ¸q-Norm Objectives

When the ith request (s
i

, t
i

) arrives
repeat

For each r œ V , compute MC(r, s
i

) and MC(r, t
i

) and the respective cuts S
r

and T
r

;
Let R

s

= {r œ V : MC(r, s
i

) Æ MC(r, t
i

)} and R
t

= V \ R
s

;
Run Algorithm 1 with constraint

q
rœRs

f
r,si(Sr

) +
q

rœRt
f

r,ti(Tr

) Ø 1;
until

q
rœV

min {MC(r, s
i

) , MC(r, t
i

)} Ø 1

2

;
Algorithm 2: Separation Oracle Based Algorithm for Buy-at-Bulk.

4.2 Throughput Maximization with ¸p-norm Capacities

The online problem of maximizing multicommodity flow was studied in [4, 13]. In this
problem, we are given a directed graph with edge capacities u(e). Requests (s

i

, t
i

) arrive
in an online fashion. The algorithm should choose a path between s

i

and t
i

and allocate a
bandwidth of 1 on the path to serve request i. The total bandwidth allocated on any edge
is not allowed to exceed its capacity. This is the simplest version of the multicommodity
routing problem. Here we consider an extension with ¸

p

-norm capacity constraints on subsets
of edges. This can be used to model situations where edges are provided by multiple agents.
Each agent j owns a subset S

j

of edges and it requires the ¸
pj -norm of the bandwidths of

these edges to be at most c
j

. In this section we assume the S
j

are disjoint. Our result also
applies to general S

j

via a reduction to disjoint instances.

I Theorem 7. Assume that c
j

= �(log m) · |S
j

|1/pj for each j. Then there is a randomized
O(log m)-competitive online algorithm for throughput maximization with ¸

p

-norm capacities,
where m is the number of edges in the graph.

We note that a similar “high capacity” assumption is also needed in the linear special
case [4, 13] where each |S

j

| = 1.

In a fractional version of the problem, a request can be satisfied by several paths and the
allocation of bandwidth can be in range [0, 1] instead of being restricted from {0, 1}. For
request (s

i

, t
i

), let P
i

be the set of simple paths between s
i

and t
i

. Variable f
i,P

is defined
to be the amount of flow on the path P for request (s

i

, t
i

). The total profit of algorithm is
the (fractional) number of requests served and the performance is measured with respect to
the maximum number of requests that could be served if the requests are known beforehand.
We describe the problem as a packing problem:

max
ÿ

i

ÿ

P œPi

f
i,P

(6)

s.t.
ÿ

P œPi

f
i,P

Æ 1, ’i (7)

ÿ

i

ÿ

P œPi:eœP

f
i,P

= µ
e

, ’e (8)

Îµ(S
j

)Î
pj Æ c

j

, ’j (9)
f œ Rn

+

V. Nagarajan and X. Shen 12:11

Note that single edge capacity is a special case of (9) with |S
j

| = 1 and any p
j

. The
corresponding primal problem is the following.

min
ÿ

j

c
j

Îx(S
j

)Î
qj +

ÿ

i

z
i

(10)

s.t. z
i

+
ÿ

eœP

x
e

Ø 1, ’i, P œ P
i

(11)

x, z œ Rn

+

where z is the dual variable of constraints (7) and x is the dual variable of constraints (8)
to (9). This formulation falls in the form of (1). Combining our algorithm with online
rounding techniques, we can prove Theorem 7. A formal proof appears in the full version.

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general

approach to online network optimization problems. ACM Transactions on Algorithms,
2(4):640–660, 2006.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online
set cover problem. SIAM J. Comput., 39(2):361–370, 2009.

3 Baruch Awerbuch, Yossi Azar, Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jef-
frey Scott Vitter. Load balancing in the lp norm. In FOCS, pages 383–391, 1995.

4 Baruch Awerbuch, Yossi Azar, and Serge Plotkin. Throughput-competitive on-line routing.
In FOCS, pages 32–40. IEEE, 1993.

5 Yossi Azar, Umang Bhaskar, Lisa K. Fleischer, and Debmalya Panigrahi. Online mixed
packing and covering. In SODA, 2013.

6 Yossi Azar, Niv Buchbinder, T.-H. Hubert Chan, Shahar Chen, Ilan Reuven Cohen,
Anupam Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor, and Deb-
malya Panigrahi. Online algorithms for covering and packing problems with convex object-
ives. In FOCS, pages 148–157, 2016.

7 Yossi Azar, Ilan Reuven Cohen, and Debmalya Panigrahi. Online covering with convex
objectives and applications. CoRR, abs/1412.3507, 2014. URL: http://arxiv.org/abs/

1412.3507.
8 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms for

generalized caching. SIAM J. Comput., 41(2):391–414, 2012.
9 Nikhil Bansal and Kirk Pruhs. Server scheduling to balance priorities, fairness, and average

quality of service. SIAM J. Comput., 39(7):3311–3335, 2010.
10 Avrim Blum, Anupam Gupta, Yishay Mansour, and Ankit Sharma. Welfare and profit

maximization with production costs. In FOCS, pages 77–86, 2011.
11 Niv Buchbinder, Shahar Chen, Anupam Gupta, Viswanath Nagarajan, and Joseph Naor.

Online packing and covering framework with convex objectives. CoRR, abs/1412.8347,
2014.

12 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for maxim-
izing ad-auctions revenue. In ESA, pages 253–264, 2007.

13 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.
Math. Oper. Res., 34(2):270–286, 2009.

14 Niv Buchbinder and Joseph (Se�) Naor. The design of competitive online algorithms via
a primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2007.

15 T.-H. Hubert Chan, Zhiyi Huang, and Ning Kang. Online convex covering and packing
problems. CoRR, abs/1502.01802, 2015.

ICALP 2017

http://arxiv.org/abs/1412.3507
http://arxiv.org/abs/1412.3507

12:12 Online Covering with Sum of ¸q-Norm Objectives

16 Moses Charikar and Adriana Karagiozova. On non-uniform multicommodity buy-at-bulk
network design. In STOC, pages 176–182. ACM, 2005.

17 Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R. Salav-
atipour. Approximation algorithms for nonuniform buy-at-bulk network design. SIAM J.
Comput., 39(5):1772–1798, 2010.

18 Nikhil R. Devanur and Zhiyi Huang. Primal dual gives almost optimal energy e�cient
online algorithms. In SODA, pages 1123–1140, 2014.

19 Nikhil R. Devanur and Kamal Jain. Online matching with concave returns. In STOC,
pages 137–144. ACM, 2012.

20 Noa Elad, Satyen Kale, and Joseph (Se�) Naor. Online semidefinite programming. In
ICALP, pages 40:1–40:13, 2016.

21 Alina Ene, Deeparnab Chakrabarty, Ravishankar Krishnaswamy, and Debmalya Panigrahi.
Online buy-at-bulk network design. In FOCS, pages 545–562, 2015.

22 Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-
linear optimization with applications to speed scaling. In WAOA, pages 173–186, 2012.

23 Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer pro-
grams online. Math. Oper. Res., 39(4):998–1011, 2014.

24 Zhiyi Huang and Anthony Kim. Welfare maximization with production costs: A primal
dual approach. In SODA, pages 59–72, 2015.

25 Ishai Menache and Mohit Singh. Online caching with convex costs: Extended abstract. In
SPAA, pages 46–54, 2015.

Dynamic Beats Fixed: On Phase-Based
Algorithms for File Migration∗†

Marcin Bienkowski1, Jarosław Byrka2, and Marcin Mucha3

1 Institute of Computer Science, University of Wrocław, Wrocław, Poland
mbi@cs.uni.wroc.pl

2 Institute of Computer Science, University of Wrocław, Wrocław, Poland
jby@cs.uni.wroc.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
mucha@mimuw.edu.pl

Abstract
In this paper, we construct a deterministic 4-competitive algorithm for the online file migration
problem, beating the currently best 20-year old, 4.086-competitive Mtlm algorithm by Bartal
et al. (SODA 1997). Like Mtlm, our algorithm also operates in phases, but it adapts their
lengths dynamically depending on the geometry of requests seen so far. The improvement was
obtained by carefully analyzing a linear model (factor-revealing LP) of a single phase of the
algorithm. We also show that if an online algorithm operates in phases of fixed length and the
adversary is able to modify the graph between phases, no algorithm can beat the competitive
ratio of 4.086.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Online Computation, G.1.6 [Op-
timization] Linear programming, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases file migration, factor-revealing linear programs, online algorithms, com-
petitive analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.13

1 Introduction

Consider the problem of managing a shared data item among sets of processors. For example,
in a distributed program running in a network, nodes want to have access to shared files,
objects or databases. Such a file can be stored in the local memory of one of the processors
and when another processor wants to access (read from or write to) this file, it has to
contact the processor holding the file. Such a transaction incurs a certain cost. Moreover,
access patterns to this file may change frequently and unpredictably, which renders any static
placement of the file inefficient. Hence, the goal is to minimize the total cost of communication
by moving the file in response to such accesses, so that the requesting processors find the file
“nearby” in the network.

The file migration problem serves as the theoretical underpinning of the application
scenario described above. The problem was coined by Black and Sleator [13] and was initially
called page migration, as the original motivation concerned managing a set of memory pages

∗ Extended abstract; the full version is available at https://arxiv.org/abs/1609.00831.
† Partially supported by Polish National Science Centre grants 2016/22/E/ST6/00499 and

2015/18/E/ST6/00456. The work of M. Mucha is part of a project TOTAL that has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 677651).

EA
T

C
S

© Marcin Bienkowski, Jarosław Byrka, and Marcin Mucha;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.13
https://arxiv.org/abs/1609.00831
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

in a multiprocessor system. There the data item was a single memory page held at a local
memory of a single processor.

Most subsequent work referred to this problem as file migration and we will stick to this
convention in this paper. The file migration problem assumes the non-uniform model, where
the shared file is much larger than a portion accessed in a single time step. This is typical
when in one step a processor wants to read a single unit of data from a file or a record from
a database. On the other hand, to reduce the maintenance overhead, it is assumed that the
shared file is indivisible, and can be migrated between nodes only as a whole. This makes
the file migration much more expensive than a single access to the file. As the knowledge
of future accesses is either partial or completely non-existing, the accesses to the file can
be naturally modeled as an online problem, where the input sequence consists of processor
identifiers, which sequentially try to access pieces of the shared file.

1.1 The Model
The studied network is modeled as an edge-weighted graph or, more generally, as a metric
space (X , d) whose point set X corresponds to processors and d defines the distances between
them. There is a large indivisible file (historically called page) of size D stored at a point
of X . An input is a sequence of space points r1, r2, r3, . . . denoting processors requesting
access to the file. This sequence is presented in an online manner to an algorithm. More
precisely, we assume that the time is slotted into steps numbered from 1. Let algt denote
the position of the file at the end of step t and alg0 be the initial position of the file. In
step t ≥ 1, the following happens:
1. A requesting point rt is presented to the algorithm.
2. The algorithm pays d(algt−1, rt) for serving the request.
3. The algorithm chooses a new position algt for the file (possibly algt = algt−1) and

moves the file to algt paying D · d(algt−1,algt).

After the t-th request, the algorithm has to make its decision (where to migrate the file)
exclusively on the basis of the sequence up to step t. To measure the performance of an online
strategy, we use the standard competitive ratio metric [14]: an online deterministic algorithm
Alg is c-competitive if there exists a constant γ, such that for any input sequence I, it
holds that CALG(I) ≤ c · COPT(I) + γ, where CALG and COPT denote the costs of Alg
and Opt (optimal offline algorithm) on I, respectively. The minimum c for which Alg is
c-competitive is called the competitive ratio of Alg.

1.2 Previous Work
The problem was stated by Black and Sleator [13], who gave 3-competitive deterministic
algorithms for uniform metrics and trees and conjectured that 3-competitive deterministic
algorithms were possible for any metric space.

Westbrook [26] constructed randomized strategies: a 3-competitive algorithm against
adaptive-online adversaries and a (1 + φ)-competitive algorithm (for D tending to infinity)
against oblivious adversaries, where φ ≈ 1.618 denotes the golden ratio. By the result
of Ben-David et al. [10] this asserted the existence of a deterministic algorithm with the
competitive ratio at most 3 · (1 + φ) ≈ 7.854.

The first explicit deterministic construction was the 7-competitive algorithm Move-To-
Min (Mtm) by Awerbuch et al. [2]. Mtm operates in phases of length D, during which the
algorithm remains at a fixed position. In the last step of a phase, Mtm migrates the file to

M. Bienkowski, J. Byrka, and M. Mucha 13:3

a point that minimizes the sum of distances to all requests r1, r2, . . . , rD presented in the
phase, i.e., to a minimizer of the function fMTM(x) =

∑D
i=1 d(x, ri).

The ratio has been subsequently improved by the algorithm Move-To-Local-Min
(Mtlm) by Bartal et al. [8]. Mtlm works similarly to Mtm, but it changes the phase
duration to c0 ·D for a constant c0, and when computing the new position for the file, it
also takes the migration distance into consideration. Namely, it chooses to migrate the file
to a point that minimizes the function

fMTLM(x) = D · d(vMTLM, x) + c0+1
c0

∑c0·D
i=1 d(x, ri) ,

where vMTLM denotes the point at which Mtlm keeps its file during the phase. The algorithm
is optimized by setting c0 ≈ 1.841 being the only positive root of the equation 3c3−8c−4 = 0.
For such c, the competitive ratio of Mtlm is R0 ≈ 4.086, where R0 is the largest (real) root
of the equation R3 − 5R2 + 3R+ 3 = 0. Their analysis is tight.

It is worth noting that most of the competitive ratios given above hold when D tends to
infinity. In particular, for Mtlm we assume that c0 ·D is an integer and the ratio of 1 + φ of
Westbrook’s algorithm [26] is achieved only in the limit.

Better deterministic algorithms are known only for some specific graph topologies. There
are 3-competitive algorithms for uniform metrics and trees [13], and (3 + 1/D)-competitive
strategies for three-point metrics [23]. Chrobak et al. [15] showed 2 + 1/(2D)-competitive
strategies for continuous trees and products of trees, e.g., for Rn with `1 norm. Furthermore,
a (1 + φ)-competitive algorithm for Rn under any norm was also given in [15].

A straightforward lower bound of 3 for deterministic algorithms was given by Black and
Sleator [13] and later adapted to randomized algorithms against adaptive-online adversaries
by Westbrook [26]. The currently best lower bound for deterministic algorithms is due to
Matsubayashi [22], who showed a lower bound of 3 + ε that holds for any value of D, where
ε is a constant that does not depend on D. This renders the file migration problem one
of the few natural problems, where a known lower bound on the competitive ratio of any
deterministic algorithm is strictly larger than the competitive ratio of a randomized algorithm
against an adaptive-online adversary.

Finally, improved results were given for a simplified model where D = 1: the competitive
ratio for deterministic algorithms is then known to be between 3.164 and 3.414 [21].

1.3 Our Contribution
We propose a new deterministic algorithm that dynamically decides on the length of the
phase based on the geometry of requests received in the initial part of each phase. This
improves the 20-years old result of Bartal et al. [8].

The improvement was obtained by carefully analyzing a linear model (factor revealing
LP) of a single phase of the algorithm. It allowed us to identify some key tight examples
for the previous analysis, suggested a nontrivial construction of the new algorithm, and
facilitated a systematic search within the design parameter space.

More precisely, for a fixed algorithm Alg (from a relatively broad class), we create
a maximization LP with the following property: if the competitive ratio of Alg is at least R,
then so is the value of LP. A solution to the LP contains a succinct description of a metric
space along with a short description of a single-phase input, both constituting a lower bound
for Alg. Hence, the value of LP is an upper bound on Alg’s competitiveness. We discuss
the details of the LP approach in Section 4.

The way the algorithm was obtained is perhaps unintuitive. Nevertheless, the final
algorithm is an elegant construction involving only essentially integral constants. By studying

ICALP 2017

13:4 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

the dual solution, we managed to extract a compact, human-readable, combinatorial upper
bound based on path-packing arguments and to obtain the following result.

I Theorem 1. There exists a deterministic 4-competitive algorithm for the file migration
problem.

We also show that improvement of Mtlm would not be possible by just selecting different
parameters for a phase-based algorithm operating with a fixed phase length. Our construction
shows that an analysis that treats each phase separately (e.g., the one employed for Mtlm [8])
cannot give better bounds on the competitive ratio than 4.086. (A weaker lower bound of
3.847 for algorithms that use fixed phase length was given by Bartal et al. [8].)

I Theorem 2. Fix any algorithm Alg that operates in phases of fixed length. Assume
that between the phases, the adversary can arbitrarily modify the graph while keeping the
distance between the files of Opt and Alg unchanged. Then, the competitive ratio of Alg
is at least R0 (for D tending to infinity), where R0 ≈ 4.086 is the competitive ratio of
algorithm Mtlm.

1.4 Other Related Work
The file migration problem has been generalized in a few directions. When we lift the
restriction that the file can only be migrated and not copied, the resulting problem is called
file allocation [9, 2, 18]. It makes sense especially when we differentiate read and write
requests to the file; for the former, we need to contact only one replica of the file; for the
latter all copies need to be updated. The attainable competitive ratios become then worse:
the best deterministic algorithm is O(logn)-competitive [2]; the lower bound of Ω(logn)
holds even for randomized algorithms and follows by a reduction from the online Steiner tree
problem [9, 17].

The file migration problem has been also extended to accommodate memory capacity
constraints at nodes (when more than one file is used) [1, 3, 4, 6], dynamically changing
networks [4, 12], and different objective functions (e.g., minimizing congestion) [19, 25]. For
a more systematic treatment of the file migration and related problems, see surveys [7, 11].
For more applied approaches, see the survey [16] and the references therein.

2 4-Competitive Algorithm Dynamic-Local-Min

We start with an insight concerning the hard inputs for the Mtlm algorithm [8]. We identified
two classes of tight instances for Mtlm: bipartite and linear (cf. Figure 1). It can be shown
that if the algorithm knew in advance on which instance it was run, it could improve its
performance by changing the phase length. Namely, for bipartite instances a longer phase
would help the algorithm, whereas a shorter phase would be beneficial for linear instances.

To decide the length of the phase, we need to measure the level of request concentration as
compared to the distance from the current position of an algorithm to the center of requests.
Intuitively, observing that (from some time) requests are concentrated around a certain
point motivates the algorithm to shorten the phase and quickly move to the “center of the
requests”. If, on the other hand, requests are scattered and the current algorithm’s position
is essentially in the middle of the observed requests, it appears reasonable to wait longer
before moving the file. This rule agrees with the desired behavior of the algorithm on linear
and bipartite instances.

Turning the above intuition into an effective phase extension rule is not trivial. We
present an algorithm based on a rule that we have extracted from an optimization process

M. Bienkowski, J. Byrka, and M. Mucha 13:5

Q

a

S

a b

Figure 1 The geometries of selected tight instances for Mtlm. In both cases, the algorithm
starts at point a. In the linear instance (on the right), the requests are initially given at a and then
later at b, and the algorithm is expected to migrate the file to point b. In the bipartite instance (on
the left) the requests are given at nodes from set S and the algorithm is expected to migrate the file
to one of the nodes from set Q.

using a natural linear model of the amortized phase-based analysis. This linear model is quite
complex and we present it in Section 4. It can be seen as an alternative (computer-based)
proof for the performance guarantee of our algorithm. Such proof technique might be
interesting on its own and useful for analyzing other online games played on metric spaces.

2.1 Notation
For succinctness, we introduce the following notions. For any two points v1, v2 ∈ X , let
[v1, v2] = D · d(v1, v2). We extend this notation to sequences of points, i.e., [v1, v2, . . . , vj] =
[v1, v2] + [v2, v3] + . . .+ [vj−1, vj]. Moreover, if v ∈ X is a point and S ⊆ X is a multiset of
points, then

[v, S] = [S, v] = D · 1
|S|

∑
x∈S d(v, x) ,

i.e., [v, S] is the average distance from v to a point of S times D. We extend the sequence
notation introduced above to sequences of points and multisets of points, e.g., [v, S, u, T] =
[v, S] + [S, u] + [u, T]. The symbol [S, T] is not defined for multisets S, T ; we will only use
this notation for sequences that do not contain two consecutive multisets.

Observe that the sequence notation allows for easy expressing of the triangle inequality:
[v1, v2] ≤ [v1, v3, v2]; we will extensively use this property. Note that the following “multiset”
version of the triangle inequality also holds: [v1, v2] ≤ [v1, S, v2].

2.2 Algorithm definition
We propose a new phase-based algorithm that dynamically decides on the length of the
current phase, which we call Dynamic-Local-Min (Dlm). Dlm operates in phases, but it
chooses their lengths depending on the geometry of requests seen in the initial part of the
phase. Roughly speaking, when it recognizes that the currently seen requests more closely
resemble a linear tight example for Mtlm, it ends the phase after 1.75D steps. Otherwise,
it assumes that the presented graph is more in the flavor of the bipartite construction, and
ends the phase only after 2.25D steps.

For any step t, we denote the position of Dlm’s file at the end of step t by dlmt and
that of Opt by opt. We identify the requests with the points where they are issued.

Assume a phase starts in step t + 1; that is, dlmt is the position of Dlm at the very
beginning of a phase. Within the phase, Dlm waits 1.75D steps and at step t+ 1.75D, it
finds a node vg that minimizes the function

g(v) = [dlmt, v,R1, v,R2] = [dlmt, v] + 2 · [v,R1] + [v,R2] ,

ICALP 2017

13:6 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

where R1 is the multiset of the requests from steps t+ 1, . . . , t+D and R2 is the multiset of
the subsequent requests from steps t+D + 1, . . . , t+ 1.75D.

If g(vg) ≤ 1.5 · [dlmt,R2], the algorithm moves its file to vg, and ends the current phase.
Intuitively, this condition corresponds to detecting if there exists a point that is substantially
closer to the first 1.75D requests of the phase than the current position. The condition is
constructed in a way to be conclusive for each of the possible outcomes. If indeed such point
exists, then by moving the file to this point, we get much closer to the file of Opt. If there is
no such good point, then also the optimal solution is experiencing some request related costs.
Then, we may afford to wait a little longer and meanwhile get a more accurate estimation of
the possible location of the file of Opt.

That is, if g(vg) > 1.5 · [dlmt,R2], Dlm waits the next 0.5D steps and (in step t+2.25D)
it moves its file to the point vh, where vh is the minimizer of the function

h(v) = [dlmt, v] + [v,R1] + 1.25 · [v,R2] + 0.75 · [v,R3] .

R3 is the multiset of the last 0.5D requests from the prolonged phase (from steps t+1.75D+
1, . . . , t+ 2.25D). Also in this case, the next phase starts right after the file movement.

Note that the short phase consists of D requests denoted R1 followed by 0.75D requests
denoted R2, while the long phase consists additionally of 0.5D requests denoted R3. We
will say that the short phase consists of two parts, R1 and R2, and the long phase consists
of three parts, R1, R2 and R3.

2.3 DLM Analysis
We start with a lower bound on Opt. The following bound is an extension of the bound
given implicitly in [8]; its proof is given in the full version of the paper.

I Lemma 3. Let R be a subsequence of at most 2D consecutive requests from the input
issued at steps t+ 1, t+ 2, . . . , t+ |R|. Then, 4 · COPT(R) ≥ (2|R|/D) · [opt,R,opt+|R|] +
(4− 2|R|/D) · [opt,opt+|R|].

We define a potential function at (the end of) step t as Φt = 3 · [dlmt,opt]. It suffices to
show that in any (short or long) phase consisting of steps t+ 1, t+ 2, . . . , t+ `, during which
requests R are given, it holds that

CALG(R) + Φt+` ≤ 4 · COPT(R) + Φt . (1)

Theorem 1 follows immediately by summing the above bound over all phases of the input.

2.3.1 Proof for a short phase
We consider any short phase R consisting of part R1, spanning steps t+ 1, . . . , t+D, and
part R2, spanning steps t+D + 1, . . . , t+ 1.75D. For succinctness, we define op0 = opt,
op1 = opt+D and op2 = opt+1.75 D. By Lemma 3 applied to R1 and R2,

4 · COPT(R) + Φt = 3 · [dlmt,op0] + 4 · COPT(R1) + 4 · COPT(R2)
≥ 3 · [dlmt,op0] + 2 · [op0,op1] + 2 · [op0,R1,op1] (2)

+ 2.5 · [op1,op2] + 1.5 · [op1,R2,op2] .

We treat the amount (2) as our budget. This is illustrated below; the coefficients are written
as edge weights.

M. Bienkowski, J. Byrka, and M. Mucha 13:7

op0 op1

R1 R2

dlmt op2

3 2 2.5

2 2 1.5 1.5

xxxxxxxxxxxxxxxxxxxxxx

Budget = 4 OPT
+ initial potential
(short phase case)

Now, we bound CALG(R) + Φt+1.75 D using the definition of Alg and the triangle inequality.

CALG(R) + Φt+1.75 D

= CALG(R1) + CALG(R2) + 3[vg,op2]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + [dlmt, vg] + 3 · [vg,op2]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + [dlmt, vg] + 2 · [vg,R1,op2] + [vg,R2,op2]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2]

+ [dlmt, vg] + 2 · [vg,R1] + [vg,R2]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2] + g(vg) . (3)

The first four summands of (3) can be bounded as

[dlmt,R1] + 0.75 · [dlmt,R2] + 2 · [op2,R1] + [op2,R2] (4)
≤ [dlmt,op0,R1] + 0.75 · [dlmt,op0,op1,R2] + 2 · [op2,op1,R1] + [op2,R2] ,

and their total weights in the final expression are depicted below.
op0 op1

R1 R2

dlmt op2

1.75 0.75 2

1 2 0.75 1

xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 1, short phase)

For the last summand of (3), g(vg), we use the fact that vg is a minimizer of the function g
(and hence g(vg) ≤ g(op0)), and the property of the short phase (g(vg) ≤ 1.5 · [dlmt,R2]).
Therefore,

g(vg) ≤ 0.5 · g(op0) + 0.75 · [dlmt,R2]
≤ 0.5 · [dlmt,op0,R1,op0,R2] + 0.75 · [dlmt,R2] (5)
≤ 0.5 · [dlmt,op0,R1,op0,op1,op2,R2] + 0.75 · [dlmt,op0,op1,R2] .

op0 op1

R1 R2

dlmt op2

1.25 1.25 0.5

1 0.75 0.5

xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 2, short phase)

By combining (3), (4) and (5) (or simply adding the edge coefficients on the last two figures)
we observe that the budget ((2), i.e., the edge coefficients on the first figure) is not exceeded.
This implies 4-competitiveness, i.e., that (1) holds for any short phase.

2.3.2 Proof for a long phase
We consider any long phase R consisting of part R1, spanning steps t+ 1, . . . , t+D; part R2,
spanning steps t+D+ 1, . . . , t+ 1.75 ·D; and part R3, spanning steps t+ 1.75 ·D+ 1, . . . , t+
2.25 · D. Similarly to the proof for a short phase, we define op0 = opt, op1 = opt+D,

ICALP 2017

13:8 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

op2 = opt+1.75 D, and op3 = opt+2.25 D. We emphasize that the positions of Opt in a long
and a short phase can be completely different.

By Lemma 3, we obtain a bound very similar to that for a short phase; again, we treat it
as a budget and depict its coefficients as edge weights.

4 · COPT(R) + Φt = 3 · [dlmt,op0] + 4 · COPT(R1) + 4 · COPT(R2) + 4 · COPT(R3)
≥ 3 · [dlmt,op0] + 2 · [op0,op1] + 2 · [op0,R1,op1] (6)

+ 2.5 · [op1,op2] + 1.5 · [op1,R2,op2]
+ 3 · [op2,op3] + [op2,R3,op2] .

op0 op1

R1 R2

dlmt op2

3 2 2.5

2 2 1.5 1.5

op3

1 1

3

R3
xxxxxxxxxxxxxxxxxxxxxx

Budget = 4 OPT
+ initial potential
(long phase case)

Now, we bound CALG(R) + Φt+2.25 D, using the definition of Alg and the triangle inequality.

CALG(R) + Φt+2.25 D

= CALG(R1) + CALG(R2) + CALG(R3) + 3 · [vh,op3]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] + [dlmt, vh] + 3 · [vh,op3]
≤ [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] + [dlmt, vh]

+ [vh,R1,op3] + 1.25 · [vh,R2,op3] + 0.75 · [vh,R3,op3]
= [dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3] (7)

+ [op3,R1] + 1.25 · [op3,R2] + 0.75 · [op3,R3] + h(vh) .

Since Dlm has not migrated the file after the first two parts, g(v) ≥ 1.5 · [dlmt,R2] for
any node v. Therefore 0.75 · [dlmt,R2] ≤ 0.5 · g(op0) = 0.5 · [dlmt,op0,R1,op0,R2] ≤
0.5 · [dlmt,op0,R1,op0,op1,R2]. Using this and the triangle inequality, the first three
summands of (7) can be bounded and depicted as follows:

[dlmt,R1] + 0.75 · [dlmt,R2] + 0.5 · [dlmt,R3]
≤ [dlmt,op0,R1] + 0.5 · [dlmt,op0,R1,op0,op1,R2] (8)

+ 0.5 · [dlmt,op0,op1,op2,R3] .

op0 op1

R1 R2

dlmt op2

2 1 0.5

2 0.5

op3

0.5

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part1, long phase)

The next three summands of (7) can be also bounded appropriately:

[op3,R1] + 1.25 · [op3,R2] + 0.75 · [op3,R3]
≤ [op3,op2,op1,R1] + 1.25 · [op3,op2,R2] + 0.75 · [op3,R3] . (9)

op0 op1

R1 R2

dlmt op2

2.251

1

op3

0.75

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 2, long phase)1.25

M. Bienkowski, J. Byrka, and M. Mucha 13:9

Lastly, for bounding h(vh), we use the fact that vh is a minimizer of h, and hence

h(vh) ≤ h(op1)
= [op1,dlmt] + [op1,R1] + 1.25 · [op1,R2] + 0.75 · [op1,R3]
≤ [op1,op0,dlmt] + [op1,R1] + [op1,R2] + 0.25 · [op1,op2,R2] (10)

+ 0.5 · [op1,op2,R3] + 0.25 · [op1,op2,op3,R3] .

Note that in (10) we split some of the paths and choose the longer ones, so that the budgets
on edges are not violated. Bound (10) is depicted on the figure below.

op0 op1

R1 R2

dlmt op2

0.251

1

op3

0.25

R3
xxxxxxxxxxxxxxxxxxxxxx

DLM cost
+ final potential
(part 3, long phase)0.25

1

0.51

1

By combining (7), (8), (9) and (10) (or simply adding edge coefficients on the last three
figures), we observe that the budget ((6), i.e., the edge coefficients on the first figure) is
not exceeded. This implies 4-competitiveness, i.e., that (1) holds for any long phase and
concludes the proof of Theorem 1.

3 Lower Bound for Phase-Based Algorithms

A fixed-phase algorithm chooses phase length c ·D and after every c ·D requests it makes
a migration decision solely on the basis of its current position and the last c ·D requests.
We now proceed to argue that no fixed-phase algorithm Alg can beat the competitive ratio
R0 ≈ 4.086 achieved by Mtlm [8] (cf. Theorem 2). As already stated in the introduction,
to ensure that the algorithm cannot base its choices on the previous phases, we will give
the adversary an additional power: it may modify the graph between the phases of Alg,
as long as the distance between nodes keeping the files of Alg and Opt (valg and vopt,
respectively) is preserved. We emphasize that the analysis of Mtlm [8] essentially uses this
model: each phase is analyzed completely separately from others. The full proof is given in
the full version of the paper; here we informally highlight its key ideas.

The adversarial construction consists of many epochs, each consisting of some number
of phases. At the beginning and at the end of an epoch, Alg and Opt keep their files at
the same node. We define three adversarial strategies, called plays: linear, bipartite, and
finishing. Each play consists of one or more phases. A prerequisite for each given play is
a particular distance between valg and vopt. Each play will have some properties: it will
incur some cost on Alg and Opt and will end with valg and vopt in a specific distance.

In the first phase of an epoch, when initially valg = vopt, the adversary uses the linear
play (the generated graph is a single edge of length 1), so that at the end of the phase,
d(valg, vopt) = 1. For such phase P , we have CALG(P) ≥ R0 · COPT(P)− (1/(1− 2α)) ·D,
where α = 1/(R0 − 1). Note that in this phase alone, the adversary does not enforce the
desired competitive ratio of R0, but it increases the distance between vopt and valg.

In each of the next L phases, the adversary employs the bipartite play; the graph used
corresponds to a tight bipartite example for Mtlm, cf. Figure 1). Let f be the value of
d(valg, vopt) at the beginning of a phase. If the algorithm plays well, then at the end of
the phase this distance decreases to 2α · f . Furthermore, neglecting lower order terms,
for such phase P , it holds that CALG(P) ≥ R0 · COPT(P) + f · D, i.e., the inequality
CALG(P) ≥ R0 · COPT(P) holds with the slack f ·D. The sum of these slacks over L phases

ICALP 2017

13:10 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

is
∑L−1

i=0 (2α)i ·D, which tends to (1/(1 − 2α)) ·D when L grows. Hence, after one linear
and L bipartite phases (for a large L and neglecting lower order terms again), the cost paid
by Alg is at least R0 times the cost paid by Opt and the distance between their files is
negligible.

Finally, to decrease the distance between valg and vopt to zero, the adversary uses a third
type of play, the finishing one. This play incurs a negligible cost and it forces the positions
of Alg and Opt files to coincide, which ends an epoch.

4 Linear Program for File Migration

In this section, we present a linear programming model for the analysis of both algorithm
Mtlm by Bartal et al. [8] and our algorithm Dlm.

4.1 LP analysis of MTLM-like algorithms
In our approach, we analyze any Mtlm-like algorithm Alg. We use our notion of distances
from Section 2.1. Alg will be a variant of Mtlm parameterized with two values β and δ.
The length of its phase is δ ·D and the initial point of Alg is denoted by A0. We denote
the set of requests within a phase by R. At the end of a phase, Alg migrates the file to
a point A1 that minimizes the function

f(x) = [A0, x] + β · [x,R] .

As in the amortized analysis of the algorithm Mtlm [8], we will use a potential function
equal to φ times the distance between the files of Alg and Opt, where φ is a parameter
used in the analysis. We let O0 and O1 denote the initial and final position of Opt during
the studied phase, respectively. Then, the amortized cost of Alg in a single phase is
CALG = δ · [A0,R] + [A0, A1] + φ([A1, O1]− [A0, O0]).

The following factor-revealing LP mimics the proof given in [8]. Namely, it encodes
inequalities that are true for any phase and a graph on which Alg can be run. Its goal is to
maximize the ratio between CALG and COPT: as an instance can be scaled, we set COPT = 1
and we maximize CALG. Let V = {A0, A1, O0, O1} and V ′ = V ∪ {R}.

maximize CALG

subject to:
CALG = δ · [A0,R] + [A0, A1] + φ · ([A1, O1]− [A0, O0])
COPT = 1
COPT = Creq

OPT + Cmove
OPT

Cmove
OPT ≥ [O0, O1]

2 · Creq
OPT + δ · Cmove

OPT ≥ δ · [O0,R] + δ · [O1,R]
f(A1) ≤ f(v) for all v ∈ V
0 ≤ [v1, v3] ≤ [v1, v2] + [v2, v3] for all v1, v2, v3 ∈ V ′

As R is a set of requests, it does not necessarily correspond to a single point in the
studied metric. Nevertheless, our notion of average distances (i.e., [v1, v2]) allows us to write
the triangle inequalities for any pair of objects from set V ∪ {R}.

In the LP above, Creq
OPT, Cmove

OPT denote the cost of Opt for serving the request and the
cost of Opt for migrating the file, respectively. The inequality 2 · Creq

OPT + δ · Cmove
OPT ≥

δ · [O0,R] + δ · [O1,R] is a counterpart of the relation guaranteed by Lemma 3.

M. Bienkowski, J. Byrka, and M. Mucha 13:11

For any choice of parameters β, δ, and φ, the LP above finds an instance that maximizes
the competitive ratio of Alg. Note that such instance is not necessarily a certificate that
Alg indeed performs poorly: in particular, inequalities that lower-bound the cost of Opt
might not be tight. However, the opposite is true: if the value of CALG returned by the LP
is ξ, then for any possible instance the ratio is at most ξ.

Let c0 = 1.841 be the phase length of Mtlm. Setting δ = c0 and β = φ = 1 + c0 yields
that the optimal value of the LP is R0 ≈ 4.086, which can be interpreted as a numerical
counterpart of the original analysis in [8]. To obtain a formal mathematical proof, one may
take a dual solution to the LP. It gives the coefficients that multiplied by the corresponding
LP inequalities and summed over all inequalities yield a proof that the amortized cost of
Mtlm in any phase is at most R0 times the cost of Opt. Summed over all phases, this
implies that Mtlm is R0-competitive.

Among other advantages, this approach allows us to numerically find the instances that
are tight for the current analysis (cf. Section 2 and Figure 1): linear and bipartite instances
can be obtained this way.

4.2 LP analysis of DLM-like algorithms
Now we show how to adapt the LP from the previous section to analyze Dlm-type algorithms.
Recall that after 1.75D requests, Dlm evaluates the geometry of the so-far-received requests
and decides whether to continue this phase or not. Although the final parameters of Dlm are
elegant numbers (multiplicities of 1/4), they were obtained by a tedious optimization process
using the LP we present below. Furthermore, the LP below does not give us an explicit rule
for continuing the phase; it only tells that Dlm is successful either in a short or in a long
phase.

Recall that in a phase, Dlm considers three groups of consecutive δi ·D requests: R1,
R2, and R3, where δ1, δ2, and δ3 are parameters of Dlm. First, assume that Dlm always
processes three parts and afterwards it moves the file to a point A3 that minimizes the
function

h(x) = [A0, x] + β1 · [x,R1] + β2 · [x,R2] + β3 · [x,R3] ,

where βi are parameters that we choose later. We denote the strategy of an optimal algorithm
by OptL (short for Opt-Long). Let OL

0 , OL
1 , OL

2 and OL
3 denote the trajectory of OptL

(OL
0 is the initial position of the OptL’s file at the beginning of the phase, and OL

i is its
position right after the i-th part of the phase). Analogously to the previous section, we
obtain the following LP.

maximize CALGL

subject to:
CALGL = [A0, A3] +

∑
i=1,2,3 δi · [A0,Ri] + φ · ([A3, O

L
3]− [A0, O

L
0])

COPTL = 1
COPTL =

∑
i=1,2,3 (Creq

OPTL(i) + Cmove
OPTL(i))

Cmove
OPTL(i) ≥ [OL

i−1, O
L
i] for i = 1, 2, 3

2 · Creq
OPTL(i) + δ · Cmove

OPTL(i) ≥ δi · [OL
i−1,Ri] + δi · [OL

i ,Ri] for i = 1, 2, 3
h(A3) ≤ h(v) for all v ∈ V
0 ≤ [v1, v3] ≤ [v1, v2] + [v2, v3] for all v1, v2, v3 ∈ V ′

This time V = {A0, A3, O
L
0 , O

L
1 , O

L
2 , O

L
3 } and V ′ = V ∪ {R1,R2,R3}.

ICALP 2017

13:12 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

We note that such parameterization alone does not improve the competitive ratio, i.e., for
any choice of parameters δi and βi, the objective value of the LP above is at least R0 ≈ 4.086.

However, as stated in Section 2.1, Dlm verifies if after two parts it can migrate its file to
a node A2 being the minimizer of the function

g(x) = [A0, x] + β′1 · [x,R1] + β′2 · [x,R2] ,

where β′i are parameters that we choose later.
In our analysis, we gave an explicit rule whether the migration to A2 should take place.

However, for our LP-based approach, we follow a slightly different scheme. Namely, if the
migration to A2 guarantees that the amortized cost in the short phase (the first two parts)
is at most 4 times the cost of any strategy for the short phase, then Dlm may move to A2
and we immediately achieve competitive ratio 4 on the short phase. Otherwise, we may
add additional constraints to the LP, stating that the competitive ratio of an algorithm
which moves to A2 is at least 4 (against any chosen strategy OptS). Analogously to OptL,
the trajectory of OptS is described by three points: OS

0 , OS
1 , and OS

2 . This allows us to
strengthen our LP by adding the following inequalities:

CALGS = [A0, A2] +
∑

i=1,2 δi · [A0,Ri] + φ · ([A2, O
S
2]− [A0, O

S
0])

COPTS =
∑

i=1,2 (Creq
OPTS(i) + Cmove

OPTS(i))
Cmove
OPTS(i) ≥ [OS

i−1, O
S
i] for i = 1, 2

2 · Creq
OPTS(i) + δ · Cmove

OPTS(i) ≥ δi · [OS
i−1,Ri] + δi · [OS

i ,Ri] for i = 1, 2
g(A2) ≤ g(v) for all v ∈ V
CALGS ≥ 4 · COPTS

We also change V to {A0, A3, O
L
0 , O

L
1 , O

L
2 , O

L
3 , O

S
0 , O

S
1 , O

S
2 }, both in new and in old inequal-

ities.
When we choose φ = 3, fix phase length parameters to be δ1 = 1, δ2 = 0.75, δ3 = 0.5 and

parameters for functions g and h to be β′1 = 2, β′2 = 1, β1 = 1, β2 = 0.25 and β3 = 0.75, we
obtain that the value of the above LP is 4. Again, this can be interpreted as a numerical
argument that Dlm is indeed a 4-competitive algorithm.

5 Conclusions

While in the last decade factor-revealing LPs became a standard tool for analysis of approxi-
mation algorithms, their application to online algorithms so far have been limited to online
bipartite matching and its variants (see, e.g., [24, 20]) and for showing lower bounds [5]. In
this paper, we successfully used the factor-revealing LP to bound the competitive ratio of
an algorithm for an online problem defined on an arbitrary metric space. We believe that
similar approaches could yield improvements also for other online graph problems.

References
1 Susanne Albers and Hisashi Koga. Page migration with limited local memory capacity. In

Proc. 4th Int. Workshop on Algorithms and Data Structures (WADS), pages 147–158, 1995.
2 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Competitive distributed file allocation. In

Proc. 25th ACM Symp. on Theory of Computing (STOC), pages 164–173, 1993.
3 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Heat & Dump: Competitive distributed

paging. In Proc. 34th IEEE Symp. on Foundations of Computer Science (FOCS), pages
22–31, 1993.

M. Bienkowski, J. Byrka, and M. Mucha 13:13

4 Baruch Awerbuch, Yair Bartal, and Amos Fiat. Distributed paging for general networks.
Journal of Algorithms, 28(1):67–104, 1998.

5 Yossi Azar, Ilan Reuven Cohen, and Alan Roytman. Online lower bounds via duality. In
Proc. 28th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 1038–1050, 2017.

6 Yair Bartal. Competitive Analysis of Distributed On-line Problems – Distributed Paging.
PhD thesis, Tel-Aviv University, 1995.

7 Yair Bartal. Distributed paging. In Dagstul Workshop on On-line Algorithms, pages 97–117,
1996.

8 Yair Bartal, Moses Charikar, and Piotr Indyk. On page migration and other relaxed task
systems. Theoretical Computer Science, 268(1):43–66, 2001. Also appeared in Proc. of the
8th SODA, pages 43–52, 1997.

9 Yair Bartal, Amos Fiat, and Yuval Rabani. Competitive algorithms for distributed data
management. Journal of Computer and System Sciences, 51(3):341–358, 1995.

10 Shai Ben-David, Allan Borodin, Richard M. Karp, Gabor Tardos, and Avi Wigderson. On
the power of randomization in online algorithms. Algorithmica, 11(1):2–14, 1994.

11 Marcin Bienkowski. Migrating and replicating data in networks. Computer Science –
Research and Development, 27(3):169–179, 2012.

12 Marcin Bienkowski, Jaroslaw Byrka, Miroslaw Korzeniowski, and Friedhelm Meyer auf der
Heide. Optimal algorithms for page migration in dynamic networks. Journal of Discrete
Algorithms, 7(4):545–569, 2009.

13 David L. Black and Daniel D. Sleator. Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science, Carnegie-
Mellon University, 1989.

14 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

15 Marek Chrobak, Lawrence L. Larmore, Nick Reingold, and Jeffery Westbrook. Page mi-
gration algorithms using work functions. Journal of Algorithms, 24(1):124–157, 1997.

16 Bezalel Gavish and Olivia R. Liu Sheng. Dynamic file migration in distributed computer
systems. Communications of the ACM, 33(2):177–189, 1990.

17 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM Journal
on Discrete Mathematics, 4(3):369–384, 1991.

18 Carsten Lund, Nick Reingold, Jeffery Westbrook, and Dicky C.K. Yan. Competitive on-line
algorithms for distributed data management. SIAM Journal on Computing, 28(3):1086–
1111, 1999.

19 Bruce M. Maggs, Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Wester-
mann. Exploiting locality for data management in systems of limited bandwidth. In Proc.
38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 284–293, 1997.

20 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In Proc. 43rd ACM Symp. on Theory of
Computing (STOC), pages 597–606, 2011.

21 Akira Matsubayashi. Uniform page migration on general networks. International Journal
of Pure and Applied Mathematics, 42(2):161–168, 2008.

22 Akira Matsubayashi. A 3+Omega(1) lower bound for page migration. In Proc. 3rd Int.
Symp. on Computing and Networking (CANDAR), pages 314–320, 2015.

23 Akira Matsubayashi. Asymptotically optimal online page migration on three points. Algo-
rithmica, 71(4):1035–1064, 2015.

24 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized online matching. Journal of the ACM, 54(5), 2007.

ICALP 2017

13:14 Dynamic Beats Fixed: On Phase-Based Algorithms for File Migration

25 Friedhelm Meyer auf der Heide, Berthold Vöcking, and Matthias Westermann. Provably
good and practical strategies for non-uniform data management in networks. In Proc. 7th
European Symp. on Algorithms (ESA), pages 89–100, 1999.

26 Jeffery Westbrook. Randomized algorithms for the multiprocessor page migration. SIAM
Journal on Computing, 23:951–965, 1994.

The Infinite Server Problem∗†

Christian Coester1, Elias Koutsoupias2, and Philip Lazos3

1 Department of Computer Science, University of Oxford, Oxford, UK
christian.coester@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
elias.koutsoupias@cs.ox.ac.uk

3 Department of Computer Science, University of Oxford, Oxford, UK
filippos.lazos@cs.ox.ac.uk

Abstract
We study a variant of the k-server problem, the infinite server problem, in which infinitely many
servers reside initially at a particular point of the metric space and serve a sequence of requests.
In the framework of competitive analysis, we show a surprisingly tight connection between this
problem and the (h, k)-server problem, in which an online algorithm with k servers competes
against an offline algorithm with h servers. Specifically, we show that the infinite server problem
has bounded competitive ratio if and only if the (h, k)-server problem has bounded competitive
ratio for some k = O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite
server problem, which implies the same lower bound for the (h, k)-server problem even when
k/h → ∞ and holds also for the line metric; the previous known bounds were 2.4 for general
metric spaces and 2 for the line. For weighted trees and layered graphs we obtain upper bounds,
although they depend on the depth. Of particular interest is the infinite server problem on the
line, which we show to be equivalent to the seemingly easier case in which all requests are in
a fixed bounded interval away from the original position of the servers. This is a special case
of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately,
classical approaches (double coverage and generalizations, work function algorithm, balancing
algorithms) fail even for this special case.

1998 ACM Subject Classification F.1.2 Modes of Computation (Online Computation)

Keywords and phrases Online Algorithms, k-Server, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.14

1 Introduction

The k-server problem is a fundamental well-studied online problem [19, 16]. In this problem
k servers serve a sequence of requests. The servers reside at k points of a metric space M
and requests are simply points of M . Serving a request entails moving one of the servers to
the request. The objective is to minimize the total distance traveled by the servers. The
most interesting variant of the problem is its online version, in which the requests appear
one-by-one and the online algorithm must decide how to serve a request without knowing the
future requests. It is known that the deterministic k-server problem has competitive ratio
between k and 2k − 1 for every metric space with at least k + 1 distinct points [19, 17].

In this paper, we study the infinite server problem, the variant of the k-server problem in
which there are infinitely many servers, all of them initially residing at a given point, the

∗ Full version available at https://arxiv.org/abs/1702.08474.
† Supported by the ERC Advanced Grant 321171 (ALGAME) and by EPSRC.

EA
T

C
S

© Christian Coester, Elias Koutsoupias, and Philip Lazos;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.14
https://arxiv.org/abs/1702.08474
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 The Infinite Server Problem

source1. At first glance it may appear that the lower bound of k for the k-server problem
would imply an unbounded competitive ratio for the infinite server problem. But consider,
for example, the version of the k-server problem on uniform metric spaces (i. e. the distance
between any two points is 1), and observe that the infinite server problem has competitive
ratio 1 for this case.

The infinite server problem is closely related to the (h, k)-server problem, the resource
augmentation version of the k-server problem in which the online algorithm has k servers
and competes against an offline algorithm for h ≤ k servers. This model is also known as
weak adversaries [2, 15]. One major open problem in competitive analysis is whether the
(h, k)-server problem has bounded competitive ratio when k � h. Here we show a, perhaps
surprising, tight connection between the infinite server problem and the (h, k)-server problem,
which also allows us to improve lower bounds for the latter.

The infinite server problem is also a considerable generalization of the ski-rental problem,
since the ski-rental problem is essentially a special case of the infinite server problem when
the metric space is an isosceles triangle.

Besides its theoretical appeal, our three main reasons for investigating the infinite server
problem are the following. First, the competitive ratio of the k-server problem goes to infinity
as k →∞, but for k =∞ it goes back to a small constant at least on some metric spaces.
This suggests that the high competitive ratio of the k-server problem is somewhat artificial.
Second, the problem allows to model applications where the number of servers is so high that
it is not a limitation in practice, or where more servers can be bought. A price for buying
new servers can be modeled easily by appropriate placement of the source in the metric space.
Third, the relationship between the infinite server problem and the (h, k)-server problem
allows for new ways to tackle the latter.

1.1 Previous Work
The k-server problem was first formulated by Manasse et al. [19], to generalize a variety of
online settings whose stepwise cost had a ‘metric’-like structure. They built on previous work
by Sleator and Tarjan [20], the genesis of competitive analysis, on the paging problem. This
problem can be easily recast as a k-server instance for the uniform metric and was already
known to be k-competitive.

Manasse et al. [19] also showed that the competitive ratio of the k-server problem is at
least k on any metric space with more than k points. They then proposed the renowned
k-server conjecture, stating that this bound is tight. This has been shown to be true for k = 2
[19] and for several special metric spaces [6, 7, 18, 19, 20]. A stream of refinements [12, 3] led
to better competitive ratios for general metric spaces until [17] showed that a competitive
ratio of 2k − 1 can be achieved on any metric space. Chasing the competitive ratio for the
deterministic (and randomized) k-server problem has been pivotal for the development of
competitive analysis. For a more in depth view on the history of the k-server problem and
further related work, we refer to [16].

In the weak adversaries setting, significantly less is known. For the (h, k)-server problem,
the exact competitive ratio is k

k−h+1 on uniform metrics (equivalent to paging) [20] and
weighted stars (equivalent to weighted paging) [21]. Bansal et al. [1] showed recently for
weighted trees that the competitive ratio as k/h→∞ is bounded by a constant depending on
the depth of the tree. On general metrics, the (h, k)-server problem is still poorly understood.

1 We first learned about this problem from Kamal Jain [14].

C. Coester, E. Koutsoupias, and P. Lazos 14:3

No algorithm is known for general metrics that performs better than disabling the k − h
extra servers and using h servers only. In fact, for the line it was shown [2, 1] that the Double
Coverage Algorithm and the Work Function Algorithm – despite achieving the optimal
competitive ratio of h if k = h [6, 4] – perform strictly worse in the resource augmentation
setting than disabling the k − h extra servers and applying the same algorithm to h servers
only. For the case that h is not fixed, the Work Function Algorithm was shown to be
2h-competitive simultaneously against any number h ≤ k of offline servers [15].

In terms of lower bounds, it is known that unlike for (weighted) paging, the competitive
ratio does not converge to 1 on general metrics even as k/h→∞. Prior to this work, the
best known lower bounds were 2 on the line, due to Bar-Noy and Schieber (see [5, p. 175]),
and 2.4 for general metrics as shown recently by Bansal et al. [1].

The closest publication to this work is by Csirik et al. [10], which studies a problem that
is essentially the special case of the infinite server problem on the uniform metric space
augmented by a far away source. It is cast as a paging problem where new cache slots can
be bought at a fixed price per unit and gives matching upper and lower bounds of ≈ 3.146
on the competitive ratio.

1.2 Our Results

Our main result is an equivalence theorem between the infinite server problem and the
(h, k)-server problem, presented in Section 2. It states that the infinite server problem is
competitive on every metric space if and only if the (h, k)-server problem is O(1)-competitive
on every metric space as k/h → ∞. We show further that it is not even necessary to let
k/h tend to infinity because in the positive case, there must also exist some k = O(h). The
theorem holds also if “every metric space” is replaced by “the real line”.

In Section 3 we present upper and lower bounds on the competitive ratio of the infinite
server problem on a variety of metric spaces. Extending the work in [10], we present a tight
lower bound for non-discrete spaces, which is then turned into a 3.146 lower bound for the
(h, k) setting. To our knowledge, this is the largest bound on the weak adversaries setting
for any metric space, as k/h → ∞. We show how recent work by Bansal et al. [1] can be
adapted to give an upper bound on the competitive ratio of the infinite server problem on
bounded-depth weighted trees. We also consider layered graph metrics, which are equivalent
(up to a factor of 2) to general graph metrics. We have not settled the case for their
competitive ratio, but we present a natural algorithm with tight analysis and pose challenges
for further research. The main open problem is whether there exists a metric space on which
the infinite server problem is not competitive.

In Section 4 we show how a variety of known algorithms such as the work function and
balancing algorithms fail for the infinite server problem, even on the real line. We focus in
particular on a class of speed-adjusted variants of the well-known double coverage algorithm.

Finally, we present a useful reduction from arbitrary metric spaces to bounded subspaces
in Section 5. In particular, the infinite server problem on the line is competitive if and only
if it is competitive for the special case where requests are restricted to some bounded interval
further away from the source.

1.3 Preliminaries

Let M = (M,d) be a metric space and let s be a point of M . In the infinite server problem
on (M, s), an unbounded number of servers starts at point s and serves a finite sequence

ICALP 2017

14:4 The Infinite Server Problem

σ = (σ0 = s, σ1, σ2, . . . , σm) of requests σi ∈M . Serving a request entails moving one of the
servers to it. The goal is to minimize the total distance traveled by the servers.

We drop s in the notation if the location of the source is not relevant or understood.
We refer to the action of moving a server from the source to another point as spawning.
Throughout this work we use the letter d for the metric associated with the metric space.

In the online setting, the requests are revealed one by one and need to be served
immediately without knowledge of future requests. All algorithms considered in this paper
are deterministic. An algorithm is called lazy if it moves only one server to serve a request
at an unoccupied point and moves no server if the requested point is already covered. An
algorithm is called local [9] if it moves a server from a to b only if there is no server at some
other point c on a shortest path from a to b, i. e. with d(a, b) = d(a, c) + d(c, b). It is easy to
see that any algorithm can be turned into a lazy and local algorithm without increasing its
cost (i. e. the total distance traveled by all servers).

For an algorithm ALG, we denote by ALG(σ) its cost on the request sequence σ. Similarly,
we write OPT(σ) for the optimal (offline) cost.

An online algorithm ALG is ρ-competitive for ρ ≥ 1 if ALG(σ) ≤ ρOPT(σ) + c for all σ,
where c is a constant independent of σ. The competitive ratio of an algorithm is the infimum
of all such ρ. We say that an algorithm is competitive if it is ρ-competitive for some ρ. We also
call an online problem itself (ρ-)competitive if it admits such an algorithm. If the additive
term c in the definition is 0, then the algorithm is also called strictly ρ-competitive [11].

The (h, k)-server problem on M is defined like the infinite server problem except that
the number of servers is k for the online algorithm and h for the optimal (offline) algorithm
against whom it is compared in the definition of competitiveness. For this problem, the
servers are not required to start at the same point, although a different initial configuration
would only affect the additive term c. The problem is interesting only when k ≥ h. The case
h = k is the standard k-server problem and the case k ≥ h is known as the weak adversaries
model. One major open problem is to determine the competitive ratio of the (h, k)-server
problem as k tends to infinity.

We will sometimes write OPTh and OPT∞ for the optimal offline algorithm, where the
index specifies the number of servers available.

The following two propositions will be useful later in the paper.

I Proposition 1. If for every metric space there exists a competitive algorithm for the infinite
server problem, then there exists a universal competitive ratio ρ such that the infinite server
problem is strictly ρ-competitive on every metric space.

Proof. We first show the existence of ρ such that the infinite server problem is ρ-competitive
(strictly or not) on every metric space. Suppose such ρ does not exist, then for every n ∈ N
we can find a metric space Mn containing some point sn such that the infinite server problem
on (Mn, sn) is not n-competitive. Consider the metric space obtained by taking the disjoint
union of all spaces Mn and gluing all the points sn together. The infinite server problem
would not be competitive on this metric space, in contradiction to the assumption.

Analogously we can also find a universal constant c that works for all metric spaces as
additive constant in the definition of ρ-competitiveness. A scaling argument shows that also
c = 0 works. J

With a very similar argument we get:

I Proposition 2. Let k = k(h) be a function of h. Suppose that for every metric space M
and for all h there exists an O(1)-competitive algorithm for the (h, k)-server problem on M .
Then there exists a universal competitive ratio ρ such that the (h, k)-server problem is strictly
ρ-competitive on every metric space if all servers start at the same point.

C. Coester, E. Koutsoupias, and P. Lazos 14:5

2 Equivalence of Infinite Servers and Weak Adversaries

The main result of this section is the following tight connection between the infinite server
problem and the weak adversaries model.

I Theorem 3. The following are equivalent:
1. The infinite server problem is competitive.
2. The (h, k)-server problem is O(1)-competitive as k/h→∞.
3. For each h there exists k = O(h) so that the (h, k)-server problem is O(1)-competitive.
The three statements above are also equivalent if we fix the metric space to be the real line.

The implication “3 =⇒ 2” is trivial. The proof of the equivalence theorem consists in its
core of two reductions. Theorem 4 contains the easier of the two reductions, which is from
the infinite server problem to the k-server problem against weak adversaries (“2 =⇒ 1”). By
Propositions 1 and 2, it suffices to consider only strictly competitive algorithms. Theorem 5
proves essentially the inverse for general metric spaces, and Theorem 8 specializes it to the
line (“1 =⇒ 3”).

As a corollary of the theorem we get the non-trivial implication “2 =⇒ 3”, a potentially
useful statement towards resolving the major open problem about weak adversaries: “Is
Statement 2 true?” This highlights the importance of the infinite server problem.

I Theorem 4. Fix a metric space M and consider algorithms with all servers starting at
some s ∈M . If for every h there exists k = k(h) such that the (h, k)-server problem on M
is strictly ρ-competitive, for some constant ρ, then there exists a strictly ρ-competitive online
strategy for the infinite server problem on M .

Proof. Let ALGk(h) denote an online algorithm with k(h) servers that is strictly ρ-competitive
against an optimal algorithm OPTh for h servers, i. e.

ALGk(h)(σ) ≤ ρOPTh(σ) (1)

for every request sequence σ. Without loss of generality, algorithm ALGk(h) is lazy.
For every request sequence σ, consider the equivalence relation ≡σ on natural numbers in

which h ≡σ h′ if and only if ALGk(h)(σ) and ALGk(h′)(σ) serve σ in exactly the same way
(i. e. , make exactly the same moves). To every σ, we associate an equivalence class H(σ) of
≡σ that satisfies

H(σ) is infinite,
H(σr) ⊆ H(σ), for every request r.

This is done inductively in the length of σ (in a manner reminiscent of König’s lemma)
as follows: For the base case when σ is the empty request sequence, H(σ) = N. For the
induction step, suppose that we have defined H(σ). Consider the equivalence classes of ≡σr,
a refinement of the equivalence classes of ≡σ. Since there are only finitely many possible
ways to serve r, they partition H(σ) into finitely many parts. At least one of these parts
is infinite and we select it to be H(σr); if there is more than one such sets, we select one
arbitrarily, say the lexicographically first.

Given such a mapping H, we define the online algorithm ALG∞ which serves every σ in
the same way as all the online algorithms ALGk(h) for h ∈ H(σ). The second property of H
guarantees that ALG∞ is a well-defined online algorithm.

By construction, ALG∞(σ) = ALGk(h)(σ) for every h ∈ H(σ). To finish the proof,
observe that since H(σ) is infinite, it contains some h greater than the length of σ, and for
such an h we have OPT∞(σ) = OPTh(σ). Substituting these to (1), we see that ALG∞ is
strictly ρ-competitive. J

ICALP 2017

14:6 The Infinite Server Problem

We now show the reduction from the k-server problem against weak adversaries to the
infinite server problem on general metric spaces.

I Theorem 5. If the infinite server problem on general metric spaces is strictly ρ̃-competitive,
then there exists a constant ρ such that the (h, k)-server problem is ρ-competitive, for k = O(h).
In particular, for every ε > 0, we can take ρ = (3 + ε)ρ̃ and any k ≥ (1 + 1/ε)ρ̃h.

Proof. Fix some metric spaceM and a point s ∈M . We will describe a strictly ρ-competitive
algorithm for the (h, k)-server problem on M for the case that all servers start at s. This
implies a (not necessarily strictly) ρ-competitive algorithm for any initial configuration.

The idea is to simulate a strictly ρ̃-competitive infinite server algorithm, but whenever
it would spawn a (k + 1)-st server, we bring all servers back to the origin and restart the
algorithm. The problem is that the overhead cost for returning the servers to the origin,
may be very high. To compensate for this, we assume that every time the servers return to
the origin, they pretend to start from a different point further away from the origin. This
motivates the following notation:

I Definition 6. Given a metric M , a point s ∈ M , and a value w ≥ 0, we will use the
notation Ms⊕w to denote the metric derived from M when we increase the distance of s from
every other point by w; we will also denote the relocated point by s⊕ w.

Let ALG∞ denote a strictly ρ̃-competitive online algorithm for the infinite server problem.
We now define an online algorithm ALGk for k servers (all starting at s). We will make use
of the notation A(σ; s) to denote the cost of algorithm A to serve the request sequence σ
when all servers start at s.

I Definition 7 (ALGk derived from ALG∞). Algorithm ALGk runs in phases with the initial
phase being the 0th phase. At the beginning of every phase, all servers of ALGk are at s. In
every phase i, the algorithm simulates the infinite server algorithm ALG∞, whose servers
start at s ⊕ wi for some wi ≥ 0. The parameters wi are determined online, and initially
w0 = 0. Whenever ALG∞ spawns a server from s ⊕ wi, algorithm ALGk spawns a server
from s.

The phase ends just before ALG∞ spawns its (k + 1)-st server or when the request
sequence ends. In the former case, all servers of ALGk return to s to start the (i + 1)-st
phase. To determine the starting point of the simulated algorithm of the next phase, we set

wi+1 = ε
OPTh(σi; s)

h
, (2)

where σi is the sequence of requests during phase i.

Let n be the number of phases. The cost of ALGk for the requests in phase i < n is
ALG∞(σi; s⊕ wi)− kwi; the last term is subtracted because the k servers do not have to
actually travel the distance between s⊕ wi and s. However for the last phase no such term
can be subtracted since we do not know how many servers are spawned during the phase,
and we can only bound the cost from above by ALG∞(σn; s⊕ wn). The cost of returning
the servers to s at the end of a phase can at most double the cost during the phase.

From this, we see that the total cost of ALGk in phase i is

costi ≤
{

2 (ALG∞(σi; s⊕ wi)− kwi) for i < n

ALG∞(σn; s⊕ wn) for i = n .

C. Coester, E. Koutsoupias, and P. Lazos 14:7

Since ALG∞ is strictly ρ̃-competitive, we have

ALG∞(σi; s⊕ wi) ≤ ρ̃OPT∞(σi; s⊕ wi)
≤ ρ̃OPTh(σi; s⊕ wi)
≤ ρ̃ (OPTh(σi; s) + hwi)

and substituting this in the expression for the cost, we can bound the total cost by

ALGk(σ; s) =
n∑
i=0

costi ≤ 2
n−1∑
i=0

(ρ̃(OPTh(σi; s) + hwi)− kwi) + ρ̃(OPTh(σn; s) + hwn)

= 2
n−1∑
i=0

(ρ̃OPTh(σi; s)− (k − ρ̃h)wi) + ρ̃OPTh(σn; s) + ρ̃hwn .

The parameters wi and k were selected so that the summation telescopes, and we are left
with

ALGk(σ; s) ≤ 2 ρ̃OPTh(σn−1; s) + ρ̃OPTh(σn; s) + ρ̃ εOPTh(σn−1; s)
≤ (3 + ε) ρ̃OPTh(σ; s) . J

The previous reduction requires the infinite server problem to be competitive on every
metric space. The following variant only requires the infinite server problem to be competitive
on the line.

I Theorem 8. If the infinite server problem on the line is ρ-competitive, then for every
h ∈ N and ε > 0, the (h, k)-server problem on the line is (3 + ε)ρ-competitive, when
k ≥ 2d(1 + 1/ε)ρhe.

Proof. A straightforward adaptation of the proof of the previous lemma, shows the existence
of a (3 + ε)ρ-competitive algorithm for the interval [0,∞), when k ≥ 2(1 + 1/ε)ρh. By
doubling the number of online servers so that half of them are used in each half-line, we get
a (3 + ε)ρ-competitive algorithm for the entire line, when k ≥ 2d(1 + 1/ε)ρhe.

Note that the proof assumes strictly competitive algorithms. But, by a straightforward
scaling argument, if the infinite server problem on the line is ρ-competitive, then it is also
strictly ρ-competitive. This in turn implies a strictly ρ-competitive online algorithm for
M0⊕w, since this space is isometric to the subspace {−w} ∪ (0,∞) of the line. J

In the next section we look at some particular metric spaces and give upper and lower
bounds on the competitive ratio.

3 Upper and Lower Bounds

Unlike the k-server problem, which is 1-competitive if and only if the metric spaces has at
most k points and conjectured k-competitive otherwise, the situation is more diverse for the
infinite server problem. For example, on uniform metric spaces (where all distances are the
same) the problem is trivially 1-competitive even if the metric space consists of uncountably
many points. This is because an optimal strategy in this case is to spawn a server to every
requested point. More generally, this strategy achieves a finite competitive ratio on any
metric space where distances are bounded from below and above by positive constants. This
suggests that statements about the competitive ratio for the infinite server problem cannot
be as simple as the (conjectured) dichotomy for the k-server problem, which depends only on
the number of points of the metric space. In this section we derive bounds on the competitive
ratio for particular classes of metric spaces.

ICALP 2017

14:8 The Infinite Server Problem

3.1 Weighted Trees
We consider the infinite server problem on metric spaces that can be modeled by edge-
weighted trees. The points of the metric space are the nodes of the tree, and the distance
between two nodes is the sum of edge weights along their connecting path. We choose the
source of the metric space as the root of the tree, and define the depth of the tree as the
maximal number of edges from the root to a leaf. The number of nodes can be infinite
(otherwise the infinite server problem is trivially 1-competitive), but we assume the depth to
be finite.

An upper bound on the competitive ratio of such trees follows easily from an upper bound
for the (h, k)-server on such trees [1] and the equivalence theorem:

I Theorem 9. The competitive ratio of the infinite server problem on trees of depth d is at
most O(2d · d).

Proof. Bansal et al. [1, Theorem 1.3] showed that the competitive ratio of the (h, k)-server
problem on trees of depth d is at most O(2d ·d) provided that k/h is large enough. Inspection
of the proof in [1] shows that if all servers start at the root, it is in fact strictly O(2d · d)-
competitive. Thus, Theorem 4 implies the result for the infinite server problem. J

3.2 Non-Discrete Spaces and Spaces with Small Infinite Subspaces
The following theorem gives a lower bound of 3.146 on the competitive ratio of the infinite
server problem on any metric space containing an infinite subspace of a diameter that is small
compared to the subspace’s distance from the source. For example, every non-discrete metric
space has this property (unless the source is the only non-discrete point), since non-discrete
metric spaces contain infinite subspaces of arbitrarily small diameter. The theorem is a
generalization of such a lower bound established in [10] for a variant of the paging problem
where cache cells can be bought. Crucial parts of the subsequent proof are as in [10].

I Theorem 10. Let M be a metric space containing an infinite subspace M0 ⊂M of finite
diameter δ and a point s ∈ M \M0 such that the infimum ∆ of distances between s and
points in M0 is positive. Let λ > 3.146 be the largest real solution to

λ = 2 + lnλ . (3)

The competitive ratio of any deterministic online algorithm for the infinite server problem on
(M, s) is bounded from below by a value that converges to λ as ∆/δ →∞. In particular, the
competitive ratio is at least λ if M \ {s} contains a non-discrete part.

Proof. By scaling the metric, we can assume that δ = 1. Let p1, p2, p3, . . . be infinitely many
distinct points in M0.

Fix some lazy deterministic online algorithm ALG. We consider the request sequence
that always requests the point pi with i minimal such that pi is not occupied by a server
of ALG. We call a move of a server between two points in M0 local (i. e. every move that
does not spawn is local). Let fj be the cumulative cost of local moves incurred to ALG until
it spawns its jth server. Let σk be this request sequence that is stopped right after ALG
spawns its kth server, for some large k. The total online cost is

ALG(σk) ≥ k∆ + fk . (4)

Let h = dk/λe. We consider several offline algorithms that start behaving the same way,
so we think of it as one algorithm initially that is forked into several algorithms later. The

C. Coester, E. Koutsoupias, and P. Lazos 14:9

offline algorithms make use of only h servers and they begin by spawning them to the points
p1, . . . , ph. They do not need to move any servers until ALG spawns its hth server. Whenever
ALG spawns its jth server for some j ≥ h, every offline algorithm is forked to h distinct
algorithms: Each of them moves a different server to pj+1 (to prepare for the next request,
which will be at pj+1). We will keep the invariant that each offline algorithm already has a
server at the next request. To this end, whenever ALG does a local move from p to p′, every
offline algorithm that does not have a server at p moves a server from p′ to p; note that the
algorithm had a server at p′ by the invariant, and the next request will be at p.

When ALG has j spawned servers (j ≥ h), the offline algorithms are in
(
j

h−1
)
different

configurations, each of which occurs equally often among them. If ALG does a local move
from p to p′, there are

(
j−1
h−1
)
different offline configurations for which a local move is made in

the opposite direction. Thus, for each local move by ALG while having j servers in total, a
portion

(
j−1
h−1
)
/
(
j

h−1
)

= j−h+1
j of the offline algorithms move a server in the opposite direction

for the same cost.
We use the average cost of all offline algorithms we considered as an upper bound on the

optimal cost. The cost of spawning h servers is at most h(∆ + 1), and the average cost while
ALG has j spawned servers (for j = h, . . . , k − 1) is at most j−h+1

j (fj+1 − fj) + 1 (with the
“+1” coming from the move when offline algorithms fork). Hence,

OPT(σk) ≤ h(∆ + 1) + k − h+
k−1∑
j=h

j − h+ 1
j

(fj+1 − fj) ,

≤ h∆ + k + k − h
k − 1 fk −

fh
h
−

k−1∑
j=h+1

h− 1
j(j − 1)fj ,

Note that fk

k is bounded from above because otherwise ALG would not be competitive, and
it is bounded from below by 0. Thus, L = lim infk→∞ fk

k exists. In the following we use the
asymptotic notation o(1) for terms that disappear as k →∞. We can choose arbitrarily large
values of k such that fk

k = L+ o(1). Since h = dk/λe, we have fj

j ≥ L+ o(1) for all j ≥ h.
Moreover,

∑k−1
j=h+1

1
j−1 = ln(λ) + o(1). This allows us to simplify the previous bound to

OPT(σk) ≤ k

λ

(
∆ + λ+

(
λ− 1− ln(λ)

)
L+ o(1)

)
= k

λ

(
∆ + L+ λ+ o(1)

)
,

where the last step uses equation (3).
The competitive ratio is at least

ALG(σk) +O(1)
OPT(σk) ≥ k∆ + fk +O(1)

k
λ

(
∆ + L+ λ+ o(1)

)
= λ · ∆ + L

∆ + L+ λ
+ o(1) .

The fraction in the last term tends to 1 as ∆→∞. J

This bound is tight due to a matching upper bound in [10] that shows (translated to the
terminology of the infinite server problem) that a competitive ratio of λ can be achieved
on metric spaces where all pairwise distances are 1 except that the source is at some larger
distance ∆ from the other points.

The previous theorem together with the equivalence theorem also allows us to obtain a
new lower bound for the k-server problem against weak adversaries.

ICALP 2017

14:10 The Infinite Server Problem

I Corollary 11. For sufficiently large h, there is no 3.146-competitive algorithm for the
(h, k)-server problem on the line, even if k →∞.

Proof. By a scaling argument it is easy to see that if the infinite server problem on the line
is ρ-competitive, then it is also strictly ρ-competitive. Thus, the statement follows from
Theorems 4 and 10. J

This improves upon both the previous best known lower bounds of 2 for this problem on
the line [5, p. 175] and 2.4 on general metric spaces [1].

3.3 Layered Graphs
A layered graph of depth D is a graph whose (potentially infinitely many) nodes can be
arranged in layers 0, 1, . . . , D so that all edges run between adjacent layers and each node –
except for a single node in layer 0 – is connected to at least one node of the previous layer.
The induced metric space is the set of nodes with the distance being the minimal number of
edges of a connecting path. For the purposes of the infinite server problem, the single node
in layer 0 is the source. We assume D ≥ 2 to avoid trivial cases.

Note that a connected graph is layered if and only if it is bipartite. Moreover, any graph
can be embedded into a bipartite graph by adding a new node in the middle of each edge.
So essentially, layered graphs capture all graph metrics.

Let Move Only Outwards (MOO) be some lazy and local algorithm for the infinite server
problem on layered graphs that moves servers along edges only in the direction away from
the source. Not surprisingly, the competitive ratio of this simple algorithm is quite bad
and we show that it is exactly D − 1/2. Nonetheless, at least for D ≤ 3 this is actually the
optimal competitive ratio.

I Theorem 12. The competitive ratio of MOO is exactly D − 1
2 .

I Theorem 13. The competitive ratio of the infinite server problem on layered graphs of
depth D is exactly 1.5 for D = 2, exactly 2.5 for D = 3 and at least 3 for D ≥ 4.

Both theorems are proved in the full version of this paper. It remains an open problem
to close the gap between the lower bound of 3 and the upper bound of 3.5 for D = 4. More
importantly, we are interested in the question whether an algorithm better than MOO exists
for large D, achieving a competitive ratio of less than D− 1/2 on any layered graph of depth
D. Note that if no algorithm with a competitive ratio of O(1) as D →∞ exists, then the
infinite server problem on general metric spaces would not be competitive.

For large D, the lower bound of 3 is certainly not tight: Consider a layered graph where
each layer contains one node except that the bottom layer contains infinitely many nodes.
By Theorem 10 (and a matching upper bound shown in [10]), the competitive ratio on this
graph converges to λ ≈ 3.146 as D →∞.

4 Algorithms with Unbounded Competitive Ratio

We examine the performance of classical algorithms known for the k-server problem when
applied to the infinite server problem, focusing on the line as a particularly appealing metric
space. We also consider a generalization of the Double Coverage algorithm for the line with
adjusted server speeds. This idea has proved successful for the (h, k)-server problem (and
hence the infinite server problem) on weighted trees [1]. However, neither of these algorithms
is competitive for the infinite server problem on the line. Proofs of the results of this section

C. Coester, E. Koutsoupias, and P. Lazos 14:11

as well as the definitions of the algorithms of the following theorem can be found in the full
version of this paper.

I Theorem 14. The Work Function Algorithm [8, 17], Balance [19] and Balance2 [13] are
not competitive for the infinite server problem on the line.

Perhaps more surprising than for the above three algorithms is that a class of algorithms
extending the Double Coverage (DC) algorithm [6] is also not competitive for the infinite
server problem. The basic DC algorithm on the line serves each request by an adjacent server.
If the request lies between two servers, both servers move towards it at equal speed until
one of them reaches the request. A sensible extension of this algorithm seems to be to give
different speeds to servers, so that they move away from the source faster than towards it.

We consider here only the half-line [0,∞) with the source at the left border 0. Let xi be
the position of the ith server from the right. We use the notation xi both for its position and
for the server itself. As servers do not overtake each other, xi is the ith spawned server. Let
S = {si ≥ 1 | i ∈ N and i ≥ 2} for a monotonic (non-decreasing or non-increasing) sequence
of speeds si. The algorithm S-DC is defined as follows:

If there exist servers xi+1 and xi to the left and right of the request, move them towards
it with speeds si+1 and 1 respectively until one of the two reaches it.
If a request does not have a server to its right, move the rightmost server to the request.

If si = 1 for all i, this is precisely the original DC algorithm.

I Theorem 15. Algorithm S-DC is not competitive for any S.

The intuitive reason is that servers move to the right either too slowly or too fast: Imagine
repeatedly requesting the same n points in some small interval away from the source, until
S-DC covers all n points. One case is that S-DC spawns too slowly and is therefore defeated
by an adversary covering these n positions immediately with n servers. In the other case,
the adversary will also use n servers to cover the initial group of requests and then shift its
group of servers slowly towards the source, always making requests at the new positions of
these offline servers. As S-DC tries to cover the new requests, it is tricked into spawning too
many servers. Both cases lead to an unbounded competitive ratio.

5 Reduction to Bounded Spaces

In this section we show a reduction from the infinite server problem on general metric spaces
to bounded subspaces. Specifically, a metric space can be partitioned into “rings” of points
whose distance from the source is between rn and rn+1, where r > 1 is fixed and n ∈ Z.
We show that if the infinite server problem is strictly ρ-competitive on each ring, then it is
competitive on the entire metric space.

I Theorem 16. Let M be a metric space and s ∈ M and let r > 1. For n ∈ Z let
Mn = {s} ∪ {p ∈ M | d(s, p) ∈ [rn, rn+1)}. If for each n the infinite server problem on
(Mn, s) is strictly ρ-competitive, then on (M, s) it is strictly 4r−1

r−1 ρ-competitive.

Proof. Let ALGn be a ρ-competitive algorithm for the infinite server problem on (Mn, s).
For a request sequence σ, let σn be the subsequence of requests in Mn. Let ALG be the

algorithm for (M, s) that uses different servers for each of the subsequences σn and serves
them independently according to ALGn.

ICALP 2017

14:12 The Infinite Server Problem

The total online cost is ALG(σ) =
∑
nALGn(σn) ≤ ρ

∑
nOPT(σn). To finish the proof,

it suffices to show that∑
n

OPT(σn) ≤ 4r − 1
r − 1 OPT(σ) . (5)

Thus, we only need to analyze the offline cost. We do this for each offline server separately.
Fix some offline server x. Let N0 and N1 be the minimal and maximal values of n such
that x visits Mn. We can assume without loss of generality (by adding virtual points to the
metric space) that whenever x moves from Mn to Mn′ for some n < n′, it travels across
points pn+1, pn+2, . . . , pn′ with d(s, pi) = ri, and similarly for n > n′.

The movements of server x can be tracked by many servers, one server xn in every set
Mn for N0 ≤ n ≤ N1. When server x is in Mn, server xn is exactly at the same position
tracking the movement of x. When server x exits Mn at some point p at the boundary to
Mn−1 or Mn+1, server xn freezes at p. The movement cost of xn can be partitioned into the
cost of deploying xn at the first point visited in Mn, the tracking cost within Mn, and the
cost of of relocating xn whenever x re-enters Mn at a location different from the last exiting
location.

The total tracking cost of all servers xn is bounded by the distance traveled by x. The
cost of deploying all servers xn is

∑N1
n=N0

rn ≤
∑N1
n=−∞ rn = rN1+1/(r− 1), which is at most

r
r−1 times the total movement of server x, because the latter is at least rN1 .

To bound the relocating cost, say x exitsMn at p and re-enters it at p′. Then p and p′ are at
the boundary ofMn andMn+u for u ∈ {−1,+1}. Let b be the distance traveled by x inMn+u
between the times when it is entered at p and when it is next exited. If this exiting is at p′, then
the relocating cost d(p, p′) is at most b by the triangle inequality. Otherwise, x exits Mn+u at
a point p′′ at the boundary of Mn+u and Mn+2u. If u = 1, then d(p, p′) ≤ d(s, p) + d(s, p′) =
2rn+1 and b ≥ d(p, p′′) ≥ d(s, p′′) − d(s, p) = rn+2 − rn+1 = (r − 1)rn+1. If u = −1, then
d(p, p′) ≤ d(s, p) + d(s, p′) = 2rn and b ≥ d(p, p′′) ≥ d(s, p)− d(s, p′′) = rn − rn−1 = r−1

r rn.
In both cases, the relocating cost d(p, p′) is at most 2r

r−1b. Thus, the total relocating cost of
all servers xn is at most 2r

r−1 times the total distance traveled by x.
Thus, the sum of deployment, tracking and relocating cost of the servers xn is at most 4r−1

r−1
times the distance traveled by x. This shows (5), giving the statement of the theorem. J

The last theorem can also be slightly generalized to the case where instead of strict
ρ-competitiveness, an additive term proportional to rn is allowed. It is not difficult to
show the following specialization for the line, where the premise can be weakened to require
competitiveness only on a single interval:

I Corollary 17. Let 0 < a < b. The infinite server problem is competitive on the line if and
only if it is competitive on ({0} ∪ [a, b], 0).

6 Open Problems

The most obvious open problem is whether the infinite server problem is competitive on
general metric spaces. A challenging special case is to resolve the question for the real line.
Similarly, improving the MOO algorithm and settling the question for layered graphs remains
open. It would also be interesting to find a metric space with a competitive ratio greater
than 3.146 for the infinite server problem or the (h, k)-server problem when k � h. Another
possible line of research is to consider randomized algorithms.

C. Coester, E. Koutsoupias, and P. Lazos 14:13

References
1 Nikhil Bansal, Marek Eliáš, Łukasz Jeż, and Grigorios Koumoutsos. The (h, k)-server

problem on bounded depth trees. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2017, pages 1022–1037. SIAM, 2017. doi:10.1137/1.
9781611974782.65.

2 Nikhil Bansal, Marek Eliáš, Łukasz Jeż, Grigorios Koumoutsos, and Kirk Pruhs. Tight
bounds for double coverage against weak adversaries. In International Workshop on
Approximation and Online Algorithms, pages 47–58. Springer, 2015. doi:10.1007/
978-3-319-28684-6_5.

3 Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. J. ACM,
47(1):1–15, January 2000. doi:10.1145/331605.331606.

4 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theoretical Computer Science, 324(2):337–345, 2004. doi:10.
1016/j.tcs.2004.06.001.

5 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

6 Marek Chrobak, Howard Karloff, Tom Payne, and Sundar Vishwanathan. New results
on server problems. SIAM J. Discret. Math., 4(2):172–181, March 1991. doi:10.1137/
0404017.

7 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Comput., 20(1):144–148, February 1991. doi:10.1137/0220008.

8 Marek Chrobak and Lawrence L. Larmore. The server problem and on-line games. In
On-line Algorithms, volume 7 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. Citeseer, 1992.

9 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Łukasz Jeż. Pricing online decisions:
Beyond auctions. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’15, pages 73–91, Philadelphia, PA, USA, 2015. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611973730.7.

10 János Csirik, Csanád Imreh, John Noga, Steven S. Seiden, and Gerhard J. Woeginger.
Buying a constant competitive ratio for paging. In Proceedings of the 9th Annual European
Symposium on Algorithms, ESA’01, pages 98–108, London, UK, 2001. Springer-Verlag. doi:
10.1007/3-540-44676-1_8.

11 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. On the additive constant
of the k-server work function algorithm. In International Workshop on Approximation and
Online Algorithms, pages 128–134. Springer, 2009. doi:10.1007/978-3-642-12450-1_12.

12 Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. In Pro-
ceedings of the Thirty First Annual Symposium on Foundations of Computer Science, pages
454–463 vol.2, Oct 1990. doi:10.1109/FSCS.1990.89566.

13 Sandy Irani and Ronitt Rubinfeld. A competitive 2-server algorithm. Information Pro-
cessing Letters, 39(2):85–91, 1991. doi:10.1016/0020-0190(91)90160-J.

14 Kamal Jain. Personal Communication.
15 Elias Koutsoupias. Weak adversaries for the k-server problem. In Proceedings of the 40th

Annual Symposium on Foundations of Computer Science, FOCS’99, Washington, DC, USA,
1999. IEEE Computer Society. doi:10.1109/SFFCS.1999.814616.

16 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, May
2009. doi:10.1016/j.cosrev.2009.04.002.

17 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, September 1995. doi:10.1145/210118.210128.

18 Elias Koutsoupias and Christos H. Papadimitriou. The 2-evader problem. Information
Processing Letters, 57(5):249–252, March 1996. doi:10.1016/0020-0190(96)00010-5.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974782.65
http://dx.doi.org/10.1137/1.9781611974782.65
http://dx.doi.org/10.1007/978-3-319-28684-6_5
http://dx.doi.org/10.1007/978-3-319-28684-6_5
http://dx.doi.org/10.1145/331605.331606
http://dx.doi.org/10.1016/j.tcs.2004.06.001
http://dx.doi.org/10.1016/j.tcs.2004.06.001
http://dx.doi.org/10.1137/0404017
http://dx.doi.org/10.1137/0404017
http://dx.doi.org/10.1137/0220008
http://dx.doi.org/10.1137/1.9781611973730.7
http://dx.doi.org/10.1007/3-540-44676-1_8
http://dx.doi.org/10.1007/3-540-44676-1_8
http://dx.doi.org/10.1007/978-3-642-12450-1_12
http://dx.doi.org/10.1109/FSCS.1990.89566
http://dx.doi.org/10.1016/0020-0190(91)90160-J
http://dx.doi.org/10.1109/SFFCS.1999.814616
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1145/210118.210128
http://dx.doi.org/10.1016/0020-0190(96)00010-5

14:14 The Infinite Server Problem

19 Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-line prob-
lems. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC’88, pages 322–333, New York, NY, USA, 1988. ACM. doi:10.1145/62212.62243.

20 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, February 1985. doi:10.1145/2786.2793.

21 Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994. doi:10.1007/BF01189992.

http://dx.doi.org/10.1145/62212.62243
http://dx.doi.org/10.1145/2786.2793
http://dx.doi.org/10.1007/BF01189992

Quantum Automata Cannot Detect Biased Coins,
Even in the Limit∗

Guy Kindler1 and Ryan O’Donnell2

1 School of Computer Science and Engineering, Hebrew University of Jerusalem,
Jerusalem, Israel
gkindler@cs.huji.ac.il

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
odonnell@cs.cmu.edu

Abstract
Aaronson and Drucker (2011) asked whether there exists a quantum finite automaton that can
distinguish fair coin tosses from biased ones by spending significantly more time in accepting
states, on average, given an infinite sequence of tosses. We answer this question negatively.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases quantum automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.15

1 Introduction

In a 2011 work, Aaronson and Drucker [2] investigated the ability of a finite automaton to
distinguish, given an infinite sequence of coin tosses, whether the coins are fair or (1

2 ± ε)-
biased. There are several axes of consideration discussed in [2], three of which we state
here:
1. Whether the automaton is classical (and probabilistic), or quantum.
2. Whether ε > 0 is “known” or not; i.e., whether the automaton can depend on ε.
3. The mechanism by which the automaton makes its decision. One possibility is that the

automaton guesses “biased” by halting, and guesses “fair” by running forever. A laxer
possibility is that the automaton always runs forever, with each of its states designated
“biased” or “fair”; its final decision is based on the limiting time-average it spends in
“biased” vs. “fair” states. We refer to the two mechanisms as “one-sided halting” and
“limiting acceptance”.

For example, an old result of Hellman and Cover [5] is that even when ε is known and limiting
acceptance is allowed, a classical automaton needs Ω(1/ε) states to solve the problem. On
the other hand, Aaronson and Drucker made the interesting observation that for every fixed
known ε, there’s a quantum automaton with just 2 states that solves the problem using
one-sided halting. They also showed no quantum automaton with a fixed number of states
can solve the problem for every unknown ε, if the decision mechanism is one-sided halting.

Aaronson and Drucker asked whether the same negative result holds even if the automaton
is allowed to use the limiting acceptance decision mechanism. Indeed, for the 48 different
variations of the problem they considered, this was the only variant that remained unsolved.

∗ Supported by NSF grant CCF-1618679 and by BSF grant 2012220.

EA
T

C
S

© Guy Kindler and Ryan O’Donnell;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 15; pp. 15:1–15:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Quantum Automata Cannot Detect Biased Coins, Even in the Limit

In 2014, Aaronson called this question one of the “Ten Most Annoying Problems in Quantum
Computing” [1].

In this work, we make the world of quantum computing 10% less annoying by resolving
the problem in the negative. Stated informally, our main theorem is the following (a precise
phrasing appears below after we give some formal definitions):

I Theorem 1. There is no quantum finite automaton that has the following property,
simultaneously for every ε ∈ [− 1

2 ,
1
2] \ {0}: Given access to an infinite sequence of coin tosses,

if the coin is (1
2 + ε)-biased then the automaton spends at least 2/3 of its time guessing

“biased”, and if the coin is fair then the automaton spends at least 2/3 of its time guessing
“fair”.

Proving this theorem involves a careful understanding of the fixed points of quantum channels.

2 Classical and quantum automata

In this section we review the definitions of probabilistic and quantum finite state automata.
Although we are ultimately only concerned with quantum automata, we feel it is instructive
to also discuss probabilistic automata at the same time. All of our automata will have input
alphabet Σ = {0, 1}, which may be thought of as {tails, heads}.

A classical deterministic automaton on alphabet Σ = {0, 1} has some d basic-states,1 an
initial basic-state i0 ∈ [d], and transition rules f0, f1 : [d]→ [d]. Given a sequence of input
symbols w1, w2, w3, · · · ∈ {0, 1}, the automaton operates as follows: It starts in basic-state i0
at time 0. Then, if it is in basic-state it at time t ∈ N, it transitions to basic-state fwt+1(it)
at time t+1. Automata also typically have their basic-states classified as “accept” or “reject”;
we discuss this more later.

One can also consider classical probabilistic automata. These have randomized transitions,
which can be encoded by a pair of d× d stochastic matrices S0, S1. Now at any time t the
automaton can be in a “probabilistic-state”, represented by a length-d probability vector πt.
(An initial probabilistic-state π0 is also specified.) On reading symbol wt+1, the automaton
transitions to the probabilistic-state πt+1 = Swt+1πt.

Finally, the setting for a quantum automaton is a d-dimensional Hilbert space H (which
we may think of as having an orthonormal basis of “basic-state vectors” |1〉 , . . . , |d〉). At
any time t, the automaton has a “quantum-state”, which is a density operator ρt ∈ B(H).
Here B(H) denotes the set of linear operators on H, and a density operator means a positive
semidefinite operator of trace 1. (Probabilistic-states are the special case of quantum-states
in which ρt is diagonal with respect to |1〉 , . . . , |d〉.) The transition rules are now any two
allowable quantum transformations Φ0,Φ1; i.e., they are quantum channels (superoperators)
on B(H). Here a quantum channel means a linear map Φ : B(H)→ B(H) that is completely
positive and trace-preserving; an equivalent condition is that there exist (non-unique) Kraus
operators K1, . . . ,Kr ∈ B(H) with

∑r
i=1 K

†
iKi = 1 such that Φ(ρ) =

∑r
i=1 KiρK

†
i . (For

more on quantum channels, see e.g. [7].) Again, an initial quantum-state ρ0 is given, and on
reading symbol wt+1, the automaton transitions from quantum-state ρt to quantum-state
ρt+1 = Φwt+1(ρt).

1 There is an unfortunate terminology clash involving the word “state” – in automata theory, “states” are
the basic vertices in automaton graphs, whereas in quantum mechanics a “state” usually means the
“mixed quantum state” or “density operator” of a given system. Throughout we’ll refer to the former as
“basic-states” and the latter as “quantum-states”.

G. Kindler and R. O’Donnell 15:3

Automata with random inputs

This paper is concerned with automata whose inputs are infinite sequences of p-biased coin
tosses, p ∈ [0, 1]. More formally, we always assume the input symbols w1, w2, w3, · · · ∈ {0, 1}
are chosen independently at random with Pr[wt = 1] = p. Because of this assumption, we
can give a simplified formalization of probabilistic and quantum automata. In the case of
probabilistic automata, at each time step (independently) we apply S1 with probability p and
S0 with probability 1− p. It is clear that this is equivalent to simply applying the stochastic
matrix Sp := pS1 + (1− p)S0 at each time step. In other words, the probabilistic-state of a
probabilistic automaton after t time steps is simply St

pπ0. The setup is precisely equivalent
to a Markov chain on [d] with transition matrix Sp.

Similarly for quantum automata, at each time step we apply Φ1 with probability p

and Φ0 with probability 1− p; this is physically equivalent to simply applying the channel
Φp := pΦ1 + (1− p)Φ0 at each time step. (This is ultimately because being in quantum-state
ρ with probability p and quantum-state ρ′ with probability 1− p is physically equivalent to
being in quantum-state pρ+ (1− p)ρ′.) Thus the quantum-state of a probabilistic automaton
after t time steps is simply Φt

p(ρ0); we have here the quantum analogue of a Markov chain.

Automaton acceptance probability

As discussed in Section 1, we will be considering “limiting acceptance”, the most relaxed
possible notion for automaton acceptance. We first define this in the context of probabilistic
automata. Here, each basic-state in [d] is classified as either guessing “Fair” or “Biased”.
We write efair ∈ Rd for the 0-1 indicator of the Fair states. Thus if the automaton is in
probabilistic-state π ∈ Rd, the probability it is in a Fair basic-state is 〈efair, π〉. We then
consider, for a sequence of T coin tosses, the average probability with which the automaton
is in a Fair basic-state:

fT (p) := 1
T

T∑
t=1
〈efair, St

pπ0〉 =
〈
efair,

(1
T

T∑
t=1

St
p

)
π0

〉
.

Finally, we consider the limiting value of this probability:

f(p) := lim
T→∞

fT (p) = 〈efair, S∞p π0〉, where S∞p := lim
T→∞

1
T

T∑
t=1

St
p.

Here we relied on the well-known fact that the limiting matrix S∞p exists. (In fact, S∞p is
also a stochastic matrix, and it acts by projection onto the 1-eigenspace of Sp; we discuss this
further in Section 3.) One may then say that the probabilistic automaton “guesses Fair in
the limit” if f(p) ≥ 2

3 , and “guesses Biased in the limit” if f(p) ≤ 1
3 . (It may be considered

“indecisive” otherwise.)
The definitions for a quantum automaton are extremely similar. The automaton is assumed

to come equipped with an “acceptance POVM”, {Efair,1−Efair}. (Here Efair ∈ B(H) is any
operator satisfying 0 � Efair � 1, and 1 denotes the identity operator.) If the automaton is
in quantum-state ρ, the probability of it measuring “Fair” is 〈Efair, ρ〉 := tr(E†fairρ). We can
then again define the limiting average probability of guessing “Fair” via

fT (p) := 1
T

T∑
t=1
〈Efair,Φt

pπ0〉 =
〈
Efair,

(1
T

T∑
t=1

Φt
p

)
π0

〉
,

f(p) := lim
T→∞

fT (p) = 〈Efair,Φ∞p π0〉, where Φ∞p := lim
T→∞

1
T

T∑
t=1

Φt
p. (1)

ICALP 2017

15:4 Quantum Automata Cannot Detect Biased Coins, Even in the Limit

Again, it is known that the limiting operator Φ∞p exists; this is explicitly discussed in Section 3.
As before, one may say that the quantum automaton “guesses Fair in the limit” if f(p) ≥ 2

3 ,
and “guesses Biased in the limit” if f(p) ≤ 1

3 .
We may now state the main theorem of this paper:

I Theorem 2. In the setting of quantum automata reading p-biased bits (as described above),
the function f from (1) is a continuous function of p ∈ (0, 1).

This theorem is a formal strengthening of Theorem 1, our negative result for coin distinguishing
stated in Section 1. For example, it implies that if an automaton guesses “Fair” in the limit”
for p = 1

2 , then for all sufficiently small ε it cannot guess “Biased” in the limit for p = 1
2 ± ε.

In fact, we get the inability of quantum automata to distinguish p-biased and (p± ε)-biased
coins with limiting acceptance for any fixed p ∈ (0, 1). As noted in [2], this is sharp in the
sense that there is a trivial 2-state deterministic classical automaton that distinguishes a
0-biased coin from any ε-biased coin, even with one-sided halting.

3 Outline of the proof

Here we give an outline of the proof of Theorem 2. At the same time, it will be instructive
to outline the analogous proof in the special case of probabilistic automata. To prove that
the limiting acceptance probability f(p) from (1) is continuous for p ∈ (0, 1), it is enough to
prove the following:

I Theorem 3. Φ∞p is continuous for p ∈ (0, 1).

Here for definiteness we can take the metric on channels induced by the operator norm
on B(H); Theorem 2 then follows because matrix multiplication and inner product are
continuous.

Now is a good time to review the properties of Φ∞p . In general, let Φ denote any
channel on B(H). Then the following are known [7, Prop. 6.3] (and easy) facts: First,
Φ∞ := limT→∞

1
T

∑T
t=1 Φt exists and is itself a channel. Second, as an operator, Φ∞ acts as

projection onto the fixed points V1(Φ) of Φ. Here we are using the following notation:

I Notation 4. For any operator A we write V1(A) for the eigenspace of A with eigenvalue 1,
i.e., the invariant subspace for A.

As mentioned earlier, the analogous statements are true regarding S∞, when S is a stochastic
operator. (In both the probabilistic and quantum cases, the essential point is that the
operator in question has spectral radius 1.)

Returning to Theorem 3, certainly Φp = pΦ1 + (1− p)Φ0 varies continuously for p ∈ [0, 1].
But what we need to prove is that the invariant subspace V1(Φp) of Φp varies continuously
for p ∈ (0, 1). There is one obvious potential obstruction: the dimension of V1(Φp) might
change as p varies. (As we will see, this is actually the only obstruction.) Now in general,
slightly perturbing a matrix can change the dimension of its 1-eigenspace. However we are
not concerned with completely general perturbations: we are just considering all the convex
combinations of two fixed channels Φ0,Φ1. The main technical theorem in our paper will be
the following:

I Theorem 5. For any channels Φ0,Φ1, the dimension dimV1(Φp) is the same for all
p ∈ (0, 1).

G. Kindler and R. O’Donnell 15:5

We will discuss the intuition for this theorem below. But first we will observe that Theorem 3
is an elementary linear-algebraic consequence of Theorem 5. This deduction of Theorem 3
from Theorem 5 is a little more familiar if we consider 1 − Φp rather than Φp. Then Φ∞p
is the projection onto the kernel of 1− Φp, and it is elementary that, given a continuously-
parameterized family of matrices like p 7→ 1−Φp, the kernel varies continuously wherever the
nullity (in this case, dimV1(Φp)) is locally constant. For a simple explicit proof see, e.g., [6].

Thus all that remains in this work is to prove Theorem 5. We will do this in Section 4,
but first we provide some intuition and introduce a key definition, that of combinatorially
equivalent channels.

3.1 Intuition for Theorem 5
All of our discussion so far applies equally to probabilistic automata defined by stochastic
matrices S0, S1. So let us first consider the analogue of Theorem 5 in this case. Here we have a
family of Markov chains defined by Sp = pS1+(1−p)S0 and we want to consider the dimension
of their invariant subspaces. It is well known that the invariant subspace V1(S) of the Markov
chain defined by S is spanned by a linearly independent set of invariant probabilistic-states.
Thus dimV1(S) is equal to the number of linearly independent (“fundamentally different”,
one might say) invariant distributions.

In the study of Markov chains, it’s popular to focus on the irreducible case, in which
case there is a unique invariant probability distribution; i.e., dimV1(S) = 1. However in
general we must consider reducible Markov chains (the “mathematically annoying case”, as
Hellman and Cover [5] put it). Fortunately, the theory of reducible Markov chains is well
developed, and it is known that there is one linearly independent invariant distribution per
every communication class of the Markov chain. Here the “communication classes” of the
Markov chain defined by S are precisely the strongly connected components of the underlying
digraph on [d]; i.e., the graph which has a directed edge (i, j) whenever Sij 6= 0. Given this
theory, it is easy to deduce the analogue of Theorem 5; the point is that for any fixed S0, S1,
the underlying digraph of Sp is the same for all p ∈ (0, 1). Since Sp = pS1 + (1− p)S0, an
edge (i, j) is present in Sp if and only if it is present in either S0 or S1. Thus Sp has the
same set (hence number) of communication classes for all p ∈ (0, 1), as needed.

In this paper, we show there is an analogous sequence of ideas in the quantum case, using
some of the recently developed theory of fixed points of quantum channels. Given a quantum
channel Φ, it is known [7, Cor. 6.5] that V1(Φ) is always spanned by linearly independent
quantum-states. The analogous notion to communication classes is that of minimal enclosures.
Further, similar to how the communication classes of a Markov chain are determined only by
the nonzero pattern of its transition matrix, the minimal enclosures of a quantum channel
are determined only by its Kraus operators. We then make use of the fact that all the
convex combinations Φp of two channels Φ0,Φ1 have related Kraus operators. Specifically,
we introduce the following notion:

I Definition 6. We will say that two channels Φ and Φ̂ (with the same Hilbert space H)
are combinatorially equivalent if there are Kraus operators K1, . . . ,Kr for Φ and K̂1, . . . , K̂r̂

for Φ̂ such that each Ki is proportional to some K̂i′ and vice versa.

Given channels Φ0,Φ1 with Kraus operators {K(0)
i : i ∈ [r0]}, {K(1)

j : j ∈ [r1]} respectively,
the channel Φp = pΦ1 + (1− p)Φ0 has Kraus operators {

√
1− pK(0)

i : i ∈ [r0]} ∪ {√pK(1)
j :

j ∈ [r1]}. Thus the channels Φp are all pairwise combinatorially equivalent for p ∈ (0, 1)

ICALP 2017

15:6 Quantum Automata Cannot Detect Biased Coins, Even in the Limit

(though not necessarily for p ∈ {0, 1}). To show Theorem 5, it therefore suffices to show the
following more general result:

I Theorem 7. Suppose Φ and Φ̂ are combinatorially equivalent. Then dimV1(Φ) =
dimV1(Φ̂).

4 The last step: proof of Theorem 7

To prove Theorem 7, we use some known results concerning the decomposition of a quantum
channel into irreducible components, and the structure of its invariant quantum-states. We
will specifically use the key decomposition theorem appearing variously as [7, Theorem 6.14],
[3, Theorem 7], [4, Theorem 7.2].

Let Φ denote a quantum channel on B(H) with Kraus operators K1, . . . ,Kr. We are
interested in m = dimV1(Φ), the dimension of the space of Φ’s fixed points. As Φ is a
quantum channel, it is known [7, Prop. 6.1] that its spectral radius is 1 and that it has at
least one eigenvalue equal to 1; thus m ≥ 1. As mentioned, it is also known [7, Cor. 6.5] that
V1(Φ) is always spanned by some m linearly independent quantum-states.

If ρ is a quantum-state, its support supp(ρ) is simply the range of ρ as a subspace of H.
The recurrent subspace for Φ is the subspace of H defined by

R = span{supp(ρ) : ρ is an invariant quantum-state}.

The orthogonal complement of R in H is denoted D; this is the decaying (or transient)
subspace. A subspace V ⊆ H is called an enclosure if supp(ρ) ⊆ V =⇒ supp(Φ(ρ)) ⊆ V
for all quantum-states ρ. We can relate this concept to Kraus operators via the following
equivalence:

I Fact 8 ([4, Proposition 4.4]). V is an enclosure if and only if KiV ⊆ V for all Kraus
operators Ki.

An enclosure V is called minimal if it is nonzero and all enclosures V ′ ⊆ V are equal to either
{0} or V. It is also known [3, Prop. 15] that a subspace of H is a minimal enclosure if and
only if it is the support of an extremal invariant quantum-state, meaning one that cannot be
written as a nontrivial convex combination of two distinct invariant quantum-states. One
consequence is that

R = span{supp(ρ) : ρ is an extremal invariant quantum-state}
= span{V : V is a minimal enclosure}. (2)

The theorems [7, Theorem 6.14], [3, Theorem 7], [4, Theorem 7.2] characterize V1(Φ) and
the quantum-states therein in slightly different ways. To explain, we make some definitions.

I Definition 9. (In this definition, k, m1, . . . ,mk, d1, . . . , dk denote positive integers.)
Given Φ, we define a minimal enclosure decomposition to be an orthogonal decomposition

of H into subspaces

H = D ⊕
k⊕

i=1
Wi, where Wi =

mi⊕
j=1
Vi,j (3)

for which the following properties hold:

G. Kindler and R. O’Donnell 15:7

1. D is the decaying subspace for Φ.
2. Each Vi,j is a minimal enclosure.
3. Each dimVi,j = di for all 1 ≤ j ≤ mi.
4. For any minimal enclosure X of Φ and any 1 ≤ i ≤ k, if X is not orthogonal to Wi then
X ⊆ Wi. (In particular, if mi = 1 then X must equal Wi.)

5. The decomposition (3) is maximal, in the sense that it is not possible to increase k.

I Remark. In fact, one can show there is always a unique minimal enclosure decomposition.
However, we have not found this exact statement appearing in the literature, and in this
paper we will prefer to simply cite known results.

I Definition 10. Suppose we have a minimal enclosure decomposition for Φ as above. Fix any
ordered orthogonal basis for H compatible with (3) (meaning the first dimD elements span
D, the next m1d1 elements come in m1 groups of d1 spanning V1,1, . . . ,V1,m1 respectively,
etc.). Let X ∈ B(H), and think of X in its matrix form with respect to the ordered basis.

Then we say that X respects the minimal enclosure decomposition if X is block-diagonal
with blocks corresponding to D, W1, . . . ,Wk, and furthermore X is 0 on the D-block and
is of the form Ai ⊗ ρi on the Wi-block for some Ai ∈ Cmi×mi and some strictly positive
density matrix ρi ∈ Cdi×di . In symbols,

X = 0⊕
k⊕

i=1
Ai ⊗ ρi.

(We remark that the property of respecting the minimal enclosure decomposition does not
depend on the choice of the compatible orthogonal basis.)

In combination, [7, Theorem 6.14], [3, Theorem 7] state the following:2

I Theorem 11. Given any channel Φ, there exists a minimal enclosure decomposition as
in (3) such that V1(Φ) consists precisely of all X ∈ B(H) that respect the decomposition. (An
immediate consequence is that m = dimV1(Φ) =

∑
i m

2
i .) Finally, the quantum-states that

are invariant are precisely all such X with Ai = λiσi, where σ1, . . . , σk are density matrices
and λ1, . . . , λk are nonnegative reals summing to 1.

The statement of [4, Theorem 7.2] is slightly different:3

I Theorem 12. Given any channel Φ, at least one minimal enclosure decomposition exists.
Furthermore, given any minimal enclosure decomposition

H = D ⊕
k̂⊕

i=1
Ŵi, where Ŵi =

m̂
k̂⊕

j=1
V̂i,j ,

every invariant quantum-state for Φ respects it. (As an immediate consequence, we have
m = dimV1(Φ) ≤

∑
i m̂

2
i .)

2 [7] deals with the invariant subspace whereas [3] deals with the invariant quantum-states. The fact that
the ρi’s are strictly positive is in [7]. Finally, [3] does not explicitly show that the minimal enclosure
decomposition satisfies condition (4) in Definition 9. However, it’s implicit and it’s easy to deduce: we
know that any minimal enclosure X is the support of some extremal invariant quantum-state ρ, and it’s
clear that if this support is not entirely within a single Wi-block then ρ would not be extremal.

3 The first statement of this theorem is [4, Proposition 7.1], except that that Proposition does not include
either condition (4) of Definition 9 for those i with mi = 1. However it is evident from the proof that
this is an oversight; a personal communication from the authors confirmed this. Also, [4, Proposition 7.1]
does not explicitly state condition (5) of Definition 9, but it is obtained by the proof, and is in fact
needed for correctness of the proof.

ICALP 2017

15:8 Quantum Automata Cannot Detect Biased Coins, Even in the Limit

We are now able to give the proof of Theorem 7.

Proof of Theorem 7. Write m = dimV1(Φ) and m̂ = dimV1(Φ̂). Since Φ and Φ̂ play
symmetric roles, it suffices to show m̂ ≤ m. Apply Theorem 11 to Φ, obtaining a minimal
enclosure decomposition as in (3). We have m =

∑k
i=1 m

2
i . We claim that this decomposition

is also a minimal enclosure decomposition for Φ̂. This will finish the proof of m̂ ≤ m, by
Theorem 12.

To see the claim, we first observe that every enclosure V for Φ is an enclosure for Φ̂
(and vice versa). This follows from Fact 8: V satisfies KiV ⊆ V for each Kraus operator
Ki of Φ, and hence the same is true for the Kraus operators K̂i′ of Φ̂, by combinatorial
equivalence of Φ and Φ̂. It then follows by definition that every minimal enclosure for Φ is
also a minimal enclosure for Φ̂ (and vice versa). Finally, the claim now follows because Φ and
Φ̂ have the same decaying subspace (by (2)) and because Definition 9 of minimal enclosure
decompositions depends only on which subspaces of H are minimal enclosures. J

Acknowledgment. We thank an anonymous reviewer for a very careful reading of the paper
that fixed some inaccuracies.

References
1 Scott Aaronson. The NEW ten most annoying questions in quantum computing, May 2014.

http://www.scottaaronson.com/blog/?p=1792.
2 Scott Aaronson and Andrew Drucker. Advice coins for classical and quantum computation.

In Proceedings of the 38th Annual International Colloquium on Automata, Languages and
Programming, pages 61–72, 2011.

3 Bernhard Baumgartner and Heide Narnhofer. The structures of state space concerning
quantum dynamical semigroups. Reviews in Mathematical Physics, 24(2):1250001, 2012.

4 Raffaella Carbone and Yan Pautrat. Irreducible decompositions and stationary states of
quantum channels. Technical Report 1507.08404, arXiv, 2015.

5 Martin Hellman and Thomas Cover. Learning with finite memory. Annals of Mathematical
Statistics, 41:765–782, 1970.

6 user1551. Continuity of the basis of the null space, March 2015. http://math.
stackexchange.com/a/1203782.

7 Michael Wolf. Quantum channels & operations: guided tour, 2012. http://www-m5.ma.
tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf.

http://www.scottaaronson.com/blog/?p=1792
http://math.stackexchange.com/a/1203782
http://math.stackexchange.com/a/1203782
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf
http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

A New Holant Dichotomy Inspired by Quantum
Computation∗†

Miriam Backens

School of Mathematics, University of Bristol, Bristol, UK
m.backens@bristol.ac.uk

Abstract
Holant problems are a framework for the analysis of counting complexity problems on graphs.
This framework is simultaneously general enough to encompass many counting problems on
graphs and specific enough to allow the derivation of dichotomy results, partitioning all problems
into those which are in FP and those which are #P-hard. The Holant framework is based on
the theory of holographic algorithms, which was originally inspired by concepts from quantum
computation, but this connection appears not to have been explored before.

Here, we employ quantum information theory to explain existing results in a concise way and
to derive a dichotomy for a new family of problems, which we call Holant+. This family sits
in between the known families of Holant∗, for which a full dichotomy is known, and Holantc,
for which only a restricted dichotomy is known. Using knowledge from entanglement theory –
both previously existing work and new results of our own – we prove a full dichotomy theorem
for Holant+, which is very similar to the restricted Holantc dichotomy and may thus be a
stepping stone to a full dichotomy for that family.

1998 ACM Subject Classification G.2.1 [Combinatorics] Counting Problems, F.2.m [Analysis
of Algorithms and Problem Complexity] Miscellaneous

Keywords and phrases computational complexity, counting complexity, Holant, dichotomy, en-
tanglement

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.16

1 Introduction

Quantum computation (QC) provided the inspiration for holographic algorithms [30], which
in turn inspired the Holant framework [11]. While Holant problems are an area of active
research, so far there appear to have been no attempts to apply knowledge from quantum
information theory (QIT) or QC to their analysis. Yet, as we show in the following, QIT
and QC offer promising new avenues of research into Holant problems.

The Holant framework encompasses a wide range of counting complexity problems on
graphs, parameterised by sets of functions F . Here, we consider functions of Boolean inputs
taking values in the set of algebraic complex numbers. Each vertex in the graph is assigned
a function from F , with each edge incident on the vertex corresponding to an input of the
function. This structure is associated with a complex number, the Holant, computed by
multiplying the function values together and summing over all possible input assignments
for each edge (for the full definition, see Section 2). The associated counting problem
Holant (F) is the following: given a graph and an assignment of functions from F to

∗ A full version of this paper is available on the arXiv [1].
† I acknowledge funding from EPSRC via grant EP/L021005/1.

EA
T

C
S

© Miriam Backens;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 A New Holant Dichotomy Inspired by Quantum Computation

vertices, find the value of the Holant [11]. From a QIT perspective, each function can be
considered as a tensor with one index for each input, making Holant (F) the evaluation of
a tensor network contraction.

The Holant framework is general enough to include problems such as counting matchings
or perfect matchings, counting vertex covers [11], or counting Eulerian orientations [21]. It
also encompasses other counting complexity frameworks like counting constraint satisfaction
problems (#CSP) or counting graph homomorphisms [11]. On the other hand, the Holant
framework is specific enough to allow the derivation of dichotomy theorems, which state
that for function sets F within certain classes, the Holant problem is either in FP or it is
#P-hard. By an analogue of Ladner’s Theorem about NP-intermediate problems [23], such a
dichotomy is not expected to hold for general counting problems [6].

One example of such a dichotomy is that for Holant∗. The problem Holant∗(F) is
equal to Holant (F ∪ U), where U is the set of all unary functions [6]. Another example
is the dichotomy for symmetric Holantc, where all function sets considered must contain
the unary functions pinning edges to values 0 or 1, respectively. Additionally, all functions
are required to be symmetric, meaning their value depends only on the Hamming weight of
the input [10]. Further dichotomies exist, but these, too, assume the availability of certain
functions [12] or restrict the function sets, e.g. to symmetric or real-valued functions only
[9, 27]. A full dichotomy for all Holant problems, as well as a full dichotomy for Holantc,
have so far remained elusive.

Here, we use knowledge from QC and QIT to make a step towards a full dichotomy
for Holantc. First, we analyse existing dichotomies in quantum terms, finding natural
characterisations of the Holant∗ and symmetric Holantc dichotomies. The former can
be described in terms of the entanglement classes of the allowed functions. Entanglement
is a core concept in quantum theory: a quantum state of multiple systems is entangled if
it cannot be written as a tensor product of states of subsystems. For states of more than
two systems, there are different classes of entanglement which can be used for different QIT
tasks [28]; their classification is an area of ongoing research [15, 31, 24, 25, 2]. We also find
that the tractable class of affine functions arising in the dichotomy for symmetric Holantc
(see Section 3.2) is well-known in QIT as stabilizer states [20].

Motivated by this, we define a new class of Holant problems, which we call Holant+.
This class encompasses Holant problems where function sets are required to contain four
specific unary functions, including the two that are available in Holantc. In this way,
Holant+ fits between Holant∗, for which there is a full dichotomy, and Holantc, for
which there is no full dichotomy. These four unary functions enable the use of a known result
from entanglement theory about producing two-system entangled states from many-system
ones via projections [29, 18]: this corresponds to the ability to produce non-degenerate
binary functions via gadgets. In fact, we prove an extension of that result about constructing
three-qubit entangled states, or equivalently ternary functions. Using this, we derive our
dichotomy theorem for Holant+, whose tractable classes are very similar to those of the
dichotomy for symmetric Holantc [11]. Our dichotomy is the first full Holant dichotomy
with no restrictions on the type of functions and where only a finite number of functions are
assumed available, except for the dichotomy for #R3-CSP [12].

In the following, Section 2 contains a more detailed introduction to the Holant problem
and associated concepts. In Section 3, we recap the relevant existing dichotomies and
results. The quantum perspective on Holant problems, together with important notions from
entanglement theory, is introduced in Section 4. We define and motivate the new family of
Holant problems, called Holant+, and prove the dichotomy theorem in Section 5.

M. Backens 16:3

2 Holant problems

Holant problems are a framework for counting complexity problems on graphs, introduced by
Cai et al. [11], and based on the theory of holographic algorithms developed by Valiant [30].
Let F be a set of complex-valued functions with Boolean inputs, also called signatures, and
let G = (V,E) be an undirected graph with vertices V and edges E. Throughout, graphs
are allowed to have parallel edges and self-loops. All complex numbers are assumed to be
algebraic [7]. A signature grid is a tuple Ω = (G,F , π) where π is a function that assigns to
each n-ary vertex v ∈ V a function fv : {0, 1}n → C in F , specifying which edge corresponds
to which input. The Holant for a signature grid Ω is:

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv(σ|E(v)), (1)

where σ is an assignment of Boolean values to each edge and σ|E(v) is the restriction of σ to
the edges incident on v.

I Definition 1. The Holant problem for a set of signatures F , denoted by Holant(F), is
defined as follows:

Input: a signature grid Ω = (G,F , π) over the signature set F ,
Output: HolantΩ.

A symmetric signature is a function that depends only on the Hamming weight of the
input. An n-ary symmetric signature is often written as f = [f0, f1, . . . , fn], where fk is
the value f takes on inputs of Hamming weight k for k ∈ {0, . . . , n}. A signature is called
degenerate if it is a product of unary signatures. Any signature that cannot be expressed as a
product of unary signatures is called non-degenerate. Multiplying a signature by a non-zero
constant does not change the complexity of evaluating the Holant, so we will usually identify
functions that are equal up to non-zero scalar factor.

Given a bipartite graph, we can define a bipartite signature grid by specifying two
signature sets F and G and assigning signatures from F (G) to vertices from the first (second)
partition. A bipartite signature grid is denoted by a tuple (G,F | G, π). The corresponding
bipartite Holant problem is Holant(F | G). Any signature grid can be made bipartite by
inserting a new vertex carrying the binary equality signature in the middle of each edge.

2.1 Signature grids in terms of vectors
As noted in [8], any signature f : {0, 1}n → C can be considered as a complex vector of 2n
components indexed by {0, 1}n. Let {|x〉}x∈{0,1}n be an orthonormal basis1 for C2n . The
vector corresponding to the signature f is then denoted by |f〉 =

∑
x∈{0,1}n f(x) |x〉.

Suppose Ω = (G,F | G, π) is a bipartite signature grid, where G = (V,W,E) has vertex
partitions V and W . Then the Holant for Ω can be written as:

HolantΩ =
(⊗
w∈W

(|gw〉)T
)(⊗

v∈V
|fv〉

)
=
(⊗
v∈V

(|fv〉)T
)(⊗

w∈W
|gw〉

)
, (2)

where the tensor products are assumed to be ordered such that, in each inner product, two
systems associated with the same edge meet.

1 In using this notation for vectors, called Dirac notation and common in QC and QIT, we anticipate the
interpretation of the vectors associated with signatures as quantum states, cf. Section 4.

ICALP 2017

16:4 A New Holant Dichotomy Inspired by Quantum Computation

2.2 Reductions
Holographic transformations are the origin of the name ‘Holant problems’. Let M be a 2 by
2 complex matrix. For any f : {0, 1}n → C, write M ◦ f for the function corresponding to
the vector M⊗n |f〉. Furthermore, for any signature set F , write M ◦ F := {M ◦ f | f ∈ F}.

I Theorem 2 (Valiant’s Holant Theorem, [30]). Suppose F and G are two sets of signatures,
M an invertible 2 by 2 complex matrix, and Ω = (G,F | G, π) a signature grid. Let Ω′ =
(G,M ◦ F | (M−1)T ◦ G, π′) be the signature grid resulting from Ω by replacing each fv
or gw by M ◦ fv or (M−1)T ◦ gw, respectively. Then HolantΩ = HolantΩ′ and therefore
Holant (F | G) ≡T Holant

(
M ◦ F | (M−1)T ◦ G

)
.

Here, ≡T means the two problems have the same complexity. For non-bipartite signature
grids, Theorem 2 implies that Holant (F) ≡T Holant (O ◦ F), where O is any orthogonal
2 by 2 complex matrix [30]. Going from a signature set F | G to M ◦F | (M−1)T ◦ G or from
F to O ◦ F is a holographic reduction.

A gadget over a signature set F (also called F-gate) is a fragment of a signature grid
with some ‘dangling’ edges. Any gadget can be assigned an effective signature g. If g is the
effective signature of some gadget over F , g is said to be realisable over F .

I Lemma 3 ([6]). Suppose F is some signature set and g is realisable over F . Then
Holant (F ∪ {g}) ≡T Holant (F).

Following [27], we define for any signature set F , S(F) = {g | g is realisable over F}.
Then Lemma 3 implies that Holant (S(F)) ≡T Holant (F).

If g /∈ S(F), in certain cases it is nevertheless possible to show a result like Lemma 3
by analysing a family of signature grids that differ in specific ways. This process is called
polynomial interpolation and will not be used here, though it is a crucial ingredient in some
of the results we build upon. The interested reader can find a discussion of polynomial
interpolation in [11].

3 Existing results about the Holant problem

We now introduce the existing families of Holant problems and the associated dichotomy
results. Gadget constructions, which are at the heart of many reductions, are easier the more
signatures are known to be available. As a result, several families of Holant problems have
been defined, in which certain sets of signatures are freely available – i.e. have to be included
in any set F – and can thus be used in gadget constructions and polynomial interpolation.

3.1 Holant∗

The Holant problem in which all unary signatures are freely available is Holant∗ (F) =
Holant (F ∪ U), where U is the set of all unary signatures [11, 6].

We begin with some definitions. Given a bit string x, let x̄ be its bit-wise complement.
Denote by 〈F〉 the closure of a signature set F under tensor products. Furthermore, let:
T be the set of all binary signatures,
E the set of signatures which are non-zero only on two inputs x and x̄, and
M the set of signatures which are non-zero only on inputs of Hamming weight at most 1.

Finally, define K =
(1 1
i −i

)
and X = (0 1

1 0). The matrix K satisfies KTK
.= X, where .=

denotes equality up to non-zero scalar factor. In fact, up to multiplication by a diagonal
matrix or by X itself, K is the only solution to this equation (see the full version of this
paper at [1]).

M. Backens 16:5

I Theorem 4 ([6]). Let F be any set of complex valued functions in Boolean variables. The
problem Holant∗ (F) is polynomial time computable if:
F ⊆ 〈T 〉, or
F ⊆ 〈O ◦ E〉, where O is a complex orthogonal 2 by 2 matrix, or
F ⊆ 〈K ◦ E〉, or
F ⊆ 〈K ◦M〉 or F ⊆ 〈KX ◦M〉.

In all other cases, Holant∗ (F) is #P-hard. The dichotomy is still valid even if the inputs
are restricted to planar graphs.

3.2 Holantc

Holantc is the Holant problem in which only the unary signatures pinning edges to 0 or
1 are freely available [11, 10], i.e. Holantc (F) = Holant (F ∪ {δ0, δ1}) with δ0 = [1, 0]
and δ1 = [0, 1]. There is no full dichotomy for Holantc yet, though there is a dichotomy
that applies to sets of symmetric signatures only. This dichotomy features a new family of
tractable signatures, which do not appear in the Holant∗ dichotomy.

I Definition 5. A signature f : {0, 1}n → C is called affine if it has the form:

f(x) = cil(x)(−1)q(x)χAx=b(x), (3)

where c ∈ C, i2 = −1, l : {0, 1}n → Z2 is a linear function, q : {0, 1}n → Z2 is a quadratic
function, A is an m by n matrix with Boolean entries for some 0 ≤ m ≤ n, b ∈ {0, 1}m, and
χ is an indicator function which takes value 1 on inputs satisfying Ax = b, and 0 otherwise.

The set of all affine signatures is denoted by A; this is already closed under tensor
products. For the reader familiar with quantum information theory, the affine signatures
correspond – up to a scalar factor – to stabilizer states (cf. Section 4.2).

I Theorem 6 ([10]). Let F be a set of complex symmetric signatures. Holantc (F) is
#P-hard unless F satisfies one of the following conditions, in which case it is in FP:

Holant∗ (F) is polynomial-time computable (cf. Theorem 4), or
there exists a T ∈ I such that F ⊆ T ◦ A, where:

I =
{
T
∣∣∣ (T−1)T ◦ {=2, δ0, δ1} ⊂ A

}
. (4)

3.3 Other Holant problems
Complex-weighted Boolean #CSP (the counting constraint satisfaction problem) corresponds
to a Holant problem in which equality functions of any arity are freely available. Formally,
#CSP(F) = Holant (F ∪ G), where G = {=1,=2,=3, . . .} with =1 being the function that
is equal to 1 on both inputs [11, 10, 12].

I Theorem 7 ([12]). Suppose F is a class of functions mapping Boolean inputs to complex
numbers. If F ⊆ A or F ⊆ 〈E〉, then #CSP(F) is computable in polynomial time. Otherwise,
#CSP(F) is #P-hard.

The same dichotomy also holds for #R3-CSP, which corresponds to the bipartite Holant
problem Holant (F | {=1,=2,=3}) [12]. This dichotomy follows immediately from that
for #CSP if F contains the binary (or indeed any non-unary) equality function, but it is
non-trivial if F does not contain any non-unary equality functions.

In the case of Holant with no free signatures, there exists a dichotomy for complex-
valued symmetric signatures [9] and a dichotomy for (not necessarily symmetric) signatures
taking non-negative real values [27]. We will not explore those results in any detail here.

ICALP 2017

16:6 A New Holant Dichotomy Inspired by Quantum Computation

3.4 Results about ternary symmetric signatures
The hardness of problems of the form Holant ({[y0, y1, y2]} | {[x0, x1, x2, x3]}) has been
fully determined. If [x0, x1, x2, x3] is degenerate, the problem is tractable by the first case
of Theorem 4. If [x0, x1, x2, x3] is non-degenerate, it can always be mapped to [1, 0, 0, 1] or
[1, 1, 0, 0] by a holographic transformation [10]. By Theorem 2, it thus suffices to consider
the cases {[y0, y1, y2]} | {[1, 0, 0, 1]} and {[y0, y1, y2]} | {[1, 1, 0, 0]}.

There are holographic transformations which leave the signature [1, 0, 0, 1] invariant: in
particular, (1 0

0 ω) ◦ [1, 0, 0, 1] = [1, 0, 0, 1] if ω3 = 1 [10]. Thus, by Theorem 2:

Holant ({[y0, y1, y2]} | {[1, 0, 0, 1]}) ≡T Holant
(
{[y0, ωy1, ω

2y2]} | {[1, 0, 0, 1]}
)
. (5)

This relationship can be used to reduce the number of symmetric binary signatures to be
considered. Following [10], a signature of the form [y0, y1, y2] is called ω-normalised if y0 = 0,
or there does not exist a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that
y2 = λy0. Similarly, a unary signature [a, b] is ω-normalised if a = 0, or there does not exist
a primitive (3t)-th root of unity λ, where gcd(t, 3) = 1, such that b = λa.

I Theorem 8 ([10]). Let G1,G2 be two sets of signatures and let [y0, y1, y2] be a ω-normalised
and non-degenerate signature. In the case of y0 = y2 = 0, further assume that G1 contains a
unary signature [a, b] which is ω-normalised and satisfies ab 6= 0. Then:

Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) ≡T #CSP({[y0, y1, y2]} ∪ G1 ∪ G2). (6)

More specifically, Holant ({[y0, y1, y2]} ∪ G1 | {[1, 0, 0, 1]} ∪ G2) is #P-hard unless:
{[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ 〈E〉, or
{[y0, y1, y2]} ∪ G1 ∪ G2 ⊆ A,

in which cases the problem is in FP.

I Theorem 9 ([10]). Holant ({[y0, y1, y2]} | {[x0, x1, x2, x3]}) is #P-hard unless [y0, y1, y2]
and [x0, x1, x2, x3] satisfy one of the following conditions, in which case the problem is in FP:

[x0, x1, x2, x3] is degenerate, or
there is a 2 by 2 matrix M such that:

[x0, x1, x2, x3] = M ◦ [1, 0, 0, 1] and MT ◦ [y0, y1, y2] is in A ∪ 〈E〉,
[x0, x1, x2, x3] = M ◦ [1, 1, 0, 0] and [y0, y1, y2] = (M−1)T ◦ [0, a, b] for some a, b ∈ C.

4 The quantum state perspective on signature grids

In Section 2.1, we introduced the idea of considering signatures as complex vectors. This
perspective is useful for proving Valiant’s Holant Theorem, which is at the heart of the theory
of Holant problems. It also gives a connection to the theory of QC.

In QC and QIT, the basic system of interest is a qubit (quantum bit), which takes the
place of the usual bit in standard computer science. The state of a qubit is described by a
vector2 in C2. State spaces compose by tensor product, i.e. the state of n qubits is described
by a vector in

(
C2)⊗n, which is isomorphic to C2n . Thus, the vector associated with an

n-ary signature can be considered to be an (unnormalised) quantum state of n qubits.

2 Strictly speaking, vectors only describe pure quantum states: there are also mixed states, which need to
be described differently; but we do not consider those here.

M. Backens 16:7

Let {|0〉 , |1〉} be an orthonormal basis for C2. We call this the computational basis. The
induced basis on

(
C2)⊗n is labelled by {|x〉}x∈{0,1}n as a short-hand, e.g. we write |00 . . . 0〉

instead of |0〉⊗ |0〉⊗ . . .⊗ |0〉. This is exactly the same as the basis introduced in Section 2.1.
Holographic transformations also have a natural interpretation in quantum information

theory: going from an n-qubit state |f〉 to M⊗n |f〉, where M is some invertible 2 by 2
matrix, is a ‘stochastic local operation with classical communication’ (SLOCC) [4, 15]. These
are physical operations that can be applied locally (without needing access to more than one
qubit at a time) using classical (i.e. non-quantum) communication between the sites where
the different qubits are held, and which succeed with non-zero probability. Unlike holographic
transformations, SLOCC operations do not need to be symmetric under interchange of the
qubits: the most general SLOCC operation on an n-qubit state is given byM1⊗M2⊗. . .⊗Mn,
where M1,M2, . . .Mn are invertible complex 2 by 2 matrices [15].

From now on, we will use standard Holant terminology (or notation) and quantum
terminology (or notation) interchangeably, and sometimes mix the two.

4.1 Entanglement and its classification
One major difference between quantum theory and preceding theories of physics (known as
‘classical physics’) is the possibility of entanglement in states of multiple systems.

I Definition 10. A state of multiple systems is entangled if it cannot be written as a tensor
product of states of individual systems.

Where a state involves more than two systems, it is possible for some of the systems to be
entangled with each other and for other systems to be in a product state with respect to the
former. We sometimes use the term genuinely entangled state to refer to a state in which no
subsystem is in a product state with the others. The term multipartite entanglement refers
to entangled states in which more than two qubits are mutually entangled. Non-degenerate
signatures correspond to (not necessarily genuinely) entangled states.

Entanglement is an important resource in QC, where it has been shown that quantum
speedups are impossible without the presence of unboundedly growing amounts of entan-
glement [22]. Similarly, it is a resource in QIT [28], featuring in protocols such as quantum
teleportation [3] and quantum key distribution [16]. Many QIT protocols have the property
that two quantum states can be used to perform the same task if one can be transformed
into the other by SLOCC, motivating the following equivalence relation.

I Definition 11. Two n-qubit states are equivalent under SLOCC if one can be transformed
into the other using SLOCC. More formally: suppose |f〉 and |g〉 are two n-qubit states. Then
|f〉 ∼SLOCC |g〉 if and only if there exist invertible complex 2 by 2 matrices M1,M2, . . . ,Mn

such that (M1 ⊗M2 ⊗ . . .⊗Mn) |f〉 = |g〉.

The equivalence classes of this relation are called entanglement classes or SLOCC classes.
For two qubits, there is only one class of entangled states, i.e. all entangled two-qubit

states are equivalent to |00〉+ |11〉 under SLOCC. For three qubits, there are two classes of
genuinely entangled states [15], called the GHZ class and the W class. The former contains
states that are equivalent under SLOCC to the GHZ state |GHZ〉 := |000〉 + |111〉, the
latter those equivalent to the W state |W 〉 := |001〉 + |010〉 + |100〉. Given an arbitrary
three-qubit state expressed in the computational basis, it is straightforward to determine
its entanglement class [26]. For more than three qubits, there are infinitely many SLOCC
classes. It is possible to partition these into families which share similar properties. Yet, so

ICALP 2017

16:8 A New Holant Dichotomy Inspired by Quantum Computation

far, there is no consensus on how to partition the classes: there are different schemes for
partitioning even the four-qubit entanglement classes, yielding different families [31, 25, 2].

It is sometimes useful to generalise the definitions of GHZ and W states to n-qubit
states. The generalised GHZ state on n qubits is |GHZn〉 := |0〉⊗n + |1〉⊗n, i.e. it is the state
corresponding to the n-ary equality signature. The generalised W state on n qubits is defined
as |W1〉 := |1〉 and |Wn〉 := |1〉 ⊗ |0〉⊗n−1 + |0〉 ⊗ |Wn−1〉 for n > 1, i.e. |Wn〉 corresponds
to the n-ary indicator function for inputs of Hamming weight 1. We sometimes drop the
word ‘generalised’ when talking about generalised GHZ or W states. It should be clear from
context whether or not we mean the three-qubit state specifically.

4.2 The existing results in the quantum picture
Several of the existing dichotomies have straightforward descriptions in the quantum picture.
The tractable cases of the Holant∗ dichotomy (cf. Section 3.1) can be described as follows:

either there is no multipartite entanglement – this corresponds to the case F ⊆ 〈T 〉, or
there is GHZ-type multipartite entanglement but it is impossible to realise W -type
multipartite entanglement – this corresponds to the cases F ⊆ 〈O ◦ E〉 or F ⊆ 〈K ◦ E〉, or
there is W -type multipartite entanglement and it is impossible to realise GHZ-type
multipartite entanglement – this corresponds to the case F ⊆ 〈K ◦M〉 or F ⊆ 〈KX ◦M〉.

By GHZ-type entanglement we mean states that are equivalent to generalised GHZ states
under SLOCC, and similarly for W -type entanglement.

The tractable case of Holantc (cf. Section 3.2) that does not appear in Holant∗ also
has a natural description: in QIT, the states corresponding to affine signatures are known as
stabilizer states [13]. These states and the associated operations play an important role in
the context of quantum error-correcting codes [20] and are thus at the core of most attempts
to build large-scale quantum computers [14]. The fragment of quantum theory consisting of
stabilizer states and operations that preserve the set of stabilizer states can be efficiently
simulated on a classical computer [20]; this result is known as the Gottesman-Knill theorem.

Thus, the Holant problem and QIT are linked not only by quantum algorithms being
an inspiration for holographic ones: instead, the known tractable signature sets of various
Holant problems correspond to state sets that are of independent interest in QC and QIT.

The restriction to algebraic numbers is not a problem from the quantum perspective, not
even when considering the question of universal QC: there exist (approximately) universal
sets of quantum operations where each operation can be described using algebraic complex
coefficients. One such example is the Clifford+T gate set [5, 19].

5 Holant+

Our new family of Holant problems, called Holant+, sits in between Holant∗ and Holantc.
It has a small number of freely available signatures, which are all unary. Yet, using results
from QIT, these can be shown to be sufficient for constructing the gadgets required to reduce
to the dichotomies in Section 3.4. Formally:

Holant+ (F) = Holant (F ∪ {|0〉 , |1〉 , |+〉 , |−〉}) , (7)

where |+〉 := |0〉+ |1〉 corresponds to the ‘unary equality function’ and |−〉 := |0〉 − |1〉 is
a vector that is orthogonal to |+〉. In quantum theory, the set {|+〉 , |−〉} is known as the
Hadamard basis, since they are related to the computational basis vectors by a Hadamard
transformation (up to scalar factor): {|+〉 , |−〉} .= H ◦ {|0〉 , |1〉}, where H = 1√

2

(1 1
1 −1

)
.

M. Backens 16:9

5.1 Why these free signatures?
The definition of Holant+ is motivated by the following result from quantum theory.

I Theorem 12 ([29],[18]). Let |Ψ〉 be an n-system entangled state. For any two of the n
systems, there exists a projection, onto a tensor product of states of the other (n− 2) systems,
that leaves the two systems in an entangled state.

Here, ‘projection’ means a (partial) inner product between |Ψ〉 and the tensor product of
single-system states. The original proof of this statement in [29] was flawed but it was
recently corrected [18]. The following corollary is not stated explicitly in either paper, but
can be seen to hold by inspecting the proof in [18].

I Corollary 13. Let |Ψ〉 be an n-qubit entangled state. For any two of the n qubits, there
exists a projection of the other (n − 2) qubits onto a tensor product of computational and
Hadamard basis states that leaves the two qubits in an entangled state.

In other words, Theorem 12 holds when the systems are restricted to qubits and the
projectors are restricted to products of computational and Hadamard basis states. Here,
it is crucial to have projectors taken from two bases that are linked by the Hadamard
transformation: the corollary works only in that case. We extend this result as follows.

I Theorem 14. Let |Ψ〉 be an n-qubit entangled state with n ≥ 3. There exists some choice
of three of the n qubits and a projection of the other (n− 3) qubits onto a tensor product of
computational and Hadamard basis states that leaves the three qubits in a genuinely entangled
state.

Proof (Sketch). If n = 3, |Ψ〉 itself is the desired state. For larger n, the theorem is proved
inductively: we show that, given an n-qubit entangled state with n > 3, it is possible to
project (n− 3) qubits in the desired way, assuming the same holds for all k-qubit genuinely
entangled states with 3 ≤ k ≤ n. The induction step is then proved by contradiction,
employing the assumption that Theorem 14 does not hold for (n + 1)-qubit states while
Theorem 12 does. The full proof can be found in [1]. J

This result, which was not previously known in the QIT literature, is stronger than
Theorem 12 in that we construct entangled three-qubit states rather than two-qubit ones.
On the other hand, our result may not hold for all choices of three qubits: all we show is
that there exists some choice of three qubits for which it does hold. The original proof of
Theorem 14 in an earlier version of this paper was long and involved; this new shorter proof
was suggested by Gachechiladze and Gühne [17].

5.2 The dichotomy theorem
Using Theorem 14, as well as Theorems 8 and 9, we prove our main result: a dichotomy for
Holant+ applying to complex, not necessarily symmetric signatures.

I Theorem 15. Let F be a set of complex signatures. Holant+ (F) is in FP if F satisfies
one of the following conditions:

Holant∗ (F) is in FP, or
F ⊆ A.

In all other cases, the problem is #P-hard.

ICALP 2017

16:10 A New Holant Dichotomy Inspired by Quantum Computation

The tractable cases are almost the same as those for symmetric Holantc (Theorem 6), now
without the symmetry restriction. The only difference is that the holographic transformations
allowed in the affine case of the Holantc dichotomy are trivial in the case of Holant+:
any transformation that maps {|=2〉 , |0〉 , |1〉 , |+〉 , |−〉} to a subset of A must itself be in A.

The tractability proof follows immediately by reduction to Holant∗ or #CSP, respect-
ively. For the hardness proof, we use Theorem 14 to construct signatures corresponding
to three-qubit entangled states. We then show that, unless we are in one of the tractable
cases, it is possible to construct ternary gadgets with non-degenerate symmetric signatures.
If the ternary symmetric signature is in the GHZ class, Theorem 8 applies. If the ternary
symmetric signature is in the W class but not in K ◦M or KX ◦M, we use Theorem 9.
Finally, if the ternary symmetric signature is contained in K ◦M, then by assumption the
set of available signatures F must contain some signature that is not in K ◦M – otherwise,
the problem is already known to be tractable. We show how to use such a signature to
construct a binary symmetric signature that is not in K ◦M. Then the desired result follows
by Theorem 9. An analogous result holds with KX ◦M instead.

The gadget constructions for ternary symmetric signatures are given in Section 5.3. The
gadget construction for a symmetric binary signature that is not in K ◦M (or KX ◦M)
follows in Section 5.4. Section 5.5 contains the hardness proof itself.

5.3 Symmetrising ternary signatures
The dichotomies given in Section 3.4 apply to symmetric ternary entangled signatures. The
signatures constructed according to Theorem 14 are ternary and entangled, but they are not
generally symmetric. Yet, these general ternary entangled signatures can be used to realise
symmetric ones, possibly with the help of an additional binary non-degenerate signature.
We prove this by distinguishing cases according to whether the ternary entangled signature
constructed using Theorem 14 is in the GHZ or the W entanglement class.

First, consider a general GHZ-class state |ψ〉. By definition, there exist invertible complex
2 by 2 matrices A,B,C such that |ψ〉 = (A ⊗ B ⊗ C) |GHZ〉. We can draw the signature
associated with |ψ〉 as the ‘virtual gadget’ shown in Figure 1a. The ‘boxes’ denoting the
matrices are non-symmetric to indicate that A,B,C are not in general symmetric. The
white dot represents the GHZ state. This notation is not meant to imply that the signatures
A,B,C or the ternary equality signature are available on their own. Thinking of the signature
as such a composite will simply make future arguments more straightforward. A similar
argument can be applied if |ψ〉 is a W -class state, in which case the white dots in Figure 1
should be thought of as having signature |W 〉.

In both cases, three vertices with the same ternary entangled signature can be connected
to form the rotationally symmetric gadget shown in Figure 1b. In fact, the signature for
that gadget is fully symmetric: its value depends only on the Hamming weight of the inputs.
On the other hand, it may not be entangled or it may have the all-zero signature. For a
general non-symmetric |ψ〉 there are three such symmetric gadgets that can be constructed
by permuting the roles of A, B, and C in Figure 1b – in particular, which of the three ends
up on the external edge of the gadget. This idea leads to the following lemmas.

I Lemma 16. Let |ψ〉 be a three-qubit GHZ-class state, i.e. |ψ〉 = (A⊗B⊗C) |GHZ〉 for some
invertible 2 by 2 matrices A,B,C. Then at least one of the three possible symmetric gadgets
resulting from permutations of A,B,C in Figure 1b is non-degenerate unless |ψ〉 ∈ K ◦ E and
is furthermore already symmetric.

M. Backens 16:11

(a) A B C (b)

A

B

C B

C

AA

C B

Figure 1 (a) A ‘virtual gadget’ for an entangled ternary signature based on the idea of SLOCC
classes. (b) A symmetric gadget constructed from three copies of that ternary signature.

I Lemma 17. Let |ψ〉 be a three-qubit W-class state, i.e. |ψ〉 = (A⊗B ⊗ C) |W 〉 for some
invertible 2 by 2 matrices A,B,C. If |ψ〉 ∈ K ◦M (or |ψ〉 ∈ KX ◦M), assume that we also
have a two-qubit entangled state |φ〉 that is not in K ◦M (or KX ◦M, respectively). Then
we can realise a symmetric three-qubit entangled state.

5.4 Constructing binary signatures
We have shown in the previous section that it is possible to realise a non-degenerate ternary
symmetric signature under some mild assumptions. Now, we show that if the full signature
set F is not a subset of K ◦ M (or KX ◦ M), it is possible to construct a symmetric
binary gadget over F ∪ {|0〉 , |1〉 , |+〉 , |−〉} whose signature is not in K ◦M (or KX ◦M,
respectively). This signature can be used in Lemma 17, and a symmetric signature realised
from it can also be used for a hardness proof according to Theorem 9.

I Lemma 18. Suppose |ψ〉 is a genuinely entangled n-qubit state with n ≥ 2, and |ψ〉 /∈ K◦M.
Then there exists a non-degenerate binary gadget over {|ψ〉 , |0〉 , |1〉 , |+〉 , |−〉} with signature
|ϕ〉 /∈ K ◦M.

The binary signature required in Lemma 17 is not required to be symmetric, only non-
degenerate. The one in Theorem 9, on the other hand, does need to be symmetric.

I Lemma 19. Suppose |ψ〉 ∈ K ◦M is a three-qubit symmetric entangled state and |φ〉 /∈
K ◦M is a two-qubit entangled state. Then there exists a gadget over {|ψ〉 , |φ〉 , |0〉 , |1〉 , |±〉}
such that its signature |ϕ〉 is a two-qubit symmetric entangled state and |ϕ〉 /∈ K ◦M.

An analogous argument holds with KX instead of K. Hence, we can construct a non-
degenerate symmetric binary signature satisfying the required properties whenever needed.

5.5 Sketch of the hardness proof
Suppose F is not in one of the tractable cases. Then, in particular, F 6⊆ 〈T 〉, i.e. F must
contain multipartite entanglement (cf. Section 3.1). We can therefore use Theorem 14 to
realise a ternary entangled signature. The quantum state associated with this signature must
be in either the GHZ or the W SLOCC class.

In the GHZ case, either the state is already symmetric or it is possible to realise a
non-degenerate symmetric ternary signature by Lemma 16. In the W case, if the ternary
signature is not in K ◦M or KX ◦M, it can be used to realise a non-degenerate ternary
symmetric signature by Lemma 17. If the ternary signature is in K ◦M, by Lemma 18, we
can realise a binary signature that is not in K ◦M since by assumption F 6⊆ K ◦M; and

ICALP 2017

16:12 A New Holant Dichotomy Inspired by Quantum Computation

similarly with KX instead of K. This then enables the use of Lemma 17. Hence if F is not
one of the tractable sets, it is always possible to realise a non-degenerate symmetric ternary
signature. Again, the quantum state associated with this signature must be in either the
GHZ or the W SLOCC class.

If it is a GHZ class state, use the following lemma and corollary to reduce the problem to
Theorem 8. This theorem yields #P-hardness unless F is a subset of 〈O ◦ E〉 or A, which we
assumed it was not.

I Lemma 20. Let f be a signature and G a set of signatures. Then:

Holant({f} ∪ G) ≡T Holant({f, [1, 0, 1]} | G ∪ {[1, 0, 1]}). (8)

I Corollary 21. Let f be a signature and G a set of signatures, and let M be an invertible 2
by 2 matrix. Then:

Holant({M ◦ f} ∪ G) ≡T Holant
({
f,M−1 ◦ [1, 0, 1]

} ∣∣ (G ∪ {[1, 0, 1]}) ◦MT
)
. (9)

The corollary follows immediately from Lemma 20 and Theorem 2.
If the non-degenerate symmetric ternary signature |ψ〉 realised according to Section 5.3

is in the W class, then, by Theorem 9, the problem is #P-hard unless the signature is in
K ◦M (or KX ◦M). In the latter case, as by assumption F 6⊆ K ◦M (or F 6⊆ KX ◦M),
we can use Lemmas 18 and 19 to construct a symmetric binary signature |ϕ〉 that is not in
K ◦M (or KX ◦M, respectively).

Now, Holant ({|ϕ〉} | {|ψ〉}) ≤T Holant ({|ϕ〉 , |ψ〉} ∪ G}) for any set G. But if |ψ〉 ∈
K ◦ M and |ϕ〉 /∈ K ◦ M, then Holant ({|ϕ〉} | {|ψ〉}) is #P-hard by Theorem 9, and
similarly with KX instead of K. Thus Holant+ (F) is #P-hard whenever such |ψ〉 and
|ϕ〉 are realisable over F .

This concludes the investigation of all cases. We have therefore shown that Holant+ is
#P-hard in all but the listed cases. A full proof of this result can be found in [1].

6 Conclusions

Applying knowledge from QIT to Holant problems, we find that several tractable classes of
existing dichotomies have concise descriptions in the framework of quantum entanglement.
Motivated by this and by existing results in entanglement theory, we define a new Holant
family, Holant+, fitting between the known families Holant∗ and Holantc. We derive
a full dichotomy for this family, which is closely related to the dichotomy for symmetric
Holantc [10]. It may therefore be a useful stepping stone towards a full Holantc dichotomy,
and thus to a full dichotomy for all Holant problems.

We also prove a new result in entanglement theory: given any n-qubit genuinely entangled
state, it is possible to find some subset of (n− 3) qubits and a projector which is a tensor
product of (n− 3) computational and Hadamard basis states such that the projection leaves
the remaining three qubits in a genuinely entangled state. This is a generalisation of a similar
result about constructing two-qubit entangled states [29, 18], though our result is slightly
weaker in some aspects, which it may be possible to strengthen in future work.

We expect that further analysis of Holant problems using methods from QIT and QC
will lead to further new insights, both into the complexity of Holant problems and into
entanglement or other areas of quantum theory.

M. Backens 16:13

Acknowledgements. I would like to thank Ashley Montanaro, both for introducing me to
Holant problems and for helpful comments on earlier drafts of this paper. I would also like
to thank Mariami Gachechiladze and Otfried Gühne for pointing out a significantly shorter
and more elegant proof of Theorem 14, and for letting me use it here.

References
1 Miriam Backens. A new Holant dichotomy inspired by quantum computation.

arXiv:1702.00767 [quant-ph], February 2017. Full version. URL: http://arxiv.org/abs/
1702.00767.

2 Miriam Backens. Number of superclasses of four-qubit entangled states under the inductive
entanglement classification. Physical Review A, 95(2):022329, February 2017. doi:10.
1103/PhysRevA.95.022329.

3 Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13):1895–1899, March 1993.
doi:10.1103/PhysRevLett.70.1895.

4 Charles H. Bennett, Sandu Popescu, Daniel Rohrlich, John A. Smolin, and Ashish V. Thap-
liyal. Exact and asymptotic measures of multipartite pure-state entanglement. Physical
Review A, 63(1):012307, December 2000. doi:10.1103/PhysRevA.63.012307.

5 P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan.
On universal and fault-tolerant quantum computing: A novel basis and a new construct-
ive proof of universality for Shor’s basis. In 40th Annual Symposium on Foundations of
Computer Science (Cat. No.99CB37039), pages 486–494, New York, October 1999. IEEE.
doi:10.1109/SFFCS.1999.814621.

6 J. Cai, P. Lu, and M. Xia. Dichotomy for Holant* Problems of Boolean Domain. In
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
Proceedings, pages 1714–1728. Society for Industrial and Applied Mathematics, January
2011. doi:10.1137/1.9781611973082.132.

7 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph Homomorphisms with Complex Values: A Di-
chotomy Theorem. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, num-
ber 6198 in Lecture Notes in Computer Science, pages 275–286. Springer Berlin Heidelberg,
July 2010. Full version at arXiv:0903.4728. doi:10.1007/978-3-642-14165-2_24.

8 Jin-Yi Cai and Vinay Choudhary. Valiant’s Holant Theorem and Matchgate Tensors. In Jin-
Yi Cai, S. Barry Cooper, and Angsheng Li, editors, Theory and Applications of Models of
Computation, number 3959 in Lecture Notes in Computer Science, pages 248–261. Springer
Berlin Heidelberg, May 2006. doi:10.1007/11750321_24.

9 Jin-Yi Cai, Heng Guo, and Tyson Williams. A Complete Dichotomy Rises from the Capture
of Vanishing Signatures: Extended Abstract. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC’13, pages 635–644, New York, NY, USA, 2013.
ACM. doi:10.1145/2488608.2488687.

10 Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and Back: Dicho-
tomy for Holantc Problems. Algorithmica, 64(3):511–533, March 2012. doi:10.1007/
s00453-012-9626-6.

11 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant Problems and Counting CSP. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC’09, pages 715–
724, New York, NY, USA, 2009. ACM. doi:10.1145/1536414.1536511.

12 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted Boolean
#CSP. Journal of Computer and System Sciences, 80(1):217–236, February 2014. doi:
10.1016/j.jcss.2013.07.003.

ICALP 2017

http://arxiv.org/abs/1702.00767
http://arxiv.org/abs/1702.00767
http://dx.doi.org/10.1103/PhysRevA.95.022329
http://dx.doi.org/10.1103/PhysRevA.95.022329
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevA.63.012307
http://dx.doi.org/10.1109/SFFCS.1999.814621
http://dx.doi.org/10.1137/1.9781611973082.132
https://arxiv.org/abs/0903.4728
http://dx.doi.org/10.1007/978-3-642-14165-2_24
http://dx.doi.org/10.1007/11750321_24
http://dx.doi.org/10.1145/2488608.2488687
http://dx.doi.org/10.1007/s00453-012-9626-6
http://dx.doi.org/10.1007/s00453-012-9626-6
http://dx.doi.org/10.1145/1536414.1536511
http://dx.doi.org/10.1016/j.jcss.2013.07.003
http://dx.doi.org/10.1016/j.jcss.2013.07.003

16:14 A New Holant Dichotomy Inspired by Quantum Computation

13 Jeroen Dehaene and Bart De Moor. Clifford group, stabilizer states, and linear and
quadratic operations over GF(2). Physical Review A, 68(4):042318, October 2003. doi:
10.1103/PhysRevA.68.042318.

14 Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction for begin-
ners. Reports on Progress in Physics, 76(7):076001, July 2013. doi:10.1088/0034-4885/
76/7/076001.

15 W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways.
Physical Review A, 62(6):062314, November 2000. doi:10.1103/PhysRevA.62.062314.

16 Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters,
67(6):661–663, August 1991. doi:10.1103/PhysRevLett.67.661.

17 Mariami Gachechiladze and Otfried Gühne, February 2017. Personal communication.
18 Mariami Gachechiladze and Otfried Gühne. Completing the proof of “Generic quantum

nonlocality”. Physics Letters A, 381(15):1281–1285, April 2017. doi:10.1016/j.physleta.
2016.10.001.

19 Brett Giles and Peter Selinger. Exact synthesis of multiqubit Clifford+T circuits. Phys-
ical Review A, 87(3):032332, March 2013. doi:10.1103/PhysRevA.87.032332.

20 Daniel Gottesman. The Heisenberg Representation of Quantum Computers. arXiv:quant-
ph/9807006, July 1998. Group22: Proceedings of the XXII International Colloquium on
Group Theoretical Methods in Physics, eds. S. P. Corney, R. Delbourgo, and P.D. Jarvis,
pp. 32–43 (Cambridge, MA, International Press, 1999). URL: http://arxiv.org/abs/
quant-ph/9807006.

21 Sangxia Huang and Pinyan Lu. A Dichotomy for Real Weighted Holant Problems. compu-
tational complexity, 25(1):255–304, March 2016. doi:10.1007/s00037-015-0118-3.

22 Richard Jozsa and Noah Linden. On the role of entanglement in quantum-computational
speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 459(2036):2011–2032, 2003. doi:10.1098/rspa.2002.1097.

23 Richard E. Ladner. On the Structure of Polynomial Time Reducibility. J. ACM, 22(1):155–
171, January 1975. doi:10.1145/321864.321877.

24 L. Lamata, J. León, D. Salgado, and E. Solano. Inductive classification of multipartite en-
tanglement under stochastic local operations and classical communication. Physical Review
A, 74(5):052336, November 2006. doi:10.1103/PhysRevA.74.052336.

25 L. Lamata, J. León, D. Salgado, and E. Solano. Inductive entanglement classification of
four qubits under stochastic local operations and classical communication. Physical Review
A, 75(2):022318, February 2007. doi:10.1103/PhysRevA.75.022318.

26 Dafa Li, Xiangrong Li, Hongtao Huang, and Xinxin Li. Simple criteria for the SLOCC clas-
sification. Physics Letters A, 359(5):428–437, December 2006. doi:10.1016/j.physleta.
2006.07.004.

27 Jiabao Lin and Hanpin Wang. The Complexity of Holant Problems over Boolean Domain
with Non-negative Weights. arXiv: 1611.00975 [cs], November 2016. URL: http://arxiv.
org/abs/1611.00975.

28 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 2010.

29 Sandu Popescu and Daniel Rohrlich. Generic quantum nonlocality. Physics Letters A,
166(5–6):293–297, June 1992. doi:10.1016/0375-9601(92)90711-T.

30 L. Valiant. Holographic Algorithms. SIAM Journal on Computing, 37(5):1565–1594, Janu-
ary 2008. doi:10.1137/070682575.

31 F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde. Four qubits can be entangled in
nine different ways. Physical Review A, 65(5):052112, April 2002. doi:10.1103/PhysRevA.
65.052112.

http://dx.doi.org/10.1103/PhysRevA.68.042318
http://dx.doi.org/10.1103/PhysRevA.68.042318
http://dx.doi.org/10.1088/0034-4885/76/7/076001
http://dx.doi.org/10.1088/0034-4885/76/7/076001
http://dx.doi.org/10.1103/PhysRevA.62.062314
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1016/j.physleta.2016.10.001
http://dx.doi.org/10.1016/j.physleta.2016.10.001
http://dx.doi.org/10.1103/PhysRevA.87.032332
http://arxiv.org/abs/quant-ph/9807006
http://arxiv.org/abs/quant-ph/9807006
http://dx.doi.org/10.1007/s00037-015-0118-3
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1145/321864.321877
http://dx.doi.org/10.1103/PhysRevA.74.052336
http://dx.doi.org/10.1103/PhysRevA.75.022318
http://dx.doi.org/10.1016/j.physleta.2006.07.004
http://dx.doi.org/10.1016/j.physleta.2006.07.004
http://arxiv.org/abs/1611.00975
http://arxiv.org/abs/1611.00975
http://dx.doi.org/10.1016/0375-9601(92)90711-T
http://dx.doi.org/10.1137/070682575
http://dx.doi.org/10.1103/PhysRevA.65.052112
http://dx.doi.org/10.1103/PhysRevA.65.052112

Efficient Quantum Algorithms for Simulating
Lindblad Evolution∗†

Richard Cleve1 and Chunhao Wang2

1 Institute for Quantum Computing, University of Waterloo, Waterloo,
Canada; and
Cheriton School of Computer Science, University of Waterloo, Waterloo,
Canada; and
Canadian Institute for Advanced Research, Toronto, Canada
cleve@uwaterloo.ca

2 Institute for Quantum Computing, University of Waterloo, Waterloo,
Canada; and
Cheriton School of Computer Science, University of Waterloo, Canada
c265wang@uwaterloo.ca

Abstract
We consider the natural generalization of the Schrödinger equation to Markovian open system
dynamics: the so-called the Lindblad equation. We give a quantum algorithm for simulating
the evolution of an n-qubit system for time t within precision ε. If the Lindbladian consists of
poly(n) operators that can each be expressed as a linear combination of poly(n) tensor products
of Pauli operators then the gate cost of our algorithm is O(t polylog(t/ε)poly(n)). We also obtain
similar bounds for the cases where the Lindbladian consists of local operators, and where the
Lindbladian consists of sparse operators. This is remarkable in light of evidence that we provide
indicating that the above efficiency is impossible to attain by first expressing Lindblad evolution
as Schrödinger evolution on a larger system and tracing out the ancillary system: the cost of
such a reduction incurs an efficiency overhead of O(t2/ε) even before the Hamiltonian evolution
simulation begins. Instead, the approach of our algorithm is to use a novel variation of the “linear
combinations of unitaries” construction that pertains to channels.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Quantum algorithms, open quantum systems, Lindblad simulation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.17

1 Introduction

The problem of simulating the evolution of closed systems (captured by the Schrödinger
equation) was proposed by Feynman [12] in 1982 as a motivation for building quantum
computers. Since then, several quantum algorithms have appeared for this problem (see
section 1.1 for references to these algorithms). However, many quantum systems of interest
are not closed but are well-captured by the Lindblad Master equation [21, 13]. Examples exist
in quantum physics [20, 32], quantum chemistry [25, 27], and quantum biology [11, 14, 26].
Lindblad evolution also arises in quantum computing and quantum information in the

∗ The full version of this paper is available at http://arxiv.org/abs/1612.09512.
† This research was supported in part by Canada’s NSERC and an NSERC Canada Graduate Scholarship
(Doctoral).

EA
T

C
S

© Richard Cleve and Chunhao Wang;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.17
http://arxiv.org/abs/1612.09512
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Efficient Quantum Algorithms for Simulating Lindblad Evolution

|0〉

e−iJ
√
δ

trace
|0〉

e−iJ
√
δ

trace
|0〉

e−iJ
√
δ

trace
out out out...

...
...

...
...

...

. . .

|ψ〉 e−iHδ e−iHδ

. . .

e−iHδ
. . .

...
...

...
...

...
...

.... . .

Figure 1 Lindblad evolution for time t approximated by unitary operations. There are N
iterations and δ = t/N . This converges to Lindblad evolution as N → ∞.

context of entanglement preparation [19, 16, 29], thermal state preparation [15], quantum
state engineering [31], and studying the noise of quantum circuits [24].

We consider the computational cost of simulating the evolution of an n-qubit quantum
state for time t under the Lindblad Master equation

ρ̇ = −i[H, ρ] +
m∑
j=1

(
LjρL

†
j −

1
2L
†
jLjρ−

1
2ρL

†
jLj

)
, (1)

(representing Markovian open system dynamics), where H is a Hamiltonian and L1, . . . , Lm
are linear operators. By simulate the evolution, we mean: provide a quantum circuit that
computes the quantum channel corresponding to evolution by Eq. (1) for time t within
precision ε. The quantum circuit must be independent of the input state, which is presumed
to be unknown. When L1 = · · · = Lm = 0, Eq. (1) is the Schrödinger equation.

Eq. (1) can be viewed as an idealization of the frequently occurring physical scenario
where a quantum system evolves jointly with a large external environment in a manner
where information dissipates from the system into the environment. In quantum information
theoretic terms, Lindblad evolution is a continuous-time process that, for any evolution time,
is a quantum channel. Moreover, Lindblad evolution is Markovian in the sense that, for any
δ > 0, the state at time t+ δ is a function of the state at time t alone (i.e., is independent of
the state before time t).

Lindblad evolution can be intuitively thought of as Hamiltonian evolution in a larger
system that includes an ancilla register, but where the ancilla register is being continually
reset to its initial state. To make this more precise, consider a time interval [0, t], and divide
it into N subintervals of length t

N each. At the beginning of each subinterval, reset the state
of the ancilla register to its initial state, and then let the joint system-ancilla evolve under a
Hamiltonian J and the system itself evolve under H. Let the evolution time for J be

√
t/N

and the evolution time for H be t/N . This process, illustrated in Fig. 1, converges to true
Lindblad evolution as N approaches ∞.

For the specific evolution described by Eq. (1), it suffices to set the ancilla register to
Cm+1 and the Hamiltonian J to the block matrix

J =

0 L†1 · · · L†m
L1 0 · · · 0
...

...
. . .

...
Lm 0 · · · 0

 . (2)

A remarkable property of this way of representing Lindblad evolution is that the rate
at which the Hamiltonian J evolves is effectively infinite: Lindblad evolution for time t/N
is simulated by a process that includes evolution by J for time

√
t/N , so the rate of the

R. Cleve and C. Wang 17:3

evolution scales as√
t/N

t/N
=
√
N

t
, (3)

which diverges as N →∞. Moreover, the total Hamiltonian evolution time of J in Fig. 1
is N

√
t/N =

√
Nt, which also diverges. In the Appendix A we prove that, in general, the

above scaling phenomenon is necessary for simulating time-independent Lindblad evolution
in terms of time-independent Hamiltonian evolution along the lines of the overall structure
of Fig. 1. In this sense, exact Lindblad evolution for finite time does not directly correspond
to Hamiltonian evolution for any finite time. On the other hand, it can be shown that if
the scaling of N is at least t3/ε2 then the final state is an approximation within ε. Note
that then the corresponding total evolution time for J scales as

√
(t3/ε2)t = t2/ε. Therefore,

quantum algorithms that simulate Lindblad evolution by first applying the above reduction
to Hamiltonian evolution and then efficiently simulating the Hamiltonian evolution are likely
to incur scaling that is at least t2/ε.

Here we are interested in whether much more efficient simulations of Lindblad evolution
are possible, such as O(t polylog(t/ε)).

1.1 Previous work
Simulating Hamiltonian evolution. Hamiltonian evolution (a.k.a. Schrödinger evolution)
is the special case of Eq. (1) where Lj = 0 for all j. This simulation problem has received
considerable attention since Feynman [12] proposed this as a motivation for building quantum
computers; see for example [22, 1, 8, 2, 3, 5, 4, 18, 23, 28, 6]. Some of the recent methods
obtain a scaling that is O(t polylog(t/ε)poly(n)), thereby exceeding what can be accomplished
by the longstanding Trotter-Suzuki methods [30].

Simulating Lindblad evolution. The natural generalization from closed systems to Markovian
open systems in terms of the Lindblad equation has received much less attention. Kliesch
et al. [17] give a quantum algorithm for simulating Lindblad evolution in the case where
each of H,L1, . . . , Lm can be expressed as a sum of local operators (i.e., which act on a
constant number of qubits). The cost of this algorithm with respect to t and ε (omitting
factors of poly(n)) is O(t2/ε). Childs and Li [9] improve this to O(t1.5/

√
ε) and also give an

O((t2/ε)polylog(t/ε)) query algorithm for the case where the operators in Eq. (1) are sparse
and represented in terms of an oracle. Another result in [9] is an Ω(t) lower bound for the
query complexity for time t when Eq. (1) has H = 0 and m = 1.

As far as we know, none of the previous algorithms for simulating Lindblad evolution
has cost O(t polylog(t/ε)poly(n)), which is the performance that we attain. Our results are
summarized precisely in the next subsection (subsection 1.2).

We note that there are simulation algorithms that solve problems that are related to but
different from ours, such as [7], which does not produce the final state; rather it simulates
the expectation of an observable applied to the final state. We do not know how to adapt
these techniques to produce the unmeasured final state instead.

Finally, we note that there are interesting classical algorithmic techniques for simulating
Lindblad evolution that are feasible when the dimension of the Hilbert space (which is 2n, for
n qubits) is not too large—but these do not carry over to the context of quantum algorithms
(where n can be large). In the classical setting, since the state is known (and stored) explicitly,
various “unravellings” of the process that are state-dependent can be simulated. For example,
the random variable corresponding to “the next jump time” (which is highly state-dependent)

ICALP 2017

17:4 Efficient Quantum Algorithms for Simulating Lindblad Evolution

can be simulated. In the context of quantum algorithms, the input state is unknown and
cannot be measured without affecting it.

1.2 New results

Eq. (1) can be written as ρ̇ = L[ρ], where L is a Lindbladian, defined as a mapping of the
form

L[ρ] = −i[H, ρ] +
m∑
j=1

(
LjρL

†
j −

1
2L
†
jLjρ−

1
2ρL

†
jLj

)
, (4)

for operators H,L1, . . . , Lm on the Hilbert space H = C2n (n qubits) with H Hermitian.
Evolution under Eq. (1) for time t corresponds to the quantum map eLt (which is a channel
for any t ≥ 0).

Each of the operators H,L1, . . . , Lm corresponds to a 2n × 2n matrix. The simulation
algorithm is based on a succinct specification of these matrices. Our succinct specification is
as a linear combination of q Paulis, defined as

H =
q−1∑
k=0

β0kV0k (5)

Lj =
q−1∑
k=0

βjkVjk, (6)

where, for each j ∈ {0, . . . ,m} and k ∈ {0, . . . , q − 1}, Vjk is an n-fold tensor product of
Paulis (I, σx, σy, σz) and a scalar phase eiθ (θ ∈ [0, 2π]), and βjk ≥ 0.

In the evolution eLt, it is possible to scale up L by some factor while reducing t by the
same factor, i.e., eLt[ρ] = e(cL) t

c [ρ] for any c > 01. This reduces the simulation time but
transfers the cost into the magnitude of L. To normalize this cost, we define a norm based
on the specification of L.

Define the norm2 of a specification of a Lindbladian L as a linear product of Paulis as

‖L‖pauli =
q−1∑
k=0

β0k +
m∑
j=1

(q−1∑
k=0

βjk

)2
. (7)

Our main result is the following theorem.

I Theorem 1. Let L be a Lindbladian presented as a linear combination of q Paulis. Then,
for any t > 0 and ε > 0, there exists a quantum circuit of size

O

(
m2q2τ

(log(mqτ/ε) + n) log(τ/ε)
log log(τ/ε)

)
(8)

that implements a quantum channel N , such that
∥∥N − eLt∥∥� ≤ ε, where τ = t ‖L‖pauli.

1 cL denotes the mapping obtained from L with H multiplied by c and each Lj multiplied by
√
c.

2 For simplicity we use the terminology ‖L‖pauli even though the quantity is not directly a function of
the mapping L. However, ‖cL‖pauli = c‖L‖pauli if cL denotes the expression in Eq. (4) with the factor c
multiplied through.

R. Cleve and C. Wang 17:5

Remarks

1. The proof of Theorem 1 is sketched in section 4 and is shown in the full version of this
paper [10]. A main novel ingredient of the proof is Lemma 3, concerning a variant of the
“linear combination of unitaries” construction that is suitable for channels (explained in
sections 2 and 3).

2. The factor ‖L‖pauli corresponding to the coefficients of the specification as a linear
combination of Paulis is a natural generalization to the case of Lindbladians of a similar
factor for Hamiltonians that appears in [3].

3. When m, q ∈ poly(n), the gate complexity in Theorem 1 simplifies to

O

(
τ

log(τ/ε)2

log log(τ/ε) poly(n)
)
. (9)

4. A Lindbladian L is local if

H =
m′∑
j=1

Hj , (10)

where H1, . . . ,Hm′ and also L1, . . . , Lm are local (i.e., they each act on a constant number
of qubits). A local specification of L is as H1, . . . ,Hm′ , L1, . . . , Lm and we define its norm
as

‖L‖local =
m′∑
j=1
‖Hj‖+

m∑
j=1
‖Lj‖2. (11)

For local Lindbladians, Theorem 1 reduces to the following.

I Corollary 2. If L is a local Lindbladian then the gate complexity for simulating eLt with
precision ε is

O

(
(m+m′) τ log((m+m′)τ/ε) log(τ/ε)

log log(τ/ε)

)
, (12)

where τ = t ‖L‖local.

5. We also consider sparse Lindbladians (see [9] for various definitions, extending definitions
and specifications of sparse Hamiltonians [1]). Here, we define a Lindbladian to have d-
sparse operators if H,L1, . . . , Lm each have at most d non-zero entries in each row/column.
A sparse specification of such a Lindbladian L is as a black-box that provides the positions
and values of the non-zero entries of each row/column of H,L1, . . . , Lm via queries.
Define the norm of any specification of a Lindbladian in terms of operators H,L1, . . . , Lm
as

‖L‖ops = ‖H‖+
m∑
j=1
‖Lj‖2. (13)

The query complexity and gate complexity for simulating d-sparse Lindbladians L are

O
(
τ polylog(mqτ/ε)poly(d, n)

)
, (14)

where τ = t‖L‖ops. We sketch the analysis in the full version of this paper [10].
6. We expect some of the methodologies in [3, 4, 23, 28] to be adaptable to the Lindblad

evolution simulation problem (in conjunction with our variant of the LCU construction
and oblivious amplitude amplification), but have not investigated this.

ICALP 2017

17:6 Efficient Quantum Algorithms for Simulating Lindblad Evolution

2 Brief summary of novel techniques

As noted in subsection 1.1, for the case of Hamiltonian evolution, a series of recent quantum
algorithms whose scaling is O(t polylog(t/ε)) have been discovered which improve on what
has been accomplished using the longstanding Trotter-Suzuki decomposition. One of the
main tools that these algorithms employ is a remarkable circuit construction that is based
on a certain decomposition of unitary operations (or near-unitary operations) into a linear
combination of unitaries. We refer to this construction as the standard LCU method.

For the case of Lindblad evolution, the operations that arise are channels that are
not generally unitary. Some channels are mixed unitary, which means that they can be
expressed as a randomly chosen unitary (say with probabilities p0, . . . , pm−1 on the unitaries
U0, . . . , Um−1). For such channels, the standard LCU method can be adapted along the
lines of first randomly sampling j ∈ {0, . . . ,m − 1} and then applying the standard LCU
method to the unitary Uj . However, there exist channels that are not mixed unitary—and
such channels can arise from the Lindblad equation. A different reductionist approach is to
express these channels in the Stinespring form, as unitary operations that act on a larger
system, and then apply the standard LCU method to those unitaries; however, as we explain
in subsection 2.1, this approach performs poorly. We take a different approach that does
not involve a reduction to the unitary case: we have developed a new variant of the LCU
method that is for channels. This is explained in section 3.

Another new technique that we employ is an Oblivious Amplitude Amplification algorithm
for isometries (as opposed to unitaries), which is noteworthy because a reductionist approach
based on extending isometries to unitaries does not work. Roughly speaking, this is because
our LCU construction turns out to produce an isometry (corresponding to a purification of
the channel); however, it does not produce a unitary extension of that isometry.

2.1 The standard LCU method performs poorly on Stinespring dilations
Here we show in some technical detail why the standard LCU method performs poorly
for Stinespring dilations of channels. The standard LCU method (explained in detail
in Sec. 2.1 of [18]) for a unitary V expressible as a linear combination of unitaries as
V = α0U0 + · · ·+ αm−1Um−1 is a circuit construction W that has the property

W |0〉|ψ〉 = √p|0〉V |ψ〉+
√

1− p|Φ⊥〉 (15)

where |Φ⊥〉 has zero amplitude in states with first register |0〉 (i.e., (|0〉〈0| ⊗ I)|Φ⊥〉 = 0) and

p = 1
(
∑m−1
j=0 αj)2

(16)

is the success probability (that arises if the first indicator register is measured).
Consider the amplitude damping channel, which has two Kraus operators with the

following LCU decompositions

A0 =
[
1 0
0
√

1− δ

]
= α00

[
1 0
0 1

]
+ α01

[
1 0
0 −1

]
A1 =

[
0
√
δ

0 0

]
= α10

[
0 1
1 0

]
+ α11

[
0 1
−1 0

]
,

where α00 = 1+
√

1−δ
2 , α01 = 1−

√
1−δ

2 , α10 =
√
δ

2 , α11 =
√
δ

2 . Evolving an amplitude damping
process for time t yields this channel with δ = 1− e−t. When t� 1, δ ≈ t, α00 ≈ 1− t/4,
and α01 ≈ t/4.

R. Cleve and C. Wang 17:7

A Stinespring dilation of V and its LCU decomposition can be derived from the above
LCU decompositions of A0 and A1 as

V =

1 0 0 0
0
√

1− δ −
√
δ 0

0
√
δ

√
1− δ 0

0 0 0 1

 = α00

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ α01

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

+ α10

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

+ α11

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .
Applying the standard LCU method here results in a success probability (computed from
Eq. (16)) of

1(
α00 + α01 + α10 + α11

)2 = 1(
1 +
√
δ
)2 = 1− 2

√
δ + Θ(δ).

For small time evolution t, the failure probability is Θ(
√
t), which is prohibitively expensive.

It means that the process can be repeated at most Θ(1/
√
t) times until the cumulative failure

probability becomes a constant. The amount of evolution time (of the amplitude damping
process) that this corresponds to is

Θ
(1√

t

)
· t = Θ(

√
t),

which is subconstant as t→ 0. This creates a problem in the general Lindblad simulation.
Our new LCU method for channels (explained in section 3) achieves the higher success

probability

1(
α00 + α01

)2 +
(
α10 + α11

)2 = 1
1 + δ

= 1− δ + Θ(δ2).

For small time evolution t, the failure probability is Θ(t). Now, the process can be repeated
Θ(1/t) times until the cumulative failure probability becomes a constant, which corresponds
to evolution time

Θ
(1
t

)
· t = Θ(1),

which is constant as t → 0. Since this is consistent with what arises in the algorithm of
simulating Hamiltonian evolution in [2, 3], the methodologies used therein, with various
adjustments, can be used to obtain the simulation bounds.

3 New LCU method for channels and completely positive maps

Let A0, . . . , Am−1, linear operators on C2n (n-qubit states), be the Kraus operators of a
channel. Suppose that, for each j ∈ {0, . . . ,m − 1}, we have a decomposition of Aj as a
linear combination of unitaries in the form

Aj =
q−1∑
k=0

αjkUjk, (17)

ICALP 2017

17:8 Efficient Quantum Algorithms for Simulating Lindblad Evolution

|0〉 B B†

|µ〉

|ψ〉 U

Figure 2 The circuit W for simulating a channel using the new LCU method.

where, for each j ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , q − 1}, αjk ≥ 0 and Ujk is unitary.
The objective is to implement the channel in terms of the implementations of Ujk’s. We

will describe a circuit W and fixed state |µ〉 such that, for any n-qubit state |ψ〉,

W |0〉|µ〉|ψ〉 = √p|0〉

m−1∑
j=0
|j〉Aj |ψ〉

+
√

1− p|Φ⊥〉, (18)

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0 and

p = 1∑m−1
j=0 (

∑q−1
k=0 αjk)2

(19)

is called the success probability parameter (which is realized if the first register is measured).
Note that the isometry |ψ〉 7→

∑m−1
j=0 |j〉Aj |ψ〉 is the channel in purified form.

The circuit W is in terms of two gates. One gate is a multiplexed-U gate, denoted by
multi-U such that, for all j ∈ {0, . . . ,m− 1} and k ∈ {0, . . . , q − 1},

multi-U |k〉|j〉|ψ〉 = |k〉|j〉Ujk|ψ〉. (20)

The other gate is a multiplexed-B gate, denoted by multi-B, such that, for all j ∈ {0, . . . ,m−
1},

multi-B|0〉|j〉 =
(

1
√
sj

q−1∑
k=0

√
αjk|k〉

)
|j〉, (21)

where

sj =
q−1∑
k=0

αjk. (22)

Define the state |µ〉 (in terms of s0, . . . , sm−1 from Eq. (22))

|µ〉 = 1√∑m−1
j=1 s2

j

m−1∑
j=0

sj |j〉. (23)

Define the circuit W (acting on Cq ⊗ Cm ⊗ C2n) as

W = (multi-B† ⊗ I)multi-U(multi-B ⊗ I). (24)

The LCU construction with the circuit W with its initial state |0〉 ⊗ |µ〉 ⊗ |ψ〉 is illustrated
in Fig. 2.

In this figure, we refer to the first register as the indicator register (as it indicates whether
the computation succeeds at the end of this operation), the second register as the purifier

R. Cleve and C. Wang 17:9

register (as it is used to purify the channel when the computation succeeds), and the third
register as the system register (as it contains the state being evolved).

In the following lemma, Eq. (18) is shown to apply where A0, . . . , Am−1 are arbitrary
linear operators (i.e., Kraus operators of a completely positive map that is not necessarily
trace preserving). If the map is also trace preserving then

∑m−1
j=0 |j〉Aj |ψ〉 and |Φ⊥〉 are

normalized states and the success probability parameter p is the actual success probability
realized if the first register is measured; otherwise, these need not be the case. In subsequent
sections, we will apply this lemma in a context where the trace preserving condition is
approximately satisfied.

I Lemma 3. Let A0, . . . , Am−1 be the Kraus operators of a completely positive map. Suppose
that each Aj can be written in the form of Eq. (17). Let multi-U , multi-B, W , and |µ〉 be
defined as above. Then applying the unitary operator W on any state of the form |0〉|µ〉|ψ〉
produces the state

√
p|0〉

m−1∑
j=0
|j〉Aj |ψ〉

+
√

1− p|Φ⊥〉,

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0, and

p = 1∑m−1
j=0

(∑q−1
k=0 αjk

)2 .

Proof. First consider the state |0〉|j〉|ψ〉 for any j ∈ {0, . . . ,m − 1}. Applying W on this
state is the standard LCU method [18]:

W |0〉|j〉|ψ〉 =(multi-B† ⊗ I)multi-U(multi-B ⊗ I)|0〉|j〉|ψ〉 (25)

= 1
√
sj

(multi-B† ⊗ I)multi-U
(
q−1∑
k=0

√
αjk|k〉

)
|j〉|ψ〉 (26)

= 1
√
sj

(multi-B† ⊗ I)
(
q−1∑
k=0

√
αjk|k〉|j〉Ujk|ψ〉

)
(27)

= 1
sj
|0〉|j〉

(
q−1∑
k=0

αjkUjk|ψ〉

)
+√γj |Φ⊥j 〉 (28)

= 1
sj
|0〉|j〉Aj |ψ〉+√γj |Φ⊥j 〉, (29)

where |Φ⊥j 〉 is a state satisfying (|0〉〈0| ⊗ I ⊗ I)|Φ⊥j 〉 = 0 and γj is some normalization factor.
Up to this point, if the indicator register were measured and |0〉 were observed as the

“success” case as in the standard LCU method, then the state of the purifier and the system
register collapses to |j〉Aj |ψ〉. However, this is not a meaningful quantum sate, as it only
captures one Kraus operator of a quantum map. Now we use this specially designed quantum
state |µ〉 to obtain the desired purification state. We use the superposition |µ〉 instead of |j〉
in the second register then, by linearity, we have

W |0〉|µ〉|ψ〉 = √p|0〉

m−1∑
j=0
|j〉Aj |ψ〉

+
√

1− p|Φ⊥〉, (30)

where (|0〉〈0| ⊗ I ⊗ I)|Φ⊥〉 = 0 and p = 1∑m−1
j=0

s2
j

. J

ICALP 2017

17:10 Efficient Quantum Algorithms for Simulating Lindblad Evolution

4 Overview of the main result, Theorem 1

In this section we briefly sketch how to apply our new LCU method in order to prove our
main result, Theorem 1. The overall structure is similar to that in [2] and [3], with the main
novel ingredient being our variant of the LCU construction (explained in section 3) and
also a variant of oblivious amplitude amplification for isometries. For clarity, the details are
organized into section 4 of the full version of this paper [10], whose content is summarized as:
1. In Sec. 4.1 of [10], we describe a simple mappingMδ in terms of Kraus operators that

are based on the operators in L. For small δ,Mδ is a good approximation of eLδ.
2. In Sec. 4.2 of [10], we show how to simulate the mappingMδ in the sense of Lemma 3,

with success probability parameter 1−O(δ).
3. In Sec. 4.3 of [10], we show how to combine r simulations of MO(1/r) so as to obtain

cumulative success probability parameter 1/4. Conditional on success, this produces a
good approximation of constant-time Lindblad evolution.

4. In Sec. 4.4 of [10], we show how to apply a modified version of oblivious amplitude
amplification to unconditionally simulate an approximation of constant-time Lindblad
evolution.

5. In Sec. 4.5 of [10], we show how to reduce the number of multiplexed Pauli gates by a
concentration bound on the amplitudes associated with nontrivial Pauli gates.

6. In Sec. 4.6 of [10], we bound the total number of gates and combine the simulations for
segments in order to complete the proof of Theorem 1.

Acknowledgments. We thank Andrew Childs, Patrick Hayden, Martin Kliesch, Tongyang
Li, Hans Massen, Barry Sanders, and Rolando Somma for helpful discussions.

References
1 D. Aharonov and A. Ta-Shma. Adiabatic quantum state generation and statistical zero

knowledge. In Proceedings of the 35th ACM Symposium on Theory of Computing, pages
20–29, 2003. doi:10.1145/780542.780546.

2 D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, and R.D. Somma. Exponential im-
provement in precision for simulating sparse Hamiltonians. In Proceedings of the 46th
ACM Symposium on Theory of Computing, pages 283–292, 2014. arXiv:arXiv:1312.1414,
doi:10.1145/2591796.2591854.

3 D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, and R.D. Somma. Simulating Hamiltonian
dynamics with a truncated Taylor series. Phys. Rev. Lett., 114:090502, Mar 2015. doi:
10.1103/PhysRevLett.114.090502.

4 D.W. Berry, A.M. Childs, and R. Kothari. Hamiltonian simulation with nearly optimal
dependence on all parameters. In Proceedings of FOCS 2015, 2015. arXiv:arXiv:1501.
01715.

5 D.W. Berry, R. Cleve, and S. Gharibian. Gate-efficient discrete simulations of continuous-
time quantum query algorithms. Quantum Information and Computation, 14(1–2):1–30,
2014. arXiv:arXiv:1211.4637.

6 D.W. Berry and L. Novo. Corrected quantum walk for optimal Hhamiltonian simulation,
2016. arXiv:1606.03443.

7 R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and J. Casanova. Quantum
simulation of dissipative processes without reservoir engineering. Sci. Rep., 5:9981, 2015.

8 A.M. Childs. Quantum information processing in continuous time. PhD thesis, Massachu-
setts Institute of Technology, 2014.

http://dx.doi.org/10.1145/780542.780546
http://arxiv.org/abs/arXiv:1312.1414
http://dx.doi.org/10.1145/2591796.2591854
http://dx.doi.org/10.1103/PhysRevLett.114.090502
http://dx.doi.org/10.1103/PhysRevLett.114.090502
http://arxiv.org/abs/arXiv:1501.01715
http://arxiv.org/abs/arXiv:1501.01715
http://arxiv.org/abs/arXiv:1211.4637

R. Cleve and C. Wang 17:11

9 A.M. Childs and T. Li. Efficient simulation of sparse markovian quantum dynamics, 2016.
arXiv:1611.05543.

10 Richard Cleve and Chunhao Wang. Efficient quantum algorithms for simulating lindblad
evolution. arXiv preprint arXiv:1612.09512, 2016.

11 R. Dorner, J. Goold, and V. Vedral. Towards quantum simulations of biological information
flow. Interface focus, page rsfs20110109, 2012.

12 R.P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6–7):467–488, 1982.

13 V. Gorini, A. Kossakowski, and E.C.G. Sudarshan. Completely positive dynamical semig-
roups of n-level systems. Journal of Mathematical Physics, 17:821–825, 1976.

14 S. F. Huelga and M.B. Plenio. Vibrations, quanta and biology. Contemporary Physics,
54(4):181–207, 2013.

15 M. J. Kastoryano and F.G. S. L. Brandao. Quantum gibbs samplers: the commuting case.
Communications in Mathematical Physics, 344(3):915–957, 2016.

16 M. J. Kastoryano, F. Reiter, and A. S. Sørensen. Dissipative preparation of entanglement
in optical cavities. Physical review letters, 106(9):090502, 2011.

17 M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert. Dissipative quantum
church-turing theorem. Physical review letters, 107(12):120501, 2011.

18 R. Kothari. Efficient algorithms in quantum query complexity. PhD thesis, University of
Waterloo, 2014.

19 B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of
entangled states by quantum markov processes. Physical Review A, 78(4):042307, 2008.

20 A. J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger.
Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59(1):1, 1987.

21 G. Lindblad. On the generators of quantum dynamical systems. Communications in Math-
ematical Physics, 48:119–130, 1976.

22 S. Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.
23 G.H. Low and I. L. Chuang. Optimal Hamiltonian simulation by quantum signal processing,

2016. arXiv:1606.02685.
24 E. Magesan, D. Puzzuoli, C. E. Granade, and D.G. Cory. Modeling quantum noise for

efficient testing of fault-tolerant circuits. Physical Review A, 87(1):012324, 2013.
25 V. May and O. Kühn. Charge and energy transfer dynamics in molecular systems. John

Wiley & Sons, 2008.
26 S. Mostame, P. Rebentrost, A. Eisfeld, A. J. Kerman, D. I. Tsomokos, and A. Aspuru-Guzik.

Quantum simulator of an open quantum system using superconducting qubits: exciton
transport in photosynthetic complexes. New Journal of Physics, 14(10):105013, 2012.

27 A. Nitzan. Chemical dynamics in condensed phases: relaxation, transfer and reactions in
condensed molecular systems. Oxford university press, 2006.

28 A. Patel and A. Priyadarsini. Optimization of quantum hamiltonian evolution: from two
projection operators to local hamiltonians. International Journal of Quantum Information,
page 1650027, 2016.

29 F. Reiter, D. Reeb, and A. S. Sørensen. Scalable dissipative preparation of many-body
entanglement. Physical Review Letters, 117(4):040501, 2016.

30 M. Suzuki. General theory of fractal path integrals with applications to many-body theories
and statistical physics. Journal of Mathematical Physics, 32(2):400–407, 1991.

31 F. Verstraete, M.M. Wolf, and J. I. Cirac. Quantum computation and quantum-state
engineering driven by dissipation. Nature physics, 5(9):633–636, 2009.

32 U. Weiss. Quantum dissipative systems. World scientific, 2012.

ICALP 2017

17:12 Efficient Quantum Algorithms for Simulating Lindblad Evolution

|0〉

e−iHδ

trace
|0〉

e−iHδ

trace
|0〉

e−iHδ

trace
out out out...

...
...

...
...

...

. . .

|ψ〉
. . .
. . .

...
...

...
...

...
...

.... . .

Figure 3 N -stage ε-precision discretization of the trajectory resulting from L. For each k ∈
{1, . . . , N}, after k stages, the channel should be within ε of exp

(
kT
N

L
)
.

A Cost of expressing Lindblad evolution as Hamiltonian evolution

Let L be a Lindbladian acting on an n-qubit register H over a time interval [0, T]. For each
initial state, L associates a trajectory, consisting of a density operator ρ(t) for each t ∈ [0, T].
Here we show that if this is simulated by Hamiltonian evolution in a larger system with an
ancillary register that is continually reset (expressed as a limiting case when N →∞ in the
process illustrated in Figure 3) then the total evolution time for this Hamiltonian can be
necessarily infinite.

I Definition 4. Define an N-stage ε-precision discretization of L for interval [0, T] as an
ancillary register K, a Hamiltonian H (with ‖H‖ = 1) acting on the joint system K⊗H, and
δ ≥ 0 such that the channel NHδ defined as

NHδ[ρ] = TrK
(
e−iHδ(|0〉〈0| ⊗ ρ)eiHδ

)
(31)

has the following property. NHδ approximates evolution under L in the sense that, for each
j ∈ {1, . . . , N},∥∥(NHδ)k − exp

(
kT
N L

)∥∥
� ≤ ε. (32)

That is, the N points generated by NHδ, (NHδ)2, . . . , (NHδ)N approximate the corresponding
points on the trajectory determined by L.

Our lower bound is for the amplitude damping process on a 1-qubit system is the time-
evolution described by the Lindbladian L, where

L[ρ] = LρL† − 1
2 (L†Lρ+ ρL†L), (33)

and L =
(

0 1
0 0

)
.

I Theorem 5. Any 1
4 -precision N-stage approximation of the amplitude damping process

over the time interval [0, ln 2] has the property that the total evolution time of H is Ω(
√
N).

(Note that this lower bound is independent of the dimension of the ancillary system.)

To prove Theorem 5, we first prove the following Local Hamiltonian Approximation lemma.
This concerns a scenario where H is a Hamiltonian acting on a joint system of two registers, a
system register H and an ancillary register K, and where K is traced out after this evolution.
Informally, the lemma states that, if the initial state is a product state and the evolution
time is short, then this process can be approximated by the evolution of another Hamiltonian
G that acts on H alone. This is illustrated in figure 4.

R. Cleve and C. Wang 17:13

|0〉
e−iHδ

trace out
≈

input output

|0〉 trace out

input e−iGδ output

Figure 4 The Local Hamiltonian Approximation Lemma. The first register is d-dimensional, the
second register contains n qubits, and the approximation is within O(δ2) (independent of d and n).

I Lemma 6 (Local Hamiltonian approximation). Let H be an n-qubit register and K a d-
dimensional register. Let H be a Hamiltonian (with ‖H‖ = 1) acting on the joint system
K ⊗H. Define the n-qubit channel NHδ as

NHδ[ρ] = TrK
(
e−iHδ(|0〉〈0| ⊗ ρ)eiHδ

)
. (34)

Then there exists a Hamiltonian G (with ‖G‖ = 1), acting on H alone, such that NGδ defined
as

NGδ[ρ] = e−iGδρ eiGδ (35)

satisfies ‖NHδ−NGδ‖1 ∈ O(δ2). (The notation ‖ · ‖1 indicates the trace-induced norm, which
is sufficient for our purposes because our application is a lower bound.)

Proof. Viewing H as a d× d block matrix, we have

H =
d−1∑
j=0

d−1∑
k=0
|j〉〈k| ⊗Hjk (36)

and we refer to Hjk as the (j, k) block. Define D as the diagonal blocks of H, namely

D =
d−1∑
j=0
|j〉〈j| ⊗Hjj , (37)

and set J = H − D (the off-diagonal blocks). Note that ‖D‖, ‖J‖ ≤ 1 and ‖e−iHδ −
e−iDδe−iJδ‖ ≤ δ2, for δ > 0, which permits us to consider the effect of J and D separately.

Now consider the state e−iJδ|0〉⊗|ψ〉. We will show that, if the measurement corresponding
to projectors |0〉〈0| and I − |0〉〈0| is performed on register K, then the residual state has
trace distance O(δ2) from |0〉 ⊗ |ψ〉. Since the (0, 0) block of J is 0,

Jδ |0〉 ⊗ |ψ〉 = δ′|Ψ⊥〉, (38)

where |Ψ⊥〉 is a state such that (|0〉〈0| ⊗ I)|Ψ⊥〉 = 0 and 0 ≤ δ′ ≤ δ. Therefore,

e−iJδ|0〉 ⊗ |ψ〉 =
∞∑
r=0

(−iJδ)r

r! |0〉 ⊗ |ψ〉 (39)

= |0〉 ⊗ |ψ〉 − iδ′|Ψ⊥〉+ δ′′|Φ〉, (40)

where 0 ≤ δ′′ ≤ eδ− 1− δ ∈ O(δ2). It follows that, if the above measurement is performed on
register K, then the probability of measurement outcome I − |0〉〈0| is at most (δ′)2 + (δ′′)2 ∈
O(δ2). This implies that the state when register K of e−iJδ|0〉 ⊗ |ψ〉 is traced out, namely

TrK
(
e−iJδ(|0〉〈0| ⊗ |ψ〉〈ψ|)eiJδ

)
, (41)

has trace distance O(δ2) from the original state |ψ〉〈ψ|.
Therefore, for states of the form |0〉 ⊗ |ψ〉, the operation e−iHδ can be approximated

by e−iDδ at the cost of an error of O(δ2) in trace distance. The result follows by setting
G = H00 (the (0, 0) block of D). J

ICALP 2017

17:14 Efficient Quantum Algorithms for Simulating Lindblad Evolution

Proof of Theorem 5. It is straightforward to check that, starting with the initial state |1〉〈1|
and evolving by the amplitude damping process for time T = ln 2 produces the maximally
mixed state.

Consider any 1
4 -precision N -stage discretization of this process, with Hamiltonian H

and δ > 0. We can apply the Local Hamiltonian Approximation Lemma (Lemma 6) to
approximate each of the N evolutions of H with evolution by a Hamiltonian G that is local
to the qubit. The result is unitary evolution of the qubit that approximates the amplitude
damping process within trace distance error at most O(Nδ2).

Unitary evolution applied to |1〉〈1| results in a pure state, and the trace distance between
any pure state and the maximally mixed state is 1

2 . Therefore, to avoid a contradiction, we
must have Nδ2 ∈ Ω(1), which implies that δ ∈ Ω(1/

√
N). Therefore, the total evolution time

of H is Nδ ∈ Ω(
√
N). J

Controlled Quantum Amplification∗

Cătălin Dohotaru1 and Peter Høyer2

1 Department of Computer Science, University of Calgary, Calgary, Canada
cdohotaru@gmail.com

2 Department of Computer Science, University of Calgary, Calgary, Canada
hoyer@ucalgary.ca

Abstract
We propose a new framework for turning quantum search algorithms that decide into quantum
algorithms for finding a solution. Consider we are given an abstract quantum search algorithm
A that can determine whether a target g exists or not. We give a general construction of another
operator U that both determines and finds the target, whenever one exists. Our amplification
method at most doubles the cost over using A, has little overhead, and works by controlling the
evolution of A. This is the first known general framework to the open question of turning abstract
quantum search algorithms into quantum algorithms for finding a solution.

We next apply the framework to random walks. We develop a new classical algorithm and
a new quantum algorithm for finding a unique marked element. Our new random walk finds a
unique marked element using H update operations and 1/ε checking operations. Here H is the
hitting time, and ε is the probability that the stationary distribution of the walk is in the marked
state. Our classical walk is derived via quantum arguments. Our new quantum algorithm
finds a unique marked element using

√
H update operations and

√
1/ε checking operations,

up to logarithmic factors. This is the first known quantum algorithm being simultaneously
quadratically faster in both parameters. We also show that the framework can simulate Grover’s
quantum search algorithm, amplitude amplification, Szegedy’s quantum walks, and quantum
interpolated walks.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms
and Problems, G.2.2 Graph Theory

Keywords and phrases Quantum algorithms, quantum walks, random walks, quantum search

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.18

1 Introduction

Grover’s search algorithm [15], amplitude amplification [8], and quantum walks [3, 30] are
highly successful methodologies for searching in quantum algorithms. They are used in search
problems in which we are given some unitary operator W as a black-box. We start in some
initial state |init〉 which is a (+1)-eigenvector of the unitary W. Our goal is to produce some
unknown target state |g〉. We are given a reflection1 operator G = 1− 2|g〉〈g| that permits us
to distinguish the target state |g〉 from any other orthogonal state. Our task is to construct
an algorithm that evolves the initial state |init〉 into a state that has constant overlap with

∗ This work has been supported in part by the Canadian Institute for Advanced Research (CIFAR) and
Canada’s Natural Sciences and Engineering Research Council (NSERC).

1 To simplify later calculations, we define the operator G as the reflection about the subspace orthogonal
to |g〉.

EA
T

C
S

© Cătălin Dohotaru and Peter Høyer;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Controlled Quantum Amplification

the target state |g〉, using the operator W. The standard approach in quantum algorithmics
for doing so is to use operator A = W · G [5].

Much work on search problems on quantum computers has been specifically developed
within quantum walks. The operator W is often derived from a random walk, in which case
it is referred to as the walk or update operator. The cost of the quantum search algorithm is
then typically phrased in terms of the spectral gap δ or the hitting time of the associated
random walk.

The study of quantum walks has been a highly successful and active line of research,
with recent results such as a quantum algorithm for triangle finding [13] using only O(n5/4)
queries. Other applications of quantum walks include verification of matrix products [9],
testing group commutativity [27], formula evaluation [4], subgraph finding [10], triangle
finding [26, 13, 14], and 3-distinctness [7].

These and other applications were found after the seminal works of Ambainis [3] and
Szegedy [30]. Ambainis [3] gave a quantum walk for element distinctness, and Szegedy [30]
gave a general method for obtaining an quantum search algorithm from any symmetric
random walk [30]. Magniez et al. [25] gave a quantum algorithm that finds a unique marked
element for any reversible random walk2 of cost in the order of S +

√
1/(εδ)U +

√
1/εC. Here

S, U, and C are the setup, update and checking costs of the quantum walk, δ the spectral gap
of the walk, and ε the probability that the stationary state is in the marked state [29, 28].

Magniez et al. [23] gave a quantum algorithm that finds a unique marked element for
any state-transitive random walk of cost in the order of S +

√
HU +

√
HC. Here H is the

hitting time of the random walk. Krovi et al. [22] introduced the novel idea of interpolating
walks. Krovi et al. show in [20, 21] that interpolated walks can find a marked element for any
reversible random walk. Their algorithm works for multiple marked elements and has cost in
the order of S +

√
H+U +

√
H+C, where H+ is a quantity introduced in [21] and referred to

as the extended hitting time. When there is a unique marked element, the extended hitting
time and hitting time coincide, H+ = H. When there are multiple marked elements, the
extended hitting time is bounded by H ≤ H+ ≤ 1

εδ . Excellent surveys on quantum walks,
their history and applications, include [2, 18, 29, 32, 28].

In this work, we propose a new framework for the general setting of search problems.
Our framework does not require that the operator W is derived from a random walk and it
makes no explicit use of properties of quantum walks or random walks. The most obvious
application of our framework is naturally to random walks, but is not limited to such cases.
We will assume that W has only real entries, and that our target |g〉 has real coordinates in
a canonical orthogonal basis for the space acted upon by W. This assumption is fulfilled in
all the applications we consider here, including quantum walks.

Our framework consists of several parts. We give a new generic quantum algorithm for
solving search problems. Our algorithm is based on a circuit U which controls the search,
and we refer to this process as controlled quantum amplification. We prove that whenever
the operator A = W · G determines whether a target |g〉 exists or not, in some number of
iterations T , with constant success probability, then our circuit U both determines and finds
the target using at most 2T iterations, with constant success probability.

We apply our analysis to quantum walks and prove that we can obtain a quadratic speedup
for reversible random walks. We show that our framework can simulate quantum interpolated

2 A Markov chain P with a unique stationary distribution π = (πx) is said to be reversible if πxPy,x =
πyPx,y for all states x, y. All Markov chains obtained from a random walk on undirected graphs are
reversible. We will below use the wording “random walk” and “Markov chain” interchangeably.

C. Dohotaru and P. Høyer 18:3

0̃ 0

G W

Figure 1 Our circuit U for controlled quantum amplification, expressed in terms of the reflection
operator G and the unitary W, here given in its simplest form. We apply circuit U successively to
the initial state |0〉|init〉, say T times, thus producing the final state UT |0〉|init〉, which we measure.
If the outcome of the measurement is |1̃〉|g〉, the circuit has successfully found the marked state g.

walks [21], thus eliminating the need for running an interpolation of a random walk and its
absorbing analog. We prove a relation between the operator W and the operator A, and
we use this relation to construct a new quantum algorithm that, up to a logarithmic factor,
finds a unique marked element in cost S +

√
HU +

√
1/εC. This is superior to the existing

algorithms. We also use this relation to construct a new classical algorithm that finds a
unique marked element in cost S +HU + 1/εC. Our classical walk is derived using quantum
arguments.

2 Controlled quantum amplification

In a quantum search problem, we are given an arbitrary unitary operator W, through which
we would like to extract some unknown target state |g〉. The operator W can be given as a
black box, which we can apply to any state |ψ〉, producing the state W|ψ〉. An application of
W has some cost, which is called the update cost.

We are also given a reflection operator G = 1− 2ΠG, where ΠG = |g〉〈g| is a projection on
the target state |g〉. Operator G permits us to distinguish the target state |g〉 from any other
orthogonal state. The operator G can be given as a black box as well. An application of G
has some cost, which is called the checking cost.

Our first step is to prepare the initial state |init〉. Preparing this state has a cost, which
is called the setup cost. We then measure whether the initial state contains the target state
or not by applying the measurement {ΠG, 1− ΠG}. The probability by which we measure
|g〉 is some ε = sin2(θ) where sin(θ) = 〈g|init〉. Let |g〉 and this initial angle θ be so that
0 ≤ θ ≤ π/2. If θ = 0, our initial success probability is zero and the quantum search
algorithm A = W · G will not amplify this. If θ = π/2, our initial state is the target state
and there is nothing to be amplified. We shall therefore assume that 0 < θ < π/2. Typically
θ is very close to zero, corresponding to that the non-amplified success probability ε is small.

If our initial measurement yields the outcome |g〉, we terminate the algorithm as we have
produced our target state |g〉. Otherwise, our initial state becomes |init〉 = 1

cos(θ) (|init〉 −
sin(θ)|g〉), which is orthogonal to |g〉 by construction. Thus starting with |init〉, we then
want to produce a state with large overlap with |g〉. To achieve this, we propose the following
circuit U.

The circuit U acts on two registers. The first register contains a qubit which we use to
control the evolution in the second register. The circuit is comprised of two operators, both
of which are controlled on the state in the first register. We fix an angle 0 < θ̃ < π/2 and use
the rotated orthogonal basis |0̃〉 = cos(θ̃)|0〉+ sin(θ̃)|1〉 and |1̃〉 = − sin(θ̃)|0〉+ cos(θ̃)|1〉. The
first operator |0̃〉〈0̃|⊗G + |1̃〉〈1̃|⊗1 in our circuit reflects about the target state |g〉 conditional
on that the control qubit is in state |0̃〉. The second operator |0〉〈0| ⊗W + |1〉〈1| ⊗ 1 applies
the update W conditional on that the control qubit is in state |0〉.

ICALP 2017

18:4 Controlled Quantum Amplification

0̃ 0 Z

G W g⊥

Figure 2 W with reflection.

−Rot−2θ̃ 0 Z

g W

Figure 3 W with rotation.

1̃ 0 Z

G A

Figure 4 A = W · G with reflection.

Rot−2θ̃ 0

g A

Figure 5 A with rotation.

The circuit U is parameterized by the angle θ̃. The choice of θ̃ has some algorithmic
consequences, which we may handle by exponential searching similar to past work [8, 23].
The framework applies with no increase in asymptotic cost if we are given a multiplicatively
approximate value for the initial success amplitude sin(θ). We apply circuit U successively
to the initial state |0〉|init〉, say T times, thus producing the final state UT |0〉|init〉, which we
measure. We prove here that for an appropriately chosen value of T , the final measurement
yields the target |g〉 with probability at least a constant, and we thus refer to this process as
controlled quantum amplification.

The circuit has multiple interpretations and forms which both provide us with flexibility
in terms of implementations as well as a foundation for proving properties on quantum
amplification processes. We give here four circuits, all of which act equivalently to U. In
Figure 2, the third gate Z⊗ (1− |g〉〈g|) + 1⊗ |g〉〈g|) applies the phase gate Z = |0〉〈0| − |1〉〈1|
on the control qubit conditional on that the search space does not contain the target state |g〉.
In Figures 3 and 5, the first gate rotates the ancilla qubit by an angle of π − 2θ̃ and −2θ̃,
respectively, conditional on the search space contains the target state |g〉.

One of our aims is to compare our new controlled amplification circuit U with the operator
A = W ·G. The operator A has been used extensively in quantum walks and, when applied to
random walks, it corresponds to an absorbing random walk [30, 3, 5]. The main limitation of
the operator A is that it does not necessarily produce the target state, even when one exists.
Significant research has been put into understanding when the operator A does and does
not produce the target state. Our proposed controlled circuit circumvents this barrier in
all generality. We prove that whenever the operator A determines whether a unique target
exists or not, in some number of iterations, then our circuit U both determines and finds the
target in the same asymptotic number of iterations.

Controlled quantum computations have been successfully applied in quantum computing
dating back to at least the notion of phase kick-back [11]. Tulsi used a quantum walk
with controlled operators for the problem of finding a unique target |g〉 on a grid [31]. His
algorithm finds a unique target in cost O(

√
n logn), which is quadratically smaller than the

classical hitting time of Θ(n logn) [1]. The grid graph is a two-dimensional torus of size√
n×
√
n and has been a notoriously hard case for quantum searching because all of its edges

are local. Magniez, Nayak, Richter, and Santha [23] extended this and gave a controlled
operator that finds a unique target |g〉 for any state-transitive graph.

C. Dohotaru and P. Høyer 18:5

Our controlled amplifier does not rely on any graph-theoretic properties. We prove the
general statement that whenever A determines whether a unique target state exists or not,
our controlled amplifier finds the target state in asymptotically the same cost.

3 Quantum hitting times

The hitting time is a notion used in the analysis of stochastic processes such as random
walks. It is the expected number of steps some stochastic process U uses to reach the target
state g, starting from some appropriately defined initial distribution π. The choice of an
appropriate corresponding definition of quantum hitting time is non-trivial.

Let U be any real unitary, and let |w〉 be any normalized target state with real coordinates
in a canonical orthogonal basis for the space acted upon by U. The possible eigenvalues for U
are +1, −1, and conjugated pairs (eiα, e−iα) for some eigenphase 0 < α < π. Each such pair of
eigenvalues corresponds to a distinct two-dimensional subspace acted upon by U by a rotation
of angle α. We order these non-trivial eigenphases of U as 0 < α1 ≤ α2 ≤ · · · ≤ αm < π,
for some m ≥ 0. Let |U+

j 〉 and |U
−
j 〉 be the conjugated eigenvectors of U corresponding to

the eigenvalues eiαj and e−iαj , for each 1 ≤ j ≤ m. We decompose |w〉 into this ordered
eigenbasis of U, as w0|U0〉 +

∑m
j=1

(
w+
j |U

+
j 〉 + w−j |U

−
j 〉
)

+ w−1|U−1〉. Here we group all
(+1)-eigenvectors of U into |U0〉, and all the (−1)-eigenvectors into |U−1〉. Since U and
|w〉 have real components, we can choose the scalars of the eigenvectors of U such that
w+
j = w−j = wj ∈ R. Given this basis, we define the quantum hitting time as follows.

I Definition 1. The quantum hitting time of U on |w〉 = w0|U0〉+
m∑
j=1

wj
(
|U+
j 〉+ |U−j 〉

)
+

w−1|U−1〉 is

QHTα(U, |w〉) =

√√√√2
m∑
j=1
|wj |2

1
α2
j

. (1)

Since our proofs use the specifics of this definition, we mention that our definition
differs from the more commonly used quantity QHT1(U, |w〉) = 2

∑m
j=1 |wj |2

1
αj

+ |w−1|. Our
notion of quantum hitting time QHTα is quadratically smaller than the classical hitting
time for reversible random walks, by Szegedy’s correspondence [30]. Thus, if a quantum
algorithm has cost in the order of QHTα, then it has cost quadratically smaller than the
classical hitting time. For technical reasons, we need to introduce a second notion of
quantum hitting time, which we refer to as the cotangent quantum hitting time and define as
QHTcot(U, |w〉) =

√
2
∑m
j=1 |wj |2 cot2(αj2). Our two notions of quantum hitting times QHTα

and QHTcot are asymptotically of the same order, as shown in Lemma 9 in the appendix.
We use QHT as a shorthand for QHTα.

4 Finding in the quantum hitting time

Our goal is to prove that the circuit U finds a target state in the quantum hitting time,
stated as Corollary 6 below. We first identify the principal eigenvector of the circuit U.

I Lemma 2. The unnormalized state |v0〉 = sin(θ̃) |0, init〉− sin(θ)
cos(θ) |1̃, g〉 is a (+1)-eigenvector

of circuit U.

Proof. The proof follows be considering the action of the circuit U given in Figure 1.

ICALP 2017

18:6 Controlled Quantum Amplification

The first operator in the circuit reflects the state |0̃, g〉. The first term in the state |v0〉
is orthogonal to this reflection state since |init〉 is orthogonal to |g〉 by definition. The
second term in |v0〉 is also orthogonal to the reflection state since |0̃〉 and |1̃〉 constitute an
orthonormal basis. The reflection operator thus acts trivially on |v0〉.

The second operator in the circuit applies the operator W on the search register conditional
on that the control qubit is in state |0〉. Rewrite |v0〉 on the form

sin(θ̃)
cos(θ) |0, init〉 −

sin(θ)
cos(θ)cos(θ̃) |1, g〉.

Then each of the two terms is again invariant, and we conclude that the second operator
similarly acts trivially on |v0〉. J

We want this principal eigenvector to be an equally weighted superposition of our initial
state |0, init〉 and our target state |1̃, g〉. We therefore choose and fix the angle θ̃ such that
0 < θ̃ < π/2 and sin(θ̃) = sin(θ)

cos(θ) , and write the principal eigenvector on the normalized form
|U0〉 = 1√

2

(
|0, init〉 − |1̃, g〉

)
.

When considering quantum search problems, it is commonly assumed that the walk
operator W has a unique (+1)-eigenvector (up to scalars), which we adapt here for convenience.
The purpose of a quantum search problem is to produce a state that has large overlap with the
target state |g〉. Our proposed algorithm for doing so, is to apply our circuit U successively a
number of T times on the initial state |0, init〉, producing the final state UT |0, init〉. We show
that it suffices to pick the number of iterations T to be in the order of the quantum hitting
time QHT(U, |1̃, g〉) of U. We divide the proof up into two cases. When W is a reflection, our
circuit emulates amplitude amplification. For general operators W, we use that the principal
(+1)-eigenvector of U has large overlap with both the initial state and the target state |1̃, g〉.

Consider first that W = 2|init〉〈init|−1 is a reflection about the initial state. In amplitude
amplification [8], we apply the operator A = W ·G a number of T times, thus constructing the
state |final〉 = (W ·G)T |init〉. By picking T = d π4θ e ∈ Θ(1√

ε
), a measurement of the final state

|final〉 yields the target state |g〉 with probability at least 1− ε, where ε = sin2(θ) = 〈g|init〉2
is the initial success probability. Amplitude amplification thus amplifies quadratically faster
than classical repetition.

Now consider circuit U given in Figure 1 when W = 2|init〉〈init| − 1 is a reflection about
the initial state. Then U is the product of two reflections and effectively implements a
rotation in the two-dimensional subspace spanned by |0̃, g〉 and |0, g〉, where |g〉 = 1

cos(θ) (|g〉−
sin(θ)|init〉) is defined analogously to |init〉. The rotational angle is 2ϕ, where ϕ is given
by the inner product cos(ϕ) = 〈0, g|0̃, g〉 = cos(θ̃) cos(θ) =

√
cos(2θ). This gives us that

2ϕ ≈ 2
√

2θ. The initial state is |0, init〉 = 1√
2 (|U0〉+ |Urot〉), where |Urot〉 belongs to the two-

dimensional rotational subspace. We pick T = d π
2
√

2θ e, and produce the final state UT |0, init〉,
a measurement of which yields the target |1̃, g〉 = 1√

2 (|U0〉 − |Urot〉) with probability at least
1−O(ε).

4.1 Finding in the quantum hitting time for general A
When W is a reflection about the initial state |init〉, the previous subsection implies that
it suffices to choose T to be in the order of 1

θ , just as in amplitude amplification. For
arbitrary operators W, it suffices to choose T to be in the order of the quantum hitting
time QHT(U, |0, init〉) of U on the initial state |0, init〉.

C. Dohotaru and P. Høyer 18:7

I Theorem 3. There is an algorithm that applies U an expected number of order QHT(U, |0, init〉)
times to the initial state |0, init〉, and produces a final state with constant overlap with |1̃, g〉.

The proof is as follows. By Lemma 2, the initial state |0, init〉 can be written as an equal
superposition of the principal eigenvector |U0〉 of U and the state |Urot〉 = 1√

2

(
|0, init〉+ |1̃, g〉

)
.

The state |U0〉 has constant overlap with the target state |1̃, g〉. The state |U0〉 is an eigenvector
of U with eigenphase 0, whereas the state |Urot〉 is a superposition of states with non-zero
eigenphases. Following a standard argument via phase estimation [19, 11, 8, 24, 23], we
can determine which is the case by successive (controlled) U applications. The primary
observations are that the success probability in phase estimation can be expressed naturally
in terms of our quantum hitting time QHTα, and the controls on U can be dropped.

The theorem remains true if we replace the quantum hitting time with the effective
quantum hitting time, at the expense of a drop in the overlap by at most a small constant.
Here the effective quantum hitting time is the smallest number of applications of (controlled) U
required to produce a final state with constant overlap with |1̃, g〉. By Markov’s inequality,
the effective quantum hitting time is at most in the order of the quantum hitting time.

Theorem 3 provides us with an expression of the cost of U in terms of the quantum hitting
time of U itself. We next relate the quantum hitting time of U to the quantum hitting times
of quantum search operators A and W. Let ε = sin2(θ) be the initial success probability,
where angle 0 < θ < π/2 is so that sin(θ) = |〈g|init〉|, and set angle 0 < θ̃ < π/2 so that
sin(θ̃) = sin(θ)

cos(θ) .

I Theorem 4.

QHT(U, |0, init〉) = QHT(U, |1̃, g〉) = Θ
(

1√
ε
QHT(W, |g〉)

)
= Θ

(
QHT(A, |init〉)

)
.

Consider Theorem 4. The first equality follows since the principal (+1)-eigenvector
|U0〉 = 1√

2 (|0, init〉 − |1̃, g〉) of the controlled amplifier U is an equal superposition of the
starting state and the target state. To prove the remaining two equalities, we relate the
computational quantity QHT to a structural quantity, an inner product.

I Lemma 5. Let V be any real unitary, and let |w〉 be a real state that does not overlap the
(+1)-eigenspace V+ of V. Then the operator S = V·(1−2|w〉〈w|) has a unique (+1)-eigenvector
|+S〉 orthogonal to V+, and it satisfies that QHT(V, |w〉) = Θ

(1
|〈w|+S〉|

)
.

Proof. We first decompose |w〉 into the eigenbasis of V as |w〉 =
∑
j wj(|V

+
j 〉 + |V −j 〉) +

w−1|V−1〉, where wj ∈ R for all j. The states |V +
j 〉 and |V

−
j 〉 are the two conjugated

eigenstates for the jth rotational subspace of V with eigenphases ±ϕj . The state |V−1〉 is the
normalized projection of |w〉 onto the (−1)-eigenspace of V (when it exists). Then S has a
(+1)-eigenvector on the form |+ w〉 = |w〉+ i|w⊥〉 = |w〉+ i

∑
j wj cot

(ϕj
2
)(
|V −j 〉 − |V

+
j 〉
)
,

and it is the unique (+1)-eigenvector orthogonal to the trivial (+1)-eigenspace V+. The
norm ‖+ w‖ of |+w〉 is√

1 + ‖w⊥‖2 =
√

1 + 2
∑
j

w2
j cot2 (ϕj

2
)

= Θ(QHTcot(V, |w〉)) = Θ(QHT(V, |w〉)),

where the last equality follows by Lemma 9 given in the appendix. The normalized eigenvector
is then |+S〉 = 1

Θ(QHT(V,|w〉)) (|w〉+ i|w⊥〉). J

Note that in Theorem 4, the last two vectors are orthogonal to the (+1)-eigenspaces of
the respective operators, and hence Lemma 5 applies. Since the corresponding inner products

ICALP 2017

18:8 Controlled Quantum Amplification

0̃ 0̃ 0

G1 G2 W

Figure 6 The circuit U rewritten to permit an analysis of its action when there are multiple
targets.

are of the same order and also of the same order as the quantity QHT(U, |1̃, g〉), we deduce
the four quantum hitting times are of the same order, implying Theorem 4.

Theorem 4 implies that the quantum hitting time of U on |0, init〉 is asymptotically the
same as the quantum hitting time of A on |init〉.

I Corollary 6. There is an algorithm that applies circuit U an expected number in the order
of QHT(A, |init〉) times to the initial state |0, init〉 and produces a final state with constant
overlap with |1̃, g〉.

When A is a quantum walk derived from a reversible random walk P using Szegedy’s
construction [30], then A can detect the presence of a unique target in cost in the order
of QHT(A, |init〉) ∈ O(

√
HT(P, {m})), which is quadratically less than the hitting time

of P [23, 28]. The corollary thus implies that U finds a unique target quadratically faster
than classically.

5 Finding with multiple targets

We have analyzed our circuit U given in Figure 1 for a single target state |g〉. Consider
now we have t targets. Let |g1〉, . . . , |gt〉 be a set of t orthogonal states spanning this target
subspace G, and let ΠG be the projection onto G. In our circuit U in Figure 1, consider
we now have G = 1− 2ΠG. Let |gπ〉 be the normalized projection of |init〉 onto the target
subspace. Then επ = sin2(θ) = |〈gπ|init〉|2 is the total probability that a measurement of the
initial state would successfully produce any of the target states.

To analyze the circuit U when there are multiple targets, we again rewrite the circuit. Set
G1 = 1− 2|gπ〉〈gπ| and let G2 = 1− 2(ΠG − |gπ〉〈gπ|). We can then write our circuit U on the
form given in Figure 6. The rewritten circuit differs in form from our original circuit by the
second gate |0̃〉〈0̃| ⊗ G2 + |1̃〉〈1̃| ⊗ 1. In general, this second gate changes the quantum hitting
time of the circuit. For some classes of operators W, though, the second gate has no impact.
In particular, for quantum walks on reversible graphs when the operator W is comprised of a
reflection and a swap operator [30], we can compute an explicit expression of the complexity.

I Theorem 7. Let W be a reversible quantum walk with multiple marked elements. There is
an algorithm that applies U an expected number in the order of 1√

επ
· QHT(W, |gπ〉) times on

the initial state |0, init〉 and produces a final state with constant overlap with |1̃, gπ〉.

Note that in this theorem, |gπ〉 is the normalized projection of |init〉 onto the marked
subspace and επ is the total probability a measurement of |init〉 yields a marked element.
The state |gπ〉 is the normalized projection of |gπ〉 onto the subspace orthogonal to |init〉.
The theorem follows by observing that the quantum hitting times on the input |0, init〉 with
or without the second gate are the same.

C. Dohotaru and P. Høyer 18:9

6 Faster algorithms for a unique marked element

Consider there is a unique marked element g. By Theorem 4, we can write QHT2(A, |init〉)
as a product of the two factors 1

ε and QHT2(W, |g〉). This decomposition permits us to
device a new quantum algorithm for finding a unique marked element with constant success
probability of cost in the order of

S +
√
HU + 1√

ε
C. (2)

Here H ∈ Õ(QHT2(A, |init〉)) is in the order of the square of the quantum hitting time, up to
logarithmic factors. When A is the quantum walk derived from a reversible random walk P
using Szegedy’s construction, then QHT2(A, |init〉) ∈ O(HT(P, {g})) is in the order of the
hitting time of P with unique marked element g.

Since the hitting time HT(P, {g}) is upper bounded by 1
εδ , the cost of our algorithm

is, up to logarithmic factors, upper bounded by the cost of the existing algorithms in [25,
23, 21]. Our algorithm is derived by using Theorem 4 and is based on recursive amplitude
amplification [17, 16, 25]. In terms of the checking cost C, our algorithm has the same cost
as amplitude amplification would have, which offers a quadratic speed-up over any classical
algorithm.

We also obtain a new classical algorithm that has cost of order

S +HU + 1
ε

C. (3)

Here H ∈ O(HT(P, {g})) is the hitting time of the reversible walk P with unique marked
element g, without logarithmic factors. This combines the best of two natural choices of
random walks having cost in the order of S+H(U+C) and S+ 1

ε (1
δU+C) (see e.g. Santha [29]

for a discussion on classical search algorithms). The main structure in our classical algorithm
is as follows.

1. Sample an initial vertex x according to the stationary distribution π.
2. Repeat the following of order H/E times

a. Let x denote the current state.
b. Check if x is marked. If so, halt and output x.
c. Else apply the random walk P a number of E times, starting from x.

3. If the current state x is marked, output x. Otherwise output “no marked element found.”

The proof is by showing that QHT2(W(PE), {g}) is upper bounded by a constant when E
is of order QHT2(W(P), {g}). This statement is effectively an example of a classical theorem
derived via quantum arguments. We have not been able to find this classical algorithm
discussed in the literature before, and it is to the best of our knowledge new. We neither know
of a way to prove that this classical algorithm finds a marked element in cost in the order of
the expression in Eq. 3 without explicitly or implicitly applying arguments resembling the
arguments introduced in this paper. It is, as far as we know, the first known random walk
derived through the notion of quantum walks. We refer the reader to the excellent survey by
Drucker and de Wolf [12] for further examples on quantum proofs for classical theorems.

7 Simulation of quantum interpolated walks

Our controlled amplifier can be applied to arbitrary real operators W, and we prove a general
bound on the cost of the amplifier given in terms of the quantum hitting time QHTα. We

ICALP 2017

18:10 Controlled Quantum Amplification

now consider operators W derived from reversible random walks. This is the broadest class
of random walks for which quantum algorithms of costs in the order of the quantum hitting
time have been derived. The general problem is given by a state space X on which we defined
a reversible random walk P. A subsetM of the states of X are marked (the elements ofM
correspond to the solutions to some computational problem). Our goal is to find an element
ofM.

Szegedy gives a general method for constructing a quantum walk W(P) from a reversible
random walk P [30, 23]. Krovi et al. give in [21] a notion of interpolation between a reversible
random walk P and its corresponding absorbing walk P′, which is obtained from P by
replacing all the transitions from marked vertices with self-loops. The interpolation P(s) is
between two classical walks, where we transition according to P′ with some fixed probability s,
and transition according to P with complementary probability 1 − s. The resulting walk
P(s) then yields a quantum walk W(P(s)) by Szegedy’s construction. We use W and W(s)
as shorthands for W(P) and W(P(s)), respectively. Let HT(P(s),M) denote the classical
hitting time of P(s). The quantum interpolated walk introduced in [21] finds a marked
element. It takes a number of steps that is in the order of HT+(P,M), where HT+(P,M)
is defined as HT+(P,M) = lims→1 HT(P(s),M). This limit is well-defined and referred to
as the extended hitting time [21]. We use HT and HT+ as shorthands for HT(P,M) and
HT+(P,M) when both P andM are fixed.

We show that controlled quantum amplifiers can simulate quantum interpolated walks.
We do so by giving a constructive embedding Es of W(s) into our framework. For a given
parameter s, we choose the angle θ̃ so that it satisfies that 0 ≤ θ̃ ≤ π/2 and that

sin θ̃ =
√

1− s, (4)

obtaining the circuit U = U(θ̃) (see Figure 1).
Let HM be the subspace of HW with marked items in the first register. Denote by

ε = sin2(θ) the initial success probability, namely the probability that we obtain a marked
state in the first register by measuring |init〉 according to {Π(HM), 1−Π(HM)}. The optimal
value for θ̃, which is θ̃ = arcsin

(
sin(θ)
cos(θ)

)
, corresponds to the optimal value of s, which is given

by s = 1− ε
1−ε .

Denote by HW(s) the space on which the quantum walk W(s) acts non-trivially (which is
the same as the space on which W acts non-trivially), and let HU denote the space on which
U(θ̃) acts. We define an embedding Es from HW(s) to a subspace of HU. We define Es on a
spanning set of HW(s) and then extend it by linearity,

Es

|u, p(s)u〉 7→ |0〉|u, pu〉
|p(s)u, u〉 7→ |0〉|pu, u〉
|m, p(s)m〉 7→ −|1̃〉|m, pm〉
|p(s)m,m〉 7→ sin θ̃|0〉|pm,m〉 − cos θ̃|1〉|m, pm〉.

(5)

The state |px〉 is a superposition of the neighbors of x and is defined by 〈y|px〉 being the
square-root of the probability of transition from state x to state y in the random walk P.
The states |p(s)x〉 are defined similarly the random walk P(s).

By direct inspection, the embedding preserves inner products and is thus well-defined.
Consider the following two maps from HW(s) to HU given by EsW(s) and U(θ̃)Es. The first
map first applies the quantum interpolated walk and then the embedding. The second map
first applies the embedding and then our controlled quantum walk U(θ̃). These two operators
act identically on each of the states given on the left hand sides in Eq. 5, and we thus
conclude that EsW(s) = U(θ̃)Es, implying Theorem 8.

C. Dohotaru and P. Høyer 18:11

I Theorem 8. Fix any 0 ≤ s < 1. There is an inner-product preserving map Es from HW
to a subspace of HU such that EsW(s) = U(θ̃)Es.

Theorem 8 readily implies that controlled quantum walks can simulate quantum interpo-
lated walks. Instead of running a quantum interpolated walk on its initial state |init〉, we run a
controlled quantum walk on the initial state |0〉|init〉 = Es|init〉. Instead of measuring whether
we have produced the state |m, p(s)m〉 in a quantum interpolated walk, we run a controlled
quantum walk and measure whether we have produced the state |1̃〉|m, pm〉 = −Es|m, p(s)m〉.

By combining Theorems 7 and 8, we obtain that the extended hitting time HT+(P,M)
of a reversible walk P on a marked subsetM is in the order of 1

επ
QHT2(W(P), |gπ〉). Further,

we also re-derive the following result already shown by Ambainis and Kokainis [6]. Since
QHT(W, |gπ〉) ≤ 1√

δ
, we get that the extended hitting time is never more than a factor of

1/δ larger than the hitting time, and that the extended hitting time HT+(P,M) is in the
order of 1

επδ
for all marked subsetsM. Here δ is the spectral gap of the random walk P.

8 Concluding remarks

An quantum search algorithm takes two ingredients: an operator W and a reflection operator G.
The standard method in quantum search algorithms is to apply the composed operator
A = W · G. This method permits one to distinguish between the case when there is a marked
state and the case when there are none. It does not in general produce a marked state, even
when one exists.

We have here proposed a general method for amplifying the success probability of quantum
search algorithms. The method applies readily to arbitrary (real) operators W, including
operators derived from random walks. Our circuit U can be based equally well on either
of the two operators W or A, depending on the application in mind. We prove that the
controlled amplifier U finds a unique marked element in the same asymptotic cost as the
standard circuit A determines whether one exists or not. We then prove and use properties
of the controlled amplifier U to simulate amplitude amplification and interpolated walks, and
to derive a new quantum and classical algorithm. Up to logarithmic factors, the costs are in
the order of S +

√
HU + 1/

√
εC and S +HU + 1/εC, respectively. Both algorithms improve

upon the best known quantum and classical algorithms.

References
1 D. Aldous and J. Fill. Reversible Markov chains and random walks on graphs, 2002.

Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/
~aldous/RWG/book.

2 A. Ambainis. Quantum walks and their algorithmic applications. International Journal of
Quantum Information, 1:507–518, 2003. arXiv:quant-ph/0403120.

3 A. Ambainis. Quantum walk algorithm for element distinctness. In 45th IEEE Symposium
on Foundations of Computer Science, FOCS’04, pages 22–31, 2004. doi:10.1109/FOCS.
2004.54.

4 A. Ambainis, A.M. Childs, B. Reichardt, R. Špalek, and S. Zhang. Any AND-OR formula
of size N can be evaluated in time N1/2+o(1) on a quantum computer. SIAM Journal on
Computing, 39:2513–2530, 2010. doi:10.1109/FOCS.2007.57.

5 A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster. In 16th ACM
Symposium on Discrete Algorithms, SODA’05, pages 1099–1108, 2005. arXiv:quant-ph/
0402107.

ICALP 2017

http://www.stat.berkeley.edu/~aldous/RWG/book
http://www.stat.berkeley.edu/~aldous/RWG/book
http://arxiv.org/abs/quant-ph/0403120
http://dx.doi.org/10.1109/FOCS.2004.54
http://dx.doi.org/10.1109/FOCS.2004.54
http://dx.doi.org/10.1109/FOCS.2007.57
http://arxiv.org/abs/quant-ph/0402107
http://arxiv.org/abs/quant-ph/0402107

18:12 Controlled Quantum Amplification

6 A. Ambainis and M. Kokainis. Analysis of the extended hitting time and its properties.
Poster presented at QIP 2015, 2015.

7 A. Belovs, A.M. Childs, S. Jeffery, R. Kothari, and F. Magniez. Time-efficient quantum
walks for 3-distinctness. In 40th International Colloquium on Automata, Languages, and
Programming, ICALP’13, pages 105–122, 2013. doi:10.1007/978-3-642-39206-1_10.

8 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and
estimation. Contemporary Mathematics, 305:53–74, 2002. arXiv:quant-ph/0005055.

9 H. Buhrman and R. Špalek. Quantum verification of matrix products. In 17th ACM-SIAM
Symposium on Discrete Algorithms, SODA’06, pages 880–889, 2006. arXiv:quant-ph/
0409035.

10 A.M. Childs and R. Kothari. Quantum query complexity of minor-closed graph properties.
In 28th Symposium on Theoretical Aspects of Computer Science, STACS’11, pages 661–672,
2011. doi:10.4230/LIPIcs.STACS.2011.661.

11 R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Pro-
ceedings of the Royal Society of London, Series A, 454:339–354, 1998. arXiv:quant-ph/
9708016.

12 A. Drucker and R. de Wolf. Quantum Proofs for Classical Theorems. Number 2 in Graduate
Surveys. Theory of Computing Library, 2011. doi:10.4086/toc.gs.2011.002.

13 F. Le Gall. Improved quantum algorithm for triangle finding via combinatorial arguments.
In 55th IEEE Symposium on Foundations of Computer Science, FOCS’14, pages 216–225,
2014. doi:10.1109/FOCS.2014.31.

14 F. Le Gall and S. Nakajima. Quantum algorithm for triangle finding in sparse graphs. In
15th Asian Quantum Information Science Conference, AQIS’15, 2015. arXiv:1507.06878.

15 L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical
Review Letters, 79:325–328, 1997. doi:10.1103/PhysRevLett.79.325.

16 P. Høyer and R. de Wolf. Improved quantum communication complexity bounds for disjoint-
ness and equality. In 19th Symp. on Theoretical Aspects of Computer Science, STACS’02,
pages 299–310, 2002. doi:10.1007/3-540-45841-7_24.

17 P. Høyer, M. Mosca, and R. de Wolf. Quantum search on bounded-error inputs. In 30th
International Colloquium on Automata, Languages and Programming, ICALP’03, pages
291–299, 2003. doi:10.1007/3-540-45061-0_25.

18 J. Kempe. Quantum random walks: An introductory overview. Contemporary Physics,
44(4):307–327, 2003. doi:10.1080/00107151031000110776.

19 A. Kitaev. Quantum measurements and the abelian stabilizer problem, 1995. arXiv:
quant-ph/9511026.

20 H. Krovi, F. Magniez, M. Ozols, and J. Roland. Finding is as easy as detecting for quan-
tum walks. In 37st International Colloquium on Automata, Languages and Programming,
ICALP’10, pages 540—-551, 2010. arXiv:1002.2419v1.

21 H. Krovi, F. Magniez, M. Ozols, and J. Roland. Quantum walks can find a marked
element on any graph. Algorithmica, 74:851–907, February 2016. doi:10.1007/
s00453-015-9979-8.

22 H. Krovi, M. Ozols, and J. Roland. Adiabatic condition and the quantum hitting time of
Markov chains. Physical Review A, 82:022333, 2010. doi:10.1103/PhysRevA.82.022333.

23 F. Magniez, A. Nayak, P. Richter, and M. Santha. On the hitting times of quantum versus
random walks. Algorithmica, 63(1):91–116, 2012. doi:10.1007/s00453-011-9521-6.

24 F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. 39th ACM
Symposium on Theory of Computing, pages 575–584, 2007. doi:10.1137/090745854.

25 F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. SIAM Journal
on Computing, 40(1):142–164, Jan 2011. doi:10.1137/090745854.

http://dx.doi.org/10.1007/978-3-642-39206-1_10
http://arxiv.org/abs/quant-ph/0005055
http://arxiv.org/abs/quant-ph/0409035
http://arxiv.org/abs/quant-ph/0409035
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.661
http://arxiv.org/abs/quant-ph/9708016
http://arxiv.org/abs/quant-ph/9708016
http://dx.doi.org/10.4086/toc.gs.2011.002
http://dx.doi.org/10.1109/FOCS.2014.31
http://arxiv.org/abs/1507.06878
http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1007/3-540-45841-7_24
http://dx.doi.org/10.1007/3-540-45061-0_25
http://dx.doi.org/10.1080/00107151031000110776
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/1002.2419v1
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1007/s00453-015-9979-8
http://dx.doi.org/10.1103/PhysRevA.82.022333
http://dx.doi.org/10.1007/s00453-011-9521-6
http://dx.doi.org/10.1137/090745854
http://dx.doi.org/10.1137/090745854

C. Dohotaru and P. Høyer 18:13

26 F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem.
SIAM Journal on Computing, 27:413–424, 2007. doi:10.1137/050643684.

27 A. Nayak and F. Magniez. Quantum complexity of testing group commutativity. Algorith-
mica, 48:221–232, 2007. doi:10.1007/s00453-007-0057-8.

28 A. Nayak, P.C. Richter, and M. Szegedy. Quantum analogs of markov chains. In Ming-
Yang Kao, editor, Encyclopedia of Algorithms, pages 1–10. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. doi:10.1007/978-3-642-27848-8_302-2.

29 M. Santha. Quantum walk based search algorithms. In International Conference on
Theory and Applications of Models of Computation, pages 31–46, 2008. doi:10.1007/
978-3-540-79228-4_3.

30 M. Szegedy. Quantum speed-up of Markov chain based algorithms. In 45th IEEE
Symposium on Foundations of Computer Science, FOCS’04, pages 32–41, 2004. doi:
10.1109/FOCS.2004.53.

31 A. Tulsi. Faster quantum walk algorithm for the two dimensional spatial search. Physical
Review A, 78:012310, 2008. doi:10.1103/PhysRevA.78.012310.

32 S. E. Venegas-Andraca. Quantum walks: A comprehensive review. Quantum Information
Processing, 11(5):1015–1106, 2012. arXiv:1201.4780.

A A lemma

The following lemma, referenced in Section 3, shows that the two quantum hitting times,
QHTcot and QHTα are of the same asymptotic order.

I Lemma 9. For any real unitary U and any real state |w〉,

QHTcot(U, |w〉) ≤ 2 QHTα(U, |w〉) ≤
√

2 + QHTcot(U, |w〉).

Proof. Since sin x < x < tan x for any x ∈ (0, π/2),

cot2 x <
1
x2 < 1 + cot2 x. (6)

By the first inequality in Eq. 6,

QHTcot(U, |w〉) =

√√√√2
m∑
j=1
|wj |2 cot2

(αj
2

)
≤

√√√√2
m∑
j=1
|wj |2

(
4
α2
j

)
= 2 QHTα(U, |w〉),

proving the first inequality. Since the eigenphases αj of U belong to (0, π), the half angles
αj/2 belong to the interval (0, π/2). By the second inequality in Eq. 6, then

QHTα(U, |w〉) = 1√
2

√√√√ m∑
j=1
|wj |2

(
4
α2
j

)
≤ 1√

2

√√√√ m∑
j=1
|wj |2

(
1 + cot2

(αj
2

))

= 1√
2

√
1 + 1

2QHT2
cot(U, |w〉).

We obtain the second inequality in the lemma by applying the inequality
√
a+ b ≤

√
a+
√
b,

for positive reals a and b. J

ICALP 2017

http://dx.doi.org/10.1137/050643684
http://dx.doi.org/10.1007/s00453-007-0057-8
http://dx.doi.org/10.1007/978-3-642-27848-8_302-2
http://dx.doi.org/10.1007/978-3-540-79228-4_3
http://dx.doi.org/10.1007/978-3-540-79228-4_3
http://dx.doi.org/10.1109/FOCS.2004.53
http://dx.doi.org/10.1109/FOCS.2004.53
http://dx.doi.org/10.1103/PhysRevA.78.012310
http://arxiv.org/abs/1201.4780

Approximating Language Edit Distance Beyond
Fast Matrix Multiplication: Ultralinear Grammars
Are Where Parsing Becomes Hard!∗

Rajesh Jayaram1 and Barna Saha†2

1 Brown University, Providence, RI, USA
rajesh_jayaram@brown.edu

2 University of Massachusetts Amherst, Amherst, MA, USA
barna@cs.umass.edu

Abstract
In 1975, a breakthrough result of L. Valiant showed that parsing context free grammars can
be reduced to Boolean matrix multiplication, resulting in a running time of O(nω) for parsing
where ω ≤ 2.373 is the exponent of fast matrix multiplication, and n is the string length. Re-
cently, Abboud, Backurs and V. Williams (FOCS 2015) demonstrated that this is likely optimal;
moreover, a combinatorial o(n3) algorithm is unlikely to exist for the general parsing problem1.
The language edit distance problem is a significant generalization of the parsing problem, which
computes the minimum edit distance of a given string (using insertions, deletions, and substitu-
tions) to any valid string in the language, and has received significant attention both in theory
and practice since the seminal work of Aho and Peterson in 1972. Clearly, the lower bound for
parsing rules out any algorithm running in o(nω) time that can return a nontrivial multiplicative
approximation of the language edit distance problem. Furthermore, combinatorial algorithms
with cubic running time or algorithms that use fast matrix multiplication are often not desirable
in practice.

To break this nω hardness barrier, in this paper we study additive approximation algorithms
for language edit distance. We provide two explicit combinatorial algorithms to obtain a string
with minimum edit distance with performance dependencies on either the number of non-linear
productions, k∗, or the number of nested non-linear production, k, used in the optimal derivation.
Explicitly, we give an additive O(k∗γ) approximation in time O(|G|(n2 + n3

γ3)) and an additive
O(kγ) approximation in time O(|G|(n2 + n3

γ2)), where |G| is the grammar size and n is the string
length. In particular, we obtain tight approximations for an important subclass of context free
grammars known as ultralinear grammars, for which k and k∗ are naturally bounded. Interest-
ingly, we show that the same conditional lower bound for parsing context free grammars holds for
the class of ultralinear grammars as well, clearly marking the boundary where parsing becomes
hard!

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation, Edit Distance, Dynamic Programming, Context Free
Grammar, Hardness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.19

∗ A full version of the paper is available at https://web.cs.umass.edu/publication/docs/2017/
UM-CS-2017-008.pdf.

† Research supported by NSF CRII 1464310, NSF CAREER 1652303, a Google Faculty Research Award,
and a Yahoo ACE Award.

1 with any polynomial dependency on the grammar size

EA
T

C
S

© Rajesh Jayaram and Barna Saha;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.19
https://web.cs.umass.edu/publication/docs/2017/UM-CS-2017-008.pdf
https://web.cs.umass.edu/publication/docs/2017/UM-CS-2017-008.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

1 Introduction

Introduced by Chomsky in 1956 [11], context-free grammars (CFG) play a fundamental
role in the development of formal language theory [2, 22], compiler optimization [16, 42],
natural language processing [27, 31], with diverse applications in areas such as computational
biology [39], machine learning [33, 20, 41] and databases [23, 14, 34]. Parsing CFG is a
basic computer science question, that given a CFG G over an alphabet Σ, and a string
x ∈ Σ∗, |x| = n, determines if x belongs to the language L(G) generated by G. The canonical
parsing algorithms such as Cocke-Younger-Kasimi (CYK) [2], Earley parser, [12] etc. are
based on a natural dynamic programming, and run in O(n3) time2. In 1975, in a theoretical
breakthrough, Valiant gave a reduction from parsing to Boolean matrix multiplication,
showing that the parsing problem can be solved in O(nω) time [38]. Despite decades of
efforts, these running times have remain completely unchanged.

Nearly three decades after Valiant’s result, Lee came up with an ingenious reduction from
Boolean matrix multiplication to CFG parsing, showing for the first time why known parsing
algorithms may be optimal [25]. A remarkable recent result of Abboud, Backurs and V.
Williams made her claims concrete [1]. Based on a conjecture of the hardness of computing
large cliques in graphs, they ruled out any improvement beyond Valiant’s algorithm; moreover
they showed that there can be no combinatorial algorithm for CFG parsing that runs in truly
subcubic O(n3−ε) time for ε > 0 [1]. However combinatorial algorithms with cubic running
time or algorithms that use fast matrix multiplication are often impractical. Therefore, a
long-line of research in the parsing community has been to discover subclasses of context
free grammars that are sufficiently expressive yet admit efficient parsing time [26, 24, 17].
Unfortunately, there still exist important subclasses of the CFG’s for which neither better
parsing algorithms are known, nor have conditional lower bounds been proven to rule out
the possibility of such algorithms.

Language Edit Distance

A generalization of CFG parsing, introduced by Aho and Peterson in 1972 [3], is language
edit distance (LED) which can be defined as follows.

I Definition 1 (Language Edit Distance (LED)). Given a formal language L(G) generated by
a grammar G over alphabet Σ, and a string x ∈ Σ∗, compute the minimum number of edits
(insertion, deletion and substitution) needed on x to convert it to a valid string in L(G).

LED is among the most fundamental and best studied problems related to strings and
grammars [3, 30, 34, 35, 8, 1, 32, 6, 21], and generalizes two basic problems in computer
science: parsing and string edit distance computation. Aho and Peterson presented a
dynamic programming algorithm for LED that runs in O(|G|2n3) time [3], which was
improved to O(|G|n3) by Myers in 1985 [30]. Only recently these bounds have been improved
by Bringmann, Grandoni, Saha, and V. Williams to give the first truly subcubic O(n2.8244)
algorithm for LED [8]. When considering approximate answers, a multiplicative (1 + ε)-
approximation for LED has been presented by Saha in [35], that runs in O(nω

poly(ε)) time.
These subcubic algorithms for LED crucially use fast matrix multiplication, and hence

are not practical. Due to the hardness of parsing [25, 1], LED cannot be approximated

2 Dependency on the grammar size if not specified is either |G| as in most combinatorial algorithms, or
|G|2 as in most algebraic algorithms. In this paper the algorithms will depend on |P |, the number of
productions in the grammar. In general we assume |P | ∈ Θ(|G|).

R. Jayaram and B.Saha 19:3

with any multiplicative factor in time o(nω). Moreover, there cannot be any combinatorial
multiplicative approximation algorithm that runs in O(n3−ε) time for any ε > 0 [1]. LED
provides a very generic framework for modeling problems with vast applications [23, 20, 41,
28, 33, 31, 15]. A fast exact or approximate algorithm for it is likely to have tangible impact,
yet there seems to be a bottleneck in improving the running time beyond O(nω), or even in
designing a truly subcubic combinatorial approximation algorithm. Can we break this nω
barrier?

One possible approach is to allow for an additive approximation. Since the hardness of
multiplicative approximation arise from the lower bound of parsing, it is possible to break
the nω barrier by designing a purely combinatorial algorithm for LED with an additive
approximation. Such a result will have immense theoretical and practical significance. Due to
the close connection of LED with matrix products, all-pairs shortest paths and other graph
algorithms [35, 8], this may imply new algorithms for many other fundamental problems. In
this paper, we make a significant progress in this direction by providing the first nontrivial
additive approximation for LED that runs in quadratic time. Let G = (Q,Σ, P, S) denote
a context free grammar, where Q is the set of nonterminals, Σ is the alphabet or set of
terminals, P is the set of productions, and S is the starting non-terminal.

I Definition 2. Given G = (Q,Σ, P, S), a production A→ α is said to be linear if there is
at most one non-terminal in α where A ∈ Q and α ∈ (Q ∪ Σ)∗. Otherwise, if α contains two
or more non-terminals, then A→ α is said to be non-linear.

The performance of our algorithms depends on either the total number of non-linear pro-
ductions or the maximum number of nested non-linear productions (depth of the parse tree
after condensing every consecutive sequence of linear productions, see the full version for
more details) in the derivation of string with optimal edit distance, where the latter is
often substantially smaller. Explicitly, we give an additive O(k∗γ) approximation in time
O(|G|(n2 + n3

γ3)) and an additive O(kγ) approximation in time O(|G|(n2 + n3

γ2)), where k∗ is
the number of non-linear productions in the derivation of the optimal string, and k is the
maximum number of nested non-linear productions in the derivation of the optimal string
(each minimized over all possible derivations). Our algorithms will be particularly useful for
an important subclass of CFGs, known as the ultralinear grammars, for which these values
are tightly bounded for all derivations [43, 10, 26, 7, 29].

I Definition 3 (ultralinear). A grammar G = (Q,Σ, P, S) is said to be k-ultralinear if there
is a partition Q = Q1 ∪ Q1 ∪ · · · ∪ Qk such that for every X ∈ Qi, the productions of X
consist of linear productions X → αA|Aα|α for A ∈ Qj with j ≤ i and α ∈ Σ, or non-linear
productions of the form X → w, where w ∈ (Q1 ∪Q2 ∪ · · · ∪Qi−1)∗.

The parameter k places a built-in upper bound on the number of nested non-linear productions
allowed in any derivation. Thus for simplicity we will use k both to refer to the parameter of
an ultralinear grammar, as well as the maximum number of nested non-linear productions.
Furthermore, if d is the maximum number of non-terminals on the RHS of a production,
then dk is a built-in upper bound on the total number of non-linear productions in any
derivation. In all our algorithms, without loss of generality, we use a standard normal form
where d = 2 for all non-linear productions. As we will see later, given any CFG G and
any k ≥ 1, we can create a new grammar G′ by making k copies Q1, . . . , Qk of the set of
non-terminals Q of G, and forcing every nonlinear production in Qi to go to non-terminals
in Qi−1. Thus G′ has non-terminal set Q1 ∪Q2 ∪ · · · ∪Qk, and size O(k|G|). In this way
we can restrict any CFG to a k-ultralinear grammar which can produce any string in L(G)

ICALP 2017

19:4 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Figure 1 CFG Hierarchy: Upper bounds shown first followed by lower bounds for each class of
grammars. Here |P | is the number of productions in the grammar [38] [1] [40].

requiring no more than k nested non-linear productions. It is precisely this procedure of
creating a k-ultralinear grammar from a CFG G that we use in our proof of hardness for
parsing ultralinear languages (see the full version).

For example, if G is the well-known Dyck Languages [34, 6], the language of well-balanced
parenthesis, L(G′) contains the set of all parentheses strings with at most k levels of nesting.
Note that a string consisting of n open parenthesis followed by n matching closed parenthesis
has zero levels of nesting, whereas the string "((())())" has one level. As an another example,
consider RNA-folding [8, 39, 44] which is a basic problem in computational biology and can
be modeled by grammars. The restricted language L(G′) for RNA-folding denotes the set of
all RNA strings with at most k nested folds. In typical applications, we do not expect the
number of nested non-linear productions used in the derivation of a valid string to be too
large [14, 23, 4].

Among our other results, we consider exact algorithms for several other notable sub-
classes of the CFG’s. In particular, we develop exact quadratic time language edit distance
algorithms for the linear, metalinear, and superlinear languages. Moreover, we show matching
lower bound assuming the Strong Exponential Time Hypothesis [18, 19]. The figure to the
right displays the hierarchical relationship between these grammars, where all upwards
lines denote strict containment. Interestingly, till date there exists no parsing algorithm for
the ultralinear grammars that runs in time o(nω), while a O(n2) algorithm exists for the
metalinear grammars. In addition, there is no combinatorial algorithm that runs in o(n3)
time. In this paper, we derive conditional lower bound exhibiting why a faster algorithm
has so far been elusive for the ultralinear grammars, clearly demarking the boundary where
parsing becomes hard!

1.1 Results & Techniques
Lower Bounds. Our first hardness result is a lower bound for the problem of linear language
edit distance. We show that a truly subquadratic time algorithm for linear language edit
distance would refute the Strong Exponential Time Hypothesis (SETH). This further builds
on a growing family of “SETH-hard” problems – those for which lower bounds can be proven
conditioned on SETH. We prove this result by reducing binary string edit distance, which
has been shown to be SETH-hard [9, 5], to linear language edit distance.

I Theorem (Linear Grammar Hardness of Parsing). There exists no algorithm to compute the
minimum edit distance between a string x, |x| = n, and a linear language L(G) in o(n2−ε)
time for any constant ε > 0, unless SETH is false.

R. Jayaram and B.Saha 19:5

Our second, and primary hardness contribution is a conditional lower bound on the
recognition problem for ulralinear languages. Our result builds closely off of the work
of Abboud, Backurs and V. Williams [1], who demonstrate that finding an o(n3)-time
combinatorial algorithm or any o(nω)-algorithm for context free language recognition would
result in faster algorithms for the k-clique problem and falsify a well-known conjecture in
graph algorithms. We modify the grammar in their construction to be ultralinear, and then
demonstrate that the same hardness result holds for our grammar. See the full version for
details.

I Theorem (Ultralinear Grammar Hardness of Parsing). There is a ultralinear grammar GU
such that if we can solve the membership problem for a string of length n in time O(|GU |αnc)
for any fixed constant α > 0, then we can solve the 3k-clique problem on a graph with n
nodes in time O(nc(k+3)+3α).

Upper Bounds. We provide the first quadratic time algorithms for linear (Theorem 7),
superlinear (in full version), and metalinear language edit distance (in full version), running
in O(|P |n2), O(|P |n2) and O(|P |2n2) time respectively. This exhibits a large family of
grammars for which edit distance computation can be done faster than for general context
free grammars, as well as for other well known grammars such as the Dyck grammar [1]. Along
with our lower bound for the ultralinear language parsing, this demonstrates a clear division
between those grammars for which edit distance can be efficiently calculated, and those for
which the problem is likely to be fundamentally hard. Our algorithms build progressively
off the construction of a linear language edit distance graph, reducing the problem of edit
distance computation to computing shortest path on a graph with O(|P |n2) edges (Section 2).

Our main contribution is an additive approximation for language edit distance. We first
present a cubic time exact algorithm, and then show a general procedure for modifying
this algorithm, equivalent to forgetting states of the underlying dynamic programming
table, into a family of amnesic dynamic programming algorithms. This produces additive
approximations of the edit distance, and also provides a tool for proving general bounds on
any such algorithm. In particular, we provide two explicit procedures for forgetting dynamic
programming states: uniform and non-uniform grid approximations achieving the following
approximation-running time trade-off. See Section 4, and the full version for missing proofs.

I Theorem 4. If A is a γ-uniform grid approximation, then the edit distance computed by
A satisfies |OPT | ≤ |A| ≤ |OPT |+O(k∗γ) and it runs in O(|P |(n2 + (nγ)3)) time.

I Theorem 5. Let A be any γ-non-uniform grid approximation, then the edit distance
computed by A satisfies |OPT | ≤ |A| ≤ |OPT |+O(kγ)and it runs in O

(
|P |
(
n2 + n3

γ2

))
time.

We believe that our amnesic technique can be applied to wide range of potential dynamic
programming approximate algorithms, and lends itself particularly well to randomization.

2 Linear Grammar Edit Distance in Quadratic Time

We first introduce a graph-based exact algorithm for linear grammar, that is a grammar
G = (Q,Σ, P, S) where every production has one of the following forms: A→ αB, A→ Bα,
A→ αBβ, or A→ α where A,B ∈ Q, and α, β ∈ Σ. Given G and a string x = x1x2 . . . xn ∈
Σ∗, we give an O(|P |n2) algorithm to compute edit distance between x and G in this section.
The algorithm serves as a building block for the rest of the paper.

Note that if we only have productions of the form A→ αB (or A→ Bα but not both)
then the corresponding language is regular, and all regular languages can be generated in

ICALP 2017

19:6 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Figure 2 Clouds corresponding to Linear Grammar Edit Distance Graph Construction. Each
cloud contains a vertex for every nonterminal.

this manner. However, there are linear languages that are not regular. For instance, the
language {0n1n | n ∈ N} can be produced by the linear grammar S → 0S1 | ε, but cannot be
produced by any regular grammar [37]. Therefore, regular languages are a strict subclass
of linear languages. Being a natural extension of the regular languages, the properties and
applications of linear languages are of much interest[13, 36].

Algorithm. Given inputs G and x, we construct a weighted digraph T = T (G, x) with a
designated vertex S1,n as the source and t as the sink such that the weight of the shortest
path between them will be the minimum language edit distance of x to G.

Construction. The vertices of T consist of
(
n
2
)
clouds, each corresponding to a unique

substring of x. We use the notation (i, j) to represent the cloud, 1 ≤ i ≤ j ≤ n, corresponding
to the substring xixi+1....xj . Each cloud will contain a vertex for every nonterminal in Q.
Label the nonterminals Q = {S = A1, A2, . . . , Aq} where |Q| = q, then we denote the vertex
corresponding to Ak in cloud (i, j) by Ai,jk . We will add a new sink node t, and use S1,n as the
source node s. Thus the vertex set of T is V (T) = {Ai,jk | 1 ≤ i ≤ j ≤ n, 1 ≤ k ≤ q} ∪ {t}.
The edges of T will correspond to the productions in G. Each path from a nonterminal
Ai,jk in (i, j) to t corresponds to the production of a legal string w, that is a string that
can be derived starting from Ak and following the productions of P , and a sequence of
editing procedures to edit w to xixi+1 . . . xj . For any cloud (i, j), edges will exist between
two nonterminals in (i, j), and from nonterminals in (i, j) to nonterminals in (i+ 1, j) and
(i, j − 1). Our goal will be to find the shortest path from S1,n, the starting nonterminal S in
cloud (1, n), to the sink t.

Adding the edges. Each edge in T is directed, has a weight in Z+ and a label from
{x1, x2, .., xn, ε} ∪ {ε(α) | α ∈ Σ}, where ε(α) corresponds to the deletion of α. If u, v are
two vertices in T , then we use the notation u `−−−−→

w(u,v)
v to denote the existence of an edge

from u to v with weight w(u, v) and edge label `. For any nonterminal A ∈ Q, define null(A)
to be the length of the shortest string in Σ∗ derivable from A, which can be precomputed
in O(|Q||P | log(|Q|)) time for all A ∈ Q (see full version for details). This is the minimum
cost of deleting a whole string produced by A. Given input x1x2 . . . xn, for all nonterminals
Ak, Ar and every 1 ≤ i ≤ j ≤ n, the construction is as follows:

R. Jayaram and B.Saha 19:7

Legal Productions: For i 6= j, then if Ak → xiAr is a production, add the edge
Ai,jk

xi−→
0
Ai+1,j
r to T . If Ak → Arxj is a production, add the edge Ai,jk

xj−→
0
Ai,j−1
r to T .

Completing Productions: If Ak → xi is a production, add the edge Ai,ik
xi−→
0
t to T . If

Ak → xiAr or Ak → Arxi is a production, add the edge Ai,ik
xi−−−−−→

null(Ar)
t to T .

Insertion: If Ak → xiAk is not a production, add the edge Ai,jk
xi−→
1

Ai+1,j
k to T . If

Ak → Akxj is not a production, add Ai,jk
xj−→
1
Ai,j−1
k . {these are called insertion edges.}

Deletion: For every production Ak → αAr or Ak → Arα, add the edge Ai,jk
ε(α)−−−→

1
Ai,jr .

{these are called deletion edges.}
Replacement: For every production Ak → αAr, if α 6= xi, then add the edge Ai,jk

xi−→
1

Ai+1,j
r to T . For every production Ak → Arα, if α 6= xj , add Ai,jk

xj−→
1
Ai,j−1
r to T . For

any Ak such that Ak → xi is not a production, but Ak → α is a production with α ∈ Σ,
add the edge Ai,ik

xi−→
1
t to T .{these are called substitution or replacement edges.}

I Theorem 6. For every Ak ∈ Q and every 1 ≤ i ≤ j ≤ n, the cost of the shortest path of
from Ai,jk to the sink t ∈ T is d if and only if d is the minimum edit distance between the
string xi . . . xj and the set of strings which can be derived from Ak.

I Theorem 7. The cost of the shortest path from S1,n to t in the graph T is the minimum
edit distance which can be computed in O(|P |n2) time.

3 Context Free Language Edit Distance

In this section, we develop an exact algorithm which utilizes the graph construction presented
in Section 2 to compute the language edit distance of a string x = x1 . . . xn to any context
free grammar (CFG) G = (Q,Σ, P, S). We use a standard normal form for G, which is
Chomsky normal form except we also allow productions of the form A → Aa|aA, where
A ∈ Q, a ∈ Σ. For us, the important property of this normal form is that every non-linear
production must be of the form A→ BC, with exactly two non-terminals on the right hand
side. Any CFG can be reduced to this normal form (see full version for more details).

Let PL, PNL ⊂ P be the subsets of (legal) linear and non-linear productions respectively.
Then for any nonterminal A ∈ Q, the grammar GL = (Q,Σ, PL, A) is linear, and we denote
the corresponding linear language edit distance graph by T (GL, x) = T , as constructed in
Section 2. Let Li be the set of clouds in T which correspond to substrings of length i (so
Li = {(k, j) ∈ T | j − k + 1 = i}). Then L1, . . . , Ln is a layered partition of T . Let t be the
sink of T . We write T R to denote the graph T where the direction of each edge is reversed.
Let LRi denote the edge reversed subgraph of Li. In other words, LRi is the subgraph of T R
with the same vertex set as Li. Our algorithm will add some additional edges within LRi , and
some additional edges from t to LRi , for all 1 ≤ i ≤ n, resulting in an augmented subgraph
which we denote LRi . We then compute single source shortest path from t to LRi ∪ {t} in
phase i. Our algorithm will maintain the property that, after phase q − p+ 1, if Ap,q is any
nonterminal in cloud (p, q) then the weight of the shortest path from t to Ap,q is precisely
the minimum edit distance between the string xpxp+1 . . . xq and the set of strings that are
legally derivable from A. The algorithm is as follows:

ICALP 2017

19:8 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

Algorithm: Context Free-Exact

1. Base Case: strings of length 1. For every non-linear production A → BC, and every
1 ≤ ` ≤ n, add the edges A`,` ←−−−−−

null(B)
C`,` and A`,` ←−−−−−

null(C)
B`,` to LR1 . Note that the

direction of the edges are reversed because we are adding edges to LR1 and not L1. Call
the resulting augmented graph LR1 .

2. Solve single source shortest path from t to every vertex in LR1 ∪{t}. Store the value of the
shortest path from t to every vertex in LR1 , and an encoding of the path itself. For any
1 ≤ p ≤ q ≤ n and Ap,q ∈ Lq−p+1, we write Tp,q(A) to denote the weight of the shortest
path from t to Ap,q. After having computed shortest paths from t to every vertex in the
subgraphs LR1 , . . . , L

R

i−1, we now consider LRi .
3. Induction: strings of length i. For every edge from a vertex Ap,q in Li to a vertex

Bp+1,q or Bp,q−1 in Li−1 with cost γ ∈ {0, 1}, add an edge from t to Ap,q ∈ LRi with
cost Tp+1,q(B) + γ or Tp,q−1(B) + γ, respectively. These are the linear production edges
created in the linear grammar edit distance algorithm.

4. For every non-linear production A → BC and every vertex Ap,q ∈ LRi , add an edge
from t to Ap,q in LRi with cost c where c = minp≤`<q Tp,`(B) + T`+1,q(C). The indices
p ≤ ` < q are called splitting points, as they specify where the string xp, . . . , xq is split by
the production A→ BC. To later recover the derivation, we store the specific ` which
yields the minimum value of the above equation.

5. For every non-linear productionA→ BC, add the edgeAp,q ←−−−−−
null(B)

Cp,q andAp,q ←−−−−−
null(C)

Bp,q to LRi .
6. After adding the edges in steps 3-5, we call the resulting graph L

R

i . Then compute
shortest path from t to every vertex in the subgraph LRi ∪ {t}, and store the values of
the shortest paths, along with an encoding of the paths themselves.

7. Repeat for i = 1, 2, . . . , n. Return the value T1,n(S).

I Theorem 8. For any nonterminal A ∈ Q and 1 ≤ p ≤ q ≤ n, the weight of the shortest
path from Ap,q ∈ Li to t is the minimum edit distance between the substring xp . . . xq and the
set of strings which can be legally produced from A, and the overall time required to compute
the language edit distance is O(|P |n3).

4 Context Free Language Edit Distance Approximation

Now this cubic time algorithm itself is not an improvement on that of Aho and Peterson [3].
However, by strategically modifying the construction of the subgraphs Li by *forgetting* to
compute some of the non-linear edge weights (and taking the minimum over fewer splitting
points for those that we do compute), we can obtain an additive approximation of the
minimum edit distance. We introduce a family of approximation algorithms which do just
this, and prove a strong general bound on their behavior. Our results give bounds for the
performance of our algorithm for any CFG. Additionally, for any k-ultralinear language, our
results also give explicit O(k

√
n) and O(2kn1/3) additive approximations from this family

which run in quadratic time. Note that, as shown in our construction in the proof of hardness
of parsing ultralinear grammars, for any k we can restrict any context free grammar G to a
k-ultralinear grammar G′ such that L(G′) ⊆ L(G) contains all words that can be derived
using fewer than ≤ k nested non-linear productions (see full version for a more formal
definition of k and hardness proofs).

R. Jayaram and B.Saha 19:9

Figure 3 Non-uniform edges are computed only for a subset of the clouds (colored black). Only
a subset of the splitting points are considered while computing the weights.

I Definition 9. For any Context Free Language edit distance approximation algorithm A,
we say that A is in the family F if it follows the same procedure as in the exact algorithm
with the following modifications:
1. Subset of non-linear productions. A constructs the non-linear production edges in step

4 for the vertices in some subset of the total set of clouds {(p, q) | 1 ≤ p ≤ q ≤ n}.
2. Subset of splitting points. For every cloud (p, q) that A computes non-linear production

edges for, in step 4 of the algorithm when computing the weight c of any edge in this
cloud it takes minimum over only a subset of the possible splitting points p, . . . , q (where
this subset is the same for every non-linear edge weight computed in (p, q)).

By forgetting to construct all non-linear production edges, and by taking a minimum
over fewer values when we do construct non-linear production edges, the time taken by our
algorithm to construct new edges can be substantially reduced. Roughly, the intuition for how
we can still obtain an additive approximation is as follows. If the shortest path to the sink in
the exact algorithm uses a non-linear edge from a vertex Ap,q in cloud (p, q), then naturally
our approximation algorithm would also use such an edge if it existed. However, it is possible
that nonlinear edges were not constructed for cloud (p, q) by the approximation. Still, what
we can do is find the closest cloud (p′, q′), with p ≤ p′ ≤ q′ ≤ q, such that nonlinear edges
were constructed in (p′, q′), and then follow the insertion edges Ap,q → Ap+1,q → · · · → Ap

′,q′ ,
and take the desired non-linear production edge from Ap

′,q′ . The additional incurred cost is
at most |p− p′|+ |q − q′|, or the distance to the nearest cloud with non-linear edges, and
this cost is incurred at most once for every non-linear production in an optimal derivation.

We now give two explicit examples of how steps 1 and 2 can be implemented. We later
prove explicit bounds on the approximations of these examples in Theorems 4 and 5. In both
examples a sensitivity parameter, γ, is first chosen. We use |OPT | to denote the optimum
language edit distance, and |A| to denote the edit distance computed by an approximation
algorithm A.

I Definition 10. An approximation algorithm A ∈ F is a γ-uniform grid approximation if
for i = n, (n− γ), (n− 2γ), . . . , (n− bnγ cγ) (see Figure 3).
1. A constructs non-linear production edges only for an evenly-spaced 1/γ fraction of the

clouds in Li, and no others, where γ is a specified sensitivity parameter.
2. Furthermore, for every non-linear edge constructed, A considers only an evenly-spaced

1/γ fraction of the possible break points.
Here if i or (n− i+ 1) (the number of substrings of length i) is not evenly divisible by γ, we
evenly space the clouds/breakpoints until no more will fit.

ICALP 2017

19:10 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

We will later see that the running time of such a γ-uniform grid approximation is
O(|P |(n2 + (nγ)3)), and in particular for any k-ultralinear grammar G it gives an additive
approximation of O(2kγ). Thus by setting γ = n1/3, we get an O(2kn1/3)-approximation in
O(|P |n2) time (Theorem 4).

I Definition 11. For i = 0, 1, . . . , log(n), set Ni = {Lj | n
2i+1 < j ≤ n

2i }. Let N ′i ⊂ Ni

be an evenly-spaced min{ 2i

γ , 1}-fraction of the Lj ’s in Ni (subset of diagonals). Then, an
approximation algorithm A ∈ F is a γ-non-uniform grid approximation if, for every Lj ∈ N ′i ,
A computes non-linear production edges only for a min{ 2i

γ , 1}-evenly-spaced fraction of the
clouds in Lj . Furthermore, for any of these clouds in N ′i for which A does compute non-linear
production edges, A considers only an evenly-spaced min{ 2i

γ , 1} -fraction of all possible break
points (see Figure 3 (right)).

We will see that the running time of a γ-non-uniform grid approximation is O(|P |(n2 + n3

γ2)),
and in particular for any k-ultralinear grammar, or if k is the maximum number of nested
non-linear productions, it gives an additive approximation of O(kγ). Hence setting γ =

√
n,

we get an additive approximation of O(k
√
n) in quadratic time (Theorem 5).

4.1 Analysis

The rest of this section will be devoted to proving bounds on the performance of approximation
algorithms in F . We use T OPT to denote the graph which results from adding all the edges
specified in the exact algorithm to T . Recall that T is the graph constructed from the linear
productions in G. For A ∈ F , we write T A to denote the graph which results from adding the
edges specified by the approximation algorithm A. Note that since A functions by forgetting
to construct a subset of the non-linear edges created by the exact algorithm, we have that
the edge sets satisfy E(T) ⊆ E(T A) ⊆ E(T OPT). We now introduce the primary structure
which will allow us to analyze the execution of our language edit distance algorithms.

Binary Production-Edit Trees

I Definition 12. A production-edit tree (PET) T for grammar G and input string x is a
binary tree which satisfies the following properties:
1. Each node of T stores a path in the linear grammar edit distance graph T = T (GL, x)

(see Section 2 and 3). The path given by the root of T must start at the source vertex
S1,n of T .

2. For any node v ∈ T, let Ap,q, Br,s be the starting and ending vertices of the corresponding
path. If Br,s is not the sink t of T , then v must have two children, vR, vL, such that there
exists a production B → CD and the starting vertices of the paths in vL and vR are Cr,`
and D`+1,s respectively, where ` is some splitting point r − 1 ≤ ` ≤ s. If ` = r − 1 or
` = s, then one of the children will be in the same cloud (r, s) as the ending cloud of the
path given by v, and the other will be called a nullified node. This corresponds to the
case where one of the null edges created in step 5 of the exact algorithm is taken.

3. If the path in v ∈ T ends at the sink of T , then v must be a leaf in T. If Ap,q is the
starting vertex of the path, this means that the path derives the entire substring xp . . . xq
using only linear productions. Thus a node v is a leaf of T if and only if it either ends
at the sink or is a nullified node. It follows from 2. and 3. that every non-leaf node has
exactly 2 children.

R. Jayaram and B.Saha 19:11

Notation: To represent a node in T that is a path of cost c from Ap,q to either Br,s, or t,
we will use the notation [Ap,q, Br,s, c], or [Ap,q, t, c], respectively. If one of the arguments is
either unknown or irrelevant, we write · as a placeholder. In the case of a nullified node,
corresponding to the nullification of A ∈ Q, we write [A, t, null(A)] to denote the node. Note,
since we are now dealing with two *types* of graphs, to avoid confusion whenever we are
talking about a vertex Ap,q in any of the edit-distance graphs (such as T , T A, T OPT , ect),
we will use the term vertex. When referring to the elements of a PET T we will use the term
node. Also note that all error productions are linear.

We can now represent any sequence of edits produced by a language edit distance
algorithm by such a PET, where the edit distance is given by the sum of the costs stored in
the nodes of the tree. To be precise, if [·, ·, c1], . . . , [·, ·, ck] is the set of all nodes in T, then
the associated total cost ‖T‖ =

∑k
i=1 ci. Let DA be the set of PET’s T compatible with a

fixed approximation algorithm A ∈ F .

I Definition 13 (PET’s compatible with A). For an approximation algorithm A ∈ F , let
DA ⊂ F be the set of PET’s T which satisfy the following constraints:
1. If [Ap,q, Br,s, ·] is a node in T, where A,B ∈ Q, then A must compute non-linear edges

for the cloud (r, s) ∈ T A.
2. If [Cr,`, ·, ·], [D`+1,s, ·, ·] are the left and right children of a node [Ap,q, Br,s, ·] respectively,

then A must consider the splitting point ` ∈ [p, q) when computing the weights of the
non-linear edges in the cloud (r, s) ∈ T A.

The set DA is then the set of all PET’s which utilize only the non-linear productions and
splitting points which correspond to edges that are actually constructed by the approximation
algorithm A in T A. Upon termination, any A ∈ F will return the value ‖TA‖ where TA ∈ DA
is the tree corresponding to the shortest path from t to S1,n in T A. The following theorem
is not difficult to show.

I Theorem 14. Fix any A ∈ F , and let c be the edit distance returned after running the
approximation algorithm A. Then if T is any PET in DA, we have c ≤ ‖T‖.

Note that since the edges of T A are a subset of the edges of T OPT considered by an
exact algorithm OPT , we also have c ≥ ‖TOPT ‖, where TOPT is the PET given by the exact
algorithm. To prove an upper bound on c, it then suffices to construct a explicit T ∈ DA,
and put a bound on the size of ‖T‖. Thus, in the remainder of our analysis our goal will be
to construct such a T ∈ DA. We now introduce our precision functions.

I Definition 15 (Precision Functions). For any cloud (p, q) ∈ T A, let α(p, q) be any upper
bound on the minimum distance d∗((p, q), (r, s)) = (r − p) + (q − s) such that p ≤ r ≤ s ≤ q
and A computes non-linear edge weights for the cloud (r, s) . Let β(p, q) be an upper bound
on the maximum distance between any two splitting points which are considered by A in
the construction of the non-linear production edges originating in a cloud (r, s) such that
A computes non-linear edge weights for (r, s) and d∗((p, q), (r, s)) ≤ α(p, q). Furthermore,
the precision functions must satisfy α(p, q) ≥ α(p′, q′) and β(p, q) ≥ β(p′, q′) whenever
(q − p) ≥ (q′ − p′).

While the approximation algorithms presented in this paper are deterministic, the
definitions of α(p, q) and β(p, q) allow the remaining theorems to be easily adapted to
algorithms which randomly forget to compute non-linear edges. While our paper considers only
two explicit approximation algorithms, stating our results in this full generality substantially

ICALP 2017

19:12 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

easies the analysis. Both Theorems 4 and 5 will follow easily once general bounds are proven,
and without the generality two distinct proofs would be necessary.

Constructing a PET T ∈ DA similar to TOP T

Our goal is now to construct a PET T ∈ DA with bounded cost. We do this by considering
each node v of TOPT and constructing a corresponding node u in T such that the path
stored in u imitates the path in v as closely as possible. A perfect imitation may not be
feasible if the path at v uses a non-linear production edge in a cloud that A does not compute
non-linear edges for. Whenever this happens, we will need to move to the closest cloud which
A does consider before making the same non-linear production that the exact algorithm did.
Afterwards, the ending cloud of our path will deviate from that of the optimal, so we will need
to bound the total deviation that can occur throughout the construction of our tree in terms
of α(p, q) and β(p, q). The following lemma will be used crucially in this regard for the proof
of our construction in Theorem 17. The lemma takes as input a node [Ap,q, Br,s, c] ∈ TOPT
and a cloud (p′, q′) such that xp, . . . , xq is not disjoint from xp′ , . . . , xq′ , and constructs a
path [Ap′,q′

, Br
′,s′
, c′] of bounded cost that is compatible with a PET T ∈ DA.

I Lemma 16. Let [Ap,q, Br,s, c] be any non-leaf node in TOPT , and let A ∈ F be an
approximation algorithm with precision functions α(p, q), β(p, q). If p′, q′ satisfy p ≤ q′

and p′ ≤ q, then there is a path from Ap
′,q′ to Br

′,s′ , where r ≤ r′ ≤ s′ ≤ s, of cost
c′ ≤ c+ (|p′ − p|+ |q′ − q|)− (|r′ − r|+ |s′ − s|) + 2α(r, s) such that A computes non-linear
production edges for cloud (r′, s′). Furthermore, for any leaf node [Ap,q, t, c] ∈ TOPT , we can
construct a path from Ap

′,q′ of cost at most c′ ≤ c+ (|p′ − p|+ |q′ − q|) to the sink.

We will now iteratively apply Lemma 16 to each node v ∈ TOPT from the root down,
transforming it into a new node ψ(v) ∈ T. Here ψ will be a surjective function ψ : V (TOPT)→
V (T). Lemma 16 will guarantee that the cost of ψ(v) is not too much greater than that of v.
If during the construction of T, the substrings corresponding to v and ψ(v) become disjoint,
then we will transform the entire subtree rooted at v into a single node ψ(v) ∈ T, thus the
function may not be injective.

Let v be any node in TOPT , and u its parent node if v is not the root. Let (p, q), (r, s) ∈ T
and (pv, qv), (rv, sv) ∈ T be the starting and ending clouds of u and v respectively. Similarly
let (p′, q′), (r′, s′) and (p′v, q′v), (r′v, s′v) be the starting and ending clouds of ψ(u) and ψ(v)
respectively. Furthermore, let (pX , qX) and (p′X , q′X), where X = L for left child and X = R

for right child, be the starting clouds of the left and right children of u and ψ(u) respectively.
Let cv be the cost of v, and let cv be the cost of v plus the cost of all the descendants of
v. Finally, let c′v be the cost of ψ(v). An abbreviated version of Theorem 17 (see the full
version for extended statement) relates the cost of v with ψ(v) in terms of the starting and
ending clouds by defining ψ inductively from the root of TOPT down. The theorem uses
Lemma 16 repeatedly to construct the nodes of T.

I Theorem 17. For any approximation algorithm A ∈ F with precision functions α, β, there
exists a PET T ∈ DA and a PET mapping ψ : V (TOPT) → V (T) such that TOPT can be
partitioned into disjoint sets U1

NL ∪ U2
NL ∪ U1

L ∪ U2
L ∪X with the following properties. For

v ∈ TOPT , if v ∈ U1
NL ∪ U2

NL then v satisfies (Non-leaf), and if v ∈ U1
L ∪ U2

L then v satisfies
(Leaf):

c′v ≤ cv +
(
|p′v − pv|+ |q′v − qv|

)
−
(
|r′v − rv|+ |s′v − sv|

)
+ 2α(rv, sv) (Non-leaf)

c′v ≤ cv + |p′v − pv|+ |q′v − qv|+ β(r, s) (Leaf)

Furthermore (|p′L−pL|+ |q′L−qL|)+(|p′R−pR|+ |q′R−qR|) ≤ |r′−r|+ |s′−s|+2β(r, s) (∗)

R. Jayaram and B.Saha 19:13

Let T′OPT ⊂ TOPT be the subgraph of nodes v in the tree for which either v is the only
node mapped to ψ(v) ∈ T, or v is the node closest to the root that is mapped to ψ(v). In
the previous theorem, the set X corresponds to the nodes v for which ψ(v) = ψ(u) such that
u is an ancestor of v in TOPT . So T′OPT = TOPT \X. The final theorem is the result of
summing over the bounds from Theorem 17 for all vj ∈ T′OPT , applying the appropriate
bound depending on the set vj belongs to.

I Theorem 18. For any A ∈ F with precision functions α, β, let TOPT be the PET of
any optimal algorithm. Label the nodes of T′OPT ⊂ TOPT by v1 . . . vK . For 1 ≤ i ≤ K, let
(pi, qi), (ri, si) be the starting and ending clouds of the path vi in T , then

|OPT | ≤ |A| ≤ |OPT |+
∑

vj∈T′
OP T

(
2α(rj , sj) + 3β(rj , sj)

)
.

As an illustration of Theorem 18, consider the γ-uniform grid approximation of Theorem 4.
In this case, we have the upper bound α(rj , sj) = β(rj , sj) = 2γ for all vj ∈ TOPT . Since
there are k∗ total vertices in TOPT , we get |OPT | ≤ |A| ≤ |OPT |+ 10γk∗. To analyze the
running time, note that we only compute non-linear production edges for (n/γ)2 clouds, and
in each cloud that we compute non-liner edges for we consider at most n/γ break-points.
Thus the total runtime is O(|P |(nγ)3) to compute non-linear edges, and O(|P |n2) to a shortest
path algorithm on T A, for a total runtime of O(|P |(n2 + (nγ)3)).

Our second illustration of Theorem 18 is the γ-non-uniform grid approximation of
Theorem 5. Here we obtain a O(kγ) additive approximation in time O(|P |(n2 + n3

γ2)). A
detailed analysis can be found in the full version.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is valiant’s parser. In FOCS 2015, 2015.
2 Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1974.
3 Alfred V. Aho and Thomas G. Peterson. A minimum distance error-correcting parser for

context-free languages. SIAM J. Comput., 1(4), 1972.
4 Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse RNA Folding:

Time and Space Efficient Algorithms. In Annual Symposium on Combinatorial Pattern
Matching, pages 249–262. Springer, 2009.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In STOC 2015, 2015.

6 Arturs Backurs and Krzysztof Onak. Fast algorithms for parsing sequences of parentheses
with few errors. In PODS, 2016.

7 Ulrike Brandt and Ghislain Delepine. Weight-reducing grammars and ultralinear languages.
RAIRO-Theoretical Informatics and Applications, 38(1):19–25, 2004.

8 Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia V. Williams. Truly sub-
cubic algorithms for language edit distance and RNA folding via fast bounded-difference
min-plus product. In FOCS 2016, 2016.

9 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In FOCS 2015, 2015.

10 J.A. Brzozowski. Regular-like expressions for some irregular languages. In IEEE Annual
Symposium on Switching and Automata Theory, 1968.

11 Noam Chomsky. On certain formal properties of grammars. Information and control,
2(2):137–167, 1959.

ICALP 2017

19:14 Approximating Language Edit Distance Beyond Fast Matrix Multiplication

12 Jay Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13,
1970.

13 Sheila A. Greibach. The unsolvability of the recognition of linear context-free languages.
Journal of the ACM (JACM), 13(4):582–587, 1966.

14 Steven Grijzenhout and Maarten Marx. The quality of the XML web. Web Semant., 19,
2013.

15 J. J. Gutell, R.R.and Cannone, Z. Shang, Y. Du, and M. J. Serra. A story: unpaired
adenosine bases in ribosomal RNAs. Journal of Mol Biology, 2010.

16 John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc., 1969.

17 O.H. Ibarra and T. Jiang. On one-way cellular arrays,. SIAM J. Comput., 16, 1987.
18 Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In CCC 1999, pages

237–240, 1999.
19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? In FOCS 1998, pages 653–662, 1998.
20 Mark Johnson. PCFGs, Topic Models, Adaptor Grammars and Learning Topical Colloca-

tions and the Structure of Proper Names. In ACL 2010, pages 1148–1157, 2010.
21 Ik-Soon Kim and Kwang-Moo Choe. Error repair with validation in LR-based parsing.

ACM Trans. Program. Lang. Syst., 23(4), July 2001.
22 Donald E Knuth. Semantics of context-free languages. Mathematical systems theory,

2(2):127–145, 1968.
23 Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. On repairing structural

problems in semi-structured data. In VLDB 2013, 2013.
24 Martin Kutriba and Andreas Malcher. Finite turns and the regular closure of linear context-

free languages. Discrete Applied Mathematics, 155(5), October 2007.
25 Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.

J. ACM, 49, 2002.
26 Andreas Malcher and Giovanni Pighizzini. Descriptional complexity of bounded context-

free languages. Information and Computation, 227, June 2013.
27 Christopher D. Manning. Foundations of statistical natural language processing, volume

999. MIT Press, 1999.
28 Darnell Moore and Irfan Essa. Recognizing multitasked activities from video using

stochastic context-free grammar. In NCAI 2002, pages 770–776, 2002.
29 E. Moriya and T. Tada. On the space complexity of turn bounded pushdown automata.

Internat. J. Comput, 80:295—-304., 2003.
30 Gene Myers. Approximately matching context-free languages. Information Processing

Letters, 54, 1995.
31 Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free languages.

Linguistics and Philosophy, 4(4), 1982.
32 Sanguthevar Rajasekaran and Marius Nicolae. An error correcting parser for context free

grammars that takes less than cubic time. Manuscript, 2014.
33 Andrea Rosani, Nicola Conci, and Francesco G. De Natale. Human behavior recognition

using a context-free grammar. Journal of Electronic Imaging, 23(3), 2014.
34 Barna Saha. The Dyck language edit distance problem in near-linear time. In FOCS 2014,

pages 611–620, 2014.
35 Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-

mars: Faster algorithms and connection to fundamental graph problems. In FOCS 2015,
pages 118–135, 2015.

R. Jayaram and B.Saha 19:15

36 Jose M Sempere and Pedro Garcia. A characterization of even linear languages and its
application to the learning problem. In International Colloquium on Grammatical Inference,
pages 38–44. Springer, 1994.

37 Jeffrey Ullman and John Hopcroft. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 2001.

38 Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of
computer and system sciences, 10(2), 1975.

39 Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster Algorithms for RNA-Folding
Using the four-Russians Method. In WABI 2013, 2013.

40 Robert A. Wagner. Order-n correction for regular languages. Communications of the ACM,
17(5), 1974.

41 Ye-Yi Wang, Milind Mahajan, and Xuedong Huang. A unified context-free grammar and
n-gram model for spoken language processing. In ICASP 2000, pages 1639–1642, 2000.

42 Glynn Winskel. The formal semantics of programming languages: an introduction, 1993.
43 D.A. Workman. Turn-bounded grammars and their relation to ultralinear languages. In-

form. and Control, 32:188–200, 1976.
44 Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Reducing the worst case running times

of a family of RNA and CFG problems, using Valiant’s approach. In WABI 2010, 2010.

ICALP 2017

Conditional Lower Bounds for All-Pairs Max-Flow∗

Robert Krauthgamer1 and Ohad Trabelsi2

1 Weizmann Institute of Science, Rehovot, Israel
robert.krauthgamer@weizmann.ac.il

2 Weizmann Institute of Science, Rehovot, Israel
ohad.trabelsi@weizmann.ac.il

Abstract
We provide evidence that computing the maximum flow value between every pair of nodes in a
directed graph on n nodes, m edges, and capacities in the range [1..n], which we call the All-Pairs
Max-Flow problem, cannot be solved in time that is faster significantly (i.e., by a polynomial
factor) than O(n2m). Since a single maximum st-flow in such graphs can be solved in time
Õ(m

√
n) [Lee and Sidford, FOCS 2014], we conclude that the all-pairs version might require time

equivalent to Ω̃(n3/2) computations of maximum st-flow, which strongly separates the directed
case from the undirected one. Moreover, if maximum st-flow can be solved in time Õ(m), then the
runtime of Ω̃(n2) computations is needed. This is in contrast to a conjecture of Lacki, Nussbaum,
Sankowski, and Wulf-Nilsen [FOCS 2012] that All-Pairs Max-Flow in general graphs can be solved
faster than the time of O(n2) computations of maximum st-flow.

Specifically, we show that in sparse graphs G = (V,E,w), if one can compute the maximum
st-flow from every s in an input set of sources S ⊆ V to every t in an input set of sinks
T ⊆ V in time O((|S||T |m)1−ε), for some |S|, |T |, and a constant ε > 0, then MAX-CNF-
SAT (maximum satisfiability of conjunctive normal form formulas) with n′ variables and m′

clauses can be solved in time m′O(1)2(1−δ)n′ for a constant δ(ε) > 0, a problem for which not
even 2n′

/poly(n′) algorithms are known. Such runtime for MAX-CNF-SAT would in particular
refute the Strong Exponential Time Hypothesis (SETH). Hence, we improve the lower bound
of Abboud, Vassilevska-Williams, and Yu [STOC 2015], who showed that for every fixed ε > 0
and |S| = |T | = O(

√
n), if the above problem can be solved in time O(n3/2−ε), then some

incomparable (and intuitively weaker) conjecture is false. Furthermore, a larger lower bound
than ours implies strictly super-linear time for maximum st-flow problem, which would be an
amazing breakthrough.

In addition, we show that All-Pairs Max-Flow in uncapacitated networks with every edge-
density m = m(n), cannot be computed in time significantly faster than O(mn), even for acyclic
networks. The gap to the fastest known algorithm by Cheung, Lau, and Leung [FOCS 2011] is a
factor of O(mω−1/n), and for acyclic networks it is O(nω−1), where ω is the matrix multiplication
exponent.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2 Analysis of Algorithms and Problem
Complexity

Keywords and phrases Conditional lower bounds, Hardness in P, All-Pairs Maximum Flow,
Strong Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.20

∗ This work was partially supported by the Israel Science Foundation grant #897/13 and by a Minerva
Foundation grant.

EA
T

C
S

© Robert Krauthgamer and Ohad Trabelsi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Conditional Lower Bounds for All-Pairs Max-Flow

1 Introduction

The maximum flow problem is one of the most fundamental problems in combinatorial
optimization. This classic problem and its variations such as minimum-cost flow, integral
flow, and minimum-cost circulation, were studied extensively over the past decades, and
have become key algorithmic tools with numerous applications, in theory and in practice.
Moreover, techniques developed for flow problems were generalized or adapted to other
problems, see for example [6, 3, 5]. The maximum st-flow problem, which we shall denote
Max-Flow, asks to ship the maximum amount of flow from a source node s to a sink node t in
a directed edge-capacitated graph G = (V,E,w), where throughout, we denote n = |V | and
m = |E|, and assume integer capacities bounded by U . After this problem was introduced in
1954 by Harris and Ross (see [22] for a historical account), Ford and Fulkerson [12] devised
the first algorithm for Max-Flow, which runs in time O((n+m)F), where F is the maximum
value of a feasible flow. Ever since, a long line of generalizations and improvements was
studied, and the current fastest algorithm for Max-Flow with arbitrary capacities is by Lee and
Sidford [20], which takes O(m

√
n logU) time. For the case of small capacities and sufficiently

sparse graphs, the fastest algorithm, due to Mądry [21], has a running time Õ(m10/7U1/7).
Here and throughout, Õ(f) denotes O(f logc f) for unspecified constant c > 0.

A very natural problem is to compute the maximum st-flow for multiple source-sink pairs
in the same graph G. The seminal work of Gomory and Hu [14] shows that in undirected
graphs, Max-Flow for all

(
n
2
)
source-sink pairs requires at most n− 1 executions of Max-Flow

(see also [15], where the n− 1 computations are all on the input graph), and a lot of research
aimed to extend this result to directed graphs, with several partial successes, see details in
Section 1.1. However, it is still not known how to solve Max-Flow for multiple source-sink
pairs faster than solving it separately for each pair, even in special cases like a single source
and all possible sinks. We shall consider the following problems involving multiple source-sink
pairs, where the goal is always to report the value of each flow (and not an actual flow
attaining it).

I Definition 1.1. (Single-Source Max-Flow) Given a directed edge-capacitated graph G =
(V,E,w) and a source node s ∈ V , output, for every t ∈ V , the maximum flow that can be
shipped in G from s to t.

IDefinition 1.2. (All-Pairs Max-Flow) Given a directed edge-capacitated graphG = (V,E,w),
output, for every pair of nodes u, v ∈ V , the maximum flow that can be shipped in G from u

to v.

I Definition 1.3. (ST-Max-Flow) Given a directed edge-capacitated graph G = (V,E,w)
and two subsets of nodes S, T ⊆ V , output, for every pair of nodes s ∈ S and t ∈ T , the
maximum flow that can be shipped in G from s to t.

I Definition 1.4. (Global Max-Flow) Given a directed edge capacitated graph G = (V,E,w),
output the maximum among all pairs u, v ∈ V , of the maximum flow value that can be
shipped in G from u to v.

I Definition 1.5. (Maximum Local Edge Connectivity) Given a directed graph G = (V,E),
output the maximum among all pairs u, v ∈ V , of the maximum number of edge-disjoint
uv-paths in G.

Note that in a graph with all edge capacities equal to 1, the problem of finding the
maximum local edge connectivity is equivalent to finding the global maximum flow.

R. Krauthgamer and O. Trabelsi 20:3

Table 1 Known algorithms for multiple-pairs Max-Flow. In this table, T (n,m) is the fastest time
to compute maximum st-flow in an undirected graph, ω is the matrix multiplication exponent, and
γ = γ(G) is a topological property of the input network that varies between 1 and Θ(n). In planar
graphs, γ is the minimum number of faces required to cover all the nodes (i.e., every node is adjacent
to at least one such face) over all possible planar embeddings [13].

Directed Class Problem Runtime Reference
No General All-Pairs (G-H Tree) (n− 1)T (n,m) [14]
No Uncapacitated Networks All-Pairs (G-H Tree) Õ(mn) [7]
No Genus bounded by g All-Pairs (G-H Tree) 2O(g2)n log3 n [8]
Yes Sparse All-Pairs O(n2 + γ4 log γ) [4]
Yes Constant Treewidth All-Pairs O(n2) [4]
Yes Uncapacitated All-Pairs O(mω) [11]
Yes Uncapacitated DAG Single-Source O(nω−1m) [11]
Yes Planar Single-Source O(n log3 n) [19]

1.1 Prior Work

We start with undirected graphs, where the All-Pairs Max-Flow values can be represented
in a very succint manner, called nowdays a Gomory-Hu tree [14]. In addition to being
very succint, it allows the flow values and the corresponding cuts (vertex partitions) to be
quickly retrieved. See Table 1 for a list of previous algorithms for multiple pairs maximum
st-flow, see Table 1. For directed graphs, no current algorithm computes the maximum flow
between any k = ω(1) given pairs of nodes faster than the time of O(k) separate Max-Flow
computations. However, some results are known in special settings. It is possible to compute
Max-Flow for O(n) pairs in the time it takes for a single Max-Flow computation [16] and this
result is used to find a global minimum cut. However, these pairs cannot be specified in the
input.

For directed planar graphs, there is an O(n log3 n) time algorithm for the Single-Source
Max-Flow problem [19], which immediately yields an O(n2 log3 n) time algorithm for the
All-Pairs version, that is much faster than the time of O(n2) computations of planar Max-Flow,
a problem that can be solved in time O(n logn) [9]. Based on these results, it was conjectured
in [19] that also in general graphs, All-Pairs Max-Flow can be solved faster than the time
required for computing O(n2) separate maximum st-flows.

Several hardness results are known for multiple-pairs variants of Max-Flow [2]. For
ST-Max-Flow in sparse graphs (m = O(n)) and |S| = |T | = O(

√
n), there is an n3/2−o(1)

lower bound assuming at least one of the Strong Exponential Time Hypothesis (SETH),
3SUM, and All-Pairs Shortest-Paths (APSP) conjectures is correct (for a comprehensive
survey on them, see [23]). In addition, they show that Single-Source Max-Flow on sparse
graphs requires n2−o(1) time, unless MAX-CNF-SAT can be solved in time 2(1−δ)npoly(m)
for some fixed δ > 0, and in particular SETH is false.

We will mostly rely on SETH, a conjecture introduced by [17], and on some weaker
assumption related to its maximization version, MAX-CNF-SAT. In more detail, SETH
states that for every fixed ε > 0 there is an integer k ≥ 3 such that k-SAT on n variables
and m clauses cannot be solved in time 2(1−ε)npoly(m), where poly(m) refers to O(mc) for
unspecified constant c. By the sparsification lemma [18], in order to refute SETH it can
be assumed that the number of clauses is O(n). The MAX-CNF-SAT problem asks for
the maximum number of clauses that can be satisfied in an input CNF formula. Most

ICALP 2017

20:4 Conditional Lower Bounds for All-Pairs Max-Flow

of our conditional lower bounds are based on the assumption that for every fixed δ > 0,
MAX-CNF-SAT cannot be solved in time 2(1−δ)npoly(m), where currently even 2n/poly(n)
algorithms are not known for this problem [2]. Note that this is a weaker assumption than
SETH, since a faster algorithm for MAX-CNF-SAT would imply a faster algorithm for
CNF-SAT and refute SETH. Different assumptions regarding the hardness of CNF-SAT have
been the basis for many lower bounds, including for the runtime of solving NP-hard problems
exactly, parametrized complexity, and problems in P. See the Introduction in [1] and the
references therein.

1.2 Our Contribution
We present conditional runtime lower bounds for both uncapacitated and capacitated networks.
The proofs appear in sections 2 and 3, respectively, where the order reflects increasing level
of complication. All our lower bounds hold even when the input G is a DAG and has a
constant diameter, and in the case of general capacities, they can be easily modified to apply
also for graphs with constant maximum degree. In addition, for integer k ≥ 1 we use the
notation [k] to denote the range {1, ..., k}.

Capacitated Networks

Our main result is that for every set sizes |S| and |T |, the ST-Max-Flow cannot be solved sig-
nificantly faster than O(|S||T |m) (i.e., polynomially smaller runtime), unless a breakthrough
in MAX-CNF-SAT is achieved, and consequently in SETH.

I Theorem 1.6. If for some fixed ε > 0 and some (possibly functions of n) set sizes |S| and
|T |, ST-Max-Flow can be solved in graphs with n nodes, m = O(n) edges and capacities in
[n] in time O((|S||T |m)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′poly(n′), and in particular SETH is false.

This result improves the aforementioned n3/2−o(1) lower bound of [2], as for their setting
of |S| = |T | = O(

√
n) our lower bound is n2−o(1), although their lower bound is based on an

incomparable (and intuitively weaker) conjecture, that at least one of the SETH, 3SUM, and
APSP conjectures is correct. In fact, if there was a reduction from SETH that implied a
larger runtime lower bound for ST-Max-Flow, then the (single-pair) Max-Flow problem would
require a strictly super-linear time under it, but such a reduction is not possible unless the
non-deterministic version of SETH (abbreviated NSETH) is false [10]. And anyway, such a
lower bound for Max-Flow would be an amazing breakthrough.

The next theorem is an immediate corollary of Theorem 1.6, by assigning |S|, |T | = Θ(n).

I Theorem 1.7. If for some fixed ε > 0, All-Pairs Max-Flow in graphs with n nodes, m = O(n)
edges, and capacities in [n] can be solved in time O((n2m)1−ε), then for some δ(ε) > 0,
MAX-CNF-SAT on n′ variables and O(n′) clauses can be solved in time 2(1−δ)n′poly(n′),
and in particular SETH is false.

This conditional lower bound (see Figure 1) shows that All-Pairs Max-Flow requires time
that is equivalent to Ω(n3/2) computations of Max-Flow, which strongly separates the directed
case from the undirected one (where a Gomory-Hu tree can be constructed in the time of
n− 1 computations). If Max-Flow takes Õ(m) time, which is currently open but plausible,
then the running time of Ω̃(n2) computations of Max-Flow is needed. This is in contrast to
the aforementioned conjecture of Lacki, Nussbaum, Sankowski, and Wulf-Nilsen [19] that
All-Pairs Max-Flow in general graphs can be solved faster than the time of O(n2) computations
of maximum st-flow.

R. Krauthgamer and O. Trabelsi 20:5

m = |E|
n n2n1.5 n1.75n1.25

n2

n4

n3

n2.5

n3.5

n4.5

n5

Time
Complexity

our lower bound

runtime of Θ(n2) executions

of Max-Flow using [20]

m = |E|
n n2n1.5 n1.75n1.25

n2

n4

n3

n2.5

n3.5

n4.5

n5

Time
Complexity

our lower bound (which

algorithm of [11] when

ω = 2.37 and ω = 2

algorithm of [11] for DAGs

when ω = 2.37 and ω = 2

applies also to DAGs)

Capacitated Networks Uncapacitated Networks

Figure 1 State of the art bounds for All-Pairs Max-Flow in directed networks. Conditional lower
bounds are depicted in dashed lines, and known algorithms in solid lines.

Uncapacitated Networks

For the case of uncapacitated networks, we show that for every m = m(n), All-Pairs Max-Flow
cannot be solved significantly faster than O(mn). Here we introduce a new technique to
design reductions from SETH to graphs with varying edge densities, rather than the usual
reductions that only deal with sparse graphs. Our technique is based on partitioning the
variables set of CNF-SAT to different sizes.

I Theorem 1.8. If for some fixed ε > 0 and some m = m(n) ∈ [n, n2], All-Pairs Max-Flow
in uncapacitated graphs with n nodes and m edges can be solved in time O((nm)1−ε), then
for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and O(n′) clauses can be solved in time
2(1−δ)n′poly(n′), and in particular SETH is false.

Hence, a certain additional improvement to the O(mω) time algorithm of [11] (and
similarly to the O(nωm) time for DAGs, where our lower bounds apply too) is not likely. We
now present conditional lower bounds for ST-Max-Flow, which are functions of |S| and |T |.

I Theorem 1.9. If for some fixed ε > 0 and some (possibly functions of n) set sizes |S| and
|T |, ST-Max-Flow on uncapacitated graphs with n nodes and O((|S| + |T |)n) edges can be
solved in time O((|S||T |n)1−ε), then for some δ(ε) > 0, MAX-CNF-SAT on n′ variables and
O(n′) clauses can be solved in time 2(1−δ)n′poly(n′), and in particular SETH is false.

Finally, we present a conditional lower bound for computing the Maximum Local Edge
Connectivity of a sparse graph, which is the same as Global Max-Flow if all the capacities are
1, which is indeed the case in our reduction. In the Orthogonal Vectors problem the input is
two sets U and V , each of n vectors from {0, 1}d, and the goal is to determine whether there
are u ∈ U and v ∈ V such that

∑d
i=1 ui · vi = 0. An equivalent version of the problem has

U = V . For d = ω(logn), Williams [24] proved that SETH implies the non-existence of a
truly subquadratic (in n) algorithm for the problem. The next result, proved in Section 4,
was obtained together with Bundit Laekhanukit and Rajesh Chitnis, and we thank them for
their permission to include it here.

ICALP 2017

20:6 Conditional Lower Bounds for All-Pairs Max-Flow

I Theorem 1.10. If for some fixed ε > 0, the Maximum Local Edge Connectivity in graphs
with n nodes and Õ(n) edges can be found in time O(n2−ε), then for some δ(ε) > 0, the
Orthogonal Vectors problem on n′ vectors and every d = polylog(n′) can be solved in time
O(n′2−δ), and in particular SETH is false.

2 Reduction to Multiple-Pairs Max-Flow with Unit Capacity

In this section we prove Theorems 1.8 and 1.9. We start with a general lemma which is the
heart of the proofs.

I Lemma 2.1. Let a ∈ [0, 1] and b ∈ [0, 1− a]. Then MAX-CNF-SAT on n variables and
m clauses can be reduced to O(m) instances of ST-Max-Flow with |S| = 2an and |T | = 2bn
in graphs with Θ(2an + 2(1−a−b)nm + 2bn) nodes, Θ((2an + 2bn) · 2(1−a−b)nm) edges, and
capacities in {0, 1}.

Proof. Given a CNF-formula F on n variables and m clauses {Ci}i∈[m] as input for MAX-
CNF-SAT, a ∈ [0, 1], and b ∈ [0, 1 − a], we split the variables into three sets U1, U2, and
U3, where U1 is of size an, U2 is of size (1 − a − b)n, and U3 is of size bn, and enumerate
all their 2an, 2(1−a−b)n, and 2bn partial assignments (with respect to F), respectively, when
the objective is to find a triple α, β, γ of assignments to U1, U2, and U3 respectively, that
satisfies the maximal number of clauses. We will have an instance Gp of ST-Max-Flow for
each value p ∈ [m], in which by one call to ST-Max-Flow we check if there exists a triple α,
β, and γ that satisfies at least p clauses, as follows.

We construct a graph Gp for every p ∈ [m] on N nodes V1 ∪ V2 ∪ V3, where V1 contains a
node α for every assignment α to U1, V2 contains 2m+ 1 + (p− 1) = 2m+ p nodes for every
assignment β to U2, that are βli and βri for every i ∈ [m], β′, and the set {β′i}i∈[p−1], and V3
contains a node γ for every assignment γ to U3. We use the notation α for nodes in V1 and
for assignments to U1, β for assignments to U2, and γ for nodes in V3 and assignments to
U3. However, it will be clear from the context. Now, we have to describe the edges in the
network. In order to simplify the reduction, we partition the edges into blue and red colors,
as follows.

For every α, β, and i ∈ [m], we add a blue edge from α to βli if both of α and β do not
satisfy the clause Ci (do not set any of the literals to true), and otherwise we add a red edge
from α to βri . We further add, for every β, γ, and i ∈ [m], a blue edge from βli to γ if γ does
not satisfy Ci. For every β, γ, and j ∈ [p− 1], we add a red edge from every β′j to every γ.
For every β and i ∈ [m], we add a red edge from βli to βri and from βri to β′, and finally for
every β and j ∈ [p− 1], we add a red edge from β′ to β′j , where all edges are of capacity 1.

The graph we built has 2an + 2 · 2(1−a−b)nm + 2(1−a−b)n + 2(1−a−b)n(p − 1) + 2bn =
Θ(2an + 2(1−a−b)nm + 2bn) nodes, 2an · 2(1−a−b)nm + 2bn · 2(1−a−b)nm + 2 · 2(1−a−b)nm+
(p− 1)2(1−a−b)n + 2bn · (p− 1)2(1−a−b)n = Θ((2an + 2bn) · 2(1−a−b)nm) edges, with capacities
in {0, 1} (see Figure 2), and its construction time is asymptotically the same as the time it
takes to construct its edges set.

For every α, β, and γ, we denote by Gα,β,γp the graph induced from Gp on the nodes

(α, β′, γ) ∪
(⋃
y∈{l,r}
i∈[m]

βyi

)
∪

(⋃
j∈[p−1]

β′j

)
.

We claim that for every α and γ, the maximum flow from α to γ can be bounded by
the sum, over all β, of the maximum flow between them in Gα,β,γp . This claim follow easily

R. Krauthgamer and O. Trabelsi 20:7

α

γ̃

β′

βl
1

βl
2

βl
3

βr
1

βr
2

βr
3

β̃′

β̃l
1

β̃l
2

β̃l
3

β̃r
1

β̃r
2

β̃r
3

β′1

β′2

β̃′1

β̃′2α̃

γ

Figure 2 An illustration of part of the reduction. Here, U1, U2, and U3 have 2 assignments each,
α and α̃ to U1, β and β̃ to U2, and γ and γ̃ to U3. Blue edges are dashed. For simplicity, only the
edges of Gα,β,γ̃3 ∪Gα,β̃,γ̃3 are presented. In this illustration, α does not satisfy anything, β satisfies
C2 and C3, β̃ satisfies C1, and γ̃ satisfies C1. Note that the assignment comprised of α, β, and γ̃
satisfies all the clauses, and indeed the maximum flow from α to γ is 2 · 3− 1 = 5.

because the intersection Gα,β1,γ
p ∩ Gα,β2,γ

p for β1 6= β2 is exactly the source and the sink
{α, γ}, no edge passes between these two graphs, and

(⋃
β G

α,β,γ
i

)
consists of all nodes that

are both reachable from α and γ is reachable from them.
We now prove that if there is an assignment to F that satisfies at least p clauses then

the graph Gp we built has a triple α, β, γ with maximum flow from α to γ in Gα,β,γp at most
m − 1. Since for every β̃, m is the number of outgoing edges from α in Gα,β̃,γp , m is also
an upper bound for the maximum flow from α to γ in it, and hence in Gp it is at most
2(1−a−b)nm− 1. Otherwise, we will show that every triple α, β, γ has a maximum flow from
α to γ in Gα,β,γp of size at least m, and so in Gp it is at least 2(1−a−b)nm. Hence, by simply
picking the maximal j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at most
2(1−a−b)nm− 1, and then iterating over all assignments β to U2 with α and γ fixed as the
assignments to U1 and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and
U3, respectively, that are induced from Φ. Since a blue path from αΦ through βΦ

l
i for

some i ∈ [m] to γΦ corresponds to αΦ, βΦ, and γΦ all do not satisfy Ci, in GαΦ,βΦ,γΦ
p there

are at most m − p (internally) disjoint blue paths from α to γ. As the only way to ship
flow in GαΦ,βΦ,γΦ

p that is not through a blue path is through the node β′Φ, and the total
number of edges going out of this node is p− 1, we conclude that the total maximum flow
in GαΦ,βΦ,γΦ

p from αΦ to βΦ is bounded by m − p + (p − 1) = m − 1. Since for every β,
the maximum amount of flow that can be shipped in GαΦ,β,γΦ

p from αΦ to γΦ is at most
m, summing over all β we get that the total flow in Gp from αΦ to γΦ is bounded by
(2(1−a−b)n − 1)m+ (m− 1) ≤ 2(1−a−b)nm− 1, as required.

For the second direction, assume that every assignment to F satisfies at most p−1 clauses.
In order to show that the maximum flow from every α to every γ is at least 2(1−a−b)nm,

ICALP 2017

20:8 Conditional Lower Bounds for All-Pairs Max-Flow

we first fix α, β, and γ. Then, by passing flow in two phases we show that m units of flow
can be passed in Gα,β,γp from α to γ. As this argument applies for every β, we can add up
the respective flows without violating capacities, concluding the proof. By the assumption,
there exist m − (p − 1) = m − p + 1 i’s, such that α, β, and γ do not satisfy Ci, and we
denote a set with this amount of such i’s by Iβ . Each of these i’s induces a blue path
(α→ βli → γ) from α to γ in Gα,β,γp , and so we ship a unit of flow through every one of them
according to Iβ , in what we call the first phase. In the second phase, we ship additional
m− (m−p+ 1) = p−1 units in the following way. Let A1 := {i ∈ [m]\ Iβ : α 2 Ci∧β 2 Ci},
and A2 := ([m] \ Iβ) \A1 = {i ∈ [m] \ Iβ : α � Ci ∨ β � Ci}, where α � Ci denotes that the
assignment α satisfies Ci (as defined earlier), and α 2 Ci denotes that it does not satisfy Ci.
Let f : A1 ∪A2 → [m− |Iβ |] be a bijective function such that the range of A1 is [|A1|] and
the range of A2 is [m− |Iβ |] \ [|A1|]. Clearly, there exists such bijection and it is easy to find
one. For every i ∈ A1 we ship flow through the path (α→ βli → βri → β′ → β′j → γ), and
for every i ∈ A2 through the path (α→ βri → β′ → β′j → γ), in both cases with j = f(i).

Since we defined the flow in paths, we only need to show that the capacity requirements
hold, and we start with blue edges. Indeed, edges of the form (α, βli) are used in the first
phase, with flow that is determined uniquely by β and i ∈ Iβ , and in the second phase
uniquely according to β and i ∈ [m] \ Iβ , and so they cannot be used twice. Edges of the
form (βli, γ) are only used in the first phase, and their flow is uniquely determined according
to β and i ∈ Iβ , and so are good too. We now proceed to red edges, which were used only in
the second phase.

Edges of the forms (α, βri), (βli, βri) and (βri , β′) have flow that is uniquely determined by
β and i ∈ [m] \ Iβ , and so are not used more than once. Edges of the form (β′, β′j) have flow
that is uniquely determined by β and j = f(i) ∈ [p− 1], and since f is a bijection, every j
has at most one i such that f(i) = j, and so these edges are also used at most once. As a
byproduct, and since every edge of the form (β′j , γ) has only the edge (β′, β′j) as its source
for flow, edges of the form (β′j , γ) are also used at most once. Altogether, we have bounded
the total flow in all edges that were used in both phases, and so the capacity requirements
follow, which completes the proof of the second direction and of Lemma 2.1. J

Proof of Theorem 1.8. We apply Lemma 2.1 in the following way. By setting a = b ∈
[1/3, 1/2] we get graphs G = (V,E,w) with |V | = Θ(2an) (|V | = Θ(2an)m if a = 1/3) and
|E| = 2(1−a)nm. Hence, |E| = O(|V |1/a−1) and we get our desired bound for every |E|
between |V | and |V |2 and Theorem 1.8 follows. J

Proof of Theorem 1.9. Here we apply Lemma 2.1 a bit differently. By setting a, b ≤ 1/3 we
get graphs G = (V,E,w) with |V | = Θ(2(1−a−b)nm) and |E| = Θ((2an + 2bn)2(1−a−b)nm).
By setting |S| = |V |a/(1−a−b) and |T | = nb/(1−a−b) we get our lower bound for |E| =
O((|S|+ |T |)|V |) and Theorem 1.9 follows. J

3 Reduction to Multiple-Pairs Max-Flow in Capacitated Networks

In this section we prove Theorems 1.6 and 1.7. We proceed to prove our main technical
lemma.

I Lemma 3.1. MAX-CNF-SAT on n variables and m clauses {Ci}i∈[m] can be reduced to
O(m) instances of ST-Max-Flow, each with the property that S ∩ T = ∅, and all of them are
in graphs with N = Θ(2n/3m) nodes, O(2n/3m) = O(N) edges, and with capacities in [N].

R. Krauthgamer and O. Trabelsi 20:9

Proof. Given a CNF-formula F on n variables and m clauses as input for MAX-CNF-SAT,
we split the variables into three sets U1, U2, and U3 of size n/3 each and enumerate all 2n/3
partial assignments (with respect to F) to each of them, when the objective is to find a triple
(α, β, γ) of assignments to U1, U2, and U3, that satisfy the maximal number of clauses. We
will have an instance Gp of ST-Max-Flow with the mentioned property for each value p ∈ [m],
in which by one call to ST-Max-Flow we check if there exists a triple (α, β, γ) that satisfies at
least p clauses, as follows.

We construct the graph Gp on N nodes V1 ∪ V2 ∪ V3 ∪A∪B ∪ {vB}, where V1 contains a
node α for every assignment α to U1, V2 contains 3m+ 1 nodes for every assignment β to U2,
that are βli, βci , βri , for every i ∈ [m], and β′, V3 contains a node γ for every assignment γ to
U3, A contains two nodes C�

i and C2
i for every clause Ci, and B contains a node Ci for every

clause Ci. We use the notation α for nodes in V1 and assignments to U1, β to assignments to
U2, γ for nodes in V3 and assignments to U3, and Ci for nodes in B and clauses. However, it
will be clear from the context. Now, we have to describe the edges in the network. In order
to simplify the reduction, we partition the edges into red and blue colors, as follows.

For every α and i ∈ [m] we add a red edge of capacity 2n/3 from α to C�
i if α � Ci, and

a blue edge of the same capacity from α to C2
i otherwise. We further add, for every β, a red

edge of capacity 1 from C�
i to βci , a blue edge of capacity 1 from C2

i to βli, a blue edge of
capacity 1 from βli to βri if β 2 Ci, a red edge of capacity 1 from βci to β′, and a blue edge of
capacity 1 from βri to Ci. For every β we add a red edge of capacity p − 1 from β′ to vB.
For every γ we add a red edge of capacity 2n/3(p − 1) from vB to γ ∈ V3, and finally, for
every γ and i ∈ [m] we add a blue edge of capacity 2n/3 from Ci to γ if γ 2 Ci.

The graph we built has N = 2n/3 + 2m+ 2n/3 · 3m+ 2n/3 + 1 +m+ 2n/3 = Θ(2n/3m)
nodes, at most 2n/3m+2n/3 ·2m+2n/3 ·2m+2n/3m+2n/3 +1+2n/3m+2n/3m = O(2n/3m)
edges, all of its capacities are in [N], and its construction time is O(Nm) (see Figure 3).

We proceed to prove that if there is an assignment to F that satisfies at least p clauses
then the graph Gp we built has a pair α, γ with maximum flow from α to γ at most 2n/3m−1,
and otherwise, every α, γ has a maximum flow of size at least 2n/3m. Hence, by simply
picking the maximal j ∈ [m] such that the maximum flow in Gj of some pair α, γ is at
most 2n/3m− 1, and then iterating over all assignments β to U2 with α and γ fixed as the
assignments to U1 and U3, we can also find the required triple α, β, γ.

For the first direction, assume that F has an assignment that satisfies at least p clauses,
and denote such assignment by Φ. Let αΦ, βΦ, and γΦ be the assignments to U1, U2, and U3,
respectively, that are induced from Φ. We will show that there exists an (αΦ, γΦ) cut whose
capacity is at most 2n/3m − 1, hence by the Min-Cut Max-Flow theorem, the maximum
flow from αΦ to γΦ is bounded by this number, concluding the proof of the first direction.
We define the cut in a way that for every β 6= βΦ, the cut will have m cut edges that are
contributed from nodes related to β, and nodes related to βΦ will be carefully added to either
side of the cut so that they will contribute capacity of only m− 1 to the cut. To be more
precise, we define a suitable cut as follows.

S = {αΦ, β
′
Φ} ∪ {C�

i : αΦ � Ci} ∪ {C2
i : αΦ 2 Ci} ∪ {βΦ

c
i : i ∈ [m]}

∪ {Ci, βΦ
l
i, βΦ

r
i : γΦ � Ci} ∪ {βΦ

l
i : γΦ 2 Ci ∧ βΦ � Ci}

I Claim 3.2. The cut (S, V \ S) = (S, T) has capacity 2n/3m− 1.

Proof of Claim. We will go over all the nodes in S, and count the total capacity leaving to
nodes in T for each of them. αΦ ∈ S and all nodes C�

i and C2
i that are adjacent to it are

in S too, hence it does not contribute anything. For every i ∈ [m], we have two cases for

ICALP 2017

20:10 Conditional Lower Bounds for All-Pairs Max-Flow

α

γ̃

β′

βl
1

βc
1

α̃

γ

C�
1

C2
1

C�
2

C2
2

C�
3

C2
3

βr
1

βl
2

βc
2

βr
2

β̃l
1

β̃c
1

β̃r
1

β̃l
2

β̃c
2

β̃r
2

β̃l
3

β̃c
3

β̃r
3

βl
3

βc
3

βr
3

C1

C2

C3

β̃′

vB

m− 1 (= 2)

m
−
1
(=

2)

2
n/3 (=

2)

(m
−
1) · 2 n

/3
(=

4)

2 n/3
(=

2)

2 n
/3

(=
2)

2 n
/3

(=
2)

2n/3 (= 2)

Figure 3 An illustration of part of the reduction, with p = m. Here, U1, U2, and U3 have 2
assignments each; α and α̃ to U1, β and β̃ to U2, γ and γ̃ to U3. Bolder edges correspond to edges
of higher capacity (specified wherever they are bigger than 1), and blue edges are dashed. For
simplicity, only the edges relevant to α and γ̃ are presented. In this illustration, α satisfies C3, β
satisfies C1, β̃ satisfies C3, and γ̃ satisfies C2. Note that the assignment comprised of α, β, and γ̃
satisfies all the clauses, and indeed the maximum flow from α to γ is 2 · 3− 1 = 5.

nodes in A. If αΦ � Ci then C2
i ∈ T and hence C2

i does not contribute anything. However,
C�
i has 2n/3 outgoing edges, where all except βΦ

c
i are in T . Hence, it contributes 2n/3 − 1

to the cut. Else, if αΦ 2 Ci then C�
i ∈ T and hence C�

i does not contribute anything. But
C2
i has 2n/3 outgoing edges, of which 2n/3 − 1 are cut edges as their targets are in T , and

the one incoming to βΦ
l
i is a cut edge if and only if βΦi 2 Ci and also γΦ 2 Ci (equivalently,

βΦ
l
i ∈ T), and in our current case it means that Φ 2 Ci. Hence, for every i ∈ [m], the nodes

in {C�
i , C

2
i } contribute 2n/3 − 1 to the cut if Φ � Ci, and 2n/3 otherwise. Since there are at

most m− p clauses that are not satisfied by Φ, summing over all i ∈ [m] would yield a total
of at most p(2n/3 − 1) + (m− p)(2n/3) = 2n/3m− p cut edges for vertices with origin in A.

For every β 6= βΦ, all nodes in V2 that are associated with β, vB, and γΦ, are in T and
hence will not contribute anything to the cut. However, the node βΦ

′ is always in S, with vB
its sole target, and hence the edge (βΦ

′, vB) is in the cut and βΦ
′ contributes an additional

amount of p− 1, to a current total of at most 2n/3m− p+ (p− 1) = 2n/3m− 1. In addition,
βΦ
′ is the only target of βΦ

c
i , and thus βΦ

c
i will not contribute to the cut.

We will show that the rest of the nodes, i.e., nodes in V2 that are associated with βΦ,
and the nodes in B, contribute nothing to the cut. For every i ∈ [m], βΦ

l
i ∈ S if and only

if either βΦ � Ci or γΦ � Ci. It always happens that βΦ
c
i ∈ S, and βΦ

r
i ∈ T if and only if

R. Krauthgamer and O. Trabelsi 20:11

γΦ 2 Ci, but in such case it must be that βΦ � Ci, which implies that the edge (βΦ
l
i, βΦ

r
i) is

not in the graph, thus the total contribution of βΦ
l
i is zero.

For every i ∈ [m], it is easy to verify that each of the following four implies the rest.
βΦ

r
i ∈ S, γΦ � Ci, Ci ∈ S, and the edge (Ci, γΦ) is not in the graph. In the case where Ci

and βΦ
r
i are in T it is clear that they do not contribute anything, so we will focus on the

other case. Since Ci is the only target of βΦ
r
i , βΦ

r
i will not increase the cut capacity. In

addition, since the edge (Ci, γΦ) is not in the graph, Ci does not increase the capacity of the
cut either. Altogether we have bounded the total capacity of the cut by 2n/3m− 1, finishing
the proof of Claim 3.2. J

Proceeding with the proof of Lemma 3.1, we now focus on the second direction. Assume
that every assignment to F satisfies at most p− 1 clauses. We remind that we need to prove
that the maximum flow from every α to every γ is at least 2n/3m, and to do this we first
fix α and γ. By the assumption, for every β there exist m− (p− 1) = m− p+ 1 i’s, such
that α, β, and γ do not satisfy Ci, and we denote a set with this amount of such i’s by Iβ .
Each of these i’s induces a blue path (α→ C2

i → βli → βri → Ci → γ) from α to γ, and so
we pass a unit of flow through every one of them according to Iβ , and for all β, in what we
call the first phase. We note that so far, the flow sums up to 2n/3(m − p + 1), and so we
carry on with shipping the second phase of flow through paths that are not entirely blue.

We claim that for every β, we can pass an additional amount of m− (m− p+ 1) = p− 1
units through β′, which would add up to a total flow of 2n/3(m−p+1)+2n/3(p−1) = 2n/3m,
concluding the proof. Indeed, for every β, we ship flow in the following way. For every
i ∈ [m] \ Iβ , if α 2 Ci then send a unit through (α→ C2

i → βli → βci → β′ → vB → γ), and
otherwise send a unit through (α→ C�

i → βci → β′ → vB → γ).
Since we defined the flow in paths, we only need to show that the capacity constraints are

satisfied, starting with edges of color blue. Edges of the forms (βli, βri), (βri , Ci), and (Ci, γ)
are only used in the first phase, where the flow in the first two is uniquely determined by β
and i ∈ Iβ , and so at most 1 unit of flow is passed through them, and the flow in the latter
kind is determined by i ∈ Iβ , and the same i ∈ Iβ can have at most |{βri }β | = 2n/3 units of
flow passing in (Ci, γ), and so the flow in it is also bounded. The flow in edges of the form
(C2

i , β
l
i) in the first phase is uniquely determined by β and i ∈ Iβ , and in the second phase

uniquely according to β and i ∈ [m] \ Iβ , and so will not be used twice, and the flow in edges
of the form (α,C2

i) is determined in the first phase by i ∈ Iβ and in the second phase by
i ∈ [m] \ Iβ , and so will be used at most

∑
β |Iβ ∩ {i}|+

∑
β |([m] \ Iβ) ∩ {i}| ≤ 2n/3 times.

We now proceed to prove that red edges too do not have more flow than their capacity,
and for this we only need to consider the second phase. Edges of the forms (C�

i , β
c
i), (βli, βci),

and (βci , β′) has flow that is uniquely determined by β and i ∈ [m] \ Iβ and so are not used
more than once, edges of the form (β′, vB) has flow that is determined by β and thus have
flow |{βci }i∈[m]\Iβ

| = |[m] \ Iβ | = p − 1 and hence are properly bounded, and edges of the
form (vB , γ) have flow of size (p − 1)|{β′}β |2n/3 = (p − 1)2n/3. Finally, edges of the form
(α,C�

i) have flow that is determined by i ∈ [m] \ Iβ and so are used at most |{βci }β | = 2n/3
times. Altogether, we have bounded the total flow in all the edges that were used in both
phases, and so the capacity requirements follow, which completes the proof of the second
direction and of Lemma 3.1. J

Proof of Theorem 1.6. We use Lemma 3.1 in the following way. Assume that for some |S′|
and |T ′| there is an algorithm for ST-Max-Flow that runs in time O((|S′||T ′|m)1−ε), and
consider the version of ST-Max-Flow with S′′ and T ′′ such that S′′ ∩ T ′′ = ∅. Applying such
an algorithm repeatedly with S′ and T ′ iterate over respective partitions of S′′ and T ′′ of sizes

ICALP 2017

20:12 Conditional Lower Bounds for All-Pairs Max-Flow

|S′′|/|S′| and |T ′′|/|T ′|, respectively, would solve S′′ and T ′′’s version of ST-Max-Flow and
take time (|S′′|/|S′|)(|T ′′|/|T ′|)O(|S′||T ′|m)1−ε) = O((|S′′||T ′′|m)1−ε′) for some ε′ = ε′(ε),
and Theorem 1.6 follows. J

4 Global Max-Flow

Proof of Theorem 1.10. Let U and V be an instance of the Orthogonal Vectors problem,
where |U | = |V | = n′, and all the vectors are from {0, 1}d for some d = polylog(n′). We
construct a graph G = (U ′, V ′, D) as follows. U ′ contains a node u for every vector u ∈ U ,
V ′ contains a node v for every v ∈ V , and D contains three nodes c0,0, c0,1, and c1,0 for
every coordinate c ∈ [d]. For every u ∈ U ′ and c ∈ D, we add an edge from u to c0,0 and c0,1
if u[c] = 0, and an edge from u to c1,0 otherwise. Similarly, for every v ∈ U ′ and c ∈ D, we
add an edge from v to c0,0 and c1,0 if v[c] = 0, and an edge from v to c0,1 otherwise. This
graph has n = n′ + n′ + 3d = O(n′) nodes and at most n′ · 2d+ n′ · 2d = Õ(n′) edges. For
every u ∈ U ′, v ∈ V ′, and c ∈ [d], there is exactly one path (of length 2) from u to v through
nodes associated with c if and only if u[c] · v[c] = 0, and no paths through them otherwise.
Hence, the number of edge disjoint paths from u to v is d if their inner product is 0, and less
than d otherwise, and so an algorithm for Maximum Local Edge Connectivity with strictly
subquadratic runtime implies an algorithm for the Orthogonal Vectors problem with similar
runtime, completing the proof. J

Acknowledgements. We thank Rajesh Chitnis and Bundit Laekhanukit for some useful
conversations, and for their part in achieving the result on Global Max-Flow.

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. CoRR, 2017. URL: http://arxiv.org/abs/
1704.04546.

2 Amir Abboud, Virginia Vassilevska-Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proceedings of the Forty-seventh
Annual ACM Symposium on Theory of Computing, STOC’15, pages 41–50. ACM, 2015.
doi:10.1145/2746539.2746594.

3 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows – theory,
algorithms and applications. Prentice Hall, 1993.

4 Srinivasa R. Arikati, Shiva Chaudhuri, and Christos D. Zaroliagis. All-pairs min-cut in
sparse networks. J. Algorithms, 29(1):82–110, 1998. doi:10.1006/jagm.1998.0961.

5 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012. doi:10.
4086/toc.2012.v008a006.

6 Mokhtar S. Bazaraa, John J. Jarvis, and Hanif D. Sherali. Linear Programming and Net-
work Flows. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2010.

7 Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. An
Õ(mn) Gomory-Hu tree construction algorithm for unweighted graphs. In 39th Annual
ACM Symposium on Theory of Computing, STOC’07, pages 605–614. ACM, 2007. doi:
10.1145/1250790.1250879.

8 Glencora Borradaile, David Eppstein, Amir Nayyeri, and Christian Wulff-Nilsen. All-pairs
minimum cuts in near-linear time for surface-embedded graphs. In 32nd International
Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz International

http://arxiv.org/abs/1704.04546
http://arxiv.org/abs/1704.04546
http://dx.doi.org/10.1145/2746539.2746594
http://dx.doi.org/10.1006/jagm.1998.0961
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.4086/toc.2012.v008a006
http://dx.doi.org/10.1145/1250790.1250879
http://dx.doi.org/10.1145/1250790.1250879

R. Krauthgamer and O. Trabelsi 20:13

Proceedings in Informatics (LIPIcs), pages 22:1–22:16. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.22.

9 Glencora Borradaile and Philip Klein. An Õ(n logn) algorithm for maximum st-flow in a
directed planar graph. J. ACM, 56(2):9:1–9:30, 2009. doi:10.1145/1502793.1502798.

10 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the strong exponential time
hypothesis and consequences for non-reducibility. In Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science, ITCS’16, pages 261–270. ACM,
2016. doi:10.1145/2840728.2840746.

11 Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network cod-
ing, and expander graphs. In Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS’11, pages 190–199. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.55.

12 L.R. Ford, Jr. and D.R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

13 Greg N. Frederickson. Using cellular graph embeddings in solving all pairs shortest paths
problems. J. Algorithms, 19(1):45–85, 1995. doi:10.1006/jagm.1995.1027.

14 R.E. Gomory and T.C. Hu. Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9:551–570, 1961. doi:10.1137/0109047.

15 Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM J. Comput.,
19(1):143–155, 1990. doi:10.1137/0219009.

16 Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a
directed graph. J. Algorithms, 17(3):424–446, 1994. doi:10.1006/jagm.1994.1043.

17 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

18 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

19 Jakub Lacki, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Single source
– all sinks max flows in planar digraphs. In Proceedings of the 53rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS’12, pages 599–608. IEEE Computer Society,
2012. doi:10.1109/FOCS.2012.66.

20 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In Pro-

ceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
FOCS’14, pages 424–433. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.52.

21 Aleksander Mądry. Computing maximum flow with augmenting electrical flows. In Proceed-
ings of the 57th IEEE Annual Symposium on Foundations of Computer Science, FOCS’16,
pages 593–602. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.70.

22 Alexander Schrijver. On the history of the transportation and maximum flow problems.
Math. Program., 91(3):437–445, 2002. doi:10.1007/s101070100259.

23 Virginia Vassilevska-Williams. Hardness of Easy Problems: Basing Hardness on Popular
Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk). In 10th Inter-
national Symposium on Parameterized and Exact Computation (IPEC 2015), volume 43 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 17–29. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

ICALP 2017

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.22
http://dx.doi.org/10.1145/1502793.1502798
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1109/FOCS.2011.55
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1006/jagm.1995.1027
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1137/0219009
http://dx.doi.org/10.1006/jagm.1994.1043
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1109/FOCS.2012.66
http://dx.doi.org/10.1109/FOCS.2014.52
http://dx.doi.org/10.1109/FOCS.2016.70
http://dx.doi.org/10.1007/s101070100259
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.1016/j.tcs.2005.09.023

On the Fine-Grained Complexity of
One-Dimensional Dynamic Programming∗†

Marvin Künnemann1, Ramamohan Paturi2, and Stefan Schneider3

1 University of California, San Diego, CA, USA
mkuennemann@eng.ucsd.edu

2 University of California, San Diego, CA, USA
paturi)@eng.ucsd.edu

3 University of California, San Diego, CA, USA
stschnei@eng.ucsd.edu

Abstract
In this paper, we investigate the complexity of one-dimensional dynamic programming, or more
specifically, of the Least-Weight Subsequence (LWS) problem: Given a sequence of n data items
together with weights for every pair of the items, the task is to determine a subsequence S
minimizing the total weight of the pairs adjacent in S. A large number of natural problems can
be formulated as LWS problems, yielding obvious O(n2)-time solutions.

In many interesting instances, the O(n2)-many weights can be succinctly represented. Yet
except for near-linear time algorithms for some specific special cases, little is known about when
an LWS instantiation admits a subquadratic-time algorithm and when it does not. In particular,
no lower bounds for LWS instantiations have been known before. In an attempt to remedy
this situation, we provide a general approach to study the fine-grained complexity of succinct
instantiations of the LWS problem: Given an LWS instantiation we identify a highly parallel
core problem that is subquadratically equivalent. This provides either an explanation for the
apparent hardness of the problem or an avenue to find improved algorithms as the case may be.

More specifically, we prove subquadratic equivalences between the following pairs (an LWS
instantiation and the corresponding core problem) of problems: a low-rank version of LWS and
minimum inner product, finding the longest chain of nested boxes and vector domination, and a
coin change problem which is closely related to the knapsack problem and (min,+)-convolution.
Using these equivalences and known SETH-hardness results for some of the core problems,
we deduce tight conditional lower bounds for the corresponding LWS instantiations. We also
establish the (min,+)-convolution-hardness of the knapsack problem. Furthermore, we revisit
some of the LWS instantiations which are known to be solvable in near-linear time and explain
their easiness in terms of the easiness of the corresponding core problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Least-Weight Subsequence, SETH, Fine-Grained Complexity, Knapsack,
Subquadratic Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.21

∗ A full version is available at [31].
† This research is supported by the Simons Foundation. This research is supported by NSF grant

CCF-1213151 from the Division of Computing and Communication Foundations. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

EA
T

C
S

© Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

1 Introduction

Dynamic programming (DP) is one of the most fundamental paradigms for designing algo-
rithms and a standard topic in textbooks on algorithms. Scientists from various disciplines
have developed DP formulations for basic problems encountered in their applications. How-
ever, it is not clear whether the existing (often simple and straightforward) DP formulations
are in fact optimal or nearly optimal. Our lack of understanding of the optimality of the DP
formulations is particularly unsatisfactory since many of these problems are computational
primitives.

Interestingly, there have been recent developments regarding the optimality of standard
DP formulations for some specific problems, most importantly, conditional lower bounds
assuming the Strong Exponential Time Hypothesis (SETH) [26]. Let us consider the longest
common subsequence (LCS) problem as an illustrative example. It is defined as follows:
Given two strings x and y of length at most n, compute the length of the longest string z that
is a subsequence of both x and y. The standard DP formulation for the LCS problem involves
computing a two-dimensional table requiring O(n2) steps. This algorithm is slower than the
fastest known algorithm due to Masek and Paterson [33] only by a polylogarithmic factor.
However, there has been no progress in finding more efficient algorithms for this problem
since the 1980s, which prompted attempts as early as in 1976 [5] to understand the barriers
for efficient algorithms and to prove lower bounds. Unfortunately, there have not been any
nontrivial unconditional lower bounds for this or any other problem in general models of
computation. This state of affairs prompted researchers to consider conditional lower bounds
based on conjectures such as 3-Sum conjecture [18] and more recently based on ETH [27]
and SETH [26]. Researchers have found ETH and SETH to be useful to explain the exact
complexity of several NP-complete problems (see the survey paper [32]). Surprisingly, Ryan
Williams [39] has found a simple reduction from the CNF-SAT problem to the orthogonal
vectors problem which under SETH leads to a matching quadratic lower bound for the
orthogonal vectors problem. This in turn led to a number of conditional lower bound results
for problems in P (including LCS and related problems) under SETH [6, 1, 10, 2, 22]. Also
see [37] for a recent survey.

The DP formulation of the LCS problem is perhaps the conceptually simplest example
of a two-dimensional DP formulation. In the standard formulation, each entry of an n× n
table is computed in constant time. This property is typical for alignment problems which,
for example, are used to model similarity between gene or protein sequences and for which
LCS and Edit distance are the most prominent examples. Tight conditional lower bounds
have recently been proved for a number of alignment problems [8, 6, 1, 10, 3].

In contrast, there are many problems for which natural quadratic-time DP formulations
compute a one-dimensional table of length n by spending O(n)-time per entry. The ques-
tion arises: Can similar optimality results as for alignment problems be obtained for this
fundamentally different setting? In pursuit of an answer, we investigate the optimality of
one-dimensional DP formulations and obtain new (conditional) lower bounds which match
the complexity of these standard DP formulations.

1-dimensional DP: The Least-Weight Subsequence (LWS) Problem. In this paper, we
investigate the optimality of the standard DP formulation of the LWS problem. A classic
example of an LWS problem is airplane refueling [24]: Given airport locations on a line,
and a preferred distance per hop k (in miles), we define the penalty for flying k′ miles as
(k − k′)2. The goal is then to find a sequence of airports terminating at the last airport that
minimizes the sum of the penalties. We now define the LWS problem formally.

M. Künnemann, R. Paturi, and S. Schneider 21:3

I Problem 1.1 (LWS). We are given weights wi,j ∈ {−W, . . . ,W} ∪ {∞} for every pair
0 ≤ i < j ≤ n and an arbitrary function g : Z→ Z. The LWS problem is to determine F [n]
which is defined by the following DP formulation.

F [0] = 0,
F [j] = min

0≤i<j
g(F [i]) + wi,j for j = 1, . . . , n. (1)

In the above definition, we did not specify the precise encoding of the problem. We
typically consider succinct instantiations of LWS, where the input has subquadratic size
(typically Õ(n)) and the weights are a function of the input. In many cases, the input is a
list of data items x0, . . . , xn and wi,j is a function of xi and xj . For example, to formulate
airplane refueling as an LWS problem, we let xi be the location of the i’th airport, g be the
identity function, and wi,j = (xj − xi − k)2.

The generality of the LWS definition captures a large variety of problems: it not only
encompasses classical problems such as the pretty printing problem due to Knuth and
Plass [30], the airplane refueling problem [24] and the longest increasing subsequence (LIS) [17],
but also the unbounded subset sum problem [36, 9], a more general coin change problem
that is effectively equivalent to the unbounded knapsack problem, 1-dimensional k-means
clustering problem [23], finding longest R-chains (for an arbitrary binary relation R), and
many others (for a more detailed overview and problem definitions, see the full version [31]).

Under mild assumptions on the encoding of the data items and weights, any instantiation
of the LWS problems can be solved in time O(n2) using (1) for determining the values
F [j], j = 1, . . . , n in time O(n) each. However, the best known algorithms for the LWS
problems differ quite significantly in their time complexity. Some problems including the
pretty printing problem, the airline refueling problem and LIS turn out to be solvable in
near-linear time, while no subquadratic algorithms are known for the unbounded knapsack
problem or for finding the longest R-chain.

The main goal of the paper is to investigate the optimality of the LWS DP formulation
for various problems by proving conditional lower bounds.

Succinct LWS instantiations. In the extremely long presentation of an LWS problem,
the weights wi,j are given explicitly. This is, however, not a very interesting case from a
computational point of view, as the standard DP formulation takes linear time (in the size
of the input) to compute F [n]. In the example of the airplane refueling problem, the size
of the input is only O(n) assuming that the values of the data items are bounded by some
polynomial in n. For such succinct representations, we ask if the quadratic-time algorithm
based on the standard LWS DP formulation is optimal. Our approach is to study several
natural succinct versions of the LWS problem (by specifying the type of data items and the
weight function1) and determine their complexity.

Our Contributions and Results. The main contributions of our paper include a general
framework for reducing succinct LWS instantiations to what we call the core problems
and proving subquadratic equivalences between them. Such subquadratic equivalences are
interesting for two reasons. First, they allow us to conclude conditional lower bounds
for certain LWS instantiations, where previously no lower bounds are known. Second,

1 In all our applications, the function g is the trivial identity function.

ICALP 2017

21:4 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

subquadratic (or more general fine-grained) equivalences are more useful since they let us
translate easiness in addition to hardness results.

Our results include tight (up to subpolynomial factors) conditional lower bounds for
several LWS instantiations with succinct representations. These instantiations include the
coin change problem, low-rank versions of the LWS problem, and the longest subchain
problems. Our results are somewhat more general. We propose a factorization of the LWS
problem into a core problem and a fine-grained reduction from the LWS problem to the core
problem. The idea is that core problems (which are often well-known problems) capture the
hardness of the LWS problem and act as a potential barrier for more efficient algorithms.
While we do not formally define the notion of a core problem, we identify several core
problems which share several interesting properties. For example, they do not admit natural
DP formulations and are easy to parallelize. In contrast, the quadratic-time DP formulation
of LWS problems requires the entries F [i] to be computed in order, suggesting that the
general problem might be inherently sequential.

The reductions between LWS problems and core problems involve a natural intermediate
problem, which we call the Static-LWS problem. We first reduce the LWS problem to the
Static-LWS problem in a general way and then reduce the Static-LWS problem to a core
problem. The first reduction is divide-and-conquer in nature and is inherently sequential.
The latter reduction is specific to the instantiation of the LWS problem. The Static-LWS
problem is easy to parallelize and does not have a natural DP formulation. However, the
problem is not necessarily a natural problem. The Static-LWS problem can be thought of
as a generic core problem, but it is output-intensive.

In the other direction, we show that many of the core problems can be reduced to the
corresponding LWS instantiations thus establishing an equivalency between LWS instantia-
tions and their core problems. This equivalence enables us to translate both the hardness
and easiness results (i.e., the subquadratic-time algorithms) for the core problems to the
corresponding LWS instantiations.

The first natural succinct representation of the LWS problem we consider is the low-rank
LWS problem, where the weight matrix W = (wi,j) is of low rank and thus representable
as W = L · R where L and RT are (n× no(1))-matrices. For this low-rank LWS problem,
we identify the minimum inner product problem (MinInnProd) as a suitable core problem.
It is only natural and not particularly surprising that MinInnProd can be reduced to the
low-rank LWS problem which shows the SETH-hardness of the low-rank LWS problem.
The other direction is more surprising: Inspired by an elegant trick of Vassilevska Williams
and Williams [40], we are able to show a subquadratic-time reduction from the (highly
sequential) low-rank LWS problem to the (highly parallel) MinInnProd problem. Thus,
the very compact problem MinInnProd problem captures exactly the complexity of the
low-rank LWS problem (under subquadratic reductions).

We also show that the coin change problem is subquadratically equivalent to the (min,+)-
convolution problem. In the coin change problem, the weight matrix W is succinctly given
as a Toeplitz matrix. At this point, the conditional hardness of the (min,+)-convolution
problem is unknown. Only very recently and independent of our work, a detailed treatment
of Cygan et al. [13] considers quadratic-complexity of (min,+)-convolution as a hardness
assumption and discusses its relation to more established assumptions. The quadratic-
time hardness of the (min,+)-convolution problem would be very interesting, since it
is known that the (min,+)-convolution problem is reducible to the 3-Sum problem and
the APSP problem (see also [13]). However, recent results give surprising subquadratic-
time algorithms for special cases of (min,+)-convolution [12]. If these subquadratic-time

M. Künnemann, R. Paturi, and S. Schneider 21:5

Table 1 Summary of our results.

Name Weights Equivalent Core Reference

Coin Change Toeplitz matrix: (min,+)-convolution Theorem 5.9
wi,j = wj−i

Remark: Subquadratically equivalent to UnboundedKnapsack

LowRankLWS Low rank representation: MinInnProd Theorem 4.7
wi,j = 〈σi, µj〉

R-chains matrix induced by R: Selection(R) Theorem 6.3
wi,j = wj if R(xi, xj) and ∞ o/w Theorem 6.4
Remark: Results below are corollaries.

NestedBoxes wi,j = −1 if Bj contains Bi VectorDomination
SubsetChain wi,j = −1 if Si ⊆ Sj OrthogonalVectors

algorithms extend to the general (min,+)-convolution problem, our equivalence result
also provides a subquadratic-time algorithm for the coin change problem and the closely
related unbounded knapsack problem. Our reductions also give, as a corollary, a quadratic-
time (min,+)-convolution-based lower bound for the bounded case of knapsack. We
remark that independently of our results, [13] gave randomized subquadratic equivalences
of (min,+)-convolution to unbounded knapsack (while we give deterministic reductions)
and bounded Knapsack (where we only give a (min,+)-convolution-based lower bound).

We next consider the problem of finding longest chains: here, we search for the longest
subsequence (chain) in the input sequence such that all adjacent pairs in the subsequence
are contained in some binary relation R. We show that for any binary relation R satisfying
certain conditions the chaining problem is subquadratically equivalent to a corresponding
(highly parallel) selection problem. As corollaries, we get equivalences between finding
the longest chain of nested boxes (NestedBoxes) and VectorDomination as well as
between finding the longest subset chain (SubsetChain) and the orthogonal vectors (OV)
problem. Interestingly, these results have algorithmic implications: known algorithms for
low-dimensional vector domination and low-dimensional orthogonal vectors translate to faster
algorithms for low-dimensional NestedBoxes and SubsetChain for small universe size.

Table 1 lists the LWS succinct instantiations (as discussed above) and their corresponding
core problems. For a detailed treatment of all LWS instantiations and core problems
considered in this work, see the full version of this paper [31].

Finally, we revisit classic problems including the longest increasing subsequence problem,
the unbounded subset sum problem and the concave LWS problem and analyze the Static-
LWS instantiations to immediately infer that the corresponding core problem can be solved
in near-linear time. Table 2 gives an overview of some of the problems we look at in this
context.

Related Work. LWS has been introduced by Hirschberg and Larmore [24]. If the weight
function satisfies the quadrangle inequality formalized by Yao [41], one obtains the concave
LWS problem (ConcLWS), for which they give an O(n logn)-time algorithm. Subsequently,
improved algorithms solving ConcLWS in time O(n) were given [38, 20]. This yields a fairly
large class of weight functions (including, e.g., the pretty printing and airplane refueling
problems) for which linear-time solutions exist. To generalize this class of problems, further

ICALP 2017

21:6 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

Table 2 Near-linear time algorithms following from the proposed framework.

Name Weights Õ(n)-algorithm via Reference

Longest Increasing matrix induced by R<: Sorting [17],
Subsequence wi,j = −1 if xi < xj full version [31]
Unbounded Subset Toeplitz {0,∞} matrix: Convolution [9],
Sum wi,j = wj−i ∈ {0,∞} full version [31]
Concave 1-dim. DP concave matrix: SMAWK problem [24, 20, 38],

wi,j + wi′,j′ ≤ wi′,j + wi,j′ full version [31]
for i ≤ i′ ≤ j ≤ j′

works address convex weight functions2 [19, 35, 29] as well as certain combinations of convex
and concave weight functions [15] and provide near-linear time algorithms. For a more
comprehensive overview over these algorithms and further applications of the LWS problem,
we refer the reader to Eppstein’s PhD thesis [16].

Apart from these notions of concavity and convexity, results on succinct LWS problems
are typically more scattered and problem-specific (see, e.g., [17, 30, 9, 23]; furthermore, a
closely related recurrence to (1) pops up when solving bitonic TSP [14]). An exception to
this rule is a study of the parallel complexity of LWS [21].

Organization. After setting up notation and conventions in Section 2, Section 3 gives
a general reduction from LWS instantiations to Static-LWS that is independent of the
representation of the weight matrix. Section 4 contains the result on low-rank LWS. Section 5
proves the subquadratic equivalence of the coin change problem and (min,+)-convolution,
while Section 6 discusses chaining problems and their corresponding selection (core) problem.
Due to space constraints, most proofs and our discussion of near-linear time algorithms are
deferred to the full version of this article [31].

2 Preliminaries

In this section, we state our notational conventions and list the main problems considered in
this work.

Notation and Conventions. Problem A subquadratically reduces to problem B, denoted
A ≤2 B, if for any ε > 0 there is a δ > 0 such that the existence of a O(n2−ε)-time algorithm
for B implies a O(n2−δ)-time algorithm for A. We call the two problems subquadratically
equivalent, denoted A ≡2 B, if there are subquadratic reductions both ways.

We let [n] := {1, . . . , n}. When stating running time, we use the notation Õ(·) to hide
polylogarithmic factors. For a problem P , we write TP for its time complexity. We generally
assume the word-RAM model of computation with word size w = Θ(logn). For most
problems defined in this paper, we consider inputs to be integers in the range {−W, . . . ,W}
where W fits in a constant number of words3. For vectors, we use d for the dimension and
generally assume d = no(1).

2 A weight function is convex if it satisfies the inverse of the quadrangle inequality.
3 For the purposes of our reductions, even values up to W = 2no(1)

would be fine.

M. Künnemann, R. Paturi, and S. Schneider 21:7

Succinct LWS Instantiations. In the definition of LWS (Problem 1.1) we did not fix the
encoding of the problem (in particular the representation of the weights wi,j and the function
g). Assuming that g and the weights can be determined in Õ(1) and that W = poly(n),
this problem can naturally be solved in time Õ(n2), by evaluating the central recurrence (1)
for each j = 1, . . . , n – this takes Õ(n) time for each j, since we take the minimum over at
most n expressions that can be evaluated in time Õ(1) by accessing the previously computed
entries F [0], . . . , F [j − 1] as well as computing g. We assume from now on that g is the
identity function, as this is the case for all our applications. Thus it suffices to define the
type of data items and the corresponding weight matrix to specify an LWS instantiation.
Throughout this paper, whenever we fix a representation of the weight matrix W = (wi,j)i,j ,
we denote the corresponding problem LWS(W).

3 Static LWS

Our reductions from LWS instantiations to core problems go through intermediate problems
that share some of the characteristics of core problems, as well as some of the characteristics
of LWS. In particular, these problems are naturally parallelizable and their brute-force
algorithm is already quadratic time, similar to core problems. On the other hand their
definitions are closely related to the definition of LWS. Other than core problems, our
intermediate problems are not decision problems but ask to compute some linear sized output.
Towards making this notion more precise, we define a generic intermediate problem called
Static-LWS.

I Problem 3.1 (Static-LWS(W)). Fix an instance of LWS(W). Given intervals of indices
I := {a + 1, . . . , a + N} and J := {a + N + 1, . . . , a + 2N} with a,N such that I, J ⊆ [n],
together with the values F [a+ 1], . . . , F [a+N], the Static Least-Weight Subsequence Problem
(Static-LWS) asks to determine

F ′[j] := min
i∈I

F [i] + wi,j for all j ∈ J.

The main purpose of this section is to give a reduction from LWS(W) to Static-LWS(W)
that is independent of the weight matrix W and therefore independent of the succinct LWS
instantiations we consider throughout this paper. This reduction is a key step in our
reductions from LWS to their corresponding core problems.

The reduction is a divide-and-conquer scheme that divides the LWS problem into two
subproblems of half the size each and Static-LWS to combine the two. Crucially, the two
subproblems have to be solved sequentially. The reduction therefore captures the sequential
nature of the LWS problem, while Static-LWS captures a parallelizable part of the problem.

In a certain sense, this reduction has appeared implicitly in previous work on LWS [24].
In particular, the reduction of ConcLWS to the SMAWK problem by Galil and Park [20]
can be thought of as a variant of this reduction specialized to the concave case to avoid
log-factors.

I Lemma 3.2 (LWS(W) ≤2 Static-LWS(W)). For any choice of W, if Static-LWS(W)
can be solved in time O(N2−ε) for some ε > 0, then LWS(W) can be solved in time Õ(n2−ε).

Proof. In what follows, we fix LWS as LWS(W) and Static-LWS as Static-LWS(W).
We define the subproblem S({i, . . . , j}, (fi, . . . , fj)) that given an interval spanned by

1 ≤ i ≤ j ≤ n and values fk = min0≤k′<i F [k′]+wk′,k for each point k ∈ {i, . . . , j}, computes
all values F [k] for k ∈ {i, . . . , j}. Note that a call to S([n], (w0,1, . . . , w0,n)) solves the LWS
problem, since F [0] = 0 and thus the values of fk, k ∈ [n] are correctly initialized.

ICALP 2017

21:8 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

Algorithm 1 Reducing LWS to Static-LWS
1: function S({i, . . . , j}, (fi, . . . , fj))
2: if i = j then
3: return F [i]← fi

4: m← d j−i2 e
5: (F [i], . . . , F [i+m− 1])← S({i, . . . , i+m− 1}, (fi, . . . , fi+m−1))
6: solve Static-LWS on the subinstance given by I := {i, . . . , i + m − 1} and J :=
{i+m, . . . , i+ 2m− 1}:

7: . obtains values F ′[k] = mini≤k′<i+m F [k′] + wk′,k for k = i+m, . . . , i+ 2m− 1.
8: f ′k ← min{fk, F ′[k]} for all k = i+m, . . . , i+ 2m− 1.
9: (F [i+m], . . . , F [i+ 2m− 1])← S({i+m, . . . , i+ 2m− 1}, (f ′i+m, . . . , f ′i+2m−1))
10: if j = i+ 2m then
11: F [j] := min{fj ,mini≤k<j F [k] + wk,j}.
12: return (F [i], . . . , F [j])

We solve S using Algorithm 1.
We briefly argue correctness, using the invariant that fk = min0≤k′<i F [k′]+wk′,k in every

call to S. If S is called with i = j, then the invariant yields fi = min0≤k′<i F [k′]+wk′,i = F [i],
thus F [i] is computed correctly. For the call in Line 5, the invariant is fulfilled by assumption,
hence the values (F [i], . . . , F [i+m− 1]) are correctly computed. For the call in Line 9, we
note that for k = i+m, . . . , i+ 2m− 1, we have that f ′k equals

min{fk, F ′[k]} = min{ min
0≤k′<i

F [k′]+wk′,k, min
i≤k′<i+m

F [k′]+wk′,k} = min
0≤k′<i+m

F [k′]+wk′,k.

Hence the invariant remains satisfied. Thus, the values (F [i + m], . . . , F [i + 2m − 1]) are
correctly computed. Finally, if j = i+ 2m, we compute the remaining value F [j] correctly,
since fj = min0≤k<i F [k] + wk,j by assumption.

To analyze the running time TS(n) of S on an interval of length n := j − i+ 1, note that
each call results in two recursive calls of interval lengths at most n/2. In each call, we need
an additional overhead that is linear in n and T Static-LWS(n/2). Solving the corresponding
recursion TS(n) ≤ 2TS(n/2) + T Static-LWS(n/2) +O(n), we obtain that an O(N2−ε)-time
algorithm Static-LWS, with 0 < ε < 1 yields TLWS(n) ≤ TS(n) = O(n2−ε). Similarly,
an O(N logcN)-time algorithm for Static-LWS would result in an O(n logc+1 n)-time
algorithm for LWS. J

4 LowRankLWS

In this section we prove the first equivalence between an instantiation of LWS and a core
problem. Specifically, we first analyze the following canonical succinct representation of a
low-rank weight matrix W = (wi,j)i,j : If W is of rank d� n, we can write it more succinctly
as W = L ·R, where L and R are (n× d)- and (d×n) matrices, respectively. We can express
the resulting natural LWS problem equivalently as follows.

I Problem 4.1 (LowRankLWS). We define the LWS instantiation LowRankLWS =
LWS(WLowRank) as follows.
Data: out-vectors µ0, . . . , µn−1 ∈ {−W, . . . ,W}d, in-vectors σ1, . . . , σn ∈ {−W, . . . ,W}d
Weights: w(i, j) = 〈µi, σj〉 for 0 ≤ i < j ≤ n

M. Künnemann, R. Paturi, and S. Schneider 21:9

In this section, we show that this problem is equivalent, under subquadratic reductions,
to the following non-sequential problem.

I Problem 4.2 (MinInnProd). Given a1, . . . , an, b1, . . . , bn ∈ {−W, . . . ,W}d and a natural
number r ∈ Z, determine if there is a pair i, j satisfying 〈ai, bj〉 ≤ r.

This is interesting for a number of reasons. For one, MinInnProd is a fairly natural
problem and, as opposed to LowRankLWS it is not inherently sequential in its definition.
We understand MinInnProd comparably well both from an upper and from a lower bound
perspective. Using ray shooting data structures [34] we can solve MinInnProd in strongly
subquadratic time if d is constant. At the same time, if d = ω(logn), the problem is
quadratic-time SETH-hard. By showing subquadratic equivalence between MinInnProd
and LowRankLWS, we can conclude both these results, as well as any future improvements,
for LowRankLWS.

There is a simple reduction from MinInnProd to LowRankLWS that along the way
proves quadratic-time SETH-hardness of LowRankLWS.

I Lemma 4.3. It holds that TMinInnProd(n, d,W) ≤ TLowRankLWS(2n+1, d+2, dW)+O(nd).

To prove the other direction, we will use the quite general approach to compute the
sequential LWS problem by reducing to Static-LWS (Lemma 3.2). In particular, for the
special case of LowRankLWS, it is not difficult to see that its static version boils down to
the following natural reformulation.

I Problem 4.4 (AllInnProd). Given vectors a1, . . . , an ∈ {−W, . . . ,W}d and b1, . . . , bn ∈
{−W, . . . ,W}d, determine for all j ∈ [n], the value mini∈[n]〈ai, bj〉.

I Lemma 4.5 (Static-LWS(WLowRank) ≤2 AllInnProd). We have

T Static-LWS(WLowRank)(n, d,W) ≤ TAllInnProd(n, d+ 1, nW) +O(nd).

Finally, inspired by an elegant trick of [40], we reduce AllInnProd to MinInnProd.

I Lemma 4.6 (AllInnProd ≤2 MinInnProd). We have

TAllInnProd(n, d,W) ≤ O(n · TMinInnProd(
√
n, d+ 3, ndW 2) · log2 nW).

By the sequence of lemmas above and Lemma 3.2, we obtain our subquadratic equivalence
of LowRankLWS to its core problem.

I Theorem 4.7. We have LowRankLWS ≡2 MinInnProd.

5 Coin Change and Knapsack Problems

In this section, we focus on the following problem related to Knapsack: Assume we are
given coins of denominations d1, . . . , dm with corresponding weights w1, . . . , wm and a target
value n, determine a way to represent n using these coins (where each coin can be used
arbitrarily often) minimizing the total sum of weights of the coins used. Since without loss
of generality di ≤ n for all i, we can assume that m ≤ n and think of n as our problem size.
In particular, we describe the input by weights w1, . . . , wn where wi denotes the weight of
the coin of denomination i (if no coin with denomination i exists, we set wi = ∞). It is
straightforward to see that this problem is an LWS instance LWS(Wcc), where the weight
matrix Wcc is a Toeplitz matrix.

ICALP 2017

21:10 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

I Problem 5.1 (CC). We define the following LWS instantiation CC = LWS(Wcc).
Data: weight sequence w = (w1, . . . , wn) with wi ∈ {−W, . . . ,W} ∪ {∞}
Weights: wi,j = wj−i for 0 ≤ i < j ≤ n

Translated into a Knapsack-type formulation (i.e., denominations are weights, weights
are profits, and the objective becomes to maximize the profit), the problem differs from
UnboundedKnapsack only in that it searches for the most profitable multiset of items of
weight exactly n, instead of at most n.

I Problem 5.2 (UnboundedKnapsack). We are given a sequence of profits p = (p1, . . . , pn)
with pi ∈ {0, 1, . . . ,W}, that is, the item of size i has profit pi. Find the total profit of the
multiset of indices I such that

∑
i∈I i ≤ n and the total profit

∑
i∈I pi is maximized.

The purpose of this section is to show that both CC and UnboundedKnapsack are
subquadratically equivalent to the (min,+)-convolution problem. Along the way, we also
prove quadratic-time (min,+)-convolution-hardness of Knapsack. Recall the definition
of (min,+)-convolution.

I Problem 5.3 ((min,+)-convolution). Given n-dimensional vectors a = (a0, . . . , an−1),
b = (b0, . . . , bn−1) ∈ {−W, . . . ,W}n, determine its (min,+)-convolution a ∗ b defined by

(a ∗ b)k = min
0≤i,j<n:i+j=k

ai + bj for all 0 ≤ k ≤ 2n− 2.

As opposed to the classical convolution, solvable in time O(n logn) using FFT, no
strongly subquadratic algorithm for (min,+)-convolution is known. Compared to the
popular orthogonal vectors problem, we have less support for believing that no O(n2−ε)-time
algorithm for (min,+)-convolution exists. In particular, interesting special cases can be
solved in subquadratic time [12] and there are subquadratic-time co-nondeterministic and
nondeterministic algorithms [7, 11]. At the same time, breaking this long-standing quadratic-
time barrier is a prerequisite for progress on refuting the 3SUM and APSP conjectures
(see also [13]). This makes it an interesting target particularly for proving subquadratic
equivalences, since both positive and negative resolutions of this open question appear to be
reasonable possibilities.

To obtain our result, we address two issues: (1) We show an equivalence between the
problem of determining only the value F [n], i.e., the best way to give change only for
the target value n, and to determine all values F [1], . . . , F [n], which we call the output-
intensive version. (2) We show that the output-intensive version is subquadratic equivalent
to (min,+)-convolution.

I Problem 5.4 (oiCC). The output-intensive version of CC is to determine, given an input
to CC, all values F [1], . . . , F [n].

We first consider issue (2) and prove (min,+)-convolution-hardness of oiCC.

I Lemma 5.5 ((min,+)conv ≤2 oiCC). We have T (min,+)conv(n,W) ≤ T oiCC(6n, 4(2W +
1)) +O(n).

Using the notion of Static-LWS, the other direction is straight-forward.

I Lemma 5.6. We have oiCC ≤2 Static-LWS(Wcc) ≤2 (min,+)conv.

The last two lemmas resolve issue (2). We proceed to issue (1) and show that the output-
intensive version is subquadratically equivalent to both CC and UnboundedKnapsack
that only ask to determine a single output number.

M. Künnemann, R. Paturi, and S. Schneider 21:11

It is trivial to see that UnboundedKnapsack ≤2 oiCC. Furthermore, there is a simple
reduction from CC to UnboundedKnapsack.

I Oberservation 5.7 (CC ≤2 UnboundedKnapsack ≤2 oiCC). We have TCC(n,W) ≤
TUnboundedKnapsack(n, nW) +O(n) and TUnboundedKnapsack(n,W) ≤ T oiCC(n,W) +O(n).

The remaining part is similar in spirit to Lemma 4.6: Somewhat surprisingly, the same
general approach works despite the much more sequential nature of Knapsack and CC –
this sequentiality can be taken care of by a more careful treatment of appropriate subproblems
that involves solving them in a particular order and feeding them with information gained
during the process.

I Lemma 5.8 (oiCC ≤2 CC). We have T oiCC(n,W) ≤ O(log(nW) ·n ·TCC(24
√
n, 3n2W)).

The lemmas above and their underlying reductions prove the following theorem.

I Theorem 5.9. We have (min,+)conv ≡2 CC ≡2 UnboundedKnapsack. Furthermore,
the bounded version of Knapsack admits no strongly subquadratic-time algorithm unless
(min,+)-convolution can be solved in strongly subquadratic time.

6 Chain LWS

In this section we consider a special case of Least-Weight Subsequence problems called the
Chain Least-Weight Subsequence (ChainLWS) problem. This captures problems in which
edge weights are given implicitly by a relation R that determines which pairs of data items
we are allowed to chain. The aim is to find the longest chain.

An example of a Chain Least-Weight Subsequence problem is the NestedBoxes problem.
Given n boxes in d dimensions, given as non-negative, d-dimensional vectors b1, . . . , bn, find
the longest chain such that each box fits into the next (without rotation). We say box that
box a fits into box b if for all dimensions 1 ≤ i ≤ d, ai ≤ bi.

NestedBoxes is not immediately a Least-Weight Subsequence problem, as for Least-
Weight subsequence problems we are given a sequence of data items, and require any sequence
to start at the first item and end at the last. However, we can easily convert NestedBoxes
into a LWS problem by sorting the vectors by the sum of the entries and introducing two
special boxes, one very small box ⊥ such that ⊥ fits into any box bi and one very large box
> such that any bi fits into >.

We define the Chain Least-Weight Subsequence problem with respect to any relation R
and consider a weighted version where data items are given weights. To make the definition
consistent with the definition of LWS the output is the weight of the sequence that minimizes
the sum of the weights.

I Problem 6.1 (ChainLWS). Fix a set of objects D and a relation R ⊆ D ×D. We define
the following LWS instantiation ChainLWS(R) = LWS(WChainLWS(R)).
Data: sequence of objects d0, . . . , dn ∈ D with weights w1, . . . , wn ∈ {−W, . . . ,W}.

Weights: wi,j =
{
wj if (xi, xj) ∈ R,
∞ otherwise,

for 0 ≤ i < j ≤ n.

The input to the (weighted) Chain Least-Weight Subsequence problem is a sequence of
data items, and not a set. Finding the longest chain in a set of data items is NP-complete
in general. For example, consider the box overlap problem: The input is a set of boxes in
two dimensions, given by the top left corner and the bottom right corner, and the relation

ICALP 2017

21:12 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

consists of all pairs such that the two boxes overlap. This problem is a generalization of the
Hamiltonian path problem on induced subgraphs of the two-dimensional grid, which is an
NP-complete problem [28].

We relate ChainLWS(R) to the class of selection problems with respect to the same
relation R.

I Problem 6.2 (Selection Problem). Let D be a set of objects, let R ⊆ D ×D be a relation
and let D1, D2 ⊆ Dn. Given two sequences of inputs (a1, . . . , an) ∈ D1 and (b1, . . . , bn) ∈ D2,
determine if there is i, j satisfying R(ai, bj). We denote this selection problem with respect to
the relation R and sets D1, D2 by Selection(RD1,D2). If D1 = D2 = Dn, we denote the
problem by Selection(R).

The class of selection problems includes several well-studied problems including MinIn-
nProd, OV [39, 4] and VectorDomination [25].

We give a subquadratic reduction from ChainLWS(R) to Selection(R), independently
of R. The proof is again based on Static-LWS and a variation on a trick of [40].

I Theorem 6.3. For all relations R such that R can be computed in time subpolynomial in
the number of data items n, ChainLWS(R) ≤2 Selection(R).

For the other direction, we do not have a reduction that is independent of the relation R.
Instead, we give sufficient conditions for the existence of such subquadratic reductions.

I Theorem 6.4. Let D be a set of objects and D1, D2 ⊆ Dn be a set of possible sequences.
Consider any relation R ⊆ D ×D satisfying the following properties.

There is a data item ⊥ such that (⊥, d) ∈ R for all d ∈ D.
There is a data item > such that (d,>) ∈ R for all d ∈ D.
For all a ∈ {1, 2} and any set of data items (d1, . . . , dn) ∈ Da there is a permutation of
indices i1, . . . , in such that for any j < k, (dij , dik) 6∈ R. This ordering can be computed
in time O(n2−δ) for δ > 0. We call this ordering the natural ordering.

Then Selection(RD1,D2) ≤2 ChainLWS(R).

We call a relation satisfying the conditions above a topological relation. An immediate
corollary is that if we can subquadratically reduce Selection(R) to Selection(R′) for
some topological relation R′, then Selection(R) ≤2 ChainLWS(R′).

We conclude by providing interesting instantiations of the subquadratic equivalence of
Selection and ChainLWS.

I Corollary 6.5 (NestedBoxes ≡2 VectorDomination). The weighted NestedBoxes
problem on d = c logn dimensions can be solved in time n2−(1/O(c log2 c)). For d = ω(logn),
the (unweighted) NestedBoxes problem cannot be solved in time O(n2−ε) for any ε > 0
assuming SETH.

If we restrict NestedBoxes and VectorDomination to Boolean vectors, then we get
SubsetChain and SetContainment, respectively. In this case the upper bound improves
to n2−1/O(log c) [4]. Note that SetContainment ≡2 OV, hence SubsetChain ≡2 OV.

7 Open Problems

We discuss the complexity of some succinct LWS instantiations both from an upper bound
and a lower bound perspective by proving equivalences with a number of comparably well-
studied core problems. The succinct instantiations we study include natural problems

M. Künnemann, R. Paturi, and S. Schneider 21:13

such as LowRankLWS, CC, ChainLWS including NestedBoxes and SubsetChain, as
well as previously studied instantiations such as ConcLWS and LIS. A number of open
questions remain. Our results do not generalize to arbitrary instantiations of LWS. In
particular, Static-LWS does not seem to reduce subquadratically to the problem of finding
the minimum element in a succincly descibed matrix. With LowRankLWS and CC we do
provide instances for which we can identify equivalent core problems, and it will be interesting
to find further examples or even sufficient conditions for which we can reduce LWS to other
problems and vice versa.

For the case of ChainLWS, we are able to generalize the reduction from LWS to
Selection problems. However, the reduction, while preserving subquadratic algorithms,
does not preserve near-linear time algorithms. For some cases, such as LIS, we are able to
reconstruct a near-linear time algorithm, which raises the question of what conditions are
necessary to do that. Similarly, we give sufficient conditions to reduce from Selection to
ChainLWS, and other sufficient or even necessary conditions should be explored for both
black-box as well as white-box reductions.

Acknowledgments. We would like to thank Karl Bringmann and Russell Impagliazzo for
helpful discussions and comments.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hard-

ness of LCS and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS’15), pages 59–78, 2015.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with Edit Distance and friends or: A polylog
shaved is a lower bound made. In Proc. 48th Annual ACM Symposium on Symposium on
Theory of Computing (STOC’16), 2016. To appear.

3 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In Proc. 41st International Colloquium on Automata, Languages,
and Programming (ICALP’14), pages 39–51, 2014.

4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proc. 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’15), pages 218–230, 2015.

5 Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity
of the longest common subsequence problem. Journal of the ACM, 23(1):1–12, 1976. doi:
10.1145/321921.321922.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory
of Computing (STOC’15), pages 51–58, 2015. doi:10.1145/2746539.2746612.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014. doi:10.1007/s00453-012-9734-3.

8 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661–670, 2014. doi:10.1109/FOCS.
2014.76.

9 Karl Bringmann. A near-linear pseudopolynomial time algorithm for Subset Sum. In Proc.
28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 1073–1084,
2017. doi:10.1137/1.9781611974782.69.

ICALP 2017

http://dx.doi.org/10.1145/321921.321922
http://dx.doi.org/10.1145/321921.321922
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1007/s00453-012-9734-3
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1137/1.9781611974782.69

21:14 On the Fine-Grained Complexity of One-Dimensional Dynamic Programming

10 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and Dynamic Time Warping. In Proc. 56th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’15), pages 79–97, 2015.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Pa-
turi, and Stefan Schneider. Nondeterministic extensions of the Strong Exponential
Time Hypothesis and consequences for non-reducibility. In Proc. 7th ACM Confer-
ence on Innovations in Theoretical Computer Science (ITCS’16), pages 261–270, 2016.
doi:10.1145/2840728.2840746.

12 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proc. 47th Annual ACM Symposium on Theory of Computing, (STOC’15), pages
31–40, 2015. doi:10.1145/2746539.2746568.

13 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. ArXiv e-prints, February 2017. arXiv:1702.07669.

14 Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard J. Woeginger. Fine-grained
complexity analysis of two classic TSP variants. In Proc. 43rd International Colloquium
on Automata, Languages, and Programming (ICALP’16), pages 5:1–5:14, 2016. doi:10.
4230/LIPIcs.ICALP.2016.5.

15 David Eppstein. Sequence comparison with mixed convex and concave costs. J. Algorithms,
11(1):85–101, 1990. doi:10.1016/0196-6774(90)90031-9.

16 David A. Eppstein. Efficient algorithms for sequence analysis with concave and convex gap
costs. PhD thesis, Columbia University, 1989.

17 Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975. doi:10.1016/0012-365X(75)90103-X.

18 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational
geometry. Computational geometry, 5(3):165–185, 1995.

19 Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming with applications
to molecular biology. Theoretical Computer Science, 64(1):107–118, 1989. doi:10.1016/
0304-3975(89)90101-1.

20 Zvi Galil and Kunsoo Park. A linear-time algorithm for concave one-dimensional dynamic
programming. Inf. Process. Lett., 33(6):309–311, 1990. doi:10.1016/0020-0190(90)
90215-J.

21 Zvi Galil and Kunsoo Park. Parallel algorithms for dynamic programming recurrences
with more than O(1) dependency. J. Parallel Distrib. Comput., 21(2):213–222, 1994. doi:
10.1006/jpdc.1994.1053.

22 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. In Proc. 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pages 2162–2181, 2017.
doi:10.1137/1.9781611974782.141.

23 Allan Grønlund, Kasper Green Larsen, Alexander Mathiasen, Jesper Sindahl Nielsen, Ste-
fan Schneider, and Mingzhou Song. Fast Exact k-Means, k-Medians and Bregman Diver-
gence Clustering in 1D. ArXiv e-prints, January 2017. arXiv:1701.07204.

24 Daniel S. Hirschberg and Lawrence L. Larmore. The least weight subsequence problem.
SIAM Journal on Computing, 16(4):628–638, 1987. doi:10.1137/0216043.

25 Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 Integer
Linear Programming with a linear number of constraints. ArXiv e-prints, January 2014.
arXiv:1401.5512.

26 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2746539.2746568
http://arxiv.org/abs/1702.07669
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.5
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.5
http://dx.doi.org/10.1016/0196-6774(90)90031-9
http://dx.doi.org/10.1016/0012-365X(75)90103-X
http://dx.doi.org/10.1016/0304-3975(89)90101-1
http://dx.doi.org/10.1016/0304-3975(89)90101-1
http://dx.doi.org/10.1016/0020-0190(90)90215-J
http://dx.doi.org/10.1016/0020-0190(90)90215-J
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1006/jpdc.1994.1053
http://dx.doi.org/10.1137/1.9781611974782.141
http://arxiv.org/abs/1701.07204
http://dx.doi.org/10.1137/0216043
http://arxiv.org/abs/1401.5512

M. Künnemann, R. Paturi, and S. Schneider 21:15

28 Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

29 Maria M. Klawe and Daniel J. Kleitman. An almost linear time algorithm for generalized
matrix searching. SIAM J. Discrete Math., 3(1):81–97, 1990. doi:10.1137/0403009.

30 Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Softw., Pract.
Exper., 11(11):1119–1184, 1981. doi:10.1002/spe.4380111102.

31 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained
Complexity of One-Dimensional Dynamic Programming. ArXiv e-prints, March 2017.
arXiv:1703.00941.

32 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Expo-
nential Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

33 William J. Masek and Mike Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/
0022-0000(80)90002-1.

34 Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(1):315–334,
1992.

35 Webb Miller and Eugene W. Myers. Sequence comparison with concave weighting functions.
Bulletin of Mathematical Biology, 50(2):97–120, 1988. doi:10.1007/BF02459948.

36 David Pisinger. Dynamic programming on the word RAM. Algorithmica, 35(2):128–145,
2003. doi:10.1007/s00453-002-0989-y.

37 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the Strong Exponential Time Hypothesis (invited talk). In Proc. 10th
International Symposium on Parameterized and Exact Computation (IPEC’15), pages 17–
29, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

38 Robert E. Wilber. The concave least-weight subsequence problem revisited. J. Algorithms,
9(3):418–425, 1988. doi:10.1016/0196-6774(88)90032-6.

39 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005.

40 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS’10), pages 645–654, 2010. doi:10.1109/FOCS.2010.67.

41 F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proc.
12th Annual ACM Symposium on Theory of Computing (STOC’80), pages 429–435, 1980.
doi:10.1145/800141.804691.

ICALP 2017

http://dx.doi.org/10.1137/0403009
http://dx.doi.org/10.1002/spe.4380111102
http://arxiv.org/abs/1703.00941
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1007/BF02459948
http://dx.doi.org/10.1007/s00453-002-0989-y
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.1016/0196-6774(88)90032-6
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1145/800141.804691

On Problems Equivalent to (min,+)-Convolution∗

Marek Cygan1, Marcin Mucha2, Karol Węgrzycki3, and
Michał Włodarczyk4

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
cygan@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
mucha@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
k.wegrzycki@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, Warsaw, Poland
m.wlodarczyk@mimuw.edu.pl

Abstract
In the recent years, significant progress has been made in explaining apparent hardness of im-
proving over naive solutions for many fundamental polynomially solvable problems. This came
in the form of conditional lower bounds – reductions from a problem assumed to be hard. These
include 3SUM, All-Pairs Shortest Paths, SAT and Orthogonal Vectors, and others.

In the (min,+)-convolution problem, the goal is to compute a sequence (c[i])n−1
i=0 , where

c[k] = mini=0,...,k{a[i] + b[k − i]}, given sequences (a[i])n−1
i=0 and (b[i])n−1

i=0 . This can easily be
done in O(n2) time, but no O(n2−ε) algorithm is known for ε > 0. In this paper we undertake
a systematic study of the (min,+)-convolution problem as a hardness assumption.

As the first step, we establish equivalence of this problem to a group of other problems,
including variants of the classic knapsack problem and problems related to subadditive sequences.
The (min,+)-convolution has been used as a building block in algorithms for many problems,
notably problems in stringology. It has also already appeared as an ad hoc hardness assumption.
We investigate some of these connections and provide new reductions and other results.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases fine-grained complexity, knapsack, conditional lower bounds, (min,+)-
convolution, subquadratic equivalence

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.22

1 Introduction

1.1 Hardness in P
For many problems there exist ingenious algorithms that significantly improve upon the naive
approach in terms of time complexity. On the other hand, for some fundamental problems,
the naive algorithms are still the best known, or have been improved upon only slightly. To
some extent this has been explained by the P 6=NP conjecture. However, for many problems
even the naive approaches lead to polynomial algorithms, and the P 6=NP conjecture does
not seem to be particularly useful for proving polynomial lower bounds.

∗ This work is part of a project TOTAL that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 677651).

EA
T

C
S

© Marek Cygan, Marcin Mucha, Karol Węgrzycki, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 On Problems Equivalent to (min,+)-Convolution

In the recent years, significant progress has been made in establishing such bounds,
conditioned on conjectures other than P 6=NP, each of them claiming time complexity lower
bounds for a different problem. And so, conjecture that there is no O(n2−ε) algorithm
for 3SUM problem1 implies hardness for problems in computational geometry [22] and
dynamic algorithms [33]. The conjecture that All-Pairs Shortest Paths (APSP) is hard
implies hardness of finding graph radius, graph median and some dynamic problems (see [38]
for survey). Finally, the Strong Exponential Time Hypothesis (SETH) introduced in [25, 26]
that has been used extensively to prove hardness of parametrized problems, recently lead to
polynomial lower bounds via the intermediate Orthogonal Vectors problem (see [36]). These
include bounds for Edit Distance [3], Longest Common Subsequence [9, 2], and other [38].

It is worth noting that in many cases the results mentioned are not only showing the
hardness of the problem in question, but also that it is computationally equivalent to the
underlying hard problem. This leads to clusters of equivalent problems being formed, each
cluster corresponding to a single hardness assumption (see [38, Figure 1]).

As Christos H. Papadimitriou is quoted to say „There is nothing wrong with trying to
prove that P=NP by developing a polynomial-time algorithm for an NP-complete problem.
The point is that without an NP-completeness proof we would be trying the same thing without
knowing it!” [32]. In the same spirit, these new conditional hardness results have cleared the
polynomial landscape by showing that there really are not that many hard problems.

1.2 Hardness of MinConv
In this paper we propose yet another hardness assumption in the MinConv problem.

MinConv
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0

Task: Output sequence (c[i])n−1
i=0 , such that c[k] = mini+j=k(a[i] + b[j])

This problem has been used as a hardness assumption before for at least two specific prob-
lems [29, 4], but to the best of our knowledge no attempts have been made to systematically
study the neighborhood of this problem in the polynomial complexity landscape. To be more
precise, we consider the following.

I Conjecture 1. There is no O(n2−ε) algorithm for MinConv, for ε > 0.

Let us first look at the place occupied by MinConv in the landscape of established
hardness conjectures. Figure 1 shows known reductions between these conjectures and
includes MinConv. Bremner et al. [7] showed reduction from MinConv to APSP. It is
also known [4, 1] that MinConv can be reduced to 3SUM (to the best of our knowledge no
such reduction has been published before, and we provide the details in the full version of
this paper [18]). Note that a reduction from 3SUM or APSP to MinConv would imply a
reduction between 3SUM and APSP, which is a major open problem in the area [38]. No
relation is known between MinConv and SETH or OV.

In this paper we study three broad categories of problems. The first category consists of
the classic 0/1 Knapsack and its variants, which we show to be essentially equivalent to
MinConv. This is perhaps somewhat surprising, given recent progress of Bringmann [8] for
SubsetSum, which is a special case of 0/1 Knapsack. However, note that Bringmann’s

1 We included all problem definitions together with known results concerning these problems in Section 2.
This is to keep the introduction relatively free of technicalities.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:3

APSP OV

SETH

3SUM

MinConv

[36]

×
[13]

×
[13]

[7] [4]

Figure 1 The relationship between popular conjectures. A reduction from OV to 3SUM or APSP
contradicts the nondeterministic version of SETH [13, 38] (these arrows are striked-out).

algorithm [8] (as well as in other efficient solutions for SubsetSum) is built upon the idea of
composing solutions using the (∨,∧)-convolution, which can implemented efficiently using
Fast Fourier Transform (FFT). The corresponding composition operation for 0/1 Knapsack
is MinConv (see the full version of this paper for details [18]).

The second category consists of problems directly related to MinConv. This includes
decision versions of MinConv, and problems related to the notion of subadditivity. Any
subadditive sequence a with a[0] = 0 is an idempotent of MinConv, so it is perhaps natural
that these problems turn out to be equivalent to MinConv.

Finally, we investigate problems that have previously been shown to be related to
MinConv, and contribute some new reductions, or simplify existing ones.

2 Problem definitions and known results

2.1 3SUM

3sum
Input: Sets of integers A,B,C, each of size n
Task: Decide whether there exist a ∈ A, b ∈ B, c ∈ C such that a+ b = c

The 3sum problem is the first problem that was considered as a hardness assumption in P. It
admits a simple O(n2 logn) algorithm but the existence of an O(n2−ε) algorithm remains a
big open problem. The first lower bounds based on hardness of 3sum appeared in 1995 [22]
and some other examples can be found in [5, 33, 39]. The current best algorithm for 3sum runs
in slightly subquadratic expected time O

(
(n2/ log2 n)(log logn)2) [5]. An O (n1.5polylog(n)

)
algorithm is possible on the nondeterministic2 Turing machine [13]. The 3sum problem
is known to be subquadratically equivalent to its convolution version in the randomized
setting [33].

3sumConv
Input: Sequences a, b, c, each of length n
Task: Decide whether there exist i, j such that a[i] + b[j] = c[i+ j]

Both problems are sometimes considered with real weights but in this work we restrict only
to the integer setting.

2 We say that decision problem L admits a nondeterministic algorithm in time T (n) if L ∈ NTIME(T (n))∩
co-NTIME(T (n)).

ICALP 2017

22:4 On Problems Equivalent to (min,+)-Convolution

2.2 MinConv

We have already defined the MinConv problem in Subsection 1.2. Note that it is equivalent
(just by negating elements) to the analogous MaxConv problem.

MaxConv
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0

Task: Output sequence (c[i])n−1
i=0 , such that c[k] = maxi+j=k(a[i] + b[j])

We describe our contribution in terms of MinConv as this version has been already been
heavily studied. However, in the theorems and proofs we use MaxConv, as it is easier to
work with. We will also work with a decision version of the problem.

MaxConv UpperBound
Input: Sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , (c[i])n−1

i=0
Task: Decide whether c[k] ≥ maxi+j=k(a[i] + b[j]) for all k

If we replace the latter condition with c[k] ≤ maxi+j=k(a[i]+b[j]) we obtain a similar problem
MaxConv LowerBound. Yet another statement of a decision version asks whether a given
sequence is a self upper bound with respect to MaxConv, i.e., if it is superadditive. From
the perspective of MinConv we may ask an analogous question about being subadditive
(again equivalent by negating elements). As far as we know, the computational complexity
of these problems has not been studied yet.

SuperAdditivity Testing
Input: A sequence (a[i])n−1

i=0
Task: Decide whether a[k] ≥ maxi+j=k(a[i] + a[j]) for all k

In the standard (+, ·) ring, convolution can be computed in O(n logn) time by the FFT.
A natural line of attacking MinConv would be to design an analogue of FFT in the
(min,+)-semiring, also called a tropical semiring3. However, due to the lack of inverse for the
min-operation it is unclear if such a transform exists for general sequences. When restricted
to convex sequences, one can use a tropical analogue of FFT, namely the Legendre-Fenchel
transform [19], which can be performed in linear time [30]. Also, [24] considered sparse
variants of convolutions and connection with 3sum.

There has been a long line of research dedicated to improve O(n2) algorithm for MinConv.
Bremner et al. [7] gave an O(n2/ logn) algorithm for MinConv, and gave a reduction from
MinConv to APSP [7, Theorem 13]. Williams [37] gave an O(n3/2Ω(logn)1/2) algorithm for
APSP, which implies the best known O(n2/2Ω(logn)1/2) algorithm for MinConv [15].

Truly subquadratic algorithms for MinConv exist for monotone increasing sequences
with integer values bounded by O(n). Chan and Lewenstein [15] presented an O(n1.859)
randomized algorithm and an O(n1.864) deterministic algorithm for that case. They exploited
ideas from additive combinatorics. Bussieck et al. [12] showed that for random input,
MinConv can be computed in O(n logn) expected and Θ(n2) worst case time.

If we are satisfied with computing c with a relative error (1 + ε) then general MinConv
admits a nearly-linear algorithm [4, 40]. It could be called an FPTAS (fully polynomial-time

3 In this setting MinConv is often called (min, +)-convolution, inf-convolution or epigraphic sum.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:5

approximation schema) with a remark that usually this name is reserved for single-output
problems for which decision versions are NP-hard.

Using techniques of Carmosino et al. [13] and reduction from MaxConv UpperBound
to 3sum one can construct an O

(
n1.5polylog(n)

)
algorithm working on nondeterministic

Turing machines for MaxConv UpperBound (see the full version of this paper [18]). This
running time matches the O(n1.5) algorithm for MinConv in the nonuniform decision tree
model [7]. This result is based on the techniques of Fredman [21, 20]. It remains unclear
how to transfer these results to the word-RAM model [7].

2.3 Knapsack

0/1 Knapsack
Input: A set of items I with given weights and values ((wi, vi))i∈I , capacity t
Task: Find the maximal total value of the items subset I ′ ⊆ I such that

∑
i∈I′ wi ≤ t

If we are allowed to take multiple copies of a single item then we obtain the Unbounded
Knapsack problem. The decision versions of both problems are known to be NP-hard [23]
but there are classical algorithms based on dynamic programming with a pseudo-polynomial
running time O(nt) [6]. In fact they solve more general problems, i.e., 0/1 Knapsack+

and Unbounded Knapsack+, where we are asked to output answers for each 0 < t′ ≤ t.
There is also a long line of research on FPTAS for Knapsack with the current best running
times respectively O(n log 1

ε + 1
ε3 log2 1

ε) for 0/1 Knapsack [28] and O(n + 1
ε2 log3 1

ε) for
Unbounded Knapsack [27].

2.4 Other problems related to MinConv

Tree Sparsity
Input: A rooted tree T with a weight function x : V (T)→ N≥0, parameter k
Task: Find the maximal total weight of rooted subtree of size k

The Tree Sparsity problem admits an O(nk) algorithm, which was at first invented for
restricted case of balanced trees [14] and generalised later [4]. There is also a nearly-linear
FPTAS based on the FPTAS for MinConv [4]. It is known that an O(n2−ε) algorithm for
Tree Sparsity entails a subquadratic algorithm for MinConv [4].

MCSP
Input: A sequence (a[i])n−1

i=0
Task: Output the maximal sum of k consecutive elements for each k

There is a trivial O(n2) algorithm for MCSP and a nearly-linear FPTAS based on the
FPTAS for MinConv [16]. To the best of our knowledge, this is the first problem to have
been explicitly proven to be subquadratically equivalent with MinConv [29]. Our reduction
to SuperAdditivity Testing allows us to significantly simplify the proof (see Section 6.1).

lp-Necklace Alignment
Input: Sequences (x[i])n−1

i=0 , (y[i])n−1
i=0 describing locations of beads on a circle

Task: Output the cost of the best alignment in p-norm, i.e.,
∑n−1
i=0 d (x[i] + c, y[π(i)])p

where c is a circular shift, π is a permutation, and d is a distance function on a circle

ICALP 2017

22:6 On Problems Equivalent to (min,+)-Convolution

MaxConv

MaxConv UpperBound

SuperAdditivity Testing

Unbounded Knapsack

0/1 Knapsack

MCSP

MaxConv LowerBound

Tree Sparsity

l∞-Necklace Alignment

6
5

4

3
7

11

12

[4]

[7]
[29]

[29]

Figure 2 Summary of reductions in the MinConv complexity class. An arrow from problem A

to B denotes a reduction from A to B. Black dashed arrows were previously known, red arrows are
new results. Numbers next to red arrows point to the corresponding theorems. The only randomized
reduction is in the proof of Theorem 7.

For p =∞ we are interested in bounding the maximal distance between any two matched
beads. The problem initially emerged for p = 1 during the research on geometry of musical
rhythm [35]. The family of Necklace Alignment problems has been systematically studied
by Bremner et al. [7] for various values of p, in particular 1, 2,∞. For p = 2 they presented an
O(n logn) algorithm based on Fast Fourier Transform. For p =∞ the problem was reduced
to MinConv which led to a slightly subquadratic algorithm.

Although it is more natural to state the problem with inputs from [0, 1), we find it more
convenient to work with integer sequences that describe a necklace after scaling.

Fast o(n2) algorithms for MinConv have also found applications in text algorithms.
Moosa and Rahman [31] reduced the Indexed Permutation Matching to MinConv and
obtained o(n2) algorithm. Burcsi et al. [10] used MinConv to get faster algorithms for
Jumbled Pattern Matching and described how finding dominating pairs can be used to solve
MinConv. Later Burcsi et al. [11] showed that fast MinConv can also be used to get faster
algorithms for a decision version of the Approximate Jumbled Pattern Matching over binary
alphabets.

3 New results summary

Figure 2 illustrates the technical contributions of this paper. The long ring of reductions on
the left side of the Figure 2 is summarized below.

I Theorem 2. The following statements are equivalent:
1. There exists an O(n2−ε) algorithm for MaxConv for some ε > 0.
2. There exists an O(n2−ε) algorithm for MaxConv UpperBound for some ε > 0.
3. There exists an O(n2−ε) algorithm for SuperAdditivity Testing for some ε > 0.
4. There exists an O((n+ t)2−ε) algorithm for Unbounded Knapsack for some ε > 0.
5. There exists an O((n+ t)2−ε) algorithm for 0/1 Knapsack for some ε > 0.
We allow randomized algorithms.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:7

Theorem 2 is split into five implications, presented separately as Theorems 3,4,5,6 and 7 in
Section 5. While Theorem 2 has a relatively short and simple statement, it is not the strongest
possible version of the equivalence. In particular, one can show analogous implications for
subpolynomial improvements, such as the O(n2/2Ω(logn)1/2) algorithm for MinConv of
Williams [37]. The theorems listed above contain stronger versions of the implications.

Section 6 is devoted to the remaining arrows in Figure 2. In Subsection 6.1, we show
that by using Theorem 2 we can obtain an alternative proof of the equivalence of MCSP
and MaxConv (and so also MinConv), much simpler than the one presented in [29]. In
Subsection 6.2, we show that Tree Sparsity reduces to MaxConv, complementing the
opposite reduction showed in [4]. Finally in Subsection 6.3 we provide some observations on
the possible equivalence between l∞-Necklace Alignment and MaxConv.

4 Preliminaries

We present a series of results of the following form: if a problem A admits an algorithm with
running time T (n), then a problem B admits an algorithm with running time T ′(n), where
function T ′ depends on T and n is the length of the input. Our main interest is in showing
that T (n) = O(n2−ε)⇒ T ′(n) = O(n2−ε′). Some problems, in particular Knapsack, have
no simple parameterization and we allow function T to take multiple arguments.

We assume that for all studied problems the input consists of a list of integers within
[−W,W]. For the sake of readability we omit W as a running time parameter and we allow
function T to hide polylog(W) factors. As sometimes the size of the input grows in the
reduction, we restrict ourselves to a class of functions satisfying T (cn) = O(T (n)) for a
constant c. This is justified as we mainly focus on functions of the form T (n) = nα. In some
reductions the integers in the new instance may increase to O(nW). In that case we multiply
the running time by polylog(n) to take into account the overhead of performing arithmetic
operations. All logarithms are base 2.

5 Main reductions

I Theorem 3 (Unbounded Knapsack → 0/1 Knapsack). A T (n, t) algorithm for 0/1
Knapsack implies an O (T (n, t) log t) algorithm for Unbounded Knapsack.

Proof. Consider an instance of Unbounded Knapsack with the capacity t and the set
of items given as weight-value pairs ((wi, vi))i∈I . Construct an equivalent 0/1 Knapsack
instance with the same t and the set of items

(
(2jwi, 2jvi)

)
∈I,0≤j≤log t. Let X = (xi)∈I

be the list of multiplicities of items chosen in a solution to the Unbounded Knapsack
problem. Of course xi ≤ t. Define (xji)0≤j≤log t, x

j
i ∈ {0, 1} to be the binary representation

of xi. Then the vector (xji)∈I,0≤j≤log t induces a solution to 0/1 Knapsack with the same
total weight and value. The described mapping can be reverted what implies the equivalence
between the instances and proves the claim. J

I Theorem 4 (SuperAdditivity Testing → Unbounded Knapsack). If Unboun-
ded Knapsack can be solved in time T (n, t) then SuperAdditivity Testing admits an
algorithm with running time O (T (n, n) logn).

Proof. Let (a[i])n−1
i=0 be a non-negative monotonic sequence.4 Set D =

∑n−1
i=0 a[i] + 1

and construct an Unbounded Knapsack instance with the set of items ((i, a[i]))n−1
i=0 ∪

4 For a technical reduction of SuperAdditivity Testing to this case see the full version of this paper [18].

ICALP 2017

22:8 On Problems Equivalent to (min,+)-Convolution

x

y

0 n 2n 3n 4n

K + a[i]

4K + b[i]
5K + c[i]

K

Figure 3 Graphical interpretation of the sequence e in Theorem 5. The height of rectangles
equals K.

((2n− 1− i,D − a[i]))n−1
i=0 and t = 2n − 1. It is always possible to gain D by taking two

items (i, a[i]), (2n−1− i,D−a[i]) for any i. We will claim that the answer to the constructed
instance equals D if and only if a is superadditive.

If a is not superadditive, then there are i, j such that a[i] + a[j] > a[i + j]. Choosing
((i, a[i]), (j, a[j]), (2n− 1− i− j,D − a[i+ j])) gives a solution of value exceeding D.

Now assume that a is superadditive. Observe that any feasible knapsack solution may
contain at most one item with weight exceeding n − 1. On the other hand, the optimal
solution has to include one such item because the total value of the lighter ones is less than
D. Therefore the optimal solution contains an item (2n− 1− k,D − a[k]) for some k < n.
The total weight of the rest of the solution is at most k. As a is superadditive, we can replace
any pair (i, a[i]), (j, a[j]) with the item (i+ j, a[i+ j]) without decreasing the value of the
solution. By repeating this argument, we end up with a single item lighter than n. The
sequence a is monotonic so it is always profitable to replace this item with a heavier one, as
long as the load does not exceed t. We conclude that the optimal solution must be of form
((k, a[k]), (2n− 1− k,D − a[k])), which completes the proof. J

I Theorem 5 (MaxConv UpperBound → SuperAdditivity Testing). If SuperAd-
ditivity Testing can be solved in time T (n) then MaxConv UpperBound admits an
algorithm with running time O (T (n) logn).

Proof. We start with reducing the instance of MaxConv UpperBound to the case of
non-negative monotonic sequences. Observe that condition a[i] + b[j] ≤ c[i + j] can be
rewritten as (C+a[i]+Di)+(C+b[j]+Dj) ≤ 2C+c[i+ j]+D(i+ j) for any constants C,D.
Hence, replacing sequences (a[i])n−1

i=0 , (b[i])n−1
i=0 , (c[i])n−1

i=0 with a′[i] = C + a[i] +Di, b′[i] =
C + b[i] +Di, c′[i] = 2C + c[i] +Di leads to an equivalent instance. We can thus pick C,D
of magnitude O(W) to ensure that all elements are non-negative and do not exceed the
successor. The values in the new sequences may rise up to O(nW).

From now we can assume the given sequences to be non-negative and monotonic. Define
K to be the maximal value occurring in any sequence. Construct a sequence e of length 4n
as follows. For i ∈ [0, n− 1] set e[i] = 0, e[n+ i] = K + a[i], e[2n+ i] = 4K + b[i], e[3n+ i] =
5K + c[i]. If there is a[i] + b[j] > c[i+ j] for some i, j, then e[n+ i] + e[2n+ j] > e[3n+ i+ j]
and therefore e is not superadditive. We now show that otherwise e must be superadditive.

Assume w.l.o.g. i ≤ j. The case i < n can be ruled out because it implies e[i] = 0
and e[i] + e[j] ≤ e[i + j] for any j as e is monotonic. If i ≥ 2n, then i + j ≥ 4n, so we
can restrict to i ∈ [n, 2n − 1]. We can also clearly assume j < 3n. If j ∈ [n, 2n − 1], then
e[i] + e[j] ≤ 4K ≤ e[i+ j]. Finally, j ∈ [2n, 3n− 1] corresponds to the original condition. J

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:9

I Theorem 6 (MaxConv→MaxConv UpperBound). A T (n) algorithm for MaxConv
UpperBound implies an O (T (

√
n)n logn) algorithm for MaxConv.

The proof of the reduction from MaxConv to MaxConv UpperBound has been
independently given recently in [4]. For completeness we give our proof in the full version of
this paper [18].

I Theorem 7 (0/1 Knapsack → MaxConv). A T (n) algorithm for MaxConv implies
an O(T (t log t) log3(n/δ) logn) for 0/1 Knapsack that outputs the correct answer with
probability at least 1− δ.

I Corollary 8. The O((n+ t)2−ε) time algorithm for 0/1 Knapsack implies the randomized
O(t2−ε′ + n) time algorithm for 0/1 Knapsack+.

The proof follows the approach of Bringmann [8], and we present it in the full version of
this paper [18].

6 Other problems related to MinConv

6.1 Maximum consecutive subsums problem
The Maximum Consecutive Subsums Problem (MCSP) is to the best of our knowledge
the first problem that has been explicitly proven to be subquadratically equivalent with
MinConv [29]. The reduction from MCSP to MaxConv is only shown for completeness,
but the reduction in the opposite direction is much simpler than the original one.

I Theorem 9 (MCSP → MaxConv). If MaxConv can be solved in time T (n) then
MCSP admits an algorithm with running time O (T (n)).

Proof. Let (a[i])n−1
i=0 be the input sequence. Construct sequences of length 2n as follows:

b[k] =
∑k
i=0 a[i] for k < n, c[k] = −

∑n−k−1
i=0 a[i] for k ≤ n (empty sum equals 0) and

otherwise b[k] = c[k] = −D, where D is two times larger than any partial sum. Observe that

(b⊕max c)[n+ k − 1] = max
0≤j<n

0≤n+k−j−1≤n

j∑
i=0

a[i]−
j−k∑
i=0

a[i] = max
k−1≤j<n

j∑
i=j−k+1

a[i], (1)

so we can read the maximum consecutive sum for each length k after performing MaxConv.
J

I Theorem 10 (SuperAdditivity Testing → MCSP). If MCSP can be solved in time
T (n) then SuperAdditivity Testing admits an algorithm with running time O (T (n)).

Proof. Let (a[i])n−1
i=0 be the input sequence and b[i] = a[i + 1] − a[i]. The superad-

ditivity condition a[k] ≤ a[k + j] − a[j] (for all possible k, j) can be translated into
a[k] ≤ min0≤j<n−k

∑k+j−1
i=j b[i] (for all k), so computing MCSP vector on (−b[i])n−2

i=0 suffices
to check if the above condition holds. J

6.2 Tree Sparsity
I Theorem 11 (Tree Sparsity → MaxConv). If MaxConv can be solved in time T (n)
and the function T is superadditive then Tree Sparsity admits an algorithm with running
time O

(
T (n) log2 n

)
.

ICALP 2017

22:10 On Problems Equivalent to (min,+)-Convolution

Proof. We take advantage of the heavy-light decomposition introduced by Sleator and
Tarjan [34]. This technique has been utilized by Backurs et al. [4] in order to transform
a nearly-linear PTAS for MaxConv to a nearly-linear PTAS for Tree Sparsity. The
reduction for exact subquadratic algorithms is different in the second phase though.

We construct a spine with a head s1 at the root of the tree. We define si+1 to be the
child of si with the larger subtree (in case of draw we choose any child) and the last node in
the spine is a leaf. The remaining children of nodes si become heads for analogous spines so
the whole tree gets covered. Note that every path from a leaf to the root intersects at most
logn spines because each spine transition doubles the subtree size.

For a node v with a subtree of size m we define the sparsity vector (xv[0], xv[1], . . . , xv[m])
with the weights of the heaviest subtrees rooted at v with fixed sizes. We are going to
compute sparsity vectors for all heads of spines in the tree recursively. Let (si)`i=1 be a spine
with a head v and let ui indicate the sparsity vector for the child of si being a head (i.e., the
child with the smaller subtree). If si has less than two children we treat ui as a vector (0).

For an interval [a, b] ⊆ [1, `] let ua,b = ua ⊕max ua+1 ⊕max · · · ⊕max ub and ya,b[k] be the
maximum weight of a subtree of size k rooted at sa and not containing sb+1. Let c =

⌊
a+b

2
⌋
.

The ⊕max operator is associative so ua,b = ua,c ⊕max uc+1,b. To compute the second vector
we consider two cases: whether the optimal subtree contains sc+1 or not.

ya,b[k] = max
[
ya,c[k],

c∑
i=a

x(si) + max
k1+k2=k−(c−a+1)

(
ua,c[k1] + yc+1,b[k2]

)]

= max
[
ya,c[k],

c∑
i=a

x(si) +
(
ua,c ⊕max yc+1,b

)[
k − (c− a+ 1)

]]

Using the presented formulas we reduce the problem of computing xv = y1,` to subprob-
lems for intervals [1, `2] and [`2 + 1, `] and results are merged with two (max,+)-convolutions.
Proceeding further we obtain log ` levels of recursion, where the sum of convolution sizes on
each level is O(m), what results in the total running time O (T (m) logm) (recall that T is
superadditive).

The second type of recursion comes from the spine decomposition. There are at most
logn levels of recursion with the cumulative sum of subtrees bounded by n on each level,
what proves the claim. J

6.3 l∞-Necklace Alignment
In this section we study the l∞-Necklace Alignment alignment problem that was proved
to reduce to MinConv [7]. We are unable to reduce any of the problems equivalent to
MinConv to this problem, but we do reduce a related problem - MaxConv LowerBound.
We also elaborate on why obtaining a full reduction is difficult.

I Theorem 12 (MaxConv LowerBound→ l∞-Necklace Alignment). If l∞-Necklace
Alignment can be solved in time T (n) then MaxConv LowerBound admits an algorithm
with running time O (T (n) logn).

Proof. Let a, b, c be the input sequences to MaxConv LowerBound. We call a sum of
form e1[k1] + e2[k2] + · · · + em[km], where ei ∈ {a, b, c}, a combination, and we define its
order as

∑m
i=1 ki. If an element ei[ki] occurs with minus, we subtract ki.

We can assume the following properties of the input sequences w.l.o.g.
1. We may assume the sequences are non-negative and a[i] ≤ c[i] for all i. Just add C1 to a,

C1 + C2 to b, and 2C1 + C2 to c for appropriate positive constants C1, C2.

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:11

2. We can artificially append an element b[n] larger than value of any combination of order
n and length bounded by a constant L. Alternatively, we can say that combinations of
order 0 with a positive coefficient at b[n] have positive value. Initially, we enforce this
property by setting b[n] as the maximum absolute value of an element times L.

3. Any combination of positive order and length bounded by L has a non-negative value. Add
a linear function Di to all sequences. As the order of combination is positive, the factors
at D sum up to a positive value. It suffices to choose D equal to the maximum absolute
value of an element times L. Note that previous inequalities compare combinations of
the same order so they stay unaffected.

The values of the elements might increase to O(nWL2). For the rest of this proof we will
use L = 10. Let B = b[n], B1 = b[n− 1], B2 = b[n]− b[1]. We define necklaces x, y of length
2B with 2n beads each. The property (3) implies monotonicity of the sequences so the beads
are given in the right order. We allow two beads to lie in the same place (in particular the
first one and the last one in y).

x =
(

a[0], a[1], . . . , a[n− 1], B + c[0], B + c[1], . . . , B + c[n− 2], B + c[n− 1]
)
,

y =
(

B1 − b[n− 1], B1 − b[n− 2], . . . , B1 − b[0], B +B2 − b[n− 1], B +B2 − b[n− 2], . . . , B +B2 − b[1], 2B
)
.

Bremner et al. [7] pointed out that the optimal solution for l∞-Necklace Alignment
must be non-crossing, so we can consider only matchings of form (x[i], y[j]) where j =
i+kmod 2n and k is fixed. Let d(x[i], y[j]) be the forward distance between x[i] and y[j], i.e.,
y[j]− x[i] plus the length of the necklaces if j < i. Define Mk to be maxi∈[0,N) d

(
x[i], y[k +

imod 2n]
)
−mini∈[0,N) d

(
x[i], y[k+ imod 2n]

)
. In this setting [7, Fact 5] says that for a fixed

k the optimal shift provides solution of value Mk

2 .
We want to show that for k ∈ [0, n) it holds

min
i∈[0,2n)

d
(
x[i], y[k + imod 2n]

)
= B1 − max

i+j=n−k−1
(a[i] + b[j]),

max
i∈[0,2n)

d
(
x[i], y[k + imod 2n]

)
= B − c[n− k − 1].

There are five types of connections between beads.

d
(
x[i], y[k + imod 2n]

)
=

B1 − a[i]− b[n− k − 1− i] i ∈ [0, n− k − 1], (I)
B + B2 − a[i]− b[2n− k − 1− i] i ∈ [n− k, n− 1], (II)
B2 − b[2n− k − 1− i]− c[i− n] i ∈ [n, 2n− k − 2], (III)
B − c[n− k − 1] i = 2n− k − 1, (IV)
B + B1 − b[3n− k − 1− i]− c[i− n] i ∈ [2n− k, 2n− 1]. (V)

All formulas form combinations of length bounded by 5 so we can apply the properties
(2,3). Observe that the order of each combination equals k, except for i = 2n− k − 1 where
the order is k + 1. Using the property (3) we reason that B − c[n − k − 1] is indeed the
maximal forward distance. It remains to show that the minimum lies within the group (I).
Note that these are the only combinations that lack b[n]. By the property (2) each distance
from the group (I) compares less with any other distance because the combinations have the
same order (except for the maximal one) and only the latter contains b[n].

For k < n the conditionMk < B−B1 is equivalent to c[n−k−1] > maxi+j=n−k−1(a[i]+
b[j]). If there is such a k, i.e., the answer to MaxConv LowerBound for sequences a, b, c
is NO, then minkMk < B −B1 and the return value is less than 1

2 (B −B1).
Finally, we need to prove that otherwise Mk ≥ B − B1 for all k. We have already

acknowledged that for k < n. Each matching for k ≥ n can be represented as swapping
sequences a and c inside the necklace x, composed with the index shift by k − n. The two
halves of the necklace x are analogous so all the prior observations on the matching structure
remain valid.

ICALP 2017

22:12 On Problems Equivalent to (min,+)-Convolution

If the answer to MaxConv LowerBound for sequences a, b, c is YES, then
∀k∈[0,n)∃i+j=ka[i] + b[j] ≥ c[k]. The property (1) guarantees that a ≤ c so we conclude that
∀k∈[0,n)∃i+j=kc[i] + b[j] ≥ a[i] + b[j] ≥ c[k] ≥ a[k], and by the same argument as before the
cost of the solution is at least 1

2 (B −B1). J

Observe that both l∞-Necklace Alignment and MaxConv LowerBound admit
simple linear nondeterministic algorithms. For MaxConv LowerBound it is enough to
either assign each k a single condition a[i] + b[k − i] ≥ c[k] that is satisfied, or guess a k for
which none inequality holds. For l∞-Necklace Alignment we define a decision version of
the problem by asking if there is an alignment of value bounded by K (the problem is self-
reducible via binary search). For positive instances the algorithm just guesses k inducing an
optimal solution. For negative instances it must holdMk > 2K for all k. Therefore, it suffices
to guess for each k a pair i, j such that d

(
x[i], y[k+ imodn]

)
− d
(
x[j], y[k+ jmodn]

)
> 2K.

We remind that MaxConv UpperBound reduces to 3sum which admits an
O
(
n1.5polylog(n)

)
nondeterministic algorithm [13] so in fact there is no obstacle for a

subquadratic reduction from MaxConv LowerBound to MaxConv UpperBound to
exist (see the full version of this paper [18]). However, the nondeterministic algorithm for
3sum exploits techniques significantly different from ours, including modular arithmetic, and
a potential reduction would probably need to rely on some different structural properties of
MaxConv.

7 Conclusions and future work

In this paper we undertake a systematic study of MinConv as a hardness assumption, and
prove subquadratic equivalence of MinConv with SuperAdditivity Testing, Unboun-
ded Knapsack, 0/1 Knapsack, and Tree Sparsity. An intriguing open problem is to
establish the relation between the MinConv conjecture and SETH.

One consequence of our results is a new lower bound on 0/1 Knapsack. It is known that
an O(t1−εnO(1)) algorithm for 0/1 Knapsack contradicts the SetCover conjecture [17].
Here, we show that an O((n+ t)2−ε) algorithm contradicts the MinConv conjecture. This
does not rule out an O(t+nO(1)) algorithm, which leads to another interesting open problem.

Finally, it is open whether MaxConv LowerBound is equivalent to MinConv, which
would imply an equivalence between l∞-Necklace Alignment and MinConv.

Acknowledgements. We would like to thank Amir Abboud, Karl Bringmann and Virginia
Vassilevska Williams for helpful discussions.

References
1 Amir Abboud. Personal communication.
2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Venkatesan Guruswami, editor, IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 59–78. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.14.

3 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, ed-
itors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015.
doi:10.1145/2746539.2746612.

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1145/2746539.2746612

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:13

4 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity
in nearly-linear time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2215–2229. SIAM, 2017.

5 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic Algorithms for 3SUM.
In Proceedings of the 9th International Conference on Algorithms and Data Structures,
WADS’05, pages 409–421, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/
11534273_36.

6 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957.

7 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, and Perouz Taslakian. Necklaces, Convolutions, and X + Y. In
Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006: 14th Annual European
Symposium, Zurich, Switzerland, September 11-13, 2006. Proceedings, pages 160–171, Ber-
lin, Heidelberg, 2006. Springer Berlin Heidelberg.

8 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1073–1084. SIAM, 2017.

9 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20
October, 2015, pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

10 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On table arrange-
ments, scrabble freaks, and jumbled pattern matching. In Paolo Boldi and Luisa Gargano,
editors, Fun with Algorithms, 5th International Conference, FUN 2010, Ischia, Italy, June
2-4, 2010. Proceedings, volume 6099 of Lecture Notes in Computer Science, pages 89–101.
Springer, 2010. doi:10.1007/978-3-642-13122-6_11.

11 Peter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On approximate
jumbled pattern matching in strings. Theory Comput. Syst., 50(1):35–51, 2012. doi:10.
1007/s00224-011-9344-5.

12 Michael R. Bussieck, Hannes Hassler, Gerhard J. Woeginger, and Uwe T. Zimmermann.
Fast algorithms for the maximum convolution problem. Oper. Res. Lett., 15(3):133–141,
1994. doi:10.1016/0167-6377(94)90048-5.

13 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the strong exponential time hypo-
thesis and consequences for non-reducibility. In Madhu Sudan, editor, Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA,
USA, January 14-16, 2016, pages 261–270. ACM, 2016. doi:10.1145/2840728.2840746.

14 Coralia Cartis and Andrew Thompson. An exact tree projection algorithm for wavelets.
IEEE Signal Processing Letters, 20(11):1026–1029, 2013.

15 Timothy M. Chan and Moshe Lewenstein. Clustered Integer 3SUM via Additive Combin-
atorics. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Com-
puting, STOC’15, pages 31–40, New York, NY, USA, 2015. ACM. doi:10.1145/2746539.
2746568.

16 Ferdinando Cicalese, Eduardo Sany Laber, Oren Weimann, and Raphael Yuster. Approxim-
ating the maximum consecutive subsums of a sequence. Theor. Comput. Sci., 525:130–137,
2014. doi:10.1016/j.tcs.2013.05.032.

17 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dańiel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlstrom. On problems as
hard as cnf-sat. In Proceedings of the 2012 IEEE Conference on Computational Complex-

ICALP 2017

http://dx.doi.org/10.1007/11534273_36
http://dx.doi.org/10.1007/11534273_36
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1007/978-3-642-13122-6_11
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1016/0167-6377(94)90048-5
http://dx.doi.org/10.1145/2840728.2840746
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1016/j.tcs.2013.05.032

22:14 On Problems Equivalent to (min,+)-Convolution

ity (CCC), CCC’12, pages 74–84, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/CCC.2012.36.

18 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. CoRR, abs/1702.07669, 2017. URL: http://arxiv.
org/abs/1702.07669.

19 Werner Fenchel. On conjugate convex functions. Canad. J. Math, 1(73-77), 1949.
20 Michael L. Fredman. How good is the information theory bound in sorting? Theor. Comput.

Sci., 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.
21 Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM

J. Comput., 5(1):83–89, 1976. doi:10.1137/0205006.
22 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational

geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.
23 M.R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of

NP-completeness. San Francisco: Freeman, 1979.
24 Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How hard is it to find

(honest) witnesses? In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual
European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark,
volume 57 of LIPIcs, pages 45:1–45:16. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2016. doi:10.4230/LIPIcs.ESA.2016.45.

25 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

27 Klaus Jansen and Stefan E. J. Kraft. A Faster FPTAS for the Unbounded Knap-
sack Problem. In Zsuzsanna Lipták and William F. Smyth, editors, Combinatorial Al-
gorithms: 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015,
Revised Selected Papers, pages 274–286, Cham, 2016. Springer International Publishing.
doi:10.1007/978-3-319-29516-9_23.

28 Hans Kellerer and Ulrich Pferschy. Improved Dynamic Programming in Connection with
an FPTAS for the Knapsack Problem. Journal of Combinatorial Optimization, 8(1):5–11,
2004. doi:10.1023/B:JOCO.0000021934.29833.6b.

29 Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower
bounds for the maximum consecutive subsums problem and the (min, +)-convolution. In
2014 IEEE International Symposium on Information Theory, Honolulu, HI, USA, June 29
– July 4, 2014, pages 1807–1811. IEEE, 2014. doi:10.1109/ISIT.2014.6875145.

30 Yves Lucet. Faster than the Fast Legendre Transform, the Linear-time Legendre Transform.
Numerical Algorithms, 16(2):171–185, 1997. doi:10.1023/A:1019191114493.

31 Tanaeem M. Moosa and M. Sohel Rahman. Indexing permutations for binary strings. Inf.
Process. Lett., 110(18-19):795–798, 2010. doi:10.1016/j.ipl.2010.06.012.

32 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
33 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Leonard J.

Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 603–610. ACM, 2010.
doi:10.1145/1806689.1806772.

34 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, June 1983. doi:10.1016/0022-0000(83)90006-5.

35 Godfried Toussaint. The geometry of musical rhythm. In Jin Akiyama, Mikio Kano,
and Xuehou Tan, editors, Discrete and Computational Geometry: Japanese Conference,

http://dx.doi.org/10.1109/CCC.2012.36
http://arxiv.org/abs/1702.07669
http://arxiv.org/abs/1702.07669
http://dx.doi.org/10.1016/0304-3975(76)90078-5
http://dx.doi.org/10.1137/0205006
http://dx.doi.org/10.1016/0925-7721(95)00022-2
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.45
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-319-29516-9_23
http://dx.doi.org/10.1023/B:JOCO.0000021934.29833.6b
http://dx.doi.org/10.1109/ISIT.2014.6875145
http://dx.doi.org/10.1023/A:1019191114493
http://dx.doi.org/10.1016/j.ipl.2010.06.012
http://dx.doi.org/10.1145/1806689.1806772
http://dx.doi.org/10.1016/0022-0000(83)90006-5

M. Cygan, M. Mucha, K. Węgrzycki, and M. Włodarczyk 22:15

JCDCG 2004, Tokyo, Japan, October 8-11, 2004, Revised Selected Papers, pages 198–212,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. doi:10.1007/11589440_20.

36 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

37 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
Forty-sixth Annual ACM Symposium on Theory of Computing, STOC’14, pages 664–673,
New York, NY, USA, 2014. ACM. doi:10.1145/2591796.2591811.

38 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt
and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact
Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs,
pages 17–29. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/
LIPIcs.IPEC.2015.17.

39 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

40 Uri Zwick. All pairs shortest paths in weighted directed graphs-exact and almost exact al-
gorithms. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium
on, pages 310–319. IEEE, 1998.

ICALP 2017

http://dx.doi.org/10.1007/11589440_20
http://dx.doi.org/10.1016/j.tcs.2005.09.023
http://dx.doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17

On Finding the Jaccard Center∗

Marc Bury1 and Chris Schwiegelshohn2

1 Thyssenkrupp Industrial Solutions AG, Essen, Germany
marc.bury@thyssenkrupp.com

2 Department of Computer, Control, and Management Engineering, Sapienza
University of Rome, Rome, Italy
chris.schwiegelshohn@tu-dortmund.de

Abstract
We initiate the study of finding the Jaccard center of a given collection N of sets. For two
sets X,Y , the Jaccard index is defined as |X ∩ Y |/|X ∪ Y | and the corresponding distance is
1− |X ∩Y |/|X ∪Y |. The Jaccard center is a set C minimizing the maximum distance to any set
of N .

We show that the problem is NP-hard to solve exactly, and that it admits a PTAS while no
FPTAS can exist unless P = NP . Furthermore, we show that the problem is fixed parameter
tractable in the maximum Hamming norm between Jaccard center and any input set. Our
algorithms are based on a compression technique similar in spirit to coresets for the Euclidean
1-center problem.

In addition, we also show that, contrary to the previously studied median problem by
Chierichetti et al. (SODA 2010), the continuous version of the Jaccard center problem admits a
simple polynomial time algorithm.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures

Keywords and phrases Clustering, 1-Center, Jaccard

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.23

1 Introduction

The Jaccard index is a widely used similarity measure on item sets. Given two sets X and Y
over a base set U , the similarity is defined as J(X,Y) = |X ∩ Y |/|X ∪ Y | and the distance is
D(X,Y) = 1− J(X,Y) = |X 4 Y |/|X ∪ Y |, where X 4 Y denotes the symmetric difference
of X and Y . In this paper we study the problem of finding the center of a given set of item
sets under the Jaccard distance, i.e. for a given collection of sets N = {X1, . . . , Xn} finding
a set C ⊂ U such that max

X∈N
D(X,C) is minimized.

The Jaccard index is arguably the oldest [25] and best known similarity measure on
binary data. It has found a wide range of applications such as plagiarism detection [7],
association rule mining [12], collaborative filtering [13], web compression [9], biogeographical
analysis [34], and chemical similarity searching [39]. Most theoretical computer science
research dealing with the Jaccard index focuses on hashing algorithms for nearest neighbor
problems, which was pioneered by Broder [6], though a number of publications also deal with
clustering tasks on the Jaccard metric, see, for instance, Guha et al [22]. Previous research

∗ This work was supported by the German Research Council (DFG) within the Collaborative Research
Center SFB 876, project A2, and the Google Focused Award on Web Algorithmics for Large-scale Data
Analysis.

EA
T

C
S

© Marc Bury and Chris Schwiegelshohn;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 23; pp. 23:1–23:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On Finding the Jaccard Center

most closely related to this paper addresses the Jaccard median problem, i.e. finding an item
set that minimizes the sum of Jaccard distances, see [35, 37].Only recently did Chierichetti
et al. [10] show that the Jaccard median problem is NP-hard but also admits a PTAS.

From a more general perspective, the task of finding a single center in a metric space has
been studied in various forms dating back to the 19th century [36]. In constant Euclidean
space, linear time algorithms exist [30, 38]. In higher dimensions, approximate algorithms
based on (weak) coresets have been proposed [3, 4, 11, 26, 40]. Hardness for the 1-center
problem in certain finite metrics have been established, including permutation metrics such
as Kendall tau and Cayley distances [2, 5, 33], the edit distance on strings [14, 32], and the
Hamming metric on strings [16, 27]. The latter problem, also known as the closest string
problem, is one of the most widely studied center problems in computer science with numerous
results on fixed parameter algorithms [15, 21, 29] and approximation algorithms [18, 27, 28].
The more general k-center problem admits a tight 2-approximation in any metric space [19, 23],
though some improvements are possible in restricted metrics such as Euclidean space [4].

Our Contribution

We show that the problem is NP-hard to solve exactly, even when the input item sets have
cardinality 2. Since the Jaccard distance is a metric, any input point is a trivial 2-approximate
solution, and it is easy to see that this bound is tight. We propose two algorithms for the
problem. The first algorithm is a PTAS with running time |N |O(ε−6)|U |2. The second one is
an FPT algorithm with parameter k = maxX∈N |X 4 C|, i.e. the maximum Hamming norm
of input points and Jaccard center C and running time 2O(k3) · |N | · |U |3. As a consequence
of our hardness result, we show that under the exponential time hypothesis [24] no FPT
algorithm with parameter k and running time 2o(k) and no PTAS with running time 2o(

√
1/ε)

can exist.
Lastly, we also briefly remark on the continuous version of the problem. Here the input

points are non-negative d-dimensional real vectors and Jc(X,Y) =
∑d

i=1
min(Xi,Yi)∑d

i=1
max(Xi,Yi)

. While

the Jaccard median problem remains NP-hard for the continuous setting [10, 35], the center
problem becomes solvable in polynomial time.

Our Techniques

Our algorithms are based on the existence of a small subset of input points we call core-covers.
Informally, the union of items of all sets in the core-cover contains the (majority of) items of
some optimal center C. Specifically, the intersection of the union of items with C yields an
α-approximate solution. An anchored core-cover further restricts the possible solutions by
always containing the items in the intersection of all sets of the core-cover. Crucially, we
show that the size of an appropriate (anchored) core-cover is independent of the input when
aiming for a (1 + ε)-approximation, and dependent only on the parameter k in the context
of the FPT algorithm.

In an approximate variant, a core-cover is similar to but weaker than a weak coreset
for the Euclidean minimum enclosing ball problem, which requires that the expansion of
the minimum enclosing ball computed on the coreset by an (1 + ε)-factor contains the
entire point set. The existence of constant size weak coresets has been widely studied and
utilized [3, 4, 11, 26, 40]. Though the Jaccard distance can be isometrically embedded into
(high dimensional) squared Euclidean space, see Gower and Legendre [20], the weak coreset
results do not seem to be applicable to the constrained set of solutions corresponding to

M. Bury and C. Schwiegelshohn 23:3

embedded item sets. Stronger coreset guarantees extending to arbitrary centers require an
exponential dependency on the dimension [1] and therefore also do not seem to be feasible
for our purposes.

For the PTAS, we proceed as follows. It turns out that a natural LP relaxation can be
efficiently rounded for a large fraction of inputs, namely when for all input sets X ∈ N , we
have OPT · |X| ∈ Ω(logn/ε2), where OPT denotes the objective value of the optimum center.
If the LP cannot be efficiently rounded, the symmetric difference between any two input
sets as well as the optimum set is bounded by O(logn/ε4). A QPTAS now immediately
follows by choosing an arbitrary set X, iterating over all subsets S of the base set U with
|S| ∈ O(logn/ε4), and determining the best solution among all candidate centers X 4 S. If
we choose multiple sets X1, . . . , Xm then the number of candidate subsets S will be reduced.
In fact, if X1, . . . , Xm is an anchored core-cover then the dependency on the size of the base
set |U | can be replaced by some constant depending only on m and ε. Since there exist
anchored core-covers of size O(1/ε), we obtain a polynomial running time for any fixed ε.

For the FPT-algorithm, the main technical difficulties are to show (1) that the size of
an appropriate core-cover can be bounded in terms of the parameter k and (2) that we can
efficiently construct an anchored core-cover. As was the case for the PTAS, for a given
preliminary anchored core-cover M , we can compute an induced optimum via complete
enumeration. If the induced optimum has distance at most OPT to all sets X ∈ N , we
are done. Otherwise, any set violating this bound can be added to M . The improvement
rate of each added set matches the non-constructive bounds used to show the existence of
core-covers, ensuring that the algorithm terminates quickly.

2 Preliminaries

Let U = {u1, . . . ud} be a base set containing d elements and let N ⊂ P(U) be a collection of
n subsets of U . Denote the symmetric difference of two sets by X 4 Y = (X \ Y) ∪ (Y \X).

I Definition 1 (Binary Jaccard Measures). Given X,Y ⊆ U , the Jaccard similarity is defined
as

J(X,Y) =
{
|X∩Y |
|X∪Y | if X ∪ Y 6= ∅
1 if X ∪ Y = ∅,

and the Jaccard distance is defined as D(X,Y) = 1− J(X,Y).

It is convenient to refer to specific elements of a set X by the characteristic vector X ∈ {0, 1}d

where Xi = 1 if ui ∈ X and Xi = 0 otherwise. The extension of the Jaccard measure to
vectors with non-negative but otherwise arbitrary entries is as follows.

I Definition 2 (Continuous Jaccard Measures). Given two d dimensional vectors X,Y with
non-negative real entries, the continuous Jaccard similarity is defined as

Jc(X,Y) =

∑d

i=1
min(Xi,Yi)∑d

i=1
max(Xi,Yi)

if
∑n

i=1 max(Xi, Yi) > 0

1 if
∑d

i=1 max(Xi, Yi) = 0,

and the continuous Jaccard distance is defined as Dc(X,Y) = 1− Jc(X,Y).

In both cases the Jaccard distance is a metric. We say that the Jaccard center of a
collection N is the set C ⊆ U (resp. a non-negative real vector C ∈ Rn

≥0 for the continuous
case) such that max

X∈N
D(X,C) is minimized. Throughout this paper we denote by OPT the

ICALP 2017

23:4 On Finding the Jaccard Center

value of min
C⊆U

max
X∈N

D(X,C). We always assume ∅ /∈ N , i.e. the empty set is not part of the

input, as otherwise ∅ is a trivial optimal solution with maximum distance 1 if there exists at
least one further set in N , and maximum distance 0 if N = {∅}. Lastly, we will frequently
use the following easily verifiable facts throughout the paper.

I Fact 3. Let X,Y ⊆ U be two item sets. Then the following statements hold:
|X ∩ Y | = (1−D(X,Y)) · |X ∪ Y |,
|X| ≥ (1−D(X,Y)) · |Y |,
|X \ Y | ≤ D(X,Y) · |X|.

3 Hardness of Binary Jaccard Center

We reduce the problem of finding the optimum Jaccard center from vertex cover defined as
follows.

I Definition 4. Given a graph G(V,E), a vertex cover is a set K ⊂ V such that e ∩K 6= ∅
for any e ∈ E. The minimum vertex cover is the vertex cover of smallest cardinality.

It is well known that computing the minimum vertex cover is NP-hard [17]. We will use
instances with a minor constraint added for technical reasons. The minimum vertex cover
will always have cardinality at most |V |2 − 2. It is easy to see that this does not affect the
hardness of the vertex cover problem, for instance by adding an isolated star with one central
node and |V |+ 5 remaining nodes.

I Theorem 5. Computing the optimum Jaccard center is NP-hard even if every X ∈ N has
cardinality at most 2.

Proof. Let K be a minimum vertex cover of cardinality at most |V |2 − 2 in a graph G(V,E)
with no isolated nodes. Consider now the instance of the Jaccard center problem where the
input item sets are E, the base set is V , and the center is some subset of V . We claim that
a collection of vertexes C is an optimum Jaccard center if and only if C is a minimum vertex
cover.

For every collection of vertices C and any edge e ∈ E, we have the following three cases:

D(e, C) =

1 if |C ∩ e| = 0
|C|
|C|+1 if |C ∩ e| = 1
|C|−2
|C| if |C ∩ e| = 2.

Note that the distance for some edge is 1 if and only if C is not a vertex cover. Note also that
|C|
|C|+1 >

|C|−2
|C| , i.e. if C 6= V then max

e∈E
D(e, C) = |C|

|C|+1 . Now for any collection of vertices
C that is a vertex cover with |C| > |K|, we have two cases. If C 6= V , then

max
e∈E

D(e, C) = |C|
|C|+ 1 ≥

|K|+ 1
|K|+ 2 >

|K|
|K|+ 1 = max

e∈E
D(e,K).

If C = V , then

max
e∈E

D(e, V) = |V | − 2
|V |

=
|V |
2 − 1
|V |
2

≥ |K|+ 1
|K|+ 2 >

|K|
|K|+ 1 = max

e∈E
D(e,K). J

I Corollary 6. There exists no FPTAS for the binary Jaccard center problem unless P=NP.

M. Bury and C. Schwiegelshohn 23:5

Proof. Two non-equal distances are at least apart by 1
d2 . If an FPTAS were to exist, we

could compute determine a (1 + 1
d2) approximation in polynomial time. This approximation

however would coincide with the optimal solution. J

Assuming the exponential time hypothesis (ETH), we can give stronger time bounds for
PTAS and FPT. ETH, formulated by Impagliazzio, Paturi and Zane [24] assumes that there
exists some positive real number s such that 3-SAT with n variables and m clauses cannot
be decided in time 2s·n(n+m)O(1).

I Corollary 7. Let N be a collection of subsets over a base set U and let C ⊂ U be the optimal
Jaccard center. Assuming ETH, no FPT algorithm with parameter k = maxX∈N |C 4X|,
can run in time 2o(k)poly(N, d). Further, no PTAS for the Jaccard Center problem can run
in time 2o(

√
1/ε)poly(N, d).

Proof. Under ETH, no FPT algorithm for vertex cover with parameter |K|, the minimal
size of the vertex cover, can run in time 2o(|K|)poly(N), see Cai and Juedes [8]. Since
k = maxX∈N |C 4 X| ∈ Θ(|K|), the first claim follows. For the second claim, recall any
PTAS approximating the Jaccard center problem beyond a factor of (1 + 1

d2) recovers the
optimal solution. J

4 Core-Covers

Our algorithms are based on the existence of a small collection M of input sets such that
a high-quality center can be extracted from M . Informally, the items of an optimal center
are well represented by the items of the sets contained in M . The construction is somewhat
inspired by coresets for the Euclidean minimum enclosing ball problem, albeit with a weaker
guarantee.

I Definition 8 (Core-Covers). Let N be a collection of subsets of a base set U , let OPT be
the maximum distance of an optimal Jaccard center to any subset in N , and let α ≥ 1 be a
parameter. A collection M ⊆ N is called an α-core-cover if there exists an optimal center C
with

max
X∈N

D

(
X,

(⋃
X∈M

X

)
∩ C

)
≤ α ·OPT.

A collection M ⊆ N with AM =
⋂

X∈M

X and OM =
⋃

X,Y ∈M

X 4 Y is called an anchored

α-core-cover if there exists an optimal center C with

max
X∈N

D(X,AM ∪ (OM ∩ C)) ≤ α ·OPT.

We are especially interested in the size of core-covers with α = 1 or α = 1+ε. Core-covers
are useful when the supports, i.e. the sets X are small, in which case we can find the solution
by enumerating over all possible subsets of

⋃
X∈M X. Anchored core-covers are more useful

if the supports are large while the optimum value is small. For the remainder of this section,
we will give (non-constructive) upper and lower bounds on the number of points required to
satisfy both guarantees. Our proofs are essentially based on the following observation.

I Observation 1. For any three sets C,K,X ⊆ U

D(X,K) ≤ D(X,K ∩ C) + |K \ C| − 2|(X ∩K) \ C)|
|X ∪K|

.

ICALP 2017

23:6 On Finding the Jaccard Center

Proof.

D(X,K) = |X 4K|
|X ∪K|

= |X 4 (K ∩ C)|+ |K \ C \X| − |X ∩ (K \ C)|
|X ∪ (K ∩ C)|+ |K \ C \X|

≤ |X 4 (K ∩ C)|
|X ∪ (K ∩ C)| + |K \ C \X| − |X ∩ (K \ C)|

|X ∪K|

= D(X,K ∩ C) + |K \ C| − 2|X ∩ (K \ C)|
|X ∪K|

J

If X is an arbitrary input point, K is our possible solution, and C is an optimal center,
this observation implies that it is sufficient to show that D(X,K∩C) is a good approximation
to D(X,C) and |K\C|−2|(X∩K)\C)|

|X∪K| is small or negative.

I Lemma 9. For any collection of subsets N , there exists an α-core-cover M of size d1/εe+1
if α = 1 + ε with ε > 0 and min

{
log(OPT·|C|)
log(2−OPT) + 1, |C|

}
if α = 1.

Proof. We show the existence of the collection M by proving that we can iteratively add a
set to M such that either K is already a good approximate solution or the added set contains
many elements from C \K. Thus, finally we either have C covered by

⋃
X∈M X or no set

violates the approximation guarantee. Let M (0) = {X} for an arbitrary X ∈ N . We denote
by K(i) = C ∩

(⋃
X∈M(i) X

)
our solution after the i-th iteration. Note that due to Fact 3,

we can assume |C \K(i)| ≤ OPT · |C| as M (i) is non-empty. In the following derivations,
we assume that α · OPT < 1, which is always the case for α = 1 and always the case for
α = 1 + ε and OPT ≤ 1

1+ε . The latter assumption is justified by observing that otherwise
any single input point already satisfies the (1 + ε)-core-cover guarantee.

Let X ∈ N be a set such that D
(
X,K(i)) > α ·OPT. Then

|X ∩ (C \K(i))| K(i)⊆C= |X ∩ C| − |X ∩K(i)|
≥ (1−OPT) · |X ∪ C| − (1−D(X,K(i))) · |X ∪K(i)|
> (1−OPT) · |X ∪ C| −

(1− α ·OPT) · (|X ∪ C| − |C \K(i)|+ |X ∩ (C \K(i))|)
≥ (α− 1) ·OPT · |C|+

(1− α ·OPT) · (|C \K(i)| − |X ∩ (C \K(i))|)

For for α = 1 + ε, we have the lower bound |X ∩ (C \ K(i))| ≥ ε · OPT · |C|. Since
|C \K(0)| ≤ OPT · |C|, after adding at most s = d1/εe sets to M (0), we have K(s) = C, or
no set X with D

(
X,K(s)) > (1 + ε) ·OPT exists.

If α = 1, we have

|X ∩ (C \K(i))| ≥ 1−OPT
2−OPT · |C \K

(i)|

which implies that X covers at least 1−OPT
2−OPT items from C \ K(i)) in iteration i. Thus,

|C \ K(i)| ≤ (1 − 1−OPT
2−OPT)i|C \ K(0)| ≤ (1

2−OPT)i · OPT · |C| which is smaller than 1 if
i > log(OPT·|C|)

log(2−OPT) . Note that |X ∩ (C \K(i))| ≥ 1 if D(X,K(i)) > OPT which concludes the
proof. J

With the space bound for core-covers, we can prove the main result of this section.

I Lemma 10. For any collection of subsets N , there exists an anchored α-core-cover M ⊂ N
of size O(1/ε) if α = 1 + ε with ε > 0 and of size min{ log(OPT·|C|)

log(2−OPT) + 1, |C|}+ log OPT·|C|
1−OPT if

α = 1.

M. Bury and C. Schwiegelshohn 23:7

Proof. Assume we have some optimal center C. Lemma 9 gives a set M such that K ∩ C
is an α-approximate solution where we can represent K as K = AM ∪ (OM ∩ C). Using
Observation 1, the distance between K and some arbitrary set X is

D(X,K) ≤ D(X,K ∩ C) + |K \ C| − 2 · |(X ∩K) \ C)|
|X ∪K|

= D(X,K ∩ C) + |AM \ C| − 2 · |X ∩ (AM \ C)|
|X ∪K|

≤ α ·OPT + |AM \ C| − 2 · |X ∩ (AM \ C)|
|X ∪K|

If for every X ∈ N , we have 2 · |X ∩ (AM \ C)| > |AM \ C| then the ratio is negative and
D(X,K) ≤ D(X,K∩C) ≤ α ·OPT. Otherwise, there exists an X such that |X∩(AM \C)| =
|(X ∩AM) \ C| ≤ |AM \ C|/2. We iteratively augment the collection M satisfying the space
and approximation bounds of Lemma 9 with additional sets X. In each iteration, |AM \ C|
is halved.

If α = 1 and after adding i > log |AM \ C| sets, we have AM \ C = ∅. For a more precise
bound on i let Y ∈M . Then due to Fact 3,

|AM \ C| ≤ |Y \ C| ≤ OPT · |Y ∪ C| ≤ OPT · |C|
1−OPT .

For the case α = 1 + ε, we assume OPT < 1/(1 + ε) as otherwise any point is a (1 + ε)
approximation. Let X ∈ N . Again due to Fact 3 we have

|AM \ C| ≤ OPT · |C|
1−OPT ≤ OPT · |X|

(1−OPT)2

≤ OPT · (1 + ε)2 · |X|
ε2 ≤ OPT · 4

ε2 · |X|,

where the last inequality follows for ε ≤ 1. After adding log 4
ε3 sets such that |AM \ C| is

halved with each sets, we have |AM \ C|/|X ∪K| ≤ ε ·OPT · |X|/|X ∪K| ≤ ε ·OPT. Our
approximation factor is therefore α · OPT + ε · OPT = (1 + 2ε) · OPT. Rescaling ε by a
factor of 2 completes the proof. J

We would like to remark that the bound on the number of sets required to satisfy the
(1 + ε)-core-cover guarantee is tight, and that the bound on the number of sets to satisfy the
anchored (1 + ε)-core-cover guarantee is tight up to constant multiplicative factors. Note
that M is constrained to using only input sets. Better bounds are possible when we lift this
restriction on M (for instance, if M consists of only an optimum center C then all guarantees
are met). It is unclear whether improved guarantees not using input sets can be feasibly
used in an algorithm.

I Lemma 11. There exists a collection of subsets N such that for any (1 + ε)-core-cover
M ⊆ N , we have |M | ≥ 1/ε− 1.

Proof. For a given ε > 0 and assuming 1/ε to be an integer, we consider the following
instance of vertex cover. We are given 1/ε − 1 stars, each with at least two leaves. The
optimum vertex cover and the optimum Jaccard center consists of the internal nodes, with
an optimum objective value for the Jaccard center of 1/ε−1

1/ε . If M does not consist of at
least one edge from each star, corresponding to a set containing the element contained in
the optimal Jaccard center, any center computed using only the entries of the picked edges
will not intersect with at least one star, i.e. have distance 1 to the edges of the omitted star.
Since 1/ε−1

1/ε · (1 + ε) = 1− ε2 < 1, M has to hit every star. J

ICALP 2017

23:8 On Finding the Jaccard Center

Algorithm 1: PTAS for the Jaccard center problem
Input :Collection N of subsets, Parameter ε > 0
Output : (1 + ε)-approximate Jaccard center C

1 Let D = { i
j | 1 ≤ j ≤ d and 0 ≤ i < j}.

2 Initialize list C = ∅.
3 foreach ÔPT ∈ D do
4 if ∃X ∈ N : ÔPT · |X| < 27 ln(4n)

ε2 then
5 foreach M ⊆ N with |M | = d 5

ε + 5e do
6 Compute optimal solution KÔPT = AM ∪ S with S ⊆ OM (cf. Lemma 10).
7 Add KÔPT to C

8 else
9 Obtain non-integral solution K ′

ÔPT
by solving the set of linear equations given

by Equation 1
10 Obtain KÔPT by rounding each entry of K ′

ÔPT
11 Add KÔPT to C

12 return argmin
ÔPT∈D

{KÔPT ∈ C}

5 A PTAS for Binary Jaccard Center

This section mainly consists of the proof of the following theorem.

I Theorem 12. Given a collection N of n subsets from a base set U of cardinality d and any
ε > 0, there exists an algorithm computing a (1 + ε)-approximation to the optimal Jaccard
center. The algorithm runs in time d2 · (nO(ε−6) + LP (n, d)), where LP (n, d) is the time
required to solve a linear program with n constraints and d variables.

The algorithm (see also Algorithm 1) consists of two main steps. Let OPT be the
optimal objective value. Since there are O(d2) distinct objective values for the Jaccard center
problem with a base set of size d, we can try to a find solution for each value (cf. line 3

Algorithm 1). Recall that Ci =
{

0 if i /∈ C
1 if i ∈ C

and that D(X,C) ≤ OPT holds for all X ∈ N .

By multiplying both sides of the inequality with |X ∪ C|, we obtain

|X 4 C| ≤ ÔPT · |X ∪ C|. (1)

Observe that |X4C| =
∑d

i=1 Xi− 2XiCi +Ci and |X ∪C| =
∑d

i=1 Xi−XiCi +Ci. Hence,
we obtain a set of linear inequalities which we can test for feasibility by relaxing the integrality
constraints on C. Denote a feasible non-integral solution by C ′. The existence of a feasible
integral solution of Equation 1 implies a feasible relaxed solution C ′. We interpret the C ′i as
probabilities, i.e. we obtain a binary vector C by rounding each C ′i to 1 with probability C ′i.
Using Chernoff bounds, this approach yields a good solution if OPT · |X| > s · logn/ε2 for
all X and some constant s (cf. lines 4–7 of Algorithm 1).

If OPT · |Y | is smaller than this threshold for at least one Y ∈ N then we could employ
a naive brute force algorithm by iterating over all

(
d

s·log n/ε

)
∈ O(ds·log n/ε) subsets S and

outputting the best Y 4 S. To eliminate the dependency on d, we first show that a bound
on OPT · |Y | implies that |X1 4 X2| for any two sets X1, X2 ∈ N is bounded. Then we
compute an anchored core-cover M by enumerating all collections of O(1/ε) input sets.

M. Bury and C. Schwiegelshohn 23:9

Having determined M , computing the optimum AM ∪ S with S ⊆ OM becomes feasible
(cf. lines 9–11 of Algorithm 1).

Proof of Theorem 12. In the following, we always assume that OPT < 1/(1 + ε), as
otherwise any solution is a (1 + ε) approximation.

To round the set of linear Equations 1, we first recall and apply the following probabilistic
bounds.

I Theorem 13 (Multiplicative Chernoff-Bounds [31]). Let B1, . . . Bd be independent binary
random variables with µ = E[

∑d
i=1 Bi]. Then for any 0 < δ < 1:

P

[
d∑

i=1
Bi > (1 + δ) · µ

]
≤ exp

(
−δ

2 · µ
3

)
and P

[
d∑

i=1
Bi < (1− δ) · µ

]
≤ exp

(
−δ

2 · µ
2

)
.

I Lemma 14. Let S be a random binary vector obtained by rounding a fractional feasible
solution of the set of Equations 1 and let ε > 0 be a constant. Assume that OPT·|X| ≥ 27 ln(4n)

ε2

for all X ∈ N . Then with probability at least 1/2, the rounding procedure produces a binary
solution S with max

X∈N
D(X,S) ≤ (1 + ε) ·OPT.

Proof. Observe that E[|X ∪ S|] ≥ |X|. We first derive concentration bounds on |X4 S| and
|X ∪ S|. For any X ∈ N , Theorem 13 yields

P [|X ∪ S| < (1− ε/3) · E[|X ∪ S|]] ≤ exp
(
−ε

2 · E[|X ∪ S|]
18

)
≤ exp

(
−ε

2 · |X|
18

)
≤ 1

4n

and

P [|X 4 S| > E[|X 4 S|] + ε/3 ·OPT · E[|X ∪ S|]]

= P
[
|X 4 S| >

(
1 + ε ·OPT · E[|X ∪ S|]

3 · E[|X 4 S|]

)
· E[|X 4 S|]

]
≤ exp

(
−ε

2 ·OPT2 · E[|X ∪ S|]2

27 · E[|X 4 S|]2 · E[|X 4 S|]
)

≤ exp
(
−ε2 ·OPT · E[|X ∪ S|]/27

)
≤ exp

(
−ε2 ·OPT · |X|/27

)
≤ 1

4n.

Combining these two bounds, we have

|X 4 S|
|X ∪ S|

≤ E[|X 4 S|] + ε/3 ·OPT · E[|X ∪ S|]
(1− ε/3) · E[|X ∪ S|] ≤ OPT + ε/3 ·OPT

1− ε/3 ≤ (1 + ε) ·OPT

with probability at least 1− 1/2n. Applying the union bound, we then obtain

P
[
max
X∈N

D(X,S) ≤ (1 + ε) ·OPT
]

= 1− P
[
∃X ∈ N : |X 4 S|

|X ∪ S|
> (1 + ε) ·OPT

]
≥ 1− n

2n = 1/2. J

If OPT · |X| > 27 ln(4n)
ε2 for all X ∈ N , we can use the LP-based rounding scheme analyzed

in Lemma 14 (cf. lines 4–7 of Algorithm 1). For the other cases, we will utilize Lemma 10 as
follows. There exists at least one set Y with OPT · |Y | ≤ 27 ln(4n)

ε2 . With Fact 3, we have

ICALP 2017

23:10 On Finding the Jaccard Center

OPT · |C| ≤ OPT · |Y |/(1−OPT) ≤ 27·(1+ε)·ln(4n)
ε3 . For any two sets X1, X2 ∈ N , we then

have

|X1 4X2| ≤ 2 ·OPT · |X1 ∪X2| ≤ 2 ·OPT · (|X1|+ |X2|)

≤ 4 ·OPT |C|
1−OPT ≤

108 · (1 + ε)2 · ln(4n)
ε4 .

Let M now be a collection of sets satisfying the guarantee of Lemma 10 with AM =
⋂

X∈M X

and OM =
⋃

X,Y ∈M X 4 Y . Such a collection can be determined in time nO(ε−1) by
iterating through all subsets of N of cardinality O(ε−1). Since |OM | ≤

∑
Xi∈M

∑
Xj∈M |Xi4

Xj | ≤ |M |2 · max
Xi,Xj∈M

|Xi 4 Xj | ∈ O(logn · ε−6), we can compute an optimal solution of

max
X∈N

min
S⊆OM

D(X,AM ∪ S) in time 2|OM | = 2O(log n·ε−6).

The total running time amounts to d2 calls to the LP given via Equations 1 or d2

applications of Lemma 10 with a running time of 2O(log n·ε−6) = nO(ε−6). J

6 An FPT Algorithm for Binary Jaccard Center

Our second application of core-covers is an FPT algorithm in the parameter k = maxX∈N |X4
C| where C is an arbitrary optimal solution. The main technical difficulty is to efficiently
construct a core-cover without enumerating all possible core-covers. We first bound the size
of an anchored 1-core-cover given by Lemma 10 in terms of k.

I Lemma 15. For any collection N of subsets and an optimal center C with cost OPT < 1,
let k = maxX∈N |X 4 C|. Then

min
{

log(OPT · |C|)
log(2−OPT) + 1, |C|

}
≤ 2k and log OPT · |C|

1−OPT ≤ 3 log k.

Proof. There exists an X ∈ N such that k ≥ |X 4 C| = OPT · |X ∪ C| ≥ OPT · |C|. We
first note that both terms are increasing with OPT, hence we assume OPT > 1/2. Then
|X 4 C|/|X ∪ C| = OPT for some X ∈ N implying

(1−OPT) = OPT · |X ∩ C|/|X 4 C| ≥ 1
2|X 4 C|

≥ 1
2k .

Therefore, we have 1/(1−OPT)) ≤ 2k,

log(2−OPT) = log(1 + 1−OPT) = ln(1 + 1−OPT)
ln 2 ≥ 1−OPT

2 ln 2 ≥ 1
4k ln 2 ,

and

min
{

log(OPT · |C|)
log(2−OPT) + 1, |C|

}
≤ |C| ≤ 2k and log OPT · |C|

1−OPT ≤ 1 + 2 log k. J

For a given estimate of OPT, the algorithm initially chooses two arbitrary sets to be
included in the anchored core-cover M . If the optimal solution AM ∪S with S ⊆ OM satisfies
maxX∈N D(X,AM ∪ S) < OPT then we can reduce our estimate of OPT. Otherwise, we
add any set X at distance greater than OPT to M . The set X improves the core-cover,
either by increasing |C ∩ (AM ∪OM) | or by decreasing |AM \ C| for some optimal center
C. Lemma 15 allows us to bound the number of times this happens before M satisfies the
anchored core-cover guarantee, upon which we can recover the optimum solution.

M. Bury and C. Schwiegelshohn 23:11

Algorithm 2: FPT-algorithm for the Jaccard center problem
Input :Collection N of subsets, Parameter k = maxX∈N |X 4 C|
Output :Optimal Jaccard center C

1 Let D = { i
j | 1 ≤ j ≤ d and 0 ≤ i < j}.

2 Initialize list C = ∅.
3 foreach ÔPT ∈ D do
4 Initialize M = {X,Y } with arbitrary X,Y ∈ N and X 6= Y .
5 for i = 1 to 5k do
6 Compute optimal solution KÔPT = AM ∪ S with S ⊆ OM (cf. Lemma 10).
7 if ∃X ∈ N : D(X,KÔPT) > ˆOPT then
8 M = M ∪ {X}
9 else

10 Add KÔPT to C
11 break

12 return argmin
ÔPT∈D

{KÔPT ∈ C}

I Theorem 16. Algorithm 2 computes an optimal Jaccard center C satisfying maxX∈N |X4
C| = k in time 2O(k3) · n · d3.

Proof. Let ÔPT ∈ D be a guess for our optimal value OPT. If ÔPT < OPT then the loop
terminates without finding a center. Let ÔPT ≥ OPT. Using Observation 1, we know that

D(X,KÔPT) ≤ D(X,KÔPT ∩ C) +
|KÔPT \ C| − 2 · |(X ∩KÔPT) \ C)|

|X ∪KÔPT|
.

If D(X,KÔPT) > ÔPT then we distinguish between two cases:

Case |KÔPT \ C| − 2 · |(X ∩KÔPT) \ C)| ≤ 0:
Then D(X,KÔPT ∩C) > ÔPT and we can apply the analysis of Lemma 9. Thus, we add
at most 2k sets to M until this case can no longer occur (Lemma 15).

Case |KÔPT \ C| − 2 · |(X ∩KÔPT) \ C)| > 0:
Then |(X ∩KÔPT) \ C)| ≤ |KÔPT \ C|/2 and we can apply the analysis of Lemma 10.
Thus, we add at most 3 log k points to M until this case can no longer occur (Lemma 15).

The computation of KÔPT can be done in time 2O(k3) by an exhaustive search over all
possible subsets of OM since

|OM | ≤ |M2| · max
X,Y ∈N

|X 4 Y | ≤ O(k2) · max
X,Y ∈N

(|X 4 C|+ |Y 4 C|) = O(k3).

We perform the exhaustive search O(k) times and for each solution we evaluate the objective
value for each set. Since |D| = O(d2) and we examine every set in line 7 of Algorithm 2, the
algorithm terminates in time 2O(k3) · n · d3. J

7 A Note on Continuous Jaccard Center

We conclude by briefly describing how to find the continuous Jaccard center. We will
formulate the decision problem of finding a center with distance at most dist as an LP. The

ICALP 2017

23:12 On Finding the Jaccard Center

optimum center can thereafter be determined in polynomial time using binary search over
the possible values of dist. In the following let Xj ∈ N be the jth point of N w.r.t. some
arbitrary ordering. We use the variable ci ≥ 0 to denote the ith entry of the Jaccard center.
We further use the variables ai,j and bi,j for all i ∈ {1, . . . , d} and j ∈ {1, . . . n} to denote
the maximum and minimum of Xj

i and ci. We then use the constraints

d∑
i=1

bi,j ≥ (1− dist) ·
d∑

i=1
ai,j for all j ∈ {1, . . . n}

bi,j ≤ ci, X
j
i ≤ ai,j for all j ∈ {1, . . . n}, i ∈ {1, . . . d}

ai,j , bi,j , ci ≥ 0 for all j ∈ {1, . . . n}, i ∈ {1, . . . d}.

Note that the top most equation
∑d

i=1 min(ci, X
j
i) ≥ (1− dist) ·

∑d
i=1 max(ci, X

j
i) is equal

to 1−
∑d

i=1
min(Xi,Yi)∑d

i=1
max(Xi,Yi)

≤ dist.

References
1 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via coresets.

Combinatorial and computational geometry, 52:1–30, 2005.
2 C. Bachmaier, F. J. Brandenburg, A. Gleißner, and A. Hofmeier. On the hardness of

maximum rank aggregation problems. J. Discrete Algorithms, 31:2–13, 2015.
3 M. Badoiu and K. L. Clarkson. Optimal core-sets for balls. Comput. Geom., 40(1):14–22,

2008.
4 M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proceedings

on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada, pages 250–257, 2002.

5 T.C. Biedl, F.-J. Brandenburg, and X. Deng. On the complexity of crossings in permuta-
tions. Discrete Mathematics, 309(7):1813–1823, 2009.

6 A.Z. Broder. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences 1997, SEQUENCES’97, pages 21–, Washington,
DC, USA, 1997. IEEE Computer Society.

7 A.Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the
web. Computer Networks, 29(8-13):1157–1166, 1997.

8 L. Cai and D.W. Juedes. On the existence of subexponential parameterized algorithms. J.
Comput. Syst. Sci., 67(4):789–807, 2003.

9 F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan.
On compressing social networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, June 28 – July 1,
2009, pages 219–228, 2009.

10 F. Chierichetti, R. Kumar, S. Pandey, and S. Vassilvitskii. Finding the Jaccard median. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 293–311, 2010.

11 K.L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Trans. Algorithms, 6(4), 2010.

12 E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman, and
C. Yang. Finding interesting associations without support pruning. IEEE Trans. Knowl.
Data Eng., 13(1):64–78, 2001.

13 A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In Proceedings of the 16th International Conference on World Wide
Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages 271–280, 2007.

M. Bury and C. Schwiegelshohn 23:13

14 C. de la Higuera and F. Casacuberta. Topology of strings: Median string is NP-complete.
Theor. Comput. Sci., 230(1-2):39–48, 2000.

15 M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of
CLOSEST substringsize and related problems. In STACS 2002, 19th Annual Symposium
on Theoretical Aspects of Computer Science, Antibes – Juan les Pins, France, March 14-16,
2002, Proceedings, pages 262–273, 2002.

16 M. Frances and A. Litman. On covering problems of codes. Theory Comput. Syst.,
30(2):113–119, 1997.

17 M.R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co., New York, NY, USA, 1990.

18 L. Gasieniec, J. Jansson, and A. Lingas. Efficient approximation algorithms for the Ham-
ming center problem. In Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 17-19 January 1999, Baltimore, Maryland., pages 905–906, 1999.

19 T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput.
Sci., 38:293–306, 1985.

20 J.C. Gower and P. Legendre. Metric and Euclidean properties of dissimilarity coefficients.
Journal of Classification, 3(1):5–48, 1986.

21 J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for CLOSEST
STRING and related problems. Algorithmica, 37(1):25–42, 2003.

22 S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for categorical
attributes. Inf. Syst., 25(5):345–366, 2000.

23 D. S. Hochbaum and D.B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. J. ACM, 33(3):533–550, 1986.

24 R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-
plexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

25 P. Jaccard. Distribution de la flore alpine dans le bassin des Dranses et dans quelques
régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:241–272, 1901.

26 P. Kumar, J. S. B. Mitchell, and E.A. Yildirim. Approximate minimum enclosing balls in
high dimensions using core-sets. ACM Journal of Experimental Algorithmics, 8, 2003.

27 J. K. Lanctôt, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection
problems. Inf. Comput., 185(1):41–55, 2003.

28 M. Li, B. Ma, and L. Wang. On the closest string and substring problems. J. ACM,
49(2):157–171, 2002.

29 D. Marx. Closest substring problems with small distances. SIAM J. Comput., 38(4):1382–
1410, 2008.

30 N. Megiddo. Linear programming in linear time when the dimension is fixed. J. ACM,
31(1):114–127, 1984.

31 M. Mitzenmacher and E. Upfal. Probability and computing – randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

32 F. Nicolas and E. Rivals. Hardness results for the center and median string problems under
the weighted and unweighted edit distances. J. Discrete Algorithms, 3(2-4):390–415, 2005.

33 V.Y. Popov. Multiple genome rearrangement by swaps and by element duplications. Theor.
Comput. Sci., 385(1-3):115–126, 2007.

34 R. Real and J.M. Vargas. The probabilistic basis of jaccard’s index of similarity. Systematic
biology, 45(3):380–385, 1996.

35 H. Späth. The minisum location problem for the Jaccard metric. Operations-Research-
Spektrum, 3(2):91–94, 1981.

36 J. J. Sylvester. A Question in the Geometry of Situation. Quarterly Journal of Pure and
Applied Mathematics, 1, 1857.

ICALP 2017

23:14 On Finding the Jaccard Center

37 G.A. Watson. An algorithm for the single facility location problem using the Jaccard
metric. SIAM Journal on Scientific and Statistical Computing, 4(4):748–756, 1983.

38 E. Welzl. Smallest enclosing disks (balls and ellipsoids), pages 359–370. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1991.

39 P. Willett, J.M. Barnard, and G.M. Downs. Chemical similarity searching. Journal of
Chemical Information and Computer Sciences, 38(6):983–996, 1998.

40 E.A. Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM Journal on
Optimization, 19(3):1368–1391, 2008.

The Polytope-Collision Problem∗

Shaull Almagor†1, Joël Ouaknine‡2, and James Worrell§3

1 Department of Computer Science, Oxford University, Oxford, UK
shaull.almagor@cs.ox.ac.uk

2 Max Planck Institute for Software Systems, Saarland Informatics Campus,
Saarbrücken, Germany
joel@mpi-sws.org

3 Department of Computer Science, Oxford University, Oxford, UK
jbw@cs.ox.ac.uk

Abstract
The Orbit Problem consists of determining, given a matrix A ∈ Rd×d and vectors x, y ∈ Rd,
whether there exists n ∈ N such that An = y. This problem was shown to be decidable in a
seminal work of Kannan and Lipton in the 1980s. Subsequently, Kannan and Lipton noted that
the Orbit Problem becomes considerably harder when the target y is replaced with a subspace of
R
d. Recently, it was shown that the problem is decidable for vector-space targets of dimension

at most three, followed by another development showing that the problem is in PSPACE for
polytope targets of dimension at most three.

In this work, we take a dual look at the problem, and consider the case where the initial
vector x is replaced with a polytope P1, and the target is a polytope P2. Then, the question is
whether there exists n ∈ N such that AnP1 ∩ P2 6= ∅. We show that the problem can be decided
in PSPACE for dimension at most three. As in previous works, decidability in the case of higher
dimensions is left open, as the problem is known to be hard for long-standing number-theoretic
open problems.

Our proof begins by formulating the problem as the satisfiability of a parametrized family of
sentences in the existential first-order theory of real-closed fields. Then, after removing quantifiers,
we are left with instances of simultaneous positivity of sums of exponentials. Using techniques
from transcendental number theory, and separation bounds on algebraic numbers, we are able to
solve such instances in PSPACE.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, I.1.2 Algorithms

Keywords and phrases linear dynamical systems, orbit problem, algebraic algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.24

1 Introduction

Given a linear transformation A over the vector space Rd, together with a starting point x,
the orbit of x under A is the infinite sequence x,Ax,A2x, A natural decision problem
in discrete linear dynamical systems is whether the orbit of x ever hits a particular target
set V (assuming suitable, effective representations of A, x, and V). An early instance of

∗ The full version of the paper can be found at https://arxiv.org/abs/1611.01344.
† Shaull Almagor is supported by ERC grant AVS-ISS (648701).
‡ Joël Ouaknine is also affiliated with the Department of Computer Science, Oxford University, UK, and

is supported by ERC grant AVS-ISS (648701).
§ James Worrell is supported by EPSRC grant EP/N008197/1.

EA
T

C
S

© Shaull Almagor, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.24
https://arxiv.org/abs/1611.01344
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 The Polytope-Collision Problem

this problem was raised by Harrison in 1969 [12] for the special case in which V is simply
a point in Rd. Decidability remained open for over ten years, and was finally settled in
a seminal paper of Kannan and Lipton, who moreover gave a polynomial-time decision
procedure [13]. In subsequent work [14], Kannan and Lipton noted that the Orbit Problem
becomes considerably harder when the target V is replaced by a subspace of Rd: indeed,
if V has dimension d − 1, the problem is equivalent to the Skolem Problem, known to be
NP-Hard but whose decidability has remained open for over 80 years [21]. However, for
low-dimensional target spaces, the Orbit Problem becomes more tractable. Indeed, it was
recently shown in [7] that the problem is decidable for vector-space targets of dimension at
most three, with polynomial-time complexity for one-dimensional targets, and complexity in
NPRP for two- and three-dimensional targets. Another development followed in [8], where
the authors consider more intricate target sets, namely polytopes. It is shown in [8] that up
to dimension three, the problem can be solved in PSPACE. In addition, it is shown that for
higher dimensions, the problem becomes hard with respect to long-standing number-theoretic
open problems.

A key motivation for studying the Orbit Problem comes from program verification,
particularly the problem of determining whether a simple while loop with affine assignments
and guards will terminate or not. Similar reachability questions were considered and left
open by Lee and Yannakakis in [15] for what they termed “real affine transition systems”.
Similarly, decidability for the case of a single-halfspace target was mentioned as an open
problem by Braverman in [5].

An important aspect of termination problems for linear loops is the quantification of the
initial point. Traditionally, the ‘Termination problem’ in the program-verification literature
(see, e.g. [4]) refers to termination of while loops for all possible initial starting points. In [17]
the traditional Termination Problem is solved over the integers for while loops, assuming
diagonalisability of the associated linear transformation. To our knowledge, very little else
is known on the general problem of universally quantified inputs. In contrast, the works
in [7, 8] study the termination problem where the input is fixed (but the target space is
complicated). This corresponds to verifying the termination of a concrete run of a linear
loop. It should be noted that the techniques used for analyzing the latter differ significantly
from the former.

In this work, we take a dual look at the problem, and study the case where the input
is existentially quantified. Thus, we are given a set P1 ⊆ Rd, and a target set P2, and the
problem is to decide whether there exists x ∈ P1 and n ∈ N such that Anx ∈ P2. In practice,
this corresponds to deciding safety properties of linear loops: we think of P2 as some error
set, and the problem is to decide whether there exists an input that would cause the program
to reach the error set.

Specifically, the focus of this paper is the 3D Polytope-Collision Problem (3DPCP,
for short): Given two polytopes P1 and P2 in R3 (represented as an intersection of halfspaces)
and a matrix with real-algebraic entries1 A ∈ (A ∩R)3×3, determine whether there exists a
point x ∈ P1 and a natural number n such that Anx ∈ P2.

We present the following effectiveness result on the 3D Polytope-Collision Problem.

I Theorem 1. 3DPCP is decidable in PSPACE.

Note that as proved in [8], when the dimension is at least four, the polytope-collision problem
becomes hard with respect to number-theoretic open problems.

1 We denote by A the set of algebraic numbers.

S. Almagor, J. Ouaknine, and J. Worrell 24:3

Before describing our approach, we explain why this result is somewhat surprising.
Consider a simplification of 3DPCP, where the initial polytope P is a segment between points
x and y, and we wish to decide whether the orbit of P under the matrix A collides with
another polytope R. We can represent P as the single point (x, y) in R6, and extend A to
a matrix B ∈ R6×6 that has two copies of A on its diagonal. Then, the orbit of P under
A corresponds to the orbit of (x, y) under B. However, the respective target space in R6

becomes the set of all points (u, v) such that the line between u and v in R3 intersects R.
While this is a semi-algebraic set, it is quite complicated, and recall that the polytope hitting
problem is already hard in dimension four. Thus, this approach suggests that the problem
may be as hard as the hitting problem in R6.

Technically, the above intricacy prevents us from using the techniques previously employed
on fixed-input orbit problems, e.g. [8]. There, describing the dominant behavior of the orbit
is relatively straightforward, and the difficulty is reasoning about hitting the target. In our
setting, merely describing the orbit involves symbolic quantifier elimination, as described
next, and reasoning about hitting the target therefore involves symbolic analysis.

Our approach to proving Theorem 1 is as follows. Observe that 3DPCP can be formulated
as the problem of deciding whether there exists n ∈ N such that AnP1 intersects P2 (where
AnP1 = {Anx : x ∈ P1}). In Section 3 we reduce this formulation of 3DPCP to the problem
of solving a system of inequalities, as we now describe.

In Section 3.1 we identify two types of intersection of 3D polytopes, namely (1) where
a vertex of one polytope lies in the other polytope, and (2) where an edge of one polytope
intersects a face of the other polytope. We show that under a certain representation, an
intersection of polytopes is always of one of these types. Note that while each of these types
seems symmetric with respect to the two polytopes, in our setting the polytopes have an
inherent asymmetry, as AnP1 is dependent on n whereas P2 is not.

In order to overcome this asymmetry, in Section 3.2 we reduce 3DPCP to the case where
the matrix A is invertible. Then, considering AnP1 and P2 is symmetric to considering P1
and (A−1)nP2.

Next, in Section 3.3 we observe that intersections of Type (1) can be decided using the
work in [8], and we are left to address intersections of Type (2). We formulate this type
of intersection as ∃n ∈ N Φ(αn, αn, ρn), where Φ is a sentence in the existential first-order
theory of real-closed fields, and α, α, and ρ are the eigenvalues of the matrix A, with α ∈ A\R
and ρ ∈ A ∩R (the case where A has only real eigenvalues is simpler, and we handle it in
the full version). Moreover, Φ contains only linear expressions (with respect to its variables,
where n is treated as a constant), and at most three real variables. We proceed by eliminating
the quantifiers from Φ. We use the fact that the expressions in Φ(n) are linear to apply
the simple Fourier-Motzkin quantifier-elimination algorithm [11]. We note that while other
quantifier-elimination algorithms (e.g., [20]) offer better asymptotic complexity, since the
number of variables in Φ is constant, Fourier-Motzkin elimination takes polynomial time.
Moreover, its simplicity allows us to keep track of the expressions in the quantifier free
equivalent of Φ(n). Specifically, we show that this output consists of a disjunction of systems,
where each system is a conjunction of expressions of the form

Aα2n +Aα2n +Bαnρn +Bαnρn + Cρ2n +D|α|2n + Eαn + Eαn + Fρn +G ./ 0 (1)

where ./ ∈ {>,=}.
Finally, Section 4 is the heart of our technical contribution, in which we show how to solve

such systems. Intuitively, we normalize Expression (1) such that the maximal modulus of its
terms is 1, thus obtaining an expression of the form Aγ2n+Aγ2n+Bγn+Bγn+C+r(n) ./ 0

ICALP 2017

24:4 The Polytope-Collision Problem

with |γ| = 1 and r(n) tending exponentially fast to 0. We then consider two cases, depending
on whether γ is a root of unity or not. If γ is a root of unity, we show that it is enough
to consider polynomially many expressions with only real elements, which can be handled
using relatively standard techniques. If γ is not a root of unity, things are more involved.
Then, by utilizing consequences of the Baker-Wüstholz theorem [2], we are able to show
that the expression |Aγ2n +Aγ2n +Bγn +Bγn + C| is bounded away from 0 by an inverse
polynomial in n. Then, using a separation bound due to Mignotte [16], we show that r(n)
decays fast enough to obtain a bound N ∈ N such that r(n) does not affect the sign of
Aγ2n + Aγ2n + Bγn + Bγn + C for all n > N. Finally, since γ is not a root of unity, it is
dense in the unit circle, and we can replace the analysis of the former expression by analysis
of the simpler function f(z) = Az2 +Az2 +Bz +Bz +C on the unity circle, from which we
obtain our main result.

2 Mathematical Tools

In this section we introduce the key technical tools used in this paper.

2.1 Algebraic numbers
For p ∈ Z[x] a polynomial with integer coefficients we denote by ‖p‖ the bit length of its
representation as a list of coefficients encoded in binary. Note that the degree of p, denoted
deg(p) is at most ‖p‖, and the height of p – i.e., the maximum of the absolute values of its
coefficients, denoted H(p) – is at most 2‖p‖.

We begin by summarising some basic facts about algebraic numbers (denoted A) and
their (efficient) manipulation. The main references include [3, 9, 20]. A complex number
α is algebraic if it is a root of a single-variable polynomial with integer coefficients. The
defining polynomial of α, denoted pα, is the unique polynomial of least degree, and whose
coefficients do not have common factors, which vanishes at α. The degree and height of α are
respectively those of p, and are denoted deg(α) and H(α). A standard representation2 for
algebraic numbers is to encode α as a tuple comprising its defining polynomial together with
rational approximations of its real and imaginary parts of sufficient precision to distinguish α
from the other roots of pα. More precisely, α can be represented by (pα, a, b, r) ∈ Z[x]×Q3

provided that α is the unique root of pα inside the circle in C of radius r centred at a+ bi. A
separation bound due to Mignotte [16] asserts that for roots α 6= β of a polynomial p ∈ Z[x],
we have

|α− β| >
√

6
d(d+1)/2Hd−1 (2)

where d = deg(p) and H = H(p). Thus if r is required to be less than a quarter of the
root-separation bound, the representation is well-defined and allows for equality checking.
Given a polynomial p ∈ Z[x], it is well-known how to compute standard representations of
each of its roots in time polynomial in ‖p‖ [3, 9, 19]. Thus given an algebraic number α for
which we have (or wish to compute) a standard representation, we write ‖α‖ to denote the
bit length of this representation. From now on, when referring to computations on algebraic
numbers, we always implicitly refer to their standard representations.

Note that Equation 2 can be used more generally to separate arbitrary algebraic numbers:
indeed, two algebraic numbers α and β are always roots of the polynomial pαpβ of degree

2 Note that this representation is not unique.

S. Almagor, J. Ouaknine, and J. Worrell 24:5

at most deg(α) + deg(β), and of height at most H(α)H(β). Given algebraic numbers α
and β, one can compute α+ β, αβ, 1/α (for α 6= 0), α, and |α|, all of which are algebraic,
in time polynomial in ‖α‖ + ‖β‖. Likewise, it is straightforward to check whether α = β.
Moreover, if α ∈ R, deciding whether α > 0 can be done in time polynomial in ‖α‖. Efficient
algorithms for all these tasks can be found in [3, 9].

2.2 First-order theory of the reals
Let −→x = x1, . . . , xm be a list of m real-valued variables, and let σ(−→x) be a Boolean
combination of atomic predicates of the form g(−→x) ./ 0, where each g(−→x) ∈ Z[x] is a
polynomial with integer coefficients over these variables, and ./∈ {>,=}. A sentence of the
first-order theory of the reals is of the form Q1x1Q2x2 · · ·Qmxmσ(−→x), where each Qi is one
of the quantifiers ∃ or ∀. Let us denote the above formula by τ , and write ‖τ‖ to denote
the bit length of its syntactic representation. Tarski famously showed that the first-order
theory of the reals is decidable [22]. His procedure, however, has non-elementary complexity.
Many substantial improvements followed over the years, starting with Collins’ technique of
cylindrical algebraic decomposition [10], and culminating with the fine-grained analysis of
Renegar [20]. In this paper, we focus exclusively on the situation in which the number of
variables is uniformly bounded.

I Theorem 2 (Renegar). Let M ∈ N be fixed, let τ be of the form Q1x1Q2x2 · · ·Qmxmσ(−→x).
Assume that the number of variables in τ is bounded by M (i.e., m ≤M). Then the truth
value of τ can be determined in time polynomial in ‖τ‖.

An important property of the first-order theory of the reals is that it admits quantifier elimina-
tion. That is, consider two lists of variables −→x ,−→y and a sentenceQ1x1 · · ·Qmxmσ(−→x ,−→y) with
the variables of −→y being free, then there exists an (unquantified) sentence σ′(−→y) such that for
every assignment π to the variables in −→y it holds that σ′(π) is true iff Q1x1 · · ·Qmxmσ(−→x , π)
is true.

When the polynomials in σ are all linear and the quantifiers are all existential, then
quantifier elimination can be performed using the Fourier-Motzkin quantifier-elimination
algorithm [11] (see the full version for details). The benefit of this algorithm is its simplicity,
which allows us to remove quantifiers symbolically.

We remark that algebraic constants can also be incorporated as coefficients in the first-
order theory of the reals, as follows. Consider a polynomial g(x1, . . . , xm) with algebraic
coefficients c1, . . . , ck. We replace every ci with a new, existentially-quantified variable yi,
and add to the sentence the predicates pci(yi) = 0 and (yi− (a+ bi))2 < r2, where (pci , a, b, r)
is the representation of ci. Then, in any evaluation of this formula to True, it must hold that
yi is assigned value ci.

2.3 Polytopes and their representation
A polytope P in R3 is an intersection of finitely many halfspaces in R3: P = {x ∈ R3 :
vT1 x ≥ c1 ∧ . . . ∧ vTk x ≥ ck} for vectors v1, . . . , vk ∈ R3 and numbers c1, . . . , ck ∈ R. The
halfspace description of P is then (v1, c1), . . . , (vk, ck). When all entries are algebraic, we
denote by ‖P‖ the description length.

The dimension of a polytope P , denoted dim(P), is the dimension of the subspace of R3

spanned by P . The dimension of P can be computed in time polynomial in ‖P‖ by solving
polynomially many linear programs. In R3, the dimension of a polytope is in {0, . . . , 3}. A
2D boundary of a 3D polytope is a 2D polytope called a face. Similarly, the boundries of 2D

ICALP 2017

24:6 The Polytope-Collision Problem

polytopes (and in particular of faces) are called edges, and the boundries of edges are vertices.
Every 3D polytope, except the trivial R3 and ∅, has at least one face (but not necessarily
edges or vertices). Since vertices and edges are crucial for our algorithms, we present the
following lemma from [8].

I Lemma 3 ([8] Lemma A.1). Suppose P ⊆ R3 is a 2D polytope. Then P =
⋃m
i=1 Ai, where

m is finite and each Ai is of the form Ai = {ui + αvi + βwi : Ti(α, β)} where ui, vi, wi ∈ R3

and the predicates Ti(α, β) are from the following:
Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 (Ai is an infinite cone)
Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ α+ β ≤ 1 (Ai is a triangle)
Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ β ≤ 1 (Ai is an infinite strip)

Furthermore, if we are given a halfspace description of P with length ‖P‖, the size of the
representation of each vector ui, vi, wi is at most ‖P‖O(1).

Note that since the representation of ui, vi, and wi is polynomial, it follows that m is at most
exponential in ‖P‖, and moreover, that iterating over the sets Ai can be done in PSPACE.

3 From 3DPCP to a System of Inequalities

In this section we reduce 3DPCP to the problem of solving a system of inequalities. More
precisely, we show how to solve 3DPCP by solving an exponential number of systems of
equalities and inequalities, and that iterating over these systems can be done in PSPACE.
In Section 4 we tackle the main technical challenge of solving each such system in PSPACE,
thus concluding the proof of Theorem 1.

As mentioned in Section 1, we start by studying the intersection of polytopes.

3.1 Intersection of polytopes
Consider two intersecting polytopes Q1 and Q2 in R3. In this section, we characterize the
intersection of Q1 and Q2, which would later simplify the solution of 3DPCP. To illustrate
the idea, assume that both Q1 and Q2 are bounded 3D polytopes. In this case, we can
assume w.l.o.g. that Q1 and Q2 are both tetrahedra. Indeed, every bounded 3D polytope
with d vertices can be decomposed into a union of at most

(
d
4
)
tetrahedra, and two such

decompositions intersect iff two of the tetrahedra in the respective decompositions intersect.
Under this assumption, there are two possible “types” of intersections: either Q1 is contained
in Q2 (or vice-versa), or an edge of Q1 intersects a face of Q2 (or vice-versa). When the
polytopes are bounded, we can relax the first requirement, and require instead that a vertex
of Q1 lies in Q2 (or vice-versa).

In general, however, Q1 or Q2 may be unbounded. In this case we need to be slightly
more careful. Indeed, as stated in Section 2.3, unbounded polytopes might have no vertices
or edges, but only faces (unless the polytope is R3 or ∅, in which case the problem is trivial).
For example, consider the case where Q1 and Q2 are infinite prisms. Then, it is possible that
Q1 ∩Q2 6= ∅ and neither are contained in each other, but no edge of Q1 intersects a face of
Q2 (and vice-versa).

Therefore, to get the above characterization for unbounded polytopes, we need to add
“fictive” edges. Since we assume the input polytopes are non trivial, then each of them has
at least one face, and recall that the faces of a 3D polytope are 2D polytopes. By employing
Lemma 3 on the faces of the polytopes, we get that each face of Q1 and of Q2 can be written
as
⋃m
i=1 Ai as per Lemma 3. Observe that every set Ai in the decomposition of Lemma 3

S. Almagor, J. Ouaknine, and J. Worrell 24:7

has at least two edges and one vertex, and that a non-empty intersection Ai ∩ A′j in such
decompositions also intersects an edge of at least one of the two sets (the only involved case
is the intersection of two infinite strips, where one should notice that the strips are only
infinite to one side).

We conclude that the above characterization of the intersection of polytopes is correct
also for unbounded ones. In the following, when we refer to a vertex/edge of an unbounded
polytope, we mean the vertices and edges of the sets in the decomposition of Lemma 3.

Thus, we have that Q1 intersects Q2 if at least one of the following holds:
1. There exists a vertex of Q1 that is in Q2.
2. There exists a vertex of Q2 that is in Q1.
3. An edge of Q1 intersects a face of Q2.
4. An edge of Q2 intersects a face of Q1.

3.2 Reduction to the invertible case
In the notations of Section 3.1, we wish to check the intersection of Q1 = AnP1 and Q2 = P2
for an existentially quantified n ∈ N. As mentioned in Section 1, if A is invertible, then
the problem is symmetric with respect to Q1 and Q2. Indeed, AnP1 intersects P2 iff P1
intersects (A−1)nP2. However, if A is not invertible, the problem is not clearly symmetric.
In this section, we reduce 3DPCP to the case where A is an invertible matrix.

Consider polytopes P,R ⊆ R3, and let A ∈ (A ∩ R)3×3 be a singular matrix, so 0 is
an eigenvalue of A. Consider first the case where the multiplicity of 0 is 1. Thus, we can

write A = D−1
(

0 0
0 B

)
D where D is an invertible matrix with real-algebraic entries, and

B ∈ (A∩R)2×2. Indeed, if A has only real eigenvalues then this is achieved by converting A
to Jordan form, and if A has complex eigenvalues α and α, then this is achieved by setting
D = (v, u, w) where v is an eigenvector corresponding to 0, and u + iw is an eigenvector
corresponding to α. In addition, B is invertible, since its eigenvalues are the nonzero
eigenvalues of A.

In the full version, we show that in this case, there exist polytopes P ′, R′ ⊆ R2 such
that for every n ≥ 2 the following holds: there exists x ∈ P such that Anx ∈ R iff there
exists x′ ∈ P ′ such that Bn−1x′ ∈ R′. Thus, it is enough to consider the polytopes P ′, R′
and the invertible matrix B. Moreover, we show that computing P ′ and R′ can be done in
polynomial time. We also show a similar approach can be taken when 0 has multiplicity 2 or
3 (with the latter being trivial, since A is then nilpotent).

It should be noted that in the reduction above, even if the input had only rational entries,
the output may still require a real-algebraic description. However, the degree and height of
the algebraic numbers involved in the description of the output polytopes remain polynomial
in the size of the input.

Finally, we note that we can always increase the dimension of the problem while main-
taining an invertible matrix. Indeed, Given a invertible matrix B ∈ (A ∩ R)2×2, we can

consider the invertible matrix
(

1 0
0 B

)
, and change P,R ⊆ R2 to {1} × P, {1} × R ⊆ R3

(and a similar approach when B ∈ (A ∩R)1×1). Thus, it is enough to solve the problem in
the invertible case in dimension 3.

3.3 From the invertible case to an equation system
In this section we focus on solving 3DPCP in the invertible case.

ICALP 2017

24:8 The Polytope-Collision Problem

Let P1, P2 be the input polytopes (whose description may contain algebraic numbers,
as per the reduction of Section 3.2), and let A ∈ (A ∩R)3×3 be an invertible matrix. By
Section 3.1, and since A is invertible, it suffices to decide whether there exists a number
n ∈ N such that either there exists a vertex x of P1 with Anx ∈ P2, or there exists an edge
e of P1 such that Ane intersects a face of P2. Note that we may need to reverse the roles of
P1 and P2, and use A−1 instead of A. We remark that

∥∥A−1
∥∥ is polynomial in ‖A‖, and

moreover – since the eigenvalues of A−1 are inverses of those of A – the description length of
the eigenvalues of A−1 is equal to that of A.

In [8], the authors show that the problem of deciding, given a polyhedron P in R3, a
vector x ∈ R3, and a matrix A ∈ (A∩R)3×3, whether there exists n ∈ N such that Anx ∈ P
is solvable in PSPACE. This solves the former case. It remains to solve the latter.

We thus assume that we are given as input a matrix A ∈ (A ∩ R)3×3, an edge
E = {u+ λv : λ ∈ J} where u, v ∈ R3 and J is either [0, 1] or [0,∞), and a face F =
{s+ µt+ νr : T (µ, ν)}, where s, t, r ∈ R3 and T (µ, ν) is one of the following predicates (as
per Lemma 3):

T (µ, ν) ≡ µ ≥ 0 ∧ ν ≥ 0,
T (µ, ν) ≡ µ ≥ 0 ∧ ν ≥ 0 ∧ µ+ ν ≤ 1,
T (µ, ν) ≡ µ ≥ 0 ∧ ν ≥ 0 ∧ ν ≤ 1.

We wish to determine whether there exists a number n and x ∈ E such that Anx ∈ F . In
the following, we will treat the case where E = {u+ λv : λ ∈ [0, 1]} and F = {s+ µt+ νr :
µ ≥ 0 ∧ ν ≥ 0 ∧ µ + ν ≤ 1}. The other cases are slightly simpler, and can be solved
mutatis-mutandis.

Consider the eigenvalues of A. Since A is a 3×3 invertible matrix, either all the eigenvalues
are real, or there is one real eigenvalue ρ, and two complex, conjugate eigenvalues, α and
α. In the latter case, A is also diagonalizable. We consider here the latter case. In the full
version we show how to handle the former case, which is easier.

Thus, let us assume that the eigenvalues ofA are ρ ∈ A∩R and α, α ∈ A. We can compute

an invertible matrix B ∈ A3×3 such that A = B−1

ρ 0 0
0 α 0
0 0 α

B, and the rows of B are

the respective eigenvectors. Note that if wα is an eigenvector of α, then wα is eigenvector of

α, so we can write B =
(
wρ wα wα

)T . We now have that An = B−1

ρn 0 0
0 αn 0
0 0 αn

B

for every n ∈ N. By analyzing the structure of B and B−1, it is not hard to verify that every
entry of An is a linear combination of αn, αn and ρn such that the coefficients of αn and αn
are conjugates, and the coefficient of ρn is real. That is, for every 1 ≤ i, j ≤ 3 it holds that
(An)i,j = ci,jα

n + ci,j α
n + di,jρ

n for coefficients ci,j ∈ A and di,j ∈ A ∩R (independent of
n).

Consider a vector x = u+ λv ∈ E. We can write Anx = Anu+ λAnv, and observe that
for 1 ≤ i ≤ 3 we have (Anu)i = (ci,1u1 + ci,2u2 + ci,3u3)αn + (ci,1u1 + ci,2u2 + ci,3u3)αn +
(di,1u1+di,2u2+di,3u3)ρn, and a similar structure holds for Anv. By renaming the coefficients,
we can write (Anu+λAnv)i = fiα

n + fi α
n + giρ

n +λ(hiαn +hi α
n +kiρ

n) where fi, hi ∈ A
and gi, ki ∈ A ∩R for 1 ≤ i ≤ 3.

We can now formulate the problem as follows: does there exist a number n ∈ N such
that the following first-order sentence is true: ∃λ, µ, ν : 0 ≤ λ, µ, ν ≤ 1 ∧ µ+ ν ≤ 1∧

3∧
i=1

(
fiα

n + fi α
n + giρ

n + λ(hiαn + hi α
n + kiρ

n) = si + µti + νri
)
. (3)

S. Almagor, J. Ouaknine, and J. Worrell 24:9

As mentioned in Section 2.2, we can convert (3) to an equivalent, quantifier-free sentence.
Since our reasoning requires this equivalent sentence to have a special structure, we must
explicitly remove the quantifiers. This is done in the full version using Fourier-Motzkin
quantifier elimination [11], where we conclude the following.

I Theorem 4. There exist constants M,M ′ such that the sentence (3) is equivalent to a
disjunction

∨M
i=1 Sysi where for every 1 ≤ i ≤ M , Sysi is a conjunction of at most M ′

expressions of the form

Aα2n +Aα2n +Bαnρn +Bαnρn + Cρ2n +D|α|2n + Eαn + Eαn + Fρn +G ./ 0 , (4)

where ./ ∈ {>,=}, A,B,E ∈ A, and C,D, F,G ∈ A ∩R. Moreover, the description of Sys
is polynomial in ‖I‖ (the description length of the input).

4 Solving the System

This section constitutes the main technical challenge of the paper, namely to decide whether
there exists n ∈ N such that the disjunction presented in Theorem 4 is true. We refer to
such an n as a solution for the disjunction.

We first note that it is enough to consider each system in the disjunction separately.
Indeed, since the number of systems is bounded, independent of the input, we can try to
solve each one separately. Our goal is then to decide, given a system Sys of expressions
as per Theorem 4, whether there exists a solution n ∈ N that satisfies all the expressions
simultaneously.

We divide our analysis to two cases. First we handle the (straightforward) case where α
|α|

is a root of unity. We then proceed to consider the more involved case, where α
|α| is not a

root of unity.

4.1 The case where α
|α| is a root of unity

Suppose that α
|α| , denoted γ, is a root of unity. We can now treat (4) as

|α|2nAγ2n + |α|2nAγ2n + |α|nBγnρn + |α|nBγnρn + Cρ2n +D|α|2n

+ |α|nEγn + |α|nEγn + Fρn +G ./ 0 .

Let d be the order of γ, then γ2 is also a root of unity of order at most d. Thus, there are
at most d2 possible values for (γn, γ2n), determined by the pair (n mod d, 2n mod d). We
can now treat the expression as d2 expressions of real-algebraic sums of exponentials. We
show that d ≤ deg(γ)2, so these can be solved in PSPACE using standard techniques of
asymptotic analysis, by considering the coefficients and the moduli of α and ρ (see the full
version for details).

4.2 The case where α
|α| is not a root of unity

When γ = α
|α| is not a root of unity, things are more involved. Nonetheless, we prove the

following theorem.

I Theorem 5. The problem of deciding whether a system Sys of expressions of the form (4)
has a solution, is in PSPACE.

ICALP 2017

24:10 The Polytope-Collision Problem

Before proving the theorem, we need some definitions. In the following, we assume w.l.o.g.
that ρ > 0. Indeed, if ρ < 0 then we can divide into two cases according to the parity of n,
and solve each separately (note that ρ 6= 0 since the matrix A is invertible).

For an expression of the form (4), we obtain its normalized expression by dividing it by
(max{|α|2, |α|ρ, ρ2, |α|, |ρ|})n (and such that the coefficient of the element we divide by is
nonzero). Thus, the normalized expression is of the form

Aγ2n +Aγ2n +Bγn +Bγn + C + r(n) ./ 0, (5)

with γ ∈ A such that |γ| = 1 and γ is not a root of unity, A,B ∈ A and C ∈ A ∩R are not
all 0, and r(n) =

∑m
l=1 Dlβ

n
l + Dlβ

n

l , where |βl| < 1 for every 1 ≤ l ≤ m, and 0 ≤ m ≤ 4
(note that for uniformity we treat real numbers in r(n) as a sum of complex conjugates). For
every 1 ≤ l ≤ m, βl is a quotient of two elements from the set

{
α, α2, ρ, ρ2, αρ

}
. Since α and

ρ are eigenvalues of A, deg(α),deg(ρ) are ‖A‖O(1). Thus, by Section 2.1, deg(βl) = ‖A‖O(1),
and H(βl) = 2‖A‖O(1) .

Since γ is not a root of unity, then {γn : n ∈ N} is dense in the unit circle. With this
motivation in mind, we define, for a normalized expression, its dominant function f : C→ R
as f(z) = Az2 +Az2 +Bz+Bz+C. Observe that (5) is now equivalent to f(γn) + r(n) ./ 0.

The following lemma is our main technical tool in proving Theorem 5.

I Lemma 6. Consider a normalized expression as in (5). Let ‖I‖ be its encoding length,
and let f be its dominant function. Then there exists N ∈ N computable in polynomial time
in ‖I‖ with N = 2‖I‖O(1) such that for every n > N it holds that
1. f(γn) 6= 0,
2. f(γn) > 0 iff f(γn) + r(n) > 0,
3. f(γn) < 0 iff f(γn) + r(n) < 0.

In particular, the lemma implies that if f(n) + r(n) = 0, then n ≤ N . The proof of Lemma 6
relies on the following lemma from [18], which is itself a consequence of the Baker-Wüstholz
Theorem [2].

I Lemma 7 ([18]). There exists D ∈ N such that for all algebraic numbers ζ, ξ of modulus
1, and for every n ≥ 2, if ζn 6= ξ, then |ζn − ξ| > 1

n(‖ζ‖+‖ξ‖)D .

We now turn to prove Lemma 6. The following synopsis contains the main ideas. The full
proof can be found in the full version.

Proof (Synopsis). Since {γn : n ∈ N} is dense on the unit circle, we consider f(z) for z in
the unit circle. In the full proof, we show that {z : f(z) = 0 ∧ |z| = 1} contains at most
four points {z1, . . . , z4}, whose coordinates are algebraic. Since γ is not a root of unity,
it holds that γn1 6= γn2 for every n1 6= n2 ∈ N . Thus, there exists N1 ∈ N such that
γn /∈ {z1, . . . , z4} for every n > N1. Moreover, by Lemma D.1 in [6], we have that N1 = kO(1),
where k = ‖γ‖+

∑4
j=1 ‖zj‖, and N1 can be computed in polynomial time in k. Then, by

Lemma 7, there exists a constant D ∈ N such that for every n ≥ N1 and 1 ≤ j ≤ 4 we have
that |γn − zj | > 1

n(kD) . Intuitively, for n > N1 we have that γn does not get close to any zi
“too quickly” as a function of n. In particular, for n > N1 we have f(γn) 6= 0. It thus remains
to show that for large enough n, r(n) does not affect the sign of f(γn) + r(n). Intuitively,
this is the case because r(n) decreases exponentially, while |f(γn)| is bounded from below by
an inverse polynomial. While proving that this holds in general is not very difficult, note that
we also need the bound on N in the statement of the Lemma to be effectively computable
and to be 2‖I‖O(1) , which complicates things significantly.

S. Almagor, J. Ouaknine, and J. Worrell 24:11

Figure 1 g(x) and two Taylor polynomials: T1(x) around ϕ1 and T2(x) around ϕ2. The shaded
regions show where requirements (1)–(3) hold, which determine ε1. Observe that for T1, the most
restrictive requirement is |g(x)− T1(x)| ≤ 1

2T1(x), whereas for T2 the restriction is the requirement
that T2(x) is monotone.

We consider the function g : (−π, π]→ R defined by g(x) = f(eix). Explicitly, we have
g(x) = 2|A| cos(2x+ θA) + 2|B| cos(x+ θB) + C where θA = arg(A) and θB = arg(B). By
the above, g has at most four roots, denoted ϕ1, . . . , ϕ4. We now show that there exist
N2 ∈ N and a non-negative polynomial p(n) such that f(γn) = g(arg(γn)) > 1

p(n) for every
n > N2. For every 1 ≤ j ≤ 4 consider the first non-zero Taylor polynomial Tj of g around
ϕj . In the full version we show that the degree of such approximations is at most 3. We
show that there exists ε1 > 0 such that for every x ∈ (ϕj − ε1, ϕj + ε) it holds that (1)
|g(x)−Tj(x)| ≤ 1

2 |Tj(x)|, (2) g is monotone on either side of ϕj , and (3) T is monotone with
the same tendency of g (see Figure 1 for an illustration). In the full version we also show
that crucially, we can require ε1 to be efficiently computable and 1

ε = 2nO(1) .
Consider n ∈ N such that γn ∈

⋃4
j=1(ϕj − ε1, ϕj + ε1) and such that n > N1, then as we

have seen above, 1
n(kD) < |γn−zj |. But |γn−zj | < | arg(γn)−ϕj | (since the euclidean distance

is smaller than the arc length), so | arg(γn)−ϕj | > 1
n(kD) . From requirements (1) and (2) of ε1,

we get that |g(arg(γn))| ≥ 1
2 |Tj(γ

n)| and from the monotonicity of Tj in the neighbourhood of
ϕj (requirement (3)), we have that 1

2 |Tj(γ
n)| > 1

2 min
{
|Tj(ϕj + 1

n(kD))|, |Tj(ϕj − 1
n(kD))|

}
,

from which we conclude that |g(arg(γn))| > 1
p(n) for some non-negative polynomial p.

Moreover, we can compute the representation of p in polynomial time.
Finally, for x /∈

⋃4
j=1(ϕj − ε1, ϕj + ε1), we have that |g(x)| is bounded from below by a

constant. Our careful accounting of ‖ε1‖ in the full version allows us to compute this bound,
and show that it is not too small.

The last step in the proof is to show that r(n) decreases fast enough such that r(n) < 1
p(n)

for every n > N3 for some large enough N3 ∈ N. Clearly this holds eventually, since r(n)
decreases exponentially. However, we also need a bound on the size of N3, which requires
more effort. Recall that r(n) =

∑m
l=1 Dlβ

n
l + Dlβ

n

l . By applying The root separation
bound (2) from Section 2.1 to 1− |βl|, we compute ε ∈ (0, 1) and N3 ∈ N such that 1

ε and
N3 are 2‖I‖O(1) , and for every n > N3 it holds that |r(n)| < (1 − ε)n. Using this, we can
find N4 ∈ N such that N4 = 2‖I‖O(1) and |r(n)| < 1

p(n) for all n > N4, from which we can
conclude the proof. J

We are now ready to prove Theorem 5

Proof. For every expression in Sys, let f be the corresponding function as per Lemma 6, and
compute its respective bound N . If ./ is “=”, then by Lemma 6, if the equation is satisfiable
for n ∈ N, then n < N .

ICALP 2017

24:12 The Polytope-Collision Problem

If all the ./ are “>”, then for each such inequality compute {z : f(z) > 0}. If the
intersection of these sets is empty, then if n is a solution for the system, it must hold that
n < N . If the intersection is non-empty, then it is an open set. Since γ is not a root of unity,
then {γn : n ∈ N} is dense in the unit circle. Thus, there exists n > N such that γn is in the
above intersection, so the system has a solution. Checking the emptiness of the intersection
can be done in polynomial time using Theorem 2.

Thus, it remains to check whether there exists a solution n < N . Recall that N = 2‖I‖O(1) .
Thus, in order to check whether the system is solved for n < N , we need to compute, e.g., α2n,
whose representation is exponential in ‖I‖, so a naive implementation would take exponential
space.

Instead, we take a similar approach to [8]: by representing numbers as arithmetic circuits,
deciding the positivity (or testing for 0 equality) can be done using an oracle to PosSLP,
which by [1] is in the counting hierarchy. By first guessing n < N , the problem can be solved
in NPPosSLP, which is contained in PSPACE. J

5 Conclusions

5.1 Proof of Theorem 1

We conclude by giving an explicit proof of Theorem 1: Given polytopes P1 and P2 and a
matrix A, if A is singular, we first apply (in polynomial time) the reduction in Section 3.2.
Thus, we can assume A is invertible. Next, if P1 or P2 are unbounded, for each unbounded
face F we proceed as follows: decompose F as per Lemma 3, so F =

⋃m
i=1 Ai, and recall that

iterating over the Ai’s can be done in PSPACE. In each iteration, consider an edge E of P1
and a face F of P2 (both of which may belong to sets Ai as above). Formulate the first-order
sentence (3) in Section 3.3, and apply Theorem 4 to obtain an equivalent disjunction of
systems

∨M
i=1 Sysi, where M is constant. Then, for each system Sysi, check in PSPACE

whether it has a solution, using either Section 4.1 or Theorem 5. If no solution was found,
check in PSPACE whether a vertex of P1 collides with P2, using the algorithm in [8]. Then,
if still no solution is found, repeat the same procedure by interchanging the roles of P1 and
P2, and considering the matrix A−1 instead of A. The correctness and complexity of this
procedure follow from the proofs of the respective theorems.

5.2 Discussion

This paper studies an extension of the Orbit Problem, in which the input is existentially
quantified over a polytope, and the target is a polytope. The importance of this work is
twofold: from a practical perspective, we provide an algorithm for deciding the termination
of linear while loops with affine guards, up to dimension three, when the input is not fixed.
From a more theoretical perspective, and as already pointed out by Kannan and Lipton
in [14], the Orbit Problem and its variants are closely related to long-standing open problems
such as the Skolem Problem, and various number-theoretic problems. It is therefore useful
and compelling to push the borders of decidability, in order to identify the core of the
remaining difficulties, and to eventually hopefully overcome them.

Finally, as discussed in Section 1, the problem at hand can be viewed as a particular
case of the Orbit Problem in dimension six where the target is a semi-algebraic set. As the
general problem is known to be hard even in dimension four, our work here suggests that
interesting and useful fragments are tractable even in high dimensions.

S. Almagor, J. Ouaknine, and J. Worrell 24:13

References
1 Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
2 Alan Baker and Gisbert Wüstholz. Logarithmic forms and group varieties. J. reine angew.

Math., 442(19-62):3, 1993.
3 Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in real algebraic

geometry, volume 20033. Springer, 2005.
4 Amir M. Ben-Amram and Samir Genaim. Ranking functions for linear-constraint loops.

Journal of the ACM (JACM), 61(4):26, 2014.
5 Mark Braverman. Termination of integer linear programs. In International Conference on

Computer Aided Verification, pages 372–385. Springer, 2006.
6 Ventsislav Chonev, Joël Ouaknine, and James Worrell. On the complexity of the orbit

problem. arXiv preprint arXiv:1303.2981, 2013.
7 Ventsislav Chonev, Joël Ouaknine, and James Worrell. The orbit problem in higher dimen-

sions. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, pages
941–950. ACM, 2013.

8 Ventsislav Chonev, Joël Ouaknine, and James Worrell. The polyhedron-hitting problem.
In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
940–956. SIAM, 2015.

9 Henri Cohen. A course in computational algebraic number theory, volume 138. Springer
Science & Business Media, 2013.

10 George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic de-
compostion. In Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern,
May 20–23, 1975, pages 134–183. Springer, 1975.

11 Jean Baptiste Joseph Fourier. Solution d’une question particuliere du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomatique de Paris, 99:100, 1826.

12 Michael A. Harrison. Lectures on linear sequential machines. Technical report, DTIC
Document, 1969.

13 Ravindran Kannan and Richard J. Lipton. The orbit problem is decidable. In Proceedings
of the 12th Annual ACM Symposium on Theory of Computing, pages 252–261. ACM, 1980.

14 Ravindran Kannan and Richard J. Lipton. Polynomial-time algorithm for the orbit problem.
Journal of the ACM (JACM), 33(4):808–821, 1986.

15 David Lee and Mihalis Yannakakis. Online minimization of transition systems. In Proceed-
ings of the 24th Annual ACM Symposium on Theory of Computing, pages 264–274. ACM,
1992.

16 Maurice Mignotte. Some useful bounds. In Computer algebra, pages 259–263. Springer,
1983.

17 Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of integer linear
loops. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 957–969. SIAM, 2015.

18 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear recur-
rence sequences. In International Colloquium on Automata, Languages, and Programming,
pages 330–341. Springer, 2014.

19 Victor Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial zeros.
Computers & Mathematics with Applications, 31(12):97–138, 1996.

20 James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals. Journal of Symbolic Computation,
13(3):255–299, 1992.

ICALP 2017

24:14 The Polytope-Collision Problem

21 Terence Tao. Structure and randomness: pages from year one of a mathematical blog.
American Mathematical Soc., 2008.

22 Alfred Tarski. A decision method for elementary algebra and geometry. Bulletin of the
American Mathematical Society, 59, 1951.

Dynamic Time Warping and Geometric Edit
Distance: Breaking the Quadratic Barrier∗

Omer Gold1 and Micha Sharir2

1 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
omergold@post.tau.ac.il

2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
michas@post.tau.ac.il

Abstract
Dynamic Time Warping (DTW) and Geometric Edit Distance (GED) are basic similarity meas-
ures between curves or general temporal sequences (e.g., time series) that are represented as
sequences of points in some metric space (X, dist). The DTW and GED measures are massively
used in various fields of computer science and computational biology, consequently, the tasks of
computing these measures are among the core problems in P. Despite extensive efforts to find
more efficient algorithms, the best-known algorithms for computing the DTW or GED between
two sequences of points in X = Rd are long-standing dynamic programming algorithms that
require quadratic runtime, even for the one-dimensional case d = 1, which is perhaps one of the
most used in practice.

In this paper, we break the nearly 50 years old quadratic time bound for computing DTW or
GED between two sequences of n points in R, by presenting deterministic algorithms that run
in O

(
n2 log log logn/ log logn

)
time. Our algorithms can be extended to work also for higher

dimensional spaces Rd, for any constant d, when the underlying distance-metric dist is polyhedral
(e.g., L1, L∞).

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases Dynamic Time Warping, Geometric Edit Distance, Time Series, Point
Matching, Geometric Matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.25

1 Introduction

Searching for optimal algorithms is a standard routine in the study of algorithm design.
Among the most popular basic problems in P are those that have standard algorithms
that run in O(nc) time, where c = 2 or 3. For c = 3 (cubic time), we can find many
kinds of combinatorial matrix multiplication algorithms, and for c = 2 (quadratic time), we
can find many fundamental problems, such as 3SUM, and many basic matching problems
between strings, curves, and point-sequences, such as Edit Distance, Geometric Edit Distance
(GED), Dynamic Time Warping (DTW), Discrete Fréchet Distance, and Longest Common
Subsequence (LCS). These problems are usually referred to as “quadratic problems”.

∗ Work on this paper has been supported by Grant 892/13 from the Israel Science Foundation, by
Grant 2012/229 from the U.S.-Israeli Binational Science Foundation, by the Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11), and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

EA
T

C
S

© Omer Gold and Micha Sharir;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Dynamic Time Warping and Geometric Edit Distance

Motivated to find optimal algorithms for these basic problems, researchers have come
up with time bounds of the form O(nc/polylog(n)), where polylog(n) stands for logk n, for
some constant k > 0. By now, many classical quadratic problems have upper bounds of the
form O(n2/ polylog(n)), including all of the problems mentioned above, except for DTW and
GED; see [3, 29, 18, 21] for such upper bounds. Among the very few archetypal quadratic
problems for which no o(n2)-time algorithm is known, DTW and GED seem to be prominent
examples, considering the decades of extensive efforts to break the quadratic barrier.

Motivation. Complementary to the standard theoretical interest in finding optimal al-
gorithms for basic problems in P, a significant progress has been made in recent years
towards a better understanding these problems, by proving conditional lower bounds via
reductions from basic problems, such as 3SUM and CNF-SAT. Assuming that CNF-SAT
takes Ω

(
2(1−o(1))n) time (the so-called Strong Exponential Time Hypothesis (SETH) [22, 23]),

has led to recent lower bounds for a growing list of problems, including most of the quad-
ratic problems mentioned above. Specifically, assuming SETH, there is no O

(
n2−Ω(1))-time

algorithm for Discrete Fréchet Distance [8], Edit Distance [6], LCS [1, 9], and DTW [1, 9].
A recent seminal work by Abboud et al. [2] shows that even an improvement by a sufficient

polylogarithmic factor for any of these basic problems would lead to major consequences,
such as faster Formula-SAT algorithms, and new circuit lower bounds. Hence, the work of
Abboud et al. highly motivates and revives the study of polylogarithmic-factor improvements
for these basic problems, since it may be the only way to push the efficiency of the solution
“to the limit”.

Problem Statement. Let A = (p1, . . . , pn) and B = (q1, . . . , qm) be two sequences of points
(also referred to as curves) in some metric space (X, dist). A coupling C = (c1, . . . , ck)
between A and B is an ordered sequence of distinct pairs of points from A×B, such that
c1 = (p1, q1), ck = (pn, qm), and

cr = (pi, qj)⇒ cr+1 ∈
{

(pi+1, qj), (pi, qj+1), (pi+1, qj+1)
}
,

for r < k. The DTW-distance between A and B is

dtw(A,B) = min
C: coupling

∑
(pi,qj)∈C

dist(pi, qj). (1)

The coupling C for which the above sum is minimized is called the optimal coupling. The
DTW problem is to compute dtw(A,B), and sometimes also the optimal coupling C.

A monotone matching M = {m1, . . . ,mk} between A and B is a set of pairs of points
from A×B, such that any two pairs (pi, qj), (pi′ , qj′) ∈M satisfy that i ≤ i′ iff j ≤ j′, and
each point in A is matched with at most one point in B and vice versa (possibly some points
in A ∪ B do not appear in any pair of the matching); Note the difference from coupling
(defined above), which covers all points of A ∪B and a point can appear in multiple pairs of
the coupling. The cost ofM is defined to be the sum of all the distances between the points
of each pair inM, plus a gap penalty parameter ρ ∈ R, for each point in A ∪B that does
not appear in any pair ofM.

The Geometric Edit Distance (GED) between A and B is

ed(A,B) = min
M

∑
(pi,qj)∈M

dist(pi, qj) + ρ (n+m− 2|M|) , (2)

where the minimum is taken over all setsM of monotone matchings in the complete bipartite
graph A×B. The monotone matchingM for which the above sum is minimized is called

O. Gold and M. Sharir 25:3

the optimal matching. The GED problem is to compute ed(A,B), and sometimes also the
optimal matching. More sophisticated gap penalty functions have been proposed [14], but
for this presentation, we focus on the standard linear gap penalty function, although our
presented algorithm supports more complex gap penalty, such as taking ρ to be a linear
function in the coordinates of the points A∪B. By tuning ρ correctly, meaningful matchings
can be computed even when faced with outlier points that arise from measurement errors or
short deviations in otherwise similar trajectories.

The DTW-distance and GED are massively used in dozens of applications, such as speech
recognition, geometric shape matching, DNA and protein sequences, protein backbones,
matching of time series data, GPS, video and touch screen authentication trajectories, music
signals, and countless data mining applications; see [11, 13, 15, 28, 27, 25, 30, 32, 26] for
some examples.

The best-known worst-case running times for solving DTW or GED are given by long-
standing dynamic programming algorithms that require Θ(nm) time. We review the standard
quadratic-time DTW and GED algorithms in the full version of this paper [19].

DTW was perhaps first introduced as a speech discrimination method [33] back in the
1960’s. GED is a natural extension of the well-known string version of Edit Distance, however,
the subquadratic-time algorithms for the string version do not seem to extend to GED (see
below).

A popular setting in both theory and practice is the one-dimensional case X = R (under
the standard distance dist(x, y) = |x− y|). Even for this special case, no subquadratic-time
algorithms have been known. We mainly consider this case throughout the paper.

Prior Results. Since no subquadratic-time algorithm is known for computing DTW, a
number of heuristics were designed to speed up its exact computation in practice; see Wang
et al. [34] for a survey. Very recently, Agarwal et al. [4] gave a near-linear approximation
scheme for computing DTW or GED for a restricted, although quite large, family of curves.

Recently, Bringmann and Künnemann [9] proved that DTW on one-dimensional point se-
quences whose elements are taken from {0, 1, 2, 4, 8} ⊂ R has no O(n2−Ω(1))-time algorithm,
unless SETH fails. They proved a similar hardness result also for Edit Distance between two
binary strings, improving the conditional lower bound of Backurs and Indyk [6]. This line of
work was extended in a very recent work by Abboud et al. [2], mentioned above, where they
show that even a sufficiently large polylog(n)-factor improvement over the quadratic time
upper bound for Edit Distance or DTW, will lead to major consequences.

Masek and Paterson [29] showed that Edit Distance between two strings of length at most
n over an O(1)-size alphabet can be solved in O(n2/ logn) time. More recent works [7, 20]
managed to lift the demand for O(1)-size alphabet and retain a subquadratic-time bound by
making a better use of the word-RAM model. However, these works do not seem to extend
to GED, especially not when taking sequences of points with arbitrary real coordinates. In
the string version, the cost of replacing a character is fixed (usually 1), hence, we only need
to detect that two characters are not identical in order to compute the replacement cost,
unlike in GED, where the analogous cost for two matched points is taken to be their distance,
under some metric.

Our Results and Related Work. Efforts for breaking the quadratic time barrier for basic
similarity measures between curves and point-sequences were recently stimulated by the
result of Agarwal et al. [3] who showed that the discrete Fréchet distance can be computed in
O(n2/ logn) time. Their algorithm for (discrete) Fréchet distance does not extend to DTW

ICALP 2017

25:4 Dynamic Time Warping and Geometric Edit Distance

or GED, as the recursive formula for the (discrete) Fréchet distance uses the max function,
while the formula for DTW and GED involves the sum. As a result, the Fréchet distance is
effectively determined by a single pair of sequence elements, which fits well into the use of
the Four-Russians technique [5], while the DTW and GED are determined by many pairs
of elements. This makes our algorithms much more subtle, involving a combination and
extension of techniques from computational geometry and graph shortest paths.

To simplify the presentation, we present our results only for the “balanced” case m = n;
extending them to the general case m ≤ n is easy. The standard Θ(mn)-time algorithm is
superior only when m is subpolynomial in n.

I Theorem 1. Given two sequences A = (p1, . . . , pn) and B = (q1, . . . , qn), each of n points
in R, the DTW-distance dtw(A,B) (and optimal coupling), or the GED ed(A,B) (and optimal
matching) can be computed by a deterministic algorithm in O(n2 log log logn/ log logn) time.

Theorem 1 gives the very first subquadratic-time algorithm for solving DTW, breaking the
nearly 50 years old Θ(n2) time bound. In the full version of this paper [19], we extend our
algorithm to give a more general result, which supports high-dimensional polyhedral metric
spaces, as stated in Theorem 2. Additionally, in [19], we extend our algorithm for solving
GED.

I Theorem 2. Let A = (p1, . . . , pn) and B = (q1, . . . , qn) be two sequences of n points in a
polyhedral metric space1 (Rd, dist). Then dtw(A,B) (and optimal coupling), or ed(A,B) (and
optimal matching) can be computed by a deterministic algorithm in O(n2 log log logn/ log logn)
time, for any constant d.

2 Preliminaries

Throughout the paper, we view matrices with rows indexed in increasing order from bottom
to top and columns indexed in increasing order from left to right, so, for example, M [1, 1]
the leftmost-bottom cell of a matrix M .

In Fredman’s classic 1976 articles on the decision tree complexity of (min,+)-matrix
multiplication [17], and on sorting X + Y [16], he often uses the simple observation that
a+ b < a′ + b′ iff a− a′ < b′ − b. This observation is usually referred to as Fredman’s trick.
In our algorithm, we will often use the following extension of Fredman’s trick.

a1 − b1 + · · ·+ ar − br < a′1 − b′1 + · · ·+ a′t − b′t
if and only if

a1 + · · ·+ ar − a′1 − · · · − a′t < b1 + · · ·+ br − b′1 − · · · − b′t. (3)

Our algorithm uses the following geometric domination technique, based on an algorithm
by Chan [12]. Given a finite set Q of red points and blue points in Rd, the bichromatic
dominating pairs reporting problem is to report all the pairs (p, q) ∈ Q2 such that p is red, q
is blue, and p dominates q, i.e., p is greater than or equal to q at each of the d coordinates.
A natural divide-and-conquer algorithm [31, p. 366] runs in O(|Q| logd |Q|+K) time, where
K is the output size. Chan [12] provided an improved strongly subquadratic time bound
(excluding the cost of reporting the output) when d = O(log |Q|), with a sufficiently small
constant of proportionality.

1 That is, the underlying metric is induced by a norm, whose unit ball is a symmetric convex polytope
with O(1) facets (e.g., L1, L∞).

O. Gold and M. Sharir 25:5

I Lemma 3 (Chan [12]). Given a finite set Q ⊂ Rd of red and blue points, one can compute
all bichromatic dominating pairs (p, q) ∈ Q2 in time O(cdε |Q|1+ε +K), where K is the output
size, ε ∈ (0, 1) is an arbitrary prespecified parameter, and cε = 2ε/(2ε − 1).

Throughout the paper, we invoke Lemma 3 many times, with ε = 1/2, cε ≈ 3.42, and
d = δ logn, where δ > 0 is a sufficiently small constant, chosen to make the overall running
time of all the invocations dominated by the total output size; see below for details.

We denote by [N] = {1, . . . , dNe}, the set of the first dNe natural numbers, for any
N ∈ R+.

Throughout the paper, we sometimes refer to a square matrix as a box.
Our model of computation is a simplified Real RAM model, in which “truly real” numbers

are subject to only two unit-time operations: addition and comparison. In all other respects,
the machine behaves like a w = O(logn)-bit word RAM with the standard repertoire of
unit-time AC0 operations, such as bitwise Boolean operations, and left and right shifts.

3 Dynamic Time Warping in Subquadratic Time

As above, the input consists of two sequences A = (p1, . . . , pn) and B = (q1, . . . , qn) of n
points in R. Our algorithm can easily be modified to support the case where A and B have
different lengths.

Preparations. We fix some (small) parameter g, whose value will be specified later; for
simplicity, we assume that n

g−1 is an integer. We decompose A and B into s = n
g−1

subsequences A1, . . . , As, and B1, . . . , Bs, such that for each i, j ∈ {2, . . . , s}, each of Ai and
Bj consists of g − 1 consecutive elements of the corresponding sequence, prefixed by the
last element of the preceding subsequence. We have that A1 and B1 are both of size g − 1,
each Ai and Bj is of size g, for each i, j ∈ {2, . . . , s}, and each consecutive pairs Ai, Ai+1 or
Bj , Bj+1 have one common element.

For each i, j ∈ [s], denote by Di,j the all-pairs-distances matrix between points from Ai
and points from Bj ; specifically, Di,j is a g × g matrix (aka box) (see below for the cases
i = 1 or j = 1) such that for every `,m ∈ [g],

Di,j [`,m] =
∣∣Ai(`)−Bj(m)

∣∣.
For all i ∈ [s], we add a leftmost column with ∞ values to each box Di,1, and similarly, we
add a bottommost row with ∞ values to each box D1,i. In particular, D1,1 is augmented by
both new leftmost column and new bottommost row. The common element D1,1[0, 0] of this

row and column is set to 0. Overall, we have s2 =
(

n
g−1

)2
boxes Di,j , all of size g × g.

We define a staircase path P on a g×g matrix Di,j as a sequence of positions from [g]× [g]
that form a monotone staircase structure, starting from a cell on the left or bottom boundary
and ending at the right or top boundary, so that each subsequent position is immediately
either to the right, above, or above-right of the previous one. Formally, by enumerating the
path positions as P (0), . . . , P (t∗), we have P (t+1) ∈ {P (t)+(0, 1), P (t)+(1, 0), P (t)+(1, 1)},
for each t = 0, . . . , t∗ − 1. The path starts at some point P (0) = (·, 1) or (1, ·), which lies
on either the left or the bottom boundary, and ends at some t∗ (not necessarily the first
such index) for which P (t∗) = (·, g) or (g, ·); that is, P ends on either the right or the top
boundary. Note that t∗ can have any value in [2g − 2]. The number of possible monotone

ICALP 2017

25:6 Dynamic Time Warping and Geometric Edit Distance

staircase paths in a box Di,j is trivially bounded by O(g232g−2), and by observing more
carefully, we can bound it by O(32g), as is easily checked.2

We define the cost of a staircase path P in a box Di,j by

costi,j(P) =
t∗∑
t=1

Di,j(P (t)).

(For technical reasons, that will become clear in the sequel, we generally do not include the
first position P (0) of the path in evaluating its cost, except in the boxes Di,1 and D1,j for all
i, j ∈ [s].) In the algorithm that follows, we want to assume (or ensure) that no two distinct
paths in a box Di,j have the same cost. This will be the case if we assume that the input
sequences are in sufficiently general position. We omit in this study perturbation techniques
that can handle degenerate situations.

We denote by L the set of positions in the left and bottom boundaries of any box Di,j ,
and by R the set of positions in the right and top boundaries (note that L and R have two
common positions). Given a starting position v ∈ L, and an ending position w ∈ R, we
denote by S(v, w) the set of all staircase paths Pv,w that start at v and end at w (if there is
no staircase path between v and w, then S(v, w) = ∅). We say that P ∗v,w ∈ S(v, w) is the
shortest path between v and w in Di,j iff

costi,j
(
P ∗v,w

)
= min
Pv,w∈S(v,w)

{costi,j (Pv,w)} .

Note that according to our general position assumption, the shortest path between v and w,
within a given box, is unique.

First Stage: Preprocessing. The first stage of our algorithm is to construct a data structure
in subquadratic time (and storage), such that for each box Di,j , and for each pair of positions
(v, w) ∈ L×R, we can retrieve the shortest path P ∗v,w and costi,j(P ∗v,w) in O(1) time, when
such a path exists (i.e., when S(v, w) is nonempty).

The algorithm enumerates all (2g−1)2 pairs of positions (v, w) in a g×g matrix (box) such
that v ∈ L and w ∈ R, discarding pairs that cannot be connected by a monotone staircase
path, and referring to the surviving pairs as admissible. Again, we simplify the notation
by upper bounding this quantity by 4g2. For each such admissible pair (v, w) ∈ L × R,
we enumerate every possible staircase path in S(v, w) as Pv,w : [t∗]→ [g]× [g], where we
write Pv,w =

(
P r
v,w, P

c
v,w

)
as a pair of row and column functions P r

v,w, P
c
v,w : [t∗] → [g],

so that Pv,w(k) =
(
P r
v,w(k), P c

v,w(k)
)
, for each k ∈ [t∗]. (Note that t∗ is a path-dependent

parameter, determined by v, w and the number of diagonal moves in the path.) There are
O(32g) possible staircase paths Pv,w (for all admissible pairs (v, w) ∈ L×R combined), so in
total, we enumerate O(32g) staircase paths. These enumerations can be done in a natural
lexicographic order, so that they induce an order on the < 4g2 admissible pairs of positions of
L×R, and for each such pair (v, w), an order on all possible staircase paths Pv,w ∈ S(v, w).

Given two staircase paths Pv,w and P ′v,w with the same starting and ending posi-
tions in a box Di,j , we want to use the extended Fredman’s trick (as in (3)) to com-
pare costi,j (Pv,w) with costi,j

(
P ′v,w

)
, by comparing two expressions such that one de-

2 Each staircase path can be encoded by its first position, followed by its sequence of moves, where
each move is in one of the directions up/right/up-right. Thus, the number of staircase paths that
start in some position (r, 1) (resp. (1, r)) on the left (resp. bottom) boundary is bounded by 32g−1−r.
Thus, the total number of staircase paths that start in the left or the bottom boundary is bounded by
2
∑g

r=1 32g−1−r = O(32g).

O. Gold and M. Sharir 25:7

pends on points from Ai only and the other depends on points from Bj only. Sup-
pose that Pv,w = ((`1,m1), . . . , (`r,mr)) and P ′v,w = ((`′1,m′1), . . . , (`′t,m′t)) (note that
(`r,mr) = (`′t,m′t) = w, since both paths end at w, and that we ignore the starting positions
(`0,m0) = (`′0,m′0) = v). We have

costi,j (Pv,w) =
∣∣Ai(`1)−Bj(m1)

∣∣+ · · ·+
∣∣Ai(`r)−Bj(mr)

∣∣,
and

costi,j
(
P ′v,w

)
=
∣∣Ai(`′1)−Bj(m′1)

∣∣+ · · ·+
∣∣Ai(`′t)−Bj(m′t)∣∣,

and we want to test whether, say, costi,j (Pv,w) < costi,j
(
P ′v,w

)
(recall that we assume that

equalities do not arise), that is, testing whether∣∣Ai(`1)−Bj(m1)
∣∣+· · ·+∣∣Ai(`r)−Bj(mr)

∣∣ < ∣∣Ai(`′1)−Bj(m′1)
∣∣+· · ·+∣∣Ai(`′t)−Bj(m′t)∣∣. (4)

The last term in each side of (4) is actually unnecessary, since they are equal. In order to
transform this inequality into a form suitable for applying the extended Fredman’s trick (3),
we need to replace each absolute value |x| by either +x or −x, as appropriate. To see what
we are after, assume first that the expressions Ai(`k)−Bj(mk) and Ai(`′k)−Bj(m′k) are all
positive, so that (4) becomes

Ai(`1)−Bj(m1) + · · ·+Ai(`r)−Bj(mr) < Ai(`′1)−Bj(m′1) + · · ·+Ai(`′t)−Bj(m′t).

By (3) we can rewrite this inequality as

Ai(`1)+· · ·+Ai(`r)−Ai(`′1)−· · ·−Ai(`′t) < Bj(m1)+· · ·+Bj(mr)−Bj(m′1)−· · ·−Bj(m′t),

which can be written as

Ai(P r
v,w(1)) + · · ·+Ai(P r

v,w(r))−Ai(P ′ rv,w(1))− · · · −Ai(P ′ rv,w(t)) (5)
< Bj(P c

v,w(1)) + · · ·+Bj(P c
v,w(r))−Bj(P ′ cv,w(1))− · · · −Bj(P ′ cv,w(t)). (6)

If Pv,w = P ∗v,w (i.e., if Pv,w is the shortest path from v to w) in Di,j then the inequality above
holds for all pairs (Pv,w, P ′v,w), where P ′v,w ∈ S(v, w) is any other staircase path between v
and w.

For each admissible pair of positions (v, w) ∈ L×R, we guess a staircase path Pv,w as
a candidate for being the shortest path from v to w. The overall number of such guesses
is fewer than (32g)4g2 = 38g3 . For a fixed choice of paths, one for each admissible pair
(v, w) ∈ L×R, we want to test whether all the < 4g2 guessed paths are the shortest paths
between the corresponding pairs of positions. As unfolded next, we will apply this test for all
boxes Di,j , and output those boxes at which the outcome is positive (for the current guessed
set of shortest paths). We will repeat the procedure for all < 38g3 possible sets of guessed
paths Pv,w.

Testing a fixed guess of shortest paths. For each group Ai, we create a (blue) point
αi, and for each group Bj we create a (red) point βj , such that, for every admissible pair
(v, w) ∈ L × R, we have one coordinate for each path P ′v,w ∈ S(v, w), different from the
guessed path. The value of αi (resp., βj) at that coordinate is the corresponding expression (5)
(resp., (6)). The points αi and βj are embedded in Rdg , where dg =

∑
(v,w) Γv,w is the sum

over all admissible pairs (v, w) ∈ L×R, and Γv,w is the number of monotone staircase paths
from v to w minus 1. As discussed earlier, dg = O(32g).

ICALP 2017

25:8 Dynamic Time Warping and Geometric Edit Distance

We have that a (blue) point

αi =
(
. . . , Ai(P r

v,w(1)) + · · ·+Ai(P r
v,w(r))−Ai(P ′ rv,w(1))− · · · −Ai(P ′ rv,w(t)), . . .

)
is dominated by a (red) point

βj =
(
. . . , Bj(P c

v,w(1)) + · · ·+Bj(P c
v,w(r))−Bj(P ′ cv,w(1))− · · · −Bj(P ′ cv,w(t)), . . .

)
,

if and only if each of the paths that we guessed (a path for every admissible pair (v, w) ∈ L×R)
are the shortest paths between the corresponding positions v, w in box Di,j . The number
of points is 2s = Θ(n/g), and the time to prepare the points, i.e., to compute all their
coordinates, is O(2s · 32g · g) = O(32gn).

By Lemma 3, we can report all pairs of points (αi, βj) such that αi is dominated by βj ,
in O

(
c3

2g

ε (n/g)1+ε +K
)
time, where K is the number of boxes at which the test of our

specific guesses comes out positive. As mentioned earlier, we use ε = 1/2, with cε ≈ 3.42.
This runtime is for a specific guess of a set of shortest paths between all admissible pairs

in L × R. As already mentioned, we repeat this procedure at most 38g3 times. Overall,
we will report exactly s2 = Θ

(
(n/g)2) dominating pairs (red on blue), because the set of

shortest paths between admissible pairs in L × R in each box Di,j is unique (recall, we
assumed that any pair of distinct staircase paths in a box do not have the same cost). Since
the overall number of guesses is bounded by 38g3 , the overall runtime for all invocations of
the bichromatic dominance reporting algorithm (including preparing the points) is

O
(

38g3
(

32gn+ c3
2g

ε (n/g)1+ε
)

+ (n/g)2
)
.

Recall that, so far, we have assumed that all the differences within the absolute values
Di,j [`,m] =

∣∣Ai(`)−Bj(m)
∣∣ are positive, which allowed us to drop the absolute values, and

write Di,j [`,m] = Ai(`)−Bj(m), for every i, j ∈ [s], and `,m ∈ [g], thereby facilitating the
use of (the extended) Fredman’s trick (3). Of course, in general this will not be the case, so,
in order to still be able to drop the absolute values, we also have to guess the signs of all
these differences.

For each box Di,j , there is a unique sign assignment σ∗ : [g]× [g]→ {−1, 1} such that

Di,j [`,m] =
∣∣Ai(`)−Bj(m)

∣∣ = σ∗(`,m)(Ai(`)−Bj(m)),

for every `,m ∈ [g] (our “general position” assumption implies that each difference is nonzero).
Thus for any staircase path P = (P r, P c) in Di,j , of length t∗, we have

costi,j(P) =
t∗∑
t=1

σ∗(P (t)) (Ai(P r(t))−Bj(P c(t))) .

Now we proceed as before, guessing sets of paths, but now we also guess the sign
assignment of the box, by trying every possible assignment σ : [g] × [g] → {−1, 1}, and
modify the points αi and βj , defined earlier, by (i) adding sign factors to each term, and
(ii) adding coordinates that enable us to test whether σ is the correct assignment σ∗ for the
corresponding boxes Di,j .

Denote by P the guessed shortest path for some admissible pair of positions (v, w) ∈ L×R,
and let σ be the guessed sign assignment. Then, for every other path P ′ ∈ S(v, w), we have
the following modified coordinates for αi and βj respectively.(
. . . , σ(P (1))Ai(P r(1)) + · · · + σ(P (r))Ai(P r(r)) − σ(P ′(1))Ai(P ′ r(1)) − · · · − σ(P ′(t))Ai(P ′ r(t)), . . .

)
,(

. . . , σ(P (1))Bj(P c(1)) + · · · + σ(P (r))Bj(P c(r)) − σ(P ′(1))Bj(P ′ c(1)) − · · · − σ(P ′(t))Bj(P ′ c(t)), . . .
)
,

O. Gold and M. Sharir 25:9

where we use the same notations as in (4), (5), and (6). In addition, to validate the correctness
of σ, we extend αi and βj by adding the following g2 coordinates to each of them. For every
pair (`,m) ∈ [g]× [g], we add the following coordinates to αi and βj respectively.

(. . . ,−σ(`,m)Ai(`), . . .) ,
(. . . ,−σ(`,m)Bj(m), . . .) .

This ensures that a point αi is dominated by a point βj if and only if Di,j [`,m] =
σ(`,m) (Ai(`)−Bj(m)), for every `,m ∈ [g], and all the < 4g2 paths that we guessed
are indeed shortest paths in box Di,j .

The runtime analysis is similar to the preceding one, but now we increase the number of
guesses by a factor of 2g2 for the sign assignments, and the dimension of the space where
the points are embedded increases by g2 additional coordinates. We now have 2s = Θ(n/g)
points in Rdg+g2 (dg = O(32g) is as defined earlier), and the time to prepare them (computing
the value of each coordinate) is O((n/g)(dg + g2)g) = O(32gn). There are at most 38g3 sets
of paths to guess, and for each set, there are at most 2g2 sign assignment guesses, so in total,
we invoke the bichromatic dominance reporting algorithm at most 2g238g3

< 38g3+g2 times,
for an overall runtime (including preparing the points) of

O
(

38g3+g2
(

32gn+ c3
2g+g2

ε (n/g)1+ε
)

+ (n/g)2
)
.

By setting ε = 1/2 and g = δ log logn, for a suitable sufficiently small constant δ, the first
two terms become negligible (strongly subquadratic), and the runtime is therefore dominated
by the output size, that is O

(
(n/g)2) = O

(
n2/(log logn)2). Each reported pair (αi, βj)

certifies that the current set of < 4g2 guessed paths are all shortest paths in box Di,j . Each
of the s2 = Θ

(
(n/g)2) sets of shortest paths is represented by O(g3) = O((log logn)3) bits

(there are < 4g2 shortest paths connecting admissible pairs, each of length at most 2g − 1,
and each path can be encoded by its first position, followed by the sequence of its at most
2g − 2 moves, where each move is in one of the three directions up/right/up-right), and thus
it can easily be stored in one machine word (for sufficiently small δ). Moreover, we have an
order on the pairs (v, w) (induced by our earlier enumeration), so for each set, we can store
its shortest paths in this order, and therefore, accessing a specific path (for some admissible
pair) from the set takes O(1) time.

Note, however, that we obtain only the positions that the paths traverse and not their
cost. In later stages of our algorithm we will also need to compute, on demand, the cost of
certain paths, but doing this naively would take O(g) time per path, which is too expensive
for us. To handle this issue, when we guess a sign assignment σ, and a set S of the < 4g2

paths as candidates for the shortest paths, we also compute and store, for each path P ∈ S
that we have not yet encountered, the rows-value of P in Ai,

V r
i (P, σ) = σ(P (1))Ai(P r(1)) + · · ·+ σ(P (t∗))Ai(P r(t∗)),

for every i ∈ [s], and the columns-value of P in Bj ,

V c
j (P, σ) = σ(P (1))Bj(P c(1)) + · · ·+ σ(P (t∗))Bj(P c(t∗)),

for every j ∈ [s], where t∗ is the length of P . Observe that, for the correct sign assignment
σ∗ of box Di,j ,

costi,j(P) = V r
i (P, σ∗)− V c

j (P, σ∗). (7)

ICALP 2017

25:10 Dynamic Time Warping and Geometric Edit Distance

We do not compute V r
i (P, σ) − V c

j (P, σ) yet, but only compute and store (if not already
stored) the separate quantities V r

i (P, σ) and V c
j (P, σ), for each P ∈ S, for every guessed

set S, and sign assignment σ. We store the values V r
i (P, σ) and V c

j (P, σ) in arrays, ordered
by the earlier enumeration of all staircase paths, so that given a staircase path P , and
indices κ, κ′ ∈

[
n
g−1

]
, we can retrieve, upon demand, the values V r

κ(P, σ∗) and V c
κ′(P, σ∗),

and compute costκ,κ′(P) by using (7), in O(1) time. In total, over all our guessed paths
and sign assignments, this takes O(2g232g · (n/g) · g) = O(3g2+2gn) time and space, which is
already subsumed by the time (and space) bound for reporting dominances from the previous
stage.

To summarize this stage of the algorithm, we presented a subquadratic-time preprocessing
procedure, which runs in O

(
(n/g)2) = O

(
n2/(log logn)2) time, such that for any box Di,j ,

and an admissible pair of positions (v, w) ∈ L×R, we can retrieve the shortest path P ∗v,w
in O(1) time, as well as compute costi,j(P ∗v,w) in O(1) time. This will be useful in the next
stage of our algorithm.

Second Stage: Compact Dynamic Programming. Our approach is to view the (n +
1) × (n + 1) matrix M from the dynamic programming algorithm as decomposed into
s2 =

(
n
g−1

)2
boxes Mi,j , each of size g × g, so that each box Mi,j occupies the same

positions as does the corresponding box Di,j . That is, the indices of the rows (resp.,
columns) of Mi,j are those of Ai (resp., Bj). In particular, for each i, j ∈ [s], the positions
(·, g) on the right boundary of each box Mi,j coincide with the corresponding positions
(·, 1) on the left boundary of Mi,j+1, and the positions (g, ·) on the top boundary of Mi,j

coincide with the corresponding positions (1, ·) on the bottom boundary of Mi+1,j . Formally,
Mi,j [`,m] = M [(i− 1)(g − 1) + `, (j − 1)(g − 1) +m], for each position (`,m) ∈ [g] × [g].
See Figure 1 for an illustration.

Our strategy is to traverse the boxes, starting from the leftmost-bottom one M1,1, where
we already have the values of M at the positions of its left and bottom boundaries L, and
we compute the values of M on its top and right boundaries R. We then continue to the box
on the right, M1,2, now having the values on its L-boundary (where its left portion overlaps
with the R-boundary of M1,1 and its bottom portion is taken from the already preset bottom
boundary), and we compute the values of M on its R-boundary. We continue in this way
until we reach the rightmost-bottom box M1,s. We then continue in the same manner in the
next row of boxes, starting at M2,1 and ending at M2,s, and keep going through the rows of
boxes in order. The process ends once we compute the values of M on the R-boundary of
the rightmost-top box Ms,s, from which we obtain the desired entry M [n, n].

For convenience, we enumerate the positions in L as L(1), . . . , L(2g − 1) in “clockwise”
order, so that L(1) is the rightmost-bottom position (1, g), and L(2g − 1) is the leftmost-
top position (g, 1). Similarly, we enumerate the positions of R by R(1), . . . , R(2g − 1)
in “counterclockwise” order, with the same starting and ending locations. Let Mi,j(L) =
{Mi,j [L(1)], . . .Mi,j [L(2g−1)]} andMi,j(R) = {Mi,j [R(1)], . . .Mi,j [R(2g−1)]}, for i, j ∈ [s].

By definition, for each position (`,m) ∈ [n+ 1]× [n+ 1], M [`,m] is the minimal cost of a
staircase path from (0, 0) to (`,m). It easily follows, by construction, that for each box Di,j ,
and for each w ∈ R, we have

Mi,j [w] = min
u∈L

(u,w) admissible

{
Mi,j [u] + costi,j(P ∗u,w)

}
. (8)

(Note that, by definition, the term Di,j [u] is included in Mi,j [u] and not in P ∗u,w, so it is not
doubly counted.) For each box Mi,j and each position w ∈ R, our goal is thus to compute

O. Gold and M. Sharir 25:11

Mi;jMi;j−1

Mi−1;j

L

R

Figure 1 The L-boundary (shaded in gray) of box Mi,j overlaps with the top boundary of Mi−1,j

and the right boundary of Mi,j−1. Once we have the values of M at the positions of the L-boundary
of Mi,j , our algorithm computes the values of M at the positions of its R-boundary (shaded in blue).

the position u ∈ L that attains the minimum in (8). We call such (u,w) the minimal pair
for w in Mi,j .

For each box Di,j , and each admissible pair (v, w) ∈ L × R, we refer to the value
Mi,j [v] + costi,j(P ∗v,w) as the cumulative cost of the pair (v, w), and denote it by c-cost(v, w).

We can rewrite (8), for each w ∈ R, as

Mi,j [w] = min
{
ML
i,j [w], MB

i,j [w]
}
,

where MB
i,j [w] is the minimum in (8) computed only over u ∈ {L(1), . . . , L(g)}, which is the

portion of L that overlaps the R-boundary of the bottom neighbor Mi−1,j (when i > 1),
and ML

i,j [w] is computed over u ∈ {L(g), . . . , L(2g − 1)}, which overlaps the R-boundary of
the left neighbor Mi,j−1 (when j > 1). See Figure 1 for a schematic illustration. (Recall
that the bottommost row and the leftmost column of M are initialized with ∞ values,
except their shared cell M [0, 0] that is initialized with 0.) The output of the algorithm is
Ms,s[R(g)] = Ms,s[g, g] = M [n, n]. We can also return the optimal coupling, by using a
simple backward pointer tracing procedure.

Computing minimal pairs. We still have to explain how to compute the minimal pairs
(u,w) in each box Mi,j . Our preprocessing stage produces, for every box Di,j , the set of
all its shortest paths Si,j = {P ∗v,w | (v, w) ∈ L×R} (ordered by the earlier enumeration of
L×R and including only admissible pairs), and we can also retrieve the cost of each of these
paths in O(1) time (as explained earlier in the preprocessing stage). The cumulative cost
(defined above) of each such pair (v, w) can also be computed in O(1) time, assuming we have
already computed Mi,j [v]. A naive, brute-force technique for computing the minimal pairs is
to compute all the cumulative costs c-costi,j(v, w), for all admissible pairs (v, w) ∈ L×R,
and select from them the minimal pairs. This however would take O(g2) time for each of the
s2 boxes, for a total of Θ(g2s2) = Θ(n2) time, which is what we want to avoid.

Luckily, we have the following important lemma, which lets us compute all the minimal
pairs within a box, significantly faster than in O(g2) time.

I Lemma 4. For a fixed box Di,j , and for any two distinct positions w,w′ ∈ R, let u, u′ ∈ L be
the positions for which (u,w) and (u′, w′) are minimal pairs inMi,j . Then their corresponding
shortest paths P ∗u,w and P ∗u′,w′ can partially overlap but can never cross each other. Formally,
assuming that w > w′ (in the counterclockwise order along R), we have that for any

ICALP 2017

25:12 Dynamic Time Warping and Geometric Edit Distance

u′

u

w′

w

h

Mi,j

Figure 2 By Lemma 4, if (u,w) and (u′, w′) are minimal pairs in Mi,j , then the illustrated
scenario is impossible, since the path P ∗u,w (in green) is a portion of the shortest path from M [0, 0]
to Mi,j [w], and the path P ∗u′,w′ (in orange) is a portion of the shortest path from M [0, 0] to Mi,j [w′].
The illustrated intersection implies that one of the latter paths can decrease its cumulative cost by
replacing its portion that ends at h by the respective portion that ends in h of the other path, which
contradicts the fact that both of these paths are shortest paths.

`, `′,m ∈ [g], if (`,m) ∈ P ∗u,w and (`′,m) ∈ P ∗u′,w′ then ` ≥ `′. That is, P ∗u,w lies fully above
P ∗u′,w′ (partial overlapping is possible). In particular, we also have u ≥ u′ (in the clockwise
order along L)

Lemma 4 asserts the so-called Monge property of shortest-path matrices (see, e.g., [10, 24]).
See Figure 2 for an illustration (of an impossible crossing) and a sketch of a proof.

We can therefore use the following divide-and-conquer paradigm for computing the
minimal pairs within a box Di,j . We start by setting the median index k = b|R|/2c of
|R|, and compute the minimal pair (u,R(k)) and c-cost(u,R(k)), naively, in O(g) time, as
explained above. The path P ∗u,R(k) decomposes the box Di,j into two parts, so that one part,
X, consists all the positions in Di,j that are (weakly) above P ∗u,R(k), and the other part,
Y , consists all the positions in Di,j that are (weakly) below P ∗u,R(k), so that X and Y are
disjoint, except for the positions along the path P ∗u,R(k) which they share. By Lemma 4, the
shortest paths between any other minimal pair of positions in L×R can never cross P ∗u,R(k).
Thus, we can repeat this process separately in X and in Y . Note that the input to each
recursive step is just the sequences of positions of X and Y along L and R, respectively (and
we encode each sequence simply by its first and last elements); there is no need to keep track
of the corresponding portion of Di,j itself.

Denote by T (a, b) the maximum runtime for computing all the minimal pairs (u,w),
within any box Mi,j , for u in some contiguous portion L′ of a entries of L, and w in some
contiguous portion R′ of b entries of R. Clearly, T (1, b) = O(b), and T (a, 1) = O(a). In
general, the runtime is bounded by the recurrence

T (a, b) = max
k∈[a]

{
T (k, b/2) + T (a− k + 1, b/2)

}
+O(a).

It is an easy exercise to show that the solution of this recurrence satisfies T (a, b) =
O ((a+ b) log b). Thus, the runtime of the divide-and-conquer procedure described above,
for a fixed box Mi,j , is O ((|R|+ |L|) log |R|) = O(g log g).

The runtime of computingMi,j(R) for all s2 = Θ
(
(n/g)2) boxes is thusO ((n/g)2g log g

)
=

O
(
n2 log g/g

)
. Overall, including the preprocessing stage, the total runtime of the algorithm

is O
(
(n/g)2 + n2 log g/g

)
= O

(
n2 log g/g

)
. As dictated by the preprocessing stage, we

need to choose g = Θ(log logn), so the overall runtime is O
(
n2 log log logn/ log logn

)
. This

completes the proof of Theorem 1 for DTW. J

O. Gold and M. Sharir 25:13

References
1 A. Abboud, A. Backurs, and V.V. Williams. Tight hardness results for lcs and other

sequence similarity measures. In Proceedings of the 56th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pages 59–78, 2015. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Willi-
ams. Simulating branching programs with edit distance and friends: Or: A polylog shaved
is a lower bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, pages 375–388, 2016. doi:10.1145/2897518.2897653.

3 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

4 Pankaj K. Agarwal, Kyle Fox, Jiangwei Pan, and Rex Ying. Approximating dynamic
time warping and edit distance for a pair of point sequences. In Proceedings of the 32nd
International Symposium on Computational Geometry, SoCG, pages 6:1–6:16, 2016. doi:
10.4230/LIPIcs.SoCG.2016.6.

5 V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the
transitive closure of a directed graph. Dokl. Akad. Nauk., 194(11), 1970.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proceedings of the 47th Annual ACM on Symposium
on Theory of Computing, STOC, pages 51–58, 2015. doi:10.1145/2746539.2746612.

7 Philip Bille and Martin Farach-Colton. Fast and compact regular expression matching.
Theoretical Computer Science, 409(3):486–496, 2008. doi:10.1016/j.tcs.2008.08.042.

8 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS, pages 661–670, 2014. doi:
10.1109/FOCS.2014.76.

9 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science, FOCS, pages 79–97, 2015. doi:10.1109/FOCS.2015.
15.

10 Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of Monge proper-
ties in optimization. Discrete Applied Mathematics, 70(2):95–161, 1996. doi:10.1016/
0166-218X(95)00103-X.

11 E.G. Caiani, A. Porta, G. Baselli, M. Turiel, S. Muzzupappa, F. Pieruzzi, C. Crema,
A. Malliani, and S. Cerutti. Warped-average template technique to track on a cycle-by-
cycle basis the cardiac filling phases on left ventricular volume. In Computers in Cardiology,
pages 73–76, 1998. doi:10.1109/CIC.1998.731723.

12 T.M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Algorithmica,
50(2):236–243, 2008.

13 Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Heinrich Huss-
mann. Touch me once and I know it’s you!: Implicit authentication based on touch screen
patterns. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 987–996, 2012. doi:10.1145/2207676.2208544.

14 Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
New York, 1998.

15 Alon Efrat, Quanfu Fan, and Suresh Venkatasubramanian. Curve matching, time warping,
and light fields: New algorithms for computing similarity between curves. Journal of Math-
ematical Imaging and Vision, 27(3):203–216, 2007. doi:10.1007/s10851-006-0647-0.

ICALP 2017

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1145/2897518.2897653
http://dx.doi.org/10.1137/130920526
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.6
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.6
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/j.tcs.2008.08.042
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1016/0166-218X(95)00103-X
http://dx.doi.org/10.1016/0166-218X(95)00103-X
http://dx.doi.org/10.1109/CIC.1998.731723
http://dx.doi.org/10.1145/2207676.2208544
http://dx.doi.org/10.1007/s10851-006-0647-0

25:14 Dynamic Time Warping and Geometric Edit Distance

16 M.L. Fredman. How good is the information theory bound in sorting? Theor. Comput.
Sci, 1(4):355–361, 1976.

17 M.L. Fredman. New bounds on the complexity of the shortest path problem. SIAM J.
Comput., 5(1):83–89, 1976.

18 Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degeneracy.
CoRR, abs/1512.05279, 2015.

19 Omer Gold and Micha Sharir. Dynamic time warping and geometric edit distance: Breaking
the quadratic barrier. CoRR, abs/1607.05994, 2016. URL: http://arxiv.org/abs/1607.
05994.

20 Szymon Grabowski. New tabulation and sparse dynamic programming based techniques for
sequence similarity problems. Discrete Applied Mathematics, 212:96–103, 2016. Stringology
Algorithms. doi:10.1016/j.dam.2015.10.040.

21 A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles. In Proceedings 55th
Annual Symposium on Foundations of Computer Science (FOCS), pages 621–630, 2014.

22 Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

23 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

24 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in Monge matrices and Monge partial matrices, and their applications. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 338–355, 2012.

25 Eamonn Keogh and Ann Chotirat Ratanamahatana. Exact indexing of dynamic time
warping. Knowledge and Information Systems, 7(3):358–386, 2005. doi:10.1007/
s10115-004-0154-9.

26 Eamonn J. Keogh and Michael J. Pazzani. Scaling up Dynamic Time Warping
to Massive Datasets, pages 1–11. Springer Berlin-Heidelberg, 1999. doi:10.1007/
978-3-540-48247-5_1.

27 Eamonn J. Keogh and Michael J. Pazzani. Scaling up dynamic time warping for datamining
applications. In Proceedings of the 6th ACM SIGKDD International Conference on Know-
ledge Discovery and Data Mining, pages 285–289, 2000. doi:10.1145/347090.347153.

28 Theo Gasser Kongming Wang. Alignment of curves by dynamic time warping. Annals of
Statistics, 25(3):1251–1276, 1997.

29 William J. Masek and Michael S. Paterson. A faster algorithm computing string edit
distances. Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/
0022-0000(80)90002-1.

30 Meinard Müller. Information Retrieval for Music and Motion, pages 69–84. Springer
Berlin-Heidelberg, 2007. doi:10.1007/978-3-540-74048-3_4.

31 F.P. Preparata and M. I. Shamos. Computational Geometry. Springer, New York, NY,
1985.

32 Chotirat A. Ratanamahatana and Eamonn Keogh. Three myths about dynamic time
warping data mining. In Proceedings of the 2005 SIAM International Conference on Data
Mining, pages 506–510, 2005. doi:10.1137/1.9781611972757.50.

33 T.K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. doi:10.1007/BF01074755.

34 Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and
Eamonn Keogh. Experimental comparison of representation methods and distance meas-
ures for time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.
doi:10.1007/s10618-012-0250-5.

http://arxiv.org/abs/1607.05994
http://arxiv.org/abs/1607.05994
http://dx.doi.org/10.1016/j.dam.2015.10.040
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.1007/978-3-540-48247-5_1
http://dx.doi.org/10.1007/978-3-540-48247-5_1
http://dx.doi.org/10.1145/347090.347153
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.1007/978-3-540-74048-3_4
http://dx.doi.org/10.1137/1.9781611972757.50
http://dx.doi.org/10.1007/BF01074755
http://dx.doi.org/10.1007/s10618-012-0250-5

Efficient Construction of Probabilistic Tree
Embeddings∗†

Guy E. Blelloch1, Yan Gu2, and Yihan Sun3

1 Carnegie Mellon University, Pittsburgh, PA, USA
guyb@cs.cmu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
yan.gu@cs.cmu.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
yihans@cs.cmu.edu

Abstract
In this paper we describe an algorithm that embeds a graph metric (V, dG) on an undirected
weighted graph G = (V,E) into a distribution of tree metrics (T,DT) such that for every pair
u, v ∈ V , dG(u, v) ≤ dT (u, v) and ET [dT (u, v)] ≤ O(logn) · dG(u, v). Such embeddings have
proved highly useful in designing fast approximation algorithms, as many hard problems on
graphs are easy to solve on tree instances. For a graph with n vertices andm edges, our algorithm
runs in O(m logn) time with high probability, which improves the previous upper bound of
O(m log3 n) shown by Mendel et al. in 2009.

The key component of our algorithm is a new approximate single-source shortest-path al-
gorithm, which implements the priority queue with a new data structure, the bucket-tree struc-
ture. The algorithm has three properties: it only requires linear time in the number of edges in
the input graph; the computed distances have a distance preserving property; and when comput-
ing the shortest-paths to the k-nearest vertices from the source, it only requires to visit these
vertices and their edge lists. These properties are essential to guarantee the correctness and the
stated time bound.

Using this shortest-path algorithm, we show how to generate an intermediate structure, the
approximate dominance sequences of the input graph, in O(m logn) time, and further propose a
simple yet efficient algorithm to converted this sequence to a tree embedding in O(n logn) time,
both with high probability. Combining the three subroutines gives the stated time bound of the
algorithm.

We also show a new application of probabilistic tree embeddings: they can be used to accel-
erate the construction of a series of approximate distance oracles.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Graph Algorithm, Metric Embeddings, Probabilistic Tree Embeddings,
Single-source Shortest-paths

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.26

∗ The full version of this paper is available at arXiv:1605.04651 [7], https://arxiv.org/abs/1605.04651.
† This research was supported in part by NSF grants CCF-1314590 and CCF-1533858, and the Intel

Science and Technology Center for Cloud Computing.

EA
T

C
S

© Guy E. Blelloch, Yan Gu, and Yihan Sun;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.26
https://arxiv.org/abs/1605.04651
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Efficient Construction of Probabilistic Tree Embeddings

1 Introduction

The idea of probabilistic tree embeddings [4] is to embed a finite metric into a distribution
of tree metrics with a minimum expected distance distortion. A distribution D of trees of a
metric space (X, dX) should minimize the expected stretch ψ so that:
1. dominating property: for each tree T ∈ D, dX(x, y) ≤ dT (x, y) for every x, y ∈ X, and
2. expected stretch bound: ET∼D[dT (x, y)] ≤ ψ · dX(x, y) for every x, y ∈ X,
where dT (·, ·) is the tree metric, and ET∼D draws a tree T from the distribution D. After a
sequence of results [2, 3, 4], Fakcharoenphol, Rao and Talwar [17] eventually proposed an
elegant and asymptotically optimal algorithm (FRT-embedding) with ψ = O(logn).

Probabilistic tree embeddings facilitate many applications. They lead to practical al-
gorithms to solve a number of problems with good approximation bounds, for example, the
k-median problem, buy-at-bulk network design [8], and network congestion minimization [30].
A number of network algorithms use tree embeddings as key components, and such applica-
tions include generalized Steiner forest problem, the minimum routing cost spanning tree
problem, and the k-source shortest paths problem [22]. Also, tree embeddings are used in
solving symmetric diagonally dominant (SDD) linear systems. Classic solutions use spanning
trees as the preconditioner, but recent work by Cohen et al. [14] describes a new approach to
use trees with Steiner nodes (e.g. FRT trees).

In this paper we discuss yet another remarkable application of probabilistic tree embed-
dings: constructing of approximate distance oracles (ADOs)—a data structure with compact
storage (o(n2)) which can approximately and efficiently answer pairwise distance queries on
a metric space. We show that FRT trees can be used to accelerate the construction of some
ADOs [24, 34, 10].

Motivated by these applications, efficient algorithms to construct tree embeddings are
essential, and there are several results on the topic in recent years [12, 22, 8, 25, 21, 19, 6].
Some of these algorithms are based on different parallel settings, e.g. share-memory setting [8,
19, 6] or distributed setting [22, 21]. As with this paper, most of these algorithms [12, 22,
25, 21, 6] focus on graph metrics, which most of the applications discussed above are based
on. In the sequential setting, i.e. on a RAM model, to the best of our knowledge, the
most efficient algorithm to construct optimal FRT-embeddings was proposed by Mendel
and Schwob [25]. It constructs FRT-embeddings in O(m log3 n) expected time given an
undirected positively weighted graph with n vertices and m edges. This algorithm, as well
as the original construction in the FRT paper [17], works hierarchically by generating each
level of a tree top-down. However, such a method can be expensive in time and/or coding
complexity. The reason is that the diameter of the graph can be arbitrarily large and the
FRT trees may contain many levels, which requires complicated techniques, such as building
sub-trees based on quotient graphs.

Our results. The main contribution of this paper is an efficient construction of the FRT-
embeddings. Given an undirected positively weighted graph G = (V,E) with n vertices
and m edges, our algorithm builds an optimal tree embedding in O(m logn) time. In our
algorithm, instead of generating partitions by level, we adopt an alternative view of the FRT
algorithm in [22, 8], which computes the potential ancestors for each vertex using dominance
sequences of a graph (first proposed in [12], and named as least-element lists in [12, 22]).
The original algorithm to compute the dominance sequences requires O(m logn+ n log2 n)
time [12]. We then discuss a new yet simple algorithm to convert the dominance sequences
to an FRT tree only using O(n logn) time. A similar approach was taken by Khan et al. [22]
but their output is an implicit representation (instead of an tree) and under the distributed

G. E. Blelloch, Y. Gu, and Y. Sun 26:3

setting and it is not work-efficient without using the observations and tree representations
introduced by Blelloch et al. in [8].1

Based on the algorithm to efficiently convert the dominance sequences to FRT trees, the
time complexity of FRT-embedding construction is bottlenecked by the construction of the
dominance sequences. Our efficient approach contains two subroutines:

An efficient (approximate) single-source shortest-path algorithm, introduced in Section 3.
The algorithm has three properties: linear complexity, distance preservation, and the
ordering property (full definitions given in Section 3). All three properties are required for
the correctness and efficiency of constructing FRT-embedding. Our algorithm is a variant
of Dijkstra’s algorithm with the priority queue implemented by a new data structure
called bucket-tree structure.
An algorithm to integrate the shortest-path distances into the construction of FRT trees,
discussed in Section 4. When the diameter of the graph is nO(1), we show that an FRT tree
can be built directly using the approximate distances computed by shortest-path algorithm.
The challenge is when the graph diameter is large, and we proposed an algorithm
that computes the approximate dominance sequences of a graph by concatenating the
distances that only use the edges within a relative range of nO(1). Then we show why the
approximate dominance sequences still yield valid FRT trees.

With these new algorithmic subroutines, we show that the time complexity of computing
FRT-embedding can be reduced to O(m logn) w.h.p. for an undirected positively weighted
graph with arbitrary edge weight.

In addition to the efficient construction of FRT trees, this paper also discuss a new
application. We show that FRT trees are intrinsically Ramsey partitions (definition given in
Section 5) with asymptotically tight bound, and can achieve even better (constant) bounds
on distance approximation. Previous construction algorithms of optimal Ramsey partitions
are based on hierarchical CKR partitions, namely, on each level, the partition is individually
generated with an independent random radius and new random priorities. In this paper, we
present a new proof to show that the randomness in each level is actually unnecessary, so
that only one single random permutation is enough and the ratio of radii in consecutive levels
can be fixed as 2. Our FRT-tree construction algorithm therefore can be directly applied to
a number of different distance oracles that are based on Ramsey partitions and accelerates
the construction of these distance oracles.

2 Preliminaries and Notations

Let G = (V,E) be a weighted graph with edge lengths l : E → R+, and d(u, v) denote the
shortest-path distance in G between nodes u and v. Throughout this paper, we assume that
minx6=y d(x, y) = 1. Let ∆ = maxx,y d(x,y)

minx 6=y d(x,y) = maxx,y d(x, y), the diameter of the graph G.
In this paper, we use the single source shortest paths problem (SSSP) as a subroutine for

a number of algorithms. Consider a weighted graph with n vertices and m edges, Dijkstra’s
algorithm [15] solves the SSSP in O(m+ n logn) time if the priority queue of distances is
maintained using a Fibonacci heap [18].

A premetric (X, dX) defines on a set X and provides a function d : X ×X → R satisfying
d(x, x) = 0 and d(x, y) ≥ 0 for x, y ∈ X. A metric (X, dX) further requires d(x, y) = 0
iff x = y, symmetry d(x, y) = d(y, x), triangle inequality d(x, y) ≤ d(x, z) + d(z, y) for

1 A simultaneous work by Friedrichs et al. proposed an O(n log3 n) algorithm of this conversion (Lemma
7.2 in [19]).

ICALP 2017

26:4 Efficient Construction of Probabilistic Tree Embeddings

x, y, z ∈ X. The shortest-path distances on a graph is a metric and is called the graph metric
and denoted as dG.

We assume all intermediate results of our algorithm have word size O(logn) and basic
algorithmic operations can be finished within a constant time. Then within the range of
[1, nk], the integer part of natural logarithm of an integer and floor function of an real number
can be computed in constant time for any constant k. This can be achieved using standard
table-lookup techniques (similar approaches can be found in Thorup’s algorithm [32]). The
time complexity of the algorithms are measured using the random-access machine (RAM)
model.

A result holds with high probability (w.h.p.) for an input of size n if it holds with
probability at least 1− n−c for any constant c > 0, over all possible random choices made by
the algorithm.

Let [n] = {1, 2, · · · , n} where n is a positive integer.
We recall a useful fact about random permutations [31]:

I Lemma 1. Let π : [n]→ [n] be a permutation selected uniformly at random on [n]. The set
{i | i ∈ [n], π(i) = min{π(j) | j = 1, · · · , i}} contains O(logn) elements both in expectation
and with high probability.

3 An Approximate SSSP Algorithm

In this section we introduce a variant of Dijkstra’s algorithm. This is an efficient algorithm
for single-source shortest paths (SSSP) with linear time complexity O(m). The computed
distances are α-distance preserving:

I Definition 2 (α-distance preserving). For a weighted graph G = (V,E), the single-source
distances d(v) for v ∈ V from the source node s is α-distance preserving, if there exists a
constant 0 ≤ α ≤ 1 such that αdG(s, u) ≤ d(u) ≤ dG(s, u), and d(v)− d(u) ≤ dG(u, v), for
every u, v ∈ V .

α-distance preserving can be viewed as the triangle inequality on single-source distances (i.e.
d(u)+dG(u, v) ≥ d(v) for u, v ∈ V), and is required in many applications related to distances.
For example, in Corollary 4 we show that using Gabow’s scaling algorithm [20] we can
compute a (1 + ε)-approximate SSSP using O(m log ε−1) time. Also in many metric problems
including the contruction of optimal tree embeddings, distance preservation is necessary in
the proof of the expected stretch, and such an example is Lemma 11 in Section 4.3.

The preliminary version we discussed in Section 3.1 limits edge weights in [1, nk] for a
constant k, but with some further analysis in the full version of this paper we can extend
the range to [1, nO(m)]. This new algorithm also has two properties that are needed in the
construction of FRT trees, while no previous algorithms achieve them all:
1. (α-distance preserving) The computed distances from the source d(·) is α-distance pre-

serving.
2. (Ordering property and linear complexity) The vertices are visited in order of distance

d(·), and the time to compute the first k distances is bounded by O(m′) where m′ is the
sum of degrees from these k vertices.

The algorithm also works on directed graphs, although this is not used in the FRT
construction.

Approximate SSSP algorithms are well-studied [32, 23, 13, 29, 26]. In the sequential
setting, Thorup’s algorithm [32] compute single-source distances on undirected graphs with

G. E. Blelloch, Y. Gu, and Y. Sun 26:5

integer weights using O(n+m) time. Nevertheless, Thorup’s algorithm does not obey the
ordering property since it uses a hierarchical bucketing structure and does not visit vertices
in an order of increasing distances, and yet we are unaware of a simple argument to fix this.
Other algorithms are either not work-efficient (i.e. super-linear complexity) in sequential
setting, and / or violating distance preservation.

I Theorem 3. For a weighted directed graph G = (V,E) with edge weights between 1 and
nO(1), a (1/4)-distance preserving single-source shortest-path distances d(·) can be computed,
such that the distance to the k-nearest vertices v1 to vk by d(·)requires O(

∑k
i=1 degree(vi))

time.

The algorithm also has the two following properties. Since they are not used in the
construction of FRT trees, we review them in the full version of this paper. We discuss how
to (1) extend the range of edge weights to nO(m), and the cost to compute the k-nearest
vertices is O(logn d(vk) +

∑k
i=1 degree(vi)) where v1 to vk are the k nearest vertices; and (2)

compute (1 + ε)-distance-preserving shortest-paths for an arbitrary ε > 0:

I Corollary 4. (1 + ε)-distance-preserving shortest-paths for all vertices can be computed by
repeatedly using Theorem 3 O(log ε−1) times.

3.1 Algorithm Details
The key data structure in this algorithm is a bucket-tree structure shown in Figure 1 that
implements the priority queue in Dijkstra’s algorithm. With the bucket-tree structure, each
Decrease-Key or Extract-Min operation takes constant time. Given the edge range
in [1, nk], this structure has l = d(1 + k) log2 ne levels, each level containing a number of
buckets corresponding to the distances to the source node. In the lowest level (level 1) the
difference between two adjacent buckets is 2.

At anytime only one of the buckets in each level can be non-empty: there are in total
l active buckets to hold vertices, one in each level. The active bucket in each level is the
left-most bucket whose distance is larger than that of the current vertex being visited in
our algorithm. We call these active buckets the frontier of the current distance, and they
can be computed by the path string, which is a 0/1 bit string corresponding to the path
from the current location to higher levels (until the root), and 0 or 1 is decided by whether
the node is the left or the right child of its parent. For clarity, we call the buckets on the
frontier frontier buckets, and the ancestors of the current bucket ancestor buckets (can
be traced using the path string). For example, as the figure shows, if the current distance is
4, then the available buckets in the first several levels are the buckets corresponding to the
distances 6, 5, 11, 7, and so on. The ancestor bucket and the frontier bucket in the same level
may or may not be the same, depending on whether the current bucket is the left or right
subtree of this bucket. For example, the path string for the current bucket with label 4 is
0100 and so on, and ancestor buckets correspond to 4, 5, 3, 7 and so on. It is easy to see that
given the current distance, the path string, the ancestor buckets, and the frontier buckets
can be computed in O(l) time—constant time per level.

Note that since only one bucket in each level is non-empty, the whole structure need
not to be build explicitly: we store one linked list for each level to represent the only active
bucket in the memory (l lists in total), and use the current distance and path string to
retrieve the location of the current bucket in the structure.

With the bucket-tree structure acting as the priority queue, we can run standard Dijkstra’s
algorithm. The only difference is that, to achieve linear cost for an SSSP query, the operations
of Decrease-Key and Extract-Min need to be redefined on the bucket-tree structure.

ICALP 2017

26:6 Efficient Construction of Probabilistic Tree Embeddings

0 21

2

3

4

frontier

3

1 5 9

11
Ancestor bucket

Frontier bucket

Ancestor/Frontier

bucket
4 6 8

7

10

Figure 1 An illustration of a bucket-tree structure with the lowest 4 levels, and the current
visiting bucket has distance 4. Notice that our algorithm does not insert vertices to the same level
as the current bucket (i.e. bucket 6).

Once the relaxation of an edge succeeds, a Decrease-Key operation for the corresponding
vertex will be applied. In the bucket-tree structure it is implemented by a Delete (if the
vertex is added before) followed by an Insert on two frontier buckets respectively. The
deletion is trivial with a constant cost, since we can maintain the pointer from each vertex
to its current location in the bucket tree. We mainly discuss how to insert a new tentative
distance into the bucket tree. When vertex u successfully relaxes vertex v with an edge e, we
first round down the edge weight we by computing r = blog2 (we + 1)c. Then we find the
appropriate frontier bucket B that the difference of the distances w′e between this bucket
B and the current bucket is the closest to (but no more than) wr = 2r − 1, and insert the
relaxed vertex into this bucket. The constant approximation for this insertion operation
holds due to the following lemma:

I Lemma 5. For an edge with length we, the approximated length w′e, which is the distance
between the inserted bucket B and the current bucket, satisfies the following inequality:
we/4 ≤ w′e ≤ we.

Proof. After the rounding, wr = 2r − 1 = 2blog2 (we+1)c − 1 falls into the range of [we/2, we].
We now show that there always exists such a bucket B on the frontier that the approximated
length w′e is in [wr/2, wr].

We use Algorithm 1 to select the appropriate bucket for a certain edge, given the current
bucket level and the path string. The first case is when b, the current level, is larger than r. In
this case all the frontier buckets on the bottom r levels form a left spine of the corresponding
subtree rooted by the right child of the current bucket, so picking bucket in the r-th level
leads to w′e = 2r−1, and therefore we/4 < w′e ≤ we holds. The second case is when b ≤ r,
and the selected bucket is decided based on the structure on the ancestor buckets from the
(r + 1)-th level to (r − 1)-th level, which is one of the three following cases.

The simplest case (b < r, line 9) is when the ancestor bucket in the (r − 1)-th level is the
right child of the bucket in the r-th level. In this case when we pick the bucket in level
r since the distance between two consecutive buckets in level r is 2r, and the distance
from the current bucket to the ancestor bucket in r-th level is at most

∑r−1
i=1 2i−1 < 2r−1.

The distance thus between the current bucket and the frontier bucket in level r is
w′e > 2r − 2r−1 = 2r−1 > we/4.
The second case is when either b = r and the current bucket is the left child (line 5), or
b < r and the ancestor bucket in level r − 1 is on the left spine of the subtree rooted at
the ancestor bucket in level r + 1 (line 11). Similar to the first case, picking the frontier

G. E. Blelloch, Y. Gu, and Y. Sun 26:7

Algorithm 1: Finding the appropriate bucket
Input: Current bucket level b, rounded edge length 2r − 1 and path string.
Output: The bucket in the frontier (the level is returned).

1 Let r′ be the lowest ancestor bucket above level r that is a left child
2 if b > r then
3 return r

4 else if b = r then
5 if current bucket is left child then return r + 1
6 else return r′ + 1
7 else
8 switch the branches from (r + 1)-th level to (r − 1)-th level in the path string do
9 case left-then-right or right-then-right do

10 return r

11 case left-then-left do
12 return r + 1
13 case right-then-left do
14 return r′ + 1

bucket in the (r + 1)-th level (which is also an ancestor bucket) skips the right subtree of
the bucket in r-th level, which contains 2r−1 − 1 ≥ we/4 nodes.
The last case is the same as the second case expect that the level-r ancestor bucket is the
right child of level-(r + 1) ancestor bucket. In this case we will pick the frontier bucket
that has distance 2r−1 to the ancestor bucket in level r, which is the parent of the lowest
ancestor bucket that is a left child and above level r. In this case the approximated edge
distance is between 2r−1 and 2r − 1.

Combining all these cases proves the lemma. J

We now explain ehe Extract-Min operation on the bucket tree. We will visit vertex
in the current buckets one by one, so each Extract-Min has a constant cost. Once the
traversal is finished, we need to find the next closest non-empty frontier.

I Lemma 6. Extract-Min and Decrease-Key on the bucket tree require O(1) time.

Proof. We have shown that the modification on the linked list for each operation requires
O(1) time. A naïve implementation to find the bucket in Decrease-Key and Extract-Min
takes O(l) = O(logn) time, by checking all possible frontier buckets. We can accelerate
this look-up using the standard table-lookup technique. The available combinations of the
input of Decrease-Key are nk+1 (total available current distance) by l = O(k logn) (total
available edge distance after rounding), and the input combinations of Extract-Min are two
dlog2 n

k+1e bit strings corresponding to the path to the root and the emptiness of the buckets
on the frontier. We therefor partition the bucket tree into several parts, each containing
b(1− ε′)(log2 n)/2c consecutive levels (for any 0 < ε′ < 1). We now precompute the answer
for all possible combinations of path strings and edge lengths, and (1) the sizes of look-up
tables for both operations to be O((2b(1−ε′)(log2 n)/2c)2) = o(n), (2) the cost for brute-force
preprocessing to be O((2b(1−ε′)(log2 n)/2c)2 logn) = o(n), and (3) the time of either operation
of Decrease-Key and Extract-Min to be O(k), since each operation requires to look up
at most l/b(1− ε′)(log2 n)/2c = O(k) tables. Since k is a constant, each of the two operations
as well takes constant time. The update of path string can be computed similarly using this

ICALP 2017

26:8 Efficient Construction of Probabilistic Tree Embeddings

table-lookup approach. As a result, with o(n) preprocessing time, finding the associated
bucket for Decrease-Key or Extract-Min operation uses O(1) time. J

We now show the three properties of the new algorithm: linear complexity, triangle
inequality, and the ordering property.

Proof of Theorem 3. Here we show the algorithm satisfies the properties in Theorem 3.
Lemma 6 proves the linear cost of the algorithm. Lemma 5 shows that the final distances is
α-distance preserving. Lastly, since this algorithm is actually a variant of Dijkstra’s algorithm
with the priority implemented by the bucket-tree structure, the ordering property is met,
although here the k-nearest vertices are based on the approximate distances instead of real
distances. J

In the full version we discuss how to extend the range of edge weight to [1, nO(m)].

4 The Dominance Sequence

In this section we review and introduce the notion of dominance sequences for each point
of a metric space and describe the algorithm for constructing them on a graph. The basic
idea of dominance sequences was previously introduced in [12] and [8]. Here we name the
structure as the dominance sequence since the “dominance” property introduced below is
crucial and related to FRT construction. In the next section we show how they can easily be
converted into an FRT tree.

4.1 Definition
I Definition 7 (Dominance). Given a premetric (X, dX) and a permutation π, for two points
x, y ∈ X, x dominates y if and only if

π(x) = min{π(w) | w ∈ X, dX(w, y) ≤ dX(x, y)}.

Namely, x dominates y iff x’s priority is greater (position in the permutation is earlier)
than any point that is closer to y.

The dominance sequence for a point x ∈ X, is the sequence of all points that dominate x
sorted by distance. More formally:

IDefinition 8 (Dominance Sequence2). For each x ∈ X in a premetric (X, dX), the dominance
sequence of a point x with respect to a permutation π : X → [n] (denoted as χ(x)

π), is the
sequence 〈pi〉ki=1 such that 1 = π(p1) < π(p2) < · · · < π(pk) = π(x), and pi is in χ(x)

π iff pi
dominates x.

We use χπ to refer to all dominance sequences for a premetric under permutation π. It is
not hard to bound the size of the dominance sequence:

I Lemma 9 ([13]). Given a premetric (X, dX) and a random permutation π, for each vertex
x ∈ X, with w.h.p.∣∣∣χ(x)

π

∣∣∣ = O(logn)

2 Also called as “least-element list” in [12]. We rename it since in later sections we also consider many
other variants of it based on the dominance property.

G. E. Blelloch, Y. Gu, and Y. Sun 26:9

Algorithm 2: Efficient FRT tree construction
1 Pick a uniformly random permutation π : V → [n].
2 Compute the dominance sequences χπ.
3 Pick β ∈ [1, 2] with the probability density function fB(x) = 1/(x ln 2).
4 Convert the dominance sequence χπ to the compressed partition sequence σ̄π,β .
5 Generate the FRT tree based on σ̄π,β .

and hence overall, with w.h.p.

|χπ| =
∑
x∈X

∣∣∣χ(x)
π

∣∣∣ = O(n logn)

Since the proof is fairly straight-forward, for completeness we also provide it in the full
version of this paper.

Now consider a graph metric (V, dG) defined by an undirected positively weighted graph
G = (V,E) with n vertices and m edges, and dG(u, v) is the shortest distance between
u and v on G. The dominance sequences of this graph metric can be constructed using
O(m logn+ n log2 n) time w.h.p. [12]. This algorithm is based on Dijkstra’s algorithm.

4.2 Efficient FRT tree construction based on the dominance sequences
We now consider the construction of FRT trees based on a pre-computed dominance sequences
of a given metric space (X, dX). We assume the weights are normalized so that 1 ≤ dX(x, y) ≤
∆ = 2δ for all x 6= y, where δ is a positive integer.

The FRT algorithm [17] generates a top-down recursive low-diameter decomposition
(LDD) of the metric, which preserves the distances up to O(logn) in expectation. It first
chooses a random β between 1 and 2, and generates 1+log2 ∆ levels of partitions of the graph
with radii {β∆, β∆/2, β∆/4, · · · }. This procedure produces a laminar family of clusters,
which are connected based on set-inclusion to generate the FRT tree. The weight of each
tree edge on level i is β∆/2i.

Instead of computing these partitions directly, we adopt the idea of a point-centric view
proposed in [8]. We use the intermediate data structure “dominance sequences” as introduced
in Section 4.1 to store the useful information for each point. Then, an FRT tree can be
retrieved from this sequence with very low cost:

I Lemma 10. Given β and the dominance sequences χπ of a metric space with associated
distances to all elements, an FRT tree can be constructed using O(n logn) time w.h.p.

The difficulty in this process is that, since the FRT tree has O(log ∆) levels and ∆ can be
large (i.e. ∆ > 2O(n)), an explicit representation of the FRT tree can be very costly. Instead
we generate the compressed version with nodes of degree two removed and their incident
edge weights summed into a new edge. The algorithm is outlined in Algorithm 2.

Proof. We use the definition of partition sequence and compressed partition sequence from [8].
Given a permutation π and a parameter β, the partition sequence of a point x ∈ X, denoted
by σ(x)

π,β , is the sequence σ(x)
π,β(i) = min{π(y) | y ∈ X, d(x, y) ≤ β · 2δ−i} for i = 0, . . . , δ, i.e.

point y has the highest priority among vertices up to level i. We note that a trie (radix
tree) built on the partition sequence is the FRT tree, but as mentioned we cannot build
this explicitly. The compressed partition sequence, denoted as σ̄(x)

π,β , replaces consecutive

ICALP 2017

26:10 Efficient Construction of Probabilistic Tree Embeddings

8 6 4 2 1

0 1 2 3 4

Dominance sequence:

𝜒𝜋
(8)

= 1,2,4,6,8

Partition sequence:

𝜎𝜋,𝛽
(8)

= 1,1,6,6,8

Compressed partition sequence:

𝜎 𝜋,𝛽
(8)

= 1,0 , 6,2 , 8,4
Level:

𝛽 2𝛽 4𝛽 8𝛽 16𝛽 = 𝛽Δ Radius:

13 5 3 11 7 12 15 9 16 14 10

Figure 2 An illustration for dominance sequence, partition sequence and compressed partition
sequence for vertex 8. Here we assume that the label of each vertex corresponds to its priority. The
left part shows the distances of all vertices to vertex 8 in log-scale, and the red vertices dominate
vertex 8.

equal points in the partition sequence σ(x)
π,β by the pair (pi, li) where pi is the vertex and li is

the highest level pi dominates x in the FRT tree. Figure 2 gives an example of a partition
sequence, a compressed partition sequence, and their relationship to the dominance sequence.

To convert the dominance sequences χπ to the compressed partition sequences σ̄π,β note
that for each point x the points in σ̄(x)

π,β are a subsequence of χ(x)
π . Therefore, for σ̄(x)

π,β , we
only keep the highest priority vertex in each level from χ

(x)
π and tag it with the appropriate

level. Since there are only O(logn) vertices in χ
(x)
π w.h.p., the time to generate σ̄(x)

π,β is
O(logn) w.h.p., and hence the overall construction time is O(n logn) w.h.p.

The compressed FRT tree can be easily generated from the compressed partition sequences
σ̄π,β . Blelloch et. al. [8] describe a parallel algorithm that runs in O(n2) time (sufficient for
their purposes) and polylogarithmic depth. Here we describe a similar version to generate
the FRT tree sequentially in O(n logn) time w.h.p. The idea is to maintain the FRT as
a patricia trie [27] (compressed trie) and insert the compressed partition sequences one at
a time. Each insertion just needs to follow the path down the tree until it diverges, and
then either split an edge and create a new node, or create a new child for an existing node.
Note that a hash table is required to trace the tree nodes since the trie has a non-constant
alphabet. Each insertion takes time at most the sum of the depth of the tree and the length
of the sequence, giving the stated bounds. J

We note that for the same permutation π and radius parameter β, it generates exactly
the same tree as the original algorithm in [17].

4.3 Expected Stretch Bound
In Section 4.2 we discussed the algorithm to convert the dominance sequences to a FRT tree.
When the dominance sequences is generated from a graph metric (G, dG), the expected stretch
is O(logn), which is optimal, and the proof is given in many previous papers [17, 8]. Here
we show that any distance function d̂G in Lemma 11 is sufficient to preserve this expected
stretch. As a result, we can use the approximate shortest-paths computed in Section 3 to
generate the dominance sequences and further convert to optimal tree embeddings.

I Lemma 11. Given a graph metric (G, dG) and a distance function d̂G(u, v) such that for
u, v, w ∈ V , |d̂G(u, v)− d̂G(u,w)| ≤ 1/α · dG(v, w) and dG(u, v) ≤ d̂G(u, v) ≤ 1/α · dG(u, v)
for some constant 0 < α ≤ 1, then the dominance sequences based on (G, d̂G) can still yield
optimal tree embeddings.

G. E. Blelloch, Y. Gu, and Y. Sun 26:11

Proof Outline. Since the overestimate distances hold the dominating property of the tree
embeddings, we show the expected stretch is also not affected. We now show the expected
stretch is also held.

Recall the proof of the expected stretch by Blelloch et al. in [8] (Lemma 3.4). By replacing
dG by d̂G, the rest of the proof remains unchanged except for Claim 3.5, which upper bounds
the expected cost of a common ancestor w of u, v ∈ V in u and v’s dominance sequences. The
original claim indicates that the probability that u and v diverges in a certain level centered
at vertex w is O(|dG(w, u)− dG(w, v)|/dG(u,w)) = O(dG(u, v)/dG(u,w)) and the penalty is
O(dG(u,w)), and therefore the contribution of the expected stretch caused by w is the product
of the two, which is O(dG(u, v)) (since there are at most O(logn) of such w (Lemma 9), the
expected stretch is thus O(logn)). With the distance function d̂G and α as a constant, the
probability now becomes O(|d̂G(w, u) − d̂G(w, v)|/d̂G(u,w)) = O(dG(u, v)/dG(u,w)), and
the penalty is O(d̂G(u,w)) = O(dG(u,w)). As a result, the expected stretch asymptotically
remains unchanged. J

4.4 Efficient construction of approximate dominance sequences
Assume that d̂G(u, v) is computed as du(v) by the shortest-path algorithm in Section 3
from the source node u. Notice that du(v) does not necessarily to be the same as dv(u), so
(G, d̂G(u, v)) is not a metric space. Since the computed distances are distance preserving, it
is easy to check that Lemma 11 is satisfied, which indicate that we can generate optimal tree
embeddings based on the distances. This leads to the main theorem of this paper.

I Theorem 12 (Efficient optimal tree embeddings). There is a randomized algorithm that
takes an undirected positively weighted graph G = (V,E) containing n = |V | vertices and
m = |E| edges, and produces an tree embedding such that for all u, v ∈ V , dG(u, v) ≤ dT (u, v)
and E[dT (u, v)] ≤ O(logn) · dG(u, v). The algorithm w.h.p. runs in O(m logn) time.

The algorithm computes approximate dominance sequences χ̂π by the approximate SSSP
algorithm introduced in Section 3. Then we apply Lemma 10 to convert χ̂π to an tree
embedding. Notice that this tree embedding is an FRT-embedding based on d̂G. We still call
this an FRT-embedding since the overall framework to generate hierarchical tree structure is
similar to that in the original paper [17].

The advantage of our new SSSP algorithm is that the Decrease-Key and Extract-
Min operation only takes constant time when the relative edge range (maximum divided by
minimum) is no more than nO(1). To handle arbitrary weight edges we adopt a similar idea
to [23] to solve the subproblems on specific edge ranges, and concatenate the results to form
the final output. This requires pre-processing to restrict the edge range.

The high-level idea of the algorithm is as follows. In the pre-processing, the goal is to use
O(m logn) time to generate a list of subproblems: the i-th subproblem has edge range in the
interval [ni−1, ni+1] and we compute the elements in the dominance sequences with values
falling into the range from ni to ni+1. All the edge weights less than the minimum value of
this range are treated as 0. Namely, the vertices form some components in one subproblem
and the vertex distances within each component is 0.

After the subproblems are computed, we run the shortest-path algorithm on each subprob-
lem, and the i-th subproblem generates the entries in the approximate dominance sequences
in the range of [ni, ni+1). Finally, we solve an extra subproblem that only contains edges
with weight less than n to generate the elements in dominance sequences whose distances
fall in range [1, n).

ICALP 2017

26:12 Efficient Construction of Probabilistic Tree Embeddings

Due to page limit, the details of the algorithm, the proofs of the correctness and time
bound are given in the full version of this paper.

5 An Application of FRT-Embedding: Ramsey Partitions and
Distance Oracles

In this section we show a new application of FRT-embedding, which with our efficient
construction, accelerates the construction of some existing approximate distance oracles [34,
10]. The bridge is to show that the FRT trees are Ramsey partitions [24]. It is interesting to
point out that, the construction of FRT trees is not only much faster and simpler than the
previous best-known approach [25] to generate Ramsey partitions, but the stretch factor of
k, which is 18.5, is also smaller than the previous constants of 128 [24] and 33 [28].

We start with the definition of Ramsey partitions. Let (X, dX) be a metric space. A
hierarchical partition tree of X is a sequence of partitions {Pk}∞k=0 of X such that P0 = {X},
the diameter of the partitions in each level decreases by a constant c > 1, and each level
Pk+1 is a refinement of the previous level Pk. A Ramsey partition [24] is a distribution of
hierarchical partition trees such that each vertex has a lower-bounded probability of being
sufficiently far from the partition boundaries in all partitions k, and this gap is called the
padded range of a vertex. More formally:

I Definition 13. An (α, γ)-Ramsey partition of a metric space (X, dX) is a probability
distribution over hierarchical partition trees P of X such that for every x ∈ X:

Pr
[
∀k ∈ N, BX

(
x, α · c−k∆

)
⊆ Pk(x)

]
≥ |X|−γ .

An asymptotically tight construction of Ramsey partition where α = Ω(γ) is provided by
Mendel and Naor [24] using the Calinescu-Karloff-Rabani partition [9] for each level.

I Theorem 14. The probability distribution over FRT trees is an asymptotically tight Ramsey
Partition with α = Ω(γ) (shown in the appendix) with fixed c = 2. More precisely, for every
x ∈ X,

Pr
[
∀i ∈ N, BX

(
x,
(

1− 2−1/2a
)

2−i∆
)
⊆ Pi(x)

]
≥ 1

2 |X|
− 2

a

for any positive integer a > 1.

The details of the proof are provided in the full version of this paper.
Ramsey Partitions are used in generating approximate distance oracles (ADOs), which

supports efficient approximate pairwise shortest-distance queries. ADOs are well-studied by
many researchers (e.g. [33, 5, 1, 16, 11, 24, 34, 10]), and a (P, S,Q,D)-distance oracle on a
finite metric space (X, dX) is a data structure that takes expected time P to preprocess from
the given metric space, uses S storage space, and answers distance query between points x
and y in X in time Q satisfying dX(x, y) ≤ dO(x, y) ≤ D · dX(x, y), where dO(x, y) is the
pairwise distance provided by the distance oracle, and D is called the stretch.

I Corollary 15. With Theorem 14, we can accelerate the time to construct the Ramsey-
partitions-based Approximate Distance Oracle in [24] to

O
(
n1/k(m+ n logn) logn

)
on a graph with n vertices and m edges, improving the stretch to 18.5k, while maintaining
the same storage space and constant query time.

G. E. Blelloch, Y. Gu, and Y. Sun 26:13

This can be achieved by replacing the original hierarchical partition trees in the distance
oracles by FRT trees (and some other trivial changes). The construction time can further
reduce to O

(
n1/km logn

)
using the algorithm introduced in Section 4.4 while the oracle still

has a constant stretch factor. Accordingly, the complexity to construct Christian Wulff-
Nilsen’s Distance Oracles [34] and Shiri Chechik’s Distance Oracles [10] can be reduced
to

O
(
kmn1/k + kn1+1/k logn+ n1/ckm logn

)
since they all use Mendel and Naor’s Distance Oracle to obtain an initial distance estimation.
The acceleration is from two places: first, the FRT tree construction is faster; second, FRT
trees provide better approximation bound, so the c in the exponent becomes smaller.

References
1 Rachit Agarwal and Philip Godfrey. Distance oracles for stretch less than 2. In Proceedings

of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 526–538, 2013.
2 Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game

and its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100,
1995.

3 Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of IEEE Foundations of Computer Science (FOCS), pages 184–193, 1996.

4 Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 161–168. ACM, 1998.

5 Surender Baswana and Telikepalli Kavitha. Faster algorithms for approximate distance
oracles and all-pairs small stretch paths. In Proceedings of IEEE Symposium on Foundations
of Computer Science (FOCS), pages 591–602, 2006.

6 Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incre-
mental algorithms. In Proceedings of ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 467–478, 2016.

7 Guy E. Blelloch, Yan Gu, and Yihan Sun. Efficient construction of probabilistic tree
embeddings. arXiv preprint arXiv:1605.04651, 2016. URL: https://arxiv.org/abs/1605.
04651.

8 Guy E. Blelloch, Anupam Gupta, and Kanat Tangwongsan. Parallel probabilistic tree
embeddings, k-median, and buy-at-bulk network design. In Proceedings of ACM symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 205–213, 2012.

9 Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. SIAM Journal on Computing, 34(2):358–372, 2005.

10 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 654–663, 2014.

11 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of
ACM on Symposium on Theory of Computing (STOC), pages 1–10, 2015.

12 Edith Cohen. Size-estimation framework with applications to transitive closure and reach-
ability. Journal of Computer and System Sciences, 55(3):441–453, 1997.

13 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. Journal of the ACM (JACM), 47(1):132–166, 2000.

14 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly m log1/2 n time.
In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 343–352, 2014.

15 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

ICALP 2017

https://arxiv.org/abs/1605.04651
https://arxiv.org/abs/1605.04651

26:14 Efficient Construction of Probabilistic Tree Embeddings

16 Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance
oracle for general graphs. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 805–821, 2015.

17 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximat-
ing arbitrary metrics by tree metrics. Journal of Computer and System Sciences (JCSS),
69(3):485–497, 2004.

18 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

19 Stephan Friedrichs and Christoph Lenzen. Parallel Metric Tree Embedding Based on an
Algebraic View on Moore-Bellman-Ford. In Proceedings of ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 455–466, 2016.

20 Harold N. Gabow. Scaling algorithms for network problems. Journal of Computer and
System Sciences, 31(2):148–168, 1985.

21 Mohsen Ghaffari and Christoph Lenzen. Near-optimal distributed tree embedding. In
International Symposium on Distributed Computing, pages 197–211. Springer, 2014.

22 Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Effi-
cient distributed approximation algorithms via probabilistic tree embeddings. Distributed
Computing, 25(3):189–205, 2012.

23 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-source
shortest paths. Journal of Algorithms, 25(2):205–220, 1997.

24 Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. In
Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS), pages 109–
118, 2006.

25 Manor Mendel and Chaya Schwob. Fast C-K-R partitions of sparse graphs. Chicago Journal
of Theoretical Computer Science, pages 1–18, 2009. Article 2. doi:10.4086/cjtcs.2009.
002.

26 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel al-
gorithms for spanners and hopsets. In Proceedings of ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 192–201, 2015.

27 Donald R. Morrison. PATRICIA – Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM (JACM), 15(4):514–534, October 1968.

28 Assaf Naor and Terence Tao. Scale-oblivious metric fragmentation and the nonlinear
Dvoretzky theorem. Israel Journal of Mathematics, 192(1):489–504, 2012.

29 Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted undir-
ected graphs. SIAM J. Comput., 34(6):1398–1431, 2005.

30 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in net-
works. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 255–264,
2008.

31 Raimund Seidel. Backwards analysis of randomized geometric algorithms. Springer, 1993.
32 Mikkel Thorup. Undirected single source shortest paths in linear time. In Proceedings of

IEEE Symposium on Foundations of Computer Science (FOCS), pages 12–21, 1997.
33 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),

52(1):1–24, 2005.
34 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Pro-

ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 539–549, 2013.

http://dx.doi.org/10.4086/cjtcs.2009.002
http://dx.doi.org/10.4086/cjtcs.2009.002

Approximating Partition Functions of
Bounded-Degree Boolean Counting Constraint
Satisfaction Problems∗†

Andreas Galanis1, Leslie Ann Goldberg2, and Kuan Yang3

1 University of Oxford, Oxford, UK
andreas.galanis@cs.ox.ac.uk

2 University of Oxford, Oxford, UK
leslie.goldberg@cs.ox.ac.uk

3 University of Oxford, Oxford, UK
kuan.yang@cs.ox.ac.uk

Abstract
We study the complexity of approximate counting Constraint Satisfaction Problems (#CSPs)
in a bounded degree setting. Specifically, given a Boolean constraint language Γ and a degree
bound ∆, we study the complexity of #CSP∆(Γ), which is the problem of counting satisfying
assignments to CSP instances with constraints from Γ and whose variables can appear at most ∆
times. Our main result shows that: (i) if every function in Γ is affine, then #CSP∆(Γ) is in FP for
all ∆, (ii) otherwise, if every function in Γ is in a class called IM2, then for all sufficiently large
∆, #CSP∆(Γ) is equivalent under approximation-preserving (AP) reductions to the counting
problem #BIS (the problem of counting independent sets in bipartite graphs) (iii) otherwise, for
all sufficiently large ∆, it is NP-hard to approximate the number of satisfying assignments of an
instance of #CSP∆(Γ), even within an exponential factor. Our result extends previous results,
which apply only in the so-called “conservative” case.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures

Keywords and phrases Constraint Satisfaction, Approximate Counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.27

1 Introduction

Constraint Satisfaction Problems (CSPs), which originated in Artificial Intelligence [18]
provide a general framework for modelling decision, counting and approximate counting
problems. The paradigm is sufficiently general that applications from diverse areas such
as database theory, scheduling and graph theory can all be captured (see, for example,
[14, 15, 17]). Moreover, all graph homomorphism decision and counting problems [12] can be
re-cast in the CSP framework and partition function problems from statistical physics [21] can
be represented as counting CSPs. Given the usefulness of CSPs, the study of the complexity

∗ A full version of the paper (with the same theorem-numbering) containing detailed proofs is available at
http://arxiv.org/abs/1610.04055.

† The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no.
334828. The paper reflects only the authors’ views and not the views of the ERC or the European
Commission. The European Union is not liable for any use that may be made of the information
contained therein. Department of Computer Science, University of Oxford, Wolfson Building, Parks
Road, Oxford, OX1 3QD, UK.

EA
T

C
S

© Andreas Galanis, Leslie Ann Goldberg, and Kuan Yang;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.27
http://arxiv.org/abs/1610.04055
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Complexity of Bounded-Degree Boolean #CSP

of CSPs is a an extremely active area in computational complexity (for example, see [2] and
the references therein).

In this paper, we are concerned with Boolean counting CSPs. An instance I = (V, C)
of a Boolean counting CSP consists of a set V of variables and a set C of constraints. An
assignment σ : V → {0, 1} assigns a Boolean value called a “spin” to each variable. Each
constraint associates a tuple (v1, . . . , vk) of variables with a Boolean relation which constrains
the spins that can be assigned to v1, . . . , vk. The assignment σ is said to “satisfy” the
constraint if the tuple (σ(v1), . . . , σ(vk)) is in the corresponding relation. An assignment is
said to be “satisfying” if it satisfies all constraints. A Constraint Satisfaction Problem comes
with two important parameters – the constraint language Γ is the set of all relations that may
be used in constraints and the degree ∆ is the maximum number of times that any variable
v ∈ V may be used in constraints in any instance. The number of satisfying assignments is
denoted ZI . The computational problem #CSP∆(Γ) is the problem of computing ZI , given
a CSP instance I with constraints in Γ and degree at most ∆. We use #CSP(Γ) to denote
the version of the problem in which the degree of instances is unconstrained.

Although constraints are supported by Boolean relations, they can be used to code up
weighted interactions such as those that arise in statistical physics. For example, let R be the
“not-all-equal” relation of arity 3. Then consider the conjunction of R(x, a, b) and R(y, a, b).
There are two satisfying assignments with σ(x) = 0 and σ(y) = 1 since σ(a) and σ(b) must
differ. Similarly, there are two satisfying assignments with σ(x) = 1 and σ(y) = 0. On the
other hand, there are three satisfying assignments with σ(x) = σ(y) = 1 and there are three
satisfying assignments with σ(x) = σ(y) = 0. Thus, the induced interaction on the variables
x and y is the same as the interaction of the ferromagnetic Ising model (at an appropriate
temperature) – an assignment in which x and y have the same spin has weight 3, whereas an
assignment where they have different spins has weight 2.

For every ∆ ≥ 3, the work of Cai, Lu and Xia [5] completely classifies the complexity of
exactly solving #CSP∆(Γ), depending on the parameter Γ. If every relation in Γ is affine,
then #CSP∆(Γ) is solvable in polynomial time (so the problem in the complexity class FP).
Otherwise, it is #P-complete. The term “affine” will be defined in § 2. Roughly, it means
that the tuples in the relation are solutions to a linear system, so Gaussian elimination gives
an appropriate polynomial-time algorithm. The characterisation of Cai, Lu and Xia is exactly
the same classification that was obtained for the unbounded problem #CSP(Γ) by Creignou
and Hermann [6]. Thus, as far as exact counting is concerned, the degree-bound ∆ does not
affect the complexity as long as ∆ ≥ 3. As Cai, Lu and Xia point out, the dichotomy is
false for ∆ = 2, where #CSP2(Γ) is equivalent to the Holant problem Holant(Γ) – see the
references in [5] for more information about Holant problems.

Much less is known about the complexity of approximately solving #CSP∆(Γ). In fact,
even the decision problem is still open. While Schaefer [19] completely classified the complexity
of the decision problem CSP(Γ) – where the goal is to determine whether or not ZI is 0 for
an instance of #CSP(Γ) – the complexity of the corresponding decision problem CSP∆(Γ),
where the instance has degree at most ∆, is still not completely resolved. For ∆ ≥ 3, Dalmau
and Ford [7] have solved the special case where Γ includes both of the relations Rδ0 = {0}
and Rδ1 = {1}. This special case is known as the “conservative case” in the CSP literature.
For ∆ ≥ 6, Dyer et al. [9] have classified the difficulty of the approximation problem:

If every relation in Γ is affine, then #CSP∆(Γ ∪ {Rδ0 , Rδ1}) is in FP.
Otherwise, if every relation in Γ is in a class called IM2 (a class defined in § 2) then
#CSP∆(Γ ∪ {Rδ0 , Rδ1}) is equivalent under approximation-preserving (AP) reductions
to the counting problem #BIS (the problem of counting independent sets in bipartite
graphs).
Otherwise, there is no FPRAS for #CSP∆(Γ ∪ {Rδ0 , Rδ1}) unless NP = RP.

A. Galanis, L. A. Goldberg, and K. Yang 27:3

Dyer et al. made only partial progress on the cases where ∆ ∈ {3, 4, 5}. We refer the reader
to [9, 16] for a discussion of the partial classification. However, it is worth noting here that
the complexity of #CSP∆(Γ ∪ {Rδ0 , Rδ1}) is closely related to the complexity of counting
satisfying assignments of so-called read-d Monotone CNF Formulas. Crucial progress was
made by Liu and Lu [16], who completely resolved the complexity of the latter problem.
Given the work of Liu and Lu, a complete classification of #CSP∆(Γ ∪ {Rδ0 , Rδ1}) for
∆ ∈ {3, 4, 5} may be in reach.

The restriction that Rδ0 and Rδ1 are contained in Γ is a severe one because it does not
apply to many natural applications. On the other hand, we are a long way from a precise
understanding of the complexity of #CSP∆(Γ) without this restriction because there are
specific, relevant parameters that we do not understand. For example, for a positive integer k,
let Γ be the singleton set containing only the arity-k “not-all-spin-1” relation. Then satisfying
assignments of an instance of #CSP∆(Γ) correspond to independent sets of a k-uniform
hypergraph with maximum degree ∆. It is known that there is an FPRAS for ∆ = O(2k/2)
[13] and that the problem is NP-hard to approximate for ∆ = Ω(2k/2) [1]; the implicit
constants in these bounds do not currently match and thus, for big k, there is a large range
of ∆’s where we do not yet know the complexity of approximating #CSP∆(Γ). If Γ instead
contains (only) the arity-k “at-least-one-spin-0” relation then satisfying assignments of an
instance of #CSP∆(Γ) correspond to the so-called “strong” independent sets of a k-uniform
hypergraph. Song, Yin and Zhao [20] have presented a barrier for hardness results, showing
why current technology is unsuitable for resolving the cases where ∆ ∈ {4, 5} (roughly, these
cases are in “non-uniqueness”, but this is not realisable by finite gadgets).

The purpose of the present paper is to remove the severe restriction that Rδ0 and Rδ1

are contained in Γ in the approximate counting classification of #CSP∆(Γ) from [9]. Since
pinning down precise thresholds seems a long way out of reach, we instead focus on whether
there is a “barrier” value ∆0 such that, for all ∆ ≥ ∆0, approximation is intractable. Since
we wish to get the strongest possible inapproximability results (showing the hardness of
approximating ZI even within an exponential factor), we define the following computational
problem, which has an extra parameter c > 1 that captures the desired accuracy.

Name #CSP∆,c(Γ).
Instance An n-variable instance I of a CSP with constraint language Γ and degree at most ∆.
Output A number Ẑ such that c−nZI ≤ Ẑ ≤ cnZI .

Although we have not yet defined all of the terms, we can now at least state (a weak
version of) our result.

I Theorem 1. Let Γ be a Boolean constraint language. Then,
1. If every relation in Γ is affine then #CSP(Γ) is in FP.
2. Otherwise, if every relation in Γ is in the class IM2, then there exists an integer ∆0 such

that for all ∆ ≥ ∆0, #CSP∆(Γ) is #BIS-equivalent under AP-reductions.
3. Otherwise, there exists an integer ∆0 such that for all ∆ ≥ ∆0, there exists a real

number c > 1 such that #CSP∆,c(Γ) is NP-hard.

After defining all of the terms, we will state a stronger theorem, Theorem 6, which
immediately implies Theorem 1. The stronger version applies to the #CSP problems that
we have already introduced, but it also applies to other restrictions of these problems, which
have even more applications.

We now explain the restriction. Note that in the CSP framework, as we have defined
it, the variables that are constrained by a given constraint need not be distinct. Thus, if
the arity-4 relation R is present in a constraint language Γ, then an instance of #CSP(Γ)

ICALP 2017

27:4 Complexity of Bounded-Degree Boolean #CSP

with variables x and y may contain a constraint such as R(x, x, y, x). This ability to repeat
variables is equivalent to assuming that equality relations of all arities are present in Γ. This
feature of the CSP definition is inconvenient for two reasons: (1) It does not fit well with
some spin-system applications, and (2) In many settings, it obscures the nuanced complexity
classification that arise.

As an example of (1), recall the application where Γ is the singleton set containing only
the arity-k “not-all-spin-1” relation. As we noted earlier, satisfying assignments of a #CSP(Γ)
instance correspond to independent sets of a k-uniform hypergraph. Here, hyperedges are
size-k subsets of vertices and it does not make sense to allow repeated vertices!

The point (2) is well-known. In fact, the “equality is always present” assumption is the
main feature that separates #CSPs from the more general Holant framework [3].

In our current setting, it turns out that adding equality functions to Γ does not change
the complexity classification, but this is a result of our theorems rather than an a priori
assumption – indeed, determining which constraint languages Γ can appropriately simulate
equality functions is one of the difficulties – thus, throwing equalities in “for free” would
substantially weaken our results! Our main result, Theorem 6, which will be presented in
§ 2, applies both to the #CSPs that we have already defined, and to more refined versions,
in which constraints may not repeat variables.

We wish now to discuss an important special case in which both the #CSPs and the
refined versions have already been studied. This is the special case in which Γ consists of
a single relation which is symmetric in its arguments. A symmetric relation that is not
affine is not in IM2. Therefore, Item 2 in the statement of Theorem 1 never arises in this
special case. Our earlier paper [11] shows that, in this case (where Γ consists of a single,
symmetric, non-affine relation) there is an integer ∆0 such that for all ∆ ≥ ∆0, there exists
a real number c > 1 such that #CSP∆,c(Γ) is NP-hard.

While the work of [11] is important for this paper, note that the special case is far from
general – in particular, it is easy to induce asymmetric constraints using symmetric ones.
For example, suppose that R1 is the (symmetric) arity-2 “not-all-spin-1” constraint, R2 is
the (symmetric) arity-2 “not the same spin” constraint and R3 = {(0, 0), (0, 1), (1, 1)} is the
(asymmetric) arity-2 “Implies” constraint. Then the conjunction of R1(x, a) and R2(a, y)
induces R3(x, y).

It is interesting that Theorem 1 is exactly the same classification that was obtained for
the unbounded problem #CSP(Γ) by Dyer et al. [10]. In particular, they showed
1. If every relation in Γ is affine then #CSP(Γ) is in FP.
2. Otherwise, if every relation in Γ is in the class IM2, then #CSP(Γ) is #BIS-equivalent

under AP-reductions.
3. Otherwise, #CSP(Γ) is #SAT-equivalent under AP-reductions, where #SAT is the problem

of counting the satisfying assignments of a Boolean formula.
The inapproximability that we demonstrate in Item 3 of Theorem 1 is stronger than what
was known in the unbounded case, both (obviously) because of the degree bound, but also
because we show that it is hard to get within an exponential factor. (This strong kind of
inapproximability was also missing from the results of [9]).

2 Definitions and Statement of Main Result

Before giving formal definitions of the problems that we study, we introduce some notation.
We use boldface letters to denote Boolean vectors. A pseudo-Boolean function is a function
of the form f : {0, 1}k → R≥0 for some positive integer k, which is called the arity of f .

A. Galanis, L. A. Goldberg, and K. Yang 27:5

I Definition 2. Given a pseudo-Boolean function f : {0, 1}k → R≥0 , we use the notation
Rf to denote the relation Rf = {x ∈ {0, 1}k | f(x) > 0}, which is the relation underlying f .

If the range of f is {0, 1} then f is said to be a Boolean function and of course in that case
Rf = {x ∈ {0, 1}k | f(x) = 1}.

In order to allow consistency with obvious generalisations, our formal definition of the
Boolean Constraint Satisfaction Problem is in terms of Boolean functions (rather than,
equivalently, using the underlying relations).

A Constraint language Γ is a set of pseudo-Boolean functions. It is a Boolean constraint
language if all of the functions in it are Boolean functions. An instance I = (V, C) of a CSP with
constraint language Γ consists of a set V of variables and a set C of constraints. Each constraint
Ci ∈ C is of the form fi(vi,1, . . . , vi,ki

) where fi is an arity-ki function in Γ and (vi,1, . . . , vi,ki
)

is a tuple of (not necessarily distinct) variables in V . The constraint Ci is said to be
“Repeat-Free” if all of the variables are distinct. Each assignment σ : V → {0, 1} of Boolean
values to the variables in V has a weight wI(σ) :=

∏
fi(vi,1,...,vi,ki

)∈C fi(σ(vi,1), . . . , σ(vi,ki
)).

The partition function maps the instance I to the quantity ZI :=
∑
σ:V→{0,1} wI(σ) =∑

σ:V→{0,1}
∏
fi(vi,1,...,vi,ki

)∈C fi(σ(vi,1), . . . , σ(vi,ki
)).

If Γ is a Boolean constraint language then it is easy to see that wI(σ) = 1 if the assignment
is satisfying and wI(σ) = 0, otherwise. Thus, ZI is the number of satisfying assignments of I.

When ZI > 0, we will use µI(·) to denote the Gibbs distribution corresponding to ZI .
This is the probability distribution on the set of assignments σ : V → {0, 1} such that
µI(σ) = wI(σ)/ZI for all σ : V → {0, 1}.

The degree dv(C) of a variable v in a constraint C is the number of times that the
variable v appears in the tuple corresponding to C and the degree dv of the variable is
dv =

∑
C∈C dv(C). Finally, the degree of the instance I is maxv∈V dv.

I Definition 3. #CSP∆(Γ) is the problem of computing ZI , given a CSP instance I with
constraints in Γ and degree at most ∆. #CSP(Γ) is the version of the problem in which the
degree of instances is unconstrained. #CSP∆,c(Γ) has an extra parameter c > 1 that captures
the desired accuracy. The problem is to compute a number Ẑ such that c−nZI ≤ Ẑ ≤ cnZI ,
where n is the number of variables in the instance I. The problems #NoRepeatCSP∆(Γ),
#NoRepeatCSP(Γ) and #NoRepeatCSP∆,c(Γ) are defined similarly, except that inputs are
restricted so that all constraints are Repeat-Free.

I Definition 4. A Boolean function f : {0, 1}k → {0, 1} is affine if there is a k × k Boolean
matrix A and a length-k Boolean vector b such that Rf is equal to the set of solutions x of
Ax = b over GF(2).

I Definition 5 (The set of functions IM2). A Boolean function f : {0, 1}k → {0, 1} is in
IM2 if f(x1, . . . , xk) is logically equivalent to a conjuction of (any number of) predicates of
the form xi, ¬xi or xi ⇒ xj .

We have now defined all of the terms in our main theorem apart from some well-known
concepts from complexity theory, which we discuss next. FP is the class of computational
problems (with numerical output) that can be solved in polynomial time. An FPRAS is a
randomised algorithm that produces approximate solutions within specified relative error
with high probability in polynomial time. For two counting problems #A and #B, we say
that #A is #B-easy if there is an approximation-preserving (AP)-reduction from #A to #B.
The formal definition of an AP-reduction can be found in [8]. It is a randomised Turing
reduction that yields close approximations to #A when provided with close approximations
to #B. The definition of AP-reduction meshes with the definition of FPRAS in the sense

ICALP 2017

27:6 Complexity of Bounded-Degree Boolean #CSP

that the existence of an FPRAS for #B implies the existence of an FPRAS for #A. We say
that #A is #B-hard if there is an AP-reduction from #B to #A. Finally, we say that #A is
#B-equivalent if #A is both #B-easy and #B-hard.

The problem of counting satisfying assignments of a Boolean formula is denoted by #SAT.
Every counting problem in #P is AP-reducible to #SAT, so #SAT is said to be complete for
#P with respect to AP-reductions. It is known that there is no FPRAS for #SAT unless
RP = NP. The problem of counting independent sets in a bipartite graph is denoted by #BIS.
The problem #BIS appears to be of intermediate complexity: there is no known FPRAS for
#BIS (and it is generally believed that none exists) but there is no known AP-reduction from
#SAT to #BIS. Indeed, #BIS is complete with respect to AP-reductions for a complexity
class #RHΠ1.

Given all of these definitions, we now formally state the stronger version of Theorem 1
promised in the introduction. The proof can be found in full version.

I Theorem 6. Let Γ be a Boolean constraint language. Then,
1. If every function in Γ is affine then #CSP(Γ) and #NoRepeatCSP(Γ) are both in FP.
2. Otherwise, if Γ ⊆ IM2, then there exists an integer ∆0 such that for all ∆ ≥ ∆0,

#CSP∆(Γ) and #NoRepeatCSP∆(Γ) are both #BIS-equivalent under AP-reductions, and
3. Otherwise, there exists an integer ∆0 such that for all ∆ ≥ ∆0, there exists a real

number c > 1 such that #CSP∆,c(Γ) and #NoRepeatCSP∆,c(Γ) are both NP-hard.

3 Overview of the Proof of Theorem 6

In this section, we give a non-technical overview of the proof of Theorem 6. Our objective is
to illustrate the main ideas and obstacles without delving into the more detailed definitions.
A more technical overview can be found in § 5. Our focus in this section will be on the case
where Γ consists of a single Boolean function f : {0, 1}k → {0, 1}. This case is the main
ingredient in the proof of the theorem.

A typical approach for showing that a counting CSP is intractable is to use an instance of
the CSP to build a “gadget” which simulates an intractable binary 2-spin constraint. This was
the approach used in [11], which proved the intractability of #NoRepeatCSP∆({f}) for any
symmetric non-affine Boolean function f . There, an instance I of #NoRepeatCSP∆({f}) was
constructed, along with variables x and y, such that for all spins sx ∈ {0, 1} and sy ∈ {0, 1}
the marginal distribution µI(x, y) satisfies

µI(σ(x) = sx, σ(y) = sy) = g(sx, sy)/(g(0, 0) + g(0, 1) + g(1, 0) + g(1, 1)), (1)

where g is a binary function that codes up the interaction of an intractable anti-ferromagnetic
2-spin system. We will not need to give detailed definitions of 2-spin systems in this paper.
Instead, we give a sufficient condition for intractability.

I Definition 7. A binary function g : {0, 1}2 → R≥0 is said to be “hard” if all of the following
hold: g(0, 0)+g(1, 1) > 0, min{g(0, 0), g(1, 1)} <

√
g(0, 1)g(1, 0), and max{g(0, 0), g(1, 1)} ≤√

g(0, 1)g(1, 0).

It was established in [11] that the ability to “simulate” a hard function g in the sense of (1)
ensures that #NoRepeatCSP∆({f}) is NP-hard to approximate, even within an exponential
factor.

A key feature of symmetric Boolean functions f which facilitated such simulation in [11]
was the fact that the class of relevant hard functions g is well-behaved, and it turned out that

A. Galanis, L. A. Goldberg, and K. Yang 27:7

it suffices to encode such a hard binary function with only ε-accuracy, for some sufficiently
small ε > 0, and this was enough to ensure the NP-hardness of #CSP∆,c({f}).

The main obstacle in adapting the approach of [11] to the case where f need not be
symmetric in its arguments arises when f is in IM2. It is unlikely that such a function f
can simulate a hard function g in the sense of (1) – indeed such a simulation would prove
the (very surprising) result that #BIS does not have an FPRAS (unless NP = RP). Thus,
for f ∈ IM2, we need instead to encode a binary function which will allow us to connect the
problem #NoRepeatCSP∆({f}) to #BIS.

Now consider the binary Boolean function Implies whose underlying relation RImplies =
{(0, 0), (0, 1), (1, 1)} contains all (x, y) satisfying x⇒ y. Obviously, Implies is not symmetric,
and it is not hard according to Definition 7. On bipartite instances, however, the symmetry
can be restored by interpreting differently the spins 0 and 1 on the two parts of the graph, and
this leads to a connection with #BIS. In particular, it is well-known [10] that #CSP({Implies})
is equivalent to #BIS under AP-reductions. This connection was extended to the bounded-
degree setting by [4].

Unfortunately, the symmetrisation which connects #CSP({Implies}) to #BIS is not very
robust. For example, suppose that a (non-symmetric) Boolean function f can be used to
simulate, in the sense of (1), a binary function g which is very close to Implies. In particular,
suppose that for some ε > 0 and ε1, ε2, ε3, ε4 satisfying |εi| ≤ ε for i = 1, 2, 3, 4, we have
g(0, 0) = 1+ε1, g(0, 1) = 1+ε2, g(1, 0) = ε3, and g(1, 1) = 1+ε4. Such a close approximation
is about the best that can be expected using the kind of approximate encodings that are
available. However, the complexity of asymmetric 2-spin systems is not sufficiently well
understood to exploit such a simulation. Surprisingly, for any arbitrarily small constant
ε > 0, it is not known even whether the unbounded degree version #CSP({g}) is #BIS-
hard, and certainly nothing is known in our bounded-degree setting! The trouble is that
the symmetrisation that works for Implies (i.e., when εi = 0 for i = 1, 2, 3, 4) is no longer
guaranteed to symmetrise the imperfect version with the εi’s, so the swapping of spin-0
and spin-1 values on one side of the bipartite graph leads to an asymmetric 2-spin system
on bipartite graphs and this does not fall into the scope of known results [4] concerning
bounded-degree bipartite 2-spin systems.

Our approach to handle this problem for f ∈ IM2 is to carefully ensure that there is no
accuracy error ε in encoding the function Implies. In other words, we show that, using f ∈ IM2,
we can encode Implies perfectly, a task which is surprisingly intricate in the repeat-free setting.
Our main technical theorem, Theorem 17, achieves this goal. Namely, it shows that, for every
non-affine Boolean function f , either f simulates a hard function (with arbitrarily small
accuracy-error ε, which leads to the desired intractability of #NoRepeatCSP∆({f})) or else
f “supports perfect equality” – a concept which will be defined later, but essentially means
that f can be used to perfectly simulate the binary function EQ with underlying relation
REQ = {(0, 0), (1, 1)}. Using EQ, it is possible to simulate repeated variables in constraints,
so the #BIS-hardness of #CSP∆({f}) follows from [10]. When f /∈ IM2 but f supports
perfect equality, instead of reducing to the work in [10], we work somewhat harder to make
sure that we also get the strong (exponential factor) inapproximability given in Theorem 6.

4 Pinning, equality and simulating functions

An important case in our proof is the case where Γ contains a single function f : {0, 1}k → R≥0.
In this case, we can we simplify the notation because the constraints in an instance I are in
one-to-one correspondence with k-tuples of variables (there is no need to repeat the name of
the function f in each constraint). So, for convenience, we make the following definitions.

ICALP 2017

27:8 Complexity of Bounded-Degree Boolean #CSP

A k-tuple hypergraph H = (V,F) consists of a set V of vertices, together with a set F of
hyperarcs, where every hyperarc in F is a k-tuple of distinct vertices in V . The degree of H
is the maximum, over all vertices v ∈ V , of the number of hyperarcs that contain v. Given
a function f : {0, 1}k → R≥0, we let If (H) denote the instance of #NoRepeatCSP({f})
whose constraints correspond to the hyperarcs of H. Given an assignment σ : V → {0, 1}
we define wf ;H(σ) :=

∏
(v1,...,vk)∈F f(σ(v1), . . . , σ(vk)) and Zf ;H :=

∑
σ:V→{0,1} wf ;H(σ), so

ZIf (H) = Zf ;If (H). By analogy to the Gibbs distribution on satisfying assignments, when
Zf ;H > 0, we use µf ;H(·) to denote the probability distribution in which, for all assignments
σ : V → {0, 1}, µf ;H(σ) = wf ;H(σ)/Zf ;H .

Given a function f : {0, 1}k → R≥0 and a positive integer ∆, we define #Multi2Spin∆(f)
to be the problem of computing Zf ;H , given as input a k-tuple hypergraph H with degree at
most ∆. The name #Multi2Spin∆(f) indicates that the problem is to compute the partition
function of a 2-spin system with multi-body interactions specified by f and degree-bound ∆.
Given a real number c > 1, the problem #Multi2Spin∆,c(f) has the same input, and the goal,
when the input has n vertices, is to compute a number Ẑ such that c−nZf ;H ≤ Ẑ ≤ cnZf ;H .
Clearly, #Multi2Spin∆(f) is equivalent to #NoRepeatCSP∆({f}) and #Multi2Spin∆,c(f) is
equivalent to #NoRepeatCSP∆,c({f}).

4.1 Supporting pinning and equality
Let k be a positive integer and let H = (V,F) be a k-tuple hypergraph. Given a configuration
σ : V → {0, 1} and a subset T ⊆ V , we will use σT to denote the restriction of σ to vertices
in T . For a vertex v ∈ V , we will also use σv to denote the spin σ(v) of vertex v in σ. The
following definitions are generalisations of definitions from [11].

I Definition 8. Let f : {0, 1}k → R≥0. Suppose that ε ≥ 0 and s ∈ {0, 1}. The k-tuple
hypergraph H is an ε-realisation of pinning-to-s if there exists a vertex v of H such that
µf ;H(σv = s) ≥ 1− ε.

I Definition 9. Let f : {0, 1}k → R≥0 and s ∈ {0, 1}. We say that f supports pinning-to-s
if, for every ε > 0, there is a k-tuple hypergraph which is an ε-realisation of pinning-to-s.
We say that f supports perfect pinning-to-s if there is a k-tuple hypergraph which is a
0-realisation of pinning-to-s.

We now define what it means for a function f to support (perfect) equality (cf. § 3).

I Definition 10. Let f : {0, 1}k → R≥0 and ε ≥ 0. The k-tuple hypergraph H is an
ε-realisation of equality if there exist distinct vertices v1 and v2 of H such that, for each
s ∈ {0, 1}, µf ;H(σv1 = σv2 = s) ≥ (1− ε)/2.

I Definition 11. Let f : {0, 1}k → R≥0. The function f supports equality if, for every ε > 0,
there is a k-tuple hypergraph which is an ε-realisation of equality. The function f supports
perfect equality if there is a k-tuple hypergraph which is a 0-realisation of equality.

4.2 Realising conditional distributions induced by pinning and equality
Given a set S of vertices, we write σS = 0 to denote the event that all vertices in S are
assigned the spin 0 under the assignment σ. We similarly write σS = 1 to denote the event
that all vertices in S are assigned the spin 1 under the assignment σ. Finally, we use use σeq

S

to denote the event that all vertices in S have the same spin under σ (the spin could be 0
or 1). The following definition is a generalisation of Definition 16 of [11] except that we have
changed the notation slightly for convenience.

A. Galanis, L. A. Goldberg, and K. Yang 27:9

I Definition 12 ([11, Definition 16]). Let f : {0, 1}k → R≥0. Let H = (V,F) be a k-tuple
hypergraph. Let V = (Vpin0, Vpin1,Veq) where Vpin0 and Vpin1 are disjoint subsets of V and Veq
is a (possibly empty) set of disjoint subsets of V \(Vpin0 ∪Vpin1). Suppose that: (i) Vpin0 = ∅ if
f does not support pinning-to-0, (ii) Vpin1 = ∅ if f does not support pinning-to-1, (iii) Veq = ∅
if f does not support equality, (iv) it holds that µf ;H(σVpin0 = 0, σVpin1 = 1,

⋂
W∈Veq

σeq
W) > 0.

We will then say that “V is admissible for H with respect to f” and we will denote by
µ

cond(V)
f ;H the probability distribution µf ;H(· | σVpin0 = 0, σVpin1 = 1,

⋂
W∈Veq

σeq
W).

4.3 Simulating hard functions and inapproximability results
We can now give a formal definition of “simulation”, along the lines that was informally
discussed in § 3 (Equation (1)).

I Definition 14. Let f : {0, 1}k → R≥0 and g : {0, 1}t → R≥0. The function f simulates
the function g if there is a k-tuple hypergraph H, an admissible set V for H with respect to
f , and t vertices v1, v2, . . . , vt of H such that, for all (s1, s2, . . . , st) ∈ {0, 1}t,

µ
cond(V)
f ;H (σ(v1) = s1, σ(v2) = s2, . . . , σ(vt) = st) = g(s1, s2, . . . , st)∑

(s′
1,s

′
2,...,s

′
t)∈{0,1}t

g(s′1, s′2, . . . , s′t)
.

If V = (∅, ∅, ∅), then we say that f perfectly simulates g. More generally, we say that f
simulates a set of functions G if f simulates every g ∈ G.

The connection betweeen “hard” as defined in Definition 7 and intractability is given in
the following lemma. The lemma is stated for symmetric functions in [11], but the proof also
works for asymmetric functions.

I Lemma 15 ([11, Lemma 18]). Let f : {0, 1}k → R≥0. If f simulates a hard function, then
for all sufficiently large ∆, there exists c > 1 such that #Multi2Spin∆,c(f) is NP-hard. J

5 Proof Sketch

In this section, for a Boolean function f : {0, 1}k → {0, 1}, we consider the complexity of
the problems #Multi2Spin∆(f) and #Multi2Spin∆,c(f). Classifying the complexity of these
problems is the most important step in the proof of Theorem 6. Namely, to obtain Theorem 6,
it suffices to show that for every non-affine function f , we have that:

If f is in IM2, then for all sufficiently large ∆, #Multi2Spin∆(f) is #BIS-equivalent.
If f is not in IM2, then for all sufficiently large ∆, there exists a real number c > 1 such
that #Multi2Spin∆,c(f) is NP-hard.

Our main technical theorem to prove this is the following classification of Boolean functions,
which asserts that every non-affine function either supports perfect equality or simulates a
hard function. A proof sketch is provided later.

I Theorem 17. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a Boolean function. Then at least
one of three following propositions is true:
1. f is affine;
2. f supports perfect equality;
3. f simulates a hard function.

When f simulates a hard function, using Lemma 15, we can immediately conclude that
for all sufficiently large ∆, there exists c > 1 such that #Multi2Spin∆,c(f) is NP-hard. As

ICALP 2017

27:10 Complexity of Bounded-Degree Boolean #CSP

we already discussed in § 3, it is important that, in the case where f does not simulate a
hard function, Theorem 17 guarantees that f supports perfect equality (rather than simple
imperfect equality); this allows us to recover the connection to #BIS for those f ∈ IM2. In
fact, when f supports perfect equality, we can effectively carry out (a strengthening of) the
program in [10] to obtain the following classification which perfectly aligns with Theorem 6.

I Theorem 18. Let f : {0, 1}k → {0, 1} be a Boolean function that is not affine. Suppose
that f supports perfect equality.
1. If f is in IM2, then for all sufficiently large ∆, #Multi2Spin∆(f) is #BIS-equivalent.
2. If f is not in IM2, then for all sufficiently large ∆, there exists a real number c > 1 such

that #Multi2Spin∆,c(f) is NP-hard.

Theorems 17 and 18 together achieve the desired classification of #Multi2Spin∆(f) when
f ∈ IM2 as well as the strong inapproximability results when f /∈ IM2. Before presenting a
more elaborate sketch of the proof of Theorem 17, it will be instructive to give the main
ideas behind both proofs.

To prove Theorem 17, our proof departs from the previous approaches in the related
works [10] and [11]. In these works, f was used to directly encode a binary function which
was feasible because of the presence of equality in [10] and the symmetry of f in [11]. Instead,
we take a much more painstaking combinatorial approach by using induction on the arity of
the function f .

The base case of the induction (proving Theorem 17 for arity-2 functions) is fairly simple
to handle, so let us focus on the induction step. The rough idea, to put the induction
hypothesis to work, is to study whether f supports pinning-to-0 or pinning-to-1; then,
provided that at least one these pinnings is available, we need to pin appropriately some
arguments of f to obtain a function h of smaller arity. Our goal is then to ensure that h is
non-affine; then, we can invoke the induction hypothesis and obtain that h either supports
perfect equality or simulates a hard function. From there, since h was obtained by pinning
some arguments of f , we will obtain by a transitivity argument (cf. Lemma 33 in the full
version) that f either supports perfect equality or f simulates the same hard function as
h. (Note, in the case where h supports perfect equality, to conclude that f supports perfect
equality, we need to ensure that the pinnings of f used to obtain h were perfect.)

Determining which arguments of f need to be pinned is the most challenging aspect of
this scheme. Our method for reducing the number of functions under consideration is to
symmetrise f in a natural way and obtain a new function f∗ which is now symmetric (see
definitions in § 6). Then, it turns out that there are seven possibilities for the function f∗
which we need to consider in detail. That is, when the symmetrisation of f is one of these
seven functions, we have to figure out whether f supports perfect equality and, if not, work
out the combinatorial structure of f and pinpoint which arguments are suitable to be pinned.
The details of the argument can be found in the full version of this paper.

The proof of Theorem 18, where f supports perfect equality, basically follows the approach
of [10]. However, to get the stronger inapproximability results, we have to take a detour
studying self-dual functions (functions whose value does not change when we complement
their arguments). We show that if f is self-dual then it simulates a hard function (Theorem 46
of the full version). The problem with self-dual functions is that they do not support pinning-
to-0 or pinning-to-1, so we are not able to use the relevant results from [10]. After proving
Theorem 46 and demonstrating (Lemma 42) that “implementations in CSPs” work in the
repeat-free setting when f supports perfect equality, the techniques of [10] can be adapted
to get Theorem 18.

A. Galanis, L. A. Goldberg, and K. Yang 27:11

6 A partial sketch of the proof of Theorem 17

Let f : {0, 1}k → {0, 1} be a Boolean function. For S ⊆ [k], χS denotes the characteristic
vector of S, which is the length-k Boolean vector such that, for all i ∈ [k], the i-th bit of χS is 1
iff i ∈ S. Ωf = {S ⊆ [k] | χS ∈ Rf}. The function f is said to be semi-trivial iff there is a set S
such that Ωf = {T | S ⊆ T ⊆ [k]} or Ωf = {T | T ⊆ S}. Every semi-trivial Boolean function
is affine. Let Pk denote the set of all permutations π : [k]→ [k]. Then the symmetrisation f∗
of f is the function f∗ : {0, 1}k → R≥0 defined by f∗(x1, . . . , xk) =

∏
π∈Pk

f(xπ(1), . . . , xπ(k)).
For s ∈ {0, 1}, let δs : {0, 1} → {0, 1} be the Boolean function defined by δs(s) = 1 and
δs(1⊕ s) = 0. Define fi→s to be the function obtained from f by pinning the i-th argument
of f to s, i.e. fi→s(x1, . . . , xi−1, xi+1, . . . , xk) =

∑
xi∈{0,1} f(x1, . . . , xk) · δs(xi). Similarly,

for S, T ⊆ [k], let fS→0,T→1 be the (k − |S ∪ T |)-ary function obtained from f by pinning
the arguments in S to 0 and the arguments in T to 1. So if x′ denotes the |S ∪ T |-ary vector
containing all xi with i ∈ S ∪ T and x′′ denotes the k − |S ∪ T |-ary vector containing all xi
with i ∈ [k] \S ∪T , fS→0,T→1(x′′) =

∑
x′∈{0,1}|S∪T | f(x1, . . . , xk) ·

∏
i∈S δ0(xi) ·

∏
j∈T δ1(xj).

If S = ∅ or T = ∅, we will omit S → 0 or T → 1 from the notation.

Partial Proof Sketch. We prove the theorem by induction on the arity of f . The base
case, k = 2, is covered in the full version. For the induction step, assume k ≥ 3. The
inductive hypothesis is that for all 2 ≤ k′ < k, all k′-ary functions f ′ satisfy at least one of
the three propositions in the statement of the theorem. We now prove that an arbitrary
f : {0, 1}k → {0, 1} also satisfies at least one of the propositions. The easy case is when f∗
is not affine. In this case, the work of [11] shows that f∗ either simulates a hard function (in
which case f simulates the hard function as well) or f∗ supports perfect equality (in which
case f does as well). The bulk of the proof deals with the case where f∗ is affine. It turns
out that there are seven possible symmetric affine functions f∗. To illustrate the ideas, we
consider just one of them here. So from now on (to cover this special case), suppose that, for
all x ∈ {0, 1}k, f∗(x) = 0.

We prove in the full version that either f supports perfect equality or f supports both
perfect pinning-to-0 and perfect pinning-to-1. If f supports perfect equality, then we are done,
so suppose from now on that f supports both perfect pinning-to-0 and perfect pinning-to-1.

We will show below that at least one of the following items holds. (1) f is affine (so
we are finished), (2) there exist S, T ⊆ [k] such that fS→0,T→1 is not affine, (3) f supports
perfect equality (so we are finished), or (4) f simulates a hard function (so we are finished).
In situation (2), since fS→0,T→1 is not affine, it must support perfect equality or simulate a
hard function g by the induction hypothesis. So we finish by showing (Lemma 33) that f
either supports perfect equality or simulates the same hard function g. We now discuss how
to show that at least one of the four items holds.

We prove in the full version (Lemma 39) that for all W ∈ Ωf , fW→0 is semi-trivial
(otherwise one of the items holds). Choose S ∈ Ωf such that |S| is as large as possible. Let
h = fS→0. Since h is semi-trivial (by taking W = S above), we claim that there is a T
satisfying ∅ ⊂ T ⊆ S such that Ωh = {U | T ⊆ U ⊆ S}. (To see this, note that the definition
of semi-trivial implies that there is a subset T of S such that either Ωh = {U | U ⊆ T} or
Ωh = {U | T ⊆ U ⊆ S}. The former is impossible since ∅ 6∈ Ωh since h(0) = f(0) = f∗(0) = 0.
Also, in the latter case, T is not empty because, once again, ∅ 66∈ Ωh.)

Case 1. Suppose that ∀X ∈ Ωf , T ⊆ X: Recall that T is non-empty. Also, for every
i ∈ T , {i} ∪ Ωfi→1 = Ωf so either f is affine (item (1)) or fi→1 is not affine (item (2)).

Now, if Case 1 does not hold then there is an X ∈ Ωf such that T \ X is non-empty.
Since Ωh = {U | T ⊆ U ⊆ S} we conclude that X /∈ Ωh. Since h = fS→0 we conclude that
X \ S is non-empty. Thus, the only other case to consider is as follows.

ICALP 2017

27:12 Complexity of Bounded-Degree Boolean #CSP

Case 2. Suppose that there is an X ∈ Ωf such that T \ X and X \ S are both non-
empty: Let Ψ = {X ∈ Ωf | T \X 6= ∅ and X \ S 6= ∅ }, a = min{|T \ X| : X ∈ Ψ},
and b = min{|X \ S| : X ∈ Ψ and |T \X| = a}. Choose R ∈ Ψ with |T \ R| = a and
|R \ S| = b. Now before proceeding, we use the sets S, T and R to partition [k]. Specifically,
let A = {i ∈ [k] | i ∈ S, i ∈ T, i /∈ R}, B = {i ∈ [k] | i ∈ S, i ∈ T, i ∈ R}, C = {i ∈ [k] | i ∈
S, i /∈ T, i /∈ R}, D = {i ∈ [k] | i ∈ S, i /∈ T, i ∈ R}, E = {i ∈ [k] | i /∈ S, i /∈ T, i /∈ R} and
F = {i ∈ [k] | i /∈ S, i /∈ T, i ∈ R}. It is clear from the definitions that the sets A, B, C, D,
E and F are disjoint. Also, since T ⊆ S, they partition [k]. From the definitions, A = T \R
and F = R \ S so, by the choice of R, A and F are non-empty. Let g = fC∪E→0,B∪D→1.

By definition, every element of Ωg is a subset of A ∪ F . Also, for Y ⊆ A ∪ F , “Y ∈ Ωg”
means the same thing as “Y ∪ B ∪D ∈ Ωf”. We establish some facts before dividing the
analysis into sub-cases.

Fact 1: A ∈ Ωg. We have Ωh = {U | T ⊆ U ⊆ S} and T = A ∪B so A ∪B ∪D ∈ Ωh.
Since A ∪B ∪D ⊆ S, this means A ∪B ∪D ∈ Ωf . Equivalently, A ∈ Ωg.

Fact 2: F ∈ Ωg. From the definition of R, R ∈ Ωf . Also, R = B ∪ D ∪ F so
F ∪B ∪D ∈ Ωf . Equivalently, F ∈ Ωg.

Fact 3: If Y ∈ Ωg then either Y ∩ A ∈ {∅, A} or Y ∩ F = ∅ (or both). Suppose
for contradiction that ∅ ⊂ Y ∩A ⊂ A and Y ∩ F is non-empty. Note that R = B ∪D ∪ F .
Let R′ = B ∪D ∪ Y . Note that T \R = A and T \R′ = A \ Y ⊂ A so |T \R′| < |T \R|. We
will show a contradiction to the choice of R by showing that R′ ∈ Ψ. First, since Y ∈ Ωg,
R′ ∈ Ωf . Also, T \R′ = A \ Y is non-empty and R′ \ S = Y ∩ F is non-empty.

Fact 4: If Y ∈ Ωg and Y ∩ A = ∅ then Y ∈ {∅, F }. Suppose for contradiction that
∅ ⊂ Y ⊂ F . As in the proof of Fact 3, let R′ = B ∪D ∪ Y . Note that T \R = T \R′ = A.
Also, R\S = F and R′ \S = Y so |R\S| > |R′ \S|. Once again, we will show a contradiction
to the choice of R by showing that R′ ∈ Ψ. As in the proof of Fact 3, since Y ∈ Ωg, R′ ∈ Ωf .
Also, T \R′ is non-empty since T \R is. Finally, R′ \ S = Y , which is non-empty.

Fact 5: If Y ∈ Ωg and Y ∩F = ∅ then Y = A. Since Y ∈ Ωg, we have Y ∪B∪D ∈ Ωf .
But since Y ⊆ A, we have Y ∪B ∪D ⊆ S, so Y ∪B ∪D ∈ Ωh. Since Ωh = {U | T ⊆ U ⊆ S}
we have T ⊆ Y ∪B ∪D so A ⊆ Y .

Given Facts 1–5, we have only the following sub-cases.

Case 2a: Ωg = {A, F }. In this case, we will show that f supports perfect equality.
Let H0 be a k-tuple hypergraph, with a vertex u0 such that µf ;H0(σu0 = 0) = 1. Let H1
be a k-tuple hypergraph, with a vertex u1 such that µf ;H1(σu1 = 0) = 1. We have already
noted that A is non-empty. Suppose, without loss of generality, that 1 ∈ A (otherwise, we
simply re-order the arguments of [k]). Now let H ′ be the k-tuple hypergraph with vertices
v0, v1, . . . , vk and hyperarcs (v0, v2, . . . , vk) and (v1, v2, . . . , vk). Construct H from H ′ by
doing the following:

For every i ∈ C ∪ E, take a new copy of H0 and identify vertex u0 with vi.
For every i ∈ B ∪D, take a new copy of H1 and identify vertex u1 with vi.

Now since Ωg = {A,F}, µf ;H(σ(v0) = σ(v1) = 0) = µf ;H(σ(v0) = σ(v1) = 1) = 1/2. Thus,
f supports perfect equality, so item (3) holds.

Case 2b: ∃Y ∈ Ωg such that Y ∩ A = A and Y ∩ F is non-empty. We show in the
full version that ft→1 is not affine for some t ∈ A (so item (2) holds). J

A. Galanis, L. A. Goldberg, and K. Yang 27:13

References

1 Ivona Bezáková, Andreas Galanis, Leslie A. Goldberg, Heng Guo, and Daniel Štefankovič.
Approximation via Correlation Decay when Strong Spatial Mixing Fails. ArXiv e-prints,
October 2015. arXiv:1510.09193.

2 Andrei A. Bulatov, Venkatesan Guruswami, Andrei Krokhin, and Dániel Marx. The Con-
straint Satisfaction Problem: Complexity and Approximability (Dagstuhl Seminar 15301).
Dagstuhl Reports, 5(7):22–41, 2016. doi:10.4230/DagRep.5.7.22.

3 Jin-Yi Cai. Complexity dichotomy for counting problems. In Language and Automata
Theory and Applications – 7th International Conference, LATA 2013, Bilbao, Spain, April
2-5, 2013. Proceedings, pages 1–11, 2013. doi:10.1007/978-3-642-37064-9_1.

4 Jin-Yi Cai, Andreas Galanis, Leslie A. Goldberg, Heng Guo, Mark Jerrum, Daniel Šte-
fankovič, and Eric Vigoda. #BIS-hardness for 2-spin systems on bipartite bounded de-
gree graphs in the tree non-uniqueness region. Journal of Computer and System Sciences,
82(5):690–711, 2016. doi:10.1016/j.jcss.2015.11.009.

5 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted boolean #csp.
J. Comput. Syst. Sci., 80(1):217–236, 2014. doi:10.1016/j.jcss.2013.07.003.

6 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Inf. Comput., 125(1):1–12, 1996. doi:10.1006/inco.1996.0016.

7 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences per
variable: A study through delta-matroid parity. In Mathematical Foundations of Computer
Science 2003, 28th International Symposium, MFCS 2003, Bratislava, Slovakia, August
25-29, 2003, Proceedings, pages 358–367, 2003. doi:10.1007/978-3-540-45138-9_30.

8 Martin Dyer, Leslie A. Goldberg, Catherine Greenhill, and Mark Jerrum. The relative
complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2003. doi:
10.1007/s00453-003-1073-y.

9 Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, and David Richerby. The complexity
of approximating bounded-degree boolean #CSP. Inf. Comput., 220:1–14, 2012. doi:
10.1016/j.ic.2011.12.007.

10 Martin E. Dyer, Leslie A. Goldberg, and Mark Jerrum. An approximation trichotomy for
boolean #csp. J. Comput. Syst. Sci., 76(3-4):267–277, 2010. doi:10.1016/j.jcss.2009.
08.003.

11 Andreas Galanis and Leslie A. Goldberg. The complexity of approximately counting in
2-spin systems on k-uniform bounded-degree hypergraphs. Information and Computation,
251:36–66, 2016.

12 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford lecture series in
mathematics and its applications. Oxford University Press, Oxford, New York, 2004. URL:
http://opac.inria.fr/record=b1121618.

13 Jonathan Hermon, Allan Sly, and Yumeng Zhang. Rapid mixing of hypergraph independent
set. CoRR, abs/1610.07999, 2016. URL: http://arxiv.org/abs/1610.07999.

14 Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. Comput. Syst. Sci., 61(2):302–332, 2000. doi:10.1006/jcss.2000.1713.

15 Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI Magazine,
13(1):32–44, 1992. URL: http://www.aaai.org/ojs/index.php/aimagazine/article/
view/976.

16 Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1531–1548, 2015. doi:10.1137/1.
9781611973730.101.

17 Ugo Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Inf. Sci., 7:95–132, 1974. doi:10.1016/0020-0255(74)90008-5.

ICALP 2017

http://arxiv.org/abs/1510.09193
http://dx.doi.org/10.4230/DagRep.5.7.22
http://dx.doi.org/10.1007/978-3-642-37064-9_1
http://dx.doi.org/10.1016/j.jcss.2015.11.009
http://dx.doi.org/10.1016/j.jcss.2013.07.003
http://dx.doi.org/10.1006/inco.1996.0016
http://dx.doi.org/10.1007/978-3-540-45138-9_30
http://dx.doi.org/10.1007/s00453-003-1073-y
http://dx.doi.org/10.1007/s00453-003-1073-y
http://dx.doi.org/10.1016/j.ic.2011.12.007
http://dx.doi.org/10.1016/j.ic.2011.12.007
http://dx.doi.org/10.1016/j.jcss.2009.08.003
http://dx.doi.org/10.1016/j.jcss.2009.08.003
http://opac.inria.fr/record=b1121618
http://arxiv.org/abs/1610.07999
http://dx.doi.org/10.1006/jcss.2000.1713
http://www.aaai.org/ojs/index.php/aimagazine/article/view/976
http://www.aaai.org/ojs/index.php/aimagazine/article/view/976
http://dx.doi.org/10.1137/1.9781611973730.101
http://dx.doi.org/10.1137/1.9781611973730.101
http://dx.doi.org/10.1016/0020-0255(74)90008-5

27:14 Complexity of Bounded-Degree Boolean #CSP

18 Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

19 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego, California,
USA, pages 216–226, 1978. doi:10.1145/800133.804350.

20 Renjie Song, Yitong Yin, and Jinman Zhao. Counting hypergraph matchings up to unique-
ness threshold. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France,
pages 46:1–46:29, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.46.

21 Dominic J. A. Welsh. Complexity: Knots, Colourings and Counting. Cambridge University
Press, New York, NY, USA, 1993.

http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.46

Inapproximability of the Independent Set
Polynomial Below the Shearer Threshold∗†‡

Andreas Galanis1, Leslie Ann Goldberg2, and Daniel Štefankovič3

1 University of Oxford, Oxford, UK
andreas.galanis@cs.ox.ac.uk

2 University of Oxford, Oxford, UK
leslie.goldberg@cs.ox.ac.uk

3 University of Rochester, Rochester, NY, USA
stefanko@cs.rochester.edu

Abstract
We study the problem of approximately evaluating the independent set polynomial of bounded-
degree graphs at a point λ. Equivalently, this problem can be reformulated as the problem of
approximating the partition function of the hard-core model with activity λ on graphs G of max-
imum degree ∆. For λ > 0, breakthrough results of Weitz and Sly established a computational
transition from easy to hard at λc(∆) = (∆ − 1)(∆−1)/(∆ − 2)∆, which coincides with the tree
uniqueness phase transition from statistical physics.

For λ < 0, the evaluation of the independent set polynomial is connected to the problem
of checking the conditions of the Lovász Local lemma (LLL) and applying its algorithmic con-
sequences. Shearer described the optimal conditions for the LLL and identified the threshold
λ∗(∆) = (∆− 1)∆−1/∆∆ as the maximum value p such that every family of events with failure
probability at most p and whose dependency graph has maximum degree ∆ has nonempty inter-
section. Very recently, Patel and Regts, and Harvey et al. have independently designed FPTASes
for approximately computing the partition function whenever |λ| < λ∗(∆).

Our main result establishes for the first time a computational transition at the Shearer
threshold. Namely, we show that for all ∆ ≥ 3, for all λ < −λ∗(∆), it is NP-hard to approxim-
ate the partition function on graphs of maximum degree ∆, even within an exponential factor.
Thus, our result, combined with the algorithmic results for λ > −λ∗(∆), establishes a phase
transition for negative activities. In fact, we now have a complete picture for the complexity of
approximating the partition function for all λ ∈ R and all ∆ ≥ 3, apart from the critical values.
1. For −λ∗(∆) < λ < λc(∆), there exists an FPTAS for approximating the partition function

with activity λ on graphs G of maximum degree ∆.
2. For λ < −λ∗(∆) or λ > λc(∆), it is NP-hard to approximate the partition function with

activity λ on graphs G of maximum degree ∆, even within an exponential factor.
Rather than the tree uniqueness threshold of the positive case, the phase transition for negative
activities corresponds to the existence of zeros for the partition function of the tree below −λ∗(∆).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases approximate counting, independent set polynomial, Shearer threshold

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.28

∗ The full version of the paper is available at arxiv.org/abs/1612.05832. The theorem numbering here
matches the full version.

† The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828.
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.

‡ Research supported by NSF grant CCF-0910415.

EA
T

C
S

© Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

1 Introduction

The independent set polynomial is a fundamental object in computer science which has
been studied with various motivations. From an algorithmic viewpoint, the evaluation of
this polynomial is crucial for determining the applicability of the Lovász Local Lemma and
thus obtaining efficient algorithms for both finding [14] and approximately counting [6, 12]
combinatorial objects with specific properties.

The independent set polynomial also arises in statistical physics, where it is called the
hard-core partition function. Given a graph G, the value of the independent set polynomial
of G at a point λ is equal to the value of the partition function of the hard-core model where
the so-called “activity parameter” is equal to λ. We use the following notation. Given a
graph G, let IG denote the set of independent sets in G. The weight of an independent set
I ∈ IG is given by λ|I|. The hard-core partition function with parameter λ is defined as
ZG(λ) :=

∑
I∈IG

λ|I|.
The hard-core model has attracted significant interest in computer science during recent

years, due to the pioneering results by Weitz and Sly which established that the computational
complexity of approximating the partition function undergoes a transition that coincides
with the uniqueness phase transition in statistical physics. Namely, for ∆ ≥ 3, let λc(∆) :=
(∆ − 1)∆−1/(∆ − 2)∆. Weitz [22] designed an FPTAS for approximating the partition
function on graphs G of maximum degree ∆ when the activity parameter λ is in the range
0 < λ < λc(∆). On the other hand, Sly [19] showed that approximating the partition function
for λ > λc(∆) is NP-hard (see [20] for the refinement stated here). The threshold λc(∆)
coincides with the uniqueness threshold of the infinite ∆-regular tree and it captures whether
root-to-leaf correlations persist, or decay exponentially, as the height of the tree goes to
infinity. This beautiful connection between computational complexity and phase transitions
has lead to a classification of the complexity of approximating the partition function of
general antiferromagnetic 2-spin systems on graphs of maximum degree ∆ (see [11, 18] for
the algorithmic side and [20, 3] for the hardness side).

Our goal in this paper is to determine whether a computational transition takes place for
negative activities as well, i.e., when λ < 0. Interestingly, the evaluation of the independent
set polynomial for λ < 0 has significant algorithmic interest due to its connection with the
Lovász Local Lemma (LLL) and, more precisely, to the problem of checking when the LLL
applies. We will review this well-known connection shortly; prior to that, we introduce the
Shearer threshold, which is relevant for our work.

Shearer, as part of his work [17] on the LLL, implicitly established that for every ∆ ≥ 2,
there is a threshold λ∗(∆), given by λ∗(∆) = (∆− 1)∆−1/∆∆, such that
1. for all λ ≥ −λ∗(∆), for all graphs G of maximum degree ∆, it holds that ZG(λ) > 0.
2. for all λ < −λ∗(∆), there exists a graph G of maximum degree ∆ such that ZG(λ) ≤ 0.
We refer to the point −λ∗(∆) as the Shearer threshold. Similarly to the positive case, the
∆-regular tree plays a role in determining the location of the Shearer threshold, in the sense
that for all λ < −λ∗(∆), the truncation of the tree at an appropriate height yields a (finite)
tree T of maximum degree ∆ such that ZT (λ) ≤ 0. Scott and Sokal [16] were the first to
realise the relevance of Shearer’s work to the phase transitions of the hard-core model, and
to make explicit Shearer’s contribution in this context. They further developed these ideas
to study the analyticity of the logarithm of the partition function in the complex plane.

From an algorithmic viewpoint, the Shearer threshold is tacitly present in most, if not
all, applications of the (symmetric) LLL. In particular, Shearer [17] proved that λ∗(∆) is the
maximum value p such that every family of events, with failure probability at most p and

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:3

with a dependency graph of maximum degree ∆, has nonempty intersection. This simple
characterisation is a corollary of far more elaborate conditions formulated in the same work
that determine whether a dependency graph falls into the scope of the LLL. To date, no
polynomial-time algorithm has been presented that, given as input a dependency graph G
of maximum degree ∆, decides whether Shearer’s conditions are satisfied when the failure
probabilities of some events exceed the threshold λ∗(∆) and it is very plausible that none
exists (see for example [8, Section 4] for results in this direction).

Very recently, there have been two independent works that study the Shearer threshold
from an approximate counting perspective. In particular, Patel and Regts [15] and Harvey,
Srivastava, and Vondrák [8] (see also [21]) designed FPTASes, using different techniques, that
approximate ZG(λ) on graphs G of maximum degree ∆ when −λ∗(∆) < λ < 0 (and also for
complex values λ with |λ| < λ∗(∆)). Thus, not only is it trivial to decide whether ZG(λ)
is positive above the Shearer threshold, but also it is computationally easy to approximate
ZG(λ) within an arbitrarily small polynomial relative error (see [8] for extensions to the
multivariate partition function). Apart from partial results in [8] which we shall review
shortly, these works left open the regime λ < −λ∗(∆). In light of their results, it is natural
to ask whether the Shearer threshold has a computational complexity significance for the
problem of approximating ZG(λ) when λ < 0, analogous to the role that the tree uniqueness
threshold has for λ > 0.

In this work, we answer this question by showing that, for all ∆ ≥ 3, for all λ < −λ∗(∆),
it is NP-hard to approximate |ZG(λ)|, even within an exponential factor. To formally state
our result, we define the following problem which has three parameters–the activity λ, a
degree bound ∆, and a value c > 1 which specifies the desired accuracy of the approximation.

Name #HardCore(λ,∆, c).
Instance An n-vertex graph G with maximum degree at most ∆.
Output A number Ẑ such that c−n|ZG(λ)| ≤

∣∣Ẑ∣∣ ≤ cn|ZG(λ)|.

We now formally state our result.

I Theorem 1. Let ∆ ≥ 3 and λ < −λ∗(∆). Then there exists a constant c > 1 such that
#HardCore(λ,∆, c) is NP-hard, i.e., it is NP-hard to approximate |ZG(λ)| on graphs G of
maximum degree at most ∆, even within an exponential factor.

The previous known result for the inapproximability of the partition function for λ < 0 was
given in [8, Theorem 4.4] which applies for ∆ ≥ 62 and λ < −39/∆. Theorem 1 therefore
vastly tightens that result, by showing a strong inapproximability result all the way to the
Shearer threshold for all degree bounds ∆ ≥ 3.

To elucidate the content of Theorem 1, we remark that, combined with the algorithmic
results of [8, 15], it establishes for the first time a sharp computational transition at the Shearer
threshold for negative activities. In fact, we now have a complete picture for the complexity
of approximating ZG(λ) for all λ ∈ R apart from the critical values −λ∗(∆) and λc(∆).
1. For −λ∗(∆) < λ < λc(∆), there exists an FPTAS for approximating ZG(λ) on graphs

G of maximum degree ∆; this follows by [8, 15] for −λ∗(∆) < λ < 0 and by [22] for
0 < λ < λc(∆). (The case λ = 0 is trivial since ZG(λ) = 1 for all graphs G.)

2. For λ < −λ∗(∆) or λ > λc(∆), it is NP-hard to approximate |ZG(λ)| on graphs G of
maximum degree ∆, even within an exponential factor; this follows by Theorem 1 for
λ < −λ∗(∆) and by [20] for λ > λc(∆).

While both of the thresholds −λ∗(∆) and λc(∆) come from the infinite ∆-regular tree, they
are of different nature: the Shearer threshold marks the point where the partition function of
the tree of appropriate height eventually becomes negative, while the uniqueness threshold

ICALP 2017

28:4 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

marks the point where correlations between the root and the leaves persist, as the height of
the tree grows.

The interplay between the zeros of graph polynomials and the complexity of approximating
partition functions has appeared before in the approximate counting literature, see for example
[4, 5]. However, one of the main differences in our present setting is the constant degree
bound ∆, which significantly restricts the power of “thickening”. One might then think that
perhaps Sly’s technique for establishing inapproximability above the uniqueness threshold
might be relevant; this would entail analysing the partition function of random bipartite
∆-regular graphs for negative activities using moment analysis, which, to say the least,
quickly runs into severe problems. Working around these difficulties for degrees as low as
∆ = 3 is one the technical contributions of our work–see Section 1.1 for a high-level outline.

We conclude this introductory section by outlining very briefly the series of works that
have established the Shearer threshold as an algorithmic benchmark. Beck [2] gave the
first algorithmic application of the LLL, albeit with significantly worse guarantees than the
non-constructive version; three decades later, Moser [13] and Moser and Tardos [14] succeeded
in giving elegant, constructive analogues of the vanilla LLL; Shearer’s conditions were finally
used in full generality to give a constructive proof of the LLL by Kolipaka and Szegedy [10],
which yielded as a corollary efficient algorithms up to the Shearer threshold. See also [1, 7, 9]
for recent algorithmic extensions of the LLL (and a more thorough overview of the LLL
literature) and see [6, 12] for new applications of the LLL in approximate counting.

1.1 Proof outline and organisation

At a very high level, to prove Theorem 1 for an activity λ < −λ∗(∆), our strategy is to
transform λ into a “nicer” activity. Our key technical lemma, stated as Lemma 4 in Section 2,
shows how to simulate a dense set of activities on the real line using graphs of maximum
degree ∆ as gadgets. As we shall explain later in detail, this lemma crucially uses the
assumption that λ < −λ∗(∆) by utilising trees of appropriate depth and combining them in
suitable graph constructions that respect the degree bound ∆. Once Lemma 4 is in place,
some extra care is needed to obtain the inapproximability results for ∆ = 3. Our approach is
to construct binary gadgets and use inapproximability results for antiferromagnetic 2-spin
systems on 3-regular graphs.

The paper is organised in two parts. In the first part, which is in Section 2, we state
our key Lemma 4 and then show how to use it to conclude the inapproximability results of
Theorem 1. In the second part, which is in Section 3, we present an overview of the proof of
Lemma 4 and then give, in more detail, the proofs of some indicative lemmas.

2 Proof of Theorem 1

To give some rough intuition for our main proof technique of Theorem 1, suppose that we
are given a degree bound ∆ ≥ 3 and an activity λ < −λ∗(∆). We will pursue the freedom to
“change” the activity λ to a “nicer” activity λ′ by using a suitable graph of maximum degree
∆. We will refer to this construction as implementing the activity λ′ (cf. Definition 3 for the
formal notion that is used throughout the paper). Our reduction for the proof of Theorem 1
is designed so that we need to implement just two well-chosen values of λ′. Using these two
activities carefully so that we do not increase the degree ∆, we will construct binary gadgets
(i.e., gadgets acting on edges) that will allow us to get our NP-hardness results by reducing
from an appropriate (antiferromagnetic) 2-spin model on 3-regular graphs.

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:5

To illustrate more precisely the relevant ideas, we will need a few quick definitions. Let
λ ∈ R and G = (V,E) be an arbitrary graph. For a vertex v ∈ V , we will denote

Z in
G,v(λ) :=

∑
I∈IG; v∈I

λ|I|, Zout
G,v(λ) :=

∑
I∈IG; v/∈I

λ|I|.

Thus, Z in
G,v(λ) is the contribution to the partition function ZG(λ) from those independent

sets I ∈ IG such that v ∈ I; similarly, Zout
G,v(λ) is the contribution to ZG(λ) from those

I ∈ IG such that v /∈ I. We can now formalise the notion of implementation.

I Definition 2. Let λ ∈ R 6=0. We say that the graph G implements the activity λ′ ∈ R with
accuracy ε > 0 if there is a vertex v in G such that Zout

G,v(λ) 6= 0 and
1. the degree of vertex v in G is 1,

2. it holds that
∣∣∣Z in

G,v(λ)
Zout
G,v(λ) − λ

′| ≤ ε.

We will refer to the vertex v as the terminal of G. When Item 2 holds with ε = 0, then we
will just say that G implements the activity λ′.

I Definition 3. Let ∆ ≥ 2 be an integer and λ ∈ R 6=0. We say that (∆, λ) implements the
activity λ′ ∈ R if there is a graph G of maximum degree at most ∆ which implements the
activity λ′.

More generally, we say that (∆, λ) implements a set of activities S ⊆ R, if for every
λ′ ∈ S it holds that (∆, λ) implements λ′.

Our main lemma to prove Theorem 1 is the following, whose proof is given in Section 3
(there, we also give an overview of the proof).

I Lemma 4. Let ∆ ≥ 3 and λ < −λ∗(∆). Then, for every λ′ ∈ R, for every ε > 0, there
exists a graph G of maximum degree at most ∆ that implements λ′ with accuracy ε. In other
words, (∆, λ) implements a set of activities S which is dense in R.

We remark here that Lemma 4 fails for λ > −λ∗(∆). For example, for λ ≥ 0, it is not
hard to see that 0 ≤ Z in

G,v(λ)/Zout
G,v(λ) ≤ λ for all graphs G and all vertices v in G. Moreover,

in the regime λ > −λ∗(∆), Scott and Sokal [16] have shown that Z in
G,v(λ)/Zout

G,v(λ) > −1 for
all graphs G of maximum degree ∆ (and all vertices v in G). This lower bound (in various
forms) was also a key ingredient in the approximation algorithms of [8, 15].

We also remark that Lemma 4 does not give any quantitative guarantees on the dependence
of the size of the graph G with respect to λ, λ′, 1/ε. This is by design: such estimates will
not be important for us since our reduction for Theorem 1 invokes Lemma 4 for just two
constant values of λ′ with some small constant ε > 0 (the particular values depend on λ but
not on the input). In particular, for our applications of Lemma 4 in the proof of Theorem 1,
the sizes of the relevant graphs G will be bounded by a constant (depending on λ).

2.1 The hard-core model with non-uniform activities
Implementing activities can be thought of as constructing unary gadgets that allow modi-
fication of the activity at a particular vertex v. We will use the implemented activities
to simulate a more general version of the hard-core model with non-uniform activities. In
particular, let G = (V,E) be a graph and λ = {λv}v∈V be a real vector; we associate to
every vertex v ∈ V the activity λv. The hard-core partition function with activity vector λ is
defined as ZG(λ) =

∑
I∈IG

∏
v∈I λv. Note that the standard hard-core model with activity

λ is obtained from this general version by setting all vertex activities equal to λ. For a vertex

ICALP 2017

28:6 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

v1

(a) The graph G1 with terminal v1

implementing an activity λ′
1

v2

(b) The graph G2 with terminal v2

implementing an activity λ′
2

1
λ1 = λ′1

2
λ2 = λ′2

3
λ3 = λ

4
λ4 = λ′1

(c) The graph G with activity vector λ

1 2 3 4

(d) The graph G′ with uniform activity λ

Figure 1 An illustrative depiction of the construction in the statement of Lemma 5. The graphs
G1, G2 in Figures 1a, 1b implement the activities λ′

1, λ
′
2, respectively, i.e.,

Z in
G1,v1

(λ)
Zout

G1,v1
(λ) = λ′

1 and
Z in

G2,v2
(λ)

Zout
G2,v2

(λ) = λ′
2 for some λ′

1, λ
′
2 ∈ R. In Figure 1c, we have a graph G with non-uniform activities

{λi}i∈[4] such that λi ∈ {λ, λ′
1, λ

′
2} for i ∈ [4]. By sticking onto G the graphs G1, G2 as in Figure 1d,

we obtain the graph G′. Note that the vertex whose activity was equal to λ was not modified.

v ∈ V , we define Z in
G(λ) and Zout

G (λ) for the non-uniform model analogously to Z in
G(λ) and

Zout
G (λ) for the uniform model, respectively.
The following lemma connects the partition function ZG(λ) with non-uniform activities to

the hard-core partition function with uniform activity λ. Roughly, whenever all the activities
in the activity vector λ can be implemented, we can just stick graphs on the vertices of G
which implement the corresponding activities in λ (if a vertex activity equals λ, no action is
required).

I Lemma 5. Let λ ∈ R 6=0, let t ≥ 1 be an arbitrary integer, and let λ′1, . . . , λ′t ∈ R.
Suppose that, for j ∈ [t], the graph Gj with terminal vj implements the activity λ′j, and let
Cj := Zout

Gj ,vj
(λ). Then, the following holds for every graph G = (V,E) and every activity

vector λ = {λv}v∈V such that λv ∈ {λ, λ′1, . . . , λ′t} for every v ∈ V .
For j ∈ [t], let Vj := {v ∈ V | λv = λ′j}. Consider the graph G′ obtained from G by

attaching, for every j ∈ [t] and every vertex v ∈ Vj, a copy of the graph Gj to the vertex v
and identifying the terminal vj with the vertex v (see Figure 1). Then, for C :=

∏t
j=1 C

|Vj |
j ,

it holds that ZG′(λ) = C · ZG(λ).

I Remark. Note that, in the construction of Lemma 5, every vertex v ∈ G with λv = λ

maintains its degree in G′ (in fact, the neighbourhood of such a vertex v is the same in G
and G′). The degree of every other vertex v in G gets increased by one. This observation
will ensure in later applications of Lemma 5 that we do not blow up the degree.

2.2 Antiferromagnetic 2-spin systems on ∆-regular graphs
In our setting, where every vertex has degree at most ∆, an implementation consumes one
of the ∆ slots that a vertex has available to connect to other vertices. This is particularly
problematic for the case where ∆ = 3. In the following we circumvent this problem
by constructing suitable binary gadgets, so that we can use inapproximability results for
computing the partition function of antiferromagnetic 2-spin systems on ∆-regular graphs.

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:7

Recall, an antiferromagnetic 2-spin system (without external field) is specified by two
parameters β, γ > 0 such that βγ < 1. Let M = {Mij}i,j∈{0,1} be the matrix

[
β 1
1 γ

]
. For a

graph H = (V,E), configurations of the 2-spin system are assignments σ : V → {0, 1} and
the weight of a configuration σ is given by wH,β,γ(σ) =

∏
{u,v}∈EMσ(u),σ(v). The partition

function of H is then given by

ZH,β,γ =
∑

σ:V→{0,1}

wH,β,γ(σ) =
∑

σ:V→{0,1}

∏
{u,v}∈E

Mσ(u),σ(v).

For positive parameters β, γ and c > 1, we consider the following computational problem,
where the input is a 3-regular graph H.

Name #2Spin(β, γ, c).
Instance An n-vertex graph H which is 3-regular.
Output A number Ẑ such that c−nZH,β,γ ≤ Ẑ ≤ cnZH,β,γ .

The case β = γ < 1 corresponds to the well-known (antiferromagnetic) Ising model. As a
corollary of results of Sly and Sun [20] (see also [3]), it is known that, for 0 < β = γ < 1/3,
there exists c > 1 such that #2Spin(β, β, c) is NP-hard, i.e., approximating the partition
function ZG,β,β of the Ising model on 3-regular graphs H is NP-hard, even within an
exponential factor. The following lemma is somewhat less known but follows easily from the
results of [20].

I Lemma 7. Let ∆ = 3 and β, γ be such that 0 < β, γ < 1/3. Then, there exists c > 1 such
that #2Spin(β, γ, c) is NP-hard.

The following lemma will be used in the proof of Theorem 1 to specify the activities that
we need to implement to utilise the inapproximability result of Lemma 7. It allows us to use
the graph in Figure 2 as a binary gadget to simulate a 2-spin system with parameters β, γ.

I Lemma 8. Let λ < 0. Then, there exist λ′1, λ′2 such that

−1− 1
6 |λ|

1/3 < λ′1 < −1, −1− 2λ < λ′2 < −1− 2λ+ λ′1λ

1 + λ′1 + 3|λ|1/3
. (1)

For all λ′1, λ′2 satisfying (1), the following parameters β, γ (defined in terms of λ, λ′1, λ′2)

β =
(1 + λ′1)

(
(1 + λ′1)(1 + λ′2 + 2λ)− 2λ′1λ

)
|λ|1/3

(
λ′1λ− (1 + λ′1)(1 + λ′2 + 2λ)

) , γ = |λ|1/3(1 + λ′2 + 2λ)
λ′1λ− (1 + λ′1)(1 + λ′2 + 2λ) . (2)

satisfy 0 < β, γ < 1/3.

2.3 The reduction & Proof of Theorem 1
The reduction to obtain Theorem 1 uses a binary gadget to simulate an antiferromagnetic
2-spin system on 3-regular graphs, i.e., we will replace every edge of a 3-regular graph H
with a suitable graph B which has two special vertices to encode the edge. The gadget B is
given in Figure 2, the two special vertices are v1, v2. Note that the gadget B has nonuniform
activities but this will be compensated for later by invoking Lemma 5. We thus obtain the
following lemma (whose proof is in the full version).

I Lemma 9. Let λ < 0 and λ′1, λ′2 ∈ R satisfy (1). Then, for β, γ as in (2), the following
holds. For every 3-regular graph H = (VH , EH) we can construct in linear time a graph G =
(VG, EG) of maximum degree 3 and specify an activity vector λ = {λv}v∈V on G such that

ICALP 2017

28:8 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

v1

λv1 = −|λ|1/3
x

λx = λ′1

z λz = λ

v2

λv2 = −|λ|1/3
y

λy = λ′1

w λw = λ

s λs = λ′2

Figure 2 The binary gadget B = (U,F) used in Lemma 9 to simulate an antiferromagnetic 2-spin
system on 3-regular graphs. The gadget B is used to encode the edges of a 3-regular graph H. In
particular, every edge e = {h1, h2} of H gets replaced by a distinct copy of B, with the vertices
v1, v2 of B getting identified with the vertices h1, h2 of H, respectively.

1. ZH,β,γ = ZG(λ)/C |EH |, where C := |λ|1/3
(
λ′1λ− (1 + λ′1)(1 + λ′2 + 2λ)

)
> 0.

2. For every vertex v of G, it holds that λv ∈ {λ, λ′1, λ′2}. Moreover, if λv 6= λ, then v has
degree two in G.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1 (Sketch). By Lemma 4, there are graphs G1, G2 of max degree ∆ with
terminals v1, v2 which implement activities λ′1, λ′2 satisfying the condition (1) of Lemma 8. For
later use, set C1 := Zout

G1,v1
(λ), C2 := Zout

G2,v2
(λ) and note that C1, C2 are explicitly computable

constants. Let β, γ be the parameters given by (2). By Lemma 8, it holds that 0 < β, γ < 1/3.
Thus, by Lemma 7, there exists c > 1 such that #2Spin(β, γ, c) is NP-hard. We will use
Lemmas 5 and 9 to reduce #2Spin(β, γ, c) to #HardCore(λ,∆, c′) for some constant c′ > 1.

Let H be a 3-regular graph which is an input graph to the problem #2Spin(β, γ, c). By
Lemma 9, we can construct in linear time a graph G of maximum degree 3 and specify an
activity vector λ = {λv}v∈V on G such that
1. ZH,β,γ = ZG(λ)/C |EH |, where C := |λ|1/3

(
λ′1λ− (1 + λ′1)(1 + λ′2 + 2λ)

)
> 0.

2. For every vertex v of G, λv ∈ {λ, λ′1, λ′2}. Also, if λv 6= λ, then v has degree two in G.
Using the graphs G1, G2 that implement λ′1, λ′2 respectively, we obtain from Lemma 5 that
we can construct in linear time a graph G′ = (VG′ , EG′) of maximum degree at most ∆
such that ZG′(λ) = Cn1

1 Cn2
2 · ZG(λ), where n1, n2 are the number of vertices in G whose

activity equals λ′1, λ′2, respectively. Note, the fact that the maximum degree of G′ is at most
∆ follows from the construction of Lemma 5 and Item 2 (cf. the Remark after Lemma 5).

It follows that ZH,β,γ = ZG′(λ)/
(
C |EH |Cn1

1 Cn2
2
)
. Since the size of G′ exceeds the size of

H only by a constant factor, there is a constant c′ > 1 (depending only on λ) such that an
approximation to |ZG′(λ)| within a factor (c′)|VG′ | yields an estimate to |ZH,β,γ | = ZH,β,γ
within a factor c|VH |. It follows that #HardCore(λ,∆, c′) is NP-hard. J

3 Proof of Lemma 4

In this final section, we give a proof overview of Lemma 4, which is the last missing ingredient
used in the proof of Theorem 1. Let us fix a degree bound ∆ ≥ 3. Our goal is to show
that for any fixed λ < −λ∗(∆), we can implement a dense set of activities using graphs of
maximum degree ∆. At a very rough level, the proof of Lemma 4 splits into two regimes:
1. when λ < −λ∗(2) = −1/4,
2. when −1/4 ≤ λ < −λ∗(∆).
Roughly, in regime 1, we will be able to use paths to implement a dense set of activities. In
regime 2, we will first use a (∆ − 1)-ary tree to implement an activity λ′ < −1/4. Then,

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:9

using the activity λ′, we will be able to use the path construction of the first regime to
implement a dense set of activities.

Unfortunately, the actual proof is more intricate, since as it turns out there is a set
B ⊂ R, dense in (−∞,−1/4), such that, if λ ∈ B, paths exhibit a periodic behaviour in
terms of implementing activities (and thus can only be used to implement a finite set of
activities). The following lemma will be important in specifying the set B and understanding
this periodic behaviour. The proof is a manipulation with trigonometric identities and can
be found in Section 3.2 of the full version.

I Lemma 10. Let λ < −1/4 and θ ∈ (0, π/2) be such that λ = −1/(2 cos θ)2. Then, the
partition function of the path Pn with n vertices is given by

ZPn
(λ) = sin((n+ 2)θ)

2n(cos θ)n sin(2θ) .

The “bad” set B of activities (for which paths exhibit a periodic behaviour) can be read off
from Lemma 10. To make this precise, let

B :=
{
λ ∈ R | λ = − 1

4(cos θ)2 for some θ ∈ (0, π/2) which is a rational multiple of π
}
. (3)

Note, for example, that −1,−1/2,−1/3 ∈ B (set θ = π/3, π/4, π/6, respectively). For
λ < −1/4, it is not hard to infer from Lemma 10 that the ratio Z in

Pn,v(λ)
Zout

Pn,v
(λ) is equal to

− 1
2 cos θ

sin(nθ)
sin((n+1)θ) . Therefore, when λ ∈ B or equivalently θ is a rational multiple of π, the

ratio is periodic in terms of the number of vertices n in the path. On the other hand, when
λ < −1/4 and λ /∈ B, then we can show that the ratio is dense in R as n varies (this follows
essentially from the fact that {nθ mod 2π | n ∈ Z} is dense on the circle when θ is irrational)
and hence we can use paths to implement a dense set of activities. This is the scope of the
next lemma, which is proved in Section 3.2 of the full version.

I Lemma 11. Let λ < −1/4 be such that λ /∈ B. Let Pn denote a path with n vertices and
let v be one of the endpoints of Pn. Then, for every λ′ ∈ R, for every ε > 0, there exists n
such that |Z

in
Pn,v(λ)

Zout
Pn,v

(λ) − λ
′| ≤ ε.

When λ ∈ B, we can no longer use paths to implement a dense set of activities, as we
explained earlier, and we need to use a more elaborate argument. A key observation is that,
for λ ∈ B, the partition function of a path of appropriate length is equal to 0. In particular,
we have the following simple corollary of Lemma 10.

I Corollary 12. Let λ < −1/4 be such that λ ∈ B. Denote by Pn the path with n vertices.
Then, there is an integer n ≥ 1 such that the partition function of the path Pn is zero, i.e.,
ZPn(λ) = 0.

Having a path P whose partition function is 0 allows us to implement the activity −1: indeed,
for an endpoint v of the path P , we have that Z in

P,v(λ) + Zout
P,v(λ) = ZP (λ) = 0, and hence

P , with terminal v, implements Z in
P,v(λ)

Zout
P,v

(λ) = −1 (note, we will later ensure that P is such that
Zout
P,v(λ) 6= 0). A somewhat ad-hoc gadget allows us to also implement the activity +1. Using

these two implemented activities, −1 and +1, we then show how to implement all rational
numbers using graphs whose structure resembles a caterpillar (the proof is inspired by the
“ping-pong” lemma in group theory, used to establish free subgroups). We carry out this
scheme in a more general setting where, instead of a path, we have a tree whose partition
function is zero (this will also be relevant in the regime λ > −1/4). More precisely, we have
the following lemma, whose proof is given in Section 3.1.

ICALP 2017

28:10 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

I Lemma 13. Suppose that λ ∈ R 6=0 and that T is a tree with ZT (λ) = 0. Let d be the
maximum degree of T and let ∆ = max{d, 3}. Then, (∆, λ) implements a dense set of
activities in R.

We thus obtain the following throughout the regime 1 (λ < −1/4).

I Lemma 14. Let λ < −1/4. For ∆ = 3, (∆, λ) implements a dense set of activities in R.

Proof. We may assume that λ ∈ B, otherwise the result follows directly from Lemma 11.
For λ ∈ B, we have by Corollary 12 a path P such that ZP (λ) = 0. Since P has maximum
degree 2, applying Lemma 13 gives the desired conclusion. J

Note, Lemma 14 applies only for values of λ which are far from the threshold −λ∗(∆) for any
∆ ≥ 3 and thus it should not be surprising that we can implement a dense set of activities
using graphs of maximum degree 3. This highlights the next obstacle that we have to address:
for general degree bounds ∆ ≥ 3, to get all the way to the threshold −λ∗(∆) we need to use
graphs with maximum degree ∆ (rather than just 3) to have some chance of implementing
interesting activities.

Analyzing more complicated graphs for ∆ ≥ 3 and −1/4 ≤ λ < −λ∗(∆) might sound
daunting given the story for λ < −1/4, but it turns out that all we need to do is construct
a graph G of maximum degree ∆ that implements an activity λ′ < −1/4. Then, to show
that (∆, λ) implements a dense set of activities, we only need to consider whether λ′ ∈ B. If
λ′ /∈ B, we can argue by decorating the paths from Lemma 11 using the graph G. Otherwise,
if λ′ ∈ B, we can first construct a tree T of maximum degree ∆ such that ZT (λ) = 0 (by
decorating the path from Lemma 12), and then invoke Lemma 13. Thus, we are left with the
task of implementing an activity λ′ < −1/4. For that, we combine appropriately (∆− 1)-ary
trees of appropriate depth, which can be analysed relatively simply using a recursion. (A
technical detail here is that, initially, we are not able to implement this boosted activity λ′
in the sense of Definition 3 since the terminal of the relevant tree has degree bigger than 1;
nevertheless, the degree of the terminal is at most ∆− 2, so it can be combined with the
paths without overshooting the degree bound ∆.) Putting together these pieces yields the
following lemma (see Section 3.5 of the full version).

I Lemma 15. Let ∆ ≥ 3 and −1/4 ≤ λ < −λ∗(∆). Then, (∆, λ) implements a dense set of
activities in R.

Using Lemmas 14 and 15, the proof of Lemma 4 is immediate.

3.1 The case where the partition function of some tree is zero
In this section, we prove Lemma 13 which is an ingredient in both Lemmas 14 and 15.

We start with the following lemma, whose full proof is given in the full version. Roughly,
in the proof, the implementation of −1 uses as a gadget the tree T with a leaf as the terminal;
the implementation of +1 uses an ad-hoc gadget.

I Lemma 19. Let λ ∈ R 6=0 and d ≥ 2 be a positive integer. Suppose that there exists a tree
T with maximum degree d such that ZT (λ) = 0. Then, for ∆ = max{d, 3}, we have that
(∆, λ) implements the activities −1 and +1.

The following functions f+ and f− will be important in what follows:

f+ : R\{−1} 7→ R\{0}, given by f+(x) = 1
1 + x

for all x 6= −1,

f− : R\{+1} 7→ R\{0}, given by f−(x) = 1
1− x for all x 6= +1.

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:11

I Definition 20. Let S ⊆ R be the set of real numbers defined as follows: z ∈ S iff for
some integer n ≥ 0, there exists a sequence x0, . . . , xn such that x0 = 0, xn = z and for all
i = 0, . . . , n− 1 it holds that either xi+1 = f+(xi) or xi+1 = f−(xi).

The set S in Definition 20 is obtained by the following recursive procedure. Set S0 = {0}. For
h = 0, 1, . . ., define Sh+1 by first letting S+

h+1 = f+(Sh) and S−h+1 = f−(Sh) and then setting
Sh+1 = S+

h+1 ∪ S
−
h+1. S can then be recovered by taking the union of the sets Sh, i.e., S =

∪∞h=0Sh. Our interest in the set S is due to the following lemma (proof in the full version).

I Lemma 21. Let ∆ ≥ 3 and λ < 0. Suppose that (∆, λ) implements the activities −1 and
+1. Then, (∆, λ) also implements the set of activities {λz | z ∈ S}.

It is simple to see that all numbers in the set S of Definition 20 are rationals. Somewhat
surprisingly, the following lemma asserts that S is in fact the set Q of all rational numbers.

I Lemma 22. Let S ⊆ R be the set in Definition 20. Then, S = Q.

Proof. Recall that S ⊆ Q, so we only need to argue that Q ⊆ S. Since 0 ∈ S (by taking
n = 0 in Definition 20) and f+(0) = 1, we have that 0, 1 ∈ S. Note that

f−(f−(f+(x))) = −x for x 6= −1, 0. (4)

It follows that −1 ∈ S. Also, 1/2, 2 ∈ S since f+(f+(0)) = 1/2 and f−(f+(f+(0))) = 2. Let
T := {−1, 0, 1/2, 1, 2}; the arguments above established that T ⊆ S. Consider an arbitrary
ρ ∈ Q such that ρ /∈ T . To prove the lemma, we need to show that ρ ∈ S.

We will show that, for some integer n ≥ 0, there is a sequence {ρi}ni=0 such that
(i) ρ0 = ρ, ρn = −1.
(ii) ρi /∈ {0, 1/2, 1} for i = 0, . . . , n− 1.
(iii) ρi+1 = f+(ρi) or ρi+1 = f−(ρi) for i = 0, . . . , n− 1.
Before proving the existence of such a sequence, we first show how to conclude that ρ ∈ S. To
do this, let xi := ρn−i for i = 0, . . . , n. Properties (i)–(iii) of the sequence {ρi}ni=0 translate
into the following properties of the sequence {xi}ni=0:
(a) x0 = −1, xn = ρ.
(b) xi /∈ {0, 1/2, 1} for i = 1, 2, . . . , n.
(c) xi = f−1

+ (xi−1) or xi = f−1
− (xi−1) for i = 1, 2, . . . , n.

We show by induction on i that xi ∈ S for all i = 0, . . . , n, which for i = n gives that ρ ∈ S
(since by Item (a) we have xn = ρ). For the base case i = 0, we have that x0 = −1 by
Item (a) and hence x0 ∈ S. For the induction step, assume that xi ∈ S for some integer
0 ≤ i ≤ n− 1, our goal is to show that xi+1 ∈ S. The main observation is that the inverses
of the functions f− and f+ can be obtained by composing appropriately the functions f−
and f+. Namely, we have that

f−1
− (x) = x− 1

x
= f−(f−(x)) for x 6= 0, 1, (5)

f−1
+ (x) = 1− x

x
= f−(f−(f+(f−(f−(x)))))) for x 6= 0, 1

2 , 1. (6)

(5) is proved by just making the substitutions. (6) is obtained from (4) and (5), and
checking when f−(f−(x)) = x−1

x equals −1 and 0. Since by Items (a) and (b) we have that
xj 6= 0, 1/2, 1 for all 0 ≤ j ≤ n and xi ∈ S by the induction hypothesis, it follows by Item (c)
and (5), (6) that xi+1 ∈ S, as wanted.

It remains to establish the existence of the sequence {ρi}ni=0 with the properties (i)–(iii).
Consider the following set Sρ, which is defined analogously to the set S with the only

ICALP 2017

28:12 Inapproximability of the Independent Set Polynomial Below the Shearer Threshold

difference that the starting point for Sρ is the point ρ (instead of 0 that was used in the
definition of S). Formally, z ∈ Sρ iff for some integer n ≥ 0, there exists a sequence {ρi}ni=0
such that ρ0 = ρ, ρn = z and for all i = 0, . . . , n − 1 it holds that either ρi+1 = f+(ρi) or
xi+1 = f−(ρi). For convenience, we will call such a sequence a certificate that z ∈ Sρ and we
will refer to n as the length of the certificate. We will show that, for any ρ ∈ Q such that
ρ /∈ T = {−1, 0, 1/2, 1, 2}, it holds that

0, 1 /∈ Sρ, −1 ∈ Sρ. (7)

By considering a certificate of smallest length that −1 ∈ Sρ (existence is guaranteed by (7)),
we obtain a sequence {ρi}ni=0 that has all of the required properties (i), (ii), and (iii), see
the full version for the details. Thus, in the following we focus on establishing (7). First,
we show that 0, 1 /∈ Sρ. Observe that ρ 6= 0, 1, so any certificate that 0, 1 ∈ Sρ must have
nonzero length. Further, the range of the functions f+, f− excludes 0, which implies that
0 /∈ Sρ. Moreover, the only way that we can have 1 ∈ Sρ is if for some x ∈ Sρ it holds that
f+(x) = 1 or f−(x) = 1. Both of these mandate that x = 0, but 0 /∈ Sρ as we just showed.

The remaining bit of (7), i.e., that −1 ∈ Sρ, will require more effort to prove. As a
starting point, note that from ρ ∈ Q, we have that Sρ ⊆ Q. Also, Sρ is nonempty since
ρ ∈ Sρ. Thus, there exists z∗ ∈ Sρ such that z∗ = p/q where p, q are integers such that
|p|+ |q| is minimum. Since |p|+ |q| is minimum, it must be the case that gcd(p, q) = 1.

We first prove that z∗ ∈ T ; note, we already know that z∗ 6= 0, 1 since 0, 1 /∈ Sρ and
z∗ ∈ Sρ, but keeping the values 0, 1 into consideration will be convenient for the upcoming
argument. Namely, for the sake of contradiction, assume that z∗ /∈ T , which implies in
particular that z∗ 6= 0,−1. Since z∗ ∈ Sρ, by (4), we obtain that −z∗ ∈ Sρ as well. By
switching to −z∗ if necessary, we may thus assume that z∗ is positive and hence that p, q > 0,
i.e., that both p, q are positive integers. Since z∗ 6= 1 (from z∗ /∈ T), we have that p 6= q. For
each of the cases p > q and p < q, we obtain a contradiction to the minimality of p+ q by
constructing z′ = p′/q′ ∈ Sρ with p′, q′ positive integers such that 0 < p′ + q′ < p+ q.

Case 1. p > q. Since z∗ 6= 1, 2 (from z∗ /∈ T), we have that p/q 6= 1 and f−(p/q) =
q
q−p 6= 0,−1, so by (4) we have that f−(f−(f+(f−(p/q)))) = q

p−q . Thus, letting p
′ = q and

q′ = p− q yields z′ = p′/q′ ∈ Sρ with p′ > 0, q′ > 0 and 0 < p′ + q′ < p+ q.

Case 2. p < q. Since z∗ 6= 0, 1/2, 1 (from z∗ /∈ T), we obtain from (6) that
f−(f−(f+(f−(f−(p/q)))))) = q−p

p . Thus, letting p′ = q − p and q′ = p yields z′ = p′/q′ ∈ Sρ
with p′ > 0, q′ > 0 and 0 < p′ + q′ < p+ q.

This concludes the proof that z∗ ∈ T . In fact, we can now deduce easily that −1 ∈ Sρ. As
noted earlier, we have that z∗ 6= 0, 1 as a consequence of 0, 1 /∈ Sρ, so in fact z∗ ∈ {−1, 1/2, 2}.
If z∗ = −1, then we automatically have that −1 ∈ Sρ since z∗ was chosen to be in Sρ. If
z∗ = 2, then we have that 2 ∈ Sρ and hence f−(2) = −1 ∈ Sρ as well. Finally, if z∗ = 1/2,
we have that 1/2 ∈ Sρ and hence f−(f−(1/2)) = −1 ∈ Sρ. Thus, it holds that −1 ∈ Sρ,
which completes the proof of (7) and hence the proof of Lemma 22. J

Combining Lemmas 19, 21 and 22, we obtain Lemma 13.

References
1 Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the

Lovász Local Lemma. J. ACM, 63(3):Article No. 22, July 2016.
2 József Beck. An algorithmic approach to the Lovász Local Lemma. I. Random Structures

& Algorithms, 2(4):343–365, 1991.

A. Galanis, L. A. Goldberg, and D. Štefankovič 28:13

3 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability
and Computing, 25(4):500–559, 2016.

4 Leslie A. Goldberg and Mark Jerrum. Inapproximability of the Tutte polynomial of a
planar graph. Computational Complexity, 21(4):605–642, 2012.

5 Leslie A. Goldberg and Mark Jerrum. The complexity of computing the sign of the Tutte
polynomial. SIAM Journal on Computing, 43(6):1921–1952, 2014.

6 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász Local
lemma. CoRR, abs/1611.01647, 2016.

7 David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász Local
Lemma on permutations. In Proceedings of the Twenty-fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’14, pages 907–925, Philadelphia, PA, USA, 2014.
Society for Industrial and Applied Mathematics.

8 Nicholas J.A. Harvey, Piyush Srivastava, and Jan Vondrák. Computing the independence
polynomial in Shearer’s region for the LLL. CoRR, abs/1608.02282, 2016.

9 Nicholas J.A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász Local Lemma
via resampling oracles. In Proceedings of the 2015 IEEE 56th Annual Symposium on Found-
ations of Computer Science (FOCS), FOCS’15, pages 1327–1346, Washington, DC, USA,
2015. IEEE Computer Society.

10 Kashyap B.R. Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proceedings
of the Forty-third Annual ACM Symposium on Theory of Computing, STOC’11, pages 235–
244, New York, NY, USA, 2011. ACM.

11 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 67–84, 2013.

12 Ankur Moitra. Approximate counting, the Lovász Local lemma and inference in graphical
models. CoRR, abs/1610.04317, 2016.

13 Robin A. Moser. A constructive proof of the Lovász Local Lemma. In Proceedings of the
Forty-first Annual ACM Symposium on Theory of Computing, STOC’09, pages 343–350,
New York, NY, USA, 2009.

14 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász Local lemma.
J. ACM, 57(2):Article No. 11, 2010.

15 Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms for
partition functions and graph polynomials. CoRR, abs/1607.01167, 2016.

16 Alexander D. Scott and Alan D. Sokal. The repulsive lattice gas, the independent-set
polynomial, and the Lovász Local Lemma. J. Stat. Phys., 118(5):1151–1261, 2005.

17 J. B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
18 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-

state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys., 155(4):666–
686, 2014.

19 Allan Sly. Computational transition at the uniqueness threshold. In Proceedings of the
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS’10, pages
287–296, Washington, DC, USA, 2010. IEEE Computer Society.

20 Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Ann. Probab.,
42(6):2383–2416, 11 2014.

21 Piyush Srivastava. Approximating the hard core partition function with negative activities.
Manuscript, available at http://www.its.caltech.edu/~piyushs/, April 2015.

22 Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the
Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC’06, pages 140–149,
New York, NY, USA, 2006. ACM.

ICALP 2017

http://www.its.caltech.edu/~piyushs/

The Complexity of Holant Problems over Boolean
Domain with Non-Negative Weights∗†

Jiabao Lin1 and Hanpin Wang‡2

1 Key Laboratory of High Confidence Software Technologies (MOE), School of
Electronics Engineering and Computer Science, Peking University, Beijing,
China
joblin@pku.edu.cn

2 Key Laboratory of High Confidence Software Technologies (MOE), School of
Electronics Engineering and Computer Science, Peking University, Beijing,
China
whpxhy@pku.edu.cn

Abstract
Holant problem is a general framework to study the computational complexity of counting prob-
lems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain
with non-negative weights. It is the first complete Holant dichotomy where constraint functions
are not necessarily symmetric.

Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard
become tractable when restricted to read-twice instances. To capture them, we introduce the
Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function
set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is
#P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F
is transformable to a product type by some real orthogonal matrix. Holographic transformations
play an important role in both the hardness proof and the characterization of tractability.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases counting complexity, dichotomy, Holant, #CSP

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.29

1 Introduction

There has been considerable interest in several frameworks to study the complexity of counting
problems. One natural framework is the counting Constraint Satisfaction Problem (#CSP)
[18, 2, 19, 4, 22, 3, 8, 7, 1]. Another is Graph Homomorphism (GH) [30, 27, 21, 5, 20, 25, 6, 9],
which can be seen as a special case of #CSP. Such frameworks express a large class of counting
problems in the Sum-of-Product form. It is known that if P 6= NP, then there exists a
problem that is neither in P nor NP-complete [29]. And there is an analogue of Ladner’s
Theorem for the class #P. However, for these frameworks, various beautiful dichotomy
theorems have been proved, classifying all problems in the broad class into those which are
computable in polynomial time (in P) and those which are #P-hard. A natural question is:
For how broad a class of counting problems can one prove a dichotomy theorem?

∗ A full version containing detailed proofs is available at https://arxiv.org/abs/1611.00975.
† This work was supported by the National Natural Science Foundation of China (Grants No. 61170299,

61370053 and 61572003).
‡ Hanpin Wang is the corresponding author.

EA
T

C
S

© Jiabao Lin and Hanpin Wang;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.29
https://arxiv.org/abs/1611.00975
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

While GH can express many interesting graph parameters, Freedman, Lovász and Schrijver
[24] showed that the number of perfect matchings of a graph cannot be represented as a
homomorphism function. Inspired by holographic algorithms [32, 31], Cai, Lu and Xia [14]
proposed a more refined framework called Holant Problems. Here we give a brief introduction.
In this paper, constraint functions are defined over the Boolean domain, if not specified. Let
F denote a set of algebraic complex-valued functions. A signature grid Ω is a tuple (G,F , π)
where G = (V,E) is an undirected graph, and π is a map that maps each vertex v ∈ V to
some function fv ∈ F and its incident edges E(v) to the input variables of fv. The counting
problem on Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv(σ|E(v)),

where σ|E(v) is the restriction of σ to E(v). All such signature grids constitute the set of
instances of the problem Holant(F). For example, consider the problem of counting perfect
matchings (#PM) on graph G. In a perfect matching, every vertex is saturated by exactly
one edge. Such constraint on a vertex of degree n can be expressed as an Exact-One
function f : {0, 1}n → {0, 1}, which takes the value 1 if and only if its input has Hamming
weight 1. If every vertex is assigned such a function, then the value HolantΩ is exactly
the number of perfect matchings. Let F denote the set of all Exact-One functions, then
Holant(F) represents the problem #PM.

The Holant framework is general enough: #CSPs can be viewed as special Holant
problems where all equality functions are available [14]. However, the very generality makes
it more difficult to prove a dichotomy. A function is symmetric if the function values only
depend on the Hamming weights of inputs, like the Exact-One functions. Satisfactory
progress has been made in the complexity classification of Holant problems specified by sets
of symmetric functions [13, 28, 26, 11, 10]. And in the process, some unexpected tractable
classes were discovered. They give many deep insights into both tractability and hardness.

It still remains open whether a complete dichotomy exists, since the definition of Holant
problems does not require that constraint functions be symmetric. Such restriction is stringent
and generally it is not imposed in #CSP. Cai, Lu and Xia [16] proved a dichotomy without
symmetry for a special family of Holant problems, called Holant∗, where all unary functions
are assumed to be available. But without this assumption, as in [11], more tractable classes
will be released, which makes the hardness proof very different.

We prove a dichotomy theorem for Holant problems with non-negative algebraic real
weights. It is the first complete Holant dichotomy where constraint functions are not
necessarily symmetric and no auxiliary function is assumed to be available. This generalizes
the results on Boolean #CSP in [18, 19], and the dichotomies in [28, 11] restricted to non-
negative case. Our proof starts with an infinitary condition, but finally obtains an explicit
criterion (Theorem 19).

A simple observation is that, Holant problems are indeed read-twice #CSPs where every
variable in an instance appears exactly twice (see subsection 2.4). Intuitively, some #CSPs
that are #P-hard become tractable when restricted to read-twice instances. To capture them,
we need insights into what makes a problem hard in #CSP. Inspired by dichotomy theorems
over general domains [5, 23, 8, 7], we introduce the Block-rank-one condition for Holant
problems (see subsection 7.1). It is known that non-block-rank-one structures imply hardness
in #CSP. So our condition is necessary for tractability since it is imposed on the functions
defined by read-twice instances. Surprisingly, on the Boolean domain, the Block-rank-one
condition is also sufficient and leads to a clear separation:

J. Lin and H. Wang 29:3

I. Function set F satisfies the condition. Then #CSP(F) is in P, and hence its subproblem
Holant(F) is also in P.

II. Function set F violates the condition. Then (a) Holant(F) is #P-hard or (b) #CSP(F)
is #P-hard but Holant(F) is tractable.
First we discuss Part II. We can prove #P-hardness directly, or further induce an

orthogonal holographic transformation. After performing the transformation, we have to
handle real-valued functions. Luckily, we can even prove a dichotomy theorem for a family
of complex-valued Holant problems (Theorem 9). And towards this theorem, we prove a
lemma (Lemma 6) on how to “extract” a function from its tensor powers. The proof is
non-constructive and the idea can simplify some existing proofs. For example, it can be shown
directly that the two problems #CSPd(F ∪{[1, 0]⊗d, [0, 1]⊗d}) and #CSPd(F ∪{[1, 0], [0, 1]})
in [28] are equivalent under polynomial-time Turing reduction.

Now consider Part I. It can be derived that F is of affine type or F is of product type,
exactly the criterion given by Dyer, Goldberg and Jerrum [19]. Dichotomies for #CSP over
general domains [1, 23, 3, 8] are very different from those over the Boolean domain [18, 19].
Our proof builds a connection between them.

The Block-rank-one condition is a little conceptual. To obtain the structure of F , we
introduce an equivalent notion, called balance, for Holant problems (see subsection 7.2). The
equivalence is simply built on the concept of vector representation in [8], which was used to
design a polynomial-time algorithm for #CSP. Back to non-negative #CSP, we find that
actually the notions of weak balance and balance (different from our version for Holant) in
[8] are equivalent, without assuming FP 6= #P. Therefore, to decide the complexity of a
problem #CSP(F), we only need to decide whether F is of weak balance.

2 Preliminaries

2.1 Functions and Signatures
Let C and R+ denote the set of algebraic complex numbers and the set of algebraic non-
negative real numbers, respectively. Throughout this paper, we refer to them simply as
complex and non-negative numbers.

Given a function f : {0, 1}n → C, we will often write it as a vector of dimension 2n
whose entries are the function values, indexed by x ∈ {0, 1}n lexicographically. This vector
is called a signature. If the values of an n-ary function only depend on the Hamming weights
of inputs, then the function is called symmetric and can be expressed as [f0, f1, ..., fn] where
fk is the function value for inputs of Hamming weight k. For example, the ternary logic OR
function has the signature [0, 1, 1, 1].

Generally, given a function f of arity n, we can express it as a 2r × 2n−r matrix
(1 ≤ r ≤ n), denoted by M[r](f). The rows and columns are indexed by x ∈ {0, 1}r and
y ∈ {0, 1}n−r respectively, and f(x,y) is the (x,y)th entry of the matrix. And the matrices
{M[r](f) | r ∈ [n]} are called the signature matrices of f . When the integer r is clear from
the context, we simply write Mf .

In most cases, if not confused, we identify functions, signatures and signature matrices.
But in section 7, we shall distinguish a function from its matrix representations.

Given an n-ary function f and a permutation π on [n], we define the function fπ : For
x1, x2, ..., xn ∈ {0, 1}, fπ(x1, x2, ..., xn) = f(xπ(1), xπ(2), ..., xπ(n)).

A function F is reducible if Fπ is a tensor product of two functions (of arity ≥ 1) for
some permutation π. Otherwise F is called irreducible. A function is called degenerate if it
is a tensor product of some unary functions. Otherwise we call it non-degenerate.

ICALP 2017

29:4 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

Given a positive integer k, we use =k to denote the k-ary equality function [1, 0, ..., 0, 1].
And we use 6=2 to denote the binary disequality function [0, 1, 0].

In the following, we define three classes of complex-valued functions. Let T denote the
set of functions that can be expressed as a tensor product of functions of arity at most 2.

The support of an n-ary function f , denoted by supp(f), is the set {x ∈ Zn2 | f(x) 6= 0}.
A Boolean relation is affine if it is the set of solutions to a system of linear equations over
the field Z2. We say that f has affine support if its support is affine.

I Definition 1. A function f of arity n is affine if its support is affine and there is a constant
λ ∈ C such that for all x ∈ supp(f), f(x) = λ · iQ(x), where i =

√
−1 and Q is a quadratic

polynomial Q(x1, ..., xn) =
∑n
i=1 aix

2
i + 2

∑
1≤i<j≤n bijxixj with ai ∈ Z4 and bij ∈ {0, 1}.

We use A to denote the set of all affine functions.

I Definition 2. A function f is of product type if it can be expressed as a product of unary
functions, binary functions of the form =2 and 6=2 (on not necessarily disjoint subsets of
variables). We use P to denote the set of all functions of product type.

2.2 Holographic Reductions
To introduce the holographic reductions, we define bipartite Holant problems. Holant(F | G)
denotes the Holant problem on bipartite graphs H = (U, V,E) where each vertex in U (V)
is assigned a function from F (G). A Holant problem Holant(F) can seen as the bipartite
problem Holant(=2 | F).

Let T be a 2×2 matrix and let F be a function set. Whenever we write TF , the functions
in F are viewed as column vectors and, TF = {T⊗nf | f ∈ F and n = arity(f)}. Similarly,
FT = {fT⊗n | f ∈ F and n = arity(f)} where the functions in F are expressed as row
vectors.

Let T be a matrix in GL2(C). We say there is a holographic reduction defined by T from
Holant(F | G) to Holant(F ′ | G′), if FT ⊆ F ′ and T−1G ⊆ G′. The holographic reduction
maps a signature grid Ω = (G,F | G, π) to Ω′ = (G,F ′ | G′, π′): For each vertex v of G, π′
assigns the function fvT or T−1fv to v, depending on which part v belongs to.

I Theorem 3 (Valiant’s Holant Theorem [32]). Let T be any matrix in GL2(C). Suppose
that the holographic reduction defined by T maps a signature grid Ω to Ω′. Then HolantΩ =
HolantΩ′ .

We will use ≤T to denote polynomial-time Turing reductions and use ≡T to denote the
equivalence relation under polynomial-time Turing reductions.

I Theorem 4. Let F be a function set and let H be an orthogonal matrix (HTH = I). Then
Holant(HF) ≡T Holant(F).

2.3 Realizability
Let F be a set of functions. An F-gate [15] Γ is a tuple (G,F , π) where G = (V,E,D) is a
graph with regular edges E and some dangling edges D. Other than these dangling edges,
the gate Γ is the same as a signature grid: π maps each vertex v ∈ V to some function
fv ∈ F and it incident edges (including the dangling ones) to the input variables of fv. We
denote the edges in E by 1, 2, ...,m and the dangling edges in D by m+ 1,m+ 2, ...,m+ n.
Then we can define a function f for Γ:

f(y1, y2, ..., yn) =
∑

x1,x2,...,xm∈{0,1}

F (x1, x2, ..., xm, y1, y2, ..., yn)

J. Lin and H. Wang 29:5

where (y1, y2, ..., yn) ∈ {0, 1}n is an assignment on the dangling edges and F (x,y) denotes
the product of evaluations at all vertices of V . We say the function f is realizable from the
function set F . We use S(F) to denote the set of functions realizable from F .

Given a function f , we use fxi=c to denote the function obtained by pinning the ith
input variable of f to c ∈ {0, 1}.

2.4 Weighted Counting CSP
Let F be a set of complex-valued functions. Then the problem #CSP(F) is defined as follows.
An input instance I of the problem consists of a finite set of variables V = {x1, ..., xn} and a
finite set of constraints {C1, ..., Cm}. Each Ci has the form (Fi,xi) where Fi ∈ F and xi is
a tuple of (not necessarily distinct) variables from V . The instance I defines a function FI
over x = (x1, ..., xn) ∈ {0, 1}n: FI(x) =

∏m
i=1 Fi(xi) for x ∈ {0, 1}n. The output is the sum:

Z(I) =
∑

x∈{0,1}n FI(x).
Holant problems are indeed read-twice #CSPs. Given a signature grid, we assume that

the numbering of its vertices and edges is also given. If these edges are viewed as variables,
then the signature grid is a #CSP instance where every variable appears exactly twice. So
we also say that a signature grid defines a function. And the concept of realizability can be
defined in the CSP language.

Cai, Lu and Xia [17] proved a dichotomy for complex-weighted #CSP over the Boolean
domain.

I Theorem 5 ([17]). Let F be a set of complex-valued functions. Then the problem #CSP(F)
is computable in polynomial time if F ⊆ A or F ⊆ P. Otherwise #CSP(F) is #P-hard.

3 Decomposition

In Holant problems, sometimes we are able to realize a function F = f ⊗ g, but do not know
how to realize the function f directly, which can be technically beneficial. Fortunately, under
certain conditions, if F is realizable, then we may assume that f is freely available.

In this section, we prefer to prove the lemmas in the CSP language. If not specified, the
functions we discussed are over a fixed finite domain and take complex values.

Let m be a positive integer. We use f⊗m to denote the m-th tensor power of f . f⊗m can
be seen as m copies of f : f⊗m(x1, ...,xm) = f(x1) · · · f(xm). Let I be a #CSP instance that
contains m constraints: (f,x1), (f,x2),, (f,xm). We replace these m tuples by one tuple
(f⊗m,x1,x2, ...,xm) and then obtain a new instance I ′. It is easy to see that Z(I) = Z(I ′).

I Lemma 6. For any function set F and function f , Holant(F ∪{f}) ≤T Holant(F ∪{f⊗d})
for all d ≥ 1.

Proof. Impose induction on d. Let n denote the arity of f .
The base case, d = 1, is trivial. Now suppose that the conclusion holds for all d < k (k ≥ 2).

In the problem Holant(F ∪ {f⊗k}), we may assume that the functions f⊗(mk) are freely
available for integers m > 0. There are two cases to consider:

There exists an instance I of Holant(F ∪ {f}) such that Z(I) 6= 0 and f appears p times
where p = qk + r (q ≥ 0, 0 < r < k). Let C1, ..., Cp be the p constraints that have the
form (f,xi). We replace the first qk constraints by one tuple C ′1 = (f⊗(qk),x1, ...,xqk),
and the last r constraints by one tuple C ′2 = (f⊗k,xqk+1, ...,xp,y) where y denotes a list
of new distinct variables, of length (k − r)n. After the substitution, we get a function

ICALP 2017

29:6 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

F (x,y) where x denotes the variables of the original instance I. Every variable in x
occurs twice, so by summing on them we can realize the following function:∑

x
F (x,y) =

∑
x
FI(x)f⊗(k−r)(y) = Z(I)f⊗(k−r)(y).

Because Z(I) 6= 0, we have Holant(F ∪ {f⊗(k−r)}) ≤T Holant(F ∪ {f⊗k}). And by
the induction hypothesis, Holant(F ∪ {f}) ≤T Holant(F ∪ {f⊗(k−r)}). Therefore, the
conclusion holds.
For all I with Z(I) 6= 0, f appears a multiple of k times. Given an instance I of Holant(F∪
{f}), we show how to compute Z(I) with the help of the oracle for Holant(F ∪ {f⊗k}).
First we check whether the number p of constraints containing f is a multiple of k. If not,
we simply output 0. Otherwise we replace all such constraints by one tuple (f⊗p,x) as
in case (1), and then obtain an instance I ′ of Holant(F ∪ {f⊗k}). Clearly Z(I) = Z(I ′),
and we can compute Z(I ′) by accessing the oracle.

In either case, there exists a polynomial-time Turing reduction. This completes the induction.
J

Note that our proof only shows the existence of polynomial-time Turing reductions, but
does not produce such reductions constructively for given function sets. Based on Lemma 6,
we can prove a more general one.

I Lemma 7. Let F be a set of functions, and f, g be two functions. Suppose that there exists
an instance I of Holant(F ∪ {f, g}) such that Z(I) 6= 0, and the number of occurrences of g
in I is greater than that of f . Then Holant(F ∪ {f, f ⊗ g}) ≤T Holant(F ∪ {f ⊗ g}).

4 When A Non-trivial Equality Function Appears

Let Holantc(F) denote the problem Holant(F∪{[1, 0], [0, 1]}). We have the following theorem:

I Theorem 8. Let λ be any nonzero complex number that is not a root of unity. For any
set F of complex-valued functions, Holantc(F ∪ {[1, 0, λ]}) is computable in polynomial time
if F ⊆ T or F ⊆ P. Otherwise the problem is #P-hard.

The conclusion still holds if we remove the unary functions [1, 0] and [0, 1]:

I Theorem 9. Let λ be any nonzero complex number that is not a root of unity. For any
set F of complex-valued functions, Holant(F ∪ {[1, 0, λ]}) is computable in polynomial time
if F ⊆ T or F ⊆ P. Otherwise the problem is #P-hard.

Proof. We can interpolate [1, 0]⊗2 and [0, 1]⊗2 using [1, 0, λ]. Then by Lemma 6, Holantc(F∪
{[1, 0, λ]}) ≤T Holant(F ∪ {[1, 0, λ]}). J

Intuitively, we can interpolate all functions of the form [a, 0, b], using the binary function
[1, 0, λ]. By connecting with these binary funtions, a function f may range arbitrarily. To
avoid #P-hardness, the structure of the support of f must be simple enough.

5 P-transformability

We start with some simple facts from linear algebra. Let M =
[
a1 a2 · · · an
b1 b2 · · · bn

]
(n ≥ 2)

be a non-negative matrix of rank 2. Then A = MMT =
[
a b

b c

]
satisfying a, c > 0. Moreover,

by Cauchy-Schwarz inequality, detA = ac− b2 > 0.

J. Lin and H. Wang 29:7

I Lemma 10. If a 6= c or b 6= 0, then A has two distinct positive eigenvalues α and β.

The following lemma is a simple case of the Spectral Theorem for real symmetric matrices.

I Lemma 11. There is an orthogonal matrix H such that HAHT =
[
α 0
0 β

]
, where α and

β are the eigenvalues of A.

Let f be a non-negative binary function. If f is non-degenerate and affine, then f =
a[1, 0, 1] or f = a[0, 1, 0] for some a > 0.

I Lemma 12. Let f = (a, b, c, d) be a non-negative function. Suppose that f is non-degenerate
and f /∈ A. Then for any function set F with f ∈ S(F), Holant(F) is #P-hard or F ⊆ T or
F ⊆ HP for some orthogonal matrix H.

Proof. Since f ∈ S(F), the symmetric matrix

A =
[
a b

c d

] [
a c

b d

]
=
[
a2 + b2 ac+ bd

ac+ bd c2 + d2

]
is also realizable. Because f is non-degenerate, a2 + b2, c2 + d2 > 0 and ac + bd ≥ 0. We
claim that ac+ bd 6= 0 or a2 + b2 6= c2 + d2. Suppose ac+ bd = 0, then ac = bd = 0 since f

is non-negative. So f =
[
a 0
0 d

]
or f =

[
0 b

c 0

]
. In both cases, as f /∈ A, a2 + b2 6= c2 + d2.

By Lemma 10 and Lemma 11, there is some orthogonal matrix H such that HAHT =[
α 0
0 β

]
, where α and β are the two distinct positive eigenvalues of A. Now we perform the

transformation H and obtain the following equivalence:

Holant({[α, 0, β]} ∪HF) ≡T Holant({A} ∪ F) ≡T Holant(F).

The latter equivalence follows from the fact A ∈ S(f) ⊆ S(F). β/α is nonzero and not a root
of unity, so if HF 6⊆ T and HF 6⊆ P, the problem is #P-hard by Theorem 9. J

6 On Special Functions of Arity 4

In this section, we consider some special functions of arity 4, and complete the preparation
for the hardness part of our dichotomy.

I Lemma 13. Let f be a function of arity 4, whose signature matrix has the form

Mf =

f0000 f0001 f0010 f0011
f0100 f0101 f0110 f0111
f1000 f1001 f1010 f1011
f1100 f1101 f1110 f1111

 =

1 0 0 a

0 b c 0
0 c b 0
a 0 0 1

where a, b, c ≥ 0 and at least two of them are positive. Then Holant(f) is #P-hard if
f 6= [1, 0, 1, 0, 1].

We prove a dichotomy for function sets that contain certain functions of arity 4.

I Lemma 14. Let f be a non-negative function of arity 4. And
[
f0000 f0011
f1100 f1111

]
=
[
a b

b c

]
where b 6= 0 and ac > b2. Then for any function set F containing f , Holant(F) is #P-hard
or F ⊆ T or F ⊆ HP for some orthogonal matrix H.

Proof. We can show that Holant(F) is #P-hard by Theorem 5 and Lemma 13, or there
is some non-negative binary function f /∈ A ∪ P such that Holant(F ∪ {f}) ≤T Holant(F).
Then the conclusion follows from Lemma 12. J

ICALP 2017

29:8 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

7 The Dichotomy

7.1 The Block-rank-one Condition Captures the Dichotomy
Given a function f of arity n, we use f [t], for each t ∈ [n], to denote the function

f [t](x1, ..., xt) =
∑

xt+1,...,xn∈{0,1}

f(x1, ..., xt, xt+1, ..., xn).

Recall that Holant problems are read-twice #CSPs and every #CSP instance defines a
function (subsection 2.4). We adopt the notation in [7], defining the following set of functions
for a given F :

WF = {F [t] |F is a function defined by an instance of Holant(F) and 1 ≤ t ≤ arity of F}.

Note that the functions in WF are not necessarily realizable from F . The following two
lemmas show how WF and S(F) are related:

I Lemma 15. Let f ∈ WF be a function of arity n. Then there is a function g ∈ S(F) of
arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1}, f(x1, x2, ..., xn) = g(x1, x1, x2, x2, ..., xn, xn).

I Lemma 16. For f ∈ S(F), f2 ∈ WF .

Let M be a non-negative matrix. We say M is block-rank-one if every two rows of it are
linearly dependent or orthogonal. Given a non-negative function f of arity n, we say f is
block-rank-one if either n = 1 or the matrix M[n−1](f) is block-rank-one.

Now we impose a condition on WF :

Block-rank-one: All functions in WF are block-rank-one.

We can classify those function sets that do not satisfy this condition:

I Lemma 17. Let F be a set of non-negative functions. If F does not satisfy the Block-
rank-one condition, then Holant(F) is #P-hard or F ⊆ T or F ⊆ HP for some orthogonal
matrix H.

Proof. Let f ∈ WF be a function of arity n. Then by Lemma 15, there is a func-
tion g ∈ S(F) of arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1}, f(x1, x2, ..., xn) =
g(x1, x1, x2, x2, ..., xn, xn).

Now suppose that f is not block-rank-one. By definition, n ≥ 2 and the two columns of
M[n−1](f) are linearly independent but not orthogonal. Then the first and the last columns
of the matrix M = M[2n−2](g), gx2n−1=x2n=0 and gx2n−1=x2n=1, are also linearly independent
but not orthogonal. Let h denote the 4 × 4 matrix MTM . Then h0011 = h1100 > 0 and
h0000h1111 > h2

0011. Since g ∈ S(F), h is also realizable. Thus Holant(F∪{h}) ≤T Holant(F).
By Lemma 14, Holant(F) is #P-hard or F ⊆ T or F ⊆ HP for some orthogonal H. J

Surprisingly, the Block-rank-one condition has captured the dichotomy. We have the
crucial lemma below:

I Lemma 18. Let F be a set of non-negative functions. If F satisfies the Block-rank-one
condition, then F ⊆ A or F ⊆ P.

Therefore, if F satisfies the Block-rank-one condition, then Holant(F) is in polynomial
time. So our dichotomy is quite simple and it is decidable in polynomial time [12]:

J. Lin and H. Wang 29:9

I Theorem 19. Let F be a set of non-negative functions. The problem Holant(F) is
computable in polynomial time if F satisfies one of the following three conditions:
F ⊆ T ;
F ⊆ A;
F ⊆ HP for some real orthogonal matrix H.

Otherwise Holant(F) is #P-hard.

The remaining is to prove Lemma 18. To obtain the structure of F , it is more convenient
to consider directly the set F and the functions realizable from it. So in the next subsection,
we will introduce a notion equivalent to the Block-rank-one condition. This notion restricts
the function set S(F).

7.2 Balance
We define the notion of balance for non-negative Holant problems. The notion was introduced
for non-negative #CSP by Cai, Chen and Lu [8].

I Definition 20 (Balance). Let F be a set of non-negative functions. F is called balanced
if for any function f ∈ S(F), every signature matrix in {M[r](f) | 1 ≤ r ≤ arity(f)} is
block-rank-one. A non-negative function f is balanced if the set {f} is balanced.

Note that in the definition above, when r = arity(f), the matrix M[r](f) is a column vector
and hence trivially block-rank-one.

Balanced sets satisfy the Block-rank-one condition. Generally, we have the following
lemma.

I Lemma 21. Let F be a set of non-negative functions. Suppose that F is balanced. Then
for any f ∈ WF , every matrix in {M[r](f) | 1 ≤ r ≤ arity(f)} is block-rank-one.

Proof. Let f ∈ WF be a function of arity n. Then by Lemma 15, there exists a function
g ∈ S(F) of arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1},

f(x1, x2, ..., xn) = g(x1, x1, x2, x2, ..., xn, xn).

Therefore, for any r ∈ [n],M[r](f) is a submatrix ofM[2r](g). Because F is balanced, M[2r](g)
is block-rank-one. Hence so is M[r](f). J

Let f be a non-negative function of arity n. And let s1, ..., sn be n non-negative unary
functions. We call (s1, ..., sn) a vector representation of f if for all x ∈ {0, 1}n, either f(x) = 0
or f(x) = s1(x1) · · · sn(xn).

I Lemma 22 ([8]). Let f be a non-negative function of arity n. If f [t] is block-rank-one for
all t ∈ [n], then f has a vector representation.

I Lemma 23. Let F be a set of non-negative functions that satisfies the Block-rank-one
condition. Then every function in S(F) has a vector representation.

Proof. Let f be a function in S(F) of arity n. By Lemma 16, f2 ∈ WF . Then f2 has
a vector representation (s1, ..., sn) by Lemma 22. Let (s′1, ..., s′n) be n non-negative unary
functions such that for all i ∈ [n], s′i(a) =

√
si(a) for a ∈ {0, 1}. Then (s′1, ..., s′n) is a vector

representation of the function f . J

Now we are able to prove the equivalence between the notion of balance and the Block-
rank-one condition.

ICALP 2017

29:10 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

I Lemma 24. Let F be a set of non-negative functions. F is balanced if and only if F
satisfies the Block-rank-one condition.

Proof. The necessity follows directly from Lemma 21. We only need to show the sufficiency.
Let f be an n-ary function in S(F), with n ≥ 2. And suppose that M = M[r](f) is

not block-rank-one for some r ∈ [n]. Then there exist two rows of M , indexed by some
x,y ∈ {0, 1}r, which are linearly independent but not orthogonal. So we can realize a
signature g = MMT. Its submatrix

h =
[
g(x,x) g(x,y)
g(y,x) g(y,y)

]
=
[
a b

b c

]
is of full rank and a, b, c > 0. But by Lemma 23, g has a vector representation (s1, ..., s2r),
such that for all u ∈ supp(g), g(u) = s1(u1) · · · s2r(u2r). Let s = s1 ⊗ · · · ⊗ sr and
t = sr+1 ⊗ · · · ⊗ s2r. Then

h =
[
s(x)t(x) s(x)t(y)
s(y)t(x) s(y)t(y)

]
,

which is singular. A contradiction. J

Having shown the equivalence, we turn to consider some properties of balanced sets.
There are two basic facts about balance. Later we will often use them but without explicit
reference.

I Lemma 25. If F ⊆ G and G is balanced, then F is also balanced.

I Lemma 26. If f ∈ S(F) and F is balanced, then F ∪ {f} is also balanced.

In Boolean #CSP, the two unary functions [1, 0] and [0, 1] can be simulated [19]. And the
function [1, 1] is the unary equality function, which is freely available. These unary functions
make it more convenient to construct certain functions. But in Holant problems, generally we
do not know how to realize or simulate them. Fortunately, we can circumvent this difficulty
by the lemma below. It follows from Lemma 28 and Lemma 30.

I Lemma 27. If F is balanced, then the set F ∪ {[1, 0], [0, 1], [1, 1]} is balanced.

I Lemma 28. If F is balanced, then F ∪ {[1, 0], [0, 1]} is balanced.

I Lemma 29. Suppose that F is a balanced set of non-negative functions. Let f be an n-ary
function in S(F) and let F denote the function f2. Then for each t ∈ [n], there exists a
constant λt > 0 such that F [t] = λt(f [t])2.

Proof. Impose induction on t. The base case t = n is trivial where λn = 1.
Suppose that F [t] = λt(f [t])2 for t = k + 1 ≤ n. Consider the case t = k. For all

x ∈ {0, 1}k,

F [k](x) = F [k+1](x, 0) + F [k+1](x, 1) = λk+1

[(
f [k+1](x, 0)

)2
+
(
f [k+1](x, 1)

)2
]
.

Note that the function F [k+1] ∈ WF since F = f2 ∈ WF . Because F is balanced, F [k+1] is
block-rank-one by Lemma 24. Thus the function f [k+1] =

√
F [k+1]/λk+1 is also block-rank-

one, which implies that the two column vectors of the matrix M[k](f [k+1]), denoted by v0
and v1, are orthogonal or linearly dependent:

J. Lin and H. Wang 29:11

v0 and v1 are orthogonal. Then for all x ∈ {0, 1}k,

F [k](x) = λk+1

[(
f [k+1](x, 0)

)2
+
(
f [k+1](x, 1)

)2
]

= λk+1

(
f [k+1](x, 0) + f [k+1](x, 1)

)2
= λk+1

(
f [k](x)

)2
.

v0 and v1 are linearly dependent. Without loss of generality, we assume that v1 = λv0
for some λ ≥ 0. Then for all x ∈ {0, 1}k,

F [k](x) = λk+1(1 + λ2)
(
f [k+1](x, 0)

)2
= λk+1

1 + λ2

(1 + λ)2

(
f [k](x)

)2
.

In either case, the conclusion holds. This completes the induction. J

I Lemma 30. If F is balanced, then F ∪ {[1, 1]} is balanced.

Proof. Suppose that [1, 1] /∈ S(F), otherwise we are done. Let g be an n-ary function in
S(F ∪ {[1, 1]}). We need to show that all the matrices in {M[r](g) | 1 ≤ r ≤ arity(g)} are
block-rank-one.

Let Γ denote the gate that realizes g. If there is an isolated vertex with a dangling
edge in Γ, assigned the function [1, 1], then we remove this vertex; If there are two adjacent
vertices, both assigned the function [1, 1], then we delete the pair. Repeat removing until
no such vertices. Finally we obtain a new gate Γ′. If Γ′ has no dangling edges, then we are
done. Suppose not. Let h denote the function that Γ′ realizes. And for all x1, ..., xn ∈ {0, 1},
g(x1, ..., xn) = 2sh(xi1 , ..., xit) where 1 ≤ i1 < · · · < it ≤ n and s denotes the number of
pairs we delete. It suffices to prove that the signature matrices of h are all block-rank-one.

Note that h = f [t] for some f ∈ S(F) and 1 ≤ t ≤ arity(f). Let F denote the function f2.
Then by Lemma 29, there is a constant λt > 0 such that F [t] = λt(f [t])2. Therefore, for any
r ∈ [t], the two matrices M[r](f [t]) and M[r](F [t]) are both block-rank-one or neither. Since
F [t] ∈ WF , all of its signature matrices are block-rank-one by Lemma 21. Thus every matrix
in {M[r](f [t]) | 1 ≤ r ≤ t} is block-rank-one. J

With these unary functions, we are able to prove two more lemmas:

I Lemma 31. Let F be a set of non-negative functions and let g = [1, 0, 1, 0]. If F ∪ {g} is
balanced, then F ⊆ A.

I Lemma 32. Let F be a set of non-negative functions and let g = [a, 0, ..., 0, b] be a general
equality function where arity(g) ≥ 3 and a, b > 0. If F ∪ {g} is balanced, then F ⊆ A or
F ⊆ P.

7.3 Proof Sketch of Lemma 18
Suppose that a function set F satisfies the Block-rank-one condition. Then the set G =
F ∪ {[1, 0], [0, 1], [1, 1]} is balanced. So it suffices to prove that G ⊆ A or G ⊆ P.

First we consider the case G ⊆ T . In this case, every nondegenerate binary function in
S(G) has the form [a, 0, b] or (0, a, b, 0). Thus all of them are of product type. Since the set
P is closed under tensor product, G ⊆ P.

Now suppose that G 6⊆ T . Then there is an irreducible function f ∈ S(G) of arity n ≥ 3.
For 1 ≤ i < j ≤ n and a, b ∈ {0, 1}, we use fabij denote the column vector M[n−2](fxi=a,xj=b).
And we define the 2n−2 × 22 matrices Mij = (f00

ij , f
01
ij , f

10
ij , f

11
ij).

ICALP 2017

29:12 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

Since f is irreducible and G is balanced, any two elements of the support of f differ at
two or more bits. Thus we have:〈

f00
ij , f

01
ij

〉
= 0,

〈
f00
ij , f

10
ij

〉
= 0,〈

f11
ij , f

01
ij

〉
= 0,

〈
f11
ij , f

10
ij

〉
= 0,

where 〈·, ·〉 denotes the inner product. Therefore, for every pair (i, j), the 4 × 4 matrix
Bij = (Mij)TMij has the form

a 0 0 b

0 x y 0
0 y z 0
b 0 0 c

 .
By Cauchy-Schwarz inequality, ac ≥ b2 and xz ≥ y2. If for all 1 ≤ i < j ≤ n, Bij is diagonal,
then there exists a function g = [a, 0, ..., 0, b] ∈ S(G) where arity(g) ≥ 3 and a, b > 0. If some
Bij is not diagonal, then Bij = a[1, 0, 1, 0, 1] for some a > 0 due to the balance of G. In this
case, we can further realize the function a[1, 0, 1, 0]. According to Lemma 32 or Lemma 31,
G ⊆ A or G ⊆ P.

8 Conclusion

To determine the complexity of a problem Holant(F), the proofs of previous Holant di-
chotomies often start with a non-trivial function in F . This works well for symmetric
functions, but the structure of an asymmetric one can be very intricate. In [16], we have al-
ready seen that asymmetry poses great challenges in arity reduction and gadget construction,
even assuming the presence of all unary functions. In fact, similar difficulty arises on higher
domains, where it is tough to obtain an explicit dichotomy. The #CSP dichotomies over
general domains [23, 8, 7] are more abstract than those over the Boolean domain, but they
offer great insights into sum-of-product computation. Inspired by them, we introduce the
Block-rank-one condition for Holant problems, which leads to a clear classification. At the
beginning of our work, we were not sure whether the condition is sufficient for tractability.
Lemma 24 and Lemma 27 make it possible to absorb the results in [19] and reach the
destination.

Acknowledgements. The authors are grateful to Jin-Yi Cai for his careful reading of an
earlier version of this paper.

References
1 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.

ACM, 60(5):34, 2013.
2 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting

constraint satisfaction problem. Inf. Comput., 205(5):651–678, 2007.
3 Andrei A. Bulatov, Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, Mark Jerrum,

and David Richerby. The complexity of weighted and unweighted #CSP. J. Comput. Syst.
Sci., 78(2):681–688, 2012.

4 Andrei A. Bulatov, Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, and David
Richerby. The complexity of weighted Boolean #CSP with mixed signs. Theor. Comput.
Sci., 410(38-40):3949–3961, 2009.

J. Lin and H. Wang 29:13

5 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor.
Comput. Sci., 348(2):148–186, 2005.

6 Jin-Yi Cai and Xi Chen. A decidable dichotomy theorem on directed graph homomorphisms
with non-negative weights. In Proceedings of 51th Annual IEEE Symposium on Foundations
of Computer Science, pages 437–446, 2010.

7 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In Proceedings
of the 44th Symposium on Theory of Computing, pages 909–920, 2012.

8 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #CSP: An effective com-
plexity dichotomy. In Proceedings of the 26th Annual IEEE Conference on Computational
Complexity, pages 45–54, 2011.

9 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A
dichotomy theorem. SIAM J. Comput., 42(3):934–1029, 2013.

10 Jin-Yi Cai, Zhiguo Fu, Heng Guo, and Tyson Williams. A Holant dichotomy: Is the
FKT algorithm universal? In IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 1259–1276, 2015.

11 Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the cap-
ture of vanishing signatures: Extended abstract. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, pages 635–644, 2013.

12 Jin-Yi Cai, Heng Guo, and Tyson Williams. Holographic algorithms beyond matchgates.
In Proceedings of ICALP, pages 271–282, 2014.

13 Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Dichotomy
for Holantc problems. Algorithmica, 64(3):511–533, 2012.

14 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, pages 715–724, 2009.

15 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of Holant problems.
SIAM J. Comput., 40(4):1101–1132, 2011.

16 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant∗ problems of Boolean
domain. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1714–1728, 2011.

17 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted Boolean
#CSP. J. Comput. Syst. Sci., 80(1):217–236, 2014.

18 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Inf. Comput., 125(1):1–12, 1996.

19 Martin E. Dyer, Leslie A. Goldberg, and Mark Jerrum. The complexity of weighted Boolean
#CSP. SIAM J. Comput., 38(5):1970–1986, 2009.

20 Martin E. Dyer, Leslie A. Goldberg, and Mike Paterson. On counting homomorphisms to
directed acyclic graphs. J. ACM, 54(6), 2007.

21 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomor-
phisms. Random Struct. Algorithms, 17(3-4):260–289, 2000.

22 Martin E. Dyer and David Richerby. On the complexity of #CSP. In Proceedings of the
42nd ACM Symposium on Theory of Computing, pages 725–734, 2010.

23 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

24 Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank
connectivity, and homomorphism of graphs. J. Amer. Math. Soc., 20(1):37–51, 2007.

25 Leslie A. Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity di-
chotomy for partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402,
2010.

26 Heng Guo, Pinyan Lu, and Leslie G. Valiant. The complexity of symmetric Boolean parity
Holant problems. SIAM J. Comput., 42(1):324–356, 2013.

ICALP 2017

29:14 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

27 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory Ser.
B, 48(1):92–110, 1990.

28 Sangxia Huang and Pinyan Lu. A dichotomy for real weighted Holant problems. In Pro-
ceedings of the 27th Conference on Computational Complexity, pages 96–106, 2012.

29 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975.

30 László Lovász. Operations with structures. Acta Math. Hung., 18(3-4):321–328, 1967.
31 Leslie G. Valiant. Accidental algorithms. In Proceedings of 47th Annual IEEE Symposium

on Foundations of Computer Science, pages 509–517, 2006.
32 Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.

Polynomial-Time Rademacher Theorem, Porosity
and Randomness
Alex Galicki

The University of Auckland, Auckland, New Zealand
agal629@aucklanduni.ac.nz

Abstract
The main result of this paper is a polynomial time version of Rademacher’s theorem. We show
that if z ∈ Rn is p-random, then every polynomial time computable Lipschitz function f : Rn → R
is differentiable at z. This is a generalization of the main result of [19].

To prove our main result, we introduce and study a new notion, p-porosity, and prove several
results of independent interest. In particular, we characterize p-porosity in terms of polynomial
time computable martingales and we show that p-randomness in Rn is invariant under polynomial
time computable linear isometries.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Rademacher, porosity, p-randomness, differentiability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.30

1 Introduction

The topic of interactions between algorithmic randomness [11, 18] and computable analysis
[17, 27] has been extensively studied in the recent years. The general idea is that classical
theorems about properties holding almost everywhere in Rn have effective variants formulated
in terms of algorithmic randomness. Differentiability of well-behaved functions is a sub-area
that attracted particular interest of researchers (see [8, 13]). Most of results in this area are
concerned with computable real functions of one variable. Less is known about functions of
several variables (however, see [20, 15, 14]) and still less is known about differentiability and
randomness in resource bounded settings [19].

The randomness notion this paper is concerned about is p-randomness, first studied by
Wang [26]. It is usually defined in terms of polynomial time computable betting strategies.

In [19], Nies characterized p-randomness in terms of differentiability of polynomial time
computable real-valued monotone functions of one variable. He showed that z ∈ [0, 1] is
p-random if and only if every polynomial time computable monotone function f : [0, 1]→ R
is differentiable at z. Note that if f : R→ R is a K−Lipschitz function, then x→ f(x) +Kx

is a monotone function. Hence the ⇒ direction of this result also shows that polynomial
time computable Lipschitz functions are differentiable at p-random reals.

The following classical result by Hans Rademacher [23] shows that Lipschitz real valued
functions on Rn are almost everywhere differentiable.

I Theorem 1 (Rademacher, 1919). If f : Rn → R is Lipschitz, then it is differentiable at
almost every x ∈ Rn (with respect to the Lebesgue measure).

In this paper we prove the following polynomial time version of Rademacher’s theorem:

I Theorem 2 (Polynomial time Rademacher). If f : Rn → R is Lipschitz and polynomial
time computable, then it is differentiable at every p-random x ∈ Rn.

EA
T

C
S

© Alex Galicki;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Polynomial-Time Rademacher Theorem, Porosity and Randomness

The notion of porosity, which originated in works of Denjoy, is crucial for this paper.
Informally, x is a porosity point of S ⊆ Rn if it is possible to find relatively large balls disjoint
from S (called holes in S) arbitrarily close to x. Most proofs of Rademacher’s theorem, as
well as our proof of the Theorem 1, have two distinct steps:

The “one-dimensional” step, showing that directional derivatives (of a given Lipschitz
function f : Rn → R) exist almost everywhere. This part can be seen as concerned with
differentiability of real functions of one variable.
The step which shows that the set of points where the full derivative does not exist
despite existence of some of the directional derivatives is negligible too.

Porosity can be observed and exploited in both steps. For real functions of one variable,
porosity appears in sets where different types of derivatives disagree (see [9, 25] and [1]).
In a polynomial time setting this phenomenon has been exploited by Nies in [19]. In the
second step porosity appears in sets witnessing failures of linearity of directional derivatives
(that is, when the directional derivative at a point as a function of direction is not a linear
function). This particular phenomenon has been observed and studied for functions exhibiting
Lipschitz-like regularity (for example, see [22] and [7]).

Since our main goal is to prove a polynomial-time version of Rademacher’s theorem, we
need a polynomial-time version of porosity. In the Section 3 we define a suitable notion,
which we call p-porosity. It is worth mentioning that at least one effective version of porosity
and its connections to algorithmic randomness has been studied before (see [6, 16]). We will
briefly explain the difference between this notion of porosity and ours later in the paper.

The paper is structured as follows: in the Section 2 we review the relevant basic notions
and define the notation used in the paper. In the Section 3 we define and study the notion
of p-porosity. In the Section 4 we outline the proof of the Theorem 2.

2 Preliminaries and notation

In this paper we often have to go back and forth between the Cantor space and Rn. Mostly,
we use the standard notation (for notation related to the Cantor space and strings of finite
length, please consult [18]). However, for the sake of readability and expressiveness, we will
introduce some custom notation which is described below.

2.1 Dyadic cubes in Rn, 1/3-shift trick
Let Dn denote the collection of half-open basic dyadic cubes in Rn. That is

Dn =
{

2−k([m1,m1 + 1)× · · · × [mn,mn + 1)) : k ∈ Z, m1, . . . ,mn ∈ Z
}
.

For k ∈ Z, let Dn(k) denote the collection of basic dyadic cubes in Rn with its side length
equal to 2−k. If Ω : Rn → Rn is a linear isometry, let DΩ denote the set of images of elements
of Dn under Ω. Analogously, let DΩ(k) be the collection of images of elements of Dn(k)
under Ω. For x ∈ Rn and i ∈ N, define Dn(x, i) (respectively, DΩ(x, i)) to be the unique
element of Dn(i) (respectively, DΩ(i)) containing x.

By B(x, r) we denote the open ball in Rn with radius r and centered at x. The following
proposition is known as the “1/3−shift trick” in Rn.

I Proposition 3 (cf. Theorem 3.8 in [24]). For any ball B = B(x, r) ⊂ Rn, there exists k ∈ Z,
Q ∈ Dn(k) and t ∈ {0, 1/3, 2/3}n such that B ⊂ (Q+ t) and 6r < 2−k ≤ 12r.

A. Galicki 30:3

2.2 Binary expansion of elements in Rn

Each real number r ∈ [0, 1) can be written in the form r =
∑
i≥0 ri2−i−1 where ri ∈ {0, 1}.

We say r0r1... is the binary expansion of r. The binary expansion of r is unique unless r is a
dyadic rational.

Let x ∈ Rn. For every 1 ≤ i ≤ n, let Xi denote the binary expansion of xi, the i−th
component of x. Then X ∈ 2ω is the binary expansion of x if for all 1 ≤ i ≤ n and all j,
X(nj + i− 1) = Xi(j).

Fix a positive m ∈ N. Let A ∈ 2ω. We denote by 0.mA an element of Rm, whose binary
expansion is A. We omit the m subscript, when it is clear from the context.

Let σ ∈ 2<ω with |σ| = nk + m for some natural numbers n, k,m with n > 0 and
m < n. Define {σ}n by {σ}n = σ�nk. By [σ]n we denote the basic (open) dyadic cube (in
Rn) corresponding to {σ}n.

2.3 Polynomial time computability and p-randomness
Intuitively, a function f : Rn → R is computable in polynomial time if for any s ∈ N and
x ∈ Rn, we can compute, uniformly in s and x, an approximate value e to f(x) within an
error 2−s in time O(sk) for some constant k. For the rigorous definition, please see the
Section 2.5 in [17]. This approach is equivalent to the one used in [19].

A martingale is a function M : 2<ω → R+
0 such that 2M(σ) = M(σ0) +M(σ1) for all

σ ∈ 2<ω. This notion of martingales is meant to formalize the intuitive notion of a betting
strategy:

M(σ) represents the capital available after betting on bits of σ, which is always positive,
betting the amount α ≤ M(σ) on the next bit being 0, will result in losing α in
the case when the next bit is 1 (M(σ1) = M(σ) − α) and winning α otherwise
(M(σ0) = M(σ) + α).

We say that M succeeds on Z if lim supnM(Z �n) =∞. For more details, please see [18].

I Definition 4. A martingale M is called polynomial time computable if from a string σ and
i ∈ N we can in time polynomial in |σ|+ i compute an approximate value (M(σ))i to M(σ)
with |M(σ)− (M(σ))i| ≤ 2−i.

I Definition 5. We say that Z ∈ 2ω is p-random if no polynomial time martingale succeeds
on Z. An element of Rn is said to be p-random if its binary expansion is p-random.

p-randomness is a polynomial time variant of computable randomness (see [18]). Com-
putable randomness is usually defined in terms of succeeding of computable martingales.
However, it is known that in the context of computable randomness, succeeding can be
replaced with divergence. That is, Z ∈ 2ω is not computably random iff there exists a
computable martingale M with lim infiM(Z�i) < lim supiM(Z�i). An analogous result
holds for p-randomness and a somewhat stronger proposition will be shown later in this
paper.

2.4 Martingales-measures correspondence and derivatives
We denote the Lebesgue measure (both on Rn and on 2ω) by λ. ByMλ we denote the class
of measures µ on Rn for which µ(A) ≤ k · λ (A) holds for some k and all Borel A.

Most of martingales considered in this paper are bounded. We will use repeatedly the
following correspondence between measures fromMλ and bounded martingales.

ICALP 2017

30:4 Polynomial-Time Rademacher Theorem, Porosity and Randomness

I Definition 6. Let M be a martingale bounded from above. For all σ ∈ 2<ω define

µ0([σ]n) = M({σ}n)λ([σ]n).

This defines a pre-measure on [0, 1]n. We can extend µ0 to a measure µ ∈ Mλ on Rn
supported on a subset of the unit cube. We say µ is a corresponding (to M) measure.

For the other direction, let µ ∈Mλ. We define the corresponding (to µ) martingale M
by setting

M(σ) = µ([σ]n)
λ([σ]n) .

Clearly, M is a bounded martingale.

I Notation 7. Let µ be a measure on Rn. Let x ∈ Rn and let i ∈ N. Define

∂2µ

∂2λ
(x, i) = µ(Dn(x, i))

λ(Dn(x, i))

and

∂2µ

∂2λ
(x) = lim

i→+∞

∂2µ

∂2λ
(x, i).

If Ω : Rn → Rn is a linear isometry, we define

∂Ωµ

∂Ωλ
(x, i) = µ(DΩ(x, i))

λ(DΩ(x, i))

and

∂Ωµ

∂Ωλ
(x) = lim

i→+∞

∂Ωµ

∂Ωλ
(x, i).

I Notation 8. Let n ≥ 1. By e1, . . . , en we denote the unit vectors of the standard basis for
Rn.

Let f : Rn → R be a function and let v, x ∈ Rn. By D1f(x), . . . , Dnf(x) we denote the
partial derivatives of f . We denote the directional derivative (in the direction of v) of f at x
by Dvf(x).

3 p-porosity

Let (X, d) be a metric space. x ∈ X is said to be a porosity point of S ⊆ X if

por(x, S) = lim sup
r→0

γ(x, r, S)/r > 0,

where γ(x, r, S) is defined for any r > 0 as

sup{r′ > 0 : for some z ∈ X, B(z, r′) ⊆ B(x, r) and B(z, r′) ∩ S = ∅}.

A set S is said to be porous if all its points are porosity points of S. A set is said to be
σ−porous if it is a countable union of porous sets.

The following definitions are meant to formalize an efficient version of the above notion
of porosity.

A. Galicki 30:5

I Definition 9. Let C be a subset of 2ω and let Z ∈ C. Define

por2(Z,C) = lim inf
i→∞

{|σ| − i : σ � Z�i ∧ [σ] ∩ C = ∅}.

If por2(Z,C) <∞, then we say that Z is a dyadic porosity point of C.

Since we are interested in polynomial time computable betting strategies, we need to
restrict our attention to subsets of 2ω for which finding holes can be done in polynomial time.

I Definition 10. Let A ⊆ 2ω be a Σ0
1 set. We say A is polynomial time computable if there is

a function p : 2<ω → {0, 1} computable in polynomial time such that p(σ) = 1 ⇐⇒ [σ] ⊂ A
for all σ. Let B ⊆ 2ω be a Π0

1 set. We say it is polynomial time computable in if its
complement is polynomial time computable.

I Definition 11. Let X ∈ 2ω. We say X is a polynomial time porosity point (p-porosity
point) if there exists a polynomial time computable Π0

1 set A ⊆ 2ω such that X is a dyadic
porosity point of A. If C ⊆ A and X ∈ C, we say X is a p-porosity point of C.

We say X ∈ 2ω is a p-nonporosity point if it is not a p-porosity point.

To show that Z ∈ 2ω is a p-porosity point, it is sufficient to describe a polynomial-time
algorithm for locating holes in some S ⊂ 2ω arbitrarily close to Z. That is, to exhibit a
function p : 2<ω → {0, 1} computable in polynomial time, such that
1. p(σ) = 1 ⇐⇒ [σ] ∩ S = ∅ and
2. Z is a dyadic porosity point of the complement of

⋃
p(σ)=1[σ].

I Remark. While our definitions admit straightforward generalizations to Rn, for the sake of
simplicity, we have defined our notion of p-porosity in terms of the Cantor space.
I Remark. As was mentioned in the introduction, one other effective version of porosity has
been studied in the context of algorithmic randomness [6, 16]. X ∈ 2ω is said to be a porosity
point if there exists a Π0

1 set S ⊆ 2ω such that X is a dyadic porosity point of S. The main
difference between this notion and p-porosity is that the latter requires a polynomial time
algorithm for finding holes, while holes in a Π0

1 set in general can only be enumerated.

3.1 p-porosity and polynomial time computable martingales
Since out main result, Theorem 2, is concerned with p-randomness, and we plan to use
the notion of p-porosity extensively in the proof of it, we need to characterize the notion
of p-porosity in terms of success sets of polynomial time computable martingales. This
subsection is devoted to this task.
I Remark. A closely related notion, p-genericity, has been studied extensively (see [3], [2]).
Z ∈ 2ω is said to be p-generic if it does not belong to the boundary of any polynomial time
computable Σ0

1 subset of 2ω. Since every p-porosity point belongs to the boundary of some
polynomial time computable Σ0

1 set, p-genericy implies p-nonporosity. Moreover, it is known
that p-randomness implies p-genericity (see [4]). Hence, p-randomness implies p-nonporosity.

I Definition 12. Let µ be a measure on Rn and let ε > 0. We say x ∈ Rn is an ε−oscillation
point of µ if for infinitely many i ∈ N,∣∣∣∣∂2µ

∂2λ
(x, i)− ∂2µ

∂2λ
(x, i+ 1)

∣∣∣∣ ≥ ε.
We say x ∈ Rn is an oscillation point of µ if x is an ε−oscillation point of µ for some ε > 0.

ICALP 2017

30:6 Polynomial-Time Rademacher Theorem, Porosity and Randomness

Analogously, we say X ∈ 2ω is an ε−oscillation point of a martingale M if for infinitely
many i ∈ N,

|M(X�i)−M(X�i+1)| ≥ ε.

Let M be a martingale and let ε > 0. By Osc(M, ε) we denote the set of ε−oscillation points
of M . Finally, we let

Osc(M) =
⋃
ε>0

Osc(M, ε).

I Definition 13. For A,B ⊆ Rn we say A and B are ε−separated by µ if∣∣∣∣ µ(A)
λ (A) −

µ(B)
λ (B)

∣∣∣∣ ≥ ε.
The following proposition provides a characterization of p-randomness in terms of ε−oscillation
points of polynomial time computable martingales.

I Proposition 14. Let Z ∈ 2ω. The following are equivalent:
1. Z is p-random and
2. Z 6∈ Osc(M) for every bounded from above polynomial time computable martingale M .

Proof Sketch. The (1)⇒ (2) direction is a polynomial time version of the Doob martingale
convergence theorem. A straightforward adaptation of the proof of Theorem 7.1.3 from [10]
suffices.

For the (2) ⇒ (1) direction, suppose M is a polynomial time computable martingale
succeeding on Z ∈ 2ω. We may assumeM has the saving property, that isM(σν) ≥M(σ)−1
and M(σ) > 1 for all σ, ν ∈ 2<ω. (See the proof of the Proposition 5.3.8 in [10])

Our proof is a suitable modification of the construction found in the proof of Theorem 4.2
from [13]. There, given a computable martingale M with the saving property, succeeding on
Z, authors construct a computable martingale B that diverges on Z and for all σ ∈ 2<ω,
1 ≤ B(σ) ≤ 4. It is easy to verify, that when M is polynomial time computable, B is
polynomial time computable too. The construction turns the success of M into oscillations
of B. It does so by having B alternating between two “phases”: in the up phase B adds the
capital that M risks, until B(σ) reaches 3, while in the down phase, B subtracts the capital
that M risks, until B(σ) reaches 2. The required modification is following: the last bet of
every up phase is a 1/4−bet. It can be verified that for all σ ∈ 2<ω, 1−1/4 ≤ B(σ) ≤ 4+1/4
and Z ∈ Osc(B, 1/4). J

I Definition 15. Let M be a martingale. We define E≥(M) to be the set of those X such
that M does not make any losses while betting on X. More formally,

E≥(M) = {Z : ∀i M(Z�i+1) ≥M(Z�i)} .

The following proposition provides a characterization of p-porosity points in terms of martin-
gales: p-porosity points are precisely those X for which there exists a martingale computable
in polynomial time that succeeds on X without making any losses and places infinitely many
ε-bets in the process.

I Proposition 16. Let Z ∈ 2ω. The following two are equivalent:
1. Z is a p-porosity point, and
2. Z ∈ Osc(M) ∩ E≥(M) for some computable in polynomial time martingale M .

A. Galicki 30:7

Proof 1 ⇒ 2. Let A be a polynomial time computable Σ0
1 set and let p : 2<ω → {0, 1} be as

in the Definition 10. Suppose Z is a dyadic porosity point of 2ω \A. Let s = por2(Z, 2ω \A).
We define a martingale M in the following way. Let M(∅) = 1 (by ∅ we denote the
empty string). For all strings σ ∈ 2<ω with l = |σ| = k(s + 1) for some k > 1, we let
M(σ) = M(σ�l−1). Suppose M(σ) has been defined, where l = |σ| = k(s+ 1). If there is a
string τ � σ of length l+s such that p(τ) = 1, then letM(τ) = 0 and letM(σ1) = M(σ) 2s

2s−1
for all σ1 � σ with σ1 6= τ and |σ1| = s + l. Otherwise, if such string τ does not exist,
let M(σ1) = M(σ) for all σ1 � σ with |σ1| < (k + 1)(s + 1). M is clearly computable in
polynomial time. Since Z is a dyadic porosity point of 2ω \A, for infinitely many i, we have

M(Z�i+s)−M(Z�i) ≥
1

2s − 1 .

It follows that Z ∈ Osc
(
M, 1

s(2s−1)

)
∩ E≥(M). J

Proof 2 ⇒ 1. Suppose Z ∈ Osc(M, ε) ∩ E≥(M), where M is a computable in polynomial
time martingale and ε > 0. Let s ∈ N be such that ε > 2−s. For every σ ∈ 2<ω with σ 6= ∅,
let σ denote the string obtained from σ by flipping the last bit.

Define p : 2<ω → {0, 1} by letting
p(∅) = 0 and
for all σ 6= ∅, if

(
M(σ)−M(σ�|σ|−1)

)
s
> 0, then p(σ) = 1. Otherwise, let p(σ) = 0.

Since
(
M(σ)−M(σ�|σ|−1)

)
s
> 0 is decidable in polynomial time, p is computable in poly-

nomial time too. Hence the set A = 2ω \
⋃
p(σ)=1[σ] is polynomial time computable. For

infinitely many i, we have M(Z�i+1)−M(Z�i) > 2−s and hence p
(
Z�i+1

)
= 1. It follows

that Z is a dyadic porosity point of A. J

4 Polynomial-time Rademacher’s theorem

4.1 Overview of the proof
Let f : Rn → R be a Lipschitz function. Let us denote by N(f) the set of points where f is
not differentiable. Classical Rademacher’s theorem asserts that it is a Lebesgue nullset. This
can be proven in two steps.

1. Firstly, fix a countable set of unit vectors V ⊂ Rn. Let N(V, f) ⊂ Rn denote the set
where Dvf(x) does not exist for at least one v ∈ V . A.e. differentiability of real-valued
Lipschitz functions of one variable in conjunction with Fubini’s theorem implies that this
set is a Lebesgue nullset.

2. Secondly, consider the set N(f) \N(V, f). It can be proven that this set is σ−porous
provided V is not empty (for example, see Theorem 3.1 in [5] and Theorem 2 in [21]).
This concludes the proof, since σ−porous sets are Lebesgue nullsets.

Our proof of Theorem 2 follows a similar path. Firstly, let Vp be the set of polynomial
time computable unit vectors in Rn. Suppose f : Rn → R is a polynomial time computable
Lipschitz function. We need to show that N(f) contains no p-random elements. Just like in
the classical case outlined above, we show this by splitting N(f) in two parts - N(f)\N(Vp, f)
and N(Vp, f) - and then showing that neither of them contains a p-random element.

The proof has three nontrivial and relatively self-contained parts:
Firstly, we show a result of independent interest. In the subsection 4.2 we prove that
p-randomness in Rn is invariant under linear isometries computable in polynomial time.

ICALP 2017

30:8 Polynomial-Time Rademacher Theorem, Porosity and Randomness

It is worth mentioning that the one-dimensional version of this result follows from results
in [12]. Higher dimensional result in this paper, requires, however, quite a different
approach.
Then, we show that p-randomness of z is sufficient for existence of partial derivatives
of f at z. This is an adaptation of the one-dimensional proof from [19]. Existence of
directional derivatives Dvf(z) where v ∈ Vp follows the preservation property mentioned
in the previous point. This concludes the proof that N(Vp, f) contains no p-random
elements.
Finally, we demonstrate that N(f) \ N(Vp, f) contain no p-random points. This is
accomplished by a careful analysis of structural properties of N(f)\N(Vp, f) and showing
that binary expansions of elements of this set are p-porosity points.

Due to size limitations, this paper contains the full proof of the first part only (bar the
proof of the technical lemma from the Section 4.2.2).

4.2 Invariance of p-randomness under linear isometries computable in
polynomial time

In this subsection we will use the following notational convention.

I Notation 17. Let µ be a measure on Rn, and let Ω : Rn → Rn be a linear isometry. By
µΩ we denote the measure defined by µΩ(A) = µ(Ω(A)) for all Borel A.

If M is a martingale corresponding to µ, by MΩ we denote the martingale corresponding
to µΩ.

The main result of this subsection is that p-randomness is invariant under polynomial
time computable linear isometries. Let us examine how an analogous result can be shown for
computable randomness. Suppose z ∈ Rn be not computably random and let Ω : Rn → Rn
be a computable linear isometry. We want to show that Ω−1(z) is not computably random.
Let M be a bounded computable martingale diverging on Z (where z = 0.Z) and let µ be a
corresponding measure on Rn. Define y = Ω−1(z) and let Y be the binary expansion of y.
Observe that MΩ is also a bounded computable martingale. There are two possibilities:
(A) Either MΩ diverges on Y , in which case Y is not computably random, or
(B) MΩ converges on Y and then y belongs to the set

A =
{
x : ∂2µΩ

∂2λ
(x) exists and ∂ΩµΩ

∂Ωλ
(x) does not exist

}
.

In this case it is possible to show that y is a porosity point of some subset of A and use
this information to conclude that y is not computably random.

A similar argument can be made about p-randomness. However, there are two additional
obstacles. Firstly, it is not clear what (additional) conditions on M and Ω ensure that MΩ
is polynomial time computable. Secondly, the porosity mentioned in (B) would have to be
replaced with p-porosity. A significant portion of this section is dedicated to address those
two problems. The plan is following:

In the Subsection 4.2.1 we show that ε−oscillation points of MΩ are not p-random, even
if it is not known whether MΩ is computable in polynomial time;
In the Subsection 4.2.2 we prove a technical lemma related to linear transformations and
ε−oscillation;
Finally, in the Subsection 4.2.3 we combine those ideas to prove our main invariance
theorem.

A. Galicki 30:9

4.2.1 Betting on ε-oscillation points of MΩ

I Lemma 18. Let A,B ⊆ Rn be Borel with A ⊆ B and λ (B) > 0. Let µ be a measure on
Rn such that for some k ∈ N, µ(C) ≤ kλ (C) for all C. Suppose λ(B\A)

λ(A) ≤ ε for some ε ∈ R.
Then∣∣∣∣ µ(B)

λ (B) −
µ(A)
λ (A)

∣∣∣∣ ≤ 2k · ε.

Proof.∣∣∣∣ µ(B)
λ (B) −

µ(A)
λ (A)

∣∣∣∣ =
∣∣∣∣µ(B)λ (A)− µ(B)λ (B) + µ(B \A)λ (B)

λ (B)λ (A)

∣∣∣∣
=
∣∣∣∣ µ(B)
λ (B)

λ (B)− λ (A)
λ (A) + µ(B \A)

λ (A)

∣∣∣∣
≤ 2k · ε. J

I Lemma 19 (Approximation lemma). Let M be a computable in polynomial time martingale
bounded above by some k ∈ N. Let µ be a corresponding measure on Rn. Let Ω : Rn → Rn
be a computable in polynomial time linear isometry. Fix s ∈ N. There exists function
MΩ,s : 2<ω → R computable in polynomial time such that for all σ

|MΩ,s(σ)−MΩ(σ)| ≤ 2−s.

Proof. This is a consequence of Lemma 18. For a given σ, we can find in polynomial time a
finite collection of dyadic basic cubes (D(σ)i)i∈N such that

λ (Ω([σ]n) \
⋃
iD(σ)i)

λ (
⋃
iD(σ)i)

≤ 2−s−1

k
,

so that∣∣∣∣ µ(Ω([σ]n))
λ (Ω([σ]n)) −

µ(
⋃
iD(σ)i)

λ (
⋃
iD(σ)i)

∣∣∣∣ ≤ 2−s.

Define MΩ,s(σ) = µ(
⋃

i
D(σ)i)

λ(
⋃

i
D(σ)i) . This function is computable in polynomial time and the

following holds for every σ:

|MΩ(σ)−MΩ,s(σ)| =
∣∣∣∣ µ(Ω([σ]n))
λ (Ω([σ]n)) −

µ(
⋃
iD(σ)i)

λ (
⋃
iD(σ)i)

∣∣∣∣ ≤ 2−s. J

I Lemma 20. Let M be a polynomial time computable martingale bounded above by some
k ∈ N and let Ω : Rn → Rn be a polynomial time computable linear isometry. For every
ε > 0, there exists a polynomial time computable martingale Hε such that every ε−oscillation
point of MΩ is an ε/2−oscillation point of Hε.

Proof. Let s be such that 2−s+1 < ε. By Lemma 19, there exists a polynomial time
computable function MΩ,s such that for all σ

|MΩ,s(σ)−MΩ(σ)| ≤ 2−s.

We define Hε as following. We let Hε(∅) = MΩ,s(∅). For any σ, suppose Hε(σ) has been
defined. We define α(σ) = Hε(σ)− 1

2 (MΩ,s(σ0) +MΩ,s(σ1)) and we let

Hε(σ0) = MΩ,s(σ0) + α(σ), and Hε(σ1) = MΩ,s(σ1) + α(σ).

ICALP 2017

30:10 Polynomial-Time Rademacher Theorem, Porosity and Randomness

It is easy to verify that Hε is a polynomial time computable martingale. Now suppose
|MΩ(σ)−MΩ(σ1)| ≥ ε. We have

|Hε(σ)−Hε(σ1)| = 1
2 |MΩ,s(σ1)−MΩ,s(σ0)| ≥ 1

2(2ε− 2−s+1) > ε/2.

The case when |MΩ(σ)−MΩ(σ0)| ≥ ε is handled analogously. J

4.2.2 A technical lemma
Let M be a martingale computable in polynomial time, bounded from above, and let µ be
a corresponding measure on Rn. Suppose y ∈ Rn is an ε−oscillation point of µ. It can be
easily shown that for any k > 0 and for infinitely many i, Dn(y, i) contains two dyadic cubes
from Dn(i+ k), that are ε− separated by µ.

Now consider a linear isometry Ω : Rn → Rn. Suppose that for some k > 0, ε > 0
and for infinitely many i, D = Dn(y, i) contains two cubes D1, D2 ∈ DΩ(i + k), that are
ε−separated by µ. In general, this does not imply that y is an oscillation point of µ. However,
the following technical lemma shows that if y is not an oscillation point of µ, then it is a
p-porosity point.

I Lemma 21. Let M be a martingale computable in polynomial time, bounded from above.
Let µ be a corresponding measure on Rn. Let Ω : Rn → Rn be a linear isometry. Let y ∈ Rn
with Y ∈ 2ω being its binary expansion. Suppose that for some k > 0, ε > 0 and for infinitely
many i, D = Dn(y, i) contains two cubes D1, D2 ∈ DΩ(i+ k), that are ε−separated by µ. If
y is not an oscillation point of µ, then Y is a p-porosity point.

4.2.3 Invariance theorems
I Theorem 22. Let z ∈ [0, 1]n and let r ∈ R be a polynomial time computable real. Suppose
z is not p-random. Then z + rei is not p-random for any 1 ≤ i ≤ n.

Proof. Since we are only interested in the question whether z + rei is p-random or not, we
may assume that z and r are such that z + rei ∈ [0, 1]n.

Without loss of generality we may assume that every component of z is p-random and
n > 1 (otherwise, the required result follows from preservation properties proven in [12]).
Fix i ∈ N with 1 ≤ i ≤ n and define Φ,Ω : Rn → Rn by Ω(x) = x − rei and Φ = Ω−1.
Let y = Φ(z). Let Z be the binary expansion of z and let Y be the binary expansion
of y. Let M be the polynomial time computable martingale M from the (sketch of the
)proof of the Proposition 14 such that Z is an ε−oscillation point of M for some ε > 0. M
makes an infinite number of ε bets along Z. However, we need a modified version of M
(which we also call M). First, let us introduce some notation. Let µ denote the measure
corresponding to M . For every σ ∈ 2<ω with [σ]n ∈ D(j), let D1(σ), D2(σ) ∈ DΩ(j) be such
that [σ]n ⊆ D1(σ) ∪ D2(σ). D1(σ) and D2(σ) are not necessarily unique, but that does
not matter. Our martingale M , instead of making an ε bet, waits until its input σ is such
that λ([σ]n∩D1(σ))

λ([σ]n) ≥ 1/3 and λ([σ]n∩D2(σ))
λ([σ]n) ≥ 1/3 (this will occur sooner or later since all

components of z are p-random). Once such input σ is found (with [σ]n ∈ D(j) for some j),
M places two ε/2 bets on τ1, τ2 � σ such that [τ1]n, [τ2]n ∈ D(j + 2), [τ1]n ⊆ [σ]n ∩D1(σ)
and [τ2]n ⊆ [σ]n ∩D2(σ).

What is important in this construction is that for infinitely many i, both D1(Z�i)
and D2(Z�i) contain two elements of D(i + 2) that are ε/2−separated by µ and either
y ∈ Φ(D1(Z�i)) or y ∈ Φ(D2(Z�i)).

A. Galicki 30:11

Figure 1 A particular betting pattern employed in the proof of the Theorem 22.

Clearly M is computable in polynomial time and Z is an ε/2−oscillation point of M .
Consider the martingaleMΩ. By the Lemma 21, either Y ∈ Osc(MΩ) or Y is a p-porosity

point. In both cases Y is not p-random. J

I Remark. There is an important implication of the above theorem. In those cases where we
are only concerned whether some x ∈ Rn is p-random or not, we can always use the 1/3-shift
trick freely. That is, since for every i, x+ 1/3ei is p-random iff x is p-random, instead of
x we can always consider a suitable shift of x. This will be used below, in the proof of our
main result of this subsection.

I Theorem 23. Let Ω : Rn → Rn be a polynomial time computable linear isometry. Let
z ∈ [0, 1]n. z is p-random iff Ω(z) is p-random.

Proof. Since Ω−1 is polynomial time computable linear isometry as well, it is only required
to show that if z is not p-random, then Ω−1(z) is not p-random either. Again, we may
assume Ω−1(z) ∈ [0, 1]n.

Let Z be the binary expansion of z. Let M be a bounded polynomial time computable
martingale such that Z is an ε−oscillation point of M for some ε > 0. Define Φ = Ω−1, let
y = Φ(z) and let Y be the binary expansion of y.

Consider the martingale MΩ and its corresponding measure µΩ. If y is an oscillation
point of µΩ, Y is not p-random. Suppose y is not an oscillation point of µΩ.

There are infinitely many j, such that DΦ(j, y) and DΦ(j + 1, y) are ε−separated by µΩ.
By the 1/3-shift trick and by Theorem 22, we may assume that for infinitely many such j′s,
DΦ(j, y) is contained in Dn(y, j − p̂) for some fixed p̂. In that case, by the Lemma 21, Y is a
p-porosity point and hence not p-random. J

4.3 Existence of directional derivatives
To prove our main result about directional derivatives, we need the following proposition:

I Proposition 24. Let f : Rn → R be a polynomial time computable Lipschitz function. If
z ∈ Rn is p-random, then Dnf(z) exists.

I Remark. The proof of the above proposition is a generalization of the proof of the ⇒
direction of the Theorem 4 in [19]. The most technically challenging part required by the
proof is the ⇐ part of van Lambalgen’s theorem for p-randomness. That is, we had to show
that if there is an oracle martingale computable in polynomial time diverging on A while
having an oracle access to B, then there is a martingale computable in polynomial time
succeeding on A⊕n B.

ICALP 2017

30:12 Polynomial-Time Rademacher Theorem, Porosity and Randomness

I Theorem 25. Let f : Rn → R be a Lipschitz function computable in polynomial time. Let
u ∈ Vp and let x ∈ Rn be p-random.

The directional derivative Duf(x) exists.

Proof. Let Θ : Rn → Rn be a change of basis map, such that Θ(e1) = u. We may assume it
is computable in polynomial time. Define z = Θ−1(x). By the Theorem 23, z is p-random
too.

Define g = f ◦ Θ. g is a Lipschitz function computable in polynomial time. Then
Duf(x) = D1g(z) and we know that D1g(z) exists. J

4.4 Linearity of directional derivatives
Let f : Rn → R be a Lipschitz function computable in polynomial time. Recall that
N(f) \N(Vp, f) is the set of points x ∈ Rn such that Dvf(x) exists for all unit vectors v
computable in polynomial time but f is not differentiable at x.

Let u, v ∈ Rn. Define D(f, u, v) ⊆ Rn as the set of such x that Duf(x), Dvf(x) and
Du+vf(x) exist, but

Duf(x) +Dvf(x) 6= Du+vf(x).

Since f is Lipschitz and Vp is dense in the set of unit vectors, it is known that

N(f) \N(Vp, f) =
⋃

u,v∈Vp

D(f, u, v).

The following proposition is the last bit required to prove the Theorem 2:

I Proposition 26. Let f : Rn → R be a Lipschitz function computable in polynomial time.
Let x ∈ Rn with X ∈ 2ω being its binary expansion. If x ∈ N(f) \N(Vp, f), then X is a
p-porosity point.

References
1 G. Petruska A.M. Bruckner, M. Laczkovich and B. S. Thomson. Porosity and approxim-

ate derivatives. Canadian Journal of Mathematics, 38:1149–1180, 1986. doi:10.4153/
CJM-1986-058-7.

2 K. Ambos-Spies, H. Fleischhack, and H. Huwig. P-generic sets, pages 58–68. Springer
Berlin Heidelberg, 1984. doi:10.1007/3-540-13345-3_5.

3 K. Ambos-Spies, H. Fleischhack, and H. Huwig. Diagonalizations over polynomial time
computable sets. Theoretical Computer Science, 51(1):177–204, 1987. doi:10.1016/
0304-3975(87)90053-3.

4 K. Ambos-Spies, S.A. Terwijn, and Z. Xizhong. Resource bounded randomness and weakly
complete problems, pages 369–377. Springer Berlin Heidelberg, 1994. doi:10.1007/
3-540-58325-4_201.

5 D.N. Bessis and F.H. Clarke. Partial subdifferentials, derivatives and Rademacher’s the-
orem. Transactions of AMS, 351(7):2899–2926, 1999.

6 Miller J. Bienvenu L., Hölzl R. and Nies A. Denjoy, Demuth and density. Journal of
Mathematical Logic, 14(01):1450004, 2014. doi:10.1142/S0219061314500044.

7 J.M. Borwein and X. Wang. Cone-monotone functions: Differentiability and continuity.
Canadian Journal of Mathematics, 57:961–982, 2005. doi:10.4153/CJM-2005-037-5.

8 V. Brattka, J. Miller, and A. Nies. Randomness and differentiability. Transactions of the
AMS, 368:581–605, 2016. arXiv version at arxiv.org/abs/1104.4465.

http://dx.doi.org/10.4153/CJM-1986-058-7
http://dx.doi.org/10.4153/CJM-1986-058-7
http://dx.doi.org/10.1007/3-540-13345-3_5
http://dx.doi.org/10.1016/0304-3975(87)90053-3
http://dx.doi.org/10.1016/0304-3975(87)90053-3
http://dx.doi.org/10.1007/3-540-58325-4_201
http://dx.doi.org/10.1007/3-540-58325-4_201
http://dx.doi.org/10.1142/S0219061314500044
http://dx.doi.org/10.4153/CJM-2005-037-5

A. Galicki 30:13

9 A.M. Bruckner and B. S. Thomson. Porosity estimates for the Dini derivatives. Real Anal.
Exch., 9:508–538, 1984.

10 R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer-Verlag,
Berlin, 2010. 855 pages.

11 R.G. Downey and D.R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer-
Verlag, 2010.

12 Stephen A. Fenner. Functions that preserve p-randomness. Inf. Comput., 231:125–142,
October 2013. doi:10.1016/j.ic.2013.08.009.

13 C. Freer, B. Kjos-Hanssen, A. Nies, and F. Stephan. Algorithmic aspects of Lipschitz
functions. Computability, 3(1):45–61, 2014. doi:10.3233/COM-14025.

14 A. Galicki. Randomness and Differentiability of Convex Functions, pages 196–205. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-20028-6_20.

15 A. Galicki. Effective Brenier Theorem: Applications to Computable Analysis and Al-
gorithmic Randomness. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS’16, pages 720–729, New York, NY, USA, 2016. ACM.
doi:10.1145/2933575.2933596.

16 M. Khan. Lebesgue density and
∏0

1 classes. Journal of Symbolic Logic, 81(1):80–95, 2016.
17 Ker-I Ko. Complexity theory of real functions. Birkhauser Boston Inc., 1991.
18 A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford Uni-

versity Press, Oxford, 2009. doi:10.1093/acprof:oso/9780199230761.001.0001.
19 André Nies. Differentiability of polynomial time computable functions. In Ernst W. Mayr

and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of Com-
puter Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 602–613, Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.STACS.2014.602.

20 N. Pathak, C. Rojas, and S.G. Simpson. Schnorr randomness and the Lebesgue dif-
ferentiation theorem. Proc. Amer. Math. Soc., 142(1):335–349, 2014. doi:10.1090/
S0002-9939-2013-11710-7.

21 D. Preiss and L. Zajíček. Directional derivatives of lipschitz functions. Israel Journal of
Mathematics, 125(1):1–27, 2001. doi:10.1007/BF02773371.

22 J. Lindenstrauss, D. Preiss and J. Tišer. Fréchet Differentiability of Lipschitz Functions
and Porous Sets in Banach Spaces. Annals of Mathematics Studies. Princeton University
Press, 2012.

23 H. Rademacher. Über partielle und totale Differenzierbarkeit von Funktionen mehrerer
Variabeln und über die Transformation der Doppelintegrale. Math. Ann., 79(1):340–359,
1919.

24 O. Tapiola. Random and non-random dyadic systems in doubling metric spaces, 2012. MSc
thesis. URL: http://hdl.handle.net/10138/37603.

25 Brian S. Thomson. Real functions. Lecture Notes in Mathematics. 1170. Berlin etc.:
Springer-Verlag. VII, 229 p. DM 31.50 (1985)., 1985. doi:10.1007/BFb0074380.

26 Y. Wang. Randomness and Complexity. PhD dissertation, University of Heidelberg, 1996.
27 K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

ICALP 2017

http://dx.doi.org/10.1016/j.ic.2013.08.009
http://dx.doi.org/10.3233/COM-14025
http://dx.doi.org/10.1007/978-3-319-20028-6_20
http://dx.doi.org/10.1145/2933575.2933596
http://dx.doi.org/10.1093/acprof:oso/9780199230761.001.0001
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.602
http://dx.doi.org/10.1090/S0002-9939-2013-11710-7
http://dx.doi.org/10.1090/S0002-9939-2013-11710-7
http://dx.doi.org/10.1007/BF02773371
http://hdl.handle.net/10138/37603
http://dx.doi.org/10.1007/BFb0074380

A QPTAS for the General Scheduling Problem
with Identical Release Dates∗

Antonios Antoniadis1, Ruben Hoeksma2, Julie Meißner3,
José Verschae4, and Andreas Wiese5

1 Department of Computer Science, University of Bonn, Bonn, Germany
antoniad@cs.uni-bonn.de

2 Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile
rhoeksma@dim.uchile.cl

3 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
jmeiss@math.tu-berlin.de

4 Facultad de Matemáticas & Escuela de Ingeniería, Pontificia Universidad
Católica de Chile, Santiago, Chile
jverschae@uc.cl

5 Department of Industrial Engineering & Center for Mathematical Modeling,
Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
The General Scheduling Problem (GSP) generalizes scheduling problems with sum of cost ob-
jectives such as weighted flow time and weighted tardiness. Given a set of jobs with processing
times, release dates, and job dependent cost functions, we seek to find a minimum cost pree-
mptive schedule on a single machine. The best known algorithm for this problem and also for
weighted flow time/tardiness is an O(log logP)-approximation (where P denotes the range of the
job processing times), while the best lower bound shows only strong NP-hardness. When release
dates are identical there is also a gap: the problem remains strongly NP-hard and the best known
approximation algorithm has a ratio of e+ ε (running in quasi-polynomial time). We reduce the
latter gap by giving a QPTAS if the numbers in the input are quasi-polynomially bounded, rul-
ing out the existence of an APX-hardness proof unless NP ⊆ DTIME(2polylog(n)). Our techniques
are based on the QPTAS known for the UFP-Cover problem, a particular case of GSP where
we must pick a subset of intervals (jobs) on the real line with associated heights and costs. If
an interval is selected, its height will help cover a given demand on any point contained within
the interval. We reduce our problem to a generalization of UFP-Cover and use a sophisticated
divide-and-conquer procedure with interdependent non-symmetric subproblems.

We also present a pseudo-polynomial time approximation scheme for two variants of UFP-
Cover. For the case of agreeable intervals we give an algorithm based on a new dynamic pro-
gramming approach which might be useful for other problems of this type. The second one is a
resource augmentation setting where we are allowed to slightly enlarge each interval.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Generalized Scheduling, QPTAS, Unsplittable Flows

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.31

∗ This work was partially funded by Nucleo Milenio Información y Coordinación en Redes ICM/FIC
RC130003, Conicyt PII Nr 20150140, and Fondecyt Nr 11140579.

EA
T

C
S

© Antonios Antoniadis, Ruben Hoeksma, Julie Meißner, José Verschae, and Andreas Wiese;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 A QPTAS for the General Scheduling Problem with Identical Release Dates

1 Introduction

The General Scheduling Problem (GSP) considers scheduling jobs with job dependent cost
functions in a very general setting. We are given a single machine and a set of jobs J ,
where each job j has a release date ρj ∈ N, a processing time pj ∈ N, and a cost function
fj : N→ N0 ∪ {∞} that is non-decreasing. The goal is to find a preemptive schedule on the
machine that minimizes the total cost

∑
j∈J fj(Cj), where Cj is the completion time of job

j in the computed schedule.
With arbitrary cost functions for the jobs, we have a lot of modeling power, which

we believe makes the problem worth studying. In fact, we can model many scheduling
objectives that were also studied separately, such as weighted flow time (each job j has
weight wj and fj(Cj) = wj(Cj − ρj)) or weighted tardiness (each job j additionally has
a deadline dj and fj(Cj) = max{wj(Cj − dj), 0}). The best known result for GSP is a
O(log logP)-approximation [5] (where P denotes the range of the processing time) and
no better polynomial time results are known for any of the mentioned special cases. The
best known lower bound shows only strong NP-hardness [13] (even in the case without
release dates), thus leaving a large gap compared to the O(log logP)-approximation. Even
if all jobs have identical release dates there is a gap in our understanding: the best known
results are a (4 + ε)-approximation in polynomial time [11] and an (e + ε)-approximation
in quasi-polynomial time [12]. It is open whether this case is APX-hard. In this paper we
settle the latter question: for GSP with identical release dates we present a QPTAS, i.e., a
(1 + ε)-approximation algorithm with a running time of nlog(n)O(1) for any constant ε > 0.
This implies that the problem is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).

In this extended abstract, many proofs and details had to be omitted due to space
constraints.

1.1 General Scheduling Problem and UFP-Cover
For identical release dates, GSP is purely a sequencing problem, since a solution cannot
profit from preempting jobs or leaving idle-time. Assuming that ρj = 0 for each j, the whole
schedule finishes at time T :=

∑
j pj . Using the viewpoint from [5], we can see this problem

as a covering problem. In any feasible solution, for each time t, we need that the total
processing time of jobs finishing after time t is at least Dt := T − t. We can think of Dt as
the demand of time point t. Now, we rephrase the problem as follows. For each job j select
a completion time Cj such that for each t′ the total processing time of the jobs unfinished at
time t′ is at least Dt′ . We say that job j is unfinished or active during the interval [0, Cj).
An easy proof shows that, for each such choice of completion times, there exists a schedule
in which every job j is finished by its completion time Cj [5].

An important special case arises when the cost function fj of each job j attains only
one of three values: zero in an interval [0, rj) (rj should not to be confused with the release
date ρj = 0), a job dependent value cj in an interval [rj , dj), and ∞ in [dj ,∞). In this
setting, we can assume that the optimal solution selects either [0, rj) or [0, dj) to be the
interval during which j is active. Moreover, we can simply remove pj from the demand
at each time [0, rj), which leaves as the only decision for j whether we pay cj and cover
pj units of demand during [rj , dj), or not. Thus, this special case can be reduced to the
Unsplittable Flow on a Path (UFP)-Cover problem. In UFP-Cover, we are given a set of
jobs J , each job described by a cost cj , a size pj , and the interval [rj , dj) and, for each time
point t, a demand Dt. The goal is to select a subset J ′ of the jobs such that, for each time
point t, the total size of the jobs j ∈ J ′ with t ∈ [rj , dj) is at least Dt. Note that we do not

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:3

I
tM

Figure 1 The bold curve denotes the size profile of job parts selected by the optimal solution that
cross tM . The blue step function shows an underestimating profile that approximates the former
curve. The height of the green area (subprofile) is an (under-)estimation of the size of job parts
in the optimal solution for all jobs that have a part covering tM and whose right end point lies at
interval I (i.e., the fourth step of the blue function).

require that the demand function Dt is non-increasing (but by adding jobs of zero cost one
could assume this w.l.o.g.). The best known results for UFP-Cover are a 4-approximation in
polynomial time [6, 8] and a QPTAS which requires the input data to be quasi-polynomially
bounded [12]. Since there is the QPTAS, it is natural to conjecture that also a PTAS
exists. In this paper, we make progress towards this by presenting pseudo-polynomial time
approximation schemes for the settings of agreeable intervals, i.e., when for any two jobs j, j′
we have that rj ≤ rj′ ⇒ dj ≤ dj′ , and for a resource augmentation setting, where we are
allowed to increase each given interval [rj , dj) by a factor of 1 + µ for an arbitrarily small
µ > 0 while the compared optimal solution cannot do this.

1.2 Our Contribution
Our first result is a QPTAS for GSP with identical release dates, assuming that all numbers in
the input are quasi-polynomially bounded. We reduce GSP to a generalization of UFP-Cover.
This generalized UFP-Cover problem is defined like regular UFP-Cover, but now each job
j consists of K parts. More precisely, for each job j we are given an integral starting time
rj , a size pj , up to K many integral end times rj < d1

j < d2
j < ... < dKj , and corresponding

accumulated costs c1j , c2j , ..., cKj . Jobs can be selected or not. If a job is not selected its cost
is zero and it does not contribute to cover any demand. If job j is selected, we can choose to
extend it up to any part i ∈ {1, . . . ,K}, which means that then it is active during [rj , dij).
In this case we pay cij for this job while it contributes to cover pj units of demand to each
time within [rj , dij). The objective is to cover all demand Dt while minimizing the total cost.
Notice that if K = 1 then we recover the UFP-Cover problem. On the other hand, we show
that by losing a factor of 1 + ε in the objective we can assume that K = 1/ε2.

Starting with this, we extend the known QPTAS for UFP-Cover, which works as follows.
We consider the jobs crossing the middle time point tM ; denote them by JM . They are
split into (logn)Oε(1) groups according to size and cost. For each group and each time t, we
consider the total size of the jobs in the group crossing time point t in the optimal solution.
This yields a function that is increasing from time 0 to time tM , and decreasing from tM
to T . This function can be underestimated by a step-function (profile) with O(1/δ) (where
δ = Oε(1)) many steps (see the blue curve in Figure 1). One first guesses the step-function
and then selects jobs that cover the demand given by this step-function greedily (which
is essentially optimal). There is still some error due to the fact that the step-function
underestimates the true amount that jobs in OPT ∩ TM cover on each time point. In the
case of regular UFP-Cover, one can compensate this error by greedily selecting jobs that
were not yet selected.

ICALP 2017

31:4 A QPTAS for the General Scheduling Problem with Identical Release Dates

Job Set

Solution 1

Solution 2
tMt1 t2

(a) Picking the blue part of the top job rules out
Solution 1, while not picking it rules out Solution 2.
Note that both solutions are incomparable since on
t1 and t2 they cover different amounts of demand.

tM

(b) Assume that the optimal solution selects
all blue job parts (crossing tM). Then there
are still an exponential number of options for
which jobs we should also select the green
parts. Thus, we cannot take this decision
immediately.

Figure 2 Locally Pareto-optimal choices.

In contrast to regular UFP-Cover, this approach fails for our generalization. We can
think of each job as a collection of parts [rj , d1

j), [d1
j , d

2
j), ..., [dK−1

j , dKj). The step function
can only be guessed for the part that actually covers tM . Yet, if we select that part, we need
to pick all preceding parts of that job as well. This influences our options on the left side of
tM . On the other hand, if we do not pick the part that covers tM of a certain job, succeeding
parts of that job cannot be picked. This influences our options on the right side of tM (see
Figure 2a).

To address these issues we guess more fine-grained underestimating profiles. We group
the jobs further such that for each job in a group the same part crosses tM . Assume that for
the jobs in the considered group their respective i-th part, [di−1

j , dij), covers tM . We guess a
right underestimating profile that estimates the total size covered to the right of tM by these
i-th parts that are selected by OPT. This profile partitions the jobs into subgroups according
to the “step” of the profile in which the i-th part ends (see the green curve in Figure 1).
For each of these constantly many groups we create a subprofile which underestimates the
additional demand covered by the (i+ 1)-th parts of those jobs in OPT, i.e., by the intervals
[dij , di+1

j). We continue recursively and create underestimating subprofiles for all parts of the
jobs, which gives a tree structure. We refer to this construction as tree profiling.

The tree profiling yields constantly many subgroups of jobs. For each of them we guess
the number of jobs that the optimal solution selects (recall that the jobs in the same group
have essentially the same size and cost). Then we recurse only on the left subproblem in
which we want to cover the demand of the interval [0, tM) subject to the new constraint
that from each subgroup we select the previously guessed number of jobs. Once we have
a solution to this left subproblem, ideally we would like to decide how many parts of the
jobs crossing tM we select, i.e., the parts laying in the interval [tM + 1, T). Unfortunately,
there can still be very many Pareto-optimal choices for this (see Figure 2b for an example).
This can even happen when taking into account the information from the tree profiling.
Instead, at this point we select for each job only the part that crosses tM and we decide
later about the additional parts we want to select. We recurse on the interval [tM + 1, T)
and the remaining problem is to cover the demand of the interval [tM + 1, T) while we can
select additional parts from the jobs that we selected already. In each subproblem we recurse
on the respective middle time point, which yields a recursion depth of O(logn) and thus
quasi-polynomial running time overall.

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:5

UFP-Cover for agreeable deadlines. Our second result is a pseudo-polynomial time (1+ ε)-
approximation for UFP-Cover with agreeable deadlines. We first present an exact pseudo-
polynomial time dynamic program (DP) for the case that the interval of each job is of the
form [0, dj) or [rj , T), i.e., rj = 0 or dj = T . Then, we generalize this to the case where
there are 1/ε intervals [T0, T1), [T1, T2), ..., [T1/ε−1, T1/ε) and for each job j we have that
[rj , dj) ∩ [T`, T`+1) equals either [rj , T`+1) or [T`, dj). Using the fact that the job deadlines
are agreeable we can show that the time axis can be partitioned into a possibly superconstant
number of intervals [T`, T`+1) with this property. By losing only a factor 1+ε in the objective,
we can split those into groups of at most 1/ε consecutive intervals, each of which then yields
an independent subinstance of our problem on which we apply our DP. The backbone of
the latter is that the agreeable-deadlines property yields an ordering to process the jobs
such that we need to remember only little information about the previously chosen jobs. We
believe that this ordering and the resulting DP technique might be useful for other problems
on agreeable intervals as well. Note that the opposite case where the job intervals form a
laminar family has a simple exact DP. Thus, we can now handle the two “extreme” cases of
the problem.

PTAS under resource augmentation. For UFP-Cover we present a pseudopolynomial time
PTAS for the setting where we can enlarge each job interval [rj , dj) by a factor 1 + µ for
some µ > 0, i.e., replace it by the interval [rj − µ

2 (dj − rj), dj + µ
2 (dj − rj)), while the

compared optimal solution does not have this privilege. We use this resource augmentation
to discretize the begin and end points of the intervals of the jobs. As in a similar result for
UFP-packing [3], we group the jobs by the lengths of their intervals. In UFP-packing, the
grouping can be done such that two jobs in different groups have intervals whose lengths
differ by a large factor. Then each group can be handled almost independently. In our case
we cannot establish such a property, since it requires the removal of some jobs from the
input, which in turn may make our instance of UFP-Cover infeasible. Instead, our DP needs
to transfer a lot of information between groups. The key for our approach is to prove that
for each group it is sufficient to remember information from one previous group.

1.3 Other related work

The General Scheduling Problem can model a vast class of well-studied objective functions.
The known O(log logP)-approximation for it [5], is even the best known result for several im-
portant special cases. For example, for the weighted flow time objective there were previously
algorithms known with approximation ratios of O(log2 P), O(logW) and O(lognP) [4, 10],
where P and W denote the ranges of the job processing times and weights, respectively. Also,
there is a QPTAS with a running time of nOε(logP logW) [9].

For GSP with identical release dates the first constant factor approximation is due to
Bansal and Pruhs [5] and yields an approximation ratio of 16. This was later improved
to 4 + ε [11] by adapting ideas from the 4-approximation algorithm for UFP-Cover [6, 8].
For UFP-Cover this is the best known polynomial time result, while for quasi-polynomially
bounded input numbers the problem even admits a QPTAS, implying a quasi-polynomial
time (e+ ε)-approximation for GSP with identical release dates [12]. The used techniques
are based on a QPTAS for the packing version of UFP [3]. For the latter algorithm, one can
even remove the assumption that the input data is quasi-polynomially bounded [7]. The best
known polynomial time results for UFP-packing are a (2 + ε)-approximation [1] and PTASs
for some special cases [7].

ICALP 2017

31:6 A QPTAS for the General Scheduling Problem with Identical Release Dates

2 QPTAS for GSP with identical release dates

We present our QPTAS for the General Scheduling Problem with identical release dates.
Throughout this section we assume that all input numbers are quasi-polynomially bounded
integers, and that we are given an ε > 0 such that 1/ε is an integer. We assume as well that
we are given the number fmax = max{fj(t) : fj(t) 6=∞, t ≤ T} as part of the input. First,
we simplify the input such that the job cost functions attain only values that are powers of
1 + ε or ∞.

I Lemma 1. By losing a factor 1 + ε in the objective, we can assume for each job j and
each t that fj(t) ∈ {(1 + ε)k|k ∈ N0} ∪ {0,∞} and that fj is a non-decreasing step function
with Oε(poly(logn)) steps. We can further assume that each fj is given explicitly, even if in
the input it was given via an oracle.

As in [5] we interpret GSP as a covering problem. Given a demand Dt for each interval
[t, t + 1) and a set of jobs J . Each job j ∈ J is characterized by a size pj , a set of parts
with corresponding intervals I1

j = [t(0)
j , t

(1)
j), I2

j = [t(1)
j , t

(2)
j), ... for t(0)

j ≤ t
(1)
j ≤ t

(2)
j ≤ . . .

and cost values 0 ≤ c1j < c2j < The goal is to select for each job j a prefix of its parts,
i.e., a value σ(j) ∈ N0 such that all parts k ≤ σ(j) are selected. The cost for j is then cσ(j)

j .
Possibly σ(j) = 0 and then no part is selected, and thus we define c0j := 0 for each job j. For
a solution σ we say that a job j is active at time t if t ∈ ∪σ(j)

i=1 I
i
j . We require that for each t

the total size of the jobs active at t is at least Dt, i.e.,
∑
j:t∈∪σ(j)

i=1 I
i
j

pj ≥ Dt. The objective

is to minimize the total cost
∑
j∈J c

σ(j)
j . We call this problem the generalized UFP-Cover

problem (regular UFP-Cover is the special case where each job has only one part).
Using a similar argumentation as in [5] we can prove the following lemma.

I Lemma 2. For any instance of GSP with identical release dates in which each cost function
attains only polynomially many different values, we can construct in polynomial time an
instance of generalized UFP-Cover such that approximations are preserved, i.e., for any
α ≥ 1 an α-approximate solution for the generalized UFP-Cover instance can be transformed
in polynomial time to an α-approximate solution for the GSP instance.

We apply Lemma 2 to reduce our given GSP instance to an instance of generalized UFP-Cover.
Next, we ensure that each job has only 1/ε2 parts.

I Lemma 3. By losing a factor 1 + ε in the objective, we can assume that each job has at
most K := 1/ε2 many parts, each value ckj is a power of 1 + ε, and that ck+1

j = (1 + ε)ckj for
each k.

Assume w.l.o.g. that there is a value T ≤ poly(n) such that Ikj ⊆ [0, T) for each job j and
each part k. Our algorithm is recursive. Let tM = dT2 e be the middle point of the interval
[0, T). The overall idea is to take a decision about the parts of jobs j that cover [tM , tM + 1),
i.e., such that tM ∈ Ikj for some k, and then recursively decide on all job parts k′ with
Ik

′

j′ ⊆ [0, tM) (left subproblem) and k′′ with Ik′′

j′′ ⊆ [tM + 1, T) (right subproblem).

2.1 Tree profiling and grouping of jobs

Let JM ⊆ J denote the set of jobs j having a part k with tM ∈ Ikj . We partition JM into a
poly-logarithmic number of subsets according to their respective size, by the index of the

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:7

J
(k,γ,`)
M

J
(k,γ,`,1)
M

. . .

. . . J
(k,γ,`,i)
M

. . . J
(k,γ,`,i,i′)
M

. . .

. . .

(a) Example of a tree G(k,γ,`).

tM Ai Ai,i′

. . .

. . .

. . .

. . .

Part k Part k + 1

(b) Two jobs from group Jk,γ,`,i,i
′

M .

Figure 3 Recursive partitioning of the jobs.

part that covers tM , and by the cost of the latter. Formally, for numbers k, γ and λ we
define sets

J
(k,γ,λ)
M := {j ∈ JM : tM ∈ Ikj , ckj = (1 + ε)γ , and (1 + ε)λ ≤ pj < (1 + ε)λ+1}.

Consider one such group J (k,γ,λ)
M . We want to partition it further. Let δ = δ(ε) be a small

enough constant. First, we want to partition it into O(1/δ) subgroups J (k,γ,λ,i)
M such that:

(i) OPT selects essentially the same number of jobs from each of these subgroups, and (ii)
the k-th part of each job in the subgroup has a “similar” endpoint. Formally, we ensure the
latter by partitioning the interval [tM , T) into subintervals A1, A2, ... such that for each job j
of a subgroup J (k,γ,λ,i)

M the k-th part ends in Ai (see Figure 3). Let J̄ (k,γ,λ)
M be the set of jobs

j ∈ J (k,γ,λ)
M ∩ OPT that OPT extends up to part k or further, i.e., for which OPT selects

parts I1
j , ..., I

k
j and possibly more. To define our partition, we see that the respective k-th

parts of the jobs in J̄ (k,γ,λ)
M cover some demand at each time point t, given by the function

f̄k(t) :=
∑
j∈J̄(k,γ,λ)

M
:t∈Ik

j

pj . Observe that f̄k is non-decreasing on [0, tM) and non-increasing

on [tM , T). Ideally, we would like to guess f̄k so that we have some idea about how much the
k-th parts of the jobs in J (k,γ,λ)

M need to cover. Unfortunately, there are too many options
on how f̄k might look. Therefore, we guess

∣∣∣J̄ (k,γ,λ)
M

∣∣∣ and a simpler underestimating function
f̃k that approximates f̄k sufficiently well, as given by the following lemma (see Figure 1).
For our later purposes we need this function only on the interval [tM , T).

I Lemma 4. There exists a function f̃k : [tM , T) → {0, 1, ...,
∑
j∈J pj} such that f̃k is a

step-function with at most O(1/δ) many steps, f̃k(t) ≤ f̄k(t) ≤ f̃k(t)+δ ·
∣∣∣J̄ (k,γ,λ)
M

∣∣∣ · (1+ ε)λ+1,
and f̃ is non-increasing.

We use the function f̃k to split the set J (k,γ,λ)
M into subgroups, according to where the part

k of each job j ∈ J
(k,γ,λ)
M ends. Let A1, A2, ... denote a partition of [tM , T) into O(1/δ)

subintervals such that on each subinterval Ai the function f̃k is constant. For each such
interval Ai we define J (k,γ,λ,i)

M ⊆ J (k,γ,λ)
M to be the jobs j ∈ J (k,γ,λ)

M such that (t(k)
j − 1) ∈ Ai

(recall that Ikj = [t(k−1)
j , t

(k)
j)).

Subprofiles. It is convenient to think of a tree where J (k,γ,λ)
M forms the root node and the

sets J (k,γ,λ,i)
M form the children of J (k,γ,λ)

M . We take each such group J (k,γ,λ,i)
M and partition

it further into O(1/δ) smaller subgroups J (k,γ,λ,i,1)
M , J

(k,γ,λ,i,2)
M , In the tree view, we can

think of appending those as children to the node for the group J (k,γ,λ,i)
M , see Figure 3. For

ICALP 2017

31:8 A QPTAS for the General Scheduling Problem with Identical Release Dates

the subgroups, as before our goal is that OPT selects essentially the same number of jobs
from each subgroup J (k,γ,λ,i,i′)

M and that for each such subgroup the (k + 1)-th part has a
“similar” end point.

Recall that when we partitioned J (k,γ,λ)
M we estimated what the k-th part of the jobs in

J
(k,γ,λ)
M ∩OPT cover (via the function f̃k) and obtained a grouping according to the steps of
f̃k. For the finer partitioning of J (k,γ,λ,i)

M we consider the jobs in J (k,γ,λ,i)
M for which OPT

selects also the (k + 1)-th part (and thus also the k-th part). Denote that set as J̄ (k,γ,λ,i)
M .

We define the function f̄k,i(t) that models how much the k-th and the (k+ 1)-th parts of the
jobs in J̄ (k,γ,λ,i)

M ∩ OPT cover. Formally, f̄k,i(t) :=
∑
j∈J̄(k,γ,λ,i)

M
:t∈Ik

j
∪Ik+1
j

pj . We guess an

underestimating function f̃k,i with the same properties as the function f̃k as given in Lemma 4,
i.e., f̃k,i has O(1/δ) many steps, f̃k,i(t) ≤ f̄k,i(t) ≤ f̃k,i(t) + O(δ) · |J̄ (k,γ,λ,i)

M | · (1 + ε)λ+1,
and f̃k,i is non-increasing. Like before, the steps of f̃k,i yield a partition of [tM , T) into
O(1/δ) many subintervals Ai,1, Ai,2, ... such that f̃k,i is constant in each of them. Each
such subinterval Ai,i′ yields a subgroup J (k,γ,λ,i,i′)

M that contains all jobs j ∈ J (k,γ,λ,i)
M whose

(k + 1)-th part ends in Ai,i′ , i.e., (t(k+1)
j − 1) ∈ Ai,i′ .

We continue recursively for K levels, expanding the tree accordingly. Analogous to before,
we obtain for each node v in level k′ of the tree (that is not a leaf), a subprofile function f̄v
and an approximate version f̃v such that f̃v(t) ≤ f̄v(t) ≤ f̃v(t) +O(δ) · |J̄ (k,γ,λ,v)

M | · (1 + ε)λ+1,
where J̄ (k,γ,λ,v)

M is the set of jobs in Jv that the optimum extends up to its (k + k′)-th part.
The leafs of the tree yield a partition of the job set, and the total number of nodes is (1/δ)K .

We can guess the whole partition in time n(1/δ)O(K) which will eventually be bounded by
nOε(1) (note that there are only T ≤ poly(n) options for each endpoint of an interval Ai or
Ai,i′ , etc.). In the same running time, we can guess for each arising group and subgroup the
total number of jobs that OPT selects from these groups. More precisely, let G(k,γ,λ) be the
resulting tree and for each node v denote by Jv the corresponding job group. For a node v
on level k′ we guess the value N(v), the number of jobs in Jv that the optimum extends at
least up to their respective (k + k′)-th part.

We now bound the total demand deficit made by the underestimating functions. Let
f(t) =

∑
j∈J(k,γ,λ)

M
:j active at t in OPT pj be the total size of jobs in J (k,γ,λ)

M that cover t in the
optimal solution. We say that a solution is concordant with the tree G(k,γ,λ) and numbers
N(v) if, for each node v of each level k′, the solution selects the (k + k′)-th part of at least
(1 + ε)N(v) jobs in Jv, or of all jobs in Jv in case that |Jv| < (1 + ε)N(v). As the next lemma
shows, any tree concordant solution covers the demand at any point t almost as good as
the optimal solution. The gap is bounded by K · δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1 which is an upper
bound on the sum of the deficits of all subprofiles relevant for a time point t. Here J̄ (k,γ,λ)

M is
the subset of jobs in J (k,γ,λ)

M that OPT extends at least to the k-th part.

I Lemma 5. Consider any solution concordant with tree G(k,γ,λ). The demand covered by
such a solution at any time t ∈ [tM , T) is at least f(t)−K · δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1.

2.2 Fixing the demand deficit
We would like to recurse on the left and on the right subproblem, i.e., on [0, tM) and
[tM + 1, T). We have guessed the correct number of jobs in each group but we have not
decided yet which exact jobs from each group we want to select.

We deal with these issues as follows. Let us fix a tree G(k,γ,λ). We first consider any
solution ALG that is concordant with the tree. By Lemma 5, this solution already covers
almost all necessary demand, having a deficit of at most δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1 for every

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:9

Parts picked by ALG
Parts picked by OPT
Parts picked by ALG and OPT

Jobs ALG can pick completely for fixing
t

Figure 4 In contrast to the regular UFP-Cover Problem where selecting new jos is always
sufficient, here this is not the case: even selecting all the new (bottom) jobs does not suffice to cover
t! Instead, extending previously selected jobs is necessary.

time point in [tM , T]. Even if we can fix this demand by adding more jobs (and we will,
essentially, do so), picking an arbitrary concordant solution at this point will create issues
for the left subproblem: nothing guarantees that the chosen solution we pick allows to cover
the remaining demand within [0, tM) at a reasonable cost. To avoid this problem, we call
the left subproblem recursively, giving the trees G(k,γ,λ) and numbers N(v) for each node
as input. We will require this problem to give us a solution ALG that is concordant with
the tree for each group J (k,γ,λ)

M and that satisfies all demand at [0, tM). The exact way of
solving this left subproblem is given in the next subsection. We call a solution constructed
this way a left-feasible solution.

Consider now a left-feasible solution ALG and fix a tree G(k,γ,λ). The idea is to fix the
deficit in [tM , T) by adding jobs picked greedily. As a first approach we could consider the
following method: within all jobs in J (k,γ,λ)

M not active at tM , pick the δ|J̄ (k,γ,λ)
M |(1 + ε) ones

that extend furthest to the right when all of their K parts are chosen. We denote by H(k,γ,λ)

the set of these jobs. For any timepoint t that is covered by all these jobs, we will cover the
whole deficit. Also, we can show that total incurred cost is at most an ε-fraction of the cost
of OPT ∩ J̄ (k,γ,λ)

M . One might be tempted to conclude that we are done: since we picked the
jobs greedily, a time point t that is not covered by all jobs in H(k,γ,λ) cannot be covered by
any other job that we did not make active at tM . This is indeed enough to argue in the
regular UFP-Cover problem [12]. However, the argument fails in our setting as we might
still be able to further extend some jobs that our solution picks to cover tM but not are not
extended to cover t; see Figure 4.

To solve this issue we truncate ALG by removing for each group J (k,γ,λ)
M and each job

j ∈ J (k,γ,λ)
M all parts that do not cover any point t ∈ [0, tM + 1). Let ALGM be the truncated

solution. We show that ALGM plus all parts of all jobs in H(k,γ,λ) can be extended (by
adding more parts, not necessarily like ALG) to a solution that covers all required demand
and costs at most a 1 + ε factor more than OPT. The constructed solution covers all demand
at times [0, tM + 1) and we will solve the remaining problem in the right subproblem.

To make this idea formal, denote by OPTM the solution obtained by taking OPT and
removing from it all parts Ikj such that Ikj ⊆ [tM + 1, T). For any left-feasible solution S we
say that a solution S′ is an extension of S if for each job j the solution S′ extends j up to at
least as many parts as S.

I Lemma 6. Assume that 1/δ = K · ε(1 + ε)O(K). Suppose we are given the left-feasible
truncated solution ALGM . Then we can compute in polynomial time a set of jobs H ⊆ JM
such that

if we select all parts of each job in H this yields a total cost of at most O(ε) · c(OPTM),
and
for the solution ALGM ∪H there is an extension ALG′ such that c(ALG′)− c(ALGM ∪
H) ≤ c(OPT)− c(OPTM).

ICALP 2017

31:10 A QPTAS for the General Scheduling Problem with Identical Release Dates

Proof Sketch. Consider a set J (k,γ,λ)
M . We consider all jobs of this set that are not covering tM

in ALG and sort them non-increasingly with respect to the right endpoint of IKj . Let H(k,γ,λ)

be the set of the first K ·δ|J̄ (k,γ,λ)
M |(1+ε) such jobs and define H = ∪k,γ,λH(k,γ,λ). Notice that

extending all parts of jobs in H(k,γ,λ) incurs a cost of at most K · δ(1+ ε)K+1(1+ ε)γ |J̄ (k,γ,λ)
M |.

By choosing the constants in the definition of δ appropriately we obtain that the cost is
O(ε) · c(J̄ (k,γ,λ)

M). Summing over all triplets k, γ, λ yields the desired bound on the total cost
of H.

For a given set H(k,γ,λ), out of all right endpoints of jobs in the set, call τR the one most to
the left. Inside the interval [tM , τR) the jobs in H(k,γ,λ) cover at least K(1 + ε)λ+1δ|J̄ (k,γ,λ)

M |,
and thus they cover all deficit left by the solution ALG (or any other tree concordant solution).
On the other hand, for any t > τR our greedy choice for H(k,γ,λ) guarantees that all jobs in
J

(k,γ,λ)
M that can be extended to cover t are taken at least up to their k-th part in ALGM ∪H.

This allows us to construct the claimed extension ALG′ of ALGM ∪H: we start with ALG
and transform it step by step to make it resemble the optimal solution. Note that this is a
purely existential result since we need to know the optimal solution for this procedure. J

2.3 Left subproblem

Suppose that via recursion we have computed a left-feasible solution ALG. Then, using
Lemma 6 we compute the jobs H such that c(H) ≤ O(ε) · c(OPTM) and such that the
extension ALG′ is guaranteed to exist. In order to compute (an approximation to) ALG′ we
recurse on the right subproblem, given by the interval [tM + 1, T).

For each t ∈ [tM + 1, T) we update the demand Dt to take into account that we already
selected some job parts crossing tM and the jobs in H. Formally, we define the new demands
as D′t := Dt−

∑
j:t∈J̃(t) pj where J̃(t) denotes the set of jobs j such that ALGM ∪H contains

a part of j that covers t. For each job j such that ALGM selected the part Ikj covering tM ,
our subproblem only has the parts of j that lie completely within [tM + 1, T). We update
their cost, taking into account that the left subproblem has already paid ckj for it, i.e., the
cost value c̄`−kj for each new part `− k is set to c̄`−kj = c`j − ckj . This yields an instance of
our problem on the interval [tM + 1, T) whose size is only half the size of the original interval
[0, T). Strictly speaking, the new costs might no longer be a power of 1 + ε. However, note
that the adjustment of costs means that c̄1j = ck+1

j − ckj = εc1j . Therefore, the costs of any
two parts of a job still differ by at most a constant factor and the new cost values come from
a set of size O(poly(logn)) (which is important to bound the number of job groups J (k,γ,λ)

M)
. Moreover, this factor does not increase further in the recursion and hence we can recurse
one the right subproblem with essentially the same routine as above.

It remains to describe how to recurse on the left subproblem for the interval [0, tM).
Formally, this subproblem is defined as follows: we are given the interval [0, tM) together
with the demand D′t for each point t ∈ [0, tM) (the updated demand). Also, for each tree
G(k,γ,λ) and each vertex v we are given a corresponding group of jobs Jv. Additionally we
have to consider the set of all input jobs j such that no part of j crosses tM - we refer to
this set of jobs as JL. Finally, for each group Jv we are given a value N(v) that indicates
that for at least (1 + ε)N(v) jobs in Jv we have to select the respective part that crosses tM .

Our objective is to find a solution for jobs in JL ∪
⋃
k,γ,λ J

(k,γ,λ) that covers all demand
in [0, tM) and that is concordant for each tree. To have a cleaner subproblem, we observe
that the leaves of G(k,γ,λ) imply a partition of the jobs of J (k,γ,λ) into subgroups. For each
of them we guess how many jobs the optimal solution selects from the subset corresponding
to that leaf. Then for each of them we require that the left subproblem selects either a factor

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:11

1 + ε more jobs or all jobs from that subset. The resulting solution can easily be transformed
into a concordant solution.

We consider the point t′M := d tM2 e. Like above, we partition the jobs into groups according
to which part of them crosses t′M . However, we do this separately for JL and each subgroup
of jobs crossing tM . For each resulting separate group, we guess the profiles and recursive
subprofiles as before. Once we have guessed this partition of the jobs together with the
required number of jobs of each group, we recurse on the left-left problem, i.e., on the problem
for the interval [0, t′M). When we obtained a solution for the left-left subproblem in the
interval [0, t′M) we recurse further on the interval [t′M , tM). For this left-right subproblem, we
update the cost of the jobs whose respective parts crossing t′M were selected by the left-left
subproblem (like we did when we defined the right subproblem of the interval [tM + 1, T))
and additionally impose the constraint that from each group Jv (as defined by the main
subproblem for the interval [0, T)) for at least (1 + ε)N(v) jobs we select the respective part
crossing tM .

Number of groups. We continue recursively in the same fashion. In the recursion, the
number of job groups we pass to each subproblem increases since from the main subproblem
for the interval [0, T) we are given a partition into subgroups and whenever we recurse on a
left subproblem these subgroups are partitioned further and also new subgroups are defined.
However, we can show that in each step of the recursion the total number of arising subgroups
is bounded by (1

ε2 logn)O(K).

I Lemma 7. In the input of each subproblem arising in the recursion, the jobs are partitioned
into at most (1

ε2 logn)O(K) different groups.

Whenever we are given a subproblem on some interval I ′ then we guess subgroups and
certain values with a quasi-polynomial number of options in total and we recurse on two
subproblems, given by subintervals of I ′ whose size is half the size of I ′. Thus, the recursion
tree has a depth of O(log T) = O(logn) and each internal node of the tree has at most
quasi-polynomially many children. Hence, our algorithm has quasi-polynomial running time
overall.

I Theorem 8. There are quasi-polynomial time (1 + ε)-approximation algorithms for the
general scheduling problem and for the generalized UFP-Cover problem, assuming that all
input values are quasi-polynomially bounded integers.

3 Agreeable Instances

In this section we present our pseudopolynomial-time (1 + ε)-approximation algorithm for the
UFP-Cover problem on agreeable instances. We first show how to partition a given instance
into smaller subinstances (Section 3.1). Then we then present our algorithm for a special
type of subinstances (Section 3.2).

For simplicity of presentation, we will assume throughout this section w.l.o.g. that each
integer timepoint t is associated with a demand Dt and that we only need to cover the
demands at such timepoints. Furthermore, we assume w.l.o.g. that the the intervals defined
by the release-time and deadline of each job are closed, i.e., have the form [rj , dj]. We also
assume that all elements of the set U := ∪j{rj , dj} are disjoint. To simplify the presentation,
we further assume w.l.o.g. that all elements of U are even integers.

ICALP 2017

31:12 A QPTAS for the General Scheduling Problem with Identical Release Dates

Figure 5 The thick blue jobs are the pivotal jobs, and the dashed vertical lines define the intervals.
It is helpful to think of rj for the first pivotal job j as the start point of the first interval.

3.1 Preprocessing & Preliminary Observations
We partition the time-horizon into intervals. We may assume that there is no timepoint
throughout [0, T] that is not covered by any job, since then we could easily seperate the
instance at this timepoint into two independent subinstances. For our partitioning we
inductively introduce a set of pivotal jobs P .

I Definition 9. The first pivotal job is the job with earliest start time rj . We define the
other pivotal jobs by induction. Assume that we have defined the first k pivotal jobs j1, ..., jk.
Then the (k+1)-th pivotal job is the job with latest start time among all jobs j with rj ≤ djk .

We use the end points of the pivotal jobs in order to partition the time horizon into
intervals I. More formally, we partition the time horizon into intervals at timepoints
X := {dj : j ∈ P} ∪ {0}. Let T0, T1, · · · be the timepoints in X in increasing order. Then
each interval in I is of the form [Tk, Tk+1] for some k ∈ N. See Figure 5 for an example.

I Lemma 10. The [rj , dj]-interval of any non-pivotal job intersects at most one timepoint
of X. The [rj , dj]-interval of any pivotal job intersects at most two timepoints of X.

Next, we cut the instance into subinstances so that each subinstance contains at most q
many intervals (in our final algorithm we will set q = O(1/ε)). We do this in a randomized
fashion but the procedure can be easily derandomized, similar to, e.g., [2]. Let x be a random
variable that takes its value uniformly at random among the integers {0, 1, 2, . . . , q − 1}.
We “cut” the instance into subinstances at timepoints W := {Tx, Tx+q, Tx+2q, . . . }. Let
each subinstance Ii := [Tx+iq, Tx+(i+1)q] contain all jobs j whose interval [rj , dj] intersects
Ii. Jobs j whose intervals [rj , dj] span two consecutive subinstances Ii and Ii+1 are split
into two jobs: a job j′ with rj′ := rj , dj′ := Tx+iq, pj′ := pj , cj′ := cj , and a job j′′ with
rj′′ := Tx+iq, dj′′ := dj , pj′′ := pj , cj′′ := cj .

Note that the choice of x can be derandomized by trying out all q possible choices for x
and selecting the best one. For the obtained division into subinstances we prove the following
lemma.

I Lemma 11. An exact algorithm with running time O(f(n)) for a subinstance containing
at most q consecutive intervals from I yields a (1 + 2/q)-approximation algorithm for the
original instance, with a running time of O(n · f(n)).

We give a pseudopolynomial-time exact algorithm for the problem on instances with q =
O(1/ε) many consecutive intervals. The algorithm is based on dynamic programming. Due
to space constraints in the main body of the paper we only present a simpler version of our
DP for the case q = 1 in Subsection 3.2.

3.2 Solving a subinstance with only one interval
Assume that we are given a subinstance consisting of only one interval Ii. We form a partition
JL∪̇JR for the jobs whose [rj , dj]-interval intersects this interval Ii. The set JL is the set of

A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese 31:13

all jobs j such that dj ∈ Ii, and JR is the set of such jobs j such that rj ∈ Ii. By Lemma 10,
JL∪̇JR comprises the whole set of jobs j such that [rj , dj] ∩ I 6= ∅. We now define a set of
relevant timepoints M for our interval Ii as M := (U ∩ Ii), where U := {rj , dj |j ∈ J} is the
set of all globally relevant timepoints.

Let us consider this set ordered from left to right, so that M = {t1, t2 . . . tk}. We fill out
the table of our dynamic program in a bottom-up fashion by considering these timepoints in
reverse order, that is from right to left. Each cell of the dynamic programming table has the
form T [tz, b, iL, cL, cR]. Intuitively, it describes the subproblem of covering the demand on
the subinterval [tz, tk] by a set of jobs J ′L ⊆ JL having their respective deadline in [tz, tk + 1]
with p(J ′L) :=

∑
j∈J′

L
pj = iL and c(J ′L) :=

∑
j∈J′

L
cj = cL, and by a set of jobs J ′R ⊆ JR

having their respective release dates in [tz, tk + 1] with c(J ′R) = cR. The demand at each
point t ∈ [tz, tk] is Dt − b, i.e., the reader may imagine that some other routine of the global
algorithm selects jobs with a total size of b that cover each point in [tz, tk].

Formally, this DP cell is filled out with a “yes” if and only if there exist two sets J ′L ⊆ JL
and J ′R ⊆ JR, such that:
(i) for each job j ∈ J ′R, there holds rj ≥ tz, and for each job j ∈ J ′L there holds dj ≥ tz,
(ii) p(J ′L) =

∑
j∈J′

L
pj = iL and c(J ′L) =

∑
j∈J′

L
cj = cL,

(iii) c(J ′R) = cR, and
(iv) ∀` : z ≤ ` ≤ k,

∑
j∈J′

L∪J
′
R:[rj ,dj]3t` pj ≥ Dt` − b.

Filling out the table. We fill out the table starting with all entries for the rightmost
timepoint tk. First, we fill in T [tk, b, iL, cL, cR] for all possible values of 0 ≤ iL ≤

∑
j pj ,

0 ≤ cL, cR ≤
∑
j cj , and 0 ≤ b ≤

∑
j∈JR pj . Note that for such a cell only the pivotal job jp

of the interval is relevant since no other job can have its release date or deadline at tk. For
filling in the entry it suffices to consider the two possibilities of selecting jp and not selecting
jp.

Assume now that we have filled in all cells corresponding to timepoints from tz+1 to tk
and we want to fill in the entries for tz. The timepoint tz is the start or the end point of a job
j that either belongs to JL or to JR. The entries for tz in our dynamic programming table
depend on the set to which j belongs to, and on whether j is added to the solution. Formally,
if j ∈ JR, then T [tz, b, iL, cL, cR] = “yes” if and only if T [tz+1, b, iL, cL, cR] = “yes” and
iL+b ≥ Dtz or if T [tz+1, b+pj , iL, cL, cR−cj] = “yes” and iL+b+pj ≥ Dtz . So either we do
not add j to the solution, and then we need to cover the demand at tz with the jobs already
selected for tz+1, or we add j to the solution, and then we can add its size to the respective b-
entry at tz+1. Symmetrically, if j ∈ JL, then T [tz, b, iL, cL, cR] = “yes” if and only if we have
that T [tz+1, b, iL, cL, cR] = “yes” and iL+b ≥ Dtz or if T [tz+1, b, iL − pj , cL − cj , cR] = “yes”
and iL + b ≥ Dtz .

By keeping track of the respective sets JL and JR in each cell we are able to reconstruct
our solution starting from the cell of the form T [t1, 0, iL, cL, cR] that minimizes cL+cR among
all such cells with a “yes”-entry. Our dynamic program requires pseudopolynomial running
time, because the considered possible values for cL, cR, iL and b are pseudopolynomial in the
input size. It returns an exact solution to the given problem. We are able to generalize these
ideas to subinstances with O(1/ε) many intervals, and thus prove the following theorem.

I Theorem 12. There is a pseudopolynomial-time (1 + ε)-approximation algorithm for the
UFP-Cover problem on agreeable instances.

ICALP 2017

31:14 A QPTAS for the General Scheduling Problem with Identical Release Dates

References
1 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing

2+ε approximation for unsplittable flow on a path. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2014), pages 26–41, 2014.

2 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
J. Assoc. Comput. Mach., 41(1):153–180, January 1994. doi:10.1145/174644.174650.

3 Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-PTAS for
unsplittable flow on line graphs. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC 2006), pages 721–729. ACM, 2006. doi:10.1145/1132516.
1132617.

4 Nikhil Bansal and Kedar Dhamdhere. Minimizing weighted flow time. ACM Transactions
on Algorithms, 3(4):Article 39, 2007. doi:10.1145/1290672.1290676.

5 Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM Journal on Computing,
43(5):1684–1698, 2014. doi:10.1137/130911317.

6 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. Journal of the
ACM, 48(5):1069–1090, 2001. doi:10.1145/502102.502107.

7 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-
proximation schemes for unsplittable flow on a path. In Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 47–58. SIAM, 2015.
doi:10.1137/1.9781611973730.5.

8 Venkatesan T. Chakaravarthy, Amit Kumar, Sambuddha Roy, and Yogish Sabharwal. Re-
source allocation for covering time varying demands. In Algorithms–ESA 2011, pages
543–554. Springer, 2011. doi:10.1007/978-3-642-23719-5_46.

9 Chandra Chekuri and Sanjeev Khanna. Approximation schemes for preemptive weighted
flow time. In Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pages 297–305. ACM, 2002. doi:10.1145/509907.509954.

10 Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted
flow time. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
(STOC’01), pages 84–93, 2001. doi:10.1145/380752.380778.

11 Maurice Cheung, Julián Mestre, David B. Shmoys, and José Verschae. A primal-dual
approximation algorithm for min-sum single-machine scheduling problems. SIAM Journal
on Discrete Mathematics. To appear, 2017.

12 Wiebke Höhn, Julián Mestre, and Andreas Wiese. How unsplittable-flow-covering helps
scheduling with job-dependent cost functions. In International Colloquium on Auto-
mata, Languages, and Programming, pages 625–636. Springer, 2014. doi:10.1007/
978-3-662-43948-7_52.

13 Eugene L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to minim-
ize total tardiness. Annals of Discrete Mathematics, 1:331–342, 1977. doi:10.1016/
S0167-5060(08)70742-8.

http://dx.doi.org/10.1145/174644.174650
http://dx.doi.org/10.1145/1132516.1132617
http://dx.doi.org/10.1145/1132516.1132617
http://dx.doi.org/10.1145/1290672.1290676
http://dx.doi.org/10.1137/130911317
http://dx.doi.org/10.1145/502102.502107
http://dx.doi.org/10.1137/1.9781611973730.5
http://dx.doi.org/10.1007/978-3-642-23719-5_46
http://dx.doi.org/10.1145/509907.509954
http://dx.doi.org/10.1145/380752.380778
http://dx.doi.org/10.1007/978-3-662-43948-7_52
http://dx.doi.org/10.1007/978-3-662-43948-7_52
http://dx.doi.org/10.1016/S0167-5060(08)70742-8
http://dx.doi.org/10.1016/S0167-5060(08)70742-8

Improved Algorithms for MST and Metric-TSP
Interdiction∗†

André Linhares1 and Chaitanya Swamy2

1 Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON, Canada
alinhare@uwaterloo.ca

2 Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON, Canada
cswamy@uwaterloo.ca

Abstract
We consider the MST-interdiction problem: given a multigraph G = (V,E), edge weights {we ≥
0}e∈E , interdiction costs {ce ≥ 0}e∈E , and an interdiction budget B ≥ 0, the goal is to remove
a set R ⊆ E of edges of total interdiction cost at most B so as to maximize the w-weight of an
MST of G−R := (V,E \R).

Our main result is a 4-approximation algorithm for this problem. This improves upon the
previous-best 14-approximation [31]. Notably, our analysis is also significantly simpler and cleaner
than the one in [31]. Whereas [31] uses a greedy algorithm with an involved analysis to extract
a good interdiction set from an over-budget set, we utilize a generalization of knapsack called
the tree knapsack problem that nicely captures the key combinatorial aspects of this “extraction
problem.” We prove a simple, yet strong, LP-relative approximation bound for tree knapsack,
which leads to our improved guarantees for MST interdiction. Our algorithm and analysis are
nearly tight, as we show that one cannot achieve an approximation ratio better than 3 relative
to the upper bound used in our analysis (and the one in [31]).

Our guarantee for MST-interdiction yields an 8-approximation for metric-TSP interdiction
(improving over the 28-approximation in [31]). We also show that maximum-spanning-tree inter-
diction is at least as hard to approximate as the minimization version of densest-k-subgraph.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Opti-
mization, G.2 Discrete Mathematics

Keywords and phrases Approximation algorithms, interdiction problems, LP-rounding algo-
rithms, iterative rounding, tree-knapsack problem, supermodular functions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.32

1 Introduction

Interdiction problems are a broad class of optimization problems with a wide range of
applications. They model the problem faced by an attacker, who given an underlying, say,
minimization, problem, aims to destroy or interdict the elements involved in the optimization
problem (e.g., nodes or edges in a network-optimization problem) without exceeding a given
interdiction budget, so as to maximize the optimal value of the residual optimization problem
(where one cannot use the interdicted elements). A classical example is the minimum-
spanning-tree (MST) interdiction problem [22, 9, 31], which is the focus of this work: we are

∗ A full version of the paper is available at https://arxiv.org/abs/1706.00034.
† This work was supported in part by NSERC grant 327620-09 and an NSERC Discovery Accelerator

Supplement Award.

EA
T

C
S

© André Linhares and Chaitanya Swamy;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.32
https://arxiv.org/abs/1706.00034
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Improved Algorithms for MST and TSP Interdiction

given a multigraph G = (V,E), edge weights {we ≥ 0}e∈E , interdiction costs {ce ≥ 0}e∈E ,
and an interdiction budget B ≥ 0; the goal is to interdict (i.e., remove) a set R ⊆ E of
edges of total interdiction cost at most B so as to maximize the w-weight of an MST of the
multigraph G−R := (V,E \R). Note that G may have parallel edges, which can be useful
in modeling partial-interdiction effects, wherein interdicting an edge causes an increase in its
weight that depends on the interdiction cost incurred for the edge.

At a high level, interdiction problems can be seen as investigating the sensitivity of an
underlying optimization problem with respect to the removal of a limited set of underlying
elements. This type of sensitivity analysis may be utilized to identify vulnerable spots (e.g.,
regions in a network) either: (a) for possible reinforcement, or, (b) if the optimization problem
models an undesirable process (e.g., the spread of infection, or nuclear-arms smuggling), for
disruption, so as to maximally impair the underlying process. A variety of applications of
interdiction problems ensue from these two perspectives, including infrastructure protection [5,
27], hospital-infection control [1], prevention of nuclear-arms smuggling [24], and military
planning [11] (see also the references in [31]). Consequently, interdiction problems have been
extensively studied, especially in the Operations Research literature; besides MST-interdiction,
some well-studied interdiction problems include network-flow interdiction [25, 28, 2, 30, 13, 3],
shortest s-t path interdiction [10, 14, 17, 20], and maximum-matching interdiction [29, 6].
All these problems, as well as MST-interdiction, are NP-hard.
Our results. Our main result is a 4-approximation algorithm for MST interdiction (Theo-
rem 7), i.e., we compute in polytime a solution of value at least (optimum)/4. This is a substan-
tial improvement over the previous-best approximation ratio of 14 obtained by Zenklusen [31].

Notably, and perhaps more importantly, our algorithm is simple, and its analysis is
significantly simpler and cleaner than the one in [31]. The key ingredient (see also “Our
techniques”) of both our algorithm and the one in [31] is a procedure for extracting a good
interdiction set from one that exceeds the interdiction budget. Whereas [31] uses a greedy
algorithm with a rather involved analysis to achieve this, our simple and more-effective
procedure is based on two chief insights. First, we discern that the key combinatorial aspects
of this “extraction problem” can be captured quite nicely via a clean generalization of the
knapsack problem called the tree knapsack problem [15] (Section 3). In particular, we argue
that approximation guarantees for tree knapsack relative to the natural LP for this problem
translate directly to guarantees for MST interdiction. Second, complementing the above
insight, we show that the tree knapsack problem admits a simple iterative-rounding based
algorithm that achieves a strong LP-relative guarantee (Theorem 4, Corollary 6). Our
improved guarantee for MST interdiction then readily follows by combining these two ideas.

We also show a lower bound of 3 (Theorem 16) on the approximation ratio achievable
relative to the upper bound used in our analysis (and the analysis in [31]), thereby showing
that our algorithm and analysis are nearly tight.

Our MST-interdiction result also yields an improved guarantee for the metric-TSP
interdiction problem (Section 5): given metric edge weights {we}, we now seek an interdiction
set R with

∑
e∈R ce ≤ B so as to maximize the minimum w-weight of a closed walk in G−R

that visits all nodes at least once. Since an α-approximation for MST interdiction yields a
2α-approximation for metric-TSP interdiction [31], we obtain an approximation factor of 8
for metric-TSP interdiction, which improves upon the previous-best factor of 28 [31].

In Section 6, we consider the maximum-spanning-tree interdiction problem, where the goal
is to minimize the maximum w-weight of a spanning tree of G−R. We show that this problem
is at least as hard to approximate as the minimization version of the densest-k-subgraph
problem (MinDkS). MinDkS does not admit any constant-factor approximation under certain
less-standard complexity assumptions [26] (and is believed to have a larger inapproximability
threshold), so this highlights a stark contrast with the MST-interdiction problem.

A. Linhares and C. Swamy 32:3

Our techniques. We give an overview of our algorithm for MST interdiction. Let val(R) be
the w-weight of an MST of G−R. Using standard arguments, we can reduce the problem to
the following setting (see Section 2 and Theorem 3): we are given interdiction sets R1 ⊆ R2
with c(R1) < B < c(R2) such that a ·val(R1)+b ·val(R2) ≥ OPT , where OPT is the optimal
value and a, b ≥ 0 are such that a+ b = 1 and a · c(R1) + b · c(R2) = B. These arguments
resemble the ones in [31], but we do not need to assume that the we weights are powers of
2. (We emphasize however that this by itself is not the chief source of our improvement.)
The technical meat of the algorithm, and where we diverge significantly from [31] to obtain
our improved guarantee, is to show how to extract a good interdiction set from R1, R2. As
mentioned earlier, we replace the greedy algorithm of [31] for extracting a good interdiction
set from R2, and its associated intricate analysis, by considering the tree-knapsack problem
to capture the key aspects of this extraction problem, and devise a simple iterative-rounding
algorithm that yields a strong LP-relative guarantee for tree knapsack. This conveniently
translates to a much-improved 5-approximation algorithm for MST interdiction (Theorem 13).
The further improvement to a 4-approximation arises by also leveraging R1 to find a good
interdiction set: instead of focusing solely on R2 (as done in [31]), we return an interdiction
set R such that R1 ⊆ R ⊆ R2 (see Section 4.1).

To arrive at the tree knapsack problem, observe that val(R) can be conveniently expressed
as a weighted sum of the number of components of (V, {e ∈ E \R : we ≤ t}), where t ranges
over some distinct edge weights, say, 0 ≤ w1 < · · · < wk (Lemma 2). Let A0 denote the com-
ponents of (V,E≤0 := ∅), and Ai denote the components of (V,E≤i := {e ∈ E\R2 : we ≤ wi})
for i = 1, . . . , k. The multiset

⋃k
i=0Ai forms a laminar family, which can be viewed as a rooted

tree. We seek to build our interdiction set R by selecting a suitable collection of sets from
this laminar family, ensuring that if we pick a component A ∈ Ai then δ(A)∩E≤i is included
in R (so that A is a component of (V,E≤i \R)). Whereas val(R) is nicely decoupled across
the selected components, it is harder to decouple the interdiction cost incurred and account
for it. For instance, summing c

(
δ(A)∩E≤i

)
for the selected A ∈ Ai may grossly overestimate

the interdiction cost, whereas summing c
(
δ(A) ∩ {e : we = wi}

)
for the selected A ∈ Ai

underestimates the interdiction cost. A crucial insight is that, if we ensure that whenever
we pick A ∈ Ai, we also pick its children in the laminar family, then summing c

(
δ(A) ∩ {e :

we = wi}
)
for the selected A ∈ Ai is a good proxy for the interdiction cost incurred.

This motivates the definition of the tree knapsack problem: given a rooted tree Γ
with node values {αv}, node weights {βv}, and budget B, we want to pick a maximum-
value downwards-closed set of nodes (not containing the root) whose weight is at most B,
where downwards-closed means that if we pick a node, then we also pick all its children.
The standard knapsack problem is thus the special case where Γ is a star (rooted at its
center). We consider the natural LP (TK-P) for tree knapsack, and generalizing a well-
known result for knapsack, show that we can efficiently compute a solution of value at least
OPTTK-P −maxchains C

∑
v∈C αv (Theorem 4), where a chain is a subset of a root-leaf path.

Finally, we show that for the tree-knapsack instance derived (as above) from R2, OPTTK-P
is “large” (Lemma 10); combining this with the above bound yields our approximation ratio.

Related work. MST interdiction in its full generality seems to have been first considered
by [22], who showed that the problem is NP-hard. The approximation question for MST
interdiction was first investigated by [9]. They focused on the setting with unit interdiction
costs, often called the B-most-vital-edges problem, showed that this special case remains NP-
hard, and obtained an O(logB)-approximation (which also yields an O(log |E|)-approximation
with general interdiction costs). This guarantee was improved only recently by Zenklusen [31],

ICALP 2017

32:4 Improved Algorithms for MST and TSP Interdiction

who gave the first (and current-best) O(1)-approximation algorithm for (general) MST
interdiction, achieving an approximation ratio of 14. The B-most-vital edges problem has
been well studied for B = 1 and for B = O(1), where it can be solved optimally; see,
e.g., [21] and the references therein. The special case of MST interdiction where we have
only two distinct edge weights captures the budgeted graph disconnection (BGD) problem [7]
for which a 2-approximation is known [7]. As noted by [31], MST interdiction can be viewed
as multilevel-BGD, which makes it much more challenging as it is difficult to control the
interactions at the different levels. It is noteworthy that our approximation ratio of 4 for
MST interdiction is quite close to the approximation ratio of 2 for BGD.

As with MST interdiction, until recently, there were wide gaps in our understanding of
the approximability of the other classic NP-hard interdiction problems mentioned earlier.
Maximum s-t flow interdiction, even on undirected graphs with unit interdiction costs, is
now known to be at least as hard as MinDkS on λ-uniform hypergraphs. This follows from
a recent hardness result for k-route s-t cut in [13], which turns out to be an equivalent
problem.1 This hardness result has been rediscovered (in a slightly weaker form) by [3], who
also gave an O(n)-approximation algorithm. For shortest s-t path interdiction, very recently,
Lee [20] proved a super-constant hardness result. For maximum-matching interdiction, [6]
devised the first O(1)-approximation algorithm. Despite this recent progress, interdiction
variants of common optimization problems are generally not well understood, especially from
the viewpoint of approximability.

The tree knapsack problem was introduced by [15], and is a special case of the partially-
ordered knapsack (POK) problem [18]. While an FPTAS can be obtained for tree knapsack
and some special cases of POK [15, 18], and the natural LP for POK has been investigated [18],
our LP-relative guarantee and rounding algorithm for tree knapsack are new.

2 Preliminaries

For any vector d ∈ RE and any subset F ⊆ E of edges, we use d(F) to denote
∑
e∈F de. Given

a subset R ⊆ E of edges, we use val(R), which we call the value of R, to denote the w-weight
of an MST in the multigraph G − R, i.e., val(R) := minspanning trees T of G− R w(T). The
minimum-spanning-tree interdiction problem can thus be restated as follows: max

{
val(R) :

R ⊆ E, c(R) ≤ B
}
.

If there is an interdiction set R with c(R) ≤ B such that G − R is disconnected, then
val(R) =∞, and so the MST-interdiction problem is unbounded. Note that this happens
iff a min-cut δ(S) of G satisfies c

(
δ(S)

)
≤ B, and we can efficiently detect this. So in

the sequel, we assume that this is not the case. Let OPT denote the optimal value of the
MST-interdiction problem (which is now finite). For F ⊆ E, let σ(F) denote the number of
connected components of (V, F).

Let w1, w2, . . . , wM be the distinct weights in {we : e ∈ E}, where 0 ≤ w1 < w2 < · · · <
wM . For i = 1, . . . ,M , define Ei := {e ∈ E : we = wi} and E≤i := {e ∈ E : we ≤ wi}.
For notational convenience, we define w0 := 0 and E0 = E≤0 := ∅. (Note that E0 is not
necessarily {e ∈ E : we = w0}, and E≤0 is not necessarily {e ∈ E : we ≤ w0}.)

1 In k-route s-t cut, the goal is to remove a min w-cost set of edges so as to reduce the s-t edge connectivity
to at most k − 1. This corresponds to taking all but the k − 1 most-expensive edges of some cut. So we
can rephrase this problem as follows: remove at most k − 1 edges to minimize the (min-s-t-cut value =
max-s-t-flow value) with capacities {we}; this is precisely the maximum s-t flow interdiction problem
with unit interdiction costs and budget k − 1.

A. Linhares and C. Swamy 32:5

Let k ∈ {1, . . . ,M} be the smallest index such that c
(
δ(S) ∩ E≤k

)
> B for every

∅ 6= S (V ; that is, the multigraph (V,E≤k \R) is connected for all R such that c(R) ≤ B.
Note that k is well defined due to our earlier assumption. This implies the following properties,
as also observed in [31]:
(i) OPT ≥ wk (since, by definition of k, there is a feasible interdiction set R whose removal

disconnects (V,E≤k−1));
(ii) for any R with c(R) ≤ B, we have val(R) = val(R ∩ E≤k−1), and hence, there is an

optimal solution that only interdicts edges from E≤k−1; and
(iii) given (ii), we may add additional edges of weight wk without impacting the optimal

value, so we may assume that (V,Ek) is connected.
We summarize these properties and assumptions below.

I Claim 1. Let k ∈ {1, . . . ,M} be the smallest index such that (V,E≤k \R) is connected for
every R ⊆ E with c(R) ≤ B. Assume that such a k exists. Then, (i) OPT ≥ wk, and (ii)
there is an optimal solution R∗ such that R∗ ⊆ E≤k−1. Moreover, we may assume that (iii)
the multigraph (V,Ek) is connected.

I Lemma 2. Let R ⊆ E be an edge-set such that (V,E≤k \R) is connected. Then val(R) =
−wk +

∑k−1
i=0 σ (E≤i \R) (wi+1 − wi).

Proof. Consider, for example, running Kruskal’s algorithm to obtain an MST of G−R. We
include exactly σ(E≤j−1 \R)− σ(E≤j \R) edges of weight wj for every 1 ≤ j ≤M , and this
quantity is 0 for all j > k. It follows that

val(R) =
M∑
j=1

(
σ (E≤j−1 \R)− σ(E≤j \R)

)
wj =

k∑
j=1

(
σ(E≤j−1 \R)− σ(E≤j \R)

)
wj

=
k∑
j=1

(
σ (E≤j−1 \R)− σ(E≤j \R)

) j−1∑
i=0

(wi+1 − wi)

=
k−1∑
i=0

(wi+1 − wi)
k∑

j=i+1

(
σ(E≤j−1 \R)− σ(E≤j \R)

)

=
k−1∑
i=0

(
σ(E≤i \R)− 1

)
(wi+1 − wi) = −wk +

k−1∑
i=0

σ(E≤i \R)(wi+1 − wi). J

Given Claim 1, we focus on interdiction sets R ⊆ E≤k−1 and recast the MST-interdiction
problem as: max

{
val(R) : R ⊆ E≤k−1, c(R) ≤ B

}
. As is common in the study of constrained

optimization problems (see, e.g., [19, 12] and the references therein), we Lagrangify the
budget constraint c(R) ≤ B, and consider the following Lagrangian problem (offset by −λB),
where λ ≥ 0 is a parameter:

max
R⊆E≤k−1

fλ(R) := val(R)− λc(R). (Pλ)

The expression for val(R) in Lemma 2 holds for all R ⊆ E≤k−1 as (V,Ek) is connected. Since
σ(E≤i \R) is a supermodular function of R, this implies that val(·), and hence the objective
function fλ(·) of (Pλ), is supermodular over the domain 2E≤k−1 : for any A1, A2 ⊆ E≤k−1,
we have fλ(A1) + fλ(A2) ≤ fλ(A1 ∩A2) + fλ(A1 ∪A2). Hence, (Pλ) can be solved exactly,
which we crucially exploit.

Let O∗λ denote the set of optimal solutions to (Pλ). Observe that for any λ ≥ 0 and any
R ∈ O∗λ, we have val(R)− λc(R) ≥ OPT − λB. So if we find some λ ≥ 0 and R ∈ O∗λ such

ICALP 2017

32:6 Improved Algorithms for MST and TSP Interdiction

that c(R) = B, we have val(R) ≥ OPT , so R is an optimal solution. In general, such a pair
(λ,R) need not exist, or can be hard to find. However, by doing a binary search for λ, or
alternatively, as noted in [31], via parametric submodular-function minimization [8, 23], we
can obtain the following result; we include a self-contained proof in the full version.

I Theorem 3 ([31]). One can find in polytime: either (i) an optimal solution to the MST-
interdiction problem, or (ii) a parameter λ ≥ 0 and two optimal solutions R1, R2 to (Pλ)
such that R1 ⊆ R2 and c(R1) < B < c(R2).

3 The tree knapsack problem

We now define the tree knapsack problem, and devise a simple, clean LP-based approxi-
mation algorithm for this problem (Theorem 4, Corollary 6). As we show in Section 4,
the tree knapsack problem nicely abstracts the key combinatorial problem encountered
in extracting a good interdiction set from an over-budget set R2 in case (ii) of Theo-
rem 3, and our LP-relative guarantees for tree knapsack readily yield improved approxima-
tion guarantees for MST interdiction.

In the tree knapsack problem [15], we have a tree Γ = ({r} ∪ N,A) rooted at node r.
Each node v ∈ N has a value αv ≥ 0 and a weight βv ≥ 0, and we have a budget B. We say
that a subset S ⊆ N of nodes is downwards-closed if for every v ∈ S, all children of v are also
in S. The goal is to find a maximum-value downwards-closed set S ⊆ N (so r /∈ S) such that∑
v∈S βv ≤ B. Observe that the (standard) knapsack problem is precisely the special case of

tree knapsack where the underlying tree is a star (rooted at its center). Throughout, we use
v to index nodes in N . For S ⊆ N and a vector ρ ∈ RN , we use ρ(S) to denote

∑
v∈S ρv.

The following is a natural LP-relaxation for the tree knapsack problem involving variables
xv for all v. Let ch(v) denote the set of children of node v.

max
∑
v

αvxv (TK-P)

s.t. xv ≤ xu for all v, for all u ∈ ch(v) (1)∑
v

βvxv ≤ B, 0 ≤ xv ≤ 1 for all v.

Tree knapsack was first defined by [15] who devised an FPTAS for this problem via dynamic
programming. However, for our purposes, we need an approximation guarantee relative to
the above LP, which was not known previously.

The main result of this section is as follows. We say that C ⊆ N is a chain if for every
two distinct nodes in C, one is a descendant of the other.

I Theorem 4. We can compute in polytime an integer solution to (TK-P) of value at least
OPTTK-P −maxchains C ⊆ N α(C).

Theorem 4 nicely generalizes a well-known result about the standard knapsack problem,
namely, that we can always obtain a solution of value at least (LP-optimum)−maxv αv.
Notice that when Γ is a star (i.e., we have a knapsack instance), this is precisely the guarantee
that we obtain above. The proof of Theorem 4 relies on the following structural result (which
extends a similar result known for knapsack). Let Γ(v) denote the subtree of Γ rooted at v.

I Lemma 5. Let x̄ be an extreme-point solution to the linear program (TK-P). Then there
is at most one child v of r for which the subtree Γ(v) contains a fractional node, i.e., some
node w with 0 < x̄w < 1.

A. Linhares and C. Swamy 32:7

Proof of Theorem 4. We use iterative rounding, and the proof is by induction on the depth
d of Γ, which is the maximum number of edges on a root-leaf path.

If d = 0, then N = ∅, and (TK-P) has no variables and constraints, so the statement is
vacuously true. So suppose d ≥ 1. Let x∗ be an extreme-point optimal solution of (TK-P).
If x∗ is integral, then we obtain value OPTTK-P, completing the induction step. Otherwise,
by Lemma 5, there is exactly one child v of r such that the subtree Γ(v) contains a fractional
node.

Set x̃′ = x∗
∣∣
N\Γ(v), i.e., x

∗ restricted toN\Γ(v), which is integral. We have
∑
u∈N\Γ(v) αux̃

′
u =

OPTTK-P −
∑
w∈Γ(v) αwx

∗
w. Now consider the tree knapsack instance defined by the tree

Γ(v) with root v, and budget B −
∑
u∈N\Γ(v) βux̃

′
u (and values αw and weights βw for all

w ∈ Γ(v) \ {v}). Observe that x∗
∣∣
Γ(v)\{v} is a fractional solution to the LP-relaxation

(TK-P) corresponding to this tree knapsack problem, so the optimal value of this LP is
at least

∑
w∈Γ(v)\{v} αwx

∗
w. (These objects are null if Γ(v) = {v}.) Thus, since Γ(v) has

depth at most d − 1, by our induction hypothesis, our rounding procedure applied to
this tree knapsack instance yields an integer solution x̃′′ ∈ {0, 1}Γ(v)\{v} of value at least∑
w∈Γ(v)\{v} αwx

∗
w − maxchains C ⊆ Γ(v) \ {v} α(C). Thus, taking x̃ = (x̃′, x̃v = 0, x̃′′), we

obtain a feasible integer solution to (TK-P) having value at least

OPTTK-P −
∑

w∈Γ(v)

αwx
∗
w +

∑
w∈Γ(v)\{v}

αwx
∗
w − max

chains C ⊆ Γ(v) \ {v}
α(C)

≥ OPTTK-P − αv − max
chains C ⊆ Γ(v) \ {v}

α(C)

≥ OPTTK-P − max
chains C ⊆ N

α(C) .

This completes the induction step, and hence the proof of the theorem. J

We remark that (as is standard) the iterative-rounding procedure in Theorem 4 is in
fact combinatorial, since when we move to the subtree Γ(v), we only need to move from
x∗
∣∣
Γ(v)\{v} to an extreme-point of the LP of the smaller tree-knapsack instance of no smaller

value (instead of obtaining an optimal LP solution), which can be done combinatorially.
We now state a stronger version of Theorem 4 that will be useful in Section 4, where

we utilize tree knapsack to solve the MST-interdiction problem. This result follows from a
more-careful scrutiny of the proof of Theorem 4. The depth of a node v is the number of
edges on the (unique) r-v path of Γ. Let Li(Γ) be the set of nodes of Γ at depth i; we drop Γ
if it is clear from the context. For a chain C of Γ, let Ci denote C ∩Li(Γ); note that |Ci| ≤ 1.

I Corollary 6. We can obtain in polytime an integer solution x̃ to (TK-P) of value at least
OPTTK-P −maxchains C ⊆ N

{∑
i≥1:x̃(Li)<|Li| α(Ci)

}
.

4 MST interdiction

I Theorem 7. There is a 4-approximation algorithm for MST interdiction.

The above theorem is our main technical result. Our guarantee substantially improves
the previous-best approximation ratio of 14 obtained by [31]. Also, notably and significantly,
our algorithm and analysis, which are based on the tree knapsack problem introduced in
Section 3, are noticeably simpler and cleaner than the one in [31]. Improved guarantees for
MST interdiction readily follow from (Theorem 4 and) Corollary 6 and Lemma 14, yielding
approximation ratios of 5 and 4 respectively for MST interdiction (see Theorem 13 and
Section 4.1). The proof below shows a slightly worse guarantee of 5 but introduces the main
underlying ideas. Section 4.1 discusses the refinement needed to obtain the 4-approximation.

ICALP 2017

32:8 Improved Algorithms for MST and TSP Interdiction

Our algorithm follows the same high-level outline as the one in [31]. As mentioned earlier,
we consider the Lagrangian problem (Pλ), maxR⊆E≤k−1 fλ(R) := val(R)− λc(R), obtained
by dualizing the budget constraint c(R) ≤ B. We then utilize Theorem 3. If this returns an
optimal solution, then we are done. So assume in the sequel that Theorem 3 returns λ ≥ 0
and two optimal solutions R1 and R2 to (Pλ) such that R1 ⊆ R2 and c(R1) < B < c(R2).

For R ⊆ E≤k−1, define h(R) :=
∑k−1
i=0 σ (E≤i \R) (wi+1 − wi) = val(R) + wk. Let

R∗ ⊆ E≤k−1 denote an optimal solution to the MST-interdiction problem, so OPT =
h(R∗) − wk. Let a, b ≥ 0 such that a + b = 1 and ac(R1) + bc(R2) = B. Then, since
val(R1)− λc(R1) = val(R2)− λc(R2) ≥ OPT − λB, we have ah(R1) + bh(R2) ≥ h(R∗). We
establish our approximation guarantee by comparing the value of our solution against the
upper bound ah(R1) + bh(R2) − wk. The following claim shows that this upper bound is
precisely the optimal value of the Lagrangian relaxation of the MST interdiction problem,
which is UB := minλ′≥0

(
λ′B + maxR⊆E≤k−1 fλ′(R)

)
. Complementing our 4-approximation,

we prove a lower bound of 3 on the approximation ratio achievable relative to UB (Section 4.2).

I Claim 8. We have ah(R1) + bh(R2)− wk = UB.

Translation to tree knapsack. We now describe how the problem of combining R1 and R2
to extract a good, feasible interdiction set can be captured by a suitable instance of the tree
knapsack problem defined in Section 3.

For i = 0, . . . , k, let Ai ⊆ 2V be the partition of V induced by the connected components
of the multigraph (V,E≤i \ R2). Thus, Ak = {V } and A0 = {{v} : v ∈ V }. The multiset⋃k
i=0Ai, where we include S ⊆ V multiple times if it lies in multiple Ais, is a laminar

family (i.e., any two sets in the collection are either disjoint or one is contained in the other).
This laminar family can naturally be viewed as a rooted tree, which defines the tree Γ in
the tree knapsack problem. Taking a cue from Lemma 2, we build our interdiction set R
by selecting a suitable collection of sets from this laminar family, ensuring that if we pick
some A ∈ Ai, then we include all edges of δ(A) ∩ E≤i in R and create A as a component
of (V,E≤i \R) (and hence contribute wi+1 − wi to h(R)). Formally, the tree Γ has a node
vA,i for every component A ∈ Ai and all i = 0, . . . , k. For i > 0, the children of vA,i are
the nodes {vS,i−1 : S ∈ Ai−1, S ⊆ A}. Thus, Γ has depth k and root r = vV,k. Recall that
Li := Li(Γ) denotes the set of nodes of Γ at depth i, which correspond to the components in
Ak−i here. Let N be the set of non-root nodes of Γ.

For a node vA,i ∈ N (so 0 ≤ i < k), define its value αvA,i := wi+1 − wi. Let R(vA,i) :=
δ(A)∩Ei (which is ∅ for every leaf vA,0). Define the weight of vA,i to be βvA,i := c

(
R(vA,i)

)
.

For N ′ ⊆ N , let R(N ′) :=
⋃
q∈N ′ R(q). Observe that R(N) ⊆ R2. We set the budget of the

tree-knapsack instance to B, the budget for MST interdiction.
The intuition is that we want to encode that picking node vA,i corresponds to creating

component A in the multigraph (V,E≤i \R), where R is our interdiction set, in which case
αvA,i gives the contribution from A to h(R). However, in order to pay for the interdiction
cost c

(
δ(A)

)
incurred, we need to take the βq weights of all nodes q in the subtree rooted at

vA,i. Therefore, we insist that if we pick vA,i then we pick all its descendants (i.e., we pick
a downwards-closed set of nodes), and then

∑
q∈Γ(vA,i) αq gives the contribution from the

components created to h(R). Lemma 9 formalizes this intuition, and shows that if N ′ ⊆ N is
a downwards-closed set of nodes, then β(N ′) and α(N ′) are good proxies (roughly speaking)
for the interdiction cost c

(
R(N ′)

)
incurred and h

(
R(N ′)

)
respectively.

I Lemma 9. Let N ′ ⊆ N be downwards closed, and R = R(N ′). Then
(i) β(N ′)/2 ≤ c(R) ≤ β(N ′); and
(ii) h(R) = val(R) + wk ≥ α(N ′) +

∑
0≤i≤k−1:Lk−i\N ′ 6=∅(wi+i − wi).

A. Linhares and C. Swamy 32:9

Proof. Each edge in R appears in at least one, and at most two, of the sets {R(q)}q∈N ′ , so
1
2
∑
q∈N ′ c

(
R(q)

)
≤ c(R) ≤

∑
q∈N ′ c

(
R(q)

)
. This yields part (i) since β(N ′) =

∑
q∈N ′ c

(
R(q)

)
.

For part (ii), consider an index 0 ≤ i ≤ k − 1. Since N ′ is downwards closed, for every
node vA,i ∈ N ′, all descendants of vA,i are in N ′; so R ⊇ δ(A) ∩ E≤i and A is a connected
component of (V,E≤i \R). Further, note that if Lk−i \N ′ 6= ∅, then the sets {A : vA,i ∈ N ′}
do not cover V entirely, and so (V,E≤i \ R) must have at least one additional connected
component. It follows that (V,E≤i \ R) always has at least min

{
|N ′ ∩ Lk−i| + 1, |Lk−i|

}
connected components. Plugging this in Lemma 2 yields the result. J

I Lemma 10. The vector x̂ :=
(
x̂q = b

2
)
q∈N is a feasible solution to (TK-P) for the above

tree-knapsack instance (Γ, {αq}, {βq}, B). Hence, OPTTK-P ≥ b
2 · h(R2).

Proof. It is clear that x̂ satisfies (1), and 0 ≤ x̂q ≤ 1 for all q ∈ N . Applying Lemma 9 to
N ′ = N (which is indeed downwards-closed), we obtain β(N) ≤ 2c

(
R(N)

)
≤ 2c(R2). So∑

q∈N βqx̂q ≤ b · c(R2) ≤ a · c(R1) + b · c(R2) = B. Finally, OPTTK-P is at least the objective
value of x̂, which is b

2 · α(N) = b
2 · h(R2). J

Given this translation between tree knapsack and MST interdiction, it is easy to see that
Corollary 6 (coupled with Lemmas 9 and 10) yields the following guarantee, which directly
leads to an improved approximation guarantee of 5 for MST interdiction (see Claim 12).

I Lemma 11 (Consequence of Corollary 6, Lemmas 9 and 10). We can obtain a feasible
interdiction set R such that h(R) ≥ b

2 · h(R2).

I Claim 12. We have max
{
wk, h(R1)− wk, b2 · h(R2)− wk

}
≥ UB/5 ≥ OPT/5.

Proof. We have

max
{
wk,h(R1)− wk, b2 · h(R2)− wk

}
≥ 2−b

5−2b · wk + 1−b
5−2b ·

(
h(R1)− wk

)
+ 2

5−2b ·
(
b
2 · h(R2)− wk

)
= 1

5− 2b

(
ah(R1) + bh(R2)− wk

)
= UB

5− 2b ≥ UB/5 ≥ OPT/5. J

I Theorem 13. There is a 5-approximation algorithm for MST interdiction.

Proof. If Theorem 3 returns an optimal solution, we are done. Otherwise, we return the best
among a min-cut of (V,E≤k−1), the set R1, and the interdiction set returned by Lemma 11.
The proof now follows from Claim 12. J

4.1 Improvement to the guarantee stated in Theorem 7
The improved approximation guarantee of 4 comes from the fact that instead of focusing
only on R2, we now interpolate between R1 and R2 to obtain our interdiction set R,
i.e., we return R such that R1 ⊆ R ⊆ R2. Since we always include R1, we change the
definition of the tree-knapsack instance that we create accordingly. The tree Γ and the
node weights {αq} are unchanged; the weight of vA,i is now βnew

vA,i := c
(
Rnew(vA,i)

)
, where

Rnew(vA,i) := R(vA,i) \ R1 =
(
δ(A) \ R1

)
∩ Ei, and our budget is Bnew := B − c(R1). For

N ′ ⊆ N , define Rnew(N ′) := R1 ∪
⋃
q∈N ′ R

new(q). Observe that Rnew(N) ⊆ R2.
Since R1 ⊆ R2, each component U of (V,E≤i\R1) is a union of components of (V,E≤i\R2),

and hence, maps to a subset S of the nodes of Γ at depth k− i. We exploit the fact that since
we include R1 in our interdiction set, if we pick ` nodes from S, then we create min{`+1, |S|}

ICALP 2017

32:10 Improved Algorithms for MST and TSP Interdiction

components within U ; this +1 term that we accrue (roughly speaking) from all components
of (V,E≤j \R) over all j = 0, . . . , k − 1 is the source of our improvement.

The following variant of Corollary 6 exploits the structure of the tree-knapsack instance
obtained from the MST-interdiction problem, which we then utilize to obtain an interdiction
set with an improved bound on h(R) (Lemma 15).

I Lemma 14. Let
(
Γ, {αv}, {βv}, B

)
be an instance of the tree knapsack problem such that

αv = α(i) for all v ∈ Li(Γ) and all i ≥ 1. Let Si be a partition of Li(Γ) for all i ≥ 1.
Let θ ∈ [0, 1] be such that (x̂q = θ)q∈N is a feasible solution to (TK-P). We can obtain in
polytime an integer solution x̃ to (TK-P) such that∑

i≥1

∑
S∈Si

α(i) min{x̃(S) + 1, |S|} ≥
∑
i≥1

α(i)|Li|θ +
∑

i≥1:|Si|>1

α(i)
(

(1− θ)|Si| − 1
)
.

I Lemma 15. Using Lemma 14, we can obtain a feasible interdiction set R such that
h(R) ≥ a

2 · h(R1) + b
2 · h(R2)− a

2 · wk.

Proof. For i = 0, . . . , k, let Bi denote the partition of V induced by the connected components
of (V,E≤i\R1). Since R1 ⊆ R2, the partition Ai refines (not necessarily strictly) the partition
Bi for all i = 0, . . . , k. The components in Bk−i therefore naturally induce a partition Si of
the nodes of Γ at depth i, consisting of the sets {vA,k−i : A ∈ Ak−i, A ⊆ S}S∈Bk−i

.
We apply Lemma 14 to the tree-knapsack instance

(
Γ, {αq}, {βnew

q }, Bnew), taking α(i) =
wk−i+1 − wk−i and Si to be the partition defined above, for all i = 1, . . . , k, and θ = b

2 . We
show that x̂ := (x̂q = θ)q∈N is a feasible solution to (TK-P) for this tree-knapsack instance.
This follows because βnew(N) = 2c

(⋃
q∈N R

new(q)
)
≤ 2
(
c(R2)− c(R1)

)
and (1− b) · c(R1) +

b · c(R2) = B, so we have
∑
q β

new
q x̂q = θβnew(N) ≤ b

(
c(R2)− c(R1)

)
= B − c(R1) = Bnew.

Let x̃ be the integer solution returned by Lemma 14, which specifies a downwards-closed
set N ′ ⊆ N . Let R = Rnew(N ′). We first show that, analogous to Lemma 9, R is feasible,
and h(R) ≥ g(x̃) :=

∑
i≥1
∑
S∈Si

α(i) min{x̃(S) + 1, |S|}. We have

c(R) = c(R1) + c
(⋃
q∈N ′

Rnew(q)
)
≤ c(R1) +

∑
q∈N ′

c
(
Rnew(q)

)
= c(R1) + βnew(N ′) ≤ c(R1) +Bnew = B.

Consider any index 0 ≤ i ≤ k − 1. As in the proof of part (ii) of Lemma 9, for every node
vA,i ∈ N ′, we know that A is a component of (V,E≤i \ R). Consider any S ∈ Sk−i, and
let U =

⋃
vA,i∈S A. Note that if S \N ′ 6= ∅, then

⋃
vA,i∈S\N ′ A is non-empty. So there are

always at least min
{
|N ′ ∩ S|+ 1, |S|

}
components of (V,E≤i \R) contained in U . Therefore,

by Lemma 2 (and since Si is a partition of Li for each i), we obtain

h(R) = val(R) + wk ≥
k−1∑
i=0

∑
S∈Sk−i

(wi+1 − wi) min
{
|N ′ ∩ S|+ 1, |S|

}
= g(x̃).

The guarantee in Lemma 14 then yields the following. Recall that a = 1− b.

h(R) ≥
k−1∑
i=0

(wi+1 − wi)σ(E≤i \R2) · b2 +
∑

i=0,...,k−1:
σ(E≤i\R1)>1

(wi+1 − wi)
[(

1− b
2

)
σ(E≤i \R1)− 1

]

≥ b
2 · h(R2) +

∑
i=0,...,k−1:
σ(E≤i\R1)>1

(wi+1 − wi)σ(E≤i \R1) · a2 (2)

A. Linhares and C. Swamy 32:11

where inequality (2) follows since t
(
1− b

2
)
− 1 ≥ t(1− b)/2 for all t ≥ 2. The RHS of (2) is

b
2 · h(R2) + a

2 · h(R1)−
∑

i=0,...,k−1:
σ(E≤i\R1)=1

(wi+1 − wi) · a2 ≥
a
2 · h(R1) + b

2 · h(R2)− a
2 · wk. J

Proof of Theorem 7. We either return an optimal solution found by Theorem 3, or return
the better of a min-cut of (V,E≤k−1) and the interdiction set returned by Lemma 15. We
obtain a solution of value max

{
wk,

a
2 · h(R1) + b

2 · h(R2)−
(
1 + a

2
)
wk
}
, which is at least

1 + a

3 + a
· wk + 2

3 + a
·
(
a
2 · h(R1) + b

2 · h(R2)−
(
1 + a

2
)
wk

)
= UB

3 + a
≥ OPT/4. J

4.2 Lower bound on the approximation ratio achievable relative to UB
We show that for every ε > 0, there exist MST-interdiction instances, where UB/OPT ≥ 3−ε.
This implies that one cannot achieve an approximation ratio better than 3 when comparing
against the upper bound UB used in our analysis (and the one in [31]).

I Theorem 16. For any ε > 0, there exists an MST-interdiction instance with UB
OPT ≥ 3− ε.

Proof. Our instance is a graph G = (V,E), where V := {v1, . . . , vn} with n ≥ min{4, 4/ε}.
The edge set is E = E1 ∪ E2, where E1 := {v1v2, v2v3, . . . , vn−2vn−1, vn−1v1} is a simple
cycle on v1, . . . , vn−1, and E2 := {v1vn, v2vn, . . . , vn−1vn} is a star rooted at vn with leaves
v1, . . . , vn−1. The edges in E1 have weight w1 = 0 and interdiction cost n, while the edges in
E2 have weight w2 = 1 and interdiction cost 2n. The interdiction budget is B = 2n− 2.

Observe that the index k defined in Claim 1 is equal to 2. This also implies that val(R) ≤ 1
for any feasible interdiction set R: since R ⊆ E1 and |R ∩ E1| ≤ 1, we can construct a
spanning tree of G−R by taking n−2 edges from E1 \R and any edge from E2. So OPT = 1.

Now we proceed to compute the upper bound UB. For R ⊆ E≤1, we have fλ(R) = 1
if R = ∅, and |R|(1 − nλ) otherwise. Therefore, η(λ) := λB + maxR⊆E≤1 fλ(R) = λB +
max

{
1, (n− 1)(1− nλ)

}
= max

{
λB + 1, (n− 1)− λ

(
n(n− 1)−B

)}
, which is minimized at

λ = n−2
n(n−1) . Therefore UB := minλ≥0 η(λ) = 2(n−2)

n + 1 = 3− 4
n ≥ (3− ε)OPT . J

5 Extension to metric-TSP interdiction

In the metric-TSP interdiction problem, we are given a complete graph G = (V,E) with
metric edge weights {we}e∈E and nonnegative interdiction costs {ce}e∈E , along with a
nonnegative budget B. The goal is to find a set of edges R ⊆ E such that c(R) ≤ B so as
to maximize the minimum w-weight of a closed walk in the graph G − R that visits each
vertex at least once. Zenklusen [31] observed that an α-approximation algorithm for the MST
interdiction problem yields a 2α-approximation algorithm for the metric-TSP interdiction
problem. As a corollary to our Theorem 7, we therefore obtain the following result.

I Theorem 17. There is an 8-approximation algorithm for metric-TSP interdiction.

6 Maximum-spanning-tree interdiction

We now consider the maximum-spanning-tree (MaxST) interdiction problem, wherein the
input

(
G = (V,E), {we ≥ 0}e∈E , {ce ≥ 0}e∈E , B

)
is the same as in the MST interdiction

problem, but the goal is to remove a set R ⊆ E of edges with c(R) ≤ B so as to minimize the

ICALP 2017

32:12 Improved Algorithms for MST and TSP Interdiction

w-weight of a maximum spanning tree of G−R. We show that this problem is at least as hard
as the minimization version of the densest-k-subgraph problem (MinDkS), wherein we seek a
minimum-size set S of nodes in a given graph such that at least k edges have both endpoints
in S. This shows a stark contrast between MST interdiction and MaxST interdiction.

I Theorem 18. An α(m,n)-approximation algorithm for the maximum-spanning-tree inter-
diction problem for instances with m edges, n nodes, yields a 2α(m+n− 1, n)-approximation
algorithm for MinDkS for instances with m edges and n nodes.

Proof. Let I =
(
H = (N,F), k

)
be a MinDkS instance, with |N | = n, |F | = m. We may

assume that |F | ≥ k as otherwise the instance is infeasible. We construct the following
MaxST-interdiction instance I ′. The multigraph is G = (N,E := E′ ∪ F), where E′ is an
arbitrary tree spanning N . Set we = 0, ce = m− k+ 1 for all e ∈ E′, and we = ce = 1 for all
e ∈ F . We set the budget to B = m− k. Thus, if R ⊆ E satisfies c(R) ≤ B, we must have
R ⊆ F , and so G−R is connected and the interdiction problem has a finite optimal value.

We show that: (1) if R ⊆ F is a feasible interdiction set, then the set S of non-isolated
nodes of (N,F \R) is a feasible MinDkS solution of value at most 2 ·MaxST(G−R), where
MaxST(G−R) is the weight of a maximum spanning tree of G−R; (2) conversely, if S ⊆ N
is a feasible MinDkS solution, then F \F (S) is a feasible interdiction set with objective value
at most |S|, where F (S) is the set of edges in F having both endpoints in S.

These two statements imply the theorem as follows. LetA be the stated α = α(m+n−1, n)-
approximation algorithm for maximum-spanning-tree interdiction. We run A to obtain a
feasible interdiction set R, which yields a corresponding MinDkS solution S. Then,

|S| ≤ 2 ·MaxST(G−R) ≤ 2αOPT (I ′) ≤ 2αOPT (I) ,

where the first and last inequalities follow from statements (1) and (2) above.
We now prove statements (1) and (2). Let R ⊆ F be such that c(R) = |R| ≤ B. Let S

denote the set of non-isolated vertices in the graph (N,F \ R), so every node in S has at
least one edge of F \R incident to it. First, we argue that S is a feasible MinDkS-solution.
Since each vertex of N \ S is isolated in the graph (N,F \R), it follows that R ⊇ F \ F (S).
Therefore, |F | − |F (S)| ≤ |R| ≤ B = m− k, and so |F (S)| ≥ k. The weight of a maximum
spanning tree in G−R is equal to |S| − σ, where σ is the number of connected components
of the graph (S, F \R). By the definition of S, this multigraph has no isolated vertices. So
σ ≤ |S|/2, and therefore MaxST(G−R) = |S| − σ ≥ |S|/2. This proves (1).

Conversely, suppose S ⊆ N is such that |F (S)| ≥ k. Then R = F \ F (S) satisfies c(R) =
m− |F (S)| ≤ B, so is a feasible interdiction set. We have MaxST(G−R) = |S| − σ ≤ |S|,
where σ is the number of connected components of (S, F \R). This proves (2). J

The above hardness result continues to hold with unit interdiction costs, since we can
replace each edge e with ce = m − k + 1 in the above reduction with m − k + 1 parallel
unit-cost edges (of weight 0). Our reduction creates a MaxST-interdiction instance with two
distinct edge weights w1 < w2. This interdiction problem can be seen as a special case of the
following matroid interdiction problem (involving the graphic matroid on {e ∈ E : we = w2}):
given a matroid with ground set U and rank function rk, interdiction costs c : U 7→ R+,
and budget B, minimize rk(U \ R) subject to c(R) ≤ B. Our hardness result for MaxST
interdiction thus also implies that matroid interdiction is MinDkS-hard. A related rank-
reduction problem—minimize c(R) subject to rk(U \R) ≤ rk(U)− k—was considered by [16]
and shown to be MinDkS-hard for transversal matroids (but not for graphic matroids, wherein
this is essentially the min k-cut problem).

A. Linhares and C. Swamy 32:13

We remark that it is possible to achieve bicriteria approximation guarantees for MaxST
interdiction: we can obtain a solution of weight W ≤ (1 + ε)OPT while violating the budget
by a

(
1 + 1

ε

)
factor (and W > OPT implies no budget violation). This follows by taking λ =

εOPT/B in the Lagrangian problem minR
(
MaxST(G−R) + λc(R)

)
, which is a submodular

minimization problem that can be solved exactly; it also follows from the work of [4].

References
1 N. Assimakopoulos. A network interdiction model for hospital infection control. Computers

in Biology and Medicine, 17(6):413–422, 1987.
2 C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg. A decomposition-

based pseudoapproximation algorithm for network flow inhibition. In Network Interdiction
and Stochastic Integer Programming, chapter 3, pages 51–68. Springer, 2003.

3 S. Chestnut and R. Zenklusen. Hardness and approximation for network flow interdiction.
CS arXiv, November 2015.

4 S. Chestnut and R. Zenklusen. Interdicting structured combinatorial optimization problems
with {0, 1}-objectives. CS arXiv, November 2015.

5 R.L. Church, M.P. Scaparra, and R. S. Middleton. Identifying critical infrastructure: the
median and covering facility interdiction problems. Annals of the Association of American
Geographers, 94(3):491–502, 2004.

6 M. Dinitz and A. Gupta. Packing interdiction and partial covering problems. In Proceedings
of 16th IPCO, pages 157–168, 2013.

7 A. Engelberg, J. Könemann, S. Leonardi, and J. Naor. Cut problems in graphs with a
budget constraint. Journal of Discrete Algorithms, 5:262–279, 2007.

8 L. Fleischer and S. Iwata. A push-relabel framework for submodular function minimization
and applications to parametric optimization. Discrete Applied Mathematics, 131(2):311–
322, 2003.

9 G.N. Frederickson and R. Solis-Oba. Increasing the weight of minimum spanning trees.
Journal of Algorithms, 33:244–266, 1999.

10 D.R. Fulkerson and G.C. Harding. Maximizing the minimum source-sink path subject to
a budget constraint. Math. Programming, 13:116–118, 1977.

11 P.M. Ghare, D.C. Montgomery, and W.C. Turner. Optimal interdiction policy for a flow
network. Naval Research Logistics Quarterly, 18:37–45, 1971.

12 F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen. New approaches to multi-objective
optimization. Mathematical Programming, 146(1-2):525–554, 2014.

13 G. Guruganesh, L. Sanità, and C. Swamy. Improved region-growing and combinatorial
algorithms for k-route cut problems. In Proceedings of SODA, pages 676–695, 2015.

14 E. Israeli and R.K. Wood. Shortest-path network interdiction. Networks, 40:97–111, 2002.
15 D. S. Johnson and K.A. Niemi. On knapsacks, partitions, and a new dynamic programming

technique for trees. Math. of Oper. Research, 8(1):1–14, 1983.
16 G. Joret and A. Vetta. Reducing the rank of a matroid. Discrete Mathematics & Theoretical

Computer Science, 17(2):143–156, 2015.
17 L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao. On

short paths interdiction problems: total and node-wise limited interdiction. Theoretical
Computer Science, 43(2):204–233, 2008.

18 S. Kolliopoulos and G. Steiner. Partially-ordered knapsack and applications to scheduling.
Discrete Applied Mathematics, 155(8):889–897, 2007.

19 J. Könemann, O. Parekh, and D. Segev. A unified approach to approximating partial
covering problems. Algorithmica, 59(4):489–509, 2011.

ICALP 2017

32:14 Improved Algorithms for MST and TSP Interdiction

20 Euiwoong Lee. Improved hardness for cut, interdiction, and firefighter problems. CS arXiv,
July 2016.

21 W. Liang. Finding the k most vital edges with respect to minimum spanning trees for fixed
k. Discrete Applied Mathematics, 113(2-3):319–327, 2001.

22 K. Liri and M. Chern. The most vital edges in the minimum spanning tree problem.
Information Processing Letters, 45:25–31, 1993.

23 K. Nagano. A faster parametric submodular function minimization algorithm and applica-
tions. Technical report, University of Tokyo, 2007. METR 2007-43.

24 F. Pan, W. Charlton, and D.P. Morton. Stochastic network interdiction of nuclear ma-
terial smuggling. In D.L. Woodruff, editor, Network Interdiction and Stochastic Integer
Programming, pages 1–19. Kluwer Academic Publishers, 2002.

25 C.A. Phillips. The network inhibition problem. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (STOC), pages 776–785, 1993.

26 P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In
Proceedings of the 42nd STOC, pages 755–764, 2010.

27 J. Salmeron, K. Wood, and R. Baldick. Worst-case interdiction analysis of large-scale
electric power grids. IEEE Trans. on Power Systems, 24(1):96–104, 2009.

28 R.K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling,
17(2):1–18, 1993.

29 R. Zenklusen. Matching interdiction. Discrete App. Math., 158:1676–1690, 2010.
30 R. Zenklusen. Network flow interdiction on planar graphs. Discrete Applied Mathematics,

158(13):1441–1455, 2010.
31 R. Zenklusen. An O(1)-approximation for minimum spanning tree interdiction. In Proceed-

ings of the 56th FOCS, pages 709–728, 2015.

Reordering Buffer Management with a
Logarithmic Guarantee in General Metric Spaces
Matthias Kohler1 and Harald Räcke2

1 Department of Informatics, Technical University of Munich, Munich, Germany
kohler@in.tum.de

2 Department of Informatics, Technical University of Munich, Munich, Germany
raecke@in.tum.de

Abstract
In the reordering buffer management problem a sequence of requests arrive online in a finite
metric space, and have to be processed by a single server. This server is equipped with a request
buffer of size k and can decide at each point in time, which request from its buffer to serve next.
Servicing of a request is simply done by moving the server to the location of the request. The
goal is to process all requests while minimizing the total distance that the server is travelling
inside the metric space.

In this paper we present a deterministic algorithm for the reordering buffer management
problem that achieves a competitive ratio of O(log ∆ + min{logn, log k}) in a finite metric space
of n points and aspect ratio ∆. This is the first algorithm that works for general metric spaces
and has just a logarithmic dependency on the relevant parameters. The guarantee is memory-
robust, i.e., the competitive ratio decreases only slightly when the buffer-size of the optimum is
increased to h = (1 + ε)k. For memory robust guarantees our bounds are close to optimal.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Online Computation

Keywords and phrases Online algorithms, reordering buffer, metric spaces, scheduling

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.33

1 Introduction

In the reordering buffer management problem a sequence of requests arrive online in a finite
metric space, and have to be processed by a single server. This server is equipped with a
request buffer and can decide at each point in time, which request from its buffer to serve
next. Servicing of a request is simply done by moving the server to the location of the request.
The goal is to process all requests while minimizing the total distance that the server is
traveling inside the metric space.

This simple, abstract model can be used for modeling context switching costs that occur
in various applications in many different areas ranging from production engineering through
computer graphics to information retrieval [7, 10, 17, 21]. In the online version of the problem
the server does not see future requests but has to make its decision based on past requests
and the requests it currently holds in the request buffer. The worst case ratio between
the cost of the online algorithm and the cost of an optimal offline algorithm is called the
competitive ratio.

We say a guarantee on the competitive ratio for the reordering buffer management problem
is memory robust if the guarantee degrades gracefully as the buffer-size of the optimum
algorithm is increased over the buffer-size of the online algorithm. More precisely, the ratio

EA
T

C
S

© Matthias Kohler and Harald Räcke;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 33; pp. 33:1–33:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Reordering Buffer Management in General Metric Spaces

between the cost of the online algorithm with a buffer-size of k, and the cost of an optimum
offline algorithm with a buffer-size of h ≥ k should be at most O(ch/k).

The main result of this paper is a deterministic algorithm for the reordering buffer
management problem that achieves a competitive ratio of O(h(log ∆ + min{logn, log k})/k)
in a finite metric space of n points and aspect ratio ∆. The algorithm is also O(h)-competitive
because any reasonable algorithm achieves this competitive ratio (see Lemma 13 in the
appendix). This is the first algorithm that works for general metric spaces and has just a
logarithmic dependency on the relevant parameters. The algorithm and its analysis are also
very simple.

It has been shown that even on a uniform metric (∆ = 1) the competitive ratio of
an online algorithm (deterministic or randomized) must be Ω(log k) against an optimum
algorithm with buffer-size h ≥ (1 + ε)k [1, 12]. Hence, an O(log k) term in the competitive
ratio is unavoidable for memory robust algorithms.

Biénkowski et al. [9] have shown that for a sub-linear dependency on the buffer-size there
needs to be another term in the competitive ratio apart from k for memory-robust algorithms.
In particular, they give an instance on a line metric with n equidistant points for which
any online algorithm looses a factor of Ω(min{k, logn}) against an optimum algorithm with
slightly larger buffer (h = (1 + ε)k). For this instance the number of points n is equal to the
aspect ratio ∆. So a logarithmic dependency on the aspect ratio seems reasonable.

Englert and Räcke [12] present a deterministic, memory-robust algorithm for tree metrics
of hop-diameter D that obtains a competitive ratio of O(hk (logD + log k)). They then use
the technique of approximating arbitrary metrics by tree-metrics due to Fakcharoenphol,
Rao, and Talwar [14] to obtain a randomized O(hk logn · log h)-competitive algorithm for
general metrics.

As a whole these results are uncomparable to our results. There exist metrics where the
aspect ratio ∆ is very small, but there are a lot of points, resulting in very poor guarantees
from the result by Englert and Räcke. However, if one considers a star with edges of different
length, the aspect ratio could be very high, but the hop-diameter in the tree is just 2, which
makes the guarantee given by the result in [12] stronger than ours. One advantage of our
result is that for general metrics the dependency on our parameters is logarithmic, while
Englert and Räcke have the product of two logarithms. This product cannot easily be
removed as any (memory-robust) algorithm that relies on the FRT-approximation will loose
one logarithm because of FRT, and another because an online solution on a tree will have a
logarithmic competitive ratio.

In Section 5 we deal with the question whether it is possible to trade the dependency on
log ∆ in our competitive ratio for something else, like e.g. logn, which does not depend on
the aspect ratio. Our algorithm is memory restricted in the sense that it makes its decisions
only depending on the content of the buffer, and on the content of an additional memory
that contains k bits. We show, that for such a scenario there exist instances with an aspect
ratio ∆, on which every memory-restricted algorithm with k bits is Ω(

√
log ∆)-competitive.

This extends a lower bound due to Khandekar and Pandit [20] for memoryless algorithms.

1.1 Further Related Work
Most previous work on the reordering buffer management problem considers the case of
uniform metrics. Räcke et al. [22] introduced the problem and developed a deterministic
algorithm with competitive ratio O(log2 k), which was subsequently improved to O(log k) by
Englert and Westermann [13]. The analysis of both these algorithms can be slightly modified
to give a memory-robust guarantee.

M. Kohler and H. Räcke 33:3

The first paper that used an analysis technique that is not memory-robust (and can
therefore beat the Θ(log k)-guarantee) was due to Avigdor-Elgrabli and Rabani, who presented
a deterministic algorithm with competitive ratio O(log k/ log log k). This in turn was improved
to a guarantee of O(

√
log k) by Adamaszek et al. [2], which is close to optimal due to a lower

bound of Ω(
√

log k/ log log k) shown in the same paper. For randomized algorithms Avigdor-
Elgrabli and Rabani present an O(log log k)-competitive algorithm [6]. This is optimal due
to a corresponding lower bound proved by Adamaszek et al. [2].

For star metric spaces the result by Englert and Westermann [13] obtains a deterministic
competitive ratio of O(log k). The result by Adamaszek et al. [2] gives an O(

√
log k) guarantee

for the case that ∆ = O(poly(k)). A straightforward extension to arbitrary values of ∆ gives
a competitive ratio of O(

√
log k + log ∆). For the randomized case Avigdor-Elgrabli et al. [4]

give an O((log log(k∆))2)-competitive algorithm, i.e., an algorithm with a slight dependency
on the aspect ratio of the metric space.

Gamzu and Segev [15] analyze the reordering buffer problem for n points on a line as this
can be used to model the disc scheduling problem. They present a deterministic algorithm
with a competitive ratio of O(logn).

In the offline case it has been shown that finding an optimal solution to the problem
is NP-hard even on uniform metrics [3, 11]. Avigdor-Elgrabli and Rabani have given a
constant factor approximation [5]. Im and Moseley gave an O(log log(k∆))-approximation
for the star-metric [18] and subsequently improved this to O(log log log(k∆)) [19]. Barman
et al. [8] gave a bicriteria approximation algorithm that achieves an approximation guarantee
of O(logn) when the buffer of the online algorithm is a constant factor larger than the buffer
of the optimum algorithm. This works in general metric spaces.

1.2 The Model
An input sequence σ of requests has to be processed, where each request σi corresponds to
some point in a finite metric space M = (V, d). We use n = |V | to denote the number of
distinct points in M , and ∆ to denote its aspect ratio, i.e., the ratio between the largest
and smallest distance between two points. We assume w.l.o.g. that the minimum non-zero
distance between two points is 1.

A reordering buffer that can store k requests can be used to rearrange the input sequence
into an output sequence σ′ in the following way. Initially, the buffer contains the first k
requests of σ. In every time step t an algorithm has to select a request r from the buffer and
append it to the output sequence, i.e., the algorithm sets σ′t to r. If there are still requests
waiting in the input sequence, the next such request takes r’s place in the buffer; otherwise
this place stays empty. The process is repeated until all requests from σ have been appended
to the output sequence.

An online algorithm ALG has to make its decision based on the requests in the buffer
and on the requests previously seen, but not based on future requests that are still to come.
Suppose an algorithm ALG generates a request sequence σ′ when giving a request sequence
σ as input. The (true) cost ALGtrue(σ) is defined as

ALGtrue(σ) =
`−1∑
i=1

d(σ′i, σ′i+1) ,

where ` is the length of the input sequence. Note that this means that the server may start
its processing at the first request without incurring any cost for traveling to this location.

Throughout the paper we use a slightly different notation w.r.t. the optimum algorithm
OPT for processing σ. Firstly, we assume that OPT has a larger buffer-size h ≥ k. Secondly,

ICALP 2017

33:4 Reordering Buffer Management in General Metric Spaces

we denote the (true) cost of this algorithm with OPT(σ) = OPTtrue(σ). The reason
is that for an online algorithm we will introduce an approximate (simplified) version of
ALGtrue(σ), which will be denoted with ALG(σ). Hence, for the online algorithm we need
the differentiation between ALG(σ) and ALGtrue(σ), whereas this is not required for the
optimum algorithm.

2 The Algorithm

A block-oriented algorithm for the reordering buffer management problem serves requests
in blocks. Whenever the buffer gets full, the algorithm identifies a set S of requests from
the buffer and serves these requests. Additional requests that arrive while serving requests
in S are ignored, and will not be considered until all requests in S have been handled. We
call such a set S of requests chosen by the algorithm a block. The process of choosing and
servicing blocks of requests is repeated until the end of the input sequence is reached. The
requests in the buffer at this time form the last block of the algorithm.

For a block-oriented algorithm we can write down the (approximate) cost of the algorithm
just in terms of the sequence S1, S2, S3, . . . of generated blocks. This is done as follows. For
a block Si, we use C(Si) to denote the cost of the block, which is defined as the length of a
shortest path that connects all requests in Si (note that computing C(Si) is NP-hard). For
two blocks Si and Sj , we define the distance d(Si, Sj) between the two blocks, by

d(Si, Sj) = min
ri∈Si,rj∈Sj

d(ri, rj) ,

i.e., the distance of the closest pair (ri, rj) ∈ Si × Sj .
Suppose that for a request sequence σ a block-oriented algorithm generates a sequence

S1, S2, . . . , S` of blocks. We define the cost ALG(σ) of the algorithm by

ALG(σ) =
∑̀
i=1

C(Si) +
`−1∑
i=1

d(Si, Si+1) . (1)

We refer to the first term in Equation 1 as the block cost ALGbc(σ) of the algorithm, and
to the second term as the connection cost ALGcc(σ). The following lemma shows that this
definition of cost is close to the true cost of the algorithm. The fact that we can specify the
cost of the algorithm just in terms of the generated blocks will greatly simplifies our analysis.

I Lemma 1. We can implement any block-oriented algorithm ALG such that ALG(σ) ≤
ALGtrue(σ) ≤ 3 ALG(σ).

Proof. In the following we describe how to serve all requests in a block Si, and how to move
to the next block Si+1. Suppose the server is initially located at a request from Si (for the
first block S1 we can assume this because according to our model the server may start at an
arbitrary location). Since the requests in block Si are known completely before serving its
first request, we can efficiently compute an MST that covers all requests in Si. The cost of
traversing the elements by following the edges of the MST is at most 2C(Si). Let (ri, ri+1)
denote the request pair in Si × Si+1 with minimum distance. We move, from our current
location (after serving the last request from Si) along a shortest path to ri+1. The cost for
this step is at most C(Si) + d(ri, ri+1).

Repeating the above step for all blocks gives a total true cost ALGtrue(σ) of at most
3 ALGbc(σ) + ALGcc(σ) ≤ 3 ALG(σ). J

M. Kohler and H. Räcke 33:5

In order to complete the description of the algorithm we need to describe how to choose
a good block of requests for service when the buffer becomes full. For this we need a few
definitions. For a set S of requests, and a value δ, 0 ≤ δ ≤ 1 we define the δ-fraction cost
Cδ(S) of S as the minimum cost for servicing a δ-fraction of the elements from S. Formally,

Cδ(S) = min
U⊆S,|U |≥δ·|S|

C(U) .

Our algorithm StableSet is based on the following notion of a large, stable set. Intuitively,
the cost for servicing the elements of a stable set S does not reduce by too much even if a
large fraction of elements from S is removed.

I Definition 2. A set S of requests is (α, β, γ)-stable if the following holds
1. C1−α(S) ≥ β · C(S) (stability constraint),
2. |S| ≥ γk (size constraint).

In Section 4 we prove the following lemma showing that we can efficiently find stable sets
with good parameters.

I Lemma 3. Let V denote a set of k requests covering at most ` ≤ k distinct locations in
a metric space with aspect ratio ∆. There exists a polynomial time algorithm that finds an
(α, β, γ)-stable subset S ⊆ V with α ≥ 1/(1 + log ∆ + log `), β ≥ 1/8, and γ ≥ 1/e.

With these definitions our algorithm StableSet becomes very simple. When the buffer
becomes full, choose a stable subset S from the elements of the buffer according to the
algorithm implicit in Lemma 3. Then service this block of requests according to the algorithm
in Lemma 1. This is repeated until the end of the input sequence is reached. The elements
that still remain in the buffer form the last block of the algorithm.

3 Analysis

In the following we first describe a general approach to obtain a lower bound on the cost
OPT(σ) of the optimal solution. Let X1, . . . , X` denote subsets of requests from the input
sequence. We say that a subset Xi is partially scheduled by OPT at time t, if the first t
requests in OPT’s output sequence contain at least one but not all elements from Xi. The
following claim gives a lower bound on the optimum cost.

I Claim 4. Let X1, . . . , X` denote (not necessarily disjoint) subsets of requests from the
input sequence, and suppose that at each point in time there are at most s subsets Xi that
are partially scheduled by OPT. Then OPT(σ) ≥ 1

s

∑
i C(Xi).

Proof. We associate an interval [start(i), end(i)] with each set Xi, where start(i) denotes
the position of the first element of Xi that appears in OPT’s output sequence, and end(i)
denotes the position of the last such element. Clearly, the cost of OPT for serving elements
that lie between start(i) and end(i) is at least C(Xi).

We can color the intervals with s colors such that intervals with the same color do not
intersect. This holds because the interval graph corresponding to the set of intervals has a
maximum clique size of s. Such interval graphs can be colored with s colors by a Greedy
algorithm. Since sets Xi from the same color class do not interleave in OPT’s output sequence
the cost for serving all elements of a color-class is at least

∑
i∈I C(Xi), where I denotes the

index set of the color-class. As there must exist a color-class with cost at least 1
s

∑
i C(Xi)

the claim follows. J

ICALP 2017

33:6 Reordering Buffer Management in General Metric Spaces

3.1 Analyzing Block Cost
The following lemma gives the bound on the block cost induced by an algorithm that uses
stable sets.

I Lemma 5. Let S1, S2, . . . , S` denote the sequence of blocks generated by a block-oriented
algorithm, where all but the last block are (α, β, γ)-stable, where k ≥ 6

αγ . Then ALGbc(σ) ≤(6h
αβγk + 1

)
·OPT(σ).

Proof. Let z = dαγk/3e. We obtain a set Xi (i < `) by taking Si and removing the first z
and the last z requests from it that appear in OPT’s output sequence. Then the cardinality
of Xi is at least

|Xi| = |Si| − 2z = |Si| − 2dαγk/3e ≥ |Si| − 2αγk/3− 2 ≥ |Si| − αγk ≥ (1− α)|Si| ,

where the second inequality holds for k ≥ 6
αγ , and the final inequality holds due to the size

constraint for block Si. The stability constraint for Si gives us that C(Xi) ≥ βC(Si).
We show that at most (h+ k)/z sets Xi can be partially scheduled by OPT at any given

time. Fix a time t. We define a partially scheduled set Xi to be of Type I if not all of Si
has already appeared in the input sequence, otherwise, we define it to be of Type II. For
sets of Type II, OPT must hold the last z requests of Si (according to the order given by
OPT’s output sequence) in its buffer, as these have already appeared. For sets of Type I,
ALG must hold the first z requests of Si in its buffer, as these have already appeared but
ALG only starts removing elements from Si after all of Si has appeared. This means there
can at most be k/z partially scheduled sets of Type I, and at most h/z partially scheduled
sets of Type II. Applying Claim 4 gives that

OPT(σ) ≥ z

h+ k

`−1∑
i=1

C(Xi) ≥
αβγk

6h

`−1∑
i=1

C(Si) . (2)

Combining the definition of block-cost, Equation 2, and the fact that OPT(σ) ≥ C(S`) gives

ALGbc(σ) =
∑̀
i=1

C(Si) ≥
(6h
αβγk

+ 1
)
·OPT(σ) ,

as desired. J

3.2 Analyzing Connection Cost
I Lemma 6. Let S1, S2, . . . , S` denote the sequence of blocks generated by a block-oriented
algorithm, where all but the last block have cardinality at least γk. Then ALGcc(σ) ≤(5h
γk + 1

)
·OPT(σ).

Proof. We use ALG′cc(σ) to denote the connection cost, where we ignore the cost for
connecting the last two blocks S`−1 and S`. For every pair of consecutive blocks Si, Si+1,
i ≤ `− 2 we generate dγke request-pairs by matching dγke requests from Si to dγke requests
from Si+1 in an arbitrary manner. Let Xr

i , i ∈ {1, . . . , `− 2}, r ∈ {1, . . . , dγke} denote the
request pairs generated this way. We have

I Fact 7.
∑
i,r C(Xr

i) ≥ γk ·ALG′cc(σ).

To see this, observe that for a request-pair Xr
i we have C(Xr

i) ≥ d(Si, Si+1), as the request
pair connects sets Si and Si+1. Since for every i we have at least γk requests the fact holds.
The following fact allows us to apply Claim 4.

M. Kohler and H. Räcke 33:7

I Fact 8. At any given time, there exist at most 5h request pairs from sets Xr
i that are

partially scheduled by OPT.

Proof. Fix a time step t. Suppose we have a request pair that is partially scheduled by OPT
at time t. We say that it is of Type I if it has not been scheduled by ALG at all (by time
step t); it is of Type II if ALG has already scheduled both requests of the pair; and it is of
Type III, otherwise.

There can be at most 2h request pairs of Type II, because OPT must hold the second
request of such a pair in its buffer, and any request can belong to at most two pairs. There
can be at most 2k request pairs of Type I, because ALG must hold the first request of such a
pair in its buffer, as this request has already appeared but ALG has not scheduled it. Finally,
observe that there are at most k pairs that are partially scheduled by ALG at any point in
time. Hence, the total number of partially scheduled requests of Type III is at most k.

Altogether there exists at most 3k + 2h ≤ 5h request pairs that are partially scheduled
by OPT. J

Combining Claim 4 with the above fact gives OPT(σ) ≥ 1
5h
∑
i,r C(Xr

i). Together with
Fact 7 we obtain

ALGcc(σ) ≤ ALG′cc(σ) + OPT(σ) ≤ 1
γk

∑
i,r

C(Xr
i) + OPT(σ) ≤

(5h
γk

+ 1
)
·OPT(σ) ,

as desired. The first inequality uses the fact that the cost for connecting the two last blocks
is at most OPT(σ). J

3.3 Proof of the Main Result
Combining the analysis of the block cost and the connection cost gives our main theorem.

I Theorem 9. A block-oriented algorithm that only chooses (α, β, γ)-stable blocks is O(hk ·
(αβγ)−1)-competitive, against an optimal algorithm with buffer size h ≥ k. Using the stable
set computation from Lemma 3 gives a competitive ratio of O(h(log ∆+min{logn+log k})/k)
in a metric space of n points and aspect ratio ∆.

Proof. For the case that k ≥ 6
αγ we can simply combine the bounds in Lemma 5 and

Lemma 6. For the case that k ≤ 6
αγ we use the fact that any algorithm is O(h)-competitive

which gives the result since O(h) = O(hk · k) = O(hk (αβγ)−1). J

4 Finding Stable Sets

In this section we present an algorithm for finding stable sets.

I Lemma 3. Let V denote a set of k requests covering at most ` ≤ k distinct locations in
a metric space with aspect ratio ∆. There exists a polynomial time algorithm that finds an
(α, β, γ)-stable subset S ⊆ V with α ≥ 1/(1 + log ∆ + log `), β ≥ 1/8, and γ ≥ 1/e.

Proof. Set β′ := 1/2 and α := 1/(1 + log2 ∆ + log2 `). For a subset S of requests we define
MST1-α(S) to be a minimum spanning tree among at least d(1− α)|S|e requests from S. It
is NP-hard to find such an MST but there is a 2-approximation algorithm that returns a tree
T1−α that spans d(1− α)|S|e requests and has cost cost(T1−α) ≤ 2 cost(MST1-α(S)) [16].

Our algorithm for finding a stable set proceeds as follows. Initially it sets S := V .
Then it (approximately) checks whether S is stable. For this it computes an approximation

ICALP 2017

33:8 Reordering Buffer Management in General Metric Spaces

T1−α to MST1-α(S) according to the algorithm by Garg [16]. Then it checks whether
cost(T1−α) ≥ β′ cost(MST(S)). If this is the case the set S is returned. Otherwise the
algorithm sets S := V (T1−α), where V (T1−α) is the vertex set of tree T1−α, and repeats
the process. In the following we prove that the set S returned by the algorithm fulfills the
desired constraints. We start with the stability constraint:

I Fact 10. For each subset U ⊆ S, |U | ≥ (1− α)|S|, we have C(U) ≥ 1
8 · C(S).

Proof. We have

C(U) ≥ cost(MST1-α(S)) ≥ 1
2 cost(T1−α) ≥ β′

2 cost(MST(S)) ≥ 1
8C(S) .

The first step follows because an optimum path for C(U) is also a spanning tree on at least
d(1−α)|S|e vertices. The second step holds because of the approximation guarantee of Garg’s
algorithm. The third step is due to the termination condition of our procedure for finding a
stable set, and the last step holds because an MST is a 2-approximation for C(S). J

It remains to prove the size constraint. For this we require a bound on the number of
iterations.

I Fact 11. The algorithm performs at most rmax ≤ log2(`∆) + 1 unsuccessful iterations.

Proof. In every unsuccessful iteration the cost of the minimum spanning tree over the set
S decreases by factor β′ = 1/2. The cost can be at most `∆ at the start, and if the cost
drops below one, all remaining requests are located at a single vertex, which leads to a stable
set. J

In every unsuccessful iteration the cardinality of the set S decreases by a (1 − α) factor.
Hence, the final cardinality is at least k(1− α)rmax ≥ k/e. This completes the proof of the
lemma. J

5 Lower Bound for Memory Restricted Algorithms

In [20] Khandekar and Pandit defined a memoryless reordering buffer management algorithm
as an algorithm that bases its decisions only on the content of the buffer and not on some
further information that may be stored in its memory. They showed that such algorithms
are severely limited by giving a lower bounds of Ω(k) on the competitive ratio. In terms of
the aspect ratio their lower bound example gives Ω(log ∆/ log log(∆)).

In this section we extend their result and show that an algorithm that only bases its
decision on the buffer-content and on further k bits of memory may experience a competitive
ratio of Ω(

√
log ∆). This means, if the memory used by the algorithm does not depend on

the aspect ratio, the aspect ratio must appear in the competitive ratio in some form (unless,
of course, the competitive ratio is a trivial bound like O(k)).

Since our block-oriented algorithm only needs to mark all requests that belong to the
current block, it can be implemented with k bits of memory. Hence, one reason that the
aspect ratio appears in our competitive ratio is the structure of the algorithm that makes it
memory-restricted.

I Lemma 12. There exists an input sequence with aspect ratio ∆ ≤ (k(k + 1)2m)k, for
which any deterministic reordering buffer management algorithm with m bits of memory has
competitive ratio Ω(k). For m = k this gives a lower bound of Ω(

√
log ∆) on the competitive

ratio.

M. Kohler and H. Räcke 33:9

Proof. The instance consists of a metric space over k + 1 vertices {v0, . . . , vk}, where the
distance between two distinct vertices vi and vj is d(vi, vj) = λi + λj . The vertices can be
viewed as the leaves of a star, where the vertex vi is connected to the center of the star via
an edge of length λi. λ will be chosen later.

Let ALGt ∈ {v0, . . . , vk} denote the position of the online server in the metric space after
the t-th request has been served. Initially, there is a request at every vertex vi, i 6= 0, and
we assume contrary to the definition of our model in Section 1.2 that the online algorithm
has to start at vertex v0 (i.e., ALG0 = v0). This slight change in the model does not affect
our asymptotic results. The input sequence is chosen adversarily: after serving the request
at ALGt a new request at ALGt−1 appears. This means that whenever the online algorithm
is making a decision on the next request to serve, there is a request located at every vertex
vi different from the current position of the ALG-server.

There are k + 1 possible states of the buffer; one state for every position of the online
server. In addition, the m bits of memory give rise to 2m memory-states. The state of the
algorithm is a combination of the buffer-state and the memory-state. This means in total
there are z := (k + 1)2m different states that the algorithm may be in. Depending on its
state S the algorithm deterministically chooses a vertex vnext, and serves the request located
at this vertex. Then a new request appears at its previous position, and the algorithm is in
some new state S ′.

We model the servicing of our adversarial sequence σ by a deterministic algorithm, as a
path on a state graph G that contains one vertex for every possible state S, and a directed
edge (S,S ′) if S ′ is the successor state to state S. We assign a weight to every edge in G
as follows. If S corresponds to a state where the server is located at vi and S ′ corresponds
to a state with the server at position vj , we assign a length of d(vi, vj) to edge (S,S ′). By
this definition the servicing of the request sequence corresponds to a path P on the state
graph and the length of this path is the cost of the online algorithm. Note that the path will
actually contain a cycle C, and asymptotically the cost of the online algorithm is determined
by the cost for serving the cycle.

Let vimax denote the vertex with largest index that corresponds to some state along the
cycle, let nmax denote the number of states along the cycle that correspond to this position,
and let nC denote the total number of vertices along the cycle. The cost of the online
algorithm for serving the cycle is at least

costALG(C) ≥ 2nmaxλ
imax ,

as it enters and leaves the vertex vimax at least nmax times. An optimum algorithm can serve
the cycle differently. It only holds requests at location vimax in its buffer. All other requests
are served immediately as they arrive. Then it only has to pay for the edge to vimax every
k-th time. Hence, the optimum (average) cost for serving the cycle is at most

costOPT(C) ≤ 2nCλimax−1 + 2nmaxλ
imax/k .

This gives

costALG(C)
costOPT(C) ≥

nmaxλ
imax

nCλimax−1 + nmaxλimax/k
≥ nmax

z/λ+ nmax/k
≥ nmax

1 + nmax
k = Ω(k) .

Here, we use the fact that nC ≤ z (the number of states) for the second inequality, and we
choose λ = kz for the third inequality. The ratio of the costs on the cycle gives an asymptotic
bound on the competitive ratio, as the cycle dominates the cost. With our choice of λ we get
that the aspect ratio ∆ is ∆ ≤ λk = (k(k + 1)2m)k . J

ICALP 2017

33:10 Reordering Buffer Management in General Metric Spaces

Acknowledgments. We thank Matthias Englert for making us aware that the competitive
ratio of a memory restricted algorithm should depend on the aspect ratio.

References
1 Amjad Aboud. Correlation clustering with penalties and approximating the reordering

buffer management problem. Master’s thesis, Computer Science Department, The Technion
– Israel Institute of Technology, 2008.

2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. Almost tight
bounds for reordering buffer management. In Proceedings of the 43rd Annual ACM Sym-
posium on Theory of Computing, pages 607–616, 2011.

3 Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano. NP-hardness of the sorting buffer
problem on the uniform metric. Discrete Applied Mathematics, 160(10-11):1453–1464, 2012.
doi:10.1016/j.dam.2012.02.005.

4 Noa Avigdor-Elgrabli, Sungjin Im, Benjamin Moseley, and Yuval Rabani. On the ran-
domized competitive ratio of reordering buffer management with non-uniform costs. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 78–90, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

5 Noa Avigdor-Elgrabli and Yuval Rabani. A constant factor approximation algorithm for
reordering buffer management. In Proceedings ofproc 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 973–984, 2013. doi:10.1137/1.9781611973105.70.

6 Noa Avigdor-Elgrabli and Yuval Rabani. An optimal randomized online algorithm al-
gorithm for reordering buffer management. In Proceedings of the 54th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 1–10, 2013.

7 Noa Avigdor-Elgrabli and Yuval Rabani. An improved competitive algorithm for re-
ordering buffer management. ACM Trans. Algorithms, 11(4):1–15, June 2015. doi:
10.1145/2663347.

8 Siddharth Barman, Shuchi Chawla, and Seeun Umboh. A bicriteria approximation for
the reordering buffer problem. In Proceedings of the 20th Annual European Symposium on
Algorithms (ESA), pages 157–168, 2012. doi:10.1007/978-3-642-33090-2_15.

9 Marcin Bienkowski, Martin Böhm, Lukasz Jez, Pawel Laskos-Grabowski, Jan Marcinkowski,
Jirí Sgall, Aleksandra Spyra, and Pavel Veselý. Logarithmic price of buffer downscaling on
line metrics. CoRR, abs/1610.04915, 2016.

10 Dan Blandford and Guy Blelloch. Index compression through document reordering. In
Proceedings of the Data Compression Conference, DCC’02, pages 342–351, Washington,
DC, USA, 2002. IEEE Computer Society.

11 Ho-Leung Chan, Nicole Megow, René Sitters, and Rob van Stee. A note on sorting buffers
offline. Theoretical Computer Science, 423:11–18, 2012.

12 Matthias Englert and Harald Räcke. Reordering buffers with logarithmic diameter depend-
ency for trees. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SIDA), pages 1224–1234, 2017.

13 Matthias Englert and Matthias Westermann. Reordering buffer management for non-
uniform cost models. In Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming (ICALP), pages 627–638, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

14 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004.

15 Iftah Gamzu and Danny Segev. Improved online algorithms for the sorting buffer problem
on line metrics. ACM Trans. Algorithms, 6(1):15:1–15:14, December 2009.

http://dx.doi.org/10.1016/j.dam.2012.02.005
http://dx.doi.org/10.1137/1.9781611973105.70
http://dx.doi.org/10.1145/2663347
http://dx.doi.org/10.1145/2663347
http://dx.doi.org/10.1007/978-3-642-33090-2_15

M. Kohler and H. Räcke 33:11

16 Naveen Garg. Saving an ε: A 2-approximation for the k-MST problem in graphs. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages
396–402, 2005.

17 Kai Gutenschwager, Sven Spiekermann, and Stefan Voß. A sequential ordering problem in
automotive paint shops. International Journal of Production Research, 42(9):1865–1878,
2004. doi:10.1080/00207540310001646821.

18 Sungjin Im and Benjamin Moseley. New approximations for reordering buffer management.
In Proceedings of 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1093–1111, 2014. doi:10.1137/1.9781611973402.81.

19 Sungjin Im and Benjamin Moseley. Weighted reordering buffer improved via variants of
knapsack covering inequalities. In Proceedings of the 42nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 737–748, 2015. doi:10.1007/
978-3-662-47672-7_60.

20 Rohit Khandekar and Vinayaka Pandit. Online sorting buffers on line. In Proceedings of
the 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
584–595, 2006.

21 Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias Westermann. Reducing
state changes with a pipeline buffer. In Proceedings of the 9th International Fall Workshop
Vision, Modeling, and Visualization, 2004.

22 Harald Räcke, Christian Sohler, and Matthias Westermann. Online scheduling for sorting
buffers. In Proceedings of the 10th Annual European Symposium on Algorithms (ESA),
pages 820–832, 2002.

A Reasonable Algorithms

We define an algorithm for the reordering buffer management problem to be reasonable if at
any point in time it chooses a request r from the buffer as the next request to be served, and
then moves from its current location to r along a shortest path.

I Lemma 13. Any reasonable algorithm for the reordering buffer management problem has
competitive ratio 2(h+ k).

Proof. Suppose a reasonable online algorithm generates an output sequences s1, s2, . . . , s`.
Its cost ALGtrue(σ) is then

∑`−1
i=1 d(si, si+1). We define sets of consecutive requests: Xi :=

{si, si+1}. In the following we prove that at any point in time there can at most be 2(h+ k)
sets Xi that are partially scheduled by OPT. The result then follows by applying Claim 4.

Fix a time t. We order the elements within a request-pair Xj according to the order in
which the elements are scheduled by OPT, and will refer to them as the first and second
request, respectively. Suppose a request pair Xj , j ≤ t is partially scheduled by OPT at
time t. This means that the second request of the pair must stay in OPT’s buffer between
steps t and t + 1 because both requests have already appeared by time t. Note that this
holds even for the case j = t, because the element st+1 that is output by ALG at time t+ 1
must have appeared on or before time t. Any request is only contained in at most two pairs.
Consequently, there can be at most 2h request pairs Xj , j ≤ t, that are partially scheduled
by OPT at time t.

Now, consider a request pair Xj , j > t that is partially scheduled by OPT at time t.
The first request of the pair is scheduled by OPT at time t or before, but ALG schedules
both requests at time t+ 1 or later. Hence, the first request of the pair must be stored by
ALG between steps t and t+ 1. This means we can have at most 2k request pairs Xj , j > t

ICALP 2017

http://dx.doi.org/10.1080/00207540310001646821
http://dx.doi.org/10.1137/1.9781611973402.81
http://dx.doi.org/10.1007/978-3-662-47672-7_60
http://dx.doi.org/10.1007/978-3-662-47672-7_60

33:12 Reordering Buffer Management in General Metric Spaces

that are partially scheduled by OPT at time t. In total we get at most 2(h+ k) partially
scheduled pairs. Applying Claim 4 gives

OPT(σ) ≥ 1
2(h+ k)

∑
i

C(Xi) ,

and, hence, ALGtrue(σ) ≤ 2(h+ k) ·OPT(σ), as desired. J

Correlated Rounding of Multiple Uniform
Matroids and Multi-Label Classification
Shahar Chen1, Dotan Di Castro2, Zohar Karnin3,
Liane Lewin-Eytan4, Joseph (Seffi) Naor∗5, and Roy Schwartz†6

1 Computer Science Department, Technion, Haifa, Israel
shahar.chen11@gmail.com

2 Yahoo Labs, Haifa, Israel
dot@yahoo-inc.com

3 Amazon, New York, NY, USA
zkarnin@amazon.com

4 Yahoo Labs, Haifa, Israel
liane@yahoo-inc.com

5 Computer Science Department, Technion, Haifa, Israel
naor@cs.technion.ac.il

6 Computer Science Department, Technion, Haifa, Israel
schwartz@cs.technion.ac.il

Abstract
We introduce correlated randomized dependent rounding where, given multiple points y1, . . . ,yn
in some polytope P ⊆ [0, 1]k, the goal is to simultaneously round each yi to some integral
zi ∈ P while preserving both marginal values and expected distances between the points. In
addition to being a natural question in its own right, the correlated randomized dependent
rounding problem is motivated by multi-label classification applications that arise in machine
learning, e.g., classification of web pages, semantic tagging of images, and functional genomics.
The results of this work can be summarized as follows: (1) we present an algorithm for solving
the correlated randomized dependent rounding problem in uniform matroids while losing only
a factor of O(log k) in the distances (k is the size of the ground set); (2) we introduce a novel
multi-label classification problem, the metric multi-labeling problem, which captures the above
applications. We present a (true) O(log k)-approximation for the general case of metric multi-
labeling and a tight 2-approximation for the special case where there is no limit on the number
of labels that can be assigned to an object.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases approximation algorithms, randomized rounding, dependent rounding,
metric labeling, classification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.34

1 Introduction

Randomized rounding [32] is a fundamental technique in approximation algorithms. In this
approach, given a solution y ∈ Rk to some linear program, each yi is independently rounded

∗ Joseph (Seffi) Naor’s work is supported in part by ISF grant 1585/15 and US-Israel BSF grant 2014414
(part of this work was done while visiting the Simons Institute for the Theory of Computing).

† Roy Schwart’z work is supported by ISF grant 1336/16.

EA
T

C
S

© Shahar Chen, Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, Joseph Naor, and
Roy Schwartz;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

into an integral value. Unfortunately, when constraints on the rounded solution are present,
randomized rounding does not always produce a feasible solution. Hence, dependent rounding
schemes were introduced [1, 2, 10, 12, 22, 26, 35]. In general, dependent rounding needs to
solve the following problem: given a polytope P ⊆ [0, 1]k over ground set K of size k and
y ∈ P, round y into z ∈ P ∩ {0, 1}k such that E [z] = y. Intuitively, z has the following two
properties: (1) z is always integral and feasible since z ∈ P ∩ {0, 1}k; and (2) z preserves the
marginal values given by y for each element in K since E [z] = y. The above problem has
been extensively studied and was solved for different types of polytopes P, e.g., bipartite
matching and b-matching [22, 26], uniform matroids [35], spanning trees [2], and general
matroids [12]1.

In this work we consider a natural extension of dependent rounding in which we are given
many points in P and the goal is to round all the points, while preserving both marginal
values and expected distances (up to some loss) between any pair of points. Formally, given
a polytope P ⊆ [0, 1]k over ground set K of size k and y1, . . . ,yn ∈ P, we need to round
each yi to some zi such that the following hold: (1) zi ∈ P ∩ {0, 1}k for every i = 1, . . . , n;
(2) E

[
zi
]

= yi for every i = 1, . . . , n; and (3) there exists some loss factor α such that
E
[
||zi − zj ||1

]
≤ α||yi − yj ||1 for every i, j = 1, . . . , n. We call this problem correlated

randomized dependent rounding. Note that requirements (1) and (2) imply that each zi is a
feasible rounding of yi that preserves marginal values, as in the standard dependent rounding
setting. The novelty of our problem lies in requirement (3) which states that for all pairs of
points the expected distance after the rounding, i.e., E

[
||zi − zj ||1

]
, is within a factor of α

from the original distance between the points, i.e., ||yi − yj ||1. Additionally, it will be useful
also to consider an extension of the above where each point yi (and thus also zi) is required
to be in a different polytope Pi.

Our main reason for introducing the correlated randomized dependent rounding setting
originates from multi-label classification problems. In classification problems, one must assign
labels to objects given some observed data. In this work we consider classification problems
where multiple labels can be assigned to each object. Such problems naturally arise in various
settings, e.g., classification of textual data such as web pages [38, 39], semantic tagging of
images and videos [7, 30, 42], and functional genomics [4, 5].

The assignment of labels to objects should be done in a manner that is most consistent
with the observed data, from which two important ingredients are derived. The first is
an assignment cost for every (object,label) pair, reflecting a recommendation given by a
local learning process which infers label preferences of objects. The second is similarity
information on pairs of objects, giving rise to separation costs incurred once different label
sets are assigned to a pair of similar objects. Our goal is to find a labeling that minimizes a
global cost function, while taking into account both local and pairwise information.

To provide some intuition for the formal problem given below and the possible range
of its parameters, we provide a concrete example. The objective in the example is that of
assigning topics to web pages, where objects are the web pages and labels are the topics.
Here, it is very natural for a web page to discuss more than one topic. The assignment cost
of a (webpage,topic) pair can be derived from the features associated with a web page, e.g.,
its words, or shingles, and the domain it is located in. However, consider information from
search queries leading to the web page. A specific search query is typically observed only a

1 In some of the above works, additional properties of z are required, e.g., concentration of linear functions
over z. Since such concentration bounds are not required for the metric multi-labeling (MML) problem,
the discussion on this topic is postponed to a full version of the paper.

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:3

handful of times, and though features can be extracted from it, a very natural way to use
the latter information is by having pairwise similarity relations between web pages, if both
were reached by the same search query.

We note that when assigning multiple labels to objects, it is often desirable to bound
the number of labels assigned to objects. As a matter of fact, in most of the papers cited
above the total number of labels can be in the thousands or even millions, while each object
is expected to be assigned only a handful of labels. In particular, in the above example,
we expect a single webpage to be assigned only a small fraction of all possible topics. This
property imposes further constraints on our objective that we elaborate on below.

We are now ready to introduce the metric multi-labeling (MML) problem. In (MML) we
are given a set of nodes V , where each node corresponds to an object, and a set of labels
K = {1, 2, . . . , k}. The pairwise relations are given in the form of an edge set E and a weight
function s : E → R+, capturing similarity between objects. Additionally, the bound function
b : V → N specifies how many labels can be assigned to each node. Finally, we are given
an assignment cost function c : V ×K → R. Assignment costs may be either positive or
negative, reflecting a recommendation given by a local learning process which infers the label
preferences of objects. Intuitively, if c(v, `) ≥ 0 (or c(v, `) < 0) we say that node v dislikes
(or likes) label `. A detailed explanation as to why assignment costs might be either positive
or negative is deferred to a full version of the paper. The learning process determining
assignment costs ignores pairwise relations between objects. Clearly, the labeling cost of
completely agreeing with this recommendation is the minimum possible, and this is our
benchmark labeling. We evaluate the assignment cost of a labeling by its deviation from the
benchmark labeling.

A feasible multi-labeling f : V → 2K \ ∅ is an assignment of at least one label to every
node, such that |f(v)| ≤ bv, i.e., the number of labels assigned to v is at most bv. For the
special case where bv = k for every v ∈ V , i.e., there is no upper bound on the number of
labels that can be assigned to a node, we denote the problem by (Unbounded-MML).

The cost of a multi-labeling is measured by the sum of two terms: assignment costs and
separation costs. Let us first focus on assignment costs, which measure the deviation of f
from the benchmark labeling. Specifically, for every node v, the benchmark labeling assigns
to v all labels it likes, i.e., labels ` for which c(v, `) < 0, and does not assign to v any of
the labels it dislikes, i.e., labels ` for which c(v, `) ≥ 0. Thus, focusing on a single label
`, f deviates from the benchmark labeling by c(v, `) if ` ∈ f(v) and ` is a label v dislikes,
i.e., c(v, `) ≥ 0. Similarly, f deviates from the benchmark labeling by |c(v, `)| if ` /∈ f(v)
and ` is a label v likes, i.e., c(v, `) < 0. Formally, denote by K+(v) , {` ∈ K : c(v, `) ≥ 0}
the collection of all labels v dislikes, and by K−(v) , {` ∈ K : c(v, `) < 0} the collection
of all labels v likes. Then, the total assignment cost of node v with respect to f is:∑
`∈K+(v) c(v, `)1{`∈f(v)} +

∑
`∈K−(v) |c(v, `)|1{`/∈f(v)}.

Let us now focus on the separation costs. The separation cost of edge (u, v) is the number
of labels nodes u and v disagree on, i.e., the `1 distance between the characteristic vectors of
f(u) and f(v). Formally, a pair of nodes (u, v), given a multi-labeling f , incurs the following
separation cost: s(u, v) · ||1f(u) − 1f(v)||1. For any subset of labels S ⊆ K, 1S denotes the
characteristic vector of S. Summing up over the above we are now ready to provide a formal

ICALP 2017

34:4 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

definition of the (MML) problem: find a feasible multi-labeling f that minimizes

∑
v∈V

 ∑
`∈K+(v)

c(v, `)1{`∈f(v)} +
∑

`∈K−(v)

|c(v, `)|1{`/∈f(v)}

+

∑
(u,v)∈E

s(u, v)||1f(u) − 1f(v)||1 . (1)

Summarizing, (MML) is a novel classification model in which multiple labels can be assigned
to objects. We emphasize that in (MML), obtaining a solution to the (global) optimization
objective is decoupled from the local learning process for the objects, thus allowing us to
view the output of these processes as part of the input to (MML), and treating them in a
“black box" fashion.

Let us now focus on our results. We introduce the correlated randomized dependent
rounding problem and the (MML) problem. We tackle the correlated dependent rounding
problem for the case of multiple (possibly different) uniform matroids, as summarized in the
following theorem.

I Theorem 1. Let K be a ground set of size k and M1, . . . ,Mn be n uniform matroids
over K, where rank(Mi) = bi. Additionally, let yi ∈ {y ∈ [0, 1]k :

∑k
`=1 y` ≤ bi} for every

i = 1, . . . , n. Then there is an efficient algorithm for sampling z1, . . . , zn s.t.: (1) zi is the
characteristic vector of an independent set of Mi for every i = 1, . . . , n; (2) E

[
zi
]

= yi for
every i = 1, . . . , n; and (3) E

[
||zi − zj ||1

]
≤ O(log k)||yi − yj ||1 for every i, j = 1, . . . , n.

Note that the loss in the distance, i.e., property (3) above, depends only on the size of the
ground set k and not on the number of given matroids n.

We use the above to obtain a (true) approximation of O(log k) for (MML). For the special
case of (Unbounded-MML) we present a tight 2-approximation.

I Theorem 2. The (MML) problem admits a (true) approximation of O(log k).

I Theorem 3. The (Unbounded-MML) problem admits an approximation of 2.

I Theorem 4. Assuming the unique games conjecture, the (Unbounded-MML) problem does
not admit an approximation better than 2 (1− 1/k).

Let us now focus on our approach and techniques. Consider the correlated dependent
rounding problem, we now elaborate as to why known techniques fail when applied to it. The
problem of rounding of online paging [6] is closely related to correlated dependent rounding.
Unfortunately, techniques developed in the paging context allow us to bound distances
only between some of the pairs of points, i.e., E

[
||zi+1 − zi||1

]
for every i = 1, . . . , n − 1,

as opposed to the desired E
[
||zi − zj ||1

]
for every i, j = 1, . . . , n. Therefore, a different

approach is required.
We note that achieving requirements (1) and (2) alone, i.e., zi ∈ P ∩ {0, 1}k and

E
[
zi
]

= yi for every i = 1, . . . , n, has already been achieved by any of the dependent
rounding algorithms that can be applied to a uniform matroid, e.g., [10, 12, 35] (just execute
the algorithm independently for each yi). Obviously, this approach completely fails when
considering requirement (3), i.e., E

[
||zi − zj ||1

]
≤ α||yi − yj ||1, as α might be unbounded.

The reason for the latter is that if yi = yj for some i 6= j, then ||yi − yj ||1 = 0 but
E
[
||zi − zj ||1

]
> 0 (as the two executions of dependent rounding, one for yi and the other

for yj , are independent).

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:5

Our approach to solving the above is to correlate all n executions of dependent round-
ing, one for each y1, . . . ,yn. Specifically, we execute the randomized dependent rounding
algorithm of [35] for each yi separately, but use the same random bits as input for all n
different executions. Remarkably, this simple approach suffices. However, we note that the
analysis of our algorithm uses the specific inner-workings of the algorithm of [35]. Hence,
it seems that correlated dependent rounding cannot be easily solved through a “black box”
application of any dependent rounding algorithm, e.g., [10, 12].

Let us now focus on the special case (Unbounded-MML) and illustrate why known
algorithms and techniques fail when applied to it. (Unbounded-MML) is inspired by the
metric labeling problem, first introduced in full generality by [25]. In the metric labeling
problem we are given an edge weighted graph G = (V,E), a collection K of k labels, a
non-negative assignment cost function c : V ×K → R+, and a metric d over K. The goal is
to assign a single label to each node while minimizing the sum of assignment and separation
costs. As in (Unbounded-MML), assignment costs are defined using c, whereas the separation
cost of edge (u, v) is the distance in the metric d between the labels assigned to u and v.
It is important to note that metric labeling differs from (Unbounded-MML) in two main
points: (1) each object can be assigned exactly one label, as opposed to multiple labels
in (Unbounded-MML), and (2) the assignment cost function c is non-negative, whereas in
(Unbounded-MML) assignment costs may be either positive or negative.

Consider a further restricted special case of (Unbounded-MML) where all assignment
costs are non-negative. If one applies the algorithm of [25] by expanding the label set K to
2K \ ∅ and considering the `1 metric on the expanded set2, then this not only results in a
large approximation guarantee of O(k), but also the running time of the algorithm scales
with 2k and not k. More generally, we wish to claim that existing techniques and algorithms
for the metric labeling problem cannot be directly applied to (Unbounded-MML). Consider a
node v which has multiple labels ` it likes, i.e., c(v, `) < 0. Since only a single label is allowed
per node in metric labeling, it must be the case that whatever algorithm or technique we
use, there is at least one label v likes that ultimately is not assigned to v. Thus, potentially
incurring a huge loss in the objective.

We address the above difficulties by employing two approaches. First, we use a global
charging argument over all labels in K when bounding the separation cost of an edge (u, v).
Typically, such global arguments are avoided, e.g., all known algorithm for metric labeling
(either with a general or a specific metric) do not employ any type of global argument.
Second, we distort the optimal marginal probabilities xv,` given by the linear programming
relaxation for (Unbounded-MML). This enables us to balance both positive and negative
assignment costs, along with separation costs.

Let us now mention some related work. An extensively studied topic is that of dependent
rounding of fractional solution. A randomized variant of pipage rounding [1] was given
by [22] who applied it to assignment polytopes (see also [26, 35]). An approach based on
maximum entropy for dependent rounding was introduced by [3] in the context of max-min
allocations, and was later extended to spanning trees by [2]. When considering general matroid
independence polytopes, [10, 12] provided methods of conducting dependent rounding.

(MML) gets as input costs for assigning labels to objects and a similarity measure between
objects. The labeling costs are based on a multi-label learning process (supervised learning)
which is applied to a set of instances, each belonging potentially to multiple classes (labels),

2 Only the general algorithm of [25] is known for the case of `1 distances over the k-dimensional hypercube,
and it achieves an approximation of O(k). This guarantee is tight as it based on tree metrics.

ICALP 2017

34:6 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

and predicts a set of class labels given a new instance. Multi-label classification has attracted
much attention following various real world problems requiring usage of multiple labels [37],
and thorough surveys in this area can be found in [34, 36]. The basic approach transforms
the original problem into several instances of simpler binary classification problems, where
each instance corresponds to a single label. This method is called binary relevance, and it
assumes that labels are independent of each other, and thus one needs to solve k separate
binary-label classification problems, where k denotes the number of labels. Approaches
based on classifier chains have been adopted to model interdependencies between labels while
maintaining acceptable computational complexity [33].

The label power set approach transforms the problem into a multi-class problem [14],
where labels in the multi-class problem are a cross product of the original labels (and cover all
possible combinations of these labels), resulting in the problem of mapping each data point to
a binary vector. The main drawback of this approach is poor scaling in terms of the number
of labels (e.g., vision problems where the number of categories may be large). A different
approach addresses the problem directly, in its full generality, and is much harder than the
traditional binary and multi-class problems, which in fact are special cases of multi-labeling.
Some notable examples of multi-label algorithms, which are extensions based on binary
problems, are adaptations of AdaBoost [21], the ML-kNN [41] based on kNN algorithm [20],
and Clare which is an adapted decision tree algorithm for multi-label classification [31].

Another related machine learning approach is kernel pairwise classification [40]. Here,
relations between pairs of samples are given using kernels. Supervised pairwise prediction
aims to predict such pairwise relationships based on known relationships. Pairwise prediction
takes a pair of instances as its input, and outputs the relationship between the two instances.
The application of kernel methods to pairwise classification is based on a kernel function
between two pairs of instances [24]. The main difference between this approach and our
setting is that it does not consider single items, but rather focuses only on pairwise relations.

Metric labeling is an elegant and powerful mathematical model capturing a wide range of
classification problems, where information about objects, as well as their pairwise relations, is
given. Notice that such a scenario is not captured by neither known multi-class classification
techniques, nor by existing pairwise kernel based techniques. The problem was first formulated
in full generality by [25], and captures many classification problems that arise in various
settings. Specifically, metric labeling has applications in important fields such as Markov
theory [13, 27], image processing and computer vision [18, 8], as well as language modeling [29].
In [25], the authors gave an O(log k)-approximation for any metric3, and a 2-approximation
for the uniform metric case. The latter is known to be tight assuming the unique games
conjecture [28]. It is worth mentioning that metric labeling is of much importance in the
combinatorial optimization setting, as it captures well studied problems such as multiway
cut [9, 15, 16, 17, 23] and 0-extension [11, 19].

2 Preliminaries

We formulate the following natural linear programming relaxation for the (MML) problem
(similarly to the relaxation given by [25] for uniform metric labeling). Variable xv,` is the
(fractional) indicator for labeling node v with label `. The first constraint guarantees that
each node v receives between 1 and bv labels. The following two constraints, along with
the fact that the problem is a minimization problem, imply that zu,v,` = |xu,` − xv,`|, i.e.,

3 The metric over the labels determines their pairwise distances and can be arbitrary in general.

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:7

zu,v,` is the separation cost of nodes u and v with respect to label `. Hence, the fourth
constraint asserts that du,v equals ||xu − xv||1, where xu = (xu,1, . . . , xu,`) for every u ∈ V .
The objective of the relaxation follows directly from the definition of (MML) (1).

min ∑
v∈V

[∑
`∈K+(v)

c(v,`)xv,`+
∑

`∈K−(v)
|c(v,`)|(1−xv,`)

]
+
∑

u,v∈V
s(u,v)du,v

s.t. 1 ≤
∑
`∈K

xv,` ≤ bv ∀v ∈ V

zu,v,` ≥ xu,` − xv,` ∀u, v ∈ V
zu,v,` ≥ xv,` − xu,` ∀u, v ∈ V

du,v =
∑
`∈K

zu,v,` ∀u, v ∈ V

0 ≤ xv,` ≤ 1 ∀v ∈ V,∀` ∈ K

The following observation simplifies the analysis of the separation cost considerably.

I Observation 5. Without loss of generality we can simply assume that any two adjacent
nodes differ in only a single coordinate, by a value ε > 0, which can be made arbitrarily
small. Specifically, given (u, v) ∈ E we assume that xu = (xu,1, xu,2, . . . , xu,k) and xv =
(xu,1 + ε, xu,2, . . . , xu,k).

3 Correlated Randomized Dependent Rounding

Denote by MK,bv
the uniform matroid over K of rank bv, and recall that P(MK,bv

) = {x ∈
[0, 1]k :

∑k
`=1 x` ≤ bv} is the standard independent set polytope corresponding to MK,bv .

For completeness, we start by presenting the basic building block of [35] for rounding a single
point in PMK,bv

, as we later require its inner-workings.
Let us now focus on rounding a single point in the uniform matroid polytope. The basic

building block (Algorithm 1) receives two marginal probabilities, 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1,
for the ith and jth labels correspondingly, and randomly updates them. At least one of the
updated marginal probabilities, denoted by α′ and β′, is “rounded” to either 0 or 1. This is
done while deterministically preserving the sum of the marginal probabilities, and each of
the marginal probabilities is preserved in expectation. Lemma 6 summarizes the above, and
its proof is deferred to a full version of the paper.
It is important to note that 0 ≤ α′, β′ ≤ 1 always, i.e., Algorithm 1 returns valid marginal
probabilities.

I Lemma 6. Upon the termination of Algorithm 1:
1. E [α′] = α and E [β′] = β.
2. α′ + β′ = α+ β always.
3. One of i and j is declared fixed and its marginal value belongs to {0, 1}.

Define a label tree T of K to be a full binary tree with exactly k leaves, where each leaf
corresponds to a distinct label of K. We now describe the rounding procedure which we
denote by label tree rounding. It receives as input a label tree T , a point xv ∈ P(MK,bv

), a
collection of independent random thresholds θz ∼ Unif [0, 1] for every non-leaf node z of T ,
and one additional independent random threshold θ ∼ Unif [0, 1]. The label tree rounding
procedure operates as follows:
1. Every leaf of T sends to its parent its label and its marginal value as given by the

relaxation, i.e., a leaf that corresponds to label ` ∈ K sends to its parent (`, xv,`).

ICALP 2017

34:8 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

Algorithm 1 Resolve(i, α, j, β).
draw a threshold θ ∼ Unif [0, 1].
if (case (a)) 0 ≤ α+ β ≤ 1 then

if θ ≤ α/(α+β) then
α′ ← α+ β, β′ ← 0 , and s← j.

else
α′ ← 0, β′ ← α+ β, and s← i.

end if
end if
if (case (b)) 1 < α+ β ≤ 2 then

if θ ≤ (1−β)/(2−α−β) then
α′ ← 1, β′ ← α+ β − 1 , and s← i.

else
α′ ← α+ β − 1, β′ ← 1, and s← j.

end if
end if
return (i, α′, j, β′) and declare s as fixed.

2. Every non-leaf node z of T (that is not the root) receives from its two children (i, α)
and (j, β); it executes Algorithm 1 with parameters (i, α, j, β) and θz as the random
threshold to obtain (α′, β′); updates the marginal probabilities of i and j to be α′ and β′
respectively; and sends to its parent in T the label that was not fixed from {i, j} along
with its newly updated marginal probability.

3. The root r of T operates exactly as any other non-leaf node of T with the following
exception: instead of sending the label that was not fixed to its parent along with its
newly updated marginal probability, r uses the given random threshold θ to round the
label that was not fixed, i.e., after the execution of Algorithm 1 by r if s ∈ {i, j} denotes
the label that is not fixed and the newly updated marginal probability of s equals γ, then
r sets the marginal of s to be 1 if θ ≤ γ and 0 otherwise.

The following lemma summarizes the desired properties of the label tree rounding procedure,
and its proof is deferred to a full version of the paper.

I Lemma 7. Let v ∈ V , xv ∈ P(MK,bv
), T a label tree of K, and denote by x̃v the vector

of marginal probabilities obtained by executing the label tree rounding procedure. Then,
1. x̃v ∈ {0, 1}k.
2. Let Bv ,

∑
`∈K xv,`, then bBvc ≤

∑
`∈K x̃v,` ≤ dBve always.

3. For every ` ∈ K: Pr [x̃v,` = 1] = xv,`.

Let us now focus on rounding multiple points in the uniform matroid polytope. In this
section we describe how to round multiple points in P(MK,bv

) while: (1) preserving marginal
probabilities; and (2) being “faithful” to the original `1 distances between any pair of points
in P(MK,bv

). Our correlated rounding procedure receives as input a fixed label tree T , along
with n points {xv}v∈V in P(MK,bv

). Intuitively, it applies the label tree rounding procedure
to all n points simultaneously, while using the same given tree T and the same random
thresholds in all executions. A formal description appears in Algorithm 2. As before, we
denote by x̃v the output of Algorithm 2 for node v ∈ V .

Lemma 8 bounds the expected separation cost of neighbouring nodes u and v. Assuming
xu and xv differ only in label 1 (as Observation 5 states without loss of generality), the

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:9

Algorithm 2 Correlated Rounding
(
{xv}v∈V , T

)
.

For every non-leaf node z of T draw an independent threshold θz ∼ Unif [0, 1].
Draw an independent threshold θ ∼ Unif [0, 1] for the root r of T .
∀v ∈ V : execute label tree rounding with input T , xv, {θz}z non-leaf node of T , and θ.
Output the resulting {x̃v}v∈V .

executions of Algorithm 1 can differ between u and v only at non-leaf nodes of T that lie on
the (single) path from the leaf that represents label 1 and the root r of T . At the heart of
the proof lies the following observation: the expected additive increase in ||xu − xv||2 is O(ε)
for each of the non-leaf nodes of T that lie on the above mentioned path.

I Lemma 8. Let u, v ∈ V be such that xu and xv satisfy Observation 5, let x̃u and x̃v be the
output of Algorithm 2 for nodes u and v correspondingly, and let δ be the depth of T . Then,

E [||x̃u − x̃v||1] ≤ O(δ)ε .

Proof. Recall that Observation 5 states that xu and xv are identical, except that xv,1 =
xu,1 + ε. Hence, let P be the path from the leaf in T representing label 1 to the root r of T ,
and denote the sequence of nodes in this path by z1, z2, z3 . . . , zm (where z1 is the leaf and
zm is the root r). We use the following two assumptions that can be made without loss of
generality.

First, as the order of executions of Algorithm 1 at the nodes of T is irrelevant to the
outcome of Algorithm 2, as long as execution of Algorithm 1 at some node z of T is performed
after all executions of Algorithm 1 at all non-leaf nodes in the induced subtree of T that z is
its root. Hence, let us assume without loss of generality that all executions of Algorithm 1 at
nodes not in P are performed before any execution of Algorithm 1 at nodes z2, z3, . . . , zm.

Second, note that in every non-leaf node along P , i.e., z2, z3, . . . , zm, exactly one execution
of Algorithm 1 is performed for each of the nodes u and v. The execution of Algorithm 1
at some node zp, p = 2, . . . ,m, receives exactly two labels as input, one from the child zp−1
(along the path P) and the other from the other child of zp which we denote by wp−1 (not
on the path P). It is important to note that each of these two inputs might be random,
however, the input received from node wp−1 is always identical for both u and v. Therefore,
let us denote for simplicity of presentation and without loss of generality that the input
wp−1 sends to the execution of Algorithm 1 at node zp is label number p with its updated
marginal probability γp, i.e., (p, γp). Thus, we can focus only on the first m labels of K
since for labels m+ 1, . . . , k nodes u and v will always be identical and their contribution to
||x̃u − x̃v||1 will be always 0.

Denote by xtu ∈ [0, 1]m and xtv ∈ [0, 1]m the vector of marginal probabilities of the
first m labels after performing the execution of Algorithm 1 at node zt, for nodes u and v
respectively. Thus, for example, x1

u = (u1, γ2, γ3, . . . , γm) and x1
v = (u1 + ε, γ2, γ3, . . . , γm),

and xmu = (x̃u,1, x̃u,2, x̃u,3, . . . , x̃u,m) and xmv = (x̃v,1, x̃v,2, x̃v,3, . . . , x̃v,m). We prove that:

E
[
||xtu − xtv||1 − ||xt−1

u − xt−1
v ||1

]
≤ 2ε ∀t = 2, 3, . . . ,m. (2)

The proof of the lemma is completed by summing (2) over all relevant values of t, and
recalling that ||x1

u − x1
v||1 = ||xu − xv||1 = ε. Inequality (2) is proved by examining the joint

distribution of Algorithm 1 at node zt for both u and v. This computation is deferred to a
full version of the paper. J

ICALP 2017

34:10 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

Algorithm 3 Single Threshold (ST).
draw a threshold θ ∼ Unif [0, 1].
for every v ∈ V do
fST (v)← {` : θ ≤ h(xv,`)}.

end for
output fST .

Algorithm 4 Kleinberg-Tardos (KT).
while V 6= ∅ do
independently draw a threshold θ ∼ Unif [0, 1] and a uniform label ` ∈ K.
for every v ∈ V do

if θ ≤ xv,` then
fKT (v)← {`} and V ← V \ {v}.

end if
end for

end while
output fKT .

Proof (of Theorem 1). Apply Algorithm 2 to the given points y1, . . . ,yn with a label tree
T whose depth is O(log k). Lemmas 7 and 8 conclude the proof. J

4 O(log k)-Approximation for MML

Proof (of Theorem 2). We apply Algorithm 2 to the fractional solution provided by the
linear programming relaxation. Starting with assignment costs, Property (3) of Lemma 7
implies that all assignment costs are preserved in expectation. Considering separation costs,
one can always choose a label tree T whose depth is O(log k), and thus Lemma 8 implies
a multiplicative loss of O(log k) in the separation costs. Finally, Property (2) of Lemma 7
guarantees that every node v ∈ V is assigned at most dBve labels, but since dBve ≤ bv
our algorithm never deviates from the bound on the number of labels. Additionally, it is
important to note that Property (2) of Lemma 7 also ensures that every node v ∈ V is
assigned at least one label since bBvc ≥ 1. J

5 A Tight Approximation for Unbounded MML

Let us now focus on the basic building blocks. We use the following two algorithms as basic
building blocks for our final algorithm. The first is a simple single threshold algorithm.
Let h : [0, 1] → [0, 1] be a monotone non-decreasing distortion function. The algorithm
applies the distortion function h to each fractional value xv,`, and then finds a multi-labeling
fST (v) : V → 2K by assigning to v all labels ` whose distorted fractional value is larger than
a uniformly random threshold θ ∈ [0, 1]. The choice of an appropriate distortion function h
plays a crucial role in obtaining the best possible approximation of 2 for (Unbounded-MML).

The second building block we use is due to [25]. It is the 2-approximation they provide
for the uniform metric labeling problem.

Our algorithm is a simple “merge” of the two basic building blocks: Algorithms 3 and 4
are run independently and the union of their label assignments is returned.

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:11

Algorithm 5 Union.
independently run Algorithms 3 and 4 to obtain fST and fKT .
for every v ∈ V do
f(v)← fST (v) ∪ fKT (v).

end for
output f .

Let us focus on the assignment costs. We denote by xv ∈ [0, 1]k the vector corresponding
to v, i.e., (xv)` = xv,`. First we start by stating two immediate observations regarding the
assignment probabilities of labels to vertices by the basic building blocks (a full proof is
deferred to a full version of the paper).

I Lemma 9. For any v ∈ V and ` ∈ K the following two claims hold:
1. Pr [` ∈ fST (v)] = h(xv,`).
2. Pr [fKT (v) = {`}] = xv,`

||xv||1 .

The following corollary states the probability that label ` is assigned to vertex v by the
Union Algorithm (Algorithm 5), and is used to bound the total labeling cost of Algorithm 5.
Its proof is deferred to a full version of the paper.

I Corollary 10. For any v ∈ V and ` ∈ K, Pr [` ∈ f(v)] = h(xv,`) + xv,`

||xv||1 − h(xv,`) · xv,`

||xv||1 .

We focus now on the separation cost of the Union Algorithm (Algorithm 5). Note that
the expected separation cost of the Union Algorithm (Algorithm 5) equals:∑

(u,v)∈E

s(u, v) · E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
. (3)

The next lemma provides all the ingredients required for bounding the expected separation
cost (3), its proof is deferred to a full version of the paper.

I Lemma 11. For any u, v ∈ V such that xu = (xu,1, xu,2, . . . , xu,k) and
xv = (xu,1 + ε, xu,2, . . . , xu,k), the following hold:
1. Pr [1 ∈ f(u), 1 /∈ f(v)] = 0.
2. Pr [1 /∈ f(u), 1 ∈ f(v)] = ε ·

(
1− xu,1

||xu||1

)
·
(
h(xu,1+ε)−h(xu,1)

ε + 1−h(xu,1+ε)
||xu||+ε

)
.

3. Pr [` ∈ f(u), ` /∈ f(v)] = ε · xu,`(1−h(xu,`))
||xu||1(||xu||1+ε) for every ` 6= 1.

4. Pr [` /∈ f(u), ` ∈ f(v)] = 0 for every ` 6= 1.

In order to bound the expected separation cost of an edge (u, v), as given by (3), we
employ a global charging argument. Typically, if local charging works it is the case that the
part of (3) that corresponds to a fixed label `, i.e., E

[
1{`∈f(u)∧`/∈f(v)} + 1{`/∈f(u)∧`∈f(v)}

]
could be upper bounded by α · zu,v,` for some constant α > 0. Unfortunately, this is not
the case as can be seen from Lemma 11. Edge (u, v) satisfies Observation 5, i.e., xu and xv
differ only coordinate 1, and thus without loss of generality zu,v,` = 0 for all ` 6= 1. However,
for example, case (3) of Lemma 11 implies that u and v have a non-zero probability of
disagreeing on any label ` 6= 1. Thus, a local charging argument as described above fails
and we must resort to a global argument that sums over all possible labels `. The following
corollary provides exactly such a global guarantee, and its proof is deferred to a full version
of the paper.

ICALP 2017

34:12 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

I Corollary 12. Let xu = (xu,1, xu,2, . . . , xu,k) and xv = (xu,1 + ε, xu,2, . . . , xu,k) for an
edge (u, v) ∈ E. Then,

E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
≤
(
h(xu,1 + ε)− h(xu,1)

ε
+ 2− h(xu,1 + ε)

||xu||1 + ε

)
·
(

1− xu,1
||xu||1

)
· du,v .

Let us not focus on how to choose the distortion h. Given a specific choice of a distortion
function h : [0, 1] → [0, 1], Corollaries 10 and 12 determine the approximation guarantee.
Specifically, Corollary 10 determines the loss with respect to the labeling cost, and Corollary 12
determines the loss with respect to the separation cost.

The most natural distortion function is the identity, i.e., h(x) = x. The next theorem
shows that this choice of h yields a 3-approximation for (Unbounded-MML).

I Theorem 13. The Union Algorithm provides an approximation of 3 when h(x) = x.

Proof. First, consider the labeling costs. Corollary 10, along with the fact that ||xv||1 ≥ 1,
imply:Pr [` ∈ f(v)] = xv,` + xv,`

||xv||1 −
x2

v,`

||xv||1 ≤ 2xv,`
Pr [` /∈ f(v)] = (1− xv,`) ·

(
1− xv,`

||xv||1

)
≤ 1− xv,`

Hence, the labeling costs incur a loss of at most a factor of 2. Second, consider the separation
costs. Let (u, v) ∈ E and assume without loss of generality that xu = (xu,1, xu,2, . . . , xu,k)
and xv = (xu,1 + ε, xu,2, . . . , xu,k). Corollary 12, along with the fact that ||xv||1 ≥ 1, imply:

E
[∣∣∣∣1f(u) − 1f(v)

∣∣∣∣
1

]
≤
(
ε

ε
+ 2− xu,1 − ε
||xu||1 + ε

)(
1− xu,1
||xu||1

)
du,v ≤ 3du,v .

Thus, the separation costs incur a loss of at most a factor of 3, concluding the proof. J

We prove that choosing a quadratic distortion, i.e., h(x) = x2, provides a tight approxim-
ation of 2 for (Unbounded-MML). We are now ready to prove Theorem 3.

Proof (of Theorem 3). For simplicity we prove the theorem in two phases. In the first
phase we show that the quadratic distortion provides an approximation of (2 + ε). In the
second phase we show that, assuming ε ≤ (8k4)−1, the approximation is in fact 2. This
concludes the proof since ε can be chosen to be arbitrarily small.

Let us focus on the first phase. When considering the labeling costs, Corollary 10, along
with the facts that ||xv||1 ≥ 1 and 0 ≤ xv,` ≤ 1, imply:Pr [` ∈ f(v)] = x2

v,` + xv,`

||xv||1 −
x3

v,`

||xv||1 ≤ xv,` · (1− xv,`) ≤ 2xv,`
Pr [` /∈ f(v)] =

(
1− x2

v,`

)
·
(

1− xv,`

||xv||1

)
≤ (1− x2

v,`) ≤ 2(1− xv,`)

Hence, the labeling costs incur a loss of at most 2 in the approximation.
When considering the separation costs, let (u, v) ∈ E and assume without loss of generality

that xu = (xu,1, xu,2, . . . , xu,k) and xv = (xu,1 + ε, xu,2, . . . , xu,k). Corollary (12) implies:

E

[∑
`∈K

(
1{`∈f(u)∧`/∈f(v)} + 1{`/∈f(u)∧`∈f(v)}

)]
≤

≤

(
(xu,1 + ε)2 − x2

u,1

ε
+ 2− (xu,1 + ε)2

||xu||1 + ε

)(
1− xu,1
||xu||1

)
du,v

=
[(

2xu,1 +
2− x2

u,1

||xu||1 + ε

)(
1− xu,1
||xu||1

)
+ ε

(
||xu||1 − 2xu,1
|xu||1 + ε

)(
1− xu,1
||xu||1

)]
du,v . (4)

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:13

Define the following function L(z, t) : [0, 1]× [1,∞)→ R+, L(z, t) ,
(

2z + 2−z2

t

)
·
(
1− z

t

)
.

Clearly the maximum value of L upper bounds the left term of (4), when plugging z = xu,1
and t = ||xu||1. One can verify that max0≤z≤1 maxt≥1 {L(z, t)} ≤ 2 (details are deferred to
a full version of the paper). Note that the right term of (4) is at most ε, hence the expected
separation cost is at most (2 + ε)du,v. This concludes the first phase. The proof of the second
phase is deferred to a full version of the paper. J

The proof of Theorem 4 is deferred to a full version of the paper.

References
1 A.A. Ageev and M. I. Sviridenko. Pipage rounding: a new method of constructing al-

gorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8:307–328, 2004.

2 Arash Asadpour, Michel X. Goemans, Aleksander Mądry, Shayan Oveis Gharan, and Amin
Saberi. An O(logn/ log logn)-approximation algorithm for the asymmetric traveling sales-
man problem. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA’10, pages 379–389, 2010.

3 Arash Asadpour and Amin Saberi. An approximation algorithm for max-min fair allocation
of indivisible goods. SIAM J. Comput., 39(7):2970–2989, 2010.

4 Zafer Barutçuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchical multi-label
prediction of gene function. Bioinformatics, 22(7):830–836, 2006.

5 Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, and Amanda Clare. De-
cision trees for hierarchical multilabel classification: A case study in functional genomics.
In PKDD, pages 18–29, 2006.

6 Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, FOCS’99, pages 450–457,
1999.

7 Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. Learning multi-
label scene classification. Pattern Recognition, 37(9):1757–1771, 2004.

8 Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient approx-
imations. In CVPR, pages 648–655, 1998.

9 Niv Buchbinder, Joseph (Seffi) Naor, and Roy Schwartz. Simplex partitioning via exponen-
tial clocks and the multiway cut problem. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC’13, pages 535–544, 2013.

10 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. Maximizing a submod-
ular set function subject to a matroid constraint. SIAM Journal on Computing, 2011.

11 Gruia Călinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. In SODA’01, pages 8–16, 2001.

12 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science, pages 575–584, 2010.

13 R Chellappa and A. Jain. Markov Random Fields: Theory and Applications. Academic
Press, 1993.

14 Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. JMLR, 2:265–292, 2002.

15 Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation algorithm
for multiway cut. J. Comput. Syst. Sci., 60(3):564–574, 2000.

16 William H. Cunningham and Lawrence Tang. Optimal 3-terminal cuts and linear program-
ming. In IPCO’99, pages 114–125, 1999.

ICALP 2017

34:14 Correlated Rounding of Multiple Uniform Matroids and Multi-Label Classification

17 E. Dahlhaus, D. S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. The
complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894, 1994.

18 Richard C. Dubes and Anil K. Jain. Random field models in image analysis. Journal of
Applied Statistics, 16(2):131–164, 2006.

19 Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An improved
approximation algorithm for the 0-extension problem. In SODA’03, pages 257–265, 2003.

20 Evelyn Fix and Joseph L. Hodges Jr. Discriminatory analysis-nonparametric discrimination:
consistency properties. Technical report, DTIC Document, 1951.

21 Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

22 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depend-
ent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–360,
2006.

23 David R. Karger, Philip N. Klein, Clifford Stein, Mikkel Thorup, and Neal E. Young.
Rounding algorithms for a geometric embedding of minimum multiway cut. Math. Oper.
Res., 29(3):436–461, 2004.

24 Hisashi Kashima, Satoshi Oyama, Yoshihiro Yamanishi, and Koji Tsuda. On pairwise
kernels: An efficient alternative and generalization analysis. In Advances in Knowledge
Discovery and Data Mining, pages 1030–1037. Springer, 2009.

25 Jon M. Kleinberg and Éva Tardos. Approximation algorithms for classification problems
with pairwise relationships: metric labeling and markov random fields. J. ACM, 49(5):616–
639, 2002.

26 V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan.
A unified approach to scheduling on unrelated parallel machines. J. ACM, 56(5):28:1–28:31,
2009.

27 Stan Z. Li. Markov random field modeling in computer vision. Computer science workbench.
Springer, 1995.

28 Rajsekar Manokaran, Joseph (Seffi) Naor, Prasad Raghavendra, and Roy Schwartz. Sdp
gaps and ugc hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, STOC’08, pages 11–20, 2008.

29 Stephen Della Pietra, Vincent J. Della Pietra, and John D. Lafferty. Inducing features of
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 19(4):380–393, 1997.

30 Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, Tao Mei, and Hong-Jiang Zhang.
Correlative multi-label video annotation. In Proceedings of ACMMM’07, pages 17–26, 2007.

31 J. Ross Quinlan. C4.5: Programs for Machine Learning. Elsevier, 2014.
32 Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: A technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.
33 Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for

multi-label classification. Machine learning, 85(3):333–359, 2011.
34 Mohammad S Sorower. A literature survey on algorithms for multi-label learning. Technical

report, 2010.
35 A. Srinivasan. Distributions on level-sets with applications to approximation algorithms.

In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
588–597, 2001.

36 Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview. Inter-
national Journal of Data Warehousing and Mining, 3(3):1–13, 2007.

37 Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label data. In
In Data Mining and Knowledge Discovery Handbook, pages 667–685, 2010.

S. Chen, D. Di Castro, Z. Karnin, L. Lewin-Eytan, J. Naor, and R. Schwartz 34:15

38 Naonori Ueda and Kazumi Saito. Parametric mixture models for multi-labeled text. In
NIPS, pages 721–728, 2002.

39 Adriano Veloso, Wagner Meira Jr., Marcos André Gonçalves, and Mohammed Javeed Zaki.
Multi-label lazy associative classification. In PKDD, pages 605–612, 2007.

40 Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik, and Cordelia Schmid. Local features
and kernels for classification of texture and object categories: A comprehensive study.
International journal of computer vision, 73(2):213–238, 2007.

41 Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition, 40:2007, 2007.

42 Zhi-Hua Zhou and Min-Ling Zhang. Multi-instance multi-label learning with application
to scene classification. In Proceedings of NIPS, pages 1609–1616, 2006.

ICALP 2017

When the Optimum is also Blind: a New
Perspective on Universal Optimization∗†

Marek Adamczyk1, Fabrizio Grandoni2, Stefano Leonardi3, and
Michał Włodarczyk4

1 University of Bremen, Bremen, Germany
m.adamczyk@uni-bremen.de

2 IDSIA, USI-SUPSI, Lugano, Switzerland
fabrizio@idsia.ch

3 Sapienza University of Rome, Rome, Italy
leonardi@dis.uniroma1.it

4 University of Warsaw, Warsaw, Poland
m.wlodarczyk@mimuw.edu.pl

Abstract
Consider the following variant of the set cover problem. We are given a universe U = {1, ..., n}
and a collection of subsets C = {S1, ..., Sm} where Si ⊆ U . For every element u ∈ U we need to
find a set φ (u) ∈ C such that u ∈ φ (u). Once we construct and fix the mapping φ : U 7→ C a
subset X ⊆ U of the universe is revealed, and we need to cover all elements from X with exactly
φ(X) :=

⋃
u∈X φ (u). The goal is to find a mapping such that the cover φ(X) is as cheap as

possible.
This is an example of a universal problem where the solution has to be created before the

actual instance to deal with is revealed. Such problems appear naturally in some settings when we
need to optimize under uncertainty and it may be actually too expensive to begin finding a good
solution once the input starts being revealed. A rich body of work was devoted to investigate
such problems under the regime of worst case analysis, i.e., when we measure how good the
solution is by looking at the worst-case ratio: universal solution for a given instance vs optimum
solution for the same instance.

As the universal solution is significantly more constrained, it is typical that such a worst-case
ratio is actually quite big. One way to give a viewpoint on the problem that would be less
vulnerable to such extreme worst-cases is to assume that the instance, for which we will have to
create a solution, will be drawn randomly from some probability distribution. In this case one
wants to minimize the expected value of the ratio: universal solution vs optimum solution. Here
the bounds obtained are indeed smaller than when we compare to the worst-case ratio.

But even in this case we still compare apples to oranges as no universal solution is able
to construct the optimum solution for every possible instance. What if we would compare our
approximate universal solution against an optimal universal solution that obeys the same rules
as we do? We show that under this viewpoint, but still in the stochastic variant, we can indeed
obtain better bounds than in the expected ratio model. For example, for the set cover problem we
obtain Hn approximation which matches the approximation ratio from the classic deterministic
offline setup. Moreover, we show this for all possible probability distributions over U that have a
polynomially large carrier, while all previous results pertained to a model in which elements were
sampled independently. Our result is based on rounding a proper configuration IP that captures
the optimal universal solution, and using tools from submodular optimization.

The same basic approach leads to improved approximation algorithms for other related prob-
lems, including Vertex Cover, Edge Cover, Directed Steiner Tree, Multicut, and Facility Location.

∗ A full version of the paper is available at http://arxiv.org/abs/1707.01702.
† The second author was partially supported by the ERC Starting Grant NEWNET 279352 and the SNSF

Grant APPROXNET 200021_159697/1. The fourth author was partially supported by the National
Science Centre of Poland Grant UMO-2016/21/N/ST6/00968.

EA
T

C
S

© Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michał Włodarczyk;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://arxiv.org/abs/1707.01702
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 When the Optimum is also Blind: a New Perspective on Universal Optimization

2012 ACM Subject Classification F. Theory of Computation, G.1.6 Optimization

Keywords and phrases approximation algorithms, stochastic optimization, submodularity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.35

1 Introduction

In a typical online problem part of the input is revealed gradually to an algorithm, which has
to react to each new piece of the input by making irrevocable choices. In an online covering
problem the online input consists of a sequence of requests, which have to be satisfied by the
algorithm by buying items at minimum total cost.

Some online applications have severe resource constraints, typically in terms of time
and/or computational power. Hence even making an online (non-trivial) choice might be too
costly. In these settings it makes sense to consider universal algorithms. Roughly speaking,
the goal of these algorithms is to pre-compute a reaction to each possible input, so that the
online choice can then be made very quickly (say, looking at some pre-computed table). Since
the adversary has a lot of power in the universal setting, typically one assumes a stochastic
input. In particular, the input is sampled according to some probability distribution π, which
is either given in input or that can be sampled multiple times at polynomial cost per sample
(oracle model).

The most relevant prior work for this paper is arguably due to Grandoni et al. [21]
(conference version in [20]). The authors consider the universal stochastic version of some
classical NP-hard covering problems such as set cover, non-metric facility location, multicut
etc. They provide polynomial-time approximation algorithms for those problems in the
independent activation model, where each request u is independently sampled with some
known probability pu. Crucially, in their work the approximation ratio is obtained by
comparing the expected cost of the approximate solution with the expected cost of the
optimal offline solution (that knows the future sampled input). For example, in the set cover
case they present a polynomial-time algorithm that computes a mapping of expected cost
at most O (log (nm))E [OPToff(X)], where the expectation is taken over the sampling of X
according to π and OPToff(X) is the minimum (offline) cost of a set cover of X. Here n is
size of the universe and m the number of subsets. For m� n this ratio becomes O

(
logm

log logm

)
and is tight. They also consider the universal (non-metric) facility location problem in the
independent activation model, and provide a O (logn) approximation (in the above sense),
where n is the total number of clients and facilities. We remark that their method seems not
to lead to any improved approximation factor in the metric version of the problem. We finally
mention their O(log2 n) approximation for universal multicut in the independent activation
model, where n is the number of nodes in the graph.

1.1 Our Results and Techniques
Comparing with the offline optimum as in [21] might be too pessimistic. And often when
we need to optimize under uncertainty we cannot really find a better benchmark, flagship
example of it would be online problems. However, stochastic two-stage [29, 42] and stochastic
adaptive [38, 13, 12, 23] problems have proven that one can actually compare an approximate
solution with an optimum algorithm that is not omnipotent but obeys the same rules of the
model as the approximate one. This inspired us to ask the following question:

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.35

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:3

Is it also possible in a stochastic universal problem to compare our algorithm with an
optimum solution that is restricted by the model in the same way as we are?

In this paper we show that we can do this indeed. In this way we manage to obtain tighter
approximation ratios – which of course are compared to a weaker benchmark, but this
benchmark itself can be interpreted as more fair and meaningful – and it also allows us to
approach more general problems.

1.1.1 Universal Stochastic Set Cover
We shall describe carefully the Universal Stochastic Set Cover problem in this section
so that we will fully present the model. For the remaining problems their full statements will
appear in appropriate sections.

In the Universal Stochastic Set Cover problem we are given in input a universe
U = {1, 2, ..., n}, and a collection C ⊆ 2U of m subsets S ⊆ U , each one with an associated
cost c(S). We need to a priori map each element u ∈ U into some set φ(u) ∈ C. Then
a subset X ⊆ U is sampled according to some probability distribution π (either given in
input as a set of scenarios or only by accessing an oracle), and we have to buy the sets
φ(X) =

⋃
u∈X φ(u) as the cover of X. Our goal is to minimize the expected value of the total

cost, i.e., EX∼π [c (φ(X))] = EX∼π
[∑

S∈φ(X) c(S)
]
. One of the most important aspects in

our model is that we do not compare ourselves against the expected value of an optimum
offline solution for a given scenario, that is, not against EX∼π [OPToff (X)], but what we
compare ourselves with is

min
φ:∀u∈Uu∈φ(u)

EX∼π

 ∑
S∈φ(X)

c(S)

which is the expected outcome of an optimal universal mapping.

The results depend on the probability distribution with which we deal in an instance of
the problem. Possible probability distributions are:

Scenario model: Here we are given in input all the sets X1, ..., XN ⊆ U such that
PX∼π [X = Xi] > 0 with the associated probability. This model allows for explicit use of
all the scenarios in the computations. For the Universal Stochastic Set Cover we
obtain O(logn)-approximation in this case even in the weighted case.
Oracle model: This is the most general model. We have a black-box access to an oracle
Π from which we can sample a scenario from distribution π. We assume that taking a
sample requires polynomial time. In this model we can find an O (logn)-approximation
for Universal Stochastic Set Cover in polynomial time only for the unweighted
case; in the weighted case we achieve the same approximation factor in pseudo-polynomial
time depending on maxS∈C c (S).
Independent activation model: In this model we assume that every element u ∈ U is
independently sampled with some given probability pu. This model does not capture
correlations of elements, and therefore sometimes it is not fully realistic. Though it
cannot be represented by a polynomial number of scenarios, its nice properties allow one
to develop good approximation algorithms for several problems. In this setting we are
able to approximate Universal Stochastic Set Cover within a factor O (logn) in
polynomial time even in the weighted case.

Our results are obtained by defining a proper configuration LP (with an exponential number
of variables) that captures the optimal mapping. We are able to solve this LP via the ellipsoid

ICALP 2017

35:4 When the Optimum is also Blind: a New Perspective on Universal Optimization

method using a separation oracle. Somehow interestingly, our separation oracle has to solve a
submodular minimization problem. Then we can round the fractional solution in a standard
way.

1.1.2 Overview of the results
The robustness of our framework allows us to address universal extensions of several covering
problems. After expressing the goal as a true approximation task, we can adapt tools from
the rich theory of approximation algorithms.

Here we give an overview of our results. Detailed statements of the theorems appear in
appropriate sections.

Scenario model

In this setting, we are able to construct an LP-based polynomial-time O(logn)-approximation
to the universal stochastic version of Set Cover (Theorem 6), which generalizes to Non-
Metric Facility Location and Constrained Set Multicover. In fact, the latter
algorithm achieves an approximation guarantee of exactly Hn. Different rounding proced-
ure leads to a 2-approximation for Universal Stochastic Vertex Cover. All these
approximation ratios match the best guarantees obtained in the deterministic world. What is
more, the exact polynomial time algorithm for Edge Cover extends to the scenario model.
We also present an O(

√
k)-approximation for Universal Stochastic Directed Steiner

Tree on acyclic graphs, where k is the number of terminals. Except the Set Cover problem,
proof of all of these Theorems will appear in the full version of the paper.

Independent activation model

In this setting, we are able to obtain several results in flavour of the O(1)-approximation
for the Maybecast problem by Karger and Minkoff [33]. We present a 6.33-approximation
for Universal Stochastic Metric Facility Location (Theorem 8) and an O(logn)-
approximation for Universal Stochastic Multicut (Theorem 12). As an intermediate
result, we obtain a 4.75-approximation for Universal Stochastic Multicut on trees.

Oracle model

We can generalize most of our results for the scenario model to this setting, with the restriction
that in the weighted case we get a pseudo-polynomial running time. This will be discussed
in the full version.

1.2 Related work
Other universal-like problems have been addressed in the literature. For instance, in the
universal TSP problem one computes a permutation of the nodes that is then used to visit
a given subset of nodes. This problem has been studied both in the worst-case scenario
for the Euclidean plane [39, 6] and general metrics [32, 22, 27], as well as in the average-
case [31, 7, 43, 19, 45]. (For the related problem of universal Steiner tree, see [33, 32, 22, 19].)
Jia et al. [32] introduced the universal set cover and universal facility location problems,
and studied them in the worst-case: they show that the adversary is very powerful in such
models, and give nearly-matching Ω(

√
n) and O(

√
n logn) bounds on the competitive factor.

These problems have been later studied by Grandoni et al. in the independent activation
model [21], as already mentioned before.

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:5

A somewhat related topic is oblivious routing [40, 28, 8] (see, e.g., [47, 49] for special cases).
A tight logarithmic competitive result as well as a polynomial-time algorithm to compute the
best routing is known in the worst case for undirected graphs [5, 41]. For oblivious routing on
directed graphs in the worst case the lower bound of Ω(

√
n) [5] nearly matches upper bounds

in [24] but for the average case. The authors of [25] give an O(log2 n)-competitive oblivious
routing algorithm when demands are chosen randomly from a known demand-distribution;
they also use “demand-dependent” routings and show that these are necessary.

Another closely related notion is the one of online problems. These problems have a long
history (see, e.g., [9, 16]), and there have been many attempts to relax the strict worst-case
notion of competitive analysis: see, e.g., [14, 1, 19] and the references therein. Online problems
with stochastic inputs (either i.i.d. draws from some distribution, or inputs arriving in random
order) have been studied, e.g., in the context of optimization problems [36, 37, 19, 4], secretary
problems [18], mechanism design [26], and matching problems in Ad-auctions [35].

Alon et al. [2] gave the first online algorithm for set cover with a competitive ratio of
O(logm logn); they used an elegant primal-dual-style approach that has subsequently found
many applications (e.g., [3, 10]). This ratio is the best possible under complexity-theoretic
assumptions [34]; even unconditionally, no deterministic online algorithm can do much
better than this [2]. Online versions of metric facility location are studied in both the worst
case [36, 17], the average case [19], as well as in the stronger random permutation model [36],
where the adversary chooses a set of clients unknown to the algorithm, and the clients are
presented to us in a random order. It is easy to show that for our problems, the random
permutation model (and hence any model where elements are drawn from an unknown
distribution) are as hard as the worst case.

One can of course consider the (offline) stochastic version of optimization problems. For
example, k-stage stochastic set cover is studied in [29, 44], with an improved approximation
factor (independent from k) later given in [46].

The result for the Oracle model are based on the Sample Average Approximation approach,
see [11] for the application most relevant to our work.

As mentioned before, in two-stage stochastic problems [42, 29] and stochastic adaptive
problems [13, 38, 12, 23] it is possible to compare our algorithms with an optimum algorithm
which is equally constrained in the model as our problem, and this is what shed a light on the
possibility of obtaining results in the same spirit for the universal stochastic optimization.

In two recent papers [48, 15] authors looked at universal optimization over scenarios, but
compared against the average offline optimum, and not the optimum universal solution as
we do. All the properties of submodular functions used in our work can be found here [50].

2 Preliminaries

Here we give some basic definitions and properties. Given a universe U , we call a function
f : 2U → R submodular if f(A) +f(B) ≥ f(A∩B) +f(A∪B) for each pair of sets A,B ⊆ U .
Function f is monotone if f(B) ≥ f(A) for A ⊆ B. When considering a submodular function,
we assume that it is implicitly given in the form of an oracle that can be queried on a specific
A ⊆ U and returns the value f(A) in constant time.

I Theorem 1 (Iwata et al. [30]). There is an algorithm to minimize a given submodular
function f : 2U → N in polynomial time in |U | and in the number of bits needed to encode
the largest value of f .

Let us introduce a function gπ : 2U → R+, gπ(A) = P[A ∩ X 6= ∅] where X is drawn
from the distribution π. Our framework exploits crucially the fact that gπ is a submodular
function.

ICALP 2017

35:6 When the Optimum is also Blind: a New Perspective on Universal Optimization

I Lemma 2. Function gπ is submodular and monotone.

Proof. Observe that gπ(A) =
∑
X⊆U π(X) · 1 [A ∩X 6= ∅]. Function A→ 1 [A ∩X 6= ∅] is

submodular and a combination of such functions with positive coefficients is submodular.
The monotonicity holds trivially by definition. J

3 Universal Set Cover

In this section we present our approximation algorithm for universal set cover. We start by
considering the case that π is given in input, in the form of a set of N scenarios X1, . . . , XN ,
where scenario Xi ⊆ U is sampled with some given probability pi = π(Xi). Then we
(partially) extend our approach to the oracle model. Recall that n = |U | is the number of
elements in the universe.

Consider the scenario case. Recall that, for B ⊆ U , gπ(B) = P[B ∩X 6= ∅], where the
probability is taken over X ⊆ U sampled from π (namely, one of the scenarios Ai in this
case). As mentioned before, gπ is a submodular function over the universe U .

We start by expressing our problem as the following integer program (IP).

min
∑
S∈C

c(S)
∑
B⊆S

ySB · gπ(B) (IP-SC)

s.t.
∑
B3u

∑
S⊇B

ySB ≥ 1 ∀u∈U

ySB ∈ {0, 1} ∀S∈C∀B⊆S . (1)

We obtain a linear relaxation (LP-SC) of (IP-SC) by replacing the integrality constraints
(1) with ySB ≥ 0.

I Lemma 3. Integer program (IP-SC) is equivalent to Universal Stochastic Set Cover.

Proof. It is easy to translate a mapping φ : U → C into some feasible solution to (LP-SC).
All variables are zeros by default and for each S ∈ C such that φ−1(S) is non-empty, we set
ySφ−1(S) = 1. Note that always φ−1(S) ⊆ S. In that setting the objective value equals the
expected cost of the covering.

Let us fix some feasible solution {ySB}S∈C, B⊆S . We know that for each u ∈ U there is
some pair (B,S) so that u ∈ B and ySB = 1 (we will call it a covering pair). As long as
there are many covering pairs for some u, we replace one of them with (B \ {u}, S). The
new solution is still feasible and the objective value is no greater as function gπ is monotone.
Therefore there exists an optimal solution so that each u ∈ U admits exactly one covering
pair (Bu, Su). We can define φ(u) = Su to obtain a covering with expected cost equal to the
value of the objective function. J

(LP-SC) has an exponential number of variables: in order to solve it we consider its
dual, and provide a separation oracle to solve it. Interestingly, our separation oracle uses
submodular minimization.

I Lemma 4. (LP-SC) can be solved in polynomial time.

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:7

Proof. We show how to solve the dual of (LP-SC), which is as follows:

max
∑
u∈U

αu (DP-SC)

s.t.
∑
u∈B

αu ≤ c(S) · gπ(B) ∀S∈C∀B⊆S

αu ≥ 0 ∀u∈U .

Observe that (DP-SC) has a polynomial number of variables and an exponential number
of constraints. In order to solve (DP-SC), it is sufficient to provide a (polynomial-time)
separation oracle, i.e. a procedure that, given a tentative solution {αu}u∈U , either determines
that it is feasible or provides a violated constraint.

This reduces to check, for each given S ∈ C, whether there exists B ⊆ S such that∑
u∈B αu > c(S) · gπ(B). In other terms, we wish to determine whether the minimum of

function hS(B) := c(S) · gπ(B)−
∑
u∈B αu is negative. Observe that the value of hS(B) can

be computed in polynomial time for a given B, since π is given in input as a set of scenarios.
Note also that hS is submodular: indeed gπ is submodular, costs c(S) are non-negative by
assumption, and −

∑
u∈B αu is linear (hence submodular). Hence we can minimize hS over

B ⊆ S in polynomial time via Theorem 1.1 J

Given the optimal solution to (LP-SC), it is sufficient to round it with the usual randomized
rounding algorithm for set cover.

I Lemma 5. The optimal solution to (LP-SC) can be rounded to an integer feasible solution
while increasing the cost by a factor O(logn) in expected polynomial time.

Proof. In the optimal solution, for each S ∈ C, variables {ySB}B⊆S define a probability
distribution. We sample from this distribution (independently for each S) for q = 2 lnn
many times. Let BS1 , . . . , BSq be the sets sampled for S: we let BS := ∪iBSi and tentatively
map elements of BS into S. In case the same element u belongs to BS′ and BS′′ for S′ 6= S′′,
we replace BS′ with BS′ \ {u} and iterate: this way each element is mapped into exactly
one set. The final sets BS induce our approximate mapping.

We can upper bound the expected cost of the solution by
∑
S∈C c(S)

∑q
i=1 gπ(BSi). Indeed,

by the subadditivity of gπ (which is implied by submodularity and non-negativity), one
has gπ(BS) ≤

∑q
i=1 gπ(BSi). Furthermore, gπ(BS′ \ {u}) ≤ gπ(BS′) since gπ is monotone.

Trivially

E

[∑
S∈C

c(S)
q∑
i=1

gπ(BSi)
]

= 2 lnn · E
[∑
S∈C

c(S)gπ(BS1)
]

= 2 lnn ·
∑
S∈C

c(S)
∑
B⊆S

ySB · gπ(BS) ≤ 2 lnn ·OPT.

And from Markov’s inequality

P

[∑
S∈C

c(S)
q∑
i=1

gπ(BSi) > 4 lnn ·OPT
]
<

1
2 .

1 In order to solve the configuration LP, there is an alternative to finding a separation oracle for the dual.
We can transform the configuration LP into a optimization program where we need to minimize a sum
of Lovasz’s extensions [50], which are convex functions, over a convex region. This approach would be
possibly more efficient, but we have chosen the one above for a simpler presentation.

ICALP 2017

35:8 When the Optimum is also Blind: a New Perspective on Universal Optimization

The probability that an element u ∈ U is not covered with a single sampling over ySB is∏
B3u

∏
S⊇B

(1− ySB) ≤
∏
B3u

∏
S⊇B

e−y
S
B = e

−
∑

B3u

∑
S⊇B

ySB ≤ 1
e
.

Therefore, by the independence of the sampling and the union bound, the probability that
at least one element is not covered is at most n · 1

e2 lnn = 1
n .

Altogether this gives a Monte-Carlo algorithm. As usual, this can be turned into a
Las-Vegas algorithm with expected polynomial running time by repeating the procedure
when some element is not covered or the cost of the solution is greater than 4 lnn ·OPT . J

The following theorem is a straight-forward consequence of Lemmas 4 and 5.

I Theorem 6. Universal Stochastic Set Cover in the scenario model admits a
polynomial-time O(logn) approximation algorithm w.r.t. the optimal universal mapping.

It turns out that not only the randomized rounding technique can be adapted to the
universal stochastic model but also the dual fitting technique. This allows us to improve the
above result to a purely deterministic algorithm with the approximation ratio exactly equal
to Hn. What is more, we are able to consider more general problems where each element u
is required to be covered at least r(u) times. Details will appear in the full version.

Our results can be also partially generalized to the oracle model, where the probability
distribution is given only by a blackbox oracle. In the unweighted case we are able to give a
polynomial time algorithm, while in the weighted case a pseudo-polynomial time one where
the complexity depends also on maxS c (S). Again, details will appear in the full version.

Finally, since in the independent activation model we can compute function gπ in
polynomial time, our approach works also in that case.

I Theorem 7. Universal Stochastic Set Cover in the independent activation model
admits a polynomial-time O(logn) approximation algorithm w.r.t. the optimal universal
mapping.

4 Metric facility location in the independent activation model

In the stochastic universal variant of the metric uncapacitated facility location (UniStoch-FL)
problem, we have a set of clients C and a set of facilities F . For each client c ∈ C and
facility f ∈ F , there is a cost d(c, f) paid if c is connected to f ; furthermore, there is a cost
of associated with opening facility f ∈ F . In the universal solution we need to assign every
client c ∈ C to a facility φ(c) ∈ F . Once a set X ⊆ U is realized we need to open all facilities
f ∈

⋃
c∈X φ (c) and connect each c ∈ X to φ (c). The goal is to minimize the expected total

cost of opening the facilities and connecting clients to facilities:

EX∼π

 ∑
f∈
⋃
c∈X

φ(c)

of +
∑
c∈X

d (c, φ (c))

 .
Just by direct modeling of the above formula with the configuration LP we can see that

the following is a relaxation of an integer program that solves the problem:

min
∑
f∈F

of
∑
B⊆C

yfB · gπ (B) +
∑
c∈C

∑
f∈F

gπ(c) · d (c, f) ·
∑

B⊆C:c∈B
yfB (CONF-LP-FL)

s.t. ∀c∈C :
∑
f∈F

∑
B⊆C:c∈B

yfB ≥ 1 and ∀f∈F∀B⊆C : yfB ≥ 0.

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:9

LetOPTCONF−LP−FL be the optimal solution to the above LP. It holds thatOPTCONF−LP−FL
is a lower-bound on the expected outcome of an optimal universal solution.

What we are able to present in this section is a constant approximation in the case of
independent activation where every client c is independently chosen into the scenario with
probability pc. This restriction is due to the fact that we do not know of a good rounding
procedure in the general case, while we can solve the configuration LP even with the arbitrary
scenario distribution.

I Theorem 8. For Universal Stochastic Facility Location in the independent activa-
tion model there exists an algorithm with expected outcome cost at most 6.33·OPTCONF-LP-FL.

4.1 Transforming the LP
We start off with the following two inequalities for any S ⊆ C (see [33] for proof):

min
(

1,
∑
t∈S

pt

)
≥ gπ (S) = 1−

∏
t∈S

(1− pt) ≥
(

1− 1
e

)
min

(
1,
∑
t∈S

pt

)
. (2)

Now based on this inequality we shall transform and relax the (CONF-LP-FL) to get one
that is a bit easier to tackle. The inequality implies that the solution of the following LP is
at most e

e−1 bigger than the solution of (CONF-LP-FL):

min
∑
f∈F

of
∑
B⊆C

yfB ·min
(

1,
∑
c∈B

pc

)
+
∑
c∈C

∑
f∈F

gπ(c) · d (c, f) ·
∑

B⊆C:c∈B
yfB (3)

s.t.
∑
f∈F

∑
B⊆C:c∈B

yfB ≥ 1 ∀c∈C

yfB ≥ 0 ∀f∈F∀B⊆C .

Let Big be a collection of sets B ⊆ C such that
∑
t∈B pt > 1, and let Sml be a collection

of sets B ⊆ C such that
∑
t∈B pt ≤ 1. Define xfc to be the extent to which c was assigned

to f via sets from Big, and x̄fc the extent to which c was assigned to f via sets from Sml,
i.e., xfc =

∑
B∈Big:c∈B y

f
B and x̄fc =

∑
B∈Sml:c∈B y

f
B . Also, for every client c there is an

obvious inequality
∑
B∈Big y

f
B ≥

∑
B∈Big:c∈B y

f
B = xfc . Now we can lower bound (3):

∑
f∈F

of

 ∑
B∈Big

yfB +
∑

B∈Sml

yfB ·

∑
j∈B

pj

+
∑
c∈C

∑
f∈F

pc · d (c, f) ·
∑

B⊆C:c∈B
yfB

=
∑
f∈F

of

 ∑
B∈Big

yfB

+
∑
f∈F

∑
c∈C

of · pc

(∑
B∈Sml:c∈B

yfB

)
+
∑
c∈C

∑
f∈F

pc · d (c, f) ·
∑

B⊆C:c∈B
yfB

≥
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

∑
c∈C

of · pc · x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
xfc + x̄fc

)
.

I Lemma 9. Let OPTLP−FL be the optimum solution of the following LP:

min
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

of ·
∑
c∈C

pc · x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
xfc + x̄fc

)
(LP-FL)

s.t. ∀c∈C :
∑
f∈F

xfc + x̄fc ≥ 1 and ∀f∈F∀c∈C : xfc , x̄fc ≥ 0.

It holds that OPTLP−FL ≤ e
e−1 ·OPTCONF−LP−FL.

ICALP 2017

35:10 When the Optimum is also Blind: a New Perspective on Universal Optimization

4.2 The rounding procedure

LP-FL has a polynomial number of variables and constraints, and so it can be solved in
polynomial time; denote by

(
xfc , x̄

f
c

)
c∈C,f∈F the optimal solution. Once we solve it we split

the clients into two groups:

Cbig :=

c ∈ C
∣∣∣∣∣∣
∑
f∈F

xfc ≥
3
4

 and Csml =

c ∈ C
∣∣∣∣∣∣
∑
f∈F

x̄fc >
1
4

 .

Dealing with clients from Cbig

From the definition we get that
(4

3x
f
c

)
c∈Cbig,f∈F

is a feasible solution to the following
problem, which is a variant of the deterministic facility location problem where the price for
the distance for client c ∈ C is proportional to the factor pc:

min
∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑
c∈C

∑
f∈F

pc · d (c, f) · zfc

s.t. ∀c∈Cbig :
∑
f∈F

zfc ≥ 1 and ∀f∈F∀c∈Cbig : zfc ≥ 0.

For this problem there exists a 3-approximation algorithm based on primal-dual method (the
proof is a simple exercise and will appear in the full version of the paper); let

(
zfc
)
c∈C,f∈F

be such an integral solution. Thus we have∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑

c∈Cbig

∑
f∈F

pc · d (c, f) · zfc

≤ 3·
∑
f∈F

of · max
c∈Cbig

(
4
3x

f
c

)
+ 3 ·

∑
c∈Cbig

∑
f∈F

pc · d (c, f) · 4
3x

f
c

≤ 4·
∑
f∈F

of ·max
c∈C

(
xfc
)

+ 4 ·
∑
c∈C

∑
f∈F

pc · d (c, f) · xfc . (4)

Dealing with clients from Csml

Now the
(
4 · x̄fc

)
c∈Csml,f∈F

vector is a feasible solution to the following LP:

min
∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · zfc

s.t. ∀c∈Csml :
∑
f∈F

zfc ≥ 1 and ∀f∈F∀c∈Csml : zfc ≥ 0.

We can find an integral solution to this LP easily: just assign every client c ∈ Csml to the
facility f that minimizes of + d (c, f). If

(
zfc
)
c∈Csml,f∈F

is such an integral solution, then
we have that∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · zfc ≤
∑

c∈Csml

∑
f∈F

pc (of + d (c, f)) · 4x̄fc . (5)

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:11

Combining the two solutions

In this way the solution composed from two integer vectors
(
zfc
)
c∈Cbig,f∈F

and
(
zfc
)
c∈Csml,f∈F

is a feasible solution to the (LP-FL), and by combining (4) and (5) its value is∑
f∈F

of · max
c∈Cbig

(
zfc
)

+
∑
f∈F

∑
c∈Csml

of · pc · zfc +
∑
c∈C

∑
f∈F

pc · d (c, f) · zfc

≤ 4·
∑
f∈F

of ·max
c∈C

(
xfc
)

+
∑
f∈F

∑
c∈C

of · pc · 4x̄fc +
∑
c∈C

∑
f∈F

pc · d (c, f) ·
(
4xfc + 4x̄fc

)
≤ 4· e

e− 1OPTCONF−LP−FL < 6.33 ·OPTCONF−LP−FL.

Thus we found a solution
(
zfc
)
c∈C,f∈F for the (LP-FL) whose value is at most 6.33 ·

OPTCONF−LP−FL. However using the left-side inequality from (2) we can transform it into
a solution of the (CONF-LP-FL) without losing its value. Hence we found a solution to the
Universal Stochastic Facility Location which is a 6.33-approximation.

5 Multicut in the independent activation model

In the (classical version of the) Multicut problem we are given an undirected graph G

with non-negative costs ce for all e ∈ E(G) and a set of pairs of vertices (s1, t1), . . . , (sk, tk).
The goal is to erase a subset of edges F of small cost so that there is no path connecting sc
with tc for any c. Multicut may be considered a covering problem in which the client c is
covered if F contains some (sc, tc)-cut.

In the universal stochastic setting we are also given a probability distribution π over the
subsets of C = [1, k] and the solution is a mapping φ : C → 2E such that φ(c) forms a (sc, tc)-
cut. The expected cost of the solution induced by a mapping φ equals EX∼π

[∑
e∈φ(c)
c∈X

ce

]
.

We express the problem with a configuration integer program. Let Pc denote the family
of all paths connecting sc with tc and let yeB = 1 mean that B = {c ∈ C : e ∈ φ(c)}.

min
∑
e∈E

ce
∑
B⊆C

yeB · gπ (B) (CONF-IP-MC) (6)

s.t.
∑
e∈P

∑
B3c

yeB ≥ 1 ∀c∈C ∀P∈Pc .

yeB∈ {0, 1} ∀e∈E ∀B⊆C .

We next use CONF-LP-MC to denote the linear relaxation of CONF-IP-MC. Likewise
for Facility location, we will show that in the independent activation model we can
reduce the universal stochastic setting to the buy-at-bulk setting, where each edge e can be
either bought for price ce to serve all the clients or be rented by client c for price ce · pc. We
define variables xe to indicate that e has been bought and variables x̄ec to express the event
of e being rented by c. This transition simplifies the linear program CONF-LP-MC to the
following one by sacrificing an approximation factor of e

e−1 .

min
∑
e∈E

ce · xe +
∑
e∈E

ce
∑
c∈C

pc · x̄ec (LP-MC)

s.t.
∑
e∈P

(xe + x̄ec) ≥ 1 ∀c∈C∀P∈Pc

xe, x̄ec ≥ 0 ∀e∈E∀c∈C .

ICALP 2017

35:12 When the Optimum is also Blind: a New Perspective on Universal Optimization

The proofs of the two following lemmas are similar to derivations in Sections 4.1 and 4.2
and so we omit them in this extended abstract.

I Lemma 10. If π is an independent activation distribution, then the optimal value of
LP-MP is at most e

e−1 times larger than the optimal value of CONF-LP-MP.

I Lemma 11. If G is a tree, then one can round a fractional solution to LP-MC to an
integral one of cost at most 3 times larger. The procedure runs in polynomial time.

In order to solve the problem on general graphs, we will embed the graph into a tree
that approximately preserves the structure of cuts. The following construction has been
introduced by Räcke [41]. We call a tree T decomposition tree of G if
1. the leaves of T correspond to vertices of G,
2. each edge et in T has weight cTet equal to the weight of the cut it induces on V (G) (we

call this cut mT (et)).
For an edge e ∈ E(G) and a decomposition tree T we define the relative load of e as

rloadT (e) =
(∑

et∈E(T)
e∈mT (et)

cTet

)
/ ce.

The main result in [41] concerns the relation between multicommodity flows in G and Ti.
As our LP formulation is slightly more sophisticated we need to exploit this result in more
detail. Section 2.1 in [41] describes how to find (in polynomial time) a convex combination
of decomposition trees {λiTi}qi=1 for a graph G, such that maxe∈E(G) [

∑q
i=1 λirloadTi(e)] =

O(logn).

I Theorem 12. Universal Stochastic Multicut in the independent activation model
admits a polynomial-time O(logn) approximation algorithm.

Proof. Lemma 11 implies that a fractional solution to LP-MC over Ti can be rounded to
an integer solution with ratio 3. Observe that each tree edge on a path between terminals
corresponds to some cut between these terminals so any solution to Universal Stochastic
Multicut on a decomposition tree induces a solution on the original graph of at most the
same cost.

Let Li denote the optimal value of LP-MC over Ti and L denote the same for G. We
are going to show that

∑q
i=1 λiLi = O(L logn). In particular this means that minqi=1 Li =

O(L logn). After rounding the fractional solution on Ti of the smallest value, we will obtain
an integral solution for G of cost O(L logn), what entails an O(logn) approximation.

Let us consider the dual linear program of LP-MC.

max
∑
c∈C

∑
P∈Pc

αP (DP-MC)

s.t.
∑
c∈C

∑
P∈Pc
e∈P

αP ≤ ce ∀e∈E (7)

∑
P∈Pc
e∈P

αP ≤ ce · pc ∀c∈C ∀e∈E (8)

αP ≥ 0 ∀c∈C ∀P∈Pc .

Feasible solutions to (DP-MC) are just multicommodity flows satisfying conditions (7)-(8).
Let (βTi) be an optimal solution to (DP-MC) on a decomposition tree Ti (of value Li) and let

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:13

(αTi) be a flow on G where a unit flow over et in (βTi) translates into a unit flow over mT (et).
Note that the value of shipped commodities remains the same. Consider (α) =

∑q
i=1 λi(αTi).

It is a (not necessarily feasible) solution of value
∑q
i=1 λiLi.

As (βTi) routes at most cTiet flow through an edge et, then (αTi) routes at most
∑

et∈E(Ti)
e∈mTi (et)

cTiet

flow through an edge e. Therefore constraint (7) is exceeded at most rloadTi(e) times in
(αTi) and

∑q
i=1 λirloadTi(e) times in (α). If we consider vectors (βTic) given by flow routed

between terminals of client c, then we conclude the same for constraint (8).
After scaling (α) down times M = maxe∈E(G) [

∑q
i=1 λirloadTi(e)] we obtain a feasible

solution to (DP-MC) for G. This means that L is no less than
∑q
i=1 λiLi divided by M . As

we know that M = O(logn), the claim follows. J

References
1 Susanne Albers and Stefano Leonardi. On-line algorithms. ACM Comput. Surv., 31(3es):4,

1999.
2 N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor. The Online Set Cover Problem.

In STOC’03, pages 100–105, 2003.
3 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph (Seffi) Naor. A

general approach to online network optimization problems. In SODA’04, pages 577–586,
2004.

4 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Piotr Sankowski. Online
network design with outliers. Algorithmica, 76(1):88–109, 2016.

5 Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal oblivious
routing in polynomial time. In STOC’03, pages 383–388, 2003.

6 Dimitris Bertsimas and Michelangelo Grigni. Worst-case examples for the spacefilling curve
heuristic for the Euclidean traveling salesman problem. Oper. Res. Lett., 8(5):241–244,
1989.

7 Dimitris J. Bertsimas, Patrick Jaillet, and Amedeo R. Odoni. A priori optimization. Oper.
Res., 38(6):1019–1033, 1990.

8 Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for
constructing oblivious routing schemes. In SPAA’03, pages 24–33, 2003.

9 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, New York, 1998.

10 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing
problems. In ESA’05, pages 689–701, 2005.

11 Moses Charikar, Chandra Chekuri, and Martin Pál. Sampling bounds for stochastic optimiz-
ation. In Approximation, Randomization and Combinatorial Optimization, Algorithms and
Techniques, 8th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization
and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings,
pages 257–269, 2005. doi:10.1007/11538462_22.

12 Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra.
Approximating matches made in heaven. In Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part
I, pages 266–278, 2009. doi:10.1007/978-3-642-02927-1_23.

13 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic
knapsack problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008. doi:
10.1287/moor.1080.0330.

14 Reza Dorrigiv and Alejandro Lopez-Ortiz. A survey of performance measures for on-line
algorithms. SIGACT News, 36(3):67–81, 2005.

ICALP 2017

http://dx.doi.org/10.1007/11538462_22
http://dx.doi.org/10.1007/978-3-642-02927-1_23
http://dx.doi.org/10.1287/moor.1080.0330
http://dx.doi.org/10.1287/moor.1080.0330

35:14 When the Optimum is also Blind: a New Perspective on Universal Optimization

15 Esteban Feuerstein, Alberto Marchetti-Spaccamela, Frans Schalekamp, René Sitters, Su-
zanne van der Ster, Leen Stougie, and Anke van Zuylen. Scheduling over scenarios on
two machines. In Computing and Combinatorics – 20th International Conference, CO-
COON 2014, Atlanta, GA, USA, August 4-6, 2014. Proceedings, pages 559–571, 2014.
doi:10.1007/978-3-319-08783-2_48.

16 Amos Fiat and Gerhard J. Woeginger, editors. Online algorithms, volume 1442 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1998.

17 Dimitris Fotakis. On the competitive ratio for online facility location. In ICALP’03, pages
637–652. Springer, 2003.

18 P.R. Freeman. The secretary problem and its extensions: a review. Internat. Statist. Rev.,
51(2):189–206, 1983.

19 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses
for online combinatorial optimization problems. In SODA’08, pages 942–951, 2008.

20 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski,
and Mohit Singh. Set covering with our eyes closed. In 49th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA,
USA, pages 347–356, 2008. doi:10.1109/FOCS.2008.31.

21 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski,
and Mohit Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830,
2013.

22 Anupam Gupta, Mohammad Taghi Hajiaghayi, and Harald Räcke. Oblivious network
design. In SODA’06, pages 970–979, 2006.

23 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.
In Integer Programming and Combinatorial Optimization – 16th International Conference,
IPCO 2013, Valparaíso, Chile, March 18-20, 2013. Proceedings, pages 205–216, 2013. doi:
10.1007/978-3-642-36694-9_18.

24 Mohammad T. Hajiaghayi, Robert D. Kleinberg, Tom Leighton, and Harald Räcke. Obli-
vious routing on node-capacitated and directed graphs. In SODA’05, pages 782–790, 2005.

25 Mohammad Taghi Hajiaghayi, Jeong Han Kim, Tom Leighton, and Harald Räcke. Oblivious
routing in directed graphs with random demands. In STOC’05, pages 193–201, 2005.

26 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and David C. Parkes. Adaptive limited-
supply online auctions. In EC’04, pages 71–80, 2004.

27 Mohammad Taghi Hajiaghayi, Robert D. Kleinberg, and Frank Thomson Leighton. Im-
proved lower and upper bounds for universal tsp in planar metrics. In SODA’06, pages
649–658, 2006.

28 Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minimize congestion. In SPAA’03, pages 34–43, 2003.

29 Nicole Immorlica, David Karger, Maria Minkoff, and Vahab Mirrokni. On the costs and
benefits of procrastination: Approximation algorithms for stochastic combinatorial optim-
ization problems. In SODA’04, pages 684–693, 2004.

30 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–
777, 2001.

31 Patrick Jaillet. A priori solution of a travelling salesman problem in which a random subset
of the customers are visited. Oper. Res., 36(6):929–936, 1988.

32 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram.
Universal approximations for tsp, steiner tree, and set cover. In STOC’05, pages 386–395,
2005.

33 David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global know-
ledge. In FOCS’00, pages 613–623, 2000.

http://dx.doi.org/10.1007/978-3-319-08783-2_48
http://dx.doi.org/10.1109/FOCS.2008.31
http://dx.doi.org/10.1007/978-3-642-36694-9_18
http://dx.doi.org/10.1007/978-3-642-36694-9_18

M. Adamczyk, F. Grandoni, S. Leonardi, and M. Włodarczyk 35:15

34 Simon Korman. On the use of randomization in the online set cover problem, 2004. MSc
Thesis.

35 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. AdWords and general-
ized online matching. J. ACM, 54(5):Art. 22, 19 pp., 2007.

36 Adam Meyerson. Online facility location. In FOCS’01, pages 426–431. IEEE Computer
Society, 2001.

37 Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Designing networks incrementally.
In FOCS’01, pages 406–415, 2001.

38 Rolf H. Möhring, Andreas S. Schulz, and Marc Uetz. Approximation in stochastic
scheduling: the power of lp-based priority policies. J. ACM, 46(6):924–942, 1999. doi:
10.1145/331524.331530.

39 Loren K. Platzman and John J. Bartholdi, III. Spacefilling curves and the planar travelling
salesman problem. J. ACM, 36(4):719–737, 1989.

40 Harald Räcke. Minimizing congestion in general networks. In FOCS’02, pages 43–52, 2002.
41 Harald Räcke. Optimal Hierarchical Decompositions for Congestion Minimization in Net-

works. In STOC’08, 2008.
42 R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic

optimization problems. In IPCO’04, pages 101–115, 2004.
43 Frans Schalekamp and David B. Shmoys. Algorithms for the universal and a priori tsp.

Oper. Res. Lett., 36(1):1–3, Jan 2008.
44 David B. Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear

programming and its application to stochastic integer programs. J. ACM, 53(6):978–1012,
2006.

45 David B. Shmoys and Kunal Talwar. A constant approximation algorithm for the a priori
traveling salesman problem. In IPCO’08, 2008.

46 Aravind Srinivasan. Approximation algorithms for stochastic and risk-averse optimization.
In SODA’07, pages 1305–1313, 2007.

47 L.G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In STOC’81,
pages 263–277, 1981.

48 Martijn van Ee, Leo van Iersel, Teun Janssen, and René Sitters. A priori TSP in the scenario
model. In Approximation and Online Algorithms – 14th International Workshop, WAOA
2016, Aarhus, Denmark, August 25-26, 2016, Revised Selected Papers, pages 183–196, 2016.
doi:10.1007/978-3-319-51741-4_15.

49 Berthold Vöcking. Almost optimal permutation routing on hypercubes. In STOC’01, pages
530–539, 2001.

50 Jan Vondrák. Submodularity in combinatorial optimization. PhD thesis, Charles University,
2007.

ICALP 2017

http://dx.doi.org/10.1145/331524.331530
http://dx.doi.org/10.1145/331524.331530
http://dx.doi.org/10.1007/978-3-319-51741-4_15

Reusable Garbled Deterministic Finite Automata
from Learning With Errors∗

Shweta Agrawal1 and Ishaan Preet Singh2

1 IIT Madras, Chennai, India
shweta@iitm.ac.in

2 IIT Delhi, New Delhi, India
ishaanps92@gmail.com

Abstract
We provide a single-key functional encryption scheme for Deterministic Finite Automata (DFA).
The secret key of our scheme is associated with a DFA M , and a ciphertext is associated with an
input x of arbitrary length. The decryptor learnsM(x) and nothing else. The ciphertext and key
sizes achieved by our scheme are optimal – the size of the public parameters is independent of
the size of the machine or data being encrypted, the secret key size depends only on the machine
size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the entire
input x is hidden (as against x being public and a single bit b being hidden). Our single key FE
scheme can be compiled with symmetric key encryption as in [12] to yield reusable garbled DFAs
for arbitrary size inputs, that achieves machine and input privacy along with reusability under a
strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which has
short public parameters that are independent of the size of the machine or the data being en-
crypted, short function keys, and input-specific decryption time. However, the ciphertext of our
construction is large and depends on the worst case running time of the Turing machine (but not
its description size). These provide the first FE schemes that support unbounded length inputs,
allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases Functional Encryption, Learning With Errors, Deterministic Finite Auto-
mata, Garbled DFA

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.36

1 Introduction

Functional encryption permits controlled disclosure of encrypted data, enabling the evaluator
to learn some authorised function of encrypted data in the clear. In functional encryption
(FE), a secret key corresponds to a function f and ciphertexts correspond to strings from
the domain of f . Given a function SKf and a ciphertext CTx, the decryptor learns f(x) and
nothing else. Functional encryption has found diverse applications, such as spam filtering on
encrypted data [12], online dating [13], delegation of computation [16] and many others.

∗ A full version of the paper is available at http://www.cse.iitm.ac.in/~shwetaag/papers/dfa.pdf [1].

EA
T

C
S

© Shweta Agrawal and Ishaan Preet Singh;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.36
http://www.cse.iitm.ac.in/~shwetaag/papers/dfa.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Reusable Garbled Deterministic Finite Automata from Learning With Errors

The function embedded within the secret key in FE is typically represented as a circuit.
While circuits are a powerful model of computation, the circuit representation has significant
drawbacks in practical scenarios. Consider the application of spam filtering on encrypted
emails, where the email gateway may be given a key to test the incoming email for spam.
Representing the computation as a circuit forces emails to be of a fixed length – a requirement
which is ill-fitting and wasteful. Another significant drawback of the circuit model is that it
incurs worst case running time on every input.

In practice, most spam filters as well as malware and intrusion detection systems are
implemented using pattern matching operations represented as deterministic finite automata
(DFA) [19, 14, 5, 10]. Note that in all these applications, the size of the input is highly variable
and instance specific, and restricting it to be of fixed length is cumbersome. Therefore a
functional encryption scheme for DFAs which supports dynamic data length would be the
“right fit” in such situations. However, although functional encryption for circuits has been
constructed based on the hardness of Learning With Errors (LWE) in the single key setting,
it is unclear how to leverage these techniques to support the arbitrary data length required
by DFAs.

1.1 Our Results
In this work, we provide a single-key functional encryption scheme for Deterministic Finite
Automata (DFA). The secret key of our scheme is associated with a DFA M , and a ciphertext
is associated with an input x of arbitrary length. The decryptor learns M(x) and nothing
else. The ciphertext and key sizes achieved by our scheme are optimal1 – the public key
size is independent of the machine and input size, the secret key size depends only on the
machine size and the ciphertext size depends only on the input size.

Our scheme achieves full functional encryption in the “private index model”, namely the
entire input x is hidden (as against x being public and a single bit b being hidden). Our
single key FE scheme can be compiled with symmetric key encryption as in [12] to yield
reusable garbled DFAs for arbitrary size inputs, that achieves machine and input privacy
along with reusability under a strong simulation based definition of security.

We generalize this to a functional encryption scheme for Turing machines TMFE which
has short public parameters that are independent of the size of the machine or the data being
encrypted, short function keys, and input-specific decryption time. However, the ciphertext
of our construction is large and depends on the worst case running time of the Turing machine
(but not its description size). These provide the first FE schemes that support unbounded
length inputs, allow succinct public and function keys and rely on LWE.

Our construction relies on a new and arguably natural notion of decomposable functional
encryption which may be of independent interest.

1.2 Related Work
Functional encryption for DFAs has received some attention already. Closest to our work is
the “Attribute Based Encryption” scheme for DFAs constructed by Waters [20]. In [20], the
encrypt algorithm takes as input a pair (x, b) where x may be of arbitrary size, and b is a
bit. The key corresponds to a DFA machine M so that given a key for M and a ciphertext
for (x, b), the decryptor learns the bit b if and only if M accepts x. Note that in contrast to

1 Up to logarithmic factors.

S. Agrawal and I. P. Singh 36:3

our work, the vector x is not hidden by the construction, neither is the machine M ; only the
bit b is hidden. On the other hand, the construction [20] can support polynomially many
keys, whereas ours can only support a single key. Attrapadung [4] extended the work of
Waters [20] to achieve adaptive rather than selective security. Another work that constructs
Attribute Based Encryption for DFAs is by Boyen and Li [7]. However, in their construction,
the input size to the DFA must be bounded in advance; avoiding this restriction is the main
motivation for our work.

There are other known functional encryption systems that support unbounded size inputs,
even supporting Turing machines, achieving input specific runtime and dynamic data length
[11, 2, 6, 15, 8, 9]. However, the mildest assumption required by this line of work is the
existence of indistinguishability obfuscation.

From standard assumptions, single key functional encryption has been constructed for
all polynomial sized circuits [18, 12]. A natural approach to construct reusable garbled
DFA/TM then, is to convert the machine to a circuit and leverage the constructions of
[18, 12]. However, instantiating this compiler with the reusable garbled circuits construction
[12] leads to a construction that cannot support dynamic data lengths, which is the main
focus of this work. On the other hand, using the construction by Sahai and Seyalioglu [18]
leads to a DFA/TM FE construction with large public key and ciphertext size, since the
construction by [18] suffers from public key and ciphertext size that depend on the circuit
size.

1.3 Our Techniques
To begin, we describe our single key FE scheme for DFA. Next, we describe how this
construction may be generalized to Turing machines.

1.3.1 Single Key FE for DFA
We briefly recall how a DFA works. A DFA machine M is represented by the tuple
(Q,Σ, T, qst, F) where Q is a finite set of states, Σ is a finite alphabet, T : Σ×Q→ Q is the
transition function, qst is the start state, F ⊆ Q is the set of accepting states. Upon input
w ∈ Σk for some arbitrary polynomial k, the machine M accepts w if and only if there exists
a sequence of states q1, . . . , qk so that q1 = qst, T (wi, qi) = qi+1 for i ∈ [k − 1], and qk ∈ F .

To mimic the DFA computation, a natural starting point is to imagine a function key
that stores the transition table of a DFA, receives as input the current (symbol, state) pair
and produces as output an encryption of the next state of the computation. In more detail,
say the encryptor provides encryptions of each input symbol xi, for i ∈ [|x|], in addition to
an encryption for the first (fixed) state qst. Now, the function key could accept 2 inputs
(x1, qst), lookup the transition table and produce an encryption of the next state q2. Suppose
this encryption can only be paired with the encryption of x2 and none other, then we could
provide (x2, q2) as input to the function in the next step, thus propagating the computation.

We tie together encryptions of symbol with encryptions of state via the notion of
decomposable functional encryption. Intuitively, decomposability requires that the public
key PK and the ciphertext CTy of a functional encryption scheme be decomposable into
components PKj and CTj for j ∈ [|y|], where CTj depends on a single deterministic bit yj and
the public key component PKj . All components CTj are tied together by common randomness
used for their creation, although each CTj may use additional independent randomness.
Aside from the message dependent components, a ciphertext can contain components that are
independent of the message and depend only on the common randomness. The main advantage

ICALP 2017

36:4 Reusable Garbled Deterministic Finite Automata from Learning With Errors

offered by decomposable functional encryption is that given the common randomness, each
ciphertext component CTj can be constructed independently of the rest. These components
can then be joined together to create a complete ciphertext which can then be decrypted
successfully. Additionally, only components that were constructed using the same randomness
can be “joined”, thereby preventing mix and match attacks where an adversary tries to treat
mismatched symbol state pairs such (x3, q2) as a single legitimate input.

Now, suppose we have a decomposable functional encryption scheme for circuits. Then, we
may proceed with the aforementioned strategy and divide the ciphertext into two components
– the first encoding the current symbol, and the second encoding the current state. We may
use the function key to generate the second component, using the same common randomness
that was used to generate the first component.

To take this approach forward we must find a suitable decomposable functional encryption
scheme for circuits – fortunately most functional encryption schemes in the literature are
decomposable. In particular, we show that the the succinct single key FE by Goldwasser et
al. [12] is decomposable. This scheme appears suitable for our purposes as the ciphertext
and public key in this scheme are independent of circuit size.

However, note that the ciphertext of [12] suffers from output-size dependence, i.e. it grows
linearly with the output length of the circuit. This implies that the function key may not
produce an output that is proportional to the length of the ciphertext. To obtain a (single
key) construction from LWE, we resolve this issue by repurposing a classic trick from Yao’s
garbled circuit construction, so that the output length of the circuit can be made independent
of the ciphertext size, at the cost of blowing up the ciphertext size somewhat. More concretely,
instead of having the circuit output a new ciphertext, the encryptor provides symmetric key
encryptions of CktFE [12] ciphertext components, encrypting all possible bit values (nesting
CktFE ciphertext inside SKE ciphertext), and the function key outputs the SKE keys to
unlock the correct CktFE ciphertext components, corresponding to the bit values chosen by
the key. This allows us to select the next state with a circuit output length independent of
the ciphertext size. For more details, we refer the reader to Section 4. This provides input
privacy and reusability but not machine privacy. We achieve machine privacy following ideas
of [12] – please see the full version [1] for details.

1.3.2 Single key FE for Turing Machines
To extend the above construction to support Turing Machines, we must address two challenges:
a) head movements should not reveal anything about the input and b) we need to write to
the tape. Below we describe how to handle each challenge in turn.

To overcome the first challenge, a natural approach is to use oblivious TMs, which fix
the head movement of a TM to be independent of the input. Moreover, there exist efficient
transformations that convert any Turing machine M that takes time T to decide an input
to an oblivious one that takes time T log T to decide the same input [17]. It remains to
address the challenge of handling tape writes. Since the head movements of the TM are
now fixed, the only thing that the transition function must specify is the next state, and
the symbol that must be written to the current tape cell. We leverage decomposability and
have the encryptor provide a ciphertext component encoding state, and another component
encoding current work tape symbol for every step in the computation. Indeed, this forces
our ciphertext to depend (linearly) on worst-case runtime of the Turing machine. All the
ciphertext components for a given time step are tied together with common randomness as
before. To ensure that the decryptor only learns the ciphertext components corresponding to
the particular state and tape symbol that occur during computation, the encryptor encrypts

S. Agrawal and I. P. Singh 36:5

all CktFE ciphertexts with symmetric key encryption SKE. As in the case of DFA, the
function key selects the appropriate SKE keys to reveal the CktFE ciphertext encoding next
state and symbol to be read.

The careful reader may have noticed that the above description glosses over an important
detail: the cell that is written into at step i may be next accessed at any step j > i, so
the CktFE ciphertext at step i must encode SKE keys for some unknown future step j.
Fortunately, the machinery of oblivious TMs comes to our aid again. Since in an oblivious
TM, there exists a function t that computes the step that particular cell will be accessed next,
in step i, in addition to selecting the state for step i+ 1 as we did in DFAs, the function key
will also select the tape symbol to be read in step t(i). At any step j, the appropriate SKE
keys for the state were provided in step j− 1 and for tape symbol were provided at step i < j

where t(i) = j. Hence, the decryptor at step j has the SKE keys to unlock the CktFE CT
components for both state and tape symbol, which lets her proceed with the computation.
For more details, please see the full version [1].

1.4 Organization of the paper
In Section 2, we define the preliminaries we require for our constructions. In Section 3,
we define the notion of decomposable functional encryption. In Section 4, we provide our
construction for single key FE for DFAs. In the full version [1], we provide our construction
for single key functional encryption for Turing machines.

2 Definitions: FE for Deterministic Finite Automata

In this section we provide some notation and preliminaries that we require.
Functional encryption for deterministic finite automata (DFA) is defined analogously to

functional encryption for circuits, except that the public parameters may not depend on the
input length, which is unknown a priori. In this section, we will define single key functional
encryption for DFAs.

A DFA machine M is represented by the tuple (Q,Σ, T, qst, F) where Q is a finite set of
states, Σ is a finite alphabet, T : Σ×Q→ Q is the transition function (stored as a table),
qst is the start state, F ⊆ Q is the set of accepting states. Upon input w ∈ Σk for some
arbitrary polynomial k (not known to the setup algorithm), the machine M accepts the input
if and only if there exists a sequence of states q1, . . . , qk so that q1 = qst, T (wi, qi) = qi+1 for
i ∈ [k − 1], and qk ∈ F . We say M(w) = 1 iff M accepts w and 0 otherwise.

2.1 Definition
Let Mκ : Qκ × Σκ → Qκ be a DFA family. A functional encryption scheme DfaFE for
M consists of four algorithms DfaFE = (DfaFE.Setup,DfaFE.KeyGen, DfaFE.Enc,DfaFE.Dec)
defined as follows.

DfaFE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation of the
security parameter and outputs the master public and secret keys (PK,MSK).
DfaFE.KeyGen(MSK,M) is a p.p.t. algorithm that takes as input the master secret key
MSK and a DFA machine M and outputs a corresponding secret key SKM .
DfaFE.Enc(PK,w) is a p.p.t. algorithm that takes as input the master public key PK and
an input message w and outputs a ciphertext CTw.
DfaFE.Dec(SKM,CTw) is a deterministic algorithm that takes as input the secret key
SKM and a ciphertext CTw and outputs M(w).

ICALP 2017

36:6 Reusable Garbled Deterministic Finite Automata from Learning With Errors

I Definition 1 (Correctness). A functional encryption scheme DfaFE is correct if for all
M ∈M and all w ∈ Σ∗,

Pr
[(PK,MSK)← DfaFE.Setup(1κ);

DfaFE.Dec
(

DfaFE.KeyGen(MSK,M),DfaFE.Enc(PK,w)
)
6= M(w)

]
= negl(κ)

where the probability is taken over the coins of DfaFE.Setup, DfaFE.KeyGen,
and DfaFE.Enc.

2.2 Security
In this section, we define simulation based security for single key FE for DFAs.

I Definition 2 (FULL-SIM- Security for DFA-FE). Let FM be a functional encryption scheme
for a DFA familyM. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim,
consider the following two experiments:

Expreal
DfaFE,A(1κ): Expideal

DfaFE,Sim(1κ):

1: (PK,MSK)← DfaFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← DfaFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM)
5: CT← DfaFE.Enc(PK,x)
6: Output (st,CT)

1: (PK,MSK)← DfaFE.Setup(1κ)
2: (M, st1) ←A1(PK)
3: skM ← DfaFE.KeyGen(MSK,M)
4: (x, st) ←A2(st1,PK, skM)
5: C̃T← Sim(PK, skM ,M,M(x), 1|x|)
6: Output (st, C̃T)

The DFA functional encryption scheme FM is then said to be single query FULL-SIM secure
if there exists a p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2), the
following two distributions are computationally indistinguishable:{

Expreal
DfaFE,A(1κ)

}
κ∈N

c
≈
{

Expideal
DfaFE,Sim(1κ)

}
κ∈N

.

3 Decomposable Functional Encryption for Circuits

In this section, we define the notion of decomposable functional encryption (DFE). Decompos-
able functional encryption is analogous to the notion of decomposable randomized encodings
[3]. Intuitively, decomposability requires that the public key PK and the ciphertext CTx of a
functional encryption scheme be decomposable into components PKi and CTi for i ∈ [|x|],
where CTi depends on a single deterministic bit xi and the public key component PKi. In
addition, the ciphertext may contain components that are independent of the message and
depend only on the randomness.

We assume that given the security parameter, the following spaces are fixed: P containing
public key components, R1, R2 containing randomness used for encryption and C containing
the encoding of a single message bit. The length of the message |x| can be any polynomial.
Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable if there
exists a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:
1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈ P for

i ∈ [k]. The component PKindpt ∈ Pj for some j ∈ N.

S. Agrawal and I. P. Singh 36:7

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂) .

Here r ∈ R1 is common randomness used by all components of the encryption. Apart
from the common randomness r, each CTi may additionally make use of independent
randomness r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs of
size k, it is also decomposable into components corresponding to any partition of the interval
[k]. Thus, we may decompose the public key and ciphertext into any i ≤ k components
of length ki each, such that

∑
ki = k. We will sometimes use Ē(y) to denote the tuple of

function values obtained by applying E to each component of a vector, i.e. Ē(PK,y, r) ,(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where |y| = k.

4 Single-Key Succinct FE for DFAs from LWE

In this section, we will construct a single key (public key) functional encryption scheme for
deterministic finite automata (DFA). Our construction makes use a decomposable single key
FE scheme for circuits, CktFE. In the full version [1], we show that:

I Lemma 3. The single key, succinct functional encryption scheme for circuits by Goldwasser
et al. [12], based on LWE is decomposable.

Conceptually, we decompose the input into two components of size `1 and `2 each, where
the second component is further decomposed bit by bit. We will use the first component
to encrypt the current input symbol in the DFA computation and keys to select the next
state in the computation, and the second component to encrypt the current state in the DFA
computation. While the input symbol encoded in the first component can be treated as a
unit of size `1, it will be helpful for us to represent the encoded input of size `2 bit by bit.

Thus, we have,

CktFE.PK = (PK1,PK2,PKindpt) and CktFE.CT = (CT1,CT2,CTindpt) .

Now let

CktFE.Enc(PK,x‖y) = (CT1,CT2,CTindpt)

=
(
Ē(PK1,x, r, r̂1), Ē(PK2,y, r, r̂2), Ē(PKindpt, r, r̂3)

)
.

We decompose

Ē(PK2,y, r, r̂2) =
(
E(PK2,1, y1, r, r̂2,1), . . . , E(PK2,`2 , y`2 , r, r̂2,`2)

)
.

Recall that E : P × {0, 1} × R1 × R2 → C and Ē(x) denotes the tuple of function values
obtained by applying E to each coordinate. Then,

Let |x| = `1, |y| = `2, PK1 ∈ P`1 , PK2 ∈ P`2 ,

j ∈ N, PKindpt ∈ Pj , r ∈ R1, r̂1 ∈ R`1
2 , r̂2 ∈ R`2

2 , r̂3 ∈ Rj2 .

In what follows, we abuse notation slightly and omit mention of the independent, fresh
randomness from R2 needed for each invocation for E . For convenience, we club the message
independent component CTindpt with CT1 and let

c = (CT1,CTindpt) and d = CT2 = (CT2,1, . . . ,CT2,`2) .

ICALP 2017

36:8 Reusable Garbled Deterministic Finite Automata from Learning With Errors

LetMκ : Qκ × Σκ → Qκ be a DFA family. For notational convenience, we will drop the
subscript κ here on. Let Q = |Q|, the size of the state space of the DFA family. Then, the
single key functional encryption scheme for DFAs is constructed as follows.

DfaFE.Setup(1κ):
Upon input the security parameter 1κ, do:
1. Choose a symmetric key encryption scheme SKE with key space K.
2. Define a circuit family as follows. Let F : X → Y where X = (Σ×K2 logQ×{0, 1})×Q

and Y = KlogQ. We set

`1 = bΣc+ bK2 logQc+ 1, `2 = bQc = logQ

where b·c denotes size in bits. Let ` = `1 + `2.
3. Invoke CktFE.Setup(1κ, 1`) to obtain PK =

(
PK1, (PK2,1, . . . ,PK2,logQ),PKindpt

)
and

MSK.
4. Output (PK,MSK).

DfaFE.Enc(PK, w):
Let |w| = k. Note that k is arbitrary, and unknown to DfaFE.Setup. Do the following:
1. Sample randomness ri←R1 for i ∈ [k].
2. Sample SKE keys as follows. We define

Ki+1 =
(

(K0
(i+1,1),K

1
(i+1,1)), . . . , (K0

(i+1,logQ),K
1
(i+1,logQ))

)
where Kb

i+1,j ← K for i ∈ [k − 1], j ∈ [logQ], b ∈ {0, 1}.
3. Define message yi = (wi,Ki+1, 0) for i ∈ [k − 1] and yk = (wk,⊥, 1).
4. For i ∈ [k], we define:

ci,1 = Ē(PK1,yi, ri), ci,2 = Ē(PKindpt, ri), ci = (ci,1, ci,2) .

5. Let d1 = Ē (PK2, qst, r1). Here qst denotes the start state of the DFA. Further, let

dbi,j = E (PK2,j , b, ri) ∀ i ∈ [2, k], j ∈ [logQ], b ∈ {0, 1}.
di,q , (dqj

i,j) ∀j ∈ [logQ] where qj is the jth bit of q.

6. For i ∈ [2, k], j ∈ [logQ], b ∈ {0, 1} encrypt each dbi,j using the corresponding key Kb
i,j

as:

d̂bi,j = SKE.Enc(Kb
i,j ,dbi,j) .

7. Choose bi,j ← {0, 1} randomly for i ∈ [2, k], j ∈ [logQ] and define:

D̂i,j =
(

d̂bi,j

i,j , d̂
b̄i,j

i,j

)
, D̂i = (D̂i,j), D̂1 = d1 .

8. Output CTw = {ci, D̂i} for i ∈ [k].

DfaFE.KeyGen(MSK, M):
Let M denote a DFA machine and T denote its transition matrix. Let Ti denote the
ith row of T , with format

(
(σ, q)→ q′

)
indicating that the machine enters state q′ upon

input symbol σ and input state q. Let SKM = CktFE.Keygen(MSK, f) where f is defined
below in Figure 1.

S. Agrawal and I. P. Singh 36:9

Function f
(
(σ,K, flag), q

)
1. Lookup table T for (σ, q). Say that (σ, q)→ q′. If no entry is found, output ⊥ and exit.
2. If flag = 1, check if q′ is an accepting state. If yes, output 1, else output 0 and exit.

3. If flag = 0, parse K as {(K0
j ,K

1
j)} for j ∈ [logQ], b ∈ {0, 1}. Choose the logQ keys K

q′j
j

(for j ∈ [logQ]), corresponding to the bits of q′ and output these.

Figure 1 Function to provide keys for next state in DFA computation.

DfaFE.Dec(SKf , CTw):
Interpret CTw = (ci, D̂i)i∈[k] and let d1,q1 = D̂1.
Initialize i = 1. While i ≤ k, do the following:

Let CT′i = (ci,di,qi
). Recall that di,qi

= (dqi,j

i,j) for j ∈ [logQ]. If i = k, let
b← CktFE.Dec(SKf ,CT′k). Output b and exit.
Else let (Ki+1,1, . . . ,Ki+1,logQ) = CktFE.Dec(SKf ,CT′i).
For j ∈ [logQ], try to decrypt each value in D̂i+1,j using obtained key Ki+1,j . Exactly
one of the two ciphertexts per bit position will be decrypted, say d̂bj

i+1,j . Set

di+1,qi+1 =
(

SKE.Dec(Ki+1,j , d̂
bj

i+1,j)
)
∀j ∈ [logQ] .

Increment i.

4.1 Correctness

In this section, we establish correctness of the above construction. Before we proceed with
the formal argument, we provide some intuition. Note that in the encryption, the first
component ci encrypts message yi, which contains the ith input symbol, along with the set
of all 2 logQ symmetric keys used to construct SKE encryptions of the (i+ 1)th state. In the
second component, the element dbi,j in tuple (dbi,j) for j ∈ [logQ] and b ∈ {0, 1}, contains
an encryption of bit b, corresponding to the event that the jth bit of ith state is b. The set
D̂i contains 2 logQ SKE encryptions of dbi,j under keys Kb

i,j , shuffled for each position j.
Decryption at step i− 1 provides the level i symmetric keys Kbj

i,j to unlock the dbj

i,j for the
correct next state of the computation q′, i.e. bj = q′i,j . Thus, the decryptor recovers exactly
the components dbj

i,j which may be combined to create the ciphertext di,qi
. Put together with

ci we get an encryption of (wi,Ki+1, qi) which may again be decrypted with the function
key to obtain the appropriate keys to decrypt the correct di+1,qi+1 .

Formally, let k denote the length of input w and let q1, . . . , qk denote the states visited by
the DFA during computation. We have by correctness of decomposable functional encryption
that:

∀i ∈ [k − 1], CktFE.Enc
(

PK, (wi,Ki+1, 0, qi)
)

= (ci,di,qi
) where

ck =
(
Ē
(
PK1, (wi,Ki+1, 0), ri,

)
, Ē
(
PKindpt, ri

))
, di,qi

=
(
E(PK2,j , qi,j , ri)

)
j∈[logQ]

s.t. CktFE.Dec
(
SKf , (ci,di,qi

)
)

= Kqi+1 , (Kb1
i+1,1, . . . ,K

blog Q

i+1,logQ) where bj = qi+1,j .

Now, both elements of D̂i+1,j are attempted for decryption by Kbj

i+1,j , of which only the

ICALP 2017

36:10 Reusable Garbled Deterministic Finite Automata from Learning With Errors

element encoding the correct bit qi+1,j is recovered. Formally, we have:

D̂i+1,j =
(

d̂0
i+1,j , d̂1

i+1,j
)

and

SKE.Dec
(
K
bj

i+1,j , d̂bi+1,j
)

= ⊥ if bj 6= b, and dqi+1,j

i+1,j otherwise.

By putting together all the components, we get by decomposability:

di+1,qi+1 =
(

dqi+1,j

i+1,j
)
∀ j ∈ [logQ]

Also, since each component of di+1,qi+1 uses the same common randomness ri+1 as is used
by ci+1, we have that CTi+1 = (ci+1,di+1,qi+1), hence we may repeat while i < k. Finally
for i = k,

CktFE.Enc
(

PK, (wk,⊥, 1, qk)
)

= (ci,dk,qk
)

so that CktFE.Dec
(
SKf , (ck,dk,qk

)
)

= 1 iff qk is an accepting state, 0 otherwise.

Efficiency. We note that the public key size of our scheme is the public key size of CktFE
[12] with message length ` = O(logQ+ log |Σ|+ logQ · log |K| which is polynomial in the
security parameter κ. The ciphertext size is O(|w| · logQ) and the secret key size is O(|M |)
(ignoring polynomials in the security parameter).

4.2 Proof of Security
We proceed to show that our construction is secure. Formally:

I Theorem 4. Assume that the underlying CktFE scheme satisfies FULL-SIM security ac-
cording to definition (please see [1]). Then the construction for DfaFE achieves FULL-SIM
security as defined in Definition 2.

Proof. We proceed to construct a simulator DfaFE.Sim as required by Definition 2. The
simulator receives (PK, SKM ,M,M(w), 1|w|) and does the following:
1. Assign the bit b = M(w), and construct the circuit f corresponding to M as defined in

Figure 1 in the description of DfaFE.KeyGen.
2. Let CktFE.SKf = SKM and invoke CktFE.Sim

(
PK, f,CktFE.SKf , b

)
to receive C̃Tk where

we may express C̃Tk = (c̃k, d̃k,qk
) and d̃k,qk

= (d̃k,j) for j ∈ [logQ].
3. For (i = k, i ≥ 1, i−−), do:

a. If i = 1, set Sim.D̂1 = d̃1,q1 and exit.
b. Sample key K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and let

Sim.d̂i,j = SKE.Enc(K∗i,j , d̃i,j) ∀j ∈ [logQ] .

c. Sample b̃i,j ← {0, 1} and assign Sim.d̂b̃i,j

i,j = Sim.d̂i,j .
d. Choose another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and compute

Sim.d̂¯̃bij

i,j = SKE.Enc(K̃i,j , 0|d̃i,j |) ∀ j ∈ [logQ] .

e. Let Sim.D̂i,j =
(
Sim.d̂b̃i,j

i,j , Sim.d̂¯̃bi,j

i,j

)
and Sim.D̂i =

(
Sim.D̂i,j

)
for j ∈ [logQ].

f. Let (c̃i−1, d̃i−1,qi−1) = CktFE.Sim(PK, f,SKf ,K∗i).
4. Output the ciphertext as CTw = (c̃1, c̃2, . . . , c̃k, Sim.D̂1, . . . ,Sim.D̂k).

S. Agrawal and I. P. Singh 36:11

4.2.1 Analysis of Simulator
Correctness of the simulator DfaFE.Sim can be easily established using correctness of the
simulator CktFE.Sim and the semantic security of SKE. Let us say that the DFA M visits
states q1, . . . , qk while computing on input w where |w| = k.
1. We have by correctness of CktFE.Sim that:{

CTk ← CktFE.Enc
(
PK, (wk,⊥, 1, qk)

) c
≈ C̃Tk ← CktFE.Sim

(
PK, fM , SKf , b

)}
.

By decomposability, CTk = (ck,dk,qk
) where dk,qk

= (dbj

k,j) for j ∈ [logQ] and bj = qk,j

defined as the jth bit of state qk. Similarly, C̃Tk = (c̃k, d̃k,qk
) where d̃k,qk

may be
decomposed as (d̃k,j) for j ∈ [logQ]. Let i = k.

2. We now establish that (d̂bj

i,j

c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

a. We have that in algorithm DfaFE.Enc,

Ki =
(

(K0
(i,1),K

1
(i,1)), . . . , (K0

(i,logQ),K
1
(i,logQ))

)
where Kb

i,j ← K for j ∈ [logQ]. We also have, for j ∈ [logQ], b ∈ {0, 1}:

d̂bi,j = SKE.Enc(Kb
i,j ,dbi,j) (4.1)

b. In simulator DfaFE.Sim:

K∗i = (K∗i,1, . . . ,K∗i,logQ)← KlogQ and

Sim.d̂i,j = SKE.Enc(K∗i,j , d̃i,j) ∀j ∈ [logQ] .

Hence, since dbj

i,j

c
≈ d̃i,j and the symmetric keys are picked using the same distribution

in each case, we have that (d̂bj

i,j

c
≈ Sim.d̂i,j) where bj = qi,j and j ∈ [logQ].

3. We now establish that (d̂b̄j

i,j

c
≈ Sim.d̂¯̃bj

i,j) where j ∈ [logQ].

a. Construction of d̂b̄j

i,j is described in Equation 4.1.

b. For the latter, DfaFE.Sim samples b̃j and sets Sim.d̂b̃j

i,j = Sim.d̂i,j . Next, it samples
another logQ keys K̃i,1, . . . K̃i,logQ ← KlogQ and computes

Sim.d̂¯̃bj

i,j = SKE.Enc(K̃i,j , 0|d̃i,j |) ∀ j ∈ [logQ] .

By semantic security of SKE, we have that (d̂b̄j

i,j

c
≈ Sim.d̂¯̃bj

i,j).

4. Next, we show that D̂i
c
≈ Sim.D̂i. For i = 1, we have by definitions of D̂1 and Sim.D̂1,

that the above holds. For i > 1, in DfaFE.Enc, we have bi,j ← {0, 1} and

D̂i,j =
(

d̂bi,j

i,j , d̂
b̄i,j

i,j

)
.

In DfaFE.Sim, we have b̃i,j ← {0, 1} and

Sim.D̂i,j =
(
Sim.d̂b̃i,j

i,j , Sim.d̂¯̃bi,j

i,j

)
.

Since D̂i = (D̂i,j) and Sim.D̂i =
(

Sim.D̂i,j

)
for j ∈ [logQ], we have that D̂i

c
≈ Sim.D̂i.

ICALP 2017

36:12 Reusable Garbled Deterministic Finite Automata from Learning With Errors

5. Let i = i− 1. Now, we have by correctness of CktFE.Sim,{
CTi ← CktFE.Enc

(
PK, (wi,Ki+1, 0, qi)

) c
≈ C̃Ti ← CktFE.Sim

(
PK, fM , SKf ,K∗i+1

)}
.

By decomposability, CTi = (ci,di,qi) where di,qi = (dqi,j

i,j) for j ∈ [logQ]. Also, C̃Ti =
(c̃i, d̃i,qi

) where d̃i,qi
= (d̃i,j) for j ∈ [logQ]. If i > 1, go to step 2. For i = 1, we have by

definitions of D̂1 and Sim.D̂1, that (c1, D̂1) c
≈ (c̃1, Sim.D̂1).

6. Now, a straightforward hybrid argument yield that:{
(c1, D̂1), (c2, D̂2), . . . , (ck, D̂k)

}
c
≈
{

(c̃1, Sim.D̂1), (c̃2, Sim.D̂2), . . . , (c̃k, Sim.D̂k)
}

as desired.
J

Reusable Garbled DFA. In the full version [1] we show how to compile the above construc-
tion with symmetric key encryption to obtain the first construction of reusable garbled DFAs
from standard assumptions.

5 Single Key Functional Encryption for Turing Machines

In the full version [1], we provide the construction of single key functional encryption for
Turing machines. Our construction has short public parameters that are independent of
the size of the machine or the data being encrypted, short function keys, and input-specific
decryption time. However, the ciphertext of our construction is large and depends on the
worst case running time of the Turing machine (but not its description size).

While the large ciphertext size of our TMFE construction restricts its utility for practical
applications, we emphasize that the parameters obtained by our TMFE construction are not
implied by previous work to the best of our knowledge (please see the full version [1] for a
detailed discussion about previous work). To improve the ciphertext size of our construction,
while allowing succinct keys, dynamic data length and input specific run time is an interesting
open problem.

References
1 Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite automata

from learning with errors, full version. http://www.cse.iitm.ac.in/~shwetaag/papers/
dfa.pdf, 2017.

2 Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In Theory
of Cryptography, pages 125–153. Springer, 2016.

3 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits.
SIAM J. Comput., 43(2):905–929, 2014.

4 Nuttapong Attrapadung. Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT, 2014.

5 Domagoj Babić, Daniel Reynaud, and Dawn Song. Malware analysis with tree automata
inference. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verific-
ation: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, 2011.

6 Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. In STOC, 2015.

http://www.cse.iitm.ac.in/~shwetaag/papers/dfa.pdf
http://www.cse.iitm.ac.in/~shwetaag/papers/dfa.pdf

S. Agrawal and I. P. Singh 36:13

7 Xavier Boyen and Qinyi Li. Attribute-Based Encryption for Finite Automata from LWE.
In Provable Security, pages 247–267. Springer, 2015.

8 Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishab-
ility obfuscation of iterated circuits and ram programs. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC’15, 2015.

9 Yu-Chi Chen, Sherman S.M. Chow, Kai-Min Chung, Russell W.F. Lai, Wei-Kai Lin, and
Hong-Sheng Zhou. Computation-trace indistinguishability obfuscation and its applications.
IACR Cryptology ePrint Archive, 2015, 2015.

10 Sanjeev Das, Hao Xiao, Yang Liu, and Wei Zhang. Online malware defense using attack
behavior model. In IEEE International Symposium on Circuits and Systems, ISCAS 2016,
Montréal, QC, Canada, May 22-25, 2016, pages 1322–1325, 2016.

11 Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nick-
olai Zeldovich. How to run turing machines on encrypted data. In CRYPTO (2), pages
536–553, 2013.

12 Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nick-
olai Zeldovich. Reusable garbled circuits and succinct functional encryption. In STOC,
pages 555–564, 2013.

13 Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate Encryption for
Circuits from LWE. In Crypto, 2015.

14 Christopher L. Hayes and Yan Luo. Dpico: A high speed deep packet inspection engine
using compact finite automata. In Proceedings of the 3rd ACM/IEEE Symposium on Ar-
chitecture for Networking and Communications Systems, ANCS’07, pages 195–203, 2007.

15 Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfusca-
tion for turing machines with unbounded memory. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC’15, 2015.

16 Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in
public: Verifiable computation from attribute-based encryption. In Ronald Cramer, editor,
Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012, Taormina,
Sicily, Italy, March 19-21, 2012. Proceedings, 2012.

17 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. Journal
of the ACM (JACM), 26(2):361–381, 1979.

18 Amit Sahai and Hakan Seyalioglu. Worry-free encryption: Functional encryption with
public keys. In Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS’10, 2010.

19 Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini. Peak-performance dfa-based
string matching on the cell processor. In 21th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Proceedings, 26-30 March 2007, Long Beach, California, USA,
pages 1–8, 2007.

20 Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

ICALP 2017

Round-Preserving Parallel Composition of
Probabilistic-Termination Cryptographic
Protocols∗

Ran Cohen†1, Sandro Coretti‡2, Juan Garay3, and Vassilis Zikas4

1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
cohenran@tauex.tau.ac.il

2 Courant Institute of Mathematical Sciences, New York University, New York,
NY, USA
corettis@nyu.edu

3 Yahoo Research, Sunnyvale, CA, USA
garay@yahoo-inc.com

4 Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
vzikas@cs.rpi.edu

Abstract
An important benchmark for secure multi-party computation (MPC) protocols is their round
complexity. For several important MPC tasks, (tight) lower bounds on the round complexity
are known. However, for some of these tasks, such as broadcast, the lower bounds can be
circumvented when the termination round of every party is not a priori known, and simultaneous
termination is not guaranteed. Protocols with this property are called probabilistic-termination
(PT) protocols.

Running PT protocols in parallel affects the round complexity of the resulting protocol in
somewhat unexpected ways. For instance, an execution of m protocols with constant expected
round complexity might take O(logm) rounds to complete. In a seminal work, Ben-Or and El-
Yaniv (Distributed Computing ‘03) developed a technique for parallel execution of arbitrarily
many broadcast protocols, while preserving expected round complexity. More recently, Cohen et
al. (CRYPTO ‘16) devised a framework for universal composition of PT protocols, and provided
the first composable parallel-broadcast protocol with a simulation-based proof. These construc-
tions crucially rely on the fact that broadcast is “privacy free,” and do not generalize to arbitrary
protocols in a straightforward way. This raises the question of whether it is possible to execute
arbitrary PT protocols in parallel, without increasing the round complexity.

In this paper we tackle this question and provide both feasibility and infeasibility results. We
construct a round-preserving protocol compiler, secure against a minority of actively corrupted
parties, that compiles arbitrary protocols into a protocol realizing their parallel composition,
while having a black-box access to the underlying protocols. Furthermore, we prove that the same
cannot be achieved, using known techniques, given only black-box access to the functionalities
realized by the protocols, unless merely security against semi-honest corruptions is required, for
which case we provide a protocol.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Cryptographic protocols, secure multi-party computation, broadcast

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.37

∗ The full version of this paper can be found at the IACR Cryptology ePrint Archive [15], http://eprint.
iacr.org/2017/364.

† Research supported by ERC starting grant 638121.
‡ Author supported by NSF grants 1314568 and 1319051.

EA
T

C
S

© Ran Cohen, Sandro Coretti, Juan Garay, and Vassilis Zikas;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.37
http://eprint.iacr.org/2017/364
http://eprint.iacr.org/2017/364
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

1 Introduction

Secure multi-party computation (MPC) [52, 30] allows a set of parties to jointly perform a
computation on their inputs, in such a way that no coalition of cheating parties can learn
any information beyond what is revealed by their outputs (privacy) or affect the outputs of
the computation in any way other than by choosing their own inputs (correctness). Since the
first seminal works on MPC [52, 30, 6, 12, 50], it has been studied in a variety of different
settings and for numerous security notions: there exist protocols secure against passively
corrupted (aka semi-honest) parties and against actively corrupted (aka malicious) parties;
the underlying network can be synchronous or asynchronous; and the required security
guarantees can be information-theoretic or computational – -to name but a few of the axes
along which the MPC task can be evaluated.

The prevalent model for the design of MPC protocols is the synchronous model, where
the protocol proceeds in rounds. In this setting, the round complexity, i.e., the number of
rounds it takes for a protocol to deliver outputs, is arguably the most important efficiency
metric. Tight lower bounds are known on the round complexity of several MPC tasks. For
example, for the well-known problems of Byzantine agreement (BA) and broadcast [48, 44],
it is known that any protocol against an active attacker corrupting a linear fraction of the
parties has linear round complexity [25, 23]. This result has quite far-reaching consequences
as, starting with the seminal MPC works mentioned above, a common assumption in the
design of secure protocols has been that the parties have access to a broadcast channel,
which they potentially invoke in every round. In reality, such a broadcast channel might
not be available and would have to be implemented by a broadcast protocol designed for
a point-to-point network. It follows that even though the round complexity of many MPC
protocols is linear in the multiplicative depth of the circuit being computed, their actual
running time depends on the number of parties, when executed over point-to-point channels.

The above lower bound on the number rounds for BA holds when all honest parties are
required to complete the protocol together, at the same round [22]. Indeed, randomized
BA protocols that circumvent this lower bound and run in expected constant number of
rounds (cf. [4, 49, 24, 26, 41, 45]) do not provide simultaneous termination, i.e., once a
party completes the protocol’s execution it cannot know whether all honest parties have
also terminated or if some honest parties are still running the protocol; in particular, the
termination round of each party is not a priori known. A protocol with this property is said
to have probabilistic termination (PT).

As pointed out by Ben-Or and El-Yaniv [5], when several such PT protocols are executed
in parallel, the expected round complexity of the combined execution might no longer be
constant (specifically, might not be equal to the maximum of the expected running times of the
individual protocols). Indeed, when m protocols, whose termination round is geometrically
distributed (and so, have constant expected round complexity), are run in parallel, the
expected number of rounds that elapse before all of them terminate is Θ(logm) [14]. While
an elegant mechanism was proposed in [5] for implementing parallel calls to broadcast such
that the total expected number of rounds remains constant, it did not provide any guarantees
to remain secure under composition, raising questions about its usability in a higher-level
protocol (such as the MPC setting described above). Such a shortcoming was recently
addressed by Cohen et al. [14] who provided a framework for universal composition of PT
protocols (building upon the universal-composition framework of [8]). An application of
their result was the first composable protocol for parallel broadcast (with a simulation-based
proof) that can be used for securely replacing broadcast channels in arbitrary protocols, and
whose round complexity is constant in expectation.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:3

Indeed, an immediate application of the composable parallel-broadcast protocol from [14]
is plugging it into broadcast-model MPC protocols in order to obtain point-to-point protocols
with a round complexity that is independent of the number of parties. In the information-
theoretic setting, this approach yields protocols whose round complexity depends on the depth
of the circuit computing the function [6, 12, 50, 18], whereas in the computational setting,
assuming standard cryptographic assumptions, this approach yields expected-constant-round
protocols [43, 3, 20, 40, 1, 29, 31, 46]. However, the resulting point-to-point protocols have
probabilistic-termination on their own. The techniques used for composing PT broadcast
protocols in parallel crucially rely on the fact that broadcast is a privacy-free functionality,
and a naïve generalization of this approach to arbitrary PT protocols fails to be secure. This
raises the question of whether it is possible to execute arbitrary PT protocols in parallel,
without increasing the round complexity.

We remark that circumventing lower bounds on round complexity is just one of the areas
where such PT protocols have been successfully used. Indeed, randomizing the termination
round has been proven to be a very useful technique in circumventing impossibilities and
improving efficiency for many cryptographic protocols. Notable examples include non-
committing encryption [21], cryptographic protocols designed for rational parties [34, 27, 47,
2, 32, 28], concurrent zero-knowledge protocols [9, 13] and parallel repetition of interactive
arguments [33, 35]. The rich literature on such protocols motivates a thorough investigation
of their security and composability. As mentioned above, in [14] the initial foundations were
laid out for such an investigation, but what was proven for arbitrary PT protocols was a
round-preserving sequential composition theorem, leaving parallel composition as an open
question.

Our contributions. In this work, we investigate the issue of parallel composition for arbitrary
protocols with probabilistic termination. In particular, we develop a compiler such that
given functionalities F1, . . . ,FM and protocols π1, . . . , πM, where for every i ∈ [M], protocol
πi realizes Fi (possibly using correlated randomness as setup1), then the compiled protocol
realizes the parallel composition of the functionalities, denoted (F1 ‖ · · · ‖ FM).

Our compiler uses the underlying protocols in a black-box manner,2 is robust (i.e.,
secure without abort) and resilient against a computationally unbounded active adversary,
adaptively corrupting up to t < n/2 parties (which is optimal [50]). Moreover, our compiler is
round-preserving, meaning that if the maximal (expected) round complexity of each protocol
is µ, then the expected round complexity of the compiled protocol is O(µ). For example, if
each protocol πi has constant expected round complexity, then so does the compiled protocol.
Recall that this task is quite complicated even for the simple case of BA (cf. [5, 14]). For
arbitrary functionalities it is even more involved, since as we show, the approach from [5]
cannot be applied in a functionally black-box way in this case. Thus, effectively, our result is
the first round-preserving parallel composition result for arbitrary multi-party protocols/tasks
with probabilistic termination.

We now describe the ideas underlying our compiler. In [5] (see also [14]), a round-
preserving parallel-broadcast protocol was constructed by iteratively running, for a constant
number of rounds, multiple instances of BA protocols (each instance is executed multiple

1 A trusted setup phase is needed for implementing broadcast in the honest-majority setting. As shown
in [17, 16] some interesting functions can be computed without such a setup phase.

2 Following [37], by a black-box access to a protocol we mean a black-box usage of a semi-honest MPC
protocol computing its next-message function.

ICALP 2017

37:4 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

times in parallel, in a batch), hoping that at least one execution of every BA instance will
complete. By choosing the multiplicity suitably, this would occur with constant probability,
and the process need therefore be repeated a constant expected number of times only.

At first sight it might seem that this idea can be applied to arbitrary tasks, but this is
not the case. Intuitively, the reason is that if the tasks that we want to compose in parallel
have privacy requirements, then making the parties run them in (parallel) “batches” with
the same input might compromise privacy, since the adversary will be able to use different
inputs and learn multiple outputs of the function(s). This issue is not relevant for broadcast,
because it is a “privacy-free” functionality; the adversary may learn the result of multiple
computations using the same inputs for honest parties, without compromising security.

To cope with the above issue, our parallel-composition compiler generalizes the approach
of [5] in a privacy-preserving manner. At a high level, it wraps the batching technique by
an MPC protocol which restricts the parties to use the same input in all protocols for the
same function. In particular, the compiler is defined in the Setup-Commit-then-Prove hybrid
model [10, 39], which allows each party to commit to its input values and later execute
multiple instances of every protocol, each time proving that the same input value is used in
all executions.

The constructions in [10, 39] for realizing the Setup-Commit-then-Prove functionality are
designed for the dishonest-majority setting and therefore allow for a premature abort. Since
we assume an honest majority, we require security without abort. A possible way around
would be, as is common in the MPC literature, to restart the protocol upon discovering
some cheating or add for each abort a recovery round; this, however, would induce a linear
overhead (in the number of parties) on the round complexity of the protocol.

Instead, in order to recover from a misbehavior by corrupted parties, we modify the
Setup-Commit-then-Prove functionality and secret-share every committed random string
between all the parties, using an error-correcting secret-sharing scheme (aka robust secret
sharing [50, 19, 11]). In case a party is identified as cheating, every party broadcasts the
share of the committed randomness corresponding to that party, reconstructs the correlated
randomness for that party, and locally computes the messages corresponding to this party in
every instance of every protocol. We also prove that the modified Setup-Commit-then-Prove
functionality can be realized in a constant number of rounds, thus yielding no (asymptotic)
overhead on the round complexity of the compiler.

Next, given that using only black-box access to the protocols πi, it is possible to compile
them into a protocol that implements the parallel composition (F1 ‖ · · · ‖ FM) of the
functionalities F1, . . . ,FM realized by protocols π1, . . . , πM, we investigate the question of
whether there exists a protocol that securely realizes (F1 ‖ · · · ‖ FM) given only black-box
access to the functionalities F1, . . . ,FM,3 but not to protocols realizing them. This question
is only sensible if asked for an entire class of functionalities (cf. [51]), since otherwise a
protocol may always ignore the functionalities F1, . . . ,FM and implement (F1 ‖ · · · ‖ FM)
from scratch.

On the one hand, we prove that against semi-honest corruptions, there indeed exists
a protocol for parallel composition of arbitrary functionalities Fi in a functionally black-
box manner. On the other hand, in the case of active corruptions, we devise a class of
functionalities for which, when using a generalization of the “batching” technique from [5],

3 Loosely speaking, a functionally black-box protocol, as defined in [51], is a protocol that can compute a
function f without knowing the code of f , i.e., given an oracle access to the function f . Note that in
this model, each ideal functionality Fi has an oracle access to the function fi it computes.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:5

such a black-box transformation is not possible in the presence of a single active corrupted
party. More precisely, (1) a naïve call to each of the ideal functionalities Fi until termination
will not be round-preserving, (2) it is impossible to compute the parallel composition without
calling every ideal functionality, and (3) using the same input value in more than one call to
any of the ideal functionalities will break privacy.4 This negative result validates our choice
of a protocol compiler, and is evidence that such a task, if at all possible, would require
entirely new techniques.

We phrase our results using the framework for composition of protocols with probabilistic
termination [14], extending it (a side result of independent interest) to include parallel
composition, reactive functionalities (to capture the Setup-Commit-then-Prove functionality),
and the higher corruption threshold of t < n/2.

Organization of the paper. The rest of the paper is organized as follows. In Section 2
we describe the network model, the basics of the probabilistic-termination framework by
Cohen et al. [14], and other tools that are used throughout the paper. We start Section 3
with the extensions to the PT framework, followed by the protocol that achieves round-
preserving parallel composition for arbitrary functionalities in a functionally black-box
manner against semi-honest adversaries. Section 4 is dedicated to active corruptions; first,
the round-preserving protocol-black-box construction, followed by the negative result on
round-preserving functionally black-box composition in the case of active corruptions. Due
to space limitations, finer details of the model and PT framework, our extension of the PT
framework to the honest-majority setting, and proofs, will only appear in the full version of
the paper.

2 Model and Preliminaries

2.1 Synchronous Protocols in UC

We consider synchronous protocols in the model of Katz et al. [42], which is designed on
top of the universal composability framework of Canetti [8]. More specifically, we consider
n parties P1, . . . , Pn and a computationally unbounded, adaptive t-adversary that can
dynamically corrupt up to t parties during the protocol execution. Synchronous protocols
in [42] are protocols that run in a hybrid model where parties have access to a simple “clock”
functionality. This functionality keeps an indicator bit, which is switched once all honest
parties request the functionality to do so, i.e., once all honest parties have completed their
operations for the current round. In addition, all communication is done over bounded-delay
secure channels, where each party requests the channel to fetch messages that are sent to him,
such that the adversary is allowed to delay the message delivery by a bounded and a priori
known number of fetch requests. Stated differently, once the sender has sent some message,
it is guaranteed that the message will be delivered within a known number of activations of
the receiver. For simplicity, we assume that every message is delivered within a single fetch
request. A more detailed overview of [42] can be found in the full version.

4 We note that our negative result does not contradict Ishai et al. [38, 36] who constructed two-round
protocols with guaranteed output delivery for n ≥ 4 and t = 1 without broadcast. Indeed, the protocols
in [38, 36] are non-black-box with respect to the function to be computed.

ICALP 2017

37:6 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

2.2 The Probabilistic-Termination Framework
Cohen et al. [14] extended the UC framework to capture protocols with probabilistic termin-
ation, i.e., protocols without a fixed output round and without simultaneous termination.
This section outlines their techniques; additional details can be found in the full version.

Canonical synchronous functionalities. The main idea behind modeling probabilistic ter-
mination is to separate the functionality to be computed from the round complexity that is
required for the computation. The atomic building block in [14] is a functionality template
called a canonical synchronous functionality (CSF), which is a simple two-round functionality
with explicit (one-round) input and (one-round) output phases. The functionality Fcsf has
two parameters: (1) a (possibly) randomized function f that receives n+ 1 inputs (n inputs
from the parties and one additional input from the adversary) and (2) a leakage function l
that determines what information about the input values is leaked to the adversary.
Fcsf proceeds in two rounds: in the first (input) round, all the parties hand Fcsf their

input values, and in the second (output) round, each party receives its output. Whenever
some input is submitted to Fcsf, the adversary is handed some leakage function of this
input; the adversary can use this leakage when deciding the inputs of corrupted parties.
Additionally, he is allowed to input an extra message, which – depending on the function f –
might affect the output(s).

Wrappers and traces. Computation with probabilistic termination is captured by defining
output-round randomizing wrappers. Such wrappers address the issue that while an ideal
functionality abstractly describes a protocol’s task, it does not describe its round complexity.
Each wrapper is parametrized by a distribution (more precisely, an efficient probabilistic
sampling algorithm) D that may depend on a specific protocol implementing the functionality.
The wrapper samples a round ρterm ← D, by which all parties are guaranteed to receive their
outputs. Two wrappers are considered: the first, denoted Wstrict, ensures in a strict manner
that all (honest) parties terminate together in round ρterm; the second, denoted Wflex, is
more flexible and allows the adversary to deliver outputs to individual parties at any time
before round ρterm.

As pointed out in [14], it is not sufficient to inform the simulator S about the round ρterm.
In many cases, the wrapper should explain to S how this round was sampled; concretely,
the wrapper provides S with the random coins that are used to sample ρterm. In particular,
S learns the entire trace of calls to ideal functionalities that are made by the protocol in
order to complete by round ρterm. A trace basically records which hybrids were called by a
protocol’s execution, and in a recursive way, for each hybrid, which hybrids would have been
called by a protocol realizing that hybrid.The recursion ends when the base case is reached,
i.e., when the protocol is defined using the atomic functionalities that are “assumed” by the
model.5 Formally, a trace is defined as follows:

I Definition 1 (Traces). A trace is a rooted tree of depth at least 1, in which all nodes are
labeled by functionalities and where every node’s children are ordered. The root and all
internal nodes are labeled by wrapped CSFs (by either of the two wrappers), and the leaves
are labeled by unwrapped CSFs. The trace complexity of a trace T , denoted ctr(T), is the
number of leaves in T . Moreover, denote by flextr(T) the number nodes labeled by flexibly
wrapped CSFs in T .

5 The atomic functionalities considered in this work are the CSFs for the point-to-point communication
functionality Fsmt and the correlated-randomness functionality for broadcast Fcorr-bc.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:7

Sequential composition of probabilistic-termination protocols. When a set of parties
execute a probabilistic-termination protocol, or equivalently, invoke a flexibly wrapped CSF,
they might get out-of-sync and start the next protocol in different rounds. The approach
in [14] for dealing with sequential composition is to start by designing simpler protocols, that
are in a so-called synchronous normal form, where the parties remain in-sync throughout the
execution, and next, compile these protocols into slack-tolerant protocols.

I Definition 2 (Synchronous normal form). Let F1, . . . ,Fm be CSFs. A synchronous protocol
π in the (F1, . . . ,Fm)-hybrid model is in synchronous normal form (SNF) if in every round
exactly one ideal functionality Fi is invoked by all honest parties, and in addition, no honest
party hands inputs to other CSFs before this instance halts.

SNF protocols are designed as an intermediate step only, since the hybrid functionalities
F1, . . . ,Fm are two-round CSFs, and, in general, cannot be realized by real-world protocols.
In order to obtain protocols that can be realized in the real world, [14] introduced slack-
tolerant variants of both the strict and the flexible wrappers, denoted Wsl-strict and Wsl-flex.
These wrappers are parametrized by a slack parameter c ≥ 0 and can be used even if parties
provide inputs within c+ 1 consecutive rounds (i.e., they tolerate input slack of c rounds);
furthermore, the wrappers ensure that all honest parties obtain output within two consecutive
rounds (i.e., they reduce the slack to c = 1). Next, [14] constructed compilers to convert
any SNF protocol realizing a wrapped CSF WD

strict(F) (resp., WD
flex(F)) into a (non SNF)

protocol realizing WD′,c
sl-strict(F) (resp., WD′,c

sl-flex(F)), using wrapped CSFs as hybrids. The
compilers maintain the security and the asymptotic (expected) round complexity of the
original SNF protocols. At the same time, the compilers take care of any potential slack that
is introduced by the protocol and ensure that the resulting protocol can be safely executed
even if the parties do not start the protocol simultaneously.

Finally, in [14], the authors also provided protocols for realizing wrapped variants of
the atomic CSF functionality for secure point-to-point communication. This suggested
the following design paradigm for realizing a wrapped functionality Wsl-strict(F) (resp.,
Wsl-flex(F)): First, construct an SNF protocol for realizing Wstrict(F) (resp., Wflex(F))
using CSF hybrids F1, . . . ,Fm. Next, for each of the non-atomic hybrids Fi, show how
to realize Wstrict(Fi) (resp., Wflex(Fi)) using CSF hybrids F′1, . . . ,F′m′ . Proceed in this
manner until all CSF hybrids are atomic functionalities. Finally, repeated applications of the
composition theorems above yield a protocol for Wsl-strict(F) (resp., Wsl-flex(F)) using only
atomic functionalities as hybrids.

2.3 A Lemma on Termination Probabilities

The following lemma, which will be used in our positive results, provides a constant lower
bound on the probability that when running simultaneously (i.e., in parallel) N copies of M
probabilistic-termination protocols π1, . . . , πM, at least one copy of each πi will complete after
R rounds, for suitable choices of N and R. The proof of the lemma appears in the full version.

I Lemma 3. Let M, N, R ∈ N. For i ∈ [M] and j ∈ [N], let Xij be independent random variables
over the natural numbers, such that Xi1, . . . , XiN are identically distributed with expectation
µi, for every i ∈ [M]. Denote Yi = min{Xi1, . . . , XiN} and µ = max{µ1, . . . , µM}.

Then, for any constant 0 < ε < 1, if R > µ and N > log(M/ε)
log(R/µ) , then Pr[∀i : Yi < R] ≥ 1− ε.

ICALP 2017

37:8 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

3 Round-Preserving Parallel Composition: Passive Security

In this section, we show that round-preserving parallel composition is feasible, in a functionally
black-box manner, facing semi-honest adversaries. To that end we first extend, in Section 3.1,
the probabilistic-termination framework [14] to capture the notions of functionally black-box
protocols [51] and of parallel composition of canonical synchronous functionalities. The
passively secure protocol is presented in Section 3.2.

3.1 Functionally Black-Box Protocols and Parallel Composition
Functionally black-box protocols. We formalize the notion of functionally black-box pro-
tocols of Rosulek [51] in the language of canonical synchronous functionalities. As in [51],
we focus on secure function evaluation. The SFE functionality Fgsfe, parametrized by an
n-party function g, is defined as the CSF Ffsfe,lsfe

csf , where fsfe(x1, . . . , xn, a) = g(x1, . . . , xn)
(i.e., computes the function g while ignoring the adversary’s input a) and the leakage function
is lsfe(x1, . . . , xn) = (|x1|, . . . , |xn|). The following definition explains what we mean by a
protocol that realizes the secure function evaluation functionality in a black-box way with
respect to the function g.

I Definition 4. Let C = {g : ({0, 1}∗)n → ({0, 1}∗)n} be a class of n-party functions. Denote
by FCsfe the CSF, implemented as an (uninstantiated) oracle machine that in order to compute
fCsfe(x1, . . . , xn, a), queries the oracle with (x1, . . . , xn) and stores the response (y1, . . . , yn).
The leakage function lsfe(x1, . . . , xn) = (|x1|, . . . , |xn|) is unchanged.

Then, a protocol π = (π1, . . . , πn) is a functionally black-box (FBB) protocol for (a
wrapped version of) FCsfe, if for every f ∈ C, the protocol πf = (πf1 , . . . , πfn) UC-realizes Ffsfe.

Parallel Composition of CSFs. The parallel composition of CSFs is defined in a natural
way as the CSF that evaluates the corresponding functions in parallel.

I Definition 5. Let f1, . . . , fM be n-input functions. We define the (n · M)-input function
(f1 ‖ · · · ‖ fM) as follows. Upon input (x1, . . . ,xn), where each xi is an M-tuple (x1

i , . . . , x
M
i),

the output is the M-tuple defined as

(f1 ‖ · · · ‖ fM)(x1, . . . ,xn) =
(
(y1

1 , . . . , y
M
1), . . . , (y1

n, . . . , y
M
n)

)
,

where (yj1, . . . , yjn) = fj(xj1, . . . , xjn).
Let Ff1,l1

csf , . . . ,FfM,lM
csf be CSFs, denote Fi = Ffi,li

csf . The parallel composition of F1, . . . ,FM,
denoted as (F1 ‖ · · · ‖ FM), is the CSF defined by the function (f1 ‖ · · · ‖ fM) and the leakage
function (l1 ‖ · · · ‖ lM).

3.2 Passively Secure FBB Parallel-Composition Protocol
The underlying idea of our protocol is based on a simplified form of the parallel-broadcast
protocol of Ben-Or and El-Yaniv [5]. The protocol proceeds in iterations, where in each
iteration, the parties invoke, in parallel and using the same input values, sufficiently many
instances of each (oracle-aided) ideal functionality, but only for a constant number of rounds.
If some party received an output in at least one invocation of every ideal functionality, it
distributes all output values and the protocol completes; otherwise, the protocol resumes
with another iteration. This protocol retains privacy for deterministic functions,6 since the

6 Although the result holds for deterministic functionalities, we note that using standard techniques every
functionality can be transformed to an equivalent deterministic functionality in a black-box way.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:9

adversary is semi-honest, and so corrupted parties will provide the same input values to all
instances of each ideal functionality.

Intuitively, during the simulation of the protocol, the simulator should imitate every call
for every ideal functionality towards the adversary. A subtle issue is that in order to do
so, the simulator must know the exact trace that is sampled by each instance of each ideal
functionality during the execution of the real protocol. Therefore, it is indeed essential for
the simulator to receive the random coins used to sample the trace for the entire protocol,
by the ideal functionality computing the parallel composition (cf. Section 2.2). By defining
the trace-distribution sampler in a way that consists of all (potential) sub-traces for every
instance of every ideal functionality, the simulator can induce the exact random coins used
to sample the correct sub-trace for every ideal functionality that is invoked.

I Theorem 6. Let C1, . . . , CM be (deterministic-)function classes, let FC1
sfe, . . . ,FCM

sfe be oracle-
aided secure function evaluation functionalities, and let t < n/2. Let D1, . . . , DM be distri-
butions, such that for every j ∈ [M], the round complexity of WDj

flex(FCj

sfe) has expectation µj.
Denote µ = max{µ1, . . . , µM}.

Then, WD
flex(FC1

sfe ‖ · · · ‖ FCM
sfe), for some distribution D with expectation µ′ = O(µ), can

be UC-realized by an FBB protocol in the (Fsmt,WD1
flex(FC1

sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model,
with information-theoretic security, in the presence of an adaptive, semi-honest t-adversary,
assuming that all honest parties receive their inputs at the same round.

In particular, if for every j ∈ [M], the expectation µj is constant, then µ′ is constant.

The proof of Theorem 6 can be found in the full version.

4 Round-Preserving Parallel Composition: Active Security

In this section, we consider security against active adversaries. First, in Section 4.1, we show
how to compute the parallel composition of probabilistic-termination functionalities, in a
round-preserving manner, using a black-box access to protocols realizing the individual func-
tionalities. In Section 4.2, we investigate the question of whether there exists a functionally
black-box round-preserving malicious protocol for the parallel composition of probabilistic
functionalities, and show that for a natural extension of protocols, following the techniques
from [5], this is not the case – i.e., there exist functions such that no such protocol with
black-box access to them can compute their parallel composition, in a round-preserving
manner, tolerating even a single adversarial party.

4.1 Feasibility of Round-Preserving Parallel Composition
In this section, we show how to compile multiple protocols, realizing probabilistic-termination
functionalities, into a single protocol that realizes the parallel composition of the functional-
ities, in a round-preserving manner, and while only using black-box access to the underlying
protocols. We start by providing a high-level description of the compiler.

The compiler receives as input protocols π1, . . . , πM, where each protocol πj is defined
in the point-to-point model, in which the parties are given correlated randomness in a
secure setup phase, i.e., in the (Fsmt,F

Dcorr
j

corr)-hybrid model.7 It follows that the next-message
function for each party in each protocol is a deterministic function that receives the input

7 This captures, for example, broadcast-model protocols, where the broadcast channel is realized using an
expected-constant-round protocol.

ICALP 2017

37:10 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

value, correlated randomness, private randomness and history of incoming messages, and
outputs a vector of n messages to be sent in the following round (one message for each party).
In particular, we note that the entire transcript of the protocol is fixed once the input value,
correlated randomness and private randomness of each party are determined.

The underlying ideas of the compiler are inspired by the constructions in [5, 14], where a
round-preserving parallel-broadcast protocol was constructed by iteratively running, for a
constant number of rounds, multiple instances of BA protocols (each instance is executed
multiple times in parallel), until at least one execution of every BA instance is completed.
This approach is suitable for computing “privacy-free” functionalities, where the adversary
may learn the results of multiple computations using the same inputs for honest parties,
without compromising security. However, when considering the parallel composition of
arbitrary functions, running two instances of a protocol using the same inputs will violate
privacy, since the adversary can use different inputs to learn multiple outputs of the function.

The parallel-composition compiler generalizes the above approach in a privacy-preserving
manner. The compiler follows the GMW paradigm [30] and is defined in the Setup-Commit-
then-Prove hybrid model [10, 39], which generates committed correlated randomness for
the parties and ensures that all parties follow the protocol specification. This mechanism
allows each party to commit to its input values and later execute multiple instances of each
protocol, while proving that the same input value is used in all executions. For simplicity
and without loss of generality, we assume that each function is deterministic and has a public
output. In this case it is ensured that if two parties receive output values in two executions
of πj , then they receive the same output value. The private random coins that are used
in each execution only affect the termination round, but not the output value. Using this
simplification, we can remove the leader-election phase from the output-agreement technique
in [5, 14] and directly use the termination technique from Bracha [7].

Another obstacle is to recover from corruptions without increasing the round complexity.
Indeed, in case some party misbehaves, e.g., by using different input values in different
instances of the same protocol πj , then the Setup-Commit-then-Prove functionality ensures
that all honest parties will identify the cheating party. In this case, the parties cannot recover
by, for example, backtracking and simulating the cheating party, as this will yield a round
complexity that is linear in the number of parties. Furthermore, the protocol must resume in
a way such that all instances of a specific protocol πj will use the same input value that the
identified corrupted party used throughout the protocol’s execution until it misbehaved (since
the cheating party might have learned an output value in one of the executed protocols).

To this end, we slightly adjust the Setup-Commit-then-Prove functionality and secret-
share every committed random string ri (the correlated randomness for party Pi) among
all the parties, using an error-correcting secret-sharing scheme. Note that this can be
done information theoretically as we assume an honest majority [50, 19, 11]. In case a
cheating party is identified, every party broadcasts the share of the committed randomness
corresponding to that party, reconstructs this party’s correlated randomness and from that
point onwards, locally computes the messages corresponding to this party in every instance
of every protocol. Using this approach, every round in the original protocols π1, . . . , πM is
expanded by a constant number of rounds, and the overall round complexity is preserved.

I Theorem 7. Let F1, . . . ,FM be CSFs, let t < n/2, and let c ≥ 1. Let π1, . . . , πM be SNF
protocols such that for every j ∈ [M], protocol πj UC-realizes WDj

flex(Fj) with expected round
complexity µj and information-theoretic security, in the (Fsmt,F

Dcorr
j

corr)-hybrid model (for a
distribution Dj and a distribution Dcorr

j in NC0), in the presence of an adaptive, malicious
t-adversary, assuming that all honest parties receive their inputs at the same round. Denote
µ = max{µ1, . . . , µM}.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:11

Then, WD,c
sl-flex(F1 ‖ · · · ‖ FM), for some distribution D with expectation µ′ = O(µ), can be

UC-realized with information-theoretic security by a protocol π in the (Fsmt,Fcorr-bc)-hybrid
model, in the same adversarial setting, assuming that all honest parties receive their inputs
within c+ 1 consecutive rounds. In addition, protocol π requires only black-box access to the
protocols πj.

In particular, if for every j ∈ [M], µj is constant, then D has constant expectation.

The proof of Theorem 7 can be found in the full version.

4.2 An Impossibility of FBB Round-Preserving Parallel Composition
In this section, we prove that for a natural class of protocols, following and/or extending in
various ways the techniques from Ben-Or and El-Yaniv [5],8 there exist functions such that no
protocol can compute their parallel composition in a round-preserving manner, while accessing
the functions in a black-box way, tolerating even a single adversarial party. Although this is
not a general impossibility result, it indicates that the batching approach of [5] is limited to
semi-honest security (cf. Section 3) and/or functionally white-box transformations.

We observe that this impossibility serves as an additional justification for the optimality
of our protocol-black-box parallel composition (cf. Section 4.1). Indeed, on the one hand, it
formally confirms the generic observation that the natural parallel composition of a set of
PT functionalities does not preserve their round complexity. On the other hand, and most
importantly, it proves that all existing techniques for composing PT functionalities in parallel
in the natural (FBB) manner fail in preserving the round complexity. Hence, the only known
existing round-preserving composition for such functionalities are the protocol-black-box
compiler presented in Section 4.1 or more inefficient non-black-box techniques. The wideness
of the class of excluded protocols by our impossibility result justifies our conjecture that
there exists no round-preserving FBB protocol for parallel composition of PT functionalities.
Proving this conjecture is in our opinion a very interesting research direction.

We first argue informally why the approach of [5], cannot be directly extended to privacy-
sensitive functions. The idea in [5] for allowing each of the n parties to broadcast its value
is to have each of the n parties participate in m = O(logn) parallel invocations (hereafter
called batches, to avoid confusion with the goal of parallel broadcast for different messages)
of broadcast as sender with the same input. Each of those batches is executed in parallel
for a fixed (constant) number of rounds (for the same broadcast message); this increases
the probability that sufficiently many parties receive output from each batch. At the end
of each batch execution, the parties check whether they jointly hold the output, and if not,
they repeat the computation of the batches. It might seem that this idea can be applied to
arbitrary tasks, but this is not the case. The reason is that this idea fails if the functionality
has any privacy requirements, is that the adversary can input different values on different
calls of the functionality within a batch and learn more information on the input.

Batched parallel composition. The above issue with privacy appears whenever a function
is invoked twice in the same round on the same inputs from honest parties. Indeed, in
this case the adversary can use different inputs to each invocation and learn information as
sketched above. The same attack can be extended to composition-protocols which invoke
the function in two different rounds ρ and ρ′; as long as the adversary knows these rounds

8 To our knowledge, the only known techniques for round-preserving parallel composition are those of
Ben-Or and El-Yaniv [5] and are only for the specific case of Byzantine agreement.

ICALP 2017

37:12 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

he can still launch the above attack on privacy. Generalizing the claim even further, for
specific classes of functions, it suffices that there are two (possibly different) functions which
are evaluated on the same inputs in rounds ρ and ρ′. This excludes protocols that might
attempt to avoid using some functionality WDj

flex(Fj) by invoking some other WDj′

flex (Fj′).
To capture the above generalization, we define the class of batched-parallel composition

protocols: A protocol π implementing the PT parallel composition WD
flex(F1 ‖ · · · ‖ FM)

in the (WD1
flex(F1), . . . ,WDM

flex(FM))-hybrid model (for some distributions D,D1, . . . , DM) is a
batched-parallel composition protocol if it has the following structure: It proceeds in rounds,
where in each round the protocol might initiate (possibly multiple) calls to any number of the
hybrid functionalities WDj

flex(Fj) and/or continue calls that were initiated in previous rounds.
Furthermore, there exist two publicly known protocol rounds ρ and ρ′, and indices j, j′, ` ∈ [M],
such that for the input vector x = (x1, . . . ,xn) that π gives to WD

flex(F1 ‖ · · · ‖ FM) (where
xi = (x1

i , . . . , x
M
i)) the following properties are satisfied:

1. In round ρ the functionality WDj

flex(Fj) is called on input x` = (x`1, . . . , x`n) and at least
two of its rounds are executed.

2. In round ρ′ the functionality WDj′

flex (Fj′) is also called on input x` and at least two of its
rounds are executed.

We next show that the there are classes of functions C1, . . . , CM such and for any protocol
π that securely computes the parallel composition WD

flex(FC1
sfe ‖ · · · ‖ FCM

sfe) while given hybrid
access to PT functionalities WDi

flex(FCi
sfe) the following properties hold simultaneously:

1. π has to call each of the hybrids WDi

flex(FCi
sfe) (for at least 2 rounds each).9

2. The naïve solution of π calling each of the WDi

flex(FCi
sfe)’s in parallel until they terminate

is not round-preserving (for an appropriate choice of Di’s.)
3. π cannot be a batched-parallel composition protocol.

The above shows that the classes C1, . . . , CM not only exclude the existence of a batched-
parallel composition protocol, but they also exclude all other known solutions. This implies
that for this classes of functions, every known approach – and generalizations thereof –
fail to compute the parallel composition of the corresponding functionality in an FBB and
round-preserving manner. In the full version we prove the following theorem.

I Theorem 8. Let M = O(κ). There exist n-party function classes C1, . . . , CM and distributions
D1, . . . , DM, such that the following properties hold in the presence of a malicious adversary
corrupting any one of the parties:
1. The protocol that calls each WDi

flex(FCi
sfe) in parallel (once) until termination is not round-

preserving (its round complexity is asymptotically higher than of the distributions Di).
2. Any (Fsmt,WD1

flex(FC1
sfe), . . . ,WDM

flex(FCM
sfe))-hybrid protocol for computing WD

flex(FC1
sfe ‖ · · · ‖

FCM
sfe) has to make a meaningful call (i.e., a call that executes at least two rounds) to each

PT hybrid WDi

flex(FCi
sfe).

3. There exists no functionally black-box batched-parallel composition protocol for computing
WD

flex(FC1
sfe ‖ · · · ‖ FCM

sfe) in the (Fsmt,WD1
flex(FC1

sfe), . . . ,WDM
flex(FCM

sfe))-hybrid model, where D
has (asymptotically) the same expectation as D1, . . . , DM.

References
1 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,

and Daniel Wichs. Multiparty computation with low communication, computation and

9 Note that this does not mean that π is not round preserving as the calls might be in parallel.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:13

interaction via threshold FHE. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, April 2012.

2 Gilad Asharov and Yehuda Lindell. Utility dependence in correct and fair rational secret
sharing. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 559–576.
Springer, August 2009.

3 Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

4 Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement
protocols (extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro,
editors, 2nd ACM PODC, pages 27–30. ACM Press, August 1983.

5 Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant
time. Distributed Computing, 16(4):249–262, 2003.

6 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988.

7 Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L.
Probert, Nancy A. Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 154–162.
ACM Press, August 1984.

8 Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

9 Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires omega (log n) rounds. In 33rd ACM STOC, pages 570–579. ACM
Press, July 2001.

10 Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM
Press, May 2002.

11 Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani. Unconditionally-secure
robust secret sharing with compact shares. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 195–208. Springer, April 2012.

12 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

13 Kai-Min Chung, Rafael Pass, and Wei-Lung Dustin Tseng. The knowledge tightness of
parallel zero-knowledge. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS,
pages 512–529. Springer, March 2012.

14 Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination
and composability of cryptographic protocols. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 240–269. Springer, August
2016.

15 Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Round-preserving par-
allel composition of probabilistic-termination cryptographic protocols. Cryptology ePrint
Archive, Report 2017/364, 2017. URL: http://eprint.iacr.org/2017/364.

16 Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure
multiparty computation without broadcast. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 596–616. Springer, January 2016.

17 Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. In ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
466–485. Springer, December 2014.

18 Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient
multiparty computations secure against an adaptive adversary. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 311–326. Springer, May 1999.

ICALP 2017

http://eprint.iacr.org/2017/364

37:14 Round-Preserving Parallel Composition of Probabilistic-Termination Protocols

19 Ronald Cramer, Ivan Damgård, and Serge Fehr. On the cost of reconstructing a secret,
or VSS with optimal reconstruction phase. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 503–523. Springer, August 2001.

20 Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box
pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 378–394. Springer, August 2005.

21 Ivan Damgård and Jesper Buus Nielsen. Improved non-committing encryption schemes
based on a general complexity assumption. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 432–450. Springer, August 2000.

22 Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. Journal of the ACM, 37(4):720–741, 1990.

23 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

24 Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byz-
antine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

25 Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):183–186, 1982.

26 Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differ-
ential consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM PODC,
pages 211–220. ACM Press, July 2003.

27 Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret sharing
in standard communication networks. In Daniele Micciancio, editor, TCC 2010, volume
5978 of LNCS, pages 419–436. Springer, February 2010.

28 Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Rational
protocol design: Cryptography against incentive-driven adversaries. In 54th FOCS, pages
648–657. IEEE Computer Society Press, October 2013.

29 Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349
of LNCS, pages 74–94. Springer, February 2014.

30 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987.

31 S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In Rosario Gennaro and Matthew Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, August 2015.

32 Adam Groce and Jonathan Katz. Fair computation with rational players. In David Pointche-
val and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
81–98. Springer, April 2012.

33 Iftach Haitner. A parallel repetition theorem for any interactive argument. In 50th FOCS,
pages 241–250. IEEE Computer Society Press, October 2009.

34 Joseph Y. Halpern and Vanessa Teague. Rational secret sharing and multiparty computa-
tion: Extended abstract. In László Babai, editor, 36th ACM STOC, pages 623–632. ACM
Press, June 2004.

35 Johan Håstad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient parallel
repetition theorem. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages
1–18. Springer, February 2010.

36 Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure
computation with minimal interaction, revisited. In Rosario Gennaro and Matthew Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 359–378. Springer,
August 2015.

R. Cohen, S. Coretti, J. Garay, and V. Zikas 37:15

37 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 21–30. ACM Press, June 2007.

38 Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
577–594. Springer, August 2010.

39 Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with
identifiable abort. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part
II, volume 8617 of LNCS, pages 369–386. Springer, August 2014.

40 Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer – efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, August 2008.

41 Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–
462. Springer, August 2006.

42 Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
477–498. Springer, March 2013.

43 Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31.
ACM Press, May 1988.

44 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

45 Silvio Micali. Fast and furious byzantine agreement. In ITCS 2017, January 2017.
46 Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key

FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, volume
9666 of LNCS, pages 735–763. Springer, May 2016.

47 Shien Jin Ong, David C. Parkes, Alon Rosen, and Salil P. Vadhan. Fairness with an honest
minority and a rational majority. In Omer Reingold, editor, TCC 2009, volume 5444 of
LNCS, pages 36–53. Springer, March 2009.

48 Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, 1980.

49 Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409, Novem-
ber 1983.

50 Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May
1989.

51 Mike Rosulek. Must you know the code of f to securely compute f? In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 87–104. Springer,
August 2012.

52 Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

ICALP 2017

Cryptanalysis of Indistinguishability Obfuscations
of Circuits over GGH13∗†

Daniel Apon1, Nico Döttling‡2, Sanjam Garg2, and
Pratyay Mukherjee4

1 University of Maryland, College Park, MD, USA
dapon@cs.umd.edu

2 University of California, Berkeley, CA, USA
nicodoettling@berkeley.edu

3 University of California, Berkeley, CA, USA
sanjamg@berkeley.edu

4 Visa Research, Palo Alto, CA, USA
pratyay85@gmail.com

Abstract
Annihilation attacks, introduced in the work of Miles, Sahai, and Zhandry (CRYPTO 2016), are
a class of polynomial-time attacks against several candidate indistinguishability obfuscation (iO)
schemes, built from Garg, Gentry, and Halevi (EUROCRYPT 2013) multilinear maps. In this
work, we provide a general efficiently-testable property for two single-input branching programs,
called partial inequivalence, which we show is sufficient for our variant of annihilation attacks on
several obfuscation constructions based on GGH13 multilinear maps.

We give examples of pairs of natural NC1 circuits, which – when processed via Barrington’s
Theorem – yield pairs of branching programs that are partially inequivalent. As a consequence we
are also able to show examples of “bootstrapping circuits,” (albeit somewhat artificially crafted)
used to obtain obfuscations for all circuits (given an obfuscator for NC1 circuits), in certain
settings also yield partially inequivalent branching programs. Prior to our work, no attacks on
any obfuscation constructions for these settings were known.

1998 ACM Subject Classification E.3 Data Encryption

Keywords and phrases Obfuscation, Multilinear Maps, Cryptanalysis.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.38

1 Introduction

An obfuscator is a program compiler which hides all partial implementation details of a
program, intuitively. This is formalized via the notion of indistinguishability obfuscation [9]:
we say an obfuscator O is an indistinguishability obfuscator if it holds for every pair C0, C1
of functionally equivalent circuits (i.e. computing the same function) that O(C0) and O(C1)

∗ This is the extended abstract of the full version [4] which can be found at https://eprint.iacr.org/
2016/1003. Most proofs are deferred to the full version.

† Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII Award 1464397, and research grants by
the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The
views expressed are those of the author and do not reflect the official policy or position of the funding
agencies.

‡ Nico Döttling was supported by a postdoc fellowship of the German Academic Exchange Service
(DAAD).

EA
T

C
S

© Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.38
https://eprint.iacr.org/2016/1003
https://eprint.iacr.org/2016/1003
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

are indistinguishable. A recent surge of results has highlighted the importance of this notion:
virtually “any cryptographic task” can be achieved assuming indistinguishability obfuscation
and one-way functions [34].

All known candidate constructions of indistinguishability obfuscation, e.g. [25, 8, 6], are
based on multilinear-maps [24, 21, 27]1, which have been the subjects of various attacks [16,
18, 15, 29, 19]. Among them, the attacks (e.g. [24, 29]) on GGH13 [24] multilinear maps
required explicit access to “low-level” encodings of zero, or differently represented low-
level encodings of zero, e.g. [18]; such low-level zero-encodings do not appear naturally in
obfuscation constructions. Recently Miles, Sahai, and Zhandry [32] introduced a new class
of polynomial-time2 attacks without requiring low-level zeros against several obfuscation
constructions [12, 8, 3, 31, 33] and [7], when instantiated with the GGH13 multilinear maps.

More specifically, Miles et al. [32] exhibit two simple branching programs (and also
programs padded with those) that are functionally equivalent, yet their BGKPS-obfuscations
(put forward by Barak et al. in [8]) and similar constructions [12, 3, 31, 33, 7] are efficiently
distinguishable.3 However, the branching programs considered there, in particular the all-
identity branching program, do not appear “in the wild”. More specifically, obfuscation
constructions for circuits first convert an NC1 circuit into a branching program (e.g. via
Barrington’s transformation) that possibly results in programs with complex structures, even
if one starts with simple circuits. This brings us to the following open question:

Is it possible to attack obfuscations of complex branching programs generated from
NC1 circuits?

1.1 Our Contributions

In this work, we are able to answer the above question affirmatively. In particular, our main
contributions are:

We first define a general and efficiently-testable property of two single-input4 branching
programs called partial inequivalence (discussed below) and demonstrate an annihilation
attack against BGKPS-like obfuscations of any two (large enough) branching programs
that satisfy this property.
Next, using implementation in Sage [35] (see the full version for details on the implement-
ation) we give explicit examples of pairs of (functionally equivalent) natural NC1 circuits,
which when processed via Barrington’s Theorem yield pairs of branching programs that
are partially inequivalent – and thus, attackable.
As a consequence of the above result, we are also able to show that the “bootstrapping
circuit(s)” technique used to boost iO for NC1 to iO for P/poly, for a certain choice of
the universal circuit (albeit artificially crafted), yield partially inequivalent branching
programs in a similar manner – and are, thus, also attackable.

1 The work of [2] might be seen as an exception to this: Assuming the (non-explicit) existence of indistin-
guishability obfuscation, they provide an explicit construction of an indistinguishability obfuscator.

2 Several subexponential-time or quantum-polynomial-time [22, 1, 17] attacks on GGH13 multilinear
maps also have been considered. We do not consider these in this paper.

3 To avoid repetitions, from now on we will refer to the obfuscation constructions of [8, 12, 3, 31, 33] by
BGKPS-like constructions that use single-input branching programs.

4 The branching programs, where any pair of matrices in the sequence depends on a single input location,
are called single-input branching programs. Such branching programs naturally evolve from Barrington’s
transformation on circuits.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:3

Branching
Programs

NC1 Circuits
(Barrington’s)

NC1-to-P/poly
[25, 5] [11, 28]

GGHRSW[25] ⊗ © ©

BGKPS-like
constructions [12, 8, 3]
[33, 31, 7]

× ⊗ ⊗

Obfuscations from weak
multilinear maps [26, 23]

© © ©

Figure 1 The Attack Landscape for GGH13-based Obfuscators. In all cases, the multilinear
map is [24]. © means no attack is known. × means a prior attack is known, and we present more
general attacks for this setting. ⊗ means we give the first known attack in this setting and⊗
means a new attack is discovered concurrently to ours (namely [13]).

Our general partial inequivalence condition is broad and seems to capture a wide range
of natural single-input branching programs. However, we require the program to be large
enough.5 Additionally, we need the program to output 0 on a large number of its inputs.

Finally, our new annihilation attacks are essentially based on linear system solvers and
thus quite systematic. This is in contrast with the attacks of Miles et al. [32] which required
an exhaustive search operation rendering it hard to extend their analysis for branching
programs with natural structural complexity. Therefore, at a conceptual level, our work
enhances the understanding of the powers and the (potential) limits of annihilation attacks.

One limitation of our technique is that they do not extend to so-called dual-input
branching programs. We leave it as an interesting open question.

A Concurrent and Independent work

Concurrent and independent to our work,6 Chen et al. [13] provides a polynomial time attack
against the GGHRSW construction [25] based on GGH13 (and also GGH15 [27]) maps
that works for so-called “input-partitioning” branching programs. Nonetheless, their attacks
are not known to extend [14] for complex branching programs evolved from NC1 circuits
(e.g. via Barrington’s Transformation). Hence, our work stands as the only work that breaks
obfuscations of NC1 circuits based on GGH13 till date.

Change in Obfuscation landscape

Given our work and the work of Chen et al. [13] the new attack landscape against GGH13-
based obfuscators is depicted in Figure 1. We refer the reader to [2, Figure 13] for the state
of the art on obfuscation constructions based on CLT13 and GGH15 multilinear maps.

5 Note that, for our implementation we consider circuits that are quite small, only depth 3, and the
resulting Barrington programs are of length 64. However, using the implementation we then “boost”
the attack to a much larger NC1 circuits that suffice for the real-world attack (discussed in the full
version) to go through.

6 The first draft of our full version [4] appeared online concurrently as their first draft [13]. At the
same time another independent work [20] appeared that provided attacks against several CLT13 based
obfuscators for a broader class of programs.

ICALP 2017

38:4 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

1.2 Technical Overview
Below, after providing some additional backgrounds on multilinear maps and known attacks,
we provide an overview of our annihilation attacks.

Multilinear Maps: Abstractly

As a first approximation, one can say that a cryptographic multilinear map system encodes a
value a ∈ Zp (where p is a large prime) by using a homomorphic encryption scheme equipped
with some additional structure. In other words, given encodings of a and b, one can perform
homomorphic computations by computing encodings of a+ b and a · b. Additionally, each
multilinear map encoding is associated with some level described by a value i ∈ {1 . . . κ} for
a fixed universe parameter κ. Encodings can be added only if they are at the same level:
Enci(a)⊕Enci(b)→ Enci(a+b). Encodings can be multiplied: Enci(a)�Encj(b)→ Enci+j(a·b)
if i + j ≤ κ but is meaningless otherwise. We naturally extend the encoding procedure
and the homomorphic operations to encode and to compute on matrices, respectively, by
encoding each term of the matrix separately. Finally, the multilinear map system comes
equipped with a zero test: an efficient procedure for testing whether the input is an encoding
of 0 at level-κ. However, such zero-test procedure is not perfect as desired when instantiated
with concrete candidate multilinear maps. In particular we are interested in the imperfection
in GGH13 map.

An Imperfection of the GGH13 Multilinear Maps

Expanding a little on the abstraction above, a fresh multilinear map encoding of a value
a ∈ Zp at level i is obtained by first sampling a random value µ from Zp and then encoding
Enci(a+ µ · p). Homomorphic operations can be performed just as before, except that the
randomnesses from different encodings also get computed on. Specifically, Enci(a+ µ · p)⊕
Enci(b+ ν · p) yields Enci(a+ b+ (µ+ ν) · p) and multiplication Enci(a+µ · p)�Encj(b+ ν · p)
yields Enci+j(a · b+ (b · µ+ a · ν + µ · ν · p) · p) if i+ j ≤ κ but is meaningless otherwise. An
imperfection of the zero-test procedure is a feature characterized by two phenomena:
1. On input Encκ(0 + r · p) the zero-test procedure additionally reveals r in a somewhat

“scrambled” form.
2. For certain efficiently computable polynomials f and a collection of scrambled values
{ri} it is efficient to check if f({ri}) = 0 mod p or not for any choice of ri’s.7

This imperfection has been exploited to perform attacks in prior works, such as the one by
Miles et al. [32].8

Matrix Branching Programs

A matrix branching program of length ` for n-bit inputs is a sequence
BP =

{
A0,

{
Ai,0, Ai,1

}`
i=1, A`+1

}
, where A0 ∈ {0, 1}1×5, Ai,b’s for i ∈ [`] are in {0, 1}5×5

and A`+1 ∈ {0, 1}5×1. Without providing details, we note that the choice of 5× 5 matrices
comes from Barrington’s Theorem [10]. We use the notation [n] to describe the set {1, . . . , n}.

7 One can alternatively consider the scrambled values as polynomials over {ri} and then check if f({ri})
is identically zero in Zp.

8 Recent works such as [26, 23], have attempted to realize obfuscation schemes secure against such
imperfection and are provably secure against our attacks. We refer to them as obfuscations from weak
multilinear maps (see Figure 1).

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:5

Let inp be a fixed function such that inp(i) ∈ [n] is the input bit position examined in the ith
step of the branching program. The function computed by this matrix branching program is

fBP (x) =
{

0 if A0 ·
∏`
i=1 Ai,x[inp(i)] ·A`+1 = 0

1 if A0 ·
∏`
i=1 Ai,x[inp(i)] ·A`+1 6= 0

,

where x[inp(i)] ∈ {0, 1} denotes the inp(i)th bit of x.
The branching program described above inspects one bit of the input in each step. More

generally, multi-arity branching programs inspect multiple bits in each step. For example,
dual-input programs inspect two bits during each step. Our strategy only works against
single-input branching programs, hence we restrict ourselves to that setting.

Exploiting the Imperfection/Weakness

At a high level, obfuscation of a branching program BP = {A0, {Ai,0, Ai,1}`i=1, A`+1} yields a
collection of encodings {M0, {Mi,0,Mi,1}`i=1,M`+1}, say all of which are obtained at level-1.9
We let {Z0, {Zi,0, Zi,1}`i=1, Z`+1} denote the randomnesses used in the generation of these
encodings, where each Z corresponds to a matrix of random values (analogous to r above) in
Zp. For every input x such that BP (x) = 0, we have that M0�

⊙`
i=1 Mi,x[inp(i)]�M`+1 is an

encoding of 0, say of the form Enc(0+rx ·p) from which rx can be learned in a scrambled form.
The crucial observations of Miles et al. [32] are: (1) for every known obfuscation construction,
rx is a program dependent function of {Z0, {Zi,0, Zi,1}`i=1, Z`+1}, and (2) for a large enough
m ∈ Z the values {rxk

}mk=1 must be correlated, which in turn implies that there exists a
(program-dependent) efficiently computable function fBP and input choices {xBPk }mk=1 such
that for all k ∈ [m], BP (xBPk) = 0 and fBP ({rxBP

k
}mk=1) = 0 mod p.10 Further, just like

Miles et al. we are interested in constructing an attacker for the indistinguishability notion
of obfuscation. In this case, given two arbitrarily distinct programs BP and BP ′ (such
that ∀x,BP (x) = BP ′(x)) an attacker needs to distinguish between the obfuscations of BP
and BP ′. Therefore, to complete the attack, it suffices to argue that for the sequence of
{r′
xBP ′

k

} values obtained from execution of BP ′ it holds that, fBP ({r′
xBP ′

k

}mk=1) 6= 0 mod p.
Hence, the task of attacking any obfuscation scheme reduces to the task of finding such
distinguishing function fBP .

Miles et al. [32] accomplishes that by presenting specific examples of branching programs,
both of which implement the constant zero function, and a corresponding distinguishing
function. They then extend the attack to other related branching programs that are padded
with those constant-zero programs. The details of their attack [32] is quite involved, hence
we jump directly to the intuition behind our envisioned more general attacks.

Partial Inequivalence of Branching Programs and Our Attacks

We start with the following observation. For BGKPS-like-obfuscations for any branching
program BP = {A0, {Ai,0, Ai,1}`i=1, A`+1} the value sx = rx mod p looks something like: 11

9 Many obfuscation constructions use more sophisticate leveling structure, typically referred to as so-called
“straddling sets”. However we emphasize that, this structure does not affect our attacks. Therefore we
will just ignore this in our setting.

10This follows from the existence of an annihilating polynomial for any over-determined non-linear systems
of equations. We refer to [30] for more details.

11Obtaining this expression requires careful analysis that is deferred to the main body of the paper. Also,
by abuse of notation let A0,xinp(0) = A0, A`+1,xinp(`+1) = A`+1, Z0,xinp(0) = Z0 and Z`+1,xinp(`+1) = Z`+1.

ICALP 2017

38:6 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

sx '
∏̀
i=1

αi,x[inp(i)]

`+1∑
i=0

i−1∏
j=0

Aj,xinp(j) · Zi,x[inp(i)] ·
`+1∏
j=i+1

Aj,xinp(j)

︸ ︷︷ ︸

tx

,

where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} where {Z0, {Zi,0, Zi,1}`i=1, Z`+1} are the randomnesses con-
tributed by the corresponding encodings. Let x denote the value obtained by flipping
every bit of x (a.k.a. the bitwise complement). Now observe that the product value
Λ =

∏`
i=1 αi,x[inp(i)] · αi,x[inp(i)] is independent of x. Therefore, ux = sx · sx = Λ · tx · tx.

Absorbing Λ in the {Zi,0, Zi,1}`i=1, we have that ux is quadratic in the randomness values
{Z0, {Zi,0, Zi,1}`i=1, Z`+1}, or linear in the random terms ZZ ′ obtained by multiplying every
choice of Z,Z ′ ∈ {Z0, {Zi,0, Zi,1}`i=1, Z`+1}. In other words if BP evaluates to 0 both on
inputs x and x, the values revealed by two zero-test operations give one linear equation where
the coefficients of the linear equations are program dependent. Now, if BP implements a “suf-
ficiently non-evasive” circuit,(e.g. a PRF) such that there exist sufficiently many such inputs
x, x for which BP (x) = BP (x) = 0, then collecting sufficiently many values {xBPk , uxBP

k
}mk=1,

we get a dependent system of linear relations. Namely, there exist {νBPk }mk=1 such that∑m
k=1 ν

BP
k · uxBP

k
= 0. In other words,

∑m
k=1 ν

BP
k · rxBP

k
· rxBP

k
= 0 mod p, where {νBPk }mk=1

depends only on the description of the branching program BP .
We remark that, in the process of linearization above we increased (by a quadratic factor)

the number of random terms in the system. However, this can be always compensated by
using more equations, because the number of random terms is O(poly(n)) (n is the input
length) whereas the number of choices of input x is 2O(n) which implies that there are
exponentially many rx available.

Note that for any branching program BP ′ that is “different enough” from BP , we could
expect that

∑m
k=1 ν

BP
k · r′

xBP
k

· r′
xBP

k

6= 0 mod p where r′
xBP

k

are values revealed in executions
of an obfuscation of BP ′. This is because the values {νBPk }mk=1 depend on the specific
implementation of BP through terms of the form

∏i−1
j=0 Aj,x[inp(i)] and

∏`+1
j=i+1 Aj,x[inp(i)] in

sx above. Two branching programs that differ from each other in this sense are referred to
as partially inequivalent.12

What Programs are Partially Inequivalent? Attack on NC1 circuits

The condition we put forth seems to be fairly generic and intuitively should work for large
class of programs. In particular, we are interested in the programs generated from NC1

circuits. However, due to complex structures of such programs the analysis becomes quite
non-trivial.13 Nonetheless, we manage to show via implementation in Sage [35] that the attack
indeed works on a pair of branching programs obtained from a pair of simple NC1 circuits,
(say C0, C1) (see Sec. 6 for the circuit descriptions) by applying Barrington’s Theorem. The
circuits take 4 bits of inputs and on any input they evaluate to 0. In our attack we use

12Note that the only other constraint we need is that both BP and BP ′ evaluates to 0 for sufficiently
many inputs, which we include in the definition (c.f. Def. 2) of partial inequivalence.

13Note that, the analysis of Miles et al. uses 2×2 matrices in addition to using simple branching programs.
These simplifications allow them to base their analysis on many facts related to the structures of
these programs. Our aim here is to see if the attack works for programs obtained from NC1 circuits,
in particular via Barrington’s Theorem. So, unfortunately it is not clear if their approach can be
applicable here as the structure of the programs yielded via Barrington’s Theorem become much
complex structurally (and also much larger in size) to analyze.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:7

all possible 16 inputs. Furthermore, we can escalate the attack to any pair of NC1 circuits
(E0, E1) where Eb = ¬Cb ∧Db (b ∈ {0, 1}) for practically any two NC1 circuits D0, D1 (we
need only one input x for which D(x) = D(x) = 0). We now take again a sequence of 16-
inputs such that we vary the parts of all the inputs going into Cb and keep the part of inputs
read by Db fixed to x. Intuitively, since the input to Db is always the same, each evaluation
chooses the exactly same randomnesses (that is Zi’s) always. Hence in the resulting system
all the random variables can be replaced by a single random variable and hence ¬Cb∧Db can
be effectively “collapsed” to a much smaller circuit ¬Cb ∧ 0 (0 refers to the smallest trivial
circuit consisting of only identities). Finally, again via our Sage-implementation we show
that for circuits ¬C0 ∧ 0 and ¬C1 ∧ 0 the corresponding branching programs are partially
inequivalent.

As a corollary we are also able to show examples of universal circuits Ub for which the
same attack works. Since the circuit D can be almost any arbitrary NC1 circuit, we can,
in particular use any universal circuit U ′ and carefully combine that with C to obtain our
attackable universal circuit U that results in partially inequivalent Barrington programs.

2 Notations and Preliminaries

2.1 Notations

We denote the set of natural numbers {1, 2, . . .} by N, the set of all integers {. . . ,−1, 0, 1 . . .}
by Z and the set of real numbers by R. We use the notation [n] to denote the set of first n
natural numbers, namely [n] def= {1, . . . , n}.

For any bit-string x ∈ {0, 1}n we let x[i] denotes the i-th bit. For a matrix A we denote
its i-th row by A[i, ?], its j-th column by A[?, j] and the element in the i-th row and j-th
column by A[i, j]. The i-th element of a vector v is denoted by v[i].

For more notational conventions we refer to the full version [4].

3 Attack Model for Investigating Annihilation Attacks

Similar to Miles, Sahai, and Zhandry [32] we use an abstract attack model designed to
encompass the main ideas of BGKPS-like-obfuscations [8, 12, 3, 33, 31, 7] as the starting
point for our attacks. We formally describe the model in the full version [4].

4 Partially Inequivalent Branching Programs

In this section, we provide a formal condition on two single-input branching programs
(naturally extends to multi-input settings), namely partial inequivalence, that is sufficient
for launching a distinguishing attack in the abstract model. In Section 5 we prove that this
condition is sufficient for the attack.14

I Definition 1 (Partial Products). Let A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1) be a single-input
branching program of matrix-dimension d and length ` over n-bit input.

14We note that this condition is not necessary. Looking ahead, we only consider first order partially
inequivalent programs in paper and remark that higher order partially inequivalent programs could also
be distinguished using our techniques.

ICALP 2017

38:8 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

1. For any input x ∈ {0, 1}n and any index i ∈ [`+ 1] ∪ {0} we define the vectors φ(i)
A,x as

follows:

φ
(i)
A,x

def=

(
A0 ·

∏i−1
j=1 Aj,x[inp(j)]

)
⊗
(∏`

j=i+1 Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d2 if i ∈ [`] ,(∏`

j=1 Aj,x[inp(j)] ·A`+1

)T
∈ {0, 1}1×d if i = 0 ,

A0 ·
∏`
j=1 Aj,x[inp(j)] ∈ {0, 1}1×d if i = `+ 1 .

Additionally, define φ̃(i)
A,x for any such branching program as:

φ̃
(i)
A,x

def=

[φ(i)

A,x | 0d2] if i ∈ [`] and x[inp(i)] = 0 ,

[0d2 | φ(i)
A,x] if i ∈ [`] and x[inp(i)] = 1 ,

φ
(i)
A,x if i = 0 or `+ 1 ,

where inp is a function from [`]→ [n] and that x[inp(i)] denotes the bit of x corresponding
to location described by inp(x).

2. Then the linear partial product vector φA,x and the quadratic partial product
vector ψA,x of A with respect to x are defined as:

φA,x
def= [φ̃(0)

A,x | · · · | φ̃
(`+1)
A,x] ∈ {0, 1}1×(2d+2`d2) ,

ψA,x
def= φA,x ⊗ φA,x ∈ {0, 1}1×(2d+2`d2)2

,

where x = x⊕ 1n is the compliment of x.
3. For a set of inputs X = {x1, x2, . . . , xm} the the linear partial product matrix ΦA,X

and the quadratic partial product matrix ΨA,X of A with respect to X are defined
as:

ΦA,X
def=

φA,x1

φA,x2

...

φA,xm

 ∈ {0, 1}
m×(2d+2`d2) ,

ΨA,X
def= ΦA,X � ΦA,X + ΦA,X � ΦA,X =

ψA,x1 +ψA,x1

ψA,x2 +ψA,x2

...

ψA,xm
+ψA,xm

 ∈ {0, 1}
m×(2d+2`d2)2

,

where X def= {x1, x2, . . .}.

I Definition 2 (Partial Inequivalence). Let A0 and A1 be two single-input matrix branching
programs of matrix-dimension d and length ` over n-bit input. Then they are called partially
inequivalent if there exists a polynomial in security parameter sized set X of inputs such
that:

For every x ∈ X, we have that A0(x) = A1(x) = 0 and A0(x) = A1(x) = 0.
colsp (ΨA0,X) 6= colsp (ΨA1,X) .

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:9

5 Annihilation Attacks for Partially Inequivalent Programs

In this section, we describe an abstract annihilation attack against any two branching
programs that are partially inequivalent. We show an attack only in the abstract model and
provide details on how it can be extended to the real GGH13 setting in the full version.

I Theorem 3. Let O be the generic obfuscator described in Section 3.2 of the full version.
Then for any two functionally equivalent same length single-input branching programs A0,A1
that are partially inequivalent there exists a probabilistic polynomial time attacker that
distinguishes between between O(A0) and O(A1) with noticeable probability in the abstract
attack model.

Proof.
Setup for the attack

The given branching programs A0 and A1 are provided to be functionally equivalent and
partially inequivalent. Therefore there exists a set X such that: (1) for all x ∈ X,A0(x) =
A0(x) = A1(x) = A1(x) = 0, and (2) colsp (ΨA0,X) 6= colsp (ΨA1,X) . We will assume that
the adversary has access to X as auxiliary information.

Challenge

A receives as a challenge the obfuscation of the branching program: A ∈ {A0,A1} by the
challenger. Recall from the description of the abstract obfuscator that, the obfuscation of
program A = (inp, A0, {Ai,b}i∈[`],b∈{0,1}, A`+1), denoted by O(A) consists of the following
public variables:

Y0 := A0 ·Radj1 + gZ0, Yi,b := αi,bRi ·Ai,b ·Radji+1 + gZi,b, Y0 := R`+1 ·A`+1 + gZ0,

where the arbitrary secret variables are:

Ã0
def= A0 ·Radj1 , Ãi,b

def= αi,b(Ri,b ·Ai,b ·Radji,b), Ã`+1
def= R`+1 ·A`+1;

for random variables (i.e. Killian randomizers) R1, {Ri}, R`+1 and the random secret variables
are denoted by Z0, {Zi,b}i∈[`],b∈{0,1}, Z`+1 and the special secret variable is g. Via change of
variables we can equivalently write:

Y0 := (A0 +gZ0) ·Radj1 ; Yi,b := αi,bRi ·(Ai,b+gZi,b) ·Radji+1; Y`+1 := R`+1 ·(A`+1 +gZ`+1).

Pre-Zeroizing Computation (Type-1 queries)

On receiving the obfuscation of A ∈ {A0,A1}, O(A) = {Y0, {Yi,b}, Y`+1} the attacker, in
the pre-zeroizing step, performs a “valid” Type-1 queries on all the inputs X,X where X =
{x1, . . . , xm}, X = {x1, . . . , xm}. That is, for an x ∈ {0, 1}n, and the abstract obfuscation
O(A), the attacker queries the polynomial:

PA,x = Y0 ·
∏̀
i=1

Yi,x[inp(i)] · Y`+1.

Then, expressing PA,x stratified as powers of g we obtain:

PA,x = P
(0)
A,x({Yi}i) + g · P (1)

A,x({Yi}i) + ...+ g`+2 · P (`+2)
A,x ({Yi}i)

ICALP 2017

38:10 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

for some polynomials P (j)
A,x({Yi}i) (j ∈ {0, ..., `+ 1}). However, by Lemma 4 we have that:

P
(0)
A,x = ρα̂xA(x)

for ρ def=
∏
i det(Ri) (or ρI =

∏
iR

adj
i Ri) and α̂x

def=
∏`
i=1 αi,xinp(i) . Since for x ∈ X we have

that A(x) = 0 , the polynomial P (0)
A,x is identically 0. Consequently, for each such Type 1

query the attacker receives a new handle to a variable WA,x that can be expressed as follows:

WA,x = PA,x/g = P
(1)
A,x + g · P (2)

A,x + ...+ g`+1 · P (`+2)
A,x .

Analogously, the attacker obtains handles WA,x. After obtaining handles

{(WA,x1 ,WA,x1), ...(WA,xm
,WA,xm

)}

the attacker starts the post-zeroizing phase.

Post-Zeroizing Computation

The goal of post-zeroizing computation is to find a polynomial Qann of degree poly(λ) such
that following holds for some b ∈ {0, 1}:
(i) Qann(P (1)

Ab,x1
, P

(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) ≡ 0.
(ii) Qann(P (1)

A1−b,x1
, P

(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) 6≡ 0.
Clearly, this leads to an attack on the obfuscation security as A would receive 0 from the
challenger if and only if Qann(P (1)

A,x1
, P

(1)
A,x1

..., P
(1)
A,xm

, P
(1)
A,xm

) is identically zero, hence it would
receive 0 if and only if Ab is chosen by the challenger in the challenge phase. To find such
Qann the attacker continues as follows. Observe that by Lemma 4, for every x ∈ X we have
that:

P
(1)
A,x = ρα̂x(φA,x · zT)′ , (1)

P
(1)
A,x = ρα̂x(φA,x · zT) . (2)

Next, multiplying the polynomials P (1)
A,x and P (1)

A,x (Eq. 1 and Eq. 2) we get:

P̃
(1)
A,x

def= P
(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · z)⊗ (φA,x · z)

)
(3)

= ρ2α̂
(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
(4)

= ρ2α̂(ψA,x · zT ⊗ zT) .

where α̂ def= α̂xα̂x is now independent of input x.15 Similarly we can also have:

P̃
(1)
A,x

def= P
(1)
A,xP

(1)
A,x = ρ2α̂

(
(φA,x · z)⊗ (φA,x · z)

)
= ρ2α̂

(
(φA,x ⊗ φA,x) · (zT ⊗ zT)

)
= ρ2α̂(ψA,x · zT ⊗ zT) .

15Here, we use the fact that the branching programs are single-input. For multi-input programs we do
not know how to make α̂ independent of x. The rest of the analysis does not require the programs to
be single-input.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:11

However, since field multiplication is commutative, adding we get:

P̃
(1)
A,x + P̃

(1)
A,x = 2P (1)

A,xP
(1)
A,x = ρ2α̂(ψA,x · zT ⊗ zT) + ρ2α̂(ψA,x · zT ⊗ zT)

= ρ2α̂(ψA,x +ψA,x) · (zT ⊗ zT) .

Using the given conditions that ΨA0,X and ΨA1,X have distinct column spaces (and
hence distinct left-kernel) the attacker can efficiently compute (e.g. via Gaussian Elimination)
a vector vann ∈ {0, 1}1×m that belongs to its left-kernel, call it the annihilating vector, such
that for some b ∈ {0, 1} we have:

vann ·ΨAb,X = 0 but vann ·ΨA1−b,X 6= 0.

The corresponding annihilation polynomial Qann can be written as:

Qann
vann

(WA,x1 ,WA,x1 , . . . ,WA,xm
,WA,xm

) = vann ·

WA,x1WA,x1

...

WA,xmWA,xm

 .
Observe that the coefficient of g0 in the expression Qann

vann
(WA,x1 ,WA,x1 , . . . ,WA,xm

,WA,xm
)

from above is equal to Qann
vann

(P (1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

). Moreover this value for
A = Ab is:

Qann
vann

(P (1)
Ab,x1

, P
(1)
Ab,x1

..., P
(1)
Ab,xm

, P
(1)
Ab,xm

) = vann ·
ΨAb,X

2 · (z ⊗ z)T ≡ 0

but for A1−b:

Qann
vann

(P (1)
A1−b,x1

, P
(1)
A1−b,x1

..., P
(1)
A1−b,xm

, P
(1)
A1−b,xm

) = vann ·
ΨA1−b,X

2 · (z ⊗ z)T 6≡ 0.

Hence, the response to Type 2 query is sufficient to distinguish between obfuscation of Ab

and A1−b in the abstract model. This concludes the proof. J

Evaluations of P (0)
A,x and P (1)

A,x

Below we state a lemma without proof (that is deferred to the full version) that described
what the terms P (0)

A,x and P (1)
A,x look like.

I Lemma 4. For every x ∈ {0, 1}n, we have that:

P
(0)
A,x = ρα̂xA(x) ,

P
(1)
A,x = ρα̂x(φA,x · zT),

where ρ def=
∏
i det(Ri) and α̂x

def=
∏`
i=1 αi,xinp(i) and z is a vector consisting of the random

terms Z0, Zi,b, and Z`+1 used to generate the obfuscation terms Y0, Yi,b, and Y`+1 in an
appropriate sequence.

Extending the Abstract Attack to GGH13 Multilinear Maps

Based on the ideas from Miles et al. we can extend our abstract attacks to actual instantiations
with GGH13, that we defer to the full version [4].

ICALP 2017

38:12 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

6 Example of Partially Inequivalent Circuits

In this section, we show examples of pairs of NC1 circuits such that the corresponding
Barrington-implemented16 branching programs are partially inequivalent and therefore are
subject to the abstract annihilation attacks shown in Section 5. Note that here we extend
the notion of partial inequivalence from branching programs to circuits in a natural way.
Unless otherwise mentioned, partial inequivalence of circuits specifically imply that the
corresponding branching programs generated via applying Barrington’s Theorem are partially
inequivalent.

6.1 Simple Pairs of Circuits that are Partially Inequivalent
Consider the following pair of circuits (C0, C1) each of which implements a boolean function
{0, 1}4 → {0, 1}:

C0(x) def= (x[1] ∧ 1)
∧

(x[2] ∧ 0)
∧

(x[3] ∧ 1)
∧

(x[4] ∧ 0),

C1(x) def= (x[1] ∧ 0)
∧

(x[2] ∧ 0)
∧

(x[3] ∧ 0)
∧

(x[4] ∧ 0).

Define the set X def= {0, 1}4. Now, we provide an implementation (see the full version [4]
for more details on the implementation) in Sage [35] that evaluates the column spaces of
matrices produced via applying a Barrington-implementation to the above circuits. The
outcome from the implementation led us to conclude the following claim:

I Claim 5. Let AC0 ,AC1 be the Barrington-Implementation of the circuits C0, C1 respectively,
then we have that: colsp

(
ΨAC0 ,X

)
6= colsp

(
ΨAC1 ,X

)
.

I Remark. We emphasize that we use branching programs generated with a particular
Barrington-implementation that makes a set of specific choices. We refer the reader to the
full version [4] for the details of our implementation. Throughout this section we refer to
this particular Barrington-implementation.

The circuits presented above are of constant size. Looking ahead, though, they are
partially inequivalent and hence (by Theorem 3) are susceptible to the abstract attack that
does not translate to a real-world attack in GGH13 setting immediately. For that we need to
consider larger (albeit NC1) circuits which we construct next based on the above circuits.

6.2 Larger Pairs of Circuits that are Partially Inequivalent
Consider any pair of functionally equivalent NC1 circuits (D0, D1) and an input x? ∈ {0, 1}n
such that D0(x?) = D1(x?) = D0(x?) = D1(x?) = 0. Now define the circuits E0, E1 each of
which computes a boolean function {0, 1}n+4 → {0, 1} as follows:

E0(y) def= ¬C0(x) ∧D0(x′) ,

E1(y) def= ¬C1(x) ∧D1(x′) ,

(¬C is the circuit C with output negated) such that for each y ∈ {0, 1}n+4 we have y = x ◦x′
(◦ denotes concatenation) where x ∈ {0, 1}4 and x′ ∈ {0, 1}n. Define the input-sequence
Y

def= {x ◦ x? | x ∈ {0, 1}4} (consisting of 16 inputs). Then we show the following statement.

16Recall that by Barrington-implementation of a circuit we mean the single-input branching program
produced as a result of Barrington Theorem on the circuit. Also we implicitly assume that the branching
programs are input-oblivious.

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:13

I Lemma 6. Let AE0 ,AE1 be the Barrington-implementations of E0, E1 respectively, then
we have that: colsp

(
ΨAE0 ,Y

)
6= colsp

(
ΨAE1 ,Y

)
.

6.3 Partially Inequivalent Universal Circuits
In this section we present constructions of (NC1) universal circuits that, when compiled
with two arbitrary distinct (NC1) but functionally equivalent circuits as inputs, then the
obfuscations of the Barrington-implementation of the compiled circuits are distinguishable
by the abstract attack.

I Theorem 7. There exists a family of NC1 universal circuits U = {U1, U2, . . . , Uv} of size
v = O(poly(λ)) such that: given two arbitrary functionally equivalent NC1 circuits G0, G1
that computes arbitrary boolean function {0, 1}n → {0, 1} satisfying (i) |G0| = |G1| = v and
(ii) there exists an input x? such that G0(x?) = G1(x?) = G0(x?) = G1(x?) = 0; then for
at least one i ∈ [v] the Barrington-implementations of the circuits Ui[G0] and Ui[G1] are
partially inequivalent.

References
1 Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched

NTRU assumptions – cryptanalysis of some FHE and graded encoding schemes. In Mat-
thew Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016,
Part I, volume 9814 of Lecture Notes in Computer Science, pages 153–178, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-53018-4_6.

2 Prabhanjan Ananth, Aayush Jain, Moni Naor, Amit Sahai, and Eylon Yogev. Univer-
sal constructions and robust combiners for indistinguishability obfuscation and witness
encryption. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science, pages
491–520, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-53008-5_17.

3 Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 14: 21st Conference on Computer and Communications Security,
pages 646–658, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

4 Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over ggh13. Cryptology ePrint Archive, Report
2016/1003, 2016. URL: http://eprint.iacr.org/2016/1003.

5 Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 162–172, Kaoshiung,
Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany. doi:10.1007/
978-3-662-45608-8_9.

6 Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 528–556, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-46497-7_21.

7 Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in
Cryptology – EUROCRYPT, 2016.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53008-5_17
http://eprint.iacr.org/2016/1003
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-45608-8_9
http://dx.doi.org/10.1007/978-3-662-46497-7_21
http://dx.doi.org/10.1007/978-3-662-46497-7_21

38:14 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

8 Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 221–238, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-55220-5_13.

9 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 1–18, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany.

10 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 1–5, 1986. doi:
10.1145/12130.12131.

11 Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct ran-
domized encodings and their applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th Annual ACM Symposium on Theory of Computing, pages 439–448, Portland,
OR, USA, June 14–17, 2015. ACM Press.

12 Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 1–
25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-54242-8_1.

13 Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. Cryptology ePrint Archive, Report 2016/998, To appear in EUROCRYPT
2017, 2016. URL: http://eprint.iacr.org/2016/998.

14 Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. Personal Communication, 2016.

15 Jung Hee Cheon, Pierre-Alain Fouque, Changmin Lee, Brice Minaud, and Hansol Ryu.
Cryptanalysis of the new CLT multilinear map over the integers. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume
9665 of Lecture Notes in Computer Science, pages 509–536, Vienna, Austria, May 8–12,
2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49890-3_20.

16 Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 3–12, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-46800-5_1.

17 Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU prob-
lems and cryptanalysis of the GGH multilinear map without an encoding of zero. IACR
Cryptology ePrint Archive, 2016:139, 2016. URL: http://eprint.iacr.org/2016/139.

18 Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New MMAP attacks and their limitations. In Advances in Cryptology – CRYPTO
2015 – 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, pages 247–266, 2015.

19 Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Crypt-
analysis of GGH15 multilinear maps. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Com-

http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1145/12130.12131
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://eprint.iacr.org/2016/998
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://eprint.iacr.org/2016/139

D. Apon, N. Döttling, S. Garg, and P. Mukherjee 38:15

puter Science, pages 607–628, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-53008-5_21.

20 Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. Cryptology ePrint Archive, Report
2016/1011, To appear in PKC 2017, 2016. URL: http://eprint.iacr.org/2016/1011.

21 Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 476–
493, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-40041-4_26.

22 Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 559–585, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49896-5_20.

23 Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Obfus-
cation from low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599, 2016.
http://eprint.iacr.org/2016/599.

24 Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Crypto-
logy – EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
1–17, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany. doi:10.1007/
978-3-642-38348-9_1.

25 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

26 Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In TCC 2016-B,
2016.

27 Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-46497-7_20.

28 Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, editor,
TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in Com-
puter Science, pages 308–326, Zurich, Switzerland, February 9–11, 2010. Springer, Heidel-
berg, Germany.

29 Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lec-
ture Notes in Computer Science, pages 537–565, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-49890-3_21.

30 N. Kayal. The complexity of the annihilating polynomial. In Computational Complexity,
2009. CCC’09. 24th Annual IEEE Conference on, pages 184–193, July 2009. doi:10.1109/
CCC.2009.37.

31 Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic at-
tacks. Cryptology ePrint Archive, Report 2014/878, 2014. URL: http://eprint.iacr.
org/2014/878.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-53008-5_21
http://eprint.iacr.org/2016/1011
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-662-49896-5_20
http://eprint.iacr.org/2016/599
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-49890-3_21
http://dx.doi.org/10.1109/CCC.2009.37
http://dx.doi.org/10.1109/CCC.2009.37
http://eprint.iacr.org/2014/878
http://eprint.iacr.org/2014/878

38:16 Cryptanalysis of Indistinguishability Obfuscations of Circuits over GGH13

32 Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 629–658, Santa Barbara, CA, USA, August 14–
18, 2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-53008-5_22.

33 Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, ed-
itors, Advances in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 500–517, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany. doi:10.1007/978-3-662-44371-2_28.

34 Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory
of Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

35 W.A. Stein et al. Sage Mathematics Software (Version 7.3). The Sage Development Team,
2016. URL: http://www.sagemath.org.

http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-44371-2_28
http://www.sagemath.org

Non-Uniform Attacks Against Pseudoentropy∗

Krzysztof Pietrzak†1 and Maciej Skorski‡2

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
pietrzak@ist.ac.at

2 Institute of Science and Technology Austria, Klosterneuburg, Austria
mskorski@ist.ac.at

Abstract
De, Trevisan and Tulsiani [CRYPTO 2010] show that every distribution over n-bit strings which
has constant statistical distance to uniform (e.g., the output of a pseudorandom generator map-
ping n− 1 to n bit strings), can be distinguished from the uniform distribution with advantage
ε by a circuit of size O(2nε2).

We generalize this result, showing that a distribution which has less than k bits of min-entropy,
can be distinguished from any distribution with k bits of δ-smooth min-entropy with advantage ε
by a circuit of size O(2kε2/δ2). As a special case, this implies that any distribution with support
at most 2k (e.g., the output of a pseudoentropy generator mapping k to n bit strings) can be
distinguished from any given distribution with min-entropy k + 1 with advantage ε by a circuit
of size O(2kε2).

Our result thus shows that pseudoentropy distributions face basically the same non-uniform
attacks as pseudorandom distributions.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases pseudoentropy, non-uniform attacks

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.39

1 Introduction

De, Trevisan and Tulsiani [2] show a non-uniform attack against any pseudorandom gen-
erator (PRG) which maps {0, 1}n−1 → {0, 1}n. For any ε ≥ 2−n/2, their attack achieves
distinguishing advantage ε and can be realized by a circuit of size O

(
2nε2

)
. Their attack

doesn’t even need the PRG to be efficiently computable.
In this work we consider a more general question, where we ask for attacks distinguishing

a distribution from any distribution with slightly higher min-entropy. We generalize [2],
showing a non-uniform attack which, for any ε, δ > 0, distinguishes any distribution with
< k bits of min-entropy from any distribution with k bits of δ-smooth min-entropy with
advantage ε, and where the distinguisher is of size O(2kε2/δ2). As a corollary we recover
the [2] result, showing that the output of any pseudoentropy generator {0, 1}k → {0, 1}n can
be distinguished from any variable with min-entropy k + 1 with advantage ε by circuits of
size O(2kε2).

From a theoretical perspective, we prove where the separation between pseudoentropy
and smooth min-entropy lies, by classifying how powerful computationally bounded
adversaries can be so they can still be fooled to “see” more entropy than there really is.

∗ The full version is available at https://arxiv.org/abs/1704.08678
† Supported by the European Research Council, ERC consolidator grant (682815 – TOCNeT).
‡ Supported by the European Research Council, ERC consolidator grant (682815 – TOCNeT).

EA
T

C
S

© Krzysztof Pietrzak and Maciej Skorski;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 39; pp. 39:1–39:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.39
https://arxiv.org/abs/1704.08678
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Non-Uniform Attacks Against Pseudoentropy

From a more practical perspective, our result shows that using pseudoentropy instead
of pseudorandomness (which for many applications is sufficient and allows for saving in
entropy quantity [3]), will not give improvements in terms of quality (i.e., the size and
advantage of distinguishers considered), at least not against generic non-uniform attacks.

1.1 Notation and Basic Definitions
Two variables X and Y are (s, ε) indistinguishable, denoted X ∼s,ε Y , if for all boolean
circuits D of size |D| ≤ s we have |Pr[D(X) = 1] − Pr[D(Y) = 1]| ≤ ε. The statistical
distance of X and Y is d1(X;Y) def=

∑
x |PX(x)− PY (x)| (where PX(x) def= Pr[X = x]), the

Euclidean distance of X and Y is d2(PX ;PY) def=
√∑

x(PX(x)− PY (x))2. A variable X has
min-entropy k if it doesn’t take any particular outcome with probability greater 2−k, it has
δ-smooth min-entropy k [6], if it’s δ close to some distribution with min-entropy k. X has k
bits of HILL pseudoentoentry of quality (s, ε) if there exists a Y with min-entropy k that is
(s, ε) indistinguishable from X, we use the following standard notation for these notions:
min-entropy: H∞(X) def= − log maxx (Pr[X = x]) .

smooth min-entropy: Hδ∞(X) def= maxY,d1(X;Y)≤δ H∞(Y) .
HILL pseudoentropy: HHILL

s,ε (X) def= maxY,Y∼(s,ε)X H∞(Y) .

1.2 Our Contribution
In this work give generic non-uniform attacks on pseudoentropy distributions. A seemingly
natural goal is to consider a distribution X with H∞(X) ≤ k bits of min-entropy, strictly
larger HHILL

s,ε (X) ≥ k + 1 bits of HILL entropy, and then give an upper bound on s in
terms of ε. This does not work as there are X where H∞(X) � Hδ∞(X),1 and as by
definition Hδ∞(X) = HHILL

∞,δ (X), we can have a large entropy gap HHILL
∞,δ (X) − H∞(X) even

when considering unbounded adversaries against HILL entropy. For this reason, in our main
technical result 1 below, we must consider distributions with bounded smooth min-entropy.
This makes the statement of the lemma somewhat technical. In practice, the distributions
considered often have bounded support, for example because they were generated from a
short seed by a deterministic process (like a pseudorandom generator). In this case we can
drop the smoothness requirement as stated in Theorem 2 below.

I Lemma 1 (Nonuniform attacks against pseudoentropy). Suppose that X ∈ {0, 1}n does not
have k bits of δ-smooth min-entropy, i.e., Hδ∞(X) < k, then for any ε we have

HHILL
Õ(2kε2δ−2),ε(X) < k

where Õ(·) hides a factor linear in n.

I Theorem 2. Let f : {0, 1}k → {0, 1}n be a deterministic (not necessarily efficient) function.
Then we have

HHILL
Õ(2kε2),ε(f(Uk)) ≤ k + 1.

more generally, for any X over {0, 1}n with support of size ≤ 2k

HHILL
Õ(2kε2),ε(X) ≤ k + 1.

1 Consider an X which is basically uniform over {0, 1}n, but has mass δ on one particular point, then
log δ−1 = H∞(X)� Hδ∞(X) = n.

K. Pietrzak and M. Skorski 39:3

I Remark (Concluding best attacks against PRGs). For the special case n = k + 1 we recover
the bound for pseudorandom generators from [2].

Proof of Theorem 2. The theorem follows from Lemma 1 when δ = 1/2; consider any X
with support of size ≤ 2k, then Hδ∞(X) ≤ k + 1, as no matter how we cut probability mass
of 1− δ = 1/2 over 2k elements, one element will have the weight at least 2−k−1. J

1.3 Proof Outline
1.3.1 A Weaker Result as a Ball-Bins Problem
We outline the proof of a somewhat weakened version of Theorem 2 in the language of
balls and bins. For every Y of min-entropy k′ = k + Ω(1) we want to distinguish Y from
X = f(Uk). Suppose for simplicity that Y is flat and f is injective, so that X is also flat.
Our strategy will be to hash the points randomly into two bins and take advantage of the fact
that the average maximum load is closer to 1

2 when we sample from Y than when drawing
from X. The reason is that Y has more balls, so by the law of large numbers, we expect the
load to be “more concentrated” around the mean.

Think of throwing balls (inputs x) into two bins (labeled by −1 and 1). If the balls come
from the support ofX, the expected maximum load (over two bins) equals≈ 2k−1+

√
2/π·2k/2.

Similarly, if the balls come from the support of Y , then maximum load is 2k′−1 +
√

2/π ·2k′/2.
In terms of the average load (the load normalized by the total number of balls):

AverageMaxLoad(X) ≈ 0.5 +
√

2/π · 2−k/2 w.h.p. when drawing from X ,

AverageMaxLoad(Y) ≈ 0.5 +
√

2/π · 2−k
′/2 w.h.p. when drawing from Y .

As k′ = k + Ω(1) we obtain (with good probability):

AverageMaxLoad(X)− AverageMaxLoad(Y) = Ω(2−k/2).

Letting D be one of these bins assignments we obtain a distinguisher with advantage
ε = Ω(2−k/2). To generate the assignments efficiently we relax the assumption about
choosing bins and assume only that the choices of bins are independent for any group of
` = 4 balls. The fourth moment method allows us to keep sufficiently good probabilistic
guarantees on the maximum load.

1.3.2 The General Case by Random Walk Techniques
1.3.2.1 A high-level outline and comparison to [2]

Below in Figure 1 we sketch the flow of our argument.
Our starting point is the proof from [2]. They use the fact that a random mapping

D : {0, 1}n → {−1, 1} likely distinguishes any two distributions X and Y over {0, 1}n with
advantage being the Euclidean distance d2(X;Y) def=

√∑
x(PX(x)− PY (x))2.

For any X and Y with constant statistical distance
∑
x |PX(x)− PY (x)| = Θ(1) (which

is the case for the PRG setting where Y = Un and X = PRG(Un−1)) this yields a bound
Ω
(
2−n2

)
. This bound can be then amplified, at the cost of extra advice, by partitioning the

domain {0, 1}n and combining corresponding advantages (advice basically encodes if there
is a need for flipping the output). Finally one can show that 4-wise independence provides
enough randomness for this argument, which makes sampling D efficient. Our argument
deviates from this approach in two important aspects.

ICALP 2017

39:4 Non-Uniform Attacks Against Pseudoentropy

X has no smooth-min entropy k

large bias between X and Y on only 2k elements

d2(X;Y) = Ω(2− k2) (Euclidean distance)
advantage of random attack

ε ≈ d2(X;Y)
for any X,Y (Lemma 12)

a random distinguisheer D achieves ε = Ω
(

2− k2
)

ε = Ω
(
T−

1
2 2− k2

)
for a random D restricted to one slice

ε = T · Ω
(
T−

1
2 2− k2

)
by composing advantages from all slices
(needs O(T) advice)

arbitrary ε in size 2 k2 ε (by manipulating T)

weak randomness for distinguishers and slices is enough
(4-wise independence works!)

domain partitioned randomly into T slices

for any fixed Y of min-entropy at least k

random walks moment inequalities
(see Sections 2.2, 2.1, and 2.3)

Corollary 17

Corollaries 15 and 16

Corollary 14

Lemma 8 and Corollary 9

Lemma 10 and Corollary 11

Corollary 13

Figure 1 The map of our proof.

The first difference is that in the pseudoentropy case we can improve the advantage from
Ω
(
2−n2

)
, where n is the logarithm of the support of the variables considered, to Ω

(
2− k2

)
,

where k is the min-entropy of the variable we want to distinguish from. The reason is
that being statistically far from any k-bit min-entropy distributions implies a large bias on
already 2k elements. This fact (see Lemma 8 and Corollary 9, and also Figure 3) is a new
characterization of smooth min-entropy of independent interest.

The second subtlety arises when it comes to amplify the advantage over the partition
slices. For the pseudorandomness case it is enough to split the domain in a deterministic
way, for example by fixing prefixes of n-bit strings, in our case this is not sufficient. For
us a “good” partition must shatter the 2k-element high-biased set, which can be arbitrary.
Our solution is to use random partitions, in fact, we show that using 4-universal hashing is
sufficient. Generating base distinguishers and partitions at the same time makes probability
calculations more involved.

Technical calculations are based on the fourth moment method, similarly as in [2]. The
basic idea is that for settings where the second and fourth moment are easy to compute
(e.g. sums of independent symmetric random variables) we can obtain good upper and lower
bounds on the first moment. In the context of algorithmic applications these techniques
are usually credited to [1]. Interestingly, exploiting natural relations to random walks, we
show that calculations immediately follow by adopting classical (almost one century old)
tools and results [5, 4]. Our technical novelty is an application of moment inequalities due to
Marcinkiewicz-Zygmund and Paley-Zygmund, which allow us to prove slightly more than
just the existence of an attack. Namely we generate it with constant success probability.

K. Pietrzak and M. Skorski 39:5

d1(PX ; 2−k|�) > δ

PY (x) 6 2−k

δ

2−k

PX
PY

Figure 2 An intuition behind the attack. Random ±1-weights make the bias equal to the `2-
distance of PX and PY . This distance can be bounded in terms of the `1 distance, which concentrates
mass difference δ on less than 2k elements (the region in gray).

1.3.2.2 Advantage Ω(2−k/2)

Consider any X with δ-smooth min-entropy smaller than k. This requirement can be seen as
a statement about the “shape” of the distribution. Namely, the mass of X that is above the
threshold 2−k equals at least δ, that is∑

x

max(PX(x)− 2−k, 0) > δ.

For an illustration see Figure 2.
We construct our attack based on this observation. Define the advantage of a function D

for distributions X and Y as

AdvD(X;Y) =

∣∣∣∣∣∑
x

D(x)(PX(x)− PY (x))

∣∣∣∣∣
(writing also AdvD

S when the summation is restricted to a subset S). Consider a random
distinguisher D : {0, 1}n → {−1, 1}. Random variables D(x) for different x are independent,
have zero-mean and second moment equal to 1. Therefore the expected square of of the
advantage, over the choice of D, equals

E
[(

AdvD(X;Y)
)2
]

= E

∣∣∣∣∣∑
x

D(x)(PX(x)− PY (x))

∣∣∣∣∣
2

=
∑
x

(PX(x)− PY (x))2 .

Let S be the set of x such that PX(x) > 2−k. For any Y of min-entropy at least k we obtain

∑
x∈S

(PX(x)− PY (x))2 >
∑
x∈S

(PX(x)− 2−k)2 > |S|−1

(∑
x∈S

(
PX(x)− 2−k

))2

> 2−kδ2

where the first inequality follows because PY (x) 6 2−k < PX(x) for x ∈ S, the second
inequality is by the standard inequality between the first and second norm, and the third
inequality follows because we showed that Pr[X ∈ S] > |S| · 2−k + δ (illustrated in Figure 2)
which also implies |S|−1 > 2−k.

By the previous formula on the expected squared advantage this means that

E
[(

AdvD(X;Y)
)2
]
> 2−kδ2

ICALP 2017

39:6 Non-Uniform Attacks Against Pseudoentropy

PX
PY
S1
S2

(a) An example of a “bad” partition.
Almost all advantage is captured by one
partition slice S1.

PX
PY
S1
S2

(b) An example of a “good“ parti-
tion. The advantage is evenly distributed
among slices S1, S2.

Figure 3 Illustration of good and bad partitions.

for at least one choice of D. This implies

AdvD(X;Y) > 2− k2 δ.

A random D as defined would be of size exponential in n, but since we used only the
second moment in calculations, it suffices to generate D(x) as pairwise independent random
variables. By assuming 4-wise independence – which can be computed by O(n2) size circuits
– we can prove slightly more, namely that a constant fraction of generated D’s are good
distinguishers. This property will be important for the next step, where we amplify the
advantage assuming larger distinguishers.

1.3.2.3 Leveraging the advantage by slicing the domain

Consider a random and equitable partition {Si}Ti=1 of the set {0, 1}n. From the previous
analysis we know that a random distinguisher achieves advantage ε = d2(PX ;PY) over the
whole domain. Note that (for any, not necessarily random partition {Si}i) we have

(d2(PX ;PY))2 =
T∑
i=1

(d2(PX ;PY |Si))2

where d2(PX ;PY |Si) is the restriction of the distance to the set Si (by restricting the
summation to Si). From a random partition we expect the mass difference between PX and
PY to be distributed evenly among the partition slices (see Figure 3(b)). Based on the last
equation, we expect

d2(PX ;PY |Si) ≈
d2(PX ;PY)√

T

to hold with high probability over {Si}i.
In fact, if the mass difference is not well balanced amongst the slices (in the extreme case,

concentrated on one slice) our argument will not offer any gain over the previous construction
(see Figure 3(a)).

By applying the previous argument to individual slices, for every i we can obtain an
advantage AdvD

Si(X;Y) = Ω
(

(T− 1
2 2− k2)δ

)
when restricted to the set Si (with high probability

K. Pietrzak and M. Skorski 39:7

over the choice of D and {Si}i). Now if the sets Si are efficiently recognizable, we can combine
them into a better distinguisher. Namely for every i we chose a value βi ∈ {−1, 1} such that
D’s advantage (before taking the absolute value) restricted to Si has sign βi, and set

D̂(x) = βiD(x), where i is such that x ∈ Si,

then the advantage equals (with high probability over D and the Si’s)

AdvD̂(X;Y) =
T∑
i=1

AdvD
Si(X;Y) = Ω

(
T

1
2 2− k2 δ

)
.

We need to specify a 4-wise independent hash for D, another 4-wise independent hash for
deciding in which of the T slices an element lies, and T bits to encode the βi’s. Thus for a
given T the size of D̂ will be T + Õ(n). Using the above equation, we then get a smooth
tradeoff s = O(2kε2δ−2) between the advantage ε and the circuit size s. This discussion
shows that to complete the argument we need the following two properties of the partition
(a) the mass difference between PX and PY is (roughly) equidistributed among slices and (b)
the membership in partition slices can be efficiently decided.

1.3.2.4 Slicing using 4-wise independence

To complete the argument, we assume that T is a power of 2, and generate the slicing by
using a 4-universal hash function h : {0, 1}n → {0, 1}logT . The i-th slice Si is defined as
{x ∈ {0, 1}n : h(x) = i}. These assumptions are enough to prove that

EAdvD̂
Si(X;Y) = Ω

(
T−

1
2 d2(PX ;PY)

)
= Ω

(
T−

1
2 2− k2 δ

)
.

Interestingly, the expected advantage (left-hand side) cannot be computed directly. The trick
here is to bound it in terms of the second and fourth moment. The above inequality, coupled
with bounds on second moments of the advantage AdvD̂

Si (obtained directly), allows us to
prove that

Pr
[
T∑
i=1

AdvD̂
Si > Ω(1) · T 1

2 2− k2 δ
]
> Ω(1).

This shows that there exists the claimed distinguisher D̂. In fact, a constant fraction of
generated (over the choice of D and {§i}i) distinguishers D̂’s works.

1.3.2.5 Random walks

From a technical point of view, our method involves computing higher moments of the
advantages to obtain concentration and anti-concentration results. The key observation is
that the advantage written down as

AdvD
Si(X;Y) =

∣∣∣∣∣∑
x

(PX(x)− PY (x))1Si(x)D(x)

∣∣∣∣∣
which can be then studied as a random walk

AdvD
Si(X;Y) =

∣∣∣∣∣∑
x

ξi,x

∣∣∣∣∣
with zero-mean increments ξi,x = (PX(x)− PY (x))1Si(x)D(x). The difference with respect
to classical model is that the increments are only `-wise independent (for ` = 4). However,
that classical moment bounds still apply (see Sections 2.2 and 2.3 for more details).

ICALP 2017

39:8 Non-Uniform Attacks Against Pseudoentropy

2 Preliminaries

2.1 Interpolation Inequalities
Interpolation inequalities show how to bound the p-th moment of a random variable if we
know bounds on one smaller and one higher moment. The following result is known also as
log-convexity of Lp norms, and can be proved by the Hölder Inequality.

I Lemma 3 (Moments interpolation). For any p1 < p < p2 and any bounded random variable
Z we have

‖Z‖p 6 (‖Z‖p1)θ (‖Z‖p2)1−θ

where θ is such that θ
p1

+ 1−θ
p2

= 1
p , and for any r we define ‖Z‖r = (E |Z|r)

1
r .

Alternatively, we can lower bound a moment given two higher moments. This is very
useful when higher moments are easier to compute. In this work will bound first moments
from below when we know the second and the fourth moment (which are easier to compute
as they are even-order moments)

I Corollary 4. For any bounded Z we have E |Z| > (E |Z|2)
3
2

(E |Z|4)
1
2
.

2.2 Moments of random walks
For a random walk

∑
x ξ(x), where ξ(x) are independent with zero-mean, we have good

control over the moments, namely E |
∑
x ξ(x)|p = Θ(1) · (

∑
x Var(ξ(x)))

p
2 where constants

depend on p. This result is due to Marcinkiewicz and Zygmund [5] who extended the former
result of Khintchine [4]. Below we notice that for small moments p it suffices to assume only
p-wise independence (most often used versions assume fully independence)

I Lemma 5 (Strengthening of Marcinkiewicz-Zygmund’s Inequality for p = 4). Suppose that
{ξ(x)}x∈X are 4-wise independent, with zero mean. Then we have

1√
3

(∑
x∈X

Var(ξ(x))
) 1

2

6E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣ 6
(∑
x∈X

Var(ξ(x))
) 1

2

,

E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
2

=
∑
x∈X

Var(ξ(x)) ,

(∑
x∈X

Var(ξ(x))
)2

6E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
4

6 3
(∑
x∈X

Var(ξ(x))
)2

.

The proof appears in Section 4.1.

2.3 Anticontentration bounds
I Lemma 6 (Paley-Zygmund Inequality). For any positive random variable Z and a parameter
θ ∈ (0, 1) we have

Pr [Z > θEZ] > (1− θ)2 (EZ)2

EZ2 .

By applying Lemma 6 to the setting of Lemma 5, and choosing θ = 1√
3 we obtain:

K. Pietrzak and M. Skorski 39:9

I Corollary 7 (Anticoncentration for walks with 4-wise independent increments). Suppose that
{ξ(x)}x∈X are 4-wise independent with zero-mean, then we have

Pr

∣∣∣∣∣∑ ξ(x)

∣∣∣∣∣ > 1
3

(∑
Var(ξ(x))

) 1
2
 > 1

17 .

where the summation is over x ∈ X .

3 Proof of Lemma 1

I Lemma 8 (Characterizing smooth min-entropy). For any random variable X with values in
a finite set X , any δ and k we have the following equivalence

Hδ
∞(X) > k ⇐⇒

∑
x∈X

max
(
PX(x)− 2−k, 0

)
6 δ.

The proof appears in Section 4.2. We will work with the following equivalent statement

I Corollary 9 (No smooth min-entropy k implies bias w.r.t. distributions of min-entropy k over
at most 2k elements). We have Hδ∞(X) < k if and only if there exists a set S of at most 2k
elements such that∑

x∈S
|PX(x)− PY (x)| > δ

for all Y of min-entropy at least k.

Proof of Corollary 9. The direction ⇐= trivially follows by the definition of smooth min-
entropy. Now assume Hδ∞(X) < k. Let S be the set of all x such that PX(x) > 2−k, then
|S| < 2k, and moreover by Lemma 8 we have

∑
x∈S

(
PX(x)− 2−k

)
> δ. In particular for

any Y of min-entropy k (i.e., PY (x) 6 2−k for all x)∑
x∈S

(PX(x)− PY (x)) > δ . J

I Lemma 10 (Bias implies Euclidean distance). For any distributions PX , PY on X and any
subset S of X we have(∑

x∈S
(PX(x)− PY (x))2

) 1
2

> |S|−1/2
∑
x∈S
|PX(x)− PY (x)| .

Proof. By the Jensen Inequality we have

|S|−1

(∑
x∈S

(PX(x)− PY (x))2

)
>

(
|S|−1

∑
x∈S
|PX(x)− PY (x)|

)2

which is equivalent to the statement. J

I Corollary 11 (No smooth min-entropy implies Euclidean distance to min-entropy distribu-
tions). Suppose that Hδ∞(X) < k. Then for any Y of min-entropy at least k we have(∑

x |PX(x)− PY (x)|2
) 1

2 > 2− k2 δ.

Proof of Corollary 11. It suffices to combine Lemma 10 and Corollary 9. J

ICALP 2017

39:10 Non-Uniform Attacks Against Pseudoentropy

By Corollary 7 we conclude that the advantage of a random distinguisher for any two
measures (in our case PX and PY) equals the Euclidean distance.

I Lemma 12 (The advantage of a random distinguisher equals the Euclidean distance). Let
{D(x)}x∈{0,1}n be 4-wise independent as indexed by x and such that D(x) outputs a random
element from {−1, 1}. Then for any set S we have∣∣∣∣∣∑

x∈S
D(x)(PX(x)− PY (x))

∣∣∣∣∣ > 1
3 · d2(PX ;PY)

with probability 1
17 over the choice of D (the result actually holds for any measures in place

of PX , PY).

For our case, that is the setting in Lemma 10, we obtain

I Corollary 13 (A random attack achieves Ω
(
2−kδ

)
with significant probability). For X,Y as

in Corollary 11, and D as in Lemma 12 we have AdvD(X;Y) ≥ 1
3 · 2

− k2 δ w.p. 1
17 over D.

3.1 Partitioning the domain into T slices
Let h : {0, 1}n → [1 . . . 2t], where t = dlog T e, be a 4-universal hash function. Define
Si = {x : h(x) = i}, ∆(x) = PX(x)− PY (x) and consider advantages on slices Si

AdvD
Si (X;Y) =

∣∣∣∣∣∑
x

∆(x)D(x)1Si(x)

∣∣∣∣∣ .
The following corollary shows that on each of our T slices, we get the advantage T− 1

2 2− k2 δ.
The proof appears in Section 4.3.

I Corollary 14 ((Mixed) moments of slice advantages). For D, {Su}u as above and every i, j

ED,{Su}u AdvD
Si(X;Y) > 3− 1

2T−
1
2 · d2 (PX ;PY) ,

ED,{Su}u

(
AdvD

Si (X;Y) AdvD
Sj (X;Y)

)
6 T−1 · d2(PX ;PY)2 ,

(the statement is valid for arbitrary measures in place of PX , PY).

Denote Z =
∑
i AdvD

Si (X;Y). Using Lemma 6 with θ = 1√
3 where we compute EZ2 and

EZ according to Corollary 14 we obtain Pr
[
|Z| > 1√

3 · E |Z|
]
> 1

17 . Bounding once again
E |Z| as in Corollary 14 we get

I Corollary 15 (Total advantage on all partition slices). For X,Y as in Corollary 11, D and
Si defined above we have

Pr
D,{Su}u

[
T∑
i=1

AdvD
Si(X;Y) > 1

3 · T
1
2 2− k2 δ

]
>

1
17

(for general X,Y the lower bound is Ω(1) · T 1
2 · d2(PX ;PY)).

The corollary shows that the total absolute advantage over all partition slices, is as expected.
Since {Si}i is a partition we have

T∑
i=1

AdvD
Si(X;Y) =

T∑
i=1

∣∣∣∣∣∑
x∈Si

(PX(x)− PY (x)) D(x)

∣∣∣∣∣ =
∑
x

(PX(x)− PY (x)) D(x)β(x)

K. Pietrzak and M. Skorski 39:11

where for βi
def= sgn

(∑
x∈Si (PX(x′)− PY (x)) D(x)

)
(the sign of the advantage on the i-th

slice) we define β(x) = βi where Si contains x. This shows that by ”flipping“ the distinguisher
output on the slices we achieve the sum of individual advantages. Since the bit β(x) can
be computed with O(T) + Õ(n) advice (the complexity of the function i → βi plus the
complexity of finding i for a given x) we obtain

I Corollary 16 (Computing total advantage by one distinguisher). For X,Y as in Corollary 11,
D and {Si}i defined above there exists a modification to D which in time Õ(n) and advice
O(T) achieves advantage 1

3 · T
1
2 2− k2 δ with probability 1

17 .

Finally by setting ε = T
1
2 2− k2 δ and manipulating T we arrive at

I Corollary 17 (Continue tradeoff). For any ε there exists T such that the distinguisher in
Corollary 16 has advantage ε and circuit complexity s = O

(
2kε2δ−2).

4 Omitted Proofs

4.1 Proof of Lemma 5 (Strengthening of Marcinkiewicz-Zygmund’s
Inequality for p = 4)

Let Z =
∑
x ξ(x). Since ξ(x) are (in particular) 2-wise independent with zero mean, we get

E

(∑
x

ξ(x)
)2

=
∑
x,y

E (ξ(x)ξ(y)) =
∑
x=y

E (ξ(x)ξ(y)) =
∑
x

Var(ξ(x)) ,

(the summation taken over x, y ∈ X). The fourth moment is somewhat more complicated

E

(∑
x

ξ(x)
)4

=
∑

x1,x2,x3,x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4))

=
∑

x1=x2=x3=x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4)) +

+ 3
∑

x1=x2 6=x3=x4

E (ξ(x1)ξ(x2)ξ(x3)ξ(x4))

=
∑
x

E ξ(x)4 + 3
∑
x 6=y

E ξ(x)2 E ξ(y)2

= 3
(∑

x

E ξ(x)2

)2

− 2
∑
x

E ξ(x)4 .

The second equality follows because whenever ξ(x) occurs in an odd power, for example
x = x1 6= x2 = x3 = x4, the expectation is zero (this way one can simplify and bound also
higher moments, see [7]). It remains to estimate the first moment. By Corollary 4 and
bounds on the second and fourth moment we have just computed we obtain

1√
3
·

(∑
x∈X

Var(ξ(x))
) 1

2

6 E

∣∣∣∣∣∑
x∈X

ξ(x)

∣∣∣∣∣
and the upper bound follows by Jensen’s Inequality (with constant 1).

ICALP 2017

39:12 Non-Uniform Attacks Against Pseudoentropy

4.2 Proof of Lemma 8 (Characterizing smooth min-entropy)

Suppose that Hδ∞(X) > k. then, by definition, there is Y such that H∞(Y) > k and∑
x:PX(x)>PY (x) PX(x)− PY (x) 6 δ. Since all the summands are positive and since PY (x) 6

2−k, ignoring those x for which PY (x) < 2−k yields∑
x:PX(x)>2−k

PX(x)− PY (x) 6 δ.

Again, since PY (x) 6 2−k we obtain∑
x:PX(x)>2−k

PX(x)− 2−k 6 δ,

which finishes the proof of the ”=⇒“ part.
Assume now that δ′ =

∑
x∈X max

(
PX(x)− 2−k, 0

)
6 δ. Note that

∑
x∈X

max
(
PX(x)− 1

2k , 0
)

+
∑
x∈X

max
(

1
2k − PX(x), 0

)
=

= 2
∑
x∈X

∣∣∣∣PX(x)− 1
2k

∣∣∣∣ > 2
∑
x∈X

max
(
PX(x)− 1

2k , 0
)

and therefore we have
∑
x∈X max

(
2−k − PX(x), 0

)
> δ′. By this observation we can con-

struct a distribution Y by shifting δ′ of the mass of PX from the set S− = {x : PX(x) > 2−k}
to the set {x : 2−k > PX(x)} in such a way that we have PY (x) 6 2−k for all x. Thus
H∞(Y) > k and since a δ′ fraction of the mass is shifted and redistributed we have
d1(X;Y) 6 δ′. This finishes the proof of the ”⇐=“ part.

4.3 Proof of Corollary 14 ((Mixed) moments of slice advantages)

For shortness denote ∆(x) = PX(x)− PY (x) and AdvD
Si = AdvD

Si (X;Y).
Note that by Lemma 5, applied to the family fx = ∆(x)D(x)1Si(x) (which is 4-wise

independent) we have

EAdvD
Si > 3− 1

2

(∑
x

∆(x)2

) 1
2

which is the first inequality claimed in the corollary. In turn, again by Lemma 5, we have

E
(

AdvD
Si

)2
= T−1 ·

∑
x

∆(x)2.

Since this holds for any i, by Cauchy-Schwarz we get for any i, j

EAdvD
SiAdvD

Sj 6

√
E
(

AdvD
Si

)2
· E
(

AdvD
Sj

)2
6 T−1 ·

∑
x

∆(x)2

which proves the second inequality in the corollary.

K. Pietrzak and M. Skorski 39:13

References
1 Bonnie Berger. The fourth moment method. SIAM J. Comput., 26(4):1188–1207, 1997.

doi:10.1137/S0097539792240005.
2 Anindya De, Luca Trevisan, and Madhur Tulsiani. Time Space Tradeoffs for Attacks against

One-Way Functions and PRGs. In Advances in Cryptology – CRYPTO 2010, 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages
649–665, 2010. doi:10.1007/978-3-642-14623-7_35.

3 Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy
waste. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology –
EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 93–110.
Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-642-55220-5_6.

4 Aleksandr Khintchine. Über einen Satz der Wahrscheinlichkeitsrechnung. Fundamenta
Mathematicae, 6(1):9–20, 1924. URL: http://eudml.org/doc/214283.

5 J. Marcinkiewicz and A. Zygmund. Quelques théorèmes sur les fonctions indépendantes.
Studia Mathematica, 7(1):104–120, 1938. URL: http://eudml.org/doc/218615.

6 Renato Renner and Stefan Wolf. Simple and tight bounds for information reconciliation and
privacy amplification. In Advances in Cryptology – ASIACRYPT 2005, 11th International
Conference on the Theory and Application of Cryptology and Information Security, Chennai,
India, December 4-8, 2005, Proceedings, pages 199–216, 2005. doi:10.1007/11593447_11.

7 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for ap-
plications with limited independence. In Proceedings of the Fourth Annual ACM/SIGACT-
SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas., pages 331–
340, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313797.

ICALP 2017

http://dx.doi.org/10.1137/S0097539792240005
http://dx.doi.org/10.1007/978-3-642-14623-7_35
http://dx.doi.org/10.1007/978-3-642-55220-5_6
http://eudml.org/doc/214283
http://eudml.org/doc/218615
http://dx.doi.org/10.1007/11593447_11
http://dl.acm.org/citation.cfm?id=313559.313797

Interactive Oracle Proofs with Constant Rate and
Query Complexity∗†

Eli Ben-Sasson1, Alessandro Chiesa2, Ariel Gabizon‡3,
Michael Riabzev4, and Nicholas Spooner5

1 Technion, Haifa, Israel
eli@cs.technion.ac.il

2 University of California, Berkeley, CA, USA
alexch@berkeley.edu

3 Zerocoin Electronic Coin Company (Zcash), Boulder, CO, USA
ariel@z.cash

4 Technion, Haifa, Israel
mriabzev@cs.technion.ac.il

5 University of Toronto, Toronto, Canada
spooner@cs.toronto.edu

Abstract
We study interactive oracle proofs (IOPs) [7, 43], which combine aspects of probabilistically check-
able proofs (PCPs) and interactive proofs (IPs). We present IOP constructions and techniques
that let us achieve tradeoffs in proof length versus query complexity that are not known to be
achievable via PCPs or IPs alone. Our main results are:
1. Circuit satisfiability has 3-round IOPs with linear proof length (counted in bits) and constant

query complexity.
2. Reed–Solomon codes have 2-round IOPs of proximity with linear proof length and constant

query complexity.
3. Tensor product codes have 1-round IOPs of proximity with sublinear proof length and constant

query complexity. (A familiar example of a tensor product code is the Reed–Muller code with
a bound on individual degrees.)

For all the above, known PCP constructions give quasilinear proof length and constant query
complexity [12, 16]. Also, for circuit satisfiability, [10] obtain PCPs with linear proof length but
sublinear (and super-constant) query complexity. As in [10], we rely on algebraic-geometry codes
to obtain our first result; but, unlike that work, our use of such codes is much “lighter” because
we do not rely on any automorphisms of the code.

We obtain our results by building “IOP-analogues” of tools underlying numerous IPs and
PCPs:

Interactive proof composition. Proof composition [3] is used to reduce the query complexity
of PCP verifiers, at the cost of increasing proof length by an additive factor that is exponential
in the verifier’s randomness complexity. We prove a composition theorem for IOPs where this
additive factor is linear.
Sublinear sumcheck. The sumcheck protocol [34, 46] is an IP that enables the verifier
to check the sum of values of a low-degree multi-variate polynomial on an exponentially-
large hypercube, but the verifier’s running time depends linearly on the bound on individual
degrees. We prove a sumcheck protocol for IOPs where this dependence is sublinear (e.g.,
polylogarithmic).

∗ A full version of the paper is available at https://eprint.iacr.org/2016/324.
† This work has received funding from the Israel Science Foundation (grant 1501/14), the UC Berkeley

Center for Long-Term Cybersecurity, and the United States – Israel Binational Science Foundation
(grant 2021036).

‡ This work was done while Ariel Gabizon was at Technion and visiting UC Berkeley.

EA
T

C
S

© Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev,
and Nicholas Spooner;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://eprint.iacr.org/2016/324
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Interactive Oracle Proofs with Constant Rate and Query Complexity

Our work demonstrates that even constant-round IOPs are more efficient than known PCPs and
IPs.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases probabilistically checkable proofs, interactive proofs, proof composition,
sumcheck

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.40

1 Introduction

We study Interactive Oracle Proofs (also known as Probabilistically Checkable Interactive
Proofs) [7, 43], which combine aspects of probabilistically checkable proofs (PCPs) and
interactive proofs (IPs). We present IOP constructions and general techniques that enable
us to obtain tradeoffs in proof length versus query complexity that are not known to be
achievable by either PCPs or IPs alone. For some applications (e.g., constructing non-
interactive arguments in the random oracle model [7]) considering such general types of proof
systems suffices (as opposed to focusing only on PCPs or IPs) and thus these applications
inherit the efficiency improvements over PCPs.

1.1 Motivation
Probabilistically checkable proofs (PCPs) were introduced by [22, 5, 20, 3, 2]: in a PCP, a
probabilistic polynomial-time verifier has oracle access to the proof string. The complexity
class PCP[r, q] denotes those languages for which the verifier uses at most r random bits and
queries at most q proof locations; the proof length is then at most 2r. The PCP Theorem
[3, 2] states that NP = PCP[O(logn), O(1)]: every NP statement has a proof of polynomial
length that can be verified via a constant number of queries (say, with soundness error 1/2).

A fundamental question is how long a PCP needs to be, compared to the corresponding
“standard” NP proof. Given T : N → N, the PCP Theorem states that every language L

in NTIME(T) has a proof of length poly(T (n)) that can be verified with O(1) queries. A
sequence of works [42, 30, 24, 13, 9, 12, 16] gradually reduced the proof length to quasilinear,
i.e., T (n) · polylog(T (n)); much of this progress was accompanied by progress on efficient
reductions from NTIME to “PCP-friendly” problems, as well as efficient constructions of
PCPs of proximity (PCPPs) for key classes of linear codes. Despite much progress, the
following question remains open: are there PCPs with linear proof length and constant query
complexity?

Ben-Sasson et al. [10] make progress in this direction by proving that there is a > 0
such that for every ε > 0 there is a PCP for circuit satisfiability with proof length 2a/εn
and query complexity nε. Beyond the sublinear query complexity, [10]’s result comes with
other caveats not affecting most prior constructions: the verifier is non-uniform, namely it
requires a polynomial-size advice string for every circuit size; and the verifier is not succinct,
namely it cannot run in time that is sublinear in the circuit size even if the circuit comes
from a uniform circuit family. (Recent constructions of high-rate locally testable codes with
sub-polynomial query complexity [32] are not yet known to be convertible to PCPs with
similar parameters.)

In this paper, we continue the study of the tradeoff between proof length and query
complexity, but we do so for a natural extension of the PCP model (sufficient for some useful

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.40

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:3

applications, e.g., [7]) that can be thought of as a “multi-round PCP”, described below. Also,
from this point onwards, we switch to using relations instead of languages. We denote by R

a relation consisting of pairs (x,w), where x is the instance and w is the witness; we think
of R naturally induced by a non-deterministic language L. We denote by R|x the (possibly
empty) set of witnesses for a given instance x, and by n the size of x.

1.2 A more general model: interactive oracle proofs
Interactive Oracle Proofs (IOPs) are a type of proof system introduced in [7, 43] that
combines aspects of IPs [4, 26] and PCPs [5, 3, 2], and generalizes interactive PCPs [31].
IOPs naturally extend the notion of a PCP to multiple rounds or, viewed from an another
angle, they naturally extend the notion of an IP by allowing probabilistic checking. Prior
work shows that IOPs can be used to construct non-interactive proofs in the random oracle
model [7], that IOPs efficiently achieve unconditional zero knowledge [6], and that IOPs can
be used to obtain doubly-efficient constant-round IPs for polynomial-time bounded-space
computations [43].

Informally, an IOP extends an IP as follows: whenever the prover sends to the verifier
a message, the verifier does not have to read the message in full but may probabilistically
query it. In more detail, a k-round IOP comprises k rounds of interaction. In the i-th round
of interaction: the verifier sends a message mi to the prover; then the prover replies with a
message fi to the verifier, which the verifier can query in this and all later rounds (by having
oracle access to it). After the k rounds of interaction, the verifier either accepts or rejects.

An IOP system for a relation R with round complexity k and soundness ε is a pair (P, V),
where P, V are probabilistic algorithms, that satisfies natural notions of completeness and
soundness: for every instance-witness pair (x,w) in R, V (x) always accepts after k(n) rounds
of interaction with P (x,w); and, for every instance x with R|x = ∅ and unbounded prover P̃ ,
V (x) accepts with probability at most ε(n) after k(n) rounds of interaction with P̃ .

Like the IP model, one efficiency measure is the round complexity k. Like the PCP
model, two additional efficiency measures are the proof length l, which is the total number
of alphabet symbols in all of the prover’s messages, and the query complexity q, which is
the total number of locations queried by the verifier across all of the prover’s messages.
Considering all of these parameters, we say that a relation R belongs to the complexity class
IOP[k, a, l, r, q, ε] if there is an IOP system for R in which on instances of size n:
1. the number of rounds is k(n);
2. the prover messages are over the alphabet a(n);
3. the proof length over this alphabet is l(n);
4. the verifier uses r(n) random bits;
5. the verifier queries the prover messages in q(n) locations;
6. the soundness error is ε(n).

Many other definitions for IPs and PCPs carry over naturally. An IOP is public coin if
mi is a random string and the verifier postpones any oracle queries until after receiving all
the oracles from the prover (i.e., after the k-th round of interaction). An IOP is non-adaptive
if the query locations do not depend on answers to any previous queries.

Prior work on IOPs. In prior work, [7] prove that public-coin IOPs can be compiled into
non-interactive proofs in the random oracle model; their compiler is as a generalization of
the Fiat–Shamir paradigm for public-coin IPs [21, 41], and of the “CS proof” constructions
of Micali [37] and Valiant [49] for PCPs. Also, [6] construct 2-round IOPs (called “duplex

ICALP 2017

40:4 Interactive Oracle Proofs with Constant Rate and Query Complexity

PCPs” there) with unconditional zero knowledge and quasilinear proof length; in comparison,
short PCPs with unconditional zero knowledge are not known. Also, [43] use IOPs to obtain
doubly-efficient constant-round IPs for polynomial-time bounded-space computations. In
this paper, we do not study compilers for cryptographic proofs, nor zero knowledge, nor
applications to interactive proofs; instead, we focus on tradeoffs of proof length versus query
complexity for IOPs.

Prior work on interactive PCPs. An interactive PCP [31] is a PCP followed by a standard
IP; in particular, it is an IOP where the verifier sends an empty first message and may
query only the first prover message (but must read any other prover messages in full). Prior
work on interactive PCPs obtains proof length that depends on the witness size rather than
computation size [31, 25], as well as unconditional zero knowledge [28]. In this paper we also
study proof length but our results to not seem to extend to the more restricted setting of
interactive PCPs.

1.3 Proximity and robustness
To facilitate upcoming technical discussions we briefly introduce two notions that strengthen
a PCP.

PCPs of proximity (PCPPs) [17, 9]. On the one hand, a PCP verifier has oracle access
to a candidate proof π and only decides if R|x 6= ∅ (x ∈ L) or R|x = ∅ (x 6∈ L). On the
other hand, a PCPP verifier has oracle access to a candidate witness w and proof π and
decides if w ∈ R|x or w is far from R|x (in particular, if R|x = ∅, then w is far from
R|x). A quantity δ known as the proximity parameter specifies what “far” means: if w is
δ-far from R|x then the PCPP verifier accepts with probability at most ε, where ε is the
soundness error.
Robust PCPs [9]. When R|x = ∅, the answers to the verifier’s queries are, with high
probability, far from any answers that make the verifier accept. A quantity ρ known as
the robustness parameter specifies what “far” means: if R|x = ∅ then, with probability at
least 1− ε, the answers are ρ-far from accepting ones.

The two above notions can also be combined, yielding the definition of a robust PCP of
proximity.

Extension to IOPs. The notions of proximity and robustness naturally extend to IOPs; see
the full version for details. For example, we say that an IOP has proximity parameter δ if
the analogous property for PCPs of proximity holds; we can then correspondingly define the
complexity class IOPP[k, a, l, r, q, ε, δ].

2 Results

We obtain several IOP constructions with proof length and query complexity that are not
known to be achievable either via PCPs or IPs alone (or even via interactive PCPs [31]).
First, we show that for circuit satisfiability we can obtain IOPs with linear proof length and
constant query complexity; constant round complexity and public coins suffice.

I Theorem 1 (informal). Let R be the relation consisting of instance-witness pairs (φ,w)
where φ is a boolean circuit (of two-input NAND gates) and w is a binary input that satisfies
φ; we use n to denote the number of gates in φ. There exists a > 0 and a public-coin IOP

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:5

system that puts R in the complexity class

IOP

rounds k(n) = 3
answer alphabet a(n) = F2

proof length l(n) = a · n
query complexity q(n) = a

soundness error ε(n) = 1/2

 .

In particular, via [40]’s reduction from Turing machines to circuits, we deduce that

NTIME(T) ⊆ IOP

rounds k(T) = 3
answer alphabet a(T) = F2

proof length l(T) = a · T log T
query complexity q(T) = a

soundness error ε(T) = 1/2

 .

The main points of comparison of the above theorem with prior work are the following.
For PCPs with constant query complexity, prior work achieved only quasilinear proof
length [12, 16], with the “quasilinear” hiding several logarithmic factors. In comparison,
we achieve linear proof length for circuit satisfiability, and O(T log T) proof length for
nondeterministic T -time relations.
Ben-Sasson et al. [10] show that there is a > 0 such that for every ε > 0 there is a non-
uniform PCP for circuit satisfiability with proof length 2a/εn and query complexity nε;
the non-uniformity comes from the use of algebraic-geometry (AG) codes with transitive
automorphism groups, for which uniform families are not known. In comparison, we
simultaneously achieve linear proof length and constant query complexity; moreover, we
make a much “lighter” use of AG codes, which also allows us to avoid non-uniformity.
Namely, we rely only on the multiplication properties of AG codes [14, 36], and do not
rely on any code automorphisms. Looking ahead, this is because we do not route circuits
on Cayley graphs induced by the automorphisms of the underlying code, unlike [10].

Second, we show that Reed–Solomon codes over binary fields (fields of characteristic 2)
have 2-round IOPs of proximity with linear proof length and constant query complexity.
Such codes are a key ingredient for constructing PCPs with quasilinear proof length [12].
Recall that a word w : D → F is represented via |w| = |D| · log |F| bits.

I Theorem 2 (informal). Given a “fractional degree” % ∈ (0, 1), define R to be the relation
consisting of instance-witness pairs ((F2λ , d), w) where d ≤ %2λ and w : F2λ → F2λ is the
evaluation of a polynomial of degree less than d; we define the instance size to be λ, and note
that w has |w| = 2λ · λ bits. For every δ ∈ (0, 1

2 (1− %)) there exist a > 0 and a public-coin
IOP of proximity (P, V) that puts R in the complexity class

IOPP

rounds k(λ) = 2
answer alphabet a(λ) = F2

proof length l(λ) = a · 2λ · λ
query complexity q(λ) = a

soundness error ε(λ) = 1/2
proximity parameter δ(λ) = δ

 .

More generally, our result concerns additive Reed–Solomon codes, where the domain of a
codeword is a λ-dimensional affine subspace S of a potentially larger binary field F; in such
cases the above statement involves more parameters but achieves the same asymptotics. The

ICALP 2017

40:6 Interactive Oracle Proofs with Constant Rate and Query Complexity

main point of comparison of the above theorem with prior work is [12, 16], who achieve
PCPs of proximity with the same parameters but superlinear proof length: a · 2λ · λ · poly(λ).

Third, we show that tensor product codes have 1-round IOPs of proximity with sublinear
proof length and constant query complexity. Given a positive integer m and linear code C
with domain D and alphabet F, the tensor product code C⊗m is the linear code that comprises
all functions w : Dm → F whose restriction to any axis-parallel line is in C; the message
length, block length, and distance of C⊗m are each the m-th power of the corresponding
parameters of C. Tensor product codes are a large family, and they include Reed–Muller
codes (at least when considering the definition that bounds the variables’ individual degrees,
which we do, as opposed to the one that bounds their sum).

I Theorem 3 (informal). Let m ≥ 3 and C be a linear code with domain D, alphabet F,
and relative distance τ ; let ` := |D| be the block length. Define R to be the relation of
instance-witness pairs

(
(C,m), w

)
such that w ∈ C⊗m; note that w has |w| = `m · log |F| bits.

For every δ ∈ (0, 1
2τ

m) there exist a > 0 and a public-coin IOPP system (P, V) that puts R

in the complexity class

IOPP

rounds k(`m) = 1
answer alphabet a(`m) = F2

proof length l(`m) = o(`m · log |F|)
query complexity q(`m) = a

soundness error ε(`m) = 1/2
proximity parameter δ(`m) = δ

 .

The main points of comparison of the above theorem with prior work are the following.
Ben-Sasson and Sudan [11] and Viderman [51] give local testers for all tensor product
codes with query complexity q(`m) = `2; Dinur et al. [18] give local testers with q(`m) = `

for certain tensor product codes. In contrast, we achieve constant query complexity, with
only sublinear proof length, for all tensor product codes. Moreover, given additional mild
conditions, we obtain constant soundness error even for non-constant m.
The work of [12, 16] implies PCPs of proximity for tensor product codes with superlinear
proof length and constant query complexity. In contrast, we obtain sublinear proof length,
with a single round of interaction.

Analogously to [51], we can invoke Theorem 3 on different choices of linear codes so to derive
different code families that have good properties and an IOP tester (instead of a local tester
as in [51]). For example, we can choose a family of linear codes with arbitrarily high rate,
constant relative distance, linear-time encoding, and linear-time decoding from a constant
fraction of errors [48, 29, 44]; our theorem implies a code with the same properties that also
has a 1-round IOP of proximity with sublinear proof length and constant query complexity
(cf. [51, Section 3.1]).

Similar statements hold for list-decodable codes with good parameters [27] (cf. [51, Section
3.2]); and also for locally correctable and, more generally, locally decodable codes with good
parameters [52, 50, 19, 33, 32] (cf. [51, Section 3.3]). In each of these cases, the tensor
product operation preserves the “key” properties of the choice of underlying code C, while
endowing the resulting code with an IOP of proximity.

We obtain the above results via techniques of independent interest: we prove that, in the
IOP model, there are more efficient analogues of tools that are fundamental to constructing
PCPs and IPs. We now discuss these techniques.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:7

3 Techniques

Recall that IOPs generalize both IPs, by treating the prover’s messages as oracle strings,
and PCPs, by allowing for multiple rounds of interaction; they also generalize interactive
PCPs [31]. We prove that IOPs can express two fundamental techniques in a more efficient
way than in these prior models:
(i) in interactive proof composition, the prover is more efficient than in PCP proof composi-

tion; and
(ii) in sublinear sumchecks, the verifier is more efficient than in IP sumcheck protocols.
We now discuss both of our new tools, and then how we use them.

3.1 Interactive proof composition
Proof composition [3] is used to reduce PCP query complexity, cf. [2, 30, 9]; it involves two
PCPs: an outer one and an inner one. One should think of the outer proof system as having
short proofs but large query complexity, while the inner proof system has long proofs but
small query complexity.

The composed prover uses the outer prover to send a PCP to the composed verifier, who
does not run the outer verifier but, instead, uses the inner verifier to check that the outer
verifier would have accepted had it made its queries to the PCP. The composed verifier also
needs an auxiliary sub-PCP for the claim that the outer verifier would have accepted; in
fact, he needs one sub-PCP for each possible random string of the outer verifier. Hence, the
composed prover also sends all of these sub-PCPs along with the first PCP. The benefit is
that the query complexity of the composed verifier equals that of the inner verifier, which is
typically verifying a much smaller statement than the outer verifier.

Beyond query complexity, most other parameters of the composed proof system are simply
the sum of corresponding parameters of the outer and inner proof systems. An exception is
the proof length l: it does not simply equal the sum lout + lin, but instead equals lout + 2rout · lin,
because the composed prover uses the inner proof system to generate a proof for each choice
of randomness of the outer proof system. (The same is true for prover running time.)

We prove an Interactive Proof Composition Theorem that avoids the above lim-
itations. The outer proof system is a robust PCP (Pout, Vout) for a relation R, while the
inner one is a k-round IOP (Pin, Vin) for Vout’s relation; the composed proof system is a
(k + 1)-round IOP (P, V) for R. The parameters of the composed proof system are exactly
as before, except that now the new proof length is much smaller : lout + lin. (Ditto for the
prover running time.) The crucial observation is that, after the prover sends the outer proof
to the verifier, soundness is not harmed if the verifier tells the prover his choice of outer
randomness; hence, the prover does not have to invest work for all randomness choices but
can simply invest work only for the outer randomness that was chosen, which he now knows.

ICALP 2017

40:8 Interactive Oracle Proofs with Constant Rate and Query Complexity

I Theorem 4 (Interactive Proof Composition – informal). Suppose that the relation R satisfies
the following:

(1) there exists a robust PCPP system
(Pout, Vout) that puts R in the complexity
class

PCPP

proof length lout
randomness rout
query complexity qout
soundness error εout
proximity parameter δout
robustness parameter ρout

and

(2) for every x there exists an IOPP
system (Pin, Vin) that puts Vout’s relation
in the complexity class

IOPP

rounds kin
proof length lin
randomness rin
query complexity qin
soundness error εin
proximity parameter δin

If δin ≤ ρout then there exists an IOPP system (P, V) that puts R in the complexity class

IOPP

rounds k = 1 + kin

proof length l = lout + lin
randomness r = rout + rin

query complexity q = qin

soundness error ε = εout + εin

proximity parameter δ = δout

 .

The above discussion and informal theorem statement omit many technical details that
already arise in non-interactive proof composition (e.g., see lengthy discussions in [9, 8]), and
we also need to deal with. For instance, one has to clarify the size of the sub-claim on which
the the inner proof system is invoked; also, one has to carefully define the notion of a verifier
to allow for the composed verifier’s running time to be smaller than the outer verifier’s query
complexity. For more details, see the full version.

3.2 Sublinear sumcheck
The sumcheck protocol [34, 46] is an interactive proof for the claim “

∑
~α∈Hm w(~α) = 0”,

where w is the evaluation on Fm of an m-variate polynomial of individual degree d and H is
a subset of F. More generally, w may be a codeword in the tensor product code C⊗m, for a
given linear code C with domain D and alphabet F, and H is a subset of D [36]. The prover
receives H and w as input, while the verifier receives H as input and w as an oracle. The
protocol has m rounds and, if C has relative distance τ , the protocol has soundness error
1− τm; also, the prover runs in time poly(`m), and the verifier in time poly(`+m), where
` := |D| is C’s block length.

In each round, the verifier receives a codeword wi in C and checks that
∑
α∈H wi(α)

equals a certain value γi−1 determined in the previous round; in particular, the verifier reads
Ω(`) bits. We show that the verifier complexity can be sublinear in `, if the prover and
verifier engage in an IOP instead of an IP. The intuition to “go sublinear” is simple: instead
of doing these checks explicitly, the verifier uses proximity testers for doing so. Thus, in
each round, the prover sends to the verifier two oracles: the codeword in wi, and a proximity
proof attesting that wi ∈ C and that

∑
α∈H wi(α) = γi−1. The use of proximity proofs

complicates the soundness analysis because the verifier only sees noisy codewords, but the
backbone of the proof follows that of the standard sumcheck protocol. Overall, we obtain
a sumcheck IOP protocol that enables a verifier to efficiently check sumchecks for codes of
much larger blocklength than what he can afford in the standard sumcheck protocol.

We state our Sublinear Sumcheck Theorem below as a reduction: given a PCP of
proximity (PSC, VSC) for subcodes of the form C|H,γ := {w ∈ C s.t.

∑
α∈H w(α) = γ}, we

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:9

construct an IOP of proximity (P, V) for sumchecks over Hm for C⊗m. The complexity of
the PCPP verifier VSC determines the complexity of the resulting IOPP verifier V ; e.g., if
the former is sublinear in C’s block length `, so is the latter.

I Theorem 5 (Sublinear Sumcheck – informal). Let m be a positive integer, and C a linear
code with relative distance τ and block length `. Suppose that there is a PCP of proximity
for subcodes of the form C|H,γ := {w ∈ C s.t.

∑
α∈H w(α) = γ} with proof length lSC, query

complexity qSC, soundness error εSC, proximity parameter δSC, prover running time tpSC,
and verifier running time tvSC. Then there is a public-coin IOP for sumchecks over Hm for
C⊗m with the following parameters:

IOP

rounds k = m

proof length l = m · lSC +m · `
query complexity q = m · qSC +m+ 1
soundness error ε = 1− τm +

(
εSC +m · δSC

)
prover time tp = m · tpSC +m · `m
verifier time tv = m · tvSC +O(m)

 .

In later sections, it is more natural to state the theorem without assuming that w is a
codeword in C⊗m, so the reduction also takes as input a PCP of proximity (P⊗, V⊗) for C⊗m
that is invoked on w; this introduces additional terms in the parameters. More generally,
both of the PCPs of proximity (PSC, VSC) and (P⊗, V⊗) can in fact be IOPs of proximity,
and we state our theorem for this more general case, which we need. For more details, see
the full version.

3.3 Applying the new tools
We now sketch how we use the above new tools to derive the results of Section 2. We begin
by discussing our results on proximity testing to codes (stated later); we then turn to circuit
satisfiability (stated earlier) because its proof requires one of these results on proximity
testing.

Intuition behind Theorem 2. The construction of linear-size IOPs of proximity for Reed–
Solomon codes over binary fields follows from one invocation of our Interactive Proof
Composition Theorem with [12]’s robust PCPs of proximity for Reed–Solomon codes as the
outer proof system, and [38]’s PCPs of proximity for nondeterministic languages as the inner
proof system. Informally, in the first round, the prover sends to the verifier a [12] PCP of
proximity, which reduces proximity testing of codewords over F2λ to proximity testing of
sub-codewords over F2λ/2+O(1) with only constant overheads; in the second round, the verifier
sends his choice of outer randomness, and the prover replies with a [38] PCP of proximity for
the sub-codeword. The proof length of this latter component is quasilinear, but is applied to
a claim of “square-root size” only, so we obtain linear proof length.

Intuition behind Theorem 3. The construction of sublinear-size IOPs of proximity for
tensor product codes follows from one invocation of our Interactive Proof Composition
Theorem with [11, 51]’s robust local tester for tensor product codes as the outer proof system,
and [38]’s PCPs of proximity for nondeterministic languages as the inner proof system.
Unlike before, we now use one round, because the outer proof system only relies on a local
tester rather than a PCP of proximity. The verifier thus simply sends his choice of outer
randomness, and the prover replies with a [38] PCP of proximity for a suitable sublinear-size

ICALP 2017

40:10 Interactive Oracle Proofs with Constant Rate and Query Complexity

sub-codeword. Since the proof length of this latter component is quasilinear but is applied
to a sublinear-size claim, we obtain sublinear proof length.

A summary: overall, we can summarize the above sketches via the following diagram of
implications.

Theorem 2
linear-size IOPP

for Reed–Solomon codes

←− Theorem 4
interactive

proof composition

+ [12]
robust PCPs of proximity
for Reed–Solomon codes

+ [38]
PCP of proximity

for NTIME

Theorem 3
sublinear-size IOPP

for tensor product codes

←− Theorem 4
interactive

proof composition

+ [11, 51]
robust local testing

for tensor product codes

+ [38]
PCP of proximity

for NTIME

Intuition behind Theorem 1. We now turn to how to construct 3-round IOPs for circuit
satisfiability with linear proof length and constant query complexity.

The first step of many PCP constructions is to arithmetize the NP statement at hand (in
our case, the satisfiability of a boolean circuit) by reducing it to a “PCP-friendly” problem that
looks like a constraint satisfaction problem over a well-chosen graph and whose assignments
involve codewords in a well-chosen linear code C. Meir observes in [35, 36] that key features
of C are good relative distance and, moreover, a multiplication property: coordinate-wise
multiplication of codewords yields codewords in a code whose relative distance is still good
[14, 36]. Moreover, to obtain short PCPs, the aforementioned graph is typically chosen so
to behave like a routing network [42]; for example, [12] use De Bruijn graphs, while [10]
use hypercubes. To support such graphs, the automorphism group of C has to be rich
enough. This typically holds for Reed–Solomon codes [12] which have a doubly-transitive
automorphism group, but is a significantly harder condition to fulfill for AG codes [10], for
which obtaining a transitive automorphism group is quite involved and, currently, can only
be achieved non-uniformly.

The aforementioned first step would be problematic in our setting, because known routing
techniques introduce either logarithmic overheads (as in [12]) or large query complexity (as
in [10]), so it is not clear how we could use them. Departing from these prior works, we
do not rely on any routing, and instead immediately leverage one round of interaction to
directly reduce circuit satisfiability to a sumcheck instance over a given linear code C. Also,
we only assume that C has good relative distance and a multiplication property [14], but we
do not rely on any automorphisms.

Informally, the prover first sends three codewords w1, w2, w3 over a field F; the first
codeword encodes values of the left wires of all gates, the second encodes values for the right
wires of all gates, and the third encodes values for the output wires of all gates. (When a
gate has fan-out greater than 1 we still consider 1 output wire.) The verifier now must check
several things. First, that wire values are boolean and the output gate wire equals 0. Second,
that the wire values are “locally consistent” with each gate: for every i ∈ [n], w3(i) is the
NAND of w1(i) and w2(i). Third, that the three encodings of wire values are consistent
with the circuit topology: namely, if `(i) represents the left wire used to compute i, and r(i)
represents the right wire used to compute i, the topology requires that w3(`(i)) = w1(i) and
w3(r(i)) = w2(i) for every i. The verifier cannot directly conduct these checks (as doing so
would incur linear query complexity); instead, the verifier sends some randomness to the
prover so to “bundle” the checks into one sumcheck.

But how should the verifier sample randomness to achieve this bundling? One option
is to sample a random element in F per check so to construct a random subset sum, which
can be viewed as an n-variate polynomial of total degree 1, whose coefficients are the checks,

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:11

evaluated at a random point. If not all checks are satisfied, the polynomial is non-zero,
and its random evaluation cannot attain any value with too large probability. However,
constructing a random subset sum is inefficient because the verifier samples and sends to
the prover Ω(n) random bits, in order to describe the random point. Nevertheless, the
verifier may hope to do better by using a different low-degree polynomial for the bundling.
In general, if the polynomial has m variables each of degree at most d, the verifier must
sample and send m field elements; this preserves soundness provided that |F| = Ω(md) (for a
constant probability of avoiding any particular output value by the Schwartz–Zippel Lemma
[45, 53, 15]) and dm = Ω(n) (to bundle all checks). For example, the univariate case of
m = 1 was considered in [5] when reducing to a sumcheck problem; the multivariate case of
m = logn or m = logn

log logn was considered in later works. Unfortunately, either setting does
not work for constant-size fields, which we ultimately use to obtain linear proof length.

Taking a step back from polynomials, we see that all we need is an evading set S for
Fn, which is a small set such that for any non-zero v ∈ Fn the inner product 〈r, v〉, for
random r ∈ S, does not attain any particular value a ∈ F with too high probability. Good
constructions of evading sets are known: they relax a well-studied notion called ε-biased
sets [39]. In particular, results of [1] imply that, for any ε, Fn has an evading set S of size
poly(nε) and the aforementioned probability is γ := ε+ 1

|F| ; in particular, such a construction
is suitable for constant-size fields.

Below we informally state the reduction (see the full version for details), using the following
notion: we say that a linear code C ′ is a degree d-closure of C if, for every w1, . . . , wm ∈ C
and m-variate polynomial P of total degree at most d, it holds that w′ ∈ C ′ where the i-th
entry of w′ is the evaluation of P on the i-th coordinates of w1, . . . , wm.

I Lemma 6 (Circuit SAT to Sumcheck – informal). Let n be a positive integer, C ⊆ FD an
n-systematic linear code, φ an n-gate boolean circuit (of two-input NAND gates), and S an
evading set for Fn. There is a 1-round IOP that reduces satisfiability of φ to proximity testing
to C and a sumcheck over any degree-3 closure of C. Moreover, the IOP introduces only
constant overheads in all relevant parameters, including proof length and query complexity.

After reducing circuit satisfiability to sumcheck over the given code C, we are left to
choose C so to ensure that the sumcheck can be carried out with 2 additional rounds, linear
proof length, and constant query complexity.

For this, our starting point is [23, 47]’s efficient construction of a code family with constant
rate, relative distance, and alphabet size. Note that since these codes are AG codes, they
have a naturally-defined degree-3 closure. Also, their construction is uniform, and thus
represents a much “lighter” use of AG codes as compared to in [10].

If we simply choose C to be a code from this AG code family, then it is not clear how to
efficiently conduct the sumcheck. However, what does work is to take C to be the tensor
product of O(1) copies of this AG code. Informally, in this way, we can invoke our Sublinear
Sumcheck Theorem (Theorem 5) on the tensor product code C and we can test proximity to
it by Theorem 3. See the full version for details.

Overall, we can summarize the above sketch via the following diagram of implications.

Theorem 1
linear-size IOP
for circuit SAT

←− Lemma 6
from circuit SAT

to sumcheck

+ Theorem 5
sublinear
sumcheck

+ Theorem 3
sublinear-size IOP

for tensor product codes

+ [23, 47]
efficient construction

of AG codes

ICALP 2017

40:12 Interactive Oracle Proofs with Constant Rate and Query Complexity

4 Open questions

The question of whether there exist PCPs with linear proof length and constant query
complexity remains open. Nevertheless, our work suggests additional questions that may be
stepping stones in this and other intriguing directions:
1. Is there a one-round IOP for circuit satisfiability with linear proof length and query

complexity? (Our IOP for circuit satisfiability requires 3 rounds.)
2. Is there an IOP for NTIME(T) with linear proof length and query complexity, for some

number of rounds? (Our results, like [10], only imply proof length O(T log T).)
3. Is there an IOP for succinct circuit satisfiability with linear proof length and query

complexity? (Our results, like [10], “stop” at NP but do not extend to NEXP.)
Finally, while “positive” applications of IOPs are known (e.g., non-interactive proofs in
the random oracle model [7]), “negative” ones are not: do IOP constructions with good
parameters imply inapproximability results that are not known to be implied by known PCP
constructions?

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of

almost k-wise independent random variables. Random Structures and Algorithms, 3(3):289–
304, 1992.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998. Preliminary version in FOCS’92.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. Preliminary version in FOCS’92.

4 László Babai. Trading group theory for randomness. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, STOC’85, pages 421–429, 1985.

5 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC’91, pages 21–32, 1991.

6 Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasilinear-size zero
knowledge from linear-algebraic PCPs. In Proceedings of the 13th Theory of Cryptography
Conference, TCC’16-A, pages 33–64, 2016.

7 Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Proceedings of the 14th Theory of Cryptography Conference, TCC’16-B, pages 31–60, 2016.

8 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Confer-
ence on Computational Complexity, CCC’05, pages 120–134, 2005.

9 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on
Computing, 36(4):889–974, 2006.

10 Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth. Con-
stant rate PCPs for Circuit-SAT with sublinear query complexity. In Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS’13, pages 320–329,
2013.

11 Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006.

12 Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
Journal on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC’05.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:13

13 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, STOC’03, pages 612–621, 2003.

14 D. V. Chudnovsky and G. V. Chudnovsky. Algebraic complexities and algebraic curves
over finite fields. Journal of Complexity, 4(4):285–316, 1988.

15 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

16 Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.
17 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the

PCP theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, FOCS’04, pages 155–164, 2004.

18 Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of LDPC codes. In Proceedings of the 9th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, and of the 10th International Workshop
on Randomization and Computation, APPROX-RANDOM’06, pages 304–315, 2006.

19 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal
on Computing, 41(6):1694–1703, 2012. Preliminary version appeared in STOC’09.

20 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approx-
imating clique is almost NP-complete (preliminary version). In Proceedings of the 32nd
Annual Symposium on Foundations of Computer Science, SFCS’91, pages 2–12, 1991.

21 Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and
signature problems. In Proceedings of the 6th Annual International Cryptology Conference,
CRYPTO’86, pages 186–194, 1986.

22 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive
protocols. In Theoretical Computer Science, pages 156–161, 1988.

23 Arnaldo Garcia and Henning Stichtenoth. On the asymptotic behaviour of some towers of
function fields over finite fields. Journal of Number Theory, 61(2):248–273, 1996.

24 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53:558–655, July 2006. Preliminary version in STOC’02.

25 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for Muggles. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, STOC’08, pages 113–122, 2008.

26 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interact-
ive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989. Preliminary version
appeared in STOC’85.

27 Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List decoding tensor
products and interleaved codes. SIAM Journal on Computing, 40(5):1432–1462, 2011. Pre-
liminary version appeared in STOC’09.

28 Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking,
zero-knowledge PCPs, and unconditional cryptography. In Proceedings of the 30th Annual
Conference on Advances in Cryptology, CRYPTO’10, pages 173–190, 2010.

29 Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.
Preliminary version appeared in STOC’03.

30 Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computa-
tional Complexity, 9(3–4):157–201, Dec 2000. Preliminary version in STACS’01.

31 Yael Kalai and Ran Raz. Interactive PCP. In Proceedings of the 35th International Col-
loquium on Automata, Languages and Programming, ICALP’08, pages 536–547, 2008.

ICALP 2017

40:14 Interactive Oracle Proofs with Constant Rate and Query Complexity

32 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Proceedings
of the 48th ACM Symposium on the Theory of Computing, STOC’16, pages 202–215, 2016.

33 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. Journal of the ACM, 61(5):28:1–28:20, 2014. Preliminary version appeared
in STOC’11.

34 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

35 Or Meir. Combinatorial PCPs with short proofs. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC’12, 2012.

36 Or Meir. IP = PSPACE using error-correcting codes. SIAM Journal on Computing,
42(1):380–403, 2013.

37 Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000. Preliminary version appeared in FOCS’94.

38 Thilo Mie. Short PCPPs verifiable in polylogarithmic time with o(1) queries. Annals of
Mathematics and Artificial Intelligence, 56:313–338, 2009.

39 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
STOC’90, pages 213–223, 1990.

40 Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. Journal
of the ACM, 26(2):361–381, 1979.

41 David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Proceedings
of the 14th Annual International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’96, pages 387–398, 1996.

42 Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
Proceedings of the 26th Annual ACM Symposium on Theory of Computing, STOC’94, pages
194–203, 1994.

43 Omer Reingold, Ron Rothblum, and Guy Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the 48th ACM Symposium on the Theory of
Computing, STOC’16, pages 49–62, 2016.

44 Ron M. Roth and Vitaly Skachek. Improved nearly-MDS expander codes. IEEE Transac-
tions on Information Theory, 52(8):3650–3661, 2006.

45 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980.

46 Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992.
47 Kenneth W. Shum, Ilia Aleshnikov, P. Vijay Kumar, Henning Stichtenoth, and Vinay

Deolalikar. A low-complexity algorithm for the construction of algebraic-geometric codes
better than the Gilbert–Varshamov bound. IEEE Transactions on Information Theory,
47(6):2225–2241, 2001.

48 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. Preliminary version appeared
in STOC’95.

49 Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Proceedings of the 5th Theory of Cryptography Conference, TCC’08, pages
1–18, 2008.

50 Michael Viderman. A note on high-rate locally testable codes with sublinear query com-
plexity, 2010. ECCC TR10-171.

51 Michael Viderman. A combination of testability and decodability by tensor products. Ran-
dom Structures and Algorithms, 46(3):572–598, 2015. Preliminary version appeared in
APPROX-RANDOM’12.

E. Ben-Sasson, A. Chiesa, A. Gabizon, M. Riabzev, and N. Spooner 40:15

52 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
Journal of the ACM, 55(1), 2008. Preliminary version appeared in STOC’07.

53 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the 1979
International Symposium on Symbolic and Algebraic Computation, EUROSAM’79, pages
216–226, 1979.

ICALP 2017

Dynamic Parameterized Problems and
Algorithms∗†

Josh Alman1, Matthias Mnich2, and
Virginia Vassilevska Williams3

1 MIT CSAIL, Cambridge, MA, USA
jalman@mit.edu

2 Universität Bonn, Institut für Informatik, Bonn, Germany; and
Maastricht University, Department of Quantitative Economics, Maastricht,
The Netherlands
mmnich@uni-bonn.de
m.mnich@maastrichtuniversity.nl

3 MIT CSAIL, Cambridge, MA, USA
virgi@mit.edu

Abstract
Fixed-parameter algorithms and kernelization are two powerful methods to solve NP-hard prob-
lems. Yet, so far those algorithms have been largely restricted to static inputs.

In this paper we provide fixed-parameter algorithms and kernelizations for fundamental NP-
hard problems with dynamic inputs. We consider a variety of parameterized graph and hitting
set problems which are known to have f(k)n1+o(1) time algorithms on inputs of size n, and we
consider the question of whether there is a data structure that supports small updates (such
as edge/vertex/set/element insertions and deletions) with an update time of g(k)no(1); such
an update time would be essentially optimal. Update and query times independent of n are
particularly desirable. Among many other results, we show that Feedback Vertex Set and
k-Path admit dynamic algorithms with f(k) logO(1) n update and query times for some function f
depending on the solution size k only.

We complement our positive results by several conditional and unconditional lower bounds.
For example, we show that unlike their undirected counterparts, Directed Feedback Vertex
Set and Directed k-Path do not admit dynamic algorithms with no(1) update and query times
even for constant solution sizes k ≤ 3, assuming popular hardness hypotheses. We also show that
unconditionally, in the cell probe model, Directed Feedback Vertex Set cannot be solved
with update time that is purely a function of k.

1998 ACM Subject Classification F2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Dynamic algorithms, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.41

1 Introduction

The area of dynamic algorithms studies data structures that store a dynamically changing
instance of a problem, can answer queries about the current instance and can perform small
changes on it. The major question in this area is, how fast can updates and queries be?

∗ A full version of the paper is available at https://arxiv.org/abs/1707.00362.
† J.A. is supported by NSF Grant DGE-114747. M.M. is supported by ERC Starting Grant 306465
(BeyondWorstCase). V.V.W. is supported by NSF Grants CCF-141-7238, CCF-1528078 and CCF-
1514339, and BSF Grant BSF:2012338. This work was initiated while J.A. and V.V.W. were at Stanford
University.

EA
T

C
S

© Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.41
https://arxiv.org/abs/1707.00362
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Dynamic Parameterized Problems and Algorithms

The most studied dynamic problems are dynamic graph problems such as connectivity
(e.g., [45, 47, 48, 67]), reachability [41], shortest paths (e.g., [7, 26, 42]), and maximum
matching [8, 39, 66]. For a dynamic graph algorithm, the updates are usually edge or vertex
insertions and deletions. Any dynamic graph algorithm that can perform edge insertions
can be used for a static algorithm by starting with an empty graph, and using m insertions
to insert the m-edge input graph. That is, if the update time of the dynamic algorithm is
u(m) then the static problem can be solved in O(m · u(m)) time, plus the time to query
for the output. Hence, if a problem requires Ω(f(m)) time to be solved statically, then any
dynamic algorithm that can insert edges, and can be queried for the problem solution in
o(f(m)) time, must need Ω(f(m)/m) (amortized) time to perform updates. This is not
limited to edge updates; similar statements are true for vertex insertions and other update
types. A fundamental question is which problems can be fully dynamized, i.e., have dynamic
algorithms supporting updates in O(f(m)/m) time where f(m) is the static runtime?

This question is particularly interesting for static problems that can be solved in near-
linear time. For them, we are interested in near-constant time updates—the holy grail of
dynamic algorithms. The field of dynamic algorithms has achieved such full dynamization
for many problems. A prime example of the successes of this vibrant research area is the
dynamic connectivity problem: maintaining the connected components of a graph under edge
updates, to answer queries about whether a pair of vertices is connected. This problem can
be solved with amortized expected update time O(logn log log2 n) [48, 67] and query time
O(logn/ log log logn); polylogarithmic deterministic amortized bounds are also known, the
current best by Wulff-Nielsen [71]. After much intense research on the topic [44, 46, 47], the
first polylogarithmic worst case expected update times were obtained by Kapron et al. [53],
who were the first to break through what seemed like an Ω(

√
n) barrier; the bounds of

Kapron et al. [53] were recently improved by Gibb et al. [37]. Similar Õ(1) update and query
time bounds1 are known for many problems solvable in linear time such as dynamic minimum
spanning tree, biconnectivity and 2-edge connectivity [45, 47], and maximal matching [5, 66].

Barriers for dynamization have also been studied extensively. Many unconditional, cell
probe lower bounds are known. For instance, for connectivity and related problems it is
known [64, 65] that either the query time or the update time needs to be Ω(logn). However,
current cell probe lower bound techniques seem to be limited to proving polylogarithmic lower
bounds. In contrast, conditional lower bounds based on popular hardness hypotheses have
been successful at giving tight bounds for problems such as dynamic reachability, dynamic
strongly connected components and many more [1, 43, 54, 62].

While the field of dynamic algorithms is very developed, practically all the problems
which have been studied are polynomial-time solvable problems. What about NP-hard
problems? Do they have fast dynamic algorithms? By the discussion above, it seems clear
that (unless P = NP), superpolynomial query/update times are necessary, and surely this is
not as interesting as achieving near-constant time updates. If the problem is relaxed, and
instead of exact solutions, approximation algorithms are sufficient, then efficient dynamic
algorithms have been obtained for some polynomial time approximable problems such as
dynamic approximate vertex cover [5, 8, 61]. What if we insist on exact solutions?

The efficient dynamization question does make sense for parameterized NP-hard problems.
For such problems, each instance is measured by its size n as well as a parameter k that
measures the optimal solution size, the treewidth or genus of the input graph, or any similar
structural property. If P 6= NP, then the runtime of any algorithm for such a problem needs

1 Throughout this paper, we write Õ(f(n, k)) to hide polylog(n) factors.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:3

to be superpolynomial, but it is desirable that the superpolynomiality is only in terms of k.
That is, one searches for so-called fixed-parameter algorithms with runtime f(k) · nc for
some computable function f and some fixed constant c independent of k and n. The holy
grail here is an algorithm with runtime f(k) · n where f is a modestly growing function.
Such linear-time fixed-parameter algorithms can be very practical for small k. The very
active area of fixed-parameter algorithms has produced a plethora of such algorithms for
many different parameterized problems. Some examples include (1) many branching tree
algorithms such as those for Vertex Cover and d-Hitting Set, (2) many algorithms
based on color-coding [4] such as for k-Path, (3) all algorithms that follow from Courcelle’s
theorem2 [18], and (4) many more [11, 28, 32, 52, 58, 68, 70].

We study whether NP-hard problems with (near-)linear time fixed-parameter algorithms
can be made efficiently dynamic. The main questions we address are:

Which problems solvable in f(k) · n1+o(1) time have dynamic algorithms with update and
query times at most f(k) · no(1)?
Which problems solvable in f(k) ·n time have dynamic algorithms with update and query
times that depend solely on k and not on n?
Can one show that (under plausible conjectures) a problem requires Ω(f(k) · nδ) (for
constant δ > 0) update time to maintain dynamically even though statically it can be
solved in f(k) · n1+o(1) time?

1.1 Prior Work
We are aware of only a handful papers related to the question that we study. Bodlaender [9]
showed how to maintain a tree decomposition of constant treewidth under edge and vertex
insertions and deletions with O(logn) update time, as long as the underlying graph always
has treewidth at most 2. Dvořák et al. [29] obtained a dynamic algorithm maintaining a
tree-depth decomposition of a graph under the promise that the tree-depth never exceeds D;
edge and vertex insertions and deletions are supported in f(D) time for some function f .
Dvořák and Tůma [30] obtained a dynamic data structure that can count the number of
induced copies of a given h-vertex graph, under edge insertions and deletions, and if the
maintained graph has bounded expansion, the update time is bounded by O(logh

2
n).

A more recent paper by Iwata and Oka [51] gives several dynamic algorithms for the
following problems, under the promise that the solution size never grows above k: (1) an
algorithm that maintains a Vertex Cover in a graph under O(k2) time edge insertions
and deletions and f(k) time queries3, (2) an algorithm for Cluster Vertex Deletion
under O(k8 + k4 logn) time edge updates and f(k) time queries4, and (3) an algorithm
for Feedback Vertex Set in graphs with maximum degree ∆ where edge insertions
and deletions are supported in amortized time 2O(k)∆3 logn. Notably, when discussing
Feedback Vertex Set, the paper concludes: “It seems an interesting open question
whether it is possible to construct an efficient dynamic graph without the degree restriction.”

The final related papers are by Abu-Khzam et al. [2, 3]. Although these papers talk
about parameterized problems and dynamic problems, the setting is very different. Their

2 Courcelle’s theorem states that every problem definable in monadic second-order logic of graphs can be
decided in linear time on graphs of bounded treewidth.

3 Here f(k) denotes the runtime of the fastest fixed-parameter algorithm for Vertex Cover when run
on k-vertex graphs.

4 Here f(k) denotes the runtime of the fastest fixed-parameter algorithm for Cluster Vertex Deletion
when run on k5-vertex graphs.

ICALP 2017

41:4 Dynamic Parameterized Problems and Algorithms

problem is, given two instances I1 and I2 of a problem that only differ in k “edits”, and a
solution S1 of I1, to find a feasible solution S2 of I2 that is at Hamming distance at most d
from S1. The question of study is whether such problems admit fixed-parameter algorithms
for parameters k and `. That question though is not about data structures but about a
single update. Moreover, their algorithm is given S1 as input, which—unlike a dynamic
data structure—cannot force the initial solution to have any useful properties. Thus, the
hardness results in their setting do not translate to our data structure setting. Furthermore,
the runtimes in their setting, unlike ours, must have at least a linear dependence on the size
of the input, as one has to at least read the entire input.

Besides the work on parameterized dynamic algorithms, there has been some work on
parameterized streaming algorithms by Chitnis et al. [17]. This work focused on Maximal
Matching and Vertex Cover. The difference between streaming and dynamic algorithms
is that (a) the space usage of the algorithm is the most important aspect for streaming, and
(b) in streaming, a solution is only required at the end of the stream, whereas a dynamic
algorithm can be queried at any point and needs to be efficient throughout, but can use a
lot of space. For Vertex Cover instances whose solution size never exceeds k, Chitnis et
al. [17] give a one-pass randomized streaming algorithm that uses O(k2) space and answers
the final query in 2O(k) time; when the vertex cover size can exceed k at any point, there is
a one-pass randomized streaming algorithm using O(min{m,nk}) space and answering the
query in O(min{m,nk}) + 2O(k) time.

The relevant prior work on (static) fixed-parameter algorithms [4, 6, 10, 12, 13, 14, 15,
16, 19, 20, 22, 23, 24, 27, 31, 34, 38, 40, 49, 50, 56, 57, 59, 68] is described in the appendix.

1.2 Our Contributions

Algorithmic Results. We first define the notion of a fixed parameter dynamic problem as
a parameterized problem with parameter k that has a data structure supporting updates
and queries to an instance of size n in time f(k)no(1). The class FPD contains all such
parameterized problems. By a formalization of our earlier discussion, FPD is contained in
the class of parameterized problems admitting algorithms running in time f(k)n1+o(1). After
this, we introduce two techniques for making fixed-parameter algorithms dynamic, and then
use them to develop dynamic fixed-parameter algorithms for a multitude of fundamental
optimization problems. Our algorithmic contributions are stated in Theorem 1 below. In
the runtimes, DC(n) refers to the time per update to a dynamic connectivity data structure
on n vertices, which from prior work can be:

expected amortized update time O(logn(log logn)2), or
expected worst case time O(log4 n), or
deterministic amortized time O(log2 n/ log logn).

Which of these bounds we pick determines the type of guarantees (expected vs. deterministic,
worst case vs. amortized) that the algorithm gives.

I Theorem 1. The following problems admit dynamic fixed-parameter algorithms:
Vertex Cover parameterized by solution size under edge insertions and deletions, with
O(1) amortized or O(k) worst case update time and O(1.2738k) query time,
Connected Vertex Cover parameterized by solution size under edge insertions and
deletions, with O(k2k) update time and O(4k) query time,
d-Hitting Set for all values of d parameterized by solution size under set insertions
and deletions, either with O(kdk) expected update time and O(k) query time, or with

J. Alman, M. Mnich, and V. Vassilevska Williams 41:5

O(f(k, d)) (worst-case, deterministic) update time and O(dkd!(k + 1)d) query time, for
some function f loosely bounded by (d!)dkO(d2).
Edge Dominating Set parameterized by solution size under edge insertions and dele-
tions, with O(1) update time and O(2.2351k) query time,
Feedback Vertex Set parameterized by solution size under edge insertions and dele-
tions, with 2O(k log k) logO(1) n amortized update time and O(k) query time,
Max Leaf Spanning Tree parameterized by solution size under edge insertions and
deletions, with O(3.72k + k5 logn+DC(n)) amortized update time, and maintains the
current max leaf spanning tree explicitly in memory,
Dense Subgraph in Graphs with Degree Bounded by ∆ parameterized by the
number of vertices in the subgraph under edge insertions and deletions, with 2O(k∆) ·DC(n)
update time and 2O(k∆) logn query time.
Undirected k-Path parameterized by the number of vertices on the path, with k!2O(k) ·
DC(n) update time and k!2O(k) logn query time.
Edge Clique Cover parameterized by the number of cliques and under the promise that
the solution never grows bigger than g(k), with O(4g(k)) update time and 22O(k) +O(24g(k))
query time.
Point Line Cover and Line Point Cover parameterized by the size of the solution
and under point and line insertions and deletions, respectively, with O(g(k)3) update time
and O(g(k)2g(k)+2) query time, under the promise that the solution never grows to more
than g(k).

Discussion of the Algorithmic Results. Our dynamic algorithm for Vertex Cover and
that of Iwata and Oka [51] both have query time O(1.2738k), by using the best known fixed
parameter algorithm for Vertex Cover on the maintained kernel. However, our algorithm
improves upon theirs in two ways. First, our update time is amortized constant or O(k)
worst case, whereas the Iwata-Oka algorithm has update time O(k2). Second, their update
time bound of O(k2) only holds if the vertex cover is guaranteed to never grow larger than k
throughout the sequence of updates. Namely, their update time depends on the size of their
maintained kernel, which may become unbounded in terms of k. Our algorithm does not
need any such promise—it will always have fast (amortized O(1) or O(k) worst case) update
time and return a vertex cover of size k if it exists, or determine that one does not. This is a
much stronger guarantee.

Our dynamic algorithm and Chitnis et al.’s streaming algorithm for Vertex Cover are
both based on Buss’ kernel, but our algorithm is markedly different from theirs. In particular,
we actually work with a modified kernel that allows us to achieve constant amortized update
time. Because our algorithm is completely deterministic, it necessarily needs Ω(m) space,
and our algorithm does indeed take linear space.

We give two algorithms for d-Hitting Set. The first is based on a randomized branching
tree method, while the second is deterministic and maintains a small kernel for the problem.
For every constant d, any d-Hitting Set instance on m sets and n elements has a kernel
constructible in time O(dn+2dm) that has O(dd+1d!(k+1)d) sets, due to van Bevern [68], and
a kernel constructible in time O(m) that has O((k+1)d) sets, due to Fafianie and Kratsch [33].
Unfortunately, it seems difficult to efficiently dynamize these kernel constructions. Because of
this, we present a novel kernel for the problem. Our kernel can be constructed in O(dn+3dm)
time and has size O((d− 1)!(k + 1)d). It also has nice properties that make it possible to
maintain it dynamically with update time that is a function of only k and d. In fact, for any
fixed d, the update time is polynomial in k.

ICALP 2017

41:6 Dynamic Parameterized Problems and Algorithms

Our algorithm for Feedback Vertex Set is a nice combination of kernelization and a
branching tree. Aside from our dynamic kernel for d-Hitting Set, this is probably the most
involved of our algorithms. Iwata and Oka [51] had also presented a dynamic fixed-parameter
algorithm for Feedback Vertex Set. However, their update time depends linearly on the
maximum degree of the graph, and is hence efficient only for bounded degree graphs. Their
paper asks whether one can remove this costly dependence on the degree. Our algorithm
answers their question in the affirmative—it has fast updates regardless of the graph density.

All of our algorithms, except for the last two in the theorem, meet their update and
query time guarantees regardless of whether the currently stored instance has a solution of
size k or not. The two exceptions, Edge Clique Cover and Point Line Cover, only
work under the promise that the solution never grows bigger than a function of k. In this
sense they are similar to most of the algorithms from prior work [29, 51]. There does seem
to be an inherent difficulty to removing the promise requirement, however. In fact, in the
parameterized complexity literature, these two problems are also exceptional, in the sense
that their fastest fixed parameter algorithms run by computing a kernel and then running a
brute force algorithm on it [23, 55], rather than anything more clever.

Hardness Results. In addition to the above algorithms, we also prove conditional lower
bounds for several parameterized problems, showing that they are likely not in FPD. To our
knowledge, ours are the first lower bounds for any dynamic parameterized problems.

The hardness hypothesis we assume concerns Reachability Oracles (ROs) for DAGs: an
RO is a data structure that stores a directed acyclic graph and for any queried pair of vertices
s, t, can efficiently answer whether s can reach t. (An RO does not perform updates.) Our
main hypothesis is as follows:

I Hypothesis 2 (RO Hypothesis). On a word-RAM with O(logm) bit words, any Reachability
Oracle for directed acyclic graphs on m edges must either use m1+ε preprocessing time for
some ε > 0, or must use Ω(mδ) time to answer reachability queries for some constant δ > 0.

The only known ROs either work by computing the transitive closure of the DAG during
preprocessing, thus spending Θ(min{mn, nω}) time (where n is the number of vertices and
2 ≤ ω < 2.373 [36, 69]), or by running a BFS/DFS procedure after each query, thus spending
O(m) time. Both of these runtimes are much larger than our assumed hardness; hence the
RO Hypothesis is very conservative.

We also use a slightly weaker version of the RO Hypothesis, asserting that its statement
holds true even restricted to DAGs that consist of ` layers of vertices (for some fixed
constant `), so that the edges go only between adjacent layers in a fixed direction, from
layer i to layer i+ 1. While this new LRO Hypothesis is certainly weaker, we show that it
is implied by either of two popular hardness hypotheses: the 3SUM Conjecture and the
Triangle Conjecture. The former asserts that when given n integers within {−nc, . . . , nc}
for some constant c, deciding whether three of them sum to 0 requires n2−o(1) time on a
word-RAM with O(logn) bit words. The latter asserts that detecting a triangle in an m-edge
graph requires Ω(m1+ε) time for some ε > 0. These two conjectures have been used for many
conditional lower bounds [1, 35, 54].

Pǎtraşcu studied the RO Hypothesis, and while he was not able to prove it, the following
strong cell probe lower bound follows from his work [63]: there are directed acyclic graphs
on m edges for which any RO that uses m1+o(1) preprocessing time (and hence space) in
the word-RAM with O(logn) bit words, must have ω(1) query time. Using this statement,
unconditional, albeit weaker lower bounds can be proven as well. This is what we prove:

J. Alman, M. Mnich, and V. Vassilevska Williams 41:7

I Theorem 3. Fix the word-RAM model of computation with w-bit words for w = O(logn)
for inputs of size n. Assuming the LRO Hypothesis, there is some δ > 0 for which the
following dynamic parameterized graph problems on m-edge graphs require either Ω(m1+δ)
preprocessing or Ω(mδ) update or query time:

Directed k-Path under edge insertions and deletions,
Steiner Tree under terminal activation and deactivation, and
Vertex Cover Above LP under edge insertions and deletions.

Under the RO Hypothesis (and hence also under the LRO Hypothesis), there is a δ > 0 so
that Directed Feedback Vertex Set under edge insertions and deletions requires Ω(mδ)
update time or query time.

Unconditionally, there is no computable function f for which a dynamic data structure
for Directed Feedback Vertex Set performs updates and answers queries in O(f(k))
time.

Our lower bounds show that, although k-Path and Feedback Vertex Set have fixed
parameter dynamic algorithms for undirected graphs, they probably do not for directed
graphs. Interestingly, the fixed-parameter algorithms for k-Path in the static setting work
similarly on both undirected and directed graphs, so there only seems to be a gap in the
dynamic setting.

All problems for which we prove lower bounds have f(k)n1+o(1) time static algorithms,
except for Vertex Cover above LP. However, it seems that the reason why the current
algorithms are slower is largely due to the fact that near-linear time algorithms for maximum
matching are not known. Recent impressive progress on the matching problem [60] gives
hope that an f(k)n1+o(1) time algorithm for Vertex Cover above LP might be possible.

A common feature of most of the problems above is that they are either not known
to have a polynomial kernel (like Directed Feedback Vertex Set), or do not have
one unless NP ⊆ coNP/poly (like k-Path [10] and Steiner Tree parameterized by the
number of terminal pairs [27]). One might therefore conjecture that problems which cannot
be made fixed parameter dynamic do not have polynomial kernels, or vice versa. Tempting
as it is, this intuition turns out to be false. Vertex Cover Above LP does not have a
dynamic fixed-parameter algorithm, yet it is known to admit a polynomial kernel [56]. On
the other hand, the k-Path problem on undirected graphs also does not admit a polynomial
kernel unless NP ⊆ coNP/poly [10], yet we give a dynamic fixed-parameter algorithm for it.
Hence, the existence of a polynomial kernel for a parameterized problem is not related to the
existence of a dynamic fixed-parameter algorithm for it.

Preliminaries. We assume familiarity with basic combinatorial algorithms, especially graph
algorithms and hitting set algorithms. When referring to a graph G, we will write V (G) to
denote its vertex set and E(G) to denote its edge set. Unless otherwise specified, n and m
will refer to the number of nodes and edges in G, respectively. We use the terms nodes and
vertices interchangeably. By Õ(f(n)) we denote f(n) logO(1) n. We also assume familiarity
with dynamic problems and parameterized problems.

2 Overview of the Algorithmic Techniques

Promise model and Full model. There are two different models of dynamic parameterized
problems in which we design algorithms: the promise model and the full model. When
solving a problem with parameter k in the promise model, there is a computable function
g : N→ N such that one is promised that throughout the sequence of updates, there always

ICALP 2017

41:8 Dynamic Parameterized Problems and Algorithms

exists a solution with parameter at most g(k). Hence, one only needs to maintain a solution
under updates with good guarantees on both query and update times as long as the promise
continues to hold. If at any point during the execution no solution to the parameterized
problem with parameter g(k) exists, then the algorithm is not required to provide any
guarantees.

In the full model, there is no such promise. One needs to efficiently maintain a solution
with parameter at most k, or the fact that no such solution exists, under any sequence of
updates. When possible, it is desirable to have an algorithm with guarantees in the full
model instead of only the promise model, and all but two of our algorithms (Point Line
Cover and Edge Clique Cover) do work in the full model.

2.1 Techniques for designing dynamic fixed-parameter algorithms
We present two main techniques for obtaining dynamic fixed-parameter algorithms: dynamic
kernels and dynamic branching trees.

Dynamization via kernelization. Using the notation of Cygan et al. [21], a kernelization
algorithm for a parameterized problem Π is an algorithm A that, given an instance (I, k)
of Π, runs in polynomial time and returns an instance (I ′, k′) of Π such that the size of the
new instance is bounded by a computable function of k and so that (I ′, k′) is a ‘yes’ instance
of Π if and only if (I, k) is. Frequently, when the problem asks us to output more than just
a Boolean answer, then an answer for (I ′, k′) must be valid for (I, k) as well. We will refer
to the output of A as a kernel. For example, a kernelization algorithm for Vertex Cover
might take as input a graph G, and return a subgraph G′ such that any vertex cover of G′ is
also a vertex cover of G.

In the first approach, we compute a kernel for the problem, and maintain that this is a
valid kernel as we receive updates. In other words, as we receive updates, we will maintain
what the output of a kernelization algorithm A would be, without actually rerunning A each
time. Similar to kernelizations for static fixed-parameter algorithms, if we can prove that
the size of our kernel is only a function of k whenever a solution with parameter k exists,
then we can answer queries in time independent of n by running the fastest known static
algorithms on the kernel.

The difficult part, then, is to efficiently dynamically maintain the kernel. The details of
how efficiently we can handle updates to the kernel also determines which model of dynamic
fixed-parameter algorithm our algorithm works for. If the kernel is defined by sufficiently
simple or local rules such that updates can take place in time independent of the current
kernel size, then the algorithm should work in the full model. If updates might take time
linear in the kernel size, then the algorithm only works in the promise model.

As we will see, there are many problems for which we can efficiently maintain a kernel. In
some instances we will be able to maintain the classical kernels known for the corresponding
static problem, while in others, we will design new kernels which are easier to maintain.

Dynamization via branching tree. In the second approach, we consider so-called set selec-
tion problems. In these problems, the instance consists of a set of objects U (e.g., vertices of
a graph), the parameter is k, and one needs to select a subset S ⊆ U of size k (at least k/at
most k) so that a certain predicate P (S) is satisfied. Many parameterized problems are of
this nature, such as k-Path, Vertex Cover, and (Directed) Feedback Vertex Set.

Consider a (static) set selection problem which admits a branching solution. By this we
mean, for every instance U of the problem, there is an ‘easy to find’ subset T ⊆ U of size

J. Alman, M. Mnich, and V. Vassilevska Williams 41:9

|T | ≤ f(k) (for some function f) so that any solution S of size at most k must intersect T .
Furthermore, for any choice of t ∈ T to be placed in the solution, one can efficiently obtain a
reduced instance of the problem with parameter k − 1, which corresponds to picking t to be
in the solution. For instance, for Vertex Cover, every edge {u, v} can be viewed as such a
subset T since at least one of u and v is in any vertex cover, and if we pick u, then we can
remove it and all its incident edges from the graph to get a reduced instance.

For such problems, there is a simple fixed-parameter algorithm called the branching tree
algorithm: The algorithm can be represented as a tree T rooted at a node r. Each node v of
the tree corresponds to a reduced instance of the original one, and in this instance, v has a
subset T of size f(k), and a child vi for every i ∈ T , where vi corresponds to selecting i to be
placed in the solution, and vi carries the reduced instance where i is selected. The height of
the tree X is bounded by k since at most k elements need to be selected, and the branching
factor is f(k). Each leaf ` of the tree T is either a “yes”-leaf (when the predicate is satisfied
on the set of elements selected on the path from r to `) or a “no”-leaf (when the predicate
is not satisfied). The runtime of the algorithm bounded by f(k)k · t(N), where t(N) is the
time to find a subset T that must contain an element of the solution in instances of size N ,
together with the time to find a reduced instance, once an element is selected.

What we have described so far is a static algorithmic technique, but we investigate when
this algorithmic technique can be made dynamic. In other words, given an update, we would
like to quickly update T so that it becomes a valid branching tree for the updated instance.
Since the number of nodes in the branching tree is only a function of k, one can afford to
look at every tree node. Ideally, one would like the time spent per node to only depend
on k. However, for most problems that we consider, the branching tree needs to be rebuilt
every so often, since the subset T to branch on may become invalid after an update, and the
time to rebuild can have a dependence on the instance size. We use two methods to avoid
this. The first is to randomize the decisions made in the branching tree (e.g., which set T to
pick) so that, assuming an oblivious adversary that must provide the update sequence in
advance, it is relatively unlikely that we need to rebuild the tree T (or its subtrees) after
each update, and in particular, so that the expected cost of an update is only a function of k.
The second is to make ‘robust’ choices of T , so that many updates are requires before the
choice of T becomes incalid, and then amortize the cost of rebuilding the tree over all the
updates required to force such a rebuilding.

2.2 Algorithm Examples
We give overviews of the techniques used in some of our algorithms, to demonstrate the
dynamic kernel and dynamic branching tree approaches, and different ways in which they
can be used. We emphasize that these descriptions are substantial simplifications which hide
many non-trivial details and ideas.

Vertex Cover. We give both a dynamic kernel algorithm and a dynamic branching tree
algorithm for Vertex Cover.

Our first algorithm maintains a kernel obtained as follows: Every node of degree ≥ k + 1
‘selects’ k + 1 incident edges arbitrarily and adds them to the edge set E′ of the kernel,
independently of other nodes. Next, every edge incident to two nodes of degree ≤ k is also
added to E′. Finally, the node set of the kernel consists of all nodes that are not isolated
in E′. This is a valid kernel, since any vertex cover of size at most k needs to include every
vertex of degree strictly greater than k. Every edge in E′ either has both its end points of
degree ≤ k, or is selected by one of its end points of degree at least k + 1. Any node of a

ICALP 2017

41:10 Dynamic Parameterized Problems and Algorithms

vertex cover of the kernel either has degree ≤ k or selects k + 1 edges. Thus the kernel must
have size O(k2) when a k-vertex cover exists. To insert an edge we simply add the edge to
the kernel unless one of its incident vertices has degree greater than k. If one of the end
points x used to be of degree ≤ k and is now of degree k+ 1, we have x select all its incident
edges and add them to the kernel. To delete an edge, we simply remove it from the kernel.
If it was incident to a vertex v of degree higher than k + 2, then we need to find another
edge incident to v which is in the graph but not selected by v to put into the kernel. If one
of the end points now has degree k, we need to go through the incident edges and remove
them from the kernel if their other end point has high degree and did not select them. All
these operations can be performed by storing appropriate pointers so that the updates run
in O(k) time. With a little bit more work one can make them run in O(1) amortized time.
To answer queries, we answer “no” in constant time if the kernel has more than 2k(k + 1)
edges, and otherwise we run the fastest static k-Vertex Cover fixed-parameter algorithm
on the kernel of size O(k2). This results in a O(1.2738k) update time.

Our second algorithm maintains a branching tree of depth at most k, which corresponds
to using following randomized branching strategy: pick a uniformly random edge, and branch
on adding each of its endpoints into the vertex cover. For a static branching algorithm, there
is no need to pick a uniformly random edge to branch on, since at least one endpoint of every
single edge must be in the vertex cover. However, a deterministic branching strategy like this
in a dynamic algorithm would be susceptible to an adversarial edge update sequence, in which
the adversary frequently removes edges which have been chosen to branch on. By ensuring
that each edge we branch on is a uniformly random edge, we make the probability that
we need to recompute any subtree of the branching tree T low. We compute the expected
update time to be only O(k2k). Queries can be answered in only O(k) time by following a
path in the branching tree to an accepting leaf, if one exists.

These algorithms demonstrate some subtleties of the two techniques. In the branching
tree algorithm, we use a randomized branching rule to deal with adversarial updates. In
some of our other branching tree algorithms, like for Feedback Vertex Set, we are able
to find a deterministic branching rule to yield a deterministic algorithm instead. In the
kernelization algorithm, we manage to find a kernel which can be updated quickly even when
the answer becomes larger than k and the kernel size becomes large. In other problems, it
will be harder to do this, and we may need to restrict ourselves to the promise model where
we are guaranteed that the kernel will not grow too big in order to have efficient update times.
Dynamic kernelization techniques typically lead to faster update times and query times, like
in this case, because we can apply the fastest known static algorithm for the problem to the
kernel to answer queries. In a branching tree algorithm, we may be using a branching rule
which does not lead to the fastest algorithm because it is easier to dynamically maintain.

Interestingly, we are able to generalize both of these algorithms to the d-Hitting Set
problem. The d-Hitting Set branching tree algorithm is similar to that of Vertex Cover,
but the d-Hitting Set dynamic kernelization algorithm is much more complicated, and
involves a tricky recursive rule for determining which sets to put in the kernel. We include
an overview of the static kernel construction in Sect. 3.

Max Leaf Spanning Tree. Our algorithm for Max Leaf Spanning Tree uses the dynamic
kernel approach. The kernel we maintain is simply the given graph, where we contract
vertices of degree two whose neighbors both also have degree two. We can maintain this
kernel by storing paths of contracted vertices in lists corresponding to edges they have been
contracted into. As long as this kernel has Ω(k2) nodes, it must always have a spanning tree
with at least k leaves.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:11

Unlike in other dynamic kernel algorithms, where we maintain that the kernel does not
get too large, this kernel may grow to have Ω(n2) edges. We can nonetheless find a tree with
at least k leaves in time independent of n, by breadth-first searching from an arbitrary node
in the kernel until we have Ω(k2) kernel vertices, and just finding a tree within those vertices.

This method finds a subtree TS with at least k leaves, but we need to find a tree which
spans the whole graph. In the static problem, this could be accomplished by a linear-time
breadth-first search away from TS , but in the dynamic problem, this is too slow. To overcome
this, we also maintain a spanning tree T of the entire graph, which does not necessarily
have k leaves, using a known dynamic tree data structure. When queried for a spanning tree,
we find TS , and then perform a ‘merge’ operation to combine T and TS into a spanning tree
with at least k leaves. This merge operation makes only O(k4) changes to T , so we are able
to maintain a desired spanning tree in time independent of n.

We are able to maintain a linear size answer in only logarithmic time per update because
the output is not very ‘sensitive’ to updates: we can always output an answer very close
to T , which itself only changes in one edge per update. In other problems where the output
can be more sensitive to updates, like Edge Clique Cover, we need to maintain a small
intermediate representation of the answer instead of the answer itself.

Feedback Vertex Set in undirected graphs. Our algorithm for Feedback Vertex Set
combines the dynamic kernel approach with the dynamic branching tree approach. We will
maintain a branching tree, where we branch off of which node to include in our feedback
vertex set. Then, at each node in the branching tree, we will maintain a kernel to help decide
what nodes to branch on. Similar to the situation with Max Leaf Spanning Tree, our
kernel can possibly have Ω(n2) edges. Here we will deal with this by branching off of only
O(k) nodes in the kernel to add to our feedback vertex set, so that we can answer queries in
sublinear time in the kernel size.

The kernel we maintain at each node of the branching tree is the given graph, in which
vertices of degree one are deleted, and vertices of degree two are contracted. This involves
many details for maintaining contracted trees, and dealing with resulting self-loops. Since the
resulting graph has average degree at least three, whereas forests have much lower average
degree, we show that a feedback vertex set of size at most k must contain a vertex of high
degree, whose degree is at least 1/(3k) of the total number of edges in the kernel. Since there
are at most 6k such vertices, we can branch on which to include in our feedback vertex set.

This branching strategy works well for the static problem, but it is hard to maintain
dynamically. Each edge update might change the set of vertices with high enough degree to
branch on, and changing which vertex we branch on, and recomputing an entire subtree of
the branching tree, can be expensive. We alleviate this issue using amortization. Instead
of branching only on the 6k highest degree vertices, we instead branch on the 12k highest
degree vertices. If our kernel has m edges, then we prove that Ω(m) edge updates need to
happen before there might be a small feedback vertex set containing none of the vertices
we branched on. After these updates we need to recompute the branching tree, but this is
inexpensive when amortized over the required Ω(m) updates.

3 A dynamic kernel for d-Hitting Set

In this section we present our dynamic kernel for the d-Hitting Set problem; we describe
how to efficiently compute and maintain it in the full version of the paper. The d-Hitting
Set problem asks to find a set X ⊆ U of at most k elements of a given a universe U which

ICALP 2017

41:12 Dynamic Parameterized Problems and Algorithms

intersects all sets from a family F of subsets of U , each of cardinality exactly d. Here we
present a kernel for d-Hitting Set, with (d− 1)!k(k+ 1)d−1 sets and d!k(k+ 1)d−1 elements.
It is known [25] that a kernel of size O(kd−ε) for any constant ε > 0 would imply that
NP ⊆ coNP/poly; thus, the kd dependence on the number of sets in the kernel is optimal.

Let us describe the kernel. We will recursively define the notion of a good set.

I Definition 4 (good set). Let r ∈ N and νr = r!(k + 1)r. Let d ∈ N and let (U,F) be an
instance of d-Hitting Set. We define the notion of an “(`, r)-good” set inductively, in
decreasing order of ` from d to 1, and for fixed `, for increasing r from 1 to d− `.

Any set S ∈ F is (d, r)-good for all r.
A set S ⊆ U is `-good if S is (`, r)-good for some r.
A set S ⊆ U is (`′, r)-strong if S is `′-good and does not contain any (`′ − j, j)-good
subsets for any j ∈ {1, . . . , r − 1}.
A set S ⊆ U is (`, r)-good if |S| = ` and S is a subset of at least νr (`+ r, r)-strong sets.
A set S ⊆ U is good if S is `-good for ` = |S|.

Notice that if a set is (`′, r)-strong, then it is also (`′, r′)-strong for all r′ < r. Also, any
`-good set is (`, 1)-strong. Further, note that since the notion of (`+r, r)-strong only depends
on (`+ a, r − a)-good sets for a ≥ 1, the definition of (`, r)-good is sound.

Let F ′ consist of those S ⊆ U that are good and none of their subsets are good. Let U ′
consist of all u ∈ U that are contained in some set of F ′. Let K = (U ′,F ′). In the full version
we prove the following lemma that shows that (K, k) is a kernel for the instance (U,F).

I Lemma 5. Let (U,F) be an instance of d-Hitting Set. If (U,F) admits a hitting set X
of size at most k, then any good set S ⊆ U intersects X non-trivially.

The lemma implies that (K, k) is a kernel: first, if X ′ is a hitting set of K, it is a hitting set
for F as well since for every F ∈ F , either F ∈ F ′ or some subset of F is in F ′. Now let X
be a hitting set of F with size at most k. By the lemma, if some S is in F ′, then it intersects
X non-trivially and so X is a hitting set of F ′ as well. Now we argue about the size of K.

I Lemma 6. If (U,F) (and hence also (U ′,F ′)) admits a hitting set of size at most k, then
|U ′| ≤ d|F ′| and |F ′| ≤

(
1 + 2

(k+1)(d−1)

)
· d!(k + 1)d.

Proof. If {u} ∈ F ′, then no other set containing u can be in F ′. Otherwise, consider some
u such that {u} /∈ F ′. Consider all sets of size r + 1 in F ′ that contain u, for any choice of
r ∈ {1, . . . , d− 1}.

Since {u} /∈ F ′, we know that u cannot be (1, r)-good, and thus u is contained in
fewer than νr (r + 1)-good sets that do not contain any (j + 1, r − j)-good subsets for any
j ∈ {2, . . . , r− 1}. Now since for every F ∈ F ′ we have that it contains no good subsets, this
means that u is contained in fewer than νr sets in F ′ of size r + 1.

Thus, the number of sets of F ′ containing u is at most

d−1∑
r=1

νr =
d−1∑
r=1

r!(k + 1)r ≤
(

1 + 2
(k + 1)(d− 1)

)
(d− 1)!(k + 1)d−1,

where the last inequality can be proven inductively. Thus, if there is a hitting set of size at
most k for F ′, then the size of F ′ is at most (1 + 2

(k+1)(d−1))d!(k + 1)d. J

In the full version we additionally show that the kernel can be computed in O(3dn+m)
time and can be dynamically maintained with very fast updates.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:13

Acknowledgments. The authors would like to thank Nicole Wein, Daniel Stubbs, Hubert
Teo, and Ryan Williams for fruitful conversations.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. FOCS 2014, pages 434–443, 2014.
2 Faisal N. Abu-Khzam, Judith Egan, Michael R. Fellows, Frances A. Rosamond, and Peter

Shaw. On the parameterized complexity of dynamic problems with connectivity constraints.
In Proc. COCOA 2014, volume 8881 of Lecture Notes Comput. Sci., pages 625–636, 2014.

3 Faisal N. Abu-Khzam, Judith Egan, Michael R. Fellows, Frances A. Rosamond, and Peter
Shaw. On the parameterized complexity of dynamic problems. Theor. Comput. Sci.,
607:426–434, 2015.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4), 1995.
5 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in

O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015.
6 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. J. Artif. Intelligence Res., 12:219–234, 2000.
7 Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approx-

imate shortest paths under deletions. In Proc. SODA 2011, pages 1355–1365, 2011.
8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully

dynamic data structures for vertex cover and matching. In Proc. SODA 2015, pages 785–
804, 2015.

9 Hans L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proc. WG 1993,
volume 790 of Lecture Notes Comput. Sci., pages 112–124, 1993.

10 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

11 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016.

12 S. Buss. private communication.
13 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method

for solving fixed-cardinality optimization problems. In Proc. IPEC 2006, volume 4169 of
Lecture Notes Comput. Sci., pages 239–250, 2006.

14 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Ann. Pure Applied Logic, 84(1):119–138, 1997.

15 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoret.
Comput. Sci., 411(40):3736–3756, 2010.

16 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

17 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Proc.
SODA 2015, pages 1234–1251, 2015.

18 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

19 Marek Cygan. Deterministic parameterized connected vertex cover. In Proc. SWAT 2012,
volume 7357 of Lecture Notes Comput. Sci., pages 95–106, 2012.

20 Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Open problems for FPT
school 2014. http://fptschool.mimuw.edu.pl/opl.pdf.

ICALP 2017

http://fptschool.mimuw.edu.pl/opl.pdf

41:14 Dynamic Parameterized Problems and Algorithms

21 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer,
Cham, 2015.

22 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: New incompressibility results. ACM Trans. Comput.
Theory, 6(2):6:1–6:19, 2014.

23 Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016.

24 Jean Daligault, Gregory Gutin, Eun Jung Kim, and Anders Yeo. FPT algorithms and
kernels for the directed k-leaf problem. J. Comput. Syst. Sci., 76(2):144–152, 2010.

25 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

26 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004.

27 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and
IDs. In Proc. ICALP 2009, volume 5555 of Lecture Notes Comput. Sci., pages 378–389,
2009.

28 Frederic Dorn. Planar subgraph isomorphism revisited. In Proc. STACS 2010, volume 5 of
Leibniz Int. Proc. Informatics, pages 263–274, 2010.

29 Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Proc. ESA 2014, volume 8737 of Lecture
Notes Comput. Sci., pages 334–345, 2014.

30 Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting subgraphs in
sparse graphs. In Proc. WADS 2013, volume 8037 of Lecture Notes Comput. Sci., pages
304–315, 2013.

31 Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, and Frances A. Rosam-
ond. FPT is P-time extremal structure I. In Proc. ACiD 2005, pages 1–41, 2005.

32 Michael Etscheid and Matthias Mnich. Linear kernels and linear time algorithms for finding
large cuts. In Proc. ISAAC 2016, volume 64 of Leibniz Int. Proc. Informatics, pages 31:1–
31:13, 2016.

33 Stefan Fafianie and Stefan Kratsch. A shortcut to (sun)flowers: Kernels in logarithmic
space or linear time. In Proc. MFCS 2015, volume 9235 of Lecture Notes Comput. Sci.,
pages 299–310, 2015.

34 Henning Fernau. Edge dominating set: Efficient enumeration-based exact algorithms. In
Proc. IPEC 2006, volume 4169 of Lecture Notes Comput. Sci., pages 142–153, 2006.

35 Anka Gajentaan and Mark H. Overmars. On a class of problems in computational geometry.
Comput. Geom., 45(4):140–152, 2012.

36 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. ISSAC 2014,
pages 296–303, 2014.

37 David Gibb, Bruce Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space, 2015. URL: https://arxiv.
org/abs/1509.06464.

38 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. J. Exp. Algorithmics, 13:2:2.2–2:2.15, 2009.

39 Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In Proc.
FOCS 2013, pages 548–557, 2013.

40 Andras Gyárfás. A simple lower bound on edge coverings by cliques. Discrete Math.,
85(1):103–104, 1990.

https://arxiv.org/abs/1509.06464
https://arxiv.org/abs/1509.06464

J. Alman, M. Mnich, and V. Vassilevska Williams 41:15

41 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms
for decremental single-source reachability on directed graphs. In Proc. ICALP 2015, volume
9134 of Lecture Notes Comput. Sci., pages 725–736, 2015.

42 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approxim-
ate all-pairs shortest paths: Breaking the O(mn) barrier and derandomization. SIAM J.
Comput., 45(3):947–1006, 2016.

43 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proc. FOCS 2015, pages 21–30, 2015.

44 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.

45 Monika Rauch Henzinger and Valerie King. Maintaining minimum spanning forests in
dynamic graphs. SIAM J. Comput., 31(2):364–374, 2001.

46 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369–
379, 1997.

47 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4):723–760, 2001.

48 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic con-
nectivity in O(logn(log logn)2) amortized expected time, 2016. URL: http://arxiv.org/
abs/1609.05867.

49 Ken Iwaide and Hiroshi Nagamochi. An improved algorithm for parameterized edge dom-
inating set problem. J. Graph Algorithms Appl., 20(1):23–58, 2016.

50 Yoichi Iwata. A linear time kernelization for feedback vertex set, 2016. URL: https:
//arxiv.org/abs/1608.01463.

51 Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems.
In Proc. SWAT 2014, volume 8503 of Lecture Notes Comput. Sci., pages 241–252, 2014.

52 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In Proc. SODA 2014, pages 1749–1761, 2014.

53 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proc. SODA 2013, pages 1131–1142, 2013.

54 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In Proc. SODA 2016, pages 1272–1287, 2016.

55 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel
is essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016.

56 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Proc. FOCS 2012, pages 450–459, 2012.

57 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014.

58 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. In Proc. ICALP 2015, volume 9134 of Lecture
Notes Comput. Sci., pages 935–946, 2015.

59 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear time parameterized
algorithm for directed feedback vertex set, 2016. URL: https://arxiv.org/abs/1609.
04347.

60 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Proc.FOCS 2013, pages 253–262, 2013.

ICALP 2017

http://arxiv.org/abs/1609.05867
http://arxiv.org/abs/1609.05867
https://arxiv.org/abs/1608.01463
https://arxiv.org/abs/1608.01463
https://arxiv.org/abs/1609.04347
https://arxiv.org/abs/1609.04347

41:16 Dynamic Parameterized Problems and Algorithms

61 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Proc. STOC 2010, pages 457–464, 2010.

62 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. STOC
2010, pages 603–610, 2010.

63 Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011.

64 Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006.

65 Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots.
In Proc. STOC 2011, pages 559–568, 2011.

66 Shay Solomon. Fully dynamic maximal matching in constant update time. In Proc. FOCS
2016, pages 325–334, 2016.

67 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. STOC 2000,
pages 343–350, 2000.

68 René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica, 70(1):129–147, 2014.

69 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proc. STOC 2012, pages 887–898, 2012.

70 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proc. SODA
2014, pages 1762–1781, 2014.

71 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proc.
SODA 2013, pages 1757–1769, 2013.

Decremental Data Structures for Connectivity and
Dominators in Directed Graphs∗†

Loukas Georgiadis1, Thomas Dueholm Hansen2,
Giuseppe F. Italiano3, Sebastian Krinninger4, and Nikos Parotsidis5

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 Aarhus University, Aarhus, Denmark
tdh@cs.au.dk

3 University of Rome Tor Vergata, Rome, Italy
giuseppe.italiano@uniroma2.it

4 University of Vienna, Faculty of Computer Science, Vienna, Austria
sebastian.krinninger@univie.ac.at

5 University of Rome Tor Vergata, Rome, Italy
nikos.parotsidis@uniroma2.it

Abstract
We introduce a new dynamic data structure for maintaining the strongly connected components
(SCCs) of a directed graph (digraph) under edge deletions, so as to answer a rich repertoire
of connectivity queries. Our main technical contribution is a decremental data structure that
supports sensitivity queries of the form “are u and v strongly connected in the graph G\w?”, for
any triple of vertices u, v, w, while G undergoes deletions of edges. Our data structure processes a
sequence of edge deletions in a digraph with n vertices in O(mn logn) total time and O(n2 logn)
space, where m is the number of edges before any deletion, and answers the above queries in
constant time. We can leverage our data structure to obtain decremental data structures for
many more types of queries within the same time and space complexity. For instance for edge-
related queries, such as testing whether two query vertices u and v are strongly connected in
G \ e, for some query edge e.

As another important application of our decremental data structure, we provide the first
nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions. We
present an algorithm that processes a sequence of edge deletions in a flow graph in O(mn logn)
total time and O(n2 logn) space. For reducible flow graphs we provide an O(mn)-time and
O(m+ n)-space algorithm. We give a conditional lower bound that provides evidence that these
running times may be tight up to subpolynomial factors.

1998 ACM Subject Classification E.1 [Graphs and Networks] Trees, F.2.2 Computations on
Discrete Structures, G.2.2 [Graph Algorithms] Trees

Keywords and phrases dynamic graph algorithms, decremental algorithms, dominator tree,
strong connectivity under failures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.42

∗ Full version of this paper available at https://arxiv.org/abs/1704.08235.
† The work of L. Georgiadis and T. D. Hansen was partially done while visiting University of Rome Tor

Vergata. T. D. Hansen was supported by the Carlsberg Foundation, grant no. CF14-0617. G. F. Italiano
was partially supported by the Italian Ministry of Education, University and Research, under Project
AMANDA. The work of S. Krinninger was partially done while visiting University of Rome Tor Vergata
and while at Max Planck Institute for Informatics, Saarland Informatics Campus, Germany.

EA
T

C
S

© Loukas Georgiadis, Thomas Dueholm Hansen, Giuseppe F. Italiano,
Sebastian Krinninger, and Nikos Parotsidis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.42
https://arxiv.org/abs/1704.08235
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Decremental Data Structures for Connectivity and Dominators

1 Introduction

Dynamic graph algorithms have been extensively studied for several decades, and many
important results have been achieved for dynamic versions of fundamental problems, including
connectivity, 2-edge and 2-vertex connectivity, minimum spanning tree, transitive closure,
and shortest paths (see, e.g., the survey in [14]). We recall that a dynamic graph problem is
said to be fully dynamic if it involves both insertions and deletions of edges, incremental if it
only involves edge insertions, and decremental if it only involves edge deletions.

The decremental strongly connected components (SCCs) problem asks us to maintain,
under edge deletions in a directed graph G, a data structure that given two vertices u and v
answers whether u and v are strongly connected in G. We extend this problem to sensitvity
queries of the form “are u and v strongly connected in the graph G \ w?”, for any triple of
vertices u, v, w, i.e., we additionally allow the query to temporarily remove a third vertex w.
We show that this extended decremental SCC problem can be used to answer fast a rich
repertoire of connectivity queries, and we present a new and efficient data structure for the
problem. In particular, our data structure for the extended decremental SCC problem can
be used to support edge-related queries, such as maintaining the strong bridges of a digraph,
testing whether two query vertices u and v are strongly connected in G \ e, reporting the
SCCs of G \ e, or the largest and smallest SCCs in G \ e, for any query edge e. Furthermore,
using our framework, it is possible to maintain the 2-vertex-and 2-edge-connected components
of a digraph under edge deletions. All of these extensions can be handled with the same time
and space bounds as for the extended decremental SCC problem. (Most of these reductions
have been deferred to the full version of the paper.)

A naive approach to solving the extended decremental SCC problem is to maintain
separately the SCCs in every subgraph G \ w of G, for all vertices w. After an edge deletion
we then update the SCCs of all these n subgraphs, where n is the number of vertices in
G. If we simply perform a static recompution after each deletion, then we, for example,
obtain decremental algorithms with O(m2n) total time and O(n2) space by recomputing the
SCCs in each G \ w [37] or O(m2 +mn) total time and O(m+ n) space by constructing a
more suitable static connectivity data structure [22], respectively. Here m denotes the initial
number of edges. The current fastest (randomized) decremental SCC algorithm by Chechik
et al. [10] trivially gives O(mn3/2 logn) total update time and O(mn) space for our extended
decremental SCC problem.

The main technical contribution of this paper is a data structure for the extended
decremental SCC problem with O(mn logn) total update time that uses O(n2 logn) space,
and that answers queries in constant time. We obtain this data structure by extending
Łącki’s decremental SCC algorithm [30]. His algorithm maintains the SCCs of a graph under
edge deletions by recursively decomposing the SCCs into smaller and smaller subgraphs.
We therefore refer to his data structure as an SCC-decomposition. His total update time
is O(mn) and the space used is O(m+ n). We observe that the naive algorithm based on
SCC-decompositions can be implemented in such a way that most of the work performed is
redundant. We obtain our data structure by merging n SCC-decompositions into one joint
data structure, which we refer to as a joint SCC-decomposition. Our data structure, like
that of Łącki, is deterministic. Using completely different techniques, Georgiadis et al. [21]
showed how to answer the same sensitivity queries in O(mn) total time in the incremental
setting, i.e., when the input digraph undergoes edge insertions only.

The extended SCC problem is related to the so-called fault-tolerant model. Here, one
wishes to preprocess a graph G into a data structure that is able to answer fast certain

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:3

sensitivity queries, i.e., given a failed vertex w (resp., failed edge e), compute a specific
property of the subgraph G \ w (resp., G \ e) of G. Our data structure supports sensitivity
queries when a digraph G undergoes edge deletions, which gives an aspect of decremental
fault-tolerance. This may be useful in scenarios where we wish to find the best edge whose
deletion optimizes certain properties (fault-tolerant aspect) and then actually perform this
deletion (decremental aspect). This is, e.g., done in the computational biology applications
considered by Mihalák et al. [32]. Their recursive deletion-contraction algorithm repeatedly
finds the edge of a strongly connected digraph whose deletion maximizes quantities such as
the number of resulting SCCs or minimizes their maximum size.

As another important application of our joint SCCs data structure, we provide the first
nontrivial algorithm for maintaining the dominator tree of a flow graph under edge deletions.
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s ∈ V , w.l.o.g.
containing only vertices reachable from s. A vertex w dominates a vertex v (w is a dominator
of v) if every path from s to v includes w. The immediate dominator of a vertex v, denoted
by d(v), is the unique vertex that dominates v and is dominated by all dominators of v. The
dominator tree D is a tree with root s in which each vertex v has d(v) as its parent. Dominator
trees can be computed in linear time [2, 7, 8, 23]. The problem of finding dominators has been
extensively studied, as it occurs in several applications, including program optimization and
code generation [12], constraint programming [34], circuit testing [4], theoretical biology [1],
memory profiling [31], fault-tolerant computing [5, 6], connectivity and path-determination
problems [16, 17, 19, 18, 25, 27, 28, 29], and the analysis of diffusion networks [24].

In particular, the dynamic dominator problem arises in various applications, such as data
flow analysis and compilation [11, 15]. Moreover, the results of Italiano et al. [27] imply
that dynamic dominators can be used for dynamically testing 2-vertex connectivity, and for
maintaining the strong bridges and strong articulation points of digraphs. The decremen-
tal dominator problem appears in the computation of maximal 2-connected subgraphs in
digraphs [25, 29, 13]. The problem of updating the dominator relation has been studied for
a few decades (see, e.g., [3, 9, 11, 20, 33, 35, 36]). For the incremental dominator problem,
there are algorithms that achieve total O(mn) running time for processing a sequence of
edge insertion in a flow graph with n vertices, where m is the number of edges after all
insertions [3, 11, 20]. Moreover, they can answer dominance queries, i.e., whether a query
vertex w dominates another query vertex v, in constant time. Prior to our work, to the
best of our knowledge, no decremental algorithm with total running time better than O(m2)
was known for general flow graphs. In the special case of reducible flow graphs (a class that
includes acyclic flow graphs), Cicerone et al. [11] achieved an O(mn) update bound for the
decremental dominator problem. Both the incremental and the decremental algorithms of
[11] require O(n2) space, as they maintain the transitive closure of the digraph.

Our algorithm is the first to improve the trivial O(m2) bound for the decremental
dominator problem in general flow graphs. Specifically, our algorithm can process a sequence
of edge deletions in a flow graph with n vertices and initially m edges in O(mn logn) time
and O(n2 logn) space, and after processing each deletion can answer dominance queries in
constant time. For the special case of reducible flow graphs, we give an algorithm that matches
the O(mn) running time of Cicerone et al. while improving the space usage to O(m+n). We
remark that the reducible case is interesting for applications in program optimization since
one notion of a “structured” program is that its flow graph is reducible. (The details about
this result appear in the full paper.) Finally, we complement our results with a conditional
lower bound, which suggests that it will be hard to substantially improve our update bounds.
In particular, we prove that there is no incremental nor decremental algorithm for maintaining

ICALP 2017

42:4 Decremental Data Structures for Connectivity and Dominators

the dominator tree (or more generally, a dominance data structure) that has total update
time O((mn)1−ε) (for some constant ε > 0) unless the OMv Conjecture [26] fails. The same
lower bound applies to the extended decremental SCC problem. Unlike the update time, it
is not clear that the O(n2 logn) space used by our joint SCC-decomposition is near-optimal.
We leave it as an open problem to improve this bound.

Further Notation and Terminology. For a given digraph G = (V,E), we denote the set of
vertices by V (G) = V and the set of edges by E(G) = E. We let |E| = m and |V | = n. Two
vertices u and v are strongly connected in G if there is a path from u to v and a path from
v to u. G is strongly connected if every vertex is reachable from every other vertex. The
strongly connected components (SCCs) of G are its maximal strongly connected subgraphs.
We denote by G \S (resp., G \ e)) the graph obtained after deleting a set S of vertices (resp.,
an edge e) from G. For a strongly connected graph H, we say that deleting an edge e breaks
H, if H \ e is not strongly connected.

An edge (resp., a vertex) of G is a strong bridge (resp., a strong articulation point) if its
removal increases the number of SCCs. An edge e (resp., a vertex v) is a separating edge
(resp., a separating vertex) for two vertices u and v if u and v are not strongly connected
in G \ e (resp., in G \ v). Two vertices u and v are 2-edge connected (2-vertex connected)
if there are two edge-disjoint paths (internally vertex-disjoint paths) between u and v. We
denote by GR the reverse graph of G, i.e., the graph which has the same vertices as G and
contains an edge eR = (v, u) for every edge e = (u, v) of G.

2 A Data Structure for Maintaining Joint SCC-Decompositions

For a given initial graph G, the decremental SCC problem asks us to maintain a data structure
that allows edge deletions and can answer whether (arbitrary) pairs (u, v) of vertices are
in the same SCC. The goal is to update the data structure as quickly as possible while
answering queries in constant time. In this paper we present a data structure for the extended
decremental SCC problem in which a query provides an additional vertex w and asks whether
u and v are in the same SCC when w is deleted from G. We maintain this information under
edge deletions, and our data structure relies on Łącki’s SCC-decomposition [30] for doing so.

2.1 Review of Łącki’s SCC Decomposition

An SCC-decomposition recursively partitions the graph G into smaller strongly connected
subgraphs. This generates a rooted tree T , whose root r represents the entire graph, and
where the subtree rooted at each node φ represents some vertex-induced strongly connected
subgraph Gφ (we refer to vertices of T as nodes to distinguish T from G). Every non-leaf
node φ is a vertex of Gφ, and the children of φ correspond to SCCs of Gφ \ φ. The concept
was introduced by Łącki [30] and slightly extended by Chechik et al. [10]. We adopt the
notation from [10].

I Definition 1 (SCC-decomposition). Let G = (V,E) be a strongly connected graph. An
SCC-decomposition of G is a rooted tree T , whose nodes form a partition of V . For a node
φ of T we define Gφ to be the subgraph of G induced by the union of all descendants of φ
(including φ). Then, the following properties hold:

Each internal node φ of T is a single-element set. (In this case, we sometimes abuse
notation and assume that φ is the vertex itself.)

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:5

Let φ be any internal node of T , and let H1, . . . ,Ht be the SCCs of Gφ \ φ. Then the
node φ has t children φ1, . . . , φt, where Gφi

= Hi for all i ∈ {1, . . . , t}.
An SCC-decomposition of a graph G that is not strongly connected is a collection of SCC-
decompositions of the SCCs of G. We say that T is a partial SCC-decomposition when the
leaves of T are not required to be singletons.

Observe that for each node φ, the graph Gφ is strongly connected. Moreover, the subtree
of T rooted at φ is an SCC-decomposition of Gφ. Also, for a leaf φ we have that φ = V (Gφ).
To build an SCC-decomposition T of a strongly connected graph G we pick an arbitrary
vertex v, put it in the root of T , then recursively build SCC-decompositions of SCCs of
G \ {v} and make them the children of v in T . Note that since the choice of v is arbitrary,
there are many ways to build an SCC-decomposition of the same graph. Łącki [30] (and
Chechik et al. [10]) introduced a procedure Build-SCC-Decomposition(G,S) that takes
as input a set of vertices S and returns a partial SCC-decomposition whose internal nodes
are the vertices of S, i.e., these vertices are picked first and therefore appear at the top of the
constructed tree. We refer to the vertices in S as internal nodes and the remaining nodes as
external nodes. Note that all external nodes appear in the leaves of T , while internal nodes
can be both leaves and non-leaves. This distinction is helpful when describing our algorithm.

Łącki [30] showed that the total initialization and update time under edge deletions of an
SCC-decomposition is O(mγ), where γ is the depth of the decomposition.

2.2 Towards a Joint SCC-Decomposition
Recall that the extended decremental SCC problem asks us to maintain under edge deletions
a data structure for a graph G such that we can answer whether u and v are strongly
connected in G \{w} when given u, v, w ∈ V (G). A naive algorithm does this by maintaining
n SCC-decompositions, each with a distinct vertex w as its root. The children of w in an
SCC-decomposition that has w as its root are then exactly the SCCs of G \ {w}. Hence, u
and v are in the same SCC if and only if they appear in the same subtree below w. The
total update time of this data structure is however O(mn2), which is undesirable. With a
more refined approach, we improve the time bound to O(mn logn).

Observe that the external nodes of a partial SCC-decomposition T produced by the
procedure Build-SCC-Decomposition(G,S) exactly correspond to the SCCs of G \ S.
This is true regardless of the order in which vertices from S are picked by the procedure. If
two SCC-decompositions are built using the same set S, but with vertices being picked in a
different order, then the nodes below S represent the same SCCs, which means that they
can be shared by the two SCC-decompositions. Our algorithm is based on this observation.
We essentially construct the n SCC-decompositions of the naive algorithm described above
such that large parts of their subtrees are shared, and such that we do not need to maintain
multiple copies of these subtrees. The idea is to partition the set S into two subsets S1 and
S2 of equal size (we assume for simplicity that n is a power of 2), and then construct half
of the SCC-decompositions with S1 at the top and the other half with S2 at the top. The
procedure is repeated recursively on the top part of both halves. We refer to the bottom part,
i.e., nodes that are not from S1 and S2, respectively, as the extension of the top part. Note
that we eventually get a distinct vertex as the root of each of the n SCC-decompositions.
The following definition formalizes the idea.

I Definition 2 (Joint SCC-decomposition). A joint SCC-decomposition J is a recursive
structure. It is either a regular SCC-decomposition T (the base case), or a pair of joint SCC-
decompositions J1, J2 with the same set of internal nodes S and a shared set of external nodes

ICALP 2017

42:6 Decremental Data Structures for Connectivity and Dominators

Input: A graph G and a set of vertices S ⊆ V (G)
Output: A balanced joint SCC-decomposition J = (J1, J2, S,Φ) of G on S.

1 if |S| = 1 then
2 return T = Build-SCC-Decomposition(G,S).
3 end
4 Let S1 and S2 be the first and second half of S, respectively, and let Φ be an empty list.
5 foreach i ∈ {1, 2} do
6 Compute Ji = Build-Joint-SCC-Decomposition(G,Si).
7 foreach external node φ of Ji do
8 Compute Tφ = Build-SCC-Decomposition(Gφ, φ ∩ S).
9 Add each external node of Tφ to Φ, if it is not already there.

10 end
11 end
12 return J = (J1, J2, S,Φ)

Figure 1 Build-Joint-SCC-Decomposition(G,S).

Φ. In the second case we refer to J as the tuple (J1, J2, S,Φ). A joint SCC-decomposition
J = (J1, J2, S,Φ) is balanced on S if it has one of the following two properties:
1. S is a singleton and J is a regular (partial) SCC-decomposition T with the vertex from

S as root and no other internal nodes (the base case).
2. S can be partitioned into two equally sized halves S1 and S2, and J consists of two

joint SCC-decompositions J1 = (J1,1, J1,2, S1,Φ1) and J2 = (J2,1, J2,2, S2,Φ2) that are
balanced on S1 and S2, respectively. Also, each external node φ in Φ1 and Φ2 is extended
with an associated SCC-decomposition Tφ for Gφ whose internal nodes are those of φ∩S.
The combined set of external nodes of Tφ for all φ ∈ Φ1 is equal to the combined set of
external nodes of Tφ′ for all φ′ ∈ Φ2, and these nodes are the external nodes Φ of J .

The procedure Build-Joint-SCC-Decomposition(G,S) describes how we build a
balanced joint SCC-decomposition. G is the graph that we wish to decompose, and S is
the set of vertices that we wish to place at the top. Initially S is the set of all vertices.
The following lemma bounds the number of SCC-decompositions that make up a joint
balanced SCC-decomposition. The lemma is proved by observing that the number of SCC-
decompositions constructed by Build-Joint-SCC-Decomposition(G,S) is given by the
recurrence g(s) = 2g(s/2) + 2 when s > 1 and g(s) = 1 otherwise, where s = |S|.

I Lemma 3. A balanced joint SCC-decomposition for a graph G with n vertices consists of
O(n) SCC-decompositions.

I Lemma 4. Let J = (J1, J2, S,Φ) be a balanced joint SCC-decomposition of a graph G such
that S = V (G). Then the total number of nodes of J is O(n logn), where n = |V (G)|.

Proof. The proof is by induction. Our induction hypothesis says that the total number of
internal nodes of a balanced joint SCC-decomposition J = (J1, J2, S,Φ), counting not only
S but also recursively the number of internal nodes of J1 and J2, is |S| · (1 + log |S|).

In the base case, J is an SCC-decomposition with a single internal node, and the induction
hypothesis is clearly satisfied. For the induction step we count separately the total number
of internal nodes of J1 = (J1,1, J1,2, S1,Φ1) and J2 = (J2,1, J2,2, S2,Φ2), and add the number
of internal nodes of the SCC-decompositions Tφ for φ ∈ Φ1 and φ ∈ Φ2, i.e., the extensions

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:7

of J1 and J2 to S. Since |S1| = |S2| = |S|/2, it follows from the induction hypothesis that
both J1 and J2 have |S|2 · log |S| internal nodes in total. The internal nodes of Tφ for φ ∈ Φ1
are exactly S2, and the internal nodes of Tφ for φ ∈ Φ2 are exactly S1. Hence the number of
internal nodes in the extensions are |S1| + |S2| = |S|. It follows that the total number of
internal nodes of J is |S| · (1 + log |S|) as desired.

It remains to count the external nodes of J . Note that external nodes of J1 and J2
correspond to internal nodes of J , i.e., they are roots of the SCC-decompositions that extend
J1 and J2. Therefore there are at most as many external nodes inside the recursion as there
are internal nodes in total. There are O(n) external nodes in the extensions of J1 and J2 to
S, and we conclude that the total number of nodes when S = V (G) is at most O(n logn). J

Recall that an SCC-decomposition of depth γ can be initialized in time O(mγ) [30].
Since the depth of an SCC-decomposition is at most the number of internal nodes plus one,
and since Lemma 4 shows that the total number of nodes in a joint SCC-decomposition is
O(n logn), it follows that the combined depth of all the SCC-decompositions that make up
a joint SCC-decomposition is at most O(n logn), which proves the following lemma.

I Lemma 5. The procedure Build-Joint-SCC-Decomposition(G,S) constructs a joint
SCC-decomposition in time O(mn logn).

To answer queries for the extended decremental SCC problem in constant time, we also
construct and maintain an n × n matrix A such that A[u,w] is the index of the SCC of
G \ {w} that contains u. Two vertices u and v are in the same SCC of G \ {w} if and only
if A[u,w] = A[v, w]. To avoid cluttering the pseudo-code we describe separately how A is
maintained. In Build-Joint-SCC-Decomposition(G,S) we initialize A in the base case
when we compute an SCC-decomposition T for a singleton S = {w}. Indeed, in this case w
is the root of T , and the external nodes are exactly the SCCs of G \ {w}. Hence, for every
vertex u ∈ V (G) \ {w} we set A[u,w] to the index of the SCC it is part of in G \ {w}.

Note that storing the matrix A takes space O(n2). The time spent initializing A is
however dominated by the other work performed by the algorithm.

2.3 Deleting Edges from a Joint SCC-Decomposition
We next show how to maintain a joint SCC-decomposition under edge deletions. It is
again instructive to consider the work performed by the naive algorithm that maintains n
SCC-decompositions with distinct roots. If these are constructed as described in Section 2.2,
then the SCC-decompositions will share many identical subtrees, and the work performed on
these subtrees will be the same. In the joint SCC-decomposition such subtrees are shared,
but otherwise the work performed is the same as the work performed for individual SCC-
decompositions. We therefore use Łącki’s algorithm [30] to delete edges from the individual
SCC-decompositions, and we introduce a new procedure for handling the interface between
the SCC-decompositions. We next briefly sketch Łącki’s algorithm (see also [10, 30]).

Recall that each node φ of an SCC-decomposition T represents a strongly connected
subgraph Gφ induced by the vertices in the subtree rooted at φ. If φ is an internal node of
T , then the children of φ are the SCCs of Gφ \ φ. Łącki uses the following two operations to
compactly represent edges among φ and its children.

I Definition 6. Let G be a graph. The condensation of G, denoted by Condense(G), is
the graph obtained from G by contracting all its SCCs into single vertices. Let v ∈ V (G).
By Split(G, v) we denote the graph obtained from G by splitting v into two vertices: vin
and vout. The in-edges of v are connected to vin and the out-edges to vout.

ICALP 2017

42:8 Decremental Data Structures for Connectivity and Dominators

The two operations are often used together, and to simplify notation we use the shorthand
Gcon
v = Condense(Split(G, v)). The graph Gcon

φ is stored with every internal node φ of
the SCC-decomposition T . This introduces at most three copies of every vertex v of G: The
two vertices vin and vout in Gcon

v , and possibly a third vertex in the condensed graph of
the parent of v in T . Moreover, every edge (u, v) appears in exactly one condensed graph,
namely that of the lowest common ancestor of u and v in T , which we denote by LCA(u, v).
The combined space used for storing all the condensed graphs is thus O(m+ n).

To delete an edge (u, v), Łącki [30] locates φ = LCA(u, v), and deletes (u′, v′) from Gcon
φ ,

where u′ and v′ are the vertices whose subtrees contain u and v. (He uses O(m) space to
store a pointer from every edge (u, v) to LCA(u, v), enabling him to find the lowest common
ancestor in constant time.) To preserve connectivity, he then checks whether u′ and v′ have
non-zero out- and in-degrees, respectively, in Gcon

φ . If this is not the case, then he repeatedly
removes vertices with out- or in-degree zero and their adjacent edges from Gcon

φ . All such
vertices can be located, starting from u′ and v′, in time that is linear in the number of edges
adjacent to the removed vertices. The corresponding children of φ are then moved up one
level in T and are made siblings of φ. They are also inserted into Gcon

par(φ), where par(φ) is
the parent of φ, and their edges and the edges of φ in Gcon

par(φ) are updated correspondingly.
This can again be done in time linear in the number of edges in the original graph that
are adjacent to vertices in the subtrees that are moved. The procedure is then repeated in
Gcon
par(φ). Since every vertex increases its level at most γ times, where γ is the initial depth of

T , it follows that the total update time of the algorithm is at most O(mγ).
We let Delete-Edge-from-SCC-decomposition(T, u, v) be the procedure for deleting

an edge (u, v) from an SCC-decomposition T . We also denote the recursive procedure for
moving nodes φ1, . . . , φk from being children of φ to being siblings of φ in T after an edge (u, v)
is deleted by Fix-SCC-decomposition(T, u, v, φ, {φ1, . . . , φk}). Both procedures return
the resulting SCC-decomposition, or a collection of SCC-decompositions in case the graph is
not strongly connected. (The pseudo-code appears in the full version of the paper.)

In a joint SCC-decomposition, vertices and edges may appear in multiple nodes as part of
smaller SCC-decompositions. We therefore need to find every occurence of the edge that we
wish to delete. We introduce a procedure Delete-Edge(J, u, v) that does that by recursively
searching through the nested joint SCC-decompositions and deleting (u, v) from the relevant
SCC-decompositions. The procedure also handles the interface between SCC-decompositions.
Note that deleting (u, v) from an SCC-decomposition T may cause the SCC corresponding to
the root φ of T to break. The procedure Delete-Edge-from-SCC-decomposition(T, u, v)
will in this case return a collection of SCC-decompositions {T1, . . . , Tk}, one for each new
SCC. Suppose J = (J1, J2, S,Φ). If T extends J1 (resp. J2), then it is an SCC-decomposition
of the subgraph Gφ associated with some external node φ of J1 (resp. J2). φ is then itself a
leaf of an SCC-decomposition T ′ in J1 (resp. J2). Moreover, when the SCC corresponding
to φ breaks, then this leaf must be split into multiple leaves of T ′, one for each new SCC.
Note however that the levels in T ′ of the involved vertices do not change after the split. We
therefore cannot charge the work performed when splitting φ to the analysis by Łącki [30].

Let φ1, . . . , φk be the roots of the SCC-decompositions T1, . . . , Tk that are created when
the deletion of (u, v) breaks the SCC Gφ. As mentioned above, we need to replace φ in
T ′ by φ1, . . . , φk, which means that φ1, . . . , φk should replace φ in Gcon

par(φ), where par(φ) is
the parent of φ in T ′. To efficiently reconnect φ1, . . . , φk in Gcon

par(φ) we identify the vertex
φi whose associated graph Gφi

has the most vertices, and we then scan through all the
vertices in the other graphs Gφ1 , . . . , Gφi−1 , Gφi+1 , . . . , Gφk

and reconnect their adjacent
edges in Gcon

par(φ) when relevant. The work performed is exactly the same as when Łącki

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:9

fixes an SCC-decomposition after an edge is removed. We can therefore call Fix-SCC-
decomposition(T ′,u,v,φ,{φ1, . . . , φi−1, φi+1, . . . , φk}). Note that this makes φi take over
the role of φ. Also note that we provide the procedure with the end-points u and v of the edge
that was deleted, since u and v are used as starting points for the search for disconnected
vertices when propagating the update further up the tree.

Finally, observe that splitting the leaf φ of the SCC-decomposition T ′ may propagate
all the way to the root of T ′ and break the SCC corresponding to T ′. We therefore use a
recursive procedure, Split-Leaf(J ,u,v,φ,{φ1, . . . , φk}), to perform the split. Here u and v
are again the end-points of the edge that was deleted.

I Theorem 7. The total update time spent by Delete-Edge(J, u, v) in order to maintain
a balanced joint SCC-decomposition under edge deletions is O(mn logn).

Proof. We only sketch the proof, and refer to the full paper for additional details.
The time spent by Delete-Edge(J, u, v) consists of three parts: checking whether

{u, v} ⊆ V (Gφ) for some φ ∈ Φ, the work performed while deleting edges from SCC-
decompositions, and the work performed by Split-Leaf(Ji, u, v, φ, {φ1, . . . , φk}), for i ∈
{1, 2}. To check in constant time whether {u, v} ⊆ V (Gφ), we maintain for each SCC-
decomposition T an array on the vertices of the original graph G, such that T 〈v〉 = True
if v appears in T , and T 〈v〉 = False otherwise. Storing these arrays takes up O(n2) space,
and they are updated when the SCC of the root of an SCC-decomposition breaks.

Recall that Łącki [30] showed that the total initialization and update time of an SCC-
decomposition is O(mγ), where γ is the depth of the decomposition. By Lemma 4, the
total number of nodes of the SCC-decompositions in J is O(n logn), and therefore the
combined depth of the SCC-decompositions is also O(n logn). It follows that the time spent
on Delete-Edge-from-SCC-decomposition(Tφ, u, v) is bounded by O(mn logn).

It remains to analyze the time spent on Split-Leaf(Ji, u, v, φ, {φ1, . . . , φk}). Recall that
Split-Leaf identifies the node φi that contains the most vertices from G, and then breaks
off φ1, . . . , φi−1, φi, . . . , φk from φ. This means that φ is turned into φi, and that we do
not scan through edges adjacent to vertices in φi. Since a split therefore moves vertices
to new nodes of at most half the size, each vertex v can only be moved O(logn) times in
one particular SCC-decomposition T by Split-Leaf. Each move takes time proportional
to the number of edges adjacent to v, so the total time spent splitting leaves of T is at
most O(m logn). Since, by Lemma 3, there are only O(n) SCC-decompositions in J , it
follows that the total time spent splitting leaves is O(mn logn). Furthermore, the time
spent by Split-Leaf on fixing SCC-decompositions can be charged to the depth reduction
of the vertices that are moved, and this part of the analysis is therefore the same as for
Delete-Edge-from-SCC-decomposition(Tφ, u, v). J

Recall that we also maintain a matrix A for answering queries, where A[u,w] is the index
of the SCC of G \ {w} that contains u. We again update A when we make changes to the
topmost SCC-decompositions that each only contain a single internal node, i.e., when such a
root φ gets a new child, or when Gφ breaks into multiple SCCs. The time spent updating
A is dominated by the rest of the work that is performed by our algorithm, where we scan
through all edges adjacent to vertices whose SCC is changed.

As described briefly in Section 2.3, Łącki’s SCC-decomposition can be implemented such
that is uses O(m+ n) space [30]. Since a balanced joint SCC-decomposition consists of O(n)
SCC-decompositions (Lemma 3), it follows that a naive implementation of our data structure
uses O(mn) space. In the full version of the paper we show how to obtain an alternative
bound of O(n2 logn). Doing so requires two observations:

ICALP 2017

42:10 Decremental Data Structures for Connectivity and Dominators

After an edge (u′, v′) is deleted from a condensed graph Gcon
φ , the vertex u′ has a path to

φin if and only if u′ has non-zero out-degree, and there is a path from φout to v′ if and
only if v′ has non-zero in-degree. Instead of storing the edges of the condensed graphs
we therefore store the in- and out-degrees of the vertices. To visit all neighbors of a
vertex u′ in Gcon

φ , we then collect from the original graph G all edges adjacent to vertices
in the subgraph of u′, and we check for each edge whether the other end-point is part
of Gcon

φ and which vertex of Gcon
φ it goes to. To do so we store pointers between the

vertices of G and the vertices of the condensed graphs that they are part of. Since a joint
SCC-decomposition contains O(n logn) nodes this takes O(n2 logn) space.
Since a joint SCC-decomposition contains O(n logn) nodes in total, we have time to visit
all the nodes of an SCC-decomposition T when searching for the lowest common ancestor
of two vertices u and v. This is done in a bottom-up fashion. We therefore do not need
to store a pointer from every edge (u, v) to LCA(u, v).

3 Applications

In this section we exploit the decremental joint SCC-decomposition to design decremental
algorithms for various connectivity notions defined with respect to vertex or edge failures.

Maintaining Decrementally the Dominator Tree. We show how to maintain a dominator
tree D of a flow graph G, rooted at a starting vertex s. We denote by d(v) the parent of v in
D. We first produce a flow graph Gs from G by adding an edge from each vertex v ∈ V \ s
to s. The addition of those edges has the following property. If a vertex u is not strongly
connected to s in Gs then there is no path from s to u in G. Conversely, if a vertex u is not
strongly connected to s in Gs \ v, while s and u are strongly connected in Gs, then all paths
from s to u in G contain v. That is, v is a dominator of u in G.

We maintain decrementally a joint SCC-decomposition of Gs in a total of O(mn logn)
time and O(n2 logn) space. Therefore, for each vertex v we maintain the SCCs in G \ v. Let
v 6= s: after the SCC containing s in G \ v breaks, all the vertices that are not in the new
SCC that contains s are dominated from v in G. We can report the newly dominated vertices
from v in G in time proportional to their number. Therefore, after each edge deletion we
need to process a batch N of incoming new dominance relations N(v) = {u1, . . . , uk}, where
u1, . . . , uk are dominated by v in G. We can process a batch of updates N in two phases as
follows. For each vertex u 6= s we keep a counter depth(u) of the number of vertices that
dominate u. For each dominance relation N(v) ∈ N , we increase depth(u) for each u ∈ N(v).
After this first phase ends, all vertices have updated counters. Then the new parent of each
vertex u in D is the vertex with the largest counter among d(u) (i.e., the parent of u in D
before the edge insertion) and all vertices v such that u ∈ N(v) and N(v) ∈ N .

Now we bound the total time required to maintain the dominator tree. The running time
of the above procedure, during the whole sequence of deletions, is bounded by the total size
of all the sets N(v). Note that any vertex can appear in a specific N(v) set at most once
during the deletion sequence. Hence, the total size of all the sets N(v) is O(n2).

I Lemma 8. The dominator tree of a directed graph G with start vertex s can be maintained
decrementally in O(mn logn) total update time and O(n2 logn) space, where m is the number
of edges in the initial graph and n is the number of vertices.

Maintaining Decrementally the Strong Bridges of the Graph. Let G be strongly con-
nected: its strong bridges can be computed efficiently from a dominator tree D of G and a

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:11

dominator tree DR of GR, both rooted at the same start vertex s. We present a random-
ized algorithm that maintains such a pair of dominator trees in each SCC of a digraph in
O(mn logn) total expected time, and O(n2 logn) space. This allows us to maintain the set
of strong bridges of a digraph in the same (expected) running time and space.

Maintaining Decrementally the 2-Edge-Connected Components. In this section we show
how to maintain the 2-edge-connected components of directed graph. Two vertices w and
z are 2-edge-connected if and only if there is no edge e such that w and z are not strongly
connected in G \ e. A 2-edge-connected component is a maximal subset B ⊆ V , such that
w and z are 2-edge-connected, for all z, w ∈ B. Therefore, a simple-minded algorithm for
computing the 2-edge-connected components is the following. We start with the trivial
partition P of the vertices that is equal to the set of SCCs of the graph. For every strong
bridge e, we compute the SCCs C1, . . . , Ck of G \ e and we refine the maintained partition P
according to the partition induced by the SCCs C1, . . . , Ck. After performing all refinements
on P two vertices are in the same set if and only if we did not find an edge that separates
them, which is exactly the definition of 2-edge-connected components.

Our algorithm is a dynamic version of the aforementioned simple-minded algorithm. That
is, we maintain the SCCs of G\e, for each strong bridge e, and refine the maintained partition
P whenever we identify that P no longer contains the 2-vertex-connected components of
G. We do this as follows. Assume that a component C ∈ P contains vertices in different
SCCs of G \ e, for some e. Let C1, C2, . . . , Ck be the SCCs in G \ e. We replace C by
{C ∩ C1}, . . . , {C ∩ Ck}. These refinements can be easily performed in O(n) time, and
therefore we spend total time O(n2) for all refinements throughout the algorithm.

In order to make our algorithm efficient we need to specify how to detect whether two
2-edge-connected vertices appear in different SCCs in G \ e, for some edge e. Whenever an
SCC C in G \ e, breaks into k SCCs C1, . . . , Ck, for all SCCs Ci except the largest one we
examine whether the components C ∈ P containing subsets of vertices of Ci are entirely
contained in Ci. We develop machinery that allows us to list all vertices in the resulting
SCCs C1, . . . , Ck except the largest one, in time proportional to their number. The details
can be found in the full paper. Each vertex can appear at most logn times in an SCC of
G \ e, for some strong bridge e, that is not the largest after a big SCC breaks. This implies
that we spend O(n logn) time for each graph G \ e on testing whether an edge deletion
leaves two (previously) 2-edge-connected vertices in different SCCs in G \ e, for some edge
e. We show that at most O(n) strong bridges can appear throughout any sequence of edge
deletions. Thus we spend O(n2 logn) time in total.

I Lemma 9. The 2-edge-connected components of a digraph G can be maintained decre-
mentally in O(mn logn) total expected time against an oblivious adversary, using O(n2 logn)
space, where m is the number of edges in the initial graph and n is the number of vertices.

4 Conditional Lower Bound

In the following we give a conditional lower bound for the partially dynamic dominator tree
problem. We show that there is no incremental nor decremental algorithm for maintaining
the dominator tree that has total update time O((mn)1−ε) (for some constant ε > 0) unless
the OMv Conjecture [26] fails. This also holds for algorithms that do not explicitly maintain
the tree, but are able to answer parent-queries. Formally, we prove the following statement.

I Theorem 10. For any constant δ ∈ (0, 1/2] and any n and m = Θ(n1/(1−δ)), there is no
algorithm for maintaining a dominator tree under edge deletions/insertions allowing queries

ICALP 2017

42:12 Decremental Data Structures for Connectivity and Dominators

of the form “is x the parent of y in the dominator tree” that uses polynomial preprocessing
time, total update time u(m,n) = (mn)1−ε and query time q(m) = mδ−ε for some constant
ε > 0, unless the OMv conjecture fails.

Under this conditional lower bound, the running time of our algorithm is optimal up to
sub-polynomial factors. We give the reduction for the decremental version of the problem.
Hardness of the incremental version follows analogously.

In the online Boolean matrix-vector problem we are first given a Boolean n×n matrix M
to preprocess. After the preprocessing, we are given a sequence of n-dimensional Boolean
vectors v(1), . . . , v(n) one by one. For each 1 ≤ t ≤ n, we have to return the result of the
matrix-vector multiplication Mv(t) before we are allowed to see the next vector v(t+1). The
OMv Conjecture states that there is no algorithm that computes each matrix-vector product
correctly (with high probability) and in total spends time O(n3−ε) for some constant ε > 0.

We will not use the OMv problem directly as the starting point of our reduction. Instead
we consider the following γ-OuMv problem (for a fixed γ > 0) and parameters n1, n2, and
n3 such that n1 = bnγ2c: We are first given a Boolean n1 × n2 matrix M to preprocess.
After the preprocessing, we are given a sequence of pairs of n1-dimensional Boolean vectors
(u(1), v(1)), . . . , (u(n3), v(n3)) one by one. For each 1 ≤ t ≤ n3, we have to return the result of
the Boolean vector-matrix-vector multiplication (u(t))ᵀMv(t) before we see the next pair of
vectors (u(t+1), v(t+1)). It has been shown [26] that under the OMv Conjecture, there is no
algorithm for this problem with polynomial preprocessing time and total processing time
O(n1−ε1

1 n1−ε2
2 n1−ε3

3) such that all εi are ≥ 0 and at least one εi is a constant > 0.
We now give the reduction from the γ-OuMv problem with γ = δ/(1−δ) to the decremental

dominator tree problem. In the following we denote by vi the i-th entry of a vector i and by
Mi,j the entry at row i and column j of a matrix M .

Consider an instance of the γ-OuMv problem with parameters n1 = m1−δ, n2 = mδ,
and n3 = m1−δ. We preprocess the matrix M by constructing a graph G(0) with the set of
vertices V = {s, x1, . . . , xn3 , xn3+1, y1, . . . , yn1 , z1, . . . , zn2} and the following edges: (1) an
edge (s, x1), and, for every 1 ≤ t ≤ n3, an edge (xt, xt+1), (2) for every 1 ≤ j ≤ n2, an edge
(t, zj), (3) for every 1 ≤ t ≤ n3 and every 1 ≤ i ≤ n1, an edge (xt, yi), and (4) for every
1 ≤ i ≤ n1 and every 1 ≤ j ≤ n2, an edge (yi, zj) if and only if Mi,j = 1.

Whenever the algorithm is given the next pair of vectors (u(t), v(t)), we first create a
graph G(t) by performing the following edge deletions in G(t−1): If t ≥ 2, we first delete all
outgoing edges of xt−1, except the one to xt. Then (for any value of t), for every i such that
u

(t)
i = 0 we delete the edge from xt to yi. Thus, for every 1 ≤ i ≤ n1, there will be an edge

from xt to yi in G(t) if and only if u(t)
i = 1. Having created G(t), we now, for every j such

that v(t)
j = 1, check whether xt is the parent of zj in the dominator tree. If this is the case

for at least one j we return that (u(t))ᵀMv(t) is 1, otherwise we return 0.
The correctness of our reduction follows from the following lemma.

I Lemma 11. For every 1 ≤ t ≤ n, the j-th entry of (u(t))ᵀM is 1 if and only if xt is the
immediate dominator of zj in G(t)

Note that (u(t))ᵀMv(t) is 1 if and only if there is a j such that both the j-th entry of u(t)M

as well as the j-th entry of v(t) are 1. Furthermore, xt is the parent of zj in the dominator
tree if and only if xt is an immediate dominator of zj in the current graph. Therefore the
lemma establishes the correctness of the reduction.

The initial graph G(0) has n := Θ(n1 +n2 +n3) = Θ(mδ +m1−δ) = Θ(m1−δ) vertices and
Θ(n1n2 + n2n3) = Θ(m) edges. The total number of parent-queries is O(n1n3) = m2(1−δ).
Suppose the total update time of the decremental dominator tree algorithm is O(u(m,n)) =

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:13

(mn)1−ε and its query time is O(q(m)) = mδ−ε. Using the reduction above, we can thus solve
the γ-OuMv problem for the parameters n1, n2, n3 with polynomial preprocessing time and
total update time O(u(m,n) +m2(1−δ)q(m)) = O(u(m,m1−δ) +m2(1−δ)q(m)) = O(m2−δ−ε).
Since n1n2n3 = m2−δ, this means we would get an algorithm for the γ-OuMv problem with
polynomial preprocessing time and total update time O(n1−ε1

1 n1−ε2
2 n1−ε3

3) where at least one
εi is a constant > 0. This contradicts the OMv Conjecture.

References

1 S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow bottlenecks
and cascading extinctions. Journal of Theoretical Biology, 230(3):351–358, 2004. doi:
10.1016/j.jtbi.2004.05.009.

2 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–21132, 1999. doi:10.1137/S0097539797317263.

3 S. Alstrup and P.W. Lauridsen. A simple dynamic algorithm for maintaining a dominator
tree. Technical Report 96-3, Department of Computer Science, University of Copenhagen,
1996.

4 M.E. Amyeen, W.K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence identification
using redundancy information and static and dynamic extraction. In Proc. of the 19th IEEE
VLSI Test Symposium, pages 124–130, 2001. doi:10.1109/VTS.2001.923428.

5 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed graphs.
In Proc. of the 29th Int’l. Symposium on Distributed Computing (DISC), pages 528–543,
2015. doi:10.1007/978-3-662-48653-5_35.

6 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph: Generic
and optimal. In Proc. of the 48th ACM Symposium on Theory of Computing (STOC),
pages 509–518, 2016. doi:10.1145/2897518.2897648.

7 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008. doi:10.1137/070693217.

8 A.L. Buchsbaum, H. Kaplan, A. Rogers, and J.R. Westbrook. A new, simpler linear-
time dominators algorithm. ACM Transactions on Programming Languages and Systems,
20(6):1265–1296, 1998. doi:10.1145/295656.295663.

9 M.D. Carroll and B.G. Ryder. Incremental data flow analysis via dominator and attribute
update. In Proc. of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), pages 274–284, 1988. doi:10.1145/73560.73584.

10 S. Chechik, T.D. Hansen, G. F. Italiano, J. Lacki, and N. Parotsidis. Decremental single-
source reachability and strongly connected components in Õ(m

√
n) total update time. In

Proc. of the 57th IEEE Symposium on Foundations of Computer Science(FOCS), pages
315–324, 2016. doi:10.1109/FOCS.2016.42.

11 S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-dynamic
problems on digraphs. Theorical Computer Science, 203:69–90, August 1998. doi:10.1016/
S0304-3975(97)00288-0.

12 R. Cytron, J. Ferrante, B. K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991. doi:10.1145/115372.115320.

13 W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-connectivity
in directed graphs: An experimental study. In Proc. of the 17th Workshop on Algo-
rithm Engineering and Experiments (ALENEX), pages 173–187, 2015. doi:10.1137/1.
9781611973754.15.

ICALP 2017

http://dx.doi.org/10.1016/j.jtbi.2004.05.009
http://dx.doi.org/10.1016/j.jtbi.2004.05.009
http://dx.doi.org/10.1137/S0097539797317263
http://dx.doi.org/10.1109/VTS.2001.923428
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1145/2897518.2897648
http://dx.doi.org/10.1137/070693217
http://dx.doi.org/10.1145/295656.295663
http://dx.doi.org/10.1145/73560.73584
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1016/S0304-3975(97)00288-0
http://dx.doi.org/10.1016/S0304-3975(97)00288-0
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1137/1.9781611973754.15
http://dx.doi.org/10.1137/1.9781611973754.15

42:14 Decremental Data Structures for Connectivity and Dominators

14 D. Eppstein, Z. Galil, and G.F. Italiano. Dynamic graph algorithms. In M. J. Atallah
and M. Blanton, editors, Algorithms and Theory of Computation Handbook, 2nd Edition,
Vol. 1, pages 9.1–9.28. CRC Press, 2009.

15 K. Gargi. A sparse algorithm for predicated global value numbering. SIGPLAN Not.,
37(5):45–56, 2002. doi:10.1145/543552.512536.

16 L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths
in digraphs. In Proc. of the 37th Int’l. Coll. on Automata, Languages, and Programming
(ICALP), pages 738–749, 2010. doi:10.1007/978-3-642-14165-2_62.

17 L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a
directed graph. In Proc. of the 19th European Symposium on Algorithms (ESA), pages
13–24, 2011. doi:10.1007/978-3-642-23719-5_2.

18 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in di-
rected graphs. In Proc. of the 42nd Int’l. Coll. on Automata, Languages, and Programming
(ICALP), pages 605–616, 2015. doi:10.1007/978-3-662-47672-7_49.

19 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. ACM Transactions on Algorithms, 13(1):9:1–9:24, 2016. doi:10.1145/2968448.

20 L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study of dynamic
dominators. In Proc. of the 20th European Symposium on Algorithms (ESA), pages 491–502,
2012. doi:10.1007/978-3-642-33090-2_43.

21 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental strong connectivity and 2-
connectivity in directed graphs. Manuscript, 2017.

22 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong connectivity in directed graphs
under failures, with applications. In Proc. of the 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1880–1899, 2017. doi:10.1137/1.9781611974782.123.

23 L. Georgiadis and R.E. Tarjan. Finding dominators revisited. In Proc. of the 15th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 869–878, 2004.

24 M. Gomez-Rodriguez, L. Song, N. Du, H. Zha, and B. Schölkopf. Influence estimation and
maximization in continuous-time diffusion networks. ACM Transactions on Information
Systems, 34(2):9:1–9:33, 2016. doi:10.1145/2824253.

25 M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. of the 42nd Int’l. Coll. on Au-
tomata, Languages, and Programming (ICALP), pages 713–724, 2015. doi:10.1007/
978-3-662-47672-7_58.

26 M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening
hardness for dynamic problems via the online matrix-vector multiplication conjecture. In
Proc. of the 47th ACM Symposium on Theory of Computing (STOC), pages 21–30, 2015.
doi:10.1145/2746539.2746609.

27 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

28 R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO – Theoretical Informatics
and Applications, 49(2):93–119, 2015. doi:10.1051/ita/2015001.

29 R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016. doi:10.1016/j.dam.2015.10.001.

30 J. Lacki. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Transactions on Algorithms, 9(3):27, 2013. doi:10.1145/
2483699.2483707.

31 E.K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using graph
mining on heap dumps. In Proc. of the 16th ACM SIGKDD Int’l. Con. on Knowledge
Discovery and Data Mining (KDD), pages 115–124, 2010. doi:10.1145/1835804.1835822.

http://dx.doi.org/10.1145/543552.512536
http://dx.doi.org/10.1007/978-3-642-14165-2_62
http://dx.doi.org/10.1007/978-3-642-23719-5_2
http://dx.doi.org/10.1007/978-3-662-47672-7_49
http://dx.doi.org/10.1145/2968448
http://dx.doi.org/10.1007/978-3-642-33090-2_43
http://dx.doi.org/10.1137/1.9781611974782.123
http://dx.doi.org/10.1145/2824253
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1051/ita/2015001
http://dx.doi.org/10.1016/j.dam.2015.10.001
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/1835804.1835822

L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parotsidis 42:15

32 M. Mihalák, P. Uznański, and P. Yordanov. Prime factorization of the Kirchhoff polynomial:
Compact enumeration of arborescences. In Proc. of the SIAM Analytic Algorithmics and
Combinatorics (ANALCO), pages 93–105, 2016. doi:10.1137/1.9781611974324.10.

33 K. Patakakis, L. Georgiadis, and V.A. Tatsis. Dynamic dominators in practice. In Proc.
of the 16th Panhellenic Conference on Informatics (PCI), pages 100–104, 2011. doi:10.
1109/PCI.2011.28.

34 L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving con-
strained path problems. In Proc. of the 8th International Conference on Practical Aspects
of Declarative Languages (PADL), pages 73–87, 2006. doi:10.1007/11603023_6.

35 G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator
tree of a reducible flowgraph. In Proc. of the 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 287–296, 1994. doi:10.1145/
174675.177905.

36 V.C. Sreedhar, G.R. Gao, and Y. Lee. Incremental computation of dominator trees. ACM
Transactions on Programming Languages and Systems, 19:239–252, 1997. doi:10.1145/
202529.202531.

37 R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974324.10
http://dx.doi.org/10.1109/PCI.2011.28
http://dx.doi.org/10.1109/PCI.2011.28
http://dx.doi.org/10.1007/11603023_6
http://dx.doi.org/10.1145/174675.177905
http://dx.doi.org/10.1145/174675.177905
http://dx.doi.org/10.1145/202529.202531
http://dx.doi.org/10.1145/202529.202531
http://dx.doi.org/10.1137/0201010

General Bounds for Incremental Maximization∗

Aaron Bernstein1, Yann Disser2, and Martin Groß3

1 TU Berlin, Berlin, Germany
bernstei@gmail.com

2 TU Darmstadt, Darmstadt, Germany†

disser@mathematik.tu-darmstadt.de
3 University of Waterloo, Waterloo, Canada‡

mgrob@uwaterloo.ca

Abstract
We propose a theoretical framework to capture incremental solutions to cardinality constrained
maximization problems. The defining characteristic of our framework is that the cardinality/sup-
port of the solution is bounded by a value k ∈ N that grows over time, and we allow the solution
to be extended one element at a time. We investigate the best-possible competitive ratio of such
an incremental solution, i.e., the worst ratio over all k between the incremental solution after k
steps and an optimum solution of cardinality k. We define a large class of problems that con-
tains many important cardinality constrained maximization problems like maximum matching,
knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental
algorithm for this class of problems, and show that no algorithm can have competitive ratio
below 2.18 in general.

In the second part of the paper, we focus on the inherently incremental greedy algorithm
that increases the objective value as much as possible in each step. This algorithm is known
to be 1.58-competitive for submodular objective functions, but it has unbounded competitive
ratio for the class of incremental problems mentioned above. We define a relaxed submodularity
condition for the objective function, capturing problems like maximum (weighted) (b-)matching
and a variant of the maximum flow problem. We show that the greedy algorithm has competitive
ratio (exactly) 2.313 for the class of problems that satisfy this relaxed submodularity condition.

Note that our upper bounds on the competitive ratios translate to approximation ratios for
the underlying cardinality constrained problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases incremental optimization, maximization problems, greedy algorithm,
competitive analysis, cardinality constraint

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.43

1 Introduction

Practical solutions to optimization problems are often inherently incremental in the sense
that they evolve historically instead of being established in a one-shot fashion. This is
especially true when solutions are expensive and need time and repeated investments to be
implemented, for example when optimizing the layout of logistics and other infrastructures.

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10253.
† Supported by the ‘Excellence Initiative’ of the German Federal and State Governments and the Graduate

School CE at TU Darmstadt.
‡ Supported by the German Research Foundation (DFG) within project A07 of CRC TRR 154.

EA
T

C
S

© Aaron Bernstein, Yann Disser, and Martin Groß;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.43
https://arxiv.org/abs/1705.10253
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 General Bounds for Incremental Maximization

s t

1 1

ε

Figure 1 Example showing that the s-t-flow problem does not always admit good incremental
solutions, where ε > 0 is arbitrarily small.

In this paper, we propose a theoretical framework to capture incremental maximization
problems in some generality.

We describe an incremental problem by a set U containing the possible elements of a
solution, and an objective function f : 2U → R+ that assigns to each solution S ⊆ U some
non-negative value f(S). We consider problems of the form

max f(S) (1)
s.t. |S| ≤ k

S ⊆ U,

where k ∈ N grows over time.
An incremental solution ~S is given by an order {s1, s2, . . . } := U in which the elements

of U are to be added to the solution over time. A good incremental solution needs to provide
a good solution after k steps, for every k, compared to an optimum solution S?k with k

elements, where we let S?k ∈ arg maxS⊆U,|S|=k f(S) and f?k := f(S?k). Formally, we measure
the quality of an incremental solution by its competitive ratio. For ~Sk := {s1, . . . , sk} ⊆ U
being the first k elements of ~S, we say that ~S is (strictly) ρ-competitive if

max
k∈{1,...,|U |}

f?k

f(~Sk)
≤ ρ.

An algorithm is called ρ-competitive if it always produces a ρ-competitive solution, and its
competitive ratio is the infimum over all ρ ≥ 1 such that it is ρ-competitive. Notice that we
do not require the algorithm to run in polynomial time.

While all cardinality constrained optimization problems can be viewed in an incremental
setting, clearly not all such problems admit good incremental solutions. For example, consider
a cardinality constrained formulation of the classical maximum s-t-flow problem: For a given
graph G = (V,E), two vertices s, t ∈ V and capacities u : E → R+, we ask for a subset E′ ⊆ E
of cardinality k ∈ N such that the maximum flow in the subgraph (V,E′) is maximized.
The example in Figure 1 shows that we cannot hope for an incremental solution that is
simultaneously close to optimal for cardinalities 1 and 2.

In order to derive general bounds on the competitive ratio of incremental problems, we
need to restrict the class of objective functions f that we consider. Intuitively, the unbounded
competitive ratio in the flow example comes from the fact that we have to invest in the
s-t-path of capacity 1 as soon as possible, but this path only yields its payoff once it is
completed after two steps.

In order to prevent this and similar behaviors, we require f to be monotone (i.e.,
f(S) ≤ f(T) if S ⊆ T) and sub-additive (i.e., f(S) + f(T) ≥ f(S ∪ T)). Many important
optimization problems satisfy these weak conditions, and we give a short list of examples
below. We will see that all these (and many more) problems admit incremental solutions
with a bounded competitive ratio. More specifically, we develop a general 2.618-competitive

A. Bernstein, Y. Disser, and M. Groß 43:3

incremental algorithm that can be applied to a broad class of problems, including all problems
mentioned below. We illustrate in detail how to apply our model to obtain an incremental
variant of the matching problem, and then list incremental versions of other important
problems that are obtained analogously.

Maximum Weighted Matching: Consider a graph G = (V,E) with edge weights
w : E → R≥0. If we think of edges as potential connections and edge weights as potential
payoffs, then it is not enough to find the final matching because we cannot construct
the edges all at once: the goal is to find a sequence of edges that achieves a high pay-off
in the short, the medium, and the long term. In terms of our formal framework, we
add edges to a set S one at a time with U = E and f(S) is the maximum weight of a
matching M ⊆ S. In order to be ρ-competitive, we need that, after k steps for every k,
our solution S of cardinality k is no worse than a factor of ρ away from the optimum
solution of cardinality k, i.e., f(S) ≥ f(S?k)/ρ.
This model captures the setting where the infrastructure (e.g. the matching, the knapsack,
the covering, or the flow) must be built up over time. The online model would be too
restrictive in this setting because here we know our options in advance. Note that, as
we add more edges, the set of edges S only needs to contain a large matching M , but
does not have to be a matching itself; The matching M can change to an arbitrary
subset of S from one cardinality to the next and does not have to stay consistent. This
ensures that f(S) is monotonically increasing, and is in keeping with the infrastructures
setting where the potential regret present in the online model does not apply: building
more infrastructure can only help, since once it is built, we can change how it is used.
Accordingly, in all the problems below the set S does not have to be a valid solution to
the cardinality constrained problem at hand, but rather needs to contain a good solution
as a subset. The objective f(S) is consistently defined to be the value of the best solution
that is a subset of S. Notice that this approach can easily be generalized to Maximum
b-Matching.
Set Packing: Given a set of weighted sets X we ask for an incremental subset S ⊆ X
where f(S) is the maximum weight of mutually disjoint subsets in S. This problem
captures many well-known problems such as Maximum Hypergraph Matching and
Maximum Independent Set.
Maximum Coverage: Given a set of weighted sets X ⊆ 2U over an universe of elements
U , we ask for an incremental subset S ⊆ X , where f(S) is the weight of elements
in
⋃
X∈S X. This problem captures maximization versions of clustering and location

problems. We can include opening costs c : X → R≥0 by letting f(S) be the maximum
over all subsets S′ ⊆ S of the number (or weight) of the sets in S′ minus their opening
costs.
Knapsack: Given a set X of items, associated sizes s : X → R≥0 and values v : X → R≥0,
and a knapsack of capacity 1, we ask for an incremental subset S ⊆ X, where f(S) is the
largest value

∑
x∈S′ v(x) of any subset S′ ⊆ S with

∑
x∈S′ s(x) ≤ 1. This problem can

be generalized to Multi-Dimensional Knapsack by letting item sizes be vectors and
letting the knapsack have a capacity in every dimension.
Disjoint Paths: Given a graph G = (V,E), a set of pairs X ⊆ V 2 with weights w : X →
R≥0, we ask for an incremental subset S ⊆ X , where f(S) is the maximum weight of a
subset S′ ⊆ S, such that G contains mutually disjoint paths between every pair in S′.
Maximum Bridge-Flow: We argued above that the maximum s-t-flow problem is not
amenable to the incremental setting because it does not pay off to build paths partially.

ICALP 2017

43:4 General Bounds for Incremental Maximization

To overcome this, we consider a natural restriction of the flow problem where most edges
are freely available to be used, and only the edges of a directed s-t-cut need to be built
incrementally. If the directed cut has no backward edges, every s-t-path contains exactly
one edge that needs to be built, and we never have to invest multiple steps to establish a
single path. This problem captures logistical problems where links need to be established
between two clusters, like when bridges need to be built across a river, cables across an
ocean, or when warehouses need to be opened in a supplier-warehouse-consumer network.
Formally, given a directed graph G = (V,E) with capacities u : E → R, vertices s, t ∈ V ,
and a directed s-t-cut C ⊆ E induced by the partition (U,W) of V such that the directed
cut induced by (W,U) is empty, we ask for an incremental subset S ⊆ C where f(S) is
the value of a maximum flow in the subgraph (V,E \ (C \ S)).

It is easy to verify that all the problems mentioned above (and many more) indeed have a
monotone and sub-additive objective function. In addition, each one of these problems satisfies
the following property: For every S ⊆ U , there exists s ∈ S with f(S\{s}) ≥ f(S)−f(S)/ |S|.
We call this property the accountability property – to our knowledge, it has not been named
before. Intuitively, this property ensures that the value of a set S ⊆ U is the sum of individual
contributions of its elements, and there cannot be additional value that emerges only when
certain elements of U combine. While it is easy to formulate artificial problems that have
monotonicity and sub-additivity but no accountability, we were not able to identify any
natural problems of this kind. This justifies to add accountability to the list of properties
that we require of incremental problems.

I Definition 1. Given a set of elements U , and a function f : 2U → R, we say that the
function f is incremental if it satisfies the following properties for every S, T ⊆ U :
1. (monotonicity): S ⊆ T ⇒ f(S) ≤ f(T),
2. (sub-additivity): f(S) + f(T) ≥ f(S ∪ T),
3. (accountability): ∃s ∈ S : f(S \ {s}) ≥ f(S)− f(S)/ |S|.
We say that a cardinality constrained problem with increasing cardinality (eq. (1)) is
incremental if its objective function is incremental.

Observe that a ρ-competitive incremental algorithm immediately yields a ρ-approximation
algorithm for the underlying cardinality constrained problem, with the caveat that the
resulting approximation algorithm might not be efficient since we make no demands on the
runtime of the incremental algorithm. The converse is rarely the case since approximation
algorithms usually do not construct their solution in incremental fashion. A prominent
exception are greedy algorithms that are inherently incremental in the sense that they pick
elements one-by-one such that each pick increases the objective by the maximum amount
possible. This type of a greedy algorithm has been studied as an approximation algorithm
for many cardinality constrained problems, and approximation ratios translate immediately
to competitive ratios for the incremental version of the corresponding problem. In particular,
the greedy algorithm is known to have competitive ratio (exactly) e

e−1 ≈ 1.58 if the objective
function f is monotone and submodular [27]. Note, however, that of all the incremental
problems listed above, only Maximum Coverage (without opening costs) has a submodular
objective function. It is also known that if we relax the submodularity requirement and
allow f to be the minimum of two monotone (sub-)modular functions, the greedy algorithm
can be arbitrarily bad [21]. We provide a different relaxation of submodularity that captures
Maximum (Weighted) (b-)Matching and Maximum Bridge-Flow, and where the
greedy algorithm has a bounded competitive/approximation ratio.

A. Bernstein, Y. Disser, and M. Groß 43:5

Our Results. As our first result, we show that every incremental problem admits a bounded
competitive ratio.

I Theorem 2. Every incremental problem admits a (1 + ϕ)-competitive algorithm, where ϕ
is the golden ratio and (1 + ϕ) ≈ 2.618. No general deterministic algorithm for this class of
problems has a competitive ratio of 2.18 or better.

Again, note that we make no guarantees regarding the running time of our incremental
algorithm. In fact, our algorithm relies on the ability to compute the optimum of the
underlying cardinality constrained problem for increasing cardinalities. If we can provide
an efficient approximation of this optimum, we get an efficient incremental algorithm in the
following sense.

I Corollary 3. If there is a polynomial time α-approximation algorithm for a cardinality
constrained problem with incremental objective function, then we can design a polynomial
time α(1 + ϕ)-competitive incremental algorithm.

We also analyze the approximation/competitive ratio of the greedy algorithm. We observe
that for many incremental problems like Knapsack, Maximum Independent Set, and
Disjoint Paths, the greedy algorithm has an unbounded competitive ratio. On the other
hand, we define a relaxation of submodularity called α-augmentable under which the greedy
algorithm has a bounded competitive ratio. In particular, this relaxation captures our
cardinality constrained versions of Maximum (Weighted) (b-)Matching and Maximum
Bridge-Flow, where the incremental set S need not be feasible but only contain a good
feasible subset. We get the following result, where the tight lower bound for α = 2 is obtained
for Maximum Bridge-Flow. Notice that for α = 1, we obtain the e

e−1 ≈ 1.58 bound that
is known for submodular functions. For α = 2, the bound is e2

e2−1 ≈ 2.313.

I Theorem 4. For every cardinality constrained problem with an α-augmentable objective
(defined below), the greedy algorithm has approximation/competitive ratio α eα

eα−1 . This bound
is tight for the greedy algorithm on problems with 2-augmentable objectives, which includes
Maximum (Weighted) (b-)Matching and Maximum Bridge-Flow.

We emphasize that the families of instances we construct to obtain the lower bounds in
Theorems 2 and 4 require the number of elements to tend to infinity, since it takes time for
incremental solutions to sufficiently fall behind the optimum solution.

Related Work. Most work on incremental settings has focused on cardinality constrained
minimization problems. A prominent exception is the robust matching problem, introduced
by Hassin and Rubinstein [16]. This problem asks for a weighted matching M with the
property that, for every value k, the total weight of the min(k, |M |) heaviest edges of M
comes close to the weight of a maximum weight matching of cardinality k. Note that this
differs from our definition of incremental matchings in that the robust matching problem
demands that the “incremental” solution consists of a matching, while we allow any edge
set that contains a heavy matching as a subset. Since their model is more strict, all of the
following competitive ratios carry over to our setting. Note that, in contrast to our setting,
the objective function of the robust matching problem is submodular, and hence the greedy
algorithm has competitive ratio at most e

e−1 ≈ 1.58 [27]. Hassin and Rubinstein [16] gave an
improved, deterministic algorithm that achieves competitive ratio

√
2 ≈ 1.414. They also

give a tight example for the
√

2 ratio, which also works in our incremental setting. Fujita et
al. [11] extended this result to matroid intersection, and Kakimura and Makino [18] showed

ICALP 2017

43:6 General Bounds for Incremental Maximization

that every independence system allows for a √µ-competitive solution, with µ being the
extendibility of the system. Matuschke at al. [24] describe a randomized algorithm for this
problem that, under the assumption that the adversary does not know the outcome of the
randomness, has competitive ratio ln(4) ≈ 1.386.

A variant of the knapsack problem with a similar notion of robustness was proposed by
Kakimura et al. [19]. In this problem a knapsack solution needs to be computed, such that,
for every k, the value of the k most valuable items in the knapsack compares well with the
optimum solution using k items, for every k. Kakimura et al. [19] restrict themselves to
polynomial time algorithms and show that under this restriction a bounded competitive ratio
is possible only if the rank quotient of the knapsack system is bounded. In contrast, our
results show that if we do not restrict the running time and if we only require our solution to
contain a good packing with k items for every k, then we can be (1 + ϕ)-competitive using
our generic algorithm, even for generalizations like Multi-Dimensional Knapsack. If we
restrict the running time and use the well-known PTAS for the knapsack problem [17, 22],
we still get a (1 + ϕ)(1 + ε)-competitive algorithm. Megow and Mestre [25] and Disser et
al. [7] considered another variant of the knapsack problem that asks for an order in which to
pack the items that works well for every knapsack capacity. Kobayashi and Takizawa [20]
study randomized strategies for cardinality robustness in the knapsack problem.

Hartline and Sharp [15] considered an incremental variant of the maximum flow problem
where capacities increase over time. This is in contrast to our framework where the cardinality
of the solution increases.

Incremental solutions for cardinality constrained minimization problems have been studied
extensively, in particular for clustering [3, 6], k-median [4, 10, 26], minimium spanning
tree [1, 12], and facility location [13]. An important result in this domain is the incremental
framework given by Lin et al. [23]. This general framework allows to devise algorithms for
every incremental minimization problem for which a suitable augmentation subroutine can
be formulated. Lin et al. [23] used their framework to match or improve many of the known
specialized bounds for the problems above and to derive new bounds for covering problems.
In contrast to their result, our incremental framework allows for a general algorithm that
works out-of-the-box for a broad class of incremental maximization problems and yields a
constant (relatively small) competitive ratio.

Abstractly, incremental problems can be seen as optimization problems under uncertainty.
Various approaches to handling uncertain input data have been proposed, ranging from
robust and stochastic optimization to streaming and exploration. On this level, incremental
problems can be seen as a special case of online optimization problems, i.e., problems where
the input data arrives over time (see [2, 9]). Whereas online optimization in general assumes
adversarial input, incremental problems restrict the freedom of the adversary to deciding
when to stop, i.e., the adversary may choose the cardinality k while all other data is fixed and
known to the algorithm. Online problems with such a “non-adaptive” adversary have been
studied in other contexts [5, 8, 14]. Note that online problems demand irrevocable decisions
in every time step – a requirement that may be overly restrictive in many settings where
solutions develop over a long time period. In contrast, our incremental model only requires a
growing solution “infrastructure” and allows the actual solution to change arbitrarily over
time within this infrastructure.

2 A competitive algorithm for incremental problems

In this section, we show the second part of Theorem 2, i.e., we give an incremental algorithm
that is (1 + ϕ ≈ 2.618)-competitive for all incremental problems. For convenience, we define

A. Bernstein, Y. Disser, and M. Groß 43:7

the density δS of a set S ⊆ U via δS := f(S)/ |S|, and we let δ?k := δS?
k
denote the optimum

density for cardinality k. Our algorithm relies on the following two observations that follow
from the accountability of the objective function.

I Lemma 5. In every incremental problem and for every cardinality k, there is an order-
ing ~S?k := {s?1, s?2, . . . , s?k} := S?k , such that δ{s?1 ,...,s?i } ≥ δ{s?1 ,...,s?i+1} for all i ∈ {1, . . . , k − 1}.
We say that ~S?k is a greedy order of S?k .

Proof. By accountability of f , there is an element s?k ∈ S?k for which

δS?
k
\{s?

k
} = f(S?k \ {s?k})

k − 1 ≥ f(S?k)
k

= δS?
k
.

We can repeat this argument for s?k−1 ∈ S?k \ {s?k}, s?k−2 ∈ S?k \ {s?k, s?k−1}, etc. to obtain the
desired ordering ~S?k . J

I Lemma 6. In every incremental problem and for every 1 ≤ k′ ≤ k we have δ?k′ ≥ δ?k.

Proof. Fix any cardinality k > 1. By accountability of the objective function f , there is an
element s? ∈ S?k with

δ?k = f(S?k)
k
≤ f(S?k \ {s?})

k − 1 ≤
S?k−1
k − 1 = δ?k−1.

It follows that δ?k is monotonically decreasing in k. J

Now, we define k0 := 1 and ki := d(1 + ϕ)ki−1e for all positive integers i. Our algorithm
operates in phases i ∈ {0, 1, . . . }. In each phase i, we add the elements of the optimum
solution S?ki of cardinality ki to our incremental solution in greedy order (Lemma 5). Note
that we allow the algorithm to add elements multiple times (without effect) in order to
not complicate the analysis needlessly (of course we would only improve the algorithm by
skipping over duplicates). In the following, we denote by ti the number of steps (possibly
without effect) until the end of phase i, i.e., we let t0 := k0 and ti := ti−1 + ki.

I Lemma 7. For every phase i ∈ {0, 1, . . . }, we have ti ≤ ϕki.

Proof. We use induction over i, with the case i = 0 being trivial, since t0 = k0. Now assume
that ti−1 ≤ ϕki−1 for some i ≥ 1. Using the property ϕ

ϕ+1 = ϕ− 1 of the golden ratio, we get

ti = ti−1 + ki ≤ ϕki−1 + ki ≤
ϕ

ϕ+ 1ki + ki = ϕki. J

Finally, we show the solution ~S computed by our algorithm is (1 + ϕ)-competitive.

I Theorem 8. For every cardinality k, we have f(~Sk) ≥ f?k/(1 + ϕ).

Proof. We use induction over k. The claim is true for k = t0 = 1, since ~S1 = S?1 by definition
of the algorithm. For the inductive step, we prove that if the claim is true for k = ti−1, then
it remains true for all k ∈ {ti−1 + 1, . . . , ti}. Recall that ki = d(1 + ϕ)ki−1e. By Lemma 7,
we have

ti−1 ≤ ϕki−1 < ki < ti−1 + ki = ti,

and we can therefore distinguish the following cases.

ICALP 2017

43:8 General Bounds for Incremental Maximization

Case 1: ti−1 < k < ki. Since k > ti−1, our algorithm has already completed phase i− 1
and added all elements of S?ki−1

, so we have f(~Sk) ≥ f?ki−1
. Because k is an integer and

k < ki = d(1 + ϕ)ki−1e, we have that k < (1 + ϕ)ki−1. By Lemma 6, we thus have

f?k = δ?k · k < δ?ki−1
· (1 + ϕ)ki−1 = (1 + ϕ)f?ki−1

≤ (1 + ϕ)f(~Sk).

Case 2: ki ≤ k ≤ ti. At time k, our algorithm has already completed the first k − ti−1
elements of S?k . Since the algorithm adds the elements of S?ki in greedy order, we have f(~Sk) ≥
(k − ti−1)δ?ki . On the other hand, since k ≥ ki, by Lemma 6 we have f?k = k · δ?k ≤ k · δ?ki .
In order to complete the proof, it is thus sufficient to show that k ≤ (1 + ϕ)(k − ti−1). To
see this, let k = ki + k′ for some non-negative integer k′. Because ti−1 is integral, Lemma 7
implies ti−1 ≤ bϕki−1c. Since ϕ is irrational and ki−1 is integral, ϕki−1 cannot be integral,
thus

k − ti−1 = k′ + ki − ti−1 ≥ k′ + d(1 + ϕ)ki−1e − bϕki−1c = k′ + ki−1 + 1.

This completes the proof, since

(1 + ϕ)(k − ti−1) ≥ (1 + ϕ)(k′ + ki−1 + 1) > k′ + (1 + ϕ)ki−1 + 1 ≥ k′ + ki = k. J

Corollary 3 follows if we replace S?ki by an α-approximate solution for cardinality ki.

3 Lower bound on the best-possible competitive ratio

In this section, we show the second part of Theorem 2, i.e., we give a lower bound on
the best-possible competitive ratio for the maximization of incremental problems. For this
purpose, we define the Region Choosing problem. In this problem, we are given N disjoint
sets R1, . . . , RN , called regions, with region Ri containing i elements with a value of δ(i)
each. We say that δ(i) is the density of region Ri. The total value of all elements in the
region Ri is v(i) := i · δ(i) for all i ∈ {1, . . . , N}.

The objective is to compute an incremental solution S ⊆ U :=
⋃N
i=1 Ri such that the

maximum value of the items from a single region in S is large. Formally, the objective
function is given by f(S) := maxi∈{1,...,N} |Ri ∩ S| · v(i).

I Observation 9. Region Choosing is an incremental problem.1

For our lower bound, we set δ(i) := iβ−1 for some β ∈ (0, 1) that we will choose later. For
this choice of β, we have δ(i) < δ(j) and v(i) > v(j) for 0 ≤ j < i ≤ N . Also, for N →∞
we have limi→∞ v(i) = ∞. We call instances of the Region Choosing problem in this
form β-decreasing. Observe that in every β-decreasing instance the optimum solution of
cardinality i ≤ N is to take all i elements from region Ri. This solution has value f?i = iβ .

In order to impose a lower bound on the best-possible competitive ratio for β-decreasing
instances, we need some insights into the structure of incremental solutions with an optimal
competitive ratio. First, consider a solution that picks only i′ < i elements from region Ri.
In this case, we could have picked i′ elements from region Ri′ instead – this would only
improve the solution, since densities are decreasing. Secondly, if we take i elements from
region Ri, it is always beneficial to take them in an uninterrupted sequence before taking any
elements from a region Rj with j > i: Our objective depends only on the region with the

1 This and all other missing proofs are deferred to the full version of this paper.

A. Bernstein, Y. Disser, and M. Groß 43:9

most value, therefore it never helps to take elements from different regions in an alternating
fashion. This leads us the following observation.

I Observation 10. For every β-decreasing instance of Region Choosing there is an
incremental solution with optimal competitive ratio of the following structure: For k0 < k1 <

· · · < km ∈ N with m ∈ N, it takes k0 elements from region Rk0 , followed by k1 elements
from Rk1 , and so on, until finally km elements from region Rkm are chosen.

Thus, we can describe an algorithm for the region-choosing problem by an increasing
sequence of region indices k0, . . . , km. Note that, in order to have a bounded competitive
ratio if N → ∞, we must have m → ∞, since limi→∞ v(i) → ∞. We are interested in a
cardinality for which an incremental solution given by k0, . . . , km has a bad competitive ratio.
We define

αi := 1
ki

i∑
j=0

kj for all i ∈ {0, . . . ,m} .

Observe that αi > 1 for all i ∈ {1, . . . ,m}. We know that the value of the optimum solution
for cardinality αiki is v(αiki) = (αiki)β , whereas the incremental solution only achieves a
value of v(ki) = (ki)β . This allows us to derive the following necessary condition on the
αi-values of ρ-competitive solutions.

IObservation 11. If an incremental solution defined by a sequence k0, . . . , km is ρ-competitive
for some ρ ≥ 1, we must have

ρ ≥ v(αiki)
v(ki)

=
(
αiki
ki

)β
= αβi ⇐⇒ αi ≤ ρ

1
β for all i ∈ {0, . . . ,m} . (2)

We will exclude a certain range of values of ρ by showing that we can find a β ∈ (0, 1) such
that, for a sufficiently large number of regions N , necessary condition (2) is violated. We do
this by showing that, for some i? ∈ N and some fixed ε > 0, we have αi+1−αi > ε for all i ≥ i?,
i.e., as i goes to∞, condition (2) must eventually be violated. The following definition relates
a value of β ∈ (0, 1) to a lower bound on the competitive ratio ρ for β-decreasing instances.

I Definition 12. A pair (ρ, β) with ρ ≥ 1 and β ∈ (0, 1) is problematic if there is ε > 0 such
that for all x ∈ (1, ρ1/β] it holds that hρ,β(x) < 0, where

hρ,β(x) := (ρ
1
β + ε− x)

1
1−β − x

x− 1 + ε
.

We show that problematic pairs indeed have the intended property.

I Lemma 13. If (ρ, β) is a problematic pair, then ρ is a strict lower bound on the competitive
ratio of incremental solutions for β-decreasing instances of Region Choosing.

All that remains is to specify a problematic pair in order to obtain a lower bound via
Lemma 13. It is easy to verify that (2.18, 0.86) is a problematic pair. Note that the resulting
bound of 2.18 can slightly be increased to larger values below 2.19.

I Theorem 14. There is no 2.18-competitive incremental Region Choosing algorithm.

ICALP 2017

43:10 General Bounds for Incremental Maximization

4 The greedy algorithm for a subclass of incremental problems

In this section, we analyze the greedy algorithm that computes an incremental solution
~S with ~Sk = ~Sk−1 ∪ {sk}, where sk ∈ arg maxs∈U\~Sk−1

f(~Sk−1 ∪ {sk}) and ~S0 = ∅. This
algorithm is well-known to have competitive ratio e

e−1 ≈ 1.58 if the objective function f

is monotone and submodular [27]. Note that every monotone and submodular function is
incremental. On the other hand, in general, the greedy algorithm does not have a bounded
competitive ratio for incremental problems.

I Observation 15. The greedy algorithm has an unbounded competitive ratio for many incre-
mental problems, e.g., Knapsack, Weighted Independent Set, and Disjoint Paths.

We will now define a subclass of incremental problems where the competitive ratio of
greedy can be bounded. Observe that submodularity of a function f : 2U → R≥0 implies
that, for every S 6= T ⊆ U , there exists an element t ∈ T \S with f(S ∪{t})− f(S) ≥ (f(S ∪
T)− f(S))/ |T \ S|. Accordingly, we can define the following relaxation of submodularity.

I Definition 16. We say that f : 2U → R≥0 is α-augmentable for an α > 0, if for every
S, T ⊆ U with T \ S 6= ∅ there exists an element t ∈ T \ S with

f(S ∪ {t})− f(S) ≥ f(S ∪ T)− αf(S)
|T |

. (3)

Thus, if f is α-augmentable, we can improve a greedy solution if its value is more than a
factor of α away from the value of an optimal solution. This definition is meaningful in the
sense that it induces an interesting subclass of incremental problems.

I Lemma 17. The objective functions of Maximum (Weighted) (b-)Matching and
Maximum Bridge-Flow are 2-augmentable, but not submodular.

We now show the first part of Theorem 4.

I Theorem 18. If the objective function of an incremental problem is α-augmentable, the
greedy algorithm is α eα

eα−1 -competitive.

Proof. Let ~Si be our greedy incremental solution after i elements have been added. Let
us focus on an arbitrary cardinality k > α, and say that for this cardinality we have
f?k = αf(~Sk) + β, for some β > 0. For cardinalities k ≤ α, note that f?1 = f(~S1) and
that f?k ≤ kf?1 ≤ αf?1 ≤ αf(~Sk) due to sub-additivity. We will show that we must have
β ≤ αf(~Sk)/(eα − 1), which proves the theorem for cardinalities k > α.

First, let us define pk := f(~Sk)− f(~Sk−1) to be the additional value obtained by adding
the k-th element to our greedy solution ~Sk. We claim that

pi ≥
β + α

∑k
j=i+1 pj

k − α
for any positive integer i < k, and pk ≥

β

k − α
. (4)

To prove (4), we apply (3) for S = ~Si−1 and T = S?k , which guarantees the existence of a
t ∈ S?k \ ~Si−1 such that

f(~Si−1 ∪ {t})− f(~Si−1) ≥ f(~Si−1 ∪ S?k)− αf(~Si−1)
k

≥ f?k − αf(~Si−1)
k

≥
β + α

∑k
j=i pj

k
.

The last inequality holds since we assume f?k = αf(~Sk) + β and for any i ≤ k we know that
f(~Sk)− f(~Si−1) =

∑k
j=i pj . Since we construct ~Si greedily, we have f(~Si) ≥ f(~Si−1 ∪ {t})

A. Bernstein, Y. Disser, and M. Groß 43:11

and thus pi ≥ (β+α
∑
i≤j≤k pj)/k. Rearranging to isolate pi we get the bounds in (4). Next,

we claim that

pi ≥
β

k − α
·
(

k

k − α

)k−i
for all i ≤ k. (5)

We prove this by induction for decreasing values of i. The induction base for i = k follows
directly from (4). For the induction step, we assume that the formula holds for all pj with
j ∈ {i+ 1, . . . , k}. By (4) and the inductive hypothesis, we have

(k − α) · pi ≥ β +
k∑

j=i+1
αpj ≥ β + α

k∑
j=i+1

β

k − α
·
(

k

k − α

)k−j

= β + αβ

k − α

k−i−1∑
j=0

(
k

k − α

)j
= β + αβ

k − α
·

(k
k−α)k−i − 1

k
k−α − 1

= β ·
(

k

k − α

)k−i
, (6)

which shows that the formula also holds for pi, and thus completes the induction step.
We are now ready to prove the theorem. Recall that we assumed f?k = αf(~Sk) + β and

want to show that β < αf(~Sk)/(eα − 1). We have

f(~Sk) =
k∑
i=1

pi
(6)
≥ β

k − α

k∑
i=1

(
k

k − α

)k−i
= β

k − α

k−1∑
i=0

(
k

k − α

)i
= β

k − α
(k
k−α)k − 1
k

k−α − 1

which can be rearranged to

β ≤
(k − α)

(
k

k−α − 1
)
f(~Sk)

(k
k−α)k − 1

= αf(~Sk)
(k
k−α)k − 1

≤ αf(~Sk)
eα − 1

The last inequality holds since for any x > 0 we have (1+1/x)x+1 ≥ e, and thus for x = k/α−1

it follows that e ≤
(

1 + 1
k
α−1

) k
α =

(
1 + α

k−α

) k
α =

(
k

k−α

) k
α and thus (k

k−α)k ≥ eα. J

4.1 Lower bound
We now show the second part of Theorem 4, i.e., we show a matching lower bound on
the competitive ratio of the greedy algorithm. We show this by constructing the following
family of instances for the Maximum Bridge-Flow problem. For k ∈ N, we define a graph
Gk = (Vk, Ek) with designated nodes s and t by

Vk := {s, t} ∪
{
v1
i , v

4
i

∣∣ i = 1, . . . , 2k} ∪
{
v2
i , v

3
i

∣∣ i = 1, . . . , 4k} ,

Ek := E1
k ∪ E∞k ∪

2k⋃
i=1

Ek,i ∪
2k⋃
i=1

E′k,i,

E1
k :=

{
(s, v2

i), (v3
i , t)

∣∣ i = 1, . . . , k} ,
E∞k :=

{
(s, v2

3k+i), (v2
i , v

3
i), (v2

3k+i, v
3
3k+i), (v3

i , t)
∣∣ i = 1, . . . , k} ,

Ek,i :=
{

(s, v1
i), (v1

i , v
2
k+i), (v2

k+i, v
3
k+i), (v3

k+i, v
4
i), (v4

i , t)
}

for all i = 1, . . . , 2k,
E′k,i :=

{
(v1
i , v

2
j), (v3

3k+j , v
4
i)
∣∣ j = 1, . . . , k} for all i = 1, . . . , 2k.

The edge capacities uk : Ek → R≥0 are given by uk(e) = (k
k−1)2k+1−i for e ∈ Ek,i, by

uk(e) = 1
k (k

k−1)2k+1−i for e ∈ E′k,i, by uk(e) = 1 for e ∈ E1
k, and by uk(e) =∞ for e ∈ E∞k .

ICALP 2017

43:12 General Bounds for Incremental Maximization

For every Gk, we choose a directed s-t-cut Ck :=
{

(v2
i , v

3
i)
∣∣ i = 1, . . . , 4k}. Without

loss of generality, we will assume in the following that we can resolve all ties in the greedy
algorithm to our preference. This can be done formally by adding some very small offsets
to the edge weights, but we omit this for clarity. Now consider how the greedy algorithm
operates on graph Gk.

I Lemma 19. In step j ∈ {1, . . . , 2k}, the greedy algorithm picks edge (v2
k+j , v

3
k+j).

With this, we are ready to show the following result, which, together with Lemma 17,
implies the second part of Theorem 4.

I Theorem 20. The greedy algorithm has competitive ratio at least 2e2

e2−1 ≈ 2.313 for
Maximum Bridge-Flow.

Proof. By Lemma 19, the greedy algorithm picks the edges (v2
k+1, v

3
k+1), . . . , (v2

3k, v
3
3k) in

the first 2k steps. Thus, after step 2k, greedy can send an s-t-flow of value

2k∑
i=1

(
k

k − 1

)i
=

(

k
k−1

)2k+1
− 1

k
k−1 − 1

− 1

 = (k − 1)
(

k

k − 1

)2k+1
− k .

On the other hand, the solution of size 2k consisting of the edges (v2
1 , v

3
1), . . . , (v2

k, v
3
k),

and (v2
3k+1, v

3
3k+1), . . . , (v2

4k, v
3
4k) results in an (optimal) flow value of

2k + 2
2k∑
i=1

(
k

k − 1

)i
= 2(k − 1)

(
k

k − 1

)2k+1
.

This corresponds to a competitive ratio of

2(k − 1)
(

k
k−1

)2k+1

(k − 1)
(

k
k−1

)2k+1
− k

=
2
(

k
k−1

)2k

(
k
k−1

)2k
− 1

=
2
(

k
k−1

)2(k−1)+2

(
k
k−1

)2(k−1)+2
− 1

.

Substituting x := k − 1 and using the identity limx→∞(1 + 1/x)x = e, we get the lower
bound on the competitive ratio of the greedy algorithm claimed in Theorem 4 in the limit:

lim
x→∞

2
(
x+1
x

)2x (x+1
x

)2

2
(
x+1
x

)2x (x+1
x

)2 − 1
= lim
x→∞

2e2 (x+1
x

)2

2e2
(
x+1
x

)2 − 1
= 2e2

e2 − 1 . J

5 Conclusion

We have defined a formal framework that captures a large class of incremental problems and
allows for incremental solutions with bounded competitive ratio. We also defined a new and
meaningful subclass consisting of problems with α-augmentable objective functions for which
the greedy algorithm has a bounded competitive ratio. Hopefully our results can inspire
future work on incremental problems from a perspective of competitive analysis.

Obvious extensions of our results would be to close the gap between our bounds of 2.618
and 2.18 for the best-possible competitive ratio of incremental algorithms. In particular,
it would be interesting whether or not the bound of 2.313 for the greedy algorithm in the
2-augmentable setting can be beaten by some other incremental algorithm already in the
general setting. Also, the α-augmentable and strictly submodular settings may allow for

A. Bernstein, Y. Disser, and M. Groß 43:13

better incremental algorithms than the greedy algorithm. Another question is whether
abandoning the accountability condition yields an interesting class of problems. Finally, it
may be possible to generalize our framework to problems with a continuously growing budget
and a cost associated with each element, instead of a growing cardinality constraint.

Acknowledgements. We wish to thank Andreas Bärtschi and Daniel Graf for initial discus-
sions and the the general idea that lead to the algorithm of Section 2. We are also grateful
for the detailed comments provided by an anonymous reviewer.

References
1 Avrim Blum, Prasad Chalasani, Don Coppersmith, Bill Pulleyblank, Prabhakar Raghavan,

and Madhu Sudan. The minimum latency problem. In Proceedings of the 26th Annual
ACM Symposium on Theory of computing (STOC), pages 163–171, 1994.

2 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, Cambridge, UK, 1998.

3 Moses Charikar, Chandra Chekuri, Tomas Feder, and Rajeev Motwani. Incremental clus-
tering and dynamic information retrieval. SIAM Journal on Computing, 33(6):1417–1440,
2004.

4 Marek Chrobak, Claire Kenyon, John Noga, and Neal E. Young. Incremental medians via
online bidding. Algorithmica, 50(4):455–478, 2007.

5 Varsha Dani and Thomas P. Hayes. Robbing the bandit: less regret in online geometric
optimization against an adaptive adversary. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 937–943, 2006.

6 Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clustering.
Journal of Computer and System Sciences, 70(4):555–569, 2005.

7 Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a Knapsack of
Unknown Capacity. SIAM Journal on Discrete Mathematics, to appear.

8 U. Faigle, W. Kern, and G. Turan. On the performance of on-line algorithms for partition
problems. Acta Cybernetica, 9(2):107–119, 1989.

9 A. Fiat and G. J. Woeginger, editors. Online Algorithms: The State of the Art. Springer,
Berlin, 1998.

10 Dimitris Fotakis. Incremental algorithms for facility location and k-median. Theoretical
Computer Science, 361(2–3):275–313, 2006. doi:10.1016/j.tcs.2006.05.015.

11 Ryo Fujita, Yusuke Kobayashi, and Kazuhisa Makino. Robust matchings and matroid
intersections. SIAM Journal on Discrete Mathematics, 27(3):1234–1256, 2013. doi:10.
1137/100808800.

12 Michel Goemans and Jon Kleinberg. An improved approximation ratio for the minimum
latency problem. Mathematical Programming, 82(1–2):111–124, 1998.

13 C. Greg Plaxton. Approximation algorithms for hierarchical location problems. Journal of
Computer and System Sciences, 72(3):425–443, 2006.

14 Magnús M. Halldórsson and Hadas Shachnai. Return of the boss problem: Competing
online against a non-adaptive adversary. In Proceedings of the 5th International Conference
on Fun with Algorithms (FUN), pages 237–248, 2010.

15 Jeff Hartline and Alexa Sharp. Incremental flow. Networks, 50(1):77–85, 2007.
16 Refael Hassin and Shlomi Rubinstein. Robust matchings. SIAM Journal on Discrete

Mathematics, 15(4):530–537, 2002. doi:10.1137/S0895480198332156.
17 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and

sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

ICALP 2017

http://dx.doi.org/10.1016/j.tcs.2006.05.015
http://dx.doi.org/10.1137/100808800
http://dx.doi.org/10.1137/100808800
http://dx.doi.org/10.1137/S0895480198332156

43:14 General Bounds for Incremental Maximization

18 Naonori Kakimura and Kazuhisa Makino. Robust independence systems. SIAM Journal
on Discrete Mathematics, 27(3):1257–1273, 2013. doi:10.1137/120899480.

19 Naonori Kakimura, Kazuhisa Makino, and Kento Seimi. Computing knapsack solu-
tions with cardinality robustness. Japan Journal of Industrial and Applied Mathematics,
29(3):469–483, 2012. doi:10.1007/s13160-012-0075-z.

20 Yusuke Kobayashi and Kenjiro Takazawa. Randomized strategies for cardinality robustness
in the knapsack problem. Theoretical Computer Science, pages 1–10, 2016. doi:10.1016/
j.tcs.2016.12.019.

21 A. Krause, H.B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation
selection. Journal of Machine Learning Research, 9:2761–2801, 2008.

22 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979.

23 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. William-
son. A general approach for incremental approximation and hierarchical clustering. SIAM
Journal on Computing, 39(8):3633–3669, 2010. doi:10.1137/070698257.

24 Jannik Matuschke, Martin Skutella, and José A. Soto. Robust randomized matchings. In
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1904–1915, 2014.

25 Nicole Megow and Julian Mestre. Instance-sensitive robustness guarantees for sequencing
with unknown packing and covering constraints. In Proceedings of the 4th conference on
Innovations in Theoretical Computer Science (ITCS), pages 495–504, 2013.

26 Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM Journal on
Computing, 32(3):816–832, 2003. doi:10.1137/S0097539701383443.

27 G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for max-
imizing submodular set functions – I. Mathematical Programming, 14(1):265–294, 1978.

http://dx.doi.org/10.1137/120899480
http://dx.doi.org/10.1007/s13160-012-0075-z
http://dx.doi.org/10.1016/j.tcs.2016.12.019
http://dx.doi.org/10.1016/j.tcs.2016.12.019
http://dx.doi.org/10.1137/070698257
http://dx.doi.org/10.1137/S0097539701383443

Deterministic Partially Dynamic Single Source
Shortest Paths in Weighted Graphs∗

Aaron Bernstein

Technical University of Berlin, Berlin, Germany
bernstei@gmail.com

Abstract
In this paper we consider the decremental single-source shortest paths (SSSP) problem, where
given a graph G and a source node s the goal is to maintain shortest distances between s and
all other nodes in G under a sequence of online adversarial edge deletions. In their seminal work,
Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs
with only O(mn) total update time over all edge deletions. Their classic algorithm was the state
of the art for the decremental SSSP problem for three decades, even when approximate shortest
paths are allowed.

The first improvement over the Even-Shiloach algorithm was given by Bernstein and Roditty
[SODA 2011], who for the case of an unweighted and undirected graph presented a (1 + ε)-
approximate algorithm with constant query time and a total update time ofO(n2+o(1)). This work
triggered a series of new results, culminating in a recent breakthrough of Henzinger, Krinninger
and Nanongkai [FOCS 14], who presented a (1+ε)-approximate algorithm for undirected weighted
graphs whose total update time is near linear: O(m1+o(1) log(W)), where W is the ratio of the
heaviest to the lightest edge weight in the graph. In this paper they posed as a major open
problem the question of derandomizing their result.

Until very recently, all known improvements over the Even-Shiloach algorithm were ran-
domized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein
and Chechik showed the first deterministic algorithm to go beyond O(mn) total update time:
the algorithm is also (1 + ε)-approximate, and has total update time Õ(n2). In SODA 2017,
the same authors presented an algorithm with total update time Õ(mn3/4). However, both
algorithms are restricted to undirected, unweighted graphs. We present the first deterministic
algorithm for weighted undirected graphs to go beyond the O(mn) bound. The total update time
is Õ(n2 log(W)).

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Shortest Paths, Dynamic Algorithms, Deterministic, Weighted Graph

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.44

1 Introduction

The objective of dynamic graph algorithms is to handle an online sequence of update
operations while maintaining a desirable functionality on the graph, e.g., the ability to answer
shortest path queries. An update operation may involve a deletion or insertion of an edge or
a node, or a change in an edge’s weight. In case the algorithm can handle only deletions and
weight increases it is called decremental, if it can handle only insertions and weight decreases
it is called incremental, and if it can handle both it is called fully dynamic.

∗ This work was supported by the Einstein Grant at Technical University Berlin.

EA
T

C
S

© Aaron Bernstein;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

In this paper we consider the problem of (approximate) single source shortest paths
(SSSP) in unweighted undirected graphs, in the decremental setting. Specifically, given
an undirected graph G with positive weights and a source node s, our algorithm needs to
preform the following operations:
1. Delete(e) – delete the edge e from the graph
2. Increase-Weight(e) – increase the weight of e
3. Distance(v) – return the distance between s and v, i.e., dist(s, v), in the current graph G.

Fully dynamic shortest paths has a very clear motivation, as computing shortest paths in
a graph is one of the fundamental problems of graph algorithms, and many shortest path
applications must deal with a graph that is changing over time. The incremental setting
is somewhat more restricted, but is applicable to any setting in which the network is only
expanding. The decremental setting is often very important from a theoretical perspective,
as decremental shortest paths (and decremental single source shortest paths especially) are
used as a building block in a very large variety of fully dynamic shortest paths algorithms;
see e.g. [16, 17, 3, 2, 20, 1] to name just a few. Decremental shortest paths can also have
applications to non-dynamic graph problems; see e.g. Madry’s paper on efficiently computing
multicommodity flows [18].

We say that an algorithm has an approximation guarantee of α if its output to the query
Distance(v) is never smaller than the actual shortest distance and is not more than α times
the shortest distance. Dynamic algorithms are typically judged by two parameters: the time
it takes the algorithm to adapt to an update (the Delete or Increase-Weight operation), and
the time to process a query (the Distance operation). Typically one tries to keep the query
time small (polylog or constant), while getting the update time as low as possible. All the
algorithms discussed in this paper have constant query time, unless noted otherwise. In the
decremental setting, which is the focus of this paper, one usually considers the aggregate
sum of update times over the entire sequence of deletions, which is referred to as the total
update time.

Related Work

The most naive solution to dynamic SSSP is to simply invoke a static SSSP algorithm after
every deletion, which requires Õ(m) time, using e.g. Dijkstra’s algorithm. (The Õ notation
suppresses polylogarithmic factors.) For unweighted graphs, since there can be a total of m
deletions, the total update time for the naive implementation is thus Ω(m2).

For fully dynamic SSSP, nothing better than the trivial O(m) time per update is known.
That is, we do not know how to do better than reconstructing from scratch after every edge
update. For this reason, researchers have turned to the decremental (or incremental) case in
search of a better solution. The first improvement stems all the way back to 1981, when Even
and Shiloach [8] showed how to achieve total update time O(mn) in unweighted undirected
graphs. A similar result was independently found by Dinitz [7]. This was later generalized
to directed graphs by Henzinger and King [9]. This O(mn) total update time bound is still
the state of art, and there are conditional lower bounds [19, 15] showing that it is in fact
optimal up to log factors. (The reductions are to boolean matrix multiplication and the
online matrix-vector conjecture respectively).

These lower bounds motivated the study of the approximate version of this problem.
In 2011, Bernstein and Roditty [6] presented the first algorithm to go beyond the O(mn)
bound of Even and Shiloach [8]: they presented a (1 + ε)-approximate decremental SSSP
algorithm for undirected unweighted graphs with O(n2+O(1/

√
logn)) = O(n2+o(1)) total

A. Bernstein 44:3

update time. Henzinger, Krinninger and Nanongkai [13] later improved the total update
time to O(n1.8+o(1) + m1+o(1)), and soon after the same authors [11] achieved a close to
optimal total update time of O(m1+o(1) logW) in undirected weighted graphs, where W is
the largest weight in the graph (assuming the minimum edge weight is 1). The same authors
also showed that one can go beyond O(mn) total update time bound in directed graphs (with
a (1 + ε) approximation) [12, 14], although the state of art is still only a small improvement:
total update time O(mn0.9+o(1) logW).

However, every single one of these improvements over the O(mn) bound relies on ran-
domization, and has to make the additional assumption of a non-adaptive adversary. In
particular, they all assume that the updates of the adversary are completely independent
from the shortest paths or distances returned to the user, i.e. that the updates are fixed in
advance. This makes these algorithms unsuitable for many settings, and also prevents us
from using them as a black box data structure. For this reason, it is highly desirable to have
deterministic algorithms for the problem.

Very recently, in STOC 2016, Bernstein and Chechik presented the first deterministic
algorithm to go beyond O(mn) total update time, again with a (1 + ε) approximation. The
total update time is Õ(n2) [4]. They followed this up with a second deterministic algorithm [5]
that has total update time Õ(n1.5√m) = Õ(mn3/4). Both algorithms rely on the same basic
technique, so this is currently the only know technique for deterministically breaking through
the O(mn) barrier. However, both results above were limited to undirected, unweighted
graphs. In this paper, we show that this core technique can also be applied to weighted
graphs.

Our Results

I Theorem 1. Let G be an undirected graph with positive edge weights subject to a sequence
of edge deletions and weight increases, let s be a fixed source, and let W be the ratio
between the largest and smallest edge weights in the graph. there exists a deterministic
algorithm that maintains (1 + ε)-approximate distances from s to every vertex in total update
time O(m log2(n) log(nW) + n2 log(n) log(nW)ε−2). The query time is O(1). (Like most
decremental shortest paths algorithms, our result can very easily be extended with the same
update time to the incremental case, where the update sequence contains edge insertions and
weight increases.)

(Technical Note: In weighted graphs the number of updates can be very large – i.e. if
each update just increases some edge weight by some small ε – and so in addition to the
total update time above, the algorithm necessarily requires an additional O(1) per update.
This O(1) factor is present in all dynamic algorithms, and is typically omitted.)

Our algorithm does not match the randomized state of the art of Õ(m1+o(1) log(W)) [11],
but it is optimal up to log factors for dense graphs, and is the first deterministic algorithm to
go beyond the O(mn) barrier in weighted graphs. The algorithm is also much simpler than
the randomized algorithm for weighted graphs, and it does not incur the extra no(1) factor
present in the randomized algorithms. Thus, our algorithm is in fact faster than all existing
randomized algorithms for the problem in dense weighted graphs where m = Ω(n2−1/

√
log(n)).

As a final remark, we note that all previous deterministic algorithms to go beyond the
O(mn) bound [4, 5] have the strange drawback that there is no obvious way to return an
approximate path, only a distance. Our algorithm unfortunately shares this drawback. The
reason is that whereas in other dynamic shortest path algorithms the distance returned
corresponds to some path in the graph, our distance involves an additive error that is bounded

ICALP 2017

44:4 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

through a structural claim about the non-existence of certain paths, but does not itself
correspond to an actual path (see Lemma 4.4 in [4], Lemma 5.3 in [5], and Lemma 5 in our
paper.)

Preliminaries

In our model, an undirected weighted graph is subject to deletions and weight increases.
All weights in the original graph are positive. Let G = (V,E) always refer to the current
versions of the graph. Let m refer to the number of edges in the original graph, and n to
the number of vertices. Let w(u, v) refer to the weight of edge (u, v). Let us assume for
simplicity that the minimum weighted in the original graph is at least 1, and note that since
edge weights only increase, this will be true of all version of the graph. Let W be the largest
edge weight to ever appear in the graph. For any pair of vertices u, v, let π(u, v) be the
shortest u − v path in G (ties can be broken arbitrarily), and let dist(u, v) be the length
of π(u, v). Let s be the fixed source from which our algorithm must maintain approximate
distances, and let ε refer to our approximation parameter; when the adversary queries the
distance to a vertex v, the algorithm’s guarantee is to return a distance dist′(v) such that
dist(s, v) ≤ dist′(s, v) ≤ (1 +O(ε))dist(s, v). Note that the (1 +O(ε)) approximation factor
can always be reduced to (1 + ε) without affecting the asymptotic running time by simply
starting with a suitably smaller ε′.

Given any two sets S, T we define the set difference S \ T to contain all elements s such
that s ∈ S but s /∈ T . We will measure the update time of the dynamic subroutines used by
our algorithm in terms of their total update time over the entire sequence of edge changes.
Note that although edges in the main graph G are only being deleted, there may be edge
insertions into the auxiliary graphs used by the algorithm.

2 High Level Overview

Our algorithm extends the techniques in the STOC 2016 paper of Bernstein and Chechik
[4] from unweighted to weighted graphs. We now briefly summarize their approach for
unweighted graphs, aiming in this overview for total update time Õ(n2.5) instead of Õ(n2).
We start with the well known fact that the classic Even and Shiloach algorithm has total
update time O(n2.5) [8] if we only care about distances less than

√
n. So the hard case is

long distances in a dense graph. The key observation of [4] is that these two problematic
poles cannot coexist. In particular, Bernstein and Chechik showed that any shortest path
contains at most 3

√
n vertices of degree more than

√
n. The basic reason is that if we look at

every third high-degree vertex on the shortest path, then these vertices must have mutually
disjoint neighborhoods, since otherwise there would be a shorter path between them of
length 2; the claim then follows because each high-degree vertex has at least

√
n neighbors,

and there are only n vertices in total. Thus, Bernstein and Chechik show that the total
contribution of high-degree vertices to the shortest path is small. They then argue that this
allows us to effectively “ignore” all vertices of degree ≥

√
n, at the cost of an additive error

of only O(
√
n). (we do not go into details of this ignoring here.) This completed their result

because for distances less than O(
√
nε−1) the classic Even and Shiloach has total update

time O(n2.5ε−1), whereas for longer distances we can afford the O(
√
n) additive error from

ignoring high degree vertices (it is subsumed into the (1 + ε) multiplicative error), so the
resulting graph only O(n1.5) edges.

This technique has no easy extension to weighted graphs via scaling. To see this, say
there were two edge weights, 1 and

√
n, and that every vertex had very few incident edges

A. Bernstein 44:5

of weight 1, but
√
n edges of weight

√
n. Then it is easy to see that distances in the graph

could still be as large as n (as opposed to
√
n in the unweighted case). But we cannot scale

weights down, or use some sort of hop-distance technique found elsewhere in the literature,
because although the heavy edges are the ones that cause the graph to be dense, the shortest
path could still contain many edges of weight 1. There is thus no way in a weighted graph to
ignore high-degree vertices.

To overcome this, we switch focus to a notion of degree that considers edge weights. In
particular, note that in the example above, although the graph was dense, the total number
of edges of weight 1 was small. The first step in our result is to formalize this observation,
and show that although we cannot simply ignore vertices of high degree, for any vertex v we
can ignore its low-weight incident edges if there are many of them. The proof of this is similar
to the proof that we can afford to ignore dense vertices in unweighted graphs, but because
we have to deal with many edge different weights at once, the analysis is more sophisticated.

The problem is that on its own ignoring large neighborhoods of low-weight edges doesn’t
help: the result is a graph that is guaranteed to only have a small number of low-weight
edges (and a medium number of medium-weight edges), but the graph can still be very
dense with high-weight edges. To overcome this, we develop a variation on the standard
Even and Shiloach algorithm [8] which is more efficient at dealing with heavy edges but
incurs a (1 + ε) approximation. The basic intuition is as follows, though the details are
somewhat complex. The classic algorithm guarantees that we only touch an edge (u, v) when
the distance dist(s, u) or dist(s, v) increases. But if (u, v) has high weight, and dist(s, u)
only increases by 1, then the distance increase is insignificant with respect to the total weight
on (u, v), and so we can afford to ignore it. The number of times we touch edge (u, v) thus
ends up being proportional to ε−1/w(u, v).

All in all, our algorithm is based on the framework of Bernstein and Chechik for unweighted
graphs [4], but requires significant modifications both to the high-level orientation (we need
a new notion of sparsity that depends on edge weights), as well as to the technical details.
The basic approach introduced in [4] of ignoring certain classes of dense vertices has proved
quite versatile and powerful (see the two very different applications of it in [4] and [5]),
and is currently the only known approach for going beyond O(mn) deterministically, so our
extension to weighted graphs might be useful in further applications of this approach. Also,
our extension of the classic Even and Shiloach algorithm is presented in extreme generality,
and might prove useful in other dynamic shortest path problems where one has a graph that
has more edges of high weight than of low weight.

3 The Threshold Graph

In our algorithm, each vertex will have a weight cutoff, denoted cut-off(v), and will end up
“ignoring” the edges below that cutoff. As described in the high-level overview above, the
required degree to ignore edges goes up as the edge weights go up.

I Definition 2. Let the level of edge (u, v) be level(u, v) = blog(w(u, v))c. For any vertex
v, let I(v) contain all edges incident to v (I for incident), and let Ii(v) contain all edges
incident to v of level i or less. Now, for any positive threshold τ (not necessarily integral),
and any vertex v, we define cut-offτ (v) to be the maximum index i such that Ii(v) contains
at least τ2i edges; if no such index exists, cut-offτ(v) is set to 0. We say that an edge (u, v)
is τ -heavy if level(u, v) ≤ cut-offτ (u) OR level(u, v) ≤ cut-offτ (v); we say that it is τ -light
otherwise. Let heavy(τ) be the set of all τ -heavy edges in G, and let light(τ) be the set of
all τ -light edges in G. Let G[heavy(τ)] be the graph (V,heavy(τ)). Note that the levels,

ICALP 2017

44:6 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

cut-offs, heaviness, and lightness are always defined with respect to the main graph G, never
with respect to auxiliary graphs. Since τ is usually clear from context, we often just write
cut-off(v), heavy, and light.

I Definition 3. Given a graph G = (V,E) with |V | = n and |E| = m, and a positive
threshold τ , define the threshold graph Gτ = (Vτ , Eτ) as follows

Vτ contains every vertex v ∈ V .
Vτ also contains an additional vertex c for each connected component C in the graph
G[heavy(τ)] = (V,heavy(τ))
Eτ contains all edges in light(τ), with their original weights.
For every vertex v ∈ V , Eτ contains an edge from v to c of weight 1/2, where c is the
component vertex in Vτ \ V that corresponds to the component C in G[heavy(τ)] that
contains v.

For any pair of vertices s, t ∈ V define πτ (s, t) to be the shortest path from s to t in Gτ , and
define distτ (s, t) to be the weight of this path.

I Lemma 4. For any i, Gτ contains at most n edges of weight 1/2 that are not in E (one
per vertex in V), as well at most O(n · τ · 2i) edges at level i.

Proof. An edge (u, v) ∈ E of level i is only in Eτ if (u, v) is τ -light, i.e. if cut-off(u) < i

AND cut-off(v) < i. But a vertex with cut-off less than i has by definition less than 2iτ
incident edges of level i. J

The following Lemma is the weighted analogue of Lemma 4.4 in [4], but the most direct
extension of that proof to the weighted case would analyze each of the log(W) edge levels
separately, and thus multiply the error by log(W), eventually leading to a log3(W) factor in
the total running time of the algorithm. To avoid this extra error, we need a somewhat more
sophisticated analysis than in Lemma 4.4 of [4]

I Lemma 5. For any graph G = (V,E), any positive integer threshold τ , and any pair of
vertices s, t ∈ V :

distτ (s, t) ≤ dist(s, t) < distτ (s, t) + 14n
τ

.

Proof. It is not hard to see that we have distτ (s, t) ≤ dist(s, t). Simply consider the shortest
s− t path π(s, t) ∈ G. All the edges in π(s, t)

⋂
light(τ) are also in Gτ . Otherwise, for any

τ -heavy edge (u, v) on π(s, t), recall that the weight w(u, v) in G is always at least 1, and
note that because edge (u, v) is τ -heavy, the vertices u and v must be in the same connected
component in G[heavy(τ)], and so there is a path of length 1 from u to v in Gτ : the edge of
weight 1/2 from u to the component vertex c, and then a second edge from c to v.

We now prove that dist(s, t) ≤ distτ (s, t) + 14n
τ . Let πτ (s, t) be the shortest s− t path in

Gτ . Consider the edge set E∗ ⊆ E which contains all the τ -light edges of πτ (s, t) (these edges
are also in E), and all τ -heavy edges in E. That is, E∗ = heavy(τ)

⋃
(light(τ)

⋂
πτ (s, t)).

Let G∗ = (V,E∗). We first observe that there exists an s − t path in G∗. We construct
this path by following πτ (s, t). πτ (s, t) contains τ -light edges, which are by definition in
G∗, as well as subpaths of length 2 of the form (v, c) ◦ (c, w), where v and w are in the
same connected component C in G[heavy(τ)]. But since v and w are in the same connected
component, there is a path of only heavy edges connecting them, and all heavy edges are
in G∗.

A. Bernstein 44:7

Now, let π∗(s, t) be the shortest s− t path in G∗. Let dist∗(s, t) be the length of π∗(s, t).
Since G∗ is a subgraph of G, we know that dist(s, t) ≤ dist∗(s, t). We now show that

dist∗(s, t) < distτ (s, t) + 14n
τ

(1)

which will complete the proof of the lemma.
We prove Equation 1 by showing that all the heavy edges on π∗(s, t) have total weight at

most 14n
τ : since all the light edges on π∗(s, t) are by definition also on πτ (s, t), this proves

the equation.
Let V ∗H be the set of vertices on π∗(s, t) that are incident to at least one heavy edge on

π∗(s, t). Now, for any vertex v ∈ V ∗H , let ball(v) contain v and all vertices u ∈ V , such that
there is an edge (u, v) with level(u, v) ≤ cut-off(v). Note that by definition of cut-off(v),
we have |ball(v)| ≥ 2cut-off(v)τ .

Now, let P be an ordering of the vertices in π∗(s, t) in non-increasing order of cut-off: so
if i < j then cut-off(P [i]) ≥ cut-off(P [j]). We will now construct a set IV of independent
vertices in V ∗H as follows. We start with IV empty. Now, go through the vertices in V ∗H
according to their order in P (so in non-increasing order of cut-off), and for each v do the
following: if ball(v) is disjoint from ball(u) for every u ∈ IV, add v to IV. Clearly if v
and w are independent then ball(v) and ball(w) are disjoint. But then recalling that for
any v, |ball(v)| ≥ 2cut-off(v)τ , and that the total number of vertices in the graph is n, we
have∑

v∈IV
2cut-off(v) ≤ n/τ (2)

We will end up showing that each independent vertex v is “responsible” for at most 14 ·
2cut-off(v) weight from heavy edges on π∗(s, t), which will complete our proof. We say
that a non-independent vertex u belongs to independent vertex v if cut-off(v) ≥ cut-off(u)
and ball(u) and ball(v) are non-disjoint. By our independence construction, every non-
independent vertex u belongs to one or more independent vertices.

I Claim 6. If v is independent, and u belongs to v, then the distance from v to u along
π∗(s, t) is at most 4 · 2cut-off(v).

Proof. Say, for contradiction, that this was not the case. Then, since u belongs to v,
there must be some vertex z ∈ ball(v)

⋂
ball(u). But by definition of ball we have

level(v, z) ≤ cut-off(v) and level(u, z) ≤ cut-off(u) ≤ cut-off(v), so by definition of level
there is a path from u to v through z of weight at most 4 · 2cut-off(v), which contradicts
π∗(s, t) being the shortest path in G∗. J

Now, given any τ -heavy edge (x, y), let the dominant endpoint of (x, y) be the endpoint
that comes earlier in P : so in particular, if x is dominant then cut-off(x) ≥ cut-off(y). We
say that a τ -heavy edge (x, y) belongs to independent vertex v if the dominant endpoint
of (x, y) belongs to v. Note that every τ -heavy edge in π∗(s, t) belongs to at least one
independent vertex. We now show that if v is independent, then the total weight of τ -heavy
edges that belong to v is at most 14 · 2cut-off(v). Otherwise (for contradiction), at least
half that weight would come before or after v, so w.l.o.g, let us say that there is at least
7 · 2cut-off(v) weight of edges that belong to v and come after v on π∗(s, t) – i.e., are closer
to t than v is. Let us consider the τ -heavy edge (x, y) that belongs to v and is closest to t,
and say that y is closer to t than x. Note that the distance from v to y along π∗(s, t) is at
least 7 · 2cut-off(v), so by Claim 6, y cannot belong to v. Thus, since edge (x, y) belongs to

ICALP 2017

44:8 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

v, x must be the dominant endpoint and belong to v. But if x belongs to v and dominates y
then cut-off(y) ≤ cut-off(x) ≤ cut-off(v), and the only way edge (x, y) could be τ -heavy
is if level(x, y) ≤ cut-off(v), so w(x, y) ≤ 2 · 2cut-off(v), so the distance from v to x along
π∗(s, t) is still at least 7 ·2cut-off(v)−2 ·2cut-off(v) = 5 ·2cut-off(v), which again contradicts
Claim 6. Thus, the total weight of heavy edges on π∗(s, t) is at most 14

∑
v∈IV 2cut-off(v),

which combined with Equation 2 proves Equation 1, which proves the lemma. J

Maintaining the threshold graph Gτ as G changes is easy, because the only hard part
is maintaining the connected components C in G[heavy(τ)], and dynamic connectivity in
undirected graphs is a well-studied problem that admits deterministic O(log2(n)) update
time. The details are very similar to those for unweighted graphs (see Lemmas 4.5 and 4.6
in [4]), so we omit the proofs of the following two lemmas.

I Lemma 7. Given a graph G subject to a decremental update sequence, and a positive
integer threshold τ , we can maintain the graph Gτ in total time O(m log2(n)). Moreover,
the total number of edges of weight 1/2 ever inserted into the graph is O(n log(n)), and the
total number of edges (u, v) that have level(u, v) = i when inserted is at most nτ2i.

I Lemma 8. Given a graph G subject to a decremental update sequence, a positive integer
threshold τ , and a pair of vertices u, v in G, the distance distτ (u, v) in Gτ never decreases
as the graph G changes.

4 An Extension of the Even and Shiloach Algorithm

In the paper of Bernstein and Chechik for unweighted graphs [4], the threshold graph ended
up being sparse, and so it was easy to efficiently compute distances within it using the
standard Even and Shiloach algorithm with total update time O(mn) [8]. In our paper,
however, the threshold graph is only sparse with respect to low-weight edges; that is, because
heaviness and lightness is defined in terms of edge weights, the threshold graph can have
many edge of high weight. We now present a modification of the Even and Shiloach algorithm
that can deal more efficiently with edges of high weight, which makes it perfectly suited
to our threshold graph, which has mostly high-weight edges. Like the standard Even and
Shiloach algorithm, our extension runs up to a certain depth bound d.

I Definition 9. Given any number d, the function boundd(x) is equal to x if x ≤ d, and to
∞ otherwise.

Note that to apply to the threshold-graph Gτ , the algorithm must be able to handle
insertions, as long as they do not change distances. (See Lemmas 7, 8). To this end we need
the following definition:

I Definition 10. Let G = (V,E) be a graph with positive weights ≥ 1, subject a dynamic
update sequence of insertions, deletions, and weight-increases. In such a context, let A
contain the set of ALL edges (u, v) to appear in G at any point during the update sequence
(A for all): if an edge (u, v) is deleted and then inserted again, we consider this as two
separate edges in A. For every edge (u, v) ∈ A, let wo(u, v) (o for original) be the weight
of (u, v) when it first appears in A (this might be in the original graph itself), and let
levelo(u, v) = blog(wo(u, v))c.

I Lemma 11. Let G = (V,E) be an undirected graph with positive integer edge weights, s
a fixed source, and d ≥ 1 a depth bound. Say that G is subject to a dynamic sequence of

A. Bernstein 44:9

edge insertions, deletions, and weight increases, with the property that distances in G never
decrease as a result of an update. Then, there exists an algorithm WSES(G, s, d) (stands
for weight-sensitive Even and Shiloach) that maintains approximate distances dist′(s, v)
with dist(s, v) ≤ dist′(s, v) ≤ boundd(dist(s, v))(1 + ε), and has total update time O(nd+∑

(u,v)∈A
d

εwo(u,v)).

Proof. Throughout the proof of this lemma, we will often rely on the following function:

I Definition 12. Given any positive real numbers β and x, let roundβ(x) be the smallest
number y > x that is an integer multiple of β.

Our algorithm WSES follows the basic procedure of the classic Even and Shiloach
algorithm [8] (denoted ES), with a few modifications. For this reason we can describe
many of the guarantees of ES without looking under the hood for exactly how they are
implemented, since we keep exactly the same implementation. We only modify the classic
algorithm in a few key points. Recall the definition of A and wo(u, v) from Definition 10.
Since weights only increase, we always have w(u, v) ≥ wo(u, v).

The ES algorithm maintains for each vertex v a distance label δ(v) with the property
that dist(s, v) = δ(v). In particular, it maintains the invariant that δ(s) = 0, and that if
(u, v) ∈ E, then δ(v) ≤ δ(u) + w(u, v). Our algorithm will also maintain a label δ(v) for
every v, but since we only need an approximation, we guarantee a weaker invariant:

I Invariant 13 (Approximation). We always have δ(s) = 0. If p is the parent of v in the tree
then δ(v) ≥ δ(p) + w(p, v). Also, for all (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v) + εwo(u, v).

Approximation Analysis: We now show that as long as the Approximation Invariant is
preserved, we always have dist(s, v) ≤ δ(v) ≤ (1+ε)dist(s, v). The fact that δ(v) ≥ dist(s, v)
follows trivially for the same reason as in classic ES. To prove the other side, consider
the shortest path π(s, v) in G. Let the vertices in π(s, v) be s0, s1, ..., sq = v. We show by
induction that δ(si) ≤ (1 + ε)dist(s, si). The claim is trivially true for i = 0 because δ(s) = 0
at all times. Now, say the claim is true for si, and note that dist(s, si+1) = dist(s, si) +
w(si, si+1). Now, by the Approximation Invariant, we have δ(si+1) ≤ δ(si) + w(si, si+1) +
εwo(si, si+1) ≤ δ(si) + (1 + ε)w(si, si+1) (the last step follows from w(u, v) ≥ wo(u, v)).
But then by the induction hypothesis we have δ(si+1) ≤ (1 + ε)(dist(s, si) + w(si, si+1)) =
(1 + ε)dist(s, si+1).

We must now show how to efficiently maintain the Approximation Invariant. The classic
ES algorithm does O(1) time per update for basic setup, and otherwise all the work comes
from charging constant time operations to various edges (u, v) and vertices v. The update
time invariant in classic ES is as follows: we only charge vertex v when δ(v) increases, and we
only charge edge (u, v) when δ(u) or δ(v) increases. Since weights are positive integers, every
δ(u) must increase by at least 1, and since we only go up to distance d, each δ(v) increases at
most d times, which yields O(md). To improve upon this, our algorithm maintains a slightly
different update time invariant

I Invariant 14 (Update-Time). A vertex v is only charged when δ(v) increases. An edge
(u, v) is only charged when either roundεwo(u,v)(δ(u)) or roundεwo(u,v)(δ(v)) increases.

Since for any β, roundβ(δ(v)) can increase at most d/β before it exceeds d, it is clear
that the Update-Time Invariant guarantees the total update bound of the lemma.

ICALP 2017

44:10 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

Maintaining the Two Invariants: Now, let us recall how the standard ES algorithm works.
This algorithm only handles deletions, so that is what we focus on first: we later show
how to extend our algorithm to handle weight-increases and insertions that do not change
distances. We will emphasize the parts of classic ES that we will later change in our modified
algorithm. First off, each vertex v always maintains label information about its neighbors: so
in particular, for each edge (u, v), vertex v stores a copy δv(u) = δ(u) (first-difference).
The algorithm maintains a shortest path tree T from the root s. We say an edge (u, v) is a
tree edge if (u, v) ∈ T , and a non-tree edge if (u, v) ∈ E \ T . Whenever a non-tree edge is
deleted, shortest distances do not change, so the algorithm does not have to do much. Now,
consider the deletion of a tree edge (u, v) where u is the parent of v in T . The algorithm
checks in constant time, by cleverly storing local label information δv(z), if v has another
edge to a vertex z with δ(v) = δv(z) + w(z, v). If yes, v can be reconnected without a label
increase, the edge (z, v) is added to the tree and all distance labels remain the same so we
are done. If not, label δ(v) must increase, which in turn affects of the children of v, so The
algorithm then examines all the children of v and checks if they can be attached to the tree
without increasing their distance in a similar manner. (second-difference) Some vertices
will fail to be reattached with the same label, so the algorithm keeps a list of all vertices that
need to be re-attached at a higher label. Each time the algorithm discovers that a label δ(v)
must increase, it increases it by 1 (which is the most optimistic new label it can get) and
returns it to the needs-reattachment list in at attempt to reattach v with this higher label.
The algorithm examines the vertices in the list in an increasing order of their label. Note
that the label of a vertex may be increased many times as a result of an update. Whenever
the label δ(v) of a vertex v changes, the algorithm must adjust δu(v) for every edge (u, v) in
the graph. (third-difference.)

Note that the algorithm above fails to satisfy the Update-Time Invariant, because although
a vertex v is only charged when δ(v) increases (otherwise the search stops at v and can be
charged to the edge that led to v), edge (u, v) is charged whenever δ(u) or δ(v) increase
even just by 1. In particular, the invariant is not preserved because of the work in second-
difference and third-difference. The changes we implement are simple. We start with
first-difference: each vertex v will still store local label information δv(u), but now it
might be slightly inaccurate. In particular, we always have

I Invariant 15 (Local-Information). δ(u) ≤ δv(u) ≤ roundεwo(u,v)(δ(u)).

A vertex v will now choose its parent based on the slightly inaccurate local labels δu(v)
instead of the true label δ(u). Let p(v) be the parent of v in the tree.

I Invariant 16 (Parent-Choice). p(v) = argmaxu∈neighbors(v){δv(u) +w(u, v)} and δ(v) =
δv(p(v)) + w(p(v), v).

The Parent-Choice and Local-Information invariants combined clearly guarantee the
Approximation Invariant. We must now show how to maintain these efficiently. This leads
us to third-difference: when δ(v) changes, we only update δu(v) for every vertex u when
roundεwo(u,v)(δ(v)) increases. This ensures that we satisfy the Update-Time Invariant for
this step of the algorithm, while still ensuring that all local information adheres to the
Local-Information Invariant. We omit the full details, but it very easy to maintain a data
structure for each vertex v, that returns in O(1) time per edge all edges (u, v) for which
roundεwo(u,v)(δ(v)) increased. This is because wo(u, v) is completely fixed for each edge,
while δ(v) only rises from 1 to d, so we only need d slots per vertex (slot i corresponding to
δ(v) going up from i to i+ 1), and O(1) time per edge affected in each slot.

A. Bernstein 44:11

The last violation of the Update-Time Invariant was in second-difference. When δ(v)
changes, instead of processing all children u, we only need to process those for which δu(v)
changes. But in our modified algorithm this only occurs when roundεwo(u,v)(δ(v)) increases,
in keeping with the Update-Time Invariant.

We have thus shown how to modify classical ES in a way that maintains the Approximation
Invariant and the Update-Time Invariant while processing deletions. Increase-Weight(u, v) is
processed in the same way: if (u, v) was not a tree edge we do nothing, and otherwise if u
was the parent of v, then some invariants will be violated for v, and we fix these in exactly
the same way as for a deletion.

We now turn to processing insertions. In classical ES, it is trivial to process an insertion
of (u, v) that does decrease distances because the distance labels do not change, so we
just spend O(1) time fixing update δv(u) and δu(v). In our algorithm, however, a strange
difficulty arises: because our labels are approximate, even if the insertion of (u, v) does
not decrease distances, it might nonetheless violate the Approximation Invariant: say that
dist(u) = dist(v) = 1000 but δ(v) = 1000(1 + ε) while δ(u) = 1000 and we insert and edge
of weight 1. In this case we cannot afford to decrease δ(v) because our update time analysis
relied on non-decreasing labels. But note that although v now violates the Approximation
Invariant, δ(v) is still a (1+ ε) approximation to dist(s, v), because dist(s, v) never decreases.
We thus rely on the idea used in the “Monotone” ES tree of Henzinger et al. [10]: we
simply never decrease distance labels. More formally, our distance labels will satisfy the
following relaxed Approximation Invariant: after every update, for every vertex v, either
δ(v) satisfies the standard Approximation Invariant, or δ(v) = δold(v), where δold(v) was
the distance label before the update. By an induction on time, it is easy to see that with
this relaxed Approximation Invariant, we still always have that δ(v) ≤ (1 + ε)dist(s, v). If
δ(v) satisfies the approximation invariant, the proof is the same as in the Approximation
Analysis above. Otherwise, we have δ(v) = δold(v), in which case by our time induction we
have δold(v) ≤ (1 + ε)distold(s, v), and since our updates are guaranteed not to decrease
distances, we have distold(s, v) ≤ dist(s, v) and we are done. J

5 The decremental SSSP algorithm

We now put together all our ingredients to proving the main Theorem 1.

I Lemma 17. For any threshold τ , and depth bound d = nε−1τ−1, we can maintain
approximate distances dist′τ (s, v) in total time O(m log2(n)+n2 log(n)ε−2), with the property
that dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v)) + dε

Proof. First we use Lemma 7 to maintain the threshold graph Gτ in O(m log2(n)) total
update time. Then, setting β = dε

2n , for each edge (u, v) ∈ Gτ , we round the edge weight
w(u, v) up to the nearest multiple of β. It is easy to see that since every shortest path
in the graph contains at most n edges, this weight change incurs an additive error of at
most nβ = dε/2. Since all edge weights are now multiple of β, we can divide all edge
weights by factor of β without changing shortest paths, which results in a scaled graph
Gsτ with integral weights for which we have to maintain shortest distances up to depth
ds = d/β = 2nε−1. We now run WSES(Gsτ , s, ds) in the scaled graph, and then scale
the resulting distances back up by β. Since WSES is a (1 + ε) approximation, we get:
dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v) + dε/2) ≤ (1 + ε)boundddistτ (s, v) + dε.

Recall that the total update time of WSES(Gsτ , s, ds) is O(nds +
∑

(u,v)∈A
ds

εwo(u,v)). We
know that O(nds) = O(n2ε−1). Now, Gsτ contains two types of edges: edges between a vertex

ICALP 2017

44:12 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

v ∈ V and a component vertex c ∈ Vτ \ C, and τ -light edges from the original graph. By
Lemma 7, the total number of component edges ever inserted is O(n log(n)), and because
of our scaling they all have weight at least 1, so their total contribution to the sum is at
most n log(n)ε−1 · ds = O(n2 log(n)ε−2). For edges of the original graph, let us look at the
contribution of all edges (u, v) with levelo(u, v) = i. By Lemmas 4 and 7, the total number
of such edges is at most O(nτ2i). Each such edge has wo(u, v) ≥ 2i, which has been scaled
down by β in Gsτ , and so contributes dsβ

ε2i = d
ε2i to the sum. Thus in total we have that each

level i contributes a total of O(nτdε−1) = O(n2ε−2).
We complete the proof by arguing that there are only log(n) contributing levels. For

simplicity, let us look at the graph Gτ before scaling. First off, edges of weight more than d =
nε−1/τ can be ignored, since we do not care about distances greater than d (we are working
with boundd). Secondly, from the definition of cut-off(v), an edge (u, v) of weight less than
1/(2τ) will always be heavy and so never appear in Gτ : if 2τw(u, v) ≤ 2level(u,v)τ < 1, then
cut-off(u) and cut-off(v) are always at least as large as level(u, v), so (u, v) will remain
heavy. Thus, the only edges that appear in our graph have weight between 1/(2τ) and n/(ετ),
which corresponds to log(n/ε) = O(log(n)) different levels of edge weights. J

I Lemma 18. For any distance bound d, with total update time O(m log2(n) + n2 log(n)ε−2)
we can maintain approximate distances distd(s, v) to all vertices v such that
dist(s, v) ≤ distd(s, v) ≤ boundd(dist(s, v)) + 15εd

Proof. Set τ = n/(εd). By Lemma 17, in total update time O(m log2(n) + n2 log(n)ε−2) we
can maintain values dist′τ (s, v) with distτ (s, v) ≤ dist′τ (s, v) ≤ (1 + ε)boundd(distτ (s, v)) +
εd. Now, By Lemma 5 we have dist(s, v) − 14n/τ ≤ distτ (s, v) ≤ dist(s, v). Plugging
in our value τ = n/(εd) we get dist(s, v) − 14εd ≤ distτ (s, v) ≤ dist(s, v). Thus, we
have dist(s, v) − 14εd ≤ dist′τ (s, v) ≤ boundd(dist(s, v)) + εd. If we return distd(s, v) =
dist′τ (s, v) + 14εd, we get the bound in the lemma. J

It is now easy to prove our main Theorem 1. Observe that the maximum distance we could
possibly see is nW . Thus, for each i = 0, 1, 2, 3...dlog(nW)e, we use Lemma 18 to maintain
δi(v) = dist2i(s, v). By Lemma 18, the total update time is the desiredO(m log2(n) log(nW)+
n2 log(n) log(nW)ε−2). We then output as our final answer: dist′(v) = mini{δi(v)}. Since
for each i we have δi ≥ dist(v), we have dist′(v) ≥ dist(s, v). We now need to show that
dist′(v) ≤ (1 + O(ε))dist(s, v). It is not hard to see that for i = dlog(dist(s, v))e, we end
up with δi(v) ≤ dist(s, v) + 30εdist(s, v), as desired.

6 Conclusions

In this paper we presented the first deterministic decremental SSSP algorithm for weighted
undirected graphs that goes beyond the Even-Shiloach bound of O(mn) total update time.
Previously such a result was only known for unweighted undirected graphs. The two main
open questions are further improving this total update time, and going beyond O(mn)
deterministically for directed graphs. Finally, we recall from the introduction that all existing
deterministic o(mn) results including ours are only able to return approximate shortest
distances, not the paths themselves.

References
1 Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-pairs shortest paths:

Breaking the o(n) barrier. In Approximation, Randomization, and Combinatorial Optimiz-

A. Bernstein 44:13

ation. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Bar-
celona, Spain, pages 1–16, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.1.

2 Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Maintaining all-pairs approx-
imate shortest paths under deletion of edges. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 394–403. Society for In-
dustrial and Applied Mathematics, 2003. URL: http://dl.acm.org/citation.cfm?id=
644108.644171.

3 Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast
query and close to linear update time. In Proceedings of the 50th Annual IEEE Symposium
on Foundations of Computer Science, FOCS, pages 693–702, 2009. doi:10.1109/FOCS.
2009.16.

4 Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest paths:
beyond the o(mn) bound. In Proceedings of the 48th Annual ACM Symposium on Theory
of Computing (STOC), pages 389–397, 2016. doi:10.1145/2897518.2897521.

5 Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source shortest
paths for sparse graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 453–469, 2017. doi:10.1137/1.9781611974782.29.

6 Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining ap-
proximate shortest paths under deletions. In Proceedings of the Twenty-Second An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1355–1365, 2011.
doi:10.1137/1.9781611973082.104.

7 Yefim Dinitz. Dinitz’ algorithm: The original version and even’s version. In Theoretical
Computer Science, Essays in Memory of Shimon Even, pages 218–240, 2006. doi:10.1007/
11685654_10.

8 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the ACM,
28(1):1–4, 1981. doi:10.1145/322234.322235.

9 Monika Henzinger and Valerie King. Fully dynamic biconnectivity and transitive closure.
In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin,
23-25 October 1995, pages 664–672, 1995. doi:10.1109/SFCS.1995.492668.

10 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate
all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. In Proceedings
of the 54th Annual Symposium on Foundations of Computer Science, FOCS, pages 538–547,
2013. doi:10.1109/FOCS.2013.64.

11 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-
source shortest paths on undirected graphs in near-linear total update time. In Proceedings
of the 55th Annual Symposium on Foundations of Computer Science, FOCS, pages 146–155,
2014. doi:10.1109/FOCS.2014.24.

12 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decre-
mental algorithms for single-source reachability and shortest paths on directed graphs. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages
674–683, 2014. doi:10.1145/2591796.2591869.

13 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A subquadratic-time
algorithm for decremental single-source shortest paths. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1053–1072, 2014.
URL: http://dl.acm.org/citation.cfm?id=2634074.2634153.

14 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms
for decremental single-source reachability on directed graphs. In Proceedings of the 42nd In-
ternational Colloquium, ICALP, pages 725–736, 2015. doi:10.1007/978-3-662-47672-7_
59.

ICALP 2017

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dl.acm.org/citation.cfm?id=644108.644171
http://dl.acm.org/citation.cfm?id=644108.644171
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1145/2897518.2897521
http://dx.doi.org/10.1137/1.9781611974782.29
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1007/11685654_10
http://dx.doi.org/10.1007/11685654_10
http://dx.doi.org/10.1145/322234.322235
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2014.24
http://dx.doi.org/10.1145/2591796.2591869
http://dl.acm.org/citation.cfm?id=2634074.2634153
http://dx.doi.org/10.1007/978-3-662-47672-7_59
http://dx.doi.org/10.1007/978-3-662-47672-7_59

44:14 Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

15 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing (STOC), pages 21–30, 2015. doi:10.1145/2746539.
2746609.

16 Monika Rauch Henzinger and Valerie King. Maintaining minimum spanning forests in dy-
namic graphs. SIAM J. Comput., 31(2):364–374, 2001. doi:10.1137/S0097539797327209.

17 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and trans-
itive closure in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, FOCS, pages 81–91, 1999. URL: http://dl.acm.org/citation.cfm?
id=795665.796487.

18 Aleksander Madry. Faster approximation schemes for fractional multicommodity flow prob-
lems via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 121–
130, 2010. doi:10.1145/1806689.1806708.

19 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

20 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1137/S0097539797327209
http://dl.acm.org/citation.cfm?id=795665.796487
http://dl.acm.org/citation.cfm?id=795665.796487
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1137/090776573

Testing Core Membership in Public Goods
Economies∗

Greg Bodwin

MIT EECS, Cambridge, MA, USA
greg.bodwin@gmail.com

Abstract
This paper develops a recent line of economic theory seeking to understand public goods economies
using methods of topological analysis. Our first main result is a very clean characterization of
the economy’s core (the standard solution concept in public goods). Specifically, we prove that a
point is in the core iff it is Pareto efficient, individually rational, and the set of points it dominates
is path connected.

While this structural theorem has a few interesting implications in economic theory, the main
focus of the second part of this paper is on a particular algorithmic application that demonstrates
its utility. Since the 1960s, economists have looked for an efficient computational process that
decides whether or not a given point is in the core. All known algorithms so far run in exponential
time (except in some artificially restricted settings). By heavily exploiting our new structure, we
propose a new algorithm for testing core membership whose computational bottleneck is the
solution of O(n) convex optimization problems on the utility function governing the economy. It
is fairly natural to assume that convex optimization should be feasible, as it is needed even for very
basic economic computational tasks such as testing Pareto efficiency. Nevertheless, even without
this assumption, our work implies for the first time that core membership can be efficiently tested
on (e.g.) utility functions that admit “nice” analytic expressions, or that appropriately defined
ε-approximate versions of the problem are tractable (by using modern black-box ε-approximate
convex optimization algorithms).

1998 ACM Subject Classification J.4 Social and Behavioral Sciences

Keywords and phrases Algorithmic Game Theory, Economics, Algorithms, Public Goods, Coali-
tional Stability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.45

1 Introduction

1.1 Background on Public Goods Economics
A basic question in economics is to understand the forces governing the production of public
goods. A good is public if its use by one person does not reduce its availability to others,
and if none are excluded from using the good. Examples include public parks, research
information, a clean environment, national defense, radio broadcasts, and so on.

Public goods economies were first explicitly abstracted in a classic paper by Samuelson
in 1954 [24], and have since become central objects of study for economists. An important
feature of public goods economies is that they are not well modeled by the individualistic
“best-response dynamics” which govern familiar economic equilibrium concepts such as the
Nash or Walrasian equilibrium. Rather, public goods typically arise as the result of a

∗ A full version of the paper is available at https://arxiv.org/abs/1705.01570.

EA
T

C
S

© Greg Bodwin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 45; pp. 45:1–45:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.45
https://arxiv.org/abs/1705.01570
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Testing Core Membership in Public Goods Economies

communal process – e.g. negotiations, treaties, or taxes – that allow the cost of production to
be amortized over all agents that stand to benefit from the good. Accordingly, public goods
economics inspired the development of cooperative game theory, which seeks to understand
these cooperative dynamics and when an agreement to produce public goods is “stable” or
when it is doomed to fall apart.

What, exactly, does “stability” mean in this context? The most standard notion is
coalitional stability, which is given as follows:

I Definition (Informal). Let a be an outcome in a public goods economy with agents N
(i.e. a describes the amount of work each agent contributes to produce a public good). We
say that a′ is a deviation on a for a nonempty coalition of agents C ⊆ N if no agents in
N \C perform work (i.e. a′i = 0 for all i /∈ C) and all agents in C prefer a′ to a. If there is no
deviation on a for any coalition, then we say a is coalitionally stable. The set of coalitionally
stable outcomes is called the core of the economy.

Since its inception in the late 1800’s [10],1 the core and cooperative game theory in general
have played major roles in many successful economic research programs. More background
can be found in most modern game theory textbooks, e.g. [23, 8].

1.2 (Non-)Algorithmic Properties of Public Goods Economies
An inherent conceptual drawback of coalitional stability is its exponential-size definition. In
other words, for an outcome a to be coalitionally stable, every single one of the 2n−1 possible
coalitions of agents must not have a deviation. Hence, the naive algorithms for testing the
coalitional stability of a must perform computations for all 2n − 1 coalitions, and so they
suffer exponential runtime. Coalitional stability is not a very convincing solution concept if
its implicit notion of “instability” assumes that agents can quickly make exponential time
computations in order to find deviations whenever they exist.

This problem has led economists studying public goods to seek more clever methods for
solving computational problems related to the core of a public goods economy, which avoid
this exponential behavior. Some of the initial work in this vein attacked the closely-related
problem of simply outputting any core outcome. The first such solution appeared in the
1960s, when Scarf [25] proved that “balanced” games have nonempty cores, by means of
an (exponential time) algorithm that outputs a core point and provably always terminates.
Similar results were proved in the setting of public goods economies by Chander and Tulkens
[5] and Elliot and Golub [12]. Meanwhile, followup work has suggested that the slow runtime
of Scarf’s algorithm may be inherent to the problem: Kintali et al. [20] showed that Scarf’s
algorithm cannot be improved to polynomial runtime (unless P = PPAD), and Deng and
Papadimitriou [9] showed that it is NP Complete just to detect whether or not the core is
empty (let alone find a point in the core), even in the simple class of graphical games, and
even when Scarf’s assumption of “balance” is dropped. Other notable hardness results in
this vein have come from Conitzer and Sandholm [7] and Greco et al. [18].

There has also been considerable prior work on the “membership testing” problem of
determining whether a point taken on input is in the core (this is the question addressed in
this paper). Deng and Papadimitriou’s work [9] also implies that membership testing is NP
hard even in the restricted setting of graphical games, although there are straightforward

1 Some of the early work on cooperative game theory used the name contract curve instead of core. The
term core was coined in [15].

G. Bodwin 45:3

efficient algorithms in the further restricted setting where the game is superadditive. Conitzer
and Sandholm [6] showed that membership testing is co-NP complete in games where coalition
values have a “multiple-issue” representation in polynomial space. Faigle et al. [13] showed
that the problem is NP complete in a variant of graphical games where payoffs are given by
minimum spanning trees of subgraphs. Sung and Dimitrov [26] showed co-NP completeness
for membership testing in “hedonic coalition formation games.” Goemans and Skutella
showed NP completeness for both emptiness and membership testing in “facility location
games,” and gave formulations of these problems as LP relaxations [16]. There has been
work on games defined by marginal contribution nets (MC-nets) [19, 11], in which values
attainable by coalitions are determined by succinct logical formulae. Li and Conitzer [22]
studied emptiness testing and membership testing under various classes of formulae, and
obtained various algorithms or NP hardness results depending on the complexity of the
formulae allowed.

1.3 Our Results
A recently popular trend in public goods research has been to model economies as networks,
and then seek to analyze the economy by studying the topological properties of the underlying
“benefits network,” describing the ability of agents to transfer utility to each other at any given
point (see for example [3, 4, 1, 2, 12]). Much of the initial work focused on Nash equilibria
[3, 4, 1, 2] of the economy. A major stride was recently taken by Elliot and Golub [12], who
extended the theory to show that the Lindahl equilibria2 of an economy are precisely the
points that are eigenvalues of their own benefits network. They further discuss connections
between the Lindahl equilibria and the core – in particular, in any standard model (including
theirs) all Lindahl equilibria are also core outcomes [14]. However, they raise an interesting
open question to more precisely characterize the core [17] in a similar vein.

Our first main result achieves this goal. We show that the core can be characterized as
follows:

I Theorem 1. Let a be an outcome in a public goods economy and let Da be the set of
points that no agent prefers to a. Then a is in the core if and only if it is Pareto efficient,
individually rational, and Da is path connected.

(Here, the definition of path connectedness is the standard topological one: for any two points
x,y ∈ Da, there is a continuous function f : [0, 1]→ Rn≥0 satisfying f(0) = x, f(1) = y, and
f(λ) ∈ Da for all 0 ≤ λ ≤ 1. The image of [0, 1] under f is called a path.)

An interesting consequence of this theorem is a precise description of the relationship
between Lindahl equilibria and core outcomes:

I Theorem 2. Assuming that the utility function u is differentiable, the Lindahl equilibria of
a public goods economy are precisely the core points whose core membership can be certified
using only local information.

The proof of this corollary is essentially immediate by combining Theorem 1 with a more
technical phrasing of Elliot and Golub’s result.

While we believe that these two structural theorems hold intrinsic interest, the second
half of this paper is intended to demonstrate their power by an application to the algorithmic

2 The Lindahl equilibria of an economy are the competitive equilibria that would be reached if market
externalities were truthfully reported and then bought and sold on an open market. A formal definition
is not necessary to read this paper, but can be found in e.g. [23, 8].

ICALP 2017

45:4 Testing Core Membership in Public Goods Economies

problem discussed earlier. We have previously suggested the intuition that the algorithmic
core membership testing problem is hard because the naive algorithms must check an
exponential number of coalitions for a potential deviation. However, Theorem 1 lets us avoid
this brute-force behavior: after checking for Pareto efficiency and individual rationality (which
is quite easy), we are left only with the task of checking whether or not Da is path-connected.
The complexity of this task is non-obvious, but we show that it can be done fairly efficiently,
yielding the following result:

I Theorem 3. Given an outcome a in an n-agent public goods economy, there is an algorithm
that decides whether or not a is in the core of a public goods economy. The computational
bottleneck in this algorithm is the solution of O(n) convex programming problems on the
utility function of the economy.

Hence we essentially have the first polynomial-time tester for coalitional stability in an
unrestricted public goods economy, up to the implementation of the necessary convex
programming oracle. It is fairly natural in our economic metaphor to assume that convex
programming should be tractable: it corresponds to the negotiation process of a group of
agents trying to determine how well they can maximize a joint utility function as a group.
If even this is impossible, then it is essentially hopeless to efficiently test core membership.
One cannot even test the more basic property of Pareto efficiency, a necessary step towards
testing core membership, without assuming some computational power along these lines.

Even so, if one does not wish to introduce such assumptions, Theorem 3 implies that
several broad special cases of membership testing have efficient algorithms. The most obvious
of these is when the utility function and its derivative can be described by a “nice” analytic
function on which the standard derivative-based method for exact convex optimization goes
through. Less obviously, if convex optimization really is hard for the given utility function
(or the utility function of the economy is unknown), one can employ modern ε-approximate
convex optimization solvers, which treat the utility function as a black box that can be
queried, to solve certain natural ε-approximate relaxations of the core membership testing
problem. We discuss this point in the conclusion of the paper, since it is easier to be specific
here once the economic model is familiar.

We consider it somewhat surprising that these algorithmic results are possible, given a
general dearth of positive results in the area. Moreover, the approach taken by the algorithm
is fairly intuitive and seems to plausibly reflect practical behavior. Starting with the grand
coalition, we show (via Theorem 1) that we can either determine that the current coalition
has a deviation, or we can identify a “least-valuable player” who is formally the least likely
agent to participate in a deviation. We then kill this agent and repeat the analysis on the
survivors. After n rounds, we have either killed every agent (and thus determined that the
given point is coalitionally stable), or we have explicitly found a surviving coalition with a
deviation. It is quite reasonable to imagine that a practical search for a deviating coalition
might employ a “greedy” method of iteratively killing the agent who seems to be least pulling
their weight at the current agreement; an insight of Theorem 3 is that this search heuristic is
in fact thorough and will provably produce the right answer.

1.4 Comparison with Prior Work
Elliot and Golub [12] recently studied the Lindahl equilibria in public goods economies, with
a focus on characterizing the set of solutions rather than algorithmically computing/testing
them. More specifically, they frame the typical model of public goods economies in the
language of networks, and use this to equate the eigenvectors of the “benefits network” with

G. Bodwin 45:5

the Lindahl equilibria of the economy. A less general version of this networks interpretation
was implicitly used in several other papers concerning Nash equilibria of public goods
economies, for example [3, 4, 1, 2]. In this paper, we will adopt the more general networks-
based phrasing of public goods economies used by Elliot and Golub, and we will rely on this
insight in a critical way to prove our main results.

Per the discussion above, there has been lots of prior work on the algorithmic properties
of the core, largely intended to confirm/refute the bounded rationality argument in some
economic model. Three questions are commonly studied:

The membership testing problem (discussed above): is a given outcome in the core of the
game?
The emptiness testing problem: is the core empty?
The member finding problem: output any solution in the core of the game (if nonempty).

We remark that the latter two problems are already closed in public goods economies:
Elliot and Golub [12] show that the core is never empty except in certain degenerate cases,
and it can be seen from the model below that the member finding problem is essentially
identical to the general problem of convex optimization (which is well beyond the scope of
this economically-minded research program). Hence, this work is entirely focused on the
membership testing problem.

In order to frame these three questions as proper computational problems, past work has
commonly defined a “compressed” cooperative game that allows the payoffs achievable by all
2n possible coalitions to be expressed on only poly(n) input bits. For example, in a seminal
paper by Deng and Papadimitriou introducing this line of research [9], the authors studied
graphical games in which weighted edges are placed between agents and the value attainable
by a coalition is equal to the total weight contained in its induced subgraph. Upper and
lower bounds are often obtained for these problems by exploiting particular features of the
compression scheme. By contrast, our goal is to assume as little structure for the problem
as possible (since our main results are upper bounds, this is the more general approach).
Thus, we allow the economy to be governed by an arbitrarily complex utility function, which
does not need to have a succinct representation, or even any algorithmic representation at
all. Instead, we allow ourselves black-box constant-time query access to the utility function,
which acts as an oracle and thus may have arbitrary complexity. The goal in this substantial
generalization is to ensure that our results reveal structure of the core itself, rather than the
nature of an assumed compression.

2 The Model and Basic Definitions

2.1 Notation Conventions

Given vectors a,a′ ∈ Rn, we will use the following (partial) ordering operations:
a ≥ a′ means that ai ≥ a′i for all 1 ≤ i ≤ n,
a > a′ means that ai > a′i for all i ≤ i ≤ n, and
a a′ means that ai ≥ a′i for all 1 ≤ i ≤ n, and aj > a′j for some 1 ≤ j ≤ n.

Given a subset C ⊆ {1, . . . , n} and a vector v ∈ Rn, we write vC to denote the restriction
of v to the indices in C; that is, vC is the |C| length vector built by deleting the entry vi
from v for each i /∈ C.

We use 0,1 as shorthands for the vectors 〈0, . . . , 0〉, 〈1, . . . , 1〉 respectively.

ICALP 2017

45:6 Testing Core Membership in Public Goods Economies

2.2 Economic Model
We adopt the terminology of Elliot and Golub [12] when possible. The salient pieces of our
economy are defined as follows:

The set of agents in the economy is given by N = [n] = {1, . . . , n}. A nonempty subset
of agents in the economy C ⊆ N is called a coalition. The coalition C = N is called the
grand coalition.
Each agent i chooses an action ai, which can be any real number in the interval [0, 1].
An outcome or point is a vector a ∈ Rn built by concatenating the actions of all agents.
There is a continuous utility function u : [0, 1]n → [0, 1]n, which maps outcomes to a
level of “utility” for each agent. In particular, agent i prefers outcome a to outcome a′ iff
ui(a) > ui(a′). The utility function has the following two properties:

Positive Externalities: whenever a a′ with ai = a′i, we have ui(a) > ui(a′). This
assumption is what places us in the setting of public goods economies; intuitively, it
states that an agent gains utility when other agents increase their production of public
goods.
Convex Preferences: we assume that u is concave.3 That is, for any outcomes a,a′
and any λ ∈ [0, 1], we have u(λa + (1− λ)a′) ≥ λu(a) + (1− λ)u(a′). This standard
assumption corresponds to the economic principle of diminishing marginal returns.

2.3 Game Theory Definitions
We recap some well-known definitions from the game theory literature.

IDefinition 4 (Pareto Efficiency). An outcome a is a Pareto Improvement on another outcome
a′ if u(a) u(a′). An outcome a is Pareto Efficient if there is no Pareto improvement on a.
The set of Pareto efficient outcomes is called the Pareto Frontier.

The main solution concept that will be discussed in this paper is the core:

I Definition 5 (Deviation). Given an outcome a, an outcome a′ is a deviation from a for a
coalition C if a′N\C = 0 and uC(a′) > uC(a).

I Definition 6 (The Core). An outcome a is in the core of the economy if no coalition has a
deviation from a (equivalently, a is coalitionally stable).

The next definition that will be useful in our proofs is the projected economy:

I Definition 7. Given an economy described by agents N and a utility function u, the
projected economy for a coalition C is the economy described by agents N and utility function
uC(aC), where

uC(aC) := uC(aC · 0N\C).

In other words, the new |C|-dimensional utility function uC is obtained by fixing the actions
of N \C at 0, allowing any action for C, and then using the old utility function u to determine
the utilities for C in the natural way. We suppress the superscript uC when clear from
context.

3 Confusingly, when u is mathematically concave, one says that preferences are “economically convex” –
hence, convex preferences.

G. Bodwin 45:7

I Definition 8. The dominated set of a, denoted Da, is defined as:

Da := {a′ | u(a) ≥ u(a′)} .

In other words, Da is the set of points that no agent prefers to a. Note that this is an
unusually weak definition of dominance, in the sense that (for example) Da contains a itself.

3 A Topological Characterization of the Core

Our goal in this section is to prove the following structural theorem:

I Theorem 9. Let a be an outcome in a public goods economy. Then a is in the core if and
only if it is Pareto efficient, individually rational, and Da is path connected.

The vast majority of the technical depth of this theorem is tied up in the implication

a is in the core −→ Da is path connected.

The remainder of this forwards implication (a is in the core→ neither the grand coalition nor
any singleton coalition has a deviation from a) is extremely straightforward: a is individually
rational iff each agent i prefers it to the outcome they can guarantee acting alone, which
coincides with the notion that the singleton coalition {i} has no deviation from a. In our
model, Pareto efficiency coincides with the notion that the grand coalition N has no deviation
from a:

I Claim 10. Let a be an outcome. If there is an outcome a′ satisfying a a′ (a � a′) and
u(a) u(a′), then there is an outcome a′′ satisfying a > a′′ (a < a′) and u(a) > u(a′′).

Proof. We will prove the claim for the case a a′; the case a � a′ follows from a symmetric
argument.

Choose an agent i for whom ui(a) > ui(a′), and then slightly increase ai. Since u is
continuous, if we increase ai by a sufficiently small amount then we still have ui(a) > ui(a′).
Additionally, by positive externalities we then have u(a) > u(a′). We can then slightly
increase the actions of all agents, such that a > a′, but with sufficiently small increases we
do not destroy the property that u(a) > u(a′). J

In this section, we will first give a complete proof of the (easier) backwards implication
of Theorem 9, and then we sketch the proof of the forwards implication. Due to space
constraints, a full proof of the forwards implication can be found in the full version of this
paper.

3.1 Backwards Implication of Theorem 9
First:

I Lemma 11. If a is Pareto efficient, then every deviation a′ from a satisfies a′ � a.

Proof. Let I be the set of agents i for which a′i > ai, and suppose towards a contradiction
that I is nonempty.

Consider the point a′′ defined such that a′′N\I := aN\I and a′′I := a′I . We then have
uN\I(a′′) > uN\I(a) by positive externalities, since these points differ only in that the
(nonempty) coalition I has increased their actions. We also have uI(a′′) ≥ uI(a′) > uI(a),
where the first inequality follows from positive externalities (since these points differ only in

ICALP 2017

45:8 Testing Core Membership in Public Goods Economies

that the coalition N \ I has weakly increased their action), and the second follows from the
fact that a′ is a deviation from a for a coalition C with I ⊆ C (since aI > aI).

We thus have u(a′′) > u(a), which contradicts the fact that a is Pareto efficient. Thus I
is empty and the lemma follows. J

Second:

I Lemma 12. Suppose there is a path P ⊂ Rn≥0 with endpoints x,y such that for any p ∈ P
we have u(p) ≤ u(a). If a′ is a deviation from a for some coalition C satisfying a′ � x,
then a′ also must satisfy a′ � y.

Proof. We walk along P from x towards y until we find the first point p with pi = a′i 6= 0
for some i. If we reach y before we find any such point p, it follows that a′i = 0 or a′i < xi
for all i, and so a′ � x, as claimed. Otherwise, we find such a point p, and we argue towards
a contradiction.

We have p 6= a′, since uC(a′) uC(a) but uC(p) ≤ uC(a). By construction we then
have p a′. Since pi = a′i, by positive externalities we then have ui(p) > ui(a′). Since
a′i 6= 0 we have i ∈ C, and since a′ is a deviation for C, this implies ui(a′) > ui(a). We then
have ui(p) > ui(a), which contradicts the assumption that u(p) ≤ u(a). Therefore no such
point p may be found. J

We can now show:

Proof of Theorem 9, Backwards Implication. Assume that a is robust to deviations by the
grand coalition or any singleton coalition, and that Da is path connected. Our goal is now
to show that a is in the core.

By Claim 10, the property that the grand coalition has no deviation from a implies
that a is Pareto efficient. Thus, by Lemma 11 any deviation a′ from a satisfies a′ � a.
Since no singleton coalition has a deviation from a we have 0 ∈ Da, and since Da is path
connected there is a path contained in Da with endpoints a,a. Thus, by Lemma 12, we
further have that a deviation a′ must satisfy a′ � 0. Since no such point exists, it follows
that no deviations from a exist, and so a is a core outcome. J

3.2 Sketch of Forwards Implication of Theorem 9
We will denote by dvu(a) the one-sided directional derivative of u at a in the direction v.
In other words:

dvu(a) := lim
λ→0+

u(a + λv)− u(a)
λ

.

A nontrivial but standard fact from analysis is that, since u is concave and well-defined
everywhere, this limit is well-defined for all a, except when excluded by a boundary condition
(e.g. if vi < 0 but ai = 0 for some agent i) – see [21].

Our key lemma is:

I Lemma 13. At any outcome 0 < a < 1, exactly one of the following three conditions
holds:
1. There exist directions vup > 0,vdown < 0 such that dvup u(a) > 0 and dvdown

u(a) < 0,
2. There exist directions vup > 0,vdown < 0 such that dvup

u(a) ≤ 0 and dvdown
u(a) ≤ 0,

or
3. There exist directions vup > 0,vdown < 0 such that dvup

u(a) < 0 and dvdown
u(a) > 0.

G. Bodwin 45:9

The three categories of Lemma 13 carry a useful geometric intuition. Specifically:

I Lemma 14. The points in the second category of Lemma 13 are precisely the Pareto
Frontier.

The proofs of these two lemmas are quite technical, and can be found in the full version of
this paper. With these in mind, we define

I Definition 15. We will say that a point in the first category of Lemma 13 is below the
Pareto Frontier, and a point in the third category of Lemma 13 is above the Pareto Frontier
(and by Lemma 14, the second category of points in Lemma 13 are on the Pareto Frontier).

The geometric intuition behind this definition is that, starting from a point x in the first
category, one can continuously follow the gradient vup to eventually obtain a Pareto efficient
Pareto improvement x′ > x (we do not prove this fact formally; it is perhaps useful intuition
but not essential to our main results). Similarly, starting from x in the third category, we
can continuously follow the gradient vdown to obtain a Pareto efficient Pareto improvement
x′ < x.

We then show:

Proof Sketch of Theorem 9, Forwards Implication (Proof in full version). Suppose a is a
core outcome, and our goal is to show path connectedness of Da. First, we note that 0 ∈ Da,
since otherwise a singleton coalition can deviate from a (and a is in the core, so no such
deviation is possible). To show path connectedness of Da, we consider an arbitrary point
x ∈ Da and construct a path in Da from x to 0, thus implying that any two such points
x,x′ ∈ Da have a connecting path in Da via 0.

We show the existence of the x 0 path with a careful repeated application of Lemma 13.
Informally speaking, we progressively slide x > 0 a little bit closer to 0 while maintaining
the property x ∈ Da. If we ever hit xi = 0 for some agent i, then we restrict our attention to
the projected economy discluding agent i and continue. If we eventually exclude all agents in
this manner, then we have x = 0 and the process is complete. Otherwise, suppose towards a
contradiction that at some x, we cannot slide x any closer to 0 while maintaining x ∈ Da.
We make two observations here: (1) x must be above the Pareto frontier (else we could
slide x in the appropriate direction vdown) and so it belongs to the third; and (2) for all
agents i still being considered, we have ui(x) = ui(a) (else, by the positive externalities
assumption, we can unilaterally decrease the action of agent i without destroying x ∈ Da).
Hence, by moving x slightly in the direction vdown (which improves the utility of all agents
being considered), we have ui(x) > ui(a) for all agents being considered, and so the new x is
a deviation from a. Since we have assumed that a is a core outcome, this is a contradiction,
and so the process of sliding x towards 0 can never get stuck in this way. J

3.3 Connection to Lindahl Equilibria
Before proceeding towards our algorithm, we take a brief detour in this subsection to observe
an interesting implication of Theorem 9 that helps illustrate its broader appeal. Elliot and
Golub [12] show the following result:

I Theorem 16 ([12]). The Lindahl equilibria of a public goods economy with a differentiable
utility function are precisely the outcomes a for which dau(a) = 0.

They phrase this theorem in different language related to the “benefits network” of the
economy, but this formulation will suit our purposes better. We refer the reader to their
paper for a more in-depth discussion of the economic role of the Lindahl equilibria.

ICALP 2017

45:10 Testing Core Membership in Public Goods Economies

Combining Theorem 16 with our machinery for Theorem 9, we obtain:

I Theorem 17. In a public goods economy with a differentiable utility function, the Lindahl
equilibria are precisely the core outcomes a whose membership can be certified by examining
only local information at a.

The proof of this theorem will use Theorem 16 as a black box, and so we will not actually
need to appeal to the formal definition of the Lindahl equilibria in its proof.

Proof. If a is a Lindahl equilibrium, then by Theorem 16 we have da u(a) = d−a u(a) = 0
(the first equality comes from the assumption that u is differentiable). We claim that any
a satisfying da u(a) = d−a u(a) = 0 is in the core, and thus its core membership can be
verified by examining only these local derivatives. First, note that a is Pareto efficient by
Lemma 14. Therefore, by Lemma 11, any possible deviation a′ from a satisfies a′ � a. Now
let P be the line segment from 0 to a. By the assumption of concavity and the fact that
d−a u(a) = 0, we have u(p) ≤ u(a) for all p ∈ P . Thus, by Lemma 12, we have a′ � 0 and
so a′ cannot exist and a is a core outcome.

Now suppose that a is not a Lindahl equilibrium, and so d−a u(a) 6= 0. If we have
d−a u(a) � 0, then we have da u(a) 0 (by differentiability) which implies that a is not
Pareto efficient, and hence is not a core outcome. On the other hand, suppose we have
d−a u(a) 0. In this case, it is impossible to distinguish u from the utility function u′ that
is affine-linear everywhere and agrees with u at a using solely local information. Note that a
is not in the core of the economy defined by u′, since we have ui(0) > ui(a) for whichever
agent i satisfies d−a ui(a) > 0. Thus, if a is in fact in the core of the economy defined
by u, we will need to inspect non-local information about the economy to differentiate u
from u′. J

We note that it is possible to prove Theorem 17 as a corollary directly from Theorem 9, but
this proof using the underlying machinery is simpler.

4 Algorithm for Testing Core Membership

Our main algorithmic result is:

I Theorem 18. Given an outcome a in a public goods economy, there is an algorithm (in
the real-RAM model) that decides whether or not a is in the core by solving O(n) convex
optimization problems and using O(n) additional computation time.

The algorithm is fairly straightforward. We maintain an “active coalition” CA throughout,
as well as a proof that any agent i /∈ CA must play action a′i = 0 in any deviation a′ from a.
It is thus safe to assume that any deviating coalition C satisfies C ⊆ CA. Initially CA ← N ,
so this invariant is trivially satisfied. After each round, we either find a deviation for CA
from a, or we remove one new agent from CA. Thus, if we make it n rounds without finding
a deviation, then we have CA = ∅ and so no deviation from a is possible.

4.1 Preprocessing: Confirm Pareto Efficiency of a
Before starting the main algorithm, we run the following two programs, with the purpose of
testing whether or not a is Pareto efficient.

I Program 1. Choose v to maximize min
i
dv ui(a)

Subj. to v ≥ 0,
∑
i

vi = 1

G. Bodwin 45:11

I Program 2. Choose v to maximize min
i
dv ui(a)

Subj. to v ≤ 0,
∑
i

vi = 1

Note that the concavity of the optimized function f(v) := mini dv ui(a) is immediate from
the concavity of u. By Lemma 13, we may immediately conclude that a is not Pareto efficient
(and thus not in the core) iff either of these programs optimizes at a point v∗ satisfying
f(v∗) > 0. Otherwise, we proceed with the knowledge that a is Pareto efficient. A key
advantage of this is that, by Lemma 11, we may now restrict our search for a deviation
a′ to the bounded box 0 ≤ a′ ≤ a. This opens up the ability to use convex programming
algorithms, which typically require bounded domains, in the remainder of the algorithm.4

4.2 Main Loop: Shrinking CA

Each of the n rounds of the algorithm consists of three steps. First, we restrict our attention
to the projected economy for the coalition CA. Second, we run the following program:

I Program 3. Choose x to maximize min
i
ui(x)− ui(a)

Subj. to 0 ≤ x ≤ aCA

Let x∗ be a maximizing point of Program 3. We have:

I Lemma 19. Either uCA(x∗) > uCA
(a) or uCA(x∗) ≤ uCA

(a), and x∗ is Pareto efficient.5

Proof. First we argue Pareto efficiency. If x′ is a Pareto improvement on x∗, then by
Claim 10 there is another point x′′ with u(x′′) > u(x∗). This x′′ would be a superior
maximizing point for Program 3, so there can be no Pareto improvement on x∗.

Next, let i := arg maxi ui(x∗)−ui(a) and j := arg minj uj(x∗)−uj(a). If ui(x∗)−ui(a) >
uj(x∗)−uj(a), then (by the same argument used in Claim 10) we can again obtain a superior
maximizing point x∗∗ by slightly increasing the action of agent i from x∗. Thus we have
ui(x∗)−ui(a) = uj(x∗)−uj(a), and it follows that either u(x∗) > u(a) or u(x∗) ≤ u(a). J

In the former case where u(x∗) > u(a), it follows that x∗ is a deviation from a for the
coalition CA, so we may halt the algorithm. Otherwise, we have u(x∗) ≤ u(a). We then
observe:

I Lemma 20. If uCA(x∗) ≤ uCA
(a), then in the full (non-projected) economy, any deviation

a′ from a for a coalition C ⊆ CA satisfies a′CA
� x∗.

Proof. The deviation a′ satisfies a′N\C = 0 and uC(a′) > uC(a) ≥ uC(x∗). It follows that
a′C is also a deviation for C from x∗ in the projected economy for CA. The claim is then
immediate from Lemma 11. J

One step remains. We run:

I Program 4. Choose v to maximize min
i
dv ui(x∗)

Subj. to v ≤ 0,
∑
i

vi = 1

4 This detail is precisely why we use Programs 1 and 2 to check the Pareto efficiency of a, rather than the
ostensibly simpler method of searching for x∗ that maximizes mini ui(x∗) − ui(a): the latter method
requires a search for x∗ over an unbounded search space, which rules out many popular methods of
convex optimization that we wish to keep available.

5 Note that these statements hold specifically in the projected economy for CA.

ICALP 2017

45:12 Testing Core Membership in Public Goods Economies

Algorithm 1: Testing Core Membership of a.
1 Let v∗1 ← output of Program 1;
2 Let v∗2 ← output of Program 2;
3 if dv∗

1
u(a) > 0 or dv∗

1
u(a) > 0 then

4 return “a is not in the core” ;
5 end
6 CA ← N ;
7 while CA 6= ∅ do
8 x∗ ← output of Program 3;
9 if uCA(x∗) > uCA

(a) then
10 return “a is not in the core” ;
11 end
12 v∗ ← output of Program 4;
13 CA ← CA \ {arg mini∈CA

x∗i /v
∗
i };

14 end
15 return “a is in the core” ;

Let v∗ be a point that maximizes Program 4. We have

I Lemma 21.

dv∗ u(x∗) ≤ 0 .

The proof is very similar to the proof of Lemma 19, so we omit it for now. We then finally
have:

I Lemma 22. Let i := arg mini x∗i /v∗i . Then any deviation a′ from a has a′i = 0.

Proof. By Lemma 20, we have a′CA
� x∗. Let P be the line segment starting at x∗, extending

in the direction v∗ until a point p∗ is reached where p∗i = 0 for some agent i; note that this
will specifically be i = arg mini x∗i /v∗i . By concavity, all p ∈ P satisfies u(p) ≤ u(x∗) ≤ u(a).
Noting once again that a′CA

is a deviation for C from x∗ in the projected economy for CA, it
follows from Lemma 12 that a′CA

� p∗, and so a′i = 0. J

With this in mind, the final step in the loop is to delete i from CA and repeat. After n
repetitions, we have CA = ∅, so we may halt the algorithm and report that a is in the core.

4.3 Algorithm Pseudocode
To recap the algorithm, which has been interspersed with proofs of correctness above, we
give full pseudocode here.

4.4 Conclusion
Our algorithm implies that core membership testing is efficient under any utility function
that admits quick solving of convex programs as described above. However, it may still be
desirable to test core membership as best as possible when the underlying utility function
is either unknown or badly behaved and so exact convex optimization is impossible. Our
algorithm can indeed be adapted to this effect, with a few significant points of caution, by
substituting in modern approximate optimization algorithms. Due to space constraints, we
defer a discussion of this point to the full version of the paper.

G. Bodwin 45:13

References
1 N. Allouch. The cost of segregation in social networks. Queen Mary Working Paper, 2013.
2 N. Allouch. On the private provision of public goods on networks. Journal of Economic

Theory, pages 527–552, 2015.
3 C. Ballester, A. Calvó-Armengol, and Y. Zenou. Who’s who in networks. wanted: The key

player. Econometrica, 74:1403–1417, 2006.
4 Y. Bramoulle and R. Kranton. Public goods in networks. Journal of Economic Theory,

135:478–494, 2007.
5 Parkash Chander and Henry Tulkens. The core of an economy with multilateral environ-

mental externalities. International Journal of Game Theory, 26:379–401, 1997.
6 V. Conitzer and T. Sandholm. Computing shapley values, manipulating value division

schemes, and checking core membership in multi-issue domains. In Proc. National Confer-
ence on Artificial Intelligence (AAAI), pages 219–225, 2004.

7 V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core based on
synergies among coalitions. Artificial Intelligence, pages 607––619, 2006.

8 Imma Curriel. Cooperative Game Theory and Applications. Springer US, 1 edition, 1997.
9 X. Deng and C. Papadimitriou. On the complexity of cooperative solution concepts. Math-

ematics of Operations Research, 19:257, 1994.
10 F.Y. Edgeworth. Mathematical psychics: An essay on the mathematics to the moral

sciences. Reprinted in Diamond, M.A., 1881.
11 E. Elkind, L.A. Goldberg, P.W. Goldberg, and M. Wooldridge. A tractable and expressive

class of marginal contribution nets and its applications. Math. Log. Q., 2009.
12 Matthew Elliot and Benjamin Golub. A network approach to public goods. In Proc. 14th

Electronic Commerce (EC), pages 377–378, 2013.
13 U. Faigle, S. Fekete, W. Hochstattler, and W. Kern. On the complexity of testing mem-

bership in the core of min-cost spanning trees. Internat. J. Game Theory, 26:361––366,
1997.

14 D. K. Foley. Lindahl’s solution and the core of an economy with public goods. Econometrica,
38:66–72, 1970.

15 D.B. Gillies. Solutions to general non-zero-sum games. Contributions to the Theory of
Games IV, pages 47–85, 1959.

16 M. Goemans and M. Skutella. Cooperative facility location games. In Symposium on
Discrete Algorithms (SODA), pages 76–85, 2000.

17 Benjamin Golub. Personal correspondence, 2012.
18 G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. On the complexity of the core over

coalition structures. In International Joint Conference on Artificial Intelligence (IJCAI),
2011.

19 S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme
for coalitional games. In Electronic Commerce (EC), pages 193–202, 2005.

20 S. Kintali, L. Poplawski, R. Rajaraman, R. Sundaram, and S. Teng. Reducibility among
fractional stability problems. In Proc. 50th FOCS, pages 283–292, 2009.

21 Jonathan Lewin. An interactive introduction to mathematical analysis. Cambridge Univer-
sity Press, 2003.

22 Y. Li and V. Conitzer. Complexity of stability-based solution concepts in multi-issue and
mc-net cooperative games. In Proc. 2014 international conference on Autonomous agents
and multi-agent systems (AAMAS). International Foundation for Autonomous Agents and
Multiagent Systems, 2014.

23 Bezalel Peleg and Peter Sudhölter. Introduction to the Theory of Cooperative Games.
Springer, 2 edition, 10 2007.

ICALP 2017

45:14 Testing Core Membership in Public Goods Economies

24 Paul Samuelson. The pure theory of public expenditure. Review of Economics and Statistics,
37(4):350–356, 1954.

25 H. Scarf. The core of an n person game. Econometrica, 1967.
26 S. Sung and D. Dimitrov. On core membership testing for hedonic coalition formation

games. Operations Research Letters, 35:155–158, 2007.

Revenue Maximization in Stackelberg Pricing
Games: Beyond the Combinatorial Setting
Toni Böhnlein1, Stefan Kratsch2, and Oliver Schaudt3

1 Universität zu Köln, Institut für Informatik, Cologne, Germany
boehnlein@zpr.uni-koeln.de

2 Universität Bonn, Institut für Informatik, Bonn, Germany
kratsch@cs.uni-bonn.de

3 Universität zu Köln, Institut für Informatik, Cologne, Germany
schaudto@uni-koeln.de

Abstract
In a Stackelberg Pricing Game a distinguished player, the leader, chooses prices for a set of items,
and the other players, the followers, each seeks to buy a minimum cost feasible subset of the
items. The goal of the leader is to maximize her revenue, which is determined by the sold items
and their prices. Most previously studied cases of such games can be captured by a combinatorial
model where we have a base set of items, some with fixed prices, some priceable, and constraints
on the subsets that are feasible for each follower. In this combinatorial setting, Briest et al. and
Balcan et al. independently showed that the maximum revenue can be approximated to a factor
of Hk ∼ log k, where k is the number of priceable items.

Our results are twofold. First, we strongly generalize the model by letting the follower min-
imize any continuous function plus a linear term over any compact subset of Rn≥0; the coefficients
(or prices) in the linear term are chosen by the leader and determine her revenue. In particular,
this includes the fundamental case of linear programs. We give a tight lower bound on the rev-
enue of the leader, generalizing the results of Briest et al. and Balcan et al. Besides, we prove
that it is strongly NP-hard to decide whether the optimum revenue exceeds the lower bound by
an arbitrarily small factor. Second, we study the parameterized complexity of computing the
optimal revenue with respect to the number k of priceable items. In the combinatorial setting,
given an efficient algorithm for optimal follower solutions, the maximum revenue can be found by
enumerating the 2k subsets of priceable items and computing optimal prices via a result of Briest
et al., giving time O(2k|I|c) where |I| is the input size. Our main result here is a W[1]-hardness
proof for the case where the followers minimize a linear program, ruling out running time f(k)|I|c
unless FPT = W[1] and ruling out time |I|o(k) under the Exponential-Time Hypothesis.

1998 ACM Subject Classification G.2.0 [Discrete Mathematics] General

Keywords and phrases Algorithmic pricing, Stackelberg games, Approximation algorithms, Rev-
enue maximization, Parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.46

1 Introduction

Pricing problems are fundamental in both economics and mathematical optimization. In
this paper we study such pricing problems formulated as games, which are usually called
Stackelberg Pricing Games [18]. In our setting, in order to maximize her revenue one player
chooses prices for a number of items and one or several other players are interested in buying
these items. Following the standard terminology, the player to choose the prices is called the
leader while the other players are called followers. Depending on the follower’s preferences,

EA
T

C
S

© Toni Böhnlein, Stefan Kratsch, and Oliver Schaudt;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Revenue Maximization in Stackelberg Pricing Games

Figure 1 An instance of the Stackelberg Minimum Spanning Tree Game.

computing optimal prices can be a computational non-trivial problem. In a setting where
followers have valuations over individual items only, the problem is simple. If, however,
valuations become more complex, e.g., over whole subsets of items, pricing problems become
much harder–also in a formal sense.

Largely the literature has focused on what we call the combinatorial setting: there is a
set Y of items and one follower seeks to buy a feasible subset. Some of the items have fixed
costs, the others have prices that are chosen by the leader. If the follower buys a feasible
subset S ⊆ Y of the items, he has to pay the sum of the fixed costs of the elements of S, plus
the leader’s prices of the bought elements. The leader’s revenue is the sum of the prices of
the priceable items in S. This can also be captured by defining a solution space X containing
0/1-vectors corresponding to the feasible subsets S of Y . The goal of the follower is then to
minimize a given additive function f : X → R that depends on both fixed and leader-chosen
prices.

So-called Stackelberg Network Pricing Games became popular when Labbé et al. [15]
used them to model road toll setting problems. In this game, the leader chooses prices for a
subset of priceable edges in a network graph while the remaining edges have fixed costs. Each
follower has a pair of vertices (s, t) and wants to buy a minimum cost path from s to t, taking
into account both the fixed costs and the prices chosen by the leader. The work of Labbé
et al. led to a series of studies of the Stackelberg Shortest Path Game. Roche et al. [16]
showed that the problem is NP-hard, even if there is only one follower, and it has later been
shown to be APX-hard [5, 14]. More recently, other combinatorial optimization problems
were studied in their Stackelberg pricing version. For example, Cardinal et al. [9, 10] studied
the Stackelberg Minimum Spanning Tree Game, proving APX-hardness and giving some
approximation results. Moreover, a special case of the Stackelberg Vertex Cover Game in
bipartite graphs has been shown to be polynomially solvable by Briest et al. [7].

To get more familiar with the setting, we briefly discuss an example of the Stackelberg
Minimum Spanning Tree Game.

I Example 1. The left hand side of Figure 1 depicts an instance of the problem. Here
the leader can choose the prices p1, p2 and p3 for the dashed edges, while the solid edges
have fixed costs as displayed. To motivate the problem, think of the vertices as hubs in a
network and of the edges as data connections. In this scenario, the followers are Internet
Service Providers and want to connect all the hubs at minimum cost, thus want to compute
a minimum spanning tree. The leader owns the dashed connections and wants to set prices,
that yield a large revenue. Furthermore, there are competitors who own the solid connections
and it is known how much they charge for their usage.

On the right hand side, an optimal pricing (p1 = p2 = 5 and p3 = 4) and a corresponding
minimum spanning tree are depicted. Thus the leader’s revenue amounts to 9, which can be
verified to be maximum. Observe that we can compute a minimum spanning tree without

T. Böhnlein, S. Kratsch, and O. Schaudt 46:3

any priceable edges; otherwise the leader’s revenue is unbounded. In this example, the total
cost of such a minimum spanning tree is 17. In contrast, if we set all prices to 0 and let the
follower compute a minimum spanning tree, it has a total cost of 8. The difference of these
two values, 17− 8 = 9, is an upper bound on the revenue of the leader, as explained later.
This upper bound, which we denote by R, is sometimes called the optimal social welfare and
will be important for our approximation result.

An important contribution to the study of Stackelberg Games was the discovery by Briest
et al. [7]. They show that the optimal revenue can be approximated surprisingly well using
a single-price strategy. For a single-price strategy the leader sets the same price for all of
her priceable items. Basically, their result says the following: In any Network Pricing Game
with k priceable items, there is some λ ∈ R≥0 such that, when assigning the price of λ to all
priceable items at once, the obtained revenue is only a factor of Hk away from the optimal
revenue. Here, Hk =

∑k
i=1 1/i denotes the k-th harmonic number. This discovery has been

made independently, in a slightly different model, by Balcan et al. [2]. Actually, in both
papers [2, 7] a stronger fact is proven: The single-price strategy yields a revenue that is at
least R/Hk, where R is a natural upper bound on the optimal revenue. The definition of R
was sketched in the example above, and is formally laid out later.

Our results. Our work focuses on pushing the knowledge on Stackelberg Pricing Games
beyond the well-studied combinatorial setting, in order to capture more complex problems of
the leader. This is motivated by the simple fact that the combinatorial setting is too limited
to even model, e.g., a follower that has a minimum cost flow problem—a crucial problem in
both, combinatorial optimization and algorithmic game theory. More generally, we might
want to be able to give bounds and algorithms in the case when the follower has an arbitrary
linear or even convex program. For example, the follower might have a production problem
in which he needs to buy certain materials from the leader, but such pricing problems haven’t
been discussed in the literature so far.

We prove an approximation result that applies even to a setting generalizing linear and
convex programs. In our model, the follower minimizes a continuous function f over a
compact set of feasible solutions x ∈ X ⊆ Rn≥0. For some of the variables, say x1 up to xk,
the leader can choose a price vector p ∈ Rk. Now the follower chooses a vector x ∈ X that
minimizes his objective function f(x) +

∑k
i=1 pixi. We remark that if X is a set containing

0/1-vectors only, then we are back to the classical combinatorial setting. The result of Briest
et al. can be transferred to the case when f is non-additive, in view of their original proof.
Moreover if X is a polytope and f is additive, the follower minimizes a linear program, which
is an important special case.

In Section 2, we formally introduce this more general model and prove the following
results.
(i) The maximum revenue obtainable by the leader can be approximated to a logarithmic

factor using a single-price strategy. This generalizes the above mentioned result of Briest
et al. [7] not only to linear programs but to any kind of follower that is captured by our
model.

(ii) The analysis of point (i) is tight. There is a family of instances for which the single-price
strategy yields maximum revenue. And this revenue meets the bound of point (i).

(iii) It is strongly NP-hard to decide whether one can achieve a revenue that is only slightly
larger than the one guaranteed by the single-price strategy. This holds true even in a
very restricted combinatorial setting.
The second part of the paper deals with the parameterized complexity of Stackelberg

Pricing Games (Section 3). To the best of our knowledge, the only result in this direction is

ICALP 2017

46:4 Revenue Maximization in Stackelberg Pricing Games

an XP-algorithm by Cardinal et al. [10] for the Stackelberg Minimum Spanning Tree Game
in graphs of bounded treewidth.

In contrast to structural parameters like the treewidth of the input graph, we consider the
complexity of the pricing problem when parameterized by the number of priceable variables
(or items in the combinatorial setting). Our main result in this part is a W[1]-hardness
proof for the case that the optimization problem of the follower is a linear program, which is
arguably one of the most interesting cases that does not fit into the combinatorial setting.
This rules out algorithms of running time f(k)|I|c unless FPT = W[1] for any function f and
polynomial |I|c of the input size; it also rules out running time |I|o(k) under the Exponential-
Time Hypothesis of Impagliazzo et al. [13]. This intractability result is complemented by a
fairly simple FPT-algorithm with running time O(2k|I|c) for any Stackelberg Game that fits
into the combinatorial model, when provided with an efficient algorithm for finding optimal
follower solutions. The algorithm enumerates all subsets of priceable items and applies a
separation argument of Briest et al. [7] to compute optimal leader prices and revenue.

Related work. Most important for our work are the approximation results due to Briest et
al. [7] and Balcan et al. [2], which were discussed above.

A larger body of work focuses on specific network problems in their Stackelberg Game
version. Briest et al. [7] give a polynomial time algorithm for a special case of the Stackelberg
Bipartite Vertex Cover Game. An algorithm with improved running time was later given by
Baïou and Barahona [1]. As mentioned, Labbé et al. [15] use the Stackelberg Shortest Path
Game to model road toll setting problems. They establish NP-hardness and use LP bilevel
formulations to solve small instances. A combinatorial approximation algorithm with the
same logarithmic approximation guarantee as the single-price strategy was given by Roch et
al. [16]. Moreover, a lower bound on the approximability is due to Briest et al. [5]: they show
that the Stackelberg Shortest Path Game is NP-hard to approximate within a factor of less
than 2. This is an improvement over previous results by Joret [14] showing APX-hardness.
Further research on the Stackelberg Shortest Path Game can be found in a survey by van
Hoesel [17]. A similar problem, the Stackelberg Shortest Path Tree Game, is studied by Bilo
et al. [4]. They give an NP-hardness proof and develop an efficient algorithm assuming that
the number of priceable edges is constant. Later their algorithm was improved by Cabello [8].

Cardinal et al. [9] proved several positive approximation results for the Stackelberg Min-
imum Spanning Tree Game. In the same paper, they proved that the revenue maximization
for this game is APX-hard and strongly NP-hard. We make use of their reduction in the
proof of Theorem 7. Furthermore, Cardinal et al. [10] prove that this game remains NP-hard
if the instances are planar graphs. However, the problem becomes polynomial-time solvable
on graphs of bounded treewidth. Bilo et al. [3] consider the Stackelberg Minimum Spanning
Tree Game for complete graphs.

Briest et al. [6] consider Stackelberg Games where the follower’s optimization problem
cannot be solved to optimality. Instead the follower uses a known approximation algorithm.
They show that the Stackelberg Knapsack Game is NP-hard if the follower uses a greedy
2-approximate algorithm, and derive a 2 + ε approximation algorithm. Furthermore, the
revenue maximization problem can be solved efficiently in the Stackelberg Vertex Cover
Game if the follower implements a primal-dual approximation.

2 Approximability of Stackelberg Pricing Games

In this section we first introduce the model in its full generality. Then we give a tight
approximation result on the maximum revenue using a single-price strategy. We complement

T. Böhnlein, S. Kratsch, and O. Schaudt 46:5

this with a hardness proof by showing that deciding whether one can achieve a revenue
that is only slightly larger than the one guaranteed by the single-price strategy is strongly
NP-hard.

Our model. Let k and n be some natural numbers with k ≤ n. The optimization problem
of the follower is the following: He minimizes a continuous function f : Rn → R over his set
of feasible solutions X ⊆ Rk≥0 × Rn−k≥0 . The only restriction we put on X is that we require
it to be a compact set, i.e., bounded and closed under limits.

The first move of the Stackelberg Pricing Game is made by the leader : She chooses a
price vector p ∈ Rk. Now the second move is made by the follower : He chooses an optimal
solution (x∗, y∗) of the program

min pTx+ f(x, y)
s.t. (x, y) ∈ X.

The revenue of the leader is then given by the value pTx∗. This value is her objective function
and it is to be maximized. We remark that this problem has a bilevel structure.

To avoid technicalities, we make the following optimistic assumption: If the follower has
several optimal solutions in X, we assume that the solution which is most profitable for
the leader is chosen. That is the solution, which maximizes the value pTx∗. Moreover, we
assume that there is a point (x, y) ∈ X with x being the k-dimensional all-zeroes vector.
This simply means that the follower has a solution that does not give any revenue to the
leader. Otherwise the revenue maximization problem would be unbounded which is obviously
not an interesting case.

Before we can state our results for the new model, we need to introduce a number of
technical notions. Given a feasible solution (x, y) ∈ X of the follower, we call the value
1Tx =

∑k
i=1 xi the mass of (x, y). A single-price is a price vector p of the form p = λ1

where λ is some real number. Slightly abusing notation, we sometimes call λ the single-price.
Note that when the leader uses a single-price the revenue is simply the mass of the follower’s
solution times the single-price.

Let M be the maximum mass the follower buys if the leader sets all her prices to 0.
Formally,

M := max 1Tx
s.t. ∃y ∈ Rn−k : (x, y) = arg min{f(x′, y′) : (x′, y′) ∈ X}.

This value M exists since X is a compact set.
Consider, for example, the case where the follower seeks to buy a shortest s-t-path in a

network. Then M is the maximum number of priceable edges of a shortest s-t-path in the
network, when the priceable edges all have a price of 0 and thus can be bought for free by
the follower.

Since X is a compact set, there exists a largest single-price at which the follower buys a
non-zero mass from the leader. Let µ be the maximum mass the follower buys at this price.
Consider again the case where the follower searches for a shortest s-t-path in a network.
Then µ is the maximum number of priceable edges contained in a shortest s-t-path, under
the largest single-price for which a shortest path exists that contains a priceable edge.

ICALP 2017

46:6 Revenue Maximization in Stackelberg Pricing Games

For all m ∈ [0,M], let ∆(m) be the minimum price the follower has to pay if he buys a mass
of at most m from the leader. More formally

∆(m) := min f(x, y)
s.t. 1tx ≤ m

(x, y) ∈ X,

where 1tx is the mass bought by the follower. This minimum price ∆(m) exists, because X
with the additional constraint of 1tx ≤ m is again a compact set.

As observed by several authors (cf. [2, 5]), an upper bound on the optimum revenue is
R := ∆(0) −∆(M). To see this, let r∗ be the maximum revenue, and let (x∗, y∗) be the
corresponding follower’s solution. We have

r∗ + ∆(M) ≤ r∗ + ∆(1Tx∗) ≤ r∗ + f(x∗, y∗) ≤ ∆(0),

because ∆(0) is an upper bound on the objective value of the follower and ∆ is non-increasing.
We remark that R is indeed a tight upper bound, in the sense that there are examples
of games where the maximum revenue equals R, e.g., the minimum spanning tree pricing
problem described in the introduction.

As our first result shows, the maximum revenue of the leader is always reasonably close to
R, unless the ratio M/µ is large. This is true even if the leader uses a single-price strategy.

I Theorem 2. There is a single-price for the Stackelberg Pricing Game over X whose
revenue is at least

R

1 + ln
(
M
µ

) .
This result extends previous work of Briest et al. [7] and Balcan et al. [2], who proved the
above theorem in the combinatorial setting, i.e., for X ⊆ {0, 1}n. We give the main idea of
the proof of Theorem 2 in the following sketch and defer the full proof to the appendix.

Proof Sketch for Theorem 2. Our proof makes use of the following concept. For each
m ∈ (0,M], let P (m) be the supremum of all single-prices for which the follower has an
optimal solution with a mass of at least m from the leader. Using the compactness of X
and the continuity of f one can prove that at the single-price of P (m), the follower has an
optimal solution of a mass of at least m. Thus, the supremum is indeed a maximum here.

It turns out that there are certain mass values which dictate the value of the function P .
Let T ⊆ (0,M] be the set of mass values t for which the follower does not have an optimal
solution, at a single-price P (t), with a mass more than t. The set T plays a key role in our
proof, as the following claim indicates.

I Claim 3. It holds that µ ∈ T , M ∈ T and µ = minT . Moreover, for all m ∈ (0,M] it
holds that P (m) = maxt∈T∩[m,M] P (t).

Recall that ∆(m) is defined as the price the follower has to pay for the non-priceable
variables if he buys a mass of at most m from the leader. Similar to the proof of Briest et
al. [7] for the combinatorial setting, we next show that the functions P and ∆ are closely
related. In our case, however, we have to deal with several difficulties that arise because we
allow for non-discrete optimization problems of the follower.

T. Böhnlein, S. Kratsch, and O. Schaudt 46:7

Consider the lower convex hull H of the point set {(m,∆(m)) : 0 ≤ m ≤M}. Let ∂H be
the lower border of H, and let ∆̂ : [0,M]→ R be the function for which (m, ∆̂(m)) ∈ ∂H
for all m ∈ [0,M]. We remark that, since ∆̂ is convex and decreasing,

D−∆̂(m) = sup
`<m

∆̂(m)− ∆̂(`)
m− `

, for each m ∈ (0,M].

Here, D− denotes the lower left Dini derivative of ∆̂. It is defined, for all m ∈ (0,M], by

D−∆̂(m) = lim inf
h→0−

∆̂(m)− ∆̂(m+ h)
h

.

As our main claim shows, the values of P (m) and D−∆̂(m) are essentially equal.

I Claim 4. Except for a set of measure 0, it holds for all m ∈ (0,M) that D−∆̂(m) = −P (m).

To establish Claim 4 is indeed the difficult part of the whole proof. We skip the details
due to space constraints.

In the calculation that finishes the proof we make use of the inverse operation of the
lower left Dini derivative, the so-called lower left Dini integral, denoted (LD)

∫
. For more

background we refer to the article of Hagood and Thomson [11].
We have

R = ∆(0)−∆(M) = ∆̂(0)−∆̂(M) = lim
ε→0+

∆̂(ε)−∆̂(M) = lim
ε→0+

(LD)
∫ M

ε

−D−∆̂(m) dm.

Due to Claim 4, the integral

lim
ε→0+

(LD)
∫ M

ε

P (m) dm

is well defined and equals

lim
ε→0+

(LD)
∫ M

ε

−D−∆̂(m) dm.

Recall that, by Claim 3, µ = minT and so P (m) = P (µ) for all m ∈ (0, µ]. Hence,

lim
ε→0+

(LD)
∫ M

ε

P (m) dm = lim
ε→0+

(LD)
∫ µ

ε

P (m) dm+ (LD)
∫ M

µ

P (m) dm

= µ · P (µ) + (LD)
∫ M

µ

P (m) dm.

Let r be the maximum revenue achieved by the single-price strategy. Note that r is at least
the revenue at the single-price P (m), for each m ∈ (0,M], which is in turn at least m ·P (m).
We thus have

µ · P (µ) + (LD)
∫ M

µ

P (m) dm = µ · P (µ) + (LD)
∫ M

µ

m · P (m)
m

dm

≤ r + (LD)
∫ M

µ

r

m
dm

= r + r · (ln(M)− ln(µ))

= r

(
1 + ln

(
M

µ

))
.

This shows that R ≤ r(1 + ln(M/µ)), as desired. J

ICALP 2017

46:8 Revenue Maximization in Stackelberg Pricing Games

Balcan et al. [2] and Briest et al. [7] extend their result to the situation when there are
several followers.1 The same approach works in our generalized model.

Assume there are ` followers and each follower has its own optimization problem. Formally,
the i-th follower minimizes his objective function pTxi + fi(xi, yi) where (xi, yi) belongs to
the set Xi ⊆ Rk≥0 × Rn−k≥0 of his feasible solutions, i = 1, . . . , `. The pricing vector p appears
in the objective function of every follower and is again set by the leader in order to maximize
her revenue

∑`
i=1 p

Txi. The difficulty here is that, while each follower has an individual
optimization problem, the leader can set only one price vector for all followers at once. There
is, however, a canonical way of reducing the pricing game to the case of a single follower. To
this end, we consider the pricing game with respect to follower i only, and let µi (resp. Mi)
be the minimum non-zero mass (resp. the maximum mass) bought by follower i. Moreover,
let Ri be the upper bound on the revenue with respect to follower i.

I Corollary 5. There is a single-price for the Stackelberg Pricing Game with ` followers
whose revenue is at least∑`

i=1 Ri

1 + ln
(∑`

i=1
Mi

min`
i=1 µi

) .
To see this, consider a single follower with the feasible subset X = X1 ×X2 × . . .×X`. It
is easy to see that we have M =

∑`
i=1 Mi and R =

∑`
i=1 Ri in this game. Moreover, the

smallest non-zero mass µ bought by the newly defined single follower is at least the minimum
smallest non-zero mass bought by one of the ` followers, that is min`i=1 µi. Now applying
Theorem 2 to the single follower yields Corollary 5.

Theorem 2 is tight in the following sense.

I Proposition 6. There are Stackelberg Pricing Games of arbitrarily large R and M in which
the optimum revenue equals

(1 + o(1)) · R

1 + ln
(
M
µ

) .
This holds true even for games in which the follower minimizes a linear objective function of
the form pTx+ cT y over a uniform matroid.

Note that, in the above statement, every possible pricing is considered and not just
single-price strategies. In other words, the lower bound in Theorem 2 is tight not only
for single-price strategies, but for arbitrary pricings. So far, it was known that there are
combinatorial pricing games where the optimum revenue is in O(R/ log k), where k is the
number of priceable elements (cf. [5]). The merit of Proposition 6 is that it shows tightness of
Theorem 2 up to a factor of 1 + o(1), which is best possible. This fact, and the construction
given in the proof of Proposition 6, enable us to prove the following hardness result.

I Theorem 7. Fix a sufficiently small rational number ε > 0, and consider a Stackelberg
Pricing Game where the follower minimizes an objective function of the form pTx+ cT y over
a matroid. It is strongly NP-hard to decide whether there is some pricing of revenue at least

(1 + ε) · R

1 + ln
(
M
µ

) .
1 In this paper we consider the case of unlimited supply, meaning that the followers buy their favorite

solution independently of each other.

T. Böhnlein, S. Kratsch, and O. Schaudt 46:9

Due to space constraints, the proof of Theorem 7 is deferred to the appendix. In the
statement of the above theorem, we assume that the matroid is given by its ground set and
a membership oracle. Thus, µ, M , and R can be computed in polynomial time. Moreover, it
will be clear from the proof that the natural logarithm can be computed in polynomial time
with the precision needed to decide the problem.

Let us remark that the assumption of ε being sufficiently small is merely technical, and
can be dropped by giving a more careful hardness reduction. The message of the above
theorem is, however, that there is a sharp contrast between the revenue guaranteed by the
simple single-price strategy given in Theorem 2 and anything more than that.

3 Parameterized complexity of Stackelberg Pricing Games with few
priceable objects

In this section we study the parameterized complexity of Stackelberg Pricing Games when
parameterized by the number of priceable objects. Intuitively, this addresses the question
of whether there are improved algorithms for the case that only few objects are priceable.
We give a general positive result for the combinatorial model. Our main result in this part,
however, is a hardness proof for the linear programming case; we begin with the latter.

In the lp-pricing problem there is a linear program over which the follower minimizes.
The leader may choose the price, i.e. target function coefficient, of k specified variables. Her
revenue is determined by the corresponding (weighted) sum over these variables.

lp-pricing
Input: A linear program with k priceable variables and λ ∈ Q.
Question: Is there a price vector whose revenue is at least λ?

We prove that this problem is at least as hard to solve as the parameterized k-clique problem.
The hardness proof creates linear programs with only non-negative variables and non-negative
target function over which the follower seeks to minimize. As such it proves hardness also
for our more general model parameterized by number of priceable variables.

I Theorem 8. lp-pricing is W[1]-hard when parameterized by the number k of priceable
variables.

The theorem is proven by a reduction from the well-known (parameterized) Multi-
colored Clique problem. Therein, we are given a k-partite graph G (or, equivalently, a
properly k-colored graph) and have to determine whether G contains a clique on k vertices;
the problem is W[1]-hard with respect to parameter k. Thus, unless FPT = W[1], there is no
algorithm running in time f(k)nc for instances of size n. Moreover, under the Exponential-
Time Hypothesis [13] the reduction implies that there is no O(no(k)) time algorithm for
lp-pricing. In instances created by the reduction the leader can effectively enforce the
choice of the k clique vertices by setting appropriate prices for k variables; the remaining
variables are used to verify the choice and a certain revenue threshold can only be attained
if there is indeed a k-clique. The behavior of these k priceable variables is quite similar
to integer variables, as they can be shown to only take specific values from a finite set in
solutions meeting the threshold (one value corresponding to each vertex of G). This arguably
gives our parameterized lp pricing problem some similarity to the mixed ilp feasibility
problem parameterized by the number of integer variables. Interestingly, the latter problem is
FPT due to a classic result of Lenstra [12]. Due to space constraints we will restrict ourselves
to an informal description of the reduction complemented by some intuition.

ICALP 2017

46:10 Revenue Maximization in Stackelberg Pricing Games

Proof Sketch for Theorem 8. We give a parameterized reduction from the W[1]-hard mul-
ticolored clique(k) problem. Therein, we are given a k-partite graph G = (V1, . . . , Vk, E)
and have to determine whether it contains a clique of size k, i.e., a clique containing exactly
one vertex from each partite set. The reduction is polynomial-time computable and creates an
instance of lp-pricing with k + 1 priceable variables, proving W[1]-hardness of lp-pricing.

Much effort in the design of the linear program and the correctness proof goes into
setting up constraints on k pairs of variables (xi, yi) and forcing each pair to take a value
in {(p1, q1), . . . , (pn, qn)}; each xi is priceable and the yi have fixed prices. We have p1 >

p2 > . . . > pn and q1 < q2 < . . . < qn with the high-level idea that changing the price of xi
will make a particular point (pj , qj) optimal. Each choice of (xi, yi) = (pj , qj) corresponds
to the selection of one vertex (i, vi) from the ith partite set Vi of G. Additionally, there
are variables zi,j ≥ |yi − qj | that serve as indicators for whether yi = qj , and clique-testing
constraints on pairs of variables zi,u, zj,v for every non-edge {(i, u), (j, v)} of G to prevent
choosing both (i, u) and (j, v) for the clique. Notably, there is a single slack variable y0
present in all clique-testing constraints that is connected to a priceable variable x0 in such a
way that the maximum revenue c0 for x0 is only possible if the slack y0 is not needed, i.e., if
all clique-testing constraints are active.

The reader will have noticed that there are no constraints that we could pose in a linear
program that would enforce (xi, yi) ∈ {(p1, q1), . . . , (pn, qn)}. Instead, the points (pj , qj) are
the extremal points (when projected to two dimensions) of certain constraints on each pair
xi and yi; we call these the core constraints. There are intended prices r1, . . . , rn with the
goal of showing that setting the leader price di of xi to rj leads to (xi, yi) = (pj , qj) being
uniquely optimal. This would probably be easier if we could restrict to di ∈ {r1, . . . , rn}, but
we are not allowed to do so. Instead, the strategy is roughly as follows:
1. Consecutive pairs of points (pj , qj) and (pj+1, qj+1) are chosen in such a way that for

di = rj all choices of (xi, yi) on the line segment defined by the two points give the
same follower cost including updates to indicator variables zi,j . (This is rather helpful
for replacement arguments, which we use to disprove solutions not following intended
behavior, but does not cover the variable y0.) The leader payoff in this case is highest for
xi = pj as pj > pj+1, and we have rj := 1

pj
so that the payoff is exactly 1 in this case.

2. A critical issue is that we must make sure that the leader cannot make a profit larger
than 1 with any variable xi since that may be more beneficial than attempting to gain
the revenue for having the clique-testing constraints fulfilled without increasing the slack
variable y0 above 0.

3. A significant part of the proof hence goes towards a technical claim that allows to rule
out both profit greater than one for any variable xi and the case that ps > xi > ps+1, i.e.,
that xi lies between two intended coordinates. To this end, the core constraints on pairs
(xi, yi) contain varying numbers of slack variables wi,1, . . . , wi,n of fixed prices r1, . . . , rn.
These are placed in such a way that they provide alternative ways of satisfying the core
constraints when di /∈ {r1, . . . , rn}, without keeping the follower from actually paying the
full price of xi in other cases.

We remark that the correctness proof of course also requires the reverse direction of
ensuring leader payoff at least k + c0 if G has a clique of size k. Here we are in the easier
situation of being able to select leader prices and fixing a suggested solution. We then
prove feasibility, which is straightforward, and optimality, which requires combining most
of the constraints into a lower bound on the optimal follower cost that matches that of our
suggested solution. J

T. Böhnlein, S. Kratsch, and O. Schaudt 46:11

Theorem 8 is in sharp contrast to the combinatorial setting, where under mild assumptions
one can see the problem to be fixed-parameter tractable. Here we assume that X ⊆ {0, 1}n
but put no further restriction on the follower’s objective function f : X → R. In particular,
this model covers the classical setting where each item has a fixed cost and if the follower
buys a set S of items, he has to pay the sum of the fixed costs of the elements of S, plus the
leader’s price of the bought elements.

I Theorem 9. Assume that X ⊆ {0, 1}n, and that we are given a polynomial-time algorithm
to compute an optimal solution of the follower for given leader prices p ∈ Rk. Then the
computation of optimal prices and optimal leader revenue is fixed-parameter tractable, with
running time O(2knc), when parameterized by the number of priceable items.

In the above statement we make the natural assumption that the input size is at least
n+ size(f), where size(f) denotes the maximum length of the binary encoding of any value
f can take.

Proof Sketch for Theorem 9. Due to space constraints the proofs of the claims in this
section are deferred to the appendix. We need the following proposition by Briest et al. [7]. It
says that if the leader wants to force the follower to pick a certain solution, she can compute
suitable prices in polynomial time. We state their result in a slightly more general fashion
than in the original paper. Indeed, Briest et al. were only concerned with the case when f is
additive but the proof did not make use of the additivity of f at all.

I Proposition 10 (Briest et al. [7]). Given a vector z ∈ X, one can compute an optimal
price vector p such that z is an optimal solution of the follower with respect to p, or decide
that such a price vector does not exist, in polynomial time.

Our algorithm works as follows. For each vector x ∈ {0, 1}k we compute a price vector
px, if exists, such that
(a) there is some y ∈ {0, 1}n−k such that the vector (x, y) is an optimal solution of the

follower with respect to the price vector px,
(b) subject to (a) the revenue pTx x is maximum.

When this procedure is finished we choose the vector x̂ ∈ {0, 1}k with maximum value
of px̂T x̂, and output the price vector px̂. As the next claim shows, this price vector is the
optimum solution.

I Claim 11. The output px̂ is an optimal price vector for the leader.

In the remainder of the proof we show how to compute px for a fixed candidate vector
x ∈ {0, 1}k. First we aim to find a vector yx ∈ {0, 1}n−k such that (x, yx) ∈ X and, subject
to this, f(x, yx) is minimum. Note that possibly such a vector yx does not exist. To find a
vector yx, or decide that none exists, we define a price vector p by setting

pi =
{
−M if xi = 1,
M if xi = 0,

for all i ∈ [k]. Here, M is a number that is large enough to ensure that

for all (x′, y′), (x′′, y′′) ∈ X, it holds that f(x′, y′)− f(x′′, y′′) < M . (1)

As both values |f(x′, y′)| and |f(x′′, y′′)| are bounded by 2size(f), we may simply put M =
2size(f)+1 + 1.

Now we compute an optimal solution of the follower with respect to the price vector p,
say (x∗, y∗), using the assumed polynomial-time algorithm.

ICALP 2017

46:12 Revenue Maximization in Stackelberg Pricing Games

I Claim 12. If for some y ∈ {0, 1}n−k it holds that (x, y) ∈ X, then x∗ = x.

If x∗ 6= x, Claim 12 implies that there is no price vector satisfying (a). Thus, we may
safely abort the process and go over to the next candidate vector x. Otherwise if x∗ = x, we
put yx = y∗.

I Claim 13. f(x, yx) ≤ f(x, y) holds for all y ∈ {0, 1}n−k with (x, y) ∈ X.

Next, we use Proposition 10 to compute a price vector px such that the vector (x, yx) is
optimal for the follower and, subject to that, pxTx is maximum. Note that this price vector
does exist since, e.g., the vector p is a feasible price vector. By construction, px has the
property (a). So far, we only know that pxTx is maximum subject to the condition that
under the price vector px the vector (x, yx) is an optimal solution of the follower.

I Claim 14. Subject to (a), the revenue pTx x is maximum.

As the running time of the whole algorithm is O(2k · (n + size(f))O(1)), the proof is
complete. J

4 Conclusion and future work

The basis for the first part of this paper were the results of Briest et al. [7] and Balcan et
al. [2] who gave a lower bound on the optimal revenue in Stackelberg Network Pricing Games.
We proved that this bound carries over to a much more general setting, where, basically, the
follower minimizes a continuous function over a compact set of points. This model captures
important settings that are not covered by the classical combinatorial model. For example,
the case when the follower is minimizing a linear program, e.g., a minimum cost flow problem.

The proven lower bound also holds if a single-price strategy is applied, and it is tight up
to a factor of (1 + o(1)). Moreover, we used this tightness example to show that it is strongly
NP-hard to decide whether the revenue of an optimal pricing exceeds the lower bound by an
arbitrarily small linear factor.

In the second part of the paper we studied the parameterized complexity of the revenue
maximization problem. It turned out that in the combinatorial setting (i.e., when the follower
only has 0/1-valued solutions) there is an elegant FPT algorithm. Once we leave this regime,
however, things become more difficult. Indeed, if the follower has an optimization problem
in the form of a linear program, the revenue maximization problem becomes W[1]-hard and
is thus most likely not FPT.

Several central questions remain. Most importantly, one should consider multiple-follower
scenarios. An intriguing model is when the particular resources have a limited supply. In the
combinatorial setting, a limited supply means that every item to be sold is available only a
limited number of times. Now the followers come one by one, in a certain order, and buy
according to their preferences and the prices set by the leader. Balcan et al. [2] prove a tight
lower bound on the revenue obtained by the single-price strategy. In the non-combinatorial
model, the limited supply might be translated to a constraint of the form (x, y) ≤ s, where
s ∈ Rn≥0 is a fixed vector that is added to the usual constraint (x, y) ∈ X in the optimization
problem of the followers.

References
1 Mourad Baïou and Francisco Barahona. Stackelberg Bipartite Vertex Cover and the Preflow

Algorithm. to appear in Algorithmica, 2016.

T. Böhnlein, S. Kratsch, and O. Schaudt 46:13

2 Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Item Pricing for Revenue Maxim-
ization. In Proceedings 9th ACM Conference on Electronic Commerce (EC-2008), Chicago,
IL, USA, June 8-12, 2008, pages 50–59, 2008. doi:10.1145/1386790.1386802.

3 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Specializations and Gener-
alizations of the Stackelberg Minimum Spanning Tree Game. Theoretical Computer Science,
562:643–657, 2015.

4 Davide Bilò, Luciano Gualà, Guido Proietti, and Peter Widmayer. Computational Aspects
of a 2-player Stackelberg Shortest Paths Tree Game. In Internet and Network Economics,
pages 251–262. Springer, 2008.

5 Patrick Briest, Parinya Chalermsook, Sanjeev Khanna, Bundit Laekhanukit, and Danupon
Nanongkai. Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing.
In Internet and Network Economics, pages 444–454. Springer, 2010.

6 Patrick Briest, Luciano Gualà, Martin Hoefer, and Carmine Ventre. On stackelberg pricing
with computationally bounded customers. Networks, 60(1):31–44, 2012. doi:10.1002/net.
20457.

7 Patrick Briest, Martin Hoefer, and Piotr Krysta. Stackelberg Network Pricing Games.
Algorithmica, 62(3-4):733–753, 2012. doi:10.1007/s00453-010-9480-3.

8 Sergio Cabello. Stackelberg Shortest Path Tree Game, Revisited. arXiv preprint
arXiv:1207.2317, 2012.

9 J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Wei-
mann. The Stackelberg Minimum Spanning Tree Game. Algorithmica, 59:129–144, 2011.

10 Jean Cardinal, Erik D Demaine, Samuel Fiorini, Gwenaël Joret, Ilan Newman, and Oren
Weimann. The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-
Treewidth Graphs. Journal of combinatorial optimization, 25(1):19–46, 2013.

11 J.W. Hagood and B. S. Thomson. Recovering a Function from a Dini Derivative. The
American Mathematical Monthly, 113:34–46, 2006.

12 Jr. H.W. Lenstra. Integer Programming with a Fixed Number of Variables. Mathematics
of Operations Research, 8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

13 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

14 Gwenaël Joret. Stackelberg Network Pricing is Hard to Approximate. Networks, 57(2):117–
120, 2011.

15 M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model of Taxation and Its Application
to Optimal Highway Pricing. Management Science, 44:1608–1622, 1998.

16 S. Roche, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg network
pricing. Networks, 46:57–67, 2005.

17 S. van Hoesel. An overview of Stackelberg pricing in networks. European Journal of
Operational Research, 189:1393–1402, 2008.

18 H. von Stackelberg. Marktform und Gleichgewicht. Springer, 1934.

ICALP 2017

http://dx.doi.org/10.1145/1386790.1386802
http://dx.doi.org/10.1002/net.20457
http://dx.doi.org/10.1002/net.20457
http://dx.doi.org/10.1007/s00453-010-9480-3
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774

Online Market Intermediation∗†

Yiannis Giannakopoulos1, Elias Koutsoupias2, and Philip Lazos3

1 Department of Informatics, TU Munich, Munich, Germany
giannako@in.tum.de

2 Department of Computer Science, University of Oxford, Oxford, UK
elias@cs.ox.ac.uk

3 Department of Computer Science, University of Oxford, Oxford, UK
filippos.lazos@cs.ox.ac.uk

Abstract
We study a dynamic market setting where an intermediary interacts with an unknown large
sequence of agents that can be either sellers or buyers: their identities, as well as the sequence
length n, are decided in an adversarial, online way. Each agent is interested in trading a single
item, and all items in the market are identical. The intermediary has some prior, incomplete
knowledge of the agents’ values for the items: all seller values are independently drawn from the
same distribution FS , and all buyer values from FB . The two distributions may differ, and we
make common regularity assumptions, namely that FB is MHR and FS is log-concave.

We focus on online, posted-price mechanisms, and analyse two objectives: that of maximizing
the intermediary’s profit and that of maximizing the social welfare, under a competitive analysis
benchmark. First, on the negative side, for general agent sequences we prove tight competitive
ratios of Θ(

√
n) and Θ(lnn), respectively for the two objectives. On the other hand, under the

extra assumption that the intermediary knows some bound α on the ratio between the number of
sellers and buyers, we design asymptotically optimal online mechanisms with competitive ratios
of 1 + o(1) and 4, respectively. Additionally, we study the model where the number of items that
can be stored in stock throughout the execution is bounded, in which case the competitive ratio
for the profit is improved to O(lnn).

1998 ACM Subject Classification J.4 [Social and Behavioral Sciences] Economics

Keywords and phrases optimal auctions, bilateral trade, sequential auctions, online algorithms,
competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.47

1 Introduction

The design and analysis of electronic markets is of central importance in algorithmic game
theory. Of particular interest are trading settings, where multiple parties such as buyers,
sellers, and intermediaries exchange goods and money. Typical examples are markets for
trading stocks, commodities, and derivatives: sellers and buyers where each one trades a single
item and one intermediary for facilitating the transactions. However, the well-understood
cases are comparatively quite modest. The very special case of one seller, and one buyer was
thoroughly studied by Myerson and Satterthwaite [26] in their seminal paper; they provided
a beautiful characterization of many significant properties a mechanism might have, along

∗ A full version of this paper can be found in [18], http://arxiv.org/abs/1703.09279.
† This work was kindly supported by the ERC Advanced Grant 321171 (ALGAME), ERC Advanced

Grant 691672 (APEG) and by the EPSRC (award reference 1493310).

EA
T

C
S

© Yiannis Giannakopoulos, Elias Koutsoupias, and Philip Lazos;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 47; pp. 47:1–47:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.47
http://arxiv.org/abs/1703.09279
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Online Market Intermediation

with an impossibility theorem showing that it cannot possess them all. The paper also dealt
with the case where a broker provides assistance by making two potential trades, one with
each agent, while also trying to maximize his profit. This was extended in [15] to multiple
sellers and buyers that are all immediately present in an offline manner.

Our work considers a similar setting, but with a key difference: the buyers and sellers
appear one-by-one, in a dynamic way. It is natural to study this question in the incomplete
information setting in which the intermediary, whose objective is to maximize either profit or
welfare, does not know the sequence of buyers and sellers in advance. The framework that we
employ to study the question is the standard worst-case analysis of online algorithms whose
goal is to do as well as possible in the face of a powerful adversary which tries to embarrass
them.

We are not the first to apply techniques from online algorithms to quantify uncertainty in
markets: the closest work to ours would be by Blum et al. [8] who consider buyers and sellers
trading identical items. In their setting, motivated mostly from a financial standpoint, buyers
and sellers arrived in an online manner, with their bids appearing to the trader and expiring
after some time. The trader would have to match prospective buyers and sellers to facilitate
trade. Among a plethora of interesting results, the trader’s profit maximization problem was
studied using competitive analysis and techniques from online weighted matchings. The key
difference in our setting is that buyers and sellers do not overlap: whenever a seller appears,
the intermediary has to decide whether or not to attempt to buy the item, without having a
buyer ready to go. Instead, the intermediary stores the item to sell it at a later time. We
believe this variation is able to capture “slower” markets, like online marketplaces similar
to Amazon or AliExpress (or even regular retail stores), where uncertainty stems from not
knowing how large a stock of items to buy, in expectation of the buyers to come.

1.1 Our Results
Our aim is to study this dynamic market setting, where an intermediary faces a sequence of
potential buyers and sellers in an online fashion. The goal of the intermediary is to maximize
his profit, or society’s welfare, by buying from the sellers and selling to buyers. We take a
Bayesian approach to their utilities but use competitive analysis for their arrivals: the main
difficulty stems from the unknown (and adversarially chosen) sequence of agents. Further
particulars and notation is discussed in Section 2. All the online algorithms we design are
posted price, which are simple, robust and strongly truthful.

First, in Section 4 we study the case of arbitrary sequences of buyers and sellers and show
that the competitive ratio—the ratio of the optimal offline profit over the profit obtained
by the online algorithm—is Θ(

√
n), where n is the total number of buyers and sellers. We

also study the social welfare objective, where the goal is to maximize the total utility of all
participants, including the sellers, the buyers and the intermediary The competitive ratio
here is Θ(logn). All these results are achieved via common regularity assumptions on the
distributions of the agent values (see Section 3), which we also prove to be necessary, by
providing arbitrarily bad competitive ratios in the case they are dropped (Theorem 7).

To overcome the above pessimistic results, we next study in Section 5 the setting where
both the online and offline algorithms have a limited stock, i.e. at no point in time can they
hold more than K items. In this model, the competitive ratio is improved to Θ(K logn),
asymptotically matching that of welfare. Finally, we also propose a way to restrict the input
sequence, by introducing in Section 6 the notion of α-balanced streams, where at every prefix
of the stream the ratio of the number of sellers to buyers has to be at least α. Under this
condition we are able to bring down the competitive ratios for both objectives to constants. In

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:3

particular, the online posted-price mechanism that we use for profit maximization, and which
is derived by a fractional relaxation of the optimal offline profit, achieves an asymptotically
optimal ratio of 1 + o(1). A similar mechanism is 4-competitive for the welfare objective.

All omitted proofs can be found in the full version of the paper [18].

1.2 Prior Work

Our work is grounded on a string of fruitful research in mechanism design. The main topics
that are close to our effort are bilateral trading, trading markets and sequential (online)
auctions.

The first step in bilateral trading and mechanism design was made by Myerson and
Satterthwaite [26] who proved their famous impossibility result, even for the case of one
buyer and one seller. The case for profit maximization was extended to many buyers and
sellers, each trading a single identical item, in [15]. Some of the assumptions in our model
are based in these two works. The impossibility result in [26], among other difficulties, slowly
vanishes for larger markets as was shown by McAffee [25]. There is still active progress
being made on this intriguing setting, concentrating on simple mechanisms that provide good
approximations either to welfare while staying budget balanced and individually rational
[9, 11] or to profit [27]. Other recent developments include a hardness result for computing
optimal prices [17] and constant efficiency approximation with strong budget balance [14].

Sequential auctions have also produced a collection of interesting results, either extending
the ideas of simple approximate mechanisms instead of more complex, theoretically optimal
ones or dealing with entirely new settings. Prominent examples that compare the revenue
(or welfare) generated by simple, posted-price sequential auctions to the optimal, proving
good approximations in certain cases, are [10] for single-item revenue, [13, 29] for matroid
constraints (and some multi-dimensional settings) and [16] for combinatorial auctions. There
have been many approaches that apply competitive (worst-case) analysis to mechanism
design. The analysis of auctions with unlimited supply is explored in [5, 7] where near
optimal algorithms are developed using techniques inspired from no-regret learning. There is
also a deep connection between secretary problems and online sequential auctions [21, 20, 3].
Hajiaghayi et al. utilized techniques such as prophet inequalities for unknown market size
with distributional assumptions in [22]. A comprehensive exposition of online mechanism
design by Parkes can be found in [28].

There are also positive results in online auctions when the valuation distribution is
unknown (but usually known to be restricted in some way, having bounded support or being
monotone hazard-rate etc). Babaioff et al. explored the case of selling a single item to
multiple i.i.d. buyers in [1]. The case of k items in a similar setting was studied in [2], while
the case of unlimited items (digital goods auctions) in [23] and [24]. Budget constraints
where also introduced in [4], where a procurement auction was the focus.

2 Preliminaries and Notation

The input is a finite string σ ∈ {S,B}∗ of buyers (B) and sellers (S). The online algorithm has
no knowledge of σ(t), i.e. whether σ(t) = S or σ(t) = B, before step t. Also, it doesn’t know
the length n(σ) of σ. Denote nS(σ), nB(σ) the number of sellers and buyers, respectively, in
σ, and let NS(σ), NB(σ) be the corresponding set of indices, i.e. NS(σ) = {t | σ(t) = S }
and NB(σ) = {t | σ(t) = B }. Let N(σ) = NS(σ) ∪NB(σ) = {1, 2, . . . , n(σ)}. In the above
notation we will often drop the σ if it is clear which input stream we are referring to.

ICALP 2017

47:4 Online Market Intermediation

The values of the sellers are drawn i.i.d. from a probability distribution (with cdf) FS and
these of buyers i.i.d. from a distribution FB, both supported over intervals of nonnegative
reals. We denote the random variable of the value of the t-th agent with Xt. We assume
that distributions FS and FB are continuous, with bounded expectations µS and µB, and
have (well-defined) density functions fS and fB , respectively. It will also be useful to denote
by XS a random variable drawn from distribution FS , and similarly XB ∼ FB , and for any
random variable Y and positive integer m use Y (m) to represent the maximum order statistic
out of m i.i.d. draws from the same distribution as Y . We will also use the shortcut notation
µ(m) = E[Y (m)].

We study posted-price online algorithms that upon seeing the identity of the t-th agent
(whether she is a seller or a buyer), offer a price pt. We buy one unit of the item from sellers
that accept our price (i.e. if σ(t) = S and Xt ≤ pt) and pay them that price, and we sell to
buyers that accept our price (i.e. if σ(t) = B and Xt ≥ pt), given stock availability (see below),
and collect from them that price. So, a price pt+1 can only depend on σ(1), . . . , σ(t+ 1) and
the result of the comparison Xi ≤ pi in all previous steps i = 1, 2, . . . , t. Let Kt denote the
available stock at the beginning of the t-th step, i.e. K1 = 0 and

Kt+1 =

Kt + 1, if σ(t) = S ∧ Xt ≤ pt
Kt − 1, if σ(t) = B ∧ Kt 6= 0 ∧ Xt ≥ pt
Kt, otherwise.

Then, the set of sellers from whom we bought items during the algorithm’s execution is IS =
{t ∈ NS | Xt ≤ pt } and the set of buyers we sold to is IB = {t ∈ NB | Xt ≥ pt ∧Kt 6= 0}.
Notice that these are random variables, depending on the actual realizations of the agent
values Xt.

The total profit that the intermediary deploying an algorithm A makes throughout the
execution on an input stream σ, is the amount he manages to collect from the buyers via
successful sales, minus the amount he spent in order to maintain stock availability from the
sellers, that is

R(A, σ) = E

[∑
t∈IB

pt −
∑
t∈IS

pt

]
.

The social welfare of algorithm A is the sum of valuations that all participants achieve
throughout the entire execution. That is, a seller at position t of the stream has a value of
Xt if she keeps her item, or a value of pt if she sold the item to the intermediary; a buyer has
a value of Xt − pt if she managed to buy an item, since the item has a value of Xt and he
spent pt to buy it, or 0 otherwise. And the intermediary, has a value of R(A) plus the value
of the items that he didn’t manage to sell in the end and which are now left in his stock.
Putting everything together and performing the occurring cancellations, this results in the
welfare to be expressed simply as the sum of the values of the sellers that kept their items
plus the sum of the values of the buyers that bought an item, i.e.

W(A, σ) = E

 ∑
t∈NS\IS

Xt +
∑
t∈IB

Xt

 . (1)

We use competitive analysis, the standard benchmark for online algorithms (see e.g. [12]),
in order to quantify the performance of an online algorithm A: we compare it to that of
an unrealistic, offline optimal algorithm OPT has access to the entire stream σ in advance.

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:5

Then, we say that A is ρ(n)-competitive with respect to welfare, if for any feasible input
sequence of agents σ with length n and distributions FS , FB for the agent values, it is
W(OPT, σ) ≤ ρ(n) · W(A, σ). Notice how we allow the competitive ratio ρ(n) to explicitly
depend on the input’s length, so that we can perform asymptotic analysis as W(OPT, σ) and
n tend to infinity. It is common in competitive analysis to allow for an additional constant
in the right hand side of the above expression, that does not depend in the input, and
which intuitively can capture some initial configuration disadvantage of the online algorithm.
We do that for the case of the profit objective, as this constant will have a very natural
interpretation: you can think of it as the maximum amount of deficit on which an online
algorithm can run at any point in time, since an adversary can always stop the execution at
any time he wishes. Given that interpretation, it makes sense to allow for this constant to
depend on seller distribution FS , since even when we face a single seller at the first step we
expect to spend an amount that depends on the realization of her value. Thus, we will say
that an online algorithm is ρ(n)-competitive with respect to profit, if for any input sequence
of agents σ and any probability priors FS , FB ,

R(OPT, σ) ≤ ρ(n) · R(A, σ) +O(µS). (2)

3 Distributional Assumptions

Throughout most of the paper we will make some assumptions on the distributions FB,
FS from which the buyer and seller values are drawn. In particular, we will assume that
FB has monotone hazard rate (MHR), i.e. log(1 − FB(x)) is concave, and that FS is log-
concave, i.e. logFS(x) is concave. For convenience, we will collectively refer to both the above
constraints as regularity assumptions. These conditions are rather standard in the optimal
auctions literature, and they encompass a large class of natural of distributions including
e.g. exponential, uniform and normal ones. Notice that distributions that satisfy the above
conditions also fulfil the regularity requirements introduced in the seminal paper Myerson
and Satterthwaite [26] for the single-shot, one buyer and one seller setting of bilateral trade,
namely that x + FS(x)

fS(x) and x − 1−FB(x)
fB(x) are both increasing functions. Finally, we must

mention that such regularity assumptions are necessary, in the sense that dropping them
would result in arbitrarily bad lower bounds for the competitive ratios of our objectives, as it
is demonstrated by Theorem 7.

The following two lemmas demonstrate some key properties of distributions satisfying
our regularity assumptions and which will be very useful in our subsequent analysis:

I Theorem 1. For any random variable Y drawn from an MHR distribution with bounded
expectation µ and standard deviation s,
1. Pr [Y ≥ y] ≥ 1

e for any y ≤ µ
2. Pr [Y ≥ y] < 1

e for any y > 2µ
3. E[Y (m)] ≤ Hm · µ, where Hm is the m-th harmonic number.
4. s ≤ µ

Proof. A proof of Property 1 can be found in [6, Theorem 3.8], of Property 2 in [6, Corollary
3.10], and of Property 3 in [1, Lemma 13]. For Property 4, from [19, Lemma 2] we know
that E

[
Y 2] ≤ 2µ2, so s2 = E

[
Y 2]− µ2 ≤ µ2. J

I Lemma 2. For any distribution over [0,∞) with log-concave cdf F and expectation µ,

x ≤ eµF (x) for any x ≤ µ.

ICALP 2017

47:6 Online Market Intermediation

Finally, we prove the following property bounding the sum of maximum order statistics
of a distribution, that holds for general (not necessarily MHR) distributions and might be of
independent interest:

I Lemma 3. The expected average of the k-th highest out of m independent draws from a
probability distribution with expectation µ and standard deviation s can be at most µ+2

√
m
k s.

4 General Setting

We start by studying the general setting where no additional assumptions are enforced on
the structure of the input sequence. The adversary is free to arbitrarily choose the identities
of the agents.

4.1 Welfare
I Theorem 4. Under our regularity assumptions1, the online auction that posts to any seller
and buyer the median of their distribution is O(lnn)-competitive with respect to welfare. This
bound is tight.

Proof. We split the proof of the theorem in two more general lemmas below, corresponding
to upper and lower bounds. Then, the upper bound for our case follows easily from Lemma 5
by using constants c1 = c2 = 2, and taking into consideration that, from Property 3 of
Theorem 1, the ratio of the maximum order statistic for the MHR distribution FB is upper
bounded by rB(m) ≤ Hm ≤ O(lnm). For the lower bound, it is enough to observe that this
ratio is attained by an exponential distribution, which is MHR.

I Lemma 5. For any choice of constants c1, c2 > 1, the following fixed-price online auction
has a competitive ratio of at most max

{
c1
c1−1 , c1c2 · rB(nB)

}
with respect to welfare, where

nB is the number of buyers, and rB(m) = µ
(m)
B /µB is the ratio between the m-maximum-order

statistic and the expectation of the buyer value distribution.
Post to all sellers price q = F−1

S

(
1
c1

)
.

Post to all buyers price p = F−1
B

(
c2−1
c2

)
.

Proof. Let A denote our online algorithm and OPT an offline algorithm with optimal
expected welfare. Fix an input stream σ. Looking at (1), the maximum welfare that OPT
can get from the sellers is at most E

[∑
t∈NS Xt

]
= nsµS , while from the buyers at most

E
[
|IB | ·X(nB)

B

]
≤ κE

[
X

(nB)
B

]
, where κ is the maximum number of sellers that can be

matched to distinct buyers that arrive after them2 in σ: clearly, no mechanism can sell more
than κ items. Bringing all together we have that

W(OPT) ≤ nsµS + κµ
(nB)
B = nsµS + rB(nB) · κµB .

1 As matter of fact, in the proof of Theorem 4 just regularity for the buyer values would suffice, i.e. FB

being MHR.
2 You can think of that as the maximum size of a matching in the following undirected graph: the nodes

are the sellers and the buyers, and there is an edge between any seller and all the buyers that appear
after her in σ.

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:7

For the online algorithm now, from the sellers we get∑
i∈NS

Pr [Xi > q]E[Xi|Xi > q] ≥ ns(1− FS(q))E[XS] = c1 − 1
c1

· nSµS

and from the buyers at least

κPr [XS ≤ q] Pr [XB ≥ p]E[Xi|Xi ≥ p] ≥ κFS(q)(1− FB(p))E[XB] = 1
c1

1
c2
· κµB ,

just by considering one of the κ-size matchings discussed before: if we manage to buy from
one of these κ sellers, then we will definitely have stock availability for the matched buyer. J

The upper bound in Lemma 5 cannot be improved:

I Lemma 6. For any probability distribution F , even if the seller and buyer values are i.i.d.
from F , the sequence SBn forces all posted-price online mechanisms to have a competitive
ratio of Ω(r(n)), where r(n) = µ(n)/µ is the ratio of the n-maximum-order statistic of
distribution F to its expectation. J

As the following theorem demonstrates, our regularity assumption on the agent values
is necessary if we want to hope for non-trivial bounds. In particular, the lower bound in
Lemma 6 can be made arbitrarily high:

I Theorem 7. For any constant ε ∈ (0, 1), there exists a continuous probability distribution
F such that any online posted-price mechanism has a competitive ratio of Ω(n1−ε) on the
input sequence SBn, even if the values of the sellers and the buyers are i.i.d.

4.2 Profit
Now we turn our attention to our other objective of interest, that of maximizing the expected
profit of the intermediary. As it turns out, this objective has some additional challenges that
we need to address. For example, as the following theorem demonstrates, if the distribution
of seller values is bounded away from 0, the competitive ratio can be arbitrarily bad, even
for i.i.d. values from a uniform distribution. Intuitively, this follows from the impossibility of
buying a super-constant number of items within a constant budget.

I Theorem 8. For any a > 0 and ε ∈ (0, 1), if the seller and buyer values are drawn i.i.d.
from the uniform distribution over [a, b] where b > 2a, then no online posted-price mechanism
can have an approximation ratio better than a

(
1− 1

k

)4
n1−ε with respect to profit, where

k = b
a − 1. In particular, for any uniform distribution over an interval [1, h] with h ≥ 3 the

lower bound is 1
24n

1−ε = Ω
(
n1−ε).

If we consider distributions supported over intervals that include 0, under our regularity
assumptions we can do a little better than the trivial lower bound of Theorem 8:

I Theorem 9. Under our regularity assumptions, for agent values distributed over intervals
that include 0 the following online posted-price mechanism achieves a competitive ratio of
O(n 1

2 +ε) for any ε > 0:
Post to the i-th seller price qi = F−1

S

(1
e

1
i1/2+ε

)
Post to all buyers price p = µB.

ICALP 2017

47:8 Online Market Intermediation

Proof. Fix an input stream σ of length n. Let µB and sB be the expectation and standard
deviation of the buyer value distribution FB . As in the proof of Lemma 5, let κ denote the
maximum number of sellers that can be matched to distinct buyers that arrive after them in
σ. If µ(j:m)

B denotes the expectation of the j-th largest out of m independent draws from FB ,
since no algorithm can make more than κ sales over its entire execution, the optimal offline
profit is upper bounded by

κ∑
j=1

µ
(nB−j+1:nB)
B ≤

n∑
i=n−κ+1

µ
(i:n)
B ≤ κµB + 2

√
κnsB ≤ 3

√
κ
√
nµB ,

where for the second inequality we have used Lemma 3 and for the last one we have used
Property 4 from Theorem 1 and the obvious fact that κ ≤ n.

For the analysis of the online mechanism now, the expected number of items that it gets
from the first κ sellers is

∑κ
i=1 FS(qi) = 1

e

∑κ
i=1

1
i1/2+ε ≥ 1

eκ
1/2−ε. So, by considering the

FIFO matching between these first κ sellers and their corresponding buyers, the expected
income of our algorithm is at least 1

eκ
1/2−ε(1 − F (p)) = 1

eκ
1/2−ε(1 − F (µB)) ≥ 1

e2κ
1/2−ε,

where in the last step we deployed Property 1 of Theorem 1. So, it only remains to be
shown that the online algorithm does not spend more than a constant amount. Indeed, our
expected spending is at most

∞∑
i=1

qiFS(qi) ≤
∞∑
i=1

eµSFS(qi)2 = 1
e
µS

∞∑
i=1

1
i1+2ε = O(µS),

where for the first inequality we have used Lemma 2, taking into consideration that seller
prices qi are decreasing and q1 is below µS . This is true because again from Lemma 2 for
x = µS we know that µS ≤ eµSF (µS), or equivalently F (µS) ≥ 1

e = F (q1). J

The algorithm of Theorem 9 is asymptotically optimal:

I Theorem 10. If the seller and buyer values are drawn i.i.d. from the uniform distribution
over [0, 1], then no online posted-price mechanism can have an approximation ratio better
than Ω (

√
n).

Proof. We use the input sequence σ = Sn/2Bn/2 with n even. Let F (x) = x be the cdf
of the uniform distribution over [0, 1]. This time we argue that no online algorithm can
buy more than Ω(

√
n) items from the sellers, in expectation. Indeed, let qi be the price

that the online mechanism posts to the i-th seller. Then, the expected number of items
mσ bought from the sellers is

∑n/2
i=1 F (qi) =

∑n/2
i=1 qi, while the expected expenditure cσ is∑n/2

i=1 F (qi)qi =
∑n/2
i=1 q

2
i . By the convexity of the function t 7→ t2 and Jensen’s inequality it

must be that

mσ =
n/2∑
i=1

qi ≤
√
n

2

n/2∑
i=1

q2
i

 1
2

= O
(√
cσ
√
n
)
,

so given that our deficit must be cσ = O(1
2), we get the desired mσ = O(

√
n). As a result,

the online profit can be at most O(
√
n) · 1 = O(

√
n).

For the offline algorithm we use prices q = 1
8 and p = 1

2 for the buyers and sellers,
respectively, and by an analogous analysis to that of the proof of Theorem 8, we get that the
expected offline profit is at least

n

2F (q)(1− F (p))p− n

2F (q)q = n

2
1
8

(
1− 1

2

)
1
2 −

n

2
1
8

1
8 = n

128 = Ω(n). J

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:9

5 Limited Stock

If one looks carefully at the lower bound proof for the profit in Theorem 10, it becomes
clear that the source of difficulty for any online algorithm is essentially the fact that without
knowledge of the future, you cannot afford to spend a super-constant amount of money
into accumulating a large stock of items, without the guarantee that there will be enough
demand from future buyers. In particular, it may seem that the offline algorithm has an
unrealistic advantage of using a stock of infinite size. The natural way to mitigate this would
be to introduce an upper bound K on the number of items that both the online and offline
algorithms can store at any point in time. As it turns out, this has a dramatic improvement
in the competitive ratio for the profit:

I Theorem 11. Assuming stock sizes of at most K items, under our regularity assumptions
the following online mechanism is O (Kr logn)-competitive, where r = max

{
1, µSµB

}
:

If your stock is not currently full, post to sellers price q = F−1
S

(1
r

1
2eK

)
Post to all buyers price p = µB.

Proof. The proof is similar to that of Theorem 9, but certain points need some special
care. Let κ again be the maximum number of sellers that can be matched to distinct
buyers that follow them, but this time under the added restriction of the K-size stock. This
corresponds to the maximum matching with no “temporal” cut of size greater than K. We
write “temporal” cut to mean any cut in the graph that separates the vertices (buyers and
sellers) 1 . . . i from vertices i+ 1 . . . n — that is, precisely the condition that we cannot match
more than K sellers from an initial segment to buyers later in the sequence.

In the full version of our paper we show that such a κ-size matching can be computed
not only offline, but also online using a FIFO queue of length K, adding sellers to the queue
while it is not full and matching buyers greedily: we post prices to sellers, only if we have
free space in our stock, i.e. when the matching queue is not full. We underestimate the online
profit by considering only selling an item to the buyer that is matched to the seller from
which we bought the item. Mimicking the analysis in the proof of Theorem 9 we can see
that the expected number of items bought from the κ matched sellers is κFS(q) ≥ κ 1

2eK
1
r .

Now we argue that q ≤ µB
2 . Indeed, since FS(q) ≤ 1

e we know for sure that q ≤ µS , and
so from Lemma 2 it is q ≤ eµSF (q) ≤ eµS µBµS

1
2e = µB

2 . Next, notice that whenever we make
a successful sale, the contribution to profit is p− q ≥ µB − µB

2 = 1
2µB .

The rest of the proof can be found in the full version of the paper. J

I Remark. The above upper bound in Theorem 11, although a substantial improvement
from the Θ(

√
n) one for the general case in Theorem 9, cannot be improved further: the

logarithmic lower bound is unavoidable, since a careful inspection of the welfare lower bound
in the proof of Lemma 6 reveals that the same analysis carries over to the profit.

6 Balanced Sequences

As we saw in Section 5, introducing a restriction in the size of available stock can improve
the performance of our online algorithms with respect to profit. However, the bound is
still super-constant. Thus, it is perhaps more reasonable to assume some knowledge of the
ratio α between buyers and sellers in sequences the intermediary might face. This allows us
finer control over the trade-off between high volume of trades and the hunt for greater order
statistics.

ICALP 2017

47:10 Online Market Intermediation

In this section we analyse the competitive ratio for profit and welfare obtained by online
algorithms on α-balanced sequences.

I Definition 12. Let α be a positive integer. A sequence containing m buyers is called
α-balanced if it contains αm sellers and the i-th buyer is preceded by at least αi sellers.

For example, the sequence SBSSBSBB is 1-balanced, but SBBSSB is not. Note that
since n = nS

α+1
α = nB(α+ 1), we only need to know the number of buyers of a sequence.

For convenience, we will denote it by m instead of nB, as it is used quite often. This
constraint eliminates the pathological counterexamples of previous sections (such as SBm)
and introduces a much needed “recurrent” flavour to the market: items are constantly traded
and in higher quantities, leading to greater profits for both online and offline algorithms.

6.1 Profit
We first work on profit, deriving bounds for a variety of online and offline mechanisms.
Naturally, there are two types of offline mechanisms: adaptive and non-adaptive. The
non-adaptive posted-price mechanism calculates all prices in advance based on the sequence
of buyers and sellers, while the adaptive posted-price mechanism can alter the prices on the
fly, depending on the outcomes of previous trades.

We show that there is a competitive online mechanism for α-balanced sequences. To do
this, we compare the optimal adaptive and non-adaptive profit to the profit of a class of
hypothetical mechanisms, called fractional mechanisms, which are allowed to buy fractional
quantities of items: posting the price p would buy exactly FS(p) items or sell 1 − FB(p)
items. The advantage of using fractional mechanisms is that at any point we know the
exact quantity of items in the hands of the intermediary instead of the expectation; an
immediate consequence of this is that we know in advance whether there is enough quantity
to sell, which implies that the adaptive and non-adaptive versions of the optimal fractional
mechanism are identical.

We can now give an outline of the results in this section: For α-balanced sequences σ
with m buyers and αm sellers, we establish the following relations of optimal profits:

adaptive(σ) ≤ fractional(σ) ≤ fractional(SαmBm) ≈ non-adaptive(σ), (3)

the last of which will be our online algorithm. We begin by the fractional offline mechanism.

I Theorem 13. The profit gained by the optimal fractional mechanism for the sequence
SαmBm is

max m (p(1− FB(p))− α · qFS(q))
s.t. 1− FB(p) = αFS(q)

p, q ∈ [0,∞).
(4)

For other sequences containing αm sellers and m buyers in a different order, we can use
the following lemma to establish the middle part of inequality 3.

I Lemma 14. For any α-balanced σ with m buyers, fractional(σ) ≤ fractional(SαmBm)

I Theorem 15. For any sequence σ we have adaptive(σ) ≤ fractional(σ).

The intuition behind the proof of the theorem is that the optimal adaptive profit is bounded
from above by the optimal fractional adaptive profit (since fractional mechanisms is a more

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:11

general class of mechanisms); since in fractional mechanisms optimal adaptive and non-
adaptive profits are the same, the theorem follows. For a more rigorous technical treatment,
see the full version of our paper.

At this point, we have a clear model of the adversary’s power: the fractional mechanism’s
revenue for sequence SαmBm, setting only two prices p, q for sellers and buyers. Could we
do the same online? It seems likely. After all, long sequences of buyers and sellers seem to
lead to a similar amount of trading on average by a mechanism setting the same prices.

Based on the previous discussion we propose the following online posted price algorithm:
Use prices p, q given by the optimal fractional solution for SαmBm(see Theorem 13).

This algorithm works without knowing the length of the sequence chosen by the adversary.

I Lemma 16. Let A be the online algorithm defined by the optimal fractional offline prices
of (4). Consider two α-balanced sequences σ1 and σ2 of equal length. We write σ1 � σ2
whenever every prefix of σ1 contains more sellers than the prefix of σ2 having equal length.
Then, σ1 � σ2 ⇒ R(A, σ1) ≥ R(A, σ2)

Although not all sequences are comparable (e.g. SSBBSB and SBSSBB), the sequence
(SαB)m is the bottom element among all α-balanced sequences of length (α + 1)m. This
is trivial, as any balanced sequence must have at least d i

(α+1)/(α)e sellers for any prefix of
length i and (SαB)m is tight for this bound.

To formalize our intuition of making the same number of trades in the long run, we
reformulate our algorithm in the more familiar setting of random walks. Instead of considering
agents separately, each “timestep” would be one sub-sequence SαB, giving m steps in total.
Thus, we are interested in the random variables Zi, denoting the items in stock at the end of
each step, starting with Z0 = 0. Knowing the algorithm buys αmFS(q) items in expectation,
the expected profit can be given by

R((SαB)m) = (αmFS(q)− E [Zm])(p− q)− E [Zm] q, (5)

which is the revenue of the expected number of trades minus the cost of the unsold items.

I Lemma 17. E [Zm] ≤
√

2mα2 logm
(
1− 2

m

)
+ 2

Proof. The process Zi is almost a martingale but not quite: clearly E [Zi] ≤ αm for all i
and we do have E [Zi+1|Zi ≥ 1] = Zi since the expected change in items after that step is
αFS(q)− (1− FB(p)) = 0 by Theorem 13 . However, E [Zi+1|Zi = 0] > Zi, by the no short
selling assumption.

We can define Yi in the same probability space, where Y0 = 0, and

Yi+1 = Yi +

Zi+1 if Yi > 0
−Zi+1 if Yi < 0{
Zi+1 with probability 1

2

−Zi+1 with probability 1
2

if Yi = 0
. (6)

The crucial observation is that Yi behaves similar to Zi but has no barrier at 0. Notice, that
|Yi| ≥ Zi for all i and Yi is a martingale.

Moreover, we have that |Yi+1 − Yi| ≤ α thus by the Azuma-Hoeffding inequality we can
bound the expected value E [Zm]:

Pr[Zm ≥ x] ≤ Pr[|Ym| ≥ x] = Pr[|Ym − Y0| ≥ x] ≤ 2e
−x2

2mα2 ⇒ (7)

E [Zm] ≤ x
(

1− 2e
−x2

2mα2

)
+ 2αme

−x2

2mα2 , (8)

ICALP 2017

47:12 Online Market Intermediation

where we can set x =
√

2mα2 logm to obtain the simpler form:

E [Zm] ≤
√

2mα2 logm
(

1− 2
m

)
+ 2α. (9)

J

I Lemma 18. Let r = max
{

2, µSµB
}
. The optimal value of Programme (4) is at least m µB

2er .
Furthermore, at any optimal solution the buyer price has to be at most p ≤ 4 ln(4er)µB.

I Theorem 19. Under our regularity assumptions, the proposed non-adaptive online mech-
anism is (1 + o(α3/2r log r))-competitive for any balanced sequence, where r = max

{
2, µSµB

}
.

Proof. Plugging (9) into (5), we get:

R((SαB)m) ≥ αmFS(q)(p− q)− E [Zm] (p− q)− E [Zm] q

≥ αmFS(q)(p− q)−
(√

2mα2 logm
(

1− 2
m

)
+ 2α

)
p

≥ αmFS(q)(p− q)−O(α
√
m lnmp). (10)

Using Lemma 14, Theorem 15 and Theorem 13 we know that for every α-balanced sequence,
the profit of our non-adaptive online algorithm is at least R((SαB)m) and the optimal offline
is at most that of the fractional on sequence SαmBm, i.e. αmFS(q)(p− q). Thus, the second
term in (10) bounds the additive difference of the online and optimal offline profit, and its
ratio with respect to the offline profit is upper bounded by

O

(
α
√
m lnmp

αmFS(q)(p− q)

)
= O

(
α
√
m lnmµB ln(4er)

m µB
2er

)
= O

(
α3/2

√
lnn
n
r log r

)
. J

I Remark. Among all 1-balanced sequences, the sequence that gives the maximum profit is
not SmBm; intuitively, by moving buyers earlier in the sequence, we obtain more profit by
adapting the remaining buying prices to the outcome of these potential trades. For example,
the sequence Sm/2BSm/2Bm−1 has better adaptive profit than the sequence SmBm for large
m. Our work above shows that the difference is asymptotically insignificant, but it remains
an intriguing question to determine the balanced sequence with the maximum profit.

6.2 Welfare
Welfare on balanced sequences also improves the competitive ratio of Theorem 4 to a constant.
Intuitively, the reason is that the high volume of possible trades dampens the advantage the
adversary has in obtaining higher order statistics from buyers.

I Theorem 20. The online auction that posts to any seller and buyer the median of their
distribution is 4-competitive.

Notice the above theorem holds without any regularity assumption on the agent value
distributions.

Acknowledgements. We want to thank Matthias Gerstgrasser for many helpful discussions
and his assistance during the initial development of our paper.

Y. Giannakopoulos, E. Koutsoupias, and P. Lazos 47:13

References

1 Moshe Babaioff, Liad Blumrosen, Shaddin Dughmi, and Yaron Singer. Posting Prices
with Unknown Distributions. In Innovations in Computer Science (ICS), jan 2011. URL:
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/paper/35.pdf.

2 Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, and Aleksandrs Slivkins. Dynamic
pricing with limited supply. ACM Trans. Economics and Comput., 3(1):4, 2015. doi:
10.1145/2559152.

3 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online auctions
and generalized secretary problems. SIGecom Exch., 7(2):7:1–7:11, June 2008. doi:10.
1145/1399589.1399596.

4 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a budget:
posted price mechanisms for online procurement. In Proceedings of the 13th ACM Con-
ference on Electronic Commerce, pages 128–145. ACM, 2012. URL: http://dl.acm.org/
citation.cfm?id=2229026.

5 Ziv Bar-Yossef, Kirsten Hildrum, and Felix Wu. Incentive-compatible online auctions for
digital goods. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’02, pages 964–970, Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=545381.545506.

6 Richard E. Barlow and Albert W. Marshall. Bounds for Distributions with Monotone Haz-
ard Rate, I. The Annals of Mathematical Statistics, 35(3):1234–1257, sep 1964. URL: http:
//projecteuclid.org/euclid.aoms/1177703281, doi:10.1214/aoms/1177703281.

7 Avrim Blum and Jason D. Hartline. Near-optimal online auctions. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1156–1163. Society
for Industrial and Applied Mathematics, 2005. URL: http://dl.acm.org/citation.cfm?
id=1070597.

8 Avrim Blum, Tuomas Sandholm, and Martin Zinkevich. Online algorithms for market
clearing. Journal of the ACM (JACM), 53(5):845–879, 2006. URL: http://dl.acm.org/
citation.cfm?id=1183913.

9 Liad Blumrosen and Shahar Dobzinski. (Almost) Efficient Mechanisms for Bilateral Trad-
ing. arXiv preprint arXiv:1604.04876, 2016. URL: http://arxiv.org/abs/1604.04876.

10 Liad Blumrosen and Thomas Holenstein. Posted prices vs. negotiations: An asymptotic
analysis. In Proceedings of the 9th ACM Conference on Electronic Commerce, EC’08, pages
49–49, New York, NY, USA, 2008. ACM. doi:10.1145/1386790.1386801.

11 Liad Blumrosen and Yehonatan Mizrahi. Approximating gains-from-trade in bilateral trad-
ing. In Web and Internet Economics, pages 400–413. Springer, Berlin, Heidelberg, Decem-
ber 2016. doi:10.1007/978-3-662-54110-4_28.

12 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

13 Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Proceedings of the 42nd
ACM Symposium on Theory of Computing, pages 311–320. ACM, 2010. URL: http://dl.
acm.org/citation.cfm?id=1806733.

14 Riccardo Colini-Baldeschi, Bart de Keijzer, Stefano Leonardi, and Stefano Turchetta. Ap-
proximately efficient double auctions with strong budget balance. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1424–1443. Society for
Industrial and Applied Mathematics, 2016.

15 X Deng, P Goldberg, B Tang, and J Zhang. Revenue maximization in a bayesian double
auction market. Theoretical Computer Science, 2014. doi:10.1016/j.tcs.2014.04.013.

ICALP 2017

http://conference.itcs.tsinghua.edu.cn/ICS2011/content/paper/35.pdf
http://dx.doi.org/10.1145/2559152
http://dx.doi.org/10.1145/2559152
http://dx.doi.org/10.1145/1399589.1399596
http://dx.doi.org/10.1145/1399589.1399596
http://dl.acm.org/citation.cfm?id=2229026
http://dl.acm.org/citation.cfm?id=2229026
http://dl.acm.org/citation.cfm?id=545381.545506
http://projecteuclid.org/euclid.aoms/1177703281
http://projecteuclid.org/euclid.aoms/1177703281
http://dx.doi.org/10.1214/aoms/1177703281
http://dl.acm.org/citation.cfm?id=1070597
http://dl.acm.org/citation.cfm?id=1070597
http://dl.acm.org/citation.cfm?id=1183913
http://dl.acm.org/citation.cfm?id=1183913
http://arxiv.org/abs/1604.04876
http://dx.doi.org/10.1145/1386790.1386801
http://dx.doi.org/10.1007/978-3-662-54110-4_28
http://dl.acm.org/citation.cfm?id=1806733
http://dl.acm.org/citation.cfm?id=1806733
http://dx.doi.org/10.1016/j.tcs.2014.04.013

47:14 Online Market Intermediation

16 Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted
prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 123–135. Society for Industrial and Applied Mathematics, 2015.

17 Matthias Gerstgrasser, Paul W Goldberg, and Elias Koutsoupias. Revenue maximiza-
tion for market intermediation with correlated priors. In International Symposium on
Algorithmic Game Theory, pages 273–285. Springer, 2016.

18 Yiannis Giannakopoulos, Elias Koutsoupias, and Philip Lazos. Online market intermedi-
ation. CoRR, abs/1703.09279, 2017. URL: http://arxiv.org/abs/1703.09279.

19 Yiannis Giannakopoulos and Maria Kyropoulou. The VCG Mechanism for Bayesian
Scheduling. In Proceedings of the 11th Conference on Web and Internet Economics,
volume 9470 of Lecture Notes in Computer Science, pages 343–356. Springer, 2015. URL:
http://arxiv.org/abs/1509.07455, doi:10.1007/978-3-662-48995-6_25.

20 Mohammad T. Hajiaghayi. Online auctions with re-usable goods. In Proceedings of the
6th ACM conference on Electronic commerce, pages 165–174. ACM, 2005. URL: http:
//dl.acm.org/citation.cfm?id=1064027.

21 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and David C. Parkes. Adaptive limited-
supply online auctions. In Proceedings of the 5th ACM conference on Electronic commerce,
pages 71–80. ACM, 2004. URL: http://dl.acm.org/citation.cfm?id=988784.

22 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated on-
line mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

23 Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on
regret for online posted-price auctions. In Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, FOCS’03, pages 594–, Washington, DC, USA, 2003.
IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?id=946243.946352.

24 Elias Koutsoupias and George Pierrakos. On the competitive ratio of online sampling
auctions. ACM Transactions on Economics and Computation, 1(2):10, May 2013. URL:
http://dl.acm.org/citation.cfm?id=2465769.2465775.

25 R. Preston McAfee. A dominant strategy double auction. Journal of Economic Theory,
56(2):434–450, 1992. doi:10.1016/0022-0531(92)90091-U.

26 Roger B Myerson and Mark A Satterthwaite. Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 29(2):265–281, 1983.

27 Rad Niazadeh, Yang Yuan, and Robert Kleinberg. Simple and near-optimal mechanisms
for market intermediation. In International Conference on Web and Internet Economics,
pages 386–399. Springer, 2014.

28 David C. Parkes. Online mechanisms. In Noam Nisan, Tim Roughgarden, Eva Tardos, and
Vijay V. Vazirani, editors, Algorithmic Game Theory, chapter 16. Cambridge University
Press, New York, NY, USA, 2007.

29 Qiqi Yan. Mechanism design via correlation gap. In Proceedings of the Twenty-second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’11, pages 710–719. SIAM,
2011. URL: http://dl.acm.org/citation.cfm?id=2133036.2133092.

http://arxiv.org/abs/1703.09279
http://arxiv.org/abs/1509.07455
http://dx.doi.org/10.1007/978-3-662-48995-6_25
http://dl.acm.org/citation.cfm?id=1064027
http://dl.acm.org/citation.cfm?id=1064027
http://dl.acm.org/citation.cfm?id=988784
http://dl.acm.org/citation.cfm?id=946243.946352
http://dl.acm.org/citation.cfm?id=2465769.2465775
http://dx.doi.org/10.1016/0022-0531(92)90091-U
http://dl.acm.org/citation.cfm?id=2133036.2133092

Tight Lower Bounds for Multiplicative Weights
Algorithmic Families∗

Nick Gravin1, Yuval Peres2, and Balasubramanian Sivan3

1 Massachusetts Institute of Technology, Cambridge, MA, USA
ngravin@mit.edu

2 Microsoft Research, Redmond, WA, USA
peres@microsoft.com

3 Google Research, New York, NY, USA
balusivan@google.com

Abstract
We study the fundamental problem of prediction with expert advice and develop regret lower
bounds for a large family of algorithms for this problem. We develop simple adversarial primitives,
that lend themselves to various combinations leading to sharp lower bounds for many algorithmic
families. We use these primitives to show that the classic Multiplicative Weights Algorithm
(MWA) has a regret of

√
T ln k

2 (where T is the time horizon and k is the number of experts),
there by completely closing the gap between upper and lower bounds. We further show a regret
lower bound of 2

3

√
T ln k

2 for a much more general family of algorithms than MWA, where the
learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over
time. We also use our primitives to construct adversaries in the geometric horizon setting for
MWA to precisely characterize the regret at 0.391√

δ
for the case of 2 experts and a lower bound

of 1
2

√
ln k
2δ for the case of arbitrary number of experts k (here δ is the probability that the game

ends in any given round).

1998 ACM Subject Classification F.2.0 [Analysis of Algorithms and Problem Complexity] Gen-
eral

Keywords and phrases Multiplicative Weights, Lower Bounds, Adversarial Primitives

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.48

1 Introduction

In this paper we develop tight lower bounds on the regret obtainable by a broad family of
algorithms for the fundamental problem of prediction with expert advice. Predicting future
events based on past observations, a.k.a. prediction with expert advice, is a classic problem
in learning. The experts framework was the first framework proposed for online learning
and encompasses several applications as special cases. The underlying problem is an online
optimization problem: a player has to make a decision at each time step, namely, decide
which of the k experts’ advice to follow. At every time t, an adversary sets gains for each
expert: a gain of gi,t for expert i at time t. Simultaneously, the player, seeing the gains from
all previous steps except t, has to choose an action, i.e., decide on which expert to follow. If
the player follows expert j(t) at time t, he gains gj(t),t. At the end of each step t, the gains

∗ A full version of the paper is available at http://arxiv.org/abs/1607.02834.

EA
T

C
S

© Nick Gravin, Yuval Peres, and Balasubramanian Sivan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 48; pp. 48:1–48:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.48
http://arxiv.org/abs/1607.02834
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

associated with all experts are revealed to the player, and the player’s choice is revealed
to the adversary. In the finite horizon model, this process is repeated for T steps, and the
player’s goal is to perform (achieve a cumulative gain) as close as possible to the best single
action (best expert) in hindsight, i.e., to minimize his regret RT,k:

RT,k = max
1≤i≤k

T∑
t=1

gi,t −
T∑
t=1

gj(t),t.

Apart from assuming that the gi,t’s are bounded in [0, 1], we don’t assume anything else
about the gains1. Just as natural as the finite horizon model is the model with a geometric
horizon: the stopping time is a geometric random variable with expectation 1

δ . In other
words, the process ends at any given step with probability δ, independently of the past.
Equivalently, both the player and the adversary discount the future with a 1− δ factor. In
this paper, we study both the finite horizon model and the geometric horizon model. We
begin with the discussion for finite horizon model below.

Main contribution

In this paper we develop simple adversarial primitives and demonstrate that, when applied
in various combinations, they result in remarkably sharp lower bounds for a broad family of
algorithms. We first describe the family of algorithms we study, and then discuss our main
results.

Multiplicative Weights Algorithm

We begin with the Multiplicative Weights Algorithm, which is a simple, powerful and widely
used algorithm for a variety of learning problems. In the experts problem, at each time
t, MWA computes the cumulative gain Gi,t−1 =

∑t−1
s=1 gi,s of each expert i accumulated

over the past t− 1 steps, and will follow expert i’s advice with probability proportional to
eηGi,t−1 . Namely, with probability eηGi,t−1∑k

j=1
eηGj,t−1

where η is a parameter that can be tuned.

The per-step computation of the algorithm is extremely simple and straightforward. The
intuition behind the algorithm is to increase the weight of any expert that performs well by
a multiplicative factor. Despite the simplicity and the heuristic origins of the algorithm, it
is surprisingly powerful: the pioneering work of Cesa Bianchi et al. [6] showed that MWA
obtains a sublinear regret of

√
T ln k

2 , and that this is asymptotically optimal as the number
of experts k and the number of time steps T both tend to ∞.

Families of algorithms

The MWA is a single-parameter family of algorithms, i.e., the learning rate parameter η is
the only parameter available for the player. In general one could think of η being an arbitrary
function of time t, i.e., at step t, algorithm follows expert i with probability eη(t)Gi,t−1∑k

j=1
eη(t)Gj,t−1

.

Note that this is a T -parameter family of algorithms and is quite general. The most general
family of algorithms we study is when at each time t, the quantity η(t) is drawn from an

1 As one might expect, it turns out that restricting the adversary to set gains in {0, 1} instead of [0, 1] is
without loss of generality (see [12] or [20]). Henceforth, we restrict ourselves to the binary adversary,
which just sets gains of 0 or 1.

N. Gravin, Y. Peres, and B. Sivan 48:3

arbitrary distribution Ft over reals. Since Ft could be arbitrary, this is an infinite-parameter
family of algorithms. We denote the
1. single parameter MWA family by Asingle;
2. family where η(t) decreases with t by Adec;
3. family where η(t) is arbitrary function of t by Aarb;
4. family where η(t) is drawn from Ft for each t by Arand.
It is straightforward to see that Asingle ⊆ Adec ⊆ Aarb ⊆ Arand. The reason we start with
Asingle is that it is the classic MWA and precisely characterizing its regret is still open. We
study Adec because often when MWA algorithms are working with unknown T , they employ
a strategy where η decreases with time. We move on to further significantly generalize this
by studying Aarb,Arand.

Minimax regret, and Notation

We study the standard notion of minimax regret for each of the above family of algorithms.
Formally, let RT,k(A,D) denote the expected regret achieved by algorithm A when faced
with adversary D in the prediction with expert advice game with T steps and k experts.
We use Rk(A,D) to denote the asymptotic2, in T , value of RT,k(A,D), i.e., Rk(A,D) =√
T · limT→∞

RT,k(A,D)√
T

. The minimax regret of a family AF of algorithms against a family
DF of adversaries is given by RT,k(AF ,DF) = minA∈AF maxD(A)∈DF RT,k(A,D). Let Duniv
denote the universe of all adversaries. We use the shorthand RT,k(AF) for RT,k(AF ,Duniv) =
minA∈AF maxD(A)∈Duniv RT,k(A,D). We use Rk(AF) to denote the asymptotic, in T , value
of RT,k(AF), i.e., Rk(AF) =

√
T · limT→∞

RT,k(AF)√
T

.

Goal

One of our goals in this paper is to compute the precise values of Rk(Asingle), Rk(Adec),
Rk(Aarb) and Rk(Arand) for each value of k, and, describe and compute the adversarial
sequences that realize these regrets. For clarity, we compute the precise values of Rk(AF) by:
1. computing the best-response adversary in Duniv for every algorithm in AF ;
2. computing Rk(AF) the regret of the optimal algorithm in AF (i.e., the algorithm that

gets the smallest regret w.r.t. its best-response adversary).
In many cases, the first step, namely computing the best-response adversary, is challenging.
We find the best-response adversaries for the families Asingle and Adec. For the families Aarb
and Arand, we perform the first step approximately, i.e., we compute a nearly best-response
adversary, and thus we obtain lower bounds on Rk(Aarb) and Rk(Arand).

What is known, and what to expect?

It is well known that for AF = Asingle,Adec,Aarb,Arand: RT,k(AF) ≤
√

(T ln k)/2 for all
T, k, and in the doubly asymptotic limit, as both T and k go to ∞, the optimal regret of
Asingle is

√
(T ln k)/2, i.e., lim

T→∞,k→∞

(
RT,k(Asingle)/

√
(T ln k)/2

)
= 1. (see [6, 5]). While

there are useful applications for k →∞, there are also several interesting use-cases of the
experts problem with just a few experts (rain-or-shine (k = 2), buy-or-sell-or-hold (k = 3)).
It seems like for small k such as 2, 3, 4 etc. Rk(Asingle) could be a significant constant factor
smaller than

√
(T ln k)/2. And given that families like Adec etc. are supersets of Asingle,

2 Although Rk doesn’t have a T in the subscript, Rk is still dependent on T . We suppress T merely to
indicate asymptotics in T .

ICALP 2017

48:4 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

it seems even more likely that Rk(Adec) etc. are constant factor smaller than
√

(T ln k)/2.
Surprisingly, we show that is not the case: the regret of

√
(T ln k)/2 that is obtained as

k →∞ is already obtained at k = 2. Thus our work completely closes the gap between upper
and lower bounds for all k.

1.1 Main Results
Finite horizon model

1. Rk(Asingle) = Rk(Adec) =
√

T ln k
2 for even k,

Rk(Asingle) ≥ Rk(Adec) ≥
√

T ln k
2 (1− 1

k2) for odd k.

2. Rk(Aarb) ≥ Rk(Arand) ≥ 2
3

√
T ln k

2 for even k,

Rk(Aarb) ≥ Rk(Arand) ≥ 2
3

√
T ln k

2 (1− 1
k2) for odd k.

Geometric horizon model

In the geometric horizon model, the current time t is not relevant, since the expected
remaining time for which the game lasts is the same irrespective of how many steps have
passed in the past. Thus η(t) is without loss of generality, independent of t. Nevertheless,
η could still depend on other aspects of the history of the game, like the cumulative gains
of all the experts etc. We establish some quick notation before discussing results. Let δ
denote the probability that the game stops at any given step, independently of the past
(and therefore the expected length of the game is 1

δ). Let Rδ,k(A,D) denote the regret
achieved by algorithm A when faced with adversary D in the prediction with expert advice
game with stopping probability δ and k experts. The minimax regret for a family AF
of algorithms is given by Rδ,k(AF) = Rδ,k(AF ,Duniv) = minA∈AF maxD∈Duniv Rδ,k(A,D).
Let3 Rk(AF) = 1√

δ
limδ→0

√
δ ·Rδ,k(AF).

We show the following:
1. R2(Asingle) = 0.391√

δ
,

2. Rk(Asingle) ≥ 1
2

√
ln k
2δ for all k.

The regret lower bound of 1
2

√
ln k
2δ we obtain is at most a factor 2 away from the regret

upper bound of
√

ln k
2δ . Further, we show that the adversarial family that we use for the

family of algorithms Asingle to obtain the precise regret for 2 experts, also obtains the optimal
regret for the universe Auniv of all algorithms. See See the full version [11] for more on this
result.

1.2 Simple adversarial primitives and families
While the optimal regret Rk(AF) is defined by optimizing over the most general family Duniv
of all adversaries, (i.e., Rk(AF) = Rk(AF ,Duniv)) one of our primary contributions in this
work is to develop simple and analytically easy-to-work-with adversarial primitives that we
use to construct adversarial families (call a typical such family Dsimple) such that:

3 Note that the notation Rk(·) is overloaded: it could refer to finite or geometric horizon setting depending
on the context. But since the setting is clear from the context, we drop the δ vs T .

N. Gravin, Y. Peres, and B. Sivan 48:5

Figure 1 Optimal finite horizon adversary.

Figure 2 Optimal geometric horizon adversary.

Dsimple is simple to-describe and to-optimize-over, i.e., computing maxD∈DsimpleRT,k(A,D)
is much simpler than computing maxD∈Duniv RT,k(A,D).
optimizing over Dsimple is guaranteed to be as good (or approximately as good) as optim-
izing over Duniv for many algorithmic families AF , i.e., Rk(AF ,Duniv) = Rk(AF ,Dsimple)
for many AF . As Rk(AF ,Duniv) ≥ Rk(AF ,Dsimple), the non-trivial part is to prove
(approximate) equality for AF .

We demonstrate the versatility of our primitives by using simple combinations of them to
develop sharp lower bounds to algorithmic families Asingle, Adec, Aarb, and Arand. There
is a lot of room for further combinations of primitives that might be useful to construct
adversarial families tailored to other algorithmic families.

The “looping” and “straight-line” primitives

These primitives are best described by focusing on the case of k = 2 experts. In the two
experts case, the algorithm makes its decision at step t, by just looking at the difference
d of the cumulative gains of the leading and lagging experts’ cumulative gains. As such,
the adversary has to simply control how the difference d evolves over time. The “looping”
primitive simply loops the value of d between 0 and 1 indefinitely (i.e., advances4 one expert
in one step and advances the other in the next step and so on, so that d simply loops
between 0 and 1). The “straight-line” adversary simply keeps advancing the value of d by
1 at each step. Interestingly, the worst-case adversary for each of the finite and geometric
horizon settings is a composition of looping and straight-line primitives. Strikingly, despite
the apparent similarity between two settings, the optimal adversaries in the two models
turn out to be “mirror images” of each other. The optimal adversary in finite horizon loops
first and then goes in straight-line, while the geometric horizon’s optimal does the reverse.
The structure of these two families is depicted in Figures 1, 2, that shows the evolution
of the difference d between the cumulative gains of the leading and lagging experts. This
fundamental difference between the structures of the optimal adversary in these two settings
also manifests in the optimal regret values of these two settings.

The generalizations of these primitives for arbitrary k is straightforward. The looping
primitive partitions the set of experts into two teams, say A and B, and then it advances
all experts in team A in one step and in team B in the other, and so on. The straight-line
primitive picks an arbitrary expert and keeps advancing that expert by 1 in each step.

4 Advances here refers to setting the gain of that expert to 1.

ICALP 2017

48:6 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Combining the primitives

Here’s how we create effective adversarial families from these primitives. In fact the families
are often trivial, i.e., they have only one member and therefore there’s nothing to optimize.
We ignore the odd and even k distinctions here for ease of description and just focus on the
even k case. Please see the technical sections for precise descriptions, which is only slightly
different from what is here.
1. Perform T−`

2 loops and then ` straight-line steps, for ` = T 3/4. Call this adversary
Dlsdet (stands for loop-straight-deterministic). Clearly, this adversarial family is simple-
to-describe and there is nothing to optimize here as there is only one member in the
family. Most importantly, it gives the precisely optimal regret for algorithmic families
Asingle and Adec as T →∞. I.e.,

For families AF = Asingle,Adec: Rk(AF , Dlsdet) =
√
T ln k

2 = Rk(AF ,Duniv).

The best known regret lower bound for Asingle was 1
4
√
T log2 k [13], which leaves a factor

2.35 gap between upper and lower bounds, that our work closes. We are not aware of
prior lower bounds for Adec.

2. Perform T−r
2 loops and then r straight-line steps, where r is chosen uniformly at random

from {0, 1, . . . , T 3/4}. This family is simple and there is nothing to optimize here as well.
Call this adversary Dlsrand (denoting loop, straight, uniformly random). We show that
when AF = Aarb or when AF = Arand:

For families AF = Aarb,Arand: Rk(AF , Dlsrand) ≥
2
3

√
T ln k

2 ≥ 2
3Rk(AF ,Duniv).

Note that while this lower bound doesn’t precisely match the upper bound, the upper
bound Rk(AF ,Duniv) ≤

√
(T ln k)/2 and is likely even smaller for small k (particularly

for a large family of algorithms like Aarb or Arand) — thus our result shows that the ratio
between upper and lower bounds is at most 3

2 and likely even smaller. To the best of our
knowledge our lower bound is the first for the classes Aarb and Arand.

3. In geometric horizon, even for the family Asingle and at k = 2 experts, instead of a
single adversary working for all members of Asingle, we have a single-parameter family of
adversaries to optimize over. Namely, follow the straight-line primitive for r steps and
then the looping primitive for T−r2 steps. Call this single-parameter family (parameterized
by r) as Dsl. The exact number r is determined by optimizing it as a function of the
parameter η used by the algorithm in Asingle. Specifically, for the case of 2 experts we
show that: R2(Asingle,Dsl) = 0.391√

δ
= R2(Asingle,Duniv). Note that Dsl is again simple-

to-describe and straightforward-to-optimize over. Further, it is the precisely optimal
adversary family for not just Asingle but also the universe of all algorithms Auniv (see
the full version [11] for this result), i.e., R2(Auniv,Duniv) = R2(Auniv,Dsl).

4. But in the geometric horizon setting, if we don’t shoot for the precisely optimal ad-
versary family, and aim for just approximately optimal, then we don’t need a single-
parameter family: just following one of the two looping/straight-line primitives gives a
lower bound of 1

2

√
ln k
2δ . Let D`, Ds be the looping and straight line primitives. Then:

Rk(Asingle, {D`, Ds}) ≥ 1
2

√
ln k
2δ ≥

1
2Rk(Asingle,Duniv). Note that while this lower bound

doesn’t precisely match the upper bound Rk(Asingle,Duniv), the latter is at most5
√

ln k
2δ ,

which is at most a factor 2 larger than lower bound.

5 This is a simple extension of the standard proof that MWA has a regret upper bound of
√

(T ln k)/2 in

N. Gravin, Y. Peres, and B. Sivan 48:7

I Remark. To give a sense that the primitives offer enough variety in combination, here
is a simple modification over the adversary Dlsrand, that we call Dlsrand++: use Dlsrand

with probability p, and with probability 1 − p play the looping primitive Dl for all the T
steps. This increases the lower bound from 2

3
√

(T ln k)/2 to 0.68
√

(T ln k)/2 (see the full
version [11] for this result). We believe that this can be increased further by picking the
stopping time for looping from a non-uniform distribution etc.

1.3 Motivation and discussion
In this work we seek to understand the structure of worst case input sequences for a broad
family of algorithms and crisply expose their vulnerabilities. By identifying such structures,
we also get the precise regret suffered by them. Our motivation in exploring this question
includes the following.

1. After 25 years since MWA was introduced [19, 27], we do not have a sharp regret bound
for it. Asingle is known to suffer a regret of at most

√
T ln k

2 , but the best known lower
bound on regret is 1

4
√
T log2 k [13], with a factor 2.35 gap between these two bounds.

For larger families like Aarb, Arand no lower bounds were known. For an algorithm as
widely used as MWA, it is fruitful to have a sharp regret characterization.

2. The patterns in the worst-case adversarial sequences that we characterize are simple
to spot if they exist (or even if anything close exists), and make simple amends to the
algorithm that result in significant gains.

3. The problem is theoretically clean and challenging: how powerful are simple input patterns
beyond the typically used pure random sequences in inflicting regret?

Related Work

Classic works: The book by Cesa-Bianchi and Lugosi [7] is an excellent source for both
applications and references for prediction with expert advice. The prediction with experts
advice paradigm was introduced by Littlestone and Warmuth [19] and Vovk [27]. The famous
multiplicative weights update algorithm was introduced independently by these two works:
as the weighted majority algorithm by [19] and as the aggregating algorithm by [27]. The
pioneering work of Cesa-Bianchi et al. [6] considered {0, 1} outcome space for nature and
showed that for the absolute loss function `(x, y) = |x − y| (or g(x, y) = 1 − |x − y|), the
asymptotically optimal regret is

√
T ln k

2 . This was later extended to [0, 1] outcomes for

nature by Haussler et al. [15]. The asymptotic optimality of
√

T ln k
2 for arbitrary loss (gain)

functions follows from the analysis of Cesa-Bianchi [5]. When it is known beforehand that
the cumulative loss of the optimal expert is going to be small, the optimal regret can be
considerably improved, and such results were obtained by Littlestone and Warmuth [19] and
Freund and Schapire [9]. With certain assumptions on the loss function, the simplest possible
algorithm of following the best expert already guarantees sub-linear regret (see Hannan [14]).
Even when the loss functions are unbounded, if the loss functions are exponential concave,
sub-linear regret can still be achieved as shown by Blum and Kalai [4]. While our work
is focused on the worst-case adversaries for the MWA family of algorithms, Freund and
Schapire [10] prove lower bounds for general adaptive game-playing algorithms.

the finite horizon setting with T steps and k experts, and the realization that in the geometric horizon
setting, the expected stopping time is 1

δ .

ICALP 2017

48:8 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Recent works: Gravin et al. [12] give the minimax optimal algorithm, and the regret for
the prediction with expert advice problem for the cases of k = 2 and k = 3 experts. The
focus of [12] was providing a regret upper bound for the family of all algorithms, while the
focus of this paper is to provide regret lower bounds for large families of algorithms. Luo
and Schapire [20] consider a setting where the adversary is restricted to pick gain vectors
from the basis vector space {e1, . . . , ek}. Abernethy et al. [3] consider a different variant of
experts problem where the game stops when cumulative loss of any expert exceeds given
threshold. Abernethy et al. [2] consider general convex games and compute the minimax
regret exactly when the input space is a ball, and show that the algorithms of Zinkevich [28]
and Hazan et al. [16] are optimal w.r.t. minimax regret. Abernethy et al. [1] provide upper
and lower bounds on the regret of an optimal strategy for several online learning problems
without providing algorithms, by relating the optimal regret to the behavior of a certain
stochastic process. Mukherjee and Schapire [23] consider a continuous experts setting where
the algorithm knows beforehand the maximum number of mistakes of the best expert. Rakhlin
et al. [25] introduce the notion of sequential Rademacher complexity and use it to analyze
the learnability of several problems in online learning w.r.t. minimax regret. Rakhlin et
al. [26] use the sequential Rademacher complexity introduced in [25] to analyze learnability
w.r.t. general notions of regret (and not just minimax regret). Rakhlin et al. [24] use the
notion of conditional sequential Rademacher complexity to find relaxations of problems like
prediction with static experts that immediately lead to algorithms and associated regret
guarantees. They show that the random playout strategy has a sound basis and propose a
general method to design algorithms as a random playout. Koolen [17] studies the regret
w.r.t. every expert, rather than just the best expert in hindsight and considers tradeoffs in
the Pareto-frontier. McMahan and Abernethy [21] characterize the minimax optimal regret
for online linear optimization games as the supremum over the expected value of a function
of a martingale difference sequence, and similar characterizations for the minimax optimal
algorithm and the adversary. McMahan and Orabona [22] study online linear optimization
in Hilbert spaces and characterize minimax optimal algorithms. Chaudhuri et al. [8] describe
a parameter-free learning algorithm motivated by the cases of large number of experts k.
Koolen and Erven [18] develop a prediction strategy called Squint, and prove bounds that
incorporate both quantile and variance guarantees.

2 Finite horizon

We begin our analysis of MWA by focusing on the simple case of k = 2 experts. We first
identify the structure of the optimal adversary, and through it we obtain the tight regret
bound as T → ∞. Before proceeding further, it is useful to recall that when the gains
of the leading and lagging experts are given by g + d and g, the MWA algorithm follows
these experts with probabilities eηd

eηd+1 and 1
eηd+1 respectively. Thus, when the adversary

increases d by 1 i.e., increases the gain of the leading expert by 1, the regret benchmark
(namely, the gains of the leading expert) increases by 1, where as MWA is correct only with
probability eηd

eηd+1 , and this therefore inflicts a regret of 1
eηd+1 on MWA. On the other hand, if

the adversary decreases d by 1, then the benchmark doesn’t change, where as MWA succeeds
with probability 1

eηd+1 , and this therefore inflicts a regret of −1
eηd+1 . When the adversary

doesn’t change d, the regret inflicted is 0.

N. Gravin, Y. Peres, and B. Sivan 48:9

Structure of the optimal adversary

Let η be the fixed update rate of the optimal MWA (the parameter in the exponent as
explained in Section 1)6. Against a specific algorithm, an optimal adversary can always
be found in the class of deterministic adversaries. The actions of the optimal adversary
(against a specific MWA algorithm) depend only on the distance d between leading and
lagging experts and time step t.

1. Loop aggregation: At each time step, the adversary may either increase or decrease the
gap d by 1, or leave d unchanged. We denote these actions of the adversary by d t→ d+ 1,
d

t→ d− 1, and d t→ d. The respective regret values inflicted on the algorithm are given
by 1

eηd+1 ,
−1

eηd+1 , and 0, which are all independent of the time when an action was taken.
This means that if the adversary loops between d and d+ 1 at several disconnected points
of time, it may as well aggregate all of them and complete all of them in consecutive time
steps. I.e., the optimal adversary starts at d = 0 and then weakly monotonically increases
d, stopping at various points d = s, looping for an arbitrary length of time between d = s

and d = s− 1 and then proceeding forward.
2. Staying at same d is dominated: It is not hard to see that any action x→ x is dominated

for the adversary as this wastes a time step and inflicts 0 regret on the algorithm. Thus the
“weakly monotonically increases” in the previous paragraph can be replaced by “strictly
monotonically increases” (except of course for the stopping points for looping).

3. Loop(0) domination: Define Loop(d) def= d→ d+ 1→ d. It is easy to see that the regret
inflicted by Loop(d) is exactly 1

eηd+1 −
1

eη(d+1)+1 and this quantity is maximized at d = 0.
Thus, the optimal adversary should replace all loops by loops at 0. This gives us the
structure claimed in Figures 1, 2 for the optimal adversary.

Given the optimal adversary’s structure (as described in Figures 1, 2) w.l.o.g. we can
assume it to be looping for T−`

2 steps at 0 and then monotonically increasing d for ` steps
at which point the game ends. In the following we will analyze the regret inflicted by the
optimal adversary (which we showed was optimal for the class of algorithm Asingle) against a
broader class Adec of MWA. The regret of the adversary is:

T−`
2∑
t=1

[
1
2 −

1
eη(2t) + 1

]
+
`−1∑
d=0

1
eη(T−`+d+1)d + 1

. (1)

Asymptotic regret of the optimal adversary

We first notice that for a fixed adversary with a given `, the regret of MWA with decreasing
η(t) in (1) is greater than or equal to the regret of MWA with a constant η′ = η(T − `), i.e.,

T − `
2

[
1
2 −

1
eη′ + 1

]
+
`−1∑
d=0

1
edη′ + 1 . (2)

This is true as each individual term in (2) is equal to or smaller than the corresponding term
in (1). In the following we are going to use ` = T 3/4 for the adversary and for convenience,
we write eη′(T−`) = τ = 1 + α√

T
. The two terms in (1) together place strong bounds on

what α should be: they imply that α = Θ(1). We show this in 2 steps: first we show that
α = O(1), and then show that α = Ω(1).

6 In fact, we can identify the optimal adversary for a much broader family of algorithms (see the full
version [11] for more details).

ICALP 2017

48:10 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

1. The first term in (2) forces α to be O(1). The regret of MWA for ` = T 3/4 is at least

T − `
2

[
1
2 −

1
eη′ + 1

]
' T

2

[
1
2 −

1
eη′ + 1

]
= α

√
T

4(1 + eη′) =
√
T

4(2
α + 1√

T
)
.

Since MWA’s regret upper bound in the finite horizon model is Θ
(√

T
)
, α must be O(1).

2. To show that α = Θ(1) we argue that the regret from the second term of (2) is ω(
√
T)

when α = o(1). For all d ≤
√
T
α , we have τd = (1 + α√

T
)d ≤ e. Thus MWA’s regret for

k = min(
√
T
α , T 3/4) is at least

k−1∑
d=0

1
τd + 1 ≥

k−1∑
d=0

1
e+ 1 = Ω(k) = ω

(√
T
)
.

Since MWA’s regret upper bound in the finite horizon model is Θ
(√

T
)
, we get α = Ω(1).

Now, we obtain the following asymptotic estimate for the second part of (2), where
η′ ∼ eη′ − 1 = α√

T
.

`−1∑
d=0

1
τd + 1 ∼

∫ `

0

dx
eη′x + 1 = 1

η′
ln

2 e`η
′

e`η′ + 1

 ∼ √T
α

(
ln(2)− ln(1 + e−`η

′
)
)
. (3)

The first part of (2) can be estimated as follows

T − `
2

[
1
2 −

1
eη′ + 1

]
∼ T

2

 eη
′ − 1

2(eη′ + 1)

 ∼ T

2 ·
η′

4 = α
√
T

8 . (4)

As e−`η′ = e−αT
1/4 = o(1), (3) simplifies to ln(2)

√
T

α , while the estimate for (4) is α
√
T

8 .
Now the estimate

√
T
[

ln(2)
α + α

8

]
for the regret in (2) is minimized for the choice of parameter

α =
√

8 ln(2). Then the regret of the optimal MWA is at least
√
T · ln(2)

2 (1 + o(1)). It is

known that there is MWA for k = 2 experts with regret at most
√
T · ln(2)

2 (asymptotic in
T). Thus, we obtain the following claim 1 (in the claim below, by “optimal MWA” we mean
the MWA with the optimally tuned η(t) = η′).

I Claim 1. For AF = Asingle,Adec: R2(AF , Dlsdet) =
√

T ln 2
2 = R2(AF ,Duniv).

We generalize the adversary for k = 2 and obtain a tight lower bound for Adec matching the
known upper bound for arbitrary even number k of experts and almost matching bound
for odd number k of experts. Since Rk(Asingle) ≥ Rk(Adec), the lower bound in Theorem 2
below applies to Asingle as well.

I Theorem 2. For AF = Asingle,Adec:
(i) For even k: Rk(AF , Dlsdet) =

√
T ·ln k

2 = Rk(AF ,Duniv).

(ii) For odd k: Rk(AF , Dlsdet) ≥
√

T ·ln k
2

(
1− 1

k2

)
≥
√

1− 1
k2Rk(AF ,Duniv).

Proof. Let η(t) be the update rate of the optimal MWA, we define ` = T 3/4 and η′ = η(T−`).
We employ the following adversary for the even k number of experts:

N. Gravin, Y. Peres, and B. Sivan 48:11

1. Divide all experts into two equal parties, numbered A and B. For the first T−`
2 rounds

(` = T 3/4), advance all the experts in party A in even numbered rounds, and all experts
in party B in odd numbered rounds.

2. For the remaining ` steps, pick an arbitrary expert and keep advancing just that expert.

Similar to (1) this adversary obtains the regret of at least
∑T−`

2
t=1

[
1
2 −

1
eη(2t)+1

]
+∑`−1

d=0
k−1

ed·η(T−`+d+1)+k−1 . We further notice that similar to (2) the regret of MWA with
decreasing η(t) in the above expression is greater than or equal to the regret of MWA with a
constant η′ = η(T − `), i.e., the previous expression is at least

T − `
2

[
1
2 −

1
eη′ + 1

]
+
`−1∑
d=0

k − 1
ed·η′ + k − 1 . (5)

We use (4) to estimate the first term of (5). We estimate the second term of (5) similar
to (3) as follows.

`−1∑
d=0

k − 1
edη′ + k − 1 ∼

∫ `

0

(k − 1)dx
exη′ + k − 1 = 1

η′
ln

 k · e`η′

e`η′ + k − 1

 ∼ √T ln(k)
α

. (6)

Now, combining these two estimates the regret from (5) is at least

α
√
T

8 +
√
T ln(k)
α

≥ 2 ·

√
α
√
T

8 ·
√
T ln(k)
α

=
√
T ln(k)

2 ,

which precisely matches the upper bound on the regret of MWA[6].
For the odd k number of experts we employ almost the same adversary as for even k,

although, since k now is odd, we split experts into two parties of almost equal sizes (see the
full version [11] for more details). J

2.1 General variations of MWA
We have seen that the best known MWA with a flat learning rate η achieves optimal (or
almost optimal in the case of odd number of experts) regret among all MWAs with monotone
decreasing learning rates η(t). However, it seems that in the finite horizon model a better
strategy for tuning parameters of MWA would be to use higher rates η(t) towards the end T .
In the following we study a broader family of MW algorithms Aarb where learning parameter
η(t) can vary in an arbitrary way. In the following theorem we show that such adaptivity of
MWA cannot decrease the regret of the algorithm by more than a factor of 2/3.

I Remark. In fact, our analysis extends to the family Arand where each η(t) can be a random
variable drawn from a distribution Ft. Effectively, with a random η(t) the algorithm player
can get any convex combination f(Gi,t−1, t) = Eη(t)[eη(t)Gi,t−1] of eη(t)Gi,t−1 in the vector of
probabilities for following each expert i at time t. This constitutes a much richer family of
algorithms compared to the standard single parameter MWA family.

I Theorem 3. For AF = Aarb,Arand:
(i) For even k: Rk(AF , Dlsrand) ≥ 2

3

√
T ·ln k

2 ≥ 2
3Rk(AF ,Duniv).

(ii) For odd k: Rk(AF , Dlsrand) ≥ 2
3

√
T ·ln k

2

(
1− 1

k2

)
≥ 2

3

√
1− 1

k2Rk(AF ,Duniv).

ICALP 2017

48:12 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Proof. Define ` = T 3/4 and R =
[
T−`−1

2

]
. We use the following adversary for even number

of experts k:
1. Choose j ∈ [R] uniformly at random. With probability 0.5 don’t advance any expert in

the first step.
2. Divide all experts into two equal parties, numbered A and B. For the next j rounds,

advance all the experts in party A in even numbered rounds, and all experts in party B
in odd numbered rounds.

3. For next ` steps, pick any expert i and keep advancing just expert i. Do nothing in
remaining steps.

The regret of the algorithm is

1
R

R−1∑
j=0

[
1
2

 j∑
t=1

[
1
2 −

1
eη(2t) + 1

]
+
`−1∑
d=0

k − 1
ed·η(2j+d+1) + k − 1

+

1
2

 j∑
t=1

[
1
2 −

1
eη(2t+1) + 1

]
+
`−1∑
d=0

k − 1
ed·η(2j+d+2) + k − 1

]. (7)

Since η(t) can be arbitrary nonnegative number, we break (7) into terms with the same
η(t) (we also drop a few terms to simplify the expression). In the following, we will also
assume that eη(t) = 1 + α(t)√

T
, where α(t) = Θ(1) for every t ∈ [T]. Later we will explain why

this assumption is without loss of generality.

(7) ≥ 1
2R

T−`−1∑
t=`

[R− dt/2e] · [1
2 −

1
eη(t) + 1

]
+
`−1∑
d=0

k − 1
eη(t)d + k − 1

'
T−`−1∑
t=`

[R− dt/2e
R

]
α(t)
8
√
T

+
√
T ln(k)

2R · α(t)

 ≥ T−`−1∑
t=`

2

√√√√[R− dt/2e
R

]
α(t)
8
√
T

√
T ln(k)

2R · α(t)

=
√

ln(k)
2 · 2R

T−`−1∑
t=`

√√√√[R− dt/2e
R

]
'
√

ln(k)
2 · T

∫ 1

0

√
1− x dx =

√
ln(k)
2T · 2

3 . (8)

In the above derivation we obtain the first approximation ' by using approximations from
(4) and (6).

We now argue that the assumption α(t) = Θ(1) is without loss of generality for every
t ∈ [T]. We apply a similar argument as in Theorem 1, but now for each individual term with
a particular η(t). The term

∑`−1
d=0

k−1
eη(t)d+k−1 in (8) is already large enough for the estimate

when α(t) = o(1). The term
[
R− dt/2e

]
·
[

1
2 −

1
eη(t)+1

]
also places a strong bound of O(1) on

α(t), when
[
R− dt/2e

]
is constant fraction of T . To argue about t close to the threshold T ,

we can slightly modify the adversary by playing with a small constant probability ε entirely
“looping” strategy (without “straight line” part). This would make the coefficient in front of[

1
2 −

1
eη(t)+1

]
to be sufficiently large, and at the same time would decrease the lower bound

by at most 1− ε factor. Taking ε arbitrary small we obtain the bound in (8). This concludes
the proof for the even number of experts

For the odd number of experts k. We slightly modify the adversary analogous to the case
of odd number of experts in Theorem 2. This gives us an additional factor of 1− 1

k2 for each
of the looping terms.

Note that since our adversary is independent of how the η(t)’s are picked in the algorithm,
it follows immediately that our lower bound applies for AF = Aarb,Arand. J

N. Gravin, Y. Peres, and B. Sivan 48:13

I Remark. One can slightly improve the lower bound in Theorem 3 and get a better factor
than 2

3 . To this end we employ a more complicated adversary by playing with some probability
p > 0 the same strategy as in Theorem 3 and with the remaining 1− p probability playing
purely looping strategy (see the full version [11]).

3 Geometric horizon

We prove two main results in this Section. We derive the structure of the optimal adversary
for 2 experts and show that the optimal regret for 2 experts is exactly 0.391√

δ
as δ → 0. For

an arbitrary number of experts k, we derive a regret lower bound of 1
2

√
ln(k)

2δ (see the full
version [11] for proofs of these results).

References
1 Jacob Abernethy, Alekh Agarwal, Peter L. Bartlett, and Alexander Rakhlin. A stochastic

view of optimal regret through minimax duality. In COLT 2009 – The 22nd Conference
on Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009, 2009.

2 Jacob Abernethy, Peter L. Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal
stragies and minimax lower bounds for online convex games. In 21st Annual Conference on
Learning Theory – COLT 2008, Helsinki, Finland, July 9-12, 2008, pages 415–424, 2008.

3 Jacob Abernethy, Manfred K. Warmuth, and Joel Yellin. When random play is optimal
against an adversary. In COLT, pages 437–446, 2008.

4 Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs.
Machine Learning, 35(3):193–205, June 1999.

5 Nicolò Cesa-Bianchi. Analysis of two gradient-based algorithms for on-line regression. In
Proceedings of the Tenth Annual Conference on Computational Learning Theory, COLT’97,
pages 163–170, New York, NY, USA, 1997. ACM.

6 Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, May 1997.

7 Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, New York, NY, USA, 2006.

8 Kamalika Chaudhuri, Yoav Freund, and Daniel J. Hsu. A parameter-free hedging algorithm.
In Advances in Neural Information Processing Systems 22: 23rd Annual Conference on
Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December
2009, Vancouver, British Columbia, Canada., pages 297–305, 2009.

9 Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

10 Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1-2):79–103, 1999.

11 Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight lower bounds for multiplicat-
ive weights algorithmic families, 2016. CoRR, abs/1607.02834. URL: http://arxiv.org/
abs/1607.02834.

12 Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Towards optimal algorithms for
prediction with expert advice. In To appear in the Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2016.

13 András Gyorgy, Dávid Pál, and Csaba Szepesvári. Online Learning: Algorithms for Big
Data. Manuscript, 2013.

14 James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory
of Games, 3:97–139, 1957.

ICALP 2017

http://arxiv.org/abs/1607.02834
http://arxiv.org/abs/1607.02834

48:14 Tight Lower Bounds for Multiplicative Weights Algorithmic Families

15 David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Tight worst-case loss bounds
for predicting with expert advice. In EuroCOLT, pages 69–83, 1995.

16 Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret algorithms
for online convex optimization. In Learning Theory, 19th Annual Conference on Learning
Theory, COLT 2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings, pages 499–513,
2006.

17 Wouter M. Koolen. The pareto regret frontier. In Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States., pages 863–871, 2013.

18 Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts and
combinatorial games. In Proceedings of The 28th Conference on Learning Theory, COLT
2015, Paris, France, July 3-6, 2015, pages 1155–1175, 2015.

19 Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108(2):212–261, February 1994.

20 Haipeng Luo and Robert E. Schapire. Towards minimax online learning with unknown
time horizon. In Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, pages 226–234, 2014.

21 H. Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for uncon-
strained linear optimization. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a
meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States., pages 2724–2732,
2013.

22 H. Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in
hilbert spaces: Minimax algorithms and normal approximations. In Proceedings of The
27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, June 13-15, 2014,
pages 1020–1039, 2014.

23 Indraneel Mukherjee and Robert E. Schapire. Learning with continuous experts using
drifting games. Theor. Comput. Sci., 411(29-30):2670–2683, 2010.

24 Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize : From
value to algorithms. InAdvances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 2150–2158, 2012.

25 Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Random av-
erages, combinatorial parameters, and learnability. In Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information Processing Sys-
tems 2010. Proceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia,
Canada., pages 1984–1992, 2010.

26 Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Beyond re-
gret. In COLT 2011 – The 24th Annual Conference on Learning Theory, June 9-11, 2011,
Budapest, Hungary, pages 559–594, 2011.

27 Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop
on Computational Learning Theory, COLT’90, pages 371–386, 1990.

28 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003),
August 21-24, 2003, Washington, DC, USA, pages 928–936, 2003.

The Power of Shared Randomness in Uncertain
Communication∗

Badih Ghazi1 and Madhu Sudan2

1 MIT, CSAIL, Cambridge, MA, USA
badih@mit.edu

2 Harvard John A. Paulson School of Engineering and Applied Sciences,
Cambridge, MA, USA
madhu@cs.harvard.edu

Abstract
In a recent work (Ghazi et al., SODA 2016), the authors with Komargodski and Kothari initiated
the study of communication with contextual uncertainty, a setup aiming to understand how
efficient communication is possible when the communicating parties imperfectly share a huge
context. In this setting, Alice is given a function f and an input string x, and Bob is given a
function g and an input string y. The pair (x, y) comes from a known distribution µ and f and g
are guaranteed to be close under this distribution. Alice and Bob wish to compute g(x, y) with
high probability. The lack of agreement between Alice and Bob on the function that is being
computed captures the uncertainty in the context. The previous work showed that any problem
with one-way communication complexity k in the standard model (i.e., without uncertainty1)
has public-coin communication at most O(k(1 + I)) bits in the uncertain case, where I is the
mutual information between x and y. Moreover, a lower bound of Ω(

√
I) bits on the public-coin

uncertain communication was also shown.
However, an important question that was left open is related to the power that public ran-

domness brings to uncertain communication. Can Alice and Bob achieve efficient communication
amid uncertainty without using public randomness? And how powerful are public-coin protocols
in overcoming uncertainty? Motivated by these two questions:

We prove the first separation between private-coin uncertain communication and public-coin
uncertain communication. Namely, we exhibit a function class for which the communication in
the standard model and the public-coin uncertain communication are O(1) while the private-
coin uncertain communication is a growing function of n (the length of the inputs). This
lower bound (proved with respect to the uniform distribution) is in sharp contrast with
the case of public-coin uncertain communication which was shown by the previous work to
be within a constant factor from the certain communication. This lower bound also implies
the first separation between public-coin uncertain communication and deterministic uncertain
communication. Interestingly, we also show that if Alice and Bob imperfectly share a sequence
of random bits (a setup weaker than public randomness), then achieving a constant blow-up
in communication is still possible.
We improve the lower-bound of the previous work on public-coin uncertain communication.
Namely, we exhibit a function class and a distribution (with mutual information I ≈ n) for
which the one-way certain communication is k bits but the one-way public-coin uncertain
communication is at least Ω(

√
k ·
√
I) bits.

Our proofs introduce new problems in the standard communication complexity model and
prove lower bounds for these problems. Both the problems and the lower bound techniques may
be of general interest.

∗ A full version of the paper is available at https://arxiv.org/abs/1705.01082 [7].
1 In other words, under the promise that f = g.

EA
T

C
S

© Badih Ghazi and Madhu Sudan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1705.01082
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 The Power of Shared Randomness in Uncertain Communication

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases randomness, uncertainty, communication, imperfectly shared random-
ness, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.49

1 Introduction

In many forms of communication (e.g., human, computer-to-computer), the communicating
parties share some context (e.g, knowledge of a language, operating system, communica-
tion protocol, encoding/decoding mechanisms.). This context is usually a) huge and b)
imperfectly shared among the parties. Nevertheless, in human communication, very efficient
communication is usually possible. Can we come up with a mathematical analogue of this
phenomenon of efficient communication based on a huge but imperfectly shared context?
Motivated by this general question, the study of “communication amid uncertainty” has
been the subject of a series of recent work starting with Goldreich, Juba and Sudan [13, 8]
followed by [12, 14, 15, 11, 4]. While early works were very abstract and general, later works
(starting with Juba, Kalai, Khanna and Sudan [12]) tried to explore the ramifications of
uncertainty in Yao’s standard communication complexity model [26]. In particular, the more
recent works relax the different pieces of context that were assumed to be perfectly shared
in Yao’s model, such as shared randomness [4], and in a recent work of the authors with
Komargodski and Kothari the function being computed [6].

Specifically, [6] study the following functional notion of uncertainty in communication.
Their setup builds on – and generalizes – Yao’s classical model of (distributional) commu-
nication complexity, where Alice has an input x and Bob has an input y, with (x, y) being
sampled from a distribution µ. Their goal is to communicate minimally so as to compute
some function g(x, y) (with high probability over the choice of (x, y)). The understated
emphasis of the model is that for many functions g, the communication required is much less
than the lengths of x or y, the entropy of x or y or even the conditional entropy of x given y.

The question studied by [6] is: How much of this gain in communication is preserved
when the communicating parties do not exactly agree on the function being computed? (We
further discuss the importance of this question in Section 1.2.) This variation of the problem
is modelled as follows: Alice is given a Boolean function f and an input string x, and Bob
is given a Boolean function g and an input string y where (x, y) is sampled from a known
distribution µ as before, and (f, g) is chosen (adversarially) from a known class F of pairs of
functions that are close in terms of the Hamming distance ∆µ (weighted according to µ).
Alice and Bob wish to compute g(x, y). Alice’s knowledge of the function f (which is close
but not necessarily equal to g) captures the uncertainty in the knowledge of the context.

We define the public-coin uncertain communication complexity PubCCUµε (F) as the
minimum length of a two-way public-coin protocol whose output is correct with probability at
least 1− ε over its internal randomness and that of (x, y). We similarly define the private-coin
uncertain communication complexity PrivCCUµε (F) by restricting to private-coin protocols.
Clearly, PubCCUµε (F) ≤ PrivCCUµε (F). The quantities owPubCCUµε (F) and owPrivCCUµε (F)
are similarly defined by restricting to one-way protocols.2

2 Note that the uncertain model is clearly a generalization of Yao’s model which corresponds to the
particular case where F = {(f, f)} for some fixed function f . On the other hand, the uncertain model

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.49

B. Ghazi and M. Sudan 49:3

The previous work ([6]) gave an upper bound on owPubCCUµε (F) whenever F consists
of functions g whose one-way distributional complexity is small. More precisely, denote by
owCCµε (g) the one-way communication complexity of g in the standard distributional model.3
Namely, owCCµε (g) is the minimum length of a one-way deterministic protocol computing
g with probability at least 1− ε over the randomness of (x, y). Then, [6] showed that if F
consists of pairs (f, g) of functions that are at distance δ, and if owCCµε (f), owCCµε (g) ≤ k,
then for every positive θ, owPubCCUµε+2δ+θ(F) ≤ Oθ(k · (1 + I(x; y))), where I(x; y) denotes
the mutual information between x and y.4 Note that if µ is a product distribution and if
we let the parameter θ be a small constant, then the blow-up in communication is only a
constant factor. However, the protocol of [6] crucially uses public randomness, and one of
the main motivations behind this work is to understand how large the blow-up would be in
the case where Alice and Bob have access to weaker types of randomness (or no randomness
at all).

We point out that understanding the type of randomness that is needed in order to
cope with uncertainty is a core question in the setup of communication with contextual
uncertainty: If Alice and Bob do not (perfectly) agree on the function being computed, why
can we assume that they (perfectly) agree on the shared randomness?

1.1 Our Contributions
We prove several results about the power of shared randomness in uncertain communication.

Private and Imperfectly Shared Randomness

Our first result (Theorem 1) shows that private-coin protocols are much weaker than public-
coin protocols in the setup of communication with contextual uncertainty. Far from obtaining
a constant factor blow-up in communication, private-coin protocols incur an increase that is
a growing function of n when dealing with uncertainty.

Let U , U2n be the uniform distribution on {0, 1}2·n. For positive integers t and n, we
define log(t)(n) by setting log(1)(n) = logn, and log(i)(n) = max(log log(i−1)(n), 1) for all
i ∈ {2, . . . , t}.

I Theorem 1 (Lower-bound on private-coin uncertain protocols). For every sufficiently small
δ > 0, there exist a positive integer ` , `(δ) and a function class F , Fδ such that
(i) For each (f, g) ∈ F , we have that ∆U (f, g) ≤ δ.
(ii) For each (f, g) ∈ F , we have that owCCU0 (f), owCCU0 (g) ≤ ` .
(iii) For every η > 0 and ε ∈ (4δ, 0.5], we have that PrivCCUUε/2−2δ−η(F) = Ω(η2 · log(t)(n))

for some positive integer t = Θ((ε/δ)2).

In Theorem 1, the inputs x and y are binary strings of length n and F is a family of pairs
of functions, which each function mapping {0, 1}n × {0, 1}n to {0, 1}. Also, the parameter η

can also be viewed as a particular case of Yao’s model via an exponential blow-up in the input size. For
more on this view (which turns out to be ineffective in our setup), we refer the reader to Note 9 at the
end of this section.

3 By the “easy direction” of Yao’s min-max principle, we can without loss of generality consider determin-
istic (instead of public-coin) protocols when defining owCCµε (g). We point out that this is not true in
the uncertain case.

4 One interpretation of the dependence of the communication in the uncertain setup on the mutual
information I(x; y) is that the players are better able to use the correlation of their inputs in the
standard case than in the uncertain case.

ICALP 2017

49:4 The Power of Shared Randomness in Uncertain Communication

can possibly depend on n. We point out that Theorem 1 also implies the first separation
between deterministic uncertain protocols and public-coin uncertain protocols5.

I Note 2. We point out that the relative power of private-coin and public-coin protocols in
the uncertain model is both conceptually and technically different from the standard model.
Specifically, the randomness is potentially used in the standard model in order to fool an
adversary selecting the input pair (x, y), whereas in the uncertain model, it is used to fool an
adversary selecting the pair (f, g) of functions that are promised to be close. This promise
makes the task of proving lower bounds against private-coin protocols in the uncertain model
(e.g., Theorem 1) significantly more challenging than in the standard model.6 Moreover, a
well-known theorem due to Newman [21] shows that in the standard model, any public-coin
protocol can be simulated by a private-coin protocol while increasing the communication by
an additive O(logn) bits. By contrast, there is no known analogue of Newman’s theorem in
the uncertain case!

I Note 3. The construction that we use to prove Theorem 1 cannot give a separation
larger than Θ(log logn). Thus, showing a separation of ω(log logn) between private-coin
and public-coin protocols in the uncertain case would require a new construction. For more
details, see Note 13.

In light of Theorem 1, it is necessary for Alice and Bob to share some form of randomness
in order to only incur a constant blow-up in communication for product distributions.
Fortunately, it turns out that it is not necessary for Alice and Bob to perfectly share a
sequence of random coins. If Alice is given a uniform-random string r of bits and Bob is
given a string r′ obtained by independently flipping each coordinate of r with probability
0.49, then efficient communication is still possible!

More formally, for ρ ∈ [0, 1], define owIsrCCUµε,ρ(F) in the same way that we defined
owPubCCUµε (F) except that instead of Alice and Bob having access to public randomness,
Alice will have access to a sequence r of independent uniformly-random bits, and Bob will have
access to a sequence r′ of bits obtained by independently flipping each coordinate of r with
probability (1− ρ)/2. Note that this setup of imperfectly shared randomness interpolates
between the public randomness and private randomness setups, i.e., owIsrCCUµε,1(F) =
owPubCCUµε (F) and owIsrCCUµε,0(F) = owPrivCCUµε (F).

I Theorem 4 (Uncertain protocol using imperfectly shared randomness). Let ρ ∈ (0, 1] and µ
be a product distribution. Let F consist of pairs (f, g) of functions with ∆µ(f, g) ≤ δ, and
owCCµε (f), owCCµε (g) ≤ k. Then, for every positive θ, owIsrCCUµε+2δ+θ,ρ(F) ≤ Oθ(k/ρ2).

The imperfectly shared randomness model in Theorem 4 was recently independently
introduced (in the setup of communication complexity) by Bavarian, Gavinsky and Ito
[2] and by Canonne, Guruswami, Meka and Sudan [4] (and it was further studied in [5]).
Moreover, our proof of Theorem 4 is based on combining the uncertain protocol of [6] and
the locality-sensitive-hashing based protocol of [4].

We point out that Theorem 4 also holds for more general i.i.d. sources of correlated
randomness than the one described above. More precisely, for i.i.d. (not necessarily binary)

5 This uses the fact that private-coin communication complexity is no larger than deterministic commu-
nication complexity, both in the certain and uncertain setups.

6 In particular, the diagonilization-based arguments that imply a separation between the public-coin and
the private-coin communication complexities of the Equality function in the standard model completely
fail when we impose such a promise.

B. Ghazi and M. Sudan 49:5

sources of (imperfectly) shared randomness with maximal correlation7 ρ, the work of Witsen-
hausen [24] along with the protocols of [4] and [6] imply an uncertain protocol with Oθ(k/ρ2)
bits of communication.

Public Randomness

We now turn to our next result where we consider the dependence of the upper bound of [6]
on the mutual information I , I(X;Y) in the case of public-coin protocols. The previous
work [6] proved a lower bound of Ω(

√
I) on this dependence, but their lower-bound does not

grow with k. We improve this lower bound to Ω(
√
k ·
√
I).

I Theorem 5 (Improved lower-bound on public-coin uncertain protocols). For every sufficiently
small δ > 0 and every positive integers k, n such that k = o(exp(

√
n)), there exist an input

distribution µ on input pairs (X,Y) ∈ {0, 1}k·n × {0, 1}k·n with mutual information I ≈ k · n
and a function class F , Fδ,k,n such that8
(i) For each (f, g) ∈ F , we have that ∆µ(f, g) ≤ δ.
(ii) For each (f, g) ∈ F , we have that owCCµ0 (f), owCCµ0 (g) ≤ k.
(iii) owPubCCUµε (F) = Ω(

√
k ·
√
I) for some absolute constant ε > 0 independent of δ.

As will be explained in detail in Section 2.2, the proof of Theorem 5 is based on an extension
of the lower bound construction of [6], which is then analyzed using different techniques.
I Note 6. The construction that we use to prove Theorem 5 cannot give a lower bound
larger than Θ̃(

√
k ·
√
I). Thus, improving on the lower bound in Theorem 5 by more than

logarithmic factors in k and I would require a new construction.

New Communication Problems

Our lower bounds in Theorems 1 and 5 are derived by defining new problems in standard
communication complexity (i.e., without uncertainty) and proving lower bounds for these
problems. We describe these problems and our results on these next.

The construction that we use to prove Theorem 1 requires us to understand the following
“subset-majority with side information” setup. Alice is given a subset S ⊆ [n] and a string
x ∈ {±1}n, and Bob is given a subset T ⊆ [n] and a string y ∈ {±1}n. The subsets S and T are
adversarially chosen but are promised to satisfy S ⊆ T , |T | = ` and |T \S| ≤ δ ·` for some fixed
parameters ` and δ. The strings x and y are chosen independently and uniformly at random.
Alice and Bob wish to compute the function SubsetMaj((S, x), (T, y)) , Sign(

∑
i∈T xiyi). In

words, SubsetMaj((S, x), (T, y)) is equal to 0 if x and y differ on a majority of the coordinates
in subset T , and 1 otherwise. Note that S does not directly appear in the definition of
the function SubsetMaj but it can serve as useful side-information for Alice.9 What is
the private-coin communication complexity of computing SubsetMaj on every (S, T)-pair
satisfying the above promise and with high probability over the random choice of (x, y) and
over the private randomness? We prove the following (informally stated) lower bound.

7 The maximal correlation of a pair (X,Y) of random variables (with support X × Y) is defined as
ρ(X,Y) , supE[F (X)G(Y)] where the supremum is over all functions F : X → R and G : Y → R
with E[F (X)] = E[G(Y)] = 0 and Var[F (X)] = Var[G(Y)] = 1. It is not hard to show that the binary
source of imperfectly shared randomness defined in the paragraph preceding Theorem 4 has maximal
correlation ρ.

8 We note that I ≈ k · n means that I/(k · n)→ 0 as n→∞.
9 Note that we could have alternatively defined SubsetMaj in terms of S, and let T serve as the potentially
useful side-information. Our lower bound would also apply to this setup.

ICALP 2017

49:6 The Power of Shared Randomness in Uncertain Communication

I Lemma 7. Any private-coin protocol computing SubsetMaj on every (S, T)-pair satisfying
the promise and with high probability over the random choice of (x, y) and over the private
randomness should communicate at least log(t)(n) bits for some positive integer t that depends
on δ and the error probability.

The proof of Theorem 5 is based on a construction that leads to the question described
next regarding the communication complexity of a particular block-composed function.
Namely, consider the following “majority composed with subset-parity with side information”
setup. Alice is given a sequence of subsets S , (S(i) ⊆ [n])i∈[k] and a sequence of strings
x , (x(i) ∈ {0, 1}n)i∈[k], and Bob is given a sequence of subsets T , (T (i) ⊆ [n])i∈[k] and
a sequence of strings y , (y(i) ∈ {0, 1}n)i∈[k]. We consider the following distribution µ on
((S, x), (T, y)). Independently for each i ∈ [k], we sample ((S(i), x(i)), (T (i), y(i))) as follows:
S(i) is a uniform-random subset and T (i) is an ε-noisy10 copy of S(i), and independently
x(i) is a uniform-random string and y(i) is an ε-noisy copy of x. Here, ε is a positive
parameter that can depend on n and k. Alice and Bob wish to compute the function
Maj ◦ SubsetParity((S, x), (T, y)) , Sign

(∑k
i=1(−1)〈T (i),x(i)⊕y(i)〉) where T (i) denotes both

the subset and its 0/1 indicator vector, the inner product is over F2, and x(i) ⊕ y(i) is the
coordinate-wise XOR of x(i) and y(i). What is the communication complexity of computing
Maj ◦ SubsetParity with high probability over the distribution µ? We prove the following
lower bound.

I Lemma 8. Any 1-way protocol computing Maj ◦ SubsetParity with high probability over the
distribution µ should communicate Ω(k · ε · n) bits.

In Section 2.1, we outline the proof of Theorem 1 and explain how it leads to the setup
of Lemma 7 and how we prove Lemma 7. In Section 2.2, we outline the proof of Theorem 5
and explain how it leads to the setup of Lemma 8 and how we prove Lemma 8.

Before doing so, we discuss some conceptual implications of our results.

1.2 Implications
Functional uncertainty models much of the day-to-day interactions among humans, where
a person is somewhat aware of the objectives of the other person she is interacting with,
but do not know them precisely. Neither person typically knows exactly what aspects of
their own knowledge may be relevant to the interaction, yet they do manage to have a short
conversation. This is certainly a striking phenomenon, mostly unexplained in mathematical
terms. This line of works aims to explore such phenomena. It is important to understand
what mechanisms may come into play here, and what features play a role. Is the ability
to make random choices important? Is shared information crucial? Is there a particular
measure of distance between functions that makes efficient communication feasible? In
order to understand such questions, one first needs to have a ground-level understanding of
communication with functional uncertainty. This work tackles several basic questions that
remain unexplored.

An ideal model for communication would only assume a constant amount of perfectly
shared context between the sender and receiver, such as the knowledge of an encoding/decod-
ing algorithm, one universal Turing machine, etc. Solutions to most interesting communication
problems seem to assume a shared information which grows with the length of the inputs.

10This means that the indicator vector of T (i) is obtained by independently flipping each coordinate of
the indicator vector of S(i) with probability ε.

B. Ghazi and M. Sudan 49:7

Recent work showed that in many of these scenarios some assumptions about the shared
context can be relaxed to an imperfect sharing, but these results are often brittle and
break when two or more contextual elements are simultaneously assumed to be imperfectly
shared. Our work raises the question of whether imperfectly shared randomness would be
sufficient to overcome functional uncertainty. We show that this is indeed the case for product
distributions, but the loss for non-product distributions might be much larger (for this and
other open questions, we refer the reader to our conclusion Section 6). Such results highlight
the delicate nature of the role of shared context in communication. They beg for a more
systematic study of communication which at the very least should be able to mimic the aims,
objectives and phenomena encountered in human communication.
I Note 9. As mentioned in Footnote 2, the uncertain model is clearly a generalization of
Yao’s model. Strictly speaking, the uncertain model can also be viewed as a particular case of
Yao’s model by regarding the function(s) that is being computed as part of the inputs of Alice
and Bob, which results in an exponential blow-up in the input-size. This latter view turns out
to be fruitless for our purposes. Indeed, from this perspective, all the different well-studied
communication functions (such as Equality, Set Disjointness, Pointer Jumping, etc.) are
regarded as special cases of one “universal function”! More importantly, this view completely
blurs the distinction between the goal of the communication (i.e., the function to compute)
and the inputs of the parties. On a technical level, it does not simplify the task of proving
the lower bounds in Theorems 1 and 5 in any way since it does not capture the promise that
the two functions (given to Alice and Bob) are close in Hamming distance. Thus, in the rest
of this paper, we stick to the former view and use the expressions “uncertain model” and
“standard model" to refer to the setups with and without uncertainty, respectively.

2 Overview of Proofs

2.1 Overview of Proof of Theorem 1
Reduction to Lemma 7

In order to prove Theorem 1, we need to devise a function class for which circumventing the
uncertainty is much easier using public randomness than using private randomness. One
general setup in which Bob can leverage public randomness to resolve some uncertainty
regarding Alice’s knowledge is the following “small-set intersection” problem. Assume that
Alice is given a subset S ⊆ [n], and Bob is given a subset T ⊆ [n] such that T contains S
and |T | = `, where we think of ` as being a large constant. Here, Bob knows that Alice has
a subset of his own T but he is uncertain which subset Alice has. Using public randomness,
a standard 1-way hashing protocol communicating Õ(`) bits allows Bob to determine S with
high probability. On the other hand, using only private randomness, the communication
complexity of this task is Θ(log logn) bits.

With the above general setup in mind, we consider functions fS indexed by small subsets
S of coordinates on which they depend. Since we want the functions fS and fT to be close
in Hamming distance, we enforce |T \ S| to be small for every pair (fS , fT) of functions in
our class, and we let each function fS be “noise-stable”. Since we want our function fS to
genuinely depend on all coordinates in S, the majority function fS(x, y) = Sign(

∑
i∈S xiyi)

for x, y ∈ {±1}n arises as a natural choice. We also let x and y be independent uniform-
random strings. In this case, it can be seen that if |T \ S| is a small constant fraction of |T |,
then the quadratic polynomials

∑
i∈S xiyi and

∑
i∈T xiyi behave like standard Gaussians

with correlation close to 1, and the quadratic threshold functions fS(x, y) and fT (x, y) are
thus close in Hamming distance.

ICALP 2017

49:8 The Power of Shared Randomness in Uncertain Communication

Note that in the certain case, i.e., when both Alice and Bob agree on S, they can easily
compute fS(x, y) by having Alice send to Bob the ` bits (xi)i∈S . Moreover, if Alice and Bob
are given access to public randomness in the uncertain case, Bob can figure out S via the
hashing protocol mentioned above using Õ(`) bits of communication, which would reduce the
problem to the certain case11. The bulk of the proof will be to lower-bound the private-coin
uncertain communication. Note that by the choice of our function class and distribution,
this is equivalent to proving Lemma 7.

Proof of Lemma 7

To prove Lemma 7, the high-level intuition is that a protocol solving the uncertain problem
should be essentially revealing to Bob the subset S that Alice holds. Formalizing this intuition
turns out to be challenging, especially that a private-coin protocol solving the uncertain
problem is only required to output a single bit which is supposed to equal the Boolean
function fT (x, y) with high probability over (x, y) and over the private randomness. In
fact, this high-level intuition can be shown not to hold in certain regimes12. Moreover, the
standard proofs that lower bound the communication of small-set intersection do not extend
to lower-bound the communication complexity of fT .

To lower-bound the private-coin communication of solving the uncertain task by a growing
function of n, we consider the following shift communication game. Bob is given a sorted
tuple σ = (σ1, . . . , σt) of integers with 1 ≤ σ1 < · · · < σt ≤ n, and Alice is either given the
prefix (σ1, . . . , σt−1) of length t− 1 of σ or the suffix (σ2, . . . , σt) of length t− 1 of σ. Bob
needs to determine the input of Alice. We show that a celebrated lower bound of Linial [19]
on the chromatic number of certain related graphs implies a lower bound of log(t+1)(n) on
the private-coin communication of the shift communication game. We then show that any
private-coin protocol solving the uncertain task can be turned into a private-coin protocol
solving the shift-communication game with a constant (i.e., independent of n) blow-up in
the communication.

2.2 Overview of Proof of Theorem 5
Reduction to Lemma 8

The proof of Theorem 5 builds on the lower-bound construction of [6] which we recall next.
Let µ be the distribution over pairs (x, y) ∈ {0, 1}2n where x is uniform-random and y is an
ε-noisy copy of x with ε =

√
δ/n. Then, the mutual information between x and y satisfies

I ≈ n. For each S ⊆ [n], consider the function fS(x, y) , 〈S, x⊕ y〉 where the inner product
is over F2, x⊕ y denotes the coordinate-wise XOR of x and y, and S is used to denote both
the subset and its 0/1 indicator vector. Moreover, consider the class F of all pairs of functions
(fS , fT) where |S4T | ≤

√
δn. It can be seen that for such S and T , the distance between fS

and fT under µ is at most δ. If Alice and Bob both know S, then Alice can send the single
bit 〈S, x〉 to Bob who can then output the correct answer 〈S, x⊕ y〉 = 〈S, x〉 ⊕ 〈S, y〉. This
means that the certain communication is 1 bit. Using the well-known discrepancy method,
[6] showed a lower bound of Ω(

√
n) bits on the communication of the associated uncertain

problem. Since in this case I ≈ n, this in fact lower-bounds the uncertain communication by

11Alternatively, Alice and Bob can run the protocol of [6] which would communicate O(`) bits.
12For example, for constant error probabilities, the 1-way randomized communication complexity of

small-set intersection is known to be Θ(` · log(`)) bits (see, e.g., [3]) whereas the public-coin protocol of
[6] can compute fT with O(`) bits of communication.

B. Ghazi and M. Sudan 49:9

Ω(
√
I) bits. For this construction, this lower bound turns out to be tight up to a logarithmic

factor.
To improve the lower-bound from

√
I to

√
k ·
√
I, we consider the following “block-

composed” framework. Let {fS(i)(x(i), y(i)) : i ∈ [k]} be k independent copies of the above
base problem of [6] and consider computing the composed function g

(
fS(1)(x(1), y(1)), . . . ,

fS(k)(x(k), y(k))
)
for some outer function g : {0, 1}k → {0, 1}. For any choice of g, the certain

communication of the composed function would be at most k bits. When choosing the outer
function g to use in our lower bound, we thus have two objectives to satisfy. First, g has to
be sufficiently hard in the sense that its average-case decision tree complexity with respect
to the uniform distribution on {0, 1}k should be Ω(k); otherwise, it will not be the case
that the uncertain communication of computing g on k copies of the base problem is at
least k times the uncertain communication of the base problem. Second, g has to be noise
stable in order to be able to upper bound the distance between g

(
fS(1)(·), . . . , fS(k)(·)

)
and

g
(
fT (1)(·), . . . , fT (k)(·)

)
.

Note that setting g to be a dictator function would satisfy the noise-stability property, but
it clearly would not satisfy the hardness property, as the composed function would be equal
to the base function and would thus have uncertain communication Õ(

√
n) bits. Another

potential choice of g is to set it to the parity function on k bits. This function would satisfy
the hardness property, but it would strongly violate the noise stability property that is crucial
to us. This leads us to setting g to the majority function on k bits, which is well-known to be
noise stable, and has average-case decision-tree complexity Ω(k) with respect to the uniform
distribution on {0, 1}k. In fact, the noise stability of the majority function readily implies
an upper bound of O(

√
δ) on the distance between any pair of composed functions that are

specified by tuples of subsets (S(1), . . . , S(k)) and (T (1), . . . , T (k)) with |S(i)4T (i)| ≤
√
δn

for each i ∈ [k]. The crux of the proof will be to lower-bound the uncertain communication
of the majority-composed function by Ω(k

√
n), which amounts to proving Lemma 8. Since

in this block-composed framework the mutual information satisfies I ≈ kn, this would imply
the lower bound of Ω(

√
k
√
I) on the uncertain communication in Part (iii) of Theorem 5.

Proof of Lemma 8

We first point out that the average-case quantum decision tree complexity of Majk with respect
to the uniform distribution is Õ(

√
k) [1]. This implies that any communication complexity

lower-bound method that extends to the quantum model cannot prove a lower bound larger
than Õ(

√
k ·
√
n) on our uncertain communication13. In particular, we cannot solely rely on

the discrepancy bound (as done in [6]), since this bound is known to lower-bound quantum
communication. Similarly, the techniques of [22, 23, 18] rely on the generalized discrepancy
bound (originally due to [16]) which also lower-bounds quantum communication. Moreover,
the recent results of [20] only apply to product distributions (i.e., where Alice’s input is
independent of Bob’s input) in contrast to our case where the inputs of Alice and Bob are
very highly-correlated. Finally, the recent works of [9, 10] do not imply lower bounds on the
average-case complexity with respect to the distribution that arises in our setup.

To circumvent the above obstacles, we use a new approach that is tailored to our setup
and that is outlined next. Let Π be a 1-way protocol solving the uncertain task with high
probability. We consider the information that Π reveals about the inputs to the outer

13Thus, since I ≈ k · n in our block-composed framework, such methods cannot be used to improve the
lower-bound of Ω(

√
I) of [6] by more than logarithmic factors.

ICALP 2017

49:10 The Power of Shared Randomness in Uncertain Communication

function, i.e., about the length-k binary string
(
fS(1)(x(1), y(1)), . . . , fS(k)(x(k), y(k))

)
. We

call this quantity the intermediate information cost of Π, and we argue that it is at least
Ω(k) bits. To do so, we recall the Hamming distance function HDk defined by HDk(u, v) = 1
if the Hamming distance between u and v is at least k/2 and HDk(u, v) = 0 otherwise. We
upper bound the information complexity of computing HDk over the uniform distribution on
{0, 1}2k by the intermediate information cost of Π. We do so by giving an information-cost
preserving procedure where Alice and Bob are given independent uniformly distributed u
and v (respectively) and use their private and public coins in order to simulate the input
distribution (X,Y) of our uncertain problem. The known 1-way lower bound of [25] on HDk
under the uniform distribution then implies that Π reveals Ω(k) bits of information to Bob
about the tuple

(
fS(1)(x(1), y(1)), . . . , fS(k)(x(k), y(k))

)
. This allows Bob to guess this tuple

with probability 0.51k. We then apply the strong direct product theorem for discrepancy of
[17] which, along with the discrepancy-based lower bound on the communication of the base
uncertain problem of [6], implies that Π should be communicating at least Ω(k

√
n) bits.

Organization of the rest of the paper

In Section 3, we give some preliminaries. In Sections 4 and 5, we describe the proofs of
Theorems 1 and 5 respectively. All the missing proofs as well as the proof of Theorem 4
appear in the full version. In Section 6, we conclude with some interesting open questions.

3 Preliminaries

For a real number x, we define Sign(x) to be 1 if x ≥ 0 and 0 if x < 0. For a set S, we write
X ∈R S to indicate that X is a random variable that is uniformly distributed on S. For a
positive integer n, we let [n] , {1, . . . , n}. For a real number x, we denote exp(x) a quantity
of the form 2Θ(x). For any two subsets S, T ⊆ [n], we let S \ T be the set of all elements of S
that are not in T . We let S4T be the symmetric difference of S and T , i.e., the union of
S \ T and T \ S. For functions f, g : X × Y → {0, 1} and any distribution µ on X × Y, we
define the distance ∆µ(f, g) , Pr(x,y)∼µ[f(x, y) 6= g(x, y)] as the Hamming distance between
the values of f and g, weighted with respect to µ. If µ is the uniform distribution on X × Y ,
we drop the subscript µ and denote ∆µ by ∆. We next recall the standard communication
complexity model of Yao [26]. For any function f : X × Y → {0, 1}, we denote by CC(f),
owCC(f), PrivCCε(f) and owPrivCCε(f) its two-way deterministic, one-way deterministic,
two-way private-coin and one-way private-coin communication complexity respectively. For
any distribution µ over X×Y , we denote by CCµε (f) and owCCµε (f) the two-way distributional
and one-way distributional communication complexity of over µ with error ε, respectively.

We next recall the model of communication with contextual uncertainty. For more details
on this model, we refer the reader to [6]. In this setup, Alice knows a function f and is given an
input x, and Bob knows a function g and is given an input y. Let F ⊆ {f : X ×Y → {0, 1}}2
be a family of pairs of Boolean functions with domain X × Y, and µ be a distribution on
X × Y . We say that a public-coin (resp. private-coin) protocol Π ε-computes F over µ if for
every (f, g) ∈ F , we have that Π outputs the value g(x, y) with probability at least 1 − ε
over the randomness of (x, y) ∼ µ and over the public (resp. private) randomness of Π.

I Definition 10 (Contextually Uncertain Communication Complexity). Let µ be a distribution
on X × Y and F ⊆ {f : X × Y → {0, 1}}2. The two-way (resp. one-way) public-coin
communication complexity of F under contextual uncertainty, denoted PubCCUµε (F) (resp.
owPubCCUµε (F)), is the minimum over all two-way (resp. one-way) public-coin protocols Π

B. Ghazi and M. Sudan 49:11

that ε-compute F over µ, of the maximum communication complexity of Π over (f, g) ∈ F ,
(x, y) from the support of µ and settings of the public coins.

Similarly, the two-way (resp. one-way) private-coin communication complexity of F
under contextual uncertainty PrivCCUµε (F) (resp. owPrivCCUµε (F)) is defined by restricting
to two-way (resp. one-way) private-coin protocols.

4 Construction for Private-Coin Uncertain Protocols

We now describe the construction that is used to prove Theorem 1. Each function in our
universe is specified by a subset S ⊆ [n] and is of the form fS : {±1}n×{±1}n → {0, 1} with
fS(X,Y) , Sign(

∑
i∈S XiYi) for all X,Y ∈ {±1}n. The function class is then defined by

Fδ , {(fS , fT) : S ⊆ T, |T | = ` and |T \ S| ≤ δ′ · `},

where δ′ = α · δ2 for some sufficiently small positive absolute constant α, and ` = `(δ)
is a sufficiently large function of δ. The input pair (X,Y) is drawn from the uniform
distribution on {±1}2n. The proof of Part (i) of Theorem 1 follows from the fact that the the
polynomials

∑
i∈S XiYi and

∑
i∈T XiYi behave like zero-mean Gaussians with unit-variance

and correlation
√

1− δ′. The proof of Part (ii) of Theorem 1 is immediate and is given in the
full version for completeness. To prove Part (iii) of Theorem 1, the next definition – which is
based on the graphs studied by Linial [19]– will be crucial to us.

I Definition 11 (Shift Communication Game Gm,t). Let m and t be positive integers with
t ≤ m. In the communication problem Gm,t, Bob is given a sorted tuple σ = (σ1, . . . , σt)
of distinct integers with 1 ≤ σ1 < · · · < σt ≤ m. In the YES case, Alice is given the prefix
(σ1, . . . , σt−1) of length t− 1 of σ. In the NO case, Alice is given the suffix (σ2, . . . , σt) of
length t− 1 of σ. Alice and Bob need to determine which of the YES and NO cases occurs.

Lemma 12 lower-bounds the private-coin communication complexity of Gm,t. Its proof
uses Linial’s lower bound on the chromatic number of related graphs.

I Lemma 12. There is an absolute constant c such that for every sufficiently small ε > 0,
we have that PrivCCε(Gm,t) ≥ c · log(t+2)(m).

The proof of Part (iii) of Theorem 1 – which is the main part in the proof of Theorem 1 –
is deferred to the full version.
I Note 13. As mentioned in Note 3, the above construction cannot give a separation larger
than Θ(log logn). This is because using private randomness, Bob can learn the set S using
O(log logn) bits of communication (see, e.g., [3]). Additionally, Alice can send the coordinates
of X indexed by the elements of S to Bob who can then compute fS(X,Y).

5 Construction for Public-Coin Uncertain Protocols

In this section, we describe the construction that is used to prove Theorem 5. We set

δ′ , c · δ2 and ε ,
√
δ′/n, (†)

where δ is the parameter from the statement of Theorem 5, and c > 0 is a small-enough
absolute constant. To define our input distribution, we first define a slightly more general
distribution µη. The support of µη is {0, 1}kn × {0, 1}kn and we will view the coordinates
of a sample (x, y) ∼ µη as x = (x(i))i∈[k] and y = (y(i))i∈[k] with x(i), y(i) ∈ {0, 1}n for all

ICALP 2017

49:12 The Power of Shared Randomness in Uncertain Communication

i ∈ [k]. A sample (x, y) ∼ µη is generated by letting x ∈R {0, 1}kn and for all i ∈ [k] and
j ∈ [n], independently setting y(i)

j to be an η-noisy copy of x(i)
j . In other words, we set

y
(i)
j = x

(i)
j w.p. 1− η and y(i)

j = 1− x(i)
j w.p. η. Our input distribution is then µ2ε−2ε2 .

We now define our function class Fε. Each function in our universe is specified by a
sequence of subsets S , (S(i) ⊆ [n])i∈[k] and it is of the form fS : {0, 1}2·k·n → {0, 1} with14

fS(x, y) , Sign
(∑
i∈[k]

(−1)〈S
(i),x(i)⊕y(i)〉) (1)

for all x, y ∈ {0, 1}k·n, where in Eq. (1) the inner product is over F2, the sum is over R and
x(i) ⊕ y(i) denotes the coordinate-wise XOR of the two length-n binary strings x(i) and y(i).
The function class is then defined by Fε , {(fS , fT) : |S(i)4T (i)| ≤ ε · n for all i ∈ [k]}.

The proof of Part (i) of Theorem 5 follows from known bounds on the noise stability
of the majority function. The proof of Part (ii) is immediate. To prove Part (iii), we first
define (as in [6]) a communication problem in the standard distributional model that reduces
to solving the contextually-uncertain problem specified by the function class Fε and the
distribution µ2ε−2ε2 . For distributions φ and ψ, we denote by φ⊗ ψ the joint distribution of
a sample from φ and an independent sample from ψ. The new problem is defined as follows.

Inputs: Alice’s input is a pair (S, x) where S , (S(i) ⊆ [n])i∈[k] and x ∈ {0, 1}k·n. Bob’s
input is a pair (T, y) where T , (T (i) ⊆ [n])i∈[k] and y ∈ {0, 1}k·n.
Distribution: Let Dq be the distribution on the pair (S, T) of sequences of k subsets of [n],
which is defined by independently setting, for each i ∈ [k], S(i) to be a uniformly-random
subset of [n], and T (i) to be a q-noisy copy of S(i). The distribution on the inputs of
Alice and Bob is then given by νε , Dε ⊗ µ2ε−2ε2 with ε =

√
δ′/n.

Function: The goal is to compute the function F : {0, 1}2kn × {0, 1}2kn → {0, 1} defined
by F ((S, x), (T, y)) = fT (x, y) = Sign

(∑
i∈[k](−1)〈T (i),x(i)⊕y(i)〉).

The next proposition follows from a simple application of the Chernoff bound.

I Proposition 14. For any θ > 0, owPubCCUµ2ε−2−ε2

θ (Fε) ≥ owCCνεθ+θ′(F) with θ′ =
2−Θ(ε·n).

In the full version, we prove the following lower bound on owCCνεθ (F), which along with
Proposition 14 and the settings of ε and δ′ in (†), implies Part (iii) of Theorem 5.

I Lemma 15. For every sufficiently small positive constant θ, owCCνεθ (F) = Ω(k · ε · n).

6 Open Questions

As mentioned in Notes 3 and 6 in Section 1, significantly improving the bounds from
Theorems 1 and 5 seems to require fundamentally new constructions, and is a very important
question. Moreover, is there an analogue of the protocol in Theorem 4 for non-product
distributions?

Another very important and intriguing open question is whether efficient communication
under contextual uncertainty is possible in the multi-round setup. Namely, if k is the r-round
certain communication, can we upper bound the r-round uncertain communication by some
function of k, I and possibly r? Even for r = 2 and when the uncertain protocol is allowed

14We will use the symbol S(i) to denote both the subset of [n] and its corresponding 0/1 indicator vector.

B. Ghazi and M. Sudan 49:13

to use public randomness, no non-trivial protocols are known in this setting. On the other
hand, no separations are known for this case (beyond those known for r = 1) even if the
protocols are restricted to be deterministic.

Acknowledgements. The authors would like to thank Ilan Komargodski, Pravesh Kothari
and Mohsen Ghaffari and the anonymous reviewers for very helfpul discussions and pointers.

References
1 Andris Ambainis and Ronald De Wolf. Average-case quantum query complexity. Journal

of Physics A: Mathematical and General, 34(35):6741, 2001.
2 Mohammad Bavarian, Dmitry Gavinsky, and Tsuyoshi Ito. On the role of shared random-

ness in simultaneous communication. In Automata, Languages, and Programming, pages
150–162. Springer, 2014.

3 Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff, and Grigory
Yaroslavtsev. Beyond set disjointness: the communication complexity of finding the inter-
section. In Proceedings of the 2014 ACM symposium on Principles of distributed computing,
pages 106–113. ACM, 2014.

4 Clément Louis Canonne, Venkatesan Guruswami, Raghu Meka, and Madhu Sudan. Com-
munication with imperfectly shared randomness. In Innovations in Theoretical Computer
Science, ITCS, pages 257–262, 2015.

5 Badih Ghazi, Pritish Kamath, and Madhu Sudan. Communication complexity of
permutation-invariant functions. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 1902–1921, 2016. doi:10.1137/1.9781611974331.ch134.

6 Badih Ghazi, Ilan Komargodski, Pravesh Kothari, and Madhu Sudan. Communication
with contextual uncertainty. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 2072–2085, 2016. doi:10.1137/1.9781611974331.ch144.

7 Badih Ghazi and Madhu Sudan. The power of shared randomness in uncertain communica-
tion. arXiv preprint arXiv:1705.01082, 2017. URL: https://arxiv.org/abs/1705.01082.

8 Oded Goldreich, Brendan Juba, and Madhu Sudan. A theory of goal-oriented communica-
tion. J. ACM, 59(2):8, 2012.

9 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. In Proceedings of the 47th Symposium on Theory of Com-
puting (STOC). ACM, 2015.

10 Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. In Electronic Colloquium on Computational Complexity (ECCC), volume 22,
page 49, 2015.

11 Elad Haramaty and Madhu Sudan. Deterministic compression with uncertain priors. In
Innovations in Theoretical Computer Science, ITCS, pages 377–386, 2014.

12 Brendan Juba, Adam Tauman Kalai, Sanjeev Khanna, and Madhu Sudan. Compression
without a common prior: an information-theoretic justification for ambiguity in language.
In Innovations in Computer Science, ICS, pages 79–86, 2011.

13 Brendan Juba and Madhu Sudan. Universal semantic communication I. In 40th Annual
ACM Symposium on Theory of Computing, pages 123–132, 2008.

14 Brendan Juba and Madhu Sudan. Efficient semantic communication via compatible beliefs.
In Innovations in Computer Science, ICS, pages 22–31, 2011.

15 Brendan Juba and Ryan Williams. Massive online teaching to bounded learners. In Innov-
ations in Theoretical Computer Science, ITCS, pages 1–10, 2013.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974331.ch134
http://dx.doi.org/10.1137/1.9781611974331.ch144
https://arxiv.org/abs/1705.01082

49:14 The Power of Shared Randomness in Uncertain Communication

16 Hartmut Klauck. Lower bounds for quantum communication complexity. In Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 288–297. IEEE,
2001.

17 Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrepancy. In
Computational Complexity, 2008. CCC’08. 23rd Annual IEEE Conference on, pages 71–80.
IEEE, 2008.

18 Troy Lee and Shengyu Zhang. Composition theorems in communication complexity. In
Automata, Languages and Programming, pages 475–489. Springer, 2010.

19 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

20 Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Amplification of one-
way information complexity via codes and noise sensitivity. In Automata, Languages, and
Programming, pages 960–972. Springer, 2015.

21 Ilan Newman. Private vs. common random bits in communication complexity. Information
processing letters, 39(2):67–71, 1991.

22 Alexander A. Sherstov. The pattern matrix method for lower bounds on quantum commu-
nication. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 85–94. ACM, 2008.

23 Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed func-
tions. arXiv preprint arXiv:0710.0095, 2007.

24 Hans S. Witsenhausen. On sequences of pairs of dependent random variables. SIAM
Journal on Applied Mathematics, 28(1):100–113, 1975.

25 David P. Woodruff. Efficient and private distance approximation in the communication
and streaming models. PhD thesis, Citeseer, 2007.

26 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In 11h Annual ACM Symposium on Theory of Computing, pages 209–213,
1979.

Separation of AC0[⊕] Formulas and Circuits
Benjamin Rossman1 and Srikanth Srinivasan2

1 Departments of Mathematics and Computer Science, University of Toronto,
Toronto, Canada
rossman@utoronto.ca

2 Department of Mathematics, IIT Bombay, Bombay, India
srikanth@math.iitb.ac.in

Abstract
This paper gives the first separation between the power of formulas and circuits of equal depth
in the AC0[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for all
d(n) ≤ O(logn

log logn), that there exist polynomial-size depth-d circuits that are not equivalent to
depth-d formulas of size no(d) (moreover, this is optimal in that no(d) cannot be improved to
nO(d)). This result is obtained by a combination of new lower and upper bounds for Approximate
Majorities, the class of Boolean functions {0, 1}n → {0, 1} that agree with the Majority function
on 3/4 fraction of inputs.

AC0[⊕⊕⊕] formula lower bound. We show that every depth-d AC0[⊕] formula of size s has a
1/8-error polynomial approximation over F2 of degree O(1

d log s)d−1. This strengthens a classic
O(log s)d−1 degree approximation for circuits due to Razborov [12]. Since the Majority function
has approximate degree Θ(

√
n), this result implies an exp(Ω(dn1/2(d−1))) lower bound on the

depth-d AC0[⊕] formula size of all Approximate Majority functions for all d(n) ≤ O(logn).

Monotone AC0 circuit upper bound. For all d(n) ≤ O(logn
log logn), we give a randomized con-

struction of depth-d monotone AC0 circuits (without NOT or MOD2 gates) of size
exp(O(n1/2(d−1))) that compute an Approximate Majority function. This strengthens a con-
struction of formulas of size exp(O(dn

1
2(d−1))) due to Amano [1].

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases circuit complexity, lower bounds, approximate majority, polynomial
method

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.50

1 Introduction

The relative power of formulas versus circuits is one of the great mysteries in complexity
theory. The central question in this area is whether NC1 (the class of languages decidable
by polynomial-size Boolean formulas) is a proper subclass of P/poly (the class of languages
decidable by polynomial-size Boolean circuits). Despite decades of efforts, this question
remains wide open.1 In the meantime, there has been progress on analogues of the NC1 vs.
P/poly question in certain restricted settings. For instance, in the monotone basis (with
AND and OR gates only), the power of polynomial-size formulas vs. circuits was separated

1 In this paper we focus on non-uniform complexity classes. The question of uniform-NC1 vs. P is wide
open as well.

EA
T

C
S

© Benjamin Rossman and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Separation of AC0[⊕] Formulas and Circuits

by the classic lower bound of Karchmer and Wigderson [8] (on the monotone formula size of
st-Connectivity).

The bounded-depth setting is another natural venue for investigating the question of
formula vs. circuits. Consider the elementary fact that every depth-d circuit of size s is
equivalent to a depth-d formula of size at most sd−1, where we measure size by the number of
gates. This observation is valid with respect to any basis (i.e. set of gate types). In particular,
we may consider the AC0 basis (unbounded fan-in AND, OR, NOT gates) and the AC0[⊕]
basis (unbounded fan-in MOD2 gates in addition to AND, OR, NOT gates). With respect
to either basis, there is a natural depth-d analogue of the NC1 vs. P/poly question (where
d = d(n) is a parameter that may depend on n), namely whether every language decidable
by polynomial-size depth-d circuits is decidable by depth-d formulas of size no(d) (i.e. better
than the trivial nO(d) upper bound).

It is reasonable to expect that this question could be resolved in the sub-logarithmic
depth regime (d(n)� logn), given the powerful lower bound techniques against AC0 circuits
(Håstad’s Switching Lemma [5]) and AC0[⊕] circuits (the Polynomial Method of Razborov
[12] and Smolensky [14]). However, because the standard way of applying these techniques
does not distinguish between circuits and formulas, it is not clear how to prove quantitatively
stronger lower bounds on formula size vis-a-vis circuit size of a given function. Recent work of
Rossman [13] developed a new way of applying Håstad’s Switching Lemma to AC0 formulas,
in order to prove an exp(Ω(dn1/(d−1))) lower bound on the formula size of the Parity function
for all d ≤ O(logn). Combined with the well-known exp(O(n1/(d−1))) upper bound on the
circuit size of Parity, this yields an asymptotically optimal separation in the power of depth-d
AC0 formulas vs. circuits for all d(n) ≤ O(logn

log logn), as well as a super-polynomial separation
for all ω(1) ≤ d(n) ≤ o(logn).

In the present paper, we carry out a similar development for formulas vs. circuits in the
AC0[⊕] basis, obtaining both an asymptotically optimal separation for all d(n) ≤ O(logn

log logn)
and a super-polynomial separation for all ω(1) ≤ d(n) ≤ o(logn). Our target functions lie in
the class of Approximate Majorities, here defined as Boolean functions {0, 1}n → {0, 1} that
approximate the Majority function on 3/4 fraction of inputs. First, we show how to apply the
Polynomial Method to obtain better parameters in the approximation of AC0[⊕] formulas
by low-degree polynomials over F2. This leads to an exp(Ω(dn1/2(d−1))) lower bound on the
AC0[⊕] formula size of all Approximate Majority functions. The other half of our formulas
vs. circuits separation comes from an exp(O(n1/2(d−1))) upper bound on the AC0[⊕] circuit
size of some Approximate Majority function. In fact, this upper bound is realized by a
randomized construction of monotone AC0 circuits (without NOT or MOD2 gates). Together
these upper and lower bound give our main result:

I Theorem 1.
(i) For all 2 ≤ d(n) ≤ O(logn

log logn), there exist AC0[⊕] circuits (in fact, monotone AC0

circuits) of depth d and size poly(n) that are not equivalent to any AC0[⊕] formulas of
depth d and size no(d).

(ii) For all ω(1) ≤ d(n) ≤ o(logn), the class of languages decidable by polynomial-size
depth-d AC0[⊕] formulas is a proper subclass of the class of languages decidable by
polynomial-size depth-d AC0[⊕] circuits.

Separation (i) is asymptotically optimal, in view of the aforementioned simulation of
poly(n)-size depth-d circuits by depth-d formulas of size nO(d). Separation (ii) resembles
an analogue of NC1 6= P/poly (or rather NC1 6= AC1) within the class AC0[⊕]. In fact,
extending separation (ii) from depth o(logn) to depth logn is equivalent the separation of
NC1 and AC1.

B. Rossman and S. Srinivasan 50:3

1.1 Proof outline
Improved polynomial approximation

The lower bound for AC0[⊕] formulas follows the general template due to Razborov [12] on
proving lower bounds for AC0[⊕] circuits using low-degree polynomials over F2. Razborov
showed that for any Boolean function f : {0, 1}n → {0, 1} that has an AC0[⊕] circuit of size
s and depth d, there is a randomized polynomial P of degree O(log s)d−1 that computes f
correctly on each input with probability 7

8 (we call such polynomials 1/8-error probabilistic
polynomials). By showing that some explicit Boolean function f (e.g. the Majority function
or the MODq function for q odd) on n variables does not have such an approximation of
degree less than Ω(

√
n) [12, 14, 15], we get that any AC0[⊕] circuit of depth d computing f

must have size exp(Ω(n1/2(d−1))).
In this paper, we improve the parameters of Razborov’s polynomial approximation from

above for AC0[⊕] formulas. More precisely, for AC0[⊕] formulas of size s and depth d, we
are able to construct 1/8-error probabilistic polynomials of degree O(1

d log s)d−1. (Since
every depth-d circuit of size s is equivalent to a depth-d formula of size at most sd−1, this
result implies Razborov’s original theorem that AC0[⊕] circuits of size s and depth d have
1/8-error probabilistic polynomials of degree O(log s)d−1.)

We illustrate the idea behind this improved polynomial approximation with the special
case of a balanced formula (i.e. all gates have the same fan-in) of fan-in t and depth d. Note
that the size of the formula (number of gates) is Θ(td−1) and hence it suffices in this case to
show that it has a 1/8-error probabilistic polynomial of degree O(log t)d−1. We construct
the probabilistic polynomial inductively. Given a balanced formula F of depth d and fan-in
t, let F1, . . . , Ft be its subformulas of depth d − 1. Inductively, each Fi has a 1/8-error
probabilistic polynomial Pi of degree O(log t)d−2 and by a standard error-reduction [10], it
has a (1/16t)-error probabilistic polynomial of degree O(log t)d−1 (in particular, at any given
input x ∈ {0, 1}n, the probability that there exists an i ∈ [t] such that Pi(x) 6= Fi(x) is at
most 1/16). Using Razborov’s construction of a 1/16-error probabilistic polynomial of degree
O(1) for the output gate of F and composing this with the probabilistic polynomials Pi, we
get the result for balanced formulas. This idea can be extended to general (i.e. not necessarily
balanced) formulas with a careful choice of the error parameter for each subformula Fi to
obtain the stronger polynomial approximation result.

Improved formula lower bounds

Combining the above approximation result with known lower bounds for polynomial ap-
proximation [12, 14, 15], we can already obtain stronger lower bounds for AC0[⊕] formulas
than are known for AC0[⊕] circuits. For instance, it follows that any AC0[⊕] formula of
depth d computing the Majority function on n variables must have size exp(Ω(dn1/2(d−1)))
for all d ≤ O(logn), which is stronger than the corresponding circuit lower bound. Similarly
stronger formula lower bounds also follow for the MODq function (q odd).

Separation between formulas and circuits

However, the above improved lower bounds do not directly yield the claimed separation
between AC0[⊕] formulas and circuits. This is because we do not have circuits computing
(say) the Majority function of the required size. To be able to prove our result, we would need
to show that the Majority function has AC0[⊕] circuits of depth d and size exp(O(n1/2(d−1)))
(where the constant in the O(·) is independent of d). However, as far as we know, the strongest

ICALP 2017

50:4 Separation of AC0[⊕] Formulas and Circuits

result in this direction [9] only yields AC0[⊕] circuits of size greater than exp(Ω(n1/(d−1))),2
which is superpolynomially larger than the upper bound.

To circumvent this issue, we change the hard functions to the class of Approximate
Majorities, which is the class of Boolean functions that agree with Majority function on most
inputs. While this has the downside that we no longer are dealing with an explicitly defined
function, the advantage is that the polynomial approximation method of Razborov yields
tight lower bounds for some functions from this class.

Indeed, since the method of Razborov is based on polynomial approximations, it immedi-
ately follows that the same proof technique also yields the same lower bound for computing
Approximate Majorities. Formally, any AC0[⊕] circuit of depth d computing any Approxim-
ate Majority must have size exp(Ω(n1/2(d−1))). On the upper bound side, it is known from the
work of O’Donnell and Wimmer [11] and Amano [1] that there exist Approximate Majorities
that can be computed by monotone AC0 formulas of depth d and size exp(O(dn1/2(d−1))).
(Note that the double exponent 1

2(d−1) is now the same in the upper and lower bounds.)
We use the above ideas for our separation between AC0[⊕] formulas and circuits. Plugging

in our stronger polynomial approximation for AC0[⊕] formulas, we obtain that any AC0[⊕]
formula of depth d computing any Approximate Majority must have size exp(Ω(dn1/2(d−1))).
In particular, this implies that Amano’s construction is tight (up to the universal constant
in the exponent) even for AC0[⊕] formulas.

Further, we also modify Amano’s construction [1] to obtain better constant-depth circuits
for Approximate Majorities: we show that there exist Approximate Majorities that are
computed by monotone AC0 circuits of depth d of size exp(O(n1/2(d−1))) (the constant in
the O(·) is a constant independent of d).

Smaller circuits for Approximate Majority

Our construction closely follows Amano’s, which in turn is related to Valiant’s probabilistic
construction [17] of monotone formulas for the Majority function. However, we need to
modify the construction in a suitable way that exploits the fact that we are constructing
circuits. This modification is in a similar spirit to a construction of Hoory, Magen and
Pitassi [6] who modify Valiant’s construction to obtain smaller monotone circuits (of depth
Θ(logn)) for computing the Majority function exactly.

At a high level, the difference between Amano’s construction and ours is as follows.
Amano constructs random formulas Fi of each depth i ≤ d as follows. The formula F1 is the
AND of a1 independent and randomly chosen variables. For even (respectively odd) i > 1,
Fi is the OR (respectively AND) of ai independent and random copies of Fi−1. For suitable
values of a1, . . . , ad ∈ N, the random formula Fd computes an Approximate Majority with
high probability. In our construction, we build a depth i circuit Ci for each i ≤ d in a similar
way, except that each Ci now has M different outputs. Given such a Ci−1, we construct Ci
by taking M independent randomly chosen subsets T1, . . . , TM of ai many outputs of Ci−1
and adding gates that compute either the OR or AND (depending on whether i is even or
odd) of the gates in Ti. Any of the M final gates of Cd now serves as the output gate. By an
analysis similar to Amano’s (see also [6]) we can show that this computes an Approximate
Majority with high probability, which finishes the proof.3

2 Indeed, this is inevitable with all constructions that we are aware of, since they are actually AC0 circuits
and it is known by a result of Håstad [5] that any AC0 circuit of depth d for the Majority function must
have size exp(Ω(n1/(d−1))).

3 This is a slightly imprecise description of the construction as the final two levels of the circuit are
actually defined somewhat differently.

B. Rossman and S. Srinivasan 50:5

2 Preliminaries

Throughout, n will be a growing parameter. We will consider Boolean functions on n

variables, i.e. functions of the form f : {0, 1}n → {0, 1}. We will sometimes identify {0, 1}
with the field F2 in the natural way and consider functions f : Fn2 → F2 instead.

Given a Boolean vector y ∈ {0, 1}n, we use |y|0 and |y|1 to denote the number of 0s and
number of 1s respectively in y.

The Majority function on n variables, denoted MAJn is the Boolean function that maps
inputs x ∈ {0, 1}n to 1 if and only if |x|1 > n/2.

I Definition 2. An (ε, n)-Approximate Majority is a function f : {0, 1}n → {0, 1} such that
Prx∈{0,1}n [f(x) 6= Majn(x)] ≤ ε.

As far as we know, the study of this class of functions was initiated by O’Donnell and
Wimmer [11]. See also [1, 4].

We refer the reader to [2, 7] for standard definitions of Boolean circuits and formulas. We
use AC0 circuits (respectively formulas) to denote circuits (respectively formulas) of constant
depth made up of AND, OR and NOT gates. Similarly, AC0[⊕] circuits (respectively formu-
las) will be circuits (respectively formulas) of constant depth made up of AND, OR, MOD2
and NOT gates.

The size of a circuit will denote the number of gates in the circuit and the size of a
formula will denote the number of its leaves which is within a constant multiplicative factor
of the number of gates in the formula.4

3 Lower Bound

In this section, we show that any AC0[⊕] formulas of depth d computing a (1/4, n)-
Approximate Majority must have size at least exp(Ω(dn1/2(d−1))) for all d ≤ O(logn).

We work over the field F2 and identify it with {0, 1} in the natural way. The following
concepts are standard in circuit complexity (see, e.g., Beigel’s survey [3]).

I Definition 3. Fix any ε ∈ [0, 1]. A polynomial P ∈ F2[X1, . . . , Xn] is said to be an
ε-approximating polynomial for a Boolean function f : {0, 1}n → {0, 1} if

Pr
x∈{0,1}n

[f(x) = P (x)] ≥ 1− ε.

We will use the following result of Smolensky [15] (see also Szegedy’s PhD thesis [16]).

I Lemma 4 (Smolensky [15]). Let ε ∈ (0, 1
2) be any fixed constant. Any (1

2−ε)-approximating
polynomial for the Majority function on n variables must have degree Ω(

√
n).

I Corollary 5. Let f be any (1/4, n)-Approximate Majority and ε ∈ (0, 1/4) an arbitrary
constant. Then any (1

4 − ε)-approximating polynomial for f must have degree Ω(
√
n).

Proof. The proof is immediate from Lemma 4 and the triangle inequality. J

I Definition 6. An ε-error probabilistic polynomial of degree D for a Boolean function
f : {0, 1}n → {0, 1} is a random variable P taking values from polynomials in F2[X1, . . . , Xn]
of degree at most D such that for all x ∈ {0, 1}n, we have Pr[f(x) = P(x)] ≥ 1− ε.

4 We assume here without loss of generality that the formula does not contain a gate of fan-in 1 feeding
into another.

ICALP 2017

50:6 Separation of AC0[⊕] Formulas and Circuits

I Definition 7. Let Dε(f) be the minimum degree of an ε-error probabilistic polynomial
for f .

We will make use of the following two lemmas concerning Dε(·).

I Lemma 8 (Razborov [12]). Let ORn and ANDn be the OR and AND functions on n

variables respectively. Then Dε(ORn), Dε(ANDn) ≤ dlog(1/ε)e.

I Lemma 9 (Kopparty and Srinivasan [10] (implicit in proof of Lemma 10)). There is an
absolute constant c1 such that for any ε ∈ (0, 1), Dε(f) ≤ c1 · dlog(1/ε)e · D1/8(f) for all
Boolean functions f .

We now state our main result, which shows that every AC0[⊕] formula of size s and
depth d+ 1 admits a 1/8-error approximating polynomial of degree O(1

d log s)d.

I Theorem 10. There is an absolute constant c2 such that, if f is computed by an AC0[⊕]
formula F of size s and depth d+ 1, then D1/8(f) ≤ 3(c2(1

d log(s) + 1))d.

Proof. The proof is an induction on the depth d of the formula.
The base case d = 0 corresponds to the case when the formula is a single AND, OR or

MOD2 gate and we need to show that D1/8(f) ≤ 3. In the case that the formula is an AND
or OR gate, this follows from Lemma 8. If the formula is a MOD2 gate, this follows from the
fact that the MOD2 function is exactly a polynomial of degree 1.

Let d ≥ 1. We assume that the formula F is the AND/OR/MOD2 of sub-formulas
F1, . . . , Fm computing f1, . . . , fm where Fi has size si and depth d + 1. So F has size
s = s1 + · · ·+ sm and depth d + 2. Assume that D1/8(fi) ≤ 3(c2(1

d log(si) + 1))d for all i.
We must show that D1/8(f) ≤ 3(c2(1

d+1 log(s) + 1))d+1.
By Lemma 9, each fi has an si/(16s)-error probabilistic polynomial Pi of degree c1 ·

dlog(16s/si)e ·D1/8(fi), which is at most

3c1 · 5(log(s/si) + 1) · (c2(1
d log(si) + 1))d.

Then (P1, . . . ,Pm) jointly computes (f1, . . . , fm) with error 1/16 (=
∑m
i=1(si/(16s))).

By a reasoning identical to the base case, it follows that there exists a 1/16-error
probabilistic polynomial Q of degree 4 for the output gate of the formula.

Then Q(P1, . . . ,Pm) is a 1/8-error probabilistic polynomial for f of degree

60c1 ·max
i

(log(s/si) + 1) · (c2(1
d log(si) + 1))d.

So long as c2 ≥ 20c1, it suffices to show that for all i,

(log(s/si) + 1) · (1
d log(si) + 1)d ≤ (1

d+1 log(s) + 1)d+1.

Consider any i and let a, b ≥ 0 such that si = 2a and s = 2a+b. We must show

(b+ 1)
(
a

d
+ 1
)d
≤
(
a+ b

d+ 1 + 1
)d+1

.

For fixed a ≥ 0, as a polynomial in b, the function

pa,d(b) :=
(
a+ b

d+ 1 + 1
)d+1

− (b+ 1)
(
a

d
+ 1
)d

is nonnegative over b ≥ 0 with a unique root at b = a/d. This follows from

∂

∂b
pa,d(b) =

(
a+ b

d+ 1 + 1
)d
−
(
a

d
+ 1
)d

,

which is zero iff b = a/d; this value is a minimum of pa,d with pa,d(a/d) = 0. J

B. Rossman and S. Srinivasan 50:7

I Corollary 11. Fix any constant d and let n ∈ N be a growing parameter. Let f be any
(1/4, n)-Approximate Majority. Then any AC0[⊕] formula of depth d computing f must have
size exp(Ω(dn1/2(d−1))) for all d ≤ O(logn), where asymptotic notation O(·) and Ω(·) hide
absolute constants (independent of d and n).

Proof. Say that F is an AC0[⊕] formula of depth d and size s computing f . Then, by
Lemma 9, we see that F has a 1/8-error probabistic polynomial P of degreeD ≤ O(O(1

d log s+
1)d−1). In particular, by an averaging argument, there is some fixed polynomial P ∈
F2[X1, . . . , Xn] of degree at most D such that P is a 1/8-error approximating polynomial for
f .

Corollary 5 implies that the degree of P must be Ω(
√
n). Hence, we obtain O(1

d log s+
1)d−1 ≥ Ω(

√
n). It follows that

s ≥ exp(Ω(dn1/2(d−1))−O(d)).

Observe that Ω(dn1/2(d−1)) dominates O(d) so long as d ≤ ε logn for some absolute constant
ε > 0 (depending on the constants in Ω(·) and O(·)). Hence, we get the claimed lower bound
s ≥ exp(Ω(dn1/2(d−1))) for all d ≤ ε logn. J

4 Upper Bound

In this section, we show that for any constant ε, there are (ε, n)-Approximate Majorities
that can be computed by depth d AC0 circuits of size exp(O(n1/2(d−1))).

Let ε0 ∈ (0, 1) be a small enough constant so that the following inequalities hold for any
β ≤ ε0

exp(−β) ≤ 1− β exp(−β),
1− β ≥ exp(−β − β2) ≥ exp(−2β).

(It suffices to take ε0 = 1/2.)
We need the following technical lemma.

I Lemma 12. Let A, s be positive reals, M,n ∈ N, and γ ∈ (1
n ,

1
10) be such that eA ≥ n3,

n ≥ 1
ε0
, and s ≤ n. Define I0(γ) := {y ∈ {0, 1}M | |y|1 ≤Me−A(1− γ)} and I1(γ) := {y ∈

{0, 1}M | |y|1 ≥ Me−A(1 + γ)}. If we choose S ⊆ [M] of size t := deA · se by picking t
random elements from M with replacement, then

x ∈ I0(γ)⇒ Pr
S

[
∨
j∈S

xj = 0] ≥ exp(−s) · exp(sγ/2),

x ∈ I1(γ)⇒ Pr
S

[
∨
j∈S

xj = 0] ≤ exp(−s) · exp(−sγ).

Further, if sγ ≤ ε0, then the above probabilities can be lower bounded and upper bounded by
exp(−s) · (1 + sγ exp(−sγ)) and exp(−s) · (1− sγ exp(−sγ)) respectively.

A similar statement can be obtained above for the sets J1(γ) := {y ∈ {0, 1}M | |y|0 ≤
Me−A(1−γ)} and J0(γ) := {y ∈ {0, 1}M | |y|0 ≥Me−A(1+γ)}, with the event “

∨
j∈S xj = 0”

being replaced by the event “
∧
j∈S xj = 1”.

Proof. We give the proof only for I0(γ) and I1(γ). The proof for J0(γ) and J1(γ) is similar.
Consider first the case that x ∈ I1(γ). In this case, we have the following computation.

Pr
S

[
∨
j∈S

xj = 0] ≤
(

1− 1 + γ

eA

)eA·s

≤ exp(−(1 + γ) · s) ≤ exp(−s) · exp(−sγ). (1)

ICALP 2017

50:8 Separation of AC0[⊕] Formulas and Circuits

The above implies the first upper bound on PrS [
∨
j∈S xj = 0] from the lemma statement.

When sγ ≤ ε0, we further have exp(−sγ) ≤ 1− sγ exp(−sγ), which implies the second upper
bound. This proves the lemma when x ∈ I1.

Now consider the case that x ∈ I0(γ). We have

Pr
S

[
∨
j∈S

xj = 0] ≥
(

1− 1− γ
eA

)eA·s+1

≥ exp
(

(−1− γ
eA

− 1
e2A) · (eA · s+ 1)

)
= exp

(
−s+ sγ − s

eA
− 1− γ

eA
− 1
e2A

)
≥ exp

(
−s+ sγ − 2s

eA

)
= exp(−s) · exp(sγ(1− 2e−A

γ
))) (2)

where for the second inequality we have used the fact that since e−A ≤ 1
n3 ≤ ε0, we have

1 − 1−γ
eA ≥ exp(− 1−γ

eA − 1
e2A). Since e−A ≤ 1

n3 ≤ 1
4n ≤ γ/4, we can lower bound the right

hand side of (2) by exp(−s) · exp(sγ/2). Also, note that

1− 2e−A

γ
≥ 1− 2/n3

1/n = 1− 2
n2

≥ exp(−1/n) ≥ exp(−γ) ≥ exp(−sγ).

This implies that the RHS of (2) can also be lower bounded by exp(−s) exp(sγ exp(−sγ)) ≥
exp(−s) · (1 + sγ exp(−sγ)), which implies the claim about PrS [

∨
j∈S xj = 0] assuming that

x ∈ I0(γ). J

We now prove the main result of this section.

I Theorem 13. For any growing parameter n ∈ N and 2 ≤ d ≤ O(logn
log logn) and ε > 0,

there is an (ε, n)-Approximate Majority fn computable by a monotone AC0 circuit with at
most exp(O(n1/2(d−1) log(1/ε)/ε)) many gates, where both O(·)’s hide absolute constants
(independent of d, ε).

Proof. We assume throughout that ε is a small enough constant and that n is large enough
for various inequalities to hold. We will actually construct a monotone circuit of depth d
and size exp(O(n1/2(d−1) log(1/ε)/ε)) computing a (4ε, n)-Approximate Majority, which also
implies the theorem.

Fix parameters A = bn1/2(d−1)c and M = de10Ae. We assume that A ≥ 10 logn (which
holds as long as d ≤ c logn

log logn for an absolute constant c > 0) and that ε ≤ ε0.
Define a sequence of real numbers γ0, γ1, . . . , γd−2 as follows:

γ0 = ε√
n

γi = Aγi−1 exp(−2Aγi−1), for each i ∈ [d− 2].

It is clear that γi ≤ Aiγ0 for each i ∈ [d− 2]. As a result we also obtain

γi = Aiγ0 exp(−2A(γ0 + γ1 + · · ·+ γi−1))
≥ Aiγ0 exp(−2γ0A(1 +A+A2 + · · ·+Ai−1)) ≥ Aiγ0 exp(−3Aiγ0). (3)

B. Rossman and S. Srinivasan 50:9

Let

Yε =
{
x ∈ {0, 1}n

∣∣∣∣ |x|1 ≥ (1
2 + ε√

n

)
n

}
,

Nε =
{
x ∈ {0, 1}n

∣∣∣∣ |x|1 ≤ (1
2 −

ε√
n

)
n

}
.

The idea is to define a sequence of circuits C1, C2, . . . , Cd−2 with n inputs and M outputs
such that Ci has depth i and iM many (non-input) gates. Further, for odd i

x ∈ Nε ⇒ Ci(x) ∈ I0(γi)
x ∈ Yε ⇒ Ci(x) ∈ I1(γi) (4)

and similarly for even i

x ∈ Nε ⇒ Ci(x) ∈ J0(γi)
x ∈ Yε ⇒ Ci(x) ∈ J1(γi). (5)

After this is done, we will add on top a depth-2 circuit that will reject most inputs from
I0(γd−2) or J0(γd−2) – depending on whether d− 2 is odd or even respectively – and accept
most inputs from I1(γd−2) or J1(γd−2).

We begin with the construction of C1, . . . , Cd−2 which is done by induction.

Construction of C1. The base case of the induction is the construction of C1, which is
done as follows. We choose M i.i.d. random subsets T1, . . . , TM ⊆ [n] in the following way:
for each i ∈ [M], we sample A random elements of [n] with replacement. Let bxi =

∧
j∈Ti

xj .
If x ∈ Nε, then the probability that bxi = 1 is given by

Pr[bxi = 1] ≤
(

1
2 − γ0

)A
≤ 1

2A (1− 2γ0)A ≤ 1
eA

(1− γ0A)

where the last inequality follows from the fact that (1− z)A ≤ (1− zA+ A2z2

2).
Let δ = 1/n3. Note in particular that 2δ/γ0A ≤ ε0 for large enough n.
By a Chernoff bound, the probability that 1

M

∑
i b
x
i ≥ 1

eA (1− γ0A)(1 + δ) is bounded by
exp(−Ω(δ2M/eA)) ≤ exp(−Ω(e9A/n6)) ≤ exp(−n), since eA ≥ n10. Thus, with probability
at least 1− exp(−n), we have∑

i b
x
i

M
≤ 1
eA

(1− γ0A)(1 + δ)

≤ 1
eA

(1− γ0A+ δ) = 1
eA

(1− γ0A(1− δ

γ0A
))

≤ 1
eA

(1− γ0A exp(− 2δ
γ0A

)) ≤ 1
eA

(1− γ0A exp(−γ0A))

≤ 1
eA

(1− γ1). (6)

Above, we have used the fact that (1− δ
γ0A

) ≥ exp(−2δ
γ0A

) since δ/γ0A ≤ ε0 for large enough
n, as noted above.

ICALP 2017

50:10 Separation of AC0[⊕] Formulas and Circuits

If x ∈ Yε, then the probability that bxi = 1 is given by

Pr[bxi = 1] ≥
(

1
2 + γ0

)A
≥ 1

2A (1 + 2γ0)A ≥ 1
eA

(1 + γ0A)

≥ 1
eA

(1 + γ0A).

As above, we can argue that the probability that 1
M

∑
i b
x
i ≤ 1

eA (1 + γ0A)(1 − δ) is at
most exp(−n). Thus, with probability 1− exp(−n)

∑
i b
x
i

M
≥ 1
eA

(1 + γ0A)(1− δ)

≥ 1
eA

(1 + γ0A− 2δ) = 1
eA

(1 + γ0A(1− 2δ
γ0A

))

≥ 1
eA

(1 + γ0A exp(− 4δ
γ0A

)) ≥ 1
eA

(1 + γ0A exp(−γ0A))

≥ 1
eA

(1 + γ1). (7)

Thus, by a union bound over x, we can fix a choice of T1, . . . , TM so that (6) holds for all
x ∈ Nε and (7) holds for all x ∈ Yε. Hence, (4) holds for i = 1 as required. This concludes
the construction of C1, which just outputs the values of

∧
j∈Ti

xj for each i.

Construction of Ci+1. For the inductive case, we proceed as follows. We assume that i
is odd (the case that i is even is similar). So by the inductive hypothesis, we know that
(4) holds and hence that Ci(x) ∈ I0(γi) or I1(γi) depending on whether x ∈ Nε or Yε. Let
γ := γi. Let the output gates of Ci be g1, . . . , gM .

We choose T1, . . . , TM ⊆ [M] randomly as in the statement of Lemma 12 with s = A.
Note that the chosen parameters satisfy all the hypotheses of Lemma 12. Further we also
have sγ ≤ A ·Aiγ0 ≤ Ad−1 · ε√

n
≤ ε0.

The random circuit C ′ is defined to be the circuit obtained by adding M OR gates to Ci
such that the jth OR gate computes

∨
k∈Tj

gk. Let bxj be the output of the jth OR gate on
Ci(x).

By Lemma 12, we have

x ∈ Nε ⇒ Pr
S

[bxj = 0] ≥ exp(−A) · (1 +Aγ exp(−Aγ))

x ∈ Yε ⇒ Pr
S

[bxj = 0] ≤ exp(−A) · (1−Aγ exp(−Aγ)) (8)

Let δ = 1
n3 . Note that Aγ ∈ [1√

n
, 1
n1/2(d−1)] and hence for large enough n, 2δ

Aγ exp(−Aγ) ≤ ε0.
Assume x ∈ Nε. In this case, the Chernoff bound implies that the probability that∑
j∈[M] b

x
j ≤M exp(−A)·(1+Aγ exp(−Aγ))(1−δ) is at most exp(−Ω(δ2M/eA)) ≤ exp(−n).

B. Rossman and S. Srinivasan 50:11

When this event does not occur, we have∑
i b
x
i

M
≥ 1
eA

(1 +Aγ exp(−Aγ))(1− δ)

≥ 1
eA

(1 +Aγ exp(−Aγ)− 2δ) = 1
eA

(1 +Aγ exp(−Aγ)(1− 2δ
Aγ exp(−Aγ)))

≥ 1
eA

(1 +Aγ exp(−Aγ) · exp(− 4δ
Aγ exp(−Aγ)))

≥ 1
eA

(1 +Aγ exp(−Aγ) · exp(−Aγ))

≥ 1
eA

(1 +Aγ exp(−2Aγ)) ≥ 1
eA

(1 + γi+1). (9)

We have used above that for large enough n, 2δ
Aγ exp(−Aγ) ≤ ε0 and hence 1− 2δ

Aγ exp(−Aγ) ≥
exp(−4δ

Aγ exp(−Aγ)).
Similarly when x ∈ Yε, the Chernoff bound tells us that the probability that

∑
j∈[M] b

x
j ≥

M exp(−A) · (1−Aγ exp(−Aγ))(1 + δ) is at most exp(−n). In this case, we get∑
i b
x
i

M
≤ 1
eA

(1−Aγ exp(−Aγ))(1 + δ)

≤ 1
eA

(1−Aγ exp(−Aγ) + δ) = 1
eA

(1−Aγ exp(−Aγ)(1− δ

Aγ exp(−Aγ)))

≤ 1
eA

(1−Aγ exp(−Aγ) · exp(− 2δ
Aγ exp(−Aγ)))

≤ 1
eA

(1−Aγ exp(−Aγ) · exp(−Aγ))

= 1
eA

(1−Aγ exp(−2Aγ)) ≥ 1
eA

(1− γi+1). (10)

By a union bound, we can fix T1, . . . , TM so that (9) and (10) are true for all x ∈ Nε and
x ∈ Yε respectively. This gives us the circuit Ci+1 which satisfies all the required properties.

The top two levels of the circuit. At the end of the above procedure we have a circuit
Cd−2 of depth d− 2 and at most (d− 2)M gates that satisfies one of (4) or (5) depending on
whether d− 2 is odd or even respectively. We assume that d− 2 is even (the other case is
similar).

Define γ := γd−2. Recall from (3) that γ ≥ Ad−2γ0 exp(−3Ad−2γ0) ≥ Ad−2γ0/2.
Let M ′ = dexp(10A log(1/ε)

ε + 10A)e. We choose M ′ many subsets T1, . . . , TM ′ ⊆ [M] i.i.d.
so that each Tj is picked as in Lemma 12 with s = 10A log(1/ε)/ε. Note that

sγ ≥ sA
d−2γ0

2 = 10A log(1/ε)
ε

· A
d−2

2 · ε√
n
≥ 5 log(1/ε).

Say g1, . . . , gM are the output gates of Cd−2. We define the random circuit C ′ (with n
inputs and M ′ outputs) to be the circuit obtained by adding M ′ AND gates such that the
jth AND gate computes

∧
k∈Tj

gk. Let bxj be the output of the jth AND gate on Cd−2(x).
By Lemma 12, we have

x ∈ Nε ⇒ Pr
S

[bxj = 1] ≤ exp(−s) · exp(−sγ) ≤ ε2 · exp(−s)

x ∈ Yε ⇒ Pr
S

[bxj = 1] ≥ exp(−s) · exp(sγ/2) ≥ exp(−s)
ε2 . (11)

ICALP 2017

50:12 Separation of AC0[⊕] Formulas and Circuits

Say x ∈ Nε. By a Chernoff bound, the probability that
∑
j b
x
j ≥ 2ε2M ′ exp(−s) is at

most exp(−Ω(ε2M ′ exp(−s))) ≤ exp(−Ω(ε2e10A)) ≤ exp(−n). Similarly, when x ∈ Yε, the
probability that

∑
j b
x
j ≤

M ′ exp(−s)
2ε2 is also bounded by exp(−n). By a union bound, we can

fix a T1, . . . , TM ′ to get a circuit Cd−1 such that

x ∈ Nε ⇒ |Cd−1(x)|1 ≤ 2ε2 exp(−s)M ′

x ∈ Yε ⇒ |Cd−1(x)|1 ≥
1

2ε2 exp(−s)M ′. (12)

This gives us the depth d− 1 circuit Cd−1. Note that Cd−1 has M ′ +O(dM) = O(M ′)
gates.

To get the depth d circuit, we choose a random subset T ⊆ [M ′] by sampling exactly
dexp(s)e many elements of [M ′] with replacement. We construct a random depth-d circuit
C ′d by taking the OR of the the output gates of Cd−1 indexed by the subset T .

From (12) it follows that

x ∈ Nε ⇒ Pr
T

[C ′d(x) = 1] ≤ |T | · 2ε2 exp(−s) ≤ 4ε2 < ε

x ∈ Yε ⇒ Pr
T

[C ′d(x) = 0] ≤
(

1− exp(−s)
2ε2

)exp(s)
≤ exp(−1/2ε2) < ε.

The final inequalities in each case above hold as long as ε is a small enough constant.
It follows from the above that there is a choice for T such that C ′d makes an error –

i.e. C ′d(x) = 1 for x ∈ Nε or C ′d(x) = 0 for x ∈ Yε – on at most a 2ε fraction of inputs from
Nε ∪ Yε. We fix such a choice for T and the corresponding circuit C.

We have

Pr
x∈{0,1}n

[C(x) 6= Majn(x)] ≤ Pr
x∈Yε∪Nε

[C(x) 6= Majn(x)] + Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε]

≤ 2ε+ Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε].

Finally by Stirling’s approximation we get

Pr
x∈{0,1}n

[x 6∈ Yε ∪Nε] = 1
2n

∑
m∈[n

2−ε
√
n,n

2 +ε
√
n]

(
n

m

)
≤ 1

2n
∑

m∈[n
2−ε
√
n,n

2 +ε
√
n]

(
n

n/2

)
≤ 2ε.

Hence we see that the circuit C computes a (4ε, n)-Approximate Majority, which proves
Theorem 13.

The circuit has depth d and size O(M ′) = exp(O(n1/2(d−1) log(1/ε)/ε)). J

5 Conclusion

Our main results extend straightforwardly to AC0[MODp] for any fixed prime p. The proofs
are exactly the same except for the fact that the approximating polynomials of degree
O(1

d log s)d−1 from Section 3 are constructed over Fp.
Using the fact [14] that any (1/4)-approximating polynomial over Fp (p odd) for the

Parity function on n variables must have degree Ω(
√
n), we see that any polynomial-sized

AC0[MODp] formula computing the Parity function on n variables must have depth Ω(logn).
This strengthens a result of Rossman [13] which gives this statement for AC0 formulas.

Acknowledgements. We thank Rahul Santhanam for valuable discussions. We also thank
the organizers of the 2016 Complexity Semester at St. Petersburg, where this collaboration
began.

B. Rossman and S. Srinivasan 50:13

References
1 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority.

In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 59–70, 2009. doi:10.1007/
978-3-642-02927-1_7.

2 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-
bridge University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.
asp?isbn=9780521424264.

3 Richard Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21,
1993, pages 82–95, 1993. doi:10.1109/SCT.1993.336538.

4 Eric Blais and Li-Yang Tan. Approximating boolean functions with depth-2 circuits. SIAM
J. Comput., 44(6):1583–1600, 2015. doi:10.1137/14097402X.

5 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986. doi:10.1145/12130.12132.

6 Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the majority
function. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 410–425. Springer, 2006.

7 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Al-
gorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

8 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990.

9 Maria M. Klawe, Wolfgang J. Paul, Nicholas Pippenger, and Mihalis Yannakakis. On
monotone formulae with restricted depth (preliminary version). In Proceedings of the 16th
Annual ACM Symposium on Theory of Computing, April 30 – May 2, 1984, Washington,
DC, USA, pages 480–487, 1984. doi:10.1145/800057.808717.

10 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits,
with applications. In LIPIcs-Leibniz International Proceedings in Informatics, volume 18.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

11 Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counter-
examples. In Automata, Languages and Programming, 34th International Colloquium, IC-
ALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 195–206, 2007. doi:
10.1007/978-3-540-73420-8_19.

12 Alexander A. Razborov. Lower bounds on the size of constant-depth networks over a
complete basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

13 Benjamin Rossman. The average sensitivity of bounded-depth formulas. In Foundations of
Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 424–430. IEEE,
2015.

14 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 77–82, 1987. doi:10.1145/28395.28404.

15 Roman Smolensky. On representations by low-degree polynomials. In FOCS, pages 130–138,
1993. doi:10.1109/SFCS.1993.366874.

16 Mario Szegedy. Algebraic Methods in Lower Bounds for Computational Models with Limited
Communication. PhD thesis, University of Chicago, 1989.

17 Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984. doi:10.1016/0196-6774(84)90016-6.

ICALP 2017

http://dx.doi.org/10.1007/978-3-642-02927-1_7
http://dx.doi.org/10.1007/978-3-642-02927-1_7
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1109/SCT.1993.336538
http://dx.doi.org/10.1137/14097402X
http://dx.doi.org/10.1145/12130.12132
http://dx.doi.org/10.1007/978-3-642-24508-4
http://dx.doi.org/10.1145/800057.808717
http://dx.doi.org/10.1007/978-3-540-73420-8_19
http://dx.doi.org/10.1007/978-3-540-73420-8_19
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1109/SFCS.1993.366874
http://dx.doi.org/10.1016/0196-6774(84)90016-6

Sensitivity Conjecture and Log-Rank Conjecture
for Functions with Small Alternating Numbers∗

Chengyu Lin†1 and Shengyu Zhang2

1 Columbia University, New York, NY, USA
chengyu@cs.columbia.edu

2 The Chinese University of Hong Kong, Hong Kong, China
syzhang@cse.cuhk.edu.hk

Abstract
The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and
challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known
to hold for monotone functions, and so is the Log-rank Conjecture for f(x∧y) and f(x⊕y) with
monotone functions f , where ∧ and ⊕ are bit-wise AND and XOR, respectively. In this paper, we
extend these results to functions f which alternate values for a relatively small number of times
on any monotone path from 0n to 1n. These deepen our understandings of the two conjectures,
and contribute to the recent line of research on functions with small alternating numbers.

1998 ACM Subject Classification F.1.3 [Complexity Measures and Classes] Relations among
Complexity Measures

Keywords and phrases Analysis of Boolean functions, Sensitivity Conjecture, Log-rank Conjec-
ture, Alternating Number

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.51

1 Introduction

A central topic in Boolean function complexity theory is relations among different combin-
atorial and computational measures [29]. For Boolean functions, there is a large family of
complexity measures such as block sensitivity, certificate complexity, decision tree complexity
(including its randomized and quantum versions), degree (including its approximate version),
etc, that are all polynomially related [13]. One outlier1 is sensitivity, which a priori could be
exponentially smaller than the ones in that family. The famous Sensitivity Conjecture raised
by Nisan and Szegedy [48] says that sensitivity is also polynomially related to the block
sensitivity and others in the family. Despite a lot of efforts, the best upper bound we know is
still exponential: bs(f) ≤ C(f) ≤

(8
9 + o(1)

)
s(f)2s(f)−1 from [25], improving upon previous

work [54, 2, 3]. See a recent survey [24] about this conjecture and how it has resisted many
serious attacks.

Communication complexity quantifies the minimum amount of communication required
for computing functions whose inputs are distributed among two or more parties [31]. In

∗ This work was supported by Research Grants Council of the Hong Kong S.A.R. (Project no.
CUHK14239416). The first author was also supported by NSF grants #CNS-1445424 and #CCF-
1423306.

† Most of this work was done when Chengyu Lin was in Chinese University of Hong Kong.
1 There are complexity measures, such as F2-degree, polynomial threshold degree, total influence, Boolean

circuit depth, CNF/DNF size, that are known not to belong to the polynomially equivalent class. But
the position of sensitivity is elusive.

EA
T

C
S

© Chengyu Lin and Shengyu Zhang;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.51
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

the standard bipartite setting, the function F has two inputs x and y, with x given to Alice
and y to Bob. The minimum number of bits needed to be exchanged to compute F (x, y) for
all inputs (x, y) is the communication complexity CC(F). It has long been known [41] that
the logarithm of the rank of communication matrix MF

def= [F (x, y)]x,y is a lower bound of
CC(F). Perhaps the most prominent and long-standing open question about communication
complexity is the Log-rank Conjecture proposed by Lovász and Saks [37], which asserts that
CC(F) of any Boolean function F is also upper bounded by a polynomial of log rank(MF).
The conjecture has equivalent forms related to chromatic number conjecture in graph theory
[37], nonnegative rank [36], Boolean roots of polynomials over real numbers [61], quantum
sampling complexities [4, 65], etc. Despite a lot of efforts devoted to the conjecture in the past
decades, the best upper bound is CC(F) = O

(√
rank(MF) log (rank(MF))

)
by Lovett [39],

which is still exponentially far from the target.
While these two conjectures are notoriously challenging in their full generality, special

classes of functions have been investigated. In particular, the Sensitivity Conjecture is
confirmed to hold for monotone functions, as the sensitivity coincides with block sensitivity
and certificate complexity for those functions [47]. The Log-rank Conjecture is not known
to be true for monotone functions, but it holds for monotone functions on two bit-wise
compositions between x and y. More specifically, two classes of bit-wise composed functions
have drawn substantial attention. The first class contains AND functions F = f ◦ ∧, defined
by F (x, y) = f(x ∧ y), where ∧ is the bit-wise AND of x, y ∈ {0, 1}n. Taking the outer
function f to be the n-bit OR, we get Disjointness, the function that has had a significant
impact on both communication complexity theory itself [53] and applications to many other
areas such as streaming, data structures, circuit complexity, proof complexity, game theory
and quantum computation [15]. The AND functions also contain other well known functions
such as Inner Product, AND-OR trees [28, 33, 27, 19], and functions exhibiting gaps between
communication complexity and log-rank [49]. The second class is XOR functions F = f ◦ ⊕,
defined by F (x, y) = f(x⊕ y), where ⊕ is the bit-wise XOR function. This class includes
Equality [62, 46, 1, 7, 11] and Hamming Distance [63, 16, 26, 34, 35] as special cases.

Both AND and XOR functions have recently drawn much attention [38, 12, 67, 32, 42, 55,
35, 59, 66, 50, 64], partly because their communication matrix rank has intimate connections
to the polynomial representations of the outer function f . Specifically, the rank of Mf◦∧
is exactly the Möbius sparsity2 mono(f), the number of nonzero coefficients α(S) in the
multilinear polynomial representation f(x) =

∑
S⊆[n] α(S)

∏
i∈S xi for f : {0, 1}n → {0, 1}

[12]. And the rank ofMf◦⊕ is exactly the Fourier sparsity ‖f̂‖0, the number of nonzero Fourier
coefficients f̂(S) in the multilinear polynomial representation f(x) =

∑
S⊆[n] f̂(S)

∏
i∈S xi

for f : {+1,−1}n → {0, 1}.
It is known that the Log-rank Conjecture holds for these two classes of functions when

the outer function f is monotone [38, 42], and this work aims to extend these as well as
the sensitivity result on monotone functions, to functions that are close to being monotone.
One needs to be careful about the distance measure here, since the widely-used (e.g. in
property testing and computational learning) normalized Hamming distance dist(f, g) =
Prx∈{0,1}n [f(x) 6= g(x)] does not meet our requirement. Indeed, if we flip the value f(x) at
just one input x, then this changes f by an exponentially small amount measured by dist,
but the sensitivity would change from a small s(f) to a large n− s(f). Similarly, the Fourier
sparsity is also very sensitive to local changes (‖f̂‖0 to 2n − ‖f̂‖0), and so is Möbius sparsity

2 Named after the Möbius transform from f to α.

C. Lin and S. Zhang 51:3

if we flip the value at 0n.
One robust distance measure to monotone functions, which has recently drawn an

increasingly amount of attention, is the alternating number, defined as follows. View the
Boolean hypercube {0, 1}n as a lattice with the partial order x � y if xi ≤ yi for all i. A
path x(1) → · · · → x(k) on {0, 1}n is monotone if x(i) ≺ x(i+1) for all i. The alternating
number of a function f on {0, 1}n is the maximum number of i’s with f(x(i)) 6= f(x(i+1)),
on any monotone path x(0) → · · · → x(n) from 0n to 1n. It is clear that constant functions
have alternating number 0, and monotone functions have alternating number 1. For general
functions f , we have alt(f) ≤ n, thus alt(f) is a sub-linear complexity measure. The smaller
alt(f) is, the closer it is to monotone functions. Studies of the alternating number dated
back to [40], in which Markov showed that the inversion complexity, the minimum number of
negation gates needed in any Boolean circuit computing f , is exactly dlog2(alt(f) + 1)e. Late
work investigated the inversion complexity/alternating number over computational models
such as constant-depth circuit [52], bounded-depth circuit [56], Boolean formula [43], and
non-deterministic circuit [44]. It has been recently shown that small alternating number can
be exploited in learning Boolean circuits [10]. Also there are some studies in cryptography
considering the effect of negation gates [23].

In this paper, we study the Sensitivity and Log-rank Conjectures for functions whose
alternating numbers are small, compared to sensitivity, Möbius sparsity and Fourier sparsity.
First, the following theorem shows that the Sensitivity Conjecture holds for f with alt(f) =
poly(s(f)).

I Theorem 1. For any function f : {0, 1}n → {0, 1}, it holds that

bs(f) = O(alt(f)2 · s(f)).

Note that if a function is non-degenerate in the sense that it depends on all n variables,
then the sensitivity is at least Ω(logn) [54], therefore the above theorem also confirms the
Sensitivity Conjecture for non-degenerate functions f with alt(f) = poly logn.

The next two theorems confirmed the Log-rank Conjecture for f ◦ ⊕ with alt(f) =
poly log(‖f̂‖0), and for f ◦ ∧ with alt(f) = O(1).

I Theorem 2. For any function f : {0, 1}n → {0, 1}, it holds that

CC(f ◦ ⊕) ≤ 2 · alt(f) · log2 rank(Mf◦⊕).

I Theorem 3. For any function f : {0, 1}n → {0, 1}, it holds that

CC(f ◦ ∧) ≤ O(logalt(f)+1 rank(Mf◦∧)).

In the last theorem, the dependence on alt(f) can be slightly improved (by a factor of 2) if a
factor of logn is tolerated in the communication cost.

Related work

The Sensitivity Conjecture has many equivalent forms, summarized in the survey [24]. Also
see the recent paper [18] which tries to solve this conjecture using a communication game
approach. At the other end of the spectrum, [51, 5] seek the largest possible separation
between sensitivity and block sensitivity, and [9] got a super-quadratic separation between
sensitivity and query complexity. Apart from monotone functions [47], the Sensitivity
Conjecture has also been confirmed on graph properties [60], cyclically-invariant function [14],

ICALP 2017

51:4 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

read-once functions [45], functions admitting the Normalized Block property [57] and several
cases of read-k formulas [8]. Other than the conjecture itself, some recent work [6, 21, 22]
discussed combinatorial and computational structures of low-sensitivity functions.

For the Log-rank Conjecture, apart from the equivalent forms mentioned earlier, some
seemingly weaker formulations in terms of the largest monochromatic rectangle size [49], ran-
domized communication complexity and information cost [17] are actually equivalent to the ori-
ginal conjecture. For lower bounds, the best one had been CC(F) = Ω

(
(log rank(MF))log3 6)

(attributed to Kushilevitz in [49]), achieved by an AND function, until the recent result
of CC(F) = Ω̃

(
log2 rank(MF)

)
[20]. For XOR functions f ◦ ⊕, the Log-rank Conjecture is

confirmed when f is symmetric [67], monotone [42], linear threshold functions (LTFs) [42],
AC0 functions [30], has low F2-degree [59] or small spectral norm [59]. For AND functions
f ◦ ∧, it seems that the conjecture is only confirmed on monotone functions [38].

2 Preliminaries

2.1 n-bit (Boolean) functions
We use [n] to denote the set {1, 2, . . . , n}. The all-0 n-bit string is denoted by 0n and the
all-1 n-bit string is denoted by 1n.

For a Boolean function f : {0, 1}n → {0, 1}, its F2-degree is the degree of f viewed
as a polynomial over F2. Such functions f can be also viewed as polynomials over R:
f(x) =

∑
S⊆[n] α(S)xS , where xS =

∏
i∈S xi. If we represent the domain by {+1,−1}n,

then the polynomial (still over R) changes to f(x) =
∑

S⊆[n] f̂(S)xS , usually called Fourier
expansion of f . The coefficients α(S) and f̂(S) in the two R-polynomial representations
capture many important combinatorial properties of f . We denote by mono(f) the Möbius
sparsity, the number of non-zero coefficients α(S), and by ‖f̂‖0 the Fourier sparsity, the
number of non-zero coefficients f̂(S). Some basic facts used in this paper are listed as follows.

I Fact 4. For any f : {0, 1}n → {0, 1}, deg2(f) = n if and only if |f−1(1)| is odd.

I Fact 5. For any f : {0, 1}n → {0, 1}, deg2(f) ≤ log ‖f̂‖0.

For any input x ∈ {0, 1}n and i ∈ [n], let xi be the input obtained from x by flipping
the value of xi. For a Boolean function f : {0, 1}n → {0, 1} and an input x, if f(x) 6= f(xi),
then we say that x is sensitive to coordinate i, and i is a sensitive coordinate of x. We
can also define these for blocks. For a set B ⊆ [n], let xB be the input obtained from x

by flipping xi for all i ∈ B. Similarly, if f(x) 6= f(xB), then we say that x is sensitive to
block B, and B is a sensitive block of x. The sensitivity s(f, x) of function f on input x
is the number of sensitive coordinates i of x: s(f, x) = |{i ∈ [n] : f(x) 6= f(xi)}|, and the
sensitivity of function f is s(f) = maxx s(f, x). It is easily seen that the n-bit AND and OR
functions both have sensitivity n. The block sensitivity bs(f, x) of function f on input x is
the maximal number of disjoint sensitive blocks of x, and the block sensitivity of function f

is bs(f) = maxx bs(f, x). Note that there are always bs(f, x) many disjoint minimal sensitive
blocks, in the sense that any B (Bi is not a sensitive block of x.

For a Boolean function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n, the certificate
complexity C(f, x) of function f on input x is the minimal number of variables restricting
the value of which fixes the function to a constant. The certificate complexity of f is
C(f) = maxx C(f, x), and the minimal certificate complexity of f is Cmin(f) = minx C(f, x).
The decision tree complexity DT(f) of function f is the minimum depth of any decision tree
that computes f .

C. Lin and S. Zhang 51:5

A subfunction or a restriction of a function f on {0, 1}n is obtained from f by restricting
the values of some variables. Sometimes we say to restrict f to above an input d, or to take
the subfunction f ′ over {x : x � d}, then we mean to restrict variables xi to be 1 whenever
di = 1. Similarly, we say to restrict f to under an input u, or take the subfunction f ′ over
{x : x � u}, meaning to restrict xi to be 0 whenever ui = 0.

Let Fn be the set of all the real-valued functions on {0, 1}n. A complexity measure
M : ∪∞n=1Fn → R is downward non-increasing if M(f ′) ≤ M(f) for all subfunction f ′ of
f . That is, restricting variables does not increase the measure M . It is easily seen that
the F2-degree, the alternating number, the decision tree complexity, the sensitivity, the
block sensitivity, the certificate complexity, the Fourier sparsity, are all downward non-
increasing. When M is not downward non-increasing, it makes sense to define the closure
by M clo(f) = maxf ′ M(f ′) where the maximum is taken over all subfunctions f ′ of f . In
particular, Cclo

min(f) = maxf ′ Cmin(f ′). The next theorem relates decision tree complexity to
Cclo

min.

I Theorem 6 ([59]). For any f : {0, 1}n → {0, 1}, it holds that DT(f) ≤ Cclo
min(f) deg2(f).

(The original theorem proved was actually PDT(f) ≤ Cclo
⊕,min(f) deg2(f), where PDT(f) is the

parity decision tree complexity and Cclo
⊕,min(f) is the parity minimum certificate complexity.

But as observed by [58], the same argument applies to standard decision tree as well.)

For general Boolean functions f , we have s(f) ≤ bs(f) ≤ C(f). But when f is monotone,
equalities are achieved.

I Fact 7. If f : {0, 1}n → {0, 1} is monotone, then s(f) = bs(f) = C(f).

I Fact 8 ([42]). If f : {0, 1}n → {0, 1} is monotone, then s(f) ≤ deg2(f).

One can associate a partial order � to the Boolean hypercube {0, 1}n: x � y if xi ≤ yi

for all i. We also write y � x when x � y. If x � y but x 6= y, then we write x ≺ y and
y � x. A path x(1) → · · · → x(k) on {0, 1}n is monotone if x(i) ≺ x(i+1) for all i.

I Definition 9. For any function on {0, 1}n, the alternating number of a path x(1) → · · · →
x(k) is the number of i ∈ {1, 2, ..., k − 1} with f(x(i)) 6= f(x(i+1)). The alternating number
alt(f, x) of input x ∈ {0, 1}n is the maximum alternating number of any monotone path from
0n to x, and the alternating number of a function f is alt(f) = alt(f, 1n). Equivalently, one
can also define alt(f) to be the largest k such that there exists a list {x(1), x(2), . . . , x(k+1)}
with x(i) � x(i+1) and f(x(i)) 6= f(x(i+1)), for all i ∈ [k].

A function f : {0, 1}n → R is monotone if f(x) ≤ f(y), ∀x � y. A function f : {0, 1}n → R
is anti-monotone if f(x) ≤ f(y), ∀x � y. It is not hard to see that alt(f) = 0 iff f is constant,
and alt(f) = 1 iff f is monotone or anti-monotone.

I Definition 10. For a function f on {0, 1}n, an input u ∈ {0, 1}n − {1n} is called a max
term if f(u) 6= f(1n), and f(x) = f(1n) for all x � u. An input d ∈ {0, 1}n − {0n} is called
a min term if f(d) 6= f(0n), and f(x) = f(0n) for all x ≺ d.

2.2 Communication complexity
Suppose that for a bivariate function F (x, y), the input x is given to Alice and y to Bob.
The (deterministic) communication complexity CC(F) is the minimum number of bits needed
to be exchanged by the best (deterministic) protocol that computes F (on the worst-case
input).

ICALP 2017

51:6 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

The rank (over R) of the communication matrix for bit-wise composed functions coincides
with some natural parameters of the outer function f . For XOR functions f ◦ ⊕, it holds
that rank(Mf◦⊕) = ‖f̂‖0, and for AND functions f ◦ ∧, it holds that rank(Mf◦∧) = mono(f).
When f is OR function of n variables, we have rank(Mf◦∧) = mono(ORn) = 2n − 1.

It is well known that communication can simulate queries. More specifically, for XOR
functions and AND functions, we have that

CC(f ◦ ∧) ≤ 2DT(f) and CC(f ◦ ⊕) ≤ 2DT(f). (1)

In a {0,1}-communication matrix M , for b ∈ {0, 1}, a b-rectangle is a submatrix of all
entries equal to b. The b-covering number Coverb(M) of matrix M is the minimum number of
b-rectangles that can cover all b entries in M . (These b-rectangles need not be disjoint.) For
notational convenience, we sometimes write Cover1(F) for Cover1(MF). Lovász [36] showed
the following bounds.

I Theorem 11 ([36]). For any Boolean funcion F (x, y), it holds that

log Coverb(MF) ≤ CC(F) ≤ log Coverb(MF) · log rank(MF).

3 The Sensitivity Conjecture

This section is devoted to the proof of Theorem 1. We will first show the following lemma,
in which the first statement is used in this section and the second statement will be used in
Section 4 for proving the Log-rank Conjecture of XOR functions.

I Lemma 12. For any f : {0, 1}n → {0, 1}, it holds that
1. max{C(f, 0n),C(f, 1n)} ≤ alt(f) · s(f)
2. max{C(f, 0n),C(f, 1n)} ≤ alt(f) · deg2(f).

Proof. First note that it suffices to prove the two upper bounds for C(f, 0n), because then
we can take g(x) = f(x̄) to get that C(f, 1n) = C(g, 0n) ≤ alt(g) · s(g) = alt(f) · s(f).

We prove upper bounds on C(f, 0n) by induction on alt(f). When alt(f) = 1, the function
is either monotone or anti-monotone, thus

C(f, 0n) ≤ C(f) = s(f) ≤ deg2(f),

where the first inequality is by definition of C(f, 0n), the middle equality is by Fact 7 and
the last inequality is because s(f) ≤ deg2(f) for monotone f (Fact 8). Now we assume that
the inequalities in the lemma hold for alt(f) < a and we will show that they hold for f with
alt(f) = a as well. Let u be a max term of f . Define S0(u) def= {i ∈ [n] : ui = 0}, and consider
the subcube above u: {x : x � u}. Let f ′ be the subfunction obtained by restricting f on
this subcube. By the definition of max term f(u) 6= f(ui) for all i ∈ S0(u). Therefore,

|S0(u)| ≤ s(f, u) ≤ s(f). (2)

We know that any point z � u has f(z) = f(1n) 6= f(u). So the number of 1-inputs of f ′ is
odd, implying that deg2(f ′) = |S0(u)| (Fact 4). Thus we have

|S0(u)| = deg2(f ′) ≤ deg2(f). (3)

Now consider another restriction of f , this time to the subcube under u, i.e. {x : x � u}.
This is implemented by restricting all variables in S0(u) to 0, yielding a subfunction f ′′ with

C. Lin and S. Zhang 51:7

alt(f ′′) ≤ alt(f)− 1. Using induction hypothesis, we have that

C(f ′′, 0[n]−S0(u)) ≤ alt(f ′′) ·min{s(f ′′), deg2(f ′′)}
≤ (alt(f)− 1) ·min{s(f), deg2(f)} (4)

Recall that f ′′ is obtained from f by restricting |S0(u)| variables, thus

C(f, 0n) ≤ |S0(u)|+ C(f ′′, 0[n]−S0(u)).

Plugging Eq.(2) and Eq.(4) into the above inequality gives

C(f, 0n) ≤ alt(f) ·min{s(f),deg2(f)},

completing the induction. J

Now we are ready to prove the following theorem, which gives an explicit constant for
Theorem 1.

I Theorem 13. For any boolean function f ,

bs(f) ≤
{
Ct · s(f) if alt(f) = 2t,
(Ct + 1) · s(f) if alt(f) = 2t+ 1,

(5)

where Ct =
∑t

i=1(i+ 2) = 1
2 t(t+ 5).

Proof. We prove Eq.(5) by induction on t = balt(f)/2c. Clearly it holds when t = 0: If
alt(f) = 0 then f is a constant function and bs(f) = s(f) = 0. When alt(f) = 1, f is
monotone or anti-monotone, thus bs(f) = s(f).

Now for any Boolean function f with alt(f) > 1, we first consider the case when
alt(f) = 2t ≥ 2. We will bound the block sensitivity for each input x. Consider the following
possible properties for x:
1. there exists a max term u of f such that x � u;
2. there exists a min term d of f such that x � d.

Case 1: x satisfies at least one of the above conditions. Without loss of generality assume
it satisfies the first one; the other case can be similarly argued. Fix such a max term u � x.
By definition of max term, we know that alt(f, u) ≤ alt(f)− 1, and that u is sensitive to all
i ∈ S0(u) def= {i : ui = 0}. Therefore, |S0(u)| ≤ s(f, u) ≤ s(f).

Let f ′ be the subfunction of f restricted on the subcube {t : t � u}, then alt(f ′) =
alt(f, u) ≤ alt(f)− 1 = 2t− 1 = 2(t− 1) + 1.

By induction hypothesis and the fact that sensitivity is downward non-increasing, we
have

bs(f ′, x) ≤ bs(f ′) ≤ (Ct−1 + 1) · s(f ′) ≤ (Ct−1 + 1) · s(f). (6)

Next it is not hard to see that

bs(f, x) ≤ bs(f ′, x) + |S0(u)|. (7)

Indeed, take any disjoint minimal sensitive blocks B1, . . . , B` ⊆ [n] of x (with respect to
f), where ` = bs(f, x). If Bi ⊆ [n] − S0(u), then x is still sensitive to Bi in f ′. As the
Bi’s are disjoint, at most |S0(u)| many Bi’s are not contained in [n]− S0(u), thus at least

ICALP 2017

51:8 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

x

xDi

xUi

xBi

ui

di

xBj

xDi∪Bj

xUi∪Bj

Figure 1 Order among different inputs used in the proof. Arrows indicate the partial order in
{0, 1}n. Solid round circles stand for one Boolean value, and squares stand for the other. The value
for hollow circles are not fully determined, but we will show that most of them share the same value
with the squares.

bs(f, x)−|S0(u)| blocks Bi are still sensitive blocks of x in f ′. Therefore, bs(f, x)−|S0(u)| ≤
bs(f ′, x), as Eq.(7) claimed.

Combining Eq.(6), Eq.(7), and the fact that |S0(u)| ≤ s(f), we conclude that

bs(f, x) ≤ bs(f ′, x) + |S0(u)| ≤ (Ct−1 + 1) · s(f ′) + s(f) ≤ (Ct−1 + 2) · s(f), (8)

which is at most Ct · s(f) by our setting of parameter Ct =
∑t

i=1(i+ 2) = Ct−1 + t+ 2.

Case 2: x satisfies neither of the conditions 1 and 2. So f(x) needs to be the same with
both f(0n) and f(1n), and f is constant on both subcubes {t : t � x} and {t : t � x}.
Otherwise we can take a minimal d where d � x and f(d) = f(x) 6= f(0n) and by definition d
is a min term, or take the maximal u where u � x and f(u) = f(x) 6= f(1n) and by definition
u is a max term.

Fix ` = bs(f, x) disjoint minimal sensitive blocks {B1, B2, . . . , B`} of x. For each block
Bi, decompose it into Bi = Ui ∪Di where Ui = {i ∈ Bi : xi = 1} and Di = {i ∈ Bi : xi = 0},
as depicted below.

x = (
D1︷ ︸︸ ︷

0 . . . 0
U1︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
B1

)(
D2︷ ︸︸ ︷

0 . . . 0
U2︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
B2

) · · · (
Dl︷ ︸︸ ︷

0 . . . 0
Ul︷ ︸︸ ︷

1 . . . 1︸ ︷︷ ︸
Bl

)0 . . . 01 . . . 1

First we will show that for each i, xUi satisfies condition 1 and xDi satisfies condition 2,
i.e. there exist some max term u � xUi and some min term d � xDi . (See Figure 1 for
an illustration.) Indeed, for any sensitive block Bi of x, f(xBi) 6= f(x) = f(0n) = f(1n).
Take a maximal ui such that ui � xBi and f(ui) = f(xBi). By definition ui is a max term.
Similarly we can take a min term di where di � xBi . Then from the definition of Ui and Di

we can conclude that xUi � xBi � ui and xDi � xBi � di. Moreover, both Ui and Di cannot
be empty, since otherwise either x � xDi = xBi � ui or x � xUi = xBi � di, contradicting
our assumption of case 2. This further indicates that f(x) = f(xUi) = f(xDi) as we have
taken each Bi to be a minimal sensitive block.

Next we are going to find some Ui or Di such that xUi or xDi is sensitive to most Bi’s.
In this case if there are many sensitive blocks of input x, xUi or xDi must have high block
sensitivity. But we have eliminate this possibility in case 1. To achieve this, we count the
following two quantities:

#U : the number of pairs (i, j) such that i 6= j and f(xUi) 6= f(xUi∪Bj),
#D : the number of pairs (i, j) such that i 6= j and f(xDi) 6= f(xDi∪Bj).

C. Lin and S. Zhang 51:9

Recall that f(x) = f(xUi) = f(xDi) and f(x) 6= f(xBj), thus it is equivalent to counting
#U : the number of pairs (i, j) such that i 6= j and f(xBj) = f(xUi∪Bj),
#D : the number of pairs (i, j) such that i 6= j and f(xBj) = f(xDi∪Bj).

Now we bound the number of such i’s for each j. Fix a block Bj , and consider the
subfunction fu on the subcube {z : z � xBj} and the subfunction fd on the subcube
{z : z � xBj}. Let us look at fu first. Because Di ∩Bj = ∅ whenever i 6= j, xDi∪Bj � xBj

which lies in the domain of fu. By the definition of certificate complexity of fu on input xBj ,
there is a subcube C of co-dimension C(fu, xBj) (with respect to {z : z � xBj}) containing
xBj , s.t. f takes a constant 0/1 value on C. Denote by S the set of coordinates in this
certificate. Then S ⊆ {k ∈ [n] : (xBj)k = 0} and |S| = C(fu, xBj). Now for each Di, if
Di ∩ S = ∅, then f(xBj) = f(xDi∪Bj) as the values of the certificate variables S are not
flipped. As all {Di}i6=j are disjoint, at most C(fu, xBj) many of Di’s may intersect S. Thus
f(xBj) = f(xDi∪Bj) for all but at most C(fu, xBj) many of Di. Similarly we can say that
all but at most C(fd, xBj) many of Ui’s (i 6= j) satisfy that f(xBj) = f(xUi∪Bj). Applying
Lemma 12 (statement 1), we have

C(fu, xBj) ≤ alt(fu) · s(fu) ≤ alt(fu) · s(f),

C(fd, xBj) ≤ alt(fd) · s(fd) ≤ alt(fd) · s(f).

Because alt(fu) + alt(fd) ≤ alt(f) = 2t, and there are ` sensitive blocks Bi, thus from the
second definition of #U and #D we can see that

#U + #D ≥ ` ·
(
(`− 1− alt(fu) · s(f)) + (`− 1− alt(fd) · s(f))

)
≥ ` · 2 (`− 1− t · s(f)) . (9)

Since there are 2` of Ui’s and Di’s in total, by pigeonhole principle there must be a Ti

(being Ui or Di) that contributes to at least (#U + #D)/2` ≥ `− 1− t · s(f) to (#U + #D).
Fix this Ti. By definition of #U and #D, there exist at least `− 1− t · s(f) blocks Bj with
i 6= j and f(xTi) 6= f(xTi∪Bj). That is, xTi is sensitive to at least `− 1− t · s(f) blocks Bj

where j 6= i. Considering that xTi is also sensitive to Bi\Ti, we conclude that

bs(f, xTi) ≥ 1 + (`− 1− t · s(f)) = bs(f, x)− t · s(f).

Finally, recall that we have showed that xTi satisfies one of the condition 1 and 2. Therefore
xTi is an input falling into case 1. By Eq.(8), we have bs(f, xTi) ≤ (Ct−1 + 2) · s(f). Putting
everything together, we have

bs(f, x) ≤ bs(f, xTi) + t · s(f) ≤ (Ct−1 + 2 + t) · s(f) = Ct · s(f).

This finishes the proof for alt(f) = 2t.
When alt(f) = 2t + 1, for any input x, f(x) must differ from either f(0n) or f(1n)

since f(0n) 6= f(1n). Without loss of generality, assume that f(x) 6= f(0n). Take the
minimal d such that d � x and f(d) = f(x) 6= f(0n). By definition d is a min term and
x satisfies condition 2. Then using the same analysis above as in case 1, we can show
bs(f, x) ≤ (Ct + 1) · s(f) and this finishes the proof. J

4 The Log-Rank Conjecture

We prove Theorem 2 and 3 in this section. We start with Theorem 2, which is now easy given
Lemma 12. Recall that the second statement of Lemma 12 says that max{C(f, 0n),C(f, 1n)} ≤

ICALP 2017

51:10 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

alt(f) · deg2(f), therefore

Cmin(f) ≤ alt(f) · deg2(f). (10)

As both alt(f) and deg2(f) are downward non-increasing, applying Eq.(10) to all subfunctions
of f yields Cclo

min(f) ≤ alt(f) · deg2(f). Since DT(f) ≤ Cclo
min(f) · deg2(f) (Theorem 6) we get

the following.

I Theorem 14. For any f : {0, 1}n → {0, 1}, it holds that DT(f) ≤ alt(f) · deg2(f)2.

Theorem 2 follows from this together with the fact that CC(f ◦ ⊕) ≤ 2DT(f) (Eq.(1)) and
that deg2(f) ≤ log ‖f̂‖0 = log rank(Mf◦⊕) (Fact 5).

Note that if we use the first statement of Lemma 12, we will get the following corollary,
which gives better dependence on alt(f) for low F2-degree functions.

I Corollary 15. DT(f) ≤ alt(f)s(f) · deg2(f).

Next we prove Theorem 3 for AND functions. Different than the above approach for
XOR functions of going through DT(f), we directly argue communication complexity of
AND functions. Recall that Theorem 3 says that

CC(f ◦ ∧) ≤ min{O(loga+1 rank(Mf◦∧)), O(log
a+3

2 rank(Mf◦∧) logn)}.

Proof of Theorem 3. Without loss of generality, we can assume that f(0n) = 0 since
otherwise we can compute ¬f first and negate the answer (note that rank(M¬f◦∧) differs from
rank(Mf◦∧) by at most 1). For notational convenience let us define r = mono(f) = rank(Mf◦∧)
and ` = log r. For b ∈ {0, 1}, further define C(a)

b to be the maximum Coverb(f ◦ ∧) over
all functions f : {0, 1}n → {0, 1} with alternating number a and f(0n) = 0. We will give
three bounds for C(a)

b in terms of C(a−1)
b , and combining them gives the claimed result in

Theorem 3.

Bound 1, from max terms. We apply this bound for C(a)
b when a and b have different

parities, that is, when a is even and b = 1, and when a is odd and b = 0. Consider the first
case and the second is similar. Take any Boolean function f with f(0n) = 0 and alt(f) = a is
even, we have f(1n) = 0. Any 1-input is under some max term, so it is enough to cover inputs
under max terms when bounding the Cover1(f). Take an arbitrary max term u ∈ {0, 1}n.
Suppose its Hamming weight is s. Considering the subfunction f ′ on {t : t � u}, which is
an OR function of n − s variables. In the communication setting, this is the Disjointness
function of n − s variables. Thus ` = log rank(Mf◦∧) ≥ n − s. This implies that all max
terms u of f are `-close to 1n in Hamming distance. Considering that different max terms
are incomparable by definition, we know that the number of max terms is at most

(
n
`

)
.

Next we upper bound the 1-rectangles by giving a partition of set of 1-inputs into 1-
rectangles. For each max term u ∈ {0, 1}n, let U = {i ∈ [n] : ui = 1}, and k = n− |U |, then
k ≤ `. The submatrix {(x, y) : x, y ∈ {0, 1}n, x ∧ y � u} is partitioned into 3k submatrices
as follows. Suppose that the set of 0-coordinates in u is {i1, . . . , ik}, then for each ij , we can
choose (xij

, yij
) from the set {(0, 0), (0, 1), (1, 0)} to enforce xij

∧ yij
= 0. Thus there are 3k

ways of restricting these k variables in Ū , giving 3k submatrices. Let fu : {0, 1}U → {0, 1} be
the subfunction of f restricted on the subcube {t : t � u} where fu(zU) = f(zU , 0Ū). (Here
the input to f is x′ ∧ y′ at U and 0 at Ū .) Note that each of the 3k submatrices is still the
communication matrix of fu ◦∧ for some max term u. Also note that this fu has fu(0U) = 0,

C. Lin and S. Zhang 51:11

but fu(1U) = 1 and alt(fu) ≤ alt(f) − 1. Since all the 1-inputs of f are under some max
term u, the 1-covering number Cover1(f ◦ ∧) can be upper bounded by the following:

Cover1(f ◦ ∧) ≤
∑

u:max term
3` · Cover1(fu ◦ ∧) ≤

(
n

`

)
· 3` · max

u:max term
Cover1(fu ◦ ∧).

Using the fact alt(fu) ≤ alt(f)− 1, and that the above inequality holds for any f , we have
the following bound on C(a)

1 :

logC(a)
1 ≤ 3` · logn+ logC(a−1)

1 , when a is even. (11)

Similarly, when a is odd, f(1n) = 1, and thus any 0-input is under some max term. A similar
argument shows the following bound on C(a)

0 :

logC(a)
0 ≤ 3` · logn+ logC(a−1)

0 , when a is odd. (12)

Bound 2, from min terms. Take any Boolean function f with f(0n) = 0. Then any 1-input
must be above some min term. Take any min term d. Let D = {i : di = 1}. If we restrict
variables xi and yi to 1 for all i ∈ D, then we go to a rectangle {(x, y) : xi = yi = 1,∀i ∈ D}.
The union of these rectangles for all min terms d contains all 1-inputs. Restrict f on the
subcube {z : z � d} to get a subfunction fd, which has fd(0D̄) = 1, and alt(fd) ≤ alt(f)− 1.
Note that for each min term d, we have α(d) =

∑
x�d(−1)|d⊕x|f(x) = 1 6= 0 3, which

contributes 1 to mono(f), thus the number of min terms is at most mono(f) = r. Since each
1-input of f is above some min term d, the 1-covering number Cover1(f) has

Cover1(f ◦ ∧) ≤
∑

d:min term
Cover1(fd ◦ ∧) ≤ r · max

d:min term
Cover1(fd ◦ ∧).

Note that alt(fd) ≤ alt(f)− 1, and fd takes value 1 on its all-0 input, thus Cover1(fd ◦ ∧) =
Cover0(¬fd ◦ ∧) ≤ C(a−1)

0 (note that the maximum in the definition of C0 is over all f with
f(0n) = 0). This implies

logC(a)
1 ≤ `+ logC(a−1)

0 . (13)

Note that this inequality holds as long as f(0n) = 0, regardless of the parity of a.

Bound 3, from CC. When a is odd, we have a bound for C(a)
0 by Eq.(12) and a bound for

C
(a)
1 by Eq.(13). When a is even, we have two bounds for C(a)

1 , Eq.(11) and Eq.(13), but no
bound for C(a)

0 . Note that we can always use CC to bound C(a)
0 :

log Cover0(f ◦ ∧) ≤ CC(f ◦ ∧)
≤ log rank(Mf◦∧) · log Cover1(f ◦ ∧)
= ` · log Cover1(f ◦ ∧),

This implies that

logC(a)
0 ≤ ` · logC(a)

1 . (14)

3 If f(0n) = 1, then for each min term d, we have α(d) =
∑

x�d
(−1)|d⊕x|f(x) = −1, which is still

non-zero.

ICALP 2017

51:12 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

Similarly it also holds that logC(a)
1 ≤ ` · log C(a)

0 .

Now we combine the three bounds and prove the theorem by induction on a. In the base
case of a = 0, the function is constant 0 and thus C(0)

0 = 1 and C(0)
1 = 0. For general a, we

can repeatedly apply Eq.(13) and Eq.(14) to get

logC(a)
1 ≤

a∑
i=1

`i = (1 + o(1))`a.

Thus CC(f ◦ ∧) ≤ ` · logC(a)
1 ≤ (1 + o(1))`a+1.

If we can tolerate a logn factor, then the dependence on a can be made slightly better.
Assume that a is even, we have

logC(a)
1 ≤ `+ logC(a−1)

0 (by Eq.(13))

≤ `+ 3` logn+ logC(a−2)
0 (by Eq.(12))

≤ `+ 3` logn+ ` logC(a−2)
1 . (by Eq.(14))

Solving this recursion gives logC(a)
1 ≤ O(` a

2 logn), and thus CC = O(` a
2 +1 logn). When a is

odd, we can use Eq.(13) and Eq.(14) to reduce it to the “even a” case, resulting a bound
CC ≤ O(` a+3

2 logn). Putting these two cases together, we get the claimed bound. J

Acknowledgement. The authors would like to thank Xin Huang for valuable discussions.

References
1 Andris Ambainis. Communication complexity in a 3-computer model. Algorithmica,

16(3):298–301, 1996.
2 Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao, Xiaoming Sun, and Song

Zuo. Tighter relations between sensitivity and other complexity measures. In Proceedings
of the 41st International Colloquium on Automata, Languages, and Programming, pages
101–113. 2014.

3 Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity versus certificate
complexity of Boolean functions. arXiv preprint arXiv:1503.07691, 2015.

4 Andris Ambainis, Leonard Schulman, Amnon Ta-Shma, Umesh Vazirani, and Avi Wigder-
son. The quantum communication complexity of sampling. SIAM Journal on Computing,
32(6):1570–1585, 2003.

5 Andris Ambainis and Xiaoming Sun. New separation between s(f) and bs(f). CoRR,
abs/1108.3494, 2011.

6 Andris Ambainis and Jevgēnijs Vihrovs. Size of sets with small sensitivity: A generalization
of Simon’s lemma. In Theory and Applications of Models of Computation, pages 122–133.
Springer, 2015.

7 László Babai and Peter G. Kimmel. Randomized simultaneous messages: Solution of a
problem of Yao in communication complexity. In IEEE Conference on Computational
Complexity, pages 239–246, 1997.

8 Mitali Bafna, Satyanarayana V Lokam, Sébastien Tavenas, and Ameya Velingker. On the
sensitivity conjecture for read-k formulas. In LIPIcs-Leibniz International Proceedings in
Informatics, volume 58. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

9 Shalev Ben-David. Low-sensitivity functions from unambiguous certificates. arXiv preprint
arXiv:1605.07084, 2016.

C. Lin and S. Zhang 51:13

10 Eric Blais, Clément L Canonne, Igor C Oliveira, Rocco A Servedio, and Li-Yang Tan.
Learning circuits with few negations. arXiv:1410.8420, 2014.

11 Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprint-
ing. Physical Review Letters, 87(16), 2001.

12 Harry Buhrman and Ronald de Wolf. Communication complexity lower bounds by polyno-
mials. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity,
pages 120–130, 2001.

13 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288(1):21–43, 2002.

14 Sourav Chakraborty. On the sensitivity of cyclically-invariant Boolean functions. In Com-
putational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on, pages
163–167. IEEE, 2005.

15 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

16 Dmitry Gavinsky, Julia Kempe, and Ronald de Wolf. Quantum communication cannot
simulate a public coin. arXiv:quant-ph/0411051, 2004.

17 Dmitry Gavinsky and Shachar Lovett. En route to the log-rank conjecture: New reduc-
tions and equialent formulations. In Proceedings of the 41st International Colloquium on
Automata, Languages, and Programming, pages 514–524. 2014.

18 Justin Gilmer, Michal Kouckỳ, and Michael E Saks. A new approach to the sensitivity
conjecture. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, pages 247–254. ACM, 2015.

19 Mika Göös and T. S. Jayram. A composition theorem for conical juntas. Electronic Col-
loquium on Computational Complexity, 22:167, 2015.

20 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-
tion number. In Proceedings of the 56th Annual Symposium on Foundations of Computer
Science, pages 1077–1088, 2015.

21 Parikshit Gopalan, Noam Nisan, Rocco A Servedio, Kunal Talwar, and Avi Wigderson.
Smooth Boolean functions are easy: efficient algorithms for low-sensitivity functions. arXiv
preprint arXiv:1508.02420, 2015.

22 Parikshit Gopalan, Rocco Servedio, Avishay Tal, and Avi Wigderson. Degree and sensitivity:
tails of two distributions. arXiv preprint arXiv:1604.07432, 2016.

23 Siyao Guo, Tal Malkin, Igor C Oliveira, and Alon Rosen. The power of negations in
cryptography. In Theory of Cryptography, pages 36–65. Springer, 2015.

24 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity con-
jecture. (4):1–27, 2011.

25 Kun He, Qian Li, and Xiaoming Sun. A tighter relation between sensitivity and certificate
complexity. arXiv preprint arXiv:1609.04342, 2016.

26 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity
of the Hamming Distance problem. Information Processing Letters, 99(4):149–153, 2006.

27 Rahul Jain, Hartmut Klauck, and Shengyu Zhang. Depth-independent lower bounds on
the communication complexity of read-once Boolean formulas. In Proceedings of the 16th
Annual International Conference on Computing and Combinatorics, pages 54–59, 2010.

28 T. S. Jayram, Swastik Kopparty, and Prasad Raghavendra. On the communication com-
plexity of read-once AC0 formulae. In Proceedings of the 24th Annual IEEE Conference on
Computational Complexity, pages 329–340, 2009.

29 Stasys Jukna. Boolean Function Complexity. Springer, 2012.
30 Raghav Kulkarni and Miklos Santha. Query complexity of matroids. In Proceedings of the

8th International Conference on Algorithms and Complexity, 2013.

ICALP 2017

51:14 Sensitivity and Log-Rank Conjectures for Functions with Small Alternating Numbers

31 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, Cambridge, UK, 1997.

32 Troy Lee and Shengyu Zhang. Composition theorems in communication complexity. In
Automata, Languages and Programming, 37th International Colloquium, pages 475–489,
2010.

33 Nikos Leonardos and Michael E. Saks. Lower bounds on the randomized communication
complexity of read-once functions. Computational Complexity, 19(2):153–181, 2010.

34 Ming Lam Leung, Yang Li, and Shengyu Zhang. Tight bounds on the communication
complexity of symmetric XOR functions in one-way and SMP models. In Proceedings of
the 8th Annual Conference on Theory and Applications of Models of Computation, pages
403–408, 2011.

35 Yang Liu and Shengyu Zhang. Quantum and randomized communication complexity of
XOR functions in the SMP model. Electronic Colloquium on Computational Complexity
(ECCC), 20:10, 2013.

36 László Lovász. Communication complexity — a survey. In Bernhard Korte, Laszlo Lovasz,
Hans Jurgen Promel, and Alexander Schrijver, editors, Paths, Flows, and VLSI Layout.
Oxford University Press, 1990.

37 László Lovász and Michael E. Saks. Lattices, Möbius functions and communication com-
plexity. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
pages 81–90, 1988.

38 László Lovász and Michael E. Saks. Communication complexity and combinatorial lattice
theory. Journal of Computer and System Sciences, 47(2):322–349, 1993.

39 Shachar Lovett. Communication is bounded by root of rank. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 842–846, 2014.

40 AA Markov. On the inversion complexity of a system of functions. Journal of the ACM
(JACM), 5(4):331–334, 1958.

41 Kurt Mehlhorn and Erik M. Schmidt. Las Vegas is better than determinism in VLSI
and distributed computing (extended abstract). In Proceedings of the 14th annual ACM
symposium on Theory of computing, pages 330–337, 1982.

42 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR func-
tions, 2010. http://arxiv.org/abs/0909.3392v2.

43 Hiroki Morizumi. Limiting negations in formulas. In Automata, Languages and Program-
ming, pages 701–712. Springer, 2009.

44 Hiroki Morizumi. Limiting negations in non-deterministic circuits. Theoretical Computer
Science, 410(38):3988–3994, 2009.

45 Hiroki Morizumi. Sensitivity, block sensitivity, and certificate complexity of unate functions
and read-once functions. In Theoretical Computer Science, pages 104–110. Springer, 2014.

46 Ilan Newman and Mario Szegedy. Public vs. private coin flips in one round communication
games. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, pages 561–570, 1996.

47 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–
1007, 1991.

48 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

49 Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557–565, 1995.

50 Ryan O’Donnell, John Wright, Yu Zhao, Xiaorui Sun, and Li-Yang Tan. A composition
theorem for parity kill number. In Proceedings of the 29th Conference on Computational
Complexity, pages 144–154, 2014.

C. Lin and S. Zhang 51:15

51 David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica,
15(2):297–299, 1995.

52 Miklos Santha and Christopher Wilson. Limiting negations in constant depth circuits.
SIAM Journal on Computing, 22(2):294–302, 1993.

53 Alexander A. Sherstov. Communication complexity theory: Thirty-five years of set dis-
jointness. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, pages 24–43, 2014.

54 Hans-Ulrich Simon. A tight Ω(log logn)-bound on the time for parallel ram’s to compute
nondegenerated Boolean functions. In Proceedings of the 1983 International Conference on
Fundamentals of Computation Theory, volume 158 of Lecture Notes in Computer Science,
pages 439–444, 1983.

55 Xiaoming Sun and Chengu Wang. Randomized communication complexity for linear al-
gebra problems over finite fields. In Proceedings of the 29th International Symposium on
Theoretical Aspects of Computer Science, pages 477–488, 2012.

56 Shao Chin Sung and Keisuke Tanaka. Limiting negations in bounded-depth circuits: an
extension of Markov’s theorem. 2003.

57 Sébastien Tavenas and C. S. Karthik. On the sensitivity conjecture for disjunctive normal
forms. In Proceedings of the 36th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 15:1–15:15, 2016.

58 Hing Yin Tsang. On Boolean functions with low sensitivity. manuscript, 2015. available at
http://theorycenter.cs.uchicago.edu/REU/2014/final-papers/tsang.pdf.

59 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the Log-rank Conjecture. In Proceedings of the 54th Annual IEEE Symposium
Foundations of Computer Science, pages 658–667, 2013.

60 György Turán. The critical complexity of graph properties. Information Processing Letters,
18(3):151–153, 1984.

61 Paul Valiant. The log-rank conjecture and low degree polynomials. Information Processing
Letters, 89(2):99–103, 2004.

62 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In
Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing (STOC),
pages 209–213, 1979.

63 Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Proceedings of the
Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 77–81, 2003.

64 Penghui Yao. Parity decision tree complexity and 4-party communication complexity of
xor-functions are polynomially equivalent. arXiv:, 1506.02936, 2015.

65 Shengyu Zhang. Quantum strategic game theory. In Proceedings of the 3rd Innovations in
Theoretical Computer Science, pages 39–59, 2012.

66 Shengyu Zhang. Efficient quantum protocols for XOR functions. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1878–1885,
2014.

67 Zhiqiang Zhang and Yaoyun Shi. Communication complexities of symmetric XOR functions.
Quantum Information & Computation, 9(3):255–263, 2009.

ICALP 2017

Randomized Communication vs. Partition
Number∗

Mika Göös1, T. S. Jayram2, Toniann Pitassi3, and Thomas Watson4

1 Harvard University, Cambridge, MA, USA
mika@seas.harvard.edu

2 IBM Almaden, San Jose, CA, USA
jayram@us.ibm.com

3 University of Toronto, Toronto, Canada
toni@cs.toronto.edu

4 University of Memphis, Memphis, TN, USA
thomas.watson@memphis.edu

Abstract
We show that randomized communication complexity can be superlogarithmic in the partition
number of the associated communication matrix, and we obtain near-optimal randomized lower
bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic
lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS 2015). One of our
main technical contributions states that information complexity when the cost is measured with
respect to only 1-inputs (or only 0-inputs) is essentially equivalent to information complexity
with respect to all inputs.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases communication complexity, partition number, information complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.52

1 Introduction

A prior work [16] exhibited a boolean function F : X × Y → {0, 1} whose deterministic
communication complexity is superlogarithmic in the partition number

χ(F) := χ0(F) + χ1(F)

where χi(F) is the least number of rectangles (sets of the form A×B where A ⊆ X , B ⊆ Y)
needed to partition the set F−1(i). In this follow-up work, we upgrade the lower-bound
results from [16] to hold against randomized protocols – here the notation Ω̃(m) hides factors
polylogarithmic in m.

I Theorem 1. There is an F with randomized communication complexity Ω̃(log1.5 χ(F)).

I Theorem 2. There is an F with randomized communication complexity Ω̃(log2 χ1(F)).

A main technical contribution of our paper – which is key to both the proofs of Theorem 1
as well as the subsequent strengthening by [5] – informally states that the information
complexity of a function (as defined by [9]) remains essentially unchanged if the cost is

∗ The full version of this work is available at [14], https://eccc.weizmann.ac.il/report/2015/169/.

EA
T

C
S

© Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.52
https://eccc.weizmann.ac.il/report/2015/169/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Randomized Communication vs. Partition Number

measured with respect to only 1-inputs (or only 0-inputs) rather than all inputs. We say a
protocol Π is ε-correct if it succeeds with probability at least 1− ε on each input, and define
IC(Π) as the maximum over all input distributions of the information cost (defined later),
and define ICb(Π) similarly but with the maximum over all distributions over b-inputs (for
some b ∈ {0, 1}).

I Theorem 3. Fix any F and b ∈ {0, 1}. For every 1/3-correct protocol Π there is a 1/3-
correct protocol Π′ such that IC(Π′) ≤ O

(
ICb(Π) + log(CC(Π) + 2)

)
. Moreover, CC(Π′) ≤

O
(
CC(Π) · log(CC(Π) + 2)

)
.

In the theorem statement above, the additional lower order term involving the communication
cost appears due to technical reasons. This makes the statement slightly weaker but this
is mitigated in the aforementioned applications due to the additional fact that we can also
bound the communication cost of the new protocol.

1.1 Applications and discussion
Theorem 1

Prior to this work, no examples of F were known with randomized communication complexity
larger than logχ(F). In fact, such a separation cannot be obtained using the usual rectangle-
based lower-bound methods, as catalogued by Jain and Klauck [17]. In particular, Theorem 1
shows that randomized complexity can be polynomially larger than the partition bound [17, 19],
which is one of the most powerful general lower bound methods for randomized communication.
(Consequently, our proof of Theorem 1 has to exploit another powerful lower-bound method,
namely information complexity.) Note also that every F has deterministic communication
complexity at least logχ(F) and at most O(log2 χ(F)), where the latter upper bound is a
classical result of [2]. Theorem 1 shows that the upper bound cannot be improved much even
if we allow randomization.

Theorem 2

The relationship between χ1(F) and the communication complexity of F can be equivalently
formulated in the language of the Clique vs. Independent Set game, played on a graph derived
from F (Alice holds a clique, Bob holds an independent set: do they intersect?). See [34, §4]
or [21, §4.4] for the equivalence. Yannakakis [34] (extending [2]) proved that every F has
deterministic communication complexity at most O(log2 χ1(F)). Our Theorem 2 shows that
this upper bound is essentially tight even if we allow randomized protocols, and it implies
that there is a graph on n nodes for which Clique vs. Independent Set requires Ω̃(log2 n)
randomized communication. (The deterministic upper bound O(log2 n) holds for all graphs.)

Extension complexity. In fact, we prove Theorem 2 by showing that (the negation of)
the function F has high approximate nonnegative rank (a.k.a. smooth rectangle bound; see
Section 2 for definitions). One consequence in the field of extended formulations (see [34, 11]
for definitions) is that we obtain a graph G such that the polytope generated by the so-called
“clique inequalities” of G has extension complexity nΩ̃(logn). (The slack matrix associated
with the clique inequalities is simply (the negation of) the Clique vs. Independent Set game.
These inequalities capture the independent set polytope of G when G is perfect – our graph
G however is not.) The previous bound in this direction was nΩ(log0.128 n) from a related
work [13]. Technically speaking, the lower bound from [13] was proved for nondeterministic
communication complexity, so the full result remains incomparable with Theorem 2.

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:3

Log-rank conjecture. The famous log-rank conjecture of Lovász and Saks [30] postulates
that the deterministic communication complexity of F is polynomially related to log rank(F).
Gavinsky and Lovett [12] have shown that the conjecture is equivalent to asking whether
the randomized communication complexity of F is polynomially bounded in log rank(F).
Here our Theorem 2 gives at least a near-quadratic separation between the randomized
communication complexity of F and log rank(F) ≤ logχ1(F); the previous best lower bound
was Ω(log1.63 rank(F)) due to Kushilevitz [26]. Furthermore, Troy Lee has pointed out to us
that our construction underlying Theorem 2 exhibits nearly a 4-th power separation between
the logarithms of approximate nonnegative rank and approximate rank. This gives lower
bounds for the so-called log-approximate-rank conjecture [28, Conjecture 42], which is the
randomized analogue of the log-rank conjecture. The previous best separation was quadratic
(as witnessed by the set-disjointness problem).

Theorem 3

One-sided information complexity satisfies a famous direct sum property ([6, 9]): for any
protocol Π computing ANDk ◦ F k (i.e., the AND of k copies of F) there exists a protocol Π′
computing F with IC1(Π′) ≤ O(IC1(Π)/k) (see, e.g., [5, Claim 37]). One can also formulate
a dual lemma for ORk ◦ F k in terms of IC0. This is the context where our Theorem 3
relating IC and IC1 (and IC0) is useful: it implies that analogous direct sum lemmas hold for
two-sided information complexity, up to low order terms. Iterating such a two-sided lemma
some constantly many times, one obtains an alternative proof for the result that every n-bit
constant-depth balanced read-once AND–OR tree with binary bottom fan-in (defining an
Alice–Bob bipartition of input bits) has randomized communication complexity Ω(n); this
result was first proved in [20, 29] even for unbalanced trees.

Another application of Theorem 3 appears in the recent work [5]. They improved our
1.5-th power separation in Theorem 1 to near-quadratic (which is optimal) by iteratively
applying Theorem 3 to analyze a communication analogue of a query-complexity construction
due to Ambainis, Kokainis, and Kothari [4] (which is a variation of usual AND–OR trees).

1.2 Our techniques

The basic strategy in [16] for obtaining the deterministic versions of Theorems 1–2 was to
first obtain analogous gaps in the easier-to-understand world of query complexity, then “lift”
the results to communication complexity using a so-called simulation lemma. For getting
randomized lower bounds, two obstacles immediately present themselves: (i) The functions
studied in [16] are too easy for randomized protocols (as shown by [31]). (ii) There is no
known simulation lemma for the bounded-error randomized setting.

To handle obstacle (i), we modify the functions from [16] in a way that preserves their
low partition numbers while eliminating the structure that was exploitable by randomized
protocols. (Similar constructions have been given by [3, 1].) To handle obstacle (ii) for
Theorem 2, we actually prove a lower bound for a model that is stronger than the standard
randomized model, but for which there is a known simulation lemma [15]. This idea alone
does not handle obstacle (ii) for Theorem 1, though. For that, we start by giving a proof of the
query complexity analogue of Theorem 1, then develop a way to mimic that argument using
communication complexity, by going through information complexity (exploiting machinery
from [23] and [10]). In the process, this yields our Theorem 3 (one-sided is equivalent to
two-sided information complexity), which is of independent interest.

ICALP 2017

52:4 Randomized Communication vs. Partition Number

2 Complexity Measures

We study the following communication complexity models/measures; see Figure 1. For any
complexity measure C we write coC(F) := C(¬F) and 2C(F) := max{C(F), coC(F)} for short.

Pcc: The deterministic communication complexity of F is denoted Pcc(F).
BPPcc: The randomized communication complexity of F is denoted BPPcc(F).
UPcc: Recall (e.g., [27, 21]) that a cost-c nondeterministic protocol for F corresponds
to a covering (allowing overlaps) of F−1(1) with 2c rectangles. A nondeterministic
protocol is unambiguous if on every 1-input there is a unique accepting computation;
combinatorially, this means we have a disjoint covering (partition) of F−1(1). We define
UPcc(F) := dlogχ1(F)e. Thus coUPcc(F) = dlogχ0(F)e, and 2UPcc(F) ∈ dlogχ(F)e ± 1.
WAPPcc: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP; introduced
in [8]) is a randomized computation that accepts 1-inputs with probability in [(1− ε)α, α],
and 0-inputs with probability in [0, εα], where ε < 1/2 is an error parameter and
α = α(n) > 0 is arbitrary.
Instantiating this for protocols, we define WAPPcc

ε (F) as the least “cost” of a randomized
(public-coin) protocol Π that computes F in the above sense; the “cost” of a protocol Π with
parameter α is defined as the usual communication cost (number of bits communicated)
plus log(1/α). In this definition, we may assume w.l.o.g. that Π is zero-communication [23]:
Π is simply a probability distribution over rectangles R, and Π accepts an input (x, y) iff
(x, y) ∈ R for the randomly chosen R. Such a protocol Π exchanges only 2 bits to check
the condition (x, y) ∈ R, and the rest of the cost is coming from having a tiny α.
We note that WAPPcc corresponds to the (one-sided) smooth rectangle bound of [17],
which is known to be equivalent to approximate nonnegative rank [24]. A consequence of
this equivalence is that WAPPcc could alternatively be defined without charging anything
for α > 0, as long as we restrict our protocols to be private-coin; see also [15, Theorem 9].
Also, 2WAPPcc is equivalent to the relaxed partition bound of [23] (we elaborate on this
in Section 4.2). We remark that WAPPcc is not amenable to efficient amplification of
the error parameter; there can be an exponential gap between WAPPcc

ε and WAPPcc
δ for

different constants ε and δ, at least for partial functions [15, Theorem 6].

Define the following decision tree models/measures for a boolean function f : {0, 1}n → {0, 1}:
Pdt: The deterministic decision tree complexity of f is denoted Pdt(f).
BPPdt: The randomized decision tree complexity of f is denoted BPPdt(f).
UPdt: A nondeterministic decision tree is a DNF formula. We think of the conjunctions
in the DNF formula as certificates – partial assignments to inputs that force the function
to be 1. The cost is the maximum number of input bits read by a certificate. A
nondeterministic decision tree is unambiguous if on every 1-input there is a unique
accepting certificate. We define UPdt(f) as the least cost of an unambiguous decision tree
for f . Other works that have studied unambiguous decision trees include [33, 7, 13, 16, 25].
WAPPdt: We define WAPPdt

ε (f) as the least height of a randomized decision tree that
accepts 1-inputs with probability in [(1− ε)α, α], and 0-inputs with probability in [0, εα],
where α = α(n) > 0 is arbitrary. (Note that only the number of queries matters; we
do not charge for α being small.) Like the communication version, this measure is not
amenable to efficient amplification of the error parameter [15].
The analogue of a WAPPcc protocol being w.l.o.g. a distribution over rectangles is that a
WAPPdt decision tree is w.l.o.g. a distribution over conjunctions. This implies that we
may characterize WAPPdt

ε (f) using conical juntas: A conical junta h is a nonnegative

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:5

P 2UP UP

BPP 2WAPP WAPP
≥ information complexity = 2-sided smooth rectangle = 1-sided smooth rectangle

= logχ = logχ1

Figure 1 Models of computation that can be instantiated for both communication and query
complexity. Here A B means that model B can simulate model A without any overhead.

linear combination of conjunctions. That is, h =
∑
wCC where the sum ranges over

conjunctions C : {0, 1}n → {0, 1} and wC ≥ 0 for all C. Then WAPPdt
ε (f) is the least

degree (maximum width of a conjunction with positive weight in h) of a conical junta
h that ε-approximates f in the sense that h(z) ∈ [1 − ε, 1] for all z ∈ f−1(1), and
h(z) ∈ [0, ε] for all z ∈ f−1(0). Other works have studied conical juntas under such
names as the (one-sided) partition bound for query complexity [17] and query complexity
in expectation [22].

3 Overview

In this section we give an outline for obtaining our main results, Theorems 1–2. For
complexity models/measures C and C′, we informally say “C-vs-C′ gap” to mean the existence
of a function whose C complexity is significantly higher than its C′ complexity. Using the
notation defined in Section 2, we can rephrase our main results as follows.

I Theorem 1 (BPPcc-vs-2UPcc). There is an F such that BPPcc(F) ≥ Ω̃(2UPcc(F)1.5).

I Theorem 2 (BPPcc-vs-UPcc). There is an F such that BPPcc(F) ≥ Ω̃(UPcc(F)2).

1. Tribes-List (Section 3.1): Our starting point is to define Tribes-List, a variant of
a function introduced in [16]. Its purpose is to witness a BPP-vs-UP gap for query
complexity.

2. Composition (Section 3.2): Next, we modify Tribes-List using two types of function
composition, which we call lifting and AND-composition, to obtain candidate functions
for BPP-vs-2UP gaps in both query and communication complexity.

3. Overview of proofs (Section 3.3): With the candidate functions defined, we outline our
strategy to prove the desired communication lower bounds.

3.1 Tribes-List
The Tribes-List function TL : {0, 1}n → {0, 1} is defined on n := Θ(k3 log k) bits where k is a
parameter. We think of the input as a k × k matrix M with entries Mij taking values from
the alphabet Σ := {0, 1} × ([k]k−1 ∪ {⊥}). Here each entry is encoded with Θ(k log k) bits,
and we assume that the encoding of Mij = (mij , pij) ∈ Σ is such that a single bit is used to
encode the value mij ∈ {0, 1} and another bit is used to encode whether or not pij = ⊥. If
pij 6= ⊥, then we can learn its exact value in [k]k−1 by querying all the Θ(k log k) bits.

Informally, we have TL(M) = 1 iff M has a unique all-(1, ∗) column (here ∗ is a wildcard)
that also contains an entry with k − 1 pointers to entries of the form (0, ∗) in all other

ICALP 2017

52:6 Randomized Communication vs. Partition Number

Unambiguous decision tree for TL:

Nondeterministically guess a column in-
dex j ∈ [k]. Consider the entries Mij =
(mij , pij) for i ∈ [k]: check that mij = 1
for all i and that pij 6= ⊥ for at least one i
(this is ≤ 2k queries). Let i be the first row
index for which pij 6= ⊥ and read the full
value of pij (this is Θ(k log k) queries). In-
terpret pij ∈ [k][k]r{j} as a list of pointers,
describing a row index for all columns other
than j. For each of these k − 1 pointed-to
entries Mi′j′ , check that mi′j′ = 0 (this is
k − 1 queries).

1,⊥

1,⊥

1,⊥

1,pij

1, ∗

0, ∗

0, ∗

0, ∗

0, ∗

Figure 2 The unambiguous decision tree that defines the Tribes-List function.

columns. More formally, we define TL in Figure 2 by describing an unambiguous decision
tree of cost Θ(k log k) computing it.

3.2 Composition
Given a base function witnessing some complexity gap, we will establish a different but related
complexity gap by transforming the function into a more complex one via one (or both)
of the following operations involving function composition: lifting and AND-composition.
Lifting is used to go from a query complexity gap to an analogous communication complexity
gap. AND-composition is used to go from a gap with a UP upper bound to a gap with a 2UP
upper bound. To show that an operation indeed converts one gap to another gap, we need
two types of results: an observation showing how the relevant upper bounds behave under
the operation, and a more difficult lemma showing how the relevant lower bounds behave
under the operation.

Lifting

Let g : {0, 1}b × {0, 1}b → {0, 1} be a fixed two-party function (called the gadget). We
can lift f : {0, 1}n → {0, 1} via the gadget g to obtain a two-party composed function
f ◦ gn : ({0, 1}b)n × ({0, 1}b)n → {0, 1} where Alice is given x = (x1, . . . , xn) and Bob is
given y = (y1, . . . , yn) (with each xi, yi ∈ {0, 1}b) and the goal is to compute (f ◦ gn)(x, y) :=
f(g(x1, y1), . . . , g(xn, yn)).

A decision tree for f generally yields a corresponding type of communication protocol for
f ◦ gn: whenever the decision tree queries the i-th bit, Alice and Bob communicate b+ 1 bits
to evaluate the corresponding bit g(xi, yi). By counting conjunctions, it can be verified that
such a connection holds for the 2UP and UP models as well:

I Observation 4. For all f : {0, 1}n → {0, 1}, g : {0, 1}b × {0, 1}b → {0, 1}, and C ∈
{2UP,UP}, we have Ccc(f ◦ gn) ≤ Cdt(f) ·O(b+ logn).

For any model C, a result in the converse direction (giving a black-box method of
converting a communication protocol for f ◦ gn into a comparably efficient decision tree for

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:7

f) is highly nontrivial and is called a simulation lemma. In this work, we use a simulation
lemma for C = WAPP:

I Lemma 5 (Simulation for WAPP [15]). For all f : {0, 1}n → {0, 1} and constants 0 < ε <

δ < 1/2, we have WAPPdt
δ (f) ≤ O

(
WAPPcc

ε (f ◦gn)/ logn
)
where g : {0, 1}b×{0, 1}b → {0, 1}

is the inner-product gadget defined as follows: b = b(n) := 100 logn, and g(xi, yi) :=
〈xi, yi〉 mod 2.

AND-composition

Given f : {0, 1}n → {0, 1} we can compose it with the k-bit AND function to obtain AND ◦
fk : ({0, 1}n)k → {0, 1} defined by (AND◦ fk)(z1, . . . , zk) = 1 iff f(zi) = 1 for all i. Similarly,
given F : X × Y → {0, 1} we can obtain AND ◦ F k : X k × Yk → {0, 1} defined by (AND ◦
F k)(x, y) = 1 iff F (xi, yi) = 1 for all i.

AND-composition converts a UP upper bound into a 2UP upper bound [16]:

I Observation 6. For all f and k, we have 2UPdt(AND ◦ fk) ≤ k · UPdt(f) +O(UPdt(f)2).
Similarly, for all F and k, we have 2UPcc(AND ◦ F k) ≤ k · UPcc(F) +O(UPcc(F)2 + log k).

The two parts of Observation 6 are analogous, so we describe the idea only in terms
of the query complexity part. Since coUPdt(f) ≤ Pdt(f) ≤ O(UPdt(f)2), it suffices to have
coUPdt(f) as the second term on the right side. The idea is to let a 1-certificate for AND ◦ fk
be comprised of 1-certificates for each of the k copies of f , and a 0-certificate for AND ◦ fk
be comprised of a 0-certificate for the first copy of f that evaluates to 0, together with
1-certificates for each of the preceding copies of f .

On the other hand, the following lemma (proven in Section 4.1) shows that randomized
query complexity goes up by a factor of k under AND-composition.

I Lemma 7. For all f and k, we have BPPdt(f) ≤ O
(
BPPdt(AND ◦ fk)/k

)
.

We note that Lemma 7 qualitatively strengthens the tight direct sum result for randomized
query complexity in [18] since computing the outputs of all k copies of f is at least as hard
as computing the AND of the outputs. Similarly, if we could prove an analogue of Lemma 7
for communication complexity, it would qualitatively strengthen the notoriously-open tight
direct sum conjecture for randomized communication complexity.

3.3 Overview of proofs
The following diagram shows how we construct the functions used to witness our gaps.
Starting with some f , we can lift it to obtain F , or we can apply AND-composition to obtain
f∗. We can obtain F ∗ by either lifting f∗ or equivalently applying AND-composition to F .

f f∗

F F ∗

coWAPPdt-vs-UPdt BPPdt-vs-2UPdt

coWAPPcc-vs-UPcc BPPcc-vs-2UPcc

AND-composition

lifting lifting

AND-composition

ICALP 2017

52:8 Randomized Communication vs. Partition Number

Proof of Theorem 2

We start by discussing the proof of Theorem 2 as it will be used in the proof of Theorem 1.
We actually prove the following stronger version of Theorem 2 that gives a lower bound even
against coWAPPcc

ε (F) ≤ O(BPPcc(F)):

I Theorem 2? (coWAPPcc-vs-UPcc). There is an F s.t. coWAPPcc
0.04(F) ≥ Ω̃(UPcc(F)2).

Our proof follows the same outline as in [16] and only requires us to lift the following
analogous result for query complexity (proved in the full version [14]):

I Lemma 8 (coWAPPdt-vs-UPdt). coWAPPdt
0.05(TL) ≥ Ω̃(UPdt(TL)2).

To derive Theorem 2?, set f := TL and F := f◦gn, where g is the gadget from Lemma 5 and
n is the input length of f . Recall that UPdt(f) ≥ nΩ(1). Thus by Observation 4, UPcc(F) ≤
UPdt(f) · O(logn) ≤ Õ(UPdt(f)), and by Lemma 5, coWAPPcc

0.04(F) ≥ Ω(coWAPPdt
0.05(f) ·

logn) ≥ Ω(coWAPPdt
0.05(f)). Thus coWAPPcc

0.04(F) ≥ Ω̃(UPcc(F)2).

Proof of Theorem 1

An “obvious” strategy for Theorem 1 would be again to first prove the analogous query
complexity result and then lift it to communication complexity. (This is the outline used for
the analogous result in [16].) In other words, we would follow the lower-right path in the
above diagram:

Obvious strategy

(a) Start with f witnessing a BPPdt-vs-UPdt gap.
(b) Obtain f∗ witnessing a BPPdt-vs-2UPdt gap by applying AND-composition to f .
(c) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by lifting f∗.

We have the tools to complete steps (a) and (b):

I Lemma 9 (BPPdt-vs-2UPdt). There is an f such that BPPdt(f) ≥ Ω̃(2UPdt(f)1.5).

Proof. This is witnessed by f∗ := AND ◦ TLk where k := UPdt(TL). By Observation 6,
2UPdt(f∗) ≤ O(k2), and by Lemmas 7–8,

BPPdt(f∗) ≥ Ω(k · BPPdt(TL)) ≥ Ω(k · coWAPPdt
0.05(TL)) ≥ Ω̃(k3) . J

Unfortunately, we do not know how to carry out step (c), because we currently lack a
simulation lemma for BPP. (We believe that such a lemma is true, and it is an interesting
open problem to prove this!) We get around this obstacle by reversing the order of steps (b)
and (c), that is, we instead follow the upper-left path in the diagram:

Modified strategy

(a′) Start with f witnessing a coWAPPdt-vs-UPdt gap.
(b′) Obtain F witnessing a coWAPPcc-vs-UPcc gap by lifting f .
(c′) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by applying AND-composition to F .

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:9

Steps (a′) and (b′) are just Theorem 2?. For step (c′) it would suffice to have an analogue of
Lemma 7 for communication complexity. This is open, but fortunately we have some wiggle
room since it suffices to have coWAPPε instead of BPP on the left side of Lemma 7. For this,
we can prove a communication analogue (indeed, with 2WAPPε instead of coWAPPε):

I Lemma 10. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc
ε (F) ≤ O

(
BPPcc(AND ◦ F k)/k + log BPPcc(AND ◦ F k)

)
.

To derive Theorem 1, let F be the function in Theorem 2?, and let F ∗ := AND◦F k where
k := UPcc(F). Then F ∗ witnesses Theorem 1: By Observation 6, 2UPcc(F ∗) ≤ O(k2), and
by Lemma 10, BPPcc(F ∗) ≥ Ω

(
k · (2WAPPcc

0.04(F)− O(log k))
)
≥ Ω

(
k · (coWAPPcc

0.04(F)−
O(log k))

)
≥ Ω̃(k3).

Proof of Lemma 10

We start with the intuition for the proof of Lemma 7, which is a warmup for Lemma 10.
For brevity let f∗ := AND ◦ fk. Given an input z for f , the basic idea is to plant z into a
random coordinate of f∗(z1, . . . , zk), and plant random 1-inputs into the other coordinates,
and then run the randomized decision tree for f∗. If q is the query complexity of f∗, the
expected number of bits of z that are queried (over a random 1-input) will be at most q/k.
Our new randomized decision tree will simulate this but abort after 8q/k queries to z have
been made. If an answer is returned, we output the same value for f(z), and if no answer
is returned within this many queries, then we output 0. A simple analysis shows that we
succeed with high probability in the average-case (which is equivalent to worst-case by the
minimax theorem).

To prove Lemma 10, we would like to mimic this argument in the communication
world, using the fact that internal information complexity is sandwiched between BPPcc

and 2WAPPcc [23] and satisfies a sort of AND-composition analogous to Lemma 7 using
well-known properties (by planting the input into a random coordinate, and planting random
1-inputs into the other coordinates). However there is a significant barrier to this idea “just
working”: the AND-composition property (direct sum lemma) requires a distribution over
1-inputs of F (one-sided), while the relation to 2WAPPcc requires an arbitrary distribution
over inputs to F (two-sided). To bridge this divide, we prove a new property of information
complexity: the one-sided version is essentially equivalent to the two-sided version. A key
ingredient in showing the latter is the “information odometer” of [10], which allows us to
keep track of the amount of information that has been revealed, and abort the protocol once
we have reached our limit, and argue that we can carry this out without revealing too much
extra information. We note that this one-vs-two sided information complexity lemma is the
only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle
partitions (2UPcc) and rectangle partitions induced by protocols (Pcc).

Organization

The only ingredients that remain to be proved are Lemma 8 (which we prove in the full
version [14] and Lemma 7 and Lemma 10 (both of which we prove in Section 4).

4 AND-Composition Lemmas

In this section we prove Lemma 7 and Lemma 10, restated here for convenience.

ICALP 2017

52:10 Randomized Communication vs. Partition Number

I Lemma 11. For all f and k, we have BPPdt(f) ≤ O
(
BPPdt(AND ◦ fk)/k

)
.

I Lemma 12. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc
ε (F) ≤ O

(
BPPcc(AND ◦ F k)/k + log BPPcc(AND ◦ F k)

)
.

4.1 AND-composition for query complexity
We now prove Lemma 7. For brevity let f∗ := AND ◦ fk. Let T ∗ be a height-q randomized
decision tree for f∗ with error 1/8. We design a height-8q/k randomized decision tree for f
with error 1/4.

Let D be an arbitrary distribution over f−1(1). Consider the following randomized
decision tree T that takes z ∈ {0, 1}n as input:

1. Pick i ∈ [k] uniformly at random and let zi := z.
2. For j ∈ [k] r {i} sample zj ∼ D independently.
3. Run T ∗(z1, . . . , zk) until it has made 8q/k queries in the i-th component.
4. If T ∗ already produced an output in Step 3, output the same bit; else output 0.

Note that with probability 1 we have f∗(z1, . . . , zk) = f(z). Let RT denote T ’s randomness
and RT∗ denote T ∗’s randomness. If f(z) = 0 then

PRT
[T (z) = 1] ≤ max(z1,...,zk)∈(f∗)−1(0) PRT∗ [T ∗(z1, . . . , zk) = 1] ≤ 1/8 ≤ 1/4.

Furthermore,

Pz∼D,RT
[T (z) = 0] = Pz1,...,zk∼D, i∈[k], RT∗

[
T ∗(z1, . . . , zk) outputs 0 or makes more
than 8q/k queries in the i-th component

]

≤ max(z1,...,zk)∈(f∗)−1(1)

 PRT∗ [T ∗(z1, . . . , zk) = 0] +

maxRT∗ Pi∈[k]

[
T ∗(z1, . . . , zk) makes more than
8q/k queries in the i-th component

]
≤ 1/8 + 1/8 = 1/4.

Now let D be an arbitrary distribution over {0, 1}n and define T w.r.t. (D | f−1(1)). We
have

Pz∼D,RT
[T (z) 6= f(z)] =

∑
b∈{0,1} Pz∼(D | f−1(b)), RT

[T (z) 6= b] · Pz∼D[f(z) = b]

≤
∑
b∈{0,1}(1/4) · Pz∼D[f(z) = b] = 1/4.

By the minimax theorem, there is a height-8q/k randomized decision tree (a mixture of the
T ’s) that on any input produces the wrong output with probability ≤ 1/4.

4.2 Definitions
We adopt the following conventions throughout the proof of Lemma 10. We denote random
variables with upper-case letters, and we denote particular outcomes of the random variables
with the corresponding lower-case letters. All communication protocols are randomized
and mixed-coin, and we use (R,RA, RB) to denote the public randomness, Alice’s private
randomness, and Bob’s private randomness, respectively. We say a protocol Π is ε-correct
for F if for all (x, y), PR,RA,RB

[Π(x, y) = F (x, y)] ≥ 1 − ε. For a distribution D over

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:11

inputs, we say Π is (ε,D)-correct for F if P(X,Y)∼D,R,RA,RB
[Π(X,Y) = F (X,Y)] ≥ 1 − ε.

The internal information cost of a protocol Π with respect to (X,Y) ∼ D is defined as
ICD(Π) := I(R,M ;X |Y) + I(R,M ;Y |X) = I(M ;X |Y,R) + I(M ;Y |X,R) where the
random variable M is the concatenation of all messages. We also let CC(Π) denote the
worst-case communication cost of Π.

It is convenient for us to work with a measure 2WAPPcc∗ that is defined slightly differently
from 2WAPPcc but is equivalent in the sense that for all F and 0 < ε < 1/2, 2WAPPcc

ε (F) ≤
2WAPPcc∗

ε (F) ≤ O(2WAPPcc
ε/2(F)). We note that 2WAPPcc directly expresses the two-sided

smooth rectangle bound of [17], while 2WAPPcc∗ directly expresses the relaxed partition
bound of [23] and was the definition used in [15].

I Definition 13. We define 2WAPPcc∗
ε (F) as the minimum of CC(Π)+log(1/α) over all α > 0

and all protocols Π with output values {0, 1,⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α
and P[Π(x, y) = F (x, y)] ≥ (1− ε)α (i.e., Π is (1− (1− ε)α)-correct).

We also need the distributional version of 2WAPPcc∗.

I Definition 14. For an input distribution D, we define 2WAPPcc∗
ε,D(F) as the minimum of

CC(Π) + log(1/α) over all α > 0 and all protocols Π with output values {0, 1,⊥} such that
P[Π(x, y) 6= ⊥] ≤ α for all (x, y), and P[Π(X,Y) = F (X,Y)] ≥ (1− ε)α for (X,Y) ∼ D (i.e.,
Π is (1− (1− ε)α,D)-correct).

4.3 AND-composition for communication complexity

We now outline the proof of Lemma 10. Recall that the proof of Lemma 7 involved these
steps:
(i) embedding the input into a random coordinate of a k-tuple and filling the other coordi-

nates with random 1-inputs (to cut the cost on 1-inputs by a factor k),
(ii) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs

while maintaining average-case correctness on 1-inputs),
(iii) using the minimax theorem to go from average-case to worst-case correctness.
We start by noting that an analogue of (i) holds for information complexity (which lower
bounds BPPcc). Then as one of our main technical contributions we prove an analogue of (ii)
for information complexity. Then inbetween (ii) and (iii) we insert a step applying the known
result that information complexity upper bounds 2WAPPcc∗ in the distributional setting.
Finally we use the analogue of (iii) for 2WAPPcc∗. Formally, Lemma 10 follows by stringing
together the following lemmas.

I Lemma 15. Fix any F , k, 0 < ε < 1/2, and distribution D over F−1(1). For every ε-correct
protocol Π for AND ◦ F k there is an ε-correct protocol Π′ for F with ICD(Π′) ≤ CC(Π)/k
and CC(Π′) ≤ CC(Π).

I Lemma 16. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D, and let
D1 := (D |F−1(1)). For every (ε,D)-correct protocol Π there is a (δ,D)-correct protocol Π′
with ICD(Π′) ≤ O

(
ICD1(Π) + log(CC(Π) + 2)

)
.

I Lemma 17. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D. For every
(ε,D)-correct protocol Π we have 2WAPPcc∗

δ,D(F) ≤ O(ICD(Π) + 1).

I Lemma 18. Fix any F and 0 < ε < 1/2. Then 2WAPPcc∗
ε (F) ≤ 2 + maxD 2WAPPcc∗

ε,D(F).

ICALP 2017

52:12 Randomized Communication vs. Partition Number

Lemma 15 is a standard application of the “direct sum” property of information cost.
Lemma 16 is proved in Section 4.4 and relies on [10]. Lemma 17 is due to [23, Theorem 1.1
of the ECCC version]. Lemma 18 follows from an argument in [23, Appendix A of the ECCC
version] that uses LP duality.

The moral conclusion of Lemma 16 is that “one-sided information complexity” is essentially
equivalent to “two-sided information complexity” for average-case protocols. Combining
Lemma 16 with [9, Theorem 3.5 of the ECCC version] shows that a similar equivalence
holds for worst-case protocols. More specifically, a distribution-independent definition of
information complexity for bounded-error protocols can be obtained by maximizing over
all input distributions; our corollary shows that this measure is essentially unchanged if we
maximize only over distributions over 1-inputs (or symmetrically, 0-inputs).

I Corollary 19. Fix any F , constants 0 < ε < δ < 1/2, and b ∈ {0, 1}. Then

inf
δ-correct

protocols Π

max
D over

all inputs

ICD(Π) ≤ max
D over
b-inputs

inf
ε-correct

protocols Π

O
(
ICD(Π) + log(CC(Π) + 2)

)
.

Theorem 3 follows by swapping the quantifiers on the right side of the inequality in
Corollary 19 (which only weakens the statement), and by straightforwardly accounting for
the communication cost in the proof. We can also assume the protocol Π′ has error ≤ 1/3 by
a standard error reduction technique (take a majority vote of several runs of the protocol),
which does not affect information complexity except by constant factors. We do not directly
employ this worst-case version of Lemma 16, but it is used in the follow-up work [5].

4.4 One-sided information vs. two-sided information
Intuition for Lemma 16

Recall the following idea, which was implicit in the proof of Lemma 7. Suppose we have a
randomized decision tree computing some function, and we have a bound b on the expected
number of queries made over a random 1-input. Then to obtain a randomized decision tree
with a worst-case query bound, we can keep track of the number of queries made during the
execution and halt and output 0 if it exceeds, say, 8b. Correctness on 0-inputs is maintained
since we either run the original decision tree to completion and thus output 0 with high
probability, or we abort and output 0 anyway. We get average-case correctness on 1-inputs
since by Markov’s inequality, with probability at least 7/8 the original decision tree uses at
most 8b queries, in which case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a
protocol with a bound on the information cost w.r.t. the distribution D1 over 1-inputs. The
“information odometer” of [10] allows us to “keep track of” information cost, so we can halt
and output 0 if it becomes too large. This will guarantee that the information cost is low
w.r.t. the input distribution D, and correctness on 0-inputs is maintained. However, there is
a complication with showing the average-case correctness on 1-inputs.

For each computation path specified by an input (x, y), an outcome of public randomness
r, and a full sequence of messages m, there is a contribution cx,y,r,m such that the information
cost w.r.t. D is the expectation of cx,y,r,m over a random computation path with (x, y) ∼ D.
Similarly, there is a contribution c1x,y,r,m such that the information cost w.r.t. D1 is the
expectation of c1x,y,r,m over a random computation path with (x, y) ∼ D1. These contributions
play the role of “number of queries” along a computation path in the decision tree setting, but
a crucial difference is that cx,y,r,m 6= c1x,y,r,m in general; i.e., the contribution to information
cost depends on the input distribution (whereas number of queries did not). To show the

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:13

average-case correctness on 1-inputs, we need a bound on the typical value of cx,y,r,m, whereas
the assumption that information cost w.r.t. D1 is low gives us a bound on the typical value
of c1x,y,r,m.

Thus the heart of the argument is to show that typically, cx,y,r,m is not much larger
than c1x,y,r,m. Intuitively, one might expect the difference to be at most 1, since the only
additional information that can be revealed (beyond what is revealed under D1) should be
the fact that (x, y) is a 1-input (which is 1 bit of information). More precisely, we show that
for given (x, y), the expected difference depends on how balanced F is on the x row and the
y column. Then we just need to note that F is typically reasonably balanced for both the x
row and the y column.

The formal proof of Lemma 16 is deferred to the full version [14] due to space constraints.

Acknowledgments. We thank Mark Braverman, Troy Lee, and Omri Weinstein for discus-
sions. Work done by M.G. while at IBM Research Almaden.

References
1 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proceedings of the 48th Symposium on Theory of Computing (STOC),
pages 863–876. ACM, 2016. doi:10.1145/2897518.2897644.

2 Alfred Aho, Jeffrey Ullman, and Mihalis Yannakakis. On notions of information transfer
in VLSI circuits. In Proceedings of the 15th Symposium on Theory of Computing (STOC),
pages 133–139. ACM, 1983. doi:10.1145/800061.808742.

3 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. In Proceedings of
the 48th Symposium on Theory of Computing (STOC), pages 800–813. ACM, 2016. doi:
10.1145/2897518.2897524.

4 Andris Ambainis, Martins Kokainis, and Robin Kothari. Nearly optimal separations be-
tween communication (or query) complexity and partitions. In Proceedings of the 31st
Computational Complexity Conference (CCC), pages 4:1–4:14. Schloss Dagstuhl, 2016.
doi:10.4230/LIPIcs.CCC.2016.4.

5 Anurag Anshu, Aleksandrs Belovs, Shalev Ben-David, Mika Göös, Rahul Jain, Robin
Kothari, Troy Lee, and Miklos Santha. Separations in communication complexity using
cheat sheets and information complexity. In Proceedings of the 57th Symposium on Foun-
dations of Computer Science (FOCS), pages 555–564. IEEE, 2016. doi:10.1109/FOCS.
2016.66.

6 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. doi:10.1016/j.jcss.2003.11.006.

7 Aleksandrs Belovs. Non-intersecting complexity. In Proceedings of the 32nd Conference on
Current Trends in Theory and Practice of Computer Science (SOFSEM), pages 158–165.
Springer, 2006. doi:10.1007/11611257_13.

8 Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded probabilistic compu-
tations between MA and AM. Journal of Computer and System Sciences, 72(6):1043–1076,
2006. doi:10.1016/j.jcss.2006.05.001.

9 Mark Braverman. Interactive information complexity. SIAM Journal on Computing,
44(6):1698–1739, 2015. doi:10.1137/130938517.

10 Mark Braverman and Omri Weinstein. An interactive information odometer and appli-
cations. In Proceedings of the 47th Symposium on Theory of Computing (STOC), pages
341–350. ACM, 2015. doi:10.1145/2746539.2746548.

ICALP 2017

http://dx.doi.org/10.1145/2897518.2897644
http://dx.doi.org/10.1145/800061.808742
http://dx.doi.org/10.1145/2897518.2897524
http://dx.doi.org/10.1145/2897518.2897524
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.4
http://dx.doi.org/10.1109/FOCS.2016.66
http://dx.doi.org/10.1109/FOCS.2016.66
http://dx.doi.org/10.1016/j.jcss.2003.11.006
http://dx.doi.org/10.1007/11611257_13
http://dx.doi.org/10.1016/j.jcss.2006.05.001
http://dx.doi.org/10.1137/130938517
http://dx.doi.org/10.1145/2746539.2746548

52:14 Randomized Communication vs. Partition Number

11 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM,
62(2):17:1–17:23, 2015. doi:10.1145/2716307.

12 Dmitry Gavinsky and Shachar Lovett. En Route to the Log-Rank Conjecture: New Re-
ductions and Equivalent Formulations. In Proceedings of the 41st International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 514–524. Springer, 2014.
doi:10.1007/978-3-662-43948-7_43.

13 Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th
Symposium on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE, 2015.
doi:10.1109/FOCS.2015.69.

14 Mika Göös, T. S. Jayram, Toniann Pitassi, and Thomas Watson. Randomized communica-
tion vs. partition number. Technical Report TR15-169, Electronic Colloquium on Compu-
tational Complexity (ECCC), 2015. URL: https://eccc.weizmann.ac.il/report/2015/
169/.

15 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.
doi:10.1137/15M103145X.

16 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-
tion number. In Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

17 Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 25th Conference on Computational
Complexity (CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

18 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for determin-
istic and randomized decision tree complexity. Information Processing Letters, 110(20):893–
897, 2010. doi:10.1016/j.ipl.2010.07.020.

19 Rahul Jain, Troy Lee, and Nisheeth Vishnoi. A quadratically tight partition bound for
classical communication complexity and query complexity. Technical report, arXiv, 2014.
arXiv:1401.4512.

20 T.S. Jayram, Swastik Kopparty, and Prasad Raghavendra. On the communication complex-
ity of read-once AC0 formulae. In Proceedings of the 24th Conference on Computational
Complexity (CCC), pages 329–340. IEEE, 2009. doi:10.1109/CCC.2009.39.

21 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algo-
rithms and Combinatorics. Springer, 2012.

22 Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf. Query complexity in expectation. In Pro-
ceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 761–772. Springer, 2015. doi:10.1007/978-3-662-47672-7_62.

23 Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao.
Lower bounds on information complexity via zero-communication protocols and applica-
tions. SIAM Journal on Computing, 44(5):1550–1572, 2015. doi:10.1137/130928273.

24 Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate nonnegative
rank is equivalent to the smooth rectangle bound. In Proceedings of the 41st International
Colloquium on Automata, Languages, and Programming (ICALP), pages 701–712. Springer,
2014. doi:10.1007/978-3-662-43948-7_58.

25 Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating decision tree com-
plexity from subcube partition complexity. In Proceedings of the 19th International Work-
shop on Randomization and Computation (RANDOM), pages 915–930. Schloss Dagstuhl,
2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.915.

26 Eyal Kushilevitz. Unpublished. Cited in [32], 1994.

http://dx.doi.org/10.1145/2716307
http://dx.doi.org/10.1007/978-3-662-43948-7_43
http://dx.doi.org/10.1109/FOCS.2015.69
https://eccc.weizmann.ac.il/report/2015/169/
https://eccc.weizmann.ac.il/report/2015/169/
http://dx.doi.org/10.1137/15M103145X
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1109/CCC.2010.31
http://dx.doi.org/10.1016/j.ipl.2010.07.020
http://arxiv.org/abs/1401.4512
http://dx.doi.org/10.1109/CCC.2009.39
http://dx.doi.org/10.1007/978-3-662-47672-7_62
http://dx.doi.org/10.1137/130928273
http://dx.doi.org/10.1007/978-3-662-43948-7_58
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.915

M. Göös, T. S. Jayram, T. Pitassi, and T. Watson 52:15

27 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

28 Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Founda-
tions and Trends in Theoretical Computer Science, 3(4):263–399, 2007. doi:10.1561/
0400000040.

29 Nikos Leonardos and Michael Saks. Lower bounds on the randomized communication
complexity of read-once functions. Computational Complexity, 19(2):153–181, 2010. doi:
10.1007/s00037-010-0292-2.

30 László Lovász and Michael Saks. Lattices, Möbius functions and communication complexity.
In Proceedings of the 29th Symposium on Foundations of Computer Science (FOCS), pages
81–90. IEEE, 1988. doi:10.1109/SFCS.1988.21924.

31 Sagnik Mukhopadhyay and Swagato Sanyal. Towards better separation between determinis-
tic and randomized query complexity. In Proceedings of 35th Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 206–220. Schloss
Dagstuhl, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.206.

32 Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557–565, 1995. doi:10.1007/BF01192527.

33 Petr Savický. On determinism versus unambiguous nondeterminism for decision trees. Tech-
nical Report TR02-009, Electronic Colloquium on Computational Complexity (ECCC),
2002. URL: http://eccc.hpi-web.de/report/2002/009/.

34 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/
0022-0000(91)90024-Y.

ICALP 2017

http://dx.doi.org/10.1561/0400000040
http://dx.doi.org/10.1561/0400000040
http://dx.doi.org/10.1007/s00037-010-0292-2
http://dx.doi.org/10.1007/s00037-010-0292-2
http://dx.doi.org/10.1109/SFCS.1988.21924
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.206
http://dx.doi.org/10.1007/BF01192527
http://eccc.hpi-web.de/report/2002/009/
http://dx.doi.org/10.1016/0022-0000(91)90024-Y
http://dx.doi.org/10.1016/0022-0000(91)90024-Y

Approximate Bounded Indistinguishability

Andrej Bogdanov1 and Christopher Williamson2

1 Department of Computer Science and Engineering and Institute for
Theoretical Computer Science and Communications, Chinese University of
Hong Kong, Hong Kong, China
andrejb@cse.cuhk.edu.hk

2 Department of Computer Science and Engineering, Chinese University of
Hong Kong, Hong Kong, China
chris@cse.cuhk.edu.hk

Abstract
Two distributions over n-bit strings are (k, δ)-wise indistinguishable if no statistical test that
observes k of the n bits can tell the two distributions apart with advantage better than δ. Mo-
tivated by secret sharing and cryptographic leakage resilience, we study the existence of pairs of
distributions that are (k, δ)-wise indistinguishable, but can be distinguished by some function f
of suitably low complexity. We prove bounds tight up to constants when f is the OR function,
and tight up to logarithmic factors when f is a read-once uniform AND◦OR formula, extending
previous works that address the perfect indistinguishability case δ = 0.

We also give an elementary proof of the following result in approximation theory: If p is a
univariate degree-k polynomial such that |p(x)| ≤ 1 for all |x| ≤ 1 and p(1) = 1, then ˆ̀1(p) ≥
2Ω(p′(1)/k), where ˆ̀1(p) is the sum of the absolute values of p’s coefficients. A more general
statement was proved by Servedio, Tan, and Thaler (2012) using complex-analytic methods.

As a secondary contribution, we derive new threshold weight lower bounds for bounded depth
AND-OR formulas.

1998 ACM Subject Classification F.0 [Theory of Computation] General

Keywords and phrases pseudorandomness, polynomial approximation, secret sharing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.53

1 Introduction

Two random variables X and Y over {0, 1}n are (locally) (k, δ)-wise indistinguishable if for
all subsets S ⊆ {1, . . . , n} of size k, the induced marginal distributions (Xi : i ∈ S) and
(Yi : i ∈ S) are within statistical distance δ. We say function f : {0, 1}n → {0, 1} reconstructs
from the pair (X,Y) with error at most ε if E[f(X)] − E[f(Y)] ≥ 1 − ε. In this work we
investigate conditions under which a suitable f can reconstruct from some pair of locally
indistinguishable distributions.

The parity function on n bits provides an extreme example of this phenomenon: The
uniform distributions over {0, 1}n conditioned on the parity of all the bits taking value zero
and one, respectively, are (n − 1, 0)-wise indistinguishable, but parity reconstructs from
them perfectly. Our focus will be on reconstruction functions that have representations of
constant depth and size polynomial in n (i.e., in the class AC0). Functions in this class
exclude large parities [6, 18, 7], and are in fact strongly uncorrelated with them under the
uniform distribution [8].

EA
T

C
S

© Andrej Bogdanov and Christopher Williamson;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl; Article No. 53; pp. 53:1–53:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 Approximate Bounded Indistinguishability

The OR function

The OR function on n inputs is arguably the most elementary example of this type. We
prove matching upper and lower bounds reconstruction by the OR function with respect
to (k, δ)-wise indistinguishable distributions. In the range where the reconstruction error is
constant, we obtain the following results.

I Theorem 1. For every n and k ≥ 5
√
n and every pair of (k, 2−O(n/k))-wise indistinguishable

distributions X, Y over {0, 1}n, Pr[OR(X) = 1]− Pr[OR(Y) = 1] ≤ 1/3.

I Theorem 2. For every n and k ≤ n/2 there exists a pair of (k, 2−Ω(n/k))-wise indistin-
guishable distributions X, Y over {0, 1}n such that Pr[OR(X) = 1]− Pr[OR(Y) = 1] ≥ 2/3.

The distributions X and Y in Theorem 2 are uniformly sampleable by circuit families of
constant depth and size polynomial in n.

These results extend our previous work with Ishai and Viola [3], which only considered
perfect bounded indistinguishability, i.e., the case δ = 0. It is shown there that (2

√
n, 0)-wise

and (
√
n/2, 0)-wise indistinguishability yield the conclusions of Theorems 1 and 2, respectively.

Those proofs make use of results about the approximability of the OR function by real-valued
polynomials of Linial and Nisan [10] and Nisan and Szegedy [13].

Our work with Ishai and Viola also explains the relevance of bounded indistinguishability
to the computational complexity of secret sharing and cryptographic leakage resilience. In
the context of secret sharing, (k, δ)-wise indistinguishability postulates that the joint view
of any k parties can predict the secret with advantage at most δ. In a visual secret sharing
scheme [12], the secret to be shared is a pixel, each of n parties receives a transparency and
the pixel is recovered by superimposing the transparencies. The procedure can be applied
independently to every pixel in an image. The contrast of the scheme is the fraction of pixels
that are reconstructed correctly.

Theorems 1 and 2 describe the best possible tradeoff between the size and the recon-
struction advantage of the adversarial coalition for visual secret sharing schemes [12] with
constant contrast. Theorem 2’ in Section 3 is a refinement of Theorem 2 that specifies the
dependence of the indistinguishability parameters on the contrast.

Linial and Nisan [10] studied an incomparable notion of δ-indistinguishability in which
the family of statistical tests consists of ANDs over arbitrary subsets of the input bits. They
proved analogues of Theorems 1 and 2 for δ ≥ 2−c

√
n and δ ≤ 2−c

√
n logn, respectively (for

suitable constants c and C).

A consequence in approximation theory

A.A. Markov showed that among all real-valued univariate degree k polynomials p such that
|p(x)| ≤ 1 for all |x| ≤ 1, the derivative p′(1) is maximized by the Chebyshev polynomial Tk
of degree k with T ′k(1) = k2. The weight ˆ̀1(Tk) of the Chebyshev polynomial, defined as the
sum of the absolute values of its coefficients, is exponential in k. At the other end of the
spectrum, the polynomial xk has weight 1 and derivative k at 1. Interpolating between the
two, the degree-k polynomial Tr(xk/r) has weight exponential in r and derivative rk at 1
whenever r divides k. With one small additional hypothesis, we prove that this is the best
possible up to the constant in the exponent:

I Theorem 3. There exists a constant C > 0 such that if p : R→ R is a degree-k polynomial
with |p(x)| ≤ 1 for all |x| ≤ 1 and p(1) = 1 then p′(1) ≤ Ck log ˆ̀1(p).

A. Bogdanov and C. Williamson 53:3

The polynomials p(x) = Tr(xbk/rc) certify that the bound is tight up to the constant
factor.

Servedio, Tan, and Thaler [14] proved a more general form of Theorem 3: Under the same
assumptions, they showed that maxx∈[−1,1]|p′(x)| ≤ Ck log ˆ̀1(p). (Their bound is stated
in a slightly weaker form.) Our proof is based on elementary counting, a large deviation
bound, and some basic calculus, while Servedio et al.’s makes use of Hadamard’s Three Circle
Theorem from complex analysis.

Perfect and almost-perfect reconstruction

In the setting of secret sharing, reconstruction errors are undesirable as they entail possible
loss of information in the sharing phase. There, perfect reconstruction is a desirable feature.
The OR function is not up to the task (for non-trivial parameter settings): It is easily
observed that perfect reconstruction by OR requires (1, 1/n)-wise indistinguishability of the
underlying distributions X and Y . We show, however, that read-once CNFs and higher
depth AND-OR trees can perfectly reconstruct from distributions of approximate bounded
indistinguishability:

I Theorem 4. For any fixed d, and for all n and k, there exists a pair of (k, 2−Ω((n/k)1−1/d))-
wise indistinguishable distributions that can be perfectly reconstructed by the depth-d AND-OR
tree with top fan-in (n/k)1/d, middle fan-ins (n/k)2/d, and bottom fan-in k(2d−3)/d

n(d−3)/d .

Setting d = 2 results in the following corollary:

I Corollary 5. For all n and k there exists a pair of (k, 2−Ω((n/k)1/2))-wise indistinguishable
distributions that can be perfectly reconstructed by the function AND(n/k)1/2 ◦OR(nk)1/2 .

Here, ANDn/m ◦ORm is a read-once monotone CNF with fan-in m at the bottom OR
gates and fan-in n/m at the top AND gate. We prove that Corollary 5 is essentially tight for
read-once CNFs. In Proposition 13, however, we show that almost perfect reconstruction by
functions of this type is possible with substantially better parameters.

Threshold weight

The degree-k threshold weight of a function f : {0, 1}n → {0, 1} is the minimum weight of
a nonzero degree-k polynomial p with integer coefficients such that p(x)f(x) ≥ 0 for all x.
Beigel [1] and Servedio et al. [14] construct a length-n decision list that requires degree-k
threshold weight 2Ω(

√
n/k). Bun and Thaler [5] give a read-once DNF over n variables that

requires the same degree-k threshold weight, and construct a polynomial size AND-OR circuit
of depth 3 that requires degree-k threshold weight 2Ω(n/k3/2). Sherstov [16] constructed
a depth 4 circuit of polynomial size that requires threshold weight 2Ω(

√
n) for all k. Our

methods yield the following incomparable bound:

I Corollary 6. The depth-d AND-OR tree given in the statement of Theorem 4 requires
degree-k threshold weight 2Ω((n/k)1−1/d).

In Section 6 we show that this result implies the degree-independent threshold weight
lower bound for formulas of Sherstov [15].

Our proofs

Impossibility of reconstruction by OR from (2
√
n, 0)-wise indistinguishable distributions

follows easily from the existence of a degree 2
√
n polynomial p that approximates the OR

ICALP 2017

53:4 Approximate Bounded Indistinguishability

function pointwise: The distinguishing advantage of the OR function can be at most the
pointwise approximation error. The relaxed assumption of approximate local indistinguishab-
ility introduces an additional error term proportional to the weight of the approximating
polynomial. Lemma 7 recasts the problem in the univariate setting, following previous works.
To prove Theorem 1 we instantiate Lemma 7 with a polynomial of the form Tr(xk/r) for a
suitable choice of r. The relevant properties of this polynomial are that it is bounded on
[−1, 1], has weight 2O(r) and has value Ω(kr/n) at x = 1 + 1/2n.

In the setting of perfect bounded indistinguishability, the maximum distinguishing
advantage of OR with respect to (k, 0)-wise indistinguishable distributions equals the minimum
error that a k-approximating polynomial for OR must have by linear programming duality.
Thus, high approximate degree readily implies the existence of locally indistinguishable
distributions that can be told apart by the OR function. In the approximate setting this
duality is not preserved: While existence of low-degree, low-weight approximate polynomials
implies hardness of reconstruction, it is not at all clear that the converse should hold. To
prove a converse to Theorem 1 we instead resort to combinatorial means.

We prove Theorem 2 by a reduction to the case of perfect bounded indistinguishability.
Previous works give the existence of (Ω(

√
εn), 0)-wise indistinguishable distributions X and Y

such that Pr[OR(X) = 1]−Pr[OR(Y) = 1] ≥ 1−ε. (As observed in [3], the dual polynomials
of Špalek [17] and Bun and Thaler [4] show that such distributions can be sampled by uniform
constant-depth, polynomial-size circuit families.) We consider the following distributions
X ′ and Y ′ over {0, 1}N , where N ≥ n: Sample n coordinates of {1, . . . , N} uniformly at
random, embed a sample of X and Y , respectively, in these coordinates, and set all the
other entries of X and Y to zero. The distinguishing advantage of OR is not affected by
this transformation. On the other hand, any “local view” of size K in {1, . . . , N} expects
to observe K · n/N of the embedded samples. Provided this number is sufficiently smaller
than the indistinguishability parameter k, by a large deviation bound this local view can
reconstruct from the distributions X and Y only with small probability.

Since Theorem 2 proves the optimality of Theorem 1, it follows that no choice of univariate
polynomial p that is bounded on [−1, 1] can have significantly larger value at x = 1 + 1/2n
than the polynomial Tr(xk/r) among all those of weight 2O(r). By the mean value theorem,
there must exist some x in [1, 1 + 1/2n] such that p′(x) is at most O(kr). Proving Theorem 3
requires showing that p′(1) = O(kr). Our proof of Theorem 3 in Section 4 bounds the rate of
change of p′(x) around x = 1 as a function of the weight of p. Since this norm is small, for a
suitable choice of n we can conclude from a somewhat delicate calculation that p′(1) = O(kr)
and prove Theorem 3.

The proof of Theorem 4 extends the reduction to perfect bounded indistinguishability to
the setting of higher depth trees. This was studied in [3] and is a consequence of the seminal
lower bound of Minsky and Papert [11]. Optimality is proved by an explicit construction
of low-weight approximating polynomials as in Theorem 1. In the near-perfect setting, the
requisite lower bound on approximate degree was obtained by Bun and Thaler [5] (extending
Beigel [2]).

2 Optimality of distributions: Proof of Theorem 1

We first present a limitation of the OR function’s ability to reconstruct from distributions
that are almost k-wise indistinguishable. This is completed in two steps. First, we reduce
the question to one of polynomials. Specifically, we demonstrate that the existence of certain
polynomials that approximate OR allow us to upper bound the ability of OR to reconstruct

A. Bogdanov and C. Williamson 53:5

from these distributions, where the degree and size of coefficients of the polynomial relate to
the indistinguishability parameters. The second step is to construct these polynomials and
calculate the indistinguishability parameters as a function of their degree and ˆ̀1 norm.

2.1 Indistinguishability from approximating polynomials
I Lemma 7. Assume p : R→ R is a degree-k polynomial such that |p(x)| ≤ 1 for all x such
that |x| ≤ 1 and j(p, n) = p(1 + 2/n)− 1 ≥ 0. For all pairs of (k, δ)-wise indistinguishable
distributions X and Y over {−1, 1}n,

E[OR(X)]− E[OR(Y)] ≤ 2
2 + j(p, n) + e2 · δ · ˆ̀1(p).

Here, we assume a representation in which OR evaluates to zero if any of its inputs are
−1 and to 1 otherwise.

In the case of perfect indistinguishability (i.e., δ = 0), such approximations of the OR
function by polynomials already appear in the work of Linial and Nisan. Lemma 7 shows that
the presence of local error δ introduces an additional term proportional to the weight of the
approximation polynomial. The term j(p, n) can be improved slightly to p(1 + 2/(n− 1))− 1.

In the proof of Lemma 7 we will use the following facts, which themselves are proven
after the lemma.

I Fact 8. Let p be a degree-k univariate polynomial and p∗(x) = p(ax+b), where |a|+ |b| ≥ 1.
Then ˆ̀1(p∗) ≤ (|a|+ |b|)k ˆ̀1(p).

I Fact 9. If p is a univariate polynomial and p(x1, . . . , xn) = p((x1 + · · · + xn)/n) then
ˆ̀1(p) ≤ ˆ̀1(p).

Proof of Lemma 7. Let

p∗(x) = γ · p
(
x+ 2

n

)
where γ = 1

2 + j(p, n) .

Then |p∗(x)| ≤ γ for x ∈ [−1, 1− 2
n] and p∗(1) = 1− γ. The multivariate polynomial

p∗(x1, . . . , xn) = p∗
(x1 + · · ·+ xn

n

)
satisfies |p∗(x)− OR(x)| ≤ γ for all x ∈ {−1, 1}n. Expanding p∗ in the Fourier basis, we
can write p∗(x) =

∑
|S|≤k p̂∗SχS(x), where χS(x) =

∏
i∈S xi. Then

E[OR(X)]− E[OR(Y)] ≤ E[p∗(X) + γ]− E[p∗(Y)− γ]
≤ 2γ + E[p∗(X)]− E[p∗(Y)]

= 2γ +
∑
|S|≤k

p̂∗S ·
(
E[χS(X)]− E[χS(Y)]

)
≤ 2γ +

∑
S
|p̂∗S | · 2δ

= 2γ + 2δ · ˆ̀1(p∗).

The second to last step holds because χS is a k-local distinguisher with range {−1, 1}, so its
distinguishing advantage is at most 2δ. From Facts 8 and 9 it follows that

ˆ̀1(p∗) ≤ 1
2 + j(p, n) ·

(
1 + 2

n

)k
· ˆ̀1(p) ≤ 1

2 ·
(n+ 2

n

)k
· ˆ̀1(p) ≤ e2

2 ·
ˆ̀1(p).

for k < n as desired. J

ICALP 2017

53:6 Approximate Bounded Indistinguishability

Proof of Fact 8. If all the coefficients of a polynomial q are positive then ˆ̀1(q) = q(1). For
p(x) =

∑k
i=0 cix

i let p̃(x) =
∑k
i=0|ci|xi. Then

ˆ̀1(p̃(|a|x+ |b|)) = p̃(|a|+ |b|) ≤ (|a|+ |b|)kp̃(1) = (|a|+ |b|)k ˆ̀1(p).

The coefficients of p̃(|a|x + |b|) dominate those of p(ax + b), so we can conclude that
ˆ̀1(p(ax+ b)) ≤ ˆ̀1(p̃(|a|x+ |b|)) ≤ (|a|+ |b|)k ˆ̀1(p). J

Proof of Fact 9. If p(x) =
∑k
i=0 cix

i then

ˆ̀1(p) ≤
d∑
i=0

|ci|
ni

ˆ̀1
(
(x1 + ...+ xn)i

)
≤

d∑
i=0

|ci|
ni
· ni = ˆ̀1(p),

where the second to last step holds because all of the coefficients in (x1 + · · · + xn)i are
nonnegative, so the weight is (1 + · · ·+ 1)i = ni. J

2.2 Construction of approximating polynomials
Our approximating polynomials will take the form of a Chebyshev polynomial evaluated at
an appropriately chosen monomial. We note that Servedio, Tan, and Thaler in [14] also use
polynomials of this form to give a degree-weight tradeoff of polynomials approximating the
OR function.

For the proof of Theorem 1, we set p(x) = Tr(xd), where d = bk2/20nc ≥ 1, r = bk/dc,
and Tr is the Chebyshev polynomial of degree r.

The Chebyshev polynomials satisfy (1) |Tr(x)| ≤ 1 for all x ∈ [−1, 1], (2) Tr(1) = 1, (3)
T ′r(1) = r2, (4) T ′′r (x) ≥ 0 for all x ≥ 1, and (5) ˆ̀1(Tr) ≤ 22r. The first four properties are
well-known; we provide a short proof of the fifth.

Proof of Property 5. We use an alternate definition of the Chebyshev polynomial: Tr(x) =
r
2
∑r/2
i=0

(−1)i

r−i
(
r−i
i

)
2r−2ixr−2i. Thus, we have:

ˆ̀1(Tr) = r

2

r/2∑
i=0

1
r − i

(
r − i
i

)
2r−2i ≤

r/2∑
i=0

(
r − i
i

)
2r−2i ≤ 2r

r/2∑
i=0

(
r

i

)
≤ 22r. J

From properties (2), (3), and (4) it follows that

j(p, n) = p(1 + 2/n)− 1 ≥ p′(1) · 2
n

= 2dr2

n
≥ k2

2dn ≥ 10.

The second to last inequality holds since for our choice of parameters d ≤ k, so r ≥ 1, and
therefore r ≥ k/2d.

By property (5), ˆ̀1(p) = 22r ≤ 22k/d. We now show this is at most 280n/k. When
k2 ≥ 20n, d ≥ k2/40n and so ˆ̀1(p) ≤ 280n/k. Otherwise, d = 1, and ˆ̀1(p) is at most
22k ≤ 240n/k.

Finally, by property (1) |p(x)| ≤ 1 for |x| ≤ 1. By Lemma 7,

E[OR(X)]− E[OR(Y)] ≤ 2
2 + 10 + e2δ · 280n/k ≤ 1

3

as long as δ ≤ 2−80n/k/6e2, proving Theorem 1.

A. Bogdanov and C. Williamson 53:7

3 Construction of distributions: Proof of Theorem 2

We reduce the existence of (k, ε)-indistinguishable distributions that can be reconstruc-
ted by the OR function to the analogous question for distributions of perfect bounded
indistinguishability:

I Lemma 10. For every ε,N,K ≤ N/2 and n ≤ εN2/121K2 the following holds. Assume
there exist (

√
εn, 0)-wise indistinguishable distributions X, Y over {0, 1}n. Then there

exist distributions X ′, Y ′ over {0, 1}N such that E[OR(X ′)] = E[OR(X)], E[OR(Y ′)] =
E[OR(Y)], and X ′, Y ′ are (K, 2−Ω(εN/K))-wise indistinguishable.

Proof. To sample from X ′ (resp. Y ′), first select a random set of n “active” indices among
the N choices. Then, sample a string from X (resp. Y) and fill in the n indices with the
sampled bits. Fill in the remaining N − n places with 0s. This process does not change the
chance that OR accepts a string, so the reconstruction error remains the same.

We now need to check that X ′, Y ′ are (K, 2−Ω(εN/K))-wise indistinguishable. Let S be
any subset of {1, . . . , N} of size K and E be the event that at most k of the active indices
fall in S. Conditioned on E, the projections of X ′ and Y ′ on S contain at most k bits
from X and Y , respectively, and are therefore perfectly indistinguishable. Therefore the
distinguishing advantage of any test T : {0, 1}S → {0, 1} can be at most the probability that
E does not occur.

To upper bound this probability, we take a union bound over all possible
(
K
k

)
subsets of

k active indices in S. For each such set, there is a probability of n/N that the first index is
active, a probability of (n− 1)/(N − 1) that the second index is active conditioned on the
first one, and so on, obtaining:

Pr[there are at least k active indices in S] ≤
(
K

k

)
· n
N
· n− 1
N − 1 · ... ·

n− k + 1
N − k + 1

≤
(
eK

k
· n

N − k + 1

)k
.

Since K ≤ N/2, we have that k ≤ N/2 and 1/(N − k + 1) ≤ 2/N . Plugging these estimates
in, we conclude that the distinguishing advantage is at most (2eKn/kN)k. We now set our
parameters so that

√
εn = k = 11nK/N , implying that (2eKn/kN)k is upper bounded by

2−k = 2−Ω(nK/N) = 2−Ω(εN/K). J

Now that we have reduced the problem of finding (K, 2−Ω(εN/K))-wise indistinguishable
distributions to the one of finding (

√
εn, 0)-wise indistinguishable ones, for some specific n,

we are ready to prove the following refinement of Theorem 2, which will be needed for the
proof of Theorem 3.

I Theorem 2’. For every ε, N , and K ≤ N/2 there exists a pair of (K, 2−Ω(εN/K))-wise
indistinguishable distributions X ′, Y ′ over {0, 1}N such that E[OR(X ′)]−E[OR(Y ′)] ≥ 1− ε.

Proof. Corollary 2.2 in [3] shows the existence of (
√
εn, 0)-wise indistinguishable distributions

X,Y over {0, 1}n such that E[OR(X)]−E[OR(Y)] = 1−O(ε). If K ≤
√
εN/11 the theorem

follows directly from this Corollary. Otherwise, we apply Lemma 10 with n = bεN2/121K2c
to X,Y and obtain the desired conclusion. J

ICALP 2017

53:8 Approximate Bounded Indistinguishability

4 Proof of Theorem 3

To prove Theorem 3 we reason as follows. Suppose there is a polynomial p of degree k such
that |p(x)| ≤ 1 for |x| ≤ 1 and p(1) = 1. For ε = p(1 + 2/n)− 1, Theorem 2’ and Lemma 7
together imply that

1− ε

6 ≤ E[OR(X)]− E[OR(Y)] ≤ 2
2 + ε

+ 2−Ω(εn/k) · ˆ̀1(p),

from where we can conclude that ˆ̀1(p) ≥ Ω(ε) · 2Ω(εn/k), provided ε ≤ 1. If the leading Ω(ε)
term could be ignored, we would obtain Theorem 3 by taking the limit of the right-hand
side as n goes to infinity and εn/2 approaches p′(1).

To account for the Ω(ε) term, we work with a carefully chosen, finite value of n. Our
choice of n is sufficiently large so that the term 2Ω(εn/k) dominates the term Ω(ε) in the
expression lower bounding ˆ̀1(p), but sufficiently small so that εn/2 is still lower bounded by
Ω(p′(1)). If n was a function of k only, this would be impossible as the value ε = p(1+2/n)−1
could even be negative. Our choice of n depends on the polynomial p itself via the parameters
ˆ̀1(p) and p′(1).

This description assumed that ε was at most one (or bounded by some fixed constant).
The case of large ε can be handled along the same lines and is in fact technically easier.

Proof of Theorem 3. Let p : R→ R be a degree-k polynomial such that |p(x)| ≤ 1 for all
|x| ≤ 1 and p(1) = 1. Let ε = p(1 + 2/n)− 1 for n = 4k2 ˆ̀1(p)/p′(1). Expanding p(1 + 2/n)
around 1 we obtain

p(1 + 2/n) = p(1) + p′(1)
n/2 +

∑
i≥2

1
(n/2)i ·

p(i)(1)
i!

where p(i)(1) is the i-th derivative of p at 1. Since p(1) = 1 it follows that

ε = p(1 + 2/n)− p(1) ≥ p′(1)
n/2 −

∑
i≥2

1
(n/2)i ·

|p(i)(1)|
i! .

A calculation of the derivatives shows that |p(i)|/i! ≤
(
k
i

)
· ˆ̀1(p) and so

ε ≥ p′(1)
n/2 −

∑
i≥2

(
k
i

)
(n/2)i ·

ˆ̀1(p) = p′(1)
n/2 −

ˆ̀1(p) ·
∑
i≥2

(
k

n/2

)i
· 1
i! . (1)

Since p′(1) ≤ ˆ̀1(p′) ≤ k ˆ̀1(p), n is at least 4k and

∑
i≥2

(
k

n/2

)i
· 1
i! ≤

(
k

n/2

)2
·
∑
i≥2

1
i! ≤

(
k

n/2

)2
.

From (1) we obtain that

ε ≥ p′(1)
n/2 −

ˆ̀1(p) · k2

(n/2)2 ≥
p′(1)
n

. (2)

where the second inequality follows from our choice of n.
By Lemma 7 for every pair of (k, δ)-wise indistinguishable distributions X and Y over

{0, 1}n,

E[OR(X)]− E[OR(Y)] ≤ 2
2 + ε

+ e2δ ˆ̀1(p).

A. Bogdanov and C. Williamson 53:9

If ε ≤ 1, by Theorem 2’ there exist (k, 2−cεn/k)-wise indistinguishable distributions X and Y
such that E[OR(X)]− E[OR(Y)] ≥ 1− ε/6. Setting δ = 2−cεn/k we obtain

e2δ ˆ̀1(p) ≥ 1− ε

6 −
2

2 + ε
≥
(

1− ε

6

)
−
(

1− ε

3

)
= ε

6 .

Using inequality (2) and the definition of n we have

6e2 ˆ̀1(p) ≥ ε · 2cεn/k ≥ p′(1)
n
· 2cp

′(1)/2k = 1
ˆ̀1(p)

·
(
p′(1)
2k

)2
· 2cp

′(1)/2k.

After rearranging terms we obtain

ˆ̀1(p) ≥ 1√
6e
· p
′(1)
2k · 2

cp′(1)/4k.

Since ˆ̀1(p) is also at least p(1) = 1, it follows that 2Ω(p′(1)/4k), proving the theorem when
ε ≤ 1.

If ε > 1, by Theorem 2 there exist (k, 2−cn/k)-wise indistinguishable distributions X
and Y such that E[OR(X)] − E[OR(Y)] ≥ 5/6 and e2δ ˆ̀1(p) ≥ 5/6 − 2/3 ≥ 1/6. Setting
δ = 2−cn/k,

ˆ̀1(p) ≥ 1
6e2 · 2

cn/k ≥ 2cp
′(1)/2k

using (2) and the assumption ε > 1. J

5 AND-OR formulas and perfect reconstruction

In this section we prove Theorem 4, give a variant with better parameters that provides
almost-perfect reconstruction, and show that Theorem 4 is tight in the depth-2 case with
respect to all uniform read-once AND ◦OR formulas.

We first extend Lemma 10 to AND ◦OR formulas of depth d:

I Lemma 11. Assume there exist (k, 0)-wise indistinguishable distributions X and Y over
{0, 1}n for a regular depth-d AND ◦OR tree f over n variables and with lowest-level fan-in
m. Then there exist (K, 2−Ω(k))-wise indistinguishable distributions X ′ and Y ′ over {0, 1}N ,
N = nM/m, such that E[f ′(X ′)] = E[f(X)] and E[f ′(Y ′)] = E[f(Y)], where f ′ is a function
taking the same form as f , except for that the lowest-level fan-in is M , provided m ≤M/2,
k/K ≥ 4m/M and n ≤ m · 2m−1.

Proof. To sample from X ′ (resp. Y ′), first sample a string from X (resp. Y), then extend
each of the blocks with M −m zeros positioned uniformly at random. Call the indices i in
which X ′i inherits some bit of X active.

The distribution on active indices of X ′ can be described in the following alternative
manner: First, choose each index i to be potentially active independently at random with
probability p = 2m/M . If any block of X ′ has fewer than m potentially active indices,
declare failure (F). Conditioned on not failing (F), choose the active indices in each block
uniformly at random among the potentially active ones.

Now let S be any set consisting of at most K inputs of f ′. Let B be the event that S
contains more than 2pK active indices. By Chernoff and union bounds,

Pr[B|F] ≤ Pr[B]
1− Pr[F] ≤

2−pK

1− (n/m)2−m ≤ 2−k+1

by our choice of parameters. As in the proof of Lemma 10 we conclude that X ′ and Y ′ must
satisfy the conclusion. J

ICALP 2017

53:10 Approximate Bounded Indistinguishability

Proof of Theorem 4. We will use N and K to denote the quantities n and k from the state-
ment of the theorem. By [15] and [3] there exist X and Y that are (k, 0)-wise indistinguishable
but perfectly reconstructible by ANDn1/2d−1 ◦ORn2/2d−1 ◦ ... ◦ORm for m = n2/2d−1 and
k = Ω(n

d−1
2d−1). We will assume K ≥ N

d−1
2d−1 , for otherwise there is nothing left to prove. Set

k = (N/CK)1−1/d for a sufficiently large constant C andM = 4Km/k. If m > M/2 then the
conclusion follows directly from [15, 3] (as K will be at most a constant in terms of d times
N

d−1
2d−1). If n > m · 2m−1, (N/K)1−1/d is upper bounded by a constant so the conclusion

holds trivially. Otherwise, the statement of the theorem follows from Lemma 11. J

In the case d = 2, the parameters in Theorem 4 are the best possible, up to logarithmic
terms, for all read-once CNFs. (The regime k < n1/3 is resolved in [11, 3].)

I Theorem 12. There exists a constant c such that for any n and k ≥ n1/3, no read-once
CNF over n variables can perfectly reconstruct from any pair of (k, 2−Ω((n/k)1/2 log2 n))-wise
indistinguishable distributions.

The proof is omitted from this version owing to space limitations. If an exponentially small
reconstruction error is acceptable, much better parameters for the underlying distributions
are achievable:

I Proposition 13. For all n, m, and k, the function ANDn/m ◦ORm can reconstruct from
some pair of (k, 2−Ω(m/k))-wise indistinguishable distributions with error at most 2−Ω(n/m).

Proof. Bun and Thaler [5] (improving work of Beigel) showed, via the connection in [3], that
ANDn/m◦ORm can reconstruct from some pair of (

√
m, 0)-wise indistinguishable distributions

with error at most 2−Ω(n/m). We apply Lemma 11 with k =
√
m and M = mK/k. J

6 A threshold weight lower bound

Proof of Corollary 6. Let X and Y be (k, 2−Ω((n/k)1−1/d))-wise indistinguishable distribu-
tions that the function f from Theorem 4 can perfectly reconstruct from. If p is a degree-k
polynomial such that |f(x)− p(x)| ≤ 1/2− 2−t then by Lemma 7,

1 = E[f(X)]− E[f(Y)] ≤ (1− 21−t) + 21−Ω((n/k)1−1/d) · ˆ̀1(p),

from where ˆ̀1(p) ≥ 2Ω((n/k)1−1/d)−t. Setting t = c · (n/k)1−1/d gives the desired lower bound
on ˆ̀1(p). J

The threshold weight of a function is its minimum degree-k threshold weight over all k.
A result of Krause [9] (see also Lemma 27 in [5]) can be used to convert lower bounds on
degree-k threshold weight into ones independent of degree.

I Fact 14 (Krause, 2005). For f : {0, 1}n → {0, 1}, let F : {0, 1}3n → {0, 1} be given by
F (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f(. . . , (zi AND xi) OR (zi AND yi), . . .). For any k,
if f requires degree-k threshold weight w then F requires threshold weight

√
min{w/2n, 2k}.

Applying Fact 14 to Corollary 6, we obtain a linear-size depth-d family of formulas that
requires threshold weight 2Ω(n1/2−1/(4d−6)) on inputs of length n, matching Sherstov’s bound
for formulas [15].

Acknowledgments. We thank Mark Bun for telling us about the work of Servedio, Tan,
and Thaler and for his advice on polynomial approximations, and the ICALP 2017 reviewers
for several helpful suggestions.

A. Bogdanov and C. Williamson 53:11

References
1 Richard Beigel. The polynomial method in circuit complexity. In 8th Structure in Com-

plexity Theory Conference, pages 82–95. IEEE, 1993.
2 Richard Beigel. Perceptrons, PP, and the polynomial hierarchy. Computational Complexity,

4:339–349, 1994. doi:10.1007/BF01263422.
3 Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded

indistinguishability and the complexity of recovering secrets. In CRYPTO, 2016.
4 Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and markov-

bernstein inequalities. In Coll. on Automata, Languages and Programming (ICALP), pages
303–314, 2013.

5 Mark Bun and Justin Thaler. Hardness amplification and the approximate degree of
constant-depth circuits. Electronic Colloquium on Computational Complexity (ECCC),
2013.

6 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

7 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986. doi:10.1145/12130.12132.

8 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014. doi:10.1137/120897432.

9 M. Krause. On the computational power of boolean decision lists. In Computational
Complexity, pages 362–375, 2005.

10 Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica,
10(4):349–365, 1990.

11 Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.
12 Moni Naor and Adi Shamir. Visual cryptography. In Advances in Cryptology – EURO-

CRYPT’94, volume 950 of Lecture Notes in Computer Science, pages 1–12. Springer Berlin
Heidelberg, 1994.

13 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

14 R. Servedio, L-Y. Tan, and J. Thaler. Attribute-efficient learning and weight-degree
tradeoffs for polynomial threshold functions. In COLT, 2012.

15 Alexander A. Sherstov. Breaking the Minsky-Papert barrier for constant-depth circuits. In
ACM Symp. on the Theory of Computing (STOC), pages 223–232, 2014.

16 Alexander A. Sherstov. The power of asymmetry in constant-depth circuits. In IEEE
Symp. on Foundations of Computer Science (FOCS), 2015.

17 Robert Špalek. A dual polynomial for OR. CoRR, abs/0803.4516, 2008. URL: http:
//arxiv.org/abs/0803.4516.

18 Andrew Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 1–10, 1985.

ICALP 2017

http://dx.doi.org/10.1007/BF01263422
http://dx.doi.org/10.1145/12130.12132
http://dx.doi.org/10.1137/120897432
http://arxiv.org/abs/0803.4516
http://arxiv.org/abs/0803.4516

Finding Detours is Fixed-Parameter Tractable∗†

Ivona Bezáková1, Radu Curticapean2, Holger Dell3, and
Fedor V. Fomin4

1 Department of Computer Science, Rochester Institute of Technology,
Rochester, NY, USA
ib@cs.rit.edu

2 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
radu.curticapean@gmail.com

3 Saarland University and Cluster of Excellence, MMCI, Saarbrücken, Germany
hdell@mmci.uni-saarland.de

4 University of Bergen, Bergen, Norway
fomin@ii.uib.no

Abstract
We consider the following natural “above guarantee” parameterization of the classical Longest
Path problem: For given vertices s and t of a graph G, and an integer k, the problem Longest
Detour asks for an (s, t)-path in G that is at least k longer than a shortest (s, t)-path. Us-
ing insights into structural graph theory, we prove that Longest Detour is fixed-parameter
tractable (FPT) on undirected graphs and actually even admits a single-exponential algorithm,
that is, one of running time exp(O(k)) ·poly(n). This matches (up to the base of the exponential)
the best algorithms for finding a path of length at least k.

Furthermore, we study the related problem Exact Detour that asks whether a graph G

contains an (s, t)-path that is exactly k longer than a shortest (s, t)-path. For this problem, we
obtain a randomized algorithm with running time about 2.746k · poly(n), and a deterministic
algorithm with running time about 6.745k · poly(n), showing that this problem is FPT as well.
Our algorithms for Exact Detour apply to both undirected and directed graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases longest path, fixed-parameter tractable algorithms, above-guarantee pa-
rameterization, graph minors

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.54

1 Introduction

The Longest Path problem asks, given an undirected n-vertex graph G and an integer k,
to decide whether G contains a path of length at least k, that is, a self-avoiding walk with
at least k edges. This problem is a natural generalization of the classical NP-complete
Hamiltonian Path problem, and the parameterized complexity community has paid
exceptional attention to it. For instance, Monien [28] and Bodlaender [4] showed avant

∗ Full version at https://arxiv.org/abs/1607.07737.
† Most of this work was done while the authors were visiting the Simons Institute for the Theory of

Computing. IB is supported by NSF grant CCF-1319987. RC is supported by ERC grant PARAMTIGHT
(No. 280152).

EA
T

C
S

© Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 54; pp. 54:1–54:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.54
https://arxiv.org/abs/1607.07737
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54:2 Finding Detours is Fixed-Parameter Tractable

la lettre that Longest Path is fixed-parameter tractable with parameter k and admits
algorithms with running time 2O(k log k)nO(1). This led Papadimitriou and Yannakakis [29] to
conjecture that Longest Path is solvable in polynomial time for k = logn, and indeed, this
conjecture was resolved in a seminal paper of Alon, Yuster, and Zwick [2], who introduced
the method of color coding and derived from it the first algorithm with running time 2O(k)n.
Since this breakthrough of Alon et al. [2], the problem Longest Path occupied a central
place in parameterized algorithmics, and several novel approaches were developed in order to
reduce the base of the exponent in the running time [19, 22, 9, 8, 23, 33, 15, 15, 3]. We refer
to two review articles in Communications of ACM [14, 24] as well as to the textbook [12,
Chapter 10] for an extensive overview of parameterized algorithms for Longest Path. Let
us however note that the fastest known randomized algorithm for Longest Path is due to
Björklund et al. [3] and runs in time 1.657k · nO(1), whereas the fastest known deterministic
algorithm is due to Zehavi [34] and runs in time 2.597k · nO(1).

In the present paper, we study the problem Longest Path from the perspective of an
“above guarantee” parameterization that can attain small values even for long paths: For
a pair of vertices s, t ∈ V (G), we use dG(s, t) to denote the distance, that is, the length of
a shortest path from s to t. We then ask for an (s, t)-path of length at least dG(s, t) + k,
and we parameterize by this offset k rather than the actual length of the path to obtain
the problem Longest Detour. In other words, the first dG(s, t) steps on a path sought
by Longest Detour are complimentary and will not be counted towards the parameter
value. This reflects the fact that shortest paths can be found in polynomial time and could
(somewhat embarrassingly) be much better solutions for Longest Path than the paths of
logarithmic length found by algorithms that parameterize by the path length.

We study two variants of the detour problem, one asking for a detour of length at least k,
and another asking for a detour of length exactly k.

Longest Detour Parameter: k

Input: Graph G, vertices s, t ∈ V (G), and integer k.
Task: Decide whether there is an (s, t)-path in G of length at least dG(s, t) + k.

Exact Detour Parameter: k

Input: Graph G, vertices s, t ∈ V (G), and integer k.
Task: Decide whether there is an (s, t)-path in G of length exactly dG(s, t) + k.

Our parameterization above the length of a shortest path is a new example in the general
paradigm of “above guarantee” parameterizations, which was introduced by Mahajan and
Raman [26]. Their approach was successfully applied to various problems, such as finding
independent sets in planar graphs (where an independent set of size at least n

4 is guaranteed
to exist by the Four Color Theorem), or the maximum cut problem, see e.g. [1, 11, 17, 16, 27].

Our results
We show the following tractability results for Longest Detour and Exact Detour:

Longest Detour is fixed-parameter tractable (FPT) on undirected graphs. The running
time of our algorithm is single-exponential, i.e., it is of the type 2O(k) · nO(1) and thus
asymptotically matches the running time of algorithms for Longest Path. Our approach
requires a non-trivial argument in graph structure theory to obtain the single-exponential
algorithm; a mere FPT-algorithm could be achieved with somewhat less effort. It should
also be noted that a straightforward reduction rules out a running time of 2o(k) · nO(1)

unless the exponential-time hypothesis of Impagliazzo and Paturi [20] fails.

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:3

Exact Detour is FPT on directed and undirected graphs. Actually, we give a polynomial-
time Turing reduction from Exact Detour to the standard parameterization of Longest
Path, in which we ask on input u, v and k ∈ N whether there is a (u, v)-path of
length k. This reduction only makes queries to instances with parameter at most 2k + 1.
Pipelined with the fastest known algorithms for Longest Path mentioned above, this
implies that Exact Detour admits a bounded-error randomized algorithm with running
time 2.746knO(1), and a deterministic algorithm with running time 6.745knO(1).

By a self-reducibility argument, we also show how to construct the required paths rather
than just detect their existence. This reduction incurs only polynomial overhead.

Techniques
The main idea behind the algorithm for Longest Detour is the following combinatorial
theorem, which shows the existence of specific large planar minors in large-treewidth graphs
while circumventing the full machinery used in the Excluded Grid Theorem [31]. Although
the Excluded Grid Theorem already shows that graphs of sufficiently large treewidth contain
arbitrary fixed planar graphs, resorting to more basic techniques allows us to show that linear
treewidth suffices for our specific cases. More specifically, we show that there exists a global
constant c ∈ N such that every graph of treewidth at least c · k contains as a subgraph a
copy of a graph K≥k

4 , which is any graph obtained from the complete graph K4 by replacing
every edge by a path with at least k edges. The proof of this result is based on the structural
theorems of Leaf and Seymour [25] and Raymond and Thilikos [30].

With the combinatorial theorem at hand, we implement the following win/win approach:
If the treewidth of the input graph is less than c · k, we use known algorithms [5, 15] to
solve the problem in single-exponential time. Otherwise the treewidth of the input graph is
at least c · k and there must be a K≥k

4 , which we use to argue that any path visiting the
same two-connected component as K≥k

4 can be prolonged by rerouting it through K≥k
4 . To

this end, we set up a fixed system of linear inequalities corresponding to the possible paths
in K≥k

4 such that rerouting is possible if and only if the system is unsatisfiable. We then
verify the unsatisfiability of this fixed system by means of a computer-aided proof (more
specifically, a linear programming solver). From LP duality, we also obtain a short certificate
for the unsatisfiability, which we include in the full version of this extended abstract.

The algorithm for Exact Detour is based on the following idea. We run breadth-first
search (BFS) from vertex v to vertex u. Then, for every (u, v)-path P of length dG(u, v) + k,
all but at most k levels of the BFS-tree contain exactly one vertex of P . Using this property,
we are able to devise a dynamic programming algorithm for Exact Detour, provided it is
given access to an oracle for Longest Path.

The remaining part of the paper is organized as follows. Section 2 contains definitions
and preliminary results used in the technical part of the paper. In Section 3, we give an
algorithm for Longest Detour while Section 4 is devoted to Exact Detour. Due to space
constraints, we defer some proofs, some figures, a search-to-decision reduction for Longest
Detour and Exact Detour to the full version of this extended abstract. Statements
whose proofs are omitted here are marked with ?.

2 Preliminaries

We consider graphs G to be undirected, and we denote by uv an undirected edge joining
vertices u, v ∈ V (G). A path is a self-avoiding walk in G; the length of the path is its number
of edges. An (s, t)-path for s, t ∈ V (G) is a path that starts at s and ends at t. We allow

ICALP 2017

54:4 Finding Detours is Fixed-Parameter Tractable

paths to have length 0, in which case s = t holds. For a vertex set X ⊆ V (G), denote
by G[X] the subgraph induced by X.

Tree decompositions. A tree decomposition T of a graph G is a pair (T, {Xt}t∈V (T)),
where T is a tree in which every node t is assigned a vertex subset Xt ⊆ V (G), called a bag,
such that the following three conditions hold:
(T1) Every vertex of G is in at least one bag, that is, V (G) =

⋃
t∈V (T) Xt.

(T2) For every uv ∈ E(G), there exists a node t ∈ V (T) such that Xt contains both u and v.
(T3) For every u ∈ V (G), the set Tu of all nodes of T whose corresponding bags contain u,

induces a connected subtree of T .
The width of the tree decomposition T is the integer maxt∈V (T) |Xt| − 1, that is, the size
of its largest bag minus 1. The treewidth of a graph G, denoted by tw(G), is the smallest
possible width that a tree decomposition of G can have.

We will need the following algorithmic results about treewidth.

I Proposition 1 ([6]). There is a 2O(k) · n time algorithm that, given a graph G and an
integer k, either outputs a tree decomposition of width at most 5k + 4, or correctly decides
that tw(G) > k.

I Proposition 2 ([5, 15]). There is an algorithm with running time 2O(tw(G)) · nO(1) that
computes a longest path between two given vertices of a given graph.

Let us note that the running time of Proposition 2 can be improved to 2O(tw(G)) ·n by making
use of the matroid-based approach from [15].

Our main theorem is based on graph minors, and we introduce some notation here.

I Definition 3. A topological minor model of H in G is a pair of functions (f, p) with
f : V (H)→ V (G) and p : E(H)→ 2E(G) such that
1. f is injective, and
2. for every edge uv ∈ E(H), the graph G[p(uv)] is a path from f(u) to f(v) in G, and
3. for edges e, g ∈ E(H) with e 6= g, the paths G[p(e)] and G[p(g)] intersect only in endpoints

or not at all.

The graph T induced by the topological minor model (f, p) is the subgraph of G that
consists of the union of all paths G[p(uv)] over all uv ∈ E(H). The vertices in f(V (H)) are
the branch vertices of T , and G[p(e)] realizes the edge e in T .

3 Win/Win algorithm for Longest Detour

Throughout this section, let G be an undirected graph with n vertices and m edges, let
s, t ∈ V (G) and k ∈ N. We wish to decide in time 2O(k) · nO(1) whether G contains an
(s, t)-path of length at least dG(s, t) + k. To avoid trivialities, we assume without loss of
generality that G is connected and s 6= t holds. Moreover, we can safely remove vertices v
that are not part of any (s, t)-path.

I Definition 4. Let G be a graph and let s, t ∈ V (G). The (s, t)-relevant part of G is the
graph induced by all vertices contained in some (s, t)-path. We denote it by Gs,t.

The graph Gs,t can be computed efficiently from the block-cut tree of G. Recall that the
block-cut tree of a connected graph G is a tree where each vertex corresponds to a block, that
is, a maximal biconnected component B ⊆ V (G), or to a cut vertex, that is, a vertex whose
removal disconnects the graph. A block B and a cut vertex v are adjacent in the block-cut
tree if and only if there is a block B′ such that B ∩B′ = {v}.

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:5

I Lemma 5 (?). Let Bs and Bt denote the blocks of G that contain s and t, respectively.
Furthermore, let P be the unique (Bs, Bt)-path in the block-cut tree of G. Then Gs,t is the
graph induced by the union of all blocks visited by P .

We formulate an immediate implication of Lemma 5 that will be useful later.

I Corollary 6. The block-cut tree of Gs,t is a (Bs, Bt)-path.

Hopcroft and Tarjan [18] proved that the block-cut tree of a graph can be computed in linear
time using DFS. Hence we obtain an algorithm for computing Gs,t from G.

I Corollary 7. There is a linear-time algorithm that computes Gs,t from G.

3.1 The algorithm
By definition, the graph Gs,t contains the same set of (s, t)-paths as G. Our algorithm
for Longest Detour establishes a “win/win” situation as follows: We prove that, if
the treewidth of Gs,t is “sufficiently large”, then (G, s, t, k) is a YES-instance of Longest
Detour. Otherwise the treewidth is small, and we use a known treewidth-based dynamic
programming algorithm for computing the longest (s, t)-path. Hence the algorithm builds
upon the following subroutines:
1. The algorithm from Corollary 7, computing the relevant part Gs,t of G in time O(n+m).
2. Compute Treewidth(G,w) from Proposition 1, which is given G and w ∈ N as input,

and either constructs a tree-decomposition T of G whose width is bounded by 5w + 4,
or outputs LARGE. If the algorithm outputs LARGE, then tw(G) > w holds. The running
time is 2O(w) · n.

3. Longest Path(G,T, s, t) from Proposition 2, which is given G, s, t and additionally a
tree-decomposition T of G, and outputs a longest (s, t)-path in G. The running time is
2O(w) · nO(1), where w denotes the width of T .

We now formalize what we mean by “sufficiently large” treewidth.

I Definition 8. A function f : N→ N is detour-enforcing if, for all k ∈ N and all graphs G
with vertices s and t, the following implication holds: If tw(Gs,t) > f(k), then G contains an
(s, t)-path of length at least dG(s, t) + k.

I Theorem 9. The function f : k 7→ 32k + 2 is detour-enforcing.

We defer the proof of this theorem to the next section, and instead state Algorithm D,
which uses f to solve Longest Detour. Algorithm D turns out to be an FPT-algorithm
already when any detour-enforcing function f is known (as long as it is polynomial-time
computable), and it becomes faster when detour-enforcing f of slower growth are used.

Algorithm D (Longest Detour) Given (G, s, t, k), this algorithm decides whether the
graph G contains an (s, t)-path of length at least dG(s, t) + k.
D1 (Restrict to relevant part) Compute Gs,t using Corollary 7.
D2 (Compute shortest path) Compute the distance d between s and t in Gs,t.
D3 (Compute tree-decomposition) Call Compute Treewidth(Gs,t, f(k)).

D3a (Small treewidth) If the subroutine found a tree-decomposition T of width at
most f(k), call Longest Path(Gs,t, T, s, t). Output YES if there is an (s, t)-path of
length at least d+ k, otherwise output NO.

D3b (Large treewidth) If the subroutine returned LARGE, output YES.

ICALP 2017

54:6 Finding Detours is Fixed-Parameter Tractable

We prove the running time and correctness of Algorithm D.

I Lemma 10 (?). For every polynomial-time computable detour-enforcing function f : N→ N,
Algorithm D solves Longest Detour in time 2O(f(k)) · nO(1).

Theorem 9 and Lemma 10 imply a 2O(k) · nO(1) time algorithm for Longest Detour.

3.2 Overview of the proof of Theorem 9
In our proof of Theorem 9, large subdivisions of K4 play an important role. Intuitively
speaking, a sufficiently large subdivision of K4 in Gs,t allows us to route some (s, t)-path
through it and then exhibit a long detour within that subdivision.

I Definition 11. For k ∈ N, a graph F is a K≥k
4 if it can be obtained by subdividing each

edge of K4 at least k times. Please note that the numbers of subdivisions do not need to
agree for different edges.

We show in Section 3.3 that graphs G containing K≥k
4 subgraphs in Gs,t have k-detours.

I Lemma 12. Let G be a graph and k ∈ N. If Gs,t contains a K≥k
4 subgraph, then G

contains an (s, t)-path of length at least dG(s, t) + k.

Since the graph obtained by subdividing each edge of K4 exactly k times is a planar graph
on O(k) vertices, the Excluded Grid Theorem yields a function f : N→ N such that every
graph of treewidth at least f(k) contains some K≥k

4 minor. Furthermore, since every K≥k
4

has maximum degree 3, this actually shows that G contains some K≥k
4 as a subgraph. Thus,

Lemma 12 implies that f is detour-enforcing, and a proof of this lemma immediately implies
a weak version of Theorem 9.

By recent improvements on the Excluded Grid Theorem [7, 10], the function f above
is at most a polynomial. However, even equipped with this deep result we cannot obtain
a single-exponential algorithm for Longest Detour using the approach of Lemma 10:
It would require f to be linear. In fact, excluding grids is too strong a requirement for
us, since every function f obtained as a corollary of the full Excluded Grid Theorem must
be super-linear [32]. We circumvent the use of the Excluded Grid Theorem and prove the
following lemma from more basic principles.

I Lemma 13. For graphs G and k ∈ N, if tw(G) ≥ 32k+2, then G contains a K≥k
4 subgraph.

Together, Lemmas 13 and 12 imply Theorem 9.

Proof of Theorem 9. Let G and s, t ∈ V (G) and k ∈ N be such that tw(Gs,t) > f(k). By
Lemma 13, the graph Gs,t contains a K≥k

4 subgraph, so Lemma 12 implies that G contains
an (s, t)-path of length dG(s, t) + k. This shows that f is indeed detour-enforcing. J

3.3 Proof of Lemma 12: Rerouting in subdivided tetrahedra
Let (G, s, t, k) be an instance for Longest Detour such that Gs,t contains a K≥k

4 sub-
graph M . We want to prove that Gs,t has a path of length at least dG(s, t) + k; in fact, we
construct the desired detour entirely in the subgraph M , for which reason we first need to
route some (s, t)-path through M .

I Lemma 14 (?). There are two distinct vertices u, v ∈ V (M) and two vertex-disjoint
paths Ps and Pt in G such that Ps is an (s, u)-path, Pt is a (v, t)-path, and they only intersect
with V (M) at u and v.

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:7

u vb1 b2

b3

b4

uv ub1b4b2v ub1b3b2v ub1b3b4b2v ub1b4b3b2v

Figure 1 Left: One of the three possible cases for the relative positions of vertices u and v

(red squares) in a subdivided tetrahedron K≥k
4 with degree-3 vertices b1, . . . , b4 (gray dots) and at

least k = 5 subdivision vertices (small gray dots). Here, u and v lie in the same subdivided edge.
See the full version of the paper for the remaining cases. Right: An exhaustive list of all (u, v)-paths
(thick red); Lemma 15 implies that the longest among them is at least k longer than the shortest one.

The proof of this lemma uses the fact that every block in the block-cut tree is biconnected.
Next we show that every K≥k

4 -graph M contains long detours.

I Lemma 15. Let M be a K≥k
4 -graph. For every two distinct vertices u, v ∈ V (M), there

is a (u, v)-path of length at least dM (u, v) + k in M .

The proof idea is to distinguish cases depending on where u, v lie in M relative to each
other. For each case, we can exhaustively list all (u, v)-paths (see Figure 1). We do not quite
know the lengths of these paths, but we do know that each has length at least dM (u, v);
moreover, each (bi, bj)-path in M for two distinct degree-3 vertices bi and bj has length at
least k, since we subdivided K4 at least k times. The claim of Lemma 15 is that one of the
(u, v)-paths must have length at least dM (u, v). To prove this, we set up a linear program
where the variables are dM (u, v), k, and the various path segment lengths; its infeasibility
informs us that indeed a path that is longer by k must exist.

Proof Sketch for Lemma 15. Let M be a K≥k
4 -graph, let u, v ∈ V (M), and let b1, . . . , b4

denote the four degree-3 vertices of M . Let Pu be a path in M that realizes an edge of K4
and satisfies u ∈ V (Pu), and let Pv be such a path with v ∈ V (Pv). We distinguish three
cases, one of which is depicted in Figure 1:
1. The two paths are the same, that is, Pu = Pv.
2. The two paths share a degree-3 vertex, that is, |V (Pu) ∩ V (Pv)| = 1.
3. The two paths are disjoint, that is, V (Pu) ∩ V (Pv) = ∅.
By the symmetries of K4, this case distinction is exhaustive. Since K4 has automorphisms
that map any edge to any other edge, we can further assume that Pu is the path implementing
the edge b1b2 such that Pu visits the vertices b1, u, v, and b2 in this order, see Figure 1.

We exhaustively list the set P of (u, v)-paths of M in Figure 1. Each path is uniquely
specified by the sequence of the degree-3 vertices it visits. For example, consider the path
ub1b4b2v: This path consists of the four edge-disjoint segments ub1, b1b4, b4b2, and b2v; in the
example figure, these segments have length 3, 6, 6, and 4, respectively. Given a path P ∈ P ,
let S(P) be the set of its segments between u, v, and the degree-3 vertices. For a path or a
path segment s, we denote its length by `(s).

Since M is a K≥k
4 , every edge of K4 is realized by a path of length at least k in M . Hence,

`(bibj) ≥ k holds for all i, j with i 6= j. Moreover, we have `(b1b2) = `(b1u) + `(uv) + `(vb2)
in case 1. Let d = dM (u, v); clearly `(P) ≥ d holds for all P ∈ P. Our goal is to show
that M has a (u, v)-path P with `(P) ≥ d + k. To this end, we treat d, k, and all path

ICALP 2017

54:8 Finding Detours is Fixed-Parameter Tractable

segment lengths `(bibj) for i 6= j and `(b1u), `(uv), `(vb2) as variables in a system of linear
inequalities and establish that the claim holds if this system is unsatisfiable:

`(bibj) ≥ k , for all i, j with i 6= j , (1)
`(b1u) + `(uv) + `(vb2) = `(b1b2) , (2)∑

s∈S(P)

`(s) ≥ d , for all P ∈ P , (3)

∑
s∈S(P)

`(s) ≤ d+ k − 1 , for all P ∈ P . (4)

This system has eleven variables. Please note that d and k are also considered as variables
in our formulation. The constraints in (1) express that M realizes each edge of K4 by a path
of length at least k. The constraints in (2) express that u and v lie on the path b1b2 and
break it up into segments. The constraints in (3) express that no (u, v)-path is shorter than
d in length, and the constraints in (4) express that every (u, v)-path has length strictly less
than d+ k. In the full version of this extended abstract, we prove that the linear program
is infeasible, and so every setting for the variables that satisfies (1)–(3) must violate an
inequality from (4); this means that M must contain a (u, v)-path of length at least d+ k

in case 1. The proof is analogous when u and v are on different subdivided edges of the
subdivided tetrahedron. We conclude that, no matter how u and v lie relative to each other
in M , there is always a (u, v)-path that is at least k longer than a shortest one. J

This allows us to conclude Lemma 12 rather easily.

Proof of Lemma 12. Let d = dG(s, t) be the length of a shortest (s, t)-path in G. Let M
be a K≥k

4 in Gs,t, and let Ps, Pt, u, and v be the objects guaranteed by Lemma 14. Let Puv

be a shortest (u, v)-path that only uses edges ofM ; its length is dM (u, v). Since the combined
path Ps, Puv, Pt is an (s, t)-path, its length is at least d.

Finally, Lemma 15 guarantees that there is a (u, v)-path Quv in M whose length is at
least dM (u, v) + k. Therefore, the length of the (s, t)-path Ps, Quv, Pt satisfies

`(Ps) + `(Quv) + `(Pt) ≥ `(Ps) + (dM (u, v) + k) + `(Pt)
= `(Ps) + `(Puv) + `(Pt) + k ≥ d+ k .

We constructed a path of at least length d+ k as required. J

3.4 Proof of Lemma 13: Large treewidth entails subdivided tetrahedra
To prove Lemma 13, we require some preliminaries from graph minors theory, among them a
term for vertex sets that enjoy very favorable connectivity properties.

I Definition 16 ([13]). Let G be a graph and A,B ⊆ V (G). The pair (A,B) is a separation
in G if the sets A \B and B \A are non-empty and no edge runs between them. The order
of (A,B) is the cardinality of A ∩B.

For S ⊆ V (G), we say that S is linked in G if, for every X,Y ⊆ S with |X| = |Y |, there
are |X| vertex-disjoint paths between X and Y that intersect S exactly at its endpoints.

With these definitions at hand, we can adapt a result by Leaf and Seymour [25] to
prove the following lemma on topological minor containment in graphs of sufficiently large
treewidth. For any forest F on k vertices, with maximum degree 3, it asserts that graphs G
of treewidth Ω(k) admit a separation such that one side contains F as a topological minor,

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:9

with the branch vertices of this topological minor being contained in A ∩B and linked in G.
We will use this lemma to complete the topological F -minor in G[A] to a larger graph by
using disjoint paths between vertices in A ∩B.

I Lemma 17 (?). Let F be a forest on k > 0 vertices with maximum degree 3 and let G be
a graph. If tw(G) ≥ 3

2k− 1, then G has a separation (A,B) of order |V (F)| such that:
1. There is a topological minor model (f, p) of F in G[A].
2. For every vertex v ∈ V (F) of degree ≤ 2, we have f(v) ∈ A ∩B.
3. A ∩B is linked in G[B].

Building upon Lemma 17, we then prove Lemma 13 by adapting work of Raymond and
Thilikos [30], who used a variant of Lemma 17 to prove the existence of k-wheel minors in
graphs of treewidth Ω(k). To this end, let T and P be obtained by k-subdividing the full
binary tree with 8 leaves, and the path with 8 vertices, respectively. We invoke Lemma 17
with F instantiated to the disjoint union T ∪ P . Since F has 21k + 2 vertices, we obtain
from Lemma 17 that any graph G with tw(G) ≥ 32k + 2 ≥ 3

2 · (21k + 2) has a separation
(A,B) of order |V (F)| that contains F in G[A] and has A ∩B linked in G[B].

Let XF denote the eight leaves of T , and let YF denote the eight non-subdivision vertices
of P . Furthermore, let XG, YG ⊆ A ∩B denote the images of XF and YF in G[A] under a
topological minor model guaranteed by Lemma 17. Since A ∩B is linked, we can find eight
disjoint paths connecting XG and YG in G[B]. We then prove that, regardless of how these
paths connect XG and YG, they always complete the topological minor model of F to one
of K≥k

4 in G. (The full version illustrates this in a figure.) Lemma 13 then follows.

Proof of Lemma 13. Let k ∈ N and let G be a graph with tw(G) ≥ 32k + 2. As before,
let T denote the full binary tree with 8 leaves, with root r, after each edge was subdivided k
times. Let P denote the path on 8 vertices after subdividing each edge k times.

We write XF = {x1, . . . , x8} for the leaves of T , and we write YF = {y1, . . . , y8} for the
vertices in P that were not obtained as subdivision vertices. Finally, we write F for the
disjoint union T ∪ P and consider XF , YF ⊆ V (F). Note that |V (F)| = 21k + 2 and that
the degree of all vertices in XF ∪ YF is bounded by 2.

By Lemma 17, there is a separation (A,B) in G of order |V (F)| such that A ∩ B is
linked, and there is a topological minor model (f, p) of F in G[A] with f(XF ∪ YF) ⊆ A ∩B.
We write XG = {f(v) | v ∈ XF } and YG = {f(v) | v ∈ YF }. In the following, we aim at
completing the subgraph induced by (f, p) in G to a K≥k

4 subgraph.
Since A ∩ B is linked in G[B], there are vertex-disjoint paths L1, . . . , L8 between XG

and YG in G[B] that avoid A∩B except at their endpoints. For i ∈ [8], denote the endpoints
of Li in XG and YG by si and ti, respectively. Assume without limitation of generality (by
reordering paths) that ti = f(yi) holds for all i ∈ [8]. Furthermore, for x ∈ XG, write σ(x)
for the vertex of YG that x is connected to via its path among L1, . . . , L8.

Let S denote the image of T under (f, p), which is a tree; let root(S) = f(r). Write S1, S2
for the two subtrees of S rooted at the children of root(S). Let lca(s1, s8) denote the lowest
common ancestor of s1 and s8 in S. We distinguish two cases:
Case 1: We have lca(s1, s8) 6= root(S). That is, s1 and s8 are both in S1 or both in S2.

Assume without limitation of generality that s1, s8 ∈ V (S1), as the argument proceeds
symmetrically otherwise. Let x and x′ be two distinct leaves of S2. Then we find a K≥k

4
in G by defining branch vertices w = lca(s1, s8), p = lca(x, x′), a = σ(x), and b = σ(x′).
Note that p 6∈ {x, x′} and that the four vertices are distinct.
We realize the edge pw along the (p, w)-path present in S, and ab along the (a, b)-path
present in P . We realize pa by concatenating the (p, x)-path in S and the (x, a)-path in

ICALP 2017

54:10 Finding Detours is Fixed-Parameter Tractable

G[B], and we realize pb likewise. To realize wa, we proceed as follows: If a precedes b in
the order on P , then concatenate the (w, s1)-path in S with L1 and the (y1, a)-path in P .
If b precedes a, then concatenate the (w, s8)-path in S with L8 and the (y8, a)-path in P .
Realize wb symmetrically. Then every edge between pairs in {w, p, a, b} is realized, and it
is so by a path of length at least k. This gives a topological minor model of K≥k

4 in G.
Case 2: We have lca(s1, s8) = root(S). That is, s1 and s8 are in different subtrees S1 and

S2. Let R be a subtree of height 2 in S that is disjoint from the (s1, s8)-path in S. It
is easy to verify that such a subtree indeed exists; denote its root by p, its leaves by
x, x′, and its parent in S by w. Furthermore, define a = σ(x) and b = σ(x′). We declare
{w, p, a, b} as branch vertices and connect them as in the previous case.

In both cases, the constructed topological minor model shows that G contains a K≥k
4

subgraph. This proves the lemma. J

4 Dynamic programming algorithm for exact detour

We devise an algorithm for Exact Detour using a reduction to Exact Path, the problem
that is given (G, s, t, k) to determine whether there is an (s, t)-path of length exactly k.

I Theorem 18 (?). Exact Detour is fixed-parameter tractable. In particular, it has a
bounded-error randomized algorithm with running time 2.746k poly(n), and a deterministic
algorithm with running time 6.745k poly(n).

Before we state the algorithm, let us introduce some notation. Let s, t ∈ V (G). For
any x ∈ V (G), we abbreviate dG(s, x), that is, the distance from s to x in G, with d(x),
and we let the i-th layer of G be the set of vertices x with d(x) = i. For u, v ∈ V (G) with
d(u) < d(v), we write G[u,v] for the graph G[X] induced by the vertex set X that contains
u, v, and all vertices x with d(u) < d(x) < d(v). We also write G[u,∞) for the graph G[X]
induced by the vertex set X that contains u and all vertices x with d(u) < d(x). These
graphs can be computed in linear time using breadth-first search starting at s. We now
describe an algorithm for Exact Detour that makes queries to an oracle for Exact Path.

The general idea is as follows. Let G be an undirected graph, and consider an (s, t)-path P
of length d+ k where d = dG(s, t), and let x be a token that travels along this path from s

to t. As the token advances one step in the path, the number d(x) can be incremented,
decremented, or stay the same. When x moves from s to t, we must increment d(x) at least d
times, can decrement it at most k/2 times, and keep it unchanged at most k times; the
reason is that the path must reach t but must use exactly k edges more than a shortest path.
The crucial observation is that there are at most k different layers whose intersection with
the path P contains more than one vertex. The idea for the algorithm is to guess the layers
with more than one vertex and run an algorithm for Exact Path on them.

Algorithm A (Exact Detour) Given (G, s, t, k), this algorithm decides whether the graph G
contains an (s, t)-path of length exactly dG(s, t) + k.
A1 (Initialize table) For each x ∈ V (G) with d(x) ≤ d(t), set T [x] = ∅.

When the algorithm halts, every entry T [x] of the table is meant to satisfy the following
property Qx: For each integer ` with d(t) − d(x) ≤ ` ≤ d(t) − d(x) + k, the set T [x]
contains ` if and only if G[x,∞) contains an (x, t)-path of length `.

A2 (Compute entries for the last k+1 layers) For each x ∈ V (G) with d(t)−k ≤ d(x) ≤ d(t),
let T [x] be the set of all integers ` with ` ∈ {0, . . . , 2k} such that there is an (x, t)-path
of length ` in G[x,∞) (that is, call Exact Path (G[x,∞), x, t, `)).
When this step finishes, all vertices x in the last k + 1 layers satisfy property Qx.

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:11

A3 (Inductively fill in earlier layers) For each d from d(t)− k − 1 down to 0, for each x with
d(x) = d, and for each y with d(x) < d(y) ≤ d(x) + k + 1, we do the following:
A3a Compute the set L of all `′ ∈ {0, . . . , 2k + 1} such that there is an (x, y)-path of

length `′ in G[x,y] (that is, call Exact Path (G[x,y], x, y, `
′)).

A3b Set T [x] := T [x] ∪ (L+ T [y]).
We will show that, when all vertices of a layer d have been considered, all vertices x in
the layers d and higher satisfy property Qx.

A4 Accept if and only if (dG(s, t) + k) ∈ T [s] holds.

I Lemma 19. Algorithm A is a polynomial-time Turing reduction from Exact Detour to
Exact Path; on instances with parameter k, all queries have parameter at most 2k + 1.

Proof. The running time of A is polynomially bounded since breadth-first search can be
used to discover all partial graphs G[x,y] and G[x,∞), and we loop at most over every pair of
vertices in A2 and A3. For the parameter bound, note that the queries in A2 and A3 are for
paths of length at most 2k and 2k + 1, respectively. It remains to prove the correctness.

We execute algorithm A on an instance (G, s, t, k). For the correctness, it suffices to prove
that property Qs holds at the end of the execution: Note that ` with ` = dG(s, t) + k lies in
the interval [d(t)− d(s), d(t)− d(s) + k] since d(s) = 0 and d(t) = dG(s, t) holds. Moreover,
we have G[s,∞) = G. Thus Qs guarantees that ` ∈ T [s] holds if and only if G contains an
(s, t)-path of length `, which by step A4 implies that A accepts if and only if (G, s, t, k) is a
yes-instance of Exact Detour. Therefore it remains to prove that Qs holds at the end of
the execution of A. We do so using the following claim.

Claim: For all x with 0 ≤ d(x) ≤ d(t), property Qx holds forever after the entry T [x] is
written to for the last time.

We prove this claim by induction on d(x). For the base case, let x be a vertex with
d(x) ≥ d(t) − k. The entry T [x] is only written to in step A2. To prove that Qx holds
after A2, let ` be an integer with d(t)− d(x) ≤ ` ≤ d(t)− d(x) + k. Note that d(t)− d(x) ≥ 0
and d(t) − d(x) + k ≤ d(t) − (d(t)− k) + k ≤ 2k holds, and so step A2 adds ` to T [x] if
and only if the graph G[x,∞) contains an (x, t)-path of length `. Therefore, Qx holds forever
after A2 has been executed.

For the induction step, let x be a vertex with d(x) < d(t) − k. By the induction
hypothesis, Qy holds for all y with d(y) > d(x). The entry T [x] is only written to in step A3b,
and when it is first written to, the outer d-loop in A3 has fully processed all layers larger
than d(x). Thus already when T [x] is written to for the first time, Qy holds for all y with
d(y) > d(x). Let T be the table right after A3b writes to T [x] for the last time. It remains
to prove that T [x] satisfies Qx. Let ` be an integer with d(t)− d(x) ≤ ` ≤ d(t)− d(x) + k.

Claim: There is an (x, t)-path of length ` if and only if T [x] contains `.
For the forward direction, let P be an (x, t)-path in G[x,∞) of length exactly `. There

are exactly ` vertices u ∈ V (P) \ {x}. Moreover, since every edge uv ∈ E(P) satisfies
|d(u) − d(v)| ≤ 1, every d ∈ {d(x) + 1, . . . , d(t)} must have some vertex u ∈ V (P) with
d(u) = d. Since ` ≤ d(t) − d(x) + k, there are at most k distinct d where more than one
vertex u ∈ V (P) satisfies d(u) = d. By the pigeon hole principle, there exists an integer d
in the (k + 1)-element set {d(x) + 1, . . . , d(x) + k + 1} such that there is exactly one vertex
y ∈ V (P) with d(y) = d.

Let P[x,y] be the subpath of P between x and y, and let `′ be its length. By construction,
P[x,y] is an (x, y)-path in G[x,y]. Moreover, we have `′ ≤ `− (d(t)− d(y)) since V (P) \ {x}
contains ` vertices u, at least d(t)− d(y) of which satisfy d(u) > d(y). By choice of ` and y,
we obtain `′ ≤ d(y)− d(x) + k ≤ 2k + 1. For this setting of y and `′, step A3a detects the

ICALP 2017

54:12 Finding Detours is Fixed-Parameter Tractable

path P[x,y] and `′ is added to the set L. The second piece P[y,∞] of the path P is a (y, t)-path
in G[y,∞] of some length `′′ between d(t)−d(y) and d(t)−d(y) +k; since Qy holds when A3b
is executed for x and y, the set T [y] contains `′′, and so ` = `′ + `′′ gets added to T [x]. Since
elements never get removed from T [x], the forward direction of the claim holds.

For the backward direction of the claim, assume that T [x] contains `. This means that `
is added in step A3b during the execution of the algorithm; in particular, consider the
variables y ∈ V (G), `′ ∈ L, and `′′ ∈ T [y] when ` = `′+ `′′ is added to T [x]. By the induction
hypothesis, `′′ ∈ T [y] implies that there is a (y, t)-path in G[y,∞) of length `′′. Moreover, `′
was set in A3a in such a way that there is an (x, y)-path of length `′ in the graph G[x,y].
Combined, these two paths yield a single (x, t)-path in G[x,∞) of length `. The backward
direction of the claim follows. J

The randomized algorithm of Björklund et al. [3] is for a variant of Exact Path where
the terminal vertices s and t are not given, that is, any path of length exactly k yields
a YES-instance. Their algorithm applies to our problem as well, with the same running
time. We sketch an argument for this observation here. Recall that the idea is to reduce
the problem to checking whether a certain polynomial is identically zero – this polynomial
is defined by summing over all possible labelled walks of length k (see [12, Sec. 10.4.3]).
We modify the polynomial by adding two leaf-edges, one incident to s and one to t, and
restricting our attention only to (k + 2)-walks that contain these two edges. The required
information for such walks can still be computed efficiently as before. The crux of the proof
is that walks that are not paths cancel out over a field of characteristic two; this argument
works by a local re-orientation of segments of the walk – an operation that does not change
the vertices of the walk and must therefore keep s and t fixed. The graph G contains a
k-path if and only if the polynomial is not identically zero; this property remains true in
our case. The rest of the argument goes through as before, so the algorithm of Björklund et
al. applies to Exact Path with no significant loss in the running time.

The deterministic algorithm of Zehavi [34] also does not expect the terminal vertices to
be given, but this algorithm works for the weighted version of the problem. In the weighted
k-path problem, we are given a graph G, weights we on each edge, a number k, and a
number W , and the question is whether there is a path of length exactly k such that the sum
of all edge weights along the path is at most W . We observe the following simple reduction
from Exact Path (with terminal vertices s and t) to the weighted k-path problem (without
terminal vertices): Every edge gets assigned the same edge weight 2, except for the new
leaf-edges at s and t, which get edge weight 1. Now every path with exactly k + 2 edges has
weight at most W = 2k + 2 if and only if the first and the last edges of the path are the
leaf-edges we added. Due to this reduction, Zehavi’s algorithm applies to Exact Path with
no significant loss in the running time.

Theorem 18 follows from Algorithm A by using either the algorithm of Björklund et al. [3]
or Zehavi [34] as the oracle. We remark that Theorem 18 and Algorithm A apply to directed
graphs as well, in which case an algorithm for Exact Path in directed graphs needs to be
used (color coding yields the fastest randomized algorithm [2], while Zehavi’s deterministic
algorithm also applies to directed graphs).

Open problem. We conclude with an open problem: what is the complexity of Longest
Detour in directed graphs? Neither directed treewidth nor cylindrical grid minors [21] seem
to help. Can one even find an (s, t)-path of length ≥ dG(s, t) + 1 in polynomial time?

I. Bezáková, R. Curticapean, H. Dell, and F. V. Fomin 54:13

Acknowledgments. We thank Daniel Lokshtanov, Meirav Zehavi, Petr Golovach, Saket
Saurabh, Stephan Kreutzer, and Tobias Mömke for helpful discussions and answers.

References
1 Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving

MAX-r-SAT above a tight lower bound. Algorithmica, 61(3):638–655, 2011. doi:10.1007/
s00453-010-9428-7.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995. doi:10.1145/210332.210337.

3 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017. doi:10.1016/j.jcss.2017.03.003.

4 Hans L. Bodlaender. On linear time minor tests with depth-first search. Journal of Algo-
rithms, 14(1):1–23, 1993. doi:10.1006/jagm.1993.1001.

5 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

6 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM
Journal on Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

7 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Jour-
nal of the ACM, 63(5):40:1–40:65, 2016. doi:10.1145/2820609.

8 Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Ross-
manith, Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved
path, matching, and packing algorithms. SIAM Journal on Computing, 38(6):2526–2547,
2009. doi:10.1137/080716475.

9 Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for
path, matching, and packing problems. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 298–307. SIAM, 2007.

10 Julia Chuzhoy. Improved bounds for the excluded grid theorem. CoRR, abs/1602.02629,
2016. URL: http://arxiv.org/abs/1602.02629.

11 Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai,
and Saket Saurabh. Polynomial kernels for lambda-extendible properties parameter-
ized above the Poljak-Turzik bound. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), pages 43–54, 2013.
doi:10.4230/LIPIcs.FSTTCS.2013.43.

12 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, Berlin, third edition, 2005.

14 Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms. Communications of the
ACM, 56(3):80–88, 2013. doi:10.1145/2428556.2428575.

15 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Efficient computation of repre-
sentative sets with applications in parameterized and exact algorithms. In Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 142–151,
2014. doi:10.1137/1.9781611973402.10.

16 Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover problem
parameterized above and below tight bounds. Theory of Computing Systems, 48(2):402–410,
2011. doi:10.1007/s00224-010-9262-y.

ICALP 2017

http://dx.doi.org/10.1007/s00453-010-9428-7
http://dx.doi.org/10.1007/s00453-010-9428-7
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1016/j.jcss.2017.03.003
http://dx.doi.org/10.1006/jagm.1993.1001
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1137/130947374
http://dx.doi.org/10.1145/2820609
http://dx.doi.org/10.1137/080716475
http://arxiv.org/abs/1602.02629
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.43
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2428556.2428575
http://dx.doi.org/10.1137/1.9781611973402.10
http://dx.doi.org/10.1007/s00224-010-9262-y

54:14 Finding Detours is Fixed-Parameter Tractable

17 Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permu-
tation constraint satisfaction problem parameterized above average has a kernel with a
quadratic number of variables. Journal of Computer and System Sciences, 78(1):151–163,
2012. doi:10.1016/j.jcss.2011.01.004.

18 John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manip-
ulation. Communications of the ACM, 16(6):372–378, June 1973. doi:10.1145/362248.
362272.

19 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-
coding with applications to signaling pathway detection. Algorithmica, 52(2):114–132, 2008.
doi:10.1007/s00453-007-9008-7.

20 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

21 Ken-ichi Kawarabayashi and Stephan Kreutzer. The directed grid theorem. In Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 655–664.
ACM, 2015. doi:10.1145/2746539.2746586.

22 Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-color. In
Proceedings of the 32nd International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), pages 58–67, 2006. doi:10.1007/11917496_6.

23 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming (ICALP),
volume 5125, pages 575–586. Springer, 2008. doi:10.1007/978-3-540-70575-8_47.

24 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commu-
nications of the ACM, 59(1):98–105, 2016. doi:10.1145/2742544.

25 Alexander Leaf and Paul D. Seymour. Tree-width and planar minors. Journal of Combi-
natorial Theory, Series B, 111:38–53, 2015. doi:10.1016/j.jctb.2014.09.003.

26 Meena Mahajan and Venkatesh Raman. Parameterizing above guaranteed values: MaxSat
and MaxCut. Journal of Algorithms, 31(2):335–354, 1999. doi:10.1006/jagm.1998.0996.

27 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. Journal of Computer and System Sciences, 75(2):137–153, 2009. doi:
10.1016/j.jcss.2008.08.004.

28 Burkhard Monien. How to find long paths efficiently. In Analysis and design of algorithms
for combinatorial problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages
239–254. North-Holland, Amsterdam, 1985. doi:10.1016/S0304-0208(08)73110-4.

29 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. Journal of Computer and System Sciences, 53(2):161–
170, 1996. doi:10.1006/jcss.1996.0058.

30 Jean-Florent Raymond and Dimitrios M. Thilikos. Low polynomial exclusion of planar
graph patterns. Journal of Graph Theory, 84(1):26–44, 2017. doi:10.1002/jgt.22009.

31 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. Jour-
nal of Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)
90030-4.

32 Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.
1073.

33 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109(6):315–318, 2009. doi:10.1016/j.ipl.2008.11.004.

34 Meirav Zehavi. Mixing color coding-related techniques. In Proceedings of the 23rd Annual
European Symposium on Algorithms (ESA), volume 9294, pages 1037–1049. Springer, 2015.
doi:10.1007/978-3-662-48350-3_86.

http://dx.doi.org/10.1016/j.jcss.2011.01.004
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1007/s00453-007-9008-7
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1145/2746539.2746586
http://dx.doi.org/10.1007/11917496_6
http://dx.doi.org/10.1007/978-3-540-70575-8_47
http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1016/j.jctb.2014.09.003
http://dx.doi.org/10.1006/jagm.1998.0996
http://dx.doi.org/10.1016/j.jcss.2008.08.004
http://dx.doi.org/10.1016/j.jcss.2008.08.004
http://dx.doi.org/10.1016/S0304-0208(08)73110-4
http://dx.doi.org/10.1006/jcss.1996.0058
http://dx.doi.org/10.1002/jgt.22009
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1006/jctb.1994.1073
http://dx.doi.org/10.1006/jctb.1994.1073
http://dx.doi.org/10.1016/j.ipl.2008.11.004
http://dx.doi.org/10.1007/978-3-662-48350-3_86

Further Approximations for Demand Matching:
Matroid Constraints and Minor-Closed Graphs∗

Sara Ahmadian1 and Zachary Friggstad†2

1 Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, Canada
sahmadian@uwaterloo.ca

2 Department of Computing Science, University of Alberta, Edmonton, Canada
zacharyf@ualberta.ca

Abstract
We pursue a study of the Generalized Demand Matching problem, a common generalization
of the b-Matching and Knapsack problems. Here, we are given a graph with vertex capacities,
edge profits, and asymmetric demands on the edges. The goal is to find a maximum-profit subset
of edges so the demands of chosen edges do not violate the vertex capacities. This problem is
APX-hard and constant-factor approximations are already known.

Our main results fall into two categories. First, using iterated relaxation and various filtering
strategies, we show with an efficient rounding algorithm that if an additional matroid structure
M is given and we further only allow sets F ⊆ E that are independent in M, the natural
LP relaxation has an integrality gap of at most 25

3 ≈ 8.333. This can be further improved
in various special cases, for example we improve over the 15-approximation for the previously-
studied Coupled Placement problem [Korupolu et al. 2014] by giving a 7-approximation.

Using similar techniques, we show the problem of computing a minimum-cost base in M
satisfying vertex capacities admits a (1, 3)-bicriteria approximation: the cost is at most the
optimum and the capacities are violated by a factor of at most 3. This improves over the
previous (1, 4)-approximation in the special case that M is the graphic matroid over the given
graph [Fukanaga and Nagamochi, 2009].

Second, we show Demand Matching admits a polynomial-time approximation scheme in
graphs that exclude a fixed minor. If all demands are polynomially-bounded integers, this is
somewhat easy using dynamic programming in bounded-treewidth graphs. Our main technical
contribution is a sparsification lemma that allows us to scale the demands of some items to be
used in a more intricate dynamic programming algorithm, followed by some randomized rounding
to filter our scaled-demand solution to one whose original demands satisfy all constraints.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures, G.2.1 Combina-
torial Algorithms, G.1.6 Optimization

Keywords and phrases Approximation Algorithms, Column-Restricted Packing, Demand Match-
ing, Matroids, Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.55

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10396.
† This research was undertaken, in part, thanks to funding from the Canada Research Chairs program

and an NSERC Discovery Grant.

EA
T

C
S

© Sara Ahmadian and Zachary Friggstad;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 55; pp. 55:1–55:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.55
https://arxiv.org/abs/1705.10396
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Matroid Constraints and Minor-Closed Graphs

1 Introduction

Many difficult combinatorial optimization problems involve resource allocation. Typically,
we have a collection of resources, each with finite supply or capacity. Additionally there are
tasks to be accomplished, each with certain requirements or demands for various resources.
Frequently the goal is to select a maximum value set of tasks and allocate the required amount
of resources to each task while ensuring we have enough resources to accomplish the chosen
tasks. This is a very well-studied paradigm: classic problems include Knapsack, Maximum
Matching, and Maximum Independent Set, and more recently-studied problems include
Unsplittable Flow [1] and Coupled Placement [9]. In general, we cannot hope to
get non-trivial approximation algorithms for these problems. Even the simple setting of
Maximum Independent Set is inapproximable [8, 18], so research frequently focuses on
well-structured special cases.

Our primary focus is when each task requires at most two different resources. Formally, in
Generalized Demand Matching (GDM) we are given a graph G = (V,E) with, perhaps,
parallel edges. The vertices should be thought of as resources and the tasks as edges. Each
v ∈ V has a capacity bv ≥ 0 and each uv ∈ E has demands du,e, dv,e ≥ 0 and a value puv ≥ 0.
A subset M ⊆ E is feasible if dv(δ(v) ∩M) ≤ bv for each v ∈ V (we use dv(S) as shorthand
for
∑
e∈S dv,e when S ⊆ δ(v)). We note that the simpler term Demand Matching (DM) is

used when du,e = dv,e for each edge e = uv (e.g. [15, 17]).
DM is well-studied from the perspective of approximation algorithms. It is fairly easy to

get constant-factor approximations and some work has been done refining these constants.
Moreover the integrality gap of a natural LP relaxation is also known to be no worse than a
constant (see the related work section). On the other hand, DM is APX-hard [15].

Our main results come in two flavours. First, we look to a generalization we call
Matroidal Demand Matching (GDMM). Here, we are given the same input as in GDM
but there is also a matroidM = (E, I) over the edges E with independence system I ⊆ 2E
that further restricts feasibility of a solution. A set F ⊆ E is feasible if it is feasible as a
solution to the underlying GDM problem and also F ∈ I. We assume M is given by an
efficient independence oracle. Our algorithms will run in time that is polynomial in the size
of G and the maximum running time of the independence oracle.

As a special case, GDMM includes the previously-studied Coupled Placement problem.
In Coupled Placement, we are given a bipartite graph G = (V,E) with vertex capacities.
The tasks are not individual edges, rather for each task j and each e = uv ∈ E we have
demands dju,e, djv,e placed on the respective endpoints u, v for placing j on edge e. Finally,
each task j has a profit pj and the goal is to select a maximum-profit subset of tasks j and,
for each chosen task j, assign j to an edge of G so vertex capacities are not violated. We
note that an edge may receive many different tasks. This can be viewed as an instance of
GDMM by creating parallel copies of each edge e ∈ E, one for each task j with corresponding
demand values and profit for j and lettingM be the partition matroid ensuring we take at
most one edge corresponding to any task.

For another interesting case, consider an instance where, in addition to tasks requiring
resources from a shared pool, each also needs to be connected to a nearby power outlet. We
can model such an instance by lettingM be a transversal matroid over a bipartite graph
where tasks form one side, outlets form the other side, and an edge indicates the edge can
reach the outlet.

In fact GDMM can be viewed as a packing problem with a particular submodular objective
function. These are studied in [2] so the problem is not new; our results are improved

S. Ahmadian and Z. Friggstad 55:3

approximations. Our techniques also apply to give bicriteria approximations for the variant
of GDMM where we must pack a cheap base of the matroid while obeying congestion bounds.
In the special case whereM is the graphic matroid over G itself (i.e. the Minimum Bounded-
Congestion Spanning Tree problem), we get an improved bicriteria approximation.

Second, we study GDM in special graph classes. In particular, we demonstrate a PTAS
in families of graphs that exclude a fixed minor. This is complemented by showing that even
DM is strongly NP-hard in simple planar graphs, thereby ruling out a fully-polynomial time
approximation scheme (FPTAS) in simple planar graphs unless P = NP.

1.1 Statements of Results and Techniques
We first establish some notation. For a matroidM = (E, I), we let rM : 2E → Z≥0 be the
rank function for M. We omit the subscript M if the matroid is clear from the context.
For v ∈ V we let δ(v) be all edges having v as one endpoint; for F ⊆ E we let δF (v) denote
δ(v) ∩ F . For a vector of values x indexed by a set S, we let x(A) =

∑
i∈A xi for any A ⊆ S.

A polynomial-time approximation scheme (PTAS) is an approximation algorithm that
accepts an additional parameter ε > 0. It finds a (1 + ε)-approximation in time O(nf(ε))
for some function f (where n is the size of the input apart from ε), so the running time is
polynomial for any constant ε > 0. An FPTAS is a PTAS with running time being polynomial
in 1

ε and n.
We say an instance of GDM has a consistent ordering of edges if E can be ordered

such that the restriction of this ordering to each set δ(v) has these edges e ∈ E appear in
nondecreasing order of demands dv,e. For example, DM itself has a consistent ordering of
demands, just sort edges by their demand values. This more general case was studied in [13].
We say the instance is conflict-free if for any e, f ∈ E we have that {e, f} does not violate
the capacity of any vertex.

In the first half of our paper, we mostly study the following linear-programming relaxation
of GDMM. Here, r : 2E → Z is the rank function forM.

max :

∑
e∈E

pexe :
∑
e∈δ(v)

dv,exe ≤ bv ∀v ∈ V, x(A) ≤ r(A) ∀A ⊆ E, x ≥ 0

 (LP-M)

Note x({e}) ≤ 1 is enforced for each e ∈ E as r({e}) ≤ 1. It is well-known that the constraints
can be separated in polynomial time when given an efficient independence oracle forM, so
we can find an extreme point optimum solution to (LP-M) in polynomial time.

Throughout, we assume each edge is feasible by itself. This is without loss of generality:
an edge that is infeasible by itself can be discarded1. We first prove the following.

I Theorem 1. Let OPT(LP-M) denote the optimum solution value of (LP-M). If dv,e ≤ bv
for each v ∈ V, e ∈ δ(v) then we can find, in polynomial time, a feasible solution M ⊆ E such
that OPT(LP-M)/p(M) (and, thus, the integrality gap) is at most:

25
3 in general graphs

7 in bipartite graphs
5 if the instance has a consistent ordering of edges
4 if the instance is conflict-free
1 +O(ε1/3) if dv,e ≤ ε · bv for each v ∈ V, e ∈ δ(v) (i.e. edges are ε-small)

1 This is a standard step when studying packing LPs, even the natural Knapsack LP relaxation has an
unbounded integrality gap if we consider items that do not fit by themselves.

ICALP 2017

55:4 Matroid Constraints and Minor-Closed Graphs

These bounds also apply to graphs with parallel edges, so we get a 7-approximation for
Coupled Placement, which beats the previously-stated 15-approximation in [9].

We prove all bounds in Theorem 1 using the same framework: iterated relaxation to
find some M′ ∈ I with p(M′) ≥ OPTLP that may violate some capacities by a controlled
amount, followed by various strategies to pare the solution down to a feasible solution. We
note constant-factor approximations for GDMM were already implicit in [2], the bounds
in Theorem 1 improve over their bounds and are relative to (LP-M) whereas [2] involves
multilinear extensions of submodular functions.

Our techniques can also be used to address a variant of GDMM. The input is the
same, except we are required to select a base ofM. The goal is to find a minimum-value
base satisfying the vertex capacities. More formally, let Minimum Bounded-Congestion
Matroid Basis be given the same way as in GDMM, except the goal is to find a minimum-
cost base B ofM satisfying the vertex capacities (i.e. the cheapest base that is a solution to
the GDMM problem).

When all demands are 1, this is the Minimum Bounded-Degree Matroid Basis
problem which, itself, contains the famous Minimum Bounded-Degree Spanning Tree
problem. As an important special case, we let Minimum Bounded-Congestion Spanning
Tree denote the problem when k = 2 with arbitrary demands where M is the graphic
matroid over G. Even determining if there is a feasible solution is NP-hard, so we settle with
approximations that may violate the capacities a bit. Consider the following LP relaxation,
which we write when G can even be a hypergraph.

min :

∑
e∈E

pexe :
∑
e∈δ(v)

dv,exe ≤ bv ∀v ∈ V, x(A) ≤ r(A) ∀A ⊆ E, x(E) = r(E), x ≥ 0

(LP-B)

As a side effect of how we prove Theorem 1, we also prove the following.

I Corollary 2. If G is a hypergraph where each edge has size at most k, then in polynomial
time we can either determine there is no integral point in (LP-B) or we can find a base B
ofM such that p(B) ≤ OPT(LP-B) and dv(δB(v)) ≤ bu + k ·maxe∈δ(v) dv,e for each v ∈ V .

I Theorem 3. There is a (1, 1 + k)-bicriteria approximation for Minimum Bounded-
Congestion Matroid Basis.

In particular, there is a (1, 3)-bicriteria approximation for Minimum Bounded-Congestion
Spanning Tree, beating the previous best (1, 4)-bicriteria approximation [5]. Theorem
3 matches the bound in [9] for the special case of Coupled Placement in k-partite
hypergraphs, but in a more general setting.

One could also ask if we can generalize Theorem 1 to hypergraphs. An O(k)-approximation
is already known [2] and the integrality gap of (LP-M) is Ω(k) even without matroid
constraints, so we could not hope for an asymptotically better approximation. We remind
the reader that our focus in GDMM is improved constants in the case of graphs (k = 2).

Our second class of results are quite easy to state. We study GDM in families of graphs
that exclude a fixed minor. It is easy to see GDM is strongly NP-hard in planar graphs
if one allows parallel edges as it is even strongly NP-hard with just two vertices, e.g. see
[6, 11]. We show the presence of parallel edges is not the only obstacle to getting an FPTAS
for GDM (or even DM) in planar graphs.

I Theorem 4. DM is NP-hard in simple, bipartite planar graphs even if all demands,
capacities, values, and vertex degrees are integers bounded by a constant.

S. Ahmadian and Z. Friggstad 55:5

We then present our main result in this vein, which gives a PTAS for GDM in planar
graphs among other graph classes.

I Theorem 5. GDM admits a PTAS in families of graphs that exclude a fixed minor.

This is obtained through the usual reduction to bounded-treewidth graphs [4]. We would
like to scale demands to be polynomially-bounded integers, as then it is easy to solve the
problem using dynamic programming over the tree decomposition. But packing problems are
too fragile for scaling demands naively: an infeasible solution may be regarded as feasible in
the scaled instance.

We circumvent this issue with a sparsification lemma showing there is a near-optimal
solution M′ where, for each vertex v, after packing a constant number of edges across v the
remaining edges in δM′(v) have very small demand compared with even the residual capacity.
Our dynamic programming algorithm then guesses these large edges in each bag of the tree
decomposition and packs the remaining edges according to scaled values. The resulting
solution may be slightly infeasible, but the blame rests on our scaling of small edges and
certain pruning techniques can be used to whittle this solution down to a feasible solution
with little loss in the profit.

1.2 Related Work
DM (the case with symmetric demands) is well-studied. Shepherd and Vetta initially give
a 3.264-approximation in general graphs and a 2.764-approximation in bipartite graphs
[15]. These are all with respect to the natural LP relaxation, namely (LP-M) with matroid
constraints replaced by xe ≤ 1,∀e ∈ E. They also prove that DM is APX-hard even in
bipartite graphs and give an FPTAS in the case G is a tree.

Parekh [13] improved the integrality gap bound for general graphs to 3 in cases of GDM
that have a consistent ordering of edges. Singh and Wu improve the gap in bipartite graphs
to 2.709 [17]. The lower bound on the integrality gap for general graphs is 3 [15], so the
bound in [13] is tight. In bipartite graphs, the gap is at least 2.699 [17].

Bansal, Korula, Nagarajan, and Srinivasan study the generalization of GDM to hyper-
graphs [2]. They show if each edge has at most k endpoints, the integrality gap of the natural
LP relaxation is Θ(k). They also prove that a slight strengthening of this LP has a gap
of at most (e+ o(1)) · k. Even more relevant to our results is that they prove if the value
function over the edges is submodular, then rounding a relaxation based on the multilinear
extension of submodular functions yields a

(
e2

e−1 + o(1)
)
· k-approximation. For k = 2, this

immediately gives a constant-factor approximation for GDMM by considering the submodular
objective function f : 2E → R given by f(S) = max{p(S′) : S′ ⊆ S, S′ ∈ I}.

They briefly comment on the case k = 2 in their work and say that even optimizations to
their analysis for this special case yields only a 11.6-approximation for DM (i.e. without a
matroid constraint). So our 25

3 -approximation for GDMM is an improvement over their work.
They also study the case where dv,e ≤ ε · bv for each v ∈ V and each hyperedge e ∈ δ(v) and
present an algorithm for GDM with submodular objective functions whose approximation
guarantee tends to 4e2

e−1 as ε→ 0 (with k fixed).
As noted earlier, our results yield improvements for two specific problems. First, our

7-approximation for GDMM in bipartite graphs improves over the 15-approximation for
Coupled Placement [9]. The generalization of Coupled Placement to k-partite
hypergraphs is also studied in [9] where they obtain an O(k3)-approximation, but this
was already inferior to the O(k)-approximation in [2] when viewing it as a submodular
optimization problem with packing constraints.

ICALP 2017

55:6 Matroid Constraints and Minor-Closed Graphs

Second, our work also applies to the Minimum-Congestion Spanning Tree problem,
defined earlier. Determining if there is even a feasible solution is NP-hard as this models
the Hamiltonian Path problem. A famous result of Singh and Lau shows if all demands are
1 (so we want to bound the degrees of the vertices) then we can find a spanning tree with
cost at most the optimum cost (if there is any solution) that violates the degree bounds
additively by +1 [16]. In the case of arbitrary demands, the best approximation so far
is a (1, 4)-approximation [5]: it finds a spanning tree whose cost is at most the optimal
cost and violates the capacities by a factor of at most 4. It is known that obtaining a
(1, c)-approximation is NP-hard for any c < 2 [7].

2 Approximation Algorithm for Demand Matching Problem

Here we present approximation algorithms for GDMM and prove Theorem 1 and Corollary 2.
Our algorithm consists of two phases: the iterative relaxation phase and the pruning phase.
The first finds a set M′ ∈ I with p(M′) ≥ OPT(LP-M) that places demand at most
bv + 2 ·maxe∈δM′ (v) dv,e on each v ∈ V . The second prunes M′ to a feasible solution, different
pruning strategies are employed to prove the various bounds in Theorem 1.

2.1 Iterative Relaxation Phase
This part is presented for the more general case of hypergraphs where each edge has at most
k endpoints. Our GDMM results in Theorem 1 pertain to k = 2, but we will use properties of
this phase in our proof of Corollary 2. The algorithm starts with (LP-M) and iteratively
removes edge variables and vertex capacities.

We use the following notation. For some W ⊆ V, F ⊆ E, a matroidM′ with ground set
F , and values b′v, v ∈ W we let LP-M[W,F,M′, b′] denote the LP relaxation we get from
(LP-M) over the graph (V, F) with matroid M′ where we drop capacity constraints for
v ∈ V −W and use capacities b′v for v ∈W .

Note that the relevant graph for LP-M[W,F,M′, b′] still has all vertices V , it is just that
some of the capacity constraints are dropped. Also, for a matroidM′ and an edge e ∈ F we
letM′ − e be the matroid obtained by deleting e and, if {e} is independent inM′, we let
M′/e be the matroid obtained by contracting e (i.e. a set A is independent inM′/e if and
only if A ∪ {e} is independent inM′).

Algorithm 1 describes the steps in the iterated relaxation phase. Correct execution and
termination are consequences of the following two lemmas. Their proofs are standard for
iterated techniques and are deferred to the full version.

I Lemma 6. Throughout the execution of the algorithm, wheneverM′ is contracted by e we
have {e} is independent (i.e. e is not a loop) inM′.

I Lemma 7. The algorithm terminates in polynomial time and the returned set M′ is an
independent set in M with p(M′) ≥ OPT(LP-M). Furthermore, if at any point W ′ = ∅
then the corresponding extreme point solution x∗ is integral.

The last statement in the lemma emphasizes the last case in the body of the loop cannot be
encountered if W ′ = ∅.

Next, we prove M′ is a feasible demand matching with respect to capacities bv + k ·
maxe∈δ(v) de,v for each v ∈ V by utilizing the following claim.

I Claim 8. In any iteration, if 0 < x∗e < 1 for each e ∈ F then |δF (v)| ≤ x∗(δF (v)) + k for
some v ∈W .

S. Ahmadian and Z. Friggstad 55:7

Algorithm 1 Iterated Relaxation Procedure for GDMM.
W ← V, F ← E,M′ ←M
b′v ← bv for each v ∈ V
M′ ← ∅
while F 6= ∅ do

solve LP-M[W,F,M′, b′] to get an optimum extreme point x∗
if x∗e = 0 for some e ∈ F then

F ← F − {e}
M′ ←M′ − e . fix x∗e to 0 from now on

else if x∗e = 1 for some e ∈ F then
F ← F − {e}
M′ ←M′/e
M′ ← M′ ∪ {e} . fix x∗e to 1 from now on
b′v ← b′v − dv,e for each endpoint v of e . permanently allocate space for e

else
let v be any vertex in W with minimum value |δF (v)| − x∗(δF (v))
W ←W − {v} . drop the capacity constraint for v

return M′

Proof. Let A1 (A2 (. . . (At ⊆ F be any maximal-length chain of tight sets. That is,
x∗(Ai) = rM′(Ai) for each Ai in the chain. Then the indicator vectors χAi ∈ {0, 1}F of
the sets Ai are linearly independent and every other A ⊆ F with x∗(Ai) = rM′(A) has
χA ∈ span{χAi : 1 ≤ i ≤ t}. This can be proven by using uncrossing techniques that exploit
submodularity of rM′ , see Chapter 5 of [10].

Now, as Ai−1 (Ai for 1 < i ≤ t and x∗e > 0 for each e ∈ F , we see rM′(Ai) = x∗(Ai) >
x∗(Ai−1) = rM′(Ai−1). Since the ranks are integral and rM′(A1) 6= 0 (as A1 6= ∅), then
rM(Ai) ≥ i for all 1 ≤ i ≤ t.

Note that |F | ≤ t + |W | because of the number of non-zero (fractional) variables is at
most the size of a basis for the tight constraints. We have∑

v∈W
|δF (v)| − x∗(δF (v)) ≤

∑
v∈V
|δF (v)| − x∗(δF (v)) ≤ k · (|F | − x∗(F))

≤ k · (|F | − rM′(At)) ≤ k · (|F | − t) ≤ k · |W |.

The second bound holds because each edge has at most k endpoints, so it can contribute
1− x∗e ≥ 0 at most k times throughout the sum. Thus, some v ∈W satisfies the claim. J

I Lemma 9. Algorithm 1 returns a set M′ ∈ I such that dv(δM′(v)− L(v)) ≤ bv where L(v)
denotes the min{k, |δM′(v)|} edges e ∈ δM′(v) with greatest demand dv,e across v.

Proof. We know M′ ∈ I by Lemma 7. Consider an iteration where a vertex v ∈ W is
removed from W . Claim 8 shows |δF (v)| ≤ x∗(δF (v)) + k.

Let F kv = {e1, . . . , ek} be the k edges of this iteration in δF (v) having largest demand (if
|δF (v)| < k then let F kv = δF (v)). Then∑

e∈δF (v)−Fk
v

dv,e ≤
∑

e∈δF (v)

dv,e · x∗e,v ≤ b′v.

The first bound follows because if we shift x∗-values from larger- to smaller-demand edges the
value

∑
e∈δF (v) dv,ex

∗
e,v does not increase. We can continue to do this until each e ∈ δF (v)−F kv

has one unit of x∗-mass because |δF (v)| − k ≤ x∗(δF (v)).

ICALP 2017

55:8 Matroid Constraints and Minor-Closed Graphs

ss

ll

ll

ss

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll

ll ll

Figure 1 Left: The graph with vertex labels s and l and edges A. Right: The graph G obtained
by “shattering” the s vertices. Notice the maximum degree is 2, the ss edges are isolated, and the
sl edges lie on paths.

At this point of the algorithm, we have dv(δM(v)) = bv − b′v (letting M denote the set M′
from the current iteration). So dv(δF (v)− F kv) + dv(δM(v)) ≤ bv. We conclude by noting the
edges returned by the algorithm contains only edges in M ∪ F so dv(M′ − L(v)) ≤ bv. J

Proof of Corollary 2. If there is no feasible solution to (LP-M), then there can be no
integral solution. Otherwise, we use the same iterated relaxation technique as in Algorithm
1, except on (LP-B), whose polytope is the restriction of the polytope from (LP-M) to the
base polytope ofM (which is also integral, Corollary 40.2d of [14]).

All arguments are proven in essentially the same way. So we can find, in polynomial time,
a base B with p(B) ≤ OPT(LP-B) where dv(δB(v)) ≤ bv + k ·maxe∈δB(v) dv,e. J

2.2 Pruning phase
We focus on GDMM (k = 2) in this section and show how to prune a set M′ ⊆ E satisfying
the properties of Lemma 9 to a feasible solution M ⊆ M′ while controlling the loss in its value.
Each part of Theorem 1 is proved through the following lemmas. In each, for a vertex v ∈ V
we let L(v) be the two edges with highest dv-value in δM′(v) (or L(v) = δM′(v) if |δM′(v)| ≤ 1).
We also let S(v) = δM′(v)− L(v) be the remaining edges. Note dv(δS(v)(v)) ≤ bv.

I Lemma 10. For arbitrary graph G and arbitrary demands, we can find a feasible demand
matching M ⊆ M′ with p(M) ≥ p(M′) · 3

25 .

Proof. For each vertex v, label v randomly with s with probability α or with l with
probability 1 − α (for α to be chosen later). Say e ∈ M′ agrees with the labelling for an
endpoint v if either e ∈ S(v) and v is labelled s, or v ∈ L(v) and v is labelled l. Let A ⊆ M′
be the edges agreeing with the labelling on both endpoints.

Modify the graph (V,A) by replacing each v ∈ V labelled s with |δA(v)| vertices and
reassigning the endpoint v of each e ∈ δA(v) to one of these vertices in a one-to-one fashion.
See Figure 1 for an illustration. Call this new graph G.

Each vertex in G has degree at most 2 so G decomposes naturally into paths and cycles.
Each path with ≥ 2 edges can be decomposed into 2 matchings and each cycle can be
decomposed into 3 matchings. Randomly choose one such matching for each path and cycle
to keep and discarding the remaining edges on these paths and cycles. Note edges uv of G
where u and v both had degree 1 are not discarded.

Let M be the resulting set of edges, viewed in the original graph G. Note that M is
feasible: any vertex labelled s already had its capacity satisfied by A because δA(v) ⊆ S(v).
Any vertex labelled l has at most one of its incident edges in A chosen to stay in M.

Let e = uv ∈ M′, we place a lower bound on Pr[e ∈ M] by analyzing a few cases.
If e ∈ S(u) ∩ S(v), then Pr[e ∈ M] = Pr[e ∈ A] = α2.

S. Ahmadian and Z. Friggstad 55:9

If e ∈ S(u) ∩ L(v) or vice-versa then Pr[e ∈ M] = α · (1− α)/2 (note e does not lie on a
cycle in G since one endpoint is labelled s).
If e ∈ L(u) ∩ L(v) then Pr[e ∈ M] = (1− α)2/3.

Choosing α = 2/5, we have E[p(M)] ≥ p(M′) · 3
25 . J

We can efficiently derandomize this technique as follows. First, we use a pairwise independent
family of random values to generate a probability space over labelings of V with O(|V |) events
such that the distribution of labels over pairs u, v ∈ V is the same as with independently
labelling the vertices. See Chapter 11 of [12] for details of this technique. For each such
labelling, we decompose the paths and cycles of G into matchings and keep the most profitable
matching from each path and cycle instead of randomly picking one.

I Lemma 11. For a conflict-free instance of GDMM, we can find a feasible solution M ⊆ M′
with p(M) ≥ p(M′)

4 .

Proof. The set A from the proof of Lemma 10 is already feasible so it does not need to be
pruned further. In this case, choose α = 1/2. J

I Lemma 12. If the given graph G is bipartite, then we can find a feasible solution M ⊆ M′
with p(M) ≥ p(M′)

7 .

Proof. Say VL, VR are the two sides of V . We first partition M′ into 4 groups:

{uv ∈ M′ : uv ∈ S(u) ∩ S(v)},
{uv ∈ M′ : uv ∈ L(u) ∩ L(v)},
{uv ∈ M′ : uv ∈ S(u) ∩ L(v)},
{uv ∈ M′ : uv ∈ L(u) ∩ S(v)}.

The first set is feasible. The latter three sets can each be partitioned into two feasible sets
as follows. For one of these sets, form G as in the proof of Lemma 10. Each cycle can also
be decomposed into two matchings because G, thus G, is bipartite. Between all sets listed
above, we have partitioned M′ into 7 feasible sets. Let M be one with maximum profit. J

I Lemma 13. For an arbitrary graph G = (V,E) with a consistent ordering on edges, we
can find a feasible demand matching M ⊆ M′ with p(M) ≥ p(M′)

5 .

Proof. We partition M′ into five groups in this case. Consider the edges in decreasing order
of the consistent ordering. When edge e = uv is considered, assign it to a group that does
not include edges in L(u) ∪ L(v) that come before e in the ordering. As |L(u) ∪ L(v)| ≤ 4,
the edges can be partitioned into five groups this way. Each group A is a feasible demand
matching since δA(v) ⊆ S(v) or |δA(v)| = 1 for each vertex v. Now let M be the group with
maximum profit, so p(M) ≥ p(M′)

5 . J

I Lemma 14. If dv,e ≤ ε ·bv for each v ∈ V, e ∈ δ(v), we can find a feasible demand matching
M ⊆ M′ with p(M) ≥ (1−O(ε1/3)) · p(M′).

This is proven using a common randomized pruning procedure so the proof is skipped in this
extended abstract. See, for example, [3] for a similar treatment in another packing problem.

ICALP 2017

55:10 Matroid Constraints and Minor-Closed Graphs

3 Demand Matching in Excluded-Minor Families

In this section we prove GDM admits a PTAS in graphs that exclude a fixed graph as a
minor. Our proof of Theorem 4 (the NP-hardness) appears in the full version. Throughout
we let OPT denote the optimum solution value to the given GDM instance.

Let H be a graph and let GH be all graphs that exclude H as a minor. Our PTAS uses
the following decomposition.

I Theorem 15 (Demaine, Hajiaghayi, and Kawarabayashi [4]). There is a constant cH depend-
ing only on H such that for any k and any G ∈ GH , the vertices V of G can be partitioned
into k + 1 disjoint sets so that the union of any k of these sets induce a graph with treewidth
bounded by cH · k. Such a partition can be found in time that is polynomial in |V |.

Using this decomposition, we have a PTAS for GDM when G ∈ GH if we have a PTAS for
GDM in bounded-treewidth graphs.

Intuition for our approach is given at the end of Section 1.1. We assume, for simplicity,
that all dv,e-values are distinct so we can naturally speak of the largest demands in a set.
This is without loss of generality, we could scale demands and capacities by a common value
so they are integers and then subtract 2i+j

3|E|2 from the j’th endpoint of the i’th edge according
to some arbitrary ordering. Such a perturbation does not change feasibility of solutions as
the total amount subtracted from all edges is < 1.

3.1 A Sparsification Lemma
We present our sparsification lemma, which even holds for general instances of GDMM.

I Lemma 16 (Sparsification Lemma). For each ε > 0 there is a feasible solution M ⊆ E with
the following properties.

p(M) ≥ (1− 2ε) ·OPT
for each v ∈ V , there is some Mv ⊆ M with |Mv| ≤ 1/ε2 such that dv,e ≤ ε · (bv −
dv(δMv (v))) for all e ∈ δM−Mv (v)

Think of Mv as the “large” edges in δM(v) and δM−Mv
(v) as the “small” edges in δM(v).

Note that some e ∈ M may be designated large on one endpoint and small on the other.

Proof. Let M∗ be an optimum solution. For each v ∈ V , if |δM∗(v)| ≥ 1/ε2 then let Lv be
the 1/ε2 edges in δM∗(v) with greatest dv-demand and Rv be a random subset of Lv of size
1/ε. If |δM∗(v)| < 1/ε2, simply let Lv = δM∗(v) and Rv = ∅.

Set M = M∗−∪v∈VRv and for each v ∈ V set Mv = M∩Lv. Clearly M is feasible as it is
a subset of the optimum solution. For each e = uv ∈ M∗, e lies in Ru or Rv with probability
at most ε each, so Pr[e 6∈ M] ≤ 2ε. Thus, E[p(M)] ≥ (1− 2ε) ·OPT.

Now we focus on proving the second property for M. Let v be an arbitrary vertex in V .
By construction |Mv| ≤ |Lv| ≤ 1/ε2. If |Rv| = 0 then δM−Mv (v) = ∅, otherwise, |Rv| = 1/ε
and for each remaining e ∈ δM−Mv

(v), we note that dv,e + dv(δMv
(v)) +

∑
e′∈Rv

dv,e′ ≤ bv
because the terms represent a subset of edges of M∗ incident to v. Rearranging and using
the fact that dv,e′ ≥ dv,e for any e′ ∈ Rv shows 1

ε · dv,e ≤ bv − dv(δMv
(v)). J

This motivates the following notion of a relaxed solution.

I Definition 17. An ε-relaxed solution is a subset M ⊆ E along with sets Mv ⊆ δM(v) with
|Mv| ≤ 1/ε2 for each v ∈ V such that the following hold. First, let bv = bv − dv(δMv (v)) for
each v ∈ V . Next, for each e ∈ δM−Mv

(v), let d′v,e be the value of dv,e rounded down to the
nearest integer multiple of ε

|E|bv. Then the following must hold:

S. Ahmadian and Z. Friggstad 55:11

Large Edge Feasibility: dv(δMv (v)) ≤ bv for each v ∈ V .
Small Edges: dv,e ≤ εbv for each v ∈ V and each e ∈ δM−Mv

(v).
Discretized Small Edge Feasibility: d′v(δM−Mv

(v)) ≤ bv for each v ∈ V .
The set M in an ε-relaxed solution is not necessarily a feasible GDM solution under the
original demands d. As we will see shortly, it can be pruned to get a feasible solution without
losing much value. Note the scaling from d to d′ for some of the edges e in the definition is
done independently for each endpoint of e: the demand at different endpoints may be shifted
down by different amounts.

Sometimes we informally say just a set M ⊆ E itself is an ε-relaxed solution even if we do
not explicitly mention the corresponding Mv sets.

I Lemma 18. Let M be an ε-relaxed solution with maximum possible value p(M). Then
p(M) ≥ (1− 2ε) ·OPT .

Proof. The set M and its corresponding Mv subsets from Lemma 16 suffices. J

I Lemma 19. Given any ε-relaxed solution M ⊆ E, we can efficiently find some M′ ⊆ M
that is a feasible GDM solution with p(M′) ≥ (1−O(ε1/3)) · p(M).

The idea is that the {0, 1} indicator vector of M is almost a feasible solution to (LP-M)
with the trivial matroid I = 2E in the residual instance after all “large” edges are packed
so it can be pruned to a feasible solution while losing very little value by appealing to the
last bound in Theorem 1. There is a minor subtlety in how to deal with edges that are both
“small” and “large”. The proof is deferred to the full version.

3.2 A Dynamic Programming Algorithm
Suppose G = (V,E) has treewidth at most τ and that we are given a tree decomposition
T = (B, ET) of G where each B ∈ B has |B| ≤ τ + 1. Recall this means the following:
1. For each v ∈ V , the set of bags Bv = {B ∈ B : v ∈ B} form a connected subtree of T .
2. For each uv ∈ E, there is at least one bag B ∈ B with u, v ∈ B.
Let Br ∈ B be some arbitrarily chosen root bag. View T as being rooted at Br. We may
assume that each B ∈ B has at most two children. In fact, it simplifies our recurrence a bit
to assume each B ∈ B is either a leaf in T or has precisely two children. This is without loss
of generality. Arbitrarily order the children of a non-leaf vertex so one is the left child and
one is the right child. For a bag B, let TB be the subtree of T rooted at B (so TBr = T).

For each v ∈ V , say Bv is the bag containing v that is closest to the root Br. Note for
uv ∈ E with Bu 6= Bv that one of Bu or Bv lies on the path between the other and Br

(by the properties of tree decompositions). For each B ∈ B and each v ∈ B, we partition a
subset of the edges of δ(v) into four groups:

δhere(v : B) = {uv ∈ δ(v) : Bu = B}.
δleft(v : B) = {uv ∈ δ(v) : Bu lies in the left subtree of B}.
δright(v : B) = {uv ∈ δ(v) : Bu lies in the right subtree of B}.
δup(v : B) = {uv ∈ δ(v) : Bu lies between B and Br}.

The only other edges uv ∈ δ(v) not accounted for here do not have Bu in either TB or
between B and Br. We note if B = Bv, then every edge in δ(v) lies in one of the four groups
and for any uv ∈ δup(v : B) we must have u ∈ B (otherwise no bag contains u and v, which is
impossible since uv ∈ E) and, consequently, Bu lies between B and Br. This will be helpful
to remember when we describe the recurrence.

ICALP 2017

55:12 Matroid Constraints and Minor-Closed Graphs

Dynamic Programming States

Let ∆ := {here, left, right, up} be the set of “directions” used above. The DP states are
given by tuples Φ with the following components.

A bag B ∈ B.
For each v ∈ B, a subset Mv ⊆ δ(v) with |Mv| ≤ 1/ε2.
For each v ∈ B and κ ∈ ∆, an integer av,κ ∈ {0, . . . , |E|/ε} such that

∑
κ∈∆ av,κ ≤ |E|ε .

The number of such tuples is at most |B| · |E|O(τ/ε2) · (|E|/ε)O(τ), which is polynomial in G
when τ and ε are regarded as constants. The idea behind av,κ is that it describes how to
reserve the discretized d′v-demand for edges uv ∈ δκ(v : B)−Mv. Of course, other edges in
δ(v) not in the partitions δκ(v : B) may be in an optimal ε-relaxed solution. They will either
be explicitly guessed in Mv or will be considered in a state higher up the tree by the time
the bag Bv is processed.

Dynamic Programming Values

For each such tuple Φ = (B; 〈Mv〉v∈B ; 〈av,κ〉v∈B,κ∈∆), we let f(Φ) denote the maximum
total value of an ε-relaxed solution M′ ⊆ E (with corresponding large sets M ′v for v ∈ V)
satisfying the following properties. We slightly abuse notation and say v ∈ TB for some
v ∈ V if v lies in some bag of the subtree TB .

Each uv ∈ M′ has at least one endpoint in TB .
M ′v = Mv for each v ∈ B.
Each uv ∈ M′ with both Bu, Bv 6∈ TB lies in M ′u ∪M ′v.
For v ∈ B let bv = bv − dv(δM ′v (v)). For κ ∈ ∆ and v ∈ B, it must be that d′v(δκ(v :
B) ∩M′ −M ′v) ≤ av,κ · ε

|E| · bv where d′v,e is the largest integer multiple of ε
|E| · bv that is

at most dv,e for e ∈ δM′−M ′v (v).
The last point is a bit technical. Intuitively, it says the scaled demand of small edges incident
to v coming from some direction κ ∈ ∆ fit in the capacity of v reserved for that direction.

If there is no such F , we say f(Φ) = −∞. Note the maximum of f(Φ) over all configura-
tions Φ for the root bag Br is the maximum value over all ε-relaxed solutions.

3.2.1 The Recurrence

For the sake of space, details behind the recurrence are deferred to the full version. We
just outline the main ideas. A tuple Φ is a base case if the bag B is a leaf of T . In this
case, only edges in some δκ(v : B) set for κ ∈ {here, up} are considered (there are none in
the directions left, right). We find the optimal way to pack such edges that are not part
of a “large” set Mv while ensuring the d′v-demands do not violate the residual capacities
bv and, in particular, for each direction κ we ensure this packing does not violate the part
of the residual capacity for that direction allocated by the av,κ values. This subproblem
is just the Multi-Dimensional Knapsack problem with 2|B| knapsacks. A standard
pseudopolynomial-time algorithm can be used to solve it as the scaled demands are from a
polynomial-size discrete range.

For the recursive step, we try all pairs of configurations Φleft,Φright that are “consistent”
with Φ. Really this just means they agree on the sets Mv for shared vertices v and they agree
on how much demand av,κ should be allocated for each direction. For each such consistent
pair, we pack small edges in δhere(v : B) and δup(v : B) optimally such that their scaled
demands do not violate the av,κ-capacities, again using Multi-Dimensional Knapsack.

S. Ahmadian and Z. Friggstad 55:13

References
1 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing

2 + ε approximation for unsplittable flow on a path. In Proceedings of the Twenty-fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 26–41. Society for Industrial
and Applied Mathematics, 2014.

2 Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. Solving pack-
ing integer programs via randomized rounding with alterations. Theory of Computing,
8(1):533–565, 2012.

3 Gruia Calinescu, Amit Chakrabarti, Howard Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7,
2011.

4 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In Proceedings of the
Forty-sixth Annual IEEE Symposium on Foundations of Computer Science, pages 637–646.
IEEE, 2005.

5 Takuro Fukunaga and Hiroshi Nagamochi. Network design with weighted degree constraints.
Discrete Optimization, 7(4):246–255, 2010.

6 Georgii Gens and Evgenii Levner. Complexity of approximation algorithms for combinato-
rial problems: a survey. ACM SIGACT News, 12(3):52–65, 1980.

7 Mohammad Ghodsi, Hamid Mahini, Kian Mirjalali, Shayan Oveis Gharan, Morteza Zadi-
moghaddam, et al. Spanning trees with minimum weighted degrees. Information Processing
Letters, 104(3):113–116, 2007.

8 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–
142, 1999.

9 Madhukar Korupolu, Adam Meyerson, Rajmohan Rajaraman, and Brian Tagiku. Coupled
and k-sided placements: generalizing generalized assignment. Mathematical Programming,
154(1-2):493–514, 2015.

10 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

11 Michael J. Magazine and Maw-Sheng Chern. A note on approximation schemes for multi-
dimensional knapsack problems. Mathematics of Operations Research, 9(2):244–247, 1984.

12 Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

13 Ojas Parekh. Iterative packing for demand and hypergraph matching. In International Con-
ference on Integer Programming and Combinatorial Optimization, pages 349–361. Springer,
2011.

14 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer,
2003.

15 Bruce Shepherd and Adrian Vetta. The demand-matching problem. Mathematics of Oper-
ations Research, 32(3):563–578, 2007.

16 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In Proceedings of the Thirty-eighth Annual ACM Symposium on
Theory of Computing, pages 661–670. ACM, 2007.

17 Mohit Singh and Hehui Wu. Nearly tight linear programming bounds for demand matching
in bipartite graphs. http://cgi.cs.mcgill.ca/~hehui/paper/Demand_matching.pdf,
2012.

18 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, pages 681–690. ACM, 2006.

ICALP 2017

http://cgi.cs.mcgill.ca/~hehui/paper/Demand_matching.pdf

Covering Vectors by Spaces: Regular Matroids∗

Fedor V. Fomin1, Petr A. Golovach2, Daniel Lokshtanov3, and
Saket Saurabh4

1 Department of Informatics, University of Bergen, Bergen, Norway
fedor.fomin@ii.uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway
petr.golovach@ii.uib.no

3 Department of Informatics, University of Bergen, Bergen, Norway
daniello@ii.uib.no

4 Department of Informatics, University of Bergen, Bergen, Norway; and
Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

Abstract
We consider 5the problem of covering a set of vectors of a given finite dimensional linear space
(vector space) by a subspace generated by a set of vectors of minimum size. Specifically, we study
the Space Cover problem, where we are given a matrix M and a subset of its columns T ; the
task is to find a minimum set F of columns of M disjoint with T such that that the linear span
of F contains all vectors of T . This is a fundamental problem arising in different domains, such
as coding theory, machine learning, and graph algorithms.

We give a parameterized algorithm with running time 2O(k) · ||M ||O(1) solving this problem
in the case when M is a totally unimodular matrix over rationals, where k is the size of F . In
other words, we show that the problem is fixed-parameter tractable parameterized by the rank
of the covering subspace. The algorithm is “asymptotically optimal” for the following reasons.

Choice of matrices: Vector matroids corresponding to totally unimodular matrices over ration-
als are exactly the regular matroids. It is known that for matrices corresponding to a more
general class of matroids, namely, binary matroids, the problem becomes W[1]-hard being
parameterized by k.

Choice of the parameter: The problem is NP-hard even if |T | = 3 on matrix-representations of
a subclass of regular matroids, namely cographic matroids. Thus for a stronger parameteriz-
ation, like by the size of T , the problem becomes intractable.

Running Time: The exponential dependence in the running time of our algorithm cannot be
asymptotically improved unless Exponential Time Hypothesis (ETH) fails.

Our algorithm exploits the classical decomposition theorem of Seymour for regular matroids.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases regular matroids, spanning set, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.56

∗ The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959
and the Research Council of Norway via the projects “CLASSIS” and “MULTIVAL”.

EA
T

C
S

© Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 Covering Vectors by Spaces: Regular Matroids

1 Introduction

We consider the fundamental problem of covering a subspace of a given finite dimensional
linear space (vector space) by a set of vectors of minimum size. The input of the problem is
a matrix M given together with a function w assigning a nonnegative weight to each column
of M and a set T of terminal column-vectors T of M . The task is to find a minimum set
of column-vectors F of M (if such a set exists) which is disjoint with T and generates a
subspace containing the linear space generated by T . In other words, T ⊆ span(F), where
span(F) is the linear span of F . We refer to this problem as the Space Cover problem.

The Space Cover problem encompasses various problems arising in different domains.
The Minimum Distance problem in coding theory asks for a minimum dependent set of
columns in a matrix over GF(2). This problem can be reduced to Space Cover by finding
for each column t in matrix M a minimum set of columns in the remaining part of the matrix
that cover T = {t}. The complexity of this problem was asked by Berlekamp et al. [2] and
remained open for almost 30 years. It was resolved only in 1997, when Vardy showed it
to be NP-complete [38]. The parameterized version of the Minimum Distance problem,
namely Even Set, asks whether there is a dependent set F ⊆ X of size at most k. The
parameterized complexity of Even Set is a long-standing open question in the area, see
e.g. [8]. In the language of matroid theory, the problem of finding a minimum dependent set
is known as Matroid Girth, i.e. the problem of finding a circuit in matroid of minimum
length [39]. In machine learning this problem is known as the Subspace Recovery problem
[20]. This problem also generalizes the problem of computing the rank of a tensor.

For our purposes, it is convenient to rephrase the definition of the Space Cover problem
in the language of matroids. Given a matrix N , let M = (E, I) denote the matroid where the
ground set E corresponds to the columns of N and I denote the family of subsets of linearly
independent columns. This matroid is called the vector matroid corresponding to matrix N .
Then for matroids, finding a subspace covering T corresponds to finding F ⊆ E \ T , F ∈ I,
such that |F | ≤ k and T is spanned by F . Let us remind that in a matroid set F spans T ,
denoted by T ⊆ span(F), if r(F) = r(T ∪ F). Here r : 2E → N0 is the rank function of M .
(We use N0 to denote the set of nonnegative integers.)

Then Space Cover is defined as follows.

Space Cover Parameter: k

Input: A binary matroid M = (E, I) given together with its matrix representation over
GF(2), a weight function w : E → N0, a set of terminals T ⊆ E, and a nonnegative
integer k.
Question: Is there a set F ⊆ E \ T with w(F) ≤ k such that T ⊆ span(F)?

Since a representation of a binary matroid is given as a part of the input, we always assume
that the size of M is ||M || = |E|. For regular matroids, testing matroid regularity can be
done efficiently, see e.g. [37], and when the input binary matroid is regular, the requirement
that the matroid is given together with its representation can be omitted.

It is known (see, e.g., [26]) that Space Cover on special classes of binary matroids,
namely graphic and cographic matroids, generalizes two well-studied optimization problems
on graphs, namely Steiner Tree and Multiway Cut. Both problems play fundamental
roles in parameterized algorithms.

Recall that in the Steiner Forest problem we are given a (multi) graph G, a weight
function w : E → N, a collection of pairs of distinct vertices {x1, y1}, . . . , {xr, yr} of G, and a
nonnegative integer k. The task is to decide whether there is a set F ⊆ E(G) with w(F) ≤ k

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:3

such that for each i ∈ {1, . . . , r}, graph G[F] contains an (xi, yi)-path. To see that Steiner
Forest is a special case of Space Cover, for instance (G,w, {x1, y1}, . . . , {xr, yr}, k) of
Steiner Forest, we construct the following graph. For each i ∈ {1, . . . , r}, we add a new
edge xiyi to G and assign an arbitrary weight to it; notice that we can create multiple edges
this way. Denote by G′ the obtained mulitigraph and let T be the set of added edges and let
M(G′) be the graphic matroid associated with G′. Then a set of edges F ⊆ E(G) forms a
graph containing all (xi, yi)-paths if an only if T ⊆ span(F) in M(G′).

The special case of Steiner Forest when x1 = x2 = · · · = xr, i.e. when set F should
form a connected subgraph spanning all demand vertices, is the Steiner Tree problem, the
fundamental problem in network optimization. By the classical result of Dreyfus and Wagner
[10], Steiner Tree is fixed-parameter tractable (FPT) parameterized by the number of
terminals. The study of parameterized algorithms for Steiner Tree has led to the design of
important techniques, such as Fast Subset Convolution [3] and the use of branching walks [29].
Research on the parameterized complexity of Steiner Tree is still on-going, with recent
significant advances for the planar version of the problem [33]. Algorithms for Steiner
Tree are frequently used as a subroutine in FPT algorithms for other problems; examples
include vertex cover problems [19], near-perfect phylogenetic tree reconstruction [4], and
connectivity augmentation problems [1].

The dual of Space Cover, i.e., the variant of Space Cover asking whether there is a
set F ⊆ E \ T with w(F) ≤ k such that T ⊆ span(F) in the dual matroid M∗, is equivalent
to the Restricted Subset Feedback Set problem. In this problem the task is for a
given matroid M , a weight function w : E → N0, and a nonnegative integer k, to decide
whether there is a set F ⊆ E \ T with w(F) ≤ k such that matroid M ′ obtained from M by
deleting the elements of F has no circuit containing an element of T . Hence, Space Cover
for cographic matroids is equivalent to Restricted Subset Feedback Set for graphic
matroids. Restricted Subset Feedback Set for graphs was introduced by Xiao and
Nagamochi [40], who showed that this problem is FPT parameterized by |F |. Let us note
that in order to obtain an algorithm for Space Cover with a single-exponential dependence
in k, we also need to design a new algorithm for Space Cover on cographic matroids which
improves significantly the running time achieved by Xiao and Nagamochi [40].

Multiway Cut, another fundamental graph problem, is the special case of Restricted
Subset Feedback Set, and therefore of Space Cover. In the Multiway Cut problem we
are given a (multi) graph G, a weight function w : E → N, a set S ⊆ V (G), and a nonnegative
integer k. The task is to decide whether there is a set F ⊆ E(G) with w(F) ≤ k such that the
vertices of S are in distinct connected components of the graph obtained from G by deleting
edges of F . Indeed, let (G,w, S, k) be an instance of Multiway Cut. We construct graph G′
by adding a new vertex u and connecting it to the vertices of S. Denote by T the set of added
edges and assign weights to them arbitrarily. Then (G,w, S, k) is equivalent to the instance
(M(G′), w, T, k) of Restricted Subset Feedback Set. If |S| = 2, Multiway Cut is
exactly the classical min-cut problem which is solvable in polynomial time. However, as it
was proved by Dahlhaus et al. [6] already for three terminals the problem becomes NP-hard.
Marx, in his celebrated work on important separators [28], has shown that Multiway Cut
is FPT when parameterized by the size of the cut |F |.

While Steiner Tree is FPT parameterized by the number of terminal vertices, the
hardness results for Multiway Cut with three terminals yields that Space Cover paramet-
erized by the size of the terminal set T is Para-NP-complete even if restricted to cographic
matroids. This explains why we parameterize Space Cover by the rank of the span and
not the size of the terminal set.

ICALP 2017

56:4 Covering Vectors by Spaces: Regular Matroids

There is also a strong argument that Space Cover is not tractable in its full generality
on binary matroids for the following reason. It follows from the result of Downey et al. [9]
on the hardness of the Maximum-Likelihood Decoding problem, that Space Cover
is W[1]-hard for binary matroids when parameterized by k even if restricted to the inputs
with one terminal and unit-weight elements. However, it is still possible to establish the
tractability of the problem on a large class of binary matroids. Sandwiched between graphic
and cographic (where the problem is FPT) and binary matroids (where the problem is
intractable) is the class of regular matroids. Our main theorem establishes the tractability of
Space Cover on regular matroids.

I Theorem 1. Space Cover on regular matroids is solvable in time 2O(k) · ||M ||O(1).

We believe that due to the generality of Space Cover, Theorem 1 will be useful in the
study of various optimization problems on regular matroids. As an example, we consider
the Rank h-Reduction problem, see e.g. [24]. Here we are given a binary matroid M

and positive integers h and k, the task is to decide whether it is possible to decrease the
rank of M by at least h by deleting k elements. For graphic matroids, this is the h-Way
Cut problem, which is for a connected graph G and positive integers h and k, to decide
whether it is possible to separate G into at least h connected components by deleting at
most k edges. By the celebrated result of Kawarabayashi and Thorup [25], h-Way Cut is
FPT parameterized by k even if h is a part of the input. The result of Kawarabayashi and
Thorup cannot be extended to cographic matroids; we show that for cographic matroids the
problem is W[1]-hard when parameterized by h+ k. On the other hand, by making use of
Theorem 1, we solve Rank h-Reduction in time 2O(k) · ||M ||O(h) on regular matroids.

Let us also remark that the running time of our algorithm is asymptotically optimal:
unless Exponential Time Hypothesis fails, there is no algorithm of running time 2o(k) ·||M ||O(1)

solving Space Cover on graphic (Steiner Tree) or cographic (Multiway Cut) matroids,
see e.g. [5].

Related work. The main building block of our algorithm is the fundamental theorem of
Seymour [34] on a decomposition of regular matroids. Roughly speaking (we define it
properly in Section 2), the Seymour’s decomposition provides a way to decompose a regular
matroid into much simpler base matroids that are graphic, cographic or have a constant
size in such way that all “communication” between base matroids is limited to “cuts” of
small rank (we refer to the monograph of Truemper [37] and the survey of Seymour [35]
for the introduction to matroid decompositions). This theorem has a number of important
combinatorial and algorithmic applications. Among the classic algorithmic applications
of Seymour’s decomposition are the polynomial time algorithms of Truemper [36] (see
also [37]) for finding maximum flows and shortest routes and the polynomial algorithm of
Golynski and Horton [18] for constructing a minimum cycle basis. More recent applications
of Seymour’s decomposition can be found in approximation, on-line and parameterized
algorithms. Godberg and Jerrum [17] used Seymour’s decomposition theorem for obtaining
a fully polynomial randomized approximation scheme (FPRAS) for the partition function of
the ferromagnetic Ising model on regular matroids. Dinitz and Kortsarz in [7] applied the
decomposition theorem for the Matroid Secretary problem. In [12], Gavenciak, Král and
Oum initiated the study of the Minimum Spanning Circuit problem for matroids that
generalizes the classical Cycle Through Elements problem for graphs. The problem asks
for a matroid M , a set T ⊆ E and a nonnegative integer `, whether there is a circuit C of
M with T ⊆ C of size at most `. Gavenciak, Král and Oum [12] proved that the problem is

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:5

FPT when parameterized by ` if |T | ≤ 2. Very recently, in [11], we extended this result by
showing that Minimum Spanning Circuit is FPT when parameterized by k = `− |T |.

On a very superficial level, all the algorithmic approaches based on the Seymour’s decom-
position theorem utilize the same idea: solve the problem on base matroids and then “glue”
solutions into a global solution. However, such a view is a strong oversimplification. First of
all, the original decomposition of Seymour in [34] was not meant for algorithmic purposes
and almost every time to use it algorithmically one has to apply nontrivial adjustments
to the original decomposition. For example, in order to solve Matroid Secretary on
regular matroids, Dinitz and Kortsarz in [7] had to give a refined decomposition theorem
suitable for their algorithmic needs. Similarly, in order to use the decomposition theorem for
approximation algorithms, Goldberg and Jerrum in [17] had to add several new ingredients to
the original Seymour’s construction. We face exactly the same nature of difficulties in using
Seymour’s decomposition theorem. Our starting point is the variant of the decomposition
theorem proved by Dinitz and Kortsarz in [7]. However, this theorem as it is can also not be
used “statically” for our purposes. Our algorithm, while recursively constructing a solution
has to “dynamically” transform the decomposition. This occurs when the algorithm processes
cographic matroids “glued” with other matroids and for that part of the algorithm the
transformation of the decomposition is essential.

2 Algorithm roadmap

In this section we give a high level overview of our algorithm for Space Cover. Due to
space restrictions, all details and proofs are postponed for a journal version of our paper.
We assume that the reader is acquainted with the basics of Matroid theory and refer to the
book of Oxley [32] for the introduction.

We denote the ground set of matroid M = (E, I) by E(M) or simply by E if it does
not create confusion. Recall that a set X ⊆ E spans e ∈ E if r(X ∪ {e}) = r(X), and
span(X) = {e ∈ E | X spans e}, where r is the rank function of M . Respectively, X spans
a set T ⊆ E if T ⊆ span(X). An (inclusion) minimal dependent set is called a circuit of
M . An one-element circuit is called loop, and if {e1, e2} is a two-element circuit, then it is
said that e1 and e2 are parallel. A set X ⊆ E is a cycle of M if X is either empty or X is
a disjoint union of circuits. Let G be a (multi) graph. The cycle matroid M(G) has the
ground set E(G) and a set X ⊆ E(G) is independent if X = ∅ or G[X] has no cycles. Notice
that C is a circuit of M(G) if and only if C induces a cycle of G. The bond matroid M∗(G)
with the ground set E(G) is dual to M(G), and X is a circuit of M∗(G) if and only if X is a
minimal cut-set of G. It is said that M is a graphic matroid if M is isomorphic to M(G) for
some graph G and M is cographic if M is isomorphic to M∗(G).

Our algorithm uses the following observation.

I Observation 2. Let e ∈ E and X ⊆ E \ {e} for a matroid M . Then e ∈ span(X) if and
only if there is a circuit C such that e ∈ C ⊆ X ∪ {e}.

By Observation 2, to solve Space Cover we have to find F ⊆ E \ T with w(F) ≤ k

such that for every t ∈ T , there is circuit C of M such that t ∈ C ⊆ F ∪ {t}.

2.1 Regular matroid decompositions
In this section we describe matroid decomposition theorems that are pivotal for the algorithm
for Space Cover. Roughly speaking, the classical theorem of Seymour [34] says that every
regular matroid can be decomposed via “small sums" into basic matroids which are graphic,

ICALP 2017

56:6 Covering Vectors by Spaces: Regular Matroids

cographic and very special matroid of constant size called R10. To describe the decomposition
of matroids, we need the notion of “`-sums” of matroids; we refer to [32, 37] for a formal
introduction to matroid sums. However, for our purpose, it is sufficient that we restrict
ourselves to binary matroids and up to 3-sums [34]. Recall that, for two sets X and Y ,
X 4 Y = (X \ Y) ∪ (Y \X) denotes the symmetric difference of X and Y . For two binary
matroids M1 and M2, the sum of M1 and M2, denoted by M14M2, is the matroid M with
the ground set E(M1)4 E(M2) whose cycles are all subsets C ⊆ E(M1)4 E(M2) of the
form C = C1 4 C2, where C1 is a cycle of M1 and C2 is a cycle of M2.

I Definition 3 ({1, 2, 3}-sum). For matroids M1, M2 and their sum M ,
(S1) If E(M1) ∩ E(M2) = ∅ and E(M1), E(M2) 6= ∅, then M is the 1-sum of M1 and M2

and we write M = M1 ⊕1 M2.
(S2) If |E(M1) ∩ E(M2)| = 1, then M is the 2-sum of M1 and M2 and we write M =

M1 ⊕2 M2.
(S3) If |E(M1) ∩E(M2)| = 3, the 3-element set Z = E(M1) ∩E(M2) is a circuit of M1 and

M2, then M is the 3-sum of M1 and M2 and we write M = M1 ⊕3 M2.
If M = M1 ⊕k M2 for some k ∈ {1, 2, 3}, then we write M = M1 ⊕M2.

Note that the definitions of (S2) and (S3) in [34] include some additional restrictions for
E(M1) ∩ E(M2) but, as it was pointed by Dinitz and Kortsarz in [7], they are used only to
ensure the nontriviality and can be omitted for algorithmic applications.

I Definition 4 ({1, 2, 3}-decomposition). A {1, 2, 3}-decomposition of a matroid M is a
collection of matroidsM, called the basic matroids, and a rooted binary tree T in which M
is the root and the elements ofM are the leaves such that any internal node is either 1-, 2-
or 3-sum of its children.

We also need the special binary matroid R10 which is represented over GF(2) by the
5× 10-matrix whose columns are formed by vectors that have exactly three non-zero entries
(or rather three ones) and no two columns are identical. Seymour’s theorem [34] states that
every regular matroid has a {1, 2, 3}-decomposition in which every basic matroid is graphic,
cographic or isomorphic to R10.

Dinitz and Kortsarz in [7] obtained a variant of matroid decomposition which is more
handy for our purposes. This variant is based on the notion conflict graph.

I Definition 5 ([7]). Let (T,M) be a {1, 2, 3}-decomposition of a matroid M . The conflict
(or intersection) graph of (T,M) is the graph GT with the vertex setM such that distinct
M1,M2 ∈M are adjacent in GT if and only if E(M1) ∩ E(M2) 6= ∅.

I Theorem 6 ([7]). For a given regular matroid M , there is a (conflict) tree T , whose
set of nodes is a set of matroids M, where each element of M is a graphic or cographic
matroid, or a matroid obtained from R10 by (possibly) adding parallel elements, that has the
following properties: (i) if two distinct matroids M1,M2 ∈M have nonempty intersection,
then M1 and M2 are adjacent in T , (ii) for any distinct M1,M2 ∈ M, the intersection
E(M1)∩E(M2) satisfies one of the properties (S1)–(S3) of 1, 2 or 3-sums, (iii) M is obtained
by the consecutive performing 1, 2 or 3-sums for adjacent matroids in any order. Moreover,
T can be constructed in a polynomial time.

If T is a conflict tree for matroid M , we say that M is defined by T .

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:7

2.2 Elementary reductions for Space Cover
In this section we give some elementary reduction rules that we apply on the instances of
Space Cover to make it more structured. This structure will be exploited by our FPT
algorithm. In particular, our algorithm crucially utilizes the fact that the solution F we are
seeking is of size at most k. However, the way our algorithm is designed, in certain cases the
weights of elements can be changed and it can occur that some elements could have been
assigned weight zero by w. In this case a solution F of weight at most k does not imply
that it is a solution of size at most k. These reduction rules allow us to take care of such
situations.

I Reduction Rule 1 (Zero-element). If there is an element e ∈ E \ T with w(e) = 0, then
contract e.

I Reduction Rule 2 (Terminal circuit). If there is a circuit C ⊆ T , then delete an arbitrary
element e ∈ C from M .

Let us note that Reduction Rules 1 and 2 can be applied in time polynomial in ||M ||.

2.3 Solving Space Cover for basic matroids
We start by solving Space Cover on basic matroids that are building blocks of regular
matroid: R10, graphic and cographic matroids. For R10 the solution is trivial and for graphic
matroids it is an easy extension of the classic Dreyfus-Wagner algorithm [10] for Steiner
Tree. However, a single-exponential algorithm for cographic matroids requires new ideas.

Thus we obtain the following lemmata.

I Lemma 7. Space Cover can be solved in polynomial time for matroids that can be
obtained from R10 by adding parallel elements, element deletions and contractions.

I Lemma 8. Space Cover on graphic matroids is solvable in time 4k · ||M ||O(1).

I Lemma 9. Space Cover can be solved in time 2O(k) · ||M ||O(1) on cographic matroids.

By the results of Xiao and Nagamochi [40], Restricted Subset Feedback Set can
be solved in time 2O(k log k) · ||M ||O(1) on graphic matroids. It immediately implies that
Space Cover can be solved in the same time on cographic matroids by the duality of these
problems. To improve this running time and get a single-exponential dependence in k, we
construct a new algorithm based on the idea of enumeration of important cuts proposed by
Marx in [28], see also [5]. Let G be a graph such that M is isomorphic to the bond matroid
M∗(G) of G. By the duality of Space Cover and Restricted Subset Feedback Set, a
set F ⊆ E(G) \ T spans T if and only if the edges of T are the bridges of G− F . The set of
circuits of M is the set of inclusion-minimal edge cut-sets of G. Hence we restate Space
Cover as a cut problem in G: for a given set T ⊆ E(G), we need to find a minimum set
F ⊆ E(G) \ T such that the edges of T are bridges of G − F . For our purpose, we need
to modify the definition of an important cut given by Marx [28, 5]. Let s ∈ V (G) be a
vertex of G, T ⊆ V (G) \ {s} be a set of terminals, and k be a nonnegative integer. We
say that a set W ⊆ V (G) is interesting if G[W] is connected, s ∈ W , and |T ∩W | ≤ 1.
For W ⊆ V (G), by ∆(W) we denote the set of edges of G with exactly one end-vertex in
W . Given two interesting sets W1 and W2 we say that W1 is better than W2 and denote
by W2 �W1 if W2 ⊆W1, |∆(W1)| ≤ |∆(W2)|, and T ∩W1 ⊆ T ∩W2. For set of terminals
T ⊆ V (G) \ {s}, an interesting set W is (s, T, k)-semi-important if |∆(W)| ≤ k and there is

ICALP 2017

56:8 Covering Vectors by Spaces: Regular Matroids

no set W ′ such that W �W ′. The set of edges ∆(W) of a (s, T, k)-semi-important set W is
called a (s, T, k)-semi-important cut. We show that the number of (s, T, k)-semi-important
cuts is in 16k ·nO(1). Moreover, such cuts can be enumerated within the same time. The crux
in the proof of Lemma 9 is the recursive algorithm computing the solution. The running time
of the algorithm can be estimated by a polynomial of the number of (s, T, k)-semi-important
cuts.

2.4 Solving Space Cover for regular matroids
Now we conjure all that have developed so far and design an algorithm for Space Cover on
regular matroids, running in time 2O(k) · ||M ||O(1). We first give some generic steps, followed
by steps when matroid in consideration is either graphic and cographic and ending with a
result that ties them all.

Let (M,w, T, k) be a given instance of Space Cover. First, we exhaustively apply Re-
duction Rules 1-2. To simplify notations, we also denote the reduced instance by (M,w, T, k).
We say that a matroid M is basic if it is graphic, cographic or can be obtained from R10 by
adding parallel elements. By Lemmata 7, 8, and 9, we have the following lemma.

I Lemma 10. Let (M,w, T, k) be an instance of Space Cover. If M is a basic matroid,
then Space Cover can be solved in time 2O(k) · ||M ||O(1).

From now onwards we assume that matroid M in the instance (M,w, T, k) is not basic.
Now using Theorem 6, we find a conflict tree T . Recall that the set of nodes of T is the
collection of basic matroidsM, its the edges correspond to 1-, 2− and 3-sums and that M
can be constructed from M by performing the sums corresponding to the edges of T in
an arbitrary order. Our algorithm is based on performing bottom-up traversal of the tree
T . We select an arbitrarily node r as the root of T . This defines the natural parent-child
relationship for the nodes of T . We say that node Ms is a sub-leaf if all its children are
leaves of T . Observe that there always exists a sub-leaf in a tree on at least two nodes and
that this node can be found in polynomial time.

We first modify the decomposition by an exhaustive application of the following rule.

I Reduction Rule 3 (Terminal flipping). If there is a child M` of a sub-leaf Ms such that
there is e ∈ E(Ms)∩E(M`) that is parallel to a terminal t ∈ E(M`)∩ T in M`, then delete t
from M` and add t to Ms as an element parallel to e.

It is easy to show that Reduction Rule 3 is safe and can be applied in polynomial time.
From now we assume that there is no child M` of Ms such that there exists an element
e ∈ E(Ms) ∩ E(M`) that is parallel to a terminal t ∈ E(M`) ∩ T in M`. This is important
because it allows us to reduce the parameter while branching. In what follows, we do a
bottom-up traversal of T and at each step we delete one of the children of Ms. A child of
Ms is deleted either because of an application of a reduction rule, or because of recursively
solving the problem on a smaller sized tree. It is possible that, while recursively solving the
problem, we could possibly modify (or replace) Ms to encode some auxiliary information
that we have already computed while solving the problem. If at some moment we arrive at
the case T = ∅, then algorithm returns yes and stops. If at some moment the situation with
E \ T = ∅ or |T | > k occurs, then we return no and stop.

2.4.1 Processing leaves
For a sub-leaf node Ms, we say that a child M` of Ms is a 1, 2 or 3-leaf if the edge between
Ms and M` corresponds to 1, 2 or 3-sum respectively. While the cases with 1- and 2-leaves

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:9

are relatively easy to settle, the case when M` is a 3-leaf is difficult. We start from generic
steps which do not depend on the types of Ms and its child.

If M` is an 1-leaf such that E(M`) does not contain terminals, we simply delete M`

from T and consider the problem for the matroid defined by the obtained tree. If M` is
an 1-leaf such that T` = E(M`) ∩ T 6= ∅, then we can solve Space Cover for M` with
the set of terminals T` independently. More formally, we find minimum k′ ≤ k such that
(M`, w`, T`, k

′) is a yes-instance of Space Cover using Lemma 10. Then if such k′ exist,
we consider the matroid M ′ defined by T ′ obtained from T by the deletion of Ms and then
solve the problem for (M ′, w, T ∩ E(M ′), k − k′). Safeness of this reduction immediately
follows from the definition of 1-sum, and the reduction can be done in time 2O(k) · ||M ||O(1).

For 2-leaves, we either reduce a leaf or apply a recursive procedure based on whether
the leaf contains a terminal or not. Let M` be 2-leaf that is adjacent to Ms is T and
E(Ms) ∩ E(M`) = {e}. Let also M ′ be the matroid defined by T ′ obtained from T by the
deletion of M`.

IfM` does not contain terminals, we find a circuit ofM` of minimum weight w` containing
e assuming that the weight of e is 0. Notice, that this can be done in time 2O(k) · ||M ||O(1) by
solving Space Cover on M` for the unique terminal e. Then we delete M` from T , assign
the weight w` to the element e of Ms and then solve the problem for M ′.

Suppose that M` is a 2-leaf with terminals. Let T` = E(M`) ∩ T and T ′ = T \ T`. Notice
that due to Reduction Rule 3, M` has no terminal parallel to e. In particular, it can be
shown that this implies that the total weight of the elements of M` in any solution is positive
and this makes the branching possible, because the selection of elements of a solution in
M` reduces the parameter. Notice here that we allow zero weights but all such nonterminal
elements are contracted by Reduction Rule 1. We have three branching cases corresponding
to the behavior of a (potential) solution F . Recall that by Observation 2, for each t ∈ T ,
there is a circuit C such that t ∈ C ⊆ F ∪ {t}.

Case 1. There is t ∈ T ′ and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M`. To handle this case, we consider Space Cover on M` with the terminals
Te ∪ {e}, that is, we declare e to be a terminal. We find the minimum 0 < k′ ≤ k such that
(M`, w, T` ∪ {e}, k′) is a yes-instance of Space Cover using Lemma 10. Then we assign the
weight 0 to e in Ms and solve the problem for (M ′, w, T ′, k − k′).

Case 2. There is t ∈ T` and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M ′. This case is handled symmetrically to Case 1 and, respectively, we find the
minimum 0 < k′ ≤ k such that (M`, w, T`, k

′) is a yes-instance of Space Cover where e is
assumed to have the weight 0. Then we solve the problem for (M ′, w, T ′ ∪ {e}, k − k′).

Case 3. None of the above cases occur, i.e., every terminal from M` is spanned by elements
of M` in F and every terminal from M ′ is spanned by elements of M ′. Then we can solve
the problem independently for M` and M ′ assuming that the weight of e is k + 1 which
forbids using e in a solution. We find minimum 0 < k′ ≤ k such that (M`, w`, T`, k

′) is a
yes-instance of Space Cover and then solve the problem for (M ′, w, T ′, k − k′).

It is possible to show this branching is exhaustive. We show also that one call of the step
(without recursive calls) can be done in time 2O(k) · ||M ||O(1).

Suppose now that M` is a 3-leaf adjacent to Ms in T . We again differentiate between
cases when it has terminals or not. Assume that M` contains T` = E(M`) ∩ T 6= ∅. Denote

ICALP 2017

56:10 Covering Vectors by Spaces: Regular Matroids

by Z = E(Ms)∩E(M`). As for 2-leaves, we observe that there are no terminals of T` that are
parallel to the elements of Z in M` and we can branch according to the possible variants of
the behavior of a (potential) solution F . The case analysis is technically complicated, because
we have more variants of the behavior of F comparing to the case analysis for 2-leaves. Still,
the majority of the cases are handled by similar arguments and we omit them here, but there
is one case that makes our algorithm complicated and we briefly discuss it here.

Denote by M ′ the matroid defined by T ′ obtained from T by the deletion of M`. Suppose
that there is t ∈ T ′ and a circuit C of M such that t ∈ C ⊆ F ∪ {t} and C contains an
element of M`, and there is t′ ∈ T` and a circuit C ′ of M such that t′ ∈ C ′ ⊆ F ∪ {t′} and
C ′ contains an element of M ′. Then it can be shown that there are distinct ei, ej ∈ Z such
that C = C1 4 C2, C ′ = C ′1 4 C ′2 where C1, C

′
1 are circuits of M`, C2, C

′
2 are circuits of

M ′, C1 ∩ C2 = {ei} and C ′1 ∩ C ′2 = {ej}. We declare w(ei) = w(ej) = 0 and let the weight
of the third element of Z to be k + 1. Then we find the minimum 0 < k′ ≤ k such that
(M`, w, T` ∪ {ei}, k′) is a yes-instance of Space Cover and afterwards solve the problem for
(M ′, w, T ′ ∪ {ej}, k − k′).

However, it can lead to the following situation. We have solutions F` and F ′ for
(M`, w, T` ∪ {ei}, k′) and (M ′, w, T ′ ∪ {ej}, k − k′). Then there are circuits C` of M` and
C ′ of M ′ such that ei ∈ C` ⊆ F` ∪ {ei} and ej ∈ C ′ ⊆ F ′ ∪ {ej}. If ej ∈ C` and ei ∈ C ′,
then (F` 4 F ′) \ Z is not a solution for M . To avoid this situation, we have to solve a
special variant of Space Cover for (M`, w, T` ∪ {ei}, k′) where we put on the solution F`

the additional condition that ei ∈ span(F` \ ej). Due to this technicality, we also have to
provide algorithms solving this version of Space Cover on basic matroids. This is done by
constructing variants of the algorithm from Lemmata 8 and 9.

For this branching, we show that it is exhaustive and one call of this branching step
(without recursive calls) can be done in time 2O(k) · ||M ||O(1).

We approach the most challenging part concerning processing of 3-leaves without terminals.
At this stage we can assume that T has only 3-leaves. The way to handle this case depends
on the type of the sub-leaf Ms adjacent to a 3-leaf M`. Since M` is a 3-leaf, we have that
Ms is either graphic or cographic, because R10 has no circuit of odd size.

Suppose that Ms is a graphic matroid. Let G be a graph such that its cycle matroid
M(G) is isomorphic to Ms. The algorithm that constructs a good {1, 2, 3}-decomposition
also could be used to output the graph G. We assume that M(G) = Ms. The idea is to
replace M` by attaching a gadget to G. Recall that the circuits of M(G) are exactly the
cycles of G. Since Z is a circuit of M(G), the elements of Z form a cycle of G. Denote by
v1, v2, v3 its vertices. We modify G by adding a new vertex u and making it adjacent to
v1, v2, v3. Denote by G′ the obtained graph. We assign weights to the edges of Z and the
new edges according to the possible structure of a solution F in M` by solving auxiliary
instances of Space Cover on M`. It can happen that to span T in M , we only need the
property that F ∩ E(M`) spans in M` a unique edge vivj of Z. Then we find a spanning
set F` of minimum weight wij ≤ k in M` for the terminal vivj such that vhvi, vhvj /∈ F` for
h 6= i, j. Then we define w(vivj) = wij if F` exists and set w(vivj) = k + 1 otherwise. The
other important possibility is that F ∩E(M`) spans in M` all vivj for distinct i, j ∈ {1, 2, 3}.
We find a spanning set F` of minimum weight w′ ≤ k in M` for the terminal set Z. We show
that it is possible to assign the weights to the edges uvi for i ∈ {1, 2, 3} in such a way that
w(uv1) + w(uv2) + w(uv3) = w′ and w(uvi) + w(uvj) ≥ w(vivj) for i, j ∈ {1, 2, 3} if such a
solution F` exist. Otherwise, we simply set w(uvi) = k + 1 for i ∈ {1, 2, 3}. To complete the
reduction, we consider the matroid M ′ defined by T ′ obtained from T by the deletion of M`

where Ms is replaced by M(G′). Then we solve Space Cover for (M ′, w, T, k). We show
that the reduction can be done in time 2O(k) · ||M ||O(1).

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:11

The case when Ms is a cographic matroid is most challenging. Let G be a graph such
that the bond matroid of G is isomorphic to Ms. Without loss of generality, we can assume
that G is connected. Recall also that the circuits of the bond matroid M∗(G) are exactly
minimal cut-sets of G.

Isomorphism betweenMs andM∗(G) is not necessarily unique. We choose an isomorphism
between Ms and M∗(G) that is beneficial for our algorithmic purposes. Let M (1)

` , . . . ,M
(s)
`

denote those leaves of the conflict tree T that are also the children of Ms. Let Zi =
E(Ms) ∩ E(M (i)

`), i ∈ {1, . . . , s}. If Ms has a parent M∗ in T and E(Ms) ∩ E(M∗) 6= ∅,
then let Z∗ = E(Ms) ∩ E(M∗); we emphasize that Z∗ may not exist. Next we define the
notion of a clean cut.

I Definition 11. We say that α(Zi) ⊆ E(G) is a clean cut with respect to an isomorphism
α : Ms → M∗(G), if there is a component H of G − α(Zi) such that (i) H has no bridge,
(ii) E(H) ∩ α(Zj) = ∅ for j ∈ {1, . . . , s}, and (iii) E(H) ∩ α(Z∗) = ∅ if Z∗ exists. We call H
a clean component of G− α(Zi).

Next we show that given any isomorphism between Ms and M∗(G), we can obtain another
isomorphism between Ms and M∗(G) with respect to which we have at least one clean
component.

I Lemma 12. There is an isomorphism α : Ms →M∗(G) and a child M (i)
` of Ms such that

α(Zi) is a clean cut with respect to α. Moreover, given any arbitrary isomorphism from
Ms to M∗(G), one can obtain such an isomorphism and a clean cut together with a clean
component in polynomial time.

Using Lemma 12, we can always assume that we have an isomorphism of Ms to M∗(G)
such that for a child M` of Ms in T , Z = E(Ms) ∩ E(M`) is mapped to a clean cut. To
simplify notations, we assume that Ms = M∗(G) and Z is a clean cut with respect to this
isomorphism. Denote by H the clean component. Let Z = {e1, e2, e3} and let ei = xiyi for
i ∈ {1, 2, 3}, where y1, y2, y3 ∈ V (H). Notice that some y1, y2, y3 can be the same.

We first handle the case when E(H) ∩ T = ∅. Similarly to the case of a graphic subleaf,
we replace M` by a gadget. The difference is that the gadget replaces Ms and H. We modify
G as follows. First, we delete H. Then we construct three new pairwise adjacent vertices
z1, z2, z3 and make zi adjacent to xi for i ∈ {1, 2, 3}. Let G′ be the obtained graph. We
analyze the possible structure of a solution in H and M`, and use this information to assign
weight to the edges xizi for i ∈ {1, 2, 3} and zizj for i, j ∈ {1, 2, 3} similarly to the case
of a graphic subleaf. Finally, we consider the matroid M ′ defined by T ′ obtained from T
by the deletion of Ms where Ms is replaced by M(G′). Then we solve Space Cover for
(M ′, w, T, k). We prove that the reduction can be done in time 2O(k) · ||M ||O(1).

It remains to consider the case E(H) ∩ T 6= ∅. In this case, we either reduce H or
recursively solve the problem on smaller H. Rather than describing these steps, we observe
that we can decompose Ms further using the decomposition theorem given in [37, Chapter
8] using the cut {x1y1, x2y2, x3y3}. This way, we obtain a new leaf with terminals and can
apply the already described rules.

Concerning the total running time, observe that we apply reduction rules either in
polynomial time or in 2O(k) · ||M ||O(1) time. After each reduction rule we obtain a conflict
tree with a smaller number of vertices, hence we use reductions a polynomial number of
times. For each of the branching rule, in the recursive call we reduce the parameter, hence
the number of nodes in the corresponding search tree is in 2O(k). Therefore the running time
of the algorithm is 2O(k) · ||M ||O(1).

ICALP 2017

56:12 Covering Vectors by Spaces: Regular Matroids

3 Reducing rank

In the well-known h-Way Cut problem, we are given a connected graph G and positive
integers h and k, the task is to find at most k edges whose removal increases the number
of connected components by at least h. The problem has a simple formulation in terms of
matroids: Given a graph G and an integers k, h, find k elements of the graphical matroid of G
whose removal reduces its rank by at least h. This motivated Joret and Vetta [24] to introduce
the Rank h-Reduction problem on matroids. Here we define Rank h-Reduction on
binary matroids.

Rank h-Reduction Parameter: k

Input: A binary matroid M = (E, I) given together with its matrix representation over
GF(2) and two positive integers h and k.
Question: Is there a set X ⊆ E with |X| ≤ k such that r(M)− r(M −X) ≥ h?

As a corollary of Theorem 1, we show that on regular matroids Rank h-Reduction is FPT
for any fixed h.

We use the following lemma.

I Lemma 13. Let M be a binary matroid and let k ≥ h be positive integers. Then M has a
set X ⊆ E with |X| ≤ k such that r(M) − r(M −X) ≥ h if and only if there are disjoint
sets F, T ⊆ E such that |T | = h, |F | ≤ k − h, and T ⊆ span(F) in M∗.

For graphic matroids, when Rank h-Reduction is equivalent to h-Way Cut, the
problem is FPT parameterized by k even if h is a part of the input [25]. Unfortunately,
similar result does not hold for cographic matroids.

I Proposition 14. Rank h-Reduction is W[1]-hard for cographic matroids parameterized
by h+ k.

However, by Theorem 1, for fixed h, Rank h-Reduction is FPT parameterized by k on
regular matroids.

I Theorem 15. Rank h-Reduction can be solved in time 2O(k) · ||M ||O(h) on regular
matroids.

4 Conclusion

In this paper, we used the structural theorem of Seymour for designing parameterized
algorithm for Space Cover. While structural graph theory and graph decompositions
serve as the most usable tools in the design of parameterized algorithms, the applications of
structural matroid theory in parameterized algorithms are limited. There is a series of papers
about width-measures and decompositions of matroids (see, in articular, [21, 22, 23, 27, 30, 31]
and the bibliography therein) but, apart of this specific area, we are not aware of other
applications except the works Gavenciak et al. [12] and our recent work [11]. In spite of the
tremendous progress in understanding the structure of matroids representable over finite
fields [13, 14, 15, 16], this rich research area still remains to be explored from the perspective
of parameterized complexity.

As a concrete open problem, what about the parameterized complexity of Space Cover
on any proper minor-closed class of binary matroids?

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:13

References
1 Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, Pranabendu Misra, M. S. Ramanujan,

and Saket Saurabh. Parameterized algorithms to preserve connectivity. In Automata,
Languages, and Programming – 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer
Science, pages 800–811. Springer, 2014. doi:10.1007/978-3-662-43948-7_66.

2 Elwyn R. Berlekamp, Robert J. McEliece, and Henk C.A. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans. Information Theory,
24(3):384–386, 1978. doi:10.1109/TIT.1978.1055873.

3 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
möbius: fast subset convolution. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 67–74. ACM,
2007.

4 Guy E. Blelloch, Kedar Dhamdhere, Eran Halperin, R. Ravi, Russell Schwartz, and Srinath
Sridhar. Fixed parameter tractability of binary near-perfect phylogenetic tree reconstruc-
tion. In Automata, Languages and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in
Computer Science, pages 667–678. Springer, 2006. doi:10.1007/11786986_58.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–
894, 1994. doi:10.1137/S0097539792225297.

7 Michael Dinitz and Guy Kortsarz. Matroid secretary for regular and decomposable
matroids. SIAM J. Comput., 43(5):1807–1830, 2014. doi:10.1137/13094030X.

8 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

9 Rodney G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The para-
metrized complexity of some fundamental problems in coding theory. SIAM J. Comput.,
29(2):545–570, 1999. doi:10.1137/S0097539797323571.

10 S. E. Dreyfus and R.A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971. doi:10.1002/net.3230010302.

11 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Spanning
circuits in regular matroids. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 1433–1441. SIAM, 2017.

12 Tomás Gavenciak, Daniel Král, and Sang-il Oum. Deciding first order properties of
matroids. In Automata, Languages, and Programming – 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392, pages
239–250. Springer, 2012.

13 James F. Geelen, A.M.H. Gerards, and Geoff Whittle. Branch-width and well-quasi-
ordering in matroids and graphs. J. Comb. Theory, Ser. B, 84(2):270–290, 2002. doi:
10.1006/jctb.2001.2082.

14 Jim Geelen, Bert Gerards, and Geoff Whittle. Excluding a planar graph from gf(q)-
representable matroids. J. Comb. Theory, Ser. B, 97(6):971–998, 2007. doi:10.1016/
j.jctb.2007.02.005.

15 Jim Geelen, Bert Gerards, and Geoff Whittle. Solving Rota’s conjecture. Notices Amer.
Math. Soc., 61(7):736–743, 2014. doi:10.1090/noti1139.

16 Jim Geelen, Bert Gerards, and Geoff Whittle. The Highly Connected Matroids in Minor-
Closed Classes. Ann. Comb., 19(1):107–123, 2015. doi:10.1007/s00026-015-0251-3.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-43948-7_66
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1007/11786986_58
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1137/13094030X
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/S0097539797323571
http://dx.doi.org/10.1002/net.3230010302
http://dx.doi.org/10.1006/jctb.2001.2082
http://dx.doi.org/10.1006/jctb.2001.2082
http://dx.doi.org/10.1016/j.jctb.2007.02.005
http://dx.doi.org/10.1016/j.jctb.2007.02.005
http://dx.doi.org/10.1090/noti1139
http://dx.doi.org/10.1007/s00026-015-0251-3

56:14 Covering Vectors by Spaces: Regular Matroids

17 Leslie Ann Goldberg and Mark Jerrum. A polynomial-time algorithm for estimating the
partition function of the ferromagnetic ising model on a regular matroid. SIAM J. Comput.,
42(3):1132–1157, 2013. doi:10.1137/110851213.

18 Alexander Golynski and Joseph Douglas Horton. A polynomial time algorithm to find
the minimum cycle basis of a regular matroid. In Algorithm Theory – SWAT 2002, 8th
Scandinavian Workshop on Algorithm Theory, Turku, Finland, July 3-5, 2002 Proceedings,
volume 2368 of Lecture Notes in Computer Science, pages 200–209. Springer, 2002.

19 Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of general-
ized vertex cover problems. In Algorithms and Data Structures, 9th International Workshop,
WADS 2005, Waterloo, Canada, August 15-17, 2005, Proceedings, volume 3608 of Lecture
Notes in Computer Science, pages 36–48, 2005. doi:10.1007/11534273_5.

20 Moritz Hardt and Ankur Moitra. Algorithms and hardness for robust subspace recovery.
In Proceedings of the 26th Annual Conference on Learning Theory (COLT), volume 30 of
JMLR Proceedings, pages 354–375. JMLR.org, 2013.

21 Petr Hlinený. Branch-width, parse trees, and monadic second-order logic for matroids. J.
Comb. Theory, Ser. B, 96(3):325–351, 2006. doi:10.1016/j.jctb.2005.08.005.

22 Petr Hlinený and Sang-il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput., 38(3):1012–1032, 2008. doi:10.1137/070685920.

23 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width
of matroids. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1695–
1704. SIAM, 2016. doi:10.1137/1.9781611974331.ch116.

24 Gwenaël Joret and Adrian Vetta. Reducing the rank of a matroid. Discrete Mathemat-
ics & Theoretical Computer Science, 17(2):143–156, 2015. URL: http://www.dmtcs.org/
dmtcs-ojs/index.php/dmtcs/article/view/2334.

25 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In FOCS 2011, pages 160–169. IEEE Computer Society, 2011.

26 Leonid G. Khachiyan, Endre Boros, Khaled M. Elbassioni, Vladimir Gurvich, and Kazuhisa
Makino. On the complexity of some enumeration problems for matroids. SIAM J. Discrete
Math., 19(4):966–984, 2005. doi:10.1137/S0895480103428338.

27 Daniel Král’. Decomposition width of matroids. Discrete Applied Mathematics, 160(6):913–
923, 2012. doi:10.1016/j.dam.2011.03.016.

28 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006. doi:10.1016/j.tcs.2005.10.007.

29 Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013. doi:10.1007/s00453-012-9630-x.

30 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

31 Sang-il Oum and Paul D. Seymour. Testing branch-width. J. Comb. Theory, Ser. B,
97(3):385–393, 2007. doi:10.1016/j.jctb.2006.06.006.

32 James Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, Oxford, second edition, 2011. doi:10.1093/acprof:oso/9780198566946.
001.0001.

33 Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van Leeuwen. Network
sparsification for steiner problems on planar and bounded-genus graphs. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 276–285. IEEE Computer Society, 2014. doi:10.1109/
FOCS.2014.37.

34 Paul D. Seymour. Decomposition of regular matroids. J. Comb. Theory, Ser. B, 28(3):305–
359, 1980. doi:10.1016/0095-8956(80)90075-1.

http://dx.doi.org/10.1137/110851213
http://dx.doi.org/10.1007/11534273_5
http://dx.doi.org/10.1016/j.jctb.2005.08.005
http://dx.doi.org/10.1137/070685920
http://dx.doi.org/10.1137/1.9781611974331.ch116
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2334
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/2334
http://dx.doi.org/10.1137/S0895480103428338
http://dx.doi.org/10.1016/j.dam.2011.03.016
http://dx.doi.org/10.1016/j.tcs.2005.10.007
http://dx.doi.org/10.1007/s00453-012-9630-x
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/j.jctb.2006.06.006
http://dx.doi.org/10.1093/acprof:oso/9780198566946.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198566946.001.0001
http://dx.doi.org/10.1109/FOCS.2014.37
http://dx.doi.org/10.1109/FOCS.2014.37
http://dx.doi.org/10.1016/0095-8956(80)90075-1

F. V. Fomin, P. A. Golovach, D. Lokshtanov, and S. Saurabh 56:15

35 Paul D. Seymour. Matroid minors. In Handbook of combinatorics, Vol. 1, 2, pages 527–550.
Elsevier, Amsterdam, 1995.

36 Klaus Truemper. Max-flow min-cut matroids: Polynomial testing and polynomial al-
gorithms for maximum flow and shortest routes. Math. Oper. Res., 12(1):72–96, 1987.
doi:10.1287/moor.12.1.72.

37 Klaus Truemper. Matroid decomposition. Academic Press, 1992.
38 Alexander Vardy. The intractability of computing the minimum distance of a code. IEEE

Trans. Information Theory, 43(6):1757–1766, 1997. doi:10.1109/18.641542.
39 D. J.A. Welsh. Combinatorial problems in matroid theory. In Combinatorial Mathematics

and its Applications (Proc. Conf., Oxford, 1969), pages 291–306. Academic Press, London,
1971.

40 Mingyu Xiao and Hiroshi Nagamochi. An FPT algorithm for edge subset feedback edge
set. Inf. Process. Lett., 112(1-2):5–9, 2012. doi:10.1016/j.ipl.2011.10.007.

ICALP 2017

http://dx.doi.org/10.1287/moor.12.1.72
http://dx.doi.org/10.1109/18.641542
http://dx.doi.org/10.1016/j.ipl.2011.10.007

Linear Kernels for Edge Deletion Problems to
Immersion-Closed Graph Classes∗†

Archontia C. Giannopoulou1, Michał Pilipczuk2,
Jean-Florent Raymond3, Dimitrios M. Thilikos4, and
Marcin Wrochna5

1 Technische Universität Berlin, Berlin, Germany
archontia.giannopoulou@tu-berlin.de

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland; and
AlGCo project team, CNRS, LIRMM, Montpellier, France
jean-florent.raymond@mimuw.edu.pl

4 AlGCo project team, CNRS, LIRMM, Montpellier, France; and
Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece
sedthilk@thilikos.info

5 Institute of Informatics, University of Warsaw, Warsaw, Poland
m.wrochna@mimuw.edu.pl

Abstract
Suppose F is a finite family of graphs. We consider the following meta-problem, called F-
Immersion Deletion: given a graph G and an integer k, decide whether the deletion of at most
k edges of G can result in a graph that does not contain any graph from F as an immersion. This
problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS
2012], where one deletes vertices in order to remove all minor models of graphs from F . We
prove that whenever all graphs from F are connected and at least one graph of F is planar and
subcubic, then the F-Immersion Deletion problem admits:

a constant-factor approximation algorithm running in time O(m3 · n3 · logm);
a linear kernel that can be computed in time O(m4 · n3 · logm); and
a O(2O(k) +m4 · n3 · logm)-time fixed-parameter algorithm,

where n,m count the vertices and edges of the input graph. Our findings mirror those of Fomin
et al. [FOCS 2012], who obtained similar results for F-Minor Deletion, under the assumption
that at least one graph from F is planar. An important difference is that we are able to obtain
a linear kernel for F-Immersion Deletion, while the exponent of the kernel of Fomin et al. de-
pends heavily on the family F . In fact, this dependence is unavoidable under plausible complexity
assumptions, as proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization
complexity of F-Immersion Deletion is quite different than that of F-Minor Deletion.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

∗ The full version of this paper can be found as an arxiv preprint [19], https://arxiv.org/abs/1609.
07780.

† This work was done while A. C. Giannopoulou was holding a post-doc position at Warsaw Center
of Mathematics and Computer Science and she has also been supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC
consolidator grant DISTRUCT, agreement No 648527). Mi. Pilipczuk and M. Wrochna are supported
by the Polish National Science Center grant UMO-2013/11/D/ST6/03073. J-F. Raymond is supported
by the Polish National Science Center grant UMO-2013/11/N/ST6/02706. D. Thilikos is supported by
project DEMOGRAPH (ANR-16-CE40-0028).

EA
T

C
S

© Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent, Dimitrios M. Thilikos,
and Marcin Wrochna;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1609.07780
https://arxiv.org/abs/1609.07780
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

Keywords and phrases Kernelization, Approximation, Immersion, Protrusion, Tree-cut width

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.57

1 Introduction

On the F-Minor Deletion problem. Let us fix a finite family of graphs F . A graph is
called F-minor-free if it does not contain any graph from F as a minor. Given a class of
graphs G, we denote by obsmn(G) the set of minor-minimal graphs not in G. The celebrated
Graph Minors Theorem [32] states that for G closed under taking minors, the set obsmn(G) is
finite. In other words, G is characterized by a finite set of minor-obstructions, as G is exactly
the class of F -minor-free graphs, for F = obsmn(G). Hence, studying classes of F -minor-free
graphs for finite families F is the same as studying general minor-closed properties of graphs.

Fomin et al. [14] performed an in-depth study of the following parameterized1 problem,
named F-Minor Deletion2: Given a graph G and an integer parameter k, decide whether
one can remove at most k vertices from G to obtain an F-minor-free graph. By considering
different families F , the F-Minor Deletion problem generalizes a number of concrete prob-
lems of prime importance in parameterized complexity, such as Vertex Cover, Feedback
Vertex Set, or Planarization. It is easy to see that, for every fixed k, the graph class
Gmn
k,F consisting of the graphs in the YES-instances (G, k) of F-Minor Deletion, is closed

under taking of minors. By the meta-algorithmic consequences of the Graph Minors series of
Robertson and Seymour [32, 30], it follows (non-constructively) that F-Minor Deletion
admits an FPT-algorithm. The optimization of the running time of such FPT-algorithms for
several instantiations of F has been a stimulating project in parameterized algorithm design.
So far, it has been focused on problems generated by minor-closed graph classes.

The goal of Fomin et al. [14] was to obtain results of general nature for F-Minor
Deletion, which would explain why many concrete problems captured as its subcases are
efficiently solvable using parameterized algorithms and kernelization. This has been achieved
under the assumption that F contains at least one planar graph. More precisely, for any class
F that contains at least one planar graph, the work of Fomin et al. [14] gives the following:

a randomized constant-factor approximation running in time O(nm);
a polynomial kernel for the problem; that is, a polynomial-time algorithm that, given
an instance (G, k) of F-Minor Deletion, outputs an equivalent instance (G′, k′) with
k′ ≤ k and |G′| ≤ O(kc), for some constant c that depends on F ;
an FPT-algorithm for F-Minor Deletion in time 2O(k) ·n (note this originally required
that all graphs from F be connected; Kim et al. [24] showed how to lift this assumption);
a proof that every graph in obsmn(Gmn

k,F) has at most kcF vertices, for some constant cF
that depends (non-constructively) on F .

The assumption that F contains at least one planar graph is crucial for the approach
of Fomin et al. [14]. Namely, from the Excluded Grid Minor Theorem of Robertson and
Seymour [31] it follows that for such families F , F -minor-free graphs have treewidth bounded
by a constant depending only of F . Therefore, a YES-instance of F-Minor Deletion

1 A parameterized problem can be seen as a subset of Σ∗ × N. For graph problems, the string x in an
instance (x, k) ∈ Σ∗ × N usually encodes a graph G. An FPT-algorithm for the problem is then an
algorithm working in f(k) · |x|O(1) time. See [12, 8, 29] for more on parameterized algorithms and
complexity.

2 Fomin et al. used the name F-Deletion. We write F-Minor Deletion instead for clarity.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.57

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:3

roughly has to look like a constant-treewidth graph plus k additional vertices that can have
arbitrary connections. Having exposed this structure, Fomin et al. [14] apply protrusion-based
techniques that originate in the work on meta-kernelization [3, 15]. Roughly speaking, the
idea is to identify large parts of the graphs that have constant treewidth and a small interface
towards the rest of the graph (so-called protrusions), which can then be replaced by smaller
gadgets with the same combinatorial behaviour. Such preprocessing based on protrusion
replacement is the base of all three aforementioned results for F-Minor Deletion. In the
absence of a constant bound on the treewidth of an F -minor-free graph, the technique breaks
completely. In fact, the kernelization complexity of Planarization, that is, F-Minor
Deletion for F = {K5,K3,3}, is a notorious open problem.

An interesting aspect of the work of Fomin et al. [14] is that the exponent of the
polynomial bound on the size of the kernel for F-Minor Deletion grows quite rapidly
with the family F . Recently, it has been shown by Giannopoulou et al. [17] that in general
this growth is unavoidable: unless NP ⊆ coNP/poly, for every constant η, the Treewidth-η
Deletion problem (delete k vertices to get a graph of treewidth at most η) has no kernel with
O(kη/4−ε) vertices for any ε > 0. Since graphs of treewidth η can be characterized by a finite
set of forbidden minors Fη, at least one of which is planar, this refutes the hypothesis that
all F-Minor Deletion problems admit polynomial kernels with a uniform bound on the
degree of the polynomial. However, as shown by Giannopoulou et al. [17], such bounds can
be achieved for some specific problems, like vertex deletion to graphs of constant tree-depth.

Immersion problems. Recall that a graph H can be immersed into a graph G (or that H is
an immersion of G) if there is a mapping from vertices of H to pairwise different vertices of G
and from edges of H to pairwise edge-disjoint paths connecting the images of its endpoints3.
Such a mapping is called an immersion model. Just like the minor relation, the immersion
relation imposes a partial order on the class of graphs. Alongside with the minor order,
Robertson and Seymour [33] proved that graphs are well-quasi-ordered under the immersion
order as well. This implies that for every graph class G that is closed under taking immersions,
the set obsim(G) containing immersion minimal graphs that do not belong in G, is finite (we
call obsim(G) the immersion obstruction set of G). Therefore G can be characterized by a
finite set of forbidden immersions. The general intuition is that immersion is a containment
relation that corresponds to edge cuts, whereas the minor relation corresponds to vertex cuts.
Also, the natural setting for immersions is the setting of multigraphs. Hence, all the graphs
considered in this paper may have parallel edges connecting the same pair of endpoints.

Recently, there has been a growing interest in immersion-related problems [28, 10, 16, 25,
18, 20, 36, 4, 9, 1, 21, 11] both from the combinatorial and the algorithmic point of view.
Most importantly for us, Wollan proved in [36] an analogue of the Excluded Grid Minor
Theorem, which relates the size of the largest wall graph that is contained in a graph as
an immersion with a new graph parameter called tree-cut width. By a subcubic graph we
mean a graph of maximum degree at most 3. The following theorem follows from the work
of Wollan [36].

I Theorem 1 ([18]). For every planar subcubic graph H, there exists a constant aH such
that every graph not containing H as an immersion has tree-cut width bounded by aH .

In other words, for any family F of graphs that contains some planar subcubic graph,
the tree-cut width of F -immersion-free graphs is bounded by a universal constant depending

3 In this paper we consider weak immersions only, as opposed to strong immersions where the paths are
forbidden to traverse images of vertices other than the endpoints of the corresponding edge.

ICALP 2017

57:4 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

on F only. In Section 2 we discuss the precise definition of tree-cut width and how exactly
Theorem 1 follows from the work of Wollan [36]. Also, note that if a family of graphs F
does not contain any planar subcubic graph, then there is no uniform bound on the tree-cut
width of F-immersion-free graphs. Indeed, wall graphs are then F-immersion-free, because
all their immersions are planar and subcubic, and they have unbounded tree-cut width.

After the introduction of tree-cut width by Wollan [36], the new parameter gathered
substantial interest from the algorithmic and combinatorial community [16, 28, 18, 25]. It
seems that tree-cut width serves the same role for immersion-related problems as treewidth
serves for minor-related problems and, in a sense, it can be seen as an “edge-analogue” of
treewidth. In particular, given the tree-cut width bound of Theorem 1 and the general
approach of Fomin et al. [14] to F-Minor Deletion, it is natural to ask whether the same
kind of results can be obtained for immersions where the edge removals are considered instead
of vertex removals. More precisely, fix a finite family of graphs F containing some planar
subcubic graph and consider the following F-Immersion Deletion problem: given a graph
G and an integer k, determine whether it is possible to delete at most k edges of G in order
to obtain a graph that does not admit any graph from F as an immersion. Notice that when
F = {K2} and F = {K3}, the problem of computing the minimum size of such a set of edges
can be solved in polynomial time, while it is NP-hard when F = {K−4 } (see e.g. [5]).

Parallel to the case of F-Minor Deletion, for every fixed k, the graph class Gim
k,F

consisting of the graphs in the YES-instances (G, k) of F-Immersion Deletion is closed
under taking of immersions4, therefore Oim

k = obsim(Gim
k,F) is a finite set, by the well-quasi-

ordering of graphs under immersions [33]. Together with the immersion-testing algorithm of
Grohe et al. [22], this implies that F-Immersion Deletion admits (non-constructively) an
FPT-algorithm. This naturally induces the parallel project of optimizing the performance of
such FPT-algorithms for various instantiations of F . More concretely, is it possible to extend
the general framework of Fomin et al. [14] to obtain efficient approximation, kernelization,
and FPT algorithms also for F-Immersion Deletion? Theorem 1 suggests that the suitable
analogue of the assumption from the minor setting that F contains a planar graph should be
the assumption that at least one graph from F is planar and subcubic.

Our results. In this work we give a definitive positive answer to this question. The following
two theorems gather our main results; for a graph G, by |G| and ‖G‖ we denote the
cardinalities of the vertex and edge sets of G, respectively.

I Theorem 2 (Constant factor approximation). Let F be a finite family of connected graphs
with at least one member being planar and subcubic. Given a graph G, in O(‖G‖3 log ‖G‖·|G|3)
time one can output a subset of edges F ⊆ E(G) such that G− F is F-immersion-free and
the size of F is at most capx times larger than the optimum size of a subset of edges with this
property, for some constant capx depending on F only.

The constant-factor approximation can be generalized to work when F contains discon-
nected graphs as well, using the approach of Fomin et al. [14, 13].

4 Notice that if we consider deletion of vertices instead of edges, then the graph class Gim
k is not closed

under taking immersions (for example, in a star on 7 vertices with duplicated edges, deleting one vertex
makes it K3-immersion-free, but this ‘duplicated’ star immerses 2K3, which has no such vertex). This
is the main reason why we believe that edge deletion gives a more suitable counterpart to F-Minor
Deletion for the case of immersions.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:5

I Theorem 3 (Linear kernelization and obstructions). Let F be a finite family of connected
graphs with at least one member being planar and subcubic. Given an instance (G, k) of F-
Immersion Deletion, in time O(‖G‖4 log ‖G‖ · |G|3) one can output an equivalent instance
(G′, k) with ‖G′‖ ≤ cker · k, for some constant cker depending on F only. Moreover, every
graph in Oim

k has at most cF · k edges (for a constant cF non-constructively depending on F).

Thus, Theorems 2 and 3 mirror the approximation and kernelization results and the
obstruction bounds of Fomin et al. [14]. However, this mirroring is not exact as we show that,
in the immersion setting, a stronger kernelization procedure can be designed. Namely, the size
of the kernel given by Theorem 3 is linear , with only the multiplicative constant depending
on the family F , whereas in the minor setting, the exponent of the polynomial bound on the
kernel size provably must depend on F (under plausible complexity assumptions). This shows
that the immersion and minor settings behave quite differently and in fact stronger results can
be obtained in the immersion setting. Observe that using Theorem 3 it is trivial to obtain a
decision algorithm for F-Immersion Deletion working in time O(ckfpt +‖G‖4 log ‖G‖ · |G|3)
for some constant cfpt depending on F only: one simply computes the kernel with a linear
number of edges and checks all the subsets of edges of size k.

Our techniques. Our approach to proving Theorems 2 and 3 roughly follows the general
framework of protrusion replacement of Fomin et al. [14] (see also [3]). We first define
protrusions suited for the problem of our interest. In fact, our protrusions can be seen as the
edge-analogue of those introduced in [14] (as in [5]). A protrusion for us is simply a vertex
subset X that induces an F-immersion-free subgraph (which hence has constant tree-cut
width, by Theorem 1), and has a constant number of edges to the rest of the graph. When
a large protrusion is localized, it can be replaced by a smaller gadget similarly as in the
work of Fomin et al. [14]. However, we need to design a new algorithm for searching for
large protrusions, mostly in order to meet the condition that the exponent of the polynomial
running time of the algorithm does not depend on F . For this, we employ the important
cuts technique of Marx [27] and the randomized contractions technique of Chitnis et al. [6].
All of these yield an algorithm that exhaustively reduces all large protrusions.

Unfortunately, exhaustive protrusion replacement is still not sufficient for a linear kernel.
However, we prove that in the absence of large reducible protrusions, the only remaining
obstacles are large groups of parallel edges between the same two endpoints (called thetas),
and, more generally, large “bouquets” of constant-size graphs attached to the same pair of
vertices. Without these, the graph is already bounded linearly in terms of the optimum
solution size. The approximation algorithm can thus delete all edges except for the copies
included in bouquets and thetas, reducing the optimum solution size by a constant fraction
of the deleted set. It then exhaustively reduces protrusions in the remaining edges, and
repeats the process until the graph is F-immersion-free.

To obtain a linear kernel we need more work, as we do not know how to reduce bouquets
and thetas directly. Instead, we apply the following strategy based on the idea of amortization.
After reducing exhaustively all larger protrusions, we compute a constant-factor approximate
solution Fapx. Then we analyze the structure of the graph G − Fapx, which has constant
tree-cut width. It appears that every bouquet (and theta) in G can be reduced up to size
bounded linearly in the number of solution edges Fapx that “affect” it. After applying this
reduction, we can still have large bouquets in the graph, but this happens only when they
are affected by a large number of edges of Fapx. However, every edge of Fapx can affect only
a constant number of bouquets and hence a simple amortization arguments shows that the
total size of bouquets is linear in |Fapx|, so also linear in terms of the optimum.

ICALP 2017

57:6 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

We remark that this part of the reasoning (the above amortization argument in particular)
are fully new contributions of this work. These deviate significantly from arguments by Fomin
et al. [14], which aimed at a obtaining a polynomial kernel only, instead of linear. Also, we
remark that, contrary to the work of Fomin et al. [14], all our algorithms are deterministic.

For the second part of Theorem 3, we show that protrusion replacements can be realized
as immersions of the original graph. This implies that, in the equivalent instance (G′, k)
produced by our kernelization algorithm, the graph G′ is an immersion of G. Therefore any
immersion-obstruction of Gim

k−1,F must already have a linear, in k, number of edges.

Application: immersion-closed parameters. We would like to highlight one meta-algorithmic
application of our results, which was our original motivation. Suppose p is a graph parameter,
that is, a function that maps graphs to N. We shall say that p is closed under immersion
if p(H) ≤ p(G) whenever H is an immersion of G; p is closed under disjoint union if
p(G1]G2) = max(p(G1),p(G2)) for any graphs G1, G2; here,] denotes disjoint union.

For a parameter p and a constant r, define the p-at-most-r Edge Deletion problem as
follows: given a graph G and an integer k, determine whether at most k edges can be deleted
from G to obtain a graph with the value of p at most r. We also define the associated para-
meter pr(G) = min{k | ∃S ⊆ E(G) : |S| ≤ k ∧ p(G \ S) ≤ r} and Gk,pr

= {G | pr(G) ≤ k}.
Then the following meta-result can be derived from Theorems 2 and 3 and the fact that
immersion is a well-quasi-order; a proof can be found in the full version of the paper.

I Theorem 4. Let p be a graph parameter that is closed under immersion and under disjoint
union and moreover is large on the class of walls5. Then, for every constant r, the p-at-
most-r Edge Deletion problem admits a constant-factor approximation and a linear
kernel. Moreover, there is a constant cr, depending (non-constructively) on r, such that for
every k, every graph H in obsim(Gk,pr

) has at most cr · k edges.

Natural parameters that satisfy the prerequisites of Theorem 4 include cutwidth, carving
width, tree-cut width, and edge ranking; see e.g. [34, 35, 36, 26, 23] for more details.
Theorem 4 mirrors a corollary by Fomin et al. [14] for the Treewidth-η Deletion problem
asserting a constant-factor approximation, a polynomial kernel, a polynomial bound for
the corresponding minor-obstruction set, and a single-exponential FPT algorithm, for every
constant η.

Organization. This extended abstract focuses on sketching the proofs of Theorems 2 and 3.
The proofs of statements marked with ? are omitted and can be found in the full version [19].

2 Preliminaries

For a positive integer p, we denote [p] = {1, 2, . . . , p}. A graph G is a pair (V (G), E(G)),
where V (G) is the vertex set, and E(G) is a multiset of edges. Each edge connects two
different vertices, called the endpoints of the edge (we do not allow loops). Note that there
might be several edges (called parallel edges) between two vertices. An edge is incident to a
vertex if it is one of its two endpoints.

We write |G| for |V (G)| and ‖G‖ for |E(G)| (counting edges with multiplicities). For a
subset of vertices X ⊆ V (G), G[X] is the subgraph induced by X. For a subset of edges

5 A graph parameter p is large on a graph class C if {p(G) | G ∈ C} is not a bounded set.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:7

F ⊆ E(G), G − F denotes the graph G with all edges from F removed. For two subsets
X,Y ⊆ V (G), not necessarily disjoint, EG(X,Y) denotes the set of edges of E(G) of the
form xy for some x ∈ X and y ∈ Y . The boundary of X is δG(X) = EG(X,V (G) \X).

Tree-cut width. A near-partition of a set X is a family of (possibly empty) subsets
X1, . . . , Xk of X such that

⋃k
i=1 Xi = X and Xi ∩Xj = ∅ for every i 6= j.

A tree-cut decomposition of a connected graph G is a pair (T,X) where T is a tree and
X = {Xt : t ∈ V (T)} is a near-partition of the vertices of G. Sets {Xt : t ∈ V (T)} are called
the bags of the decomposition. For a subset W ⊆ V (T), define XW as

⋃
t∈W Xt. By rooting

T at some vertex, we can talk about a rooted tree-cut decomposition. When G is disconnected,
a tree-cut decomposition is a forest consisting of one tree for each connected component.

For each edge e = uv of T , T − uv has exactly two components which we call Tuv and
Tvu, that contain u and v respectively. Since X is a near-partition, sets XV (Tuv) and XV (Tvu)
form a near-partition of V (G) (provided G is connected). We define the adhesion of an edge
e = uv of T , denoted adhT (e), as the set EG(XV (Tuv), XV (Tvu)). We omit the subscript if T
is clear from the context. An adhesion is thin if it has at most 2 edges, bold otherwise.

We now move to the definition of tree-cut width. In fact, we do not give the original
definition (it can be found in the full version of the paper), but we instead give an alternative
definition that is easier to handle. Let G be a graph and (T,X = {Xt : t ∈ V (T)}) be a
tree-cut decomposition of G. For a node t of T , let w(t) be the number of edges incident to t
that have bold adhesions. The width′ of the decomposition, denoted width′(T,X), is equal to
max{maxe∈E(T) |adh(e)|,maxt∈V (T) |Xt|+w(t)}. The tree-cut width′ of G, denoted tctw′(G),
is the minimum width′ of a tree-cut decomposition of G. The standard tree-cut width of G,
denoted tctw(G), is similarly defined as the minimum width of a tree-cut decomposition of
G, where width is defined slightly differently. We prove that both notions are equivalent.

I Lemma 5 (?). For every graph G, it holds that tctw(G) = tctw′(G). Moreover, given a tree-
cut decomposition T of G, it holds that width(T) ≤ width′(T), and a tree-cut decomposition
T ′ with width′(T ′) ≤ width(T) can be computed in time O(‖G‖ · |G|2 · width(T)).

Ganian et al. [16] showed that bounded tree-cut width implies bounded treewidth. Besides,
Kim et al. [25] showed that the dependency cannot be improved to subquadratic.

I Lemma 6 (see [16]). For any graph G, tw(G) ≤ 2tctw(G)2 + 3tctw(G).

In our algorithms we need to adjust tree-cut decompositions to our needs, and hence we
define the notion of a neat tree-cut decomposition. A neat tree-cut decomposition is a rooted
tree-cut decomposition (T,X) of a connected graph G that has the following properties:

For every e = uv ∈ E(T), the graphs G[XV (Tuv)] and G[XV (Tvu)] are connected.
Suppose t is a node of T with parent s, such that the adhesion of st is thin. Then
EG(XV (Tts), XV (Tt′s)) = ∅ for every sibling t′ of t.

The second property was used by Ganian et al. [16] under the name niceness. It appears
that any tree-cut decomposition can be made neat without increasing the width by much;
the proof follows closely the lines of [16, Lemma 1].

I Lemma 7 (?). Given a tree-cut decomposition of width′ ≤ k, a neat tree-cut decomposition
of the same graph with width′ ≤ k2 + 1 can be constructed in time O(‖G‖ · |G|2 · k2).

The following result shows why neat tree-cut decompositions are useful: if a node of a
neat decomposition has many neighboring nodes, then all but a constant number of them
are connected to it via very simple adhesions.

ICALP 2017

57:8 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

I Lemma 8 (?). Let G be a graph with a neat tree-cut decomposition T = (T,X) satisfying
width′(T) ≤ r. Let t ∈ V (T). Then for all but at most 2r + 1 of the edges e of T incident to
t, adh(e) is thin and all of its edges have an endpoint in the bag at t.

Finally, we need that the tree-cut width of a graph can be computed efficiently. For this,
we can use the following 2-approximation algorithm of Kim et al. [25]. We remark that the
width of the decomposition yielded is measured in terms of width(·) and not width′(·), but
the decomposition can be adjusted to have also width′ bounded by 2r using Lemma 5.

I Theorem 9 (see [25]). There is an algorithm that, given a graph G and an integer r,
runs in time 2O(r2 log r) · |G|2 and either concludes that tctw(w) > r, or returns a tree-cut
decomposition of G of width at most 2r.

For the whole paper we fix a finite family of graphs F with the following properties: all
graphs of F are connected, and at least one is planar and subcubic. A graph G will be called
F-immersion-free, or F-free for short, if G contains no graph from F as an immersion. By
Theorem 1, the tree-cut width of an F -free graph is bounded by a constant depending on F
only, so by Lemma 6 also its treewidth is bounded by a constant. By combining this with
Bodlaender’s algorithm [2] and Courcelle’s Theorem [7], we obtain the following:

I Lemma 10 (?). It can be checked in linear-time whether a given graph is F-free.

Moreover, by combining the bound on tree-cut width of an F -free graph with Lemmas 5, 7
and Theorem 9, we obtain the following.

I Lemma 11 (?). There exists an algorithm that, given an F-free graph G, runs in time
O(‖G‖ · |G|2) and computes a neat tree-cut decomposition T of G with width′(T) ≤ bF , for
some constant bF depending on F only.

For a graph G, by OPT(G) we denote the minimum number of edges that need to be
deleted from G in order to obtain an F-free graph.

3 Protrusions

Replacing protrusions. We now introduce the notion of a protrusion suited to the considered
problem. In the sequel, we will only deal with 2bF - and 2-protrusions, where bF is the
constructive bound on tctw′ guaranteed by Lemma 11.

I Definition 12. An r-protrusion of a graph G is a set X ⊆ V (G) such that |δ(X)| ≤ r and
G[X] is F-free.

As in [14], the base for our kernelization algorithm is protrusion replacement. That is, we
iteratively find a protrusion X that is large but has small δ(X), and replace it with a smaller
gadget X ′ that has the same behaviour. The following lemma formalizes this intuition.

I Lemma 13 (?). There is a constant cF and algorithm that, given a graph G and a 2bF -
protrusion X in it with ‖G[X]‖ > cF , outputs in linear time a graph G′ with OPT(G) =
OPT(G′) and ‖G′‖ < ‖G‖. Moreover, there is a linear-time algorithm working as follows:
given a subset F ′ of edges of G′ such that G′ − F ′ is F-free, the algorithm computes a subset
F of edges of G such that G− F is F-free and |F | ≤ |F ′|.

The proof of Lemma 13 follows closely the strategy used by Fomin et al. [14]: Every
2bF -protrusion can be assigned a type, where the number of types is bounded by a function

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:9

depending on F only. The type of a protrusion can be computed efficiently due to protrusions
having constant treewidth. Protrusions with the same type behave in the same way with
respect to the problem of our interest, and hence can be replaced by one another. Therefore,
we store a replacement table consisting of the smallest protrusion of each type, so that every
larger protrusion can be replaced by a smaller representative stored in the table. The lifting
algorithm finds, using dynamic programming, a partial solution in the large protrusion that
has the same behaviour as the given partial solution in the replacement protrusion, while
being not larger. Note that while a replacement table exists and can be hard-coded into the
algorithm (as it depends on the fixed family F only), giving an explicit bound on the size of
the graphs in it (and thus on cF in Lemma 13) would require additional arguments. The
details can be found in the full version of the paper.

We henceforth define a replaceable protrusion in G as a 2bF -protrusion X with ‖G[X]‖ >
cF , where cF is the constant given by Lemma 13.

Finding excessive protrusions. Recall that a replaceable protrusion in a graph G is a
2bF -protrusion X with ‖G[X]‖ > cF . To find replaceable protrusions in the input graph,
we need to assume some additional connectivity constraint (which will be implied from a
connected tree-cut decomposition) – this is captured by the following definition. The larger
protrusion size is needed to make any connected component of the protrusion replaceable.

I Definition 14. A 2bF -protrusion B in a connected graph G is called excessive if ‖G[B]‖ >
2bF · cF and G−B has at most two connected components.

Replaceable protrusions could be found easily if we allowed a (far worse) running time
of the form ‖G‖O(bF), but this would affect the running times in both our main results.
With the above definition in hand, we use the techniques of important cuts, introduced by
Marx [27] (see also the exposition in [8, Chapter 8.2]) and of randomized contractions by
Chitnis et al. [6] instead. These two techniques allow us to reduce excessive protrusions:
we use the randomized contractions technique to find a large enough subset of a presumed
excessive protrusion, after which important cuts allow us to find a boundary that makes this
subset a replaceable protrusion.

I Lemma 15 (?). There is an algorithm that, given a connected graph G, runs in time
O(‖G‖ log ‖G‖ · |G|2) and either correctly concludes that G does not contain any excessive
protrusion, or it outputs some replaceable protrusion in G.

We remark that we only defined excessive protrusions in connected graphs. Note that if
B is an excessive protrusion in a connected component H of G, it would not necessarily be
an excessive protrusion in G, since G−B may have more components than H −B (they are
however not adjacent to B). We will say that no component of G has an excessive protrusion
if for each connected component H of G, there is no excessive protrusion in H.

By exhaustively (at most ‖G‖ times) executing the algorithm of Lemma 15 and replacing
any obtained protrusion using Lemma 13, we can get rid of all excessive protrusions. We
formalize this in the following lemma, which will serve as the abstraction of protrusion
replacement in the sequel.

I Lemma 16 (Exhaustive Protrusion Replacement). There is an algorithm that, given a
graph G, runs in time O(‖G‖2 log ‖G‖ · |G|2) and computes a graph G′ such that OPT(G) =
OPT(G′), ‖G′‖ ≤ ‖G‖, and no connected component of G′ has an excessive protrusion.

Moreover, there exists a solution-lifting algorithm that works as follows: given a subset F ′
of edges of G′ for which G′ − F ′ is F-free, the algorithm runs in time O(‖G‖2) and outputs
a subset F of edges of G such that |F | ≤ |F ′| and G− F is F-free.

ICALP 2017

57:10 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

4 Constant-factor approximation

It would be ideal if just applying the Exhaustive Protrusion Replacement (Lemma 16) reduced
the size of the graph to linear in OPT. Then, we would already have a linear kernel, and
taking all its edges would yield a constant-factor approximation. Unfortunately, there are
graphs with no excessive protrusions, where the size is not bounded linearly in OPT. To see
this, observe that a large group of parallel edges is not a protrusion, so our current reduction
rules will not reduce their multiplicity, even if they amount to 99% of the graph. Hence, we
need to find a way to discover and account for such groups (we remark that reducing each to
O(OPT) would be relatively easy, giving a quadratic kernel). More generally, the structures
that turn out to be problematic are large groups of constant-size 2-protrusions attached to
the same pair of vertices; a group of parallel edges is a degenerated case of this structure. To
describe the problematic structures formally, we introduce the notion of a bouquet.

Bouquets. Let us define the following constant dF := max{2bF · cF + 2bF , 3MAXF}+ 1
(where MAXF = maxH∈F ‖H‖). A bouquet is a family of at least dF isomorphic 2-protrusions,
while a theta is a set of at least dF parallel edges.

I Definition 17. Consider a graph G, a set U ⊆ V (G) and a family of 2-protrusions {Si}i∈I
such that for each i ∈ I:

N(Si) = U (implying |U | ≤ 2);
G[Si] is connected; and
G[U ∪ Si] is isomorphic to G[U ∪ Sj] for all i, j ∈ I, with an isomorphism that maps each
vertex of U to itself.

We call such a family a bouquet attached to U if it is maximal under inclusion (i.e. there is
no proper superfamily which is also a bouquet) and has at least dF elements. The edge set
of the bouquet is the set of all edges incident to some Si.

I Definition 18. For two vertices u, v ∈ V (G), a theta attached to {u, v} is a set of edges
between u and v that is maximal under inclusion and has at least dF elements.

The constant dF is chosen so that a protrusion containing a set to which a bouquet (or
theta) is attached is large enough to be excluded as an excessive protrusion, and so that any
immersion of a graph of F cannot simultaneously intersect all elements of a bouquet. Indeed,
in any immersion of some H ∈ F in a graph G, the image of an edge of H is a path in G,
which visits every vertex of the bouquet’s attachment at most once, and hence intersects at
most three elements of the bouquet. Thus in total, the immersion model intersects at most
3 ·maxH∈F ‖H‖ elements of the bouquet or theta, which is less than dF .

We now show that the number of edges of a graph with no excessive protrusions, no
bouquets, and no thetas is linearly bounded in the optimum solution size, which formalizes
the intuition that only those structures prevent the graph from being a linear kernel.

I Lemma 19 (?). Let G be a connected graph without excessive protrusions, bouquets, or
thetas. Then G is F-free, or ‖G‖ ≤ c · OPT(G), for some constant c depending on F only.

The proof of Lemma 19 goes roughly as follows. Take some optimum solution F . Then
G− F is F -free, so, by Theorem 11, it has a neat tree-cut decomposition (T,X) of width at
most bF . For simplicity suppose that G− F is connected, so that T is a tree (the proof in
the general case is essentially the same). Let M0 be the set of all vertices of T whose bags
contain a vertex incident to an edge of F ; then |M0| ≤ 2|F |. Compute the lowest common
ancestor closure M ofM0: start withM := M0, and iteratively add toM any lowest common

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:11

ancestor of two nodes of M that is not yet included. As in Fomin et al. [14], we have that
|M | ≤ 2|M0| ≤ 4|F |, and each component of T −M is adjacent to at most two nodes of M .

Let us consider some connected component T ′ of T −M , and let XT ′ be the union of
the bags at the nodes of T ′. Suppose first that T ′ is adjacent to exactly two nodes of M ;
note that there are at most |M | − 1 such components T ′. Then one can easily see that
‖G[XT ′]‖ ≤ 2bFcF , because otherwise XT ′ would be an excessive protrusion. Here, we
crucially use the first condition of the neatness of T to argue that G − XT ′ has at most
two connected components. Hence, the total number of edges in graphs G[XT ′] for such
components T ′ is bounded by (|M | − 1) · 2bFcF , which is linear in |F | = OPT(G).

We are left with considering components T ′ that are adjacent to exactly one node of M .
We again have that ‖G[XT ′]‖ ≤ 2bF cF for each such component T ′, because otherwise XT ′

would be an excessive protrusion. However, a priori we do not have any bound on the number
of such components. Suppose for a moment that a large number of such components T ′ is
adjacent to the same node t ∈ M . By Lemma 8, all but a constant number of them are
connected to t via edges of the decomposition with thin adhesions. Moreover, for each of
these adhesions, all the (at most 2) edges of the adhesion have both endpoints in the bag Xt.
Since the size of Xt is bounded by a constant, and each XT ′ induces a graph of constant
size, we can infer that there is a constant number of isomorphism types for graphs G[XT ′],
together with the choice of the attachment points in Xt. So if the number of the considered
components T ′ was very large, then some of them would form a bouquet, a contradiction.

This shows that, in fact, the number of components T ′ adjacent to only one vertex of M
is also bounded linearly in |M |, so also in OPT(G). The fact that G has no thetas is used to
bound the number of edges contained in graphs induced by the bags of M . By combining all
these bounds, we conclude the proof of Lemma 19.

Finding a constant-factor approximation piece by piece. To handle bouquets and thetas,
we first show that they are disjoint, as otherwise they would constitute a large protrusion.

I Lemma 20 (?). Let G be a connected graph with no excessive protrusions. Then every
two bouquets and/or thetas in G have disjoint edge sets. Furthermore, if a bouquet or theta
is attached to U ⊆ V (G), then U is disjoint with all elements of any bouquet.

The following lemma is the crucial step for our approximation: we find a subset of edges
∆ with a guarantee that a constant fraction of ∆ is used in some optimum solution.

I Lemma 21 (?). Given a connected graph G with no excessive protrusion that is not F-free,
one can find in in time O(|G|3) a set ∆ ⊆ E(G) such that (for some c depending on F only):
OPT(G−∆) < OPT(G) and |∆| ≤ c · (OPT(G)− OPT(G−∆)).

The set ∆ given by Lemma 21 is constructed as follows. First, we locate all thetas and
bouquets in G; Lemma 20 ensures that they do not overlap. ∆ is defined as the set of all
edges of G, with the exception that in each bouquet and in each theta we exclude from ∆ the
edges of all but dF − 1 elements of the bouquet/theta. We show that the subgraph given by
edges of ∆ satisfies the assumptions of Lemma 19, thus bounding |∆|. The bound is linear
in the size of the intersection of ∆ with any optimal solution, allowing to conclude the claim.

To get a constant-factor approximation algorithm, we iteratively invoke the algorithm of
Lemma 21 (extended to general graphs by considering each connected component separately).
More precisely, we perform iteratively the following procedure, starting with G1 = G. At
step i, given a graph Gi, we first run the algorithm of Lemma 16 to remove excessive
protrusions from Gi and obtain a new graph G′i. Thus, in a sense, we reduce those parts

ICALP 2017

57:12 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

of the graph where no more edges need to be deleted. Then, we apply the algorithm of
Lemma 21 to G′i, thus finding a set ∆i with the following property: the deletion of ∆i

reduces OPT by some number p, while increasing the total number of edges deleted so far
by at most c · p. We proceed to the next iteration with Gi+1 := G′i −∆i. Eventually, we
arrive at the situation when the current graph Gi is already F-free, in which case we stop.
A constant-factor approximate solution can be then obtained by reverting the iterations:
Proceeding from the last iteration to the first, we always add the extracted set ∆i to the
constructed solution, and roll-back the protrusion reductions performed by the algorithm
of Lemma 16 while lifting the current solution using the solution-lifting algorithm. This
concludes the proof of Theorem 2 (the formal description is in the full version of the paper).

5 Linear kernel

In the previous section we observed (Lemma 19) that the only structures in the graph that
prevent it from being a linear kernel are excessive protrusions, bouquets, and thetas. Using
the Exhaustive Protrusion Replacement (Lemma 16) we can get rid of excessive protrusions,
but bouquets and thetas can still be present in the graph. It would be ideal if we could
reduce the size of every bouquet or theta to a constant, but unfortunately we are unable to
do this. Instead, bouquets and thetas will be reduced to constant size in the amortized sense.

The next lemma is the crux of our approach: provided we know a “local” solution ∆ that
isolates a bouquet into an F -free part, this bouquet can be pruned proportionally to the size
of ∆ without changing OPT(G). The proof is by a simple replacement argument, and the
same reasoning can also be applied to limit the sizes of thetas.

I Lemma 22 (?). Let {Xi}i∈I be a bouquet attached to U in G. Suppose ∆ ⊆ E(G) is such
that all the connected components of G −∆ that intersect U ∪

⋃
i∈I Xi are F-free. Then

OPT(G) = OPT(G′), where G′ is obtained from G by removing vertices of all except dF + |∆|
elements of the bouquet.

We are now ready to show the main part of our reasoning: given some solution F , for
example the one returned by the approximation algorithm of Theorem 2, we are able to
reduce the graph, provided it is not already bounded linearly in |F |.

I Lemma 23 (?). Let G be a connected graph with no excessive protrusions and let F ⊆ E(G)
be such that G− F is F-free. Then either ‖G‖ ≤ c · |F | for some constant c depending on F
only, or given G and F , one can compute in time O(‖G‖ · |G|2) a subgraph G′ of G such
that OPT(G) = OPT(G′) and ‖G′‖ < ‖G‖.

The proof uses the following strategy based on the idea of amortization. Given a solution
F , we use parts of F as local solutions to locally bound bouquets and thetas. More precisely,
we first perform a similar structural analysis of G with F removed as in the proof of Lemma 19;
see the sketch following its statement. There, we considered a neat tree-cut decomposition
T = (T,X) of G−F of width bF . In this decomposition, we highlighted a subset M ⊆ V (T),
the lca-closure of those nodes of T whose bags are incident to F . We concluded that the
only parts not yet bounded linearly in terms of |F | were large bouquets and thetas with both
attachment points contained in a bag Xt of some node t ∈ M . For such a node t, define
∆(t) as the set containing: (i) all the edges of F incident to Xt, and (ii) all the adhesions of
edges of T incident to t that lead to components of T −M containing other vertices of M .
Then ∆(t) easily satisfies the prerequisites of Lemma 22. Hence, dF + |∆(t)| can be used as
a bound for reducing these bouquets and thetas. Summing these bounds through all nodes
t ∈M , we achieve an O(|F |+ |M |) bound, thus O(|F |) due to |M | ≤ 4|F |.

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:13

With Lemma 23, we can now easily conclude the proof of Theorem 3 (the formal description
is in the full version of the paper). First, we get rid of all excessive protrusions in the graph
(Lemma 16) and compute an approximate solution Fapx (Theorem 2). If |Fapx| > capx · k,
the input is a NO instance. Otherwise, we give Fapx to the algorithm of Lemma 23 which,
provided the graph is still too large to be a kernel, computes a strictly smaller, but equivalent
instance. We then recurse on this smaller instance, eventually returning a linear kernel.

Acknowledgements. The authors thank an anonymous referee for suggesting a more direct
approach to finding excessive protrusions as well as Ignasi Sau, Petr Golovach, Eun Jung Kim,
and Christophe Paul for preliminary discussions on the F-Immersion Deletion problem.

References
1 Rémy Belmonte, Archontia Giannopoulou, Daniel Lokshtanov, and Dimitrios M. Thilikos.

The Structure of W4-Immersion-Free Graphs. ArXiv e-prints 1602.02002, February 2016.
2 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small

treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.
3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, November
2016. doi:10.1145/2973749.

4 Heather D. Booth, Rajeev Govindan, Michael A. Langston, and Siddharthan Ramachan-
dramurthi. Fast algorithms for K4 immersion testing. J. Algorithms, 30(2):344–378, 1999.

5 Dimitris Chatzidimitriou, Jean-Florent Raymond, Ignasi Sau, and Dimitrios M. Thilikos.
An O(log OPT)-approximation for covering/packing minor models of θr. Algorithmica, 2017.
To appear.

6 Rajesh Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions.
SIAM J. Comput., 45(4):1171–1229, 2016.

7 Bruno Courcelle. The Monadic Second-Order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

8 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Matt Devos, Zdeněk Dvořák, Jacob Fox, Jessica McDonald, Bojan Mohar, and Diego
Scheide. A minimum degree condition forcing complete graph immersion. Combinator-
ica, 34(3):279–298, 2014.

10 Zdeněk Dvořák and Paul Wollan. A structure theorem for strong immersions. J. Graph
Theory, 83(2):152–163, 2016. doi:10.1002/jgt.21990.

11 Zdeněk Dvořák and Liana Yepremyan. Complete graph immersions and minimum degree.
ArXiv e-prints 1512.00513, December 2015.

12 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

13 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
Deletion: Approximation and optimal FPT algorithms. ArXiv e-prints 1204.4230, October
2012.

14 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-
deletion: Approximation, kernelization and optimal FPT algorithms. In Proceedings of
FOCS 2012, pages 470–479. IEEE Computer Society, 2012.

15 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proceedings of SODA 2010, pages 503–510. SIAM, 2010.

ICALP 2017

http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1002/jgt.21990

57:14 Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

16 Robert Ganian, Eun Jung Kim, and Stefan Szeider. Algorithmic applications of tree-
cut width. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella, editors,
Proceedings of MFCS 2015, volume 9235 of Lecture Notes in Computer Science, pages
348–360. Springer, 2015.

17 Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh.
Uniform kernelization complexity of hitting forbidden minors. ACM Trans. Algorithms,
13(3):35:1–35:35, March 2017. doi:10.1145/3029051.

18 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M.
Thilikos. Packing and covering immersion models of planar subcubic graphs. In Proceedings
of WG 2016, pages 74–84. Springer, 2016. Preprint: ArXiv e-prints 1602.04042.

19 Archontia C. Giannopoulou, Michał Pilipczuk, Dimitrios M. Thilikos, Jean-Florent Ray-
mond, and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-closed
graph classes. ArXiv e-prints 1609.07780, September 2016. URL: https://arxiv.org/
abs/1609.07780.

20 Archontia C. Giannopoulou, Iosif Salem, and Dimitris Zoros. Effective computation of
immersion obstructions for unions of graph classes. J. Comput. Syst. Sci., 80(1):207–216,
2014.

21 Rajeev Govindan and Siddharthan Ramachandramurthi. A weak immersion relation on
graphs and its applications. Disc. Math., 230(1–3):189–206, 2001.

22 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of STOC 2011, pages 479–488. ACM,
2011.

23 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. On an edge ranking
problem of trees and graphs. Discrete Appl. Math., 30(1):43–52, 1991.

24 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. In Proceedings of ICALP 2013, volume 7965 of Lecture Notes in Computer
Science, pages 613–624. Springer, 2013.

25 Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. An
FPT 2-approximation for tree-cut decomposition. Algorithmica, pages 1–20, 2016. doi:
10.1007/s00453-016-0245-5.

26 Tak Wah Lam and Fung Ling Yue. Edge ranking of graphs is hard. Discrete Appl. Math.,
85(1):71–86, 1998.

27 Dániel Marx. Parameterized graph separation problems. Theor. Comput. Sci., 351(3):394–
406, 2006. doi:10.1016/j.tcs.2005.10.007.

28 Dániel Marx and Paul Wollan. Immersions in highly edge connected graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

29 Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

30 N. Robertson and P.D. Seymour. Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995.

31 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J.
Comb. Theory, Ser. B, 41(1):92–114, 1986.

32 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004.

33 Neil Robertson and Paul D. Seymour. Graph minors. XXIII. Nash-Williams’ immersion
conjecture. J. Comb. Theory, Ser. B, 100(2):181–205, 2010.

34 Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

http://dx.doi.org/10.1145/3029051
https://arxiv.org/abs/1609.07780
https://arxiv.org/abs/1609.07780
http://dx.doi.org/10.1007/s00453-016-0245-5
http://dx.doi.org/10.1007/s00453-016-0245-5
http://dx.doi.org/10.1016/j.tcs.2005.10.007

A.C. Giannopoulou, Mi. Pilipczuk, J.-F. Raymond, D.M. Thilikos, and M. Wrochna 57:15

35 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

36 Paul Wollan. The structure of graphs not admitting a fixed immersion. J. Comb. Theory,
Ser. B, 110:47–66, 2015.

ICALP 2017

k-Distinct In- and Out-Branchings in Digraphs∗†

Gregory Gutin1, Felix Reidl2, and Magnus Wahlström3

1 Royal Holloway, University of London, London, UK
g.gutin@rhul.ac.uk

2 North Carolina State University, Raleigh, NC, USA
felix.reidl@gmail.com

3 Royal Holloway, University of London, London, UK
Magnus.Wahlstrom@rhul.ac.uk

Abstract
An out-branching and an in-branching of a digraph D are called k-distinct if each of them has k
arcs absent in the other. Bang-Jensen, Saurabh and Simonsen (2016) proved that the problem of
deciding whether a strongly connected digraph D has k-distinct out-branching and in- branching
is fixed-parameter tractable (FPT) when parameterized by k. They asked whether the problem
remains FPT when extended to arbitrary digraphs. Bang-Jensen and Yeo (2008) asked whether
the same problem is FPT when the out-branching and in-branching have the same root.

By linking the two problems with the problem of whether a digraph has an out-branching
with at least k leaves (a leaf is a vertex of out-degree zero), we first solve the problem of Bang-
Jensen and Yeo (2008). We then develop a new digraph decomposition called the rooted cut
decomposition and using it we prove that the problem of Bang-Jensen et al. (2016) is FPT for all
digraphs. We believe that the rooted cut decomposition will be useful for obtaining other results
on digraphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Digraphs, Branchings, Decompositions, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.58

1 Introduction

While both undirected and directed graphs are important in many applications, there are
significantly more algorithmic and structural results for undirected graphs than for directed
ones. The main reason is likely to be the fact that most problems on digraphs are harder
than those on undirected graphs. The situation has begun to change: recently there appeared
a number of important structural results on digraphs, see e.g. [16, 17, 18]. However, the
progress was less pronounced with algorithmic results on digraphs, in particular, in the area
of parameterized algorithms.

In this paper, we introduce a new decomposition for digraphs and show its usefulness
by solving an open parameterized problem on digraphs by Bang-Jensen, Saurabh and
Simonsen [6]. We believe that our decomposition will prove to be helpful for obtaining further
algorithmic and structural results on digraphs.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of
in-degree zero (out-degree zero). The vertex s is the root of T. A vertex v of an out-tree

∗ A full version of the paper is available at https://arxiv.org/abs/1612.03607.
† Gutin’s research was partially supported by Royal Society Wolfson Research Merit Award.

EA
T

C
S

© Gregory Gutin, Felix Reidl, and Magnus Wahlström;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 58; pp. 58:1–58:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.58
https://arxiv.org/abs/1612.03607
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 k-Distinct In- and Out-Branchings

(in-tree) is called a leaf if it has out-degree (in-degree) zero. If an out-tree (in-tree) T is a
spanning subgraph of a digraph D, then T is an out-branching (an in-branching) of D. It is
well-known that a digraph D contains an out-branching (in-branching) if and only if D has
only one strongly connected component with no incoming (no outgoing) arc [3].

A well-known result in digraph algorithms, due to Edmonds, states that given a digraph
D and a positive integer `, we can decide whether D has ` arc-disjoint out-branchings in
polynomial time [15]. The same result holds for ` arc-disjoint in-branchings. Inspired by this
fact, it is natural to ask for a “mixture" of out- and in-branchings: given a digraph D and
a pair u, v of (not necessarily distinct) vertices, decide whether D has an arc-disjoint out-
branching T+

u rooted at u and an in-branching T−v rooted at v. We will call this problem
Arc- Disjoint Branchings.

Thomassen proved (see [2]) that the problem is NP-complete and remains NP-complete
if we add the condition that u = v. The same result still holds for digraphs in which the
out-degree and in-degree of every vertex equals two [7]. The problem is polynomial-time
solvable for tournaments [2] and for acyclic digraphs [8, 10]. The single-root special case (i.e.,
when u = v) of the problem is polynomial time solvable for quasi-transitive digraphs1 [4]
and for locally semicomplete digraphs2 [5].

An out-branching T+ and an in-branching T− are called k-distinct if |A(T+)\A(T−)| ≥ k.
Bang-Jensen, Saurabh and Simonsen [6] considered the following parameterization of Arc-
Disjoint Branchings.

Input: A digraph D, an integer k.
Problem: Are there k-distinct out-branching T + and in-branching T −?

k-Distinct Branchings parametrised by k

They proved that k-Distinct Branchings is fixed-parameter tractable (FPT)3 when D
is strongly connected and conjectured that the same holds when D is an arbitrary digraph.
Earlier, Bang-Jensen and Yeo [9] considered the version of k-Distinct Branchings where T+

and T− must have the same root and asked whether this version of k-Distinct Branchings,
which we call Single-Root k-Distinct Branchings, is FPT.

The first key idea of this paper is to relate k-Distinct Branchings to the problem of
deciding whether a digraph has an out-branching with at least k leaves via a simple lemma
(see Lemma 4). The lemma and the following two results on out-branchings with at least k
leaves allow us to solve the problem of Bang-Jensen and Yeo [9] and to provide a shorter proof
for the above-mentioned result of Bang-Jensen, Saurabh and Simonsen [6] (see Theorem 6).

I Theorem 1 ([1]). Let D be a strongly connected digraph. If D has no out-branching with
at least k leaves, then the (undirected) pathwidth of D is bounded by O(k log k).

I Theorem 2 ([12, 19]). We can decide whether a digraph D has an out-branching with at
least k leaves in time O∗(4k).

1 A digraph D = (V, A) is quasi-transitive if for every xy, yz ∈ A there is at least one arc between x and
z, i.e. either xz ∈ A or zx ∈ A or both.

2 A digraph D = (V, A) is locally semicomplete if for every xy, xz ∈ A there is at least one arc between y
and z and for every yx, zx ∈ A there is at least one arc between y and z. Tournaments and directed
cycles are locally semicomplete digraphs.

3 Fixed-parameter tractability of k-Distinct Branchings means that the problem can be solved by an
algorithm of runtime O∗(f(k)), where O∗ omits not only constant factors, but also polynomial ones,
and f is an arbitrary computable function. The books [11, 13] are excellent recent introductions to
parameterized algorithms and complexity.

G. Gutin, F. Reidl, and M. Wahlström 58:3

The general case of k-Distinct Branchings seems to be much more complicated. We first
introduce a version of k-Distinct Branchings called k-Rooted Distinct Branchings,
where the roots s and t of T+ and T− are fixed, and add the arc ts to D (provided the arc
is not in D) to make D strongly connected. This introduces a complication: we may end
up in a situation where D has an out-branching with many leaves, and thereby potentially
unbounded pathwidth, but the root of the out-branching is not s. To deal with this situation,
our goal will be to reconfigure the out-branching into an out-branching rooted at s. In order
to reason about this process, we develop a new digraph decomposition we call the rooted cut
decomposition. The cut decomposition of a digraph D rooted at a given vertex r consists of
a tree T̂ rooted at r whose nodes are some vertices of D and subsets of vertices of D called
diblocks associated with the nodes of T̂ .

Out strategy is now as follows. If T̂ is shallow (i.e., it has bounded height), then any
out-branching with sufficiently many leaves can be turned into an out-branching rooted at s
without losing too many of the leaves. On the other hand, if T̂ contains a path from the root
of T̂ with sufficiently many non-degenerate diblocks (diblocks with at least three vertices),
then we are able to show immediately that the instance is positive. The remaining and most
difficult issue is to deal with digraphs with decomposition trees that contain long paths of
diblocks with only two vertices, called degenerate diblocks. In this case, we employ two
reduction rules which lead to decomposition trees of bounded height.

The paper is organized as follows. In the next section, we provide some terminology and
notation on digraphs used in this paper. In Section 3, we prove Theorem 6. Section 4 is
devoted to proving that Rooted k-Distinct Branchings is FPT for all digraphs using
cut decomposition and Theorems 1 and 2. We conclude the paper in Section 5, where some
open parameterized problems on digraphs are mentioned. Due to space constraints, we only
provide a short version of Section 4.3 in the main text. A complete version is available online4.

2 Terminology and Notation

Let us recall some basic terminology of digraph theory, see [3]. A digraph D is strongly
connected (connected) if there is a directed (oriented) path from x to y for every ordered pair
x, y of vertices of D. Equivalently, D is connected if the underlying graph of D is connected.
A vertex v is a source (sink) is its in-degree (out-degree) is equal to zero. It is well-known
that every acyclic digraph has a source and a sink [3].

In this paper, we exclusively work with digraphs, therefore we assume all our graphs, paths,
and trees to be directed unless otherwise noted. For a path P = x1x2 . . . xk of length k−1 we
will employ the following notation for subpaths of P : P [xi, xj] := xi . . . xj for 1 ≤ i ≤ j ≤ k
is the infix of P from xi to xj . For paths P1 := x1 . . . xkv and P2 := vy1 . . . y` we denote
by P1P2 := x1 . . . xkvy1 . . . y` their concatenation. For rooted trees T and some vertex x ∈ T ,
Tx stands for the subtree of T rooted at x (see Figure 1).

We will frequently partition the nodes of a tree around a path in the following sense
(cf. Figure 1): Let T be a tree rooted at r and P = x1 . . . x` a path from r = x1 to
some node x` ∈ T . The fins of P are the sets {Fxi}xi∈P defined as Fxi := V (Txi) \
V (Txi+1) for i < ` and Fx`

:= V (Tx`
).

I Definition 3 (Bi-reachable Set). A set B in a digraph D is bi-reachable from a vertex r if
for all v ∈ B there exist two internally vertex-disjoint paths from r to v.

4 https://arxiv.org/abs/1612.03607

ICALP 2017

https://arxiv.org/abs/1612.03607

58:4 k-Distinct In- and Out-Branchings

Figure 1 Subtree notation Tx for x ∈ T (left) and the fins Fx1 , . . . , Fx` for a path x1 . . . x` in T

(right).

Given a digraph D and a vertex r, we can compute the set of vertices that are bi-reachable
from r in polynomial time using network flows.

3 Strongly Connected Digraphs

Let us prove a simple fact on a link between out/in-branchings with many leaves and k-
Distinct Branchings, which together with a structural result of Alon et al. [1] and an
algorithmic result for the maximum leaf out-branching problem [12, 19] gives a short proof
that both versions of k-Distinct Branchings are FPT for strongly connected digraphs.

I Lemma 4. Let D be a digraph containing an out-branching and an in-branching. If D
contains an out-branching (in-branching) T with at least k+ 1 leaves, then every in-branching
(out-branching) T ′ of D is k-distinct from T .

Proof. We will consider only the case when T is an out-branching since the other case can
be treated similarly. Let T ′ be an in-branching of D and let L be the set of all leaves of T
apart from the one which is the root of T ′. Observe that all vertices of L have outgoing arcs
in T ′ and since in T the incoming arcs of L are the only arcs incident to L in T , the sets of
the outgoing arcs in T ′ and incoming arcs in T do not intersect. J

We will use the following standard dynamic programming result (see, e.g., [6]).

I Lemma 5. Let H be a digraph of (undirected) treewidth τ . Then k-Distinct Branchings
and Single-Root k-Distinct Branchings on H can be solved in time O∗(2O(τ log τ)).

Note that if a digraph D is a positive instance of Single-Root k-Distinct Branchings
then D must be strongly connected as an out-branching and an in-branching rooted at the
same vertex form a strongly connected subgraph of D.

I Theorem 6. k-Distinct Branchings and Single-Root k-Distinct Branchings on
strongly connected digraphs can be solved in time O∗(2O(k log2 k)).

Proof. The proof is essentially the same for both problems and we will give it for Single-
Root k-Distinct Branchings. Let D be an input strongly connected digraph. By
Theorem 2 using an O∗(4k)-time algorithm we can find an out-branching T+ with at least
k + 1 leaves, or decide that D has no such out-branching. If T+ is found, the instance of

G. Gutin, F. Reidl, and M. Wahlström 58:5

Single-Root k-Distinct Branchings is positive by Lemma 4 as any in-branching T−
of D is k-distinct from T+. In particular, we may assume that T− has the same root as
T+ (a strongly connected digraph has an in-branching rooted at any vertex). Now suppose
that T+ does not exist. Then, by Theorem 1 the (undirected) pathwidth of D is bounded
by O(k log k). Thus, by Lemma 5 the instance can be solved in time O∗(2O(k log2 k)). J

4 The k-Distinct Branchings Problem

In this section, we fix a digraph D with terminals s, t and simply talk about rooted out-
branchings (in-branchings) whose root we implicitly assume to be s (t). Similarly, unless
otherwise noted, a rooted out-tree (in-tree) is understood to be rooted at s (t).

The problem k-Distinct Branchings in which T+ and T− must be rooted at s and
t, respectively, will be called the Rooted k-Distinct Branchings problem. Clearly, to
show that both versions of k-Distinct Branchings are FPT it is sufficient to prove the
following:

I Theorem 7. Rooted k-Distinct Branchings is FPT for arbitrary digraphs.

In the rest of this section, (D, s, t) will stand for an instance of Rooted k-Distinct
Branchings (in particular, D is an input digraph of the problem) and H for an arbitrary
digraph. As noted in the previous section, the case in which s = t implies strong connectivity
and is therefore already solved. Consequently, we will assume that s 6= t in the following.
Let us start by observing what further restrictions on D can be imposed by polynomial-time
preprocessing.

4.1 Preprocessing
Let (D, s, t) be an instance of Rooted k-Distinct Branchings with s 6= t. Recall that D
contains an out-branching (in-branching) if and only if D has only one strongly connected
component with no incoming (no outgoing) arc. As a first preprocessing step, we can decide
in polynomial time whether D has a rooted out-branching and a rooted in-branching. If not,
we reject the instance. Note that this in particular means that in a non-rejected instance,
every vertex in D is reachable from s and t is reachable from every vertex.

Next, we test for every arc a ∈ D whether there exists at least one rooted in- or
out-branching that uses a as follows: since a maximal-weight out- or in-branching for an
arc-weighted digraph can be computed in polynomial time [14], we can force the arc a to be
contained in a solution by assigning it a weight of 2 and every other arc weight 1. If we verify
that a indeed neither appears in any rooted out-branching or in-branching, we remove a
from D and obtain an equivalent instance of Rooted k-Distinct Branchings.

After this polynomial-time preprocessing, our instance has the following properties: there
exists a rooted out-branching, there exists a rooted in-branching, and every arc of D appears
in some rooted in- or out-branching. We call such a digraph with a pair s, t reduced.

Lastly, by the following lemma we may assume that our instance is strongly connected
by incurring a factor of two in the application of Lemma 4.

I Lemma 8. Let (D, s, t) be reduced and let D′ be the digraph obtained from D by adding
the arc ts to it unless ts is already in D in which case D′ = D. Then (D′, s, t) is a positive
instance of Rooted k-Distinct Branchings if and only if so is (D, s, t). Furthermore,
if D′ contains an out-tree (in-tree) with at least ` leaves, then D contains an out-tree (in-tree)
with at least `/2 leaves.

ICALP 2017

58:6 k-Distinct In- and Out-Branchings

Proof. We may assume that D′ 6= D. For the first claim, simply note that any rooted
out-branching of D′ cannot use the arc ts and the same holds for rooted in-branchings. For
the second claim, assume T is an out-tree in D with ` leaves. Assume ts ∈ T (otherwise the
claim follows trivially). Let T1 and T2 be the two out-trees obtained by deleting the arc ts
from T . Both are out-trees in D and one of them contains at least `/2 leaves, as claimed. J

The first claim of Lemma 8 shows that we may assume that D is strongly connected in
Rooted k-Distinct Branchings. This implies the following simple claim required for
further references.

I Lemma 9. Let D be an input digraph of Rooted k-Distinct Branchings. Then every
rooted out-tree with q leaves can be extended into a rooted out-branching with at least q leaves.

In summary, we enforce the following properties for (D, s, t) by polynomial- time prepro-
cessing:
1. Every arc of D is contained in at least one rooted in-branching or rooted out-branching,
2. D is strongly connected.

4.2 Decomposition and Reconfiguration
We work towards the following win-win scenario: either we find an out-tree with Θ(k)
leaves that can be turned into a rooted out-tree with at least k + 1 leaves, or we conclude
that every out-tree in D has less than Θ(k) leaves. We refer to the process of turning an
out-tree into a rooted out-tree as a reconfiguration. In the process we will develop a new
digraph decomposition, the rooted cut-decomposition, which will aid us in reasoning about
reconfiguration steps and ultimately lead us to a solution for the problem.

To make the notion of a bi-reachable set easier to use, the decomposition will employ a
slightly broader notion as follows.

I Definition 10. Let H be a digraph with at least two vertices, and let r ∈ V (H) such that
every vertex of H is reachable from r. Let B ⊆ V (H) be the set of all vertices that are
bi-reachable from r. The directed block (diblock) Br of r in H is the set B ∪N+[r], i.e., the
bi-reachable vertices together with all out-neighbors of r and r itself.

Note that according to the above definition a diblock must have at least two vertices.
The following statement provides us with an easy case in which a reconfiguration is

successful, that is, we can turn an arbitrary out-tree into a rooted out-tree without losing
too many leaves. Later, the obstructions to this case will be turned into building blocks of
the decomposition.

I Lemma 11. Let Bs ⊆ V (D) be the diblock of s and let T be an out-tree of D whose root r
lies in Bs with ` leaves. Then there exists a rooted out-tree with at least (`− 1)/2 leaves.

Proof. We may assume that r 6= s. In case T contains s as a leaf, we remove s from T for
the remaining argument and hence will argue about the `− 1 remaining leaves.

If r is bi-reachable from s, consider two internally vertex-disjoint paths P,Q from s to r.
One of the two paths necessarily avoids half of the ` − 1 leaves of T ; let without loss of
generality this path be P . Let further L be the set of those leaves of T that do not lie on P .
If r ∈ N+(s), let P = sr.

We construct the required out-tree T ′ as follows: first, add all arcs and vertices of P
to T ′. Now for every leaf v ∈ L, let Pv be the unique path from r to v in T and let P ′v be
the segment of Pv from the last vertex x of Pv contained in T . Add all arcs and vertices

G. Gutin, F. Reidl, and M. Wahlström 58:7

of P ′v to T ′. Observe that x 6= v as v cannot be in T ′ already. Since Pv and thus P ′v contains
no leaf of L other than v, in the end of the process, all vertices of L are leaves of T ′. Since
|L| ≥ (`− 1)/2, the claim follows. J

Note that the definition of diblocks can be understood in terms of network flows. Let v 6= r.

Consider the vertex-capacitated version of H where r and v both have capacity 2, and every
other vertex has capacity 1, for some v ∈ V (H) \ {r}. Then v is contained in the diblock of
r in H if and only if the max-flow from r to v equals 2 (note that if v ∈ N+(r), then such
a flow exists trivially since arcs have infinite capacity). Dually, by Menger’s theorem, v is
not contained in the diblock if and only if there is a vertex u /∈ {r, v} such that all r-v paths
P intersect u. This has the following simple consequence regarding connectivity inside a
diblock.

I Lemma 12. Fix r ∈ V (H) and let Br ⊆ V (H) be the diblock of r in H. Then for every
pair of distinct vertices x, y ∈ Br, there exist an r-x-path Px and an r-y-path Py that intersect
only in r.

Proof. If r ∈ {x, y}, then clearly the claim holds since every vertex in Br is reachable from
r. Otherwise, add a new vertex z with arcs xz and yz, and note that the lemma holds if and
only if z is bi-reachable from r. If this is not true, then by Menger’s theorem there is a vertex
v ∈ Br, v 6= r, such that all paths from r to z, and hence to x and y, go through v. But as
noted above, there is no cut-vertex v /∈ {x, r} for r-x paths, and no cut-vertex v /∈ {y, r} for
r-y paths. We conclude that z is bi-reachable from r, hence the lemma holds. J

Next, we will use Lemma 12 to show that given a vertex r, the set of vertices not in the
diblock Br of r in H partitions cleanly around Br.

I Lemma 13. Let r ∈ V (H) be given, such that every vertex of H is reachable from r. Let
Br ⊂ V (H) be the diblock of r in H. Then V (H) \Br partitions according to cut vertices in
Br, in the following sense: For every v ∈ V (H) \Br, there is a unique vertex x ∈ Br \ {r}
such that every path from r to v intersects Br for the last time in x. Furthermore, this
partition can be computed in polynomial time.

Proof. Assume towards a contradiction that for v ∈ V (H)\Br there exist two r-v-paths P1, P2
that intersect Br for the last time in distinct vertices x1, x2, respectively. We first observe
that r /∈ {x1, x2}, since the second vertices of P1 and P2 are contained in Br by definition.
By Lemma 12, we may assume that P1[r, x1] ∩ P2[r, x2] = {r}. But then P1 and P2 intersect
for the first time outside of Br in some vertex v′ (potentially in v′ = v). This vertex is,
however, bi-reachable from r, contradicting our construction of Br. Hence there is a vertex
x ∈ Br such that every path from r to v intersects Br for the last time in x, with x 6= r, and
clearly this vertex is unique. Finally, the set Br can be computed in polynomial time, and
given Br it is easy to compute for each x ∈ Br the set of all vertices v ∈ V (H) (if any) for
which x is a cut vertex. J

We refer to the vertices x ∈ Br that are cut vertices in the above partition as the bottlenecks
of Br. Note that r itself is not considered a bottleneck in Br. Using these notions, we can
now define a cut decomposition of a digraph H.

I Definition 14 (Rooted cut decomposition and its tree). Let H be a digraph and r a vertex
such that every vertex in H is reachable from r. The (r-rooted) cut decomposition of H is a
pair (T̂ ,B) where T̂ is a rooted tree with V (T̂) ⊆ V (H) and B = {Bx}x∈T̂ , Bx ⊆ V (H) for
each x ∈ T̂ , is a collection of diblocks associated with the nodes of T̂ , defined and computed
recursively as follows.

ICALP 2017

58:8 k-Distinct In- and Out-Branchings

Figure 2 An example of a rooted cut decomposition.

1. Let Br be the diblock of r in H, and let L ⊆ Br \ {r} be the set of bottlenecks in Br.
Let {Xx}x∈L be the corresponding partition of V (H) \Br.

2. For every x ∈ L, let (T̂x,Bx) be the x-rooted cut decomposition of H[Xx ∪ {x}].
3. T̂ is the tree with root node r, where L is the set of children of r, and for every x ∈ L

the subtree of T̂ rooted at x is T̂x.
4. B = {Br} ∪

⋃
x∈L Bx.

Furthermore, for every node x ∈ T̂ , we define B∗x =
⋃
y∈T̂x

By as the set of all vertices
contained in diblocks associated with nodes of the subtree T̂x.

Figure 2 provides an illustration to Definition 14.

I Lemma 15. Let a digraph H and a root r ∈ V (H) be given, such that every vertex of
H is reachable from r. Then the r-rooted cut decomposition (T̂ , {Bx}x∈T̂) of H is well-
defined and can be computed in polynomial time. Furthermore, the diblocks cover V (H),
i.e.,

⋃
x∈T̂ Bx = V (H), and for every node x ∈ T̂ , every vertex of B∗x is reachable from x in

H[B∗x].

Proof. By Lemma 13, the root diblock Br as well as the set L ⊆ Br of bottlenecks and the
partition {Xx}x∈L are well-defined and can be computed in polynomial time. Also note that
for each x ∈ L, r /∈ Xx ∪ {x}, and every vertex of Hx := H[Xx ∪ {x}] is reachable from x

in Hx by the definition of the partition. Hence the collection of recursive calls made in the
construction is well-defined, and every digraph Hx used in a recursive call is smaller than
H, hence the process terminates. Finally, for any two distinct bottlenecks x, y ∈ L we have
V (Hx) ∩ V (Hy) = ∅. Thereby, distinct nodes of T̂ are associated with distinct vertices of H,
|T̂ | ≤ |V (H)|, and the map x 7→ Bx is well-defined. It is also clear that the whole process
takes polynomial time. J

We collect some basic facts about cut decompositions.

I Lemma 16. Let a digraph H and a vertex r ∈ V (H) be given, and let (T̂ , {Bx}x∈T̂) be
the r-rooted cut decomposition of H. Then the following hold.
1. The sets {Bx \ {x}}x∈T̂ are all non-empty and partition V (H) \ {r}.
2. For distinct nodes x, y ∈ T̂ , if x is the parent of y in T̂ then Bx ∩ By = {y}; in every

other situation, Bx ∩By = ∅.
3. For every node x ∈ T̂ , the following hold:

(a) If y is a child of x in T̂ , then any arc leading into the set B∗y from V (H) \B∗y will
have the form uy where u ∈ Bx.

(b) If y, y′ are distinct children of x in T̂ , then there is no arc between B∗y and B∗y′ .
In particular, every arc of H is either contained in a subgraph of H induced by a diblock Bx,
or it is a back arc going from a diblock By to a diblock Bx, where x is an ancestor of y in T̂ .

G. Gutin, F. Reidl, and M. Wahlström 58:9

Proof. For the first claim, the sets Bx \ {x} are non-empty by definition; we show the
partitioning claim. By Lemma 13, for every v ∈ V (H) \ {r} either v ∈ Br \ {r} or there is
exactly one bottleneck x ∈ Br such that v ∈ Xx in the construction of the decomposition.
Also note that in the latter case, v 6= x since x ∈ Br. Applying the argument recursively and
using that the diblocks cover V (H), by Lemma 15, we complete the proof of the partitioning
claim.

For the second claim, the partitioning claim implies that if v ∈ Bx ∩By for distinct nodes
x, y ∈ T̂ , then either v = x or v = y, i.e., v must be a bottleneck. This is only possible in the
situation described.

For Claim 3(b), first consider the diblock Br and the partition {Xx} given by Lemma 13.
We show that for any two distinct sets Xx, Xy of the partition, there is no arc between Xx

and Xy. Suppose for a contradiction that there is such an arc uv, u ∈ Xx, v ∈ Xy. By
Lemma 12, there are paths Px and Py in Br that intersect only in r, and by Lemma 15, there
are paths Pu from x to u in Xx and Pv from y to v in Xy. But then the paths PxPuuv and
PyPv form two r-v paths that are internally vertex-disjoint, showing that v ∈ Br, contrary
to our assumptions. Since the decomposition is computed recursively, this also holds in every
internal node of T̂ .

For Claim 3(a), let uv be an arc such that u /∈ B∗y and v ∈ B∗y . Moreover, let u ∈ Bx′
and v ∈ By′ . By construction of cut decomposition, there is a path P̂ from x′ to y′ in T̂
containing nodes x and y. Let x′′ be the second node in P̂ (just after x′). Thus, there is a
path P from x′′ to v in H containing the vertices of P̂ apart from x′.

Assume that u 6= x′′. Then by Lemma 12, there is an x′-u-path P ′ and an x′-x′′-path P ′′
of H which intersect only at x′. Then x′P ′uv and P ′′P are internally vertex-disjoint paths
from x′ to v. This means that v must be in Bx′ , a contradiction unless x′ = x, u ∈ Bx and
v = y. If u = x′′, then P and uv are internally vertex-disjoint paths from u to v. This means
that v must be in Bx′′ , a contradiction unless x′ = x and v = y. J

As we saw, for every diblock By, y ∈ T̂ , any path “into” the diblock must go via the bottleneck
vertex y. By induction, for any v ∈ By, every node of T̂ from r to y represents a bottleneck
vertex that is unavoidable for paths from r to v. More formally, the following holds in cut
decompositions:

I Lemma 17. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of H rooted at r. Fix a diblock Bx
for x ∈ T̂ . Consider a path P in H from r to v ∈ Bx and let x1 . . . x` be the sequence of
bottleneck vertices that P encounters. Then P̂ = x0x1 . . . x` with x0 = r is the path from r

to x in T̂ .

Proof. We prove the claim by induction over the depth d of x in T̂ . If r = x then any path
from r to v ∈ Br contains r itself and hence the base case for d = 0 holds.

Consider a diblock Bx, x ∈ T̂ where x has distance d to r in T̂ and let y be the parent
of x in T̂ . We assume the induction hypothesis holds for diblocks at depth d− 1, hence it
holds for By in particular. Because x ∈ By, this implies that every path from r to x will
contain all ancestors of x in T̂ . Since by construction every path from r to a vertex v ∈ Bx
needs to pass through x, the inductive step holds. This proves the claim. J

As an immediate consequence, we can identify arcs in cut decompositions that cannot
participate in any rooted out-branching.

I Corollary 18. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of rooted at r and let R := {uv ∈
A(H) | u ∈ Bx and x ∈ T̂v} be all the arcs that originate in a diblock Bx and end in an
ancestor v of x on T̂ . Then for every out-tree T rooted at r we have A(T) ∩R = ∅.

ICALP 2017

58:10 k-Distinct In- and Out-Branchings

Proof. Fix a bottleneck vertex v ∈ T̂ of the decomposition and let the arc uv be in an
out-tree T rooted at r. There must exist a path Psu from s to u that is part of T . By
Lemma 17, this path will contain the vertex v. But then v is an ancestor of u in T and
therefore the arc uv cannot be part of T , which is a contradiction. J

The decomposition actually restricts paths even further: a path that starts at the root and
visits two bottleneck vertices x, y (in this order) cannot intersect any vertex of B∗y before
visiting y and cannot return to any set B∗z , z ∈ T̂ , after having left it.

I Lemma 19. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of H rooted at r. Fix a diblock Bx
for x ∈ T̂ . Consider a path P from r to v ∈ Bx and let P̂ = x0 . . . x` be the path from r = x0
to x = x` in T̂ . Let further F0, . . . , F` be the fins of P̂ in T̂ . Then the subpath P [xi, xi+1] \
{xi+1} is contained in the union of diblocks of Fi for 0 ≤ i < `.

Proof. By Lemma 17 we know that the nodes of P̂ appear in P in the correct order, hence
the subpath P [xi, xi+1] is well-defined. Let us first show that the subpath P [xi, xi+1]\{xi+1}
cannot intersect any diblock associated with T̂xi+1 . By Lemma 16, the only arcs from Bxi

into diblocks below xi+1 connect to the bottleneck xi+1 itself. Since xi+1 is already the
endpoint of P [xi, xi+1], this subpath cannot intersect the diblocks of T̂xi+1 . This already
proves the claim for x0; it remains to show that it does not intersect diblocks of V (T̂)\V (T̂xi

)
for i ≥ 1. The reason is similar: since the bottleneck xi is already part of P [xi, xi+1], this
subpath could not revisit Bxi

if it enters any diblock By for a proper ancestor y of xi in
T̂ . We conclude that therefore it must be, with the exception of the vertex xi+1, inside the
diblocks of the fin Fi. J

I Corollary 20. For every vertex u ∈ V (H) and every set X ⊆ V (H) \ (V (T̂) ∪ {u}) of
non-bottleneck vertices there exists a path P from r to u such that |P ∩X| ≤ |X|/2.

Proof. Assume that u ∈ Bx and let P̂ = x0 . . . x` be a path from x0 = r to x` = x

in T̂ . Let further F0, . . . , F` be the fins of P̂ in T̂ . We partition the set X into X1, . . . , X`

where Xi = X ∩ Fi for 0 ≤ i ≤ `. Lemma 19 allows us to construct the path P iteratively:
any path that leads to u will pass through bottlenecks xi, xi+1 in succession and visit only
diblocks associated with Fi in the process. Since there are two internally vertex-disjoint
paths between xi, xi+1 for 1 ≤ i ≤ `, we can always choose the path that has the smaller
intersection with Xi. Stringing these paths together, we obtain the claimed path P . J

We want to argue that one of the following cases must hold: either the cut decomposition
has bounded height and we can ‘re-root’ any out-tree with many leaves into a rooted out-tree
with a comparable number of leaves, or we can directly construct a rooted out-tree with
many leaves. In both cases we apply Lemmas 4 and 9 to conclude that the instance has a
solution. This approach has one obstacle: internal diblocks of the decomposition that contain
only two vertices.

I Definition 21 (Degenerate diblocks). Let {Bx}x∈T̂ be the cut decomposition rooted at s.
We call a diblock Bx degenerate if x is an internal node of T̂ and |Bx| = 2.

Let us first convince ourselves that a long enough sequence of non-degenerate diblocks
provides us with a rooted out-branching with many leaves.

I Lemma 22. Let (T̂ , {Bx}x∈T̂) be the cut decomposition rooted at s of H and let y be a
node in T̂ such that the path P̂sy from s to y in T̂ contains at least ` nodes whose diblocks
are non-degenerate. Then H contains an out-tree rooted at s with at least ` leaves.

G. Gutin, F. Reidl, and M. Wahlström 58:11

Proof. We construct an s-rooted out-tree T by repeated application of Lemma 12. Let
x1, . . ., x` be a sequence of nodes in P̂sy whose diblocks are non-degenerate, and for each
1 ≤ i < ` let x+

i be the node after xi in P̂sy. We construct a sequence of s-rooted out-trees
T1, . . ., T` such that for 1 ≤ i ≤ `, the vertex xi is a leaf of Ti, and Ti contains i leaves. First
construct T1 as a path from s to x1, then for every 1 ≤ i < ` we construct an out-tree Ti+1
from Ti as follows. Let vi ∈ Bxi \ {xi, x+

i }, which exists since Bxi is non-degenerate, and
let Pxix

+
i
, Pxivi

be a pair of paths in H[B∗xi
] from xi to x+

i and to vi respectively, which
intersect only in xi. Such paths exist by Lemma 12, and since xi is a leaf of Ti, Lemma 17
implies that Ti is disjoint from B∗xi

\ {xi}. Hence the paths can be appended to Ti to form a
new r-rooted out-tree Ti+1 in H which contains a leaf in every diblock Bxj

, 1 ≤ i. Finally,
note that the final tree T` contains two leaves in Bx`−1 , hence T` is an r-rooted out-tree with
` leaves. J

The next lemma is the last assertion that we will use to prove shortly that Rooted k-
Distinct Branchings is FPT for digraphs D whose cut decomposition rooted at s contains
no degenerate diblocks.

I Lemma 23. Let (T̂ , {Bx}x∈T̂) be the cut decomposition of D rooted at s such that T̂ is of
height d and let T be an out-tree rooted at some vertex r with ` leaves. Then we can construct
an out-tree Ts rooted at s with at least (`− d)/2 leaves.

Proof. Assume that r is contained in the diblock Bx of the decomposition and let xp . . . x1 =
P̂sx be a path from s = xp to x = x1 in T̂ . Let L be the leaves of T and let L′ := L \ P̂sx.
Clearly, |L′| ≥ `− d. Applying Corollary 20 with X = L′ and u = r, we obtain a path Psr
in D from s to r that avoids half of L′. We construct Ts in a similar fashion to the proof
of Lemma 11. We begin with Ts = Psr, then for every leaf v ∈ L′ \ Psr, proceed as follows:
let Pv be the unique path from r to v in T and let P ′v be the segment of Pv from the last
vertex x of Pv contained in Ts. Add all arcs and vertices of P ′v to Ts. Since Pv and thus
P ′v contains no leaf of L′ other than v, in the end of the process, all vertices of L′ \ Psr are
leaves of Ts. Since |L′ \ Psr| ≥ |L′|/2, we conclude that Ts contains at least (`− d)/2 leaves,
as claimed. J

The next lemma demonstrates that using Lemma 23 and a number of other results we can
prove that if the height d of the cut decomposition of D is upper-bounded by a function in
k, then Rooted k-Distinct Branchings on D is FPT. This shows that to prove that
Rooted k-Distinct Branchings in general it suffices to consider separately the cases of
bounded d and unbounded d. To provide an appropriate bound on d we will use further
results on degenerate diblocks proved in Section 4.3.

I Lemma 24. Let (T̂ , {Bx}x∈T̂) the cut decomposition rooted at s of height d. If d ≤ d(k) for
some function d(k) = Ω(k) of k only, then we can solve Rooted k-Distinct Branchings
on D in time O∗(2O(d(k) log2 d(k))).

Proof. By Theorem 2, in time O∗(2O(d(k))) we can decide whether D has an out-branching
with at least 2k + 2 + d(k) leaves. If D has such an out-branching, then by Lemma 23 D
has a rooted out-tree with at least k + 1 leaves. This out-tree can be extended to a rooted
out-branching with at least k + 1 leaves by Lemma 9. So by Lemma 4, (D, s, t) is a positive
instance if and only if D has a rooted in-branching, which can be decided in polynomial time.

If D has no out-branching with at least 2k+2+d(k) leaves, by Theorem 1 the pathwidth of
D is O(d(k) log d(k)) and thus by Lemma 5 we can solve Rooted k-Distinct Branchings
on D in time O∗(2O(d(k) log2 d(k))). (Note that for the dynamic programming algorithm of

ICALP 2017

58:12 k-Distinct In- and Out-Branchings

Lemma 5 we may fix roots of all out-branchings and all in-branchings of D by adding arcs
s′s and tt′ to D, where s′ and t′ are new vertices.) J

4.3 Handling degenerate diblocks
A full version of this section can be found in the complete version of the paper. Here is a key
notion for our study of degenerate diblocks.

I Definition 25 (Degenerate paths). Let (T̂ , {Bx}x∈T̂) be a cut decomposition of D. We call
a path P̂ in T̂ monotone if it is a subpath of a path from the root of T̂ to some leaf of T̂ . We
call a path P̂ in T̂ degenerate if it is monotone and every diblock Bx, x ∈ P̂ is degenerate.

Let (D, s, t) be a strongly connected reduced instance of Rooted k-Distinct Branchings.
As observed in Section 4.1, we can verify in polynomial time whether an arc participates
in some rooted in- or out-branching. Let Rs ⊆ A(D) be those arcs that do not participate
in any rooted out-branching and Rt ⊆ A(D) those that do not participate in any rooted
in-branching. Since (D, s, t) is a reduced instance, we necessarily have that Rs ∩Rt = ∅.

I Lemma 26. Let P̂ = x1 . . . x` be a degenerate path of (T̂ , {Bx}x∈T̂) of D rooted at s.
Then the following properties hold: every rooted out-branching contains A(P̂), every arc xjxi
with j > i is contained in Rs, and there is no arc from xi (i < `) to By in D, where y is a
descendant of xi on T̂ , except for the arc xixi+1.

Let us fix a single degenerate path P̂ = x1 . . . x`. We categorize the arcs incident to P̂ as
follows: let A+ contain all ‘upward arcs’ that originate in P̂ and end in some diblock By
where y is an ancestor of x1, let A0 contain all ‘on-path arcs’ xjxi, j > i, and let A− contain
all ‘arcs from below’ that originate from some diblock By where y is a (not necessarily proper)
descendant of x`. By the lemma above this categorization is complete.

We will need the following reduction rules for (D, s, t):

Reduction Rule 1: If there are two arcs xiu, xju ∈ A+ ∩Rt with i < j, remove xju.

Reduction Rule 2: If P̂ [x, y] ⊆ P̂ is such that no vertex in P̂ [x, y] is a tail of arcs in A+∪A0,
contract P̂ [x, y] into a single vertex.

Now we can state the main lemma of the section which finally enables us to proof the main
result of this paper.

I Lemma 27. Let P̂ be a degenerate path in an instance reduced with respect to Rules 1
and 2. If t 6∈ P̂ , then |P̂ | ≤ 14k + 3. Otherwise, |P̂ | ≤ 28k + 7.

Proof of Theorem 7. By Lemma 8, we may assume that D is strongly connected. Consider
the longest monotone path P̂ of T̂ . By Lemma 22, if P̂ has at least k + 1 non- degenerate
diblocks, then D has a rooted out-tree with at least k + 1 leaves. This out-tree can be
extended to a rooted out-branching with at least k+1 leaves by Lemma 9. Thus, by Lemma 4,
(D, s, t) is a positive instance if and only if D has a rooted in-branching, which can be decided
in polynomial time.

Now assume that P̂ has at most k non-degenerate diblocks. By Lemma 27 we may
assume that before, between and after the non-degenerate diblocks there are O(k) degenerate
diblocks. Thus, the height of T̂ is O(k2). Therefore, by Lemma 24, the time complexity for
Theorem 7 is O∗(2O(k2 log2 k)). J

G. Gutin, F. Reidl, and M. Wahlström 58:13

5 Conclusion

We showed that the Rooted k-Distinct Branchings problem is FPT for general digraphs
parameterized by k, thereby settling open question of Bang-Jensen et al. [6]. The solution in
particular uses a new digraph decomposition, the rooted cut decomposition, that we believe
might be useful for settling other problems as well. We did not try to optimize the running
time of the algorithm of Theorem 7. Perhaps, a more careful handling of degenerate diblocks
may lead to an algorithm of running time O∗(2O(k log2 k)).

References
1 N. Alon, F. V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Spanning directed trees

with many leaves. SIAM Journal on Discrete Mathematics, 23(1):466–476, 2009.
2 J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path

problems. Journal of Combinatorial Theory, Series B, 51(1):1–23, 1991.
3 J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer,

2002.
4 J. Bang-Jensen and J. Huang. Quasi-transitive digraphs. Journal of Graph Theory, 20:141–

161, 1995.
5 J. Bang-Jensen and J. Huang. Arc-disjoint in- and out-branchings with the same root in

locally semicomplete digraphs. Journal of Graph Theory, 77:278–298, 2014.
6 J. Bang-Jensen, S. Saurabh, and S. Simonsen. Parameterized algorithms for non-separating

trees and branchings in digraphs. Algorithmica, 76(1):279–296, 2016.
7 J. Bang-Jensen and S. Simonsen. Arc-disjoint paths and trees in 2-regular digraphs. Dis-

crete Applied Mathematics, 161:2724–2730, 2013.
8 J. Bang-Jensen, S. Thomassé, and A. Yeo. Small degree out-branchings. Journal of Graph

Theory, 42(4):297–307, 2003.
9 J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph problem is fixed

parameter tractable. Discrete Applied Mathematics, 156:2924–2929, 2008.
10 K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find a pair of

arc-disjoint spanning in-arborescence and out-arborescence in a directed acyclic graph. In-
formation Processing Letters, 109(23-24):1227–1231, 2009.

11 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

12 J. Daligault, G. Gutin, E. J. Kim, and A. Yeo. FPT algorithms and kernels for the directed
k-leaf problem. Journal of Computer and System Sciences, 76(2):144–152, 2010.

13 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

14 J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Stand-
ards, Section B, 71B:233–240, 1967.

15 J. Edmonds. Edge-disjoint branchings. In B. Rustin, editor, Combinatorial Algorithms,
pages 91–96. Academic Press, 1973.

16 A. Fradkin and P.D. Seymour. Tournament pathwidth and topological containment.
Journal of Combinatorial Theory, Series B, 103(3):374–384, 2013.

17 K. Kawarabayashi and S. Kreutzer. The directed grid theorem. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages
655–664, 2015.

18 I. Kim and P. D. Seymour. Tournament minors. Journal of Combinatorial Theory, Series
B, 112:138–153, 2015.

19 J. Kneis, A. Langer, and P. Rossmanith. A new algorithm for finding trees with many
leaves. Algorithmica, 61(4):882–897, 2011.

ICALP 2017

Fast Regression with an `∞ Guarantee∗

Eric Price1, Zhao Song2, and David P. Woodruff3

1 Dept. of Computer Science, The University of Texas at Austin, Austin, USA
ecprice@cs.utexas.edu

2 Dept. of Computer Science, The University of Texas at Austin, Austin, USA
zhaos@utexas.edu

3 IBM Research Almaden, San Jose, CA, USA
dpwoodru@us.ibm.com

Abstract
Sketching has emerged as a powerful technique for speeding up problems in numerical linear
algebra, such as regression. In the overconstrained regression problem, one is given an n × d
matrix A, with n � d, as well as an n × 1 vector b, and one wants to find a vector x̂ so as to
minimize the residual error ‖Ax− b‖2. Using the sketch and solve paradigm, one first computes
S · A and S · b for a randomly chosen matrix S, then outputs x′ = (SA)†Sb so as to minimize
‖SAx′ − Sb‖2.

The sketch-and-solve paradigm gives a bound on ‖x′−x∗‖2 when A is well-conditioned. Our
main result is that, when S is the subsampled randomized Fourier/Hadamard transform, the error
x′ − x∗ behaves as if it lies in a “random” direction within this bound: for any fixed direction
a ∈ Rd, we have with 1− d−c probability that

〈a, x′ − x∗〉 . ‖a‖2‖x
′ − x∗‖2

d
1
2−γ

, (1)

where c, γ > 0 are arbitrary constants. This implies ‖x′ − x∗‖∞ is a factor d 1
2−γ smaller than

‖x′−x∗‖2. It also gives a better bound on the generalization of x′ to new examples: if rows of A
correspond to examples and columns to features, then our result gives a better bound for the error
introduced by sketch-and-solve when classifying fresh examples. We show that not all oblivious
subspace embeddings S satisfy these properties. In particular, we give counterexamples showing
that matrices based on Count-Sketch or leverage score sampling do not satisfy these properties.

We also provide lower bounds, both on how small ‖x′ − x∗‖2 can be, and for our new guar-
antee (1), showing that the subsampled randomized Fourier/Hadamard transform is nearly op-
timal. Our lower bound on ‖x′ − x∗‖2 shows that there is an O(1/ε) separation in the di-
mension of the optimal oblivious subspace embedding required for outputting an x′ for which
‖x′ − x∗‖2 ≤ ε‖Ax∗ − b‖2 · ‖A†‖2, compared to the dimension of the optimal oblivious subspace
embedding required for outputting an x′ for which ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, that is, the
former problem requires dimension Ω(d/ε2) while the latter problem can be solved with dimension
O(d/ε). This explains the reason known upper bounds on the dimensions of these two variants
of regression have differed in prior work.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems

Keywords and phrases Linear regression, Count-Sketch, Gaussians, Leverage scores, `∞-guarantee

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.59

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10723.

EA
T

C
S

© Eric Price, Zhao Song, and David P. Woodruff;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 59; pp. 59:1–59:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.59
https://arxiv.org/abs/1705.10723
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 Fast Regression with an `∞ Guarantee

1 Introduction

Oblivious subspace embeddings (OSEs) were introduced by Sarlos [23] to solve linear algebra
problems more quickly than traditional methods. An OSE is a distribution of matrices
S ∈ Rm×n with m � n such that, for any d-dimensional subspace U ⊂ Rn, with “high”
probability S preserves the norm of every vector in the subspace. OSEs are a generalization
of the classic Johnson-Lindenstrauss lemma from vectors to subspaces. Formally, we require
that with probability 1− δ,

‖Sx‖2 = (1± ε)‖x‖2

simultaneously for all x ∈ U , that is, (1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2.
A major application of OSEs is to regression. The regression problem is, given b ∈ Rn

and A ∈ Rn×d for n ≥ d, to solve for

x∗ = arg min
x∈Rd

‖Ax− b‖2. (2)

Because A is a “tall” matrix with more rows than columns, the system is overdetermined
and there is likely no solution to Ax = b, but regression will find the closest point to b
in the space spanned by A. The classic answer to regression is to use the Moore-Penrose
pseudoinverse: x∗ = A†b where

A† = (A>A)−1A>

is the “pseudoinverse” of A (assuming A has full column rank, which we will typically do for
simplicity). This classic solution takes O(ndω−1 + dω) time, where ω < 2.373 is the matrix
multiplication constant [9, 25, 12]: ndω−1 time to compute A>A and dω time to compute
the inverse.

OSEs speed up the process by replacing (2) with

x′ = arg min
x

‖SAx− Sb‖2

for an OSE S on d+ 1-dimensional spaces. This replaces the n× d regression problem with
an m× d problem, which can be solved more quickly since m� n. Because Ax− b lies in
the d + 1-dimensional space spanned by b and the columns of A, with high probability S
preserves the norm of SAx− Sb to 1± ε for all x. Thus,

‖Ax′ − b‖2 ≤
1 + ε

1− ε‖Ax
∗ − b‖2.

That is, S produces a solution x′ which preserves the cost of the regression problem. The
running time for this method depends on (1) the reduced dimension m and (2) the time it
takes to multiply S by A. We can compute these for “standard” OSE types:

If S has i.i.d. Gaussian entries, then m = O(d/ε2) is sufficient (and in fact, m ≥ d/ε2 is
required [20]). However, computing SA takes O(mnd) = O(nd2/ε2) time, which is worse
than solving the original regression problem (one can speed this up using fast matrix
multiplication, though it is still worse than solving the original problem).
If S is a subsampled randomized Hadamard transform (SRHT) matrix with random
sign flips (see Theorem 2.4 in [26] for a survey, and also see [8] which gives a recent
improvement) then m increases to Õ(d/ε2 · logn), where Õ(f) = f poly(log(f)). But now,
we can compute SA using the fast Hadamard transform in O(nd logn) time. This makes
the overall regression problem take O(nd logn+ dω/ε2) time.

E. Price, Z. Song, and D. P. Woodruff 59:3

If S is a random sparse matrix with random signs (the “Count-Sketch” matrix), then
m = d1+γ/ε2 suffices for γ > 0 a decreasing function of the sparsity [5, 18, 19, 3, 6].
(The definition of a Count-Sketch matrix is, for any s ≥ 1, Si,j ∈ {0,−1/

√
s, 1/
√
s},

∀i ∈ [m], j ∈ [n] and the column sparsity of matrix S is s. Independently in each column s
positions are chosen uniformly at random without replacement, and each chosen position
is set to −1/

√
s with probability 1/2, and +1/

√
s with probability 1/2.) Sparse OSEs

can benefit from the sparsity of A, allowing for a running time of Õ(nnz(A)) + Õ(dω/ε2),
where nnz(A) denotes the number of non-zeros in A.

When n is large, the latter two algorithms are substantially faster than the naïve ndω−1

method.

1.1 Our Contributions
Despite the success of using subspace embeddings to speed up regression, often what practi-
tioners are interested is not in preserving the cost of the regression problem, but rather in
the generalization or prediction error provided by the vector x′. Ideally, we would like for
any future (unseen) example a ∈ Rd, that 〈a, x′〉 ≈ 〈a, x∗〉 with high probability.

Ultimately one may want to use x′ to do classification, such as regularized least squares
classification (RLSC) [22], which has been found in cases to do as well as support vector
machines but is much simpler [27]. In this application, given a training set of examples with
multiple (non-binary) labels identified with the rows of an n× d matrix A, one creates an
n× r matrix B, each column indicating the presence or absence of one of the r possible labels
in each example. One then solves the multiple response regression problem minX ‖AX−B‖F ,
and uses X to classify future examples. A commonly used method is for a future example a,
to compute 〈a, x1〉, . . . , 〈a, xr〉, where x1, . . . , xr are the columns of X. One then chooses the
label i for which 〈a, xi〉 is maximum.

For this to work, we would like the inner products 〈a, x′1〉, . . . , 〈a, x′r〉 to be close to
〈a, x∗1〉, . . . , 〈a, x∗r〉, where X ′ is the solution to minX ‖SAX − SB‖F and X∗ is the solution
to minX ‖AX −B‖F . For any O(1)-accurate OSE on d+ r dimensional spaces [23], which
also satisfies so-called approximate matrix multiplication with error ε′ = ε/

√
(d+ r), we get

that

‖x′ − x∗‖2 ≤ O(ε) · ‖Ax∗ − b‖2 · ‖A†‖2 (3)

where ‖A†‖ is the spectral norm of A†, which equals the reciprocal of the smallest singular
value of A. To obtain a generalization error bound for an unseen example a, one has

|〈a, x∗〉 − 〈a, x′〉| = |〈a, x∗ − x′〉| ≤ ‖x∗ − x′‖2‖a‖2 = O(ε)‖a‖2‖Ax∗ − b‖2‖A†‖2, (4)

which could be tight if given only the guarantee in (3). However, if the difference vector
x′ − x∗ were distributed in a uniformly random direction subject to (3), then one would
expect an Õ(

√
d) factor improvement in the bound. This is what our main theorem shows:

I Theorem 1 (Main Theorem, informal). Suppose n ≤ poly(d). Let S be a subsampled
randomized Hadamard transform matrix with m = d1+γ/ε2 rows for an arbitrarily small
constant γ > 0. For x′ = arg minx ‖SAx− Sb‖2 and x∗ = arg minx ‖Ax− b‖2, and any fixed
a ∈ Rd,

|〈a, x∗〉 − 〈a, x′〉| ≤ ε√
d
‖a‖2‖Ax∗ − b‖2‖A†‖2. (5)

with probability 1− 1/dC for an arbitrarily large constant C > 0. This implies that

‖x∗ − x′‖∞ ≤
ε√
d
‖Ax∗ − b‖2‖A†‖2 (6)

with 1− 1/dC−1 probability.

ICALP 2017

59:4 Fast Regression with an `∞ Guarantee

If n > poly(d), then by first composing S with a Count-Sketch OSE with poly(d) rows,
one can achieve the same guarantee.

(Here γ is a constant going to zero as n increases, see Theorem 10 for a formal statement of
Theorem 1).

Notice that Theorem 1 is considerably stronger than that of (4) provided by existing
guarantees. Indeed, in order to achieve the guarantee (6) in Theorem 1, one would need
to set ε′ = ε/

√
d in existing OSEs, resulting in Ω(d2/ε2) rows. In contrast, we achieve only

d1+γ/ε2 rows. We can improve the bound in Theorem 1 to m = d/ε2 if S is a matrix of i.i.d.
Gaussians; however, as noted, computing S ·A is slower in this case.

Note that Theorem 1 also makes no distributional assumptions on the data, and thus
the data could be heavy-tailed or even adversarially corrupted. This implies that our bound
is still useful when the rows of A are not sampled independently from a distribution with
bounded variance.

The `∞ bound (6) of Theorem 1 is achieved by applying (5) to the standard basis vectors
a = ei for each i ∈ [d] and applying a union bound. This `∞ guarantee often has a more
natural interpretation than the `2 guarantee – if we think of the regression as attributing
the observable as a sum of various factors, (6) says that the contribution of each factor
is estimated well. One may also see our contribution as giving a way for estimating the
pseudoinverse A† entrywise. Namely, we get that (SA)†S ≈ A† in the sense that each entry
is within additive O(ε

√
log d
d ‖A

†‖2). There is a lot of work on computing entries of inverses
of a matrix, see, e.g., [1, 16].

Another benefit of the `∞ guarantee is when the regression vector x∗ is expected to be
k-sparse (e.g. [14]). In such cases, thresholding to the top k entries will yield an `2 guarantee
a factor

√
k/d better than (3).

One could ask if Theorem 1 also holds for sparse OSEs, such as the Count-Sketch.
Surprisingly, we show that one cannot achieve the generalization error guarantee in Theorem 1
with high probability, say, 1 − 1/d, using such embeddings, despite the fact that such
embeddings do approximate the cost of the regression problem up to a 1 + ε factor with high
probability. This shows that the generalization error guarantee is achieved by some subspace
embeddings but not all.

I Theorem 2 (Not all subspace embeddings give the `∞ guarantee). The Count-Sketch matrix
with d1.5 rows and sparsity d.25 – which is an OSE with exponentially small failure probability
– with constant probability will have a result x′ that does not satisfy the `∞ guarantee (6).

We can show that Theorem 1 holds for S based on the Count-Sketch OSE T with dO(C)/ε2

rows with 1− 1/dC probability. We can thus compose the Count-Sketch OSE with the SRHT
matrix and obtain an O(nnz(A)) + poly(d/ε) time algorithm to compute S · TA achieving
(6). We can also compute R · S · T · A, where R is a matrix of Gaussians, which is more
efficient now that STA only has d1+γ/ε2 rows; this will reduce the number of rows to d/ε2.

Another common method of dimensionality reduction for linear regression is leverage
score sampling [10, 15, 21, 7], which subsamples the rows of A by choosing each row with
probability proportional to its “leverage scores”. With O(d log(d/δ)/ε2) rows taken, the result
x′ will satisfy the `2 bound (3) with probability 1− δ. However, it does not give a good `∞
bound:

I Theorem 3 (Leverage score sampling does not give the `∞ guarantee). Leverage score
sampling with d1.5 rows – which satisfies the `2 bound with exponentially small failure
probability – with constant probability will have a result x′ that does not satisfy the `∞
guarantee (6).

E. Price, Z. Song, and D. P. Woodruff 59:5

Finally, we show that the d1+γ/ε2 rows that SRHT matrices use is roughly optimal:

I Theorem 4 (Lower bounds for `2 and `∞ guarantees). Any sketching matrix distribution
over m× n matrices that satisfies either the `2 guarantee (3) or the `∞ guarantee (6) must
have m & min(n, d/ε2).

Notice that our result shows the necessity of the 1/ε separation between the results
originally defined in Equation (3) and (4) of Theorem 12 of [23]. If we want to output some
vector x′ such that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2, then it is known that m = Θ(d/ε) is
necessary and sufficient. However, if we want to output a vector x′ such that ‖x′ − x∗‖2 ≤
ε‖Ax∗ − b‖2 · ‖A†‖2, then we show that m = Θ(d/ε2) is necessary and sufficient.

1.1.1 Comparison to Gradient Descent
While this work is primarily about sketching methods, one could instead apply iterative
methods such as gradient descent, after appropriately preconditioning the matrix, see, e.g.,
[2, 28, 5]. That is, one can use an OSE with constant ε to construct a preconditioner for A
and then run conjugate gradient using the preconditioner. This gives an overall dependence
of log(1/ε).

The main drawback of this approach is that one loses the ability to save on storage
space or number of passes when A appears in a stream, or to save on communication or
rounds when A is distributed. Given increasingly large data sets, such scenarios are now
quite common, see, e.g., [4] for regression algorithms in the data stream model. In situations
where the entries of A appear sequentially, for example, a row at a time, one does not need
to store the full n× d matrix A but only the m× d matrix SA.

Also, iterative methods can be less efficient when solving multiple response regression,
where one wants to minimize ‖AX −B‖ for a d× t matrix X and an n× t matrix B. This is
the case when ε is constant and t is large, which can occur in some applications (though there
are also other applications for which ε is very small). For example, conjugate gradient with a
preconditioner will take Õ(ndt) time while using an OSE directly will take only Õ(nd+ d2t)
time (since one effectively replaces n with O (d) after computing S ·A), separating t from d.
Multiple response regression, arises, for example, in the RLSC application above.

1.1.2 Proof Techniques
Theorem 1. As noted in Theorem 2, there are some OSEs for which our generalization
error bound does not hold. This hints that our analysis is non-standard and cannot use
generic properties of OSEs as a black box. Indeed, in our analysis, we have to consider
matrix products of the form S>S(UU>S>S)k for our random sketching matrix S and a fixed
matrix U , where k is a positive integer. We stress that it is the same matrix S appearing
multiple times in this expression, which considerably complicates the analysis, and does not
allow us to appeal to standard results on approximate matrix product (see, e.g., [26] for a
survey). The key idea is to recursively reduce S>S(UU>S>S)k using a property of S. We
use properties that only hold for specifics OSEs S: first, that each column of S is unit vector;
and second, that for all pairs (i, j) and i 6= j, the inner product between Si and Sj is at most√

logn/
√
m with probability 1− 1/ poly(n).

Theorems 2 and 3. To show that Count-Sketch does not give the `∞ guarantee, we
construct a matrix A and vector b as in Figure 1, which has optimal solution x∗ with all
coordinates 1/

√
d. We then show, for our setting of parameters, that there likely exists an

ICALP 2017

59:6 Fast Regression with an `∞ Guarantee

index j ∈ [d] satisfying the following property: the jth column of S has disjoint support
from the kth column of S for all k ∈ [d + α] \ {j} except for a single k > d, for which Sj
and Sk share exactly one common entry in their support. In such cases we can compute x′j
explicitly, getting |x′j − x∗j | = 1

s
√
α
. By choosing suitable parameters in our construction, this

gives that ‖x′ − x∗‖∞ � 1√
d
. The lower bound for leverage score sampling follows a similar

construction.

Theorem 4. The lower bound proof for the `2 guarantee uses Yao’s minimax principle. We
are allowed to fix an m× n sketching matrix S and design a distribution over [A b]. We first
write the sketching matrix S = UΣV > in its singular value decomposition (SVD). We choose
the d+ 1 columns of the adjoined matrix [A, b] to be random orthonormal vectors. Consider
an n × n orthonormal matrix R which contains the columns of V as its first m columns,
and is completed on its remaining n−m columns to an arbitrary orthonormal basis. Then
S · [A, b] = V >RR> · [A, b] = [UΣIm, 0] · [R>A,R>b]. Notice that [R>A,R>b] is equal in
distribution to [A, b], since R is fixed and [A, b] is a random matrix with d+ 1 orthonormal
columns. Therefore, S · [A, b] is equal in distribution to [UΣG,UΣh] where [G, h] corresponds
to the first m rows of an n× (d+ 1) uniformly random matrix with orthonormal columns.

A key idea is that if n = Ω(max(m, d)2), then by a result of Jiang [13], any m× (d+ 1)
submatrix of a random n× n orthonormal matrix has o(1) total variation distance to a d× d
matrix of i.i.d. N(0, 1/n) random variables, and so any events that would have occurred
had G and h been independent i.i.d. Gaussians, occur with the same probability for our
distribution up to an 1 − o(1) factor, so we can assume G and h are independent i.i.d.
Gaussians in the analysis.

The optimal solution x′ in the sketch space equals (SA)†Sb, and by using that SA has
the form UΣG, one can manipulate ‖(SA)†Sb‖ to be of the form ‖Σ̃†(ΣR)†Σh‖2, where
the SVD of G is RΣ̃T . We can upper bound ‖Σ̃‖2 by

√
r/n, since it is just the maximum

singular value of a Gaussian matrix, where r is the rank of S, which allows us to lower
bound ‖Σ̃†(ΣR)†Σh‖2 by

√
n/r‖(ΣR)†Σh‖2. Then, since h is i.i.d. Gaussian, this quantity

concentrates to 1√
r
‖(ΣR)†Σh‖, since ‖Ch‖2 ≈ ‖C‖2F /n for a vector h of i.i.d. N(0, 1/n)

random variables. Finally, we can lower bound ‖(ΣR)†Σ‖2F by ‖(ΣR)†ΣRR>‖2F by the
Pythagorean theorem, and now we have that (ΣR)†ΣR is the identity, and so this expression
is just equal to the rank of ΣR, which we prove is at least d. Noting that x∗ = 0 for our
instance, putting these bounds together gives ‖x′ − x∗‖ ≥

√
d/r. The last ingredient is a

way to ensure that the rank of S is at least d. Here we choose another distribution on inputs
A and b for which it is trivial to show the rank of S is at least d with large probability. We
require S be good on the mixture. Since S is fixed and good on the mixture, it is good for
both distributions individually, which implies we can assume S has rank d in our analysis of
the first distribution above.

Notation. For a positive integer, let [n] = {1, 2, . . . , n}. For a vector x ∈ Rn, define
‖x‖2 = (

∑n
i=1 x

2
i)

1
2 and ‖x‖∞ = maxi∈[n] |xi|. For a matrix A ∈ Rm×n, define ‖A‖2 =

supx ‖Ax‖2/‖x‖2 to be the spectral norm of A and ‖A‖F = (
∑
i,j A

2
i,j)1/2 to be the Frobenius

norm of A. We use A† to denote the Moore-Penrose pseudoinverse of m× n matrix A, which
if A = UΣV > is its SVD (where U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn×n for m ≥ n), is given
by A† = V Σ−1U>. In addition to O(·) notation, for two functions f, g, we use the shorthand
f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for an absolute constant C. We use f h g

to mean cf ≤ g ≤ Cf for constants c, C.

E. Price, Z. Song, and D. P. Woodruff 59:7

A ∈ Rn×d b ∈ Rn×1

1
. . .

. . .
. . .

. . .
1

0

0

0

d

d

n

1/
√
d

...

...

...

...
1/
√
d

d

1/
√
α

...

...

...
1/
√
α

α

0
...
...
...
...
0

Figure 1 Our construction of A and b for the proof that Count-Sketch does not obey the `∞

guarantee. α < d.

I Definition 5 (Subspace Embedding). A (1 ± ε) `2-subspace embedding for the column
space of an n× d matrix A is a matrix S for which for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22.

I Definition 6 (Approximate Matrix Product). Let 0 < ε < 1 be a given approximation
parameter. Given matrices A and B, where A and B each have n rows, the goal is to output
a matrix C so that ‖A>B − C‖F ≤ ε‖A‖F ‖B‖F . Typically C has the form A>S>SB, for a
random matrix S with a small number of rows. In particular, this guarantee holds for the
subsampled randomized Hadamard transform S with O(ε−2) rows [11].

Due to space constraints, several proofs are deferred to the full version of our paper.

2 Warmup: Gaussians OSEs

We first show that if S is a Gaussian random matrix, then it satisfies the generalization
guarantee. This follows from the rotational invariance of the Gaussian distribution.

I Theorem 7. Suppose A ∈ Rn×d has full column rank. If the entries of S ∈ Rm×n are i.i.d.
N(0, 1/m), m = O(d/ε2), then for any vectors a, b and x∗ = A†b, we have, with probability
1− 1/poly(d),

|a>(SA)†Sb− a>x∗| . ε
√

log d√
d
‖a‖2‖b−Ax∗‖2‖A†‖2.

Because SA has full column rank with probability 1, (SA)†SA = I. Therefore

|a>(SA)†Sb− a>x∗| = |a>(SA)†S(b−Ax∗)| = |a>(SA)†S(b−AA†b)|.

Thus it suffices to only consider vectors b where A†b = 0, or equivalently U>b = 0. In such
cases, SU will be independent of Sb, which will give the result. The proof is in the full
version.

3 SRHT Matrices

We first provide the definition of the subsampled randomized Hadamard transform(SRHT):
Let S = 1√

rn
PHnD, where D is an n× n diagonal matrix with i.i.d. diagonal entries Di,i,

for which Di,i in uniform on {−1,+1}. Here Hn is the Hadamard matrix of size n× n, and
we assume n is a power of 2. Here, Hn = [Hn/2, Hn/2;Hn/2, −Hn/2] and H1 = [1]. The
r × n matrix P samples r coordinates of an n dimensional vector uniformly at random.

ICALP 2017

59:8 Fast Regression with an `∞ Guarantee

For other subspace embeddings, we no longer have that SU and Sb are independent. To
analyze them, we start with a claim that allows us to relate the inverse of a matrix to a
power series.

I Claim 8. Let S ∈ Rm×n, A ∈ Rn×d have SVD A = UΣV >, and define T ∈ Rd×d by
T = Id − U>S>SU. Suppose SA has linearly independent columns and ‖T‖2 ≤ 1/2. Then

(SA)†S = V Σ−1

(∞∑
k=0

T k

)
U>S>S. (7)

Proof.

(SA)†S = (A>S>SA)−1A>S>S = (V ΣU>S>SUΣV >)−1V ΣU>S>S

=V Σ−1(U>S>SU)−1U>S>S = V Σ−1(Id − T)−1U>S>S = V Σ−1(
∞∑
k=0

T k)U>S>S,

where in the last equality, since ‖T‖2 < 1, the von Neumann series
∑∞
k=0 T

k converges to
(Id − T)−1. J

We then bound the kth term of this sum:

I Lemma 9. Let S ∈ Rr×n be the subsampled randomized Hadamard transform, and let a
be a unit vector. Then with probability 1− 1/poly(n), we have

|a>S>S(UU>S>S)kb| = O(logk n) · (O(d(logn)/r) + 1)
k−1

2

· (
√
d‖b‖2(logn)/r + ‖b‖2(log

1
2 n)/r 1

2).

Hence, for r at least d log2k+2 n log2(n/ε)/ε2), this is at most O(‖b‖2ε/
√
d).

We defer the proof of this lemma to the next section, and now show how the lemma lets us
prove that SRHT matrices satisfy the generalization bound with high probability:

I Theorem 10. Suppose A ∈ Rn×d has full column rank with logn = do(1). Let S ∈ Rm×n be
a subsampled randomized Hadamard transform with m = O(d1+α/ε2) for α = Θ(

√
log logn

log d).
For any vectors a, b and x∗ = A†b, we have

|a>(SA)†Sb− a>x∗| . ε√
d
‖a‖2‖b−Ax∗‖2‖Σ−1‖2

with probability 1− 1/poly(d).

Proof. Define ∆ = Θ
(

1√
m

)
(logc d)‖a‖2‖b− Ax∗‖2‖Σ−1‖2. For a constant c > 0, we have

that S is a (1± γ) `2-subspace embedding (Definition 5) for γ =
√

d logc n
m with probability

1−1/poly(d) (see, e.g., Theorem 2.4 of [26] and references therein), so ‖SUx‖2 = (1±γ)‖Ux‖2
for all x, which we condition on. Hence for T = Id−U>S>SU , we have ‖T‖2 ≤ (1+γ)2−1 . γ.
In particular, ‖T‖2 < 1/2 and we can apply Claim 8.

As in Section 2, SA has full column rank if S is a subspace embedding, so (SA)†SA = I

and we may assume x∗ = 0 without loss of generality.
By the approximate matrix product (Definition 6), we have for some c that

|a>V Σ−1U>S>Sb| ≤ logc d√
m
‖a‖2‖b‖2‖Σ−1‖2 ≤ ∆, (8)

E. Price, Z. Song, and D. P. Woodruff 59:9

with 1− 1/poly(d) probability. Suppose this event occurs, bounding the k = 0 term of (7).
Hence it suffices to show that the k ≥ 1 terms of (7) are bounded by ∆.

By approximate matrix product, we also have with 1− 1/d2 probability that

‖U>S>Sb‖F ≤
logc d√
m
‖U>‖F ‖b‖2 ≤

logc d
√
d√

m
‖b‖2.

Combining with ‖T‖2 . γ we have for any k that

|a>V Σ−1T kU>S>Sb| . γk(logc d)
√
d√
m
‖a‖2‖Σ−1‖2‖b‖2.

Since this decays exponentially in k at a rate of γ < 1/2, the sum of all terms greater than k
is bounded by the kth term. As long as

m &
1
ε2
d1+ 1

k logc n, (9)

we have γ =
√

d logc n
m < εd−1/(2k)/ logc n, so that∑

k′≥k

|a>V Σ−1T k
′
U>S>Sb| . ε√

d
‖a‖2‖Σ−1‖2‖b‖2.

On the other hand, by Lemma 9 (increasing m by a Ck factor) we have for all k that

|a>V >Σ−1U>S>S(UU>S>S)kb| . 1
2k

ε√
d
‖a‖2‖b‖2‖Σ−1‖2,

with probability at least 1 − 1/ poly(d), as long as m & d(C logn)2k+2 log2(n/ε)/ε2, for a
sufficiently large constant C. Since the T k term can be expanded as a sum of 2k terms of
this form, we get that

k∑
k′=1
|a>V Σ−1T k

′
U>S>Sb| . ε√

d
‖a‖2‖b‖2‖Σ−1‖2,

with probability at least 1 − 1/ poly(d), as long as m & d(C logn)2k+2 log2(n/ε)/ε2 for
a sufficiently large constant C. Combining with (9), the result holds as long as m &

ε−2d logc nmax((C logn)2k+2, d
1
k), for any k. Setting k = Θ(

√
log d

log logn) gives the result. J

Combining Different Matrices. In some cases it can make sense to combine different
sketching matrices that satisfy the generalization bound. We defer the details to the full
version.

I Theorem 11. Let A ∈ Rn×d, and let R ∈ Rm×r and S ∈ Rr×n be drawn from distributions
of matrices that are ε-approximate OSEs and satisfy the generalization bound (6). Then
RS satisfies the generalization bound with a constant factor loss in failure probability and
approximation factor.

4 Proof of Lemma 9

Proof. Each column Si of the subsampled randomized Hadamard transform has the same
distribution as σiSi, where σi is a random sign. It also has 〈Si, Si〉 = 1 for all i and
| 〈Si, Sj〉 | .

√
log(1/δ)√

r
with probability 1− δ, for any δ and i 6= j. See, e.g., [17].

ICALP 2017

59:10 Fast Regression with an `∞ Guarantee

By expanding the following product into a sum, and rearranging terms, we obtain

a>S>S(UU>S>S)kb =
∑

i0,j0,i1,j1,··· ,ik,jk

ai0bjk
σi0σi1 · · ·σikσj0σj1 · · ·σjk

· 〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk
〉

=
∑
i0,jk

ai0bjk
σi0σjk

∑
j0,i1,j1,··· ,ik

σi1 · · ·σikσj0σj1 · · ·σjk−1

· 〈Si0 , Sj0〉(UU>)j0,i1〈Si1 , Sj1〉 · · · (UU>)jk−1,ik〈Sik , Sjk
〉

=
∑
i0,jk

σi0σjk
Zi0,jk

where Zi0,jk
is defined to be

Zi0,jk
= ai0bjk

∑
i1,···ik
j0,···jk−1

k∏
c=1

σic

k−1∏
c=0

σjc ·
k∏
c=0
〈Sic , Sjc〉

k∏
c=1

(UU>)ic−1,jc .

Note that Zi0,jk
is independent of σi0 and σjk

. We observe that in the above expression if
i0 = j0, i1 = j1, · · · , ik = jk, then the sum over these indices equals a>(UU>) · · · (UU>)b = 0,
since 〈Sic , Sjc〉 = 1 in this case for all c. Moreover, the sum over all indices conditioned
on ik = jk is equal to 0. Indeed, in this case, the expression can be factored into the form
ζ · U>b, for some random variable ζ, but U>b = 0.

Let W be a matrix with Wi,j = σiσjZi,j . We need Khintchine’s inequality:

I Fact 12 (Khintchine’s Inequality). Let σ1, . . . , σn be i.i.d. sign random variables, and let
z1, . . . , zn be real numbers. Then there are constants C,C ′ > 0 so that
Pr[|

∑n
i=1 ziσi| ≥ Ct‖z‖2] ≤ e−C′t2 .

We note that Khintchine’s inequality sometimes refers to bounds on the moment of |
∑
i ziσi|,

though the above inequality follows readily by applying a Markov bound to the high moments.
We apply Fact 12 to each column of W , so that if Wi is the i-th column, we have by a

union bound that with probability 1− 1/poly(n), ‖Wi‖2 = O(‖Zi‖2
√

logn) simultaneously
for all columns i. It follows that with the same probability, ‖W‖2F = O(‖Z‖2F logn), that is,
‖W‖F = O(‖Z‖F

√
logn). We condition on this event in the remainder.

Thus, it remains to bound ‖Z‖F . By squaring Zi0,j0 and using that E[σiσj] = 1 if i = j

and 0 otherwise, we have,

E
σ

[Z2
i0,jk

] = a2
i0b

2
jk

∑
i1,···ik
j0,···jk−1

k∏
c=0
〈Sic , Sjc

〉2
k∏
c=1

(UU>)2
ic−1,jc

. (10)

Due to space considerations, we defer to the full version Appendix E the proof that

E
S

[‖Z‖2F] ≤ (O(d(logn)/r) + 1)k−1 · (d‖b‖22(log2 n)/r2 + ‖b‖22(logn)/r).

Note that we also have the bound:

(O(d(logn)/r) + 1)k−1 ≤ (eO(d(logn)/r))k−1 ≤ eO(kd(logn)/r) ≤ O(1),

for any r = Ω(kd logn).

E. Price, Z. Song, and D. P. Woodruff 59:11

Having computed the expectation of ‖Z‖2F , we now would like to show concentration.
Consider a specific

Zi0,jk
=

ai0bjk

∑
ik

σik〈Sik , Sjk
〉 · · ·

∑
j1

σj1(UU>)j1,i2

∑
i1

σi1〈Si1 , Sj1〉
∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 .

By Fact 12, for each fixing of i1, with probability 1− 1/poly(n), we have∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1 = O(
√

logn)(
∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1) 1

2 . (11)

Now, we can apply Khintchine’s inequality for each fixing of j1, and combine this with (11).
With probability 1− 1/poly(n), again we have∑

i1

σi1〈Si1 , Sj1〉
∑
j0

σj0〈Si0 , Sj0〉(UU>)j0,i1

=
∑
i1

σi1〈Si1 , Sj1〉O(
√

logn)(
∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1) 1

2

= O(logn)(
∑
i1

〈Si1 , Sj1〉2
∑
j0

〈Si0 , Sj0〉2(UU>)2
j0,i1) 1

2 .

Thus, we can apply Khintchine’s inequality recursively over all the 2k indexes j0, i1, j1, · · · , jk−1,

ik, from which it follows that with probability 1 − 1/poly(n), for each such i0, jk, we
have Z2

i0,jk
= O(logk n)E

S
[Z2
i0,jk

], using (10). We thus have with this probability, that

‖Z‖2F = O(logk n)E
S

[‖Z‖2F], completing the proof. J

5 Lower bound for `2 and `∞ guarantee

We prove a lower bound for the `2 guarantee, which immediately implies a lower bound for
the `∞ guarantee.

I Definition 13. Given a matrix A ∈ Rn×d, vector b ∈ Rn and matrix S ∈ Rr×n, denote
x∗ = A†b. We say that an algorithm A(A, b, S) that outputs a vector x′ = (SA)†Sb “succeeds”
if the following property holds: ‖x′ − x∗‖2 . ε‖b‖2 · ‖A†‖2 · ‖Ax∗ − b‖2.

I Theorem 14. Suppose Π is a distribution over Rm×n with the property that for any
A ∈ Rn×d and b ∈ Rn, Pr

S∼Π
[A(A, b, S) succeeds] ≥ 19/20. Then m & min(n, d/ε2).

Proof. The proof uses Yao’s minimax principle. Let D be an arbitrary distribution over
Rn×(d+1), then E

(A,b)∼D
E

S∼Π
[A(A, b, S) succeeds] ≥ 1−δ. Switching the order of probabilistic

quantifiers, an averaging argument implies the existence of a fixed matrix S0 ∈ Rm×n such
that E

(A,b)∼D
[A(A, b, S0) succeeds] ≥ 1 − δ. Thus, we must construct a distribution Dhard

such that E
(A,b)∼Dhard

[A(A, b, S0) succeeds] ≥ 1 − δ cannot hold for any Π0 ∈ Rm×n which

does not satisfy m = Ω(d/ε2). The proof can be split into three parts. First, we prove a
useful property. Second, we prove a lower bound for the case rank(S) ≥ d. Third, we show
why rank(S) ≥ d is necessary.

ICALP 2017

59:12 Fast Regression with an `∞ Guarantee

(I) We show that [SA, Sb] are independent Gaussian, if both [A, b] and S are orthonormal
matrices. We can rewrite SA in the following sense,

S︸︷︷︸
m×n

· A︸︷︷︸
n×d

= S︸︷︷︸
m×n

R︸︷︷︸
n×n

R>︸︷︷︸
n×n

A︸︷︷︸
n×d

(12)

= S
[
S> S

>
] [S
S

]
A =

[
Im 0

] [S
S

]
A =

[
Im 0

]
Ã︸︷︷︸
n×d

= Ãm︸︷︷︸
m×d

where S is the complement of the orthonormal basis S, Im is a m×m identity matrix, and
Ãm is the left m × d submatrix of Ã. Thus, using [13] as long as m = o(

√
n) (because of

n = Ω(d3)) the total variation distance between [SA, Sb] and a random Gaussian matrix is
small, i.e.,

DTV ([SA, Sb], H) ≤ 0.01 (13)

where each entry of H is i.i.d. Gaussian N (0, 1/n).
(II) Here we prove the theorem in the case when S has rank r ≥ d (we will prove this is

necessary in part III. Writing S = UΣV > in its SVD, we have

S︸︷︷︸
m×n

A = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

V >︸︷︷︸
r×n

RR>A = UΣG (14)

where R =
[
V V

]
. By a similar argument in Equation (12), as long as r = o(

√
n) we have

that G also can be approximated by a Gaussian matrix, where each entry is sampled from
i.i.d. N (0, 1/n). Similarly, Sb = UΣh, where h also can be approximated by a Gaussian
matrix, where each entry is sampled from i.i.d. N (0, 1/n).

Since U has linearly independent columns, (UΣG)†UΣh = (ΣG)†U>UΣh = (ΣG)†Σh.
The r×d matrix G has SVD G = R︸︷︷︸

r×d

Σ̃︸︷︷︸
d×d

T︸︷︷︸
d×d

, and applying the pseudo-inverse property

again, we have

‖(SA)†Sb‖2 = ‖(ΣG)†Σh‖2 = ‖(ΣRΣ̃T)†Σh‖2 = ‖T †(ΣRΣ̃)†Σh‖2 = ‖(ΣRΣ̃)†Σh‖2
= ‖Σ̃†(ΣR)†Σh‖2,

where the the first equality follows by Equation (14), the second equality follows by the
SVD of G, the third and fifth equality follow by properties of the pseudo-inverse when T has
orthonormal rows and Σ̃ is a diagonal matrix, and the fourth equality follows since ‖T †‖2 = 1
and T is an orthonormal basis.

Because each entry of G = RΣ̃T ∈ Rr×d is sampled from an i.i.d. Gaussian N (0, 1),
using the result of [24] we can give an upper bound for the maximum singular value of G:
‖Σ̃‖ .

√
r
n with probability at least .99. Thus,

‖Σ̃†(ΣR)†Σh‖2 ≥ σmin(Σ̃†) · ‖(ΣR)†Σh‖2 = σ−1
max(Σ̃)‖(ΣR)†Σh‖2 &

√
n/r‖(ΣR)†Σh‖2.

Because h is a random Gaussian vector which is independent of (ΣR)†Σ, Eh[‖(ΣR)†Σh‖22] =
1
n · ‖(ΣR)†Σ‖2F , where each entry of h is sampled from i.i.d. Gaussian N (0, 1/n). Then,
using the Pythagorean Theorem, ‖(ΣR)†Σ‖2F = ‖(ΣR)†ΣRR>‖2F + ‖(ΣR)†Σ(I −RR>)‖2F ≥
‖(ΣR)†ΣRR>‖2F = ‖(ΣR)†ΣR‖2F = rank(ΣR) = rank(SA) = d. Thus, ‖x′ − x∗‖2 &√
d/r ≥

√
d/m = ε.

(III) Now we show that we can assume that rank(S) ≥ d.

E. Price, Z. Song, and D. P. Woodruff 59:13

We sample A, b based on the following distribution Dhard: with probability 1/2, A, b are
sampled from D1; with probability 1/2, A, b are sampled from D2. In distribution D1, A is a
random orthonormal basis and d is always orthogonal to A. In distribution D2, A is a d× d
identity matrix in the top-d rows and 0s elsewhere, while b is a random unit vector. Then,
for any (A, b) sampled from D1, S needs to work with probability at least 9/10. Also for
any (A, b) sampled from D2, S needs to work with probability at least 9/10. The latter two
statements follow since overall S succeeds on Dhard with probability at least 19/20.

Consider the case where A, b are sampled from distribution D2. Then x∗ = b and OPT = 0.
Then consider x′ which is the optimal solution to minx ‖SAx − Sb‖22, so x′ = (SA)†Sb =
(SL)†SLb, where S can be decomposed into two matrices SL ∈ Rr×d and SR ∈ Rr×(n−d), S =[
SL SR

]
. Plugging x′ into the original regression problem, ‖Ax′− b‖22 = ‖A(SL)†SLb− b‖22,

which is at most (1 + ε) OPT = 0. Thus rank(SL) is d. Since SL is a submatrix of S, the
rank of S is also d. J

References
1 Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, Yves Robert, François-Henry Rouet,

and Bora Uçar. On computing inverse entries of a sparse matrix in an out-of-core environ-
ment. SIAM J. Scientific Computing, 34(4), 2012.

2 Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging lapack’s
least-squares solver. SIAM J. Scientific Computing, 32(3):1217–1236, 2010.

3 Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory of sparse
dimensionality reduction in euclidean space. In STOC, 2015.

4 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 205–214. ACM, 2009.

5 Kenneth L Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 81–90. ACM, 2013.

6 Michael B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In
SODA, pages 278–287, 2016.

7 Michael B Cohen, Cameron Musco, and Christopher Musco. Ridge leverage scores for
low-rank approximation. SODA, 2017.

8 Michael B Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In ICALP, 2016.

9 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990.

10 Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. Journal of Machine Learning
Research, 13:3475–3506, 2012.

11 Petros Drineas, Michael W Mahoney, S Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. Numerische Mathematik, 117(2):219–249, 2011.

12 François Le Gall. Powers of tensors and fast matrix multiplication. In International Sym-
posium on Symbolic and Algebraic Computation, ISSAC’14, Kobe, Japan, July 23-25, 2014,
pages 296–303, 2014.

13 Tiefeng Jiang. How many entries of a typical orthogonal matrix can be approximated by
independent normals? The Annals of Probability, 34(4):1497–1529, 2006.

14 Jeff Leek. Prediction: the lasso vs. just using the top 10 predictors.
In simplystats, February 23. http://simplystatistics.org/2012/02/23/
prediction-the-lasso-vs-just-using-the-top-10/, 2012.

ICALP 2017

http://simplystatistics.org/2012/02/23/prediction-the-lasso-vs-just-using-the-top-10/
http://simplystatistics.org/2012/02/23/prediction-the-lasso-vs-just-using-the-top-10/

59:14 Fast Regression with an `∞ Guarantee

15 Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In IEEE 54th Annual
Symposium on Foundations of Computer Science (FOCS), pages 127–136, 2013.

16 Song Li, Shaikh S. Ahmed, Gerhard Klimeck, and Eric Darve. Computing entries of the
inverse of a sparse matrix using the FIND algorithm. J. Comput. Physics, 227(22):9408–
9427, 2008.

17 Yichao Lu, Paramveer Dhillon, Dean Foster, and Lyle Ungar. Faster ridge regression via
the subsampled randomized hadamard transform. In NIPS, 2013.

18 Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 91–100. ACM, 2013.

19 Jelani Nelson and Huy L Nguyên. Osnap: Faster numerical linear algebra algorithms via
sparser subspace embeddings. In Foundations of Computer Science (FOCS), 2013 IEEE
54th Annual Symposium on, pages 117–126. IEEE, 2013.

20 Jelani Nelson and Huy L. Nguyên. Lower bounds for oblivious subspace embeddings. In
ICALP, pages 883–894, 2014.

21 Dimitris Papailiopoulos, Anastasios Kyrillidis, and Christos Boutsidis. Provable determin-
istic leverage score sampling. In KDD, pages 997–1006. ACM, 2014.

22 Ryan Rifkin, Gene Yeo, and Tomaso Poggio. Regularized least-squares classification. Nato
Science Series Sub Series III Computer and Systems Sciences, 190:131–154, 2003.

23 Tamás Sarlós. Improved approximation algorithms for large matrices via random projec-
tions. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 143–152. IEEE, 2006.

24 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

25 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19-22, 2012, pages 887–898, 2012.

26 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

27 Peng Zhang and Jing Peng. Svm vs regularized least squares classification. In ICPR (1),
pages 176–179, 2004.

28 Anastasios Zouzias and Nikolaos M. Freris. Randomized extended kaczmarz for solving
least squares. SIAM J. Matrix Analysis Applications, 34(2):773–793, 2013.

Embeddings of Schatten Norms with Applications
to Data Streams∗

Yi Li1 and David P. Woodruff2

1 Division of Mathematics, School of Physical & Mathematical Sciences,
Nanyang Technological University, Singapore
yili@ntu.edu.sg

2 IBM Almaden Research Center, San Jose, CA, USA
dpwoodru@us.ibm.com

Abstract

Given an n×d matrix A, its Schatten-p norm, p ≥ 1, is defined as ‖A‖p =
(∑rank(A)

i=1 σi(A)p
)1/p

,
where σi(A) is the i-th largest singular value of A. These norms have been studied in functional
analysis in the context of non-commutative `p-spaces, and recently in data stream and linear
sketching models of computation. Basic questions on the relations between these norms, such as
their embeddability, are still open. Specifically, given a set of matrices A1, . . . , Apoly(nd) ∈ Rn×d,
suppose we want to construct a linear map L such that L(Ai) ∈ Rn′×d′ for each i, where n′ ≤ n
and d′ ≤ d, and further, ‖Ai‖p ≤ ‖L(Ai)‖q ≤ Dp,q‖Ai‖p for a given approximation factor Dp,q

and real number q ≥ 1. Then how large do n′ and d′ need to be as a function of Dp,q?
We nearly resolve this question for every p, q ≥ 1, for the case where L(Ai) can be expressed

as R ·Ai ·S, where R and S are arbitrary matrices that are allowed to depend on A1, . . . , At, that
is, L(Ai) can be implemented by left and right matrix multiplication. Namely, for every p, q ≥ 1,
we provide nearly matching upper and lower bounds on the size of n′ and d′ as a function of Dp,q.
Importantly, our upper bounds are oblivious, meaning that R and S do not depend on the Ai,
while our lower bounds hold even if R and S depend on the Ai. As an application of our upper
bounds, we answer a recent open question of Blasiok et al. about space-approximation trade-offs
for the Schatten 1-norm, showing in a data stream it is possible to estimate the Schatten-1 norm
up to a factor of D ≥ 1 using Õ(min(n, d)2/D4) space.

1998 ACM Subject Classification G. Mathematics of Computing

Keywords and phrases data stream algorithms, embeddings, matrix norms, sketching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.60

1 Introduction

Given an n×d matrix A, its Schatten-p norm, p ≥ 1, is defined as ‖A‖p =
(∑r(A)

i=1 σi(A)p
) 1

p ,
where r(A) is the rank of A and σi(A) is the i-th largest singular value of A, i.e., the square
root of the i-th largest eigenvalue of ATA. The Schatten-1 norm is the nuclear norm or trace
norm, the Schatten-2 norm is the Frobenius norm, and the Schatten ∞-norm, defined as
the limit of the Schatten-p norm when p→∞, is the operator norm. The Schatten 1-norm
has applications in non-convex optimization [5], while Schatten-2 and Schatten-∞ norms
are useful in geometry and linear algebra, see, e.g., [22]. Schatten-p norms for large p also
provide approximations to the Schatten-∞ norm.

∗ A full version of the paper is available at https://arxiv.org/abs/1702.05626.

EA
T

C
S

© Yi Li and David P. Woodruff;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 60; pp. 60:1–60:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.60
https://arxiv.org/abs/1702.05626
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Embeddings of Schatten Norms

The Schatten norms appear to be significantly harder to compute or approximate than
the vector `p-norms in various models of computation, and understanding the complexity of
estimating them has led to new algorithmic ideas and lower bound techniques. The main
difficulty is that we do not directly have access to the spectrum of A, and naïvely it is
costly in space and time to extract useful information about it. A line of work has focused
on understanding the complexity of estimating such norms in the data stream model with
1-pass over the stream [13] as well as with multiple passes [4], the sketching model [2, 12, 14],
statistical models [9], as well as the general RAM model [17, 19]. Dimensionality reduction
in these norms also has applications in quantum computing [8, 21]. It has also been asked in
places if the Schatten-1 norm admits non-trivial nearest neighbor search data structures [1].

Our Results. In this paper we study the embeddability of the Schatten-p norm into the
Schatten-q norm for linear maps implementable by matrix multiplication. More concretely,
we first ask for the following form of embeddability: given n and t (where t = Ω(logn)),
what is the smallest value of Dp,q, which we call the distortion, such that there exists a
distribution R on Rt×n satisfying, for any given n× d matrix A,

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ Dp,q‖A‖p

}
≥ 1− exp(−ct)?

Here c > 0 is an absolute constant. We can assume, w.l.o.g., that n = d because we can first
apply a so-called subspace embedding matrix (see, e.g., [22] for a survey) to the left or to the
right of A to preserve each of its singular values up to a constant factor. We shall show that
Dp,q & D̂p,q, where

D̂p,q =

n
1
p−

1
2 /t

1
q−

1
2 , 1 ≤ p ≤ q ≤ 2;

n
1
p−

1
2 , 1 ≤ p ≤ 2 ≤ q;

max{(n/t)
1
2−

1
p , t

1
p−

1
q }, 2 ≤ p ≤ q;

n
1
2−

1
p , 1 ≤ q ≤ 2 ≤ p;

n
1
2−

1
p /t

1
2−

1
q , 2 ≤ q ≤ p;

max{(n/t)
1
p−

1
2 , (t/ ln t)

1
q−

1
p }, 1 ≤ q ≤ p ≤ 2,

(1)

and the notation f & g means f ≥ g/C for some constant C > 0. The constant C in the
& notation above depends on p and q only. This distortion is asymptotically tight, up to
logarithmic factors, as we also construct a distribution R on t-by-n matrices for which for
any n× d matrix A,

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ D̃p,q

(
log n

t

)
‖A‖p

}
≥ 1− exp (−ct) ,

where D̃p,q differs from Dp,q by a constant or a factor of log t. Specifically,

D̃p,q .

{
max{(n/t)

1
p−

1
2 , t

1
q−

1
p }, 1 ≤ q ≤ p ≤ 2;

D̂p,q, otherwise,
(2)

where D̂p,q is given in (1). Replacing t with t/(ln(n/t)), we arrive at a matching failure
probability and distortion, while using a logarithmic factor more number of rows in R.
Namely, we construct a distribution R on matrices with t ln(n/t) rows for which

Pr
R∼R

{
‖A‖p ≤ ‖RA‖q ≤ D̃p,q‖A‖p

}
≥ 1− exp (−ct) .

Y. Li and D. P. Woodruff 60:3

We can also sketch RA on the right by a subspace embedding matrix S with Θ(t) rows,
which yields

Pr
R,S

{
‖A‖p ≤

∥∥RAST∥∥
q
≤ D̃p,q‖A‖p

}
≥ 1− exp (−ct) .

We show that this two-sided sketch is asympotically optimal for two-sided sketches in its
product of number of rows of R and number of columns of S, up to logarithmic factors.
Formally, we next ask: what is the smallest value of Dp,q for which there exists a distribution
G1 on Rr×n and a distribution G2 on Rn×s satisfying

Pr
R∼G1,S∼G2

{
‖A‖p ≤ ‖RAS‖q ≤ Dp,q‖A‖p

}
≥ 1− exp(−cmin{r, s})?

Again we can assume, w.l.o.g, that r = s, because otherwise we can compose R or S with
a subspace embedding to preserve all singular values up to a constant factor1. Henceforth
for the two-sided problem, we assume that G1 and G2 are distributions on Rt×n. We also
prove a matching lower bound that Dp,q & D̂p,q except in the case when 1 ≤ q ≤ p ≤ 2,
where we instead obtain a matching lower bound up to logarithmic factors, namely, Dp,q &

max{(n/t)
1
p−

1
2 / log

3
2 t, (t/ ln t)

1
q−

1
p }.

In the important case when p = q = 1, our results show a space-approximation tradeoff
for estimating the Schatten 1-norm (or trace norm) in a data stream, answering a question
posed by Blasiok et al. [3]. This application crucially uses that R and S are oblivious to A,
i.e., they can be sampled and succinctly stored without looking at A. Specifically, when each
entry of A fits in a word of O(logn) bits, we can choose R and S to be Gaussian random
matrices with entries truncated to O(logn) bits and with entries drawn from a family of
random variables with bounded independence. For time-efficiency purposes, R and S can
also be chosen to be Fast Johnson Lindenstrauss Transforms or sparse embedding matrices
[6, 16, 18], though they will have larger dimension, especially to satisfy the exponential
probability of failure in the problem statement (and even with constant failure probability,
the dimension will be slightly larger; see [22] for a survey).

Choosing R and S to be Gaussian matrices, our result provides a data stream algorithm
using (n2/D4) polylog(n) bits of memory, and achieving approximation factor D (taking
t = n/D2). While ‖A‖2, the Frobenius norm of A, provides a

√
n-approximation to ‖A‖1

and can be approximated up to a constant factor in a data stream using O(1) words of space,
if we want an algorithm achieving a better approximation factor then all that was known
was an algorithm requiring O(n2) words of space, namely, the trivial algorithm of storing A
exactly and achieving D = 1. It was asked in [3] if there is a smooth trade-off between the
case when D = 1 and D =

√
n; our (n2/D4) polylog(n) space algorithm provides the first

such trade-off, and is optimal at the two extremes. Our results are the first of their kind for
large approximation factors D � 1 for estimating the Schatten-p norms in a data stream.

Finally, while in our upper bounds R and S are chosen obliviously to A, for our lower
bounds we would like to rule out those R and S which are even allowed to depend on
A. Clearly, if there is only a single matrix A, this question is ill-posed as one can just
choose R and S to have a single row and column so that ‖RAS‖q = ‖A‖p. Instead, we
ask the question analogous to the Johnson-Lindenstrauss transform (see e.g., [10]): given

1 That is, if r ≤ s, we can choose a subspace embedding matrix H of dimension n × Θ(r) such that
‖RASH‖q = Θ(‖RAS‖q) with probability ≥ 1− exp(−s), and then pad R with zero rows so that R has
the same number of rows as columns of S, increasing the number of rows of R by at most a constant
factor.

ICALP 2017

60:4 Embeddings of Schatten Norms

A1, . . . , Apoly(n), can we construct an R with t rows and an S with t columns for which
‖Ai‖p ≤ ‖RAiS‖q ≤ Dp,q‖Ai‖p for all i? We show that our lower bound on the trade-off
between Dp,q and t given by (1) continues to hold even in this setting.

Our Techniques. We shall focus on the case p = q in this description of our technical
overview. For our upper bounds, a natural idea is to take R to be a (normalized) Gaussian
random matrix, and the analysis of the quantity ‖RA‖p, when p ≥ 2, follows fairly directly
from the so-called non-commutative Khintchine inequality as follows.

I Lemma 1 (Non-commutative Khintchine Inequality [15]). Suppose that C1, . . . , Cn are (de-
terministic) matrices of the same dimension and g1, . . . , gn are independent N(0, 1) variables.
It holds that

E
g1,...,gn

∥∥∥∥∥∑
i

giCi

∥∥∥∥∥
p

' max

∥∥∥∥∥∥
(∑

i

CiC
T
i

) 1
2
∥∥∥∥∥∥
p

,

∥∥∥∥∥∥
(∑

i

CTi Ci

) 1
2
∥∥∥∥∥∥
p

 , p ≥ 2.

In order to estimate ‖RA‖p, we can write

RA =
∑
i,j

rij(eieTj A) =:
∑
i,j

rijCij

and it is straightforward to compute that∑
i,j

CijC
T
ij = tr(AAT)It = ‖A‖2

F It,
∑
i,j

CTijCij = t ·ATA.

It follows from the non-commutative Khintchine inequality that (recall that R is a normalized
Gaussian matrix with N(0, 1/t) entries)

E ‖RA‖p ' max
{
t

1
2−

1
p ‖A‖F , ‖A‖p

}
, p ≥ 2.

Using a concentration inequality for Lipschitz functions on Gaussian space, one can show
that ‖RA‖p is concentrated around E ‖RA‖p, and using standard the standard relationship
between ‖A‖F and ‖A‖p then completes the argument.

When p < 2, the non-commutative Khintchine inequality gives a much less tractable
characterization, so we need to analyze ‖RA‖p in a different manner, which is potentially
of independent interest. Our analysis also works for non-Gaussian matrices R whenever R
satisfies certain properties, which, for instance, are satisfied by a Fast Johnson-Lindenstrauss
Transform.

Upper bound. We give an overview of our upper bound now, focusing on the one-sided case,
since the two-sided case follows by simply right-multiplying by a generic subspace embedding
S. Here we focus on the case in which R is an r×n Gaussian matrix, where r = t ·polylog(n).
By rotational invariance of Gaussian matrices, and for the purposes of computing ‖AR‖p, we
can assume that A is diagonal. Let A1 be the restriction of A to its top Θ(t logn) singular
values. Since R is a Gaussian matrix with at least t logn rows, it is well-known that R is
also a subspace embedding on A1 (see, e.g., [20, Corollary 5.35]), namely, σi(RA1) ' σi(A1)
for all i, and thus ‖RA1‖p ' ‖A1‖p = Ω(‖A‖p) when ‖A1‖p = Ω(‖A‖p).

If it does not hold that ‖A1‖p = Ω(‖A‖p), then the singular values of A are “heavy-tailed”,
and we show how to find a σi(A) with i < Θ(t logn) for which σ2

i (A) is relatively small
compared to σ2

i (A) + σ2
i+1(A) + · · · + σ2

n(A). More specifically, let A2 be the restriction

Y. Li and D. P. Woodruff 60:5

of A to σi(A), . . . , σn(A). Then we have that ‖A2‖op . ‖A2‖F /
√
t. Since for a Gaussian

matrix R it holds that ‖RA2‖op . ‖A2‖op + ‖A‖F /
√
r (see Proposition 3), we thus have that

‖RA2‖op . ‖A2‖F /
√
t. On the other hand, ‖RA2‖F ' ‖A2‖F . This implies there exist Ω(t)

singular values of RA2 that are Ω(‖A2‖F /
√
t), which yields that ‖RA2‖p & ‖A2‖p = Ω(‖A‖p).

Therefore we have established the lower bound that ‖RA‖p ≥ max{‖RA1‖p, ‖RA2‖p} in
terms of ‖A‖p.

To upper bound ‖RA‖p in terms of ‖A‖p, note that ‖RA‖p ≤ ‖RA1‖p + ‖RA2‖p by the
triangle inequality, where A1, A2 are as above. Again it follows from the subspace embedding
property of R that ‖RA1‖p . ‖A1‖p ≤ ‖A‖p. Regarding ‖RA2‖p, we relate its Schatten-p
norm to its Frobenius norm and use the fact that ‖RA2‖F ' ‖A2‖F . This gives an upper
bound of ‖RA2‖p in terms of ‖A2‖p, and using that ‖A2‖p ≤ ‖A‖p, it gives an upper bound
in terms of ‖A‖p. This is sufficient to obtain an overall upper bound on ‖RA‖p.

Lower bound. Now we give an overview of our lower bounds for some specific cases. First
consider one-sided sketches. We choose our hard distribution as follows: we choose an
n× (10t) Gaussian matrix G padded with 0s to become an n×n matrix. For a sketch matrix
R containing t rows, by rotational invariance of Gaussian matrices, ‖RG‖p is identically
distributed to ‖ΣRG

′‖p, where ΣR is the t × t diagonal matrix consisting of the singular
values of R, and where G′ is a t × (10t) Gaussian matrix. It is a classical result that all
singular values of G′ are Θ(

√
t) and thus ‖RG‖p '

√
t‖R‖p. This implies that

√
nt

1
2−

1
p .
√
t‖R‖p . Dp,p

√
nt

1
2−

1
p , (3)

since all non-zero singular values of G are Θ(
√
n). On the other hand, applying R to the

n× n identity matrix gives that

n
1
p ≤ ‖R‖p ≤ Dp,pn

1
p . (4)

Combining (3) and (4) gives that Dp,p ≥ max{(n/t)1/2−1/p, (n/t)1/p−1/2}.
For the two-sided sketch, we change the hard distribution to (i) n× n Gaussian random

matrix F and (ii) the distribution of GHT , where G and H are n×Θ(t) Gaussian random
matrices. The proof then relies on the analysis for

∥∥RFST∥∥
p
and

∥∥RGHTST
∥∥
p
. When

p ≥ 2, non-commutative Khintchine inequality gives immediately that∥∥RGHTST
∥∥
p
'
√
t
∥∥RFST∥∥

p
'
√
tmax{‖R‖p‖S‖op, ‖R‖op‖S‖p}, p ≥ 2. (5)

When p < 2, a different approach is followed. We divide the singular values of R and S into
bands, where each band contains singular values within a factor of 2 from each other. We shall
consider the first Θ(log t) bands only because the remaining singular values are 1/poly(t) and
negligible. Now, if all singular values of R′ and S′ are within a factor of 2 from each other,
then

∥∥R′F (S′)T
∥∥
p
' ‖R′‖op‖S′‖op‖F‖p and

∥∥R′GHT (S′)T
∥∥
p
' ‖R′‖op‖S′‖op

∥∥GHT
∥∥
p
. It

is not difficult to see that

‖GHT ‖p '
√
t‖F‖p (6)

Since R′ and S′ consist of one of the Θ(log t) bands of R and S, respectively, it follows that∥∥RGHTST
∥∥
p
'
√
t/polylog(t) ·

∥∥RFST∥∥
p
, p < 2. (7)

A lower bound of Dp,p then follows from combining (6), (5) (or (7)) with

‖F‖p ≤
∥∥RFST∥∥

p
≤ Dp,p‖F‖p, and

∥∥GHT
∥∥
p
≤
∥∥RGHTST

∥∥
p
≤ Dp,p

∥∥GHT
∥∥
p
.

ICALP 2017

60:6 Embeddings of Schatten Norms

To strengthen the lower bound for the sketches that even depend on the input matrix, we
follow the approach in [10]. We first work with random hard instances, and then sample
input matrices A1, . . . , Apoly(n) from the hard distribution, and apply a net argument on
sketching matrices R and S to obtain a deterministic statement, which states that for any
fixed R and S such that the distortion guarantee is satisfied with all samples A1, . . . , Apoly(n),
the distortion lower bound remains to hold.

2 Preliminaries

Notation. Throughout the paper, we use f . g to denote f ≤ Cg for some constant C,
f & g to denote f ≥ Cg for some constant C, and f ' g to denote C1g ≤ f ≤ C2g for some
constants C1 and C2.

Bands of Singular Values. Given a matrix A, we split the singular values of A, σ1(A) ≥
σ2(A) ≥ · · · , into bands such that the singular values in each band are within a factor of 2
from each other. Formally, define the i-th singular value band of A to be

Bi(A) =
{
k : ‖A‖op2i+1 < σk(A) ≤ ‖A‖op2i

}
, i ≥ 0,

and let Ni(A) = |Bi(A)|, the cardinality of the i-th band.

Extreme Singular Values of Gaussian Matrices. We shall repeatedly use the following
results on Gaussian matrices.

I Proposition 2 ([20, Corollary 5.35]). Let G be an r × n (r < n) Gaussian random
matrix of i.i.d. entries N(0, 1). With probability at least 1 − 2 exp(−u2/2), it holds that√
n−
√
r − u ≤ smin(G) ≤ smax(G) ≤

√
n+
√
r + u.

Combining [11, Corollary 3.21] and the concentration bound in Gauss space [20, Proposi-
tion 5.34], we also have

I Proposition 3. Let A be a deterministic n × n matrix and G be an r × n (r < n)
Gaussian random matrix of i.i.d. entries N(0, 1). Then for any K, it holds that ‖GA‖op ≤
K(‖A‖op

√
r + ‖A‖F) with probability at least 1− exp(−c

√
Kr), where c > 0 is an absolute

constant.

Nets on Matrices. The following fact concerns nets of matrices and was used in [10]. We
shall use it in our lower bound arguments.

I Proposition 4 ([10, Lemma 2]). There exists a net R ⊂
⋃t0
t=1 Rt×n of size exp(O(t0n ln(Dn/η))

such that for any R ∈ Rt×n (1 ≤ t ≤ t0) with column norms in [1, D], we can find R′ ∈ R
such that ‖R−R′‖op ≤ η.

3 Lower Bounds

In this section we show the full proof of the (n/t)1/2−1/p lower bound for one-sided sketches
(Theorem 5) and the (n/t)1/p−1/2/ log3/2 t bound for two-sided sketches (Theorem 6), which
demonstrates our techniques. Other cases can be found in the full version.

I Theorem 5 (One-sided sketch). Let p > 2 and p > q. There exist a set T ⊂ Rn×n with
|T | = poly(n) and an absolute constant c ∈ (0, 1) such that, if it holds for some matrix
R ∈ Rt×n with t ≤ cn and for all A ∈ T that ‖A‖p ≤ ‖RA‖q ≤ Dp,q‖A‖p, then it must hold
that Dp,q & (n/t)

1
2−

1
p .

Y. Li and D. P. Woodruff 60:7

Instead of proving this theorem, we prove the following rephrased version.

I Theorem 5’ (rephrased). Let p > 2 and p > q. There exists an absolute constant D0 and
a set T ⊂ Rn×n with |T | = O(n ln(Dn)) such that, if D ≥ D0 and it holds for some matrix
R ∈ Rt×n and for all A ∈ T that

‖A‖p ≤ ‖RA‖q ≤ D
1
2−

1
p ‖A‖p, (8)

then it must hold that t & n/D.

Proof. Let r = n/(ρ2D) and t0 = θr for some constants ρ > 1 and θ ∈ (0, 1) to be determined.
We shall show that if t ≤ t0, it will not happen that R satisfies (8) for all A in a carefully
chosen set T .

Let D be the distribution of Gaussian random matrices of dimension n × r with i.i.d.
entries N(0, 1/r). Let R = UΣV T be the singular value decomposition of R and A ∼ D.
Then by rotational invariance of the Schatten norm and Gaussian random matrices, we know
that ‖RA‖q is identically distributed to ‖ΣA‖q = ‖BTΣ′‖q, where Σ′ is the left t× t block
of Σ and B is formed by the first t rows of A.

It follows from Proposition 2 that with probability ≥ 1 − exp(−c1c2r), smax(B) ≤
1 + 2c1

√
t/r ≤ 1 + 2

√
θc1, and thus

‖BTΣ′‖q ≤ smax(B)‖Σ′‖q ≤ (1 + 2
√
θc1)‖Σ′‖q = (1 +

√
θc1)‖R‖q ≤ (1 + 2

√
θc1)D

1
2−

1
pn

1
p ,

that is, with probability ≥ 1− exp(−c1c2r),

‖RA‖q ≤ (1 + 2
√
θc1)D

1
2−

1
pn

1
p .

On the other hand, with probability ≥ 1− exp(−c1c2r), all singular values of A are at least√
n/r − 2c1 = ρ

√
D − 2c1 ≥ (1− ε)ρ

√
D if we choose D0 ≥ 4c2

1/ε
2. Then

‖RA‖q ≥ ‖A‖p ≥ (1− ε)sr
1
p

√
D = (1− ε)ρ1− 2

pn
1
pD

1
2−

1
p .

Also, with probability ≥ 1− exp(−c1c2r), all singular values of A are at most
√
n/r+ 2c1 =

ρ
√
D + 2c1 ≤ (1 + ε)ρ

√
D and thus

‖A‖p ≤ r
1
p (1 + ε)s

√
D = (1 + ε)ρ1− 2

pn
1
pD

1
2−

1
p .

This motivates the following definitions of constraints for R ∈ Rt×n and A ∈ Rn×n:

P1(R,A) : ‖RA‖q ≤ (1 + 2
√
θc1)D

1
2−

1
pn

1
p P2(R,A) : ‖RA‖q ≥ (1− ε)ρ1− 2

pn
1
pD

1
2−

1
p

P3(A) : ‖A‖p ≤ (1 + ε)ρ1− 2
pn

1
pD

1
2−

1
p .

Now, for m samples A1, . . . , Am drawn from D, it holds for any fixed R that

Pr
A1,...,Am

{∃i s.t. P1(R,A) and P2(R,A) and P3(A) hold} ≥ 1− e−c1c2mr. (9)

Since 1 ≤ ‖GeieTi ‖q ≤ D and ‖GeieTi ‖q = ‖Ri‖2, we can restrict the matrix R to
matrices with column norm in [1, D]. Thus we can find a net R ⊂

⋃t0
t=1 Rt×n of size

exp(O(t0n ln(Dn/η)) such that for any R with column norms in [1, D], we can find R′ ∈ R
such that ‖R−R′‖op ≤ η.

Now it follows from (9) that

Pr
A1,...,Am

{∀R ∈ R,∃i, P1(R,A) and P2(R,A) and P3(R,A) hold}

≥ 1 − exp
(
O

(
t0n ln Dn

η

))
exp

(
−c1c2

D
mn
)
> 0,

ICALP 2017

60:8 Embeddings of Schatten Norms

provided that m = Θ(n ln(Dn)). Fix A1, . . . , Am such that for each R ∈ R there exists an i
such that P1(R,Ai) and P2(R,Ai) and P3(Ai) all hold.

Take T = {In, e1e
T
1 , . . . , ene

T
n , A1, . . . , Am}. We know that if R satisfies (8) for all A ∈ T ,

then there exists R′ such that ‖R′ − R‖op ≤ η, and there exists 1 ≤ i ≤ m such that
P1(R′, Ai), P2(R′, Ai) and P3(Ai) all hold. It follows that

‖RAi‖q ≤ ‖R′Ai‖q + ‖(R−R′)Ai‖q ≤ ‖R′Ai‖q + ‖R−R′‖op‖Ai‖p

≤
(

1 + 2
√
θc1 + (1 + ε)ρ1− 2

p η
)
D

1
2−

1
pn

1
p

and

‖RAi‖q ≥ ‖RAi‖q − ‖(R−R′)Ai‖q ≥ ‖R′Ai‖q − ‖R−R′‖op‖Ai‖p
≥ ((1− ε)− (1 + ε)η) ρ1− 2

pD
1
2−

1
pn

1
p

We meet a contradiction when θ, ε and η are all sufficiently small and ρ is sufficiently large,
for instance, when η = Θ(ε), θ = Θ(ε2/c2

2) and ρ = Θ(1 + pε/(p− 2)). J

I Theorem 6 (Two-sided sketch). Let p < 2. There exist a set T ⊂ Rn×n with |T | = poly(n)
and an absolute constant c ∈ (0, 1) such that, if it holds for some matrices R,S ∈ Rt×n
with t ≤ cn and for all A ∈ T that ‖A‖p ≤

∥∥RAST∥∥
q
≤ Dp,q‖A‖p, it must hold that

Dp,q & (n/t)
1
p−

1
2 / log

3
2 t.

Instead of proving this theorem, we prove the following rephrased version.

I Theorem 6’ (rephrased). Let p < 2, p > q and D ≥ D0 for some an absolute constant D0.
There exists a set T ⊂ Rn×n with |T | = O(n ln(Dn)) such that it holds for some matrices
R,S ∈ Rt×n and for all A ∈ T that

‖A‖p ≤
∥∥RAST∥∥

q
≤ D

1
p−

1
2 ‖A‖p, (10)

then it must hold that t & n/(D log3p/(2−p) t).

We need two auxiliary lemmata, whose proofs are omitted owing to space limitations.

I Lemma 7. Let A and B be deterministic n × n matrices and G be a Gaussian random
matrix of i.i.d. N(0, 1) entries. It holds with probability 1−O(1) that

‖AGB‖p . (log
5
2 n)(log logn)‖A‖op‖B‖opEp(A,B),

where

Ep(A,B) = max
0≤i,j≤3 logn

1
2i+j ·min {Ni(A), Nj(B)}

1
p ·max

{√
Ni(A),

√
Nj(B)

}
. (11)

I Lemma 8. Let A and B be deterministic n×N matrices and G,H be N × r Gaussian
random matrices of i.i.d. N(0, 1) entries. Suppose that n ≤ cr for some absolute constant
c ∈ (0, 1). It holds with probability 1−O(1) that ‖AGHTBT ‖p &

√
r‖A‖op‖B‖opEp(A,B),

where Ep(A,B) is as defined in (11).

Now we are ready to show Theorem 6’.

Y. Li and D. P. Woodruff 60:9

Proof of Theorem 6’. Without loss of generality, we can assume that the maximum column
norm of R and that of S are the same; otherwise we can rescale R and S.

Let r = n/(ρ2D) and t0 = θr for some ρ = Θ(log3p/(2−p) t) and θ ∈ (0, 1) to be determined.
We shall show that if t ≤ t0, it will not happen that R and S satisfy (10) for all A ∈ T .

Let D be the distribution of Gaussian random matrices of dimension n × r with i.i.d.
entries N(0, 1) and let G,H ∼ D be independent. It follows from Lemma 8 that with
probability ≥ 1−O(1),

‖ΣRGHTΣTS‖q &
√
rEq(R,S). (12)

On the other hand, it follows from (10) that with probability ≥ 1− exp(−c1n),

‖ΣRGHTΣTS‖q ≤ D
1
2−

1
p ‖GHT ‖p . D

1
2−

1
pnr

1
p . (13)

Now, let F be the distribution of an n× n Gaussian matrix of i.i.d. entries N(0, 1) and let F
be drawn from F . Then ‖RFS‖q is identically distributed as ΣRF ′ΣS , where F ′ is a random
t× t Gaussian matrix of i.i.d. entries N(0, 1). It follows from Lemma 7 that with probability
≥ 1−O(1),

‖ΣRF ′ΣTS‖q . (log
5
2 t)(log log t)Eq(R,S) ≤ (log3 t)Eq(R,S) (14)

On the other hand, it follows from (10) that with probability ≥ 1− exp(−c2n),

‖RFST ‖q ≥ ‖F‖p & n1/p√n. (15)

Define events P1(G,H,R, S) and P2(F,R, S) to be (12) and (14) respectively. Further define

P3(G,H) :
∥∥GHT

∥∥
p
. nr1/p and P4(F) : ‖F‖p . n1/p√n.

Both P3(G,H) and P4(F) hold with probability ≥ 1− e−c3n when G,H ∼ D and F ∼ F .
Now, for 2m samples G1, . . . , Gm, H1, . . . ,Hm independently drawn from D, and m

samples F1, . . . , Fm independently drawn from F , it holds for any fixed R and S that

Pr
Gi,Hi,Fi

{∃i, P1(Gi, Hi, R, S),P2(Fi, R, S),P3(Gi, Hi),P4(Fi) all hold} ≥ 1− e−c4m. (16)

Since 1 ≤ ‖ReieTj ST ‖q = ‖Ri‖2‖Sj‖2 ≤ D, we can restrict the matrix R and S to
matrices with column norm in [1,

√
D]. Thus we can find a net M ⊂

⋃t0
t=1 Rt×n of size

exp(O(t0n ln(Dn/η)) such that for anyM with column norms in [1,
√
D], there existsM ′ ∈ G

such that ‖M −M ′‖op ≤ η.
Now it follows from (16) that

Pr
Gi,Hi,Fi

{∀R,S ∈M,∃i, P1(Gi, Hi, R, S),P2(Fi, R, S),P3(Gi, Hi),P4(Fi) all hold}

≥ 1 − exp
(
O

(
t0n ln Dn

η

))
exp (−c4m) > 0,

provided that m = Θ(n ln(Dn)). Fix {Gi, Hi, Fi}i such that for each pair R′, S′ ∈M there
exists i such that P1(Gi, Hi, R

′, S′) and P2(Fi, R′, S′) and P3(Gi, Hi) and P4(Fi) all hold.
Take T = {In} ∪ {eieTj }1≤i,j≤n ∪ {GiHT

i }1≤i≤m ∪ {Fi}1≤i≤m. We know that if (R,S)
satisfies (10) for all A ∈ T , then there exists R′ and S′ such that ‖R′ − R‖op ≤ η and
‖S′ − S‖op ≤ η, and there exists 1 ≤ i ≤ m such that P1(Gi, Hi, R

′, S′) and P2(Fi, R′, S′)

ICALP 2017

60:10 Embeddings of Schatten Norms

and P3(Gi, Hi) and P4(Fi) all hold. One can then show that (12), (15) hold with slightly
smaller constants and (13), (14) with slightly larger constants for R and S. It follows that

n
1
p
√
n

log3 t
. D

1
p−

1
2
√
rnr

1
p , or, 1

log3 t
.

(
rD

n

) 1
p−

1
2

= 1
ρ

2
p−1 ,

which contradicts our choice of ρ (the hidden constant in . above depends only on D0, θ
and η, and then we can choose the hidden constant in the Θ-notation for ρ). J

4 Upper Bounds

We shall only show the upper bounds for 1 ≤ p ≤ q ≤ 2 in this section. Other cases can be
found in the full version.

Let G ∈ Rr×n (r ≥ Ct) be a random matrix and c, c′, η > 0 be absolute constants which
satisfy the following properties:
(a) (subspace embedding) For a fixed t-dimensional subspace X ⊆ Rn it holds with probab-

ility ≥ 1− exp(−c′t) that

(1− η)‖x‖2 ≤ ‖Gx‖2 ≤ (1 + η)‖x‖2, ∀x ∈ X;

(b) For a fixed A ∈ Rn×n it holds with probability ≥ 1− exp(−c′r) that

‖GA‖op ≤ c
(
‖A‖op + 1√

r
‖A‖F

)
;

(c) For a fixed A ∈ Rn×n it holds with probability ≥ 1− exp(−c′r) that

(1− η)‖A‖F ≤ ‖GA‖F ≤ (1 + η)‖A‖F .

Consider the singular value decomposition A = UΣV T , where U and V are orthogonal
matrices, Σ = diag{σ1, . . . , σn} with σ1 ≥ σ2 ≥ · · · . For an index set I ⊆ [n], define
AI = UΣIV T , where ΣI is Σ restricted to the diagonal elements with indices inside I (the
diagonal entries with indices outside I are replaced with 0).

I Theorem 9. Let 1 ≤ p ≤ q ≤ 2. There exist constants θ = θ(p, q) < 1 small enough and
C = C(p, q) large enough such that for t ≤ θn and matrix G satisfying the aforementioned
properties, it holds for any (fixed) A ∈ Rn×n with probabilty 1− exp(−c′′t) that

t
1
q−

1
2

n
1
p−

1
2 log n

t

‖A‖p . ‖GA‖q . ‖A‖p.

Note that for t = Ω(logn) and r = Ct for some large constant C, a Gaussian random matrix of
i.i.d. entries N(0, 1/r), or a randomized Hadamard Transform matrix of r = Θ(t polylog(t))
rows, satisfies the three conditions on G [7]. The following corollary of Theorem 9 is
immediate.

I Corollary 10. Suppose that 1 ≤ p ≤ q and c logn ≤ t ≤ θn for some absolute constants
θ ∈ (0, 1) and c ≥ 1. There exists (random) G ∈ Rr×m with r & t such that with probability
≥ 1− exp(−c′′t),

‖A‖p ≤ ‖GA‖q .
n

1
p−

1
2

t
1
q−

1
2

(
log n

t

)
‖A‖p.

In particular when p = q,

‖A‖p ≤ ‖GA‖p .
(n
t

) 1
p−

1
2
(

log n
t

)
.

Y. Li and D. P. Woodruff 60:11

Now we prove Theorem 9. We first need an auxiliary lemma.

I Lemma 11. Let θ, t, C and G be as defined in Theorem 9 and b = Θ(log(n/t)). At least
one of the following conditions will hold:

bt∑
i=1

σpi ≥
1
2

n∑
i=1

σpi (17)

and

σ2
s ≤

2
t

n∑
i=s

σ2
i for some s ≤ bt. (18)

To prove the preceding lemma, consider the first b blocks of singular values of A each of
size t, that is, I1 = {σ1, . . . , σt}, . . . , Ib = {σ(b−1)t+1, . . . , σbt}.

I Lemma 12. If (18) does not hold for any s ≤ bt, it must hold for all 2 ≤ j ≤ b that
σjt ≤ 1

2σ(j−1)t.

Proof. If this is not true for some j then
∑jt
i=(j−1)t+1 σ

2
i ≥ tσ2

jt >
t
2σ

2
(j−1)t, which contradicts

(18) with s = (j − 1)t ≤ bt. J

Proof of Lemma 11. Suppose that (17) does not hold and we need to show that (18) holds
for some s ≤ bt. Otherwise, it follows from Lemma 12 that σbt+1 ≤ σ1

2b ≤
(
t
n

)2
σ1 and thus

n∑
i=bt+1

σpi < nσpbt+1 ≤
t2p

n2p−1σ
p
1 ≤ tθ2p−1σp1 , (19)

On the other hand,

bt∑
i=1

σpi ≥ tσ
p
1

(
1
2 + 1

4 + · · ·+ 1
2b

)
=
(

1− 1
2b

)
tσp1 = (1− θ2)tσp1 . (20)

Using the assumption on θ, we see that the rightmost side of (20) is bigger than the rightmost
side of (19), which contradicts the assumption that (17) does not hold. J

I Lemma 13. Let 1 ≤ p ≤ q ≤ 2, and t, b and G be defined as in Lemma 11. Suppose that
s satisfies (18) and let J = {s, s+ 1, . . . , n}. Then

‖GAJ‖q &
t

1
q−

1
2

n
1
p−

1
2
‖AJ‖p.

Proof. Combining Property (b) of G with (18) yields that

‖GAJ‖op ≤
c√
t

(
√

2 +
√

1
C

)
‖AJ‖F =: K√

t
‖AJ‖F

On the other hand, Property (c) states that ‖GAJ‖F ≥ 1
2‖AJ‖F . This implies that at least

αr singular values of GAJ are at least γ√
t
‖AJ‖F , provided that C

(
(1− α)γ2 + αK2) < 1

4 ,

which is satisfied if we choose γ ' 1/
√
C and α ' 1/K2/q. It follows that

‖GAJ‖q ≥ (αr)
1
q
γ√
t
‖AJ‖F ≥ (αC)

1
q γ · t

1
q−

1
2

n
1
p−

1
2
‖AJ‖p. J

ICALP 2017

60:12 Embeddings of Schatten Norms

I Lemma 14. Let 1 ≤ p ≤ q ≤ 2, and t, b and G be defined as in Lemma 11. Suppose that
s satisfies (18) and let J = {s, s+ 1, . . . , n}. Then

‖GAJ‖q .
1

t
1
p−

1
q

‖AJ‖p

Proof. When p ≤ 2, it holds that ‖AJ‖2
F ≤ ‖AJ‖

p
p‖AJ‖

2−p
op . Using (18), we obtain that

‖AJ‖p ≥
‖AJ‖2/p

F

‖AJ‖2/p−1
op

≥
(
t

2

) 1
p−

1
2

‖AJ‖F .

On the other hand, it follows from Property (c) of G that

‖GAJ‖q ≤ r
1
q−

1
2 ‖GAJ‖F ≤ (1 + η)r

1
q−

1
2 ‖AJ‖F .

Therefore,

‖GAJ‖q ≤ (1+η)r
1
q−

1
2

(
2
t

)1
p−

1
2

‖AJ‖p = (1+η)(Cbqt)
1
q−

1
2

(
2
t

)1
p−

1
2

‖AJ‖p .
1

t
1
p−

1
q

‖AJ‖p.J

Now we are ready to show Theorem 9.

Proof of Theorem 9. It follows from the subspace embedding property of G that

(1− η)‖AIi‖q ≤ ‖GAIi‖q ≤ (1 + η)‖AIi‖q, 1 ≤ i ≤ b

and thus

1− η
t

1
p−

1
q

‖AIi
‖p ≤ ‖GAIi

‖q ≤ (1 + η)‖AIi
‖p.

When (17) holds, there exists i∗ (1 ≤ i∗ ≤ b) such that

‖AIi∗‖p ≥
1

2
1
p b
‖A‖p

and thus

1
bt

1
p−

1
q

‖A‖p . ‖GAIi∗‖q . ‖A‖p.

When (17) does not hold, let J be as defined in Lemma 13 and

1
2

1
p

‖A‖p ≤ ‖AJ‖p ≤ ‖A‖p.

The claimed upper and lower bounds follow from combining the bounds above, together with
Lemma 13, Lemma 14, and

max
{
‖GAI1‖q, . . . , ‖GAIb

‖q, ‖GAJ‖q
}
≤ ‖GA‖q ≤

b∑
i=1

∥∥GA[Ii]
∥∥
q

+ ‖GAJ‖q,

noticing that t
1
2−

1
p /n

1
2−

1
p ≤ 1/t

1
p−

1
q . J

Y. Li and D. P. Woodruff 60:13

References
1 Alexandr Andoni. Nearest neighbor search in high-dimensional spaces. In the work-

shop: Barriers in Computational Complexity II, 2010. http://www.mit.edu/~andoni/
nns-barriers.pdf.

2 Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and embedding
are equivalent for norms. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, pages 479–488. ACM, 2015.

3 Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and
Lin F. Yang. Streaming symmetric norms via measure concentration. arXiv:1511.01111
[cs.DS], 2016.

4 Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and Lin F. Yang.
Sketches for matrix norms: Faster, smaller and more general. arXiv:1609.05885 [cs.DS],
2016.

5 Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Communications of the ACM, 55(6):111–119, 2012.

6 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 81–90. ACM, 2013.

7 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 11:1–11:14, 2016.

8 Aram W. Harrow, Ashley Montanaro, and Anthony J. Short. Limitations on quantum
dimensionality reduction. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 86–97. Springer, 2011.

9 Weihao Kong and Gregory Valiant. Spectrum estimation from samples. arXiv:1602.00061
[cs.LG], 2016.

10 Kasper Green Larsen and Jelani Nelson. The Johnson-Lindenstrauss Lemma Is Optimal
for Linear Dimensionality Reduction. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 82:1–82:11, 2016.

11 Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Springer-Verlag, Berlin,
1991.

12 Yi Li, Huy L. Nguyen, and David P. Woodruff. On sketching matrix norms and the top
singular vector. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1562–
1581, 2014.

13 Yi Li and David P. Woodruff. On approximating functions of the singular values in a stream.
In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 726–739, 2016.

14 Yi Li and David P. Woodruff. Tight bounds for sketching the operator norm, schatten
norms, and subspace embeddings. In Approximation, Randomization, and Combinator-
ial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9,
2016, Paris, France, pages 39:1–39:11, 2016.

15 Françoise Lust-Piquard. Inégalités de khintchine dans cp (1 < p < ∞). Comptes Rendus
de l’Académie des Sciences – Series I – Mathematics, 303:289–292, 1986.

16 Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 91–100,
2013.

ICALP 2017

http://www.mit.edu/~andoni/nns-barriers.pdf
http://www.mit.edu/~andoni/nns-barriers.pdf

60:14 Embeddings of Schatten Norms

17 Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P.
Woodruff. Spectral sums beyond fast matrix multiplication: Algorithms and hardness.
arXiv:1704.04163 [cs.DS], 2017.

18 Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 117–126,
2013.

19 Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(F (A)) via stochastic
lanczos quadrature, 2016. URL: http://www-users.cs.umn.edu/~saad/PDF/ys-2016-04.
pdf.

20 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Yonina C. Eldar and Gitta Kutyniok, editors, Compressed Sensing: Theory and Practice,
pages 210–268. Cambridge University Press, 2012.

21 Andreas J. Winter. Quantum and classical message identification via quantum channels.
Quantum Information & Computation, 5(7):605–606, 2005.

22 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

http://www-users.cs.umn.edu/~saad/PDF/ys-2016-04.pdf
http://www-users.cs.umn.edu/~saad/PDF/ys-2016-04.pdf

On Fast Decoding of High-Dimensional Signals
from One-Bit Measurements∗

Vasileios Nakos†

Harvard University, Cambridge, MA, USA
vasileiosnakos@g.harvard.edu

Abstract
In the problem of one-bit compressed sensing, the goal is to find a δ-close estimation of a k-sparse
vector x ∈ Rn given the signs of the entries of y = Φx, where Φ is called the measurement matrix.
For the one-bit compressed sensing problem, previous work [32, 19] achieved Θ(δ−2k log(n/k))
and Õ(1

δ k log(n/k)) measurements, respectively, but the decoding time was Ω(nk log(n/k)). In
this paper, using tools and techniques developed in the context of two-stage group testing and
streaming algorithms, we contribute towards the direction of sub-linear decoding time. We give
a variety of schemes for the different versions of one-bit compressed sensing, such as the for-each
and for-all versions, and for support recovery; all these have at most a log k overhead in the
number of measurements and poly(k, logn) decoding time, which is an exponential improvement
over previous work, in terms of the dependence on n.

1998 ACM Subject Classification F.2.0 [Anaysis of Algorithms and Problem Complexity] Gen-
eral

Keywords and phrases one-bit compressed sensing, sparse recovery, heavy hitters, dyadic trick,
combinatorial group testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.61

1 Introduction

1.1 Standard Compressed Sensing
The compressed sensing framework describes how to reconstruct a vector (signal) x ∈ Rn
given the linear measurements y = Φx where Φ ∈ Rm×n for some m � n. This is an
under-determined system with n variables and m equations. In many applications, however,
such as images, we know that the vector x can be approximated by a k-sparse vector in
some known basis. In this case, the matrix Φ contains a sufficient amount of information
to roughly recover x if m is large enough; in particular, as shown in [4, 5], the signal can
be approximately reconstructed from Θ(k log(n/k)) measurements when Φ is a Gaussian
matrix. In order to do this, however, one has to solve the non-convex program

min‖x‖0 s.t. y = Φx

However, [9, 4] show it is possible to avoid the non-convex formulation and, alternatively,
we can use Basis Pursuit (BP), which changes the objective to min‖x‖1, and still recover a
decent approximation of x. This can be solved using linear programming.

Compressed sensing, and sparse recovery, have appeared to be very useful tools in
many areas such as analog-to-digital conversion [25], threshold group testing [1], discrete

∗ A full version of the paper is available at https://arxiv.org/abs/1603.08585.
† Supported in part by ONR grant N00014-15-1-2388.

EA
T

C
S

© Vasileios Nakos;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 61; pp. 61:1–61:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.61
https://arxiv.org/abs/1603.08585
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

signal processing [12], streaming algorithms [29] and bioinformatics [26]. Depending on
the application, one cares about optimizing different parameters of interest (measurements,
decoding time, encoding time, failure probability).

Often we distinguish between the for-all model (or uniform recovery) and the for-each
model (non-uniform recovery). In the for-all model, a single matrix is picked, which allows
reconstruction of all k-sparse vectors. Whereas in the for-each model, the measurements
are chosen at random such that, for some error probability p, they will contain sufficient
information to reconstruct a single vector x with probability at least 1− p. We note that all
aforementioned papers refer to the for-all model.

Moreover, it is desirable to achieve sublinear decoding time. The state of the art for
the for-each model is [15]. The authors there achieve k · poly(logn) decoding time with
Θ(k log(n/k)) measurements. The failure probability was improved later in [17] using a much
more complicated scheme. In the for-all model, Gilbert et.al. [18] give the first algorithm
that runs in sublinear time with a number of measurements O(kpoly(logn)). Porat and
Strauss devised a scheme under a slightly weaker recovery guarantee with O(k log(n/k))
measurements accompanied with the first sublinear decoding procedure running in time
O(k1−αnα), for any constant α [33]. Subsequent work [16], the authors manage to bring the
dependence of the approximation ε fact down to the right order of ε−1 and achieve runtime
poly(k, logn), when ε ≤ (log k

logn)γ , for any constant γ.

1.2 One-Bit Compressed Sensing
Often in applications compressed sensing measurements must be quantized, since the require-
ment of infinite precision is not realistic: any measurement must be mapped to a small finite
value in some universe [3]. Thus, one-bit compressed sensing emphasizes the compressed
aspect of compressed sensing; many algorithms for standard compressed sensing rely on
infinite precision in their real-valued inputs, relying on more precision than real sensors are
capable of returning, an assumption which is unrealistic for real-world applications. Moreover,
in hardware implementations, for example, where quantizers are implemented using compar-
ators to zero [3], there is need of quantization to one-bit measurements. Comparators are
indeed fast, but they are expensive, so minimizing their usage is really important. Moreover,
dynamic range issues are a smaller problem in the case of one-bit quantizers.

It is clear that quantization increases the complexity of the decoding procedure and,
additionally, is irreversible: given y = sign(Φx) it is impossible to get the exact vector
back. Previous results inquired the case in which the quantization maps each coordinate to
{−1,+1}, which means that we learn only the sign of each coordinate. First, it is not obvious
whether there is sufficient information to reconstruct a signal given its one-bit measurements.
Of course, since we cannot know the length of the signal, nor the exact signal (even if its
length were given), we can ask the following question: can we find its direction?

The problem was first studied in the work of Boufounos and Baraniuk [3], where the
authors suggest recovering the signal x by solving the optimization problem

min‖x‖1 s.t.: y �Ax ≥ 0, ‖x‖2 = 1,

where � stands for the element-wise product between two vectors. The goal is to find a
vector y on the unit sphere such that ‖y− x

‖x‖2
‖22 ≤ δ. It is clear that this relaxation requires

solving a non-convex program, an obstacle which Laska et al. [28] tried to remedy by giving
an optimization algorithm that finds a stationary point of the aforementioned program;
both papers, however, do not provide provable guarantees for the number of measurements
needed. An alternative formulation was studied in [24], which showed that the number

V. Nakos 61:3

of measurements could be brought down to O(δ−1k logn), but the main obstacle of the
non-convex formulation remained. In [31] Vershyin and Plan gave the first computationally
tractable algorithm for the problem of one-bit compressed sensing by designing a compressed
sensing scheme that approximately recovers a k-sparse vector from O(δ−5k log2(nk)) one-bit
measurements via a linear programming relaxation. Their techniques were based on random
hyperplane tessellations; the main geometric lemma they needed was that O(k log(n/k))
random hyperplanes partition the set of k-sparse vectors with unit norm into cells, each one
having small diameter. In [32] the same authors improved the number of measurements to
O(δ−2k log(nk)) by analyzing a simple convex program. Their results can also be generalized
to other sparsity structures, where the crucial quantity that determines the number of
measurements is the gaussian mean-width of the set of all unit vectors having a specific
sparsity pattern. Last but not least, they manage to handle gaussian noise and, most
importantly, adversarial bit flips, though with a small worsening in the dependence on
δ in their number of measurements. In [19] a two-stage algorithm with Õ(1

δk log(n/k))
measurements and O(nk log(n/k) + 1

δ5 (k log(n/k))5) decoding time was proposed. Apart
from recovering the vector, other algorithms that recover only the support of the signal have
been proposed; see for example [19, 22].

In [20] it is conjectured that even if the support of the vector is known, the dependence
of the number of measurements on δ must be at least 1

δ . In order to circumvent this,
alternative quantization schemes were proposed, with the most common being Sigma-Delta
quantization [21, 27]. In [2] Baraniuk, Foucart, Needell, Plan and Wootters manage to
bring the dependence on δ down to log(1

δ) if the quantizer is allowed to be adaptive and the
measurements take a special form of threshold signs.

1.3 Group Testing
In the group testing problem, we have a large population, which consists of “items”, with a
known number of defectives. The goal is to find the defectives using as few tests as possible,
where a test is just a query whether a certain subset of items contains at least one defective.
The group testing problem was first studied by Dorfman in [13]. There are two types of
algorithms for this problem, namely adaptive and non-adaptive. In the first case, the outcome
of previous tests can be used to determine future tests, whereas in non-adaptive algorithms
all tests are performed at the same time. Group testing has many applications in DNA
library screening and detection of patterns in data; more can be found in [6], [8].

Any solution for the group testing problem corresponds to a binary matrix, where the
number of rows equals the number of tests and the number of columns equals the cardinality
of the population. Given such a matrix M and a vector x indicating the positions of the
defectives, we should be able to identify x from Mx, where the addition here corresponds
to the OR operation of Boolean algebra. Since decoding time is important, the brute-force
algorithm that iterates over each possible subset in order to recognise the defective set
does not suffice. However, one can design matrices such that the naive decoding algorithm,
which eliminates items belonging to negative tests and returns all the other items, correctly
identifies all defective items [14]. In the literature these matrices are known as k-disjunct
matrices.

In this paper, we are also interested in the so-called two-stage group testing problem,
where two stages are allowed: the first stage recognises a superset of the defectives, and the
second stage, which is performed after seeing the results of the first stage, recognizes the
exact set of the defectives by querying separately for each one. We refer to (k, l) two-stage
group testing as the case when there are k defectives and the superset is allowed to have up
to k + l elements. In fact, this is equivalent to the existence of a matrix M such that given

ICALP 2017

61:4 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

Mx one can find a set S with k + l elements such that all defectives are included in S. The
same naive algorithm, which eliminates all items that belong to a negative test and returns
all other items, will be used here. A matrix is called (k, l) list-disjunct if this algorithm finds
a superset of the support with at most k + l elements. The term ‘list-disjunct’ appeared
in [23], although it was also studied before in [11] under the name of super-imposed codes,
and in [34] under the name of list-decoding super-imposed codes. In [30] Ngo, Porat and
Rudra give efficient and strongly explicit constructions of matrices that allow two-stage group
testing, which are also error-tolerant, in the sense that they can correct e0 false positives
and e1 false negatives in sub-linear time and additional Θ(e0 + k · e1) tests. They also prove
matching lower bounds for several cases, including the case that k = Θ(l).

A group testing scheme is a tuple (M,R), where M is a matrix in {0, 1}m×n and R a
procedure that takes as input Mx and outputs a vector y. Depending on the guaratee we
want, we will either refer to it as two-stage group testing or (one-stage) group testing. The
worst-case running time of the procedure R corresponds to the decoding time of the scheme.

1.4 Our Results
The main goal of our work is to make algorithms for one-bit compressed sensing not only
“data-efficient” but also computationally efficient. Thus, we try to understand under which
conditions and which number of measurements sublinear decoding time is possible. In the
for-each version of noisy one-bit compressed sensing we give a scheme with almost-optimal
measurements and sublinear decoding time. We also focus on decoding noiseless signals
and presents several results towards this direction. We first give a scheme with sublinear
decoding time with a small overhead in the number of measurements, by connecting the
problem with Combinatorial Group Testing. Second, we try to understand whether it is
possible to achieve a for-all guarantee for one-bit compressed sensing, while still keeping
sublinear decoding time. We answer this question in the affirmative if we are allowed to
use O(k2 logn) measurements. Our techniques also give a scheme for support recovery that
outperforms the one in [19] by being exponentially faster than it; one additional aspect of
our scheme is that the measurement matrix is explicit, which means that we can compute it
in polynomial time.

For the case of general vectors, we define the δ-`2/`2 guarantee: For a unit vector x ∈ Rn
we say that a scheme satisfies the δ-`2/`2 guarantee for one-bit compressed sensing if the
output satisfies

‖x̂− x‖22 ≤ c‖xtail(k)‖22 + δ,

while xtail(k) is the vector that occurs after zeroing out the biggest k coordinates of x in
magnitude and c is some absolute constant.

In the support recovery problem, one wants to construct a matrix Φ, such that for
all k-sparse x, one is able to recover the support of the vector x, given measurements
y = sign(Φx).

We present the results that we have in greater detail in Tables 1 and 2. We note that the
decoding time of each scheme is poly(k, logn).

δ-`2/`2 for-each one-bit Compressed Sensing from O(k log(n/k) · (log k + log log(n/k)) +
δ−2k) measurements.
For-each one-bit Compressed Sensing (noiseless signals) from O(k logn+logk n·log logk n+
δ−2k) measurements. This extends the result of [32], as it manages to also decrease the
number of measurements for the for-each version of the problem for a wide range of
parameters.

V. Nakos 61:5

Table 1 Comparison of recovery schemes for one-bit compressed sensing.

Algorithm Measurements Decoding-Time Model Noise

[32] δ−6k log(n
k

) poly(n) For-all Type 1
[32] δ−2k log(n

k
) poly(n) For-each Type 2

[19] Õ(δ−1k log(n
k

)) O(nk logn) + poly(k, logn) For-all No
This paper δ−2k + k log(n

k
)(log k + log log(n

k
)) poly(k, logn) For-each Type 3

This paper k logn+ δ−2k + logk n · log logk n poly(k, logn) For-each No
This paper k2 logn log logk n+ δ−6k log(n

k
) poly(k, logn) For-all No

Table 2 Comparison of schemes for support recovery.

Algorithm Measurements Decoding time Model

[19] k3 logn nk logn For-all
This paper (Theorem 18) k3 logn k3poly(logn) For-all

For-all one-bit Compressed Sensing (noiseless signals) in O(k2 logn log logk n+δ−2k logn)
measurements. This is the first scheme that allows sublinear decoding time in the for-all
model of one-bit compressed sensing, although the dependence on k is k2.
Support recovery from one-bit measurement (noiseless signals) in O(k3 logn) measurem-
nnts. This scheme is not only exponentially faster than the one presented in [19], but
also explicit, in the sense that the matrix can be computed in polynomial time in n.

An interesting aspect of our results is that in the for-each model, the δ factor does not
need to multiply the k logn factor, in contrast to the for-all version. We explain the three
types of noise handled by the schemes in Table 1:

Type 1 stands for adversarial bit flips. This means that after receiving y = sign(Φx), an
adversary can flip some of the entries of y, and then give it to the decoder. Here, we
assume that x is exactly k-sparse. The result of [32] can tolerate up to cδ fraction of
adversarial bit flips, where c is some absolute constant smaller than 1.
Type 2 noise stands for gaussian random noise that is added to the k-sparse vector x
after the matrix Φ has been applied to it. This means that y = sign(Ax + u), where
u ∼ cN (0, I), where c is some absolute constant.
Type 3 noise refers to general noise and is handled by the δ-`2/`2 guarantee. This
means that y = sign(Φ(xhead(k) + xtail(k))), where we can view the term xtail(k) as
pre-measurement adversarial noise.

The ideas that are used in this paper to obtain sublinear decoding time are based on
ideas that appeared in [30], as well as the dyadic trick, which has appeared in the streaming
literature in the context of the Count-Min Sketch [10]. As far as we know, our work is the
first that looks at sublinear decoding time in the one-bit compressed sensing framework and
even achieves less measurements in some cases. Last but not least, we believe that a strong
point of our schemes is their simplicity.

2 Preliminaries

We define the sign function as sign(z) = +1, for z ≥ 0 and sign(z) = −1 for z < 0. For a
vector x, we define sign(x)i = sign(xi), for all i ∈ [n].

ICALP 2017

61:6 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

Any one-bit compressed sensing scheme is defined by a pair (D,Dec) where D is a
distribution over Rm×n and Dec is an algorithm that takes input sign(Φx) for some x ∈ Rn
and gives back a vector x̂. We will refer to Dec either as the “decoder” or “decoding procedure”.
We may also slightly abuse notation and refer to the pair (A,Φ), where A is a matrix coming
from some distribution D. We use m to denote the number of measurements, and decoding
time refers to the running time of Dec. We also define Σk = {x : ‖x‖0 ≤ k, ‖x‖2 ≤ 1} to be
the set of all k-sparse vectors contained in the unit `2 ball, and Σ1

k = {x : ‖x‖2 = 1, ‖x‖0 ≤ k}
the set of unit norm vectors with at most k non-zero coordinates.

For x ∈ Rn we denote its support set by supp(x). For a vector x, head(k) denotes the set
of its k largest coordinates in magnitude, while tail(k) denotes the set of its n− k smallest
coordinates in magnitude. For a coordinate i, we say that i is a 1

k -heavy hitter if, for some
absolute constant Ch it holds that x2

i ≥ 1
Chk
‖xtail(k)‖22. The constant Ch will be chosen later.

For any x which we are sensing using a one-bit compressed sensing scheme, we assume that
it ‖x‖2 = 1.

For each S ⊂ n, let xS ∈ R|S| denote the signal x restricted to coordinates in S. Similarly,
for a matrix M ∈ Rr×n and each S ⊂ n let MS ∈ Rr×|S| be the matrix M restricted to
columns in S.

I Definition 1. A scheme (D,Dec) satisfies the δ-`2/`2 guarantee for one-bit compressed
sensing with failure probability p if for each x ∈ Sn−1, it estimates a vector x̂ such that

∀x, PΦ∼D[x̂ = Dec(Φx) : ‖x− x̂‖22 ≤ C‖xtail(k)‖22 + δ] ≥ 1− p,

where C is an absolute constant.

For function f : Rn → Rm and a vector x ∈ Rn we say that y = f(x) is a sketch of x. In
our case, f will always be of the form f(x) = sign(Ax), where A ∈ Rm×n.

We also give the definition of the tensor product of two matrices. We note that this is
not the standard tensor product (or Kronecker product, as usually known) appearing in the
literature.

I Definition 2. Let A ∈ {0, 1}m × {0, 1}N and B ∈ {0, 1}m′ × {0, 1}N . The tensor product
A⊗B is an mm′ ×N binary matrix with rows indexed by the elements of [m]× [m′] such
that for i ∈ [m] and j ∈ [m′], the row of A ⊗ B indexed by (i, j) is the coordinate-wise
product of the i-th row of A and j- th row of B.

In order to proceed, we have to explain the difference between the for-all and the for-each
model. Let Px be the predicate that the sparse recovery scheme returns a vector x̂ such that
‖x− x̂‖22 > δ, when the matrix Φ is chosen from the distribution D. Let p be some target
probability. In the for-each model the guarantee is that ∀x ∈ Σ1

k,P[Px] ≤ p. In the for-all
model the guarantee is that P[∃x ∈ Σ1

k : Px] ≤ p. The randomness of the scheme is over the
distribution D.

The following result, appearing in [32] is a crucial component of most of our algorithms.
This theorem is a special case of Theorem 1.1 from that paper, and it is also discussed in
subsection 3.1 of the same paper (check “random noise before quantization” discussion).

I Theorem 3. Let A be a random m× n matrix, with each entry being a standard gaussian,
and all entries are independent. Let x ∈ Σ1

k and y = sign(Ax+ v), where v ∼ N (0, I). Then,
the convex program

z = argmax 〈y,Az〉 s.t. ‖z‖2 ≤ 1, ‖z‖1 ≤
√
k,

outputs a x̂ such that ‖x̂ − x‖22 ≤ δ with probability 1 − e−Ω(k log(n/k)), as long as m =
Ω(δ−2k log(n/k)).

V. Nakos 61:7

Algorithm 1 Naive Decoding Algorithm.
S ← ∅
for i ∈ [n] do

if exists no negative test where i participates in then
S ← S ∪ {i}

end if
end for
Output S.

We should review some folklore definitions from Combinatorial Group Testing theory.
For their proofs one can check [30].

I Definition 4. A t×n matrixM is k-disjunct if for every set S ⊂ [n] with |S| ≤ k, ∀j /∈ S, ∃i
such that Mi,j = 1 but ∀k ∈ S,Mi,k = 0. In other words, supp(Mj)− ∪l∈Ssupp(Ml) 6= ∅.

I Definition 5. A t× n matrix M is (k, l)-disjunct if for every two disjoint sets S, T ⊂ [n]
with |S| ≤ k, |T | = l, there exists a row i such that ∀j ∈ S,Mi,j = 0, but ∃j ∈ T,Mi,j = 1.

In the noiseless case, we will make extensive use of the following two lemmas:

I Lemma 6. Let M be a k-disjunct matrix. Then, given y = Mx, the naive decoding
algorithm returns a set S such that S = supp(x), i.e. the naive decoding algorithm correctly
finds the support of x.

I Lemma 7. Let M be a (k, l)-disjunct matrix. Then, given y = Mx, the naive decoding
algorithm returns a set S such that supp(x) ⊂ S and |S| ≤ |supp(x)| + l, i.e. the naive
decoding algorithm finds a superset of the support of x with additional l elements.

Of course, the two different definitions solve a different problem; the latter one solving a
more relaxed version of Group Testing than the former. We will refer to the second version
as two-stage group testing, whereas we will refer to the first version just as group testing.

2.1 Formal Statement of Results
I Theorem 8. There exists a randomized construction of a scheme (Φ, OneBitCS()) which
with probability 1 − O(1

k log(n/k) + e−k) satisfies the δ-`2/`2 guarantee. Moreover, Φ has
O(k log(n/k)(log k + log log(n/k)) + δ−2k) rows and OneBitCS() runs in time poly(k logn).

I Theorem 9. There exists a randomized construction of a scheme (Φ,OneBitCS()) such
that

∀x ∈ Σ1
k,P[x̂ = OneBitCS(Φx), ‖x− x̂‖22 > δ] ≤ e−k.

The number of rows of Φ is O(k logn + logk n log logk n + δ−2k) and the running time of
OneBitCS() is poly(k, logn).

I Theorem 10. There exists a randomized construction of a scheme (Φ,OneBitCS()) such
that

P[∃x ∈ Σ1
k : x̂ = OneBitCS(Φx), ‖x− x̂‖22 > δ] ≤ e−k log(n/k).

The matrix Φ has O(k2 log(n/k) log logk n + δ−6k log(n/k)) rows and OneBitCS() runs in
poly(k, logn) time.

ICALP 2017

61:8 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

I Theorem 11. There exists a deterministic construction of a scheme (Φ, Support()), where
Support(Φx) outputs a set L of at most k elements, and ∀x ∈ Σ1

k, Support(Φx) = supp(x).
The matrix Φ has O(k3 logn) rows and Support() runs in poly(k, logn) time.

Complete proofs of these theorems are deferred to the full version.

2.2 Overview of techniques
All of our algorithms find the superset of the support of the vector x (noiseless case) or
a small set containing the largest O(k) in magnitude coordinates (noisy case). This set
contains the crucial information needed to approximate x. Then, by restricting to the set
obtained, we show how the algorithm from [32] can give us the desired guarantees.

We first treat the noisy case. We sketch our approach to find a set of size O(k) that
contains all 1

k -heavy hitters of our vector x. Let us first discuss the Count-Sketch [7] for finding
heavy hitters in data streams (where we also have magnitude information). The Count-Sketch
consists of logn different iterations: in each iteration r we hash every element to O(k) buckets
using a 2-wise independent hash function hr : [n] → [O(k)], combined with random signs.
This means that for each pair (r, b) the (r, b)-th measurement is

∑
i:hr(i)=b σi,rxi, where σi,r

are pairwise independent random signs. For each coordinate i and iteration r, we read the
value of the bucket hr(i) multiplied by σi,r to get an estimate for xi. The median of all logn
different estimates is our final estimate for xi. This approach essentially solves a harder
problem called `∞/`2 sparse recovery, but at this point we are interested in finding only the
heavy hitters of x, not approximating their values; we will use the algorithm of [32] for that
later. So, when we only have access to one-bit measurements an immediate approach is the
following. Using the same hashing scheme as Count-Sketch, the decoding algorithm for every
coordinate i and every iteration r checks if σi,r agrees or disagrees with the sign of the value
of the bucket hr(i), let this be Cr,hr(i) . If this happens more than 3

4 of the time we classify
i as a heavy hitter. This happens because if i is a heavy hitter, with constant probability
xi will dominate the value of hr(i). Unfortunately, this does not suffice to give us sublinear
decoding time.

What we need is a technique called the dyadic trick, which was introduced in [10], for the
`1 case when all xi are non-negative. In this case, we form a tree of size depth logn, where
level l corresponds to the decomposition of [n] into 2l equal-sized and disjoint intervals. The
algorithm at each step keeps a list of size O(k) of “active” nodes, that is intervals that contain
some heavy hitter. At every level we run a version of the Count-Min Sketch to find the heavy
intervals (those that have `1 mass larger than ‖xtail(k)‖1

k) and proceed by considering their
children as active. The algorithm terminates when we reach the last level. Observe that at
all times we want to guarantee that the list is of size O(k) and hence O(k logn) nodes are
visited in total.

In our case, however, we only have sign information about our measurements and we do
not assume that xi are non-negative. Remember that every node of the tree corresponds to
an interval. For any interval I in each level of the tree we add a normal random variable in
front of every xi for i ∈ I and when we hash nodes to buckets, we combine with a random
sign. We explain what this means. Let us focus on some interval/node I. If we hash this
node to U buckets using a hash function hr : [2l]→ [U], then the contribution of the interval
to the value of bucket hr(a) will be σI ·

∑
i∈I g

I
i xi, where gIi is the gaussian corresponding

to each i ∈ I and σI is the sign associated with I. The idea is that
∑
i∈I g

I
i xi essentially

approximates the `2 mass of the interval and hence one can expect σI ·
∑
i∈T g

I
i xi to be

roughly σI · ‖xI‖2. This would mean that if I contains a heavy hitter, the sign of the

V. Nakos 61:9

measurement it participates in should roughly be the same as the sign of
∑
i∈I g

I
i xi and

hence, by repeating a lot of times, we can hope to clasify this interval as heavy. In this
approach, however, there are technical hurdles, one of them being that we should not refresh
the gaussians across iterations in the same level otherwise the signs will be uniformly at
random. In the next section we show how to take care of all the details.

In the noiseless case, we use techniques and schemes developed in the context of two-stage
group testing. More specifically, we show that if we take a (k, k)-disjunct matrix A and
replace each non-zero entry with a normal random variable, we get a for-each scheme for
identifying a superset S of the support of x. Using this idea and Lemma 7 we can detect a
superset S of the support of x. If we also keep in parallel matrix G each entry of which is a
normal random variable, we can use Theorem 3 by restricting G on the columns indexed
by S to get the result of Theorem 9. We take a similar approach for the for-all version of
the problem, namely Theorem 10. In this case we have to suffer an additional multiplicative
factor of k in the measurements. More specifically, let A ∈ {0, 1}t×n be a (k, k)-disjunct
matrix and let V be a k × n matrix. Then, the measurement matrix for is the vertical
concatenation of A⊗ V concatenated with G. For every i and x, (ai ⊗ V)x can be seen as
single test on x: (ai⊗V)x = 0 if and only if supp(ai)∩ supp(x) = ∅. Vertically concatenating
(A⊗ V) and ((−A)⊗ V) we can check whether (ai ⊗ V)x = 0 or not. Then, a modification
of Algorithm 1 and the for-all theorem of [32] (Result 1 from Table 1) gives us the desired
result. For the support recovery problem, our approach is similar: We use a deterministic
k-disjunct matrix A guaranteed by [23] and form the vertical concatenation of A⊗ V and
(−A)⊗ V . A similar reasoning as above, along with Lemma 6 gives the desired result. The
reason we make use of a k-disjunct matrix and not a list-disjunct one is because we are
interested in finding exactly the support.

3 For-each δ-`2/`2 One-Bit Compressed Sensing

As mentioned in the previous section, the algorithm is based on a two-stage approach. The
first stage identifies the set S of the “heavy” coordinates of the vector x; these coordinates
carry most of the `2 mass of x and hence the crucial information needed to approximate it.
The second stage runs the convex program of [32] with the universe being S instead of [n].

The most important part of the algorithm and essentially our contribution, that enables
sublinear decoding time, is the procedure that finds the set S. As mentioned before, we turn
our attention to the Count-Sketch and the dyadic trick [7, 10], and show that, with only a
constant multiplicative increase in the measurement complexity, we can modify them so that
they also work with one-bit measurements. We note that these algorithms appeared in the
linear case of the very-relevant problem of finding heavy hitters in data streams.

In what follows, we assume that n is a power of 2. Let C−1, C0, C1, C2 be large enough
constants to be defined later. For each l, we consider a partition of [n] to 2l equal-sized
disjoint intervals and we denote by Lal the a-th interval in this partition. We also set
∆ = 1

C−1k logn ,∆
′ = log(1

∆), where C−1 is an absolute constant larger than 1.
The sensing matrix Φ is the vertical concatenation of matrices E(log k), E(log k+1), . . . ,

E(logn), A. The number of rows of each E(l) is C0 · C1 · C2 · k∆′ and the number of
rows of A is O(δ−2k). For log k ≤ l ≤ logn let E(l) be the l-th matrix. E(l) consists of
submatrices E(l)

1 , . . . , E
(l)
C2∆′ . Each matrix E(l)

m consists of C1 matrices E(l)
m,t , t = 1, . . . , C1.

Let hl,m,t : [2l] → [C0k] be a hash function that maps intervals/nodes at level l to C0k

buckets. We define the q-th row of E(l)
m,t via its dot product with x:〈

eTq E
(l)
m,t, x

〉
=

∑
a:hl,m,t(a)=q

σl,am,t
∑
j∈La

l

g
(l)
j,m · xj ,

ICALP 2017

61:10 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

OneBitHeavyHitters(y):

1. Slog k−1 ← {L1
log k−1, L

2
log k−1 . . . , L

k/2
log k−1}

2. For l = log k to logn:
3. For each Li

l−1 in Sl−1 add L2i−1
l and L2i

l to Sl.
4. For every element La

l in Sl

5. If CheckIfHeavy(La
l) = ‘light’ remove La

l from Sl

6. Output every x in Slog n

Figure 1 Recovery of `2 Heavy Hitters from One-Bit Measurements.

where g(l)
j,m ∼ N (0, 1) and σl,am,t are random signs. The above expression states that in each

sketch E(l)
m,t we hash the nodes at level l in C2k buckets.

In other words, every E(l) holds a hierarchical separation of [n] into 2l intervals of length
n/2l. Fix now some m ∈ [C2∆′]. Then, in each E

(l)
m,t, every node/interval is hashed to

some bucket and the coordinates inside this interval are combined with standard Gaussians.
Moreover, every interval is assigned a random sign. The intuition is that with constant
probability, we do expect the term

∑
j∈La

l
g

(l)
j,m,t ·xj , to behave roughly like the l2 mass of the

interval itself. Then, by keeping the same gaussians, we take C1 such hashing schemes (we
refresh only the σ variables and the hash functions). For fixed m, l, this means that we use
in total C1C2∆′ measurements, C2∆′ for each of the C1 rounds. Let this scheme be called
Scheme 1. Then, for each level, we repeat the Scheme 1 C2∆′ times, for m = 1, . . . , C2∆′.
Note now that across Eml for different m, l we use new g variables. The reason we have to
make this additional repetition, in contrast to the standard dyadic trick, is that we only have
sign information and we cannot use fresh gaussians at every measurement, since this would
imply uniformity of the signs of the measurements. In other words, we would roughly see
half +1 and half −1 and we would not be able to distinguish the ‘heavy’ intervals from the
‘light’ ones, as we will see next.

The decoding algorithm processes these intervals in increasing l for l = log k up to logn
and keeps a list of intervals at each time (the list is denoted by Sl in the pseudocode). In the
beginning of each step l, every node is hashed to C0k buckets. Suppose for a moment, that
we have the `2 mass of each interval and we hash these values, instead, into C0k buckets
combined with random signs. If an interval I contains a node that is ‘heavy’ and also
is hashed to a bucket b, then we expect that its `2 mass dominates the `2 mass of other
coordinates hashed to the same bucket. Thus, the sign of the sum must be determined
by the sign of the ‘heavy’ interval. To overcome the fact that we do not have the `2 mass
of the interval (since we can only make use of linear measurements) we add a standard
random variable in front of every node in the inteval, before hashing. We exploit the afore-
mentioned intuition, along with 2-stability of the Gaussian distribution , to show that we
can identify all “heavy” intervals and that we do not introduce a big number of erroneous
intervals (intervals that are not ‘heavy’). We repeat this hashing scheme C1 times with
the same gaussians and try to find the intervals whose sign agrees or disagrees with the
measurement they participate in most of the time. We consider them good. As mentioned
in the previous paragraph, this whole hashing scheme called Scheme 1. Now, we repeat
Scheme 1 C2∆′ times with completely fresh randomness. We then find the intervals which
were consider good at least 2

3C2∆′ times and add them to a list. At the end of each step l,
every interval Lil that belongs to the list and is substituted by its two sub-intervals L2i−1

l−1 , L2i
l−1.

V. Nakos 61:11

CheckIfHeavy(La
l):

1. isheavy← 0
2. For m = 1 to C2∆′

3. cnt← 0
4. For t = 1 to C1

5. yq ← value of bucket hl,m,t(a)
6. If sign(yq) = σl,a

m,t

7. cnt← cnt + 1
8. If cnt > 0.8C1 or cnt < 0.2C1

9. isheavy← isheavy + 1
10. If isheavy > 2

3C2∆′

11. return ‘heavy’, else return ‘light’

Figure 2 Check if an Interval at a Specific Level is Heavy.

OneBitCS(y):

1. S ← OneBitHeavyHitters(y).
2. x̂ = argmax 〈y,ASz〉 subject to ‖z‖2 ≤ 1, ‖z‖1 ≤

√
k (Algorithm of [32]).

3. Output x̂.

Figure 3 One-Bit Compressed Sensing.

I Definition 12. For a coordinate i and a level l, let bl(i) be such that i ∈ Lb
l(i)
l . If the level

l is implicit, we may simplify the notation to b(i). In other words, bl(i) is the interval on
level l which contains i.

Fix some matrix Elm0
an an interval I in level l. Then, we will say that Elm0

classifies
interval I as good, if the variable isheavy is incremented in the execution of CheckIfHeavy(I)
when m = m0. Intuitively, Elm0

classifies I as good if I appears to contain a heavy hitter in
it. The next two lemmas are crucial components of our proof.

I Lemma 13. Let Ch be an absolute constant. Fix m, l. Let i ∈ [n] such that |xi|2 >
1

Chk
‖xtail(k)‖22. Let I an interval at level l. Assume that Lb(i)l , I ∈ Sl. Then, for some

absolute constant c, the following claims hold:
E

(l)
m will classify Lb(i)l as good with constant probability, strictly larger than 1

2 .
If there are at least ck intervals at the same level l which have greater `2 mass than I,
then, with constant probabiliy, E(l)

m will not classify I as good.

The proof of the aforementioned lemma is deferred to the full version.

I Lemma 14. Let S = OneBitHeavyHitters(y). then, with probability 1−O(1
k log(n/k)), for

all log k ≤ l ≤ logn, the following holds for the set Sl:

If |xi|2 > 1
Chk
‖xtail(k)‖22 and i ∈ Lb(i)l , then i ∈ S.

|Sl| ≤ ck, for some absolute constant c.

Proof. For the proof of this lemma, we need to introduce some additional definitions. We
will refer to any interval that contains a node i such that |xi|2 > 1

10k‖xtail(k)‖22, as a type 1
interval. For a level l, we say that an interval at level l is of type 2, if there exist at least ck
intervals at the same level that have greater `2 mass than this interval.

ICALP 2017

61:12 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

We now proceed by induction on the number of levels. The base case l = log k is trivial.
We focus on some level l and assume that the induction hypothesis holds for all previous
levels l. We prove the first bullet. Let i be a coordinate such that |xi|22 > 1

Chk
‖xtail(k)‖22.

By the induction hypothesis we get that Lb
l(i)
l ∈ Sl. From Lemma 14 we know that for any

l,m, Eml will classify a type 1 interval as good with constant probability > 2
3 . Moreover,

it will not classify any type 2 interval as good, again with constant probability > 2
3 . This

implies that after repeating the same scheme C2∆′ = C2 log(1
∆) times, we will know, with

probability at least 1−∆, if a specific interval is a type-1 interval or a type-2 interval or none
of these. Because ∆ = Θ(1

k log(n/k)) we can take a union-bound over all possible intervals
we might consider (O(k) at each of the log(n/k) levels), we can guarantee that every type-1
interval will remain in Sl, while any type-2 interval will be discarded from Sl. This implies
that at any step we have at most ck intervals in Sl with every type-1 inteval belonging to
Sl. J

We are now ready to prove the main result of this section.

Proof. By running OneBitCS(y), we obtain a set S that satisfies the guarantees of Lemma 14.
Then, y = sign(Ax) = sign(AxS + Ax[n]−S) = sign(ASxS + v), where v is a vector each
entry of which follows normal distribution with variance ‖x[n]−S‖22 ≤ 1. Clearly, AS and
v are independent and hence Theorem 3 applies. The number of rows needed equals
Ω(δ−2k log(ck/k)) = Ω(δ−2k). The convex program of 3 outputs a vector x̂ such that
‖x̂− xS‖22 ≤ δ. Since every coordinate i with |xi|2 ≥ 1

Chk
‖xtail(k)‖22 is contained in S,

‖x[n]−S‖22 ≤ ‖xtail(k)‖22 + ck
1
Chk
‖xtail(k)‖22 = (1 + c

Ch
)‖xtail(k)‖22.

This implies that ‖x− x̂‖22 ≤ (1 + c
Ch

)‖xtail(k)‖22 + δ, as desired. J

Acknowledgements. The author would like to thank Ely Porat for pointing him to [30], as
well as Jelani Nelson for helpful discussions.

References
1 Rudolf Ahlswede, Lars Bäumer, Ning Cai, Harout K. Aydinian, Vladimir Blinovsky, Chris-

tian Deppe, and Haik Mashurian, editors. General Theory of Information Transfer and
Combinatorics, volume 4123 of Lecture Notes in Computer Science. Springer, 2006.

2 Richard Baraniuk, Simon Foucart, Deanna Needell, Yaniv Plan, and Mary Wootters. Ex-
ponential decay of reconstruction error from binary measurements of sparse signals. arXiv
preprint arXiv:1407.8246, 2014.

3 Petros Boufounos and Richard G. Baraniuk. 1-bit compressive sensing. In 42nd Annual
Conference on Information Sciences and Systems, CISS 2008, Princeton, NJ, USA, 19-21
March 2008, pages 16–21, 2008. doi:10.1109/CISS.2008.4558487.

4 E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal
encoding strategies? Information Theory, IEEE Transactions on, 52(12):5406–5425, Dec
2006. doi:10.1109/TIT.2006.885507.

5 Emmanuel Candes, Mark Rudelson, Terence Tao, and Roman Vershynin. Error correction
via linear programming. In Foundations of Computer Science, 2005. FOCS 2005. 46th
Annual IEEE Symposium on, pages 668–681. IEEE, 2005.

6 Fei-Huang Chang, Huilan Chang, and Frank K. Hwang. Pooling designs for clone library
screening in the inhibitor complex model. J. Comb. Optim., 22(2):145–152, 2011. doi:
10.1007/s10878-009-9279-9.

http://dx.doi.org/10.1109/CISS.2008.4558487
http://dx.doi.org/10.1109/TIT.2006.885507
http://dx.doi.org/10.1007/s10878-009-9279-9
http://dx.doi.org/10.1007/s10878-009-9279-9

V. Nakos 61:13

7 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

8 Hong-Bin Chen and Frank K. Hwang. A survey on nonadaptive group testing algorithms
through the angle of decoding. J. Comb. Optim., 15(1):49–59, 2008. doi:10.1007/
s10878-007-9083-3.

9 Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition
by basis pursuit. SIAM review, 43(1):129–159, 2001.

10 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

11 Annalisa De Bonis, Leszek Gasieniec, and Ugo Vaccaro. Optimal two-stage algorithms for
group testing problems. SIAM Journal on Computing, 34(5):1253–1270, 2005.

12 David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006. doi:10.1109/TIT.2006.871582.

13 Robert Dorfman. The detection of defective members of large populations. Ann. Math.
Statist., 14(4):436–440, 12 1943. doi:10.1214/aoms/1177731363.

14 Ding-Zhu Du and Frank K. Hwang. Combinatorial group testing and its applications,
volume 12. World Scientific, 1999.

15 Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
optimizing time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012.

16 Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. For-all sparse recovery in near-
optimal time. In Automata, Languages, and Programming – 41st International Colloquium,
ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 538–550,
2014. doi:10.1007/978-3-662-43948-7_45.

17 Anna C. Gilbert, Hung Q. Ngo, Ely Porat, Atri Rudra, and Martin J. Strauss. l2/l2-foreach
sparse recovery with low risk. In Automata, Languages, and Programming, pages 461–472.
Springer, 2013.

18 Anna C. Gilbert, Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch for
all: fast algorithms for compressed sensing. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pages 237–246. ACM, 2007.

19 Sivakant Gopi, Praneeth Netrapalli, Prateek Jain, and Aditya Nori. One-bit compressed
sensing: Provable support and vector recovery. In Proceedings of the 30th international
conference on machine learning (ICML-13), pages 154–162, 2013.

20 Vivek K. Goyal, Martin Vetterli, and Nguyen T. Thao. Quantized overcomplete expansions
in IR N: analysis, synthesis, and algorithms. Information Theory, IEEE Transactions on,
44(1):16–31, 1998.

21 C Sinan Güntürk, Mark Lammers, Alex Powell, Rayan Saab, and Özgür Yilmaz. Sigma
delta quantization for compressed sensing. In Information Sciences and Systems (CISS),
2010 44th Annual Conference on, pages 1–6. IEEE, 2010.

22 Ankit Gupta, Robert D. Nowak, and Benjamin Recht. Sample complexity for 1-bit com-
pressed sensing and sparse classification. In ISIT, pages 1553–1557, 2010.

23 Piotr Indyk, Hung Q. Ngo, and Atri Rudra. Efficiently decodable non-adaptive group
testing. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’10, pages 1126–1142, Philadelphia, PA, USA, 2010. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1873601.
1873692.

24 L. Jacques, J. N. Laska, P.T. Boufounos, and R.G. Baraniuk. Robust 1-bit compressive
sensing via binary stable embeddings of sparse vectors. Information Theory, IEEE Trans-
actions on, 59(4):2082–2102, April 2013. doi:10.1109/TIT.2012.2234823.

ICALP 2017

http://dx.doi.org/10.1007/s10878-007-9083-3
http://dx.doi.org/10.1007/s10878-007-9083-3
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1007/978-3-662-43948-7_45
http://dl.acm.org/citation.cfm?id=1873601.1873692
http://dl.acm.org/citation.cfm?id=1873601.1873692
http://dx.doi.org/10.1109/TIT.2012.2234823

61:14 On Fast Decoding of High-Dimensional Signals from One-Bit Measurements

25 Laurent Jacques, Jason N. Laska, Petros T. Boufounos, and Richard G. Baraniuk. Robust 1-
bit compressive sensing via binary stable embeddings of sparse vectors. IEEE Transactions
on Information Theory, 59(4):2082–2102, 2013. doi:10.1109/TIT.2012.2234823.

26 Raghunandan M. Kainkaryam, Angela Bruex, Anna C. Gilbert, John Schiefelbein, and
Peter J. Woolf. poolMC: Smart pooling of mRNA samples in microarray experiments.
BMC Bioinformatics, 11:299, 2010. doi:10.1186/1471-2105-11-299.

27 Felix Krahmer, Rayan Saab, and Özgür Yilmaz. Sigma–delta quantization of sub-gaussian
frame expansions and its application to compressed sensing. Information and Inference,
page iat007, 2014.

28 J.N. Laska, Zaiwen Wen, Wotao Yin, and R.G. Baraniuk. Trust, but verify: Fast and
accurate signal recovery from 1-bit compressive measurements. Signal Processing, IEEE
Transactions on, 59(11):5289–5301, Nov 2011. doi:10.1109/TSP.2011.2162324.

29 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 2005. doi:10.1561/0400000002.

30 Hung Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list disjunct
matrices and applications. Automata, languages and programming, pages 557–568, 2011.

31 Yaniv Plan and Roman Vershynin. One-bit compressed sensing by linear programming.
Communications on Pure and Applied Mathematics, 66(8):1275–1297, 2013.

32 Yaniv Plan and Roman Vershynin. Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach. Information Theory, IEEE Transactions on,
59(1):482–494, 2013.

33 Ely Porat and Martin J. Strauss. Sublinear time, measurement-optimal, sparse recovery
for all. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Al-
gorithms, pages 1215–1227. SIAM, 2012.

34 A.M. Rashad. Random coding bounds on the rate for list-decoding superimposed codes.
Problems of Control and Information Theory – Problemy Upravleniya i Teorii Informatsii,
19(2):141–149, 1990.

http://dx.doi.org/10.1109/TIT.2012.2234823
http://dx.doi.org/10.1186/1471-2105-11-299
http://dx.doi.org/10.1109/TSP.2011.2162324
http://dx.doi.org/10.1561/0400000002

String Inference from Longest-Common-Prefix
Array∗

Juha Kärkkäinen1, Marcin Pia̧tkowski2, and Simon J. Puglisi3

1 Helsinki Institute of Information Technology (HIIT), Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus
University, Toruń, Poland
marcin.piatkowski@mat.umk.pl

3 Helsinki Institute of Information Technology (HIIT), Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Finland
simon.puglisi@cs.helsinki.fi

Abstract
The suffix array, perhaps the most important data structure in modern string processing, is often
augmented with the longest common prefix (LCP) array which stores the lengths of the LCPs
for lexicographically adjacent suffixes of a string. Together the two arrays are roughly equivalent
to the suffix tree with the LCP array representing the tree shape.

In order to better understand the combinatorics of LCP arrays, we consider the problem
of inferring a string from an LCP array, i.e., determining whether a given array of integers is
a valid LCP array, and if it is, reconstructing some string or all strings with that LCP array.
There are recent studies of inferring a string from a suffix tree shape but using significantly more
information (in the form of suffix links) than is available in the LCP array.

We provide two main results. (1) We describe two algorithms for inferring strings from
an LCP array when we allow a generalized form of LCP array defined for a multiset of cyclic
strings: a linear time algorithm for binary alphabet and a general algorithm with polynomial
time complexity for a constant alphabet size. (2) We prove that determining whether a given
integer array is a valid LCP array is NP-complete when we require more restricted forms of LCP
array defined for a single cyclic or non-cyclic string or a multiset of non-cyclic strings. The result
holds whether or not the alphabet is restricted to be binary. In combination, the two results show
that the generalized form of LCP array for a multiset of cyclic strings is fundamentally different
from the other more restricted forms.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Pattern Match-
ing, G.2.1 [Combinatorics] Combinatorial Algorithms, G.2.2 [Graph Theory] Eulerian cycles

Keywords and phrases LCP array, string inference, BWT, suffix array, suffix tree, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.62

1 Introduction

For a string X of n symbols, the suffix array (SA) [23] contains pointers to the suffixes of X,
sorted in lexicographical order. The suffix array is often augmented with a second array –

∗ The full version of this paper containing all the proofs and additional examples is available as [21],
http://arxiv.org/abs/1606.04573.

EA
T

C
S

© Juha Kärkkäinen, Marcin Pia̧tkowski, and Simon J. Puglisi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.62
http://arxiv.org/abs/1606.04573
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 String Inference from Longest-Common-Prefix Array

the longest common prefix (LCP) array – storing the length of the longest common prefix
between lexicographically adjacent suffixes; i.e., LCP[i] is the length of the LCP of suffixes
X[SA[i]..n) and X[SA[i− 1]..n). The two arrays are closely connected to the suffix tree [32] –
the compacted trie of all the string’s suffixes: the entries of SA correspond to the leaves of the
suffix tree, and the LCP array entries tell the string depths of the lowest common ancestors
of adjacent leaves, defining the shape of the tree. For decades these data structures have
been central to string processing; see [4] for a history and an overview, and [1, 3, 15, 30, 26]
for further details on myriad applications.

Given both the suffix and the LCP array, the corresponding string is unique up to
renaming of the characters and is easy to reconstruct: zeros in the LCP array tell where the
first character changes in the lexicographical list of the suffixes, and the suffix array tells how
to permute those first characters to obtain the string. Given the suffix array without the
LCP array, we can easily reconstruct a corresponding string where all characters are different,
and it is not difficult to characterize the set of all strings with a given suffix array [5, 28, 22].
In essence, the suffix array determines a set of positions in the LCP array that must be
zero. Specifically, for any i let j and k be integers such that SA[j] = SA[i − 1] + 1 and
SA[k] = SA[i] + 1. Then, if k < j, we must have LCP[i] = 0. For any other position, we can
freely and independently decide whether the value is zero or not, and as described above,
the zero positions together with the suffix array determine the string.

In this paper, we consider the problem of similarly reconstructing strings from an LCP
array without the suffix array. As mentioned above, the LCP array determines the shape of
the suffix tree, i.e., the suffix tree without edge or leaf labels. String inference from the suffix
tree shape has recently been considered by three different sets of authors [19, 6, 31]. However,
all of them assume that the suffix tree is augmented with significant additional information,
namely suffix links, which makes the task much easier. Indeed, our new algorithms essentially
reconstruct suffix links from the LCP array. According to Cazaux and Rivals [6], the case
without suffix links was considered but not solved in [27]. We are also aware that others
have considered it but without success [2].

To fully define the problem, we have to specify what kind of strings we are trying to infer.
Often suffix trees and suffix arrays are defined for terminated strings that are assumed to
end with a special symbol $ that is different from and lexicographically smaller than any
other symbol. The alternative is an open-ended string where no assumption is made on the
last symbol. For suffix and LCP arrays the only change from omitting the terminator symbol
is dropping the first element (which is always zero in the LCP array), but the suffix tree can
change considerably because some suffixes can be prefixes of other suffixes and thus are not
represented by a leaf. Inferring open-ended strings from a suffix tree (with suffix links) is
studied by Starikovskaya and Vildhøj [31], who show that any string can be appended by
additional characters without changing the suffix tree shape (thus the term open-ended).
However, such an extension can change the suffix and LCP arrays a great deal, i.e., with the
arrays a string is never truly open-ended but has at least an implicit terminator.

To get rid of even an implicit terminator, we consider a third type of strings, cyclic
strings, where we use rotations in place of suffixes. For a terminated string, replacing suffixes
with rotations causes no changes to the suffix/rotation array or the LCP array. Thus any
integer array that is a valid LCP array for a terminated string is always a valid LCP array
for a cyclic string too, but the opposite is not true. For example, the LCP array for the
cyclic string aababa is (2, 1, 3, 0, 2), which is not a valid LCP array for any non-cyclic string.
In this sense, the cyclic string case is strictly more general. An even more striking example
is a non-primitive string, such as abab, that has two or more identical rotations. For reasons

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:3

explained below, instead of rotations we use cyclic suffixes which are infinite repetitions of
rotations. Thus the LCP array for the cyclic string abab is (ω, 0, ω), where ω denotes the
positions of two adjacent identical cyclic suffixes.

As a further generalization, we may have a joint suffix array for a collection of strings,
where we have all suffixes of all strings in lexicographical order, and the corresponding
LCP array. In the terminated version, each string is terminated with a distinct terminator
symbol. If we have an LCP array for a collection of open-ended strings, adding the terminator
symbols simply prepends one zero for each terminator. The LCP array for a collection of
terminated strings is identical to the LCP array of the concatenation of the strings. Thus
the generalization from single strings to string sets does not add to the set of valid LCP
arrays for terminated strings, but it does for cyclic strings. For example the LCP array for a
string set {aa, b} is (ω, 0), which is not a valid LCP array for any single string. For multiple
cyclic strings, it is important to use cyclic suffixes instead of rotations because the result can
be different (e.g., the set {ab, aba}).

Now we are ready to formally define the problem of String Inference from LCP Array
(SILA). In the decision version, we are given an array of integers (and possibly ω’s) and asked
if the array is a valid LCP array of some string. If the answer is yes, the reporting version may
also output some such string, and possibly a characterization of all such strings. Different
variants are identified by a prefix: S for a string set; T, O, or C for terminated, open-ended
or cyclic; and B for a binary alphabet (where terminators are not counted). For example,
BCSSILA stands for Binary Cyclic String Set Inference from LCP Array. As discussed above,
and summarized in the following result (see [21] for the proof), the non-cyclic variants are
essentially equivalent, but the cyclic variants are more general.

I Proposition 1. There are polynomial time reductions from BTSILA to BOSILA, BTSSILA,
BOSSILA, TSILA, OSILA, TSSILA, and OSSILA.

Our Contribution

Our first result is a linear time algorithm for BCSSILA. For a valid LCP array the algorithm
outputs a string, which is the Burrows-Wheeler transform (BWT) of the solution string
set. This relies on a generalization of the BWT for multisets of cyclic strings developed
in [24, 20]. There can be more than one multiset of strings with the same BWT but the
class of such string collections is simple and well characterized in [20]. The algorithm also
outputs a set of substring swaps such that applying any combination of the swaps on the
BWT produces another BWT of a solution, and any BWT of a solution can be produced by
such a combination of swaps. Thus we have a complete characterization of all solutions. The
number of swaps can be linear and thus the number of distinct solutions can be exponential.
We also present an algorithm for CSSILA, i.e., without a restriction on the alphabet size,
that has a polynomial time complexity for any constant alphabet size.

Our second result is a proof, by a reduction from 3-SAT, that (the decision version of)
BCSILA, and thus CSILA, is NP complete. Therefore, even though the BCSSILA algorithm
produces a characterization of all solutions, it is NP hard to determine whether one of the
solutions is a single string. Furthermore, we modify the reduction to prove that BTSILA is
NP complete too. By Proposition 1, this shows that all variants of SILA mentioned above
except (B)CSSILA are NP complete. Since CSSILA is in P for constant alphabet sizes, this
leaves the complexity of CSSILA for larger alphabets as an open problem.

ICALP 2017

62:4 String Inference from Longest-Common-Prefix Array

Related Work

String inference from partial information is a classic problem in string processing, dating
back some 40 years to the work of Simon [29], where reconstructing a string from a set
of its subsequences is considered. Since then, string inference from a variety of data
structures has received a considerable amount of attention, with authors considering border
arrays [12, 11, 10], parameterized border arrays [18], the Lyndon factorization [25], suffix
arrays [5, 22], KMP failure tables [11, 13], prefix tables [7], cover arrays [9], and directed
acyclic word graphs [5]. The motivation for studying most string inference problems is to
gain a deeper understanding of the combinatorics of the data structures involved, in order to
design more efficient algorithms for their construction and use.

A (somewhat tangentially) related result to ours is due to He et al. [16], who prove
that it is NP hard to infer a string from the longest-previous-factor (LPF) array. It is
well known that LPF is a permutation of LCP [8] but otherwise it is a quite different data
structure. For example, it is in no way concerned with lexicographical ordering. Like our
NP-hardness proof, He et al.’s reduction is from 3-SAT, but the details of each reduction
appear to be very different. Moreover, their construction requires an unbounded alphabet
while our construction works for a binary alphabet and thus for any alphabet.

To the best of our knowledge, all of the previous string inference problems aim at obtaining
a single non-cyclic string from some data structure, and we are the first to consider the
generalizations to cyclic strings and to string sets, and as our results show, this makes a
crucial difference. As explained in the next section, the generalizations arise naturally from
the generalized BWT introduced in [24], which also played a central role in another recent
result on the combinatorics of LCP arrays [20].

2 Basic notions

Let v be a string of length n and let v̂ be obtained from v by sorting its characters.
The standard permutation [14, 17] of v is the mapping Ψv : [0..n) → [0..n) such that for
every i ∈ [0..n) it holds v̂[i] = v[Ψv(i)] and for any v̂[i] = v̂[j] the relation i < j implies
Ψv(i) < Ψv(j). In other words, Ψv corresponds to the stable sorting of the characters. Let
C = {ci}si=1 be the disjoint cycle decomposition of Ψv. We define the inverse Burrows–Wheeler
transform IBWT as the mapping from v into a multiset of cyclic strings W = {{wi}}si=1 such
that for any i ∈ [1..s] and j ∈ [0..|ci|), wi[j] = v[Ψv(ci[j])].

I Example 2. For v = bbaabaaa, we have IBWT(v) = {{aab, aab, ab}} as illustrated in the
following table (showing v̂ and Ψv) and figure (showing the cycles of Ψv as a graph). The
character subscripts are provided to make it easier to ensure stability.

i 0 1 2 3 4 5 6 7
v[i] b1 b2 a1 a2 b3 a3 a4 a5

v̂[i] a1 a2 a3 a4 a5 b1 b2 b3

Ψv[i] 2 3 5 6 7 0 1 4

0 2

5

1 3

6
4 7

a1

a3b1

a2

a4b2

a5

b3

The elements of W are primitive cyclic strings. Cyclic means that all rotations of a string
are considered equal. For example, aab, aba and baa are all equal. A string is primitive if it
is not a concatenation of multiple copies of the same string. For example, aab is primitive
but aabaab is not. For any alphabet Σ, the mapping IBWT is a bijection between the set Σ∗
of all (non-cyclic) strings and the multisets of primitive cyclic strings over Σ [24].

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:5

The set of positions of W is defined as the set of integer pairs pos(W) :=
{
〈i, p〉 : i ∈

[1..s], p ∈ [0..|wi|)
}
. For a position 〈i, p〉 ∈ pos(W) we define a cyclic suffix W〈i,p〉 as the

infinite string that starts at 〈i, p〉, i.e., W〈i,p〉 = wi[p]wi[p+ 1 mod |wi|]wi[p+ 2 mod |wi|],
The multiset of all cyclic suffixes of W is defined as suf(W) := {{W〈i,p〉 : 〈i, p〉 ∈ pos(W)}}.
We say that a string x occurs at position 〈i, p〉 in W if x is a prefix of the suffix W〈i,p〉.

The (cyclic) suffix array of a multiset of strings W is an array SAW containing a
permutation of pos(W) such that WSAW [j−1] ≤ WSAW [j] for all j ∈ [1..n). The Burrows-
Wheeler transform (BWT) is a mapping from W into the string v defined as v[j] = wi[p−
1 mod |wi|], where 〈i, p〉 = SAW [j], i.e., v[j] is the character preceding the beginning of the
suffix WSAW [j]. The BWT is the inverse of IBWT [24, 20].

The longest-common-prefix array LCPW [1..n) is defined as LCPW [j] =
lcp
(
WSAW [j−1],WSAW [j]

)
for 0 < j < n, where lcp(x, y) is the length of the longest common

prefix between the strings x and y.

I Example 3. For W = {{ab, aab, aab}} we have

suf(W) = {{(aab)ω, (aab)ω, (aba)ω, (aba)ω, (ab)ω, (baa)ω, (baa)ω, (ba)ω}}
SAW =

[
〈2, 0〉, 〈3, 0〉, 〈2, 1〉, 〈3, 1〉, 〈1, 0〉, 〈2, 2〉, 〈3, 2〉, 〈1, 1〉

]
LCPW =

[
ω, 1, ω, 3, 0, ω, 2

]
.

The suffixes represented by the suffix array entries can also be expressed as follows.

I Lemma 4. For i ∈ [0..n), WSAW [i] = v̂[i]v̂[Ψv(i)]v̂[Ψ2
v(i)]v̂[Ψ3

v(i)]

2.1 Intervals
Many algorithms on suffix arrays and LCP arrays are based on iterating over a specific types
of array intervals. Next, we define these intervals and establish their key properties. For
proofs and further details, we refer to [1, 26].

Let v ∈ {a, b}n and W = IBWT (v). Let SA = SAW be the suffix array and LCP =
LCPW the LCP array of W . Note that from now on, we will assume a binary alphabet.

I Definition 5 (x-interval). An interval [i..j), 0 ≤ i ≤ j ≤ n, is called the x-interval (x ∈ Σ∗)
if and only if (1) x is not a prefix of WSA[i−1] (or i = 0), (2) x is a prefix of WSA[k] for all
k ∈ [i..j), and (3) x is not a prefix of WSA[j] (or j = n).

In other words, in the suffix array the x-interval SA[i..j) consists of all suffixes of W with x
as a prefix. Thus the size j − i of the interval is the number of occurrences of x in W , which
we will denote by nx.

I Definition 6 (`-interval). An interval [i..j), 0 ≤ i < j ≤ n, is called an `-interval
(` ∈ N ∪ {ω}) if and only if (1) LCP [i] < ` (or i = 0), (2) min LCP[i + 1..j) = ` (where
min LCP[j..j) = ω), and (3) LCP [j] < ` (or j = n).

I Lemma 7. Every nonempty x-interval is an `-interval for some (unique) ` ≥ |x|. Every
`-interval is an x-interval for some string x of length `.

I Corollary 8. If an x-interval [i..j) is an `-interval for ` > |x|, there exists a (unique)
string y of length `− |x| such that [i..j) is the xy-interval.

Thus the `-intervals represent the set of all distinct x-intervals. This and the fact that
the total number of `-intervals is O(n) are the basis of many efficient algorithms for suffix
arrays, see e.g., [1, 26].

ICALP 2017

62:6 String Inference from Longest-Common-Prefix Array

Algorithm 1: Infer BWT from an LCP array.
Input: an array LCP[1..n) of integers and ω’s
Output: a string v ∈ {a, b}n such that LCPIBWT(v) = LCP together with a set S of

swap intervals, or false if there is no such string v
1 S := ∅;
2 preprocess LCP for RMQs;
3 k := RMQLCP[1..n);
4 if LCP[k] 6= 0 then
5 if LCP[k] = ω then return an, ∅;
6 else return false;
7 InferInterval([0, n), [0, k), [k, n));
8 compute W = IBWT(v), SAW , and LCPW ;
9 if LCPW 6= LCP then return false;

10 return v, S;

3 Algorithm for BCSSILA

We are now ready to describe the algorithm for string inference from an LCP array. Given
an LCP array LCP[1..n), our goal is to construct a string v ∈ {a, b}n such that LCP =
LCPIBWT(v). At first, we assume that such a string v exists, and consider later what happens
if the input is not a valid LCP array.

Let RMQLCP[i..j) denote the range minimum query over the LCP array that returns the
position of the minimum element in LCP[i..j), i.e., RMQLCP[i..j) = arg mink∈[i..j) LCP[k].
The LCP array is preprocessed in linear time so that any RMQ can be answered in constant
time (see for instance [26]). Then any x-interval can be split into two subintervals as shown
in the following result.

I Lemma 9. Let [i..j) be an x-interval and an `-interval for ` < ω, and let k = RMQLCP[i+
1..j). Then, for some string y of length ` − |x|, [i..k) is the xya-interval and [k..j) is the
xyb-interval.

This approach makes it easy to recursively enumerate all `-intervals. We will also keep
track of ax- and bx-intervals together with any x-interval, even if we do not know x precisely.
From the intervals we can determine the numbers of occurrences, nax and nbx, which are
useful in the inference of v:

I Lemma 10. Let [i..j) be the x-interval. Then v[i..j) contains exactly nax a’s and nbx b’s.

In particular, when either nax or nbx drops to zero, we have fully determined v[i..j) for
the x-interval [i..j). In such a case, the LCP array intervals have to satisfy the following
property.

I Lemma 11. Let [iy..jy) be the y-interval for y ∈ {x, ax, bx}. If nax = jax − iax = 0, then
LCP[ibx + 1..jbx) = 1 + LCP[ix + 1..jx), where 1 +A, for an array A, denotes adding one to
all elements of A. Symmetrically, if nbx = 0, then LCP[iax + 1..jax) = 1 + LCP[ix + 1..jx).

The main procedure is given in Algorithm 1. The main work is done in the recursive
procedure InferInterval given in Algorithm 2. The procedure gets as input the x-, ax- and
bx-intervals for some (unknown) string x, splits the x-interval into xya- and xyb-subintervals

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:7

Algorithm 2: InferInterval([ix..jx), [iax..jax), [ibx..jbx)).
Input: (nonempty) x-, ax- and bx-intervals
Output: Set v[ix..jx) and add the swap intervals within [ix..jx) to S

1 kx := RMQLCP[ix + 1..jx); mx := LCP[kx];
2 if jax − iax = 1 then kax := iax; max := ω;
3 else kax := RMQLCP[iax + 1..jax); max := LCP[kax];
4 if jbx − ibx = 1 then kbx := ibx; mbx := ω;
5 else kbx := RMQLCP[ibx + 1..jbx); mbx := LCP[kbx];
6 if max > mx + 1 and mbx > mx + 1 then
7 if LCP[iax + 1..jax) = 1 + LCP[ix + 1..kx) then
8 v[ix..kx) = aa . . . a; v[kx..jx) = bb . . . b;
9 if LCP[iax + 1..jax) = 1 + LCP[kx + 1..jx) then add [ix..jx) to S ;

10 else
11 v[ix..kx) = bb . . . b; v[kx..jx) = aa . . . a;

12 else if max > mx + 1 then
13 if kbx − ibx = kx − ix then
14 v[ix..kx) = bb . . . b;
15 InferInterval([kx..jx), [iax..jax), [kbx..jbx));
16 else
17 v[kx..jx) = bb . . . b;
18 InferInterval([ix..kx), [iax..jax), [ibx..kbx));

19 else if mbx > mx + 1 then
20 if kax − iax = kx − ix then
21 v[ix..kx) = aa . . . a;
22 InferInterval([kx..jx), [kax..jax), [ibx..jbx));
23 else
24 v[kx..jx) = aa . . . a;
25 InferInterval([ix..kx), [iax..kax), [ibx..jbx));

26 else
27 InferInterval([ix..kx),[iax..kax),[ibx..kbx));
28 InferInterval([kx..jx),[kax..jax),[kbx..jbx));

based on Lemma 9, and tries to split ax- and bx-intervals similarly. If all subintervals are
nonempty, the algorithm processes the two subinterval triples recursively (lines 27 and 28).

When trying to split the ax-interval, the result may be, for example, that the axya-interval
is empty. In this case, we do not need to recurse on the xya-interval since the corresponding
part of v must be all b’s. The algorithm recognizes the emptiness of axya- or axyb-interval
by the fact that max > mx + 1, but the problem is to decide which is the empty one. In
most cases, this can be determined by comparing the sizes of the different subintervals or
even the actual LCP-intervals (see Lemma 11).

There is one case, where the algorithm is unable to determine the empty subintervals,
which is when LCP[iax+1..jax) = LCP[ibx+1..jbx) = 1+LCP[ix+1..kx) = 1+LCP[kx+1..jx).
Then, either the axya- and bxyb-intervals are empty or the axyb- and bxya-intervals are
empty, but there is no way of deciding between the two cases. It turns out that both are valid

ICALP 2017

62:8 String Inference from Longest-Common-Prefix Array

choices. The algorithm sets v according to one choice (line 8) but records the alternative
choice by adding the interval to the set S. In such a case, the string xy is called a swap core
and the xy-interval (equal to the x-interval) is called a swap interval.

For each swap interval [i..j), the algorithm sets v[i..k) = aa . . . a and v[k..j) = bb . . . b,
where k = (i+ j)/2, but swapping the two halves would be an equally good choice. Therefore,
if the output of the algorithm contains s swap intervals, it represents a set of 2s distinct
strings. The following lemma shows that the swaps indeed do not affect the LCP array (the
proof can be found in [21]).

I Lemma 12. Let v ∈ {a, b}n, W = IBWT(v), SA = SAW and LCP = LCPW . Let x be
a string that occurs in W and satisfies: (1) LCP[ixa + 1..jxa) = LCP[ixb + 1..jxb), and (2)
v[ixa..jxa) = aa . . . a and v[ixb..jxb) = bb . . . b, where [iz..jz) is the z-interval for z ∈ {xa, xb}.
Let v′ be the same as v except that v′[ixa..jxa) = bb . . . b and v′[ixb..jxb) = aa . . . a. Then
LCPIBWT(v′) = LCP.

I Theorem 13. Algorithm 1 computes in linear time a representation of the set of all
strings v ∈ {a, b}∗ such that LCPIBWT(v) is the input array, or returns false if no such string
exists.

Proof. Since the algorithm verifies its result (lines 9 and 10), it will return false if the input
is not a valid LCP array. Given a valid LCP array, Algorithm 2 sets all elements of v since
it recurses on any subinterval that it doesn’t set. All the choices made by the algorithm
are forced by the lemmas in this and the previous section. The swap intervals record all
alternatives in the cases where the content of v could not be fully determined, and all of
those alternatives have the same LCP array by Lemma 12. It is also easy to see that the
algorithm runs in linear time. J

4 Coupling Constrained Eulerian Cycle

We will now set out to prove the NP-completeness of the single string inference problems
BCSILA and BTSILA. The proofs are done by a reduction from 3-SAT via an intermediate
problem called Coupling Constrained Eulerian Cycle (CCEC) described in this section.

Consider a directed graph G of degree two, i.e., every vertex in G has exactly two incoming
and two outgoing edges. If G is connected, it is Eulerian. An Eulerian cycle can pass through
each vertex in two possible ways, which we call the straight state and the crossing state of
the vertex as illustrated here:

We consider each vertex to be a switch that can be flipped between these two states. The
combination of vertex states is called the graph state. For a given graph state, the paths in
the graph form, in general, a collection of cycles. The Eulerian cycle problem can then be
stated as finding a graph state such that there is only a single cycle; we call such a graph
state Eulerian.

In the Coupling Constrained Eulerian Cycle (CCEC) problem, we are given a graph as
described above, an initial graph state, and a partitioning of the set of vertices. If we flip a
vertex state, we must simultaneously flip the states of all the vertices in the same partition,
i.e., the vertices in a partition are coupled. A graph state that is achievable from the initial
state by a set of such partition flips is called a feasible state. The CCEC problem is to
determine if there exists a feasible graph state that is Eulerian.

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:9

x1 x2 ¬x3 ¬x1 x3 x4 x1 ¬x2 ¬x4

Figure 1 The CCEC graph corresponding to a 3-CNF formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨
x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4).

I Theorem 14. CCEC is NP-complete.

Proof. The proof is by reduction from 3-SAT. To obtain a CCEC graph from a 3-CNF
formula, a gadget of five vertices is constructed from each clause and these gadgets are
connected by a cycle. In each gadget, three of the vertices are labeled by the literals of the
corresponding clause; the other two are called free vertices. See Fig. 1 for an illustration.

Each labeled vertex is in a straight state if the labeling literal is false and in a crossing
state if the literal is true; their initial state corresponds to some arbitrary truth assignment
to the variables. For each variable xi, there is a vertex partition consisting of all vertices
labeled by xi or ¬xi, so that flipping this partition corresponds to changing the truth value
of xi. Each free vertex forms a singleton partition and has an arbitrary initial state. Thus a
graph state is feasible iff the labeled vertex states correspond to some truth assignment.

If a clause is false for a given truth assignment, the labeled vertices in the corresponding
gadget are all in a straight state. This separates a part of the gadget from the main cycle and
thus the graph state is not Eulerian. If a clause is true, at least one of the labeled vertices in
the gadget is in a crossing state. Then we can always choose the state of the free vertices so
that the full gadget is connected to the main cycle. Thus there exists a feasible Eulerian
graph state iff there exists a truth assignment to the variables that satisfies all clauses. J

For purposes that will become clear later, we modify the above construction by adding some
extra components to the graph without changing the validity of the reduction. Specifically,
for each variable xi in the 3-CNF formula we add the following gadget to the main cycle:

xi xi xi ¬xi

The vertices in the gadget are treated similarly to the other vertices in the graph: they
belong to the partition with the other vertices labeled by xi or ¬xi, and the initial state is
determined by the truth value of the labeling literal. It is easy to see that the gadget will be
fully connected to the main cycle whether xi is true or false. Thus the extra gadgets have
no effect on the existence of an Eulerian cycle. Finally, we insert to the main cycle a single
vertex labelled y with a self loop and forming a singleton partition.

5 BCSILA to CCEC

The next step is to establish a connection between the BCSILA and CCEC problems by
showing a reduction from BCSILA to CCEC. Although the direction of the reduction is
opposite to what we want, this construction plays a key role in the analysis of the main
construction described in the next section.

Given a BCSILA instance (an integer array), we use Algorithm 1 to produce a represent-
ation of a set V of strings. The problem is then to decide if there exists v ∈ V such that

ICALP 2017

62:10 String Inference from Longest-Common-Prefix Array

IBWT(v) is a single (cyclic) string. We will write V as a string with brackets marking the
swaps. For example, V = b[ab][ab]a = {bababa, babbaa, bbaaba, bbabaa}. In Example 2, we
saw that the inverse BWT of a string v ∈ V can be represented as a graph Gv where the
vertices are labeled by positions in v and there is an edge between vertices i and j if, for some
character c ∈ {a, b} and some integer k, v̂[i] = c is the kth occurrence of c in v̂ and v[j] = c

is the kth occurrence of c in v. Such an edge (i, j) is labeled by ck. Note that ∀v ∈ V , v̂ is
the same; we will denote it by V̂ . We form a generalized graph GV as a union of the graphs
Gv, v ∈ V .

Consider ak (the kth a) in V̂ , say at position i. If ak is outside any swap region in V ,
say at position j, there is a single edge (i, j) in GV labeled by ak. If ak is within a swap
region in V , it has two possible positions in the strings v ∈ V , say j and j′. That same
pair of positions are also the possible positions of some b, say bk′ = V̂ [i′]. Then gv has two
edges, (i, j) and (i, j′), labeled with ak and two edges, (i′, j) and (i′, j′), labeled with bk′ .
The positions/vertices j and j′ are called a swap pair.

To obtain a CCEC graph G̃V , we make two modifications to GV . First, we merge each
swap pair into a single vertex. Each merged vertex now has two incoming and two outgoing
edges and all other vertices have one incoming and one outgoing edge. Second, we remove
all vertices with degree one by concatenating their incoming and outgoing edges.

The initial state of the vertices in G̃V is set so that the cycles in G̃V correspond to the
cycles in Gv for some v ∈ V . Two vertices in G̃V belong to the same partition if their labels
belong to the same swap interval in V . Then we have a one-to-one correspondence between
swaps in V and partition flips in G̃V . If this CCEC instance has a solution, the Eulerian
cycle spells a single string realizing the input LCP array. If the CCEC instance has no
solution, the original BCSILA problem has no solution either.

6 BCSILA is NP-Complete

We are now ready to show that BCSILA is NP-complete using the reduction chain 3-SAT →
CCEC → BCSILA. The first step was described in Section 4, and we will next describe the
second. The latter reduction is not a general reduction from an arbitrary CCEC instance
but works only for a CCEC instance obtained by the first reduction (including the extra
gadgets).

The above BCSILA to CCEC reduction transforms each pair of swapped positions into a
vertex and each swap interval into a vertex partition. Our construction creates a BCSILA
instance such that the resulting BWT has the necessary swaps to produce the CCEC instance
vertices and partitions. However, the BWT also has some unwanted swaps producing spurious
vertices, but we will show that these spurious vertices do not invalidate the reduction.

Starting from a CCEC instance, we construct a set of cyclic strings and obtain the
BCSILA instance as the LCP array of that string set. The construction associates two strings
to each vertex and the cyclic strings are formed by concatenating the vertex strings according
to the cycles in the graph in its initial state. The two passes of the cycles through a vertex
must use different strings but it does not matter which pass uses which string.

Let n be the number of vertices in the CCEC graph and let m be the number of vertex
partitions. We number the vertices from 1 to n and the partitions from 1 to m. The biggest
partition number is assigned to the partition with the vertex y, the second biggest to the
partition corresponding to the variable x1, the third biggest to variable x2, and so on. The
three biggest vertex numbers are assigned to the vertices labeled x1 in the extra gadget for
the variable x1, the next three biggest to the extra gadget vertices labeled x2 and so on.

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:11

Within each extra gadget, the biggest number is assigned to the middle one of the three
vertices. The strings associated with a vertex are bakbam+2h and bbakbbam+2h−1, where k
is the partition number and h is the vertex number. This completes the description of the
transformation from a CECC instance to a BCSILA instance.

Let us now analyze the transformation by changing the BCSILA instance back to a CCEC
instance using the construction of the preceding section. Specifically, we will analyze the swaps
in the BWT produced from the LCP array. Let W be the set of cyclic strings constructed
from the CCEC instance, and let V be the BWT with swaps constructed from LCPW . An
interval [i..j) in V is a swap interval if and only if (1) [i..j) is an x-interval for a string x
such that either occ(axa) = occ(bxb) = occ(x)/2 or occ(axb) = occ(bxa) = occ(x)/2, where
occ(y) is the number of occurrences of y in W , and (2) LCPW [i+ 1..k) = LCPW [k + 1..j),
where k = (i+ j)/2. If [i..j) is a swap interval, the string x is called its swap core. Our goal
is to identify all swap cores.

Let us first consider strings of the form x = bakb. If k > m, occ(x) ≤ 1 and x cannot be
a swap core. For k ∈ [1..m], x is always a swap core and corresponds to the CCEC partition
numbered k. Let v = BWT(W) and let V ′ be v together with the swaps for cores of the
form x = bakb, k ∈ [1..m]. It is easy to verify that a CCEC instance constructed from V ′ as
described in the previous section is identical to the original CCEC instance. Thus, if there
were no other swap cores, we would have a perfect reduction.

Unfortunately, there are other swap cores. A systematic examination of all strings (see [21]
for details) shows that the other swap cores must be of the following forms: bam+2n−1,
am+2n−1b, ambam, ambbam,akbah, akbbah, akbaibah and akbbaibbah. Furthermore, it shows
that each such swap core has exactly two occurrences, which means that the values k and/or
h have to be sufficiently large. Each extra swap core adds a free vertex that is connected to
the graph by making two existing edges to pass through the new vertex. Because of the way
we chose to assign the biggest partition and vertex numbers, all the additional connections
are within the extra gadgets, which does not change the existence of an Eulerian cycle. This
completes the proof.

I Theorem 15. BCSILA is NP-complete.

7 BTSILA is NP-Complete

We will now show that BTSILA is NP-complete by modifying the above reduction for BCSILA
to include a single terminator symbol $ in the strings. The modification is applied to the set
W of cyclic strings derived from the CCEC instance such that LCPW is the BCSILA instance.
Specifically, we replace the (unique) occurrence of am+2n, which is the longest consecutive
run of a’s, with am+2n+1$am+2n to obtain W$ and LCPW$. We will show that LCPW$ is
a yes-instance of CSILA iff LCPW is a yes-instance of BCSILA. Furthermore, if a cyclic
string u is a solution to the CSILA instance, i.e., LCPu = LCPW$, then LCPv = LCPW$,
where v is the rotation of u ending with $ interpreted as a terminated string. Thus LCPW$

is a yes-instance of BTSILA iff it is a yes-instance of CSILA iff LCPW is a yes-instance of
BCSILA.

In general, adding even a single occurrence of a third symbol complicates the inference
of the BWT from the LCP array and means that the set of equivalent BWTs can no more
be described by a set of swaps. Consider how the operation of the procedure InferInterval
(Algorithm 2) changes. First, it gets an extra $x-interval as an input in addition to x-, ax-
and bx-intervals. Second, the x-interval may be split into three subintervals, xy$-, xya- and
xyb-intervals, instead of two (which happens when the LCP interval contains two identical

ICALP 2017

62:12 String Inference from Longest-Common-Prefix Array

minima). This leads to many more combinations to consider, and some of those combinations
are more complicated.

Fortunately, in our case, having the single $ surrounded by the two longest runs of a’s
simplifies things, and we will describe a modification of InferInterval to handle this case.
Every call to InferInterval belongs to one of the following three types: (1) the x-interval
is split into two and the $x-interval is empty, (2) the x-interval is split into two and the
$x-interval is non-empty, and (3) the x-interval is split into three. The first case needs no
modification at all. The other two cases mean that either $x or x$ occurs in the produced
string set, and since this property is not affected by swaps (or the threeway permutations
described below), one of them occurs in every produced string set including W$. Since x must
occur at least twice, one of the latter two cases happens iff x = ak for some k ∈ [0..m+ 2n].
Although in general InferInterval cannot always know x, it is easy to keep track of x when
x = ak.

When InferInterval is called with x = ak for k ≤ m+ 2n− 2, the x-interval and the ax-
interval are always split into three, the bx-interval is split into two, and there is a $x-interval
of size one. In general, we might not know whether the two subintervals of bx-interval are bx$-
and bxa-, or bx$- and bxb-, or bxa- and bxb-intervals. However, since x$- and ax$-intervals
both have size one, there can be no bx$-interval, and thus all the subintervals can be uniquely
determined and recursed on. When x = am+2n−1, the x-interval has size five and is split into
three with the middle part (xa-interval) having size three. The ax interval has size three
and is split into three. In this case too, only one combination of subintervals is possible.

When x = am+2n, the x-interval has size three and is split into three, and the $x-, ax- and
bx-intervals have size one. Therefore, the x-interval in the BWT contains some permutation
of the three characters and all permutations are valid. This threeway permutation adds to
the variation provided by the swaps in other parts of the BWT. A more careful analysis
shows that the BWT x-interval of

$ab or $ba implies an occurrence of x which is only possible if x$ is a separate string;
ba$ implies an occurrence of axa which is only possible if a single a is separate string;
a$b implies occurrences of ax$ and $xa which is only possible if ax$ is a separate string;
ab$ implies an occurrence of ax$xb; and
b$a implies an occurrence of bx$xa.

A single string solution is only possible in the last two cases, and any such solution corresponds
to a solution for the BCSILA instance LCPW (obtained by replacing ax$x or x$ax with x).
Hence LCPW$ is a yes-instance of CSILA, and thus of BTSILA, if and only if LCPW is a
yes-instance of BCSILA, which proves the following result.

I Theorem 16. BTSILA is NP-complete.

8 Algorithm for CSSILA

In all of the above, we have assumed a binary alphabet (excluding the single symbol $). In
this section, we consider the CSSILA problem (i.e. Cyclic String Set Inference from LCP
Array) without a restriction on the alphabet size (see [21] for more details).

Let L[1..n) be an instance of the CSSILA problem, i.e., an array of integers (and possibly
ω’s). Let σ − 1 be the number of zeroes in L, and Σ an alphabet of size σ. As with the
binary BCSSILA problem, we describe an algorithm that outputs a representation of the set
WL = {w ∈ Σn : LCPIBWT(w) = L}; in this case the representation is an automaton that
accepts WL. We show the following result.

J. Kärkkäinen, M. Pia̧tkowski, and S. J. Puglisi 62:13

I Theorem 17. Given an array L[1..n) of integers (and possibly ω’s) containing σ−1 zeroes,
we can construct a deterministic finite automaton recognizing WL in time O(σ22σ(nσ + 1)σ)
and space O(σ2σ(nσ + 1)σ).

References

1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004. doi:10.
1016/S1570-8667(03)00065-0.

2 Amihood Amir. Personal communication, String Masters in Rouen, France, 3–5 February,
2014.

3 Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words, NATO Advanced Science Institutes Series F12, pages 85–96. Springer-Verlag, 1985.
doi:10.1007/978-3-642-82456-2_6.

4 Alberto Apostolico, Maxime Crochemore, Martin Farach-Colton, Zvi Galil, and
S. Muthukrishnan. 40 years of suffix trees. Communications of the ACM, 59(4):66–73,
2016. doi:10.1145/2810036.

5 Hideo Bannai, Shunsuke Inenaga, Ayumi Shinohara, and Masayuki Takeda. Inferring
strings from graphs and arrays. In Proceedings of Mathematical Foundations of Computer
Science 2003, volume 2747 of Lecture Notes in Computer Science, pages 208–217. Springer,
2003. doi:10.1007/978-3-540-45138-9_15.

6 Bastien Cazaux and Eric Rivals. Reverse engineering of compact suffix trees and links: A
novel algorithm. Journal of Discrete Algorithms, 28:9–22, 2014. doi:10.1016/j.jda.2014.
07.002.

7 Julien Clément, Maxime Crochemore, and Giuseppina Rindone. Reverse engineering prefix
tables. In Proceedings of 26th International Symposium on Theoretical Aspects of Computer
Science, STACS 2009, volume 3 of Leibniz International Proceedings in Informatics, pages
289–300, 2009. doi:10.4230/LIPIcs.STACS.2009.1825.

8 Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear time and
applications. Information Processing Letters, 106(2):75–80, 2008. doi:10.1016/j.ipl.
2007.10.006.

9 Maxime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and German Tischler. Cover
array string reconstruction. In Proceeding of 21st Annual Symposium on Combinatorial
Pattern Matching, CPM 2010, volume 6129 of Lecture Notes in Computer Science, pages
251–259. Springer, 2010. doi:10.1007/978-3-642-13509-5_23.

10 Jean-Pierre Duval, Thierry Lecroq, and Arnaud Lefebvre. Border array on bounded alpha-
bet. Journal of Automata, Languages and Combinatorics, 10(1):51–60, 2005.

11 Jean-Pierre Duval, Thierry Lecroq, and Arnaud Lefebvre. Efficient validation and con-
struction of border arrays and validation of string matching automata. RAIRO Theoretical
Informatics and Applications, 43(2):281–297, 2009. doi:10.1051/ita:2008030.

12 Frantisĕk Franĕk, Shudi Gao, Weilin Lu, Patrick J. Ryan, William F. Smyth, Yu Sun, and
Lu Yang. Verifying a border array in linear time. Journal on Combinatorial Mathematics
and Combinatorial Computing, 42:223–236, 2002. doi:10.1.1.32.5012.

13 Pawel Gawrychowski, Artur Jez, and Lukasz Jez. Validating the Knuth-Morris-Pratt failure
function, fast and online. Theory of Computing Systems, 54(2):337–372, 2014. doi:10.
1007/s00224-013-9522-8.

14 Ira M. Gessel and Christophe Reutenauer. Counting permutations with given cycle struc-
ture and descent set. Journal of Combinatorial Theory, Series A, 64(2):189–215, 1993.
doi:10.1016/0097-3165(93)90095-P.

ICALP 2017

http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1007/978-3-642-82456-2_6
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1007/978-3-540-45138-9_15
http://dx.doi.org/10.1016/j.jda.2014.07.002
http://dx.doi.org/10.1016/j.jda.2014.07.002
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1825
http://dx.doi.org/10.1016/j.ipl.2007.10.006
http://dx.doi.org/10.1016/j.ipl.2007.10.006
http://dx.doi.org/10.1007/978-3-642-13509-5_23
http://dx.doi.org/10.1051/ita:2008030
http://dx.doi.org/10.1.1.32.5012
http://dx.doi.org/10.1007/s00224-013-9522-8
http://dx.doi.org/10.1007/s00224-013-9522-8
http://dx.doi.org/10.1016/0097-3165(93)90095-P

62:14 String Inference from Longest-Common-Prefix Array

15 Dan Gusfield. Algorithms on Strings, Trees, and Sequences : Computer Science and
Computational Biology. Cambridge University Press, Cambridge, United Kingdom, 1997.
doi:10.1017/CBO9780511574931.

16 Jing He, Hongyu Liang, and Guang Yang. Reversing longest previous factor tables is hard.
In Proceedings of 12th International Symposium on Algorithms and Data Structures, WADS
2011, volume 6844 of Lecture Notes in Computer Science, pages 488–499. Springer, 2011.
doi:10.1007/978-3-642-22300-6_41.

17 Peter M. Higgins. Burrows-Wheeler transformations and de Bruijn words. Theoretical
Computer Science, 457:128–136, 2012. doi:10.1016/j.tcs.2012.07.019.

18 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Verifying and enu-
merating parameterized border arrays. Theoretical Computer Science, 412(50):6959–6981,
2011. doi:10.1016/j.tcs.2011.09.008.

19 Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Inferring strings from
suffix trees and links on a binary alphabet. Discrete Applied Mathematics, 163:316–325,
2014. doi:10.1016/j.dam.2013.02.033.

20 Juha Kärkkäinen, Dominik Kempa, and Marcin Pia̧tkowski. Tighter bounds for the sum of
irreducible LCP values. Theoretical Computer Science, 656:265–278, 2015. doi:10.1016/
j.tcs.2015.12.009.

21 Juha Kärkkäinen, Marcin Piatkowski, and Simon J. Puglisi. String inference from the LCP
array. CoRR, abs/1606.04573, 2016. URL: http://arxiv.org/abs/1606.04573.

22 Gregory Kucherov, Lilla Tóthmérész, and Stéphane Vialette. On the combinatorics of
suffix arrays. Information Processing Letters, 113(22-24):915–920, 2013. doi:10.1016/j.
ipl.2013.09.009.

23 Udi Manber and Gene W. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

24 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the Burrows-Wheeler transform. Theoretical Computer Science, 387(3):298–312, 2007.
doi:10.1016/j.tcs.2007.07.014.

25 Yuto Nakashima, Takashi Okabe, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masay-
uki Takeda. Inferring strings from Lyndon factorization. In Proceedings of Mathematical
Foundations of Computer Science 2014, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 565–576. Springer, 2014. doi:10.1007/978-3-662-44465-8_48.

26 Enno Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

27 Nicolas Philippe. Caractérisation et énumération des arbres compacts des suffixes. Master’s
thesis, Université de Rouen, 2007.

28 Klaus-Bernd Schürmann and Jens Stoye. Counting suffix arrays and strings. Theoretical
Computer Science, 395(2-3):220–234, 2008. doi:10.1016/j.tcs.2008.01.011.

29 Imre Simon. Piecewise testable events. In Proceedings of 2nd GI Conference on Automata
Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages
214–222. Springer, 1975. doi:10.1007/3-540-07407-4_23.

30 Bill Smyth. Computing Patterns in Strings. Pearson Addison-Wesley, Essex, England,
2003.

31 Tatiana A. Starikovskaya and Hjalte Wedel Vildhøj. A suffix tree or not a suffix tree?
Journal of Discrete Algorithms, 32:14–23, 2015. doi:10.1016/j.jda.2015.01.005.

32 Peter Weiner. Linear pattern matching algorithms. In Proceedings of the 14th Annual
Symposium on Switching and Automata Theory 1973, pages 1–11. IEEE Computer Society,
1973. doi:10.1109/SWAT.1973.13.

http://dx.doi.org/10.1017/CBO9780511574931
http://dx.doi.org/10.1007/978-3-642-22300-6_41
http://dx.doi.org/10.1016/j.tcs.2012.07.019
http://dx.doi.org/10.1016/j.tcs.2011.09.008
http://dx.doi.org/10.1016/j.dam.2013.02.033
http://dx.doi.org/10.1016/j.tcs.2015.12.009
http://dx.doi.org/10.1016/j.tcs.2015.12.009
http://arxiv.org/abs/1606.04573
http://dx.doi.org/10.1016/j.ipl.2013.09.009
http://dx.doi.org/10.1016/j.ipl.2013.09.009
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1016/j.tcs.2007.07.014
http://dx.doi.org/10.1007/978-3-662-44465-8_48
http://dx.doi.org/10.1016/j.tcs.2008.01.011
http://dx.doi.org/10.1007/3-540-07407-4_23
http://dx.doi.org/10.1016/j.jda.2015.01.005
http://dx.doi.org/10.1109/SWAT.1973.13

Neighborhood Complexity and Kernelization for
Nowhere Dense Classes of Graphs∗†

Kord Eickmeyer1, Archontia C. Giannopoulou2, Stephan Kreutzer3,
O-joung Kwon4, MichałPilipczuk5, Roman Rabinovich6, and
Sebastian Siebertz7

1 Technische Universität Darmstadt, Darmstadt, Germany
eickmeyer@mathematik.tu-darmstadt.de

2 Technische Universität Berlin, Berlin, Germany
archontia.giannopoulou@tu-berlin.de

3 Technische Universität Berlin, Berlin, Germany
stephan.kreutzer@tu-berlin.de

4 Technische Universität Berlin, Berlin, Germany
o-joung.kwon@tu-berlin.de

5 University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

6 Technische Universität Berlin, Berlin, Germany
roman.rabinovich@tu-berlin.de

7 University of Warsaw, Warsaw, Poland
siebertz@mimuw.edu.pl

Abstract
We prove that whenever G is a graph from a nowhere dense graph class C, and A is a subset
of vertices of G, then the number of subsets of A that are realized as intersections of A with
r-neighborhoods of vertices of G is at most f(r, ε) · |A|1+ε, where r is any positive integer, ε is any
positive real, and f is a function that depends only on the class C. This yields a characterization
of nowhere dense classes of graphs in terms of neighborhood complexity, which answers a question
posed by Reidl et al. [26]. As an algorithmic application of the above result, we show that
for every fixed integer r, the parameterized Distance-r Dominating Set problem admits an
almost linear kernel on any nowhere dense graph class. This proves a conjecture posed by Drange
et al. [9], and shows that the limit of parameterized tractability of Distance-r Dominating
Set on subgraph-closed graph classes lies exactly on the boundary between nowhere denseness
and somewhere denseness.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases Graph Structure Theory, Nowhere Dense Graphs, Parameterized Com-
plexity, Kernelization, Dominating Set

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.63

∗ The full version of this paper can be found as an arxiv preprint [11], https://arxiv.org/abs/1612.
08197.

† The authors from Technische Universität Berlin (AG, SK, OK, and RR) have been supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (ERC consolidator grant DISTRUCT, agreement No. 648527). The work of the authors
from University of Warsaw (MP and Seb. S) is supported by the National Science Centre of Poland via
POLONEZ grant agreement UMO-2015/19/P/ST6/03998. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 665778. M. Pilipczuk is supported by Foundation for Polish Science (FNP) via the
START stipend programme.

EA
T

C
S

© Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon,
Michał Pilipczuk, Roman Rabinovich, and Sebastian Siebertz;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.63
https://arxiv.org/abs/1612.08197
https://arxiv.org/abs/1612.08197
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

1 Introduction

Sparse graphs. The notion of nowhere denseness was introduced by Nešetřil and Ossona de
Mendez [23, 24] as a general model of uniform sparseness of graphs. Many familiar classes of
sparse graphs, like planar graphs, graphs of bounded treewidth, graphs of bounded degree,
and, in fact, all classes that exclude a fixed (topological) minor, are nowhere dense. Notably,
classes of bounded average degree or bounded degeneracy are not necessarily nowhere dense.
In an algorithmic context this is reasonable, as every graph can be turned into a graph of
degeneracy at most 2 by subdividing every edge once; however, the structure of the graph is
essentially preserved under this operation.

I Definition 1. A minor model of a graph H in G is a family (Iu)u∈V (H) of pairwise vertex-
disjoint connected subgraphs of G such that whenever {u, v} is an edge in H, there are
u′ ∈ Iu and v′ ∈ Iv for which {u′, v′} is an edge in G. The graph H is a depth-r minor of G,
denoted H 4r G, if there is a minor model (Iu)u∈V (H) of H in G such that each subgraph
Iu has radius at most r.

I Definition 2. A class C of graphs is nowhere dense if there is a function t : N→ N such
that Kt(r) 64r G for all r ∈ N and all G ∈ C.

Nowhere denseness turns out to be a very robust concept with several seemingly unre-
lated natural characterizations. These include characterizations by the density of shallow
(topological) minors [23, 24], quasi-wideness [24] (a notion introduced by Dawar [6] in his
study of homomorphism preservation properties), low tree-depth colorings [20], generalized
coloring numbers [29], sparse neighborhood covers [16, 17], by a game called the splitter
game [17] and by the model-theoretic concepts of stability and independence [1]. For a
broader discussion we refer to the book of Nešetřil and Ossona de Mendez [25].

An important and related concept is the notion of a graph class of bounded expansion [20,
21, 22]. Precisely, a class of graphs C has bounded expansion if for any r ∈ N, the ratio
between the numbers of edges and vertices in any r-shallow minor of a graph from C is
bounded by a constant depending on r only. Obviously, every class of bounded expansion is
also nowhere dense, but the converse is not always true.

Domination problems. In the parameterized Dominating Set problem we are given a
graph G and an integer parameter k, and the task is to determine the existence of a subset
D ⊆ V (G) of size at most k such that every vertex u of G is dominated by D, that is,
u either belongs to D or has a neighbor in D. More generally, for fixed r ∈ N we can
consider the Distance-r Dominating Set problem, where we are asked to determine
the existence of a subset D ⊆ V (G) of size at most k such that every vertex u ∈ V (G) is
within distance at most r from a vertex from D. The Dominating Set problem plays
a central role in the theory of parameterized complexity, as it is a prime example of a
W[2]-complete problem again with k as the paramenter, thus considered intractable in full
generality from the parameterized point of view. For this reason, Dominating Set and
Distance-r Dominating Set have been extensively studied in restricted graph classes,
including the sparse setting.

The study of parameterized algorithms for Dominating Set on sparse and topologically
constrained graph classes has a long history, and, arguably, it played a pivotal role in the
development of modern parameterized complexity. A point of view that was particularly
fruitful, and most relevant to our work, is kernelization. Recall that a kernelization algorithm
is a polynomial-time preprocessing algorithm that transforms a given instance into an

K. Eickmeyer et al. 63:3

equivalent one whose size is bounded by a function of the parameter only, independently of
the overall input size. We are mostly interested in kernelization algorithms whose output
guarantees are polynomial in the parameter, or maybe even linear. For Dominating Set
on topologically restricted graph classes, linear kernels were given for planar graphs [2],
bounded genus graphs [3], apex-minor-free graphs [12], graphs excluding a fixed minor [13],
and graphs excluding a fixed topological minor [14]. All these results relied on applying tools
of topological nature, most importantly deep decomposition theorems for graphs excluding
a fixed (topological) minor. Notably, the research on kernelization for Dominating Set
directly led to the introduction of the technique of meta-kernelization [3], which applies to a
much larger family of problems on bounded-genus and H-minor-free graph classes.

Dawar and Kreutzer [7] showed that for every r ∈ N and every nowhere dense class C,
Distance-r Dominating Set is fixed-parameter tractable on C. As far as polynomial
kernelization is concerned, Drange et al. [9] gave a linear kernel for Distance-r Dominating
Set on any graph class of bounded expansion1, for every r ∈ N, and an almost linear kernel
for Dominating Set on any nowhere dense graph class; that is, a kernel of size f(ε) · k1+ε

for some function f . Drange et al. could not extend their techniques to larger domination
radii r on nowhere dense classes, however, they conjectured that this should be possible. An
important step was made recently by a subset of the authors [18], who gave a polynomial
kernel for Distance-r Dominating Set on any nowhere dense class C.

Nowhere dense classes are the limit for the fixed-parameter tractability of the problem:
Drange et al. [9] showed that whenever C is a somewhere dense class closed under taking
subgraphs, there is some r ∈ N for which Distance-r Dominating Set is W[2]-hard on C.

Neighborhood complexity. One of the crucial ideas in the work of Drange et al. [9] was to
focus on the neighborhood complexity in sparse graph classes. For an integer r ∈ N, a graph
G, and a subset A ⊆ V (G) of vertices of G, the r-neighborhood complexity of A, denoted
νr(G,A), is defined as the number of different subsets of A that are of the form Nr[u] ∩A
for some vertex u of G; here, NG

r [u] denotes the ball of radius r around u. That is,

νr(G,A) = |{NG
r [u] ∩A : u ∈ V (G)}|.

It was proved by Reidl et al. [26] that linear neighborhood complexity exactly characterizes
subgraph-closed classes of bounded expansion. More precisely, a subgraph-closed class C
has bounded expansion if and only if for each r ∈ N there is a constant cr such that
νr(G,A) ≤ cr · |A| for all graphs G ∈ C and vertex subsets A ⊆ V (G). They posed as an
open problem whether nowhere denseness can be similarly characterized by almost linear
neighborhood complexity. The lack of a neighborhood complexity theorem for nowhere
dense classes was a major, however not the only, obstacle preventing Drange et al. [9] from
extending their kernelization results to Distance-r Dominating Set on any nowhere dense
class. The neighborhood complexity result for nowhere dense classes for r = 1 was given
by Gajarský et al. [15], and this result was used by Drange et al. [9] in their kernelization
algorithm for Dominating Set (distance r = 1) on nowhere dense graph classes.

Conversely, if C is somewhere dense and closed under taking subgraphs, then for some
r ∈ N it contains the exact r-subdivision of every graph [24]. In this case it is easy to see
that the r-neighborhood complexity of a vertex subset A can be as large as 2|A|.

1 Precisely, the kernelization algorithm of Drange et al. [9] outputs an instance of an annotated problem
where some vertices are not required to be dominated; this will be the case in this paper as well.

ICALP 2017

63:4 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

Our results. In this paper we resolve in the affirmative both outlined conjectures. Let us
first focus on neighborhood complexity.

I Theorem 3. Let C be a graph class closed under taking subgraphs. Then C is nowhere
dense if and only if there exists a function fnei(r, ε) such that νr(G,A) ≤ fnei(r, ε) · |A|1+ε

for all r ∈ N, ε > 0, G ∈ C, and A ⊆ V (G).

To prove the above, we carefully analyze the argument of Reidl et al. [26] for linear
neighborhood complexity in classes of bounded expansion. This argument is based on the
analysis of vertex orderings certifying the constant upper bound on the weak coloring number
of any graph from a fixed class of bounded expansion. In the nowhere dense setting, we only
have an nε upper bound on the weak coloring number, and therefore the reasoning breaks
whenever one tries to use a bound that is exponential in this number. We circumvent this
issue by applying tools based on model-theoretic properties of nowhere dense classes of graphs.
More precisely, we use the fact that every nowhere dense class is stable in the sense of Shelah,
and hence every graph H which is obtained from a graph G from a nowhere dense class via
a first-order interpretation has bounded VC-dimension [1]. Then exponential blow-ups can
be reduced to polynomial using the Sauer-Shelah Lemma. These tools were recently used by
a subset of the authors to give polynomial bounds for uniform quasi-wideness [18], a fact
that also turns out to be useful in our proof.

We remark that we were informed by Micek, Ossona de Mendez, Oum, and Wood [19]
that they have independently proved the statement of Theorem 3 using different methods.

Having the almost linear neighborhood complexity for any nowhere dense class of graphs,
we can revisit the argumentation of Drange et al. [9] and prove the following result.

I Theorem 4. Let C be a fixed nowhere dense class of graphs, let r be a fixed positive integer,
and let ε > 0 be any fixed real. Then there is a polynomial-time algorithm that, given a graph
G ∈ C and a positive integer k, returns a subgraph G′ ⊆ G and a vertex subset Z ⊆ V (G′)
with the following properties:

there is a set D ⊆ V (G) of size at most k which r-dominates G if and only if there is a
set D′ ⊆ V (G′) of size at most k which r-dominates Z in G′; and
|V (G′)| ≤ fker(r, ε) · k1+ε, for some function fker(r, ε) depending only on the class C.

Just as in Drange et al. [9], the obtained triple (G′, Z, k) is formally not an instance
of Distance-r Dominating Set, but of an annotated variant of this problem where
some vertices (precisely V (G′) \ Z) are not required to be dominated. This is an annoying
formal detail, however it can be addressed almost exactly as in Drange et al. by additional
gadgeteering of annotations; see the full version for details.

Our proof of Theorem 4 revisits the line of reasoning of Drange et al. [9] for bounded
expansion classes, and improves it in several places where the arguments could not be
immediately lifted to the nowhere dense setting. The key ingredient is, of course, the
usage of the newly proven almost linear neighborhood complexity for nowhere dense classes
(Theorem 3), however, this was not the only piece missing. Another issue was that the
algorithm of Drange et al. starts by iteratively applying the constant-factor approximation
algorithm for Distance-r Dominating Set of Dvořák [10] in order to expose a certain
structure in the instance. This part does not carry over to the nowhere dense setting, but we
are able to circumvent it by using the new polynomial bounds for uniform quasi-wideness [18].

All proofs which are omitted in this extended abstract are marked with (?). The full
version of the paper can be found as an arxiv preprint [11].

K. Eickmeyer et al. 63:5

2 Preliminaries

We use standard graph notation; see e.g. [8] for reference. All graphs considered in this paper
are finite, simple, and undirected. For a graph G, by V (G) and E(G) we denote the vertex
and edge sets of G, respectively.

Nowhere denseness (see Definition 2) admits several equivalent definitions, see [25] for a
wider discussion. We next recall the ones used in this paper, as well as related concepts.

Weak coloring mumbers. For a graph G we let Π(G) denote the set of all linear orders
of V (G). For L ∈ Π(G), u, v ∈ V (G), and any r ≥ 0, we say that u is weakly r-reachable
from v with respect to L, if there is a path P of length at most r connecting u and v such
that u is the smallest among the vertices of P with respect to L. By WReachr[G,L, v] we
denote the set of vertices that are weakly r-reachable from v with respect to L. For any
subset A ⊆ V (G), we let WReachr[G,L,A] =

⋃
v∈A WReachr[G,L, v]. The weak r-coloring

number wcolr(G) of G is defined as

wcolr(G) = min
L∈Π(G)

max
v∈V (G)

∣∣WReachr[G,L, v]
∣∣.

As proved by Zhu [29], the weak coloring numbers can be used to characterize bounded
expansion and nowhere dense classes of graphs.

I Theorem 5 ([29]). Let C be a nowhere dense class of graphs. There is a function fwcol(r, ε)
such that wcolr(H) ≤ fwcol(r, ε) · |V (H)|ε for every r ∈ N, ε > 0, and H ⊆ G ∈ C.

Quasi-wideness. A set B ⊆ V (G) is called r-independent in G if for all distinct u, v ∈ B
we have distG(u, v) > r.

I Definition 6. A class C of graphs is uniformly quasi-wide if there are functions N : N×N→
N and s : N → N such that for all r,m ∈ N and all subsets A ⊆ V (G) for G ∈ C of size
|A| ≥ N(r,m) there is a set S ⊆ V (G) of size |S| ≤ s(r) and a set B ⊆ A \S of size |B| ≥ m
which is r-independent in G−S. The functions N and s are called the margins of the class C.

It was shown by Nešetřil and Ossona de Mendez [24] that a class C of graphs is nowhere
dense if and only if it is uniformly quasi-wide. For us it will be important that the margins N
and s can be assumed to be polynomial in r and that the sets B and S can be efficiently
computed. This was proved only recently by Kreutzer et al. [18].

I Theorem 7 ([18]). Let C be a nowhere dense class of graphs and let t : N → N be a
function such that Kt(r) 64r G for all r ∈ N and all G ∈ C. For every r ∈ N there exist
constants p(r) and s(r) ≤ t(r) such that for all m ∈ N, all G ∈ C, and all sets A ⊆ V (G)
of size at least mp(r), there is a set S ⊆ V (G) of size at most s(r) such that there is a set
B ⊆ A \ S of size at least m which is r-independent in G − S. Furthermore, there is an
algorithm that, given an n-vertex graph G ∈ C, ε > 0, r ∈ N, and A ⊆ V (G) of size at least
mp(r), computes sets S and B ⊆ A as described above in time O(r · t · |A|t+1 · n1+ε).

We remark that the running time of the algorithm of Theorem 7 is stated in the SODA
version [18] only as O(r · t · nt+6). A finer analysis with the running times as stated above
can be found in the arXiv version of that paper.

ICALP 2017

63:6 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

VC-dimension. Let F ⊆ 2A be a family of subsets of a set A. For a set X ⊆ A, we
denote X ∩ F = {X ∩ F : F ∈ F}. The set X is shattered by F if X ∩ F = 2X . The
Vapnik-Chervonenkis dimension, short VC-dimension, of F is the maximum size of a set X
that is shattered by F . Note that if X is shattered by F , then also every subset of X is
shattered by F .

The following theorem was first proved by Vapnik and Chervonenkis [5], and rediscovered
by Sauer [27] and Shelah [28]. It is often called the Sauer-Shelah Lemma in the literature.

I Theorem 8 (Sauer-Shelah Lemma). If |A| ≤ n and F ⊆ 2A has VC-dimension d, then
|F| ≤

∑d
i=0
(
n
i

)
∈ O(nd).

Note that in the interesting cases d ≥ 2, n ≥ 2 it holds that
∑d
i=0
(
n
i

)
≤ nd, and in general

it holds that
∑d
i=0
(
n
i

)
≤ 2 · nd. For a graph G, the VC-dimension of G is defined as the

VC-dimension of the family {N [v] : v ∈ V (G)} of sets over the set V (G).

VC-dimension and nowhere denseness. Adler and Adler [1] have proved that any nowhere
dense class C of graphs is stable, which in particular implies that any class of structures
obtained from C by means of a first-order interpretation has VC-dimension bounded by
a constant depending only on C and the interpretation. In particular, the following is an
immediate corollary of the results of Adler and Adler [1].

I Corollary 9. Let C be a nowhere dense class of graphs and let r ∈ N. For G ∈ C, let
G=r be the graph with the same vertex set as G and an edge {u, v} ∈ E(G=r) if and only if
distG(u, v) = r. Define the graph G≤r in the same manner, but putting an edge {u, v} into
E(G≤r) if and only if distG(u, v) ≤ r. Then there is an integer c(r) such that both G=r and
G≤r have VC-dimension at most c(r) for every G ∈ C.

By combining Corollary 9 with the Sauer-Shelah Lemma we infer the following.

I Corollary 10. Let C be a nowhere dense class of graphs and r ∈ N. Then νr(G,A) ≤ |A|c(r)
for every graph G ∈ C and A ⊆ V (G), where c(r) is the constant given by Corollary 9.

Thus, a polynomial bound on the neighborhood complexity for any nowhere dense class,
and, in fact, for any stable class, already follows from known tools. Our goal in the next
section will be to show that with the assumption of nowhere denseness we can prove an
almost linear bound, as described in Theorem 3.

Distance profiles. In our reasoning we will need a somewhat finer view of the neighborhood
complexity. More precisely, we would like to partition the vertices of the graph not only
with respect to their r-neighborhood in a fixed set A, but also with respect to what are the
exact distances of the elements of this r-neighborhood from the considered vertex. With this
intuition in mind, we introduce the notion of a distance profile.

Let G be a graph and let A ⊆ V (G) be a subset of its vertices. For a vertex u ∈ V (G), the
r-distance profile of u, denoted πGr [u,A], is a function mapping vertices of A to {0, 1, . . . , r,∞}
defined as follows:

πGr [u,A](v) =
{

distG(u, v) if distG(u, v) ≤ r,
∞ otherwise.

We say that a function f : A → {0, 1, . . . , r,∞} is realized as an r-distance profile on A if
there is u ∈ V (G) such that f = πGr [u,A]. We may drop the superscript if the graph is clear
from the context.

K. Eickmeyer et al. 63:7

Similarly to the neighborhood complexity, we define the distance profile complexity of a
vertex subset A ⊆ V (G) in a graph G, denoted ν̂r(G,A), as the number of different functions
realized as r-distance profiles on A in G. Clearly it always holds that νr(G,A) ≤ ν̂r(G,A),
thus Theorem 3 will follow directly from the following result, which will be proved in the
next section.

I Theorem 11. Let C be a nowhere dense class of graphs. Then there is a function fnei(r, ε)
such that for every r ∈ N, ε > 0, graph G ∈ C, and vertex subset A ⊆ V (G), it holds that
ν̂r(G,A) ≤ fnei(r, ε) · |A|1+ε.

Let us observe that the polynomial bound of Corollary 10 carries over to distance profiles.

I Lemma 12 (?). Let C be a nowhere dense class of graphs. Then there is an integer d(r)
such that for every r ∈ N, ε > 0, graph G ∈ C, and vertex subset A ⊆ V (G) with |A| ≥ 2, it
holds that ν̂r(G,A) ≤ |A|d(r).

3 Neighborhood complexity of nowhere dense classes

In this section we prove Theorem 11, which directly implies Theorem 3, as explained in
the previous section. Our approach is to carefully analyze the proof of Reidl et al. [26] for
bounded expansion classes, and to fix parts that break down in the nowhere dense setting
using tools derived, essentially, from the stability of nowhere dense classes.

We first prove the following auxiliary lemma. We believe it may be of independent
interest, as it seems very useful for the analysis of weak coloring numbers in the nowhere
dense setting.

I Lemma 13. Let C be a nowhere dense class of graphs and let G ∈ C. For r ≥ 0 and a
linear order L ∈ Π(G), let

Wr,L = {WReachr[G,L, v] : v ∈ V (G)}.

Then there is a constant x(r), depending only on C and r (and not on G and L), such that
Wr,L has VC-dimension at most x(r).

Proof. Since C is nowhere dense, according to Theorem 5, it is uniformly quasi-wide, say
with margins N and s. We fix a number m to be determined later, depending only on r
and C. Let x = x(r) = N(2r,m) and s = s(r). Assume towards a contradiction that there
is a set A ⊆ V (G) of size x which is shattered by Wr,L. Fix sets S ⊆ V (G) and B ⊆ A \ S
such that |B| = m, |S| ≤ s, and B is 2r-independent in G − S. We will treat L also as a
linear order on the vertex set of G− S.

As a subset of A, the set B is also shattered by Wr,L. That is, for every X ⊆ B

there is a vertex vX ∈ V (G) such that X = WReachr[G,L, vX] ∩ B. Note that since B is
2r-independent in G− S, so is X, and we have |WReachr[G− S,L, vX] ∩B| ≤ 1.

For a vertex σ ∈ S, number ρ ∈ {0, . . . , r − 1}, and vertex v ∈ V (G), let us consider the
set Pv,σ,ρ of all paths of length (exactly) ρ that connect σ and v. We define bσ,ρ(v) to be the
largest (with respect to L) vertex b ∈ B, for which there exists a path P ∈ Pv,σ,ρ such that
every vertex on P is strictly larger than b with respect to L. If no such vertex in B exists,
we put bσ,ρ(v) = ⊥. The signature of a vertex v ∈ V (G) is defined as

χ(v) =
(
bσ,ρ(v)

)
σ∈S, 0≤ρ≤r−1.

It now follows that the number of possible signatures is small.

ICALP 2017

63:8 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

I Claim 14 (?). The set {χ(v) : v ∈ V (G)} has size at most (m+ 1)r·s.

The next claim intuitively shows that for a vertex v, the signature of v plus the set of
vertices of B that are weakly reachable from v in G − S provide enough information to
deduce precisely the set of vertices of B that are weakly reachable from v in G.

I Claim 15 (?). Suppose v, w ∈ V (G) are such that

χ(v) = χ(w) and WReachr[G− S,L, v] ∩B = WReachr[G− S,L,w] ∩B.

Then WReachr[G,L, v] ∩B = WReachr[G,L,w] ∩B.

By Claim 14 there are at most (m+ 1)r·s possible signatures, while we argued that the
intersection WReachr[G− S,L, v] ∩B is always of size at most 1, hence there are at most
(m+1) possibilities for it. Thus, by Claim 15 we conclude that only at most (m+1)r·s ·(m+1)
subsets of B are realized as B ∩W for some W ∈ Wr,L. To obtain a contradiction with B
being shattered by Wr,L, it suffices to select m so that (m+ 1)r·s+1 < 2m. Since s = s(r) is
a constant depending on C and r only, we may choose m depending on C and r so that the
above inequality holds. J

With Lemma 13 in hand, we now are ready to prove Theorem 11.

Proof of Theorem 11. Fix r ≥ 1 and ε > 0. We also use small constants ε1, ε2, ε3, ε4 > 0,
which will be determined in the course of the proof.

The first step is to reduce the problem to the case when the size of the graph is bounded
polynomially in |A|. Without loss of generality assume |A| ≥ 2. According to Lemma 12,
there is an integer d(r) such that there are at most |A|d(r) different r-distance profiles on A.
We therefore classify the elements of V (G) according to their r-distance profiles on A, that
is, we define an equivalence relation ∼ on V (G) as follows:

v ∼ w if and only if πGr [v,A] = πGr [w,A].

Construct a set A′ by taking A and, for each equivalence class κ of ∼, adding an arbitrary
element vκ to A′. Then, construct a set A′′ by starting with A′, and, for each distinct
u, v ∈ A′′, performing the following operation: if distG(u, v) ≤ r, then add the vertex set of
any shortest path between u and v to A′′. Finally, let G′ = G[A′′].

I Claim 16 (?). It holds that |A′′| ≤ |A|2·d(r)+3.

I Claim 17 (?). It holds that ν̂r(G′, A) ≥ ν̂r(G,A).

The gain from this step is that the size of G′ is bounded polynomially in terms of |A|,
hence we can use better bounds on the weak coloring numbers, as explained next.

According to Theorem 5, there is a function fwcol such that

wcol2r(G′) ≤ fwcol(2r, ε4) · |A′′|ε4 = fwcol(2r, ε4) · |A|(2·d(r)+3)·ε4 = fwcol(2r, ε4) · |A|ε3 ,

where ε4 = ε3/(2 · d(r) + 3). Let L be a linear order of V (G′) with |WReach2r[G′, L, v]| ≤
fwcol(2r, ε4) · |A|ε3 . For each v ∈ V (G′), let us define the following set:

Y [v] = WReachr[G′, L, v] ∩WReachr[G′, L,A].

K. Eickmeyer et al. 63:9

In other words, Y [v] comprises all vertices that are weakly r-reachable both from v and
from some vertex of A. Since Y [v] ⊆ WReachr[G′, L, v] for each v ∈ V (G′), we have
|Y [v]| ≤ |WReachr[G′, L, v]| ≤ fwcol(2r, ε4) · |A|ε3 . Furthermore, as for each v ∈ V (G′)
we have Y [v] ⊆ WReachr[G,L,A] =

⋃
w∈A WReachr[G,L,w], we have

∣∣∣⋃v∈V (G′) Y [v]
∣∣∣ ≤

|A| ·maxw∈V (G′) |WReachr[G,L,w]| ≤ fwcol(2r, ε4) · |A|1+ε3 .
We now classify the vertices v ∈ V (G′) according to their distance profiles πG′

r [v, Y [v]].
More precisely, let ≡ be the equivalence relation on V (G′) defined as follows:

v ≡ w if and only if Y [v] = Y [w] and πG
′

r [v, Y [v]] = πG
′

r [w, Y [w]].

We next show that the equivalence relation ≡ refines the standard partitioning according to
r-distance profiles on A.

I Claim 18 (?). For every v, w ∈ V (G), if v ≡ w, then πG′

r [v,A] = πG
′

r [w,A].

Claim 18 suggests the following approach to bounding ν̂r(G′, A): first give an upper
bound on the number of possible sets of the form Y [v], and then for each such set, bound the
number of r-distance profiles on it. We deal with the second part first, as it essentially follows
from Lemma 12. Let us set ε2 = ε3 · d(r), where d(r) is the constant given by Lemma 12.

I Claim 19 (?). There is g(r, ε4) such that for all v ∈ V (G), we have ν̂r(G, Y [v]) ≤
g(r, ε4)|A|ε2 .

It remains to give an upper bound on the number of distinct sets Y [v]. Let us set
ε1 = ε3 · x(r), where x(r) is the constant given by Lemma 13.

I Claim 20. It holds that |{Y [v] : v ∈ V (G′)}| ≤ 1 + 2 · fwcol(2r, ε4)x(r)+1 · |A|1+ε1+ε3 .

Proof. Let Y = {Y [v] : v ∈ V (G′)} \ {∅} be the family of all non-empty sets of the form Y [v]
for v ∈ V (G′); it suffices to show that |Y| ≤ fwcol(2r, ε4)x(r)+1 · |A|1+ε1+ε3 . Define mapping
γ : Y → V (G′) as follows: for Z ∈ Y, γ(Z) is the largest element of Z with respect to L.

Take any v ∈ V (G′) with Y [v] 6= ∅, and recall that every vertex in Y [v] is weakly r-
reachable from v. Observe that every vertex w ∈ Y [v] is weakly 2r-reachable from γ(Y [v]). To
see this, concatenate the two paths of length at most r that certify that w ∈WReachr[G′, L, v]
and γ(Y [v]) ∈WReachr[G′, L, v], and note that this path of length at most 2r certifies that
w ∈WReach2r[G′, L, γ(Y [v])]. Consequently, for every y ∈ γ(Y), we have⋃

γ−1(y) ⊆WReach2r[G′, L, y].

Hence the union of all sets of Y that choose the same y via γ has size at most wcol2r(G′).
Fix any y ∈ γ(Y) and denote Sy =

⋃
γ−1(y). Let us count how many distinct subsets

of Sy belong to Y. Every such Z = Y [v], as a subset of Sy, satisfies Y [v] ∩ Sy = Y [v] =
WReachr[G′L, v] ∩WReachr[G′, L,A]. As for all v the set WReachr[G′, L,A] is the same,
this means that the number of different Y [v] ∈ Y that are mapped to a fixed y is not larger
than the number of different sets WReachr[G′, L, v] ∩ Sy, for v ∈ V (G′).

By Lemma 13, the set Wr,L = {WReachr[G′, L, v] : v ∈ V (G′)} has VC-dimension at
most x(r), and so has the subfamily {Sy ∩WReachr[G′, L, v] : v ∈ V (G′)}. Hence, by the
Sauer-Shelah Lemma, we infer that |{Sy ∩WReachr[G′, L, v] : v ∈ V (G′)}| ≤ 2 · |Sy|x(r).

ICALP 2017

63:10 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

Finally, we observe that γ(Y) ⊆
⋃
Y and recall that |

⋃
Y| ≤ fwcol(2r, ε4) · |A|1+ε3 , hence

|Y| ≤
∑

y∈γ(Y)

|{Sy ∩WReachr[G′, L, v] : v ∈ V (G′)}|

≤ 2 ·
∑

y∈γ(Y)

|Sy|x(r) ≤ 2 · |γ(Y)| · (wcol2r(G′))x(r)

≤ 2 · |
⋃
Y| · (fwcol(2r, ε4) · |A|ε3)x(r)

≤ 2 · fwcol(2r, ε4) · |A|1+ε3 · fwcol(2r, ε4)x(r)+1 · |A|ε1

≤ 2 · fwcol(2r, ε4)x(r)+1 · |A|1+ε1+ε3 . J

By combining Claim 17, Claim 18, Claim 19, and Claim 20, we conclude that

ν̂r(G,A) ≤ ν̂r(G′, A) ≤ index(≡)
≤ |{Y [v] : v ∈ V (G′)}| · g(r, ε4) · |A|ε2

≤ (1 + 2 · fwcol(2r, ε4)x(r)+1 · |A|1+ε1+ε3) · g(r, ε4) · |A|ε2

≤ 3 · fwcol(2r, ε4)x(r)+1 · g(r, ε4) · |A|1+ε1+ε2+ε3 .

Now fix ε4 > 0 so that ε1 + ε2 + ε3 < ε and set fnei(r, ε) = 3 · fwcol(2r, ε4)x(r)+1 · g(r, ε4). J

4 Kernelization for distance-r dominating sets

In this section we use the neighborhood complexity tools to prove Theorem 4. Throughout
the section we fix a nowhere dense class C. Whenever we say that the running time of some
algorithm on a graph G is polynomial, we mean that it is of the form O((|V (G)|+ |E(G)|)α),
where α is a universal constant that is independent of C, r, ε, or any other constants defined
in the context. However, the constants hidden in the O(·)-notation may depend on C, r,
and ε.

Projections and projection profiles. Let G ∈ C be a graph and let A ⊆ V (G) be a subset
of vertices. For vertices v ∈ A and u ∈ V (G) \ A, a path P connecting u and v is called
A-avoiding if none of its vertices apart from v belong to A. For a positive integer r, the
r-projection of any u ∈ V (G) \ A on A, denoted MG

r (u,A) is the set of all vertices v ∈ A
that can be connected to u by an A-avoiding path of length at most r. The r-projection
profile of a vertex u ∈ V (G) \ A on A is a function ρGr [u,A] mapping vertices of A to
{0, 1, . . . , r,∞}, defined as follows: for every v ∈ A, the value ρGr [u,A](v) is the length of
a shortest A-avoiding path connecting u and v, and ∞ in case this length is larger than r.
Similarly as for r-neighborhoods and r-distance profiles, we define

µr(G,A) = |{MG
r (u,A) : u ∈ V (G) \A}| and µ̂r(G,A) = |{ρGr [u,A] : u ∈ V (G) \A}|

to be the number of different r-projections and r-projection profiles realized on A, respectively.
Clearly, again it always holds that µr(G,A) ≤ µ̂r(G,A). The following lemma is a simple
consequence of the results of the previous section.

I Lemma 21 (?). Suppose C is a nowhere dense class of graphs. Then there is a function
fproj(r, ε) such that for every r ∈ N, ε > 0, graph G ∈ C, and vertex subset A ⊆ V (G), it
holds that µ̂r(G,A) ≤ fproj(r, ε) · |A|1+ε.

K. Eickmeyer et al. 63:11

We next recall the main tool for projections proved by Drange et al. [9], namely the
Closure Lemma. Intuitively, it says that any vertex subset A ⊆ V (G) can be “closed” to a
set clr(A) that is not much larger than A, such that all r-projections on clr(A) are small.
The next lemma follows from a straightforward adaptation of the proof of Drange et al.

I Lemma 22 (?, Lemma 2.9 of [9], adjusted). There is a function fcl(r, ε) and a polynomial-
time algorithm that, given G ∈ C, X ⊆ V (G), r ∈ N, and ε > 0, computes the r-closure of
X, denoted clr(X) with the following properties.

X ⊆ clr(X) ⊆ V (G);
|clr(X)| ≤ fcl(r, ε) · |X|1+ε; and
|MG

r (u, clr(X))| ≤ fcl(r, ε) · |X|ε for each u ∈ V (G) \ clr(X).

We need another lemma from Drange et al., called the Short Paths Closure Lemma.

I Lemma 23 (?, Lemma 2.11 of [9], adjusted). There is a function fpth(r, ε) and a polynomial-
time algorithm which on input G ∈ C, X ⊆ V (G), r ∈ N, and ε > 0, computes a superset
X ′ ⊇ X of vertices with the following properties:

whenever distG(u, v) ≤ r for u, v ∈ X, then distG[X′](u, v) = distG(u, v); and
|X ′| ≤ fpth(r, ε) · |X|1+ε.

For the rest of this section let us fix constants r ∈ N and ε > 0; they will be used
implicitly in the proofs. Let us recall some terminology from Drange et al. [9], which is
essentially also present in the approach of Dawar and Kreutzer [7]. For a graph G, and vertex
subset Z ⊆ V (G), we say that a subset of vertices D is a (Z, r)-dominator if Z ⊆ NG

r (D).
We write dsr(G,Z) for the smallest (Z, r)-dominator in G and dsr(G) for the smallest
(V (G), r)-dominator in G. The crux of the approach of Drange et al. [9] is to perform
kernelization in two phases: first compute a small r-domination core, and then reduce the
size of the graph in one step.

I Definition 24. An r-domination core of G is a subset Z ⊆ V (G) such that every minimum
size (Z, r)-dominator is also a distance-r dominating set in G.

We shall prove the following analogue of Theorem 4.11 of [9].

I Lemma 25. There exists a function fcore(r, ε) and a polynomial-time algorithm that, given
a graph G ∈ C and integer k ∈ N, either correctly concludes that G cannot be r-dominated
by k vertices, or finds an r-domination core Z ⊆ V (G) of G of size at most fcore(r, ε) · k1+ε.

Starting with Z = V (G), which is clearly an r-domination core of G, we try to iteratively
remove vertices from Z while preserving the property that Z is an r-domination core of G.
More precisely, we show the following lemma, which is the analogue of Theorem 4.12 of [9]
and of Lemma 11 of [7].

I Lemma 26. There exists a function fcore(r, ε) and a polynomial-time algorithm that, given
a graph G ∈ C, an integer k ∈ N, and an r-domination core Z of G with |Z| > fcore(r, ε)·k1+ε,
either correctly concludes that Z cannot be r-dominated by k vertices, or finds a vertex z ∈ Z
such that Z \ {z} is still an r-domination core of G.

Observe that Lemma 25 follows by applying Lemma 26 iteratively until the size of the
core is reduced to at most fcore(r, ε) · k1+ε. This iteration is performed at most n times
leading to an additional factor n in the running time in Lemma 25.

The first step of the proof of Lemma 26 is to find a suitable approximation of a (Z, r)-
dominator. For this, we can rely on the classic O(log OPT)-approximation of Brönnimann
and Goodrich [4] for the Hitting Set problem in set families of bounded VC-dimension, as
explained in the next lemma.

ICALP 2017

63:12 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

I Lemma 27 (?). There is a function fapx(r, ε) and a polynomial-time algorithm that, given
G ∈ C and Z ⊆ V (G), computes a (Z, r)-dominator of size at most fapx(r, ε) · k1+ε, where k
is the size of a minimum r-dominating set of Z.

We are now ready to prove Lemma 26.

Proof of Lemma 26. The function fcore(r, ε) will be defined in the course of the proof. For
convenience, for now we assume that |Z| > fcore(r, ε) · k1+Cε for some large constant C, for
at the end we will rescale ε accordingly.

We first apply Lemma 27, to either conclude that there is no (Z, r)-dominator of size at
most k or to compute a (Z, r)-dominator X of size at most fapx(r, ε) · k1+ε. This application
takes polynomial time. In the first case we can reject the instance, hence assume that we are
in the second case.

We apply the algorithm of Lemma 22 to the set X and distance parameter 3r, thus
computing its closure cl3r(X), henceforth denoted by Xcl. By Lemma 22, we have

|Xcl| ≤ fcl(3r, ε) · |X|1+ε ≤ fcl(3r, ε) · fapx(r, ε)1+ε · k1+3ε,

and, for every u ∈ V (G) \Xcl,

|MG
3r(u,Xcl)| ≤ fcl(3r, ε) · |X|ε ≤ fcl(3r, ε) · fapx(r, ε)ε · k3ε.

We now classify the elements of Z \Xcl according to their 3r-projection profiles on Xcl.
More precisely, let us define an equivalence relation ∼ on Z \Xcl as follows:

u ∼ v if and only if ρG3r[u,Xcl] = ρG3r[v,Xcl].

By Lemma 21, the number of equivalence classes of ∼ is bounded as follows:

index(∼) ≤ fnei(3r, ε) · |Xcl|1+ε ≤ fnei(3r, ε) · fcl(3r, ε)1+ε · fapx(r, ε)(1+ε)2
· k1+7ε.

Note that the partition of V (G) into the equivalence classes of ∼ can be computed in
polynomial time, by just computing the 3r-projection profile for each vertex using breadth-
first search, and then comparing the profiles pairwise.

Let t(r), p(r), and s(r) be the functions provided by Theorem 7 for the class C. Denote
α = fcl(3r, ε) · fapx(r, ε)ε · k3ε + s(2r) + 1 and β = α · (r + 2)s(r) + 1. From the above
inequalities on |Xcl| and index(∼), it follows that setting C = 7 + 3 · p(2r), we can fix the
function fcore(r, ε) so that the following inequality is always satisfied:

fcore(r, ε) · k1+Cε ≥ |Xcl|+ index(∼) · βp(2r).

Since we assumed that |Z| > fcore(r, ε) · k1+Cε, it follows that |Z \Xcl| > index(∼) · βp(2r).
Hence, by the pigeonhole principle, there exists an equivalence class κ of ∼ that contains
more than βp(2r) vertices. By applying the algorithm of Theorem 7 to any subset of κ of size
exactly βp(2r), we find sets S ⊆ V (G) and L ⊆ κ \ S such that |S| ≤ s(r), |L| ≥ β, and L is
2r-independent in G− S. This application takes time O(r · t(2r) · βp(2r)·(t(r)+1) · |V (G)|1+ε).
Provided ε satisfies 3 ·p(2r) · (t(2r)+1) ·ε < 1, which we can assume without loss of generality,
we have that βp(2r)·(t(2r)+1) ≤ O(k); here, the constants hidden in the O(·)-notation may
depend on C. Since we can assume that k ≤ |V (G)|, this application of the algorithm of
Theorem 7 takes then time O(|V (G)|2+ε), which is polynomial with the degree independent
of C.

We now classify the elements of L according to their r-distance profiles on S. Note that
|L| ≤ β and that the number of r-distance profiles on S is bounded by (r+ 2)|S| ≤ (r+ 2)s(r).

K. Eickmeyer et al. 63:13

Since β > α · (r + 2)s(r), by the pigeonhole principle we infer that there is a subset R ⊆ L of
size |R| > α such that

πGr (v, S) = πGr (w, S) for all v, w ∈ R.

At this point the situation is almost exactly as in Lemma 3.8 of [9]. More precisely,
every vertex of R is an irrelevant dominatee, i.e., it can be excluded from Z without spoiling
the property that Z is a domination core. The proof of the following claim is based on an
exchange argument.

I Claim 28 (?). The set Z ′ is also a domination core of G.

Claim 28 ensures us that vertex z is an irrelevant dominatee that can be returned by
the algorithm. Note that we were able to find z provided |Z| > fcore(r, ε) · k1+Cε for some
constant C depending on C and r. Hence, we conclude the proof by rescaling ε to ε/C
throughout the reasoning. J

Finally, having computed a suitably small domination core, we can construct a kernel.
This part of reasoning, encapsulated in the following lemma, is exactly the same as in [9].

I Lemma 29 (?). There exists a function ffin(r, ε) and a polynomial-time algorithm that,
given a graph G ∈ C and an r-domination core Z ⊆ V (G) of G, computes a graph G′ with at
most ffin(r, ε) · |Z|1+ε vertices such that Z ⊆ V (G′) and dsr(G′, Z) = dsr(G,Z).

Theorem 4 follows by combining Lemma 25 and LEmma 29, and rescaling ε by factor 3.

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion

of model theory. European Journal of Combinatorics, 36:322–330, 2014.
2 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction

for dominating set. J. ACM, 51(3):363–384, 2004.
3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,

and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016.
4 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-

dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.
5 A. Chervonenkis and V. Vapnik. Theory of uniform convergence of frequencies of events

to their probabilities and problems of search for an optimal solution from empirical data.
Automation and Remote Control, 32:207–217, 1971.

6 Anuj Dawar. Homomorphism preservation on quasi-wide classes. J. Comput. Syst. Sci.,
76(5):324–332, 2010.

7 Anuj Dawar and Stephan Kreutzer. Domination problems in nowhere-dense classes. In
FSTTCS 2009, volume 4 of LIPIcs, pages 157–168. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2009.

8 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathem-
atics. Springer, 2012.

9 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the
case of Dominating Set. In STACS 2016, volume 47 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. See arxiv preprint 1411.4575 for full
proofs.

ICALP 2017

63:14 Neighborhood Complexity and Kernelization for Nowhere Dense Classes of Graphs

10 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.
European Journal of Combinatorics, 34(5):833–840, 2013.

11 Kord Eickmeyer, Archontia C. Giannopoulou, Stephan Kreutzer, O-joung Kwon, Michal
Pilipczuk, Roman Rabinovich, and Sebastian Siebertz. Neighborhood complexity and
kernelization for nowhere dense classes of graphs. CoRR, abs/1612.08197, 2016. URL:
https://arxiv.org/abs/1612.08197.

12 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In SODA 2010, pages 503–510. SIAM, 2010.

13 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (Connected) Dominating Set on H-minor-free graphs. In SODA 2012, pages
82–93. SIAM, 2012.

14 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear
kernels for (Connected) Dominating Set on graphs with excluded topological subgraphs. In
STACS 2013, volume 20 of LIPIcs, pages 92–103. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2013.

15 Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Sebastian Ordyniak, Felix Reidl, Peter Ross-
manith, Fernando Sánchez Villaamil, and Somnath Sikdar. Kernelization using structural
parameters on sparse graph classes. J. Comput. Syst. Sci., 84:219–242, 2017.

16 Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Konstantinos
Stavropoulos. Colouring and covering nowhere dense graphs. In WG 2015, pages 325–338,
2015.

17 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties
of nowhere dense graphs. In STOC 2014, pages 89–98. ACM, 2014.

18 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and
wideness properties of nowhere dense graph classes. In SODA 2017, pages 1533–1545.
SIAM, 2017. See arxiv preprint 1608.05637 for full proofs.

19 Piotr Micek, Patrice Ossona de Mendez, Sang-il Oum, and David R. Wood. Personal
communication, 2016.

20 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.

21 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
II. Algorithmic aspects. European Journal of Combinatorics, 29(3):777–791, 2008.

22 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expan-
sion III. Restricted graph homomorphism dualities. European Journal of Combinatorics,
29(4):1012–1024, 2008.

23 Jaroslav Nešetřil and Patrice Ossona de Mendez. First order properties on nowhere dense
structures. The Journal of Symbolic Logic, 75(03):868–887, 2010.

24 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. European
Journal of Combinatorics, 32(4):600–617, 2011.

25 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

26 Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos Stavropoulos. Characterising
bounded expansion by neighbourhood complexity. CoRR, abs/1603.09532, 2016.

27 Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series
A, 13(1):145–147, 1972.

28 Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

29 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete
Mathematics, 309(18):5562–5568, 2009.

https://arxiv.org/abs/1612.08197

Additive Spanners and Distance Oracles in
Quadratic Time
Mathias Bæk Tejs Knudsen∗

University of Copenhagen, Copenhagen, Denmark
mathias@tejs.dk

Abstract
Let G be an unweighted, undirected graph. An additive k-spanner of G is a subgraph H that
approximates all distances between pairs of nodes up to an additive error of +k, that is, it
satisfies dH(u, v) ≤ dG(u, v) + k for all nodes u, v, where d is the shortest path distance. We give
a deterministic algorithm that constructs an additive O(1)-spanner with O

(
n4/3) edges in O(n2)

time. This should be compared with the randomized Monte Carlo algorithm by Woodruff [ICALP
2010] giving an additive 6-spanner with O

(
n4/3 log3 n

)
edges in expected time O

(
n2 log2 n

)
.

An (α, β)-approximate distance oracle for G is a data structure that supports the following
distance queries between pairs of nodes in G. Given two nodes u, v it can in constant time
compute a distance estimate d̃ that satisfies d ≤ d̃ ≤ αd + β where d is the distance between
u and v in G. Sommer [ICALP 2016] gave a randomized Monte Carlo (2, 1)-distance oracle
of size O

(
n5/3 poly logn

)
in expected time O

(
n2 poly logn

)
. As an application of the additive

O(1)-spanner we improve the construction by Sommer [ICALP 2016] and give a Las Vegas (2, 1)-
distance oracle of size O

(
n5/3) in time O

(
n2). This also implies an algorithm that in O

(
n2) time

gives approximate distance for all pairs of nodes in G improving on the O
(
n2 logn

)
algorithm by

Baswana and Kavitha [SICOMP 2010].

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph algorithms, data structures, additive spanners, distance oracles

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.64

1 Introduction

Let G = (V,E) be an unweighted, undirected graph on n nodes and m edges. A subgraph H
of G is an additive k-spanner if the following holds for every pair u, v of nodes in G:

dH(u, v) ≤ dG(u, v) + k ,

where dH(u, v) and dG(u, v) is the distance between u and v in H and G respectively. This
paper will only consider additive spanners and not multiplicative or mixed spanners, so we
will simply say that H is a k-spanner when we mean that H is an additive k-spanner.

In this paper we consider algorithms constructing k-spanners, and there are therefore
three interesting parameters: The distortion k, the running time of the algorithm, and the
size of the spanner created. Elkin and Peleg [19] showed how to construct 2-spanners with
O
(
n3/2) edges in O

(
n5/2) time, and Baswana et al [9] gave an algorithm that constructs

6-spanners with O
(
n4/3) edges in O(n2/3m

)
time.

∗ Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Inde-
pendent Research under the Sapere Aude research career programme and by the FNU project AlgoDisc
– Discrete Mathematics, Algorithms, and Data Structures.

EA
T

C
S

© Mathias Bæk Tejs Knudsen;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 64; pp. 64:1–64:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Additive Spanners and Distance Oracles in Quadratic Time

Table 1 A summary of the performance of selected algorithms that creates a k-spanner H from a
graph on n nodes. It shows the additive distortion, k, and an upper bound on the number of edges
in H as well as the running time of the algorithm that constructs H.

k Number of Edges Running Time Comment Reference
2 O

(
n3/2) O

(
n5/2) Deterministic [19]

2 O
(
n3/2 log1/2 n

)
O
(
n2 log2 n

)
Deterministic [18]

2 O
(
n3/2) O

(
n2) Deterministic Theorem 5

6 O
(
n4/3) O

(
n2/3m

)
Deterministic [9]

6 O
(
n4/3 log3 n

)
O
(
n2 log2 n

)
Randomized Monte Carlo [33]

8 O
(
n4/3) O

(
n2) Deterministic Theorem 9

The running time of these algorithms can be improved if we allow the k-spanners
to be larger by a poly logn factor. Dor, Halperin and Zwick [18] showed that we can
construct 2-spanners with O

(
n3/2 log1/2 n

)
edges in O

(
n2 log2 n

)
time, and Woodruff [33]

gave an algorithm to construct 6-spanners with O
(
n4/3 log3 n

)
edges in O

(
n2 log2 n

)
time.

The construction of Woodruff is furthermore randomized Monte Carlo. These results are
summarized in Table 1.

These improvements to the running time fit into the following paradigm. For a fixed
k the authors find algorithms that produce spanners that are almost as small as the best
known construction of k-spanners and have near-quadratic running time. We reverse this
way of looking at the problem. We are now trying to find algorithms that yield k-spanners
that are exactly as small as the best known constructions for any k = O(1), i.e. O(n4/3), and
at the same time we want the algorithm to run as fast as possible. All known algorithms for
creating O(1)-spanners that have close to optimal size run in time Ω(n2). 1 So a natural
question is to ask if there exists a k = O(1) and an algorithm that constructs a k-spanner
with O

(
n4/3) edges in O(n2) time. In fact Sommer [28] mentioned at his talk at ICALP 2016

that the main obstacle towards getting a better running time for constructing the distance
oracle he presented is the lack of such an algorithm. In his case the distortion k = O(1) is
only factored into the running time and not the distortion of oracle. Therefore, it does not
matter what k is as long as it is constant.

We show that it possible to attain this goal by giving an algorithm that constructs
8-spanners deterministically with O

(
n4/3) edges in O(n2) time. Comparing this with the

algorithm by Woodruff [33] this gets rid of the log3 n factor on the number of edges and a
factor of log2 n in the running time. Furthermore, the algorithm is deterministic and not
randomized Monte Carlo. The price of these improvements is that the distortion is larger
than 6. We note that there are no lower bounds ruling out the possibility of a 4-spanner with
O
(
n4/3) edges. For the application to the distance oracle by Sommer [28], the distortion

is unimportant as long as it is constant. We also show how to construct 2-spanners with
O
(
n3/2) edges in O(n2) time. For a comparison to previous work see Table 1.

Related work. Elkin and Peleg [19] showed that2 any graph on n nodes has a 2-spanner
with O(n3/2) edges, Chechik [15] showed that it has a 4-spanner with O

(
n7/5 log1/5 n

)
edges,

and Baswana et al [9] showed that it has a 6-spanner with O(n4/3) edges. These results are

1 For instance the algorithm by Baswana et al [9] gives a 6-spanner with O
(
n4/3

)
edges and is therefore

only interesting when m = Ω
(
n4/3

)
, in which case the running time is Θ

(
n2/3m

)
= Ω
(
n2
)
.

2 Aingworth et al [5] earlier showed the same result up to logarithmic factors on the size of the spanner.

M.B.T. Knudsen 64:3

Table 2 For a given k an upper bound of f(n) is a proof that any graph on n nodes has a
k-spanner with no more than f(n) edges. A lower bound of g(n) is a proof that there exists a graph
on n nodes for which any k-spanner must have at least g(n) edges.

k Upper Bound Lower Bound Reference
2 & 3 O

(
n3/2) Ω

(
n3/2) [19]/[31]

4 & 5 O
(
n7/5 log1/5 n

)
Ω
(
n4/3) [15]/[11]

≥ 6 O
(
n4/3) n4/3−o(1) [9]/[1]

complemented by a negative result of Abboud and Bodwin [1]. A consequence of their result
is that for any k = O(1) there exists a graph on n nodes such that any k-spanner of this
graph has at least n4/3−o(1) edges.

Another negative result comes from Erdős’s girth conjecture [20]. It states that for any
constant k there exists graphs with n nodes and Ω

(
n1+1/k

)
edges where the girth is 2k + 2.

This conjecture has been proved for k = 2, 3, 5 [31, 11]. In particular if the conjecture
is true this implies that there exists graphs for which any (2k − 1)-spanner must have at
least Ω

(
n1+1/k

)
edges. Woodruff [32] proved that whether the conjecture is true or not,

there exists a graph on n nodes such that any (2k − 1)-spanner of the graph has at least
Ω
(
k−1n1+1/k

)
edges.

There are also upper and lower bounds when we allow the distortion k to depend on n,
see [14, 13, 15, 22]. In this paper, however, we are only interested in the case where k = O(1).
The upper and lower bounds for k = O(1) are summarized in Table 2.

Techniques. Previous algorithms that construct k-spanners in Õ
(
n2) time all relied on

constructing a hitting set for some set of neighbourhoods. In [18] this is done deterministically
via a dominating set algorithm, and in [33] this is done via sampling. This approach will
inherently come with the cost of a poly logn factor. Furthermore, in the construction of
6-spanners by Woodruff [33] the number of neighbourhoods that need to be hit is so large
that it seems impossible with current techniques to modify the algorithm to be Las Vegas.
To avoid this we instead use a clustering approach described in Section 2. The algorithm in
Theorem 9 is obtained using this clustering and a careful modification of the path-buying
algorithm of [9].

Approximate Distance Oracles and All Pairs Almost Shortest Paths. Given an undirected
an unweighted graph G an (α, β)-approximate distance oracle for G is a data structure that
supports the following query. Given two nodes u, v it can compute a distance estimate d̃
that satisfies d ≤ d̃ ≤ αd + β where d is the distance between u and v in G. For work on
approximate distance oracles see e.g. [2, 3, 4, 6, 7, 8, 10, 12, 16, 17, 23, 24, 26, 27, 29, 30, 34].
Sommer [28] gave a randomized Monte Carlo (2, 1)-distance oracle that can be constructed
in O

(
n2 poly logn

)
time, has size O

(
n5/3 poly logn

)
and can answer queries in O(1) time.

We improve the construction time and the size to O
(
n2) and O(n5/3) respectively, and our

construction is randomized Las Vegas. As a corollary we can compute an estimate d̃(u, v)
for all pairs of nodes in G satisfying dG(u, v) ≤ d̃(u, v) ≤ 2dG(u, v) + 1 in time O

(
n2). This

improves upon the O
(
n2 logn

)
algorithm by Baswana and Kavitha [8].

Preliminaries. For a graph G and two nodes u, v we denote the distance from u to v in G by
dG(u, v). All graphs considered in this paper are unweighted, and unless otherwise specified
they are undirected as well. For an undirected graph G and a node u the neighbourhood of
u is the set of nodes adjacent to u and is denoted by ΓG(u).

ICALP 2017

64:4 Additive Spanners and Distance Oracles in Quadratic Time

Overview. In Section 2 we introduce the clustering we use when constructing the spanners.
In Section 3 we show how to create an 8-spanner with O

(
n4/3) edges in O

(
n2) time and

thereby prove Theorem 9. In Section 4 we provide the details on how to give an improved
(2, 1)-distance oracle.

2 Clustering

Our construction of additive spanners uses clustering techniques, and we present our clustering
framework below. Let G = (V,E) be a graph with n vertices and m edges. We let t be a
parameter that can depend on our needs. For a sequence u1, . . . , u` of nodes we define the
clusters Ci, i ∈ {1, . . . , `} by

Ci = (ΓG(ui) ∪ {ui}) \ (C1 ∪ . . . ∪ Ci−1) .

Furthermore we also define graphs G0, G1, . . . , G` in the following way. We let G0 = G, and
for i > 0 we let Gi be the subgraph of G defined in the following way. The nodes of Gi are
the same as the nodes of G. An edge (u, v) from G is contained in Gi unless both endpoints
u and v are are contained in C1 ∪ . . . ∪ Ci. From each node ui we let Ti be a BFS tree in
Gi−1 rooted at ui.

I Definition 1. A sequence u1, . . . , u` is called a t-clustering if the following requirements
are satisfied.

The node ui maximizes the size of (ΓG(ui) ∪ {ui}) \ (C1 ∪ . . . ∪ Ci−1).
Every cluster Ci contains at least t nodes.
For every node v we have |(ΓG(v) ∪ {v}) \ (C1 ∪ . . . ∪ C`)| < t.

We say that a node v is clustered if v ∈ C1 ∪ . . .∪C` and unclustered otherwise. We note
that since every cluster Ci contains at least t nodes and the clusters are disjoint we have
` ≤ n

t .

I Lemma 2. Let u1, . . . , u` be a t-clustering of a graph G = (V,E). For every i = 1, 2, . . . , `
the number of edges in Gi−1 is at most n |Ci|. The number of edges in G` is less than nt.

Proof. The set of edges in Gi−1 can be written as

{{u, v} | u ∈ V, v ∈ (ΓG(u)) \ (C1 ∪ . . . ∪ Ci−1)} .

Therefore, the number of edges in Gi−1 is bounded by∑
v∈V

|(ΓG(v)) \ (C1 ∪ . . . ∪ Ci−1)| . (1)

Since every term in (1) is bounded by |Ci|, we conclude that the number of edges in Gi is at
most n |Ci|.

In the same manner we see that the number of edges in G` is bounded by the sum∑
v∈V |(ΓG(v)) \ (C1 ∪ . . . ∪ C`)|, which is clearly less than nt. J

I Lemma 3. Let u1, . . . , u` be a t-clustering of G = (V,E) and let u, v ∈ V be a pair of nodes.
Assume that some shortest path from u to v in G is not contained in G` from Lemma 2.
Then there exists an index i ∈ {1, 2, . . . , `} such that

dTi
(ui, u) + dTi

(ui, v) ≤ dG(u, v) + 2 .

M.B.T. Knudsen 64:5

Proof. Consider a shortest path p from u to v that is not contained in G` and let w be a
clustered node on p such that w ∈ Ci. We choose w such that i is smallest possible. By
choosing i smallest possible p is contained in Gi−1. Furthermore since the distance from w

to ui is at most 1 we see that

dGi−1(ui, u) + dGi−1(ui, v) ≤ dGi−1(w, u) + dGi−1(w, v) + 2 = dG(u, v) + 2 .

Since Ti is a is shortest path tree in Gi−1 the conclusion follows. J

I Lemma 4. Given a graph G and a parameter t > 0 we can construct a t-clustering
u1, . . . , u`, the corresponding BFS trees T1, . . . , T` and G` in O(n2) time.

Proof. The algorithm will work by finding the nodes u1, . . . , u` consecutively, i.e. first u1,
then u2 and so on. The algorithm will maintain a graph G′. In the beginning of the algorithm
we have G′ = G0, and after we add ui we will alter G′ such that G′ = Gi. The total cost of
altering all G′ will be O(m) = O(n2).

We find ui by looking at all nodes in G′ = Gi−1 and count the number of neighbours not
in C1 ∪ . . . ∪ Ci−1. Since Gi−1 has at most n |Ci| edges this takes O(n |Ci|) time. Then the
algorithm finds a BFS tree from ui in Gi−1 in O(n |Ci|) time. Hence the total time used by
the algorithm is:

O

(
m+

∑̀
i=1

n |Ci|

)
= O(n2) . J

3 Constructing O(1)-Spanners

In this section we present our construction of an 8-spanner with O
(
n4/3) edges in O(n2)

time. As a warmup we show how we can use the clustering from Section 2 to give a 2-spanner
with O

(
n3/2) edges in O(n2) time.

I Theorem 5. There exists an algorithm that given a graph G with n nodes constructs a
2-spanner of G with ≤ 2n3/2 edges in O

(
n2) time.

Proof. Let t =
√
n and construct a t-clustering u1, . . . , u` with Lemma 4. Let H = T1 ∪

. . . ∪ T` ∪G`. The number of edges in H is at most n`+ nt ≤ 2n
√
n by Lemma 2 and the

fact that ` ≤ n
t .

Now we just need to prove that H is a 2-spanner. Let u, v be arbitrary nodes and let p
be a shortest path from u to v in G. We wish to prove that

dH(u, v) ≤ dG(u, v) + 2 . (2)

If p is contained in G` then (2) is obviously true. Otherwise there exists an index i such that
dTi

(u, v) ≤ dG(u, v) + 2 by Lemma 3, and (2) is true since Ti ⊂ H. J

Next we turn to showing how to create an 8-spanner H with O
(
n4/3) edges in O(n2)

time. The idea is the following. We start by creating a t-clustering u1, . . . , u` with t = n1/3

and ` ≤ n2/3. Using the BFS trees T1, . . . , T` along with Lemma 3 we can then get an
additive 2-approximation of dG(ui, uj) for all pairs of indices i, j, which we will call δi,j . The
calculation of the BFS trees in O

(
n2) time relies on an idea similar to one in [5]. The BFS

trees also gives us a path from ui to uj that is at most 2 longer than the shortest path. If we
add all these shortest paths to our spanner along with G` and the neighbours in Ci of each

ICALP 2017

64:6 Additive Spanners and Distance Oracles in Quadratic Time

ui we will get a 6-spanner. Unfortunately, adding a path could require adding up to Ω(`)
edges, and since there are `2 pairs we can only guarantee that the spanner has O

(
`3) edges,

which is O
(
n2) if ` ≈ n2/3. (We only need to add edges on the path that are not already

in G`) Instead we use an argument similar to the path-buying argument from [9] and the
construction from [21]. We add the path from ui to uj unless we can guarantee that there is
an additive 2-approximation of this path in the spanner already. We do this by maintaining
an upper bound ∆i,j on the distance from ui to uj in the spanner H. We then argue that if
we add a path with k edges not already in the spanner, then there are Ω(k) pairs ui′ , uj′ for
which the upper bound ∆i′,j′ is improved. Then, this will imply that at most O

(
`2) edges

are added giving an upper bound of O
(
n4/3) on the number of edges in H.

After this informal discussion of the construction we turn to the details. The algorithm is
given a graph G = (V,E) with n nodes and m edges, and will return a spanner H = (V, F).
Initially F = ∅ and we will add edges to H so that H becomes a 8-spanner of G. The
algorithm starts by creating a t-clustering u1, . . . , u` with t = n1/3 using Lemma 4 in O

(
n2)

time. Since ` ≤ n
t we have ` ≤ n2/3. Then we add edges from ui to all nodes in Ci \ {ui} to

H for all i ∈ {1, 2, . . . , `}. We add at most n edges this way. Then we add all edges from G`

to H. This adds at most nt = n4/3 edges to H.
We give each node u ∈ V a color c(u) ∈ {0, 1, 2, . . . , `}. If u is unclustered then u has

color c(u) = 0. Otherwise c(u) = i where i is the unique index such that u ∈ Ci. For each
pair of indices i, j ∈ {1, 2, . . . , `} we define δi,j by:

δi,j = min
k∈{1,2,...,`}

{dTk
(uk, ui) + dTk

(uk, uj)} . (3)

We first note that for a choice of i, j we can calculate the right hand side of (3) in O(`) time
since we are taking the minimum over ` different values. So in O

(
`3) time the algorithm

calculates δi,j for all pairs of indices i, j. Since ` ≤ n2/3 this is within the O
(
n2) time bound.

As a consequence of Lemma 3 we get that δi,j is a good approximation of dG(ui, uj), more
precisely:

dG(ui, uj) ≤ δi,j ≤ dG(ui, uj) + 2 . (4)

We now define T ′i to be the tree obtained from Ti by contracting each edge in G`. Since an
edge is contained in G` iff at least one of its endpoints is unclustered we can construct T ′i
from Ti in O(n) time. The algorithm does so for all i ∈ {1, 2, . . . , `} in O(n`) = O

(
n5/3)

time. We note that the shortest path between two nodes u, v in T ′i contains exactly the edges
on the shortest path between u, v in Ti excluding the edges that are contained in G`.

The algorithm initializes ∆i,j =∞ for all pairs of indices i, j with i 6= j and let ∆i,i = 0 for
all i. We will maintain that ∆i,j is an upper bound on dH(ui, uj) throughout the algorithm.
Now the algorithm goes through all pairs ui, uj and adds a path of length at most 2 longer
than a shortest path between the nodes if needed. Specifically, we do the following:

Let L be an upper bound on the number of nodes of the path p from ui to uj in T ′k on
line 6. Then Algorithm 1 can implemented in O

(
`3 + `2L

)
time. Hence we just need to

prove that L = O(`) in order to conclude that it can be implemented in O
(
`3) = O

(
n2) time.

This follows from the fact that p is an almost shortest path and the following reasoning. If p
contained > C` nodes for some sufficiently large constant C it would contain more than C
nodes of the same color. Since nodes of the same color have distance at most 2 in G this
would imply that there was a much shorter path from u to v in G contradicting (4) if C was
chosen large enough. The details with C = 5 are given in the following lemma:

I Lemma 6. The path p contains no nodes of color 0, and at most 5 nodes of each color
6= 0.

M.B.T. Knudsen 64:7

Algorithm 1
1 For each pair of indices i, j ∈ {1, 2, . . . , `}:
2 For all k ∈ {1, 2, . . . , `}:
3 Set ∆i,j := min {∆i,j ,∆i,k + ∆k,j}.
4 If ∆i,j > δi,j + 2 do:
5 Find a k ∈ {1, 2, . . . , `} such that dTk (uk, ui) + dTk (uk, uj) = δi,j .
6 Find the path p from ui to uj in T ′k .
7 Add all edges from p to H.
8 Write p = (w0, w1, w2, . . . , ws−1).
9 For all x ∈ {0, 1, 2, ..., s− 1}:

10 Set y := dTk (ui, wx).
11 Set ∆i,c(wx) := min

{
∆i,c(wx), y + 1

}
12 Set ∆c(wx),j := min

{
∆c(wx),j , (δi,j − y) + 1

}

Proof. Obviously p does not contain a node with color 0, since all its incident edges would
be contained in G` and hence not in T ′k. Now assume for the sake of contradiction that p
contains 6 nodes of some color r 6= 0. When traversing p from ui to uj let α and β be the
first and the last node of color r respectively. The distance from α to β when following p
must be at least 5 by assumption. On the other hand α and β have distance at most 2 in
G. So there exists a path in G from ui to uj that is at least 3 edges shorter than p. This
contradicts (4). Hence the assumption was wrong and p contains at most 5 nodes of each
color 6= 0. J

Since there are ` different colors 6= 0 the path p contains at most 5` nodes and the running
time of Algorithm 1 is O

(
n2). So now we just need to prove that H is an 8-spanner and

that H has at most O
(
n4/3) edges. We start by proving that H is an 8-spanner. Here we

will utilize that the ∆i,j is an upper bound on the distance from ui to uj in H. Furthermore,
Algorithm 1 guarantees that ∆i,j ≤ δi,j + 2. Together with (4) this gives that

dH(ui, uj) ≤ dG(ui, uj) + 4 . (5)

I Lemma 7. The subgraph H of G is an additive 8-spanner of G.

Proof. Assume for the sake of contradiction that H is not an additive 8-spanner and let u, v
be a pair of nodes with shortest possible distance in G such that:

dH(u, v) > dG(u, v) + 8 . (6)

Say that dG(u, v) = D and let p = (w0, w1, . . . , wD) be a shortest path from u to v in G

where w0 = u and wD = v. Since the pair (u, v) has the smallest possible distance in G such
that (6) holds and dG(w1, v) = D − 1 we have dH(w1, v) ≤ (D − 1) + 8. In particular the
edge (u,w1) is not in H as it would contradict (6). Hence u cannot be unclustered, as all the
edges incident to an unclustered node is contained in G` and therefore H. With the same
reasoning we conclude that v is clustered. Let the colors of u and v be i and j respectively.
The distances from u and v to ui and uj respectively are at most 1. Combining this insight
with (5) we get:

dH(u, v) ≤ dH(ui, uj) + 2 ≤ dG(ui, uj) + 6 ≤ dG(u, v) + 8 .

But this contradicts the assumption (6). Hence the assumption was wrong and H is an
additive 8-spanner of G. J

ICALP 2017

64:8 Additive Spanners and Distance Oracles in Quadratic Time

Lastly, we need to prove that H contains no more than O
(
n4/3) edges. Informally, we

argue the following way. Whenever the s−1 edges of p are added to H on line 7 of Algorithm
1 there are Ω(s) different colors on p. For each color r on p we then argue that either ∆i,r

or ∆r,j are made smaller on line 11 or 12 of Algorithm 1. Lastly, we argue that ∆i,j can
only be updated O(1) times, and since there are `2 ≤ n4/3 variables ∆i,j this implies that
Algorithm 1 only adds O

(
n4/3) edges to H. This intuition is formalized in Lemma 8 bellow:

I Lemma 8. Algorithm 1 adds no more than 25`2 edges to H.

Proof. Say that the algorithm adds the edges from the path p = (w0, w1, . . . , ws−1) on line
7 of Algorithm 1 where w0 = ui, ws−1 = uj . First we note that since dG(ui, uj) ≥ δi,j − 2 by
(4) we have that dG(ui, wx) ≥ y− 2 for every x ∈ {0, 1, . . . , s− 1}, where we consider y to be
a function of x defined by y = dTk

(ui, wx) as on line 10. Now fix x and let r = c(wx). Then
there is an edge between wx and ur and therefore dG(ui, ur) ≥ y−3, i.e. y+1 ≤ dG(ui, ur)+4.
So if Algorithm 1 decreases ∆i,r on line 11 we have ∆i,r ≤ dG(ui, ur) + 4 after it is decreased.
Since ∆i,r is an upper bound on dH(ui, ur) and therefore also an upper bound on dG(ui, ur)
we see that ∆i,r can be decreased at most 5 times for each choice of i, r. By symmetry we
see that we can also decrease ∆r,j on line 12 at most 5 times. Since there are `2 pairs of
indices the algorithm can change the values of ∆i,r or ∆r,j on line 11 and 12 of Algorithm 1
at most 5`2 times.

Let r be a color on p. After the execution of lines 9-12 we have

∆i,r + ∆r,j ≤ δi,j + 2 .

Due to the execution of lines 2 and 3 this was not the case before. Hence either ∆i,r or ∆r,j

were updated. By Lemma 6 there are at least s
5 colors on p, so if the algorithm adds A edges

in total it makes at least A
5 updates of upper bounds ∆i,r or ∆r,j . Since there can be at

most 5`2 such updates we conclude that A
5 ≤ 5`2 and that Algorithm 1 adds no more than

25`2 edges. J

To summarize, the algorithm presented in this section runs in O
(
n2) time and gives

an additive 8-spanner with no more than 26n4/3 + n = O
(
n4/3) edges. We have made no

attempt to optimize the constant in the O-notation. Hence we get:

I Theorem 9. There exists an algorithm that given a graph G with n nodes constructs an
8-spanner of G with O

(
n4/3) edges in O

(
n2) time.

4 Distance Oracles

In the following we show how to modify the construction by Sommer [28] to obtain a
(2, 1)-distance oracle of size O

(
n5/3) that can be constructed in expected O

(
n2) time.

Let G be a given graph, and H an 8-spanner of G constructed by Theorem 9. H is
constructed in O

(
n2) time and has O

(
n4/3) edges. During the construction we use only

O
(
n5/3) space.
Let u1, u2, . . . , u` be a n1/3-clustering of G. Using Lemma 4 we obtain T1, . . . , T` and G`

in O
(
n2) time. For each node v we define four portals p1(v), p2(v), p3(v), p4(v). We define

p1(v) = ui, where ui is chosen such that the distance between v and ui in Ti is minimized.
In case of ties we choose the node ui with the lowest index i. The node pj+1(v) for j = 1, 2, 3
is chosen depending on pj(v). If pj(v) = u1 we let pj+1(v) = u1. Otherwise pj(v) = ui for
some index i. We let pj+1(v) = ui′ where ui′ is chosen among u1, u2, . . . , ui−1 such that the

M.B.T. Knudsen 64:9

distance between ui′ and v in Ti′ is minimized. In case of ties we choose the node ui′ with
the lowest index i′. The portals for all nodes can be found in O

(
n5/3) time.

We will use the following lemma by Pǎtraşcu and Roditty [23] to construct a (2, 1)-distance
oracle for G`, that uses space O

(
n5/3).

I Lemma 10 ([23]). For any unweighted, undirected graph, there exists a distance oracle
of size O

(
n5/3) that, given any nodes u and v at distance d, returns a distance of at most

2d+ 1 in constant time. The distance oracle can be constructed in expected time O
(
mn2/3).

In the proof in [23] they only claim a running time of O
(
mn2/3 + n7/3), however, this can

be fixed to give the correct running time of O
(
mn2/3) [25]. By [23, Claim 9] it is easy to see

how to get a running time of O
(
mn2/3 + n2) which suffice for our purposes.

We are now ready to define the distance oracle. For each i = 1, 2, . . . , ` we store
the distances dTi

(ui, v) and dH(ui, v) for all nodes v. The distances dH(ui, v) can be
calculated using a BFS in time O

(
`n4/3) = O

(
n2). For each node v we store its portals

pj(v), j = 1, 2, 3, 4. We augment this distance oracle with the Pǎtraşcu-Roditty distance
oracle from Lemma 10 for G`.

We now show how to use the distance oracle to obtain approximate distances for a
query u, v. We let δP R(u, v) be the approximate distance in G` returned by the Pǎtraşcu-
Roditty distance oracle. We define δj(u, v) in the following way. Let pj(u) = ui. Then
δj(u, v) = dTi

(ui, u) + min {dTi
(ui, v), dH(ui, v)}. The distance returned by the distance

oracle is the minimum of δP R(u, v), δj(u, v) and δj(v, u) for j = 1, 2, 3, 4.
We will now argue that if the the distance between u and v is d, then the distance oracle

returns a distance between d and 2d+ 1. The distance returned is obviously at least d, so we
just need to show that it is at most 2d+ 1. Consider a shortest path between u and v in
G. If there is at most one node on the shortest path which is incident to a node ui in the
clustering then the shortest path is contained in G`, and therefore:

δP R(u, v) ≤ 2dG`
(u, v) + 1 = 2d+ 1 .

So assume that there exists an edge on the shortest path not in G`. Let i be the smallest
index such that there is an edge (z, t) on the shortest path with z, t ∈ C1 ∪ . . . ∪ Ci. Say
that z is closer to u than to v in G. Assume that z ∈ Ci and t ∈ Ci′ for some index i′ ≤ i

(the case where z ∈ Ci′ and t ∈ Ci is handled symmetrically). Since the shortest path is
contained in Gi−1 and Gi′−1 we have that

dTi
(ui, u) + dTi′ (ui′ , v) ≤ (dG(u, z) + 1) + (dG(t, v) + 1) = d+ 1 ,

and therefore:

min {dTi
(ui, u), dTi

(ui, v)} ≤ d+ 1
2 .

Assume that dTi(ui, u) ≤ d+1
2 . The other case is handled similarly. Say that pj(u) = ukj

for j = 1, 2, 3, 4. First assume that kj > i for all j = 1, 2, 3, 4. Then we conclude that
dTk1

(p1(u), u) ≤ dTi
(ui, u)− 4. The distance returned by the distance oracle is at most

δ1(u, v) ≤ dTk1
(p1(u), u) + dH(p1(u), v)

≤ dTk1
(p1(u), u) + dG(p1(u), v) + 8

≤ 2dTk1
(p1(u), u) + dG(u, v) + 8

≤ 2(dTi(ui, u)− 4) + d+ 8 ≤ 2d+ 1 .

ICALP 2017

64:10 Additive Spanners and Distance Oracles in Quadratic Time

Now assume that kj ≤ i for some j ∈ {1, 2, 3, 4} and let j be the smallest index such that
kj ≤ i. By definition we have that dTkj

(pj(u), u) ≤ dTi
(ui, u). Furthermore the shortest path

is contained in Gkj−1 and therefore dTkj
(pj(u), v) ≤ dTkj

(pj(u), u) + dG(u, v). The distance
returned is at most

δj(u, v) ≤ dTkj
(pj(u), u) + dTkj

(pj(u), v)

≤ 2dTkj
(pj(u), u) + d

≤ 2dTi
(ui, u) + d ≤ 2d+ 1 .

We conclude that the distance returned by the distance oracle is always between d and 2d+ 1.
The result is summarized in Theorem 11.

I Theorem 11. For any unweighted, undirected graph, there exists a distance oracle of size
O
(
n5/3) that, given any nodes u and v at distance d, returns a distance of at most 2d+ 1 in

constant time. The distance oracle can be constructed in expected time O
(
n2).

Acknowledgements. The author would like to thank Christian Sommer for helpful discus-
sions on the application of the 8-spanner to his construction of distance oracles.

References

1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Proc. 48th
ACM Symposium on Theory of Computing (STOC), pages 351–361, 2016.

2 Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing schemes
with affine stretch. In Distributed Computing – 25th International Symposium, DISC 2011,
Rome, Italy, September 20-22, 2011. Proceedings, pages 404–415, 2011. doi:10.1007/
978-3-642-24100-0_39.

3 Rachit Agarwal. The space-stretch-time tradeoff in distance oracles. In Algorithms – ESA
2014 – 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Pro-
ceedings, pages 49–60, 2014. doi:10.1007/978-3-662-44777-2_5.

4 Rachit Agarwal and Philip Brighten Godfrey. Brief announcement: a simple stretch 2
distance oracle. In ACM Symposium on Principles of Distributed Computing, PODC’13,
Montreal, QC, Canada, July 22-24, 2013, pages 110–112, 2013. doi:10.1145/2484239.
2484277.

5 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estima-
tion of diameter and shortest paths (without matrix multiplication). SIAM J. Comput.,
28(4):1167–1181, 1999. See also SODA’96.

6 Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. Distance oracles for
unweighted graphs: Breaking the quadratic barrier with constant additive error. In Auto-
mata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Com-
plexity, and Games, pages 609–621, 2008. doi:10.1007/978-3-540-70575-8_50.

7 Surender Baswana, Vishrut Goyal, and Sandeep Sen. All-pairs nearly 2-approximate
shortest paths in I time. Theor. Comput. Sci., 410(1):84–93, 2009. doi:10.1016/j.tcs.
2008.10.018.

8 Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs approximate
shortest paths in undirected graphs. SIAM Journal on Computing, 39(7):2865–2896, 2010.

9 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (alpha, beta)-spanners. ACM Trans. Algorithms, 7(1):5, 2010. See also SODA’05.

http://dx.doi.org/10.1007/978-3-642-24100-0_39
http://dx.doi.org/10.1007/978-3-642-24100-0_39
http://dx.doi.org/10.1007/978-3-662-44777-2_5
http://dx.doi.org/10.1145/2484239.2484277
http://dx.doi.org/10.1145/2484239.2484277
http://dx.doi.org/10.1007/978-3-540-70575-8_50
http://dx.doi.org/10.1016/j.tcs.2008.10.018
http://dx.doi.org/10.1016/j.tcs.2008.10.018

M.B.T. Knudsen 64:11

10 Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted graphs
in expected o(n2) time. ACM Transactions on Algorithms (TALG), 2(4):557–577, 2006.

11 Clark T. Benson. Minimal regular graphs of girth eight and twelve. Canad. J. Math,
18(1):94, 1966.

12 Piotr Berman and Shiva Prasad Kasiviswanathan. Faster approximation of distances in
graphs. In Workshop on Algorithms and Data Structures, pages 541–552. Springer, 2007.

13 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 855–872,
2016. doi:10.1137/1.9781611974331.ch61.

14 Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and
emulators. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages 377–382, 2015. doi:
10.1145/2688073.2688103.

15 Shiri Chechik. New additive spanners. In Proc. 24th ACM/SIAM Symposium on Discrete
Algorithms (SODA), pages 498–512, 2013. doi:10.1137/1.9781611973105.36.

16 Shiri Chechik. Approximate distance oracles with constant query time. In Proceedings of
the 46th Annual ACM Symposium on Theory of Computing, pages 654–663. ACM, 2014.

17 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 1–10. ACM,
2015.

18 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal
on Computing, 29(5):1740–1759, 2000. See also FOCS’96.

19 Michael Elkin and David Peleg. (1 + ε, β)-spanner constructions for general graphs. SIAM
Journal on Computing, 33(3):608–631, 2004. See also STOC’01.

20 Paul Erdős. Extremal problems in graph theory. In “Theory of Graphs and its Applications,”
Proc. Sympos. Smolenice. Citeseer, 1964.

21 Mathias Bæk Tejs Knudsen. Additive spanners: A simple construction. In Proc. 14th
Scandinavian Workshop on Algorithm Theory (SWAT), pages 277–281, 2014.

22 Seth Pettie. Low distortion spanners. ACM Trans. Algorithms, 6(1):7:1–7:22, 2009. doi:
10.1145/1644015.1644022.

23 Mihai Pǎtraşcu and Liam Roditty. Distance oracles beyond the thorup–zwick bound. SIAM
Journal on Computing, 43(1):300–311, 2014.

24 Mihai Pǎtraşcu, Liam Roditty, and Mikkel Thorup. A new infinity of distance oracles
for sparse graphs. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 738–747. IEEE, 2012.

25 Liam Roditty. personal communication.
26 Liam Roditty, Mikkel Thorup, and Uri Zwick. Deterministic constructions of approximate

distance oracles and spanners. In International Colloquium on Automata, Languages, and
Programming, pages 261–272. Springer, 2005.

27 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys
(CSUR), 46(4):45, 2014.

28 Christian Sommer. All-pairs approximate shortest paths and distance oracle preprocessing.
In LIPIcs – Leibniz International Proceedings in Informatics, volume 55. Schloss Dagstuhl
– Leibniz-Zentrum fuer Informatik, 2016.

29 Christian Sommer, Elad Verbin, and Wei Yu. Distance oracles for sparse graphs. In Found-
ations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages
703–712. IEEE, 2009.

30 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974331.ch61
http://dx.doi.org/10.1145/2688073.2688103
http://dx.doi.org/10.1145/2688073.2688103
http://dx.doi.org/10.1137/1.9781611973105.36
http://dx.doi.org/10.1145/1644015.1644022
http://dx.doi.org/10.1145/1644015.1644022

64:12 Additive Spanners and Distance Oracles in Quadratic Time

31 Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. Journal of Combinatorial
Theory, Series B, 52(1):113–116, 1991.

32 David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In Proc.
47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 389–398, 2006.

33 David P. Woodruff. Additive spanners in nearly quadratic time. In Proc. 37th International
Colloquium on Automata, Languages and Programming (ICALP), pages 463–474, 2010.

34 Christian Wulff-Nilsen. Approximate distance oracles with improved preprocessing time.
In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 202–208. Society for Industrial and Applied Mathematics, 2012.

Finding, Hitting and Packing Cycles in
Subexponential Time on Unit Disk Graphs∗†

Fedor V. Fomin1, Daniel Lokshtanov2, Fahad Panolan3,
Saket Saurabh4, and Meirav Zehavi5

1 Department of Informatics, University of Bergen, Bergen, Norway
fomin@ii.uib.no

2 Department of Informatics, University of Bergen, Bergen, Norway
daniello@ii.uib.no

3 Department of Informatics, University of Bergen, Bergen, Norway
fahad.panolan@ii.uib.no

4 Department of Informatics, University of Bergen, Bergen, Norway; and
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

5 Department of Informatics, University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract

We give algorithms with running time 2O(
√
k log k) · nO(1) for the following problems. Given an

n-vertex unit disk graph G and an integer k, decide whether G contains
a path on exactly/at least k vertices,
a cycle on exactly k vertices,
a cycle on at least k vertices,
a feedback vertex set of size at most k, and
a set of k pairwise vertex-disjoint cycles.

For the first three problems, no subexponential time parameterized algorithms were previously
known. For the remaining two problems, our algorithms significantly outperform the previously
best known parameterized algorithms that run in time 2O(k0.75 log k) · nO(1). Our algorithms are
based on a new kind of tree decompositions of unit disk graphs where the separators can have
size up to kO(1) and there exists a solution that crosses every separator at most O(

√
k) times.

The running times of our algorithms are optimal up to the log k factor in the exponent, assuming
the Exponential Time Hypothesis.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations, G.2.2 Graph Algorithms

Keywords and phrases Longest Cycle, Cycle Packing, Feedback Vertex Set, Unit Disk Graph,
Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.65

∗ The full version of the paper can be found at arXiv [21], https://arxiv.org/abs/1704.07279.
† Supported by Pareto-Optimal Parameterized Algorithms, ERC Starting Grant 715744, Parameterized

Approximation, ERC Starting Grant 306992, and Rigorous Theory of Preprocessing, ERC Advanced
Investigator Grant 267959.

EA
T

C
S

© Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 65; pp. 65:1–65:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.65
https://arxiv.org/abs/1704.07279
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 Finding, Hitting and Packing Cycles on Unit Disk Graphs

1 Introduction

Unit disk graphs are the intersection graphs of unit circles in the plane. That is, given
n-unit circles in the plane, we have a graph G where each vertex corresponds to a circle
such that there is an edge between two vertices when the corresponding circles intersect.
Unit disk graphs form one of the most well studied graph classes in computational geometry
because of their use in modelling optimal facility location [40] and broadcast networks such
as wireless, ad-hoc and sensor networks [25, 33, 42]. These applications have led to an
extensive study of NP-complete problems on unit disk graphs in the realms of computational
complexity and approximation algorithms. We refer the reader to [10, 18, 29] and the citations
therein for these studies. However, these problems remain hitherto unexplored in the light of
parameterized complexity with exceptions that are few and far between [1, 8, 23, 32, 38].

In this paper we consider the following basic problems about finding, hitting and packing
cycles on unit disk graphs from the viewpoint of parameterized algorithms. For a given graph
G and integer k,

Exact k-Cycle asks whether G contains a cycle on exactly k vertices,
Longest Cycle asks whether G contains a cycle on at least k vertices,
Feedback Vertex Set asks whether G contains a vertex set S of size k such that the
graph G \ S is acyclic, and
Cycle Packing asks whether G contains a set of k pairwise vertex-disjoint cycles.

Along the way, we also study Longest Path (decide whether G contains a path on exactly/at
least k vertices) and Subgraph Isomorphism (SI). In SI, given connected graphs G and
H on n and k vertices, respectively, the goal is to decide whether there exists a subgraph
in G that is isomorphic to H. We also assume that a unit disk graph is given by a set of n
points in R2 and there is a graph where vertices correspond to the points and there is an
edge between two vertices if and only if the distance between the two points is at most 2.

In parameterized complexity each of these problems serves as a testbed for development
of fundamental algorithmic techniques such as color-coding [2], the polynomial method
[34, 35, 41, 4], matroid based techniques [20] for Longest Path and Longest Cycle, and
kernelization techniques for Feedback Vertex Set [39]. We refer to [12] for an extensive
overview of the literature on parameterized algorithms for these problems. For example,
the fastest known algorithms solving Longest Path are the 1.66k · nO(1) time randomized
algorithm of Björklund et al. [4], and the 2.597k · nO(1) time deterministic algorithm of
Zehavi [43]. Moreover, unless the Exponential Time Hypothesis (ETH) of Impagliazzo,
Paturi and Zane [30] fails, none of the problems above can be solved in time 2o(k) · nO(1) [30].

While all these problems remain NP-complete on planar graphs, substantially faster –
subexponential – parameterized algorithms are known on planar graphs. In particular, by
combining the bidimensionality theory of Demaine et al. [13] with efficient algorithms on
graphs of bounded treewidth [17], Longest Path, Longest Cycle, Feedback Vertex
Set and Cycle Packing are solvable in time 2O(

√
k)nO(1) on planar graphs. The paramet-

erized subexponential “tractability” of such problems can be extended to graphs excluding
some fixed graph as a minor [15]. The bidimensionality arguments cannot be applied to
Exact k-Cycle and this was one of the motivations for developing the new pattern-covering
technique, which is used to give a randomized algorithm for Exact k-Cycle running in time
2O(
√
k log2 k)nO(1) on planar and apex-minor-free graphs [19]. The bidimensionality theory

was also used to design (efficient) polynomial time approximation scheme ((E)PTAS) [14, 22]
and polynomial kernelization [24] on planar graphs.

It would be interesting to find generic properties of problems, similar to the theory of bidi-
mensionality for planar-graph problems, that could guarantee the existence of subexponential

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:3

parameterized algorithms or (E)PTAS on geometric classes of graphs, such as unit disk
graphs. The theory of (E)PTAS on geometric classes of graphs is extremely well developed
and several methods have been devised for this purpose. This includes methods such as
shifting techniques, geometric sampling and bidimensionality theory [29, 27, 26, 28, 11, 37, 23].
However, we are still very far from a satisfactory understanding of the “subexponential”
phenomena for problems on geometric graphs. We know that some problems such as In-
dependent Set and Dominating Set, which are solvable in time 2O(

√
k)nO(1) on planar

graphs, are W[1]-hard on unit disk graphs and thus the existence of an algorithm of running
time f(k) · nO(1) is highly unlikely for any function f [36]. The existence of a vertex-linear
kernel for some problems on unit disk graphs such as Vertex Cover [9] or Connected
Vertex Cover [32] combined with an appropriate separation theorem [1, 8, 38] yields
a parameterized subexponential algorithm. A subset of the authors of this paper used a
different approach based on bidimensionality theory to obtain subexponential algorithms
of running time 2O(k0.75 log k) · nO(1) on unit disk graphs for Feedback Vertex Set and
Cycle Packing in [23]. No parameterized subexponential algorithms on unit disk graphs
for Longest Path, Longest Cycle, and Exact k-Cycle were known prior to our work.

Our Results. We design subexponential parameterized algorithms, with running time
2O(
√
k log k) · nO(1), for Exact k-Cycle, Longest Cycle, Longest Path, Feedback

Vertex Set and Cycle Packing on unit disk graphs and unit square graphs. It is also
possible to show by known NP-hardness reductions for problems on unit disk graphs [10]
that an algorithm of running time 2o(

√
k) · nO(1) for any of our problems on unit disk graphs

would imply that ETH fails. Hence our algorithms are asymptotically almost tight. Along
the way we also design Turing kernels (in fact, many to one) for Exact k-Cycle, Longest
Cycle, Longest Path and SI. That is, we give a polynomial time algorithm that given
an instance of Exact k-Cycle or Longest Cycle or Longest Path or SI, produces
polynomially many reduced instances of size polynomial in k such that the input instance
is a Yes-instance if and only if one of the reduced instances is. As a byproduct of this
we obtain a 2O(k log k) · nO(1) time algorithm for SI when G is a unit disk graph and H

is an arbitrary connected graph. It is noteworthy to remark that a simple disjoint union
trick implies that Exact k-Cycle, Longest Cycle, Longest Path, and SI do not
admit a polynomial kernel on unit disk graphs [6]. Finally, we note that we do not use
Turing kernels to design our subexponential time algorithms except for Exact k-Cycle.
The subexponential time parameterized algorithm for Exact k-Cycle also uses a “double
layering” of Baker’s technique [3].

All our subexponential time algorithms have the following theme in common. If an
input n-vertex unit disk graph G contains a clique of size poly(k) (such a clique can be
found in polynomial time), then we have a trivial Yes-instance or No-instance, depending
on the problem. Otherwise, we show that the unit disk graph G in a Yes-instance of
the problem admits, sometimes after a polynomial time preprocessing, a specific type of
(ω,∆, τ)-decomposition, where the meaning of ω, ∆ and τ is as follows. The vertex set of G is
partitioned into cliques C1, . . . , Cd, each of size at most ω = kO(1). We also require that after
contracting each of the cliques Ci to a single vertex, the maximum vertex degree ∆ of the
obtained graph G̃ is O(1), while the treewidth τ of G̃ is O(

√
k). Moreover, the corresponding

tree decomposition of G̃ can be constructed efficiently. We use the tree decomposition of G̃
to construct a tree decomposition of G by “uncontracting” each of the contracted cliques Ci.
While the width of the obtained tree decomposition of G can be of order ω · τ = kO(1), we
show that each of our parameterized problems can be solved in time f(∆) · ωf(∆)·τ . Here
we use dynamic programming over the constructed tree decomposition of G, however there

ICALP 2017

65:4 Finding, Hitting and Packing Cycles on Unit Disk Graphs

is a twist from the usual way of designing such algorithms. This part of the algorithm is
problem-specific – in order to obtain the claimed running time, we have to establish a very
specific property for each of the problems. Roughly speaking, the desired property of a
problem is that it always admits an optimal solution such that for every pair of adjacent
bags X,Y of the tree decomposition of G, the number of edges of this solution “crossing” a
cut between X and Y is O(

√
k). We remark that the above decomposition is only given in

the introduction to present our ideas for all the algorithms in a unified way.
In this paper we restrict our attention to solving Exact k-Cycle and Feedback

Vertex Set on unit disk graphs. We refer to the full version of the paper for all the proofs
and the results.

2 Preliminaries

For a positive integer t, we use [t] as a shorthand for {1, 2, . . . , t}. Given a function f : A→ B

and a subset A′ ⊆ A, let f |A′ denote the restriction of the function f to the domain A′. For a
function f : A→ B and B′ ⊆ B, f−1(B′) denote the set {a ∈ A : f(a) ∈ B′}. For t, t′ ∈ N,
a set [t]× [t′], i ∈ [t] and j ∈ [t′] we use (∗, j) and (i, ∗) to denote the sets {(i′, j) : i′ ∈ [t]}
and {(i, j′) : j′ ∈ [t′]}, respectively. For a set U , we use 2U to denote the power set of U .

We use standard notation and terminology from the book of Diestel [16] for graph-
related terms which are not explicitly defined here. Given a graph G, V (G) and E(G)
denote its vertex-set and edge-set, respectively. When the graph G is clear from context,
we denote n = |V (G)| and m = |E(G)|. Given U ⊆ V (G), we let G[U] denote the
subgraph of G induced by U , and we let G \ U denote the graph G[V (G) \ U]. For an edge
subset E, we use V (E) to denote the set of endpoints of edges in E and G[E] to denote
the graph (V (E), E). For X,Y ⊆ V (G), we use E(X) and E(X,Y) to denote the edge
sets {{u, v} ∈ E(G) : u, v ∈ X} and {{u, v} ∈ E(G) : u ∈ X, v ∈ Y }, respectively.
Moreover, we let N(U) denote the open neighborhood of G. In case U = {v}, we denote
N(v) = N(U). Given an edge e = {u, v} ∈ E(G), we use G/e to denote the graph
obtained from G by contracting the edge e. In other words, G/e denotes the graph on
the vertex-set (V (G) \ {u, v}) ∪ {x{u,v}}, where x{u,v} is a new vertex, and the edge-set
E(G) = E(G[V (G) \ {u, v}]) ∪ {{x{u,v}, w} | w ∈ N({u, v})}. A graph H is called a minor
of G, if H can be obtained from G by a sequence of edge deletion, edge contraction and
vertex deletion. Given k ∈ N, we let Kk denote the complete graph on k vertices. For a set
X, we use K[X] to denote the complete graph on X. Given a, b ∈ N, an a× b grid is a graph
on a · b vertices, vi,j for (i, j) ∈ [a] × [b], such that for all i ∈ [a − 1] and j ∈ [b], it holds
that vi,j and vi+1,j are neighbors, and for all i ∈ [a] and j ∈ [b− 1], it holds that vi,j and
vi,j+1 are neighbors. For ease of presentation, for any function f : D → [a]× [b], i ∈ [a] and
j ∈ [b], we use f−1(i, j), f−1(∗, j), and f−1(i, ∗) to denote the sets f−1((i, j)), f−1((∗, j)),
and f−1((i, ∗)), respectively.

We also need the standard notions of pathwidth, treewidth and nice tree decomposition.
These definitions are given in the appendix for easy perusal (also in the appended version).
However, we use slightly different but equivalent definition of path decomposition.

I Definition 1. A path decomposition of a graph G is a sequence P = (X1, X2, . . . , X`),
where each Xi ⊆ V (G) is called a bag, that satisfies the following conditions.⋃

i∈[`]Xi = V (G).
For every edge {u, v} ∈ E(G) there exists i ∈ [`] such that {u, v} ⊆ Xi.
For every vertex v ∈ V (G), if v ∈ Xi∩Xj for some i ≤ j, then v ∈ Xr for all r ∈ {i, . . . , j}.

The width of P is maxi∈[`] |Xi| − 1.

The pathwidth of G, pw(G), is the minimum width of a path decomposition of G.

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:5

I Proposition 2 ([5, 7]). Given a graph G and an integer k, in time 2O(k) · n, we can either
decide that tw(G) > k or output a tree decomposition of G of width 5k. Furthermore, given a
graph G and a tree decomposition T of G, a nice tree decomposition T ′ of the same width as
T can be computed in linear time.

Given a set of geometric objects, O, we say that a graph G represents O if each vertex
in V (G) represents a distinct geometric object in O, and every geometric object in O

is represented by a distinct vertex in V (G). In this case, we abuse notation and write
V (G) = O. The intersection graph of O is a graph G that represent O and satisfies
E(G) = {{u, v} : u, v ∈ O, u ∩ v 6= ∅}. Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn =
(xn, yn)} be a set of points in the Euclidean plane. In the unit disk graph model, for
every i ∈ [n], we let di denote the disk of radius 1 whose centre is pi. Accordingly, we
denote D = {d1, d2, . . . , dn}. Then, the unit disk graph of D is the intersection graph
of D. Alternatively, the unit disk graph of D is the geometric graph of G such that
E(G) = {{pi = (xi, yi), pj = (xj , yj)} | pi, pj ∈ D, i 6= j,

√
(xi − xj)2 + (yi − yj)2 ≤ 2}.

3 Clique-Grid Graphs

In this section, we introduce a family of “grid-like” graphs, called clique-grid graphs, that
is tailored to fit our techniques. Given a unit disk graph G, we extract the properties of
G that we would like to exploit, and show that they can be captured by an appropriate
clique-grid graph. Let us begin by giving the definition of a clique-grid graph. Roughly
speaking, a graph G is a clique-grid graph if each of its vertices can be embedded into a
single cell of a grid (where multiple vertices can be embedded into the same cell), ensuring
that the subgraph induced by each cell is a clique, and that each cell can interact (via edges
incident to its vertices) only with cells at “distance” at most 2. Formally,

I Definition 3 (clique-grid graph). A graph G is a clique-grid graph if there exists a function
f : V (G)→ [t]× [t′], for some t, t′ ∈ N, such that the following conditions are satisfied.
1. For all (i, j) ∈ [t]× [t′], it holds that f−1(i, j) is a clique.
2. For all {u, v} ∈ E(G), it holds that if f(u) = (i, j) and f(v) = (i′, j′) then |i − i′| ≤ 2

and |j − j′| ≤ 2.
Such a function f is a representation of G.

We note that a notion similar to clique-grid graph was also used by Ito and Kadoshita [31].
For the sake of clarity, we say that a pair (i, j) ∈ [t] × [t′] is a cell. The following lemma
states that a unit disk graph is a clique-grid graph, and its proof is deferred to [21].

I Lemma 4. Let D be a set of points in the Euclidean plane, and let G be the unit disk
graph of D. Then, a representation f of G can be computed in polynomial time.

Due to Lemma 4, throughout this paper, we assume that along with a input unit disk
graph G, we are given a representation f of G. We conclude this section by introducing the
definition of an `-NCTD which is useful for doing our dynamic programming algorithms.

I Definition 5. A tree decomposition T = (T, β) of a clique-grid graph G with representation
f is a nice `-clique tree decomposition, or simply an `-NCTD, if for the root r of T , it holds
that β(r) = ∅, and for each node v ∈ V (T), it holds that

There exist at most ` cells, (i1, j1), . . . , (i`, j`), such that β(v) =
⋃`
t=1 f

−1(it, jt), and
The node v is of one of the following types.

ICALP 2017

65:6 Finding, Hitting and Packing Cycles on Unit Disk Graphs

Leaf: v is a leaf in T and β(v) = ∅.
Forget: v has exactly one child u, and there exists a cell (i, j) ∈ [t] × [t′] such that
f−1(i, j) ⊆ β(u) and β(v) = β(u) \ f−1(i, j).
Introduce: v has exactly one child u, and there exists a cell (i, j) ∈ [t]× [t′] such that
f−1(i, j) ⊆ β(v) and β(v) \ f−1(i, j) = β(u) \ f−1(i, j).
Join: v has exactly two children, u and w, and β(v) = β(u) = β(w).

A nice `-clique path decomposition, or simply an `-NCPD, is an `-NCTD where T is a
path. In this context, for convenience, we use the notation referring to a sequence presented
in Section 2.

4 Turing Kernels

In this section we give an overview of a Turing kernel (actually a compression) for SI. The
reason for stating our result in this way is, that this is how we use it in the next section to
design a subexponential algorithm for Exact k-Cycle. We refer to the appended version
for a Turing kernel for SI and Longest Cycle. More precisely, we show the following.

I Theorem 6. Let (G, f,H, k) be an instance of SI on unit disk graphs, then in polynomial
time, one can output a set I of instances of SI on clique-grid graphs such that (G, f,H, k)
is a Yes-instance if and only if at least one instance in I is a Yes-instance, and for all
(Ĝ, f̂ : V (Ĝ)→ [t̂]× [t̂′], Ĥ, k̂) ∈ I, Ĝ is either an induced subgraph of G or K

k̂
, t̂, t̂′ ≤ 2k̂,

|f̂−1(i, j)| < k̂ for any (i, j) ∈ [t̂]× [t̂′], Ĥ = H, k̂ = k, |V (Ĝ)| = O(k3), and |E(Ĝ)| = O(k4).

Proof Sketch. First, suppose that there exists a cell (i, j) ∈ [t]× [t′] such that |f−1(i, j)| ≥ k,
then by Definition 3, G[f−1(i, j)] is a clique on at least k vertices. In particular, the pattern
H is a subgraph of G[f−1(i, j)], and therefore it is also a subgraph of G. Thus, in this
case, we conclude the proof by setting I to be the set that contains only one instance,
(Kk, f̂ : V (Kk)→ [1]× [1], H, k). From now on, suppose that for all cells (i, j) ∈ [t]× [t′], it
holds that |f−1(i, j)| < k.

Now, our kernelization algorithm works as follows. For every (p, q) ∈ [t]× [t′], it computes

Gp,q = G[
⋃

p≤i<min{p+2k,t+1}
q≤j<min{q+2k,t′+1}

f−1(i, j)].

Accordingly, it computes fp,q : V (Gp,q)→ [min{2k, t}]× [min{2k, t′}] as follows. For every
v ∈ V (Gp,q), compute fp,q(v) = (i− p+ 1, j − q + 1) where (i, j) = f(v). Note that for all
(i, j) ∈ [min{2k, t}]× [min{2k, t′}], it holds that f−1

p,q (i, j) = f−1(i+ p− 1, j + q − 1). Thus,
since f is a representation of G, it holds that fp,q is a representation of Gp,q. Finally, our
kernelization algorithm outputs I = {Ip,q = (Gp,q, fp,q, H, k) : (p, q) ∈ [t]× [t′]}.

To conclude the proof, it remains to show that (G, f,H, k) is a Yes-instance if and only if
at least one instance in I is a Yes-instance. Since for all (Gp,q, fp,q, H, k) ∈ I, it holds that
Gp,q is an induced subgraph of G, we have that if (G, f,H, k) is a No-instance, then every
instance in I is No-instance as well. Next, suppose that (G, f,H, k) is a Yes-instance. Then,
letH ′ be a subgraph ofG that is isomorhpic toH. In order to complete the proof, we introduce
a notion of `-stretched. We say that H ′ is `-stretched if there exist cells (i, j), (i′, j′) ∈ [t]× [t′]
such that the following conditions are satisfied: (i) |i−i′| ≥ 2` or |j−j′| ≥ 2` (or both); and (b)
V (H ′) ∩ f−1(i, j) 6= ∅ and V (H ′) ∩ f−1(i′, j′) 6= ∅. One can show (see the appended version)
that for any subgraph H ′ of G that is isomorphic to H, it holds that H ′ is not 2k-stretched.
Using this claim we can conclude. Denote imin = min{i ∈ [t] : (

⋃
j∈[t′] f

−1(i, j))∩V (H ′) 6= ∅},

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:7

imax = max{i ∈ [t] : (
⋃
j∈[t′] f

−1(i, j))∩V (H ′) 6= ∅}, jmin = min{j ∈ [t′] : (
⋃
i∈[t] f

−1(i, j))∩
V (H ′) 6= ∅} and jmax = max{j ∈ [t′] : (

⋃
i∈[t] f

−1(i, j))∩V (H ′) 6= ∅}. From the above claim,
it holds that both imax − imin < 2k and jmax − jmin < 2k. Therefore, H ′ is a subgraph of
Gimin,jmin , which implies that Ip,q is a Yes-instance. J

5 Exact k-Cycle

In this section we prove the following theorem.

I Theorem 7. Exact k-Cycle on unit disk graphs can be solved in 2O(
√
k log k)nO(1) time.

By Theorem 6, we have seen that SI admits a polynomial sized Turing kernel. Hence to
give an algorithm of running time 2O(

√
k log k)|V (G)|O(1), we can restrict to instances returned

by Theorem 6. More precisely, because of Theorem 6, we can assume that the input to our
algorithm is (G, f : V (G)→ [t]× [t′], k) where G is a clique-grid graph with a representation
f , |f−1(i, j)| < k for all (i, j) ∈ [t] × [t′], and t, t′ ≤ 2k. Without loss of generality we can
assume that f is a function from V (G) to [2k]× [2k], because [t]× [t′] ⊆ [2k]× [2k].

Given an instance (G, f : V (G)→ [2k]× [2k], k), the algorithm applies a method inspired
by Baker’s technique [3] and obtains a family, F, of 2O(

√
k log k) instances of Exact k-Cycle.

The family F has following properties.
1. In each of these instances the input graph is an induced subgraph of G and has size kO(1).
2. The input (G, f : V (G)→ [2k]× [2k], k) is a Yes-instance if and only if there exists an

instance (H, f∗ : V (H)→ [2k]× [2k], k) ∈ F which is a Yes-instance.
3. More over, for any instance (H, f∗ : V (H)→ [2k]× [2k], k) ∈ F, H has a nice 7

√
k-clique

path decomposition (7
√
k-NCPD).

We will call the family F satisfying the above properties as good family. Let (H, f∗ : V (H)→
[2k] × [2k], k) be an instance of F. Let P = (X1, . . . , Xq) be a 7

√
k-NCPD of H. We first

prove that if there is a cycle of length k in H, then there is a cycle C of length k in H

such that for any two distinct cells (i, j) and (i′, j′) of f , the number of edges with one end
point in (i, j) and other in (i′, j′) is at most 4. Let C be such a cycle in H. Then using the
property of C we get the following important property.

For any i ∈ [q], the number of edges of V (C) with one end point in Xi and other in⋃
i<j≤qXj is in O(

√
k).

The above mentioned property allows us to design a dynamic programming (DP) algorithm
over 7

√
k-NCPD, P, for Exact k-Cycle in time 2O(

√
k log k). Now we are ready to give

formal details about the algorithm. As explained before, we assume that the number of
vertices in the input graph is bounded by kO(1).

I Lemma 8. Let (G, f : V (G)→ [2k]× [2k], k) be an instance of Exact k-Cycle, where
G is a clique-grid graph with representation f , |f−1(i, j)| < k for all (i, j) ∈ [2k]× [2k] and
|V (G)| = kO(1). Given (G, f : V (G)→ [2k]× [2k], k), there is an algorithm running in time
2O(
√
k log k) that outputs a good family F.

Proof. Let C be a k length cycle in G. First we define a column of the 2k× 2k grid. For any
j ∈ [2k] the set of cells {(i, j) : i ∈ [2k]} is called a column. There are 2k columns for the
2k × 2k grid. We partition 2k columns of the 2k × 2k grid with k blocks of two consecutive
columns and label them from the set of labels [

√
k]. That is, both columns 2i− 1 and 2i,

ICALP 2017

65:8 Finding, Hitting and Packing Cycles on Unit Disk Graphs

where i ∈ [k], are labelled with i mod
√
k. Then by pigeon hole principle there is a label

` ∈ {1, 2, . . . ,
√
k} such that the number of vertices from V (C) which are in columns labelled

` is at most
√
k. As |V (G)| ≤ kO(1), the number of vertices of G in columns labelled ` is at

most kO(1). We guess the vertices of V (C) which are in the columns labelled `. The number of
potential guesses is bounded by kO(

√
k). Let Y be the set of guessed vertices of V (C) which are

in the columns labelled by `. Notice that |Y | ≤
√
k. Then we delete all the vertices in columns

labelled `, except the vertices of Y . Let S be the set of deleted vertices. By the property 2
of clique-grid graph, G \ (S ∪ Y) is a disjoint union of clique-grid graphs each of which is
represented by a function with at most 2

√
k columns. That is, let G1 = G[

⋃2(`−1)
j=1 f−1(∗, j)],

and Gi+1 = G[
⋃min{i·2`+2

√
k,2k}

j=i·2`+1 f−1(∗, j)] for all i ∈ {1, . . . , d
√
ke}. Notice that Gi is clique-

grid graph with representation fi : V (Gi) → [2k] × [2
√
k] defined as, fi(u) = (r, j), when

f(u) = (r, (i−1)2`+j). By the property 2 of clique-grid graph, G\(S∪Y) = G1]. . .]Gd√ke+1.

I Claim 1. G \ S has a nice 7
√
k-clique path decomposition (7

√
k-NCPD).

Proof. First, for each i ∈ {1, . . . , d
√
ke+ 1}, we will define a path decomposition of Gi (in

the next paragraph) such that each bag is a union of at most 6
√
k many cells of fi. As

G \ (S ∪ Y) = G1] . . .] Gd√ke−1, and |Y | ≤
√
k, by adding Y to each bag of all path

decompositions we can get a required nice 7
√
k-clique path decomposition for G \ S.

Now, for each Gi, we define a path decomposition Pi = (Xi,1, Xi,2, . . . Xi,2k−2) where
Xi,j = f−1

i (j, ∗) ∪ f−1
i (j + 1, ∗) ∪ f−1

i (j + 2, ∗). We claim that Pi is a path decomposition of
Gi. Notice that

⋃k−1
j=1 Xi,j = f−1

i (∗, ∗) = V (Gi). By property 2 of clique-grid graph, we have
that for each edge {u, v} ∈ E(G), there exists j ∈ [2k − 2] such that {u, v} ∈ Xi,j . For each
u ∈ V (G), u is contained in at most three bags and these bags are consecutive in the sequence
(Xi,1, Xi,2, . . . Xi,2k−2). Hence Pi is a path decomposition of Gi. Since Xi,j = f−1

i (j, ∗) ∪
f−1
i (j + 1, ∗) ∪ f−1

i (j + 2, ∗), number of columns in fi is at most 2
√
k and each cell of fi is a

cell of f , each Xi,j is a union of 6
√
k many cells of f . Since G \ (S ∪Y) = G1] . . .]Gd√ke+1,

the sequence P ′ = (X1,1, . . . X1,2k−2, X2,1, . . . X2,2k−2, . . . , Xd
√
ke−1,1, . . . Xd

√
ke−1,2k−2) is a

path decomposition of G \ (S ∪ Y). More over, the vertices of each bag is a union of vertices
from at most 6

√
k cells of f . Also, since |Y | ≤

√
k, the sequence P = (X1,1 ∪ Y, . . .X1,k−2 ∪

Y, . . .Xd
√
ke−1,k−2 ∪Y) obtained by adding Y to each bag of P ′ we get a path decomposition

of G \ S. More over, the vertices of each bag in P is a union of vertices from at most 7
√
k

cells of f . We can turn the path decomposition P to a 7
√
k-NCPD by an algorithm similar

to the one mentioned in Proposition 2. J

The algorithm constructs a family F as follows. For each ` ∈ {1, . . . , d
√
ke} and for two

subsets of vertices S and Y such that S ∪ Y is a set of vertices in the columns labelled `
and |Y | ≤

√
k, our algorithm includes an instance (G \ S, f |V (G)\S , k) in F. The number of

choices of S and Y is bounded by 2O(
√
k log k) and thus the size of F is bounded by 2O(

√
k log k).

We claim that F is indeed a good family. Let C be a cycle of length k in G. Then, there is an
` ∈ {1, . . . , d

√
ke} such that at most

√
k vertices from V (C) are in the columns labelled by `.

Let S′ be the set of vertices in the columns labelled by `. Let Y = S′ ∩V (C) and S = S′ \Y .
The instance (G \ S, f |V (G)\S , k) in F is a Yes instance. This concludes the proof. J

Now we can assume that we are solving Exact k-Cycle on (H, f, k), where (H, f, k) ∈ F

(here we rename the function f |V (H) with f for ease of presentation). Now we prove that if
there is a cycle of length k in H, then there is a cycle C of length k in H such that for any
two cells (i, j) and (i′, j′) of f , the number of edges of E(C) with one end point in (i, j) and
other (i′, j′) is at most 5.

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:9

•
•

ur

ur′

•
•

vr

vr′

•
•

•
•

ur

ur′

vr

vr′

Figure 1 Illustration of Lemma 9. Figure on the left is the cycle C = [urvr]Q1[ur′ vr′]Q2 and the
one on the right is the cycle C′ = [urur′]←−Q1[vrvr′]Q2.

I Lemma 9. Let (H, f : V (H) → [2k] × [2k], k) be a Yes instance of Exact k-Cycle.
Then there is a cycle C of length k in H such that for any two distinct cells (i, j) and (i′, j′)
of f , the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is at most 5.

Proof. Let C be a k length cycle such that the number edges of E(C) whose end points
are in different cells is minimized. We claim that for any two disjoint cells (i, j) and
(i′, j′), the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is
at most 5. Suppose not. Then there exist (i, j) and (i′, j′) such that the number of
edges of E(C) with one end point in (i, j) and other in (i′, j′) is at least 6. Let C =
P1[u1v1]P2[u2v2]P3[u3v3]P4[u4v4]P5[u5v5]P6[u6v6] where for each {ur, vr}, r ∈ [6], one end
point is in the cell (i, j) and other in the cell (i′j′), and each subpath P`, ` ∈ [6], can be
empty too. Since C is a cycle, at least 3 edges from {{ur, vr} : i ∈ [6]} form a matching. Let
{ur1 , vr1}, {ur2 , vr2} and {ur3 , vr3} be a matching of size 3, where {r1, r2, r3} ⊆ [6]. Then,
by pigeon hole principle there exist r, r′ ∈ {r1, r2, r3} such that either ur, ur′ ∈ f−1(i, j) or
ur, ur′ ∈ f−1(i′, j′). Without loss of generality assume that ur, ur′ ∈ f−1(i, j) (otherwise
we rename cell (i, j) with (i′, j′) and vice versa). That is, C = [urvr]Q1[ur′vr′]Q2 such that
ur, ur′ ∈ f−1(i, j) and vr, vr′ ∈ f−1(i′, j′). Then, since f−1(i, j) and f−1(i′, j′) are cliques,
C ′ = [urur′]←−Q1[vrvr′]Q2 is a k length cycle in G, such that the number edges of E(C ′)
whose end points are in different cells is less than that of E(C), which is contradiction to our
assumption. See Fig. 1 for an illustration of C and C ′. This completes the proof. J

Next we design a DP algorithm that finds a cycle of length k, if it exists, satisfying
properties of Lemma 9.

I Lemma 10. Let (H, f : V (H)→ [2k]× [2k], k) ∈ F be an instance of Exact k-Cycle.
and P be a 7

√
k-NCPD of H. Then, given (H, f : V (H) → [2k] × [2k], k) and P, there is

an algorithm A which runs in time 2O(
√
k log k), and outputs Yes, if there is a cycle C in H

such that for any two distinct cells (i, j) and (i′, j′) of f , the number of edges with one end
point in (i, j) and other (i′, j′) is at most 5. Otherwise algorithm A will output No.

Proof Sketch. Algorithm A is a DP algorithm over the 7
√
k-NCPD P = (X1, . . . Xq) of H.

For any ` ∈ [q], we define H` be the induced subgraph H[
⋃
i≤`Xi] of H. Define C to be the

set of k-length cycles in H such that for any C ∈ C and two disjoint cells (i, j) and (i′, j′) of
f , the number of edges of E(C) with one end point in (i, j) and other (i′, j′) is at most 5. Let
C ∈ C. Since P is a 7

√
k-NCPD and the fact that for any two distinct cells (i, j) and (i′, j′)

of f , the number of edges of C with one end point in (i, j) and other (i′, j′) is at most 5, we
have that for any bag X` of P, the number of vertices of V (C) ∩X` which has a neighbour
in V (H) \X` is bounded by O(

√
k). This allows us to keep only 2O(

√
k log k) states in the DP

algorithm. Fix any ` ∈ [q] and define CL the set of paths of C (or the cycle C itself) when
we restrict C to H`. That is CL = H`[E(C)]. Let ĈL = {{u, v} | there is a u-v path in CL}.
Notice that

⋃
P∈ĈL

P is the set of vertices of degree 0 or 1 in CL and
⋃
P∈ĈL

P ⊆ X`. Since

ICALP 2017

65:10 Finding, Hitting and Packing Cycles on Unit Disk Graphs

X` is a union of vertices from at most 7
√
k many cells of f and for any two distinct cells

(i, j) and (i′, j′) of f , the number of edges of E(C) with one end point in (i, j) and other
(i′, j′) is at most 5, and by property 2 of the clique-grid graph, we have that the cardinality
of

⋃
P∈ĈL

P is at most 5 · 24 · 7
√
k = 840

√
k. In our DP algorithm we will have state indexed

by (`, ĈL, |E(CL)|) which will be set to 1. Formally, for any ` ∈ [q], k′ ∈ [k] and a family
Z of vertex disjoint sets of size at most 2 of X` with the property that the cardinality of⋃
Z∈Z Z is at most 840

√
k, we will have a DP table entry A[`,Z, k′]. For each ` ∈ [q], we

maintain the following correctness invariant.

Correctness Invariants: (i) For every C ∈ C, let CL = H`[E(C)]. For every C ∈ C, let
ĈL = {{u, v} | there is a connected component P in CL and P is a u-v path as well}. Then
A[`, ĈL, |E(CL)|] = 1, (ii) for any family Z of vertex disjoint sets of size at most 2 of X` with
0 < |

⋃
Z∈Z Z| ≤ 840

√
k, k′ ∈ [k], and A[`,Z, k′] = 1, there is a set Q of |Z| vertex disjoint

paths in H` where the end points of each path are specified by a set in Z and |E(Q)| = k′,
and (iii) if A[`, ∅, k] = 1, then there is a cycle of length k in H`.

The correctness of the our algorithm will follow from the correctness invariant. We fill
the DP table entries similar to the way it is done for dynamic programming algorithms on
graphs of bounded treewidth. That is, we fill the table entries by considering various cases
for bags (introduce and forget) and using the previously computed DP table entries. A
complete detailed proof is provided in the appended version. J

Theorem 7 follows from Theorem 6 and Lemmata 8, 9, and 10.

6 Feedback Vertex Set

In this section, we show that Feedback Vertex Set (FVS) admits a subexponential-time
parameterized algorithm. More precisely, we prove the following.

I Theorem 11. FVS on unit disk graphs can be solved in time 2O(
√
k log k)nO(1).

For an algorithm for FVS and other problems such as Cycle Packing, we need more
compact representations of clique-grid graphs. In the next section we introduce these notions.

6.1 The Cell Graph of a Clique-Grid Graph
We introduce two compact representations of clique-grid graphs. By examining these
representations, we are able to infer information on the structure of clique-grid graphs that
are also unit disk graphs.

I Definition 12 (backbone). Given a clique-grid graph G with representation f : V (G)→
[t]× [t′], an induced subgraph H of G is a backbone for (G, f) if for any two distinct cells
(i, j), (i′, j′) ∈ [t] × [t′] for which there exist u ∈ f−1(i, j) and v ∈ f−1(i′, j′) such that
{u, v} ∈ E(G), there also exist u′ ∈ f−1(i, j) and v′ ∈ f−1(i′, j′) such that {u′, v′} ∈ E(H).
If no induced subgraph of H is a backbone for (G, f), then H is a minimal backbone for
(G, f).

First, we bound the maximum degree of a minimal backbone.

I Lemma 13. Let G be a clique-grid graph with representation f , and let H be a minimal
backbone for (G, f). Then, for all (i, j) ∈ [t] × [t′], it holds that |f−1(i, j) ∩ V (H)| ≤ 24.
Furthermore, the maximum degree of H is at most 599.

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:11

Proof. By Condition 2 in Definition 3, we have that for all cells (i, j) ∈ [t] × [t′], it holds
that f−1(i, j) ∩ V (H) ≤ |{(i′, j′) ∈ [t]× [t′] \ {(i, j)} | |i− i′| ≤ 2, |j − j′| ≤ 2}| ≤ 24. Thus,
for all (i, j) ∈ [t] × [t′], the degree in H of a vertex in f−1(i, j) ∩ V (H) is bounded by
|(

⋃
{(i′,j′)∈[t]×[t′] | |i−i′|≤2,|j−j′|≤2} f

−1(i, j) ∩ V (H)) \ {v}| ≤ |{(i′, j′) ∈ [t] × [t′] | |i − i′| ≤
2, |j − j′| ≤ 2}| · 24− 1 = 25 · 24− 1 = 599. J

We compute a minimal backbone as follows. Initializes H = G; then, for every vertex
v ∈ V (G), it checks if the graph H \{v} has the same backbone as H, in which case it updates
H to H \ {v}. Thus, a minimal backbone H for (G, f) can be computed in polynomial time.
To analyze the treewidth of a backbone, we need the following.

I Proposition 14 ([23]). Let G be a unit disk graph with maximum degree ∆. Then G

contains a tw
100∆3 ×

tw
100∆3 grid as a minor.

I Lemma 15. Given a clique-grid graph G that is a unit disk graph, a representation f of G
and an integer ` ∈ N, in time 2O(`) · nO(1), one can either correctly conclude that G contains
a `

100 · 5993 ×
`

100 · 5993 grid as a minor, or obtain a minimal backbone H for (G, f) with a
nice tree decomposition T of width at most 5`.

We will use Lemma 15 with ` = O(
√
k). Next, we define a more compact representation of a

clique-grid graph.

I Definition 16 (cell graph). Given a clique-grid graph G with representation f : V (G)→
[t] × [t′], the cell graph of G, denoted by cell(G), is the graph on the vertex-set {vi,j : i ∈
[t], j ∈ [t′], f−1(i, j) 6= ∅} and edge-set {{vi,j , vi′,j′} : (i, j) 6= (i′, j′),∃u ∈ f−1(i, j)∃v ∈
f−1(i′, j′) such that {u, v} ∈ E(G)}.

By Definitions 12 and 16, and the that for any graph G and a minor H of G, it holds
that tw(H) ≤ tw(G), we conclude the following.

I Observation 17. For a clique-grid graph G, a representation f of G and a backbone H
for (G, f), it holds that cell(G) is a minor of H and tw(cell(G)) ≤ tw(H).

Note that a nice tree decomposition of cell(G) of width 5` corresponds to a 5`-NCTD of
G. In other words, from Lemma 15 and Observation 17, we directly have the following..

I Corollary 18. Given a clique-grid graph G that is a unit disk graph, a representation f

of G and an integer ` ∈ N, in time 2O(`) · nO(1), one can either correctly conclude that G
contains a `

100 · 5993 ×
`

100 · 5993 grid as a minor, or compute a 5`-NCTD of G.

6.2 Outline of an Algorithm for FVS
First, we observe that if we find a large grid, we can answer No (see also [15, 12]).

I Observation 19. Let (G, k) be an instance of FVS. If G contains a 2
√
k × 2

√
k grid as a

minor, then (G, k) is a No-instance.

This observation leads us to the following.

I Lemma 20. Let (G,O, k) be an instance of FVS on unit disk graphs. Then, in time
2O(
√
k log k)·|V (G)|O(1), one can either solve (G,O, k) or obtain an equivalent instance (G, f, k)

of FVS on clique-grid graphs together with an O(
√
k)-NCTD of G.

ICALP 2017

65:12 Finding, Hitting and Packing Cycles on Unit Disk Graphs

Proof. First, by using Lemma 4, we obtain a representation f of G. Then, by using
Corollary 18 with ` = 200 · 5993 ·

√
k = O(

√
k), we either correctly conclude that G contains

a 2
√
k × 2

√
k grid as a minor, or compute an O(

√
k)-NCTD of G. In both cases, by

Observation 19, we are done. J

Because of Lemma 20, to prove Theorem 11, we can focus on FVS on clique-grid graphs,
where the input also contains a O(

√
k)-NCTD. That is, the input of FVS on clique-grid

graphs is a tuple (G, f, k, T) where G is a clique-grid graph with representation f and
T = (T, β) is a O(

√
k)-NCTD of G. Notice that if there is a cell (i, j) of f , such that

|f−1(i, j)| ≥ k + 3, then there is no feedback vertex set of size at most k in G, because
f−1(i, j) is a clique of size at least k + 3 in G.

I Observation 21. Let (G, f, k, T) be an instance of FVS, where G is a clique-grid graph
with representation f . If there is a cell (i, j) in f such that |f−1(i, j)| ≥ k+3, then (G, f, k, T)
is a No-instance.

The following observation follows from the fact that T = (T, β) is a O(
√
k)-NCTD and

|f−1(i, j)| ≤ k + 2 for any cell (i, j) of f .

I Observation 22. For any v ∈ V (T), |β(v)| = O(k1.5).

Notice that G has a feedback vertex set of size at most k if and only if there is a vertex
subset F ⊆ V (G) of cardinality at least |V (G)| − k such that G[F] is a forest. Hence, instead
of stating the problem as finding a k sized feedback vertex set in G, we can state it as finding
an induced subgraph H of G with maximum number of vertices such that H is a forest.

Max Induced Forest (MIF) Parameter: k

Input: A clique-grid graph G with representation f and an integer k such that T is a
c
√
k-NCTD of G and for any cell (i, j) in f , |f−1(i, j)| ≤ k + 2, where c is a constant

Question: Is there subset W ⊆ V (G) such that G[W] is a forest and |W | ≥ |V (G)| − k

I Observation 23. Let (G, f, k, T) be an instance of MIF. Then (G, f, k, T) is a Yes-
instance of MIF if and only if (G, f, k, T) is a Yes-instance of FVS.

By Lemma 20 and Observations 21 and 23, to prove Theorem 11, it is sufficient that we
prove the following result (which is the focus of the rest of this section).

I Lemma 24. MIF on clique-grid graphs can be solved in time 2O(
√
k log k) · nO(1).

Proof sketch. We explain a DP algorithm which given as input (G, f, k, T) where G is a
clique-grid graph with representation f , T = (T, β) is a c

√
k-NCTD, c is a constant and

|f−1(i, j)| ≤ k + 2 for any cell (i, j) of f and outputs Yes if there is an induced forest with
at least |V (G)| − k vertices and outputs No otherwise. Here we use the term solution for
a vertex subset S ⊆ V (G) with the property that G[S] is a forest. First notice that any
solution S contains at most 2 vertices from f−1(i, j) for any cell (i, j). Now, the following
claim follows from the fact that T is a c

√
k-NCTD and any solution contain at most 2

vertices from f−1(i, j) for any cell (i, j).

I Claim 2. For any v ∈ V (T) and any solution S, |S ∩ β(v)| ≤ 2c
√
k.

We first briefly explain what is the table entries in a standard DP algorithm for our
problem on graphs of bounded treewidth [12]. Then we explain that in fact many of the entries
we compute in the standard DP table is redundant in our case, because of Observation 22 and
Claim 2. That is, Observation 22 and Claim 2, shows that only 2O(

√
k log k)|V (G)|O(1) many

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:13

states in the DP table are relevant in our case. Recall that for any v ∈ V (T), γ(v) denote
the union of the bags of v and its descendants. The standard DP table for our problem will
have an entry indexed by (v, U, U1] U2 . . . U` = U) where v ∈ V (T), U ⊆ β(v). The table
entry A[v, U, U1] U2 . . . U`] stores the following information: the maximum cardinality of a
vertex subset W ⊆ G[γ(v)] such that W ∩β(v) = U , G[W] is a forest with a set of connected
components C and for any C ∈ C, either V (C)∩β(v) = ∅ or V (C)∩β(v) = Ui for some i ∈ [`].
Notice that the total number of DP table entries is bounded by twO(tw)|V (G)|O(1) where tw
is the width of the tree decomposition T . One can easily show that the computation of the
DP table at a node can be done in time polynomial in the size of the tables of its children.

By Observation 22 and Claim 2, we know that for any bag β(v) in T , the potential number
of subsets of β(v) which can be part of any solution is at most 2O(

√
k log k). This implies that

we only need to compute the DP table entries for indices (v, U, U1] U2 . . . U` = U) where
v ∈ V (T), U ⊆ β(v) and |U | ≤ 2c

√
k. Thus, the size of DP table, and hence the time to

compute it takes 2O(
√
k log k)nO(1) time. This concludes the description. J

References
1 Jochen Alber and Jiří Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. In Foundations of Information Technology in the
Era of Network and Mobile Computing, pages 26–37. Springer, 2002.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. Assoc. Comput. Mach.,
42(4):844–856, 1995.

3 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
J. Assoc. Comput. Mach., 41(1):153–180, 1994.

4 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. CoRR, abs/1007.1161, 2010.

5 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

6 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

7 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016. doi:10.1137/130947374.

8 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

9 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41(2):280–301, 2001.

10 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

11 Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms
for geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007. doi:
10.1007/s00454-006-1273-8.

12 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

13 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

14 Erik D. Demaine and MohammadTaghi Hajiaghayi. Bidimensionality: new connections
between FPT algorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM

ICALP 2017

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1137/130947374
http://dx.doi.org/10.1016/S0196-6774(02)00294-8
http://dx.doi.org/10.1007/s00454-006-1273-8
http://dx.doi.org/10.1007/s00454-006-1273-8

65:14 Finding, Hitting and Packing Cycles on Unit Disk Graphs

Symposium on Discrete Algorithms (SODA 2005), pages 590–601, New York, 2005. ACM-
SIAM.

15 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

16 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

17 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica,
58(3):790–810, 2010. doi:10.1007/s00453-009-9296-1.

18 Adrian Dumitrescu and János Pach. Minimum clique partition in unit disk graphs. Graphs
and Combinatorics, 27(3):399–411, 2011.

19 Fedor V. Fomin, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Subexponential parameterized algorithms for planar and apex-minor-free
graphs via low treewidth pattern covering. In Proceedings of the 57th Annual Symposium
on Foundations of Computer Science (FOCS), to appear, 2016.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
Journal of the ACM, 63(4):29, 2016. doi:10.1145/2886094.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs. ArXiv
e-prints, April 2017. URL: https://arxiv.org/abs/1704.07279.

22 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimension-
ality and EPTAS. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 748–759, 2011.

23 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In SODA’12 Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete algorithms, pages 1563–1575. SIAM, 2012.

24 F.V. Fomin, D. Lokshtanov, S. Saurabh, and D.M. Thilikos. Bidimensionality and kernels.
In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2010), pages 503–510. SIAM, 2010.

25 William K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

26 Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. JoCG,
3(1):65–85, 2012.

27 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In Algorithms – ESA 2015 – 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, volume 9294, pages 717–728. Springer,
2015.

28 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM, 32(1):130–136, 1985.

29 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and
PSPACE-hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998.

30 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. Journal of Computer and System Sciences, 63(4):512–530, 2001.

31 Hiro Ito and Masakazu Kadoshita. Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In Proceedings of the 9th International Symposium
on Operations Research and Its Applications (ISORA10), pages 120–127, 2010.

http://dx.doi.org/10.1093/comjnl/bxm033
http://dx.doi.org/10.1007/s00453-009-9296-1
http://dx.doi.org/10.1145/2886094
https://arxiv.org/abs/1704.07279

F. V. Fomin, D. Lokshatnov, F. Panolan, S. Saurabh, and M. Zehavi 65:15

32 Bart M.P. Jansen. Polynomial kernels for hard problems on disk graphs. In Proceedings of
the 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume
6139, pages 310–321. Springer, 2010.

33 Karl Kammerlander. C 900 – An advanced mobile radio telephone system with optimum
frequency utilization. IEEE journal on selected areas in communications, 2(4):589–597,
1984.

34 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings
of the 35th International Colloquium on Automata, Languages and Programming (ICALP
2008), volume 5125 of Lecture Notes in Computer Science, pages 575–586, 2008.

35 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, 2016. doi:10.1145/2742544.

36 Dániel Marx. Efficient approximation schemes for geometric problems? In Proceedings of
the 13th Annual European Symposium on Algorithms (ESA), volume 3669, pages 448–459.
Springer, 2005.

37 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Settling the apx-hardness status for
geometric set cover. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 541–550. IEEE Computer
Society, 2014. doi:10.1109/FOCS.2014.64.

38 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 232–243. IEEE Computer Society, 1998.

39 Stéphan Thomassé. A quadratic kernel for feedback vertex set. ACM Transactions on
Algorithms, 6(2), 2010.

40 DW Wang and Yue-Sun Kuo. A study on two geometric location problems. Information
processing letters, 28(6):281–286, 1988.

41 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–
318, 2009.

42 Yu-Shuan Yeh, J. Wilson, and S. Schwartz. Outage probability in mobile telephony with
directive antennas and macrodiversity. IEEE journal on selected areas in communications,
2(4):507–511, 1984.

43 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms – ESA 2015 – 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037–1049, 2015. doi:10.1007/978-3-662-48350-3_86.

ICALP 2017

http://dx.doi.org/10.1145/2742544
http://dx.doi.org/10.1109/FOCS.2014.64
http://dx.doi.org/10.1007/978-3-662-48350-3_86

A Polynomial-Time Randomized Reduction from
Tournament Isomorphism to Tournament
Asymmetry∗

Pascal Schweitzer

RWTH Aachen University, Aachen, Germany
schweitzer@informatik.rwth-aachen.de

Abstract
The paper develops a new technique to extract a characteristic subset from a random source
that repeatedly samples from a set of elements. Here a characteristic subset is a set that when
containing an element contains all elements that have the same probability.

With this technique at hand the paper looks at the special case of the tournament isomorphism
problem that stands in the way towards a polynomial-time algorithm for the graph isomorphism
problem. Noting that there is a reduction from the automorphism (asymmetry) problem to the
isomorphism problem, a reduction in the other direction is nevertheless not known and remains
a thorny open problem.

Applying the new technique, we develop a randomized polynomial-time Turing-reduction
from the tournament isomorphism problem to the tournament automorphism problem. This is
the first such reduction for any kind of combinatorial object not known to have a polynomial-time
solvable isomorphism problem.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures, F.1.3 Reducibility
and Completeness

Keywords and phrases graph isomorphism, asymmetry, tournaments, randomized reductions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.66

1 Introduction

The graph automorphism problem asks whether a given input graph has a non-trivial
automorphism. In other words the task is to decide whether a given graph is asymmetric.
This computational problem is typically seen in the context of the graph isomorphism
problem, which is itself equivalent under polynomial-time Turing reductions to the problem
of computing a generating set for all automorphisms of a graph [17]. As a special case of the
latter, the graph automorphism problem obviously reduces to the graph isomorphism problem.
However, no reduction from the graph isomorphism to the graph automorphism problem is
known. In fact, while many computational problems surrounding structural equivalence of
combinatorial objects can all be Turing-reduced to one another, the relationship between the
graph automorphism and the graph isomorphism problem remains a repeatedly posed open
question (see for example [1, 2, 12, 14]).

With Babai’s new ground-breaking algorithm [7] that solves the graph isomorphism
problem and thereby also the graph automorphism problem in quasi-polynomial time, the
question arises whether it is possible to go further and devise a polynomial-time algorithm.

∗ See [23], http://arxiv.org/abs/1704.08529, for the full version of the paper including the missing
proofs.

EA
T

C
S

© Pascal Schweitzer;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.66
http://arxiv.org/abs/1704.08529
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66:2 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

For such an endeavor to succeed, special cases such as the group isomorphism and the
tournament isomorphism problem, for which the currently fastest algorithms have a running
time of nO(logn), should also be solvable in polynomial time. Tournaments, which are
graphs in which between every pair of vertices there exists exactly one directed edge, also
have an automorphism problem associated with them, asking whether a given tournament
is asymmetric1. Again, for this problem the currently best running time is nO(logn) and
analogously to general graphs there is a simple reduction from the automorphism problem to
the isomorphism problem, but no reverse reduction has been known.

In this paper we show that there is a randomized polynomial-time Turing reduction from
the tournament isomorphism problem to the tournament automorphism problem. This is
the first such reduction for any kind of combinatorial object (apart from polynomial-time
solvable cases of course).

The main new technical tool that we develop in the first part of the paper is a technique
to exploit an oracle to the graph automorphism problem in order to obtain a non-trivial
automorphism-invariant partition of a graph that is finer than the orbit partition (Sections 2–
5). We call the parts of such a partition suborbits. This technique is essentially applicable to
all graph classes, not just tournaments. It hinges on a method to extract a characteristic
subset from a random source that repeatedly samples from a set of elements. Here we say
that a set is characteristic if it is a union of level sets of the probability function.

In the second part of the paper we show that, for tournaments, access to suborbits suffices
to compute automorphism groups (Section 6). For this we adapt the group-theoretic divide
and conquer approach of Luks [16] to our situation. We exploit that automorphism groups
of tournaments are solvable and we leave it as an open question whether something similar
can be forged that is applicable to the group isomorphism problem (see Section 7).

It might be worth noting that the techniques actually do not use any of the new structural
insights from the quasi-polynomial-time algorithm of [7]. Rather, the randomized sampling
idea is heavily based on an older practical randomized algorithm designed to quickly detect
non-isomorphism ([15, 21]). It appears to be one of the few cases where randomization helps
to derive a theoretical result for an isomorphism problem. We also borrow some ideas from a
paper of Arvind, Das, and Mukhopadhyay concerned with tournament canonization [4].

The necessity for randomization to obtain theoretical results in the context of isomorphism
checking appears to be quite rare. The earliest result exploiting randomization seems to
go to back to Babai [5] and is a randomized algorithm for checking isomorphism of graphs
of bounded color class size. However that algorithm is actually a Las Vegas algorithm (an
algorithm that does not make errors), and in the meantime deterministic algorithms are
available [11]. However, for the new reduction in this paper it seems unclear how to remove
the use of randomization and even how to remove the possibility for errors.

Related work

With respect to related work, we focus on results concerning graph automorphism as well as
results concerning tournaments and refer the reader to other texts (for example [6, 7, 14, 18,

1 Many publications in the context of graph isomorphism use the term rigid graph. However, the
literature is inconsistent on the notion of a rigid graph, which can for example refer to having no
non-trivial automorphism or no non-trivial endomorphism. We will use the notion asymmetric, which
only ever means the former. Furthermore, we suggest the name graph asymmetry problem over
graph automorphism problem, so as not to confuse it with the computational problem to compute the
automorphism group.

P. Schweitzer 66:3

22]) for a general introduction to the graph isomorphism problem, current algorithms and
overviews over complexity theoretic results.

Tournament automorphism. Let us start by highlighting two results specifically concerned
with the tournament automorphism problem. Arvind, Das, and Mukhopadhyay [4] show
that if tournament isomorphism is polynomial-time solvable then tournament canonization
can be reduced in polynomial time to canonization of asymmetric tournaments. This
implies now, with the result of the current paper, that from a canonization algorithm for
asymmetric tournaments we can obtain a randomized canonization algorithm for tournaments
in general. (In other words, the main theorem of our paper transfers to canonization.) On
the hardness side, Wager [25, 27] shows that tournament automorphism is hard for various
circuit complexity classes (NL, C=L, PL, DET, MODkL) under AC0 reductions.

Graph automorphism A lot of information on the complexity of graph automorphism can
be found in the book by Köbler, Schöning, and Torán [14]. Concerning hardness of the
automorphism problem, improving previous results of Torán [24], Wagner shows hardness
results for graphs of bounded maximum degree [26, 27]. Agrawal and Arvind show truth
table equivalence of several problems related to graph automorphism [1] and Arvind, Beigel,
and Lozano study modular versions of graph automorphism [3] which for k ∈ N ask whether
the number of automorphisms of a given graph is divisible by k.

The graph automorphism problem is of interest in quantum computing since it can be
encoded as a hidden shift problem, as opposed to the graph isomorphism problem that is
only known to be encodable as a hidden subgroup problem [10, 13].

Recently, Allender, Grochow, and Moore [2] developed a zero-error randomized reduction
from graph automorphism to MKTP, the problem of minimizing time-bounded Kolmogorov
complexity, a variant of the minimum circuit size problem. In that paper they also extend
this to a bounded-error randomized reduction from graph isomorphism to MKTP.

Tournament isomorphism. Concerning the tournament isomorphism problem, the currently
fastest algorithm [8] has a running time of nO(logn). With respect to hardness, Wagner’s
results for tournament automorphism also apply to tournament isomorphism [25].

Ponomarenko showed that isomorphism of cyclic tournaments can be decided in polynomial
time [19], where a cyclic tournament is a tournament that has an automorphism that is
a permutation with a single cycle spanning all vertices. Furthermore he showed that
isomorphism of Schurian tournaments can be decided in polynomial time [20].

2 Sampling characteristic subsets

Let M be a finite set. We define a sampler S over M to be a probability measure PrS : M →
[0, 1] on the elements of M . We think of a sampler as an oracle that we can invoke in
order to obtain an element of M . That is, given a sampler, we can sample a sequence of
elements m1, . . . ,mt where each mi is sampled independently from M according to PrS.

We call a subset M ′ of M characteristic with respect to S if for all m,m′ ∈M it holds
that m ∈ M ′ and PrS(m′) = PrS(m) implies m′ ∈ M ′. Another way of formulating this
condition is that M ′ is invariant under all probability-preserving bijections ϕ : M →M , that
is, those bijections that satisfy PrS(m) = PrS(ϕ(m)) for all m ∈M .

When considering sampling algorithms we will not assume that we know the size of the
set M . Our goal is to repeatedly invoke a sampler M so as to find a characteristic subset.

ICALP 2017

66:4 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

The main difficulty in this is that we can never precisely determine the probability PrS(m)
of an element m. Indeed, the only thing we can hope for is to get a good estimate for such
a probability. The following lemma indicates that this might be helpful since the set of
probabilities cannot be arbitrarily dense.

I Lemma 1. Let PrS be a discrete probability measure on the set M . Let P = {PrS(m) |
m ∈ M} be the set of probabilities that occur. For every positive integer i there is a j ∈
{6i+ 1, . . . , 8i} such that [(j − 1/4)/(8i2), (j + 1/4)/(8i2)] ∩ P = ∅.

Using the lemma we can design an algorithm that, with high probability, succeeds at
determining a characteristic set.

I Theorem 2. There is a deterministic algorithm that, given ε > 0 and given access to
a sampler S over an unknown set M of unknown size, runs in expected time polynomial
in 1/(maxm∈M PrS(m)) ≤ |M | and ln 1/ε and outputs a non-empty subset of M that is
characteristic with probability 1− ε.

The proof of the theorem makes repeated use of Chernoff bounds. The main difficulty
is that |M | is not known to the algorithm. The lengthy proof can be found in the full
version [23].

We note several crucial observations about any algorithm solving the problem just
described. There is no algorithm that for every set M and sampler S always outputs the
same set M ′ with high probability.

Indeed, consider the set M = {a, b}. Choosing PrS(a) = PrS(b) = 1/2 means that M ′
must be {a, b}. Choosing PrS(a) = 1 and PrS(b) = 0 implies that M ′ must be {a}. However,
there is a continuous deformation between these two samplers, while possibilities for the
set M ′ are discrete. It is not difficult to see that the probability distribution of the output
set M ′ must be continuous in the space of samplers, and thus, whatever the algorithm may
be, there must be samplers for which the algorithm sometimes outputs {a} and sometimes
outputs {a, b}.

The theorem only establishes polynomial running time. If we are however interested in
small running times, one might even ask whether it is possible to devise an algorithm running
in time sublinear in |M |. However, recalling the coupon collector theorem and considering
uniform samplers one realizes that one cannot expect to make do with o(|M | log |M |) sam-
plings. However, if the set M is of algebraic nature, for example forms a group, then there
might be meaningful ways to sample characteristic substructures (see Section 7).

3 Gadget constructions for asymmetric tournaments

There are several computational problems fundamentally related to the graph isomorphism
problem. This relation manifests formally as polynomial-time Turing (or even many-one)
reductions between the computational tasks. Such reductions are typically based on gadget
constructions which we revisit in this section.

While the graph isomorphism problem GI asks whether two given graphs are isomorphic, in
the search version of this decision problem an explicit isomorphism is to be found, whenever
one exits. The graph automorphism problem GA asks whether a given graph has a non-trivial
automorphism (i.e., an automorphism different from the identity). In other words the task
is to decide whether the given graph is asymmetric. Two other related problems are the
task AUT to determine generators for the automorphism group Aut(G) and the task to
determine the size of the automorphism group |Aut(G)|.

P. Schweitzer 66:5

For all named problems there is a colored variant, where the given graphs are vertex
colored and isomorphisms are restricted to be color preserving. We denote the respective
problems by col-GI, col-GA and col-AUT.

It is well known that between all these computational problems – except GA – there
are polynomial-time Turing reductions (we refer for example to [9], [14], [17]). Concerning
the special case of GA, while there is a reduction from GA to the other problems, a reverse
reduction is not known.

The reductions are typically stated for general graphs, but many of the techniques are
readily applicable to restricted graph classes. By a graph class we always mean a collection of
possibly directed graphs closed under isomorphism. The isomorphism problem for graphs in C,
denoted GIC , is the computational task to decide whether two given input graphs from C are
isomorphic. If one of the input graphs is not in C the answer of an algorithm may be arbitrary,
in fact the algorithm may even run forever. Analogously, for each of the other computational
problems that we just mentioned, we can define a problem restricted to C giving us for
example GAC , and AUTC and the colored versions col-GIC , col-GAC , and col-AUTC .

As remarked in [4], most of the reduction results for general graphs transfer to the
problems for a graph class C if one has, as essential tool, a reduction from col-GIC to GIC .

I Theorem 3 (Arvind, Das, Mukhopadhyay [4]). Suppose that for a graph class C there is a
polynomial-time many-one reduction from col-GIC to GIC (i.e., col-GIC ≤pm GIC)2. Then
1. GAC polynomial-time Turing-reduces to GIC (i.e., GAC ≤pT GIC),
2. The search version of GIC polynomial-time Turing-reduces to the decision version of GIC,

and
3. AUTC polynomial-time Turing-reduces to GIC (i.e., AUTC ≤pT GIC).

In this paper we are mainly interested in two classes of directed graphs, namely the class
of tournaments Tour and the class of asymmetric tournaments AsymTour. For the former
graph class, a reduction from the colored isomorphism problem to the uncolored isomorphism
problem is given in [4].

I Theorem 4 (Arvind, Das, Mukhopadhyay [4]). The colored tournament isomorphism problem
is polynomial-time many-one reducible to the (uncolored) tournament isomorphism problem
(i.e., col-GITour ≤pm GITour).

However, for our purposes we also need the equivalent statement for asymmetric tourna-
ments. Taking a closer look at the reduction described in [4] yields the desired result. In
fact it also shows that the colored asymmetry problem reduces to the uncolored asymmetry
problem. Denoting for a graph class C by AsymC the class of those graphs in C that are
asymmetric (i.e., have a trivial automorphism group), we obtain the following.

I Lemma 5.
1. The isomorphism problem of colored asymmetric tournaments is polynomial-time many-

one reducible to the isomorphism problem for (uncolored) asymmetric tournaments
(i.e., col-GIAsymTour ≤pm GIAsymTour).

2. The colored tournament asymmetry problem is polynomial-time many-one reducible to the
(uncolored) tournament asymmetry problem (i.e., col-GATour ≤pm GATour).

2 Let us remark for completeness that a Turing reduction assumption col-GIC ≤p
T GIC actually suffices for

the theorem.

ICALP 2017

66:6 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

As mentioned above, reductions for computational problems on general graphs can often
be transferred to the equivalent problems restricted to a graph class C. However, let us
highlight a particular reduction where this is not the case. Indeed, it is not clear how to
transfer the reduction from GI to AUT (which involves taking unions of graphs) to a reduction
from GIC to AUTC, even when provided a reduction of col-GAC to GIC. For the class of
tournaments however, we can find such a reduction, of which we can make further use.

I Lemma 6.
1. The isomorphism problem for tournaments polynomial-time Turing-reduces to the task to

compute a generating set for the automorphism group of a tournament (i.e., col-GITour ≤pT
AUTTour).

2. The isomorphism problem for colored asymmetric tournaments is polynomial-time many-
one reducible to tournament asymmetry (i.e., col-GIAsymTour ≤pm GATour).

3. The search version of the isomorphism problem for colored asymmetric tournaments
Turing-reduces to tournament asymmetry.

Proof. Suppose we are given two tournaments T1 and T2 on the same number of vertices n
for which isomorphism is to be decided. By Theorem 4 we can assume that the tournaments
are uncolored. Let Tri(T1, T2) be the tournament obtained by forming the disjoint union of
the three tournaments T1, T ′1 and T2 where T1 ∼= T ′1. We add edges from all vertices of T1 to
all vertices of T ′1, from all vertices of T ′1 to all vertices of T2 and from all vertices of T2 to
all vertices of T1. We observe that two vertices that are contained in the same of the three
sets V (T1), V (T2), V (T ′1) have n common out-neighbors. However, two vertices that are not
contained in the same of these three sets have at most n − 1 common out-neighbors. We
conclude that an automorphism of Tri(T1, T2) preserves the partition of V (Tri(T1, T2)) into
the three sets V (T1), V (T ′1) and V (T2).

Given a generating set for Aut(Tri(T1, T2)) it holds that there is some generator that
maps a vertex from V (T1) to a vertex from V (T2) if and only if T1 and T2 are isomorphic.
This proves the first part of the lemma.

Suppose additionally that T1 and T2 are asymmetric. We then further conclude that
the tournament Tri(T1, T2) has a non-trivial automorphism if and only if T1 and T2 are
isomorphic. This shows that the decision version of asymmetric tournament isomorphism
reduces to tournament asymmetry. Since the search version is Turing-reducible to the decision
version of isomorphism (Theorem 3) this finishes the proof. J

For Turing reductions, the converse of the previous lemma also holds. In fact the converse
holds for arbitrary graph classes. The first part of this converse is a well known techniques
that goes back to Mathon [17].

I Lemma 7. Let C be a graph class.
1. The task to compute a generating set for the automorphism group of graphs in C Turing-

reduces to the isomorphism problem for colored graphs in C (i.e., AUTC ≤pT col-GIC).
2. Asymmetry checking for graphs in C polynomial-time Turing-reduces to isomorphism

checking of asymmetric colored graphs in C (i.e., GAC ≤pT col-GIAsymC).

4 Invariant automorphism samplers from asymmetry tests

As discussed before, the asymmetry problem of a class of graphs reduces to the isomorphism
problem of graphs in this class. However, whether there is a reduction in the reverse, or
whether the asymmetry problem may actually be computationally easier than the isomorphism

P. Schweitzer 66:7

Algorithm 1 An invariant automorphism sampler for tournaments using an asymmetry
oracle.
Input: A tournament T that is not asymmetric and an oracle O for tournament asymmetry.
Output: An automorphism ϕ ∈ Aut(T) \ {id}. As a random variable, the outputs of the

algorithm form an invariant automorphism sampler for T .

1: Tnext ← T

2: while Aut(Tnext) 6= {id} do
3: Pick a vertex v independently, uniformly at random among all non-singleton color

classes in Tnext.
4: T ← Tnext
5: Tnext ← T(v) // individualize v
6: end while // at this point Tnext is asymmetric
7: Let V ′ be the set of those vertices that have the same color in T as v.
8: Let V ′′ be the set of those vertices v′′ in V ′ \ {v} for which Aut(T(v′′)) = {id}.
9: Let V ′′′ be the set of those vertices v′′′ in V ′′ for which Tnext ∼= T(v′′′).

// use Part 2 of Lemma 6
10: Pick a vertex u ∈ V ′′′ uniformly at random.
11: Compute an isomorphism ϕ from Tnext to T(u). // there is only one such isomorphism
12: return ϕ

problem is not known. To approach this question, we now explore what computational power
we could get from having available an oracle for the asymmetry problem.

An invariant automorphism sampler for a graph G is a sampler over Aut(G) \ {id} which
satisfies the property that if PrS(ϕ) = p then PrS(ψ−1 ◦ ϕ ◦ ψ) = p for all ψ ∈ Aut(G). We
first show how to use an oracle for asymmetry to design an invariant automorphism sampler
for a tournament T .

I Lemma 8. Given an oracle for asymmetry of tournaments (GATour) we can construct
for every given colored (or uncolored) tournament T that is not asymmetric an invariant
automorphism sampler. The computation time (and thus the number of oracle calls) required
to sample once from S is polynomial in |V (T)|.

Proof. Let O1 be an oracle for uncolored tournament asymmetry. By Lemma 5, we can
transform the oracle O1 for the asymmetry of uncolored tournaments into an oracle O2 for
asymmetry of colored tournaments. By Lemma 6 Part 2, we can also assume that we have an
oracle O3 that decides the isomorphism problem of colored asymmetric tournaments. More
strongly, Lemma 6 Part 3 makes a remark on the search version, thus we can assume that O3
also solves the isomorphism search problem for asymmetric tournaments.

To obtain the desired sampler S we proceed as follows. In the given tournament T we
repeatedly fix (by individualization, i.e., giving it a special color) uniformly, independently at
random more and more vertices until the resulting tournament is asymmetric. This gives us
a sequence of colored tournaments T = T0, T1, . . . , Tt such that Aut(Tt) = {id}, Aut(Tt−1) 6=
{id} and such that Tt = (Tt−1)(v) for some vertex v. In other words, Tt is obtained from Tt−1
by individualizing v which makes the graph asymmetric. Using the available oracle O2, we
can compute the set V ′′ of those vertices v′′ in V (T) \ {v} that have the same color as v
such that Aut((Tt−1)(v′′)) = {id}. There must be at least one vertex in V ′′ since Tt−1 is
not asymmetric. Using the oracle O3, we can then compute the subset V ′′′ ⊆ V ′′ of those
vertices v′′′ for which (Tt−1)(v′′′) and Tt are isomorphic. Next, we pick a vertex u ∈ V ′′′

ICALP 2017

66:8 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

uniformly at random. Since both (Tt−1)(u) and Tt are asymmetric, using the oracle O3 for
the isomorphism search problem we can compute an isomorphism ϕ from (Tt−1)(u) to Tt.
This isomorphism ϕ is unique and it is a non-trivial automorphism of Aut(T). Algorithm 1
gives further details.

Invariance. he invariance follows directly from the fact that all steps of the algorithm either
consist of choosing a vertex uniformly at random or computing an object that is invariant
with respect to all automorphisms fixing all vertices that have been randomly chosen up to
this point.

Running time. Concerning the running time, one call of Algorithm 1 uses less than 2n calls
to oracle O2 and at most n calls to oracle O3. The overall running time is thus polynomial. J

Let us comment on whether the technique of the lemma can be applied to graph classes
other than tournaments. For the technique to apply to a graph class C, we require the
oracle O2, which solves colored asymmetry C, and the oracle O3 which solves the isomorphism
search problem for asymmetric colored objects in C. (The oracle O1 is a special case of O2.)
In the case of tournaments, having an oracle O1 (i.e., an oracle for uncolored asymmetry)
is sufficient to simulate the oracles O2 and O3, but this is not necessarily possible for all
graph classes C. It is however possible to simulate such oracles for every graph class that
satisfy some suitable (mild) assumptions, as can be seen from the discussion in Section 3.
In particular, given an oracle for asymmetry of all graphs we can construct an invariant
automorphism sampler for all graphs that are not asymmetric.

5 Invariant suborbits from invariant automorphism samplers

Let G be a directed graph. Let S be an invariant automorphism sampler for G. We now
describe an algorithm that, given access to an asymmetry oracle, constructs a non-discrete
partition of V (G) which is finer than or at least as fine as the orbit partition of G under Aut(G)
and invariant under Aut(G). Here, a partition π is invariant under Aut(G) if π = ψ(π) for
all ψ ∈ Aut(G). (A partition is discrete if it consists only of singletons.)

I Theorem 9. For every c ∈ N, there is a randomized polynomial-time algorithm that, given
a graph G and an invariant automorphism sampler S for G constructs with error probability
at most 1

|G|c a non-discrete partition π of V (G) such that
1. π is finer than or at least as fine as the orbit partition of V (G) under Aut(G) and
2. π is invariant under Aut(G).
The algorithm also provides a set of certificates Φ = {ϕ1, . . . , ϕm} ⊆ Aut(G) such that
for every pair of vertices v, v′ ∈ V (G) that lie in the same class of π there is some ϕi
with ϕi(v) = v′.

Proof. Let M = {(v, w) | v, w ∈ V (G), v 6= w,∃ϕ ∈ Aut(G) : ϕ(v) = w} be the set of
pairs of two distinct vertices lying in the same orbit. With the sampler S we can simulate
a sampler S′ over M invariant under Aut(G) as follows. To create an element for S′ we
sample an element ϕ from S and uniformly at random choose an element v from the
support supp(ϕ) = {x ∈ V (G) | ϕ(x) 6= x} of ϕ. Then the element for S′ is (v, ϕ(v)). It
follows form the construction that S′ is a sampler for M . Moreover, since all random choices
are independent and uniform, S′ is invariant under automorphisms.

Using the algorithm from Theorem 2 we can thus compute a characteristic subset M ′
of M . Since S′ is Aut(G)-invariant, the fact that M ′ is characteristic implies that it is also

P. Schweitzer 66:9

Aut(G)-invariant. For the given c ∈ N, to obtain the right error bound, we choose ε to
be 1
|G|c for the algorithm from Theorem 2. Then the error probability is at most ε = 1

|G|c and
the running time is polynomial in |M | = O(|G|2) and ln |G|c = O(|G|) and thus polynomial
in the size of the graph.

Regarding M ′ as a binary relation on V (G) we compute the transitive closure and let π
be the partition of V (G) into equivalence classes of said closure, where vertices that do not
appear at all as entries in M ′ form their own class. By construction, elements that are in
the same class of π are in the same orbit under Aut(G). Moreover π is Aut(G)-invariant
since M ′ is Aut(G)-invariant.

To provide certificates for the elements in M ′ we store all elements given to us by S. For
each (v, w) ∈M ′ we can thus compute an automorphism of ϕv,w ∈ Aut(G) with ϕv,w(v) = w.
For pairs in the transitive closure of M ′ we then multiply suitable automorphisms. J

If a partition π satisfies the conclusion of the lemma, we call it an invariant collection
of suborbits. We call the elements of Φ the certificates. Let us caution the reader that the
set Φ returned by the algorithm is not necessarily characteristic. Moreover, the orbits of the
elements in Φ might not necessarily be contained within classes of π. An oracle for invariant
suborbits returns (π,Φ), where for asymmetric inputs π is discrete and Φ = {id} .

6 Computing the automorphism group from invariant suborbits

To exploit invariant suborbits we make use of the powerful group-theoretic technique to
compute stabilizer subgroups.

I Theorem 10 (Luks [16]). There is an algorithm that, given a permutation group Γ
on {1, . . . , n} and subset B ⊆ {1, . . . , n}, computes (generators for) the setwise stabilizer
of B. If Γ is solvable, then this algorithm runs in polynomial time.

We will apply the theorem in the following form: Let G be a graph and Γ a solvable
permutation group on V (G). Then Γ ∩Aut(G) can be computed in polynomial time. This
follows directly from the theorem by considering the induced action of Γ on pairs of vertices
from V (G) and noting that Γ ∩Aut(G) consists of those elements that stabilize the edge set.

In our algorithm we will also use the concept of a quotient tournament (that can for
example implicitly be found in [4], see also [22]). Let T be a tournament and let π be
a partition of V (T) in which all parts have odd size. We define T/π, the quotient of T
modulo π, to be the tournament on π (i.e., the vertices of T/π are the parts of π) where for
distinct C,C ′ ∈ V (T/π) = π there is an edge from C to C ′ if and only if in T there are more
edges going from C to C ′ than edges going from C ′ to C. Note that since both |C| and |C ′|
are odd there are either more edges going from C to C ′ or more edges going from C ′ to C.
This implies that T/π is a tournament.

I Theorem 11. Suppose we are given as an oracle a randomized Las Vegas algorithm that
computes invariant suborbits for tournaments in polynomial time. Then we can compute the
automorphism group of tournaments in polynomial time.

Proof. We describe an algorithm that computes the automorphism group of a colored
tournament given a randomized oracle that provides invariant suborbits.

ICALP 2017

66:10 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

Algorithm 2 Computing the automorphism of a tournament using invariant suborbits.
Input: A (colored) tournament T and an oracle O for invariant suborbits with certificates.
Output: A generating set for the automorphism group Aut(T).

1: if T is not monochromatic then // Case 0
2: Let Col be the set of vertex colors of T .
3: for c ∈ COL do
4: Let V c be the set vertices in T of color c.
5: Ψc ← Aut(T [V c]) // recursion
6: Let Ψ̂c be the set of extensions of Ψc to V (T) obtained by fixing vertices outside V c.
7: end for
8: Ψ =

⋃
c∈Col Ψ̂c

9: return 〈Ψ〉 ∩Aut(T) // solvable group stabilizer
10: end if
11: (π,Φ)← O(T) // π forms invariant suborbits of T , Φ the set of certificates
12: if π is discrete then // T is asymmetric
13: return {id}
14: else if π = {V (T)} then // Case 1
15: Choose v ∈ V (T) arbitrarily.
16: Let T ′ be obtained from T by coloring v with 1, all in-neighbors of v with 2 and other

vertices with 3.
17: return Φ ∪Aut(V (T ′)) // recursion
18: else if ∃C,C ′ ∈ π : |C| 6= |C ′| then // Case 2
19: Let T ′ be obtained from T by coloring each vertex v with color |[v]π|.
20: return Aut(V (T ′)) // recursion
21: else // Case 3
22: For C ∈ π we let TC be the graph obtained from T [C] by picking an arbitrary

vertex v ∈ C and coloring v with 1, all in-neighbors of v with 2 and other vertices
with 3.

23: for {(C,C ′) ∈ π | C 6= C ′} do
24: Compute Aut(Tri(TC , T ′C)) and extract an isomorphism ϕ(C,C′) : T [C] → T [C ′]

whenever such an isomorphism exists. // recursion
25: end for
26: if ∃C,C ′ ∈ π : T [C] � T [C ′] then // Case 3a
27: Let T ′ be obtained from T by coloring V (T) so that v and v′ have the same color if

and only if T [([v])] ∼= T [([v′])].
28: return Aut(T ′) // recursion
29: else // Case 3b
30: Ψ← Aut(T/π) // recursion on the quotient
31: Ψ̂← {ĝ | g ∈ Ψ}, where ĝ(v) = ϕ([v],g([v]))(v).
32: for {C ∈ π} do
33: ΥC ← Aut(T [C]) // recursion
34: Compute Υ̂C the lifts of elements in ΥC by fixing vertices outside C.
35: end for
36: return 〈Ψ̂ ∪

⋃
C∈π Υ̂C〉 ∩Aut(T) // solvable group stabilizer

37: end if
38: end if

P. Schweitzer 66:11

Description of the algorithm. Let T be a given colored tournament.

Case 0: T is not monochromatic. If T is not monochromatic then we proceed as follows:
Let Col be the set of colors that appear in T . For c ∈ Col, let V c be the set of vertices of
color c and let T c = T [V c] be the subtournament induced by the vertices in V c.
We recursively compute Aut(T c) for all c ∈ Col. Let Ψc be the set of generators obtained
as an answer. We lift every generator to a permutation of V (T) by fixing all vertices
outside of V c. Let Ψ̂c be the set of lifted generators of Ψc and let Ψ =

⋃
c∈Col Ψ̂c be the

set of all lifted generators. Since Aut(T c) = 〈Ψc〉 is solvable, we conclude that 〈Ψ〉 is a
direct product of solvable groups and thus solvable. We can thus compute 〈Ψ〉 ∩Aut(T)
using Theorem 10 and return the answer.
This concludes Case 0.
In every other case we first compute a partition π into suborbits using the oracle and a
corresponding set of certificates Φ. For a partition π of some set V we denote for v ∈ V
by [v]π the element of π containing v. We may drop the index when it is obvious from
the context. If |T | = 1 then we simply return the identity.

Case 1: π is trivial. In case π is trivial (i.e., π = {V (T)}), we know that T is transitive. We
choose an arbitrary vertex v ∈ V (T). Let λ be the coloring of V (T) satisfying λ(u) = 1
if u = v, λ(u) = 2 if (u, v) ∈ E(T), and λ(u) = 3 otherwise. We recursively compute a
generating set Ψ for Aut(T ′), where T ′ is T recolored with λ. We then return Ψ ∪ Φ.

Case 2: not all classes of π have the same size. We color every vertex with the size of
the class of π in which it is contained. Now T is not monochromatic anymore and we
recursively compute Aut(T) with T having said coloring. (In other words, we proceed as
in Case 0.)

Case 3: all classes of π have the same size but π is non-trivial. We compute for each pair
of distinct equivalence classes C and C ′ of π an isomorphism ϕ(C,C′) from T [C] to T [C ′]
or determine that no such isomorphism exists, as follows: We choose for each C an
arbitrary vertex v ∈ C. We let TC be the tournament obtained from T [C] by coloring v
with 1, all in-neighbors of v with 2 and other vertices with 3. We let TC,C′ = Tri(TC , TC′)
be the triangle tournament of TC and TC′ where (TC)′ is an isomorphic copy of TC (as
defined in Section 3 in the proof of Lemma 6).
Using recursion we compute Aut(TC,C′). From the result we can extract an isomorphism
from T [C] to T [C ′] since V (T [C]) and V (T [C ′]) are blocks of TC,C′ .
Case 3a: If it is not the case that for every pair C,C ′ of color classes there is an
isomorphism from T [C] to T [C ′] then we color the vertices of T so that v, v′ have the
same color if and only if there is an isomorphism from T [([v])] to T [([v′])], where as before
for every vertex u we denote by [u] the class of π containing u. With this coloring, T
is not monochromatic anymore and we recursively compute Aut(T) with T having said
coloring. (In other words, we proceed as in Case 0.)
Case 3b: Otherwise, for every pair C,C ′ of color classes, there is an isomorphism from T [C]
to T [C ′]. Note that all color classes are of odd size since T [C] is transitive (as dictated
by π). Thus, we can compute the quotient tournament T/π. We recursively compute a
generating set Ψ = {g1, . . . , gt} for the automorphism group of T/π.
We lift each gi to a permutation ĝi of V (T) as follows. The permutation ĝi maps each
vertex v to ϕ([v],gi([v]))(v). Since gi is a permutation and each ϕ(C,C′) is a bijection, the
map ĝi is a permutation of V (T). Let Ψ̂ = {ĝ1, . . . , ĝt} be the set of lifted generators.
As next step, for each class C we recursively compute a generating set ΥC for Aut(T [C]).
We lift each generator in ΥC to a permutation of V (T) by fixing all vertices outside of C
obtaining the set Υ̂C of lifted generators.

ICALP 2017

66:12 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

Consider the group Γ generated by the set Ψ̂∪
⋃
C∈π Υ̂C . As a last step, using Theorem 10

we compute the subgroup Γ′ = Γ ∩Aut(T).
The details of this algorithm are given in Algorithm 2. For the running time analysis and
the correctness argument of the algorithm we refer to the full version of the paper [23]. J

We have now assembled all the required parts to prove the main theorem of the paper.

I Corollary 12.
1. There is a randomized (one-sided error) polynomial-time Turing reduction from tourna-

ment isomorphism to asymmetry testing of tournaments (i.e., GITour ≤pr,T GATour).
2. There is a randomized polynomial-time Turing reduction from the computational task to

compute generators of the automorphism group of a tournament to asymmetry testing of
tournaments (i.e., AUTTour ≤pr,T GATour).

Proof. Recall that a two-sided error algorithm for an isomorphism search problem can be
readily turned into a one-sided error algorithm by checking the output isomorphism for
correctness. Thus, by Lemma 6 Part 1 it suffices to prove the second part of the corollary.

Combining Lemma 8 and Theorem 9, from an oracle to tournament asymmetry we obtain
a randomized Monte Carlo (i.e., with possible errors) algorithm that computes invariant
suborbits. Given a Las Vegas algorithm (i.e., no errors) for suborbits, the previous theorem
provides us with a computation of the automorphism group of tournaments.

It remains to discuss the error probability we get from using a Monte Carlo algorithm
instead of a Las Vegas algorithm. Since there is only a polynomial number of oracle calls,
and since the error bound in Theorem 9 can be chosen smaller than 1

|G|c for every fixed
constant c, the overall error can be chosen to be arbitrarily small. J

7 Discussion and open problems

This paper is concerned with the relationship between the asymmetry problem GAC and
isomorphism problem GIC. While under mild assumptions there is a reduction from the
former to the latter, a reduction in the other direction is usually not known. However, for
tournaments we now have such a randomized reduction.

The first question that comes to mind is whether the technique described in this pa-
per applies to other graph classes. While the sampling techniques from Sections 2 to 5
can be applied to all graph classes that satisfy mild assumptions (e.g., col-GIC ≤pt GIC
and col-GIAsymC ≤pt GIAsymC) the algorithm described in Section 6 crucially uses the fact that
automorphism groups of tournaments are solvable. This is not the case for general graphs, so
for the open question of whether GI reduces to GA this may dampen our enthusiasm. However,
what may bring our enthusiasm back up is that there are key classes of combinatorial objects
that share properties similar to what we need.

In particular, this brings us to the question whether the techniques of the paper can
be applied to group isomorphism. Just like for tournament isomorphism, finding a faster
algorithm for group isomorphism (given by multiplication table) is a bottleneck for improving
the run-time bound for isomorphism of general graphs beyond quasi-polynomial. Since
outer-automorphism groups of simple groups are solvable, we ask: Can we reduce the group
isomorphism problem to the isomorphism problem for asymmetric groups? This question is
significant since an asymmetry assumption on groups is typically a strong structural property
and may help to solve the entire group isomorphism problem. However, here one has to be
careful to find the right notion of asymmetry since all groups have inner automorphisms. For
such notions different possibilities come to mind.

P. Schweitzer 66:13

A second natural open question would be whether there is a deterministic version of the
algorithms given in this paper.

As a last open problem recall that it was shown in Section 2 that one can extract a
characteristic subset for a sampler over a set M in time that depends polynomially on M .
Since the automorphism group of a graph can be superpolynomial in the size of the graph,
we had to take a detour via suborbits in Section 5. There can be no general way to extract a
characteristic subset of M in polynomial time if |M | is not polynomially bounded, since we
might never see an element twice. However, if M has an algebraic structure, in particular
if M is a permutation group over a polynomial size set, this is not clear. Thus we ask: Is
there a polynomial-time (randomized) algorithm that extracts a characteristic subgroup
using a sampler Γ over a permutation group?

References

1 Manindra Agrawal and Vikraman Arvind. A note on decision versus search for graph
automorphism. Inf. Comput., 131(2):179–189, 1996. doi:10.1006/inco.1996.0097.

2 Eric Allender, Joshua A. Grochow, and Cristopher Moore. Graph isomorphism and circuit
size. CoRR, abs/1511.08189, 2015. URL: http://arxiv.org/abs/1511.08189.

3 Vikraman Arvind, Richard Beigel, and Antoni Lozano. The complexity of modu-
lar graph automorphism. SIAM J. Comput., 30(4):1299–1320, 2000. doi:10.1137/
S0097539799358227.

4 Vikraman Arvind, Bireswar Das, and Partha Mukhopadhyay. Isomorphism and canoniza-
tion of tournaments and hypertournaments. J. Comput. Syst. Sci., 76(7):509–523, 2010.
doi:10.1016/j.jcss.2009.09.001.

5 László Babai. Monte carlo algorithms in graph isomorphism testing. Technical Report
79-10, Université de Montréal, 1979.

6 László Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of combi-
natorics, Vol. 2, pages 1447–1540. Elsevier, Amsterdam, 1995.

7 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

8 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, STOC 1983, Boston, Massachusetts,
USA, 25-27 April, pages 171–183. ACM, 1983. doi:10.1145/800061.808746.

9 Kellogg S. Booth and Charles J. Colbourn. Problems polynomially equivalent to graph
isomorphism. Technical Report CS-77-04, Comp. Sci. Dep., Univ. Waterloo, 1979.

10 Andrew M. Childs and Pawel Wocjan. On the quantum hardness of solving isomorphism
problems as nonabelian hidden shift problems. Quantum Information & Computation,
7(5):504–521, 2007.

11 Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October, FOCS 1980, pages 36–41. IEEE Computer
Society, 1980. doi:10.1109/SFCS.1980.34.

12 Sumanta Ghosh and Piyush P. Kurur. Permutation groups and the graph isomorphism
problem. In Perspectives in Computational Complexity: The Somenath Biswas Anniversary
Volume, pages 183–202. Springer International Publishing, Cham, 2014. doi:10.1007/
978-3-319-05446-9_11.

ICALP 2017

http://dx.doi.org/10.1006/inco.1996.0097
http://arxiv.org/abs/1511.08189
http://dx.doi.org/10.1137/S0097539799358227
http://dx.doi.org/10.1137/S0097539799358227
http://dx.doi.org/10.1016/j.jcss.2009.09.001
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1145/2897518.2897542
http://dx.doi.org/10.1145/800061.808746
http://dx.doi.org/10.1109/SFCS.1980.34
http://dx.doi.org/10.1007/978-3-319-05446-9_11
http://dx.doi.org/10.1007/978-3-319-05446-9_11

66:14 A Poly. Rand. Reduction from Tournament Isomorphism to Tournament Asymmetry

13 Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. The hidden subgroup problem
and quantum computation using group representations. SIAM J. Comput., 32(4):916–934,
2003. doi:10.1137/S009753970139450X.

14 Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem: its
structural complexity. Progress in Theoretical Computer Science. Birkhäuser Boston, Inc.,
Boston, MA, 1993. doi:10.1007/978-1-4612-0333-9.

15 Martin Kutz and Pascal Schweitzer. Screwbox: a randomized certifying graph-non-
isomorphism algorithm. In Proceedings of the Nine Workshop on Algorithm Engineering
and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM,
2007. doi:10.1137/1.9781611972870.14.

16 Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 25(1):42–65, 1982. doi:10.1016/0022-0000(82)90009-5.

17 Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett.,
8(3):131–132, 1979. doi:10.1016/0020-0190(79)90004-8.

18 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Com-
put., 60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

19 I. N. Ponomarenko. Polynomial time recognition and testing of isomorphism of cyclic
tournaments. Journal of Mathematical Sciences, 70(4):1890–1911, 1994. doi:10.1007/
BF02112430.

20 I. N. Ponomarenko. Bases of schurian antisymmetric coherent configurations and an isomor-
phism test for schurian tournaments. Journal of Mathematical Sciences, 192(3):316–338,
2013. doi:10.1007/s10958-013-1398-2.

21 Pascal Schweitzer. Problems of unknown complexity: Graph isomorphism and Ramsey
theoretic numbers. PhD thesis, Universität des Saarlandes, Germany, 2009.

22 Pascal Schweitzer. Towards an isomorphism dichotomy for hereditary graph classes. In 32nd
International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March
4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 689–702. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.689.

23 Pascal Schweitzer. A polynomial-time randomized reduction from tournament isomorphism
to tournament asymmetry. CoRR, abs/1704.08529, 2017. full version of the paper. URL:
http://arxiv.org/abs/1704.08529.

24 Jacobo Torán. On the hardness of graph isomorphism. SIAM J. Comput., 33(5):1093–1108,
2004. doi:10.1137/S009753970241096X.

25 Fabian Wagner. Hardness results for tournament isomorphism and automorphism. InMath-
ematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS
2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings, volume 4708
of Lecture Notes in Computer Science, pages 572–583. Springer, 2007. doi:10.1007/
978-3-540-74456-6_51.

26 Fabian Wagner. Hardness results for isomorphism and automorphism of bounded valence
graphs. In SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 19-25, 2008, Volume II, pages 131–140. Safarik University, Kosice, Slovakia, 2008.

27 Fabian Wagner. On the Complexity of Isomorphism Testing for Restricted Classes of
Graphs. PhD thesis, Universität Ulm, Germany, 2010.

http://dx.doi.org/10.1137/S009753970139450X
http://dx.doi.org/10.1007/978-1-4612-0333-9
http://dx.doi.org/10.1137/1.9781611972870.14
http://dx.doi.org/10.1016/0022-0000(82)90009-5
http://dx.doi.org/10.1016/0020-0190(79)90004-8
http://dx.doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1007/BF02112430
http://dx.doi.org/10.1007/BF02112430
http://dx.doi.org/10.1007/s10958-013-1398-2
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.689
http://arxiv.org/abs/1704.08529
http://dx.doi.org/10.1137/S009753970241096X
http://dx.doi.org/10.1007/978-3-540-74456-6_51
http://dx.doi.org/10.1007/978-3-540-74456-6_51

A (1 + ε)-Approximation for Unsplittable Flow on
a Path in Fixed-Parameter Running Time∗

Andreas Wiese

Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
Unsplittable Flow on a Path (UFP) is a well-studied problem. It arises in many different settings
such as bandwidth allocation, scheduling, and caching. We are given a path with capacities on
the edges and a set of tasks, each of them is described by a start and an end vertex and a demand.
The goal is to select as many tasks as possible such that the demand of the selected tasks using
each edge does not exceed the capacity of this edge. The problem admits a QPTAS and the best
known polynomial time result is a (2+ ε)-approximation. As we prove in this paper, the problem
is intractable for fixed-parameter algorithms since it is W[1]-hard. A PTAS seems difficult to
construct. However, we show that if we combine the paradigms of approximation algorithms and
fixed-parameter tractability we can break the mentioned boundaries. We show that on instances
with |OPT | = k we can compute a (1 + ε)-approximation in time 2O(k log k)nOε(1) log umax (where
umax is the maximum edge capacity). To obtain this algorithm we develop new insights for UFP
and enrich a recent dynamic programming framework for the problem. Our results yield a PTAS
for (unweighted) UFP instances where |OPT | is at most O(logn/ log logn) and they imply that
the problem does not admit an EPTAS, unless W[1] = FPT.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Combinatorial optimization, Approximation algorithms, Fixed-parameter
algorithms, Unsplittable Flow on a Path

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.67

1 Introduction

The Unsplittable Flow on a Path problem is motivated by many different settings such as
scheduling, bandwidth allocation, and caching. We are given an undirected path G = (V,E)
with a capacity u(e) ∈ N for each edge e ∈ E. Also, we are given a set of n tasks T . Each task
i ∈ T is specified by a subpath P (i) ⊆ V between (and including) the start (i. e., leftmost)
vertex s(i) ∈ V and the end (i. e., rightmost) vertex t(i) ∈ V , and a demand d(i) ∈ N. For
instance, the tasks can be seen as jobs with start and end times that need some portion of a
shared resource. The goal is to select a subset T ′ ⊆ T of tasks of maximum total size such
that for each edge e the total demand of the selected tasks using e does not exceed u(e).

UFP is NP-hard [7, 14] and therefore approximation algorithms have been studied for
the problem. The best known polynomial time algorithm yields a (2 + ε)-approximation [3]
(improving previous results [5, 7]) and for some cases even a (1 + ε)-approximation is
known [6, 17, 12]. Also, there is a QPTAS [4, 6] which makes it plausible that also a PTAS

∗ This work was partially supported by the Millennium Nucleus Information and Coordination in Networks
ICM/FIC RC130003.

EA
T

C
S

© Andreas Wiese;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 67; pp. 67:1–67:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

exists. However, despite the recent progress on the problem [6, 17] the best known polynomial
time result is still the mentioned (2 + ε)-approximation [3], and a PTAS seems difficult to
construct. We note that all above algorithms even work in the weighted case of the problem
in which each task has a profit associated with it and one wants to maximize the total profit
of the selected tasks. However, as it is typical in the FPT-literature, in this paper we restrict
ourselves to the unweighted case, i.e., we assume that each task yields a profit of one. No
better results than the above are known for this case.

Another approach for NP-hard problems are fixed-parameter algorithms. For any instance
one identifies a parameter k, e.g., the value of the optimal solution, and searches for an exact
algorithm with a running time of f(k) · nO(1) for some (typically exponential) function f .
A problem is called fixed-parameter tractable (FPT) if it admits such an algorithm. We
refer the reader to the recent textbook by Cygan et al. [13] for an introduction to FPT
algorithms. For UFP, throughout this paper our parameter will be the size of the optimal
solution. Unfortunately, as we show in this paper, it is unlikely that UFP is FPT since the
problem is W[1]-hard.

1.1 Our Contribution
In this paper we show that if we combine the paradigms of approximation and fixed-parameter
algorithms then we can break the mentioned barriers of 2 + ε and W[1]-hardness for UFP.
We present an algorithm with a running time of 2O(k log k)nOε(1) log umax that computes a
(1 + ε)-approximation for any instance with |OPT | = k, i.e., the computed solution contains
at least k/(1 + ε) tasks, where umax = maxe u(e). Hence, we obtain a PTAS for (unweighted)
UFP for instances where |OPT | ≤ O(logn/ log logn).

We first consider the special case where the number of different task demands in the
input is bounded by a parameter k′. We show that then there exists an optimal solution
that has a special structure. We can guess this structure in FPT-time (i.e., the number
of possibilities is bounded by a function f(k, k′)) and based on this we can construct the
solution deterministically.

Then, we generalize this result to the setting where the tasks have arbitrary demands
and the edge capacities are in a bounded range. There, we show that if we have k tasks
with relatively small demand (of at most a 1/k-fraction of the capacities of the edges they
are using) then they form a feasible solution and we are done. Otherwise, in FPT-time we
can guess which of these tasks are contained in the optimal solution and then focus on the
remaining, relatively large tasks. For those we use a result from [6] that shows that there is
a (1 + ε)-approximative solution in which (essentially) each edge has some slack that equals
the minimum size of a large task. Thus, there is still a near-optimal solution if we round up
the task demands so that they have only f(k) many different demands. On the resulting
instance, we apply our FPT-algorithm from above.

To obtain an algorithm for the general case with arbitrary task demands and edge
capacities we use the machinery that was introduced in [17] in order to turn a PTAS for
UFP with resource augmentation (i.e., where the edge capacities are increased by a factor
1 + ε) to a PTAS without resource augmentation. In order to apply it in our setting, we need
several new ideas.

First, we prove that we can identify at most k vertices of the input path such that
each input task uses one of them (for instances in which no k such vertices exist we can
find a solution with k tasks using a greedy algorithm). These vertices divide the path into
k + 1 segments. Our algorithm proceeds in phases and in each phase we process some set
of tasks. These tasks are divided into tiny and non-tiny tasks. A crucial difficulty is to

A. Wiese 67:3

estimate how much capacity should be given to each of these groups on each edge. We
cannot afford to guess this for each edge separately. However, we show that there exists a
(1 + ε)-approximative solution in which this allocation has a structure that we can guess
in FPT-time. For each segment S we can essentially argue that (i) either it is not used by
non-tiny tasks and in this case we can give the whole edge capacity to the tiny tasks (ii) or
all tiny tasks use the same capacity on each edge of S which we can guess. Then, for the
remaining decisions for the tiny tasks we call the FPT-algorithm for the case of a bounded
range of edge capacities. For the non-tiny tasks we know that each segment is used by at
most Oε(1) of them and we can guess them step by step in polynomial time.

Finally, we prove that UFP is W[1]-hard (if parametrized by the size of the optimal
solution) which makes it unlikely that there is a fixed-parameter algorithm for it that
computes an optimal solution, instead of an approximation. Also, this implies that UFP
does not admit an EPTAS (i.e., an (1 + ε)-approximation algorithm with a running time of
f(ε) · nO(1) for some function f), unless W[1] = FPT.

We hope that our new techniques yield progress for eventually finding a PTAS for UFP.
For instance, many algorithms for UFP are based on a recursive decomposition of the problem,
embedded into a DP [3, 6, 17]. Using our new algorithm we can now stop such a recursion
once the optimal solution of a considered subproblem has a size of at most O(logn/ log logn).
Also, for the setting of bounded edge capacities we proved that there exist optimal solutions
with a special structure (inherited from the case of few different task demands). This insight
might be useful beyond our result. Note that even for uniform edge capacities no PTAS is
known for UFP.

We would like to point out that in the literature there exists the notion of an FPT-
approximation scheme (FPT-AS) which is a (1 + ε)-approximation algorithm with a running
time of f(ε, k) · nO(1) for some suitable function f , while our algorithm has a running time of
2O(k log k)nOε(1) log umax and thus ε appears in the exponent of n. For UFP, we cannot hope
for an FPT-AS since otherwise we could choose e.g., ε := 1/(2k) and obtain an FPT-algorithm
for UFP, thus contradicting that the problem is W[1]-hard. There are many FPT-ASs known
in the literature, see [18] and references therein.

We note that due to space constraints many proofs and details are omitted in this
extended abstract.

1.2 Other related work
If all input tasks of a UFP instance have (relatively) small demand compared to the capacities
of the edges they use, Chekuri et al. [12] proved that there is a (1 + ε)-approximation via
LP-rounding. This unifies (and improves) previously known results for the special cases
of uniform edge capacities [8] and the no-bottleneck-assumption (NBA) [9] which requires
that maxi∈T d(i) ≤ mine∈E u(e). Under the latter assumption, tasks with relatively large
demands can be handled via dynamic programming, and thus O(1)- and (2+ε)-approximation
algorithms were known for these cases [8, 9, 12] and later such algorithms were also found
for the general case of the problem [7, 3]. Another line of research on UFP is to find good
LP-relaxations for the problem.

The natural LP-relaxation suffers from an integrality gap of Ω(n) [9] but with additional
constraints Chekuri et al. [11] reduced it to O(log2 n) (which was later improved to O(logn)
by the same authors [10]). Anagnostopoulos et al. [2] found a compact LP for the cardinality
case of UFP with constant integrality gap and an extended formulation with a constant gap
for the weighted case. Grandoni et al. [16] prove the currently best integrality gap for an
LP-relaxation without additional variables of O(logn/ log logn).

ICALP 2017

67:4 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

1.3 Preliminaries and Notation

In a UFP instance, for each edge e ∈ E, let Te ⊆ T be the subset of tasks i using edge
e, i. e., with e ∈ P (i). For every set of tasks T ′ we define d(T ′) :=

∑
i∈T ′ d(i). The goal

of (unweighted) UFP is to select set of tasks T ′ with maximum cardinality |T ′| such that
d(T ′∩Te) ≤ u(e) for each edge e. For a given instance of UFP we denote by OPT an optimal
solution. Without loss of generality, we may assume that |V | = 2n, that each vertex is either
the start-vertex or the end-vertex of exactly one input task, and that each task alone yields
a feasible solution [4]. Throughout this paper, we use the notation Oε(f(n)) for functions
that are in O(f(n)) if ε is a constant. In particular, Oε(1) represents a value that depends
only on ε.

2 Bounded task demands or edge capacities

In this section we first present an algorithm for the special case that the number of different
task demands in the input instance is bounded by a parameter k′. Afterwards we will use it
as a subroutine for the case where the range of edge capacities is bounded by a parameter
k′′ (without a bound on the task demands).

2.1 Bounded number of task demands

Suppose we are given an instance with at most k′ different task demands where |OPT | = k.
We present an algorithm with a running time of f(k, k′) · nO(1) that computes an optimal
solution.

We first guess some properties of OPT . We can assume w.l.o.g. that OPT does not
contain any task i such that there is a task i′ ∈ T \OPT with d(i) = d(i′) and P (i′) ⊆ P (i)
(otherwise we could replace i by i′). Assume that OPT = {i(1), ..., i(k)} such that s(i(`))
lies on the left of s(i(`′)) if and only if ` < `′. We use color-coding (see [1]) to split the input
tasks into k pair-wise disjoint groups T 1, ..., T k such that for each ` the group T ` contains
i(`). Note that in [1] the authors present a version of the color-coding method that does not
require randomization.

I Lemma 1 (implied by [1]). By increasing the running time by a factor 2O(k) logn we can
assume that the input tasks are colored with k colors {1, ..., k} such that for each ` ∈ [k] the
task i(`) is colored with color `.

Next, we guess for each ` ∈ {1, ..., k} the demand of the task i(`). Since for each task
there are k′ possibilities, the total number of guesses is (k′)k. We remove from T ` all tasks
whose demand does not equal the demand that we guessed for i(`). Furthermore, we remove
from T ` each task i such that there is another task i′ ∈ T ` with i 6= i′ and P (i′) ⊆ P (i).
Note that by our assumption about OPT above this does not remove the task i(`). Denote
by T̄ ` the resulting set for each ` ∈ [k].

In the next lemma we define an (optimal) solution OPT ′ with k tasks. It will turn out
that the information guessed so far is sufficient to construct OPT ′. We say that a task i ∈ T
is compatible with a set of tasks T ′ if T ′ ∪ {i} is a feasible solution.

I Lemma 2. There is a solution OPT ′ = {i′(1), ..., i′(k)} (with |OPT ′| = k) that satisfies
for each ` ∈ {1, ..., k} that the task i′(`) is the task in T̄ ` with the leftmost start vertex that
is compatible with the tasks i′(1), ..., i′(`− 1).

A. Wiese 67:5

Proof. We prove the lemma by transforming OPT =: OPT0 step by step into OPT ′. For
each ` ∈ {1, ..., k} let OPT` be the solution obtained after ` steps. We will ensure that
each OPT` is feasible and contains k tasks. Let i′(1) be the task in T̄ 1 with the leftmost
start vertex. If i′(1) ∈ OPT0 then we define OPT1 := OPT . If i′(1) /∈ OPT0 then we
replace i(1) by i′(1) and we define OPT1 := OPT \ {i(1)} ∪ {i′(1)}. We claim that OPT1 is
feasible. To this end, let us first consider all edges on the left of s(i(1)). By definition of
i(1), there is no task in OPT starting on the left of s(i(1)). By assumption, the task i′(1)
alone yields a feasible solution. Thus, for each edge e on the left of s(i(1)) we have that
d(OPT1 ∩ Te) ≤ u(e). By construction of the set T̄ 1 we know that P (i(1)) * P (i′(1)) and
thus t(i′(1)) lies on the left of t(i(1)). Since d(i(1)) = d(i′(1)) and OPT is feasible we have
that d(OPT1 ∩ Te) ≤ u(e′) for each edge e′ on the right of s(i(1)).

Assume by induction that we constructed a feasible solution OPT` = {i′(1), ..., i′(`), i(`+
1), ..., i(k)} such that for each `′ ∈ {1, ..., `} the task i′(`′) is the task in T̄ ` with the leftmost
start vertex that is compatible with the tasks i′(1), ..., i′(`′ − 1) and that OPT` contains k
tasks. Let i′(` + 1) be the task in T̄ `+1 with the leftmost start vertex that is compatible
with the tasks i′(1), ..., i′(`). Define OPT`+1 := OPT` \ {i(` + 1)} ∪ {i′(` + 1)}. Clearly,
OPT`+1 contains k tasks. We claim that OPT`+1 is feasible. Let e be an edge on the left
of s(i(` + 1)). Then e is not used by the tasks i(` + 1), ..., i(k). By definition, i′(` + 1) is
compatible with the tasks i′(1), ..., i′(`′) and thus d(OPT`+1 ∩ Te) ≤ u(e). Let e′ be an edge
on the right of s(i(`+ 1)). Again, by construction of the set T̄ `+1 we know that t(i′(`+ 1))
lies on the left of t(i(`+ 1)). Thus, if e′ is used by i′(`+ 1) then it is also used by i(`+ 1).
Since by induction OPT` is feasible, this implies that also OPT`+1 is feasible. J

Note that the start vertices of i′(1), ..., i′(k) are not necessarily ordered, i.e., it could be
that s(i′(`)) lies on the right of s(i′(`+ 1)). Nevertheless, due to Lemma 2 we can use now
the following algorithm to find a solution of size k. We define i′(1) to be the task in T̄ 1 with
the leftmost start vertex. Then, for each ` ∈ {2, ..., k} we inductively define i′(`) to be the
task in T̄ ` with the leftmost start vertex that is compatible with the tasks i′(1), ..., i′(`− 1).
This yields the solution OPT ′ due to Lemma 2.

I Theorem 3. Suppose we are given an UFP instance with k′ different task demands in the
input. Then there is an algorithm that computes a solution of size k in time (k · k′)knO(1) if
such a solution exists.

2.2 FPT-range of edge capacities
We give now a (1 + ε)-approximation algorithm with a running time of f(k, k′′) · nOε(1) for
the case that the edge capacities differ by some parameter k′′. Here, we allow arbitrary task
demands in the input and thus lift the assumption from the previous section. Formally, our
algorithm outputs a solution of size at least k/(1 + ε) or asserts that there is no solution of
size k.

Let umin = mine∈E u(e) and umax = maxe∈E u(e). We assume that umax ≤ k′′ ·umin where
k′′ is a parameter. For each task i we define its bottleneck capacity b(i) := mine∈P (i) u(e).
We define a task i to be large if d(i) ≥ b(i)/k and small otherwise. The next lemma shows
that if there are at least k small tasks then any k of them will form a feasible solution (and
hence we are done). It holds even for arbitrary edge capacities.

I Lemma 4. Any set of at most k small tasks forms a feasible solution.

Proof. Let T ′ be a set of k small tasks. We want to prove that T ′ is a feasible solution. Let e
be an edge. We have that d(T ′∩Te) =

∑
i∈T ′∩Te d(i) <

∑
i∈T ′∩Te b(i)/k ≤

1
k

∑
i∈T ′∩Te u(e) ≤

u(e). J

ICALP 2017

67:6 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

If there are at least k small tasks in the input then we output k of them and we are
done. Otherwise, denote by OPTS the small tasks from OPT . We guess in time 2k−1 the
set OPTS , select all these tasks for our final solution, and discard all other small tasks. We
focus on the large tasks now. Denote by OPTL the set of large tasks in OPT .

We borrow an idea from [6, Lemma 2.6] to achieve the following: we sacrifice a factor of
1 +O(ε) in the objective and remove some tasks from OPTL such that if an edge e is used
by at least 1/ε tasks in OPTL we remove at least one task from Te ∩OPTL.

I Lemma 5 ([6]). There is a set OPTL ⊆ OPTL with |OPTL| ≤ O(ε) · |OPTL| such that
for each edge e with |Te ∩OPTL| ≥ 1/ε we have that |Te ∩OPTL| ≥ 1.

We define OPT ′ := OPT \ OPTL with OPTL being defined as in Lemma 5. Assume
for a moment that each edge is used by at least one task in OPTL. Then we know that
d(Te ∩ OPT ′) ≤ u(e) − mini∈OPTL d(i). Since all tasks in OPTL are large we have that
mini∈OPTL d(i) ≥ 1

k · umin. On the other hand, |OPT ′| ≤ k. Thus, OPT ′ remains feasible
if we increase the demand of each large task to the next higher integral multiple of 1

k2umin.
Since d(i) ≤ umax for each task i ∈ T , this yields an instance with only umax

1
k2 ·umin

≤ k2 · k′′

different demands. We can then apply the exact FPT-algorithm from Section 2.1 on the
resulting instance.

This procedure fails if there are edges not used by tasks in OPTL. Denote those edges
by Ef . However, such edges are used by only few tasks in OPTL, at most 1/ε many. Thus,
we can employ a dynamic program (DP) that guesses those edges step by step and guess
their corresponding tasks. Any two consecutive edges eL, eR in Ef yield a subproblem for
which (like above) we can increase the demands of the tasks whose path lies strictly between
eL and eR and then invoke the exact FPT-algorithm from Section 2.1 as a subroutine.

I Theorem 6. There is a (1 + ε)-approximation algorithm with a running time of (k ·
k′′)O(k)nO(1/ε) for UFP-instances with |OPT | = k in which the edge capacities lie within a
factor k′′.

3 General case

In this section we present our main result. For any ε > 0 and any k ∈ N we present an
algorithm with a running time of 2O(k log k) · nOε(1) that computes a solution consisting of at
least k/(1 + ε) tasks on any instance with |OPT | = k or asserts that there is no solution of
size k. We will assume for the moment that the input numbers are bounded by a polynomial
in the input size and later explain how to lift this assumption. Our argumentation consists
of the following steps:

In Section 3.1 we use techniques from [17] in order to gain some slack (i.e., unused
capacity) on the edges while losing only a factor of 1 + ε in the objective. Then we classify
edges into types and supertypes according to their respective amount of slack. We do a
similar classification into types/supertypes for the tasks.
Afterwards in Section 3.2, we identify a set V̄ of k vertices such that each input task
uses at least one of them. They split the input path into k + 1 segments for which we
establish some structural properties.
We present the main algorithm in Section 3.3, described as a (possibly exponential time)
recursion. It processes the tasks in phases with one phase for each supertype.
Finally, we embed our recursive algorithm into a dynamic program with the claimed
running time and lift the assumption that the input numbers are polynomially bounded.

A. Wiese 67:7

3.1 Classification of tasks and edges
In this subsection, we apply the machinery presented in [17] in order to classify edges via how
much unused capacity (i.e., slack) they have in some near-optimal solution. Also, we group
tasks into tiny, medium, and huge tasks. Several times we apply some standard shifting
arguments to ensure that we lose at most a factor 1 +O(ε) in the process.

I Lemma 7 ([17]). Let ε > 0 be a constant. Given a UFP instance with optimal solution
OPT , there exists a feasible solution OPT ′ with |OPT ′| ≥ (1−O(ε)) · |OPT | such that for
each edge e there is a value δe ≥ 0 satisfying the following conditions:
1. either δe = (1/ε2)j for some integer j ≥ 0, or δe = 0;
2. d(Te ∩OPT ′) ≤ u(e)− δe;
3. there are at most 1/ε5 tasks i ∈ Te ∩OPT ′ such that d(i) ≥ ε2 · δe;
4. the total demand of all tasks i ∈ Te ∩OPT ′ such that d(i) < ε2 · δe is at most 5δe/ε3.

In our reasoning, we will aim at computing a solution with nearly as many tasks as OPT ′.
Like in [17] we group the edges and the input tasks according to the amount of slack (i.e.,
the δe-values) that they have/that the edges on their respective paths have.

For each edge e ∈ E, we define its type type(e) as follows: If δe = (1/ε2)j for some j ∈ N,
then define type(e) := j; and if δe = 0, then define type(e) := −1. We denote by E(j) the set
of edges of type j in E. We say that a task i ∈ T is of type j if P (i) uses an edge of type j
and no edge of type j − 1 or lower. Let T (j) ⊆ T denote all tasks of type j. We write type(i)
to denote the type of task i.

I Definition 8. A task i ∈ T of type j is huge if d(i) ≥ ε2 · δ(j).

Next, we group the tasks into supertypes. Each supertype consists of 1/ε−1 (usual) types.
We remove the tasks of all types a+ `/ε− 1 with ` ∈ N for some offset a ∈ {0, ..., 1/ε− 1}
and define the tasks supertypes T (`) :=

⋃a+`/ε+1/ε−2
`′=a+`/ε T (`′), one for each ` ∈ Z. For a task

i we say that i is of supertype ` if i ∈ T (`) and we write stype(i) = `. Similarly, we define
for the edges the supertypes E(`) :=

⋃a+`/ε+1/ε−2
`′=a+`/ε E(`′) (for the same offset a as above) and

write stype(e) := ` if e ∈ E(`). This implies that edges of supertype ` have slacks in the range
[
(1
ε2

)a+`/ε
,
(1
ε2

)a+`/ε+1/ε−2] =: [s(`)
min, s

(`)
max]. The following proposition follows from a simple

shifting argument.

I Proposition 9. There exists an offset a ∈ {0, ..., 1/ε− 1} such that by reducing the number
of tasks in OPT ′ by a factor 1 +O(ε) we can assume that OPT ′ ⊆

⋃
`∈N T (`).

Since we removed the tasks of all types a+ `/ε− 1 with ` ∈ N we can guarantee that all
non-huge tasks of a supertype T (`) fit into the slack of each edge of supertype `+ 1 or larger.
Let OPT ′NH ⊆ OPT ′ denote the tasks in OPT ′ that are not huge.

I Lemma 10. Let T (`) be a supertype and let e ∈ E(`). Then d(Te ∩ OPT ′NH ∩ T (`)) ≤
10 · 1

ε3 · (1
ε2)a+`/ε+1/ε−2 := d

(`)
max. Moreover, for each edge e′ ∈ E(`′) with `′ ≥ `+ 1 we have

that d(Te ∩OPT ′NH ∩ T (`)) ≤ d(`)
max ≤ 10ε · s(`+1)

min ≤ 10ε · δe′ .

We split the non-huge tasks into tiny and medium tasks. Let µ1, µ2 > 0 with µ1 < µ2
be two constants to be defined later. We say that a non-huge task i ∈ T (`) is tiny if
d(i) ≤ µ1 · s(`)

min and it is medium if d(i) ≥ µ2 · s(`)
min. Note that there are some tasks that are

neither tiny nor medium, i.e., a task i with µ1 · s(`)
min < d(i) < µ2 · s(`)

min. We will neglect such
tasks. Due to the following lemma, we can find values for µ1, µ2 such that this is justified.
Also, there is a large gap between these two values which we will exploit later.

ICALP 2017

67:8 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

I Lemma 11. For each ε > 0 we can find a set of 1/ε pairs (µ(1)
1 , µ

(1)
2), ..., (µ(1/ε)

1 , µ
(1/ε)
2)

such that for one pair (µ(r)
1 , µ

(r)
2) it holds that µ1 ≤ ε

αε
with αε := 1

ε ·
(

2
ε6 + 10ε

µ2
· (1/ε)1/ε

)
and the set OPT ′ ∩

⋃
`{i ∈ T (`)|µ(r)

1 · s
(`)
min < d(i) < µ

(r)
2 · s

(`)
min} contains at most ε · |OPT ′|

tasks.

We assume that we guess the correct pair (µ(r)
1 , µ

(r)
2) and define the sets of tiny and

medium tasks according to it.

3.2 Structure via segments
Next, we show that we can compute a set of at most k vertices such that the path of each
input task uses one of them (otherwise we can directly find a solution with k tasks).

I Lemma 12. In polynomial time we can identify (i) a set V̄ ⊆ V of at most k vertices such
that for each task i ∈ T there is a vertex v ∈ V̄ such that v ∈ P (i) or (ii) a set of k tasks
that form a feasible solution.

Proof. Let i be the task with leftmost end vertex t(i). We define T̄ := {i} and V̄ := {t(i)}.
We remove all tasks using t(i) from the input. Note that all remaining tasks start and end
on the right of t(i). We iterate this process k − 1 more times: among the remaining tasks we
identify the task i′ with left most end vertex t(i′) and we add t(i′) to T̄ , we add t(i′) to V̄ ,
and we remove all tasks using t(i′). At the end, we have that |T̄ | = |V̄ | and by construction,
no two tasks in T̄ share a vertex (and thus also no edge) and each input task uses one vertex
in V̄ . Hence, if |T̄ | ≥ k then we found a feasible solution with k tasks. Otherwise, the set V̄
is the set satisfying the claim of the lemma. J

The vertices in V̄ divide the path into a set of at most k + 1 segments S, i.e., any two
vertices v, v′ ∈ V̄ such that there is no vertex of V̄ between v and v′ induce a segment S ⊆ E
which contains all edges between v and v′. Additionally, S contains a segment containing all
edges between the leftmost vertex of G and the leftmost vertex in V̄ and a segment between
the rightmost vertex in V̄ and the rightmost vertex in G. For each supertype T (`) we can
bound the number of huge tasks starting or ending within a segment.

I Lemma 13. Let T (`) be a supertype and let S be a segment. Then there can be at most 2
ε6

huge tasks in T (`) ∩OPT ′ that use an edge of S.

A core problem for our algorithm is that we do not know how to allocate the edge
capacities between the tiny, the medium, and the huge tasks. To this end, we prove the
following lemma that will later allow us to essentially guess this allocation in FPT-time.

I Lemma 14. By reducing the number of tasks in OPT ′ by at most a factor 1 + O(ε) we
can assume that for each segment S ∈ S and each supertype ` one of the following holds:

there is no huge or medium task of supertype ` using any edge of S or
at most αε tiny tasks of supertype ` start or end in S. In this case, the total demand of
all tiny tasks of type j starting or ending in S is bounded by αε · µ1 · s(`)

min ≤ ε · s
(`)
min.

Proof. Consider a segment S and assume that there is a huge or medium task using some
edge e of S. By Lemma 13 there can be at most 2

ε6 such huge tasks. Moreover, there can

be at most d(`)
max

µ2·s(`)
min
≤ 10ε·s(`+1)

min
µ2·s(`)

min
≤ 10ε

µ2
· (1/ε)1/ε such medium tasks and hence at most ε · αε

medium or huge tasks in total. If there are more than αε tiny tasks starting or ending in S
then we remove all medium and huge tasks using an edge of S. We do this operation with

A. Wiese 67:9

all segments S. We charge the cost of the removed huge and medium tasks to the tiny tasks.
Let n′ be the number of removed tasks. Then OPT ′ ≥ 1

2εn
′ and thus n′ ≤ 2ε ·OPT ′. J

If for a segment S and a supertype ` the first case of Lemma 14 applies then we say that
the pair (S, `) is tiny, otherwise we say that (S, `) is huge. As we show in the next lemma, in
time FPT-time we can guess which task supertypes appear in the optimal solution.

I Lemma 15. In time (logn)O(k) ≤ n ·2O(k) we can guess the set L = {` | OPT ∩T (`) 6= ∅}.

Proof. Each supertype ` arising in the optimal solution is an integer between −1 and
log1/ε2 maxe∈E u(e). Since the input numbers are polynomially bounded this yields at most
O(logn) many supertypes. For each of the k tasks in OPT ′ there are O(logn) options for
its supertype. Thus, in time O(logn)k we can guess all supertypes arising in OPT ′. J

Next, we use color-coding [1] in order to guess the correct supertype of each tiny task
from OPT ′. More precisely, we use it in order to obtain sets T̄ (`) for ` ∈ N such that each
tiny task i ∈ OPT ′ of supertype ` is contained in the set T̄ (`) (but the set T̄ (`) possibly
contains more tasks). Note that then we know the set T \

⋃
` T̄ (`) which contains all medium

and huge tasks in OPT ′.

I Lemma 16 ([1]). By increasing the running time by a factor 2O(k) · logn we can assume
that we are given sets T̄ (`), ` ∈ N, such that each tiny task i ∈ OPT ′ of supertype ` is
contained in the set T̄ (`).

3.3 Recursive algorithm
Denote by OPT ′T , OPT ′M , and OPT ′H the tiny, medium and huge tasks in OPT ′, respectively.
We describe now a recursive algorithm that constructs a solution with |OPT ′| many tasks.
We will show later how to embed it into a dynamic program that runs in FPT-time. Our
algorithm proceeds in phases, each phase corresponds to one supertype `. Let ` be the
supertype of the first phase. We assume that stype(e) ≥ ` for each edge e (otherwise we can
reduce the instance to a set of smaller instances in which this holds).

First, in time 2k+1 we guess for each segment S whether (S, `) is huge or tiny. For each
edge e ∈ S we allocate a certain amount of capacity u`(e) for the tiny tasks of supertype
`. A special case arises for the supertype ` containing the type j = −1. There are no tiny
tasks of this supertype and we define u`(e) := 0. Otherwise, if (S, `) is huge then this means
that the tiny tasks of supertype ` starting or ending in S have very little total capacity, at
most ε · s(`)

min. However, there might be more tiny tasks that use the edges of S but do not
start or end in S. Denote by x their total capacity and note that x ≤ d(`)

max. We assign the
same amount of capacity to the tiny tasks in T̄ (`) on each edge e ∈ S. We guess the value
x̄ := min

{
d

(`)
max,

(⌈
x/(s(`)

min · ε)
⌉

+ 1
)
· ε · s(`)

min

}
and we define u`(e) := x̄ for each edge e ∈ S.

There are only Oε(1) many options for x̄. Since there are at most k + 1 segments there are
only 2Oε(k) many guesses for the huge pairs (S, `).

I Lemma 17. Let e be an edge of a segment S such that (S, `) is huge. Then d(OPT ′T ∩
Te ∩ T̄ (`)) ≤ u`(e).

Now assume that (S, `) is tiny. We do not know the supertype of each edge e ∈ S.
However, we know that for each edge e ∈ S of supertype ` there is no huge or medium
task of supertype ` that uses e. For each edge e ∈ S of supertype ` + 1 or larger we
know that the tiny tasks of supertype ` use at most d(`)

max units of its capacity. Therefore,

ICALP 2017

67:10 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

we can give to the tiny tasks of supertype ` the capacity of each edge e ∈ S that is
not used by the previously guessed huge tasks, up to a maximum of d(`)

max. We define
u`(e) := min{u(e) − d(OPT ′H,≥`−1 ∩ Te) − (1 − ε)s(`)

min, d
(`)
max} for each edge e ∈ S where

OPT ′H,≥`−1 is the set of huge tasks i ∈ OPT ′ that satisfy d(i) ≥ ε2 · s(`−1)
min .

I Lemma 18. Let ` be a supertype. Let e be an edge of a segment S such that (S, `) is tiny.
Then d(OPT ′T ∩ Te ∩ T̄ (`)) ≤ u`(e).

The following lemma implies that after we assigned u`(e) units of capacity to the tiny tasks
the remaining capacity is sufficient for the huge and medium tasks in OPT ′ (in particular
the not yet selected ones of supertype ` or larger). This holds even if we assign the capacity
of the tiny tasks in this manner for all supertypes `′ ≤ `.
I Lemma 19. For each edge e of a segment S we have that

∑
`′:`′≤` u`′(e) +d(OPT ′H ∩Te) +

d(OPT ′M ∩ Te) ≤ u(e)− 1
2 · s

(`)
min where ` := stype(e).

For each edge e we have that u`(e) ∈ [ε · s(`)
min, d

(`)
max], independent on whether e is in a

huge or in a tiny segment. Thus, the u`(e) values are in a constant range. We call our
FPT-algorithm for this case (see Theorem 6) with the input consisting of T̄ (`) and the edge
capacities u`. Due to Lemmas 17 and 18 it will output a solution consisting of at least
|OPT ′T ∩ T̄ (`)| tasks.

Next, we want to guess the huge and medium tasks of supertype ` in OPT ′ and split the
path into subpaths such that each subpath E′ has the property that stype(e′) ≥ `+ 1 for
each edge e′ ∈ E′. First, we guess which segments S have the property that for some edge
e ∈ S we have that stype(e) = `. We can do this in time 2k+1. Denote by S ′ the resulting
set of segments. We process the segments in S ′ from left to right, starting with the leftmost
such segment S ∈ S ′. We guess the leftmost and the rightmost edge in S of supertype `,
denote them by eL and eR, respectively. Then we guess the at most Oε(1) medium and
huge tasks of supertype ` that use eL or eR. We recurse on the subpath consisting all edges
on the left of eL. There, each edge is of supertype at least ` + 1. On the subpath on the
right of eR we continue splitting the remaining path into subpaths. To this end, we take the
next segment S′ ∈ S ′, guess its leftmost and rightmost edges e′L and e′R of supertype `, and
guess the Oε(1) medium and huge tasks of supertype ` using one of them. We recurse on the
subpath between eR and e′L, knowing that each of its edges is of supertype at least ` + 1.
Also, there cannot be any task whose path lies strictly between eL and eR since each input
task has to use some vertex in V̄ . We proceed with splitting the remaining segments in S ′
on the right of S′. To this end, it suffices to know e′R and the Oε(1) medium and huge tasks
using it, rather than also eL, eR, and e′L and the medium and huge tasks using those (apart
from those that use also e′R).

We can embed our whole recursive algorithm into a dynamic program whose running
time is FPT. Here we use ideas from [17], in particular for using the slack on the edges in
order to be able to “forget” some of the previously taken decisions. Crucial here is that
in order to define the u`(e)-values it is not necessary to remember all previously guessed
tasks and all values u`′(e) for all `′ < `, but only the tasks in OPT ′H,≥`−1 that use the
leftmost or the rightmost edge of the subpath of the respective subproblem. One can show
that those can be only Oε(1) many. Thus, each arising subproblem can be described by a
supertype `, a subpath E′ of E, and the Oε(1) tasks in OPT ′H,≥`−1 using the leftmost or
the rightmost edge of E′. This bounds the number subproblems and thus the number of
DP-cells by nOε(1) · log umax. With an additional color coding step and some slight extensions
to the above routine one can remove the assumption that the input values are polynomially
bounded.

A. Wiese 67:11

I Theorem 20. There exists a (1 + ε)-approximation algorithm with a running time of
2O(k log k)nOε(1) log umax for UFP-instances with |OPT | = k.

I Corollary 21. There is a PTAS for UFP instances that have satisfy the property that
|OPT | ≤ O(logn/ log logn).

4 W[1]-hardness

In this section we prove that UFP is W[1]-hard if the parameter k represents the number of
tasks in the optimal solution.

I Theorem 22. The unweighted Unsplittable Flow on a Path problem is W[1]-hard when
parametrized by the number of tasks in the optimal solution.

We give a reduction from the k-subset sum problem which is W[1]-hard [15]. Given a set
of n values A = {a1, ..., an}, a target value B and an integer k, the goal is to choose exactly
k values from A that sum up to exactly B. Suppose we are given an instance of k-subset
sum. First, we claim that we can assume w.l.o.g. the following properties for it.

I Lemma 23. W.l.o.g. we can assume that there are values ε1, ..., εn, not necessarily positive,
such that ai = B/k + εi for each i ∈ [n] and that

∑n
i=1 |εi| < B/k.

We construct an instance of UFP that admits a solution with 2k tasks if and only if
the given k-subset sum is a yes-instance. Our UFP instance has a path with n+ 2 vertices
v0, v1, ..., vn+1. Denote the leftmost and the rightmost edge by eL and eR, respectively. We
define u(eL) = u(eR) = B. For all other edges e we define u(e) := B + k ·maxi |εi|. Assume
that the values in S are ordered such that a1 ≥ a2 ≥ ... ≥ an. Let j ∈ [n]. We introduce two
tasks i(j), i′(j) with s(i(j)) := v0, t(i(j)) := vi, d(i(j)) := aj s(i′(j)) := vi, t(i′(j)) = vn+1,
and d(i′(j)) := 2B/k − aj . See Figure 1 for a sketch.

In order to get some intuition about the constructed instance, we observe the following.

I Lemma 24. In the constructed instance there can be no solution with more than 2k tasks.

In the next lemma we show that we can construct a solution with 2k tasks if the given
k-subset sum instance is a yes-instance: for a given set J ⊆ [n] of k indices such that∑
j∈J aj = B we select the tasks i(j) and i′(j) for each j ∈ J . One can easily verify that

this yields a feasible solution.

I Lemma 25. If the given k-subset sum instance is a yes-instance, then the constructed
UFP instance has a solution with 2k tasks.

Conversely, we show that if the UFP instance has a solution with 2k tasks then the
k-subset sum instance is a yes-instance. Suppose we are given such a solution for the UFP
instance. First, we establish that for each j ∈ [n] the solution selects either both i(j) and
i′(j) or none of these two tasks.

I Lemma 26. Given a solution T ′ to the UFP instance with 2k tasks. Then there is a
solution T ′′ with 2k tasks such that for each j ∈ [n] we have that either {i(j), i′(j)} ⊆ T ′′ or
{i(j), i′(j)} ∩ T ′′ = ∅.

Proof. Let j be an index such that neither {i(j), i′(j)} ⊆ T ′ nor {i(j), i′(j)} ∩ T ′ = ∅. First
assume that i(j) ∈ T ′ but i′(j) /∈ T ′. Then by construction the edge {vj , vj+1} is used by at
most k − 1 tasks. Let j′ be the smallest index greater than j such that the edge {vj′ , vj′+1}

ICALP 2017

67:12 A (1 + ε)-Approx. for Unsplittable Flow on a Path in Fixed-Param. Running Time

. . .eL eR

B

B + k ·maxi|εi|

i(j)
i′(j)

v0 v1 vn vn+1v2 v3 vn−2 vn−1

Figure 1 Sketch of the reduction used in order to prove Theorem 22. The sketch shows the tasks
i(j) and i′(j) for only one index j.

is used by k tasks. Such an index must exist since eR is used by k tasks from T ′. Since the
edge {vj′−1, vj′} is used by only k − 1 tasks this implies that i′(j′) ∈ T ′ but i(j′) /∈ T ′. We
define T̃ := T ′ ∪ {i′(j)} \ {i′(j′)}. We claim that T̃ is feasible. The task i′(j) does not use
eL and thus T̃ does not violate the capacity bound of eL. Furthermore, s(i′(j)) lies on the
left of s(i′(j′)) and thus aj ≥ aj′ . Hence, d(i′(j)) = 2B/k − aj ≤ 2B/k − aj′ = d(i′(j′)).
Hence, T̃ does not violate the capacity bound of eR. Each edge e with eL 6= e 6= eR is used
by at most k tasks. Hence, we do not violate its capacity bound (same calculation as in the
proof of Lemma 25). The case that i(j) /∈ T ′ but i′(j) ∈ T ′ can be handled with a similar
argumentation. We repeat this process until we cannot find another index j that violates
the property of the lemma. Denote by T ′′ the resulting set. J

Suppose we are given a solution T ′ to the UFP instance with 2k tasks that satisfies
Lemma 26. Let J ′ be the set of indices j such that i(j) ∈ T ′. We show in the next two
lemmas that J ′ is a solution to the k-subset sum instance. Lemma 27 follows from our
assumption that each value ai almost equals B/k (see Lemma 23) and the fact that the
edges eL and eR have capacity B each.

I Lemma 27. The set T ′ contains exactly k tasks using eL and exactly k tasks using eR.
Furthermore, we have that |J ′| = k.

I Lemma 28. We have that
∑
j∈J′ aj = B.

Proof. Let T ′L ⊆ T ′ and T ′R ⊆ T ′ denote the set of tasks in T ′ using eL and eR, respectively.
ThenB = u(eL) ≥

∑
i∈T ′

L
d(i) =

∑
j∈J′ aj . On the other hand, due to Lemma 26 we have that

B = u(eR) ≥
∑
i∈T ′

R
d(i) =

∑
j∈J′ 2B/k− aj and hence

∑
j∈J′ aj ≥ (

∑
j∈J′ 2B/k)−B = B.

Therefore
∑
j∈J′ aj = B. J

Hence, we proved that the constructed UFP instance has a solution with 2k tasks if and only
if the k-subset sum instance is a yes-instance. This completes the proof of Theorem 22.

I Corollary 29. There is no EPTAS for the unweighted Unsplittable Flow on a Path problem,
unless W[1] = FPT.

Acknowledgments. The author would like to thank Tobias Mömke and Hang Zhou for
helpful discussions on the topic and many comments on an earlier draft, and the anonymous
referees for many helpful suggestions and comments.

A. Wiese 67:13

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, July

1995.
2 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. Constant

integrality gap LP formulations of unsplittable flow on a path. In International Conference
on Integer Programming and Combinatorial Optimization (IPCO 2013), pages 25–36, 2013.
doi:10.1007/978-3-642-36694-9_3.

3 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing
(2+ε)-approximation for unsplittable flow on a path. In Proceedings of the 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages 26–41. SIAM, 2014.

4 Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-PTAS for
unsplittable flow on line graphs. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC 2006), pages 721–729. ACM, 2006.

5 Nikhil Bansal, Zachary Friggstad, Rohit Khandekar, and Mohammad R. Salavatipour. A
logarithmic approximation for unsplittable flow on line graphs. In Proceedings of the 20th
Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), pages 702–709, 2009.

6 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-
proximation schemes for unsplittable flow on a path. In Proceedings of the 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 47–58, 2015.
doi:10.1137/1.9781611973730.5.

7 Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM Journal on Computing, 43:767–799, 2014.

8 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7:48:1–
48:7, 2011. doi:10.1145/2000807.2000816.

9 Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation
algorithms for the unsplittable flow problem. Algorithmica, 47:53–78, 2007.

10 Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths and trees and
column-restricted packing integer programs. Unpublished. Available at http://cs-people.
bu.edu/aene/papers/ufp-full.pdf.

11 Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths and trees and
column-restricted packing integer programs. In APPROX-RANDOM 2009, pages 42–55,
2009.

12 Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand
flow in a tree and packing integer programs. ACM Transactions on Algorithms, 3, 2007.

13 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

14 Andreas Darmann, Ulrich Pferschy, and Joachim Schauer. Resource allocation with time
intervals. Theoretical Computer Science, 411:4217–4234, 2010.

15 Michael R. Fellows and Neal Koblitz. Fixed-parameter complexity and cryptography. In
International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting
Codes, pages 121–131. Springer, 1993.

16 Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal. Improved approximation al-
gorithms for unsplittable flow on a path with time windows. In International Workshop on
Approximation and Online Algorithms (WAOA 2015), pages 13–24. Springer, 2015.

17 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not
to augment: Solving unsplittable flow on a path by creating slack. In Proc. of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), 2017. To appear.

18 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer
Journal, 51(1):60–78, 2008.

ICALP 2017

http://dx.doi.org/10.1007/978-3-642-36694-9_3
http://dx.doi.org/10.1137/1.9781611973730.5
http://dx.doi.org/10.1145/2000807.2000816
http://cs-people.bu.edu/aene/papers/ufp-full.pdf
http://cs-people.bu.edu/aene/papers/ufp-full.pdf

Linear-Time Kernelization for Feedback Vertex
Set∗

Yoichi Iwata†

National Institute of Informatics, Tokyo, Japan
yiwata@nii.ac.jp

Abstract
In this paper, we give an algorithm that, given an undirected graph G of m edges and an integer
k, computes a graph G′ and an integer k′ in O(k4m) time such that (1) the size of the graph
G′ is O(k2), (2) k′ ≤ k, and (3) G has a feedback vertex set of size at most k if and only if
G′ has a feedback vertex set of size at most k′. This is the first linear-time polynomial-size
kernel for Feedback Vertex Set. The size of our kernel is 2k2 + k vertices and 4k2 edges,
which is smaller than the previous best of 4k2 vertices and 8k2 edges. Thus, we improve the size
and the running time simultaneously. We note that under the assumption of NP 6⊆ coNP/poly,
Feedback Vertex Set does not admit an O(k2−ε)-size kernel for any ε > 0.

Our kernel exploits k-submodular relaxation, which is a recently developed technique for
obtaining efficient FPT algorithms for various problems. The dual of k-submodular relaxation of
Feedback Vertex Set can be seen as a half-integral variant of A-path packing, and to obtain
the linear-time complexity, we give an efficient augmenting-path algorithm for this problem. We
believe that this combinatorial algorithm is of independent interest.

A solver based on the proposed method won first place in the 1st Parameterized Algorithms
and Computational Experiments (PACE) challenge.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases FPT Algorithms, Kernelization, Path Packing, Half-integrality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.68

1 Introduction

In the theory of parameterized complexity, we introduce parameters to problems and analyze
the complexity with respect to both the input length n = |x| and the parameter value k.
If an algorithm runs in f(k)nO(1) time for any input of length n and a parameter k, it is
called a fixed-parameter tractable (FPT) algorithm. If the nO(1) factor is linear, it is called a
linear-time FPT. The typical goal of parameterized algorithms is to develop FPT algorithms
with a small f(k) (e.g., ck for a small constant c) and a small nO(1) (e.g., linear in n).
Although there are many algorithms that have been developed with smaller f(k) or nO(1),
achieving the smallest f(k) and nO(1) simultaneously is a difficult task, and the smallest f(k)
factors and the smallest nO(1) factors are often achieved by different algorithms. Moreover,
when trying to improve the f(k) factor, the nO(1) factor is often ignored by using the O∗
notation, which hides factors polynomial in n, and when trying to improve the nO(1) factor,
the f(k) factor is often ignored by assuming k is a constant.

For example, in recent papers, Iwata, Oka, and Yoshida [18], and Ramanujan and
Saurabh [27] have independently obtained O(4km)-time algorithms for Almost 2-SAT,

∗ A full version of the paper is available at https://arxiv.org/abs/1608.01463.
† Supported by JSPS KAKENHI Grant Number JP17K12643.

EA
T

C
S

© Yoichi Iwata;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68
https://arxiv.org/abs/1608.01463
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Linear-Time Kernelization for Feedback Vertex Set

which is a parameterized version of Max 2-SAT where a parameter is the number of
unsatisfied clauses; on the other hand, when allowing the nO(1) factor to be super-linear,
there exists an O∗(2.32k)-time algorithm [23]. These two algorithms are not comparable: the
former runs faster when the input is large but the latter runs faster when the parameter is
large. Typically, only algorithms with the smallest f(k) factor or the smallest nO(1) factor
have been studied. However, if there were three algorithms running in time O(8kn), O(4kn2),
and O(2kn3), all of them are incomparable: the first is fastest when 4k < n, the second is
fastest when 2k < n < 4k, and the third is fastest when n < 2k. Do we need to develop
algorithms with the smallest possible f(k) factor for each nd? We observe that kernelization,
which is another basic research object of the parameterized complexity, is useful for avoiding
this incomparability.

A kernelization algorithm (or kernel) for a parameterized problem is an algorithm that,
given an instance (x, k) in time polynomial in n = |x| and k, returns an equivalent instance
(x′, k′) of the same problem such that k′ ≤ k and |x′| ≤ g(k) for some function g. When
the nO(1) factor in the running time is linear in n (i.e., kO(1)n), it is called a linear-time
kernel. If there is a kernel (and the problem is decidable), by solving the reduced instance
exhaustively, we can obtain an FPT algorithm. Actually, the converse is also true; if there
exists an f(k)nO(1)-time FPT algorithm, there also exists a kernel of size f(k). On the
other hand, the existence of a polynomial-size (i.e., |x′| ≤ kO(1)) kernel is non-trivial and,
actually, there are known to exist FPT problems which (unconditionally) do not have any
sub-exponential-size kernels [4]. As in the case of FPT algorithms, the typical goal is to
develop kernelization algorithms with a small size g(k) (e.g., linear in k) and a fast running
time (e.g., linear in n).

Compared with linear-time FPT algorithms, the number of studies for linear-time
polynomial-size kernels is small. Examples include d-Hitting Set [29], Dominating Set on
planar graphs [30, 16], n−k Clique Covering [9], and Max Cut Above Edwards-Erdős
Bound [14]. One of the major reasons is that when assuming the parameter k is a constant,
which is often done when studying linear-time FPT algorithms, kernels become uninteresting
because we cannot distinguish between f(k) and kO(1). Nevertheless, improving the nO(1)

factor in the running time of kernels is very important because such kernels can be used as
preprocessing for FPT algorithms. Let us assume that we have a kO(1)nd-time polynomial-
size kernel and an f(k)nO(1)-time FPT algorithm. Then, by applying the FPT algorithm
against the instance reduced by the kernelization, we obtain a kO(1)(f(k) + nd)-time FPT
algorithm. Thus, the nO(1) factor of any FPT algorithm can be replaced by nd. Therefore, if
we have a linear-time polynomial-size kernel, we obtain a linear-time FPT algorithm that
simultaneously achieves the smallest possible f(k) factor (ignoring factors polynomial in k).
This also implies that after obtaining a linear-time polynomial-size kernel, we can safely
ignore the nO(1) factor and focus on improving the f(k) factor only. Moreover, it can also be
combined with another kernel of smaller size. Let us assume that we have a kO(1)nd-time
polynomial-size kernel and a g(k)-size kernel. Then, by applying the second kernel against
the instance reduced by the first kernelization, we obtain a kO(1)nd-time g(k)-size kernel.
Therefore, in contrast to the case of FPT algorithms, we can always achieve the smallest size
and the fastest running time simultaneously.

In this paper, we give a linear-time quadratic-size kernel for Feedback Vertex Set.
This is the first linear-time polynomial-size kernel for this problem. Feedback Vertex Set
is a problem to decide whether a given undirected graph has a vertex set of size at most a
given parameter k whose removal makes the graph a forest. Feedback Vertex Set is one
of the most comprehensively studied problems in the field of parameterized complexity and

Y. Iwata 68:3

many different FPT algorithms and kernels have been developed. Moreover, the problem
was chosen as a target problem of the 1st Parameterized Algorithms and Computational
Experiments (PACE) challenge1. Actually, this research is strongly motivated by the PACE
challenge. The proposed methods are easy to implement, and a solver2 based on the proposed
methods won first place in the challenge.

The first FPT algorithm for Feedback Vertex Set was given by Downey and Fel-
lows [13]. This algorithm and subsequent improved algorithms [21, 26] use the strategy to
branch on short cycles and the f(k) factor of the running time is not a single exponential in k.
The first single-exponential FPT algorithms were obtained independently by Dehne et al. [11]
and Guo et al. [15], and several improved algorithms have been obtained [8, 7, 22]. The
current smallest f(k) factor for deterministic algorithms is 3.62k given by Kociumaka and
Pilipczuk [22]. These single-exponential FPT algorithms use the iterative compression
technique. For a graph with n vertices and m edges3, a naive implementation of iterative
compression requires n iterations and each iteration takes f(k)Ω(m) time. Therefore, the
total running time is f(k)Ω(nm). For the case of Feedback Vertex Set, by combining
it with 2-approximation algorithms [1, 3], we can solve the problem using only a single
iteration; however, this increases the running time for one iteration to f(2k)Ω(m). Thus, for
obtaining a linear-time FPT algorithm, the f(k) factor needs to grow from 3.62k to 3.622k.
When allowing randomness, a simple O(4kkm)-time FPT algorithm using random sampling
of edges was given by Becker et al. [2]. The current smallest f(k) factor for randomized
FPT algorithms is 3k given by Cygan et al. [10]. This algorithm uses dynamic programming
on tree-decompositions and takes 3kkO(1)n2 time after obtaining a tree-decomposition of
width at most k. As discussed above, by using our linear-time polynomial-size kernel, we
can obtain a kO(1)(3.62k +m)-time deterministic FPT algorithm and a kO(1)(3k +m)-time
randomized FPT algorithm.

The first polynomial-size kernel was given by Burrage et al. [6]. The size of this kernel
is O(k11), which was improved to O(k3) by Bodlaender and Van Dijk [5], and to O(k2) by
Thomassé [28]. Finally, Dell and Van Melkebeek [12] showed that there are no kernels of size
O(k2−ε) for any constant ε > 0 unless NP ⊆ coNP/poly. The size of the current smallest
kernel by Thomassé is 4k2 vertices and 8k2 edges. Although the precise running time of each
of these kernels was not analyzed, we can easily check that all of them take at least kO(1)nm

time. As discussed above, if there is a linear-time polynomial-size kernel, by combining it
with the smallest kernel, we can achieve the linear running time and the smallest kernel
size simultaneously. However, our linear-time quadratic-size kernel does not rely on such a
combination.

Before providing a description of our kernel, we first give a brief description of a key idea
behind the existing kernels. All the existing kernels for Feedback Vertex Set exploit
s-flowers. A set of simple cycles is called an s-flower if each cycle contains the vertex s and
no two cycles share any vertex other than s. If the degree of s is large and the graph is
well-connected, there exists a large s-flower. Because the size of an s-flower (i.e., the number
of cycles) gives a lower bound of the size of the minimum feedback vertex set that does not
contain s, if it is larger than the parameter k, we can remove s and decrement k. Otherwise,
the degree of s is small, or the graph is not well-connected. In the former case, we know that
the graph is small, and in the latter case, we can apply another reduction rule.

1 https://pacechallenge.wordpress.com/
2 https://github.com/wata-orz/fvs
3 If a graph has a feedback vertex set of size at most k, we have m = O(kn).

ICALP 2017

https://pacechallenge.wordpress.com/
https://github.com/wata-orz/fvs

68:4 Linear-Time Kernelization for Feedback Vertex Set

In our kernel, instead of s-flowers, we exploit k-submodular relaxation, which is a recently
developed technique for obtaining efficient FPT algorithms for various problems. The concept
of k-submodular relaxation was introduced by Iwata, Wahlström, and Yoshida [19]. The
k-submodular relaxation is a technique to obtain half-integral and persistent relaxations and
many existing half-integral LP relaxations (e.g., the LP relaxation of Vertex Cover [24])
can be re-derived by this technique. If a problem admits such a relaxation, the branch-and-
bound method gives an FPT algorithm. By applying k-submodular relaxation, they obtained
an O∗(4k)-time FPT algorithm for Feedback Vertex Set. A detailed description of the
k-submodular for Feedback Vertex Set is given in Section 2. By exploiting k-submodular
relaxation, we obtain a very simple kernel for Feedback Vertex Set, which is described
in Section 3. The size of our kernel is 2k2 + k vertices and 4k2 edges, which is smaller than
the previous best of 4k2 vertices and 8k2 edges [28].

We observe that there is a strong relationship between the k-submodular relaxation of
Feedback Vertex Set and s-flowers; the problem of computing a maximum s-flower is the
integral dual of the k-submodular relaxation of Feedback Vertex Set. This resembles the
situation for Almost 2-SAT. For Almost 2-SAT, Raman et al. [25] obtained an O∗(9k)-
time FPT algorithm by a reduction to Vertex Cover above Maximum Matching, and
then both the f(k) factor [23] and nO(1) factor [18, 27] were improved by a reduction to
Vertex Cover above LP. Here, the maximum matching is the integral dual of the LP
relaxation of Vertex Cover. Because the fractional minimum of the primal LP is always
at least the integral maximum of the dual LP, by using the half-integral relaxation instead of
the integral dual, we can obtain a better lower bound. Moreover, by using the half-integral
relaxations, we can directly exploit the persistency of the relaxations.

For obtaining linear-time kernel, we give a max-flow-like augmenting-path algorithm for
solving the k-submodular relaxation of Feedback Vertex Set in Section 4. This is the
most technical part of the paper. Our algorithm can compute a minimum solution in O(km)
time. By combining this algorithm with the simple kernel, we give a linear-time kernel in
Section 5. Due to space limitations, some of the proofs are omitted. Lemmas with omitted
proofs are marked with (?) and these proofs can be found in the full version [17].

We note that this algorithm can be used not only for the linear-time kernel but also for
improving the nO(1) factor of the O∗(4k)-time FPT branch-and-bound algorithm for Feed-
back Vertex Set. By applying k-submodular relaxations, O∗(4k)-time FPT algorithms
for two general versions, Subset Feedback Vertex Set and Group Feedback Vertex
Set, have been obtained [19]. Following up our work, Iwata, Yamaguchi, and Yoshida [20]
obtained linear-time FPT algorithms for many problems including these general versions
of Feedback Vertex Set by developing efficient augmenting-path algorithm for solving
k-submodular relaxations in general.

2 Preliminaries

2.1 Definitions
A multiplicity function of a multiset S is denoted by 1S ; e.g., when S = {a, a, b}, 1S(a) = 2,
1S(b) = 1, and 1S(c) = 0. Let f : U → R be a function. For a multiset S, we write the sum
of f(a) over a ∈ S as f(S) =

∑
a∈S f(a); e.g., when S = {a, a, b}, f(S) = 2f(a) + f(b). We

denote the preimage of i ∈ R under f by f−1(i) = {a ∈ U | f(a) = i}.
Let G = (V,E) be an undirected graph. We assume that G may contain a self-loop and

multiple edges. We will often denote the number of vertices by n and the number of edges
by m. We denote the set of edges incident to a vertex v by δG(v) and define the degree

Y. Iwata 68:5

of v as dG(v) = |δG(v)|. Here, we note that multiple edges contribute to the degree by its
multiplicity, and we never refer to the degree of a vertex having a self-loop. We omit the
subscript G if it is clear from the context. An edge e ∈ E is called a bridge if its removal
increases the number of connected components.

For a vertex set S, we denote the graph obtained by removing S and their incident edges
by G− S. When S is a singleton {v}, we simply write G− v. A vertex set S ⊆ V is called a
feedback vertex set if G− S is a forest. We denote the size of the minimum feedback vertex
set of G by fvs(G).

A walk is an ordered list (v0, e1, v1, e2, . . . , v`−1, e`, v`) such that ` ≥ 1 and each edge
ei connects vertices vi−1 and vi. Note that it may contain a vertex or an edge multiple
times. For a walk W = (v0, e1, . . . , v`), we denote the multiset of vertices appearing on W
by V (W) = {v0, . . . , v`} and the multiset of edges appearing on W by E(W) = {e1, . . . , e`}.

2.2 Basic Reductions
We introduce basic reductions that have been commonly used in kernelization algorithms for
Feedback Vertex Set [6, 5, 28]. The correctness of these reductions is almost trivial.

1. If there is a vertex v containing a self-loop, remove v and decrease k by one.
2. If there is a vertex of degree at most one, remove it.
3. If there is a vertex of degree two, remove it and connect its two neighbors by an edge.
4. If two vertices are connected by more than two edges, replace these edges with a double

edge.

Note that rule 3 can remove a vertex that is only incident to a double edge; in this case,
it creates a self-loop on its neighbor. These basic reductions never increase the degree of any
vertex and can be fully applied in O(m) time. After the reduction, the obtained graph has
no self-loops and has minimum degree at least three.

We will use the following lemma to bound the size of the kernel. This is a general version
of the lemma in [28], and a modified proof can be found in the full version [17].

I Lemma 1 (Thomassé [28]). If a graph without self-loops satisfies both of the following for
an integer d, the size of the minimum feedback vertex set is larger than k:

At least one of n > dk + k or m > 2dk holds; and
for any v ∈ V , it holds that 3 ≤ d(v) ≤ d.

In [28], a kernel of 4k2 vertices and 8k2 edges is obtained by applying the lemma against
d = 4k − 1. In the next section, we obtain a kernel of 2k2 + k vertices and 4k2 edges by
applying the lemma against d = 2k.

2.3 k-submodular Relaxation of Feedback Vertex Set
A walk W = (v0, e1, . . . , v`) is called an s-cycle if v0 = v` = s, vi 6= s for all i ∈
{1, . . . , ` − 1}, ei 6= ei+1 for any i ∈ {1, . . . , ` − 1} (i.e., there are no U-turns), and each
edge is contained in the walk at most twice. For example, walks (s, e1, u, e2, v, e3, s) and
(s, e1, u, e2, v, e3, w, e4, u, e1, s) are s-cycles but a walk (s, e1, u, e2, v, e2, u, e1, s) is not. Note
that in this definition, we distinguish each of multiple edges; e.g., if there is only a single
edge e between s and v, a walk (s, e, v, e, s) is not an s-cycle; however, if there is a double
edge {e1, e2} between s and v, a walk (s, e1, v, e2, s) is an s-cycle.

For a graph G = (V,E) without self-loops and a vertex s ∈ V , a function x : V → R≥0 is
called an s-cycle cover if it satisfies that (1) x(s) = 0 and (2) for any s-cycle C, x(V (C)) ≥ 1.

ICALP 2017

68:6 Linear-Time Kernelization for Feedback Vertex Set

Note that V (C) is the multiset of vertices on C, and therefore if x(v) = 1
2 holds for a vertex

v contained twice in C, we have x(V (C)) ≥ 1. The size of an s-cycle cover x is defined as
x(V), and when the size x(V) is minimum among all the possible s-cycle covers, it is called
a minimum s-cycle cover.

By introducing the idea of k-submodular relaxation, Iwata, Wahlström, and Yoshida [19]
obtained the following lemma.

I Lemma 2 (Iwata, Wahlström, and Yoshida [19]). For any graph G = (V,E) without self-loops
and s ∈ V , the following holds:

The size of any feedback vertex set of G that does not contain s is at least the size of the
minimum s-cycle cover.
There exists a minimum s-cycle cover that takes values {0, 1

2 , 1} (half-integrality).
If there exists a minimum feedback vertex set that does not contain s, then for any
half-integral minimum s-cycle cover x, there also exists a minimum feedback vertex set S
such that x−1(1) ⊆ S and s 6∈ S (persistency).

3 Simple Quadratic-size Kernel

In this section, we give a simple polynomial-time quadratic-size kernel for Feedback Vertex
Set. By exploiting the persistency of the k-submodular relaxation, we give the following
reduction rule called s-cycle cover reduction.

For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle cover x,
create a graph G′ = (V,E′) as follows. Let X = x−1(1) and let B ⊆ δ(s) be the set of bridges
of G−X connecting s and tree components of G−X − s. Then, G′ is obtained from G by
inserting a double edge between s and each of v ∈ X and removing the edges B.

I Lemma 3. For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle
cover x, let G′ = (V,E′) be a graph obtained by applying the s-cycle cover reduction. Then,
fvs(G) = fvs(G′) holds.

Proof. (≥) Let S be a minimum feedback vertex set of G. Observe that all the inserted edges
are between s and X = x−1(1). If s ∈ S, S is also a feedback vertex set of G′. Otherwise,
from the persistency, we can assume that S contains all the vertices of X. Thus, S is also a
feedback vertex set of G′.

(≤) Let S be a minimum feedback vertex set of G′. If s ∈ S, S is also a feedback vertex
set of G. Otherwise, because all the vertices of X are connected to s by double edges in G′,
S must contain all of X. Because all the deleted edges are bridges in G −X, S is also a
feedback vertex set of G. J

After applying this reduction, the degree of s can be bounded as the following shows.

I Lemma 4. For a graph G = (V,E), a vertex s ∈ V , and a half-integral minimum s-cycle
cover x, let G′ = (V,E′) be a graph obtained by applying the s-cycle cover reduction. Then,
dG′(s) ≤ 2x(V) holds.

Proof. First, we show that x is also an s-cycle cover of G′. Let us assume that there is an
s-cycle C of G′ such that x(C) < 1. Because x(v) = 1 for v ∈ X = x−1(1), C contains none
of X. Because all the inserted edges are incident to X, C is also an s-cycle of G, which is a
contradiction.

For i ∈ {1, 2}, let Ni denote the set of vertices that are connected to s by edges of
multiplicity i in G′. For each vi ∈ N1, we define a vertex wi as follows.

Y. Iwata 68:7

Algorithm 1 Simple quadratic-size kernelization for Feedback Vertex Set.
1: procedure Kernelize(G, k)
2: while true do
3: Apply the basic reductions
4: if k < 0 then return NO
5: if n ≤ 2k2 + k and m ≤ 4k2 then return (G, k)
6: if ∀v ∈ V, d(v) ≤ 2k then return NO
7: Pick a vertex s of degree larger than 2k
8: Compute a half-integral minimum s-cycle cover x
9: if x(V) > k then G← G− s; k ← k − 1

10: else apply the s-cycle cover reduction

If the edge svi is a bridge in G′ −X, let Ci be the connected component of G′ −X − s
containing vi. Because the reduction removes all the bridges between s and tree components,
Ci is not a tree. Thus, there exists an s-cycle contained in Ci ∪ {s} and, therefore, there
must exist a vertex wi ∈ Ci with x(wi) = 1

2 .
If svi is not a bridge in G′ −X, there exists a path Pi from vi to N1 \ {vi} in G′ −X − s.

Fix an arbitrary path Pi and let wi be the first vertex on the path such that x(wi) = 1
2 .

Because x is an s-cycle cover, there always exists such a vertex.
If wi = wj holds for some i 6= j, there exists an s-cycle C such that x(C) = 1

2 , which
is a contradiction. Therefore, all wi are distinct. Thus, we have dG′(s) = |N1| + 2|N2| ≤
|x−1(1

2)|+ 2|x−1(1)| = 2x(V). J

Now, we describe our simple quadratic-size kernelization algorithm (see Algorithm 1).
First, we apply the basic reductions. If k becomes negative, we return a NO instance. If the
graph becomes small enough, we return it. If all the vertices have degree at most 2k, we
return a NO instance. Otherwise, pick an arbitrary vertex s of degree larger than 2k, and
compute a half-integral minimum s-cycle cover x. If the size of the s-cycle cover is larger
than k, we remove s and decrement k. Otherwise, we apply the s-cycle cover reduction.

I Lemma 5. Algorithm 1 runs in (k+m)O(1) time and correctly computes (G′, k′) satisfying
k′ ≤ k and fvs(G) ≤ k ⇔ fvs(G′) ≤ k′. The size of G′ is at most 2k2 + k vertices and 4k2

edges.

Proof. It obviously holds that k′ ≤ k and the size of G′ is at most 2k2 + k vertices and 4k2

edges. From Lemma 4, after applying the s-cycle cover reduction, the degree of s changes
from more than 2k to at most 2k. Therefore, the number of edges strictly decreases for each
iteration. Thus, it stops in at most m iterations. Because each iteration can be done in time
polynomial in k and m, the total running time is also polynomial in k and m.

Next, we show the correctness. By applying Lemma 1 against d = 2k, when the maximum
degree is at most 2k and at least one of n > 2k2 + k and m > 4k2 holds, fvs(G) > k holds.
Thus, we can safely return a NO instance (line 6). From Lemma 2, if x(V) > k, there is no
feedback vertex set of size at most k that does not contain s. Thus, we can safely remove s
(line 9). The correctness of the s-cycle cover reduction follows from Lemma 3. J

ICALP 2017

68:8 Linear-Time Kernelization for Feedback Vertex Set

type-O type-I type-H type-T

Figure 1 Four types of vertices.

s T

T

T
T

H H

I

I

I

I

I

H

I

Figure 2 Example of the basic s-cycle packing.

4 Efficient Computation of a Half-integral Minimum s-cycle Cover

In this section, we prove the following theorem.

I Theorem 6. Given a graph G = (V,E) without self-loops, a vertex s ∈ V , and an integer
k, in O(km) time, we can compute a half-integral minimum s-cycle cover or conclude that
there are no s-cycle covers of size at most k

2 .

First, we give several definitions. Let Cs denote the set of all s-cycles. A function
y : Cs → R is called an s-cycle packing if for any vertex v ∈ V \ {s}, it holds that∑
C∈Cs

1V (C)(v)y(C) ≤ 1. The size of an s-cycle packing y is defined as y(Cs), and when the
size y(Cs) is the maximum among all the possible s-cycle packings, it is called a maximum
s-cycle packing. Because the problem of finding a maximum s-cycle packing is the LP dual
of the problem of finding a minimum s-cycle cover, the size of the minimum s-cycle cover is
equal to the size of the maximum s-cycle packing. Thus, if we can find a pair of an s-cycle
cover x and an s-cycle packing y of the same size, we can confirm that x is a minimum
s-cycle cover and y is a maximum s-cycle packing.

I Definition 7. A function f : E → {0, 1
2 , 1} is called a basic s-cycle packing if it satisfies

the following three conditions.
1. For any e ∈ δ(s), f(e) ∈ {0, 1}.
2. Each vertex v ∈ V \{s} satisfies exactly one of the following four conditions (see Figure 1):

a. f(e) = 0 for all edges e ∈ δ(v) (called type-O);
b. f(e) = 1 for exactly two edges e ∈ δ(v) and f(e) = 1

2 for none of e ∈ δ(v) (called
type-I);

c. f(e) = 1 for none of e ∈ δ(v) and f(e) = 1
2 for exactly two edges e ∈ δ(v) (called

type-H);
d. f(e) = 1 for exactly one edge e ∈ δ(v) and f(e) = 1

2 for exactly two edges e ∈ δ(v)
(called type-T).

3. For each vertex v ∈ V \ {s} of type-H or type-T, the cycle obtained by following edges of
value 1

2 from v contains an odd number of type-T vertices.

We call the cycle in the third condition the half-integral cycle of v. The size of a basic
s-cycle packing f is defined as 1

2f(δ(s)). Figure 2 illustrates an example of the basic s-cycle
packing, where solid lines denote edges of value 1, and dotted lines denote edges of value 1

2 .

I Lemma 8 (?). If there exists a basic s-cycle packing of size k, there also exists an s-cycle
packing of size k.

Note that this lemma only says that the size of the maximum basic s-cycle packing is
always at most the size of the maximum s-cycle packing and does not imply these two are
equal. The equality is shown at the end of this section.

Y. Iwata 68:9

sO

I

I

I
O

sI

I

O

I
I

s

I IO

O

II

s

T TT

H

TT

s

T H

T

T H

I

s

I I

I

I O

I

s

T H

T

T H

I

O

s

I I

I

O O

I

I

(a) (b) (c) (d)

Figure 3 Examples of augmenting walks.

I Definition 9. For a basic s-cycle packing f , a walk W = (v0, e1, . . . , v`) is called an
f -augmenting walk if it satisfies all the following conditions.
1. We have v0 = s.
2. We have f(e1) = 0.
3. All the edges {e1, . . . , e`} are distinct.
4. The vertices {v0, . . . , v`−1} are distinct (the last vertex v` can be identical to vi for some

i < `).
5. For each i ∈ {1, . . . , `− 1}, exactly one of the following holds:

a. vi is type-O;
b. vi is type-I and f(e) = 1 holds for at least one of e ∈ {ei, ei+1}.

6. If v` = vi for some i < `, exactly one of the following holds:
a. v` = s and f(e`) = 0;
b. v` is type-O;
c. v` is type-I and f(e) = 1 holds for at least one of e ∈ {ei, e`}.

7. If v` 6∈ {v0, . . . , v`−1}, v` is type-H or type-T.

For a basic s-cycle packing f and an f -augmenting walk W = (v0, e1, . . . , v`), let fW :
E → {0, 1

2 , 1} be a function defined as follows. First, set fW (e) = f(e) for all edges e ∈ E. If
v` 6= s and v` = vi holds for some i < `, let h = i; otherwise, let h = `. Then, for each edge
e ∈ {e1, . . . , eh}, set fW (e) = 1− f(e). If v` = s, we finish (see Figure 3-(a)). Otherwise, we
further modify fW depending on the type of v`.

(Case 1) If v` is type-O or type-I, for each edge e ∈ {eh+1, . . . , e`}, set fW (e) = 1
2 (see

Figure 3-(b)).
(Case 2) If v` is type-H, let C be the half-integral cycle of v` and let {t0 = v`, t1, . . . , tq−1}

be the vertex set consisting of the vertex v` and the type-T vertices on C ordered along C
(i.e., v` is located on the path from tq−1 to t1 along the cycle C). We use the notation tq = t0.
Let Pi be the path from ti to ti+1 along the cycle C. For each even i, set fW (e) = 0 for all
the edges on Pi, and for each odd i, set fW (e) = 1 for all the edges on Pi (see Figure 3-(c)).

(Case 3) If v` is type-T, let C be the half-integral cycle of v` and let {t0 = v`, t1, . . . , tq−1}
be the type-T vertices on C ordered along C. Then, we proceed in exactly the same way as
in case 2 (see Figure 3-(d)). We note that, in case 2, q is even; thus, v` is connected to tq−1
by edges of value one in fW . On the other hand, in case 3, q is odd; thus, v` is connected to
none of t1 and tq−1.

We call this operation that creates fW from f as augmenting f along W .

ICALP 2017

68:10 Linear-Time Kernelization for Feedback Vertex Set

Algorithm 2 Algorithm for computing an f -augmenting walk.
1: procedure FindAugmentingWalk(G, s, f)
2: S ← {s}
3: prev(v) = ε for all v ∈ V
4: while S 6= ∅ do
5: Pick a vertex u ∈ S and remove u from S

6: for e = uv ∈ δ(u) do
7: if e = prev(u) then continue
8: if e ∈ δ(s) and f(e) = 1 then continue
9: if u is type-I and f(prev(u)) = f(e) = 0 then continue

10: if v is type-H or type-T then
11: prev(v)← e

12: return the walk from s to v along the search tree
13: else if prev(v) = ε then
14: prev(v)← e; S ← S ∪ {v}
15: else if v is type-O or f(prev(v)) + f(e) ≥ 1 then
16: return the walk s→ u→ v → w along the search tree
17: return NO

I Lemma 10 (?). For a basic s-cycle packing f and an f -augmenting walkW = (v0, e1, . . . , v`),
let fW : E → {0, 1

2 , 1} be the function obtained by augmenting f along W . Then, fW is
a basic s-cycle packing. Moreover, if v` = s, the size of fW is the size of f plus one; and
otherwise, the size of fW is the size of f plus 1

2 .

Now, we give an algorithm to compute an f -augmenting walk (see Algorithm 2). First,
we initialize a set S and a table prev : V → E ∪ {ε}. The set S stores vertices we need to
process and is initialized to {s}. We ensure that only the vertex s and vertices of type-O or
type-I are stored in S. The table prev(v) represents an edge to the parent of v in the search
tree and initialized to the dummy edge ε, which indicates that the vertex is not visited (or
the vertex is the root s). Then, while S is not empty, pick up an arbitrary vertex u from S

and process each incident edge e = uv ∈ δ(u) as described below. If S becomes empty, the
algorithm returns NO.

First, we check whether the edge e = uv is valid by testing the following three conditions.
If e = prev(u), because we have already processed this edge, we skip it. If e is incident to
s and f(e) = 1, because such an edge cannot be used in an augmenting walk, we skip it.
Note that, when v = s, at least one of these two conditions are satisfied. Similarly, if u is
type-I and both of f(prev(u)) and f(e) are zero, because we cannot use both of prev(u) and
e simultaneously, we skip it.

If v is type-H, or type-T, we return the walk from s to v in the search tree by using the
table prev. If prev(v) = ε, we set prev(v) = e and insert it to S. If v is already visited and v
is type-O, let w be the lowest common ancestor of u and v in the search tree. Then, we return
the walk obtained by going down from s to u along the search tree, jumping from u to v by
the edge e, and then by going up from v to w along the search tree. If v is already visited
and v is type-I, we basically do the same; however, we need one additional constraint. If both
of f(prev(v)) and f(e) are zero, the walk created as above does not satisfy the condition 6(c)
of Definition 9; thus, we skip the edge without returning the walk.

From the construction of our algorithm, we obtain the following lemma.

Y. Iwata 68:11

I Lemma 11. A walk returned by Algorithm 2 is an f -augmenting walk.

Note that this lemma does not say that Algorithm 2 returns an f -augmenting walk
whenever there exists an f -augmenting walk; it only says that if the algorithm returns a
walk, it is an f -augmenting walk, and the algorithm might return NO even when there exists
an f -augmenting walk. We now show that, if the algorithm returns NO, we can construct
an s-cycle cover x whose size is equal to the size of f . From Lemma 8 and the LP duality
of s-cycle packings and s-cycle covers, the size of a basic s-cycle packing is always at most
the size of an s-cycle cover. Therefore, this equality implies that the current basic s-cycle
packing f is the maximum and the constructed s-cycle packing x is the minimum. This also
implies that when the algorithm returns NO, there are no f -augmenting walks.

To construct such an s-cycle cover x, we first prove a property of the table prev. We call
a vertex v ∈ V reachable if v = s or prev(v) 6= ε. For each edge e ∈ δ(s) with f(e) = 1, by
following edges of value 1 from e, we can obtain a simple cycle returning to s or a simple
path to a type-T vertex. We denote such a cycle or a path by We. Note that when We is a
cycle, We = We′ for another edge e′ ∈ δ(s).

I Lemma 12 (?). If Algorithm 2 returns NO, exactly one of the following holds for each
edge e ∈ δ(s) with f(e) = 1:
1. prev(v) = ε for any vertex v ∈ V (We);
2. We is a cycle, all the vertices on We are reachable, and exactly one vertex v ∈ V (We)\{s}

satisfies prev(v) 6∈ E(We).

When Algorithm 2 returns NO, by using the obtained table prev, we construct a function
x : V → {0, 1

2 , 1} as follows. For each edge e = su ∈ δ(s) with f(e) = 1, if We is a cycle
satisfying the second condition of Lemma 12, we set x(v) = 1 for the unique vertex v

satisfying prev(v) 6∈ E(We). Otherwise, we set x(u) = 1
2 . If x(u) is already set to 1

2 , e.g.,
We1 = We2 = (s, e1, u, e2, s) for a double edge {e1, e2}, we set x(u) = 1.

I Lemma 13 (?). If Algorithm 2 returns NO, the function x is a minimum s-cycle cover.

Proof of Theorem 6. Because each augmentation increases the size of f by at least 1
2 , after

k+1 steps, we can obtain a half-integral minimum s-cycle cover of size at most k2 , or conclude
that there are no s-cycle covers of size at most k

2 . Because Algorithm 2 runs in O(m) time,
the total running time is O(km). J

5 Linear-time Quadratic-size Kernel

In this section, we improve the running time of the quadratic-size kernel presented in Section 3
to O(k4m). By using the O(km)-time algorithm for computing the minimum s-cycle cover
presented in Section 4, each iteration can be done in O(km) time. However, because the
number of iterations is only bounded by O(m), the total running time becomes O(km2). We
show that, by a slight modification to Algorithm 1, the number of iteration can be bounded
by O(k3); thus, the total running time becomes O(k4m).

We add the following two rules just after line 6 of Algorithm 1. The safeness of these two
rules is almost trivial.

If there is a vertex v incident to more than k double edges, remove v, decrement k, and
continue the iteration.
If there are more than k2 double edges, return NO.

For bounding the number of iterations, we use the following lemma.

ICALP 2017

68:12 Linear-Time Kernelization for Feedback Vertex Set

I Lemma 14. For a graph G = (V,E) of minimum degree at least three, a vertex s ∈ V ,
and a half-integral minimum s-cycle cover x, if 2x(V) < dG(s) holds, then x−1(1) 6= ∅.

Proof. From Lemma 4, for a graph G′ obtained by applying the s-cycle cover reduction, it
holds that dG′(s) ≤ 2x(V). When x−1(1) = ∅, the reduction inserts no new edges and only
removes the bridges of G connecting s and tree components of G − s. Because the graph
G− s has minimum degree at least two, it has no tree components. Thus, we have G′ = G,
which is a contradiction. J

Now, we can prove the upper bound on the number of iterations.

I Lemma 15. The modified Algorithm 1 stops in O(k3) iterations.

Proof. Initially, all the double edges are blue, and after applying the s-cycle cover reduction,
we color all the double edges incident to s red (not only newly inserted double edges but
also blue colored edges are recolored to red). The other double edges, which are created by
the deletion of degree two vertices in the basic reductions, are colored blue. Let α denote
the number of red double edges and β denote the number of vertices of degree larger than
2k and incident to at least one red double edge. Let k0 be the initial value of k and φ be a
potential defined as φ = (2k2

0 + 4k0 + 3)k − 2α+ β. Observe that, because red double edges
are created only by the s-cycle cover reduction, each vertex can be incident to at most k0 + 1
red double edges, and that the number of red double edges is always at most k2

0 + k0 (at
most k2

0 edges before applying the s-cycle cover reduction and the reduction can create at
most k0 red double edges).

Initially, there are no red edges; thus, the initial potential is (2k2
0 + 4k0 + 3)k0 = O(k3

0).
If φ becomes negative, we have k < 0 or α > k2

0k ≥ k2. Thus, the algorithm returns NO.
When k is decremented, α can decrease by at most k0 + 1. Because there are at most

k2
0 + k0 red double edges, β can increase by at most 2k2

0 + 2k0. Thus, φ decreases by at least
(2k2

0 + 4k0 + 3)− 2(k0 + 1)− (2k2
0 + 2k0) ≥ 1.

When applying the s-cycle cover reduction, if the reduction creates c (≥ 1) new red
double edges, α increases by c and β can increase by at most c. Thus, φ decreases by at least
2c− c = c ≥ 1. After applying the s-cycle cover reduction, from Lemma 14, s is incident to
at least one double edge. Thus, if the reduction does not create any new red double edges, s
must be incident to at least one red double edge before the reduction. From 4, the degree of
s becomes at most 2k after the reduction. Therefore β decreases by at least one; thus, φ
decreases by at least one.

Now, we have shown that each iteration decreases the potential φ by at least one. Because
φ is initially O(k3) and is always non-negative, the number of iterations is O(k3). J

References
1 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the

undirected feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297, 1999.
2 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. J. Artif. Intell. Res., 12:219–234, 2000.
3 Ann Becker and Dan Geiger. Optimization of Pearl’s method of conditioning and greedy-like

approximation algorithms for the vertex feedback set problem. Artif. Intell., 83(1):167–188,
1996.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

Y. Iwata 68:13

5 Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback vertex set and
loop cutset. Theory Comput. Syst., 46(3):566–597, 2010.

6 Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev
Mac, and Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k)
kernel. In IWPEC 2006, pages 192–202, 2006.

7 Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015.

8 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. J. Comput. Syst. Sci., 74(7):1188–1198, 2008.

9 Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or how to
save k colors in O(n2) steps. In WG 2004, pages 257–269, 2004.

10 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In FOCS 2011, pages 150–159, 2011.

11 Frank K.H.A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Kim Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem. Theory Comput. Syst., 41(3):479–492, 2007.

12 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

13 Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and completeness.
In Complexity Theory: Current Research, pages 191–225, 1992.

14 Michael Etscheid and Matthias Mnich. Linear kernels and linear-time algorithms for finding
large cuts. In ISAAC 2016, pages 31:1–31:13, 2016.

15 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartiza-
tion. J. Comput. Syst. Sci., 72(8):1386–1396, 2006.

16 Torben Hagerup. Simpler linear-time kernelization for planar dominating set. In IPEC
2011, pages 181–193, 2011.

17 Yoichi Iwata. Linear-time kernelization for feedback vertex set. CoRR, abs/1608.01463,
2016. Full version of this paper. URL: https://arxiv.org/abs/1608.01463.

18 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In SODA 2014, pages 1749–1761, 2014.

19 Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching and
FPT algorithms. SIAM J. Comput., 45(4):1377–1411, 2016.

20 Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. Linear-time FPT algorithms via
half-integral non-returning A-path packing. CoRR, abs/1704.02700, 2017.

21 Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameterized algorithms for
feedback vertex set. In IWPEC 2004, pages 235–247, 2004.

22 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014.

23 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014.

24 G. Nemhauser and L. Trotter. Vertex Packing: Structural Properties and Algorithms.
Math. Program., 8:232–248, 1975.

25 Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. Paths, flowers and vertex cover.
In ESA 2011, pages 382–393, 2011.

26 Venkatesh Raman, Saket Saurabh, and C.R. Subramanian. Faster fixed parameter tract-
able algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403–415,
2006.

ICALP 2017

https://arxiv.org/abs/1608.01463

68:14 Linear-Time Kernelization for Feedback Vertex Set

27 M.S. Ramanujan and Saket Saurabh. Linear time parameterized algorithms via skew-
symmetric multicuts. In SODA 2014, pages 1739–1748, 2014.

28 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2),
2010.

29 René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica, 70(1):129–147, 2014.

30 René van Bevern, Sepp Hartung, Frank Kammer, Rolf Niedermeier, and Mathias Weller.
Linear-time computation of a linear problem kernel for dominating set on planar graphs.
In IPEC 2011, pages 194–206, 2011.

Exact Algorithms via Multivariate Subroutines∗

Serge Gaspers†1 and Edward J. Lee2

2 The University of New South Wales, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

2 The University of New South Wales, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
e.lee@unsw.edu.au

Abstract
We consider the family of Φ-Subset problems, where the input consists of an instance I of size
N over a universe UI of size n and the task is to check whether the universe contains a subset
with property Φ (e.g., Φ could be the property of being a feedback vertex set for the input graph
of size at most k). Our main tool is a simple randomized algorithm which solves Φ-Subset in
time (1 + b− 1

c)nNO(1), provided that there is an algorithm for the Φ-Extension problem with
running time bn−|X|ckNO(1). Here, the input for Φ-Extension is an instance I of size N over
a universe UI of size n, a subset X ⊆ UI , and an integer k, and the task is to check whether
there is a set Y with X ⊆ Y ⊆ UI and |Y \X| ≤ k with property Φ. We also derandomize this
algorithm at the cost of increasing the running time by a subexponential factor in n, and we
adapt it to the enumeration setting where we need to enumerate all subsets of the universe with
property Φ. This generalizes the results of Fomin et al. [STOC 2016] who proved them for the
case b = 1. As case studies, we use these results to design faster deterministic algorithms for

checking whether a graph has a feedback vertex set of size at most k,
enumerating all minimal feedback vertex sets,
enumerating all minimal vertex covers of size at most k, and
enumerating all minimal 3-hitting sets.

We obtain these results by deriving new bn−|X|ckNO(1)-time algorithms for the corresponding
Φ-Extension problems (or the enumeration variant). In some cases, this is done by simply
adapting the analysis of an existing algorithm, in other cases it is done by designing a new
algorithm. Our analyses are based on Measure and Conquer, but the value to minimize, 1+b− 1

c ,
is unconventional and leads to non-convex optimization problems in the analysis.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases enumeration algorithms, exponential time algorithms, feedback vertex
set, hitting set

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.69

1 Introduction

In exponential-time algorithmics [8], the aim is to design algorithms for NP-hard problems
with the natural objective to minimize their running times. In this paper, we consider a

∗ For a full version of the paper see http://arxiv.org/abs/1704.07982 [11].
† Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048)

and acknowledges support under the ARC’s Discovery Projects funding scheme (DP150101134).

EA
T

C
S

© Serge Gaspers and Edward J. Lee;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 69; pp. 69:1–69:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.69
http://arxiv.org/abs/1704.07982
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Exact Algorithms via Multivariate Subroutines

broad class of subset problems, where for an input instance I on a universe UI , the question
is whether there is a subset S of the universe satisfying certain properties. For example, in
the Feedback Vertex Set problem, the input instance consists of a graph G = (V,E) and
an integer k, the universe is the vertex set and the property to be satisfied by a subset S is
the conjunction of “|S| ≤ k” and “G− S is acyclic”.

More formally, and using definitions from [5], an implicit set system is a function Φ
that takes as input a string I ∈ {0, 1}∗ and outputs a set system (UI ,FI), where UI is a
universe and FI is a collection of subsets of UI . The string I is referred to as an instance
and we denote by |UI | = n the size of the universe and by |I| = N the size of the instance.
We assume that N ≥ n. The implicit set system Φ is polynomial time computable if (a)
there exists a polynomial time algorithm that given I produces UI , and (b) there exists a
polynomial time algorithm that given I, UI and a subset S of UI determines whether S ∈ FI .
All implicit set systems discussed in this paper are polynomial time computable.

Φ-Subset
Input: An instance I

Output: A set S ∈ FI if one exists.

Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Question: Does there exists a subset S ⊆ (UI \X) such that S ∪X ∈ FI and |S| ≤ k?

In recent work, Fomin et al. [5] showed that ckNO(1) time algorithms (c ∈ O(1)) for Φ-Ex-
tension lead to competitive exponential-time algorithms for many Φ-Subset problems. The
main tool was a simple randomized algorithm which solves Φ-Subset in time (2− 1

c)nNO(1)

if there is an algorithm that solves Φ-Extension in time ckNO(1). A derandomization
was also given, turning the randomized algorithm into a deterministic one at the cost of a
2o(n) factor in the running time. The method was also adapted to enumeration algorithms
and combinatorial upper bounds. This framework, together with a large body of work in
parameterized algorithmics [3], where ckNO(1) time algorithms are readily available for many
subset problems, led to faster algorithms for around 30 decision and enumeration problems.

In this paper, we extend the results of Fomin et al. [5] and show that a bn−|X|ckNO(1)

time algorithms (b, c ∈ O(1)) for Φ-Extension lead to randomized (1 + b− 1
c)nNO(1) time

algorithms for Φ-Subset. Our result can be similarly derandomized and adapted to the
enumeration setting. Observe that for b = 1, the results of [5] coincide with ours, but that
ours have the potential to be more broadly applicable and to lead to faster running times.
The main point is that if we use a ckNO(1) time algorithm as a subroutine to design an
algorithm exponential in n, we might as well allow a small exponential factor in n in the
running time of the subroutine.

Similar as in [5], the Φ-Extension problem can often be solved by preprocessing the
elements in X in a simple way and then using an algorithm for a subset problem. In the case
of Feedback Vertex Set, the vertices in X can simply be deleted from the input graph.
Whereas the literature is rich with ckNO(1) time algorithms for subset problems, algorithms
with running times of the form bnckNO(1) with b > 1 are much less common.1 One issue is

1 One notable exception is by Eppstein [4], who showed that all maximal independent sets of size at most
k in a graph on n vertices can be enumerated in time (4/3)n(81/64)knO(1).

S. Gaspers and E. J. Lee 69:3

that there is, in general, no obviously best trade-off between the values of b and c for such
algorithms. However, the present framework gives us a precise objective: we should aim for
values of b and c that minimize the base of the exponent, (1 + b− 1

c).
Our applications consist of three case studies centered around some of the most funda-

mental problems considered in [5], feedback vertex sets and hitting sets. For the first case
study, we considered the Feedback Vertex Set problem: given a graph G and an integer
k, does G have a feedback vertex set of size at most k? For this problem, we re-analyze the
running time of the algorithm from [6]. In [6, 10], the algorithm was analyzed using Measure
and Conquer: using a measure that is upper bounded by αn and aiming for a running time of
2αnnO(1) the analysis of the branching cases led to constraints lower bounding the measure
and the objective was to minimize α subject to these constraints. In our new analysis,
we add an additive term wk · k to the measure and adapt the constraints accordingly. If
all constraints are satisfied, we obtain a running time of 2αn+wkknO(1). Our framework
naturally leads us to minimize 2α − 2−wk . This approach leads to a O(1.5422n · 1.2041k)
time algorithm, which, combined with our framework gives a deterministic O(1.7117n) time
algorithm for Feedback Vertex Set. This improves on previous results giving O(1.8899n)
[13], O(1.7548n) [6], O(1.7356n) [14], O(1.7347n) [9], and O(1.7216n) [5] time algorithms for
the problem. We note that adapting the analysis of other existing exact and parameterized
algorithms did not give faster running times. Also, if we allow randomization, the O(1.6667n)
time algorithm by [5] (which can also be achieved using our framework) remains fastest.

Our second case study is more involved. Simply using an existing algorithm and adapting
the measure was not sufficient to improve upon the best known enumeration algorithms (and
combinatorial upper bounds) for minimal feedback vertex sets. Here, the task is, given a
graph G, to output each feedback vertex set that is not contained in any other feedback
vertex set. We design a new algorithm for enumerating all minimal feedback vertex sets. We
also need a new combinatorial upper bound for the number of minimal vertex covers of size
at most k to handle one special case in the enumeration of minimal feedback vertex sets.2
We obtain a O(1.7183n · 1.1552k) time algorithm for enumerating all minimal feedback vertex
sets. Our framework thus leads to a running time of O(1.8527n), improving on the previous
best bound of O(1.8638n) [6]. The current best lower bound for the number of minimal
feedback vertex sets is O(1.5926n) [6]. We would like to highlight that the enumeration of
minimal feedback vertex sets is completely out of scope for the more restricted framework of
[5]: the number of minimal feedback vertex sets of size at most k cannot be upper bounded
by cknO(1) for any c ∈ O(1), as evidenced by a disjoint union of k cycles of length n/k.

Our last case study gives a new algorithm for enumerating all minimal 3-hitting sets, also
known as minimal transversals of rank-3 hypergraphs. These are minimal sets S of vertices of
a hypergraph where each hyperedge has size at most 3 such that every hyperedge contains at
least one vertex of S. We re-analyze an existing algorithm [2] for this enumeration problem,
adapting the measure in a similar way as in the first case study, and we obtain a multivariate
running time of O(1.5135n · 1.1754k), leading to an O(1.6627n) time enumeration algorithm.
This breaks the natural time bound of O(1.6667n) of the previously fastest algorithm [5].
The current best lower bound gives an infinite family of rank-3 hypergraphs with Ω(1.5848n)
minimal transversals [2].

Lastly, all random selection is done from a uniform distribution and all randomized
algorithms in this paper are Monte Carlo algorithms with one-sided error. On No-instances

2 Previous work [1, 4] focused on small maximal independent sets, whose bounds were insufficient for us.
We need better bounds on large maximal independent sets or small minimal vertex covers.

ICALP 2017

69:4 Exact Algorithms via Multivariate Subroutines

they always return No, and on Yes-instances they return Yes (or output a certificate) with
probability > 1

2 .

2 Results

Our first main result gives exponential-time randomized algorithms for Φ-Subset based on
single-exponential multivariate algorithms for Φ-Extension with parameter k.

I Theorem 1. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is a randomized algorithm for Φ-Subset with running time (1 + b− 1
c)nNO(1).

The next main result derandomizes the algorithm of Theorem 1 at a cost of a subexponential
factor in n in the running time.

I Theorem 2. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is an algorithm for Φ-Subset with running time (1 + b− 1
c)n+o(n)NO(1).

We require the following notion of (b,c)-uniform to describe our enumeration algorithms.
Let c, b ≥ 1 be real valued constants and Φ be an implicit set system. Then Φ is (b,c)-
uniform if for every instance I, set X ⊆ UI , and integer k ≤ n − |X|, the cardinality of
the collection FkI,X = {S ⊆ UI\X : |S| = k and S ∪ X ∈ FI} is at most bn−|X|cknO(1).
Then the following theorem provides new combinatorial bounds for collections generated by
(b, c)-uniform implicit set systems.

I Theorem 3. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is (b, c)-uniform then
|FI | ≤

(
1 + b− 1

c

)n
nO(1) for every instance I.

We say that an implicit set system is efficiently (b, c)-uniform if there exists an algorithm
that given I,X and k enumerates all elements of FkX,I in time bn−|X|ckNO(1). In this case,
we enumerate FI in the same time, up to a subexponential factor in n.

I Theorem 4. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is efficiently (b, c)-uniform
then there is an algorithm that given as input I enumerates FI in time

(
1 + b− 1

c

)n+o(n)
NO(1).

3 Random Sampling and Multivariate Subroutines

In this section, we prove Theorem 1. To do this, we first need the following lemmas.

I Lemma 5. If b, c ≥ 1 then b · c 1
bc ≤ 1 + b− 1

c

Proof. As both sides of the inequality are positive, it suffices to show that log(bc 1
bc) ≤

log(1 + b− 1/c). So we let y = log(1 + b− 1/c)− log b− 1
bc log c and prove that y ≥ 0 for all

b, c ≥ 1. When c = 1 we have that y = 0 for all b. We will show that for any fixed b ≥ 1 we
have that y ≥ 0 by showing that y increases with c ≥ 1. For fixed b, the partial derivative with
respect to c is ∂y

∂c = (bc+c−1) log c−c+1
bc2(bc+c−1) . When c = 1 then for all b, ∂y∂c = 0. As the denominator

is positive for b, c ≥ 1 it is sufficient to show that the numerator z = (bc+ c− 1) log c− c+ 1
is non-negative. To show that z ≥ 0, we consider the partial derivative again with respect to
c: ∂z

∂c = (b+ 1) log c+ b− 1
c For b, c ≥ 1, we have that b− 1

c ≥ 0 and (b+ 1) log(c) ≥ 0. Since
∂z
∂c ≥ 0, we conclude that z is increasing and non-negative which implies y is also increasing
and non-negative, for all b, c ≥ 1. This proves the lemma. J

The proof of the next lemma follows the proof of Lemma 2.2 from [5], who proved it for
b = 1.

S. Gaspers and E. J. Lee 69:5

I Lemma 6. Let b, c ≥ 1, n and k ≤ n be non-negative integers. Then, there exists t ≥ 0
such that(

n
t

)(
k
t

) bn−tck−t =
(

1 + b− 1
c

)n
nO(1), specifically when t = cbk − n

cb− 1 .

Proof. We consider two cases. First suppose k ≤ n
bc . Then for t = 0 the LHS (left-hand

side) is at most bnck ≤ bnc n
bc ≤ (1 + b− 1/c)n by Lemma 5. Now if k > n

bc then we rewrite
the LHS as(

n
t

)(
k
t

) bn−tck−t =
(
n
k

)
bn−k(

n−t
k−t
) (1

bc

)k−t .
Let us lower bound the denominator. For any x ≥ 0 and an integer m ≥ 0,∑

i≥0

(
m+ i

i

)
xi =

∑
i≥0

(
m+ i

m

)
xi = 1

(1− x)m+1 , (1)

by a known generating function. For m = n − k and x = 1
bc , the summand at i = k − t

equals the denominator
(
n−t
k−t
) (1

bc

)k−t. Since n
k < bc we have that m+k

k < 1
x and the terms of

this sum decay exponentially for i > k. Thus, the maximum term (m+i)(m+i−1)...(m+1)
i(i−1)...1 xi for

this sum occurs for i ≤ k, and its value is Ω
((

1
1−x

)m)
up to a lower order factor of O(k).

So by the binomial theorem the expression is at most(
n

k

)
bn−k(1− x)n−knO(1) =

(
1 + b− 1

c

)n
nO(1).

Specifically, the maximum term for Equation (1) occurs when m+i
i = 1

x , that is when
n−t
k−t = cb, and therefore, t = cbk−n

cb−1 . J

I Lemma 7. If there exist constants b, c ≥ 1 and an algorithm for Φ-Extension with
running time bn−|X|ckNO(1) then there exists a randomized algorithm for Φ-Extension with
running time

(
1 + b− 1

c

)n−|X|
NO(1).

Proof. Our proof is similar to Lemma 2.1 in [5]. Let B be an algorithm for Φ-Extension
with running time bn−|X|ckNO(1). We now present a randomized algorithm A, for the same
problem for an input instance (I,X, k′) with k′ ≤ k.
1. Choose an integer t ≤ k′ depending on b, c, n, k′ and |X|, the choice of which will be

discussed later. Then select a random subset Y of UI\X of size t.
2. Run Algorithm B on the instance (I,X ∪ Y, k′ − t) and return the answer.
Algorithm A has a running time upper bounded by bn−|X|−tck′−tNO(1). Algorithm A returns
yes for (I,X, k′) when B returns yes for (I,X ∪ Y, k′ − t). In this case there exists a set
S ⊆ UI\(X ∪ Y) of size at most k′ − t ≤ k − t such that S ∪ X ∪ Y ∈ FI . This, Y ∪ S
witnesses that (I,X, k) is indeed a yes-instance.

Next we lower bound the probability that A returns yes if there exists a set S ⊆ UI\X of
size exactly k′ such that X ∪ S ∈ FI . The algorithm A picks a set Y of size t at random
from UI\X. There are

(
n−|X|
t

)
possible choices for Y . If A picks one of the

(
k′

t

)
subsets of S

as Y then A returns yes. Thus, given that there exists a set S ⊆ UI\X of size k′ such that
X ∪ S ∈ FI , we have that

Pr[A returns yes] ≥ Pr[Y ⊆ S] =
(
k′

t

)
/

(
n− |X|

t

)
.

ICALP 2017

69:6 Exact Algorithms via Multivariate Subroutines

Let p(k′) =
(
k′

t

)
/
(
n−|X|
t

)
. For each k′ ∈ {0, ..., k}, our main algorithm runs A independently

1
p(k′) times with parameter k′. The algorithm returns yes if any of the runs of A return yes.
If (I,X, k′) is a yes-instance, then the main algorithm returns yes with probability at least

min
k′≤k

{
1− (1− p(k′))

1
p(k′)

}
≥ 1− 1

e
>

1
2 .

Next we upper bound the running time of the main algorithm, which is

∑
k′≤k

1
p(k′)b

n−|X|−tck
′−tNO(1) ≤ max

k′≤k

(
n−|X|
t

)(
k′

t

) bn−|X|−tck
′−tNO(1) (2)

≤ max
k′≤n−|X|

(
n−|X|
t

)(
k
t

) bn−|X|−tck−tNO(1). (3)

The choice of t in algorithm A is chosen to minimize the value of (n−|X|
t)

(k
t)

bn−|X|−tck−t. For
fixed n and |X| the running time of the algorithm is upper bounded by

max
0≤k≤n−|X|

{
min

0≤t≤k

{(
n−|X|
t

)(
k
t

) bn−|X|−tck−tNO(1)

}}
. (4)

By application of Lemma 6 we choose t = cbk−(n−|X|)
cb−1 to obtain the upper bound(

1 + b− 1
c

)n−|X| (n− |X|)O(1), which, combined with n < N , completes the proof. J

Running algorithm A with X = ∅ and for each value of k ∈ {0,, n} results in an algorithm
for Φ-Subset with running time

(
1 + b− 1

c

)n
NO(1), proving Theorem 1.

4 Derandomization

In this section we prove Theorem 2, by derandomizing the algorithm in Theorem 1.

I Theorem 2. If there is an algorithm for Φ-Extension with running time bn−|X|ckNO(1)

then there is an algorithm for Φ-Subset with running time (1 + b− 1
c)n+o(n)NO(1).

Given a set U and an integer q ≤ |U | let
(
U
q

)
represent the set of sets which contain q elements

of U . From [5] we define a pseudo-random object, the set-inclusion-family, as well as an
almost optimal sub-exponential construction of these objects.

I Definition 8. Let U be a universe of size n and let 0 ≤ q ≤ p ≤ n. A family C ⊆
(
U
q

)
is an

(n, p, q)-set-inclusion family, if for every set S ∈
(
U
p

)
, there is a set Y ∈ C such that Y ⊆ S.

Let κ(n, p, q) =
(
n
q

)
/
(
p
q

)
. We also make use of the following theorem.

I Theorem 9 ([5]). There is an algorithm that given n, p and q outputs an (n, p, q)-set-
inclusion-family C of size at most κ(n, p, q) · 2o(n) in time κ(n, p, q) · 2o(n).

We are now ready to prove Lemma 10, by a very similar proof to Lemma 7.

I Lemma 10. If there exists constants b, c ≥ 1 and an algorithm for Φ-Extension with
running time bn−|X|ckNO(1) then there exists a deterministic algorithm for Φ-Extension
with running time

(
1 + b− 1

c

)n−|X| · 2o(n) ·NO(1).

S. Gaspers and E. J. Lee 69:7

Proof. Let B be an algorithm for Φ-Extension with running time bn−|X|ckNO(1). We can
then adapt Algorithm A from the proof of Lemma 7. Let A′ be a new algorithm which has
an input instance (I,X, k′) with k′ ≤ k. Choose t = cbk′−(n−|X|)

cb−1 .

1. Compute an (n− |X|, k′, t)-set-inclusion-family C using the algorithm from Theorem 9 of
size at most κ(n− |X|, k′, t) · 2o(n), in κ(n− |X|, k′, t) · 2o(n) time.

2. For each set Y in the set-inclusion-family C run algorithm B on the instance (I,X∪Y, k′−t)
and return Yes of at least one returns Yes and No otherwise.

The running time of A′ is upper bounded by κ(n− |X|, k′, t) · 2o(n) · bn−|X|−tck′−tNO(1), a
term encountered in Equation 2 with a new subexponential factor in n,

max
k′≤k

(
n−|X|
t

)(
k′

t

) · bn−|X|−tck
′−tNO(1) · 2o(n).

From here the proof follows that of Lemma 7. J

The proof of Theorem 2 follows by inclusion of the factor 2o(n).

5 Enumeration

We now proceed to prove Theorems 3 and 4 on combinatorial upper bounds and enumeration
algorithms. Consider the following random process.

1. Choose an integer t based on b, c, n and k, then randomly sample a subset X of size t
from UI .

2. Uniformly at random pick a set S from Fk−tI,X , and output W = X ∪ S. In the special
case where Fk−tI,X is empty output the empty set.

I Theorem 3. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is (b, c)-uniform then
|FI | ≤

(
1 + b− 1

c

)n
nO(1) for every instance I.

Proof. Let I be an instance, k ≤ n. We will prove that the number of sets in FI of size
exactly k is upper bounded by |FI | ≤

(
1 + b− 1

c

)n
nO(1), where k is chosen arbitrarily. We

follow the random process described above, which picks a set W of size k from FI .
For each set Z ∈ FI of size exactly k, let EZ denote the event that the set W output in

step 2 is equal to Z. We then have the following lower bound on the probability of the event
EZ :

Pr[EZ] = Pr[X ⊆ Q ∧ S = Z\X] = Pr[X ⊆ Z]× Pr[S = Z\Z|X ⊆ Z] = (k
t)

(n
t)
· 1
|Fk−t

I,X |
Since Φ is (b, c)-uniform then

∣∣∣Fk−tI,X

∣∣∣ ≤ bn−|X|cknO(1) and X is selected such that |X| = t,
this results in the lower bound

Pr[EZ] ≥
(
k
t

)(
n
t

)b−(n−t)c−(k−t)n−O(1).

A choice of t is made to minimize the lower bound, and this choice is given by Lemma 6
which states that for every k ≤ n there exists a t ≤ k such that we obtain a new lower bound

Pr[EZ] ≥
(

1 + b− 1
c

)−n
· nO(1)

for every Z ∈ FI of size k. For every individual set Z ∈ FI , the event EZ occurs disjointly,
and we have that

∑
Z∈FI ,|Z|=k Pr[EZ] ≤ 1. This fact with the lower bound of Pr[EZ] implies

an upper bound on the number of sets in FI of (1 + b− 1
c)nnO(1), completing the proof. J

ICALP 2017

69:8 Exact Algorithms via Multivariate Subroutines

I Theorem 4. Let c, b ≥ 1 and Φ be an implicit set system. If Φ is efficiently (b, c)-uniform
then there is an algorithm that given as input I enumerates FI in time

(
1 + b− 1

c

)n+o(n)
NO(1).

Proof. We alter the random process used to prove Theorem 3 to a deterministic one:
1. Construct a (n, k, t)-set inclusion family C using Theorem 6 from [5]. Loop over X ∈ C.
2. For each X ∈ C, loop over all sets S ∈ Fk−tI,X .
Then we output W = X ∪ S from these two loops. Looping over C instead of random
sampling for X incurs a 2o(n) overhead in the running time. As Φ is efficiently (b, c)-uniform,
the inner loop requires (1 + b− 1

c)nNO(1) time. In order to avoid enumerating duplicates,
we save the sets which have been output in a trie and check first in linear time if a set has
already been output. The product of the running times for these two nested loops results in
the running time claimed by the theorem statement. J

6 Case Studies

This section briefly outlines case studies which used Theorem 2 and Theorem 4 in order to
design faster deterministic algorithms.

6.1 Preliminaries
Let G = (V,E) be a graph with a set of vertices V and a set of edges E ⊆ {uv : u, v ∈ V }.
The degree d(u) of a vertex u is the number of neighbors of u in G. The degree of a graph
∆(G) is the maximum d(u) across all u ∈ V . A graph G′ = (V ′, E′) is a subgraph of G if
V ′ ⊆ V and E′ ⊆ E and G′ is an induced subgraph of G if, in addition, G has no edge uv
with u, v ∈ V ′ but uv /∈ E′. In this case, we also denote G′ by G[V ′]. A forest is an acyclic
graph. A subset F ⊆ V is acyclic if G[F] is a forest. An acyclic subset F ⊆ V is maximal in
G if it is not a subset of any other acyclic subset. For an acyclic subset F ⊆ V , we denote
the set of maximal acyclic supersets of F asMG(F) and the set of maximum (i.e., largest)
acyclic supersets of F asM∗G(F).

Let T be a subgraph of G. Define Id(T, t) as an operation on G which contracts all
edges of T into one vertex t, removing induced loops. This may create multiedges in G.
Define Id∗(T, t) as the operation Id(T, t) followed by removing all vertices connected to t by
multiedges. A non-trivial component of a graph G is a connected component on at least two
vertices. The following propositions from [6] will be useful.

I Proposition 11. [6] Let G = (V,E) be a graph, F ⊆ V be an acyclic subset of vertices
and T be a non-trivial component of G[F]. Denote by G′ the graph obtained from G by the
operation Id∗(T, t) and let F ′ = F ∪ {t}\T . Then for X ′ = X ∪ {t}\T where X,X ′ ⊆ V

X ∈MG(F) if and only if X ′ ∈MG′(F ′), and
X ∈M∗G(F) if and only if X ′ ∈M∗G′(F ′).

Using operation Id∗ on each non-trivial component of G[F], results in an independent
set F ′.

I Proposition 12. [6] Let G = (V,E) be a graph and F be an independent set in G such that
V \F = N(t) for some t ∈ F . Consider the graph G′ = G[N(t)] and for every pair of vertices
u, v ∈ N(t) having a common neighbor in F\{t} add an edge uv to G′. Denote the obtained
graph by H and let I ⊆ N(t). Then F ∪I ∈MG(F) if and only if I is a maximal independent
set in H . In particular, F ∪ I ∈ M∗G(F) if and only if I is a maximum independent set
in H.

S. Gaspers and E. J. Lee 69:9

For an acyclic subset F , a so-called active vertex t ∈ F and a neighbor v ∈ N(t) \ F ,
we will now define the concept of generalized neighbors of v, also known as (v)-generalized
neighbors. Denote byK the set of vertices of F adjacent to v other than t. Let G′ be the graph
obtained after the operation Id(K ∪ {v}, u). A vertex w ∈ V (G′)\{t} is a (v)-generalized
neighbor in G if w is a neighbor of u in G′. Denote by gd(v) the generalized degree of v
which is the number of (v)-generalized neighbors for a given v.

6.2 Feedback Vertex Set
First we describe the extension variant of Feedback Vertex Set

Feedback Vertex Set Extension
Input: A graph G = (V, E), vertex subset X ⊆ V and an integer k

Question: Does there exist subset S ⊆ V \X such that S ∪X is a FVS and |S| ≤ k?

Instead of directly finding the feedback vertex set in a graph, we present algorithm mif(G,F, k)
[6] which computes for a given graph G and an acylic set F the maximum size of an induced
forest F ′ containing F with |F ′| ≥ n − k. This means that G − F is a minimal feedback
vertex set of size at most k. This algorithm can easily be turned into an algorithm computing
at least one such set.

During the execution of mif one vertex t ∈ F is called an active vertex. Algorithm mif
then branches on a chosen neighbor of t. Let v ∈ N(t). Let k be the set of all vertices of
F\{t} that are adjacent to v and parameter k which represents a bound on the size of the
feedback vertex set.

As well as describing the algorithm we simultaneously perform the running time analysis
which uses the Measure and Conquer framework and Lemma 13 at its core.

I Lemma 13. [10] Let A be an algorithm for a problem P , B be an algorithm for a class
C of instances of P , c ≥ 0 and r > 1 be constants, and µ(·), µB(·), η(·) be measures for P ,
such that for any input instance I from C, µB(·) ≤ µ(I), and for any input instance I, A
either solves P on I ∈ C by invoking B with running time O(η(I)c+1rµB(I)), or reduces I to
k instances I1, ..., Ik, solves these recursively, and combines their solutions to solve I, using
time O(η(I)c) for the reduction and combination steps (but not the recursive solves),

(∀i) η(Ii) ≤ η(I)− 1, and
k∑
i=1

rµ(Ii) ≤ rµ(I). (5)

Then A solves any instance I in time O(η(I)c+1rµ(I)).

Branching constraints of the form
∑j
i=1 2−δi ≤ 1 are given as branching vectors (δ1, ..., δj).

6.2.1 Measure
To upper bound the exponential time complexity of the algorithm mif we use the measure

µ = |N(t)\F |w1 + |V \(F ∪N(t))|w2 + k · wk.

In other words, each vertex in F has weight 0, each vertex in N(t) has weight w1, each other
vertex has weight w2 and each unit of budget for the feedback vertex set has weight wk, in
the measure with an active vertex t.

ICALP 2017

69:10 Exact Algorithms via Multivariate Subroutines

6.2.2 Algorithm
The description of mif consists of a sequence of cases and subcases. The first case which
applies is used, and inside a given case the hypotheses of all previous cases are assumed to
be false. Preprocessing procedures come before main procedures.

Preprocessing

1. If G consists of j ≥ 2 connected components G1, G2, ..., Gj , then the algorithm is called
on each component. For Fi = Gi ∩ F for all i ∈ {1, 2, ..., j} and

∑j
i=1 ki ≤ k then

mif(G,F, k) =
j∑
i=1

mif(Gi, Fi, ki) .

2. If F is not independent, then apply operation Id∗(T, vT) on an arbitrary non-trivial
component T of F . If T contains the active vertex then vT becomes active. Let G′ be
the resulting graph and let F ′ be the set of vertices of G′ obtained from F . Then

mif(G,F, k) = mif(G′, F ′, k) + |T | − 1 .

Main Procedures

1. If k < 0 then mif(G,F, k) = 0.
2. If F = ∅ and ∆(G) ≤ 1 thenMG(F) = {V } and mif(G,F, k) = |V |.
3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t ∈ G of degree at least 2.

Then t is either contained in a maximum induced forest or not. The algorithm branches
on two subproblems and returns the maximum:

mif(G,F, k) = max{mif(G,F ∪ {t}, k), mif(G\{t}, F, k − 1)}.

The first branch reduces the weight of t to zero, as it is in F , and at least 2 neighbors
have a reduced degree from w2 to w1. In the second branch we remove t from the graph,
meaning it will be in the feedback vertex set. We thus also gain a reduction of wk in the
measure. Hence this rule induces the branching constraint

(w2 + 2(w2 − w1), w2 + wk).

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an active vertex.
Denote the active vertex by t from now on.

5. If V \F = N(t) then the algorithm constructs the graph H from Proposition 12 and
computes a maximum independent set I in G of maximum size n− k. Then

mif(G,F, k) = |F |+ |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G,F, k) = mif(G,F ∪ {v}, k).

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from G.

mif(G,F, k) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F, k − 1)}.

The first case adds v to F reducing the measure by w1, and a minimum of 4(w2−w1) for
all the (v)-generalized neighbors. The other case removes v this decreasing the measure
by wk. Hence this rule induces the branching constraint

(w1 + 4(w2 − w1), w1 + wk).

S. Gaspers and E. J. Lee 69:11

8. If there is v ∈ N(t) with gd(v) = 2 then denote the (v)-generalized neighbors by u1 and
u2. Either add v to F or remove v from G but add u1 and u2 to F . If adding u1 and u2
to F induces a cycle, we just ignore the last branch.

mif(G,F, k) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F ∪ {u1, u2}, k − 1)}.

Let i ∈ {0, 1, 2} be the number of vertices adjacent to v with weight w2. The first case
adds v to F , and hence all i w2-weight neighbors of v reduce to w1, and the other 2− i
vertices of weight w1 induce a cycle, hence we remove them from G and reduce the
measure by (2− i)wk. The second case removes v and adds both u1 and u2 to F . This
causes a reduction of iw2 for the relevant vertices and (2− i)w1 for the other vertices, and
a single wk reduction due to the removal of v. This rule induces the branching constraint

(w1 + i(w2 − w1) + (2− i)w1 + (2− i)wk, w1 + iw2 + (2− i)w1 + wk).

9. If all vertices in N(t) have exactly three generalized neighbors then at least one of these
vertices must have a generalized neighbor outside N(t), since the graph is connected
and the condition of the case Main 6 does not hold. Denote such a vertex by v and its
generalized neighbors by u1, u2 and u3 in such a way that u1 6∈ N(t). Then we either
add v to F ; or remove v from G but add u1 to F ; or remove v and u1 from G and add
u2 and u3 to F . Similar to the previous case, if adding u2 and u3 to F induces a cycle,
we just ignore the last branch.

mif(G,F) = max{mif(G,F ∪ {v}, k), mif(G\{v}, F ∪ {u1}, k − 1),
mif(G\{v, u1}, F ∪ {u2, u3}, k − 2)}.

Let i ∈ {1, 2, 3} be the number of vertices adjacent to v with weight w2. The first and
last cases are analogous to the analysis done in Main 8. The second case removes v from
the forest hence adding it to the minimum feedback vertex set and reducing the measure
by w1 + wk. A reduction of w2 is gained by adding u1 to F . Then this rule induces the
branching constraint

(w1 + i(w2 − w1) + (3− i)w1 + (3− i)wk, w1 + w2 + wk, w1 + iw2 + (3− i)w1 + 2wk).

6.2.3 Results
I Theorem 14. Let G be a graph on n vertices. Then a minimal feedback vertex set in G
can be found in time O(1.7117n).

Proof. Using the algorithm above along with the measure µ, the following values of weights
can be shown to satisfy all the branching vector constraints generated above.

w1 = 0.2775 w2 = 0.6250 wk = 0.2680

These weights result in an upper bound for the running time of mif as O(1.5422n · 1.2041k)
for computing a maximally induced forest of size a least n−k, and hence we have the running
time for Feedback Vertex Set Extension of O(1.5422n−|X| · 1.2041k). By Theorem 2
this results in a O(1.7117n) algorithm for computing a minimal feedback vertex set. J

6.3 Minimal Vertex Covers
The following result on minimal vertex covers of size at most k is needed in the next section.

ICALP 2017

69:12 Exact Algorithms via Multivariate Subroutines

I Theorem 15. Let γ be a constant with 0.169925 ≈ 2 log2 3 − 3 ≤ γ ≤ 1. For every
n ≥ k ≥ 0, and every graph G on n vertices, the number of minimal vertex covers of size at
most k of G is at most 2βn+γk, where β = (1− γ)/2.

For γ = 1
3 , this implies that G has at most 2(n+k)/3 minimal vertex covers of size at most k.

6.4 Minimal Feedback Vertex Sets
We apply a similar methodology to enumerating minimal feedback vertex sets on an undirected
graph with n vertices. The algorithm is similar in construction to one used in [6] yet a large
amount of case analysis was added, along with potential functions in combination with the
Measure and Conquer framework.

I Theorem 16. For a graph G with n vertices, all minimal feedback vertex sets can be
enumerated in time O(1.8527n).

6.5 Minimal Hitting Sets
Based on [2] we once again apply a multivariate analysis to enumerating all minimal hitting
sets on a hypergraph of rank 3.

I Theorem 17. For a hypergraph H with n vertices and rank 3, all minimal hitting sets can
be enumerated in time O(1.6627n).

7 Conclusion

The main contribution of this paper is a framework allowing us to turn many bnckNO(1)

time algorithms for subset and subset enumeration problems into (1 + b− 1
c)nNO(1) time

algorithms, generalizing a recent framework of Fomin et al. [5].
The main complications in using the framework are, firstly, that new algorithms or

running-time analyses are often needed, and, secondly, that such analyses need solutions
to non-convex programs in the Measure and Conquer framework. In the usual Measure
and Conquer analyses [7],the objective is to upper bound a single variable (α) which upper
bounds the exponential part of the running time (2αn) subject to convex constraints. Thus,
it is sufficient to solve a convex optimization problem to minimize the running time [10, 12]
resulting from the constraints derived from the analysis. Here, the objective function
(2α − 2−wk) is non-convex. While experimenting with a range of solvers (Couenne, IPOPT,
MINOS, SNOPT), either guaranteeing to find a global optimum (slow and used for optimality
checks) or only a local optimum (faster and used mainly in the course of the algorithm
design), we experienced on one hand that the local optima found by solvers are often the
global optimum, but on the other hand that weakening non-tight constraints can sometimes
lead to a better globally optimum solution.

Acknowledgements. We thank Daniel Lokshtanov, Fedor V. Fomin, and Saket Saurabh
for discussions inspiring some of this work.

References
1 Jesper Makholm Byskov. Enumerating maximal independent sets with applications to

graph colouring. Oper. Res. Lett., 32(6):547–556, 2004. doi:10.1016/j.orl.2004.03.002.

http://dx.doi.org/10.1016/j.orl.2004.03.002

S. Gaspers and E. J. Lee 69:13

2 Manfred Cochefert, Jean-François Couturier, Serge Gaspers, and Dieter Kratsch. Faster
algorithms to enumerate hypergraph transversals. In Latin American Symposium on The-
oretical Informatics, pages 306–318. Springer, 2016.

3 Rodney G. Downey and Michael R. Fellows. Fundamentals of parameterized complexity,
volume 4. Springer, 2013.

4 David Eppstein. Small maximal independent sets and faster exact graph coloring. J. Graph
Algorithms Appl., 7(2):131–140, 2003.

5 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms
via monotone local search. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2016), pages 764–775. ACM, 2016. doi:10.1145/2897518.
2897551.

6 Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon. On the minimum
feedback vertex set problem: Exact and enumeration algorithms. Algorithmica, 52(2):293–
307, 2008.

7 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach
for the analysis of exact algorithms. Journal of the ACM, 56(5), 2009. doi:10.1145/
1552285.1552286.

8 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010. An
EATCS Series: Texts in Theoretical Computer Science.

9 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangu-
lations and cmso. SIAM Journal on Computing, 44(1):54–87, 2015.

10 Serge Gaspers. Exponential Time Algorithms – Structures, Measures, and Bounds. VDM,
2010. URL: http://amzn.com/3639218256.

11 Serge Gaspers and Edward Lee. Exact algorithms via multivariate subroutines, April 2017.
arXiv e-prints. URL: https://arxiv.org/abs/1704.07982, arXiv:1704.07982.

12 Serge Gaspers and Gregory B. Sorkin. A universally fastest algorithm for Max 2-Sat, Max 2-
CSP, and everything in between. Journal of Computer and System Sciences, 78(1):305–335,
2012. doi:10.1016/j.jcss.2011.05.010.

13 Igor Razgon. Exact computation of maximum induced forest. In Scandinavian Workshop
on Algorithm Theory, pages 160–171. Springer, 2006.

14 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. In
International Symposium on Algorithms and Computation, pages 328–338. Springer, 2013.

ICALP 2017

http://dx.doi.org/10.1145/2897518.2897551
http://dx.doi.org/10.1145/2897518.2897551
http://dx.doi.org/10.1145/1552285.1552286
http://dx.doi.org/10.1145/1552285.1552286
http://amzn.com/3639218256
https://arxiv.org/abs/1704.07982
http://arxiv.org/abs/1704.07982
http://dx.doi.org/10.1016/j.jcss.2011.05.010

Exploring the Complexity of Layout Parameters in
Tournaments and Semi-Complete Digraphs∗†

Florian Barbero1, Christophe Paul2, and Michał Pilipczuk3

1 LIRMM, Université de Montpellier, Montpellier, France
florian.barbero@lirmm.fr

2 LIRMM, CNRS, Université de Montpellier, Montpellier, France
christophe.paul@lirmm.fr

3 University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract
A simple digraph is semi-complete if for any two of its vertices u and v, at least one of the arcs
(u, v) and (v, u) is present. We study the complexity of computing two layout parameters of
semi-complete digraphs: cutwidth and optimal linear arrangement (Ola). We prove that:

Both parameters are NP-hard to compute and the known exact and parameterized algorithms
for them have essentially optimal running times, assuming the Exponential Time Hypothesis.
The cutwidth parameter admits a quadratic Turing kernel, whereas it does not admit any
polynomial kernel unless NP ⊆ coNP/poly. By contrast, Ola admits a linear kernel.

These results essentially complete the complexity analysis of computing cutwidth and Ola on
semi-complete digraphs. Our techniques can be also used to analyze the sizes of minimal obstruc-
tions for having small cutwidth under the induced subdigraph relation.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases cutwidth, OLA, tournament, semi-complete digraph

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.70

1 Introduction

A directed graph (digraph) is simple if it does not contain a self-loop or multiple arcs with
the same head and tail. A simple digraph is semi-complete if for any pair of its vertices u
and v, at least one of the arcs (u, v) or (v, u) is present. If moreover exactly one of them is
present for each pair u, v, then a semi-complete digraph is called a tournament. Tournaments
and semi-complete digraphs form a rich and interesting subclass of directed graphs; we refer
to the book of Bang-Jensen and Gutin [1] for an overview.

We study two layout parameters for tournaments and semi-complete digraphs: cutwidth
and optimal linear arrangement (Ola). Suppose π is an ordering of the vertices of a digraph
D. With each prefix of π we associate a cut defined as the set of arcs with head in the
prefix and tail outside of it. The width of π is defined as the maximum size among the
cuts associated with the prefixes of π. The cutwidth of D, denoted ctw(D), is the minimum
width among orderings of the vertex set of D. Optimal linear arrangement (Ola) is defined

∗ A full version of the paper is available at https://arxiv.org/abs/1706.00617.
† The research of F. Barbero and C. Paul is supported by the project DE-MO-GRAPH ANR-16-

CE40-0028, and the research of Mi. Pilipczuk is supported by Polish National Science Centre grant
UMO-2013/11/D/ST6/03073. Mi. Pilipczuk is also supported by the Foundation for Polish Science via
the START stipend programme.

EA
T

C
S

© Florian Barbero, Christophe Paul, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 70; pp. 70:1–70:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.70
https://arxiv.org/abs/1706.00617
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 Layout Parameters in Tournaments and Semi-Complete Digraphs

similarly, but when defining the width of π, called in this context the cost of π, we take the
sum of the cutsizes associated with prefixes, instead of the maximum. Then the Ola-cost of
a digraph D, denoted Ola(D), is the minimum cost among vertex orderings of D.

Known results. The study of cutwidth in the context of tournaments and semi-complete
digraphs started with the work of Chudnovsky, Fradkin, and Seymour [3, 4, 10], who identified
this layout parameter as the right dual notion to immersions in semi-complete digraphs. In
particular, it is known that excluding a fixed digraph as an immersion yields a constant
upper bound on the cutwidth of a semi-complete digraph [3, 16]. Due to this connection,
cutwidth played a pivotal role in the proof of Chudnovsky and Seymour that the immersion
order is a well quasi-order on tournaments [4].

The algorithmic properties of cutwidth were preliminarily investigated by Chudnovsky,
Fradkin, and Seymour [3, 10, 9]. In Fradkin’s PhD thesis [9], several results on the tractability
of computing the cutwidth are presented. In particular, it is shown that the cutwidth
of a tournament can be computed optimally by just sorting vertices according to their
outdegrees, whereas in semi-complete digraphs a similar approach yields a polynomial-time
2-approximation algorithm. The problem becomes NP-hard on super-tournaments, that
is, when multiple parallel arcs are allowed. Later, the third author together with Fomin
proposed a parameterized algorithm for computing the cutwidth of a semi-complete digraph
with running time 2O(

√
k log k) · n2 [8, 17], where n is the number of vertices and k is the

target width. Using the same techniques, Ola in semi-complete digraphs can be solved
in time 2O(k1/3

√
log k) · n2 [8, 17], where k is the target cost. It was left open whether the

running times of these parameterized algorithms are optimal [17]. In fact, even settling the
NP-hardness of computing cutwidth and Ola in semi-complete digraphs was open [9, 17].

Our contribution. We study two aspects of the computational complexity of computing
cutwidth and Ola of semi-complete digraphs: optimality of parameterized algorithms and
kernelization. First, we prove that these problems are NP-hard and we provide almost tight
lower bounds for the running times of algorithms solving them, based on the Exponential Time
Hypothesis (ETH). Second, we describe the kernelization complexity of the two parameters
in semi-complete digraphs. In particular, we show, somewhat surprisingly, that the problem
of computing the cutwidth admits a quadratic Turing kernel, while the existence of a classic
polynomial kernel would imply that NP ⊆ coNP/poly. The proofs of these main results yield
complementary algorithmic and structural results that we discuss later.

Our algorithmic lower bounds are encapsulated in the following theorem.

I Theorem 1. For semi-complete digraphs, both computing the cutwidth and computing the
Ola-cost are NP-hard problems. Moreover, unless the Exponential Time Hypothesis fails:

the cutwidth cannot be computed in time 2o(n) nor in time 2o(
√
k) · nO(1); and

the Ola-cost cannot be computed in time 2o(n) nor in time 2o(k1/3) · nO(1).
Here, n is the vertex count of the input semi-complete digraph, and k is the target width/cost.

Thus, Theorem 1 shows that the known parameterized algorithms of Fomin and Pilip-
czuk [8] are optimal under ETH, up to

√
log k factor in the exponent. Note that both

cutwidth and Ola can be computed in time 2n · nO(1) using standard dynamic programming
on subsets, so we obtain tight lower bounds also for exact exponential-time algorithms.

Next, we turn our attention to kernelization. Recall that a kernelization algorithm (or
kernel, for short) is a polynomial-time algorithm that given some instance of a parameterized
problem, returns an equivalent instance whose size is bounded by a computable function of

F. Barbero, C. Paul, and Mi. Pilipczuk 70:3

the input parameter; this function is called the size of the kernel. We are mostly interested
in finding polynomial kernels, as admitting a kernel of any computable size is equivalent
to fixed-parameter tractability of the problem [6, 5]. Consider the parameterized problems
of deciding whether a given semi-complete digraph has cutwidth, respectively Ola-cost,
bounded by a given integer c, which is considered to be the parameter. As shown by the
next two theorems, the kernelization complexity of these two problems is quite different.

I Theorem 2. There exists a polynomial-time algorithm that given an arbitrary digraph D
and an integer c, either correctly concludes that Ola(D) > c, or finds a digraph D′ on at
most 2c vertices such that Ola(D′) = Ola(D).

I Theorem 3. Unless NP ⊆ coNP/poly, there exists no polynomial-size kernelization al-
gorithm for the problem of computing the cutwidth of a semi-complete digraph.

The proofs of these two theorems directly follow from the understanding of the contribution
of strongly connected components in optimal orderings. On one side, the contribution to
the Ola-cost of each strongly connected component is at least linear in its size, implying
Theorem 2. On the other side, we can observe that the cutwidth of a digraph is the maximum
over the cutwidth of its strongly connected components, which implies that, like many other
width parameters, cutwidth is an and-composable parameter [7, 5].

However, an alternative notion of kernelization, called Turing kernelization, has been also
studied intensively in the literature; cf. the discussion in [5]. In this framework, it is not
required that the instance at hand is reduced to one equivalent small instance, but rather that
the whole problem can be solved in polynomial time assuming oracle access to an algorithm
solving instances of size bounded by a function of the parameter. Somewhat surprisingly,
we prove that the problem of computing the cutwidth of a semi-complete digraph admits a
quadratic Turing kernel, which is encapsulated in the following theorem.

I Theorem 4. There exists a polynomial-time algorithm that given a semi-complete digraph
D and integer c, either correctly concludes that ctw(D) > c or outputs a list of at most n
induced subdigraphs D1, . . . , D` of D, each with at most O(c2) vertices, such that ctw(D) ≤ c
if and only if ctw(Di) ≤ c for each i ∈ {1, 2, . . . , `}.

Theorem 4 gives a so-called and-Turing kernel, meaning that the algorithm just computes
the output list without any oracle calls, and the answer to the input instance is the conjunction
of the answers to the output small instances. This places the problem of computing the
cutwidth of a semi-complete digraph among very few known examples of natural problems
where classic and Turing kernelization have different computational power [2, 15, 11, 18, 21].
Moreover, this is the first known to us polynomial and-Turing kernel for a natural problem:
examples of Turing kernelization known in the literature are either or-Turing kernels [2, 11,
18], or adaptative kernels that fully exploit the oracle model [15, 21]. As separating classic
and Turing kernelization is arguably one of the most important complexity-theoretical open
problems within parameterized complexity [6, 13, 5], we find this new example intriguing.

As a byproduct of our approach to proving Theorem 4, we obtain also polynomial upper
bounds on the sizes of minimal obstructions to having small cutwidth. More precisely, for a
positive integer c, a digraph D is called c-cutwidth-minimal if the cutwidth of D is at least c,
but the cutwidth of every proper induced subdigraph of D is smaller than c.

I Theorem 5. For every positive integer c, every c-cutwidth-minimal semi-complete digraph
has at most O(c2) vertices.

I Theorem 6. For every positive integer c, every c-cutwidth-minimal tournament has at
most 2c+ 2d

√
2ce+ 1 vertices.

ICALP 2017

70:4 Layout Parameters in Tournaments and Semi-Complete Digraphs

The bound of Theorem 6 is almost tight, as there exist c-cutwidth-minimal tournaments
with 2c+ 1 vertices. Theorems 5 and 6 have direct algorithmic applications for parameterized
graph modification problems related to cutwidth, e.g., c-Cutwidth Vertex Deletion:
remove at most k vertices from a given digraph to obtain a digraph of cutwidth at most c.

Approach. The starting point of our study is the approach used in the earlier works by
Fradkin [9] and by the third author [17, 16], namely to sort the vertices of the given semi-
complete digraph according to non-decreasing indegrees, and argue that this ordering has to
resemble an optimum one. As shown by Fradkin [9], this statement may be made precise for
tournaments: any indegree ordering has optimum cutwidth.

We present a somewhat finer study of this argument using the notion of a minimum
ordering. Namely, a vertex ordering π of a digraph D is minimum if for any other vertex
ordering π′ of D and any i ∈ {1, 2, . . . , n− 1}, the cutsize in π between the prefix of length i
and the complementary suffix is smaller or equal than the cutsize defined in the same manner
in π′. The sorting argument of Fradkin [9] in fact yields the following: a vertex ordering of
a tournament is minimum if and only if it is sorted according to indegrees. In particular,
every tournament admits a minimum ordering, computable in polynomial time. Since every
minimum ordering optimizes both the cutwidth and the Ola-cost, we obtain the following.

I Theorem 7. The cutwidth and Ola of a tournament can be computed in polynomial time.

Unfortunately, general semi-complete digraphs may not admit minimum orderings. How-
ever, a semi-complete digraph can be relaxed to a fractional tournament with a loss of factor
2 on the cutwidth and the Ola-cost. The ordering argument for tournaments may be applied
to fractional tournaments as well, and thus we obtain a polynomial-time 2-approximation.

I Theorem 8. There exists a polynomial-time algorithm that given a semi-complete digraph
D, outputs an ordering of its vertices of width, and respectively cost, upper bounded by twice
the cutwidth, respectively Ola-cost, of D.

While Theorems 7 and 8 for cutwidth were already proved by Fradkin [9], the applicability
of the approach to Ola is a new contribution of this work. We choose to include the proofs
of Theorems 7 and 8 in this work for two reasons. First, the fine understanding of minimum
orderings is a basic tool needed in the proofs of our main results. Second, the abovementioned
results of Fradkin [9] were communicated only in her PhD thesis and, to the best of our
knowledge, were neither included in any published work, nor we have found any reference to
them. We believe that these fundamental observations deserve a better publicity.

For the proof of Theorem 1, we construct a reduction from NAE-3SAT, a variant of
3SAT. In case the input formula is satisfiable, the output semi-complete digraph admits
a minimum vertex ordering with a precisely specified vector of cutsizes. On the other
hand, admitting any ordering of width bounded by the maximum of these cutsizes implies
satisfiability of the input formula. Thus, the same reduction may serve to certify the hardness
of both computing the cutwidth and computing the Ola-cost of a semi-complete digraph.

For the proof of Theorem 4, we use the notion of a lean ordering; see e.g. [12, 20].
Intuitively, a vertex ordering is lean if it is tight with respect to cut-flow duality: there are
systems of arc-disjoint paths which certify that cutsizes along the ordering cannot be improved.
Lean orderings and decompositions are commonly used in the analysis of obstructions for
various width notions, as well as for proving well quasi-order results. In particular, the
concept of a lean ordering for cutwidth of digraphs was used by Chudnovsky and Seymour
in their proof that the immersion order is a well quasi-order on tournaments [4].

F. Barbero, C. Paul, and Mi. Pilipczuk 70:5

Lean orderings are used in the proof of Theorem 4 as follows. We first compute a 2-
approximate ordering using Theorem 8, and then we exhaustively improve it until it becomes
lean. Let σ be the obtained ordering, and consider the sequence of cutsizes along σ. The
next observation is crucial. Due to leanness, if some cutsize in this sequence is smaller or
equal than Ω(c) cutsizes to the left and to the right, then there is some optimum-width
ordering that uses the corresponding cut; that is, the prefix of σ up to this cut is also a
prefix of some optimum-width ordering. We call such cuts milestones. It is not hard to prove
that a milestone can be found every O(c2) vertices in the ordering σ. Thus we are able to
partition the digraph into pieces of size O(c2) that may be treated independently. Each of
these pieces gives rise to one digraph Di in the output of the kernelization algorithm.

Theorem 5 follows easily from Theorem 4; basically, the algorithm applied to a c-cutwidth
minimal semi-complete digraph cannot output only smaller digraphs. For Theorem 6 we
use our finer understanding of minimum orderings in tournaments. We remark that from
the well-quasi order result of Chudnovsky and Seymour [4], it follows that the number of
minimal immersion obstructions for tournaments of cutwidth at most c is finite. However,
this holds only for tournaments, yields a non-explicit upper bound on obstruction sizes, and
applies to immersion and not induced subdigraph obstructions.

Organization. In Section 2 we introduce notation, recall basic definitions, and prove Theor-
ems 7 and 8. In Sections 3 and 4 we prove Theorems 4 and 1, respectively. The proofs of
statements marked with ♠ will appear in the full version of the paper.

2 Preliminaries and basic results

Notation. We use standard graph notation for digraphs. All digraphs considered in this
paper are simple, i.e., they do not contain a self-loop or multiple arcs with the same head
and tail. For definitions of tournaments and semi-complete digraphs, see the first paragraph
of Section 1. If present in a digraph, the arcs (u, v) and (v, u) are called symmetric arcs.

For two integers p ≤ p′, let [p, p′] ⊆ Z be the set of integers between p and p′. If p < p′,
we set [p′, p] = ∅ by convention. A vertex ordering of a digraph D is a bijective mapping
π : V (D) → [1, n], where n = |V (D)|. A vertex u ∈ V (D) is at position i in π if π(u) = i.
We denote this unique vertex by πi. The prefix of length i of π is π≤i = {πj : j ∈ [1, i]}; we
set π≤i = ∅ when i ≤ 0, and π≤i = V (D) when n ≤ i. We extend this notation to prefixes
and suffixes of orderings naturally, e.g., π>i = V (D) \ π≤i is the set of the last n− i vertices
in π. The notions of restriction and concatenation of ordering(s) are defined naturally.

An arc (πi, πj) ∈ E(D) is a feedback arc for π if i > j, that is, if πi is after πj in π. Given
a digraph D = (V,E), an ordering π of V and an integer i, we define the cut Eiπ as the set
of feedback arcs E(π>i, π≤i). The tuple cuts〈D,π〉 = (|E0

π|, |E1
π|, . . . , |Enπ |) is called the cut

vector of π, and we denote cuts〈D,π〉(i) = |Eiπ|. Let � be the product order on tuples: for
n-tuples A,B, we have A � B iff A(i) ≤ B(i) for all i ∈ [0, n]. We define A ≺ B as A � B
and A 6= B. We say that a vertex ordering π is minimum for D if for all vertex orderings π′
of D we have cuts〈D,π〉 � cuts〈D,π′〉. Note that a minimum vertex ordering may not exist.

The width of a vertex ordering π of a digraph D, denoted ctw(D,π), is equal to
max{cuts〈D,π〉}, where max on a tuple yields the largest coordinate. The cutwidth of
D, denoted ctw(D), is the minimum width among vertex orderings of D. Similarly, the cost
of π, denoted Ola(D,π), is equal to

∑
{cuts〈D,π〉}, where

∑
on a tuple yields the sum of

coordinates. This is equivalent to summing j − i for all feedback arcs (πj , πi) in π. The

ICALP 2017

70:6 Layout Parameters in Tournaments and Semi-Complete Digraphs

OLA-cost of D, denoted Ola(D), is the minimum cost among vertex orderings of D. A vertex
ordering π of D satisfying ctw(D) = ctw(D,π), or Ola(D) = Ola(D,π), is respectively
called ctw-optimal or Ola-optimal for D. Note that a minimum ordering for D, if existent,
is always ctw-optimal and Ola-optimal for D.

Exponential-Time Hypothesis. The Exponential Time Hypothesis (ETH) of Impagliazzo
et al. [14] states that for some constant c > 0, there is no algorithm for 3SAT that would run
in time 2cn · (n+m)O(1), where n and m are the numbers of variables and clauses of the input
formula, respectively. Using the Sparsification Lemma [14] one can show that under ETH,
there is a constant c > 0 such that 3SAT cannot be solved in time 2cm · (n+m)O(1). In this
work we use the NAE-3SAT problem (for Not-All-Equal), which is a variant of 3SAT where
a clause is considered satisfied only when at least one, but not all of its literals are satisfied.
Schaefer [19] gave a linear reduction from 3SAT to NAE-3SAT, which immediately yields:

I Corollary 9. Unless ETH fails, NAE-3SAT cannot be solved in time 2o(m) · (n+m)O(1),
where n and m are the numbers of variables and clauses of the input formula, respectively.

Theorems 7 and 8. We now proceed to proving Theorems 7 and 8; recall that for cutwidth,
these results have been already established by Fradkin [9]. However, we use this opportunity
to present the reasoning in a more insightful manner and more general context, which also
yields a better combinatorial understanding that will be helpful later. The core idea is to
work in a more general setting of linear relaxations of tournaments, as defined next.

A fractional tournament is a pair T = (V, ω), where V is a finite vertex set and ω : V 2 →
R≥0 is a weight function that satisfies the following properties: ω(u, u) = 0 for all u ∈ V , and
ω(u, v)+ω(v, u) = 1 for all pairs of different vertices u, v. Thus, by requiring the weights to be
integral we recover the original definition of a tournament. We extend the notation for digraphs
to fractional tournaments as follows. For X,Y ⊆ V we define ω(X,Y) =

∑
x∈X, y∈Y ω(x, y),

and for u ∈ V we define ω−(u) = ω(V, {u}) and ω+(u) = ω({u}, V). The notions of
(minimum) vertex orderings, cut vectors, cutwidth, and OLA-cost are extended naturally:
the cardinality of any cut E(X,Y) is replaced by the sum of weights ω(X,Y).

Suppose T = (V, ω) is a fractional tournament. We say that a vertex ordering π of T
is sorted if for any pair of different vertices u and v, if ω−(u) < ω−(v), then π(u) < π(v);
in other words, the vertices are sorted according to their indegrees. The following lemma
encapsulates the essence of our approach.

I Lemma 10 (♠). A vertex ordering of a fractional tournament is minimum iff it is sorted.

The proof of Theorem 7, even in the more general setting of fractional tournaments, is
now immediate. We just sort the vertices according to their indegrees ω−. By Lemma 10,
the obtained ordering is minimum, hence it is both ctw-optimal and Ola-optimal.

Lemma 10 cannot be generalized to the semi-complete setting, as there are semi-complete
digraphs that do not admit any minimum ordering.

We now give a 2-approximation algorithm for general semi-complete digraphs. The main
idea is to relax a given semi-complete digraph to a fractional tournament. Precisely, for a
semi-complete digraph D, consider its relaxation TD which is a fractional tournament on the
vertex set V (D), where for every pair of different vertices u and v, we put

ω(u, v) = 1 and ω(v, u) = 0, when (u, v) is present in D but (v, u) is not present; and
ω(u, v) = ω(v, u) = 1/2, when (u, v) and (v, u) is a pair of symmetric arcs in D.

We put ω(u, u) = 0 for every vertex u, thus TD is indeed a fractional tournament. Observe
that for any pair of vertices u, v, we have |E({u}, {v})|/2 ≤ ωTD

({u}, {v}) ≤ |E({u}, {v})|.

F. Barbero, C. Paul, and Mi. Pilipczuk 70:7

Therefore, for every vertex ordering π of D and every index i ∈ [0, n], it holds that

cuts〈D,π〉(i)/2 ≤ cuts〈TD, π〉(i) ≤ cuts〈D,π〉(i).

In particular we have ctw(D)/2 ≤ ctw(TD) ≤ ctw(D) and Ola(D)/2 ≤ Ola(TD) ≤ Ola(D).
The proof of Theorem 8 is now immediate: just output any sorted ordering of TD.

3 Turing kernel

In this section we prove Theorem 4, that is, we give a quadratic Turing kernel for the problem
of computing the cutwidth of a semi-complete digraph. The essence of our approach is
encapsulated in the following lemma. Intuitively, it provides a sufficient condition for a cut
in a given ordering π so that it can be assumed to be used in an optimum ordering σ.

I Lemma 11. Let D = (V,E) be a semi-complete digraph. Let π and σ be two vertex
orderings of D such that ctw(D,σ) ≤ ctw(D,π) = c. Suppose further that m ∈ [4c, |V | − 4c]
is such that in D there is a family of |Emπ | arc-disjoint paths leading from π>m+4c to π≤m−4c.
Then there exists a vertex ordering σ∗ such that:

σ∗≤m = π≤m;
for every j with j ≤ m− 4c or j > m+ 4c, we have σ∗j = σj;
ctw(D,σ∗) ≤ ctw(D,σ).

The intuition behind Lemma 11 is as follows. Consider σ∗ as rearranged σ. The second
condition says that this rearrangement is local: it affects only vertices at positions in the
range [m−4c+ 1,m+ 4c]. The third condition says that the rearrangement does not increase
the width. Finally, the first condition is crucial: σ∗ uses the prefix π≤m of π as one of its
prefixes. Thus, any ordering can be locally rearranged while preserving the width so that
prefix π≤m is used, provided there is a large arc-disjoint flow locally near m.

Proof of Lemma 11. We first establish the following basic observation on the relation
between orderings π and σ.

I Claim 12 (♠). In the ordering σ, every vertex of π≤m−4c is placed before every vertex of
π>m, and every vertex of π≤m is placed before every vertex of π>m+4c.

The proof of the claim naturally follows by finding, say for each u ∈ π≤m−4c and v ∈ π>m,
sufficiently many vertices that are both outneighbors of u and inneighbors of v.

Let σ≤ and σ> denote the restriction of σ to π≤m and π>m, respectively. Then, define
σ∗ to be the concatenation of σ≤ and σ>. By the construction we have π≤m = σ∗≤m, so the
first condition is satisfied. For the second condition, observe that by Claim 12, every vertex
of π≤m−4c is before every vertex of π>m in σ. It follows that in σ, the first vertex of π>m
appears only after a prefix of at least m− 4c vertices of π≤m. In the construction of σ∗ from
σ, the vertices of that prefix stay at their original positions, so σ∗j = σj for all j ≤ m− 4c. A
symmetric argument shows that σ∗j = σj also for all j > m+ 4c.

It remains to prove that ctw(D,σ∗) ≤ ctw(D,σ). Consider any j ∈ [0, |V |]; we need
to prove that |Ejσ∗ | ≤ ctw(D,σ). By the second condition we have that Ejσ∗ = Ejσ when
j ≤ m − 4c or j ≥ m + 4c, and |Ejσ| ≤ ctw(D,σ) by definition. Hence, we are left with
checking the inequality for j satisfying m− 4c < j < m+ 4c.

In the following, for a vertex subset A we denote δ(A) = |E(V \A,A)|. We will use the
submodularity of directed cuts: δ(A ∩B) + δ(A ∪B) ≤ δ(A) + δ(B) for all vertex subsets
A,B. In these terms, we need to prove that δ(σ∗≤j) ≤ ctw(D,σ).

ICALP 2017

70:8 Layout Parameters in Tournaments and Semi-Complete Digraphs

Let x be the vertex at position j in σ∗ and let X be the set of all vertices placed not
after x in σ, including x itself. Suppose first that j ≤ m. Then, by the construction we have
x ∈ π≤m and σ∗≤j = X ∩ π≤m. By the submodularity of cuts we have

δ(σ∗≤j) = δ(X ∩ π≤m) ≤ δ(X) + δ(π≤m)− δ(X ∪ π≤m). (1)

As X is a prefix of σ by definition, we have δ(X) ≤ ctw(D,σ). Hence, by (1), in order to
prove that δ(σ∗≤j) ≤ ctw(D,σ), it suffices to prove that δ(X ∪ π≤m) ≥ δ(π≤m).

Denote d = δ(π≤m) = |Emπ | and recall that there is a family of d arc-disjoint paths leading
from π>m+4c to π≤m−4c. In particular, this means that for each set A with A ⊇ π≤m−4c
and A ∩ π>m+4c = ∅, each of these paths has to contribute to δ(A), implying δ(A) ≥ d.

Therefore, it suffices to show that X ∪ π≤m ⊇ π≤m−4c and (X ∪ π≤m) ∩ π>m+4c = ∅.
While the first assertion is trivial, the second is equivalent to X ∩ π>m+4c = ∅. For this,
observe that by definition all elements of X are placed not after x in σ, and x belongs
to π≤m. However, by Claim 12 all vertices of π>m+4c are placed in σ after all vertices of
π≤m, in particular after x. This implies that X and π>m+4c are disjoint, which proves that
δ(X ∪ π≤m) ≥ d and, consequently as discussed above, also that δ(σ∗≤j) ≤ ctw(D,σ).

The proof for the case j > m is completely symmetric, however we need to observe that
now x ∈ π>m and σ∗≤j = X ∪ π≤m. By applying the same submodularity argument (1), we
are left with proving that δ(X∩π≤m) ≥ δ(π≤m), which follows by a symmetric reasoning. J

Our goal now is to construct an approximate ordering π where we will be able to find
many positions m to which Lemma 11 can be applied. We first recall the concept of a lean
ordering, which will be our main tool for finding families of arc-disjoint paths.

I Definition 13. A vertex ordering π of a digraph D = (V,E) is called lean if for each
0 ≤ a ≤ b ≤ n, the maximum size of a family of arc-disjoint paths from π>b to π≤a in D is
equal to mina≤i≤b |Eiπ|.

Note that by Menger’s theorem, the maximum size of a family of arc-disjoint paths from
π>b to π≤a is equal to the minimum size of an arc cut separating π>b from π≤a. Thus, in a
lean ordering we have that the minimum cutsize between any disjoint prefix and suffix is
actually realized by one of the cuts along the ordering.

The notion of a lean ordering is the cutwidth analogue of a lean decomposition in
the treewidth setting, cf. [20]. An essentially equivalent notion of linked orderings was
used by Chudnovsky and Seymour [4] in the context of immersions in tournaments. Also,
Giannopoulou et al. [12] used this concept to study immersion obstructions for the cutwidth
of undirected graphs. A careful analysis of the arguments of [4, 12] yields the following.

I Lemma 14 ([4, 12]). There is a polynomial-time algorithm that given a vertex ordering π
of a digraph D, computes a lean vertex ordering π∗ of D satisfying ctw(D,π∗) ≤ ctw(D,π).

Next, we introduce the concept of a milestone. Intuitively, a milestone is a position where
Lemma 11 can be applied, provided the ordering is lean.

I Definition 15. Let π be a vertex ordering of a digraph D = (V,E), and let α be a positive
integer. An integer m ∈ [0, |V |] is a π-milestone of D of span α if |Emπ | ≤ |Eiπ| for each
integer i with m− α ≤ i ≤ m+ α.

Note that if π is lean and m is a π-milestone of span α, then minm−α≤i≤m+α |Eiπ| = |Emπ |,
hence there is a family of |Eπm| arc-disjoint paths leading from π>m+α to π≤m−α. Thus,
a π-milestone of span 4c satisfies the prerequisite of Lemma 11 about the existence of
arc-disjoint paths. We now observe that in an ordering of small width milestones occur often.

F. Barbero, C. Paul, and Mi. Pilipczuk 70:9

I Lemma 16 (♠). Let D = (V,E) be a digraph and let π be a vertex ordering of D of
width at most c. Then for any integers p ∈ [0, |V |] and α ≥ 0, there exists a π-milestone
m ∈ [p− α · c, p+ α · c] of span α.

Having gathered all the tools, we are finally ready to prove Theorem 4.

Proof of Theorem 4. By Theorem 8, we can compute in polynomial time a vertex ordering
π0 of D such that ctw(D,π0) ≤ 2 · ctw(D). If ctw(D,π0) > 2c, we can conclude that
ctw(D) > c and report this answer, so let us assume that ctw(D,π0) ≤ 2c. By applying the
algorithm of Lemma 14 to π0, we can compute in polynomial time a lean ordering π such
that ctw(D,π) ≤ ctw(D,π0) ≤ 2c. In the following we assume w.l.o.g. that |V | > 16c, for
otherwise we can output a list consisting only of D.

Call a set of π-milestones dispersed if these π-milestone pairwise differ by more than 16c.
Observe that 0 and |V | are always π-milestones, and they differ by more than 16c. Starting
from the set {0, |V |}, we compute an inclusion-wise maximal dispersed set 0 = m0 < m1 <

m2 < . . . < m` = |V | of π-milestones of span 8c. More precisely, whenever some π-milestone of
span 8c can be added to the set without spoiling the dispersity requirement, we do it, until no
further such milestone can be added. Observe that then we have thatmi+1−mi ≤ 32c2+32c+1
for each i ∈ [1, `− 1], for otherwise the range [mi + 16c+ 1,mi+1 − 16c− 1] would contain
more than 32c2 vertices, so by Lemma 16 we would be able to find in it a π-milestone of
span 8c that could be added to the constructed dispersed set.

Thus, π is partitioned into ` blocks B1, . . . , B`, each of length at most 32c2 + 32c + 1,
such that the j-th block Bj is equal to {πmj−1+1, πmj−1+2, . . . , πmj}. For each j ∈ [1, `], let
Aj be defined as Bj augmented with the following vertices:

vertices at positions in ranges [max(1,mj−1−8c+1),mj−1] and [mj+1,min(|V |,mj+8c)],
all heads of arcs from E

mj−1−8c
π , and all tails of arcs from E

mj+8c
π .

Since the width of π is at most 2c, we have that |Aj | ≤ |Bj |+ 20c = O(c2).
For j ∈ [1, `], let us denote Dj = D[Aj]. To prove the theorem, it now suffices to show

that ctw(D) ≤ c if and only if ctw(Dj) ≤ c for each j ∈ [1, `]. The forward direction is trivial,
since cutwidth is closed under taking induced subdigraphs. Hence, we are left with showing
that if ctw(Dj) ≤ c for each j ∈ [1, `], then ctw(D) ≤ c.

Take any j ∈ [1, `−1]. Asmj is a π-milestone of span 8c, we have minmj−8c≤i≤mj+8c |Eiπ| =
|Emj
π |. Since π is lean, there is a family Fj of |Emj

π | arc-disjoint paths in D leading from
π>mj+8c to π≤mj−8c. We can assume w.l.o.g. that each internal (non-endpoint) vertex of
each of these paths has position between mj + 8c+ 1 and mj − 8c in π. Hence, in particular,
each path of Fj starts with an arc of Emj+8c

π and ends with an arc of Emj−8c
π . This implies

that for each j ∈ [1, `], all the paths of Fj are entirely contained both in Dj and in Dj+1.
Consider any j ∈ [1, `], and for simplicity assume for now that j 6= 1 and j 6= `. Let π′ be

the restriction of π to the vertex set of Dj ; obviously the width of π′ is at most 2c. Further,
let m′ be the position of πmj−1 in π′, so that π′≤m′ = π≤mj−1 ∩ V (Dj). Observe that since
all vertices at positions between mj−1− 8c+ 1 and mj−1 + 8c in π are included in the vertex
set of Dj , they are at positions between m′ − 8c+ 1 and m′ + 8c in π′, and hence the paths
of Fj−1 in Dj lead from π′>m′+8c to π′≤m′−8c. Their number is |Emj−1

π |, which is equal to
the cutsize at position m′ in π′, by the construction of Dj and π′.

We conclude that Lemma 11 can be applied to position m′ in the ordering π′ of Dj . If
we now use it on any ctw-optimal vertex ordering σ of Dj , we obtain a ctw-optimal vertex
ordering σ∗ of Dj such that σ∗≤m′ = π′≤m′ = π≤mj−1 ∩ V (Dj). Note that by Lemma 11, σ∗
differs from σ by a rearrangement of vertices at positions between m′ − 8c+ 1 and m′ + 8c.

ICALP 2017

70:10 Layout Parameters in Tournaments and Semi-Complete Digraphs

Now we define m′′ to be the position of πmj in π′, so that π′≤m′′ = π≤mj ∩ V (Dj). A
symmetric reasoning, which uses the fact that Fj is also entirely contained in Dj , shows that
Lemma 11 can be also applied to position m′′ in the ordering π′ of Dj . Then we can use this
lemma on the ctw-optimal vertex ordering σ∗, yielding a ctw-optimal ordering σ∗∗ such that
σ∗∗≤m′′ = π′≤m′′ = π≤mj

∩ V (Dj). Again, by Lemma 11 we have that σ∗ and σ∗∗ differ by a
rearrangement of vertices at positions m′′ − 8c + 1 and m′′ + 8c. Since mj −mj−1 > 16c
by construction, we infer that this rearrangement does not change the prefix of length m′,
and hence we still have σ∗∗≤m′ = π′≤m′ = π≤mj−1 ∩ V (Dj). The ordering σ∗∗ obtained in this
manner shall be called σj . For j = 1 and j = ` we obtain σj in exactly the same way, except
we apply Lemma 11 only once, for the position not placed at the end of the sequence.

All in all, for each j ∈ [1, `] we have obtained a ctw-optimal ordering σj of Dj such that
the vertices of Bj form an infix (a sequence of consecutive elements) of σj , while vertices
to the left of this infix are the vertices of V (Dj) ∩ π≤mj−1 and vertices to the right of this
infix are the vertices of V (Dj) ∩ π>mj

. Define an ordering σ of D by first restricting every
ordering σj to Bj , and then concatenating all the obtained orderings for j = 1, 2, . . . , `. Since
we assumed that ctw(Dj) ≤ c for each j ∈ [1, `], and each ordering σj is ctw-optimal on
Dj , we have that ctw(Dj , σ

j) ≤ c for each j ∈ [1, `]. From the construction of Dj , and in
particular the fact that all the arcs of Emj−1

π and Emj
π are contained in Dj , it follows that

the infix of cutvector cuts〈Dj , σj〉 corresponding to the vertices of Bj is equal to the infix of
the cutvector cuts〈D,σ〉 corresponding to the vertices of Bj . This shows that

ctw(D,σ) = max
i∈[0,|V |]

cuts〈D,σ〉(i) ≤ max
j∈[0,`]

i∈[0,|V (Dj)|]

cuts〈Dj , σj〉(i) = max
j∈[0,`]

ctw(Dj , σ
j) ≤ c,

hence we are done. J

Regarding the bounds on sizes of c-cutwidth-minimal semi-complete digraphs (Theorems 5
and 6), we will give a full exposition in the complete version of the paper. Essentially,
Theorem 5 follows easily by considering applying the algorithm of Theorem 4 on a c-cutwidth-
minimal semi-complete digraph for parameter c− 1, while for Theorem 6 we need to use the
understanding of minimum orderings in tournaments in the spirit of Lemma 10.

4 Lower bounds

In this section, we prove Theorem 1, which provides almost tight lower bounds for the
complexity of computing the cutwidth and the Ola-cost of a semi-complete digraph. We
start our reduction from an instance of the NAE-3SAT problem, which was defined in
Section 2 and for which a complexity lower bound under ETH is given by Corollary 9.

Let us introduce some notation. For a formula ϕ in CNF, the variable and clause sets of ϕ
are denoted by vars(ϕ) and cls(ϕ), respectively. A variable assignment α : vars(ϕ)→ {⊥,>}
NAE-satisfies ϕ if every clause of ϕ has at least one, but not all literals satisfied. Formula ϕ
is NAE-satisfiable if there is a variable assignment α that NAE-satisfies it; equivalently, both
α and its negation ¬α satisfy ϕ. A digraph is called basic if it is simple and has no pair of
symmetric arcs. For an integer m > 0, let λm be the tuple of size 14m+ 1 such that:

λm(i) =

2i, when i ∈ [0, 5m]
5m+ i, when i ∈ [5m+ 1, 6m]
11m, when i ∈ [6m+ 1, 7m]
18m− i, when i ∈ [7m+ 1, 12m]
42m− 3i, when i ∈ [12m+ 1, 14m]

The following lemma encapsulates the first, main step of our reduction.

F. Barbero, C. Paul, and Mi. Pilipczuk 70:11

I Lemma 17. There exists a polynomial-time algorithm that, given a 3CNF formula ϕ with
m clauses, returns a basic digraph D(ϕ) with 14m vertices and 24m edges such that:
1. for every vertex ordering π, we have cuts〈D(ϕ), π〉 � λm;
2. if ϕ is NAE-satisfiable, then there exists a vertex ordering π with cuts〈D(ϕ), π〉 = λm;
3. if there is a vertex ordering π with max{cuts〈D(ϕ), π〉} ≥ 11m, then ϕ is NAE-satisfiable.

Note that Lemma 17 expresses a reduction from NAE-3SAT to a maximization problem:
NAE-satisfiability of ϕ is equivalent to D(ϕ) admitting a vertex ordering of width at least
11m. The main idea is that this maximization will be later turned into minimization by
complementing the digraph, which also yields a semi-complete digraph since D(ϕ) is basic.

Proof of Lemma 17. Without loss of generality, we may assume that each clause of ϕ
contains exactly 3 literals, by repeating some literal if necessary. Then, we may also assume
that every variable of vars(ϕ) appears at least twice, because a variable that appears only once
can always be set in order that the clause in which it appears is NAE-satisfied, and thus such
a variable and its associated clause may be safely removed. For every variable x ∈ vars(ϕ), let
px be the number of occurrences of x in the clauses of ϕ; hence 3m =

∑
x∈vars(ϕ)

px and px ≥ 2

for each x ∈ vars(ϕ). We finally assume the clauses and literals are ordered, so we may say
that a literal `x is the ixth occurrence of variable x in the clauses of ϕ, with ix ∈ [1, px].

We now describe the construction of D(ϕ). For every variable x ∈ vars(ϕ) construct a
variable gadget Gx, which is a directed cycle of length 2px with vertices named as follows:
⊥x1 → >x1 → ⊥x2 → >x2 → . . .→ ⊥xpx

→ >xpx
→ ⊥x1 .

Note that this cycle has no symmetric arcs since px > 1.
Then, for every clause C ∈ cls(ϕ), where C = `x ∨ `y ∨ `z for literals of variables

x, y, z ∈ vars(ϕ), respectively, construct the following >-clause gadget GC>. Introduce a
vertex >C and a set of vertices V C> = {>C`x

,>C`y
,>C`z

} together with the following arcs:
A directed 3-cycle (>C`x

,>C`y
), (>C`y

,>C`z
), (>C`z

,>C`x
).

The arcs (>C ,>C`x
), (>C ,>C`y

) and (>C ,>C`z
) from >C to the vertices of V CT .

Similarly, construct the ⊥-clause gadget GC⊥, which is isomorphic to GC>, but with vertices
named ⊥. Gadgets GC> and GC⊥ will differ in how we connect them with the rest of the graph.

Intuitively, the variable assignment α, intended to NAE-satisfy ϕ, is encoded by choosing,
in each variable gadget Gx, which vertices are placed in the first half of π, and which are
placed in the second. We use the gadget GC> to verify that α satisfies C, whereas the gadget
GC⊥ verifies that ¬α also satisfies C. For this purpose, connect the clause gadgets to variable
gadgets as follows. Suppose `x ∈ C is the ixth occurrence of x. If `x = x then add two arcs
(>C`x

,⊥xix) and (⊥C`x
,>xix), and if `x = ¬x then add two arcs (>C`x

,>xix) and (⊥C`x
,⊥xix).

This concludes the construction of D(ϕ). Clearly D(ϕ) is basic, and a straightforward
verification using the equality 3m =

∑
x∈vars(ϕ)

px shows that conditions |V (D(ϕ))| = 14m

and |E(D(ϕ))| = 24m hold as well. The complete proof of the three lemma statements will
appear in the full version of the paper. In order to show the main gist of the reduction, we
sketch now the proof of the third claim.

We prove the following statement: for any vertex subset A ⊆ V , it always holds that
|E(A, V \A)| ≤ 11m. Note that this in particular implies that the cutwidth of any ordering
of D(ϕ) is at most 11m, which is a part of the verification of the first claim. Denote
F = E(A, V \ A). First, consider any variable x ∈ vars(ϕ). Since Gx is a directed cycle
of length 2px, it can easily be seen that |F ∩ E(Gx)| ≤ px and the equality holds if
and only if A contains every second vertex of the cycle Gx. Second, consider any clause
C = `x ∨ `y ∨ `z ∈ cls(ϕ). Let RC> be the set of three arcs connecting GC with the variable

ICALP 2017

70:12 Layout Parameters in Tournaments and Semi-Complete Digraphs

gadgets Gx, Gy, and Gz. Since >C has no incoming arcs, we can assume without loss of
generality that >C ∈ A, as putting >C into A can only increase |E(A, V \ A)|. We now
distinguish cases depending on the size of A ∩ V C> = A ∩ {>C`x

,>C`y
,>C`z

}. The following
implications follow from a straightforward analysis of the situation in GC> and on incident arcs.

If |A ∩ V C> | = 0 then |F ∩RC>| = 0 and |F ∩ E(GC>)| = 3.
If |A ∩ V C> | = 1 then |F ∩RC>| ≤ 1 and |F ∩ E(GC>)| = 3.
If |A ∩ V C> | = 2 then |F ∩RC>| ≤ 2 and |F ∩ E(GC>)| = 2.
If |A ∩ V C> | = 3 then |F ∩RC>| ≤ 3 and |F ∩ E(GC>)| = 0.

In all the cases, we conclude that |F ∩ (E(GC>) ∪ RC>)| ≤ 4; note that the equality can
hold only in the two middle ones. The same analysis applies to the ⊥-clause gadgets,
yielding |F ∩ (E(GC⊥) ∪RC⊥)| ≤ 4, where RC⊥ is defined analogously. Since the sets E(Gx) for
x ∈ vars(ϕ) and E(GC>)∪RC> ∪E(GC⊥)∪RC⊥ for C ∈ cls(ϕ) form a partition of E(D(ϕ)), we
immediately get that |F | ≤

∑
x∈vars(ϕ) px + 8|cls(ϕ)| = 11m.

To verify the third claim of the lemma, note that if there is some vertex ordering of
cutwidth at least 11m, then there is some set A with |E(A, V \A)| ≥ 11m. Hence, for such
all the inequalities used above are in fact equalities. In particular, in every variable gadget
Gx, the vertices belong to A and to V (D) \A alternately. This gives us two possibilities for
every variable gadget, which naturally defines a variable assignment α for the formula ϕ.
The fact that we have equalities also in each clause gadget GC> and GC⊥ ensures that each
clause C is satisfied both by α and ¬α. Hence α NAE-satisfies ϕ. J

We now proceed to complementing the obtained digraph. Precisely, given a simple digraph
D = (V,E), define its complement as D̄ = (V, Ē), where Ē = V 2\(E∪{(u, u) : u ∈ V }). That
is, we take the complete digraph without self-loops on the vertex set V , and we remove all the
arcs that are present in D. Note that the complement of a basic digraph is semi-complete.

Now, let λ̄m be the tuple such that for all i ∈ [0, 14m], we have λm(i)+ λ̄m(i) = i(14m−i).
It is not hard to check that max{λ̄m} = λ̄m(7m) = 49m2−11m. A simple verification of how
the conditions of Lemma 17 are transformed under complementation yields the following.

I Lemma 18 (♠). The complement of D(ϕ) is a semi-complete digraph D̄(ϕ) satisfying:
1. for every vertex ordering π, we have λ̄m � cuts〈D̄(ϕ), π〉;
2. if ϕ is NAE-satisfiable, then there exists a vertex ordering π with cuts〈D̄(ϕ), π〉 = λ̄m;
3. if D̄(ϕ) admits a vertex ordering π of width at most 49m2−11m, then ϕ is NAE-satisfiable.

Thus, Lemma 18 shows that NAE-satisfiability of ϕ is equivalent to D̄(ϕ) having cutwidth
at most 49m2 − 11m. However, the fact that NAE-satisfiability of ϕ implies that D̄(ϕ)
admits a vertex ordering with a very concrete cut vector λ̄m, which is the best possible in
the sense of the first claim of Lemma 18, also enables us to derive a lower bound for OLA.
All these observations, together with the linear bound on the number of vertices of D̄(ϕ),
make the proof of Theorem 1 essentially complete.

The reduction of Lemma 17 constructs a basic digraph whose complement has a pair of
symmetric arcs between almost every pair of vertices. On the other hand, on tournaments the
problem is polynomial-time solvable, which suggests looking at the parameterization by the
number of vertices incident to symmetric arcs. We indeed show that this parameterization
leads to an FPT problem, even in a larger generality. Call a vertex u of a simple digraph D
pure if for any other vertex v, exactly one of the arcs (u, v) or (v, u) is present in D.

I Theorem 19 (♠). There is an algorithm that, given a simple digraph D on n vertices,
computes the cutwidth and the OLA-cost of D in time 2k · nO(1), where k is the number of
non-pure vertices in D. The algorithm can also report orderings certifying the output values.

F. Barbero, C. Paul, and Mi. Pilipczuk 70:13

References
1 Jørgen Bang-Jensen and Gregory Gutin. Digraphs – theory, algorithms and applications.

Springer, 2002.
2 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saur-

abh, and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many
leaves. ACM Transactions on Algorithms, 8(4):38, 2012.

3 Maria Chudnovsky, Alexandra Fradkin, and Paul Seymour. Tournament immersion and
cutwidth. Journal of Combinatorial Theory, Series B, 102(1):93–101, 2012.

4 Maria Chudnovsky and Paul Seymour. A well-quasi-order for tournaments. Journal of
Combinatorial Theory, Series B, 101(1):47–53, 2011.

5 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

6 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

7 Andrew Drucker. New limits to classical and quantum instance compression. SIAM journal
of Computing, 44(5):1443–1479, 2015.

8 Fedor V. Fomin and Michał Pilipczuk. Subexponential parameterized algorithm for com-
puting the cutwidth of a semi-complete digraph. In ESA 2013, volume 8125 of Lecture
Notes in Computer Science, pages 505–516. Springer, 2013.

9 Alexandra Fradkin. Forbidden structures and algorithms in graphs and digraphs. PhD
thesis, Princeton University, 2011.

10 Alexandra Ovetsky Fradkin and Paul D. Seymour. Edge-disjoint paths in digraphs with
bounded independence number. Journal of Combinatorial Theory, Series B, 110:19–46,
2015.

11 Valentin Garnero and Mathias Weller. Parameterized certificate dispersal and its variants.
Theoretical Computer Science, 622:66–78, 2016.

12 Archontia C. Giannopoulou, Michał Pilipczuk, Jean-Florent Raymond, Dimitrios M.
Thilikos, and Marcin Wrochna. Cutwidth: obstructions and algorithmic aspects. CoRR,
abs/1606.05975, 2016. To appear in Proceedings of IPEC 2016.

13 Danny Hermelin, Stefan Kratsch, Karolina Sołtys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730,
2015.

14 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

15 Bart M.P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph
classes. Journal of Computer and System Sciences, 85:18–37, 2017.

16 Michał Pilipczuk. Computing cutwidth and pathwidth of semi-complete digraphs via degree
orderings. In STACS 2013, volume 20 of LIPIcs, pages 197–208. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2013.

17 Michał Pilipczuk. Tournaments and optimality: new results in parameterized complexity.
PhD thesis, University of Bergen, Norway, 2013.

18 Alexander Schäfer, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Para-
meterized computational complexity of finding small-diameter subgraphs. Optimization
Letters, 6(5):883–891, 2012.

19 Thomas J. Shaefer. The complexity of satisfiability problems. In STOC 1978, pages 216–
226. ACM, 1978.

20 Robin Thomas. A menger-like property of tree-width: the finite case. Journal of Combin-
atorial Theory Series B, 48(1):67–76, 1990.

21 Stéphan Thomassé, Nicolas Trotignon, and Kristina Vušković. A polynomial Turing-kernel
for Weighted Independent Set in bull-free graphs. Algorithmica, 77(3):619–641, 2017.

ICALP 2017

Packing Cycles Faster Than Erdős-Pósa∗

Daniel Lokshtanov1, Amer E. Mouawad1, Saket Saurabh3, and
Meirav Zehavi1

1 University of Bergen, Bergen, Norway
daniel.lokshtanov@ii.uib.no

2 University of Bergen, Bergen, Norway
a.mouawad@ii.uib.no

3 University of Bergen, Bergen, Norway; and
The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

4 University of Bergen, Bergen, Norway
meirav.zehavi@ii.uib.no

Abstract
The Cycle Packing problem asks whether a given undirected graph G = (V,E) contains k
vertex-disjoint cycles. Since the publication of the classic Erdős-Pósa theorem in 1965, this
problem received significant scientific attention in the fields of Graph Theory and Algorithm
Design. In particular, this problem is one of the first problems studied in the framework of
Parameterized Complexity. The non-uniform fixed-parameter tractability of Cycle Packing
follows from the Robertson–Seymour theorem, a fact already observed by Fellows and Langston
in the 1980s. In 1994, Bodlaender showed that Cycle Packing can be solved in time 2O(k2) · |V |
using exponential space. In case a solution exists, Bodlaender’s algorithm also outputs a solution
(in the same time). It has later become common knowledge that Cycle Packing admits a
2O(k log2 k) · |V |-time (deterministic) algorithm using exponential space, which is a consequence
of the Erdős-Pósa theorem. Nowadays, the design of this algorithm is given as an exercise in
textbooks on Parameterized Complexity. Yet, no algorithm that runs in time 2o(k log2 k) · |V |O(1),
beating the bound 2O(k log2 k) · |V |O(1), has been found. In light of this, it seems natural to
ask whether the 2O(k log2 k) · |V |O(1) bound is essentially optimal. In this paper, we answer this
question negatively by developing a 2O(k log2 k

log log k) · |V |-time (deterministic) algorithm for Cycle
Packing. In case a solution exists, our algorithm also outputs a solution (in the same time).
Moreover, apart from beating the bound 2O(k log2 k) · |V |O(1), our algorithm runs in time linear
in |V |, and its space complexity is polynomial in the input size.

1998 ACM Subject Classification G.2.2 Graph Algorithms, I.1.2 Analysis of Algorithms

Keywords and phrases Parameterized Complexity, Graph Algorithms, Cycle Packing, Erdős-
Pósa Theorem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.71

1 Introduction

The Cycle Packing problem asks whether a given undirected graph G = (V,E) contains k
vertex-disjoint cycles. Since the publication of the classic Erdős-Pósa theorem in 1965 [15],
this problem received significant scientific attention in the fields of Graph Theory and
Algorithm Design. In particular, Cycle Packing is one of the first problems studied in
the framework of Parameterized Complexity. In this framework, each problem instance is

∗ A full version of the paper is available at https://arxiv.org/abs/1707.01037.

EA
T

C
S

© Daniel Lokshtanov, Amer E. Mouawad, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 71; pp. 71:1–71:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.71
https://arxiv.org/abs/1707.01037
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

71:2 Packing Cycles Faster Than Erdős-Pósa

associated with a parameter k that is a non-negative integer, and a problem is said to be
fixed-parameter tractable (FPT) if the combinatorial explosion in the time complexity can be
confined to the parameter k. More precisely, a problem is FPT if it can be solved in time
f(k) · |I|O(1) for some function f , where |I| is the input size. For more information, we refer
the reader to recent monographs such as [14] and [10].

In this paper, we study the Cycle Packing problem from the perspective of Parameter-
ized Complexity. In the standard parameterization of Cycle Packing, the parameter is the
number k of vertex-disjoint cycles. The non-uniform fixed-parameter tractability of Cycle
Packing follows from the Robertson–Seymour theorem [38],1 a fact already observed by
Fellows and Langston in the 1980s. In 1994, Bodlaender showed that Cycle Packing can
be solved in time 2O(k2) · |V | using exponential space [5]. Notably, in case a solution exists,
Bodlaender’s algorithm also outputs a solution in time 2O(k2) · |V |.

The Erdős-Pósa theorem states that there exists a function f(k) = O(k log k) such that for
each non-negative integer k, every undirected graph either contains k vertex-disjoint cycles or
it has a feedback vertex set consisting of f(k) vertices [15]. It is well known that the treewidth
(tw) of a graph is not larger than its feedback vertex set number (fvs), and that a naive
dynamic programming (DP) scheme solves Cycle Packing in time 2O(tw log tw) · |V | and
exponential space (see, e.g., [10]). Thus, the existence of a 2O(k log2 k) · |V |-time (deterministic)
algorithm that uses exponential space can be viewed as a direct consequence of the Erdős-Pósa
theorem. Nowadays, the design of this algorithm is given as an exercise in textbooks on
Parameterized Complexity such as [14] and [10]. In case a solution exists, this algorithm
does not output a solution (though we remark that with a certain amount of somewhat
non-trivial work, it is possible to modify this algorithm to also output a solution).

Prior to our work, no algorithm that runs in time 2o(k log2 k) · |V |O(1), beating the bound
2O(k log2 k) · |V |O(1), has been found. In light of this, it seemed tempting to ask whether the
2O(k log2 k) · |V |O(1) bound is essentially optimal. In particular, two natural directions to
explore in order to obtain a faster algorithm necessarily lead to a dead end. First, Erdős and
Pósa [15] proved that the bound f(k) = O(k log k) in their theorem is essentially tight as
there exist infinitely many graphs and a constant c such that these graphs do not contain k
vertex-disjoint cycles and yet their feedback vertex set number is larger than ck log k. Second,
Cygan et al. [11] proved that the bound 2O(tw log tw) · |V |O(1) is also likely to be essentially
tight in the sense that unless the Exponential Time Hypothesis (ETH) [20] is false, Cycle
Packing cannot be solved in time 2o(tw log tw) · |V |O(1) (however, it might still be true that
Cycle Packing is solvable in time 2o(fvs log fvs) · |V |O(1)).

1.1 Related Work
The Cycle Packing problem admits a factor O(log |V |) approximation algorithm [30], and
it is quasi-NP-hard to approximate within a factor of O(log

1
2−ε |V |) for any ε > 0 [18]. In the

context of kernelization with respect to the parameter k, Cycle Packing does not admit a
polynomial kernel unless NP ⊆ coNP/Poly [4]. Recently, Lokshtanov et al. [31] obtained
a 6-approximate kernel with O((k log k)2) vertices along with a (1 + ε)-approximate kernel
with kO(f(ε)) vertices for some function f . We would like to mention that in case one seeks k
edge-disjoint cycles rather than k vertex-disjoint cycles, the problem becomes significantly
simpler in the sense that it admits a kernel with O(k log k) vertices [4].

Focusing on structural parameters, Bodlaender et al. [2] obtained polynomial kernels
with respect to the vertex cover number, vertex-deletion distance to a cluster graph and

1 The paper [38] was already available as a manuscript in 1986 (see, e.g., [5]).

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:3

the max leaf number. In planar graphs, Bodlaender et al. [3] solved Cycle Packing in
subexponential time 2O(

√
k) · |V |O(1), and showed that this problem admits a linear kernel. In

the more general class of H-minor-free graphs, Dorn et at. [13] also solved Cycle Packing
in subexponential time 2O(

√
k) · |V |O(1). Moreover, for apex-minor-free graphs, Fomin et

al. [17] showed that Cycle Packing admits a linear kernel, and Fomin et al. [16] showed
that it also admits an EPTAS. When the input graph is a directed graph, Cycle Packing is
W[1]-hard [39], but it admits an FPT approximation scheme [19]. In fact, Cycle Packing in
directed graphs was the first W[1]-hard problem shown to admit such a scheme. Krivelevich et
al. [30] obtained a factor O(|V | 12) approximation algorithm for Cycle Packing in directed
graphs and showed that this problem is quasi-NP-hard to approximate within a factor of
O(log1−ε |V |) for any ε > 0.

Several variants of Cycle Packing have also received significant scientific attention.
For example, the variant of Cycle Packing where one seeks k odd vertex-disjoint cycles
has been widely studied [36, 40, 35, 29, 27, 28]. Another well-known variant, where the
cycles need to contain a prescribed set of vertices, has also been extensively investigated
[24, 33, 25, 23, 26]. Furthermore, a combination of these two variants has been considered
in [23, 22].

Finally, we briefly mention that inspired by the Erdős-Pósa theorem, a class of graphs
H is said to have the Erdős-Pósa property if there is a function f(k) for which given a
graph G, it either contains k vertex-disjoint subgraphs such that each of these subgraphs
is isomorphic to a graph in H, or it contains a set of f(k) vertices that hits each of its
subgraphs that is isomorphic to a graph in H. A fundamental result in Graph Theory by
Robertson and Seymour [37] states the the class of all graphs that can be contracted to
a fixed planar graph H has the Erdős-Pósa property. Recently, Chekuri and Chuzhoy [6]
presented a framework that leads to substantially improved functions f(k) in the context
of results in the spirit of the Erdős-Pósa theorem. Among other results, these two works
are also related to the recent breakthrough result by Chekuri and Chuzhoy [7], which states
that every graph of treewidth at least f(k) = O(k98 · polylog(k)) contains the k × k grid as
a minor (the constant 98 has been improved to 36 in [8] and to 19 in [9]). Following the
seminal work by Robertson and Seymour [37], numerous papers (whose survey is beyond the
scope of this paper) investigated which other classes of graphs have the Erdős-Pósa property,
which are the “correct” functions f associated with them, and which generalizations of this
property lead to interesting discoveries.

1.2 Our Contribution
In this paper, we show that the running time of the algorithm that is a consequence of the
Erdős-Pósa theorem is not essentially tight. For this purpose, we develop a 2O(k log2 k

log log k) · |V |-
time (deterministic) algorithm for Cycle Packing. In case a solution exists, our algorithm
also outputs a solution (in time 2O(k log2 k

log log k) · |V |). Moreover, apart from beating the bound
2O(k log2 k) · |V |O(1), our algorithm runs in time linear in |V |, and its space complexity is
polynomial in the input size. Thus, we also improve upon the classical 2O(k2) · |V |-time
algorithm by Bodlaender [5]. Our result is summarized in the following theorem.

I Theorem 1. There exists a (deterministic) polynomial-space algorithm that solves Cycle
Packing in time 2O(k log2 k

log log k) · |V |. In case a solution exists, it also outputs a solution.

At a high level to prove Theorem 1, the main idea is to look back at the classic algorithm
based on the Erdős-Pósa property and to perform some trade-offs to get an improve-
ment. Specifically, the idea is to compute a “relaxed feedback vertex set”: a set S of size

ICALP 2017

71:4 Packing Cycles Faster Than Erdős-Pósa

O(k log k/ log log k) so that G− S is not necessarily a forest, but it has no short cycles (of
length O(log k/ log log k)), even after contracting long detached paths to single edges. This
creates a “relaxed” modulator that is smaller by a O(log log k) multiplicative factor than
if we required S to be a feedback vertex set. After some cleaning step on this structure,
and using the relaxed modulator, one can roughly guess the interaction between S and
G − S in the solution; this step amounts to guessing one of around |S|! options, which is
O(2k log2 k/ log log k). Having fixed the interaction, we can contract any remaining long paths
so that the whole remaining graph has O(k log3/2 k) vertices; it is important here that this
step goes through even when we work with the “relaxed” modulator S as explained above,
instead of a normal feedback vertex set as in the classic algorithm. As the size of the graph
is already bounded, a simple dynamic programming on subsets suffices to finish the proof. In
order to achieve polynomial space usage, we employ a standard inclusion-exclusion procedure
instead.

2 Preliminaries

We use standard terminology from the book of Diestel [12] for those graph-related terms
that are not explicitly defined here. We only consider finite graphs possibly having self-loops
and multi-edges. Moreover, using an appropriate reduction rule we restrict the maximum
multiplicity of an edge to be 2. For a graph G, we use V and E to denote the vertex and edge
sets of the graph G, respectively. For a vertex v ∈ V , we use degG(v) to denote the degree of
v, i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a self-loop at a vertex v contributes 2 to its degree. For a vertex subset S ⊆ V , we let
G[S] and G− S denote the graphs induced on S and V \ S, respectively. For a vertex subset
S ⊆ V , we use NG(S) and NG[S] to denote the open and closed neighborhoods of S in G,
respectively. That is, NG(S) = {v | {u, v} ∈ E, u ∈ S} \ S and NG[S] = NG(S) ∪ S. In case
S = {v}, we simply let N(v) = N(S) and N [v] = N [S]. For a graph G = (V,E) and an edge
e ∈ E, we let G/e denote the graph obtained by contracting e in G. For E′ ⊆

(
V
2
)
, i.e. a

subset of edges, we let G+ E′ denote the (multi) graph obtained after adding the edges in
E′ to G, and we let G/E′ denote the (multi) graph obtained after contracting the edges of
E′ in G. The girth of a graph is denoted by girth(G), its minimum degree by δ(G), and its
maximum degree by ∆(G). A graph with no cycles has infinite girth.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that {vi, vi+1} is an
edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v` such
that {vi, v(i+1) mod `+1} is an edge for all 0 ≤ i ≤ `. Both a double edge and a self-loop are
cycles. If P is a path from a vertex u to a vertex v in the graph G then we say that u and v
are the end vertices of the path P and P is a (u, v)-path. For a path P , we use V (P) and
E(P) to denote the sets of vertices and edges in the path P , respectively, and length of P
is denoted by |P | (i.e, |P | = |V (P)|). For a cycle C, we use V (C) and E(C) to denote the
sets of vertices and edges in the cycle C, respectively, and the length of C, denoted by |C|,
is |V (C)|. For a path or a cycle Q we use NG(Q) and NG[Q] to denote the sets NG(V (Q))
and NG[V (Q)], respectively. For a collection of paths/cycles Q, we use |Q| to denote the
number of paths/cycles in Q and V (Q) to denote the set

⋃
Q∈Q V (Q). We say a path P in

G is a degree-two path if all vertices in V (P), including the end vertices of P , have degree
exactly 2 in G. We say P is a maximal degree-two path if no proper superset of P also forms
a degree-two path. We note that the notions of walks and closed walks are defined exactly
as paths and cycles, respectively, except that their vertices need not be distinct. Finally, a
feedback vertex set is a subset F of vertices such that G− F is a forest.

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:5

Below we formally state some of the key results that will be used throughout the paper,
starting with the classic Erdős-Pósa theorem [15].

I Proposition 2 ([15]). There exists a constant c′ such that every (multi) graph either
contains k vertex-disjoint cycles or it has a feedback vertex set of size at most c′k log k.

Observe that any (multi) graph G = (V,E) whose feedback vertex set number is bounded
by c′k log k has less than (2c′k log k+ 1) · |V | edges (recall that we restrict the multiplicity of
an edge to be 2). Indeed, letting F denote a feedback vertex set of minimum size, the worst
case (in terms of |E|) is obtained when G−F is a tree, which contains |V |−|F |−1 edges, and
between every pair of vertices v ∈ F and u ∈ V , there exists an edge of multiplicity 2. Thus,
by Proposition 2, in case |E| > (2c′k log k + 1) · |V |, the input instance is a yes-instance, and
after we discard an arbitrary set of |E| − (2c′k log k+ 1) · |V | edges, it remains a yes-instance.
A simple operation which discards at least |E| − (2c′k log k + 1) · |V | edges and can be
performed in time O(k log k · |V |).

I Assumption 3. We assume that |E| = O(k log k · |V |).

Now, we state our algorithmic version of Proposition 2. The proof partially builds upon
the proof of the Erdős-Pósa theorem in the book [12], and it is given in the full version of
the paper.

I Theorem 4. There exists a constant c and a polynomial-space algorithm such that given
a (multi) graph G and a non-negative integer k, in time kO(1) · |V | it either outputs k
vertex-disjoint cycles or a feedback vertex set of size at most ck log k = r.

Next, we state two results relating to cycles of average and short lengths.

I Proposition 5 ([1]). Any (multi) graph G = (V,E) on n vertices with average degree d
contains a cycle of length at most 2 logd−1 n+ 2.

Itai and Rodeh [21] showed that given a (multi) graph G = (V,E), an “almost” shortest
cycle (if there is any) in G can be found in time O(|V |2). To obtain a linear dependency on
|V | (given a small feedback vertex set), we prove the following result. A complete proof will
appear in the full version of the paper.

I Lemma 6. Given a (multi) graph G = (V,E) and a feedback vertex set F of G, a shortest
cycle (if there is any) in G can be found in time O(|F | · (|V |+ |E|)).

Finally, we state a result that will be used (in Lemma 11) to bound the size of a graph
we obtain after performing simple preprocessing operations as well as repetitive removal of
short cycles.

I Proposition 7 ([34], Lemma 9). Let T = (V,E) be a forest on N vertices. Let M ′ =
{{i, j} ∈ E | degT (i) = degT (j) = 2} and L = {a ∈ V | degT (a) ≤ 1}. Then there exists
M ⊆M ′ such that M is a matching and |W | ≥ N

4 where W = L ∪M .

3 Removing Leaves, Induced Paths, and Short Cycles

As is usually the case when dealing with cycles in a graph, we first define three rules which
help getting rid of vertices of degree at most 2 as well as edges of multiplicity larger than 2.
It is not hard to see that all three Reduction Rules A1, A2, and A3 are safe, i.e. they preserve
solutions in the reduced graph.

ICALP 2017

71:6 Packing Cycles Faster Than Erdős-Pósa

I Reduction Rule A1. Delete vertices of degree at most 1.

I Reduction Rule A2. If there is a vertex v of degree exactly 2 that is not incident to a
self-loop, then delete v and connect its two (not necessarily distinct) neighbors by a new edge.

I Reduction Rule A3. If there is a pair of vertices u and v in V such that {u, v} is an edge
of multiplicity larger than 2, then reduce the multiplicity of the edge to 2.

Observe that the entire process that applies these rules exhaustively can be done in time
O(|V |+ |E|) = O(k log k · |V |). Indeed, in time O(|V |) we first remove the vertex-set of each
maximal path between a leaf and a degree-two vertex. No subsequent application of Rule A2
or Rule A3 creates vertices of degree at most one. Now, we iterate over the set of degree-two
vertices. For each degree-two vertex that is not incident to a self-loop, we apply Rule A2.
Next, we iterate over E, and for each edge of multiplicity larger than two, we apply Rule A3.
At this point, the only new degree-two vertices that can be created are vertices incident to
exactly one edge, whose multiplicity is two. Therefore, during one additional phase where
we exhaustively apply Rule A2, the only edges of multiplicity larger than two that can be
created are self-loops. Thus, after one additional iteration over E, we can ensure that no
rule among Rules A1, A2 and A3 is applicable.

Since these rules will be applied dynamically and iteratively, we define an operator,
denoted by reduce(G), that takes as input a graph G and returns the (new) graph G′ that
results from an exhaustive application of Rules A1, A2 and A3.

I Definition 8. For a (multi) graph G, we let G′ = reduce(G) denote the graph obtained
after an exhaustive application of Reduction Rules A1, A2 and A3. | reduce(G)| denotes
the number of vertices in reduce(G). Moreover, img(reduce(G)) denotes the pre-image of
reduce(G), i.e. img(reduce(G)) is the set of vertices in G which are not deleted in reduce(G).

I Observation 9. For a graph G = (V,E) and a set E′ ⊆
(
V
2
)
it holds that | reduce(G+E′)| ≤

| reduce(G)|+ 2|E′|.

The first step of our algorithm consists of finding, in time linear in |V |, a set S satisfying
the conditions specified in Lemmata 10 and 11. Intuitively, S will contain vertices of “short”
cycles in the input graph, where short will be defined later.

I Lemma 10. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6, there
exists an kO(1) · |V |-time algorithm that either finds k vertex-disjoint cycles in G or finds a
(possibly empty) set S ⊆ V such that girth(reduce(G− S)) > g and |S| < gk.

Proof. We proceed by constructing such an algorithm. First, we apply the algorithm of
Theorem 4 which outputs either k vertex-disjoint cycles or a feedback vertex set F of size at
most ck log k = r. In the former case we are done. In the latter case, i.e. the case where a
feedback vertex set F is obtained, we apply the following procedure iteratively (initially, we
set S = ∅):
(1) Apply Lemma 6 to find a shortest cycle C in reduce(G).
(2) If no cycle was found or |C| > g then return S.
(3) Otherwise, i.e. if |C| ≤ g, then add the vertices of C to S, delete those vertices from G

to obtain G′, set G = G′, and repeat from Step (1).

Note that if Step (3) is applied k times then we can terminate and return the corresponding
k vertex-disjoint cycles in G. Hence, when the condition of Step (2) is satisfied, i.e. when the
described procedure terminates, the size of S is at most g(k − 1) < gk and girth(reduce(G−
S)) > g. Since the algorithm of Theorem 4 runs in time kO(1) · |V |, and each iteration of Steps
(1)-(3) is performed in time O((k log k)2 · |V |), we obtain the desired time complexity. J

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:7

I Lemma 11. Given a (multi) graph G = (V,E) and two integers k > 0 and g > 6,
let S denote the set obtained after applying the algorithm of Lemma 10 (assuming no k

vertex-disjoint cycles obtained). Then | reduce(G− S)| ≤ (2ck log k)1+ 6
g−6 + 3ck log k.

Proof. Let G′ = (V ′, E′) = reduce(G − S) and |V ′| = n′. First, recall that G admits a
feedback vertex set of size at most ck log k = r. Since Reduction Rules A1, A2 and A3 do
not increase the feedback vertex set of the graph (see, e.g., [34], Lemma 1), G′ also admits a
feedback vertex set F of size at most r. Let T denote the induced forest on the remaining
N = n′ − r vertices in G′. Moreover, from Lemma 10, we know that girth(G′) > g > 6.

Next, we apply Proposition 7 to T to get W . Now with every element a ∈W we associate
an unordered pair of vertices of F as follows. Assume a ∈ L, i.e. a is a vertex of degree 0
or 1. Since the degree of a is at least 3 in G′, a has at least two neighbors in F . We pick
two of these neighbors arbitrarily and associate them with a. We use {xa, ya} to denote this
pair. If a = {u, v} is an edge from M then each of u and v has degree at least 3 in G′ and
each has at least one neighbor in F . We pick one neighbor for each and associate the pair
{xu, xv} with a. Note that since girth(G′) > 6, xu 6= xv and xa 6= ya.

We now construct a new multigraph G? = (V ?, E?) with vertex set V ? = F as follows.
For every vertex a ∈ W we include an edge in E? between xa and ya, and for every edge
a = {u, v} ∈ W we include an edge in E? between xu and xv. By Proposition 7, we know
that W is of size at least N

4 . It follows that G
? has at least N

4 edges and hence its average
degree is at least N

2r as |V ?| = ck log k = r. Note that if G? has a cycle of length at most `,
then G′ has a cycle of length at most 3`, as any edge of the cycle in G? can be replaced by
a path of length at most 3 in G′. Combining this with the fact that girth(G′) > g > 6, we
conclude that G? contains no self-loops or parallel edges. Hence G? is a simple graph with
average degree at least N

2r . By Proposition 5, G? must have a cycle of length at most

2 log N
2r−1 r + 2 = 2 log r

log(N2r − 1)
+ 2

which implies that G′ must have a cycle of length at most

6 log r
log(N2r − 1)

+ 6.

Finally, by using the fact that girth(G′) > g and substituting N and r, we get

6 log r
log(N2r − 1)

+ 6 > g ⇐⇒ log r > (g − 6)
6 log

(N − 2r
2r

)
⇐⇒ log r > (g − 6)

6 log(N − 2r)− (g − 6)
6 log(2r)

⇐⇒
log r + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

=⇒
log(2r) + (g−6)

6 log(2r)
(g−6)

6

> log(N − 2r)

⇐⇒ (1 + 6
g − 6) log(2r) > log(N − 2r)

⇐⇒ (1 + 6
g − 6) log(2ck log k) > log(n′ − 3ck log k)

⇐⇒ (2ck log k)1+ 6
(g−6) + 3ck log k > n′.

This completes the proof. J

ICALP 2017

71:8 Packing Cycles Faster Than Erdős-Pósa

The usefulness of Lemma 11 comes from the fact that by setting g = 48 log k
log log k + 6, we

can guarantee that | reduce(G− S)| < 3ck log k + 2ck log1.5 k, and therefore we can beat the
O(k log2 k) bound. That is, we have the following consequence.

I Corollary 12. Given a (multi) graph G = (V,E) and an integer k > 0, let S denote the
set obtained after applying the algorithm of Lemma 10 with g = 48 log k

log log k + 6 (assuming no k
vertex-disjoint cycles obtained). Then | reduce(G− S)| ≤ 3ck log k + 2ck log1.5 k.

Proof. By Lemma 11, | reduce(G − S)| ≤ (2ck log k)1+ log log k
8 log k + 3ck log k. Assuming k >

log k > c > 2, we have (2ck log k)1+ log log k
8 log k = (2ck log k)(2ck log k)

log log k
8 log k ≤ (2ck log k)k

4 log log k
8 log k .

Now note that k
4 log log k

8 log k ≤ log0.5 k. Hence, (2ck log k)1+ log log k
8 log k ≤ 2ck log k log

1
2 k ≤ 2ck log1.5 k.

This completes the proof. J

4 Bounding the Core of the Remaining Graph

At this point, we assume, without loss of generality, that we are given a graph G = (V,E),
a positive integer k, g = 48 log k

log log k + 6, and a set S ⊆ V such that girth(reduce(G− S)) > g,
|S| < gk, and | reduce(G− S)| ≤ 3ck log k + 2ck log1.5 k.

Even though the number of vertices in reduce(G− S) is bounded, the number of vertices
in G− S is unbounded. In what follows, we show how to bound the number of “objects” in
G− S, where an object is either a vertex in G− S or a degree-two path in G− S. The next
lemma is a refinement extending a lemma by Lokshtanov et al. [31] (Lemma 5.2).

I Lemma 13. Let G = (V,E) be a (multi) graph and let X ⊆ V be any subset of the vertices
of G. Suppose there are more than |X|2(2|X|+ 1) vertices in G−X whose degree in G−X is
at most one. Then, there is either an isolated vertex w in G−X or an edge e ∈ E such that
(G, k) is a yes-instance of Cycle Packing if and only if either (G−{w}, k) or (G/e, k) is a
yes-instance. Moreover, there is an O(|X|2 · k log k · |V |)-time algorithm that given G and X,
outputs sets VX ⊆ V \X and EX ⊆ E(G−X) such that, for the graph G′ = (G/EX)−VX , it
holds that (G, k) is a yes-instance of Cycle Packing if and only if (G′, k) is a yes-instance
of Cycle Packing, and G′ −X contains at most |X|2(2|X|+ 1) vertices whose degree in
G′ −X is at most one.

Armed with Lemma 13, we are now ready to prove the following result. For a forest T ,
we let T≤1, T2, and T≥3, denote the sets of vertices in T having degree at most one in T ,
degree exactly two in T , and degree larger than two in T , respectively. Moreover, we let P
denote the set of all maximal degree-two paths in T .

I Lemma 14. Let G = (V,E), S, k, and g be as defined above. Let R = img(reduce(G−S)) ⊆
(V \ S) denote the pre-image of reduce(G− S) in G− S. Then, T = G− S −R is a forest
and for every maximal degree-2 path in P there are at most two vertices on the path having
neighbors in R (in the graph G− S). Moreover, in time kO(1) · |V |, we can guarantee that
|T≤1|, |P|, and |T≥3| are bounded by kO(1).

Proof. To see why T = G−S−R must be a forest it is sufficient to note that for any cycle in
G− S at least one vertex from that cycle must be in R = img(reduce(G− S)) (see Figure 1).
Recall that, since girth(reduce(G− S)) > 6, every vertex in R has degree at least 3 in G− S.
Now assume there exists some path P ∈ P having exactly three (the same argument holds
for any number) distinct vertices u, v and w (in that order) each having at least one neighbor
in R (possibly the same neighbor). We show that the middle vertex v must have been in R,

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:9

Figure 1 A graph G (not all edges shown), the set S (in black), the set R (in gray), and the set
T = G − R − S (in white).

contradicting the fact that T = G− S −R. Consider the graph G− S and apply Reduction
Rules A1, A2 and A3 exhaustively (in G− S) on all vertices in the tree containing P except
for u, v and w. Regardless of the order in which we apply the reduction rules, the path P
will eventually reduce to a path on three vertices, namely u, v, and w. To see why v must be
in R observe that even if the other two vertices have degree two in the resulting graph, after
reducing them, v will have degree at least three (into R) and is therefore non-reducible.

Next, we bound the size of T≤1, which implies a bound on the sizes of T≥3 and P . To do
so, we simply invoke Lemma 13 by setting X = S ∪R. Since |S| < gk, g = 48 log k

log log k + 6 and
|R| ≤ 3ck log k + 2ck log1.5 k, we get that |T≤1| ≤ |S ∪R|2(2|S ∪R|+ 1) = kO(1). Since in a
forest, it holds that |T≥3| < |T≤1|, the bound on |T≥3| follows. Moreover, in a forest, it also
holds that |P| < |T≤1|+ |T≥3| – if we arbitrarily root each tree in the forest at a leaf, one
end vertex of a path in P will be a parent of a different vertex from T≤1 ∪ T≥3 – the bound
on |P| follows as well. J

5 Guessing Permutations

This section is devoted to proving the following lemma. Note that assuming the statement of
the lemma, the only remaining task (to prove Theorem 1) is to develop an algorithm running
in time O(2|V | · poly(|V |)) and using polynomial space, which we present in Section 6.

I Lemma 15. Given an instance (G, k) of Cycle Packing, we can in time 2O(k log2 k
log log k) · |V |

and polynomial space compute 2O(k log2 k
log log k) instances of Cycle Packing of the form (G′, k),

where the number of vertices in G′ is bounded by O(k log1.5 k), such that (G, k) is a yes-
instance if and only if at least one of the instances (G′, k) is a yes-instance.2

Proof. We fix g = 48 log k
log log k + 6. Using Lemma 10, we first compute a set S in time kO(1) · |V |.

Then, we guess which vertices to delete from S – that is, which vertices do not participate
in a solution – in time O(2gk) = 2O(k log k

log log k). Here, guesses refer to different choices which
lead to the construction of different instances of Cycle Packing that are returned at the
end (recall that we are allowed to return up to 2O(k log2 k

log log k) different instances). Combining
Lemma 10 and Corollary 12, we now have a set S ⊆ V such that |S| = O(k log k

log log k), and
| reduce(G− S)| = O(k log1.5 k).

2 In practice, to use polynomial space, we output the instances one-by-one.

ICALP 2017

71:10 Packing Cycles Faster Than Erdős-Pósa

Figure 2 [Left] A graph G (not all edges shown), the set S (in black), the set R (in gray), and
the set T = G − R − S (in white). [Center] the graph obtained after guessing vertices in S and their
neighbors in a solution. [Right] Example of a reduced instance.

Applying Lemma 14 with R = img(reduce(G−S)) ⊆ (V \S), we get a forest T = G−(S∪R)
such that for every maximal degree-two path in P there are at most two vertices on the
path having neighbors in R (in the graph G− S). In addition, the size of R is bounded by
O(k log1.5 k), and the sizes |T≤1|, |P| and |T≥3| are bounded by kO(1) (see Figure 1).

For every vertex in S (which is assumed to participate in a solution), we now guess its
two neighbors in a solution (see Figure 2). Note however that we only have a (polynomial in
k) bound for |S|, |R|, |T≤1|, |P| and |T≥3|, but not for the length of paths in P and therefore
not for the entire graph G. We let ZP denote the set of vertices in V (P) having neighbors in
R. The size of ZP is at most 2|P|. Moreover, we let P? denote the set of paths obtained
after deleting ZP from P. Note that the size of P? is upper bounded by |P|+ |ZP | ≤ 3|P|,
and that vertices in V (P?) are adjacent only to vertices in V (P?) ∪ ZP ∪ S. Now, we create
a set of “objects”, O = S ∪ R ∪ T≤1 ∪ T≥3 ∪ ZP ∪ P?. We also denote Õ = O \ P?. We
then guess, for each vertex in S, which two objects in O constitute its neighbors, denoted
by `(v) and r(v), in a solution. It is possible that `(v) = r(v). Since |O| = kO(1), we can
perform these guesses in kO(k log k

log log k), or equivalently 2O(k log2 k
log log k), time. We can assume that if

`(v) ∈ Õ, then `(v) is a neighbor of v, and otherwise v has a neighbor on the path `(v), else
the current guess is not correct, and we need not try finding a solution subject to it. The
same claim holds for r(v). If `(v) = r(v) ∈ Õ, then {v, `(v)} is an edge of multiplicity two,
and otherwise if `(v) = r(v), then v has (at least) two neighbors on the path `(v).

Next, we fix some arbitrary order on P?, and for each path in P?, we fix some arbitrary
orientation. We let S? denote the multiset containing two occurrences of every vertex v ∈ S,
denoted by v` and vr. We guess an order of the vertices in S?. The time spent for guessing
such an ordering is bounded by |S|!, which in turn is bounded by 2O(k log2 k

log log k). The ordering,
assuming it is guessed correctly, satisfies the following conditions. For each path P ∈ P?, we
let `(P) and r(P) denote the sets of vertices v ∈ S such that `(v) ∈ V (P) and r(v) ∈ V (P),
respectively. Now, for any two vertices u, v ∈ `(P), if u` < v` according to the order that we
guessed, then the neighbor `(u) of u appears before the neighbor `(v) of v on P . Similarly,
for any two vertices u, v ∈ r(P), if ur < vr, then r(u) appears before r(v) on P . Finally, for
any two vertices u ∈ `(P) and v ∈ r(P), if u` < vr, then `(u) appears before r(v) on P , and
otherwise r(v) appears before `(u) on P .

Given a correct guess of `(v) and r(v), for each v in S, as well as a correct guess of a
permutation of S?, for each path in P?, we let {xv, yv} denote the two guessed neighbors of a
vertex v in S. Note that if `(v) (r(v)) is in Õ then xv = `(v) (yv = r(v)). Otherwise, we assign
neighbors to a vertex by a greedy procedure which agrees with the guessed permutation on
S?; that is, for every path P ∈ P?, we iterate over `(P)∪r(P) according to the guessed order,
and for each vertex in it, assign its first neighbor on P that is after the last vertex that has
already been assigned (if such a vertex does not exist, we determine that the current guess is
incorrect and proceed to the next one). We let X = {xv | v ∈ S} and Y = {yv | v ∈ S}. We
also let ES be the set of edges incident on a vertex in S, and we let E′ = {{xv, yv} | v ∈ S}

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:11

denote the set of all pairs of guesses. Finally, to obtain an instance (G′, k), we delete the
vertex set W = S \ (X ∪Y) from G, we delete the edge set ES from G, we add instead the set
of edges E′, and finally we apply the reduce operator, i.e. G′ = reduce((G−W − ES) + E′).

I Claim 16. Let (G′, k) be one of the instances generated by the above procedure. Then, the
number of vertices in G′ is bounded by O(k log1.5 k).

Proof. Recall that by Corollary 12, we know that | reduce(G−S)| = O(k log1.5 k). Moreover,
we have |E′| = |S| = O(k log k

log log k). Combining Observation 9 with the fact that G′ =
reduce((G−W−ES)+E′), we get | reduce((G−W−ES)+E′)| ≤ | reduce(G−W−ES)|+2|E′|.
Since in G−W−ES all vertices of S have degree zero, | reduce(G−W−ES)| ≤ | reduce(G−S)|.
Hence, we conclude that | reduce((G−W − ES) + E′)| = O(k log1.5 k), as needed. J

I Claim 17. (G, k) is a yes-instance if and only if at least one of the generated instances
(G′, k) is a yes-instance.

Proof. Assume that (G, k) is a yes-instance and let C = {C1, C2, . . .} be an optimal cycle
packing, i.e set of maximum size of vertex-disjoint cycles, in G. Note that if no cycle in C
intersects with S then C is also an optimal cycle packing in G− S. By the safeness of our
reduction rules, C is also an optimal cycle packing in reduce(G− S). Since we generate one
instance for every possible intersection between an optimal solution and S, the case where no
vertex from S is picked corresponds to the instance (G′, k), with G′ = reduce(G− S). Hence,
in what follows we assume that some cycles in C intersect with S. Consider any cycle C
which intersects with S and let PC = {u0, u1, . . . , uf} denote any path on this cycle such
that u0, uf 6∈ S but ui ∈ S for 0 < i < f . We claim that, for some G′, all such paths will
be replaced by edges of the form {u0, uf} in reduce((G −W − ES) + E′). Again, due to
our exhaustive guessing, for some G′ we would have guessed, for each i, `(ui) = ui−1 and
r(ui) = ui+1. Consequently, PC \ {u0, uf} is a degree-two path in (G−W − ES) + E′ and
therefore an edge in reduce((G−W −ES) +E′). Using similar arguments, it is easy to show
that if C is completely contained in S then this cycle is contained in G′ as a loop on some
vertex of the cycle.

For the other direction, let (G′, k) be a yes-instance and let C′ = {C ′1, C ′2, . . .} be an
optimal cycle packing in G′. We assume, without loss of generality, that C′ is a cycle
packing in (G−W −ES) +E′, as one can trace back all reduction rules to obtain the graph
(G −W − ES) + E′. If no cycle in C′ uses an edge {u0, uf} ∈ E′ then we are done, as
(G−W − ES) is a subgraph of G. Otherwise, we claim that all such edges either exist in G
or can be replaced by vertex disjoint paths P = {u0, u1, . . . , uf} (on at least three vertices)
in G such that ui ∈ S for 0 < i < f . If either u0 or uf is in X ∪ Y ⊆ S then the former case
holds. It remains to prove the latter case. Recall that for every vertex in S we guess its two
neighbors from O = S ∪R∪T≤1 ∪T≥3 ∪ZP ∪P?. Hence, if {u0, uf} ⊆ Õ = O \P? then one
can easily find a path (or singleton) in G[S] to replace this edge by simply backtracking the
neighborhood guesses. Now assume that {u0, uf} 6⊆ Õ and recall that no vertex in a path in
P? can have neighbors in R. Hence, any cycle containing such an edge must intersect with
S (in G). Assuming we have correctly guessed the neighbors of vertices in S (as well as a
permutation for P?), we can again replace this edge with a path in S. J

Combining Claims 16 and 17 concludes the proof of the theorem. J

ICALP 2017

71:12 Packing Cycles Faster Than Erdős-Pósa

6 Dynamic Programming and Inclusion-Exclusion

Finally, we give an exact exponential-time algorithm for Cycle Packing. For this purpose,
we use DP and the principle of inclusion-exclusion, inspired by the work of Nederlof [32].
Due to space constraints, the details are given in the full version of the paper.

I Lemma 18. There exists a (deterministic) polynomial-space algorithm that in time O(2|V | ·
poly(|V |)) solves Cycle Packing. In case a solution exists, it also outputs a solution.

We would like to mention that if one does not care about polynomial space, then Lemma 18
can be obtained by a straightforward dynamic programming on subsets.

7 Conclusion

In this paper we have beaten the best known 2O(k log2 k) · |V |-time algorithm for Cycle
Packing that is a consequence of the Erdős-Pósa theorem. For this purpose, we developed a
deterministic algorithm that solves Cycle Packing in time 2O(k log2 k

log log k) · |V |. Two additional
advantageous properties of our algorithm is that its space complexity is polynomial in the
input size and that in case a solution exists, it outputs a solution (in time 2O(k log2 k

log log k) · |V |).
Our technique relies on combinatorial arguments that may be of independent interest. These
arguments allow us to translate any input instance of Cycle Packing into 2O(k log2 k

log log k)

instances of Cycle Packing whose sizes are small and can therefore be solved efficiently.
It remains an intriguing open question to discover the “true” running time, under

reasonable complexity-theoretic assumptions, in which one can solve Cycle Packing on
general graphs. In particular, we would like to pose the following question: Does there exist
a 2O(k log k) · |V |O(1)-time algorithm for Cycle Packing? This is true for graphs of bounded
maximum degree as one can easily bound the number of vertices by O(k log k) and then apply
Lemma 18. Moreover, Bodlaender et al. [4] proved that this is also true in case one seeks k
edge-disjoint cycles rather than k vertex-disjoint cycles. On the negative side, recall that
(for general graphs) the bound f(k) = O(k log k) in the Erdős-Pósa theorem is essentially
tight, and that it is unlikely that Cycle Packing is solvable in time 2o(tw log tw) · |V |O(1) [11].
However, we do not rule out the existence of an algorithm solving Cycle Packing in time
2O(fvs) · |V |O(1). Thus, the two most natural attempts to obtain a 2O(k log k) · |V |O(1)-time
algorithm – either replacing the bound O(k log k) in the Erdős-Pósa theorem by O(k) or
speeding-up the computation based on DP to run in time 2O(tw) · |V |O(1) – lead to a dead
end.

Acknowledgements. We would like to thank the reviewers for several suggestions and
insightful remarks that have improved the presentation of the paper.

References
1 Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular graphs.

Graphs and Combinatorics, 18(1):53–57, 2002. doi:10.1007/s003730200002.
2 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path and

cycle problems. Theor. Comput. Sci., 511:117–136, 2013. doi:10.1016/j.tcs.2012.09.
006.

3 Hans L. Bodlaender, Eelko Penninkx, and Richard B. Tan. A linear kernel for the k-disjoint
cycle problem on planar graphs. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukun-
aga, editors, Algorithms and Computation, 19th International Symposium, ISAAC 2008,

http://dx.doi.org/10.1007/s003730200002
http://dx.doi.org/10.1016/j.tcs.2012.09.006
http://dx.doi.org/10.1016/j.tcs.2012.09.006

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:13

Gold Coast, Australia, December 15-17, 2008. Proceedings, volume 5369 of Lecture Notes in
Computer Science, pages 306–317. Springer, 2008. doi:10.1007/978-3-540-92182-0_29.

4 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.
2011.04.039.

5 H.L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59–68, 1994.
6 Chandra Chekuri and Julia Chuzhoy. Large-treewidth graph decompositions and applic-

ations. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
291–300. ACM, 2013. doi:10.1145/2488608.2488645.

7 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. J.
ACM, 63(5):40:1–40:65, 2016.

8 Julia Chuzhoy. Excluded grid theorem: Improved and simplified. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 645–654.
ACM, 2015. doi:10.1145/2746539.2746551.

9 Julia Chuzhoy. Excluded grid theorem: Improved and simplified (invited talk). In Rasmus
Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2016, June 22-24, 2016, Reykjavik, Iceland, volume 53 of LIPIcs, pages 31:1–31:1. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.SWAT.2016.31.

10 M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms. Springer, 2015.

11 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 150–159. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.23.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

13 Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Catalan structures and dynamic
programming in h-minor-free graphs. J. Comput. Syst. Sci., 78(5):1606–1622, 2012. doi:
10.1016/j.jcss.2012.02.004.

14 R. Downey and M. Fellows. Fundamentals of parameterized complexity. Springer, 2013.
15 P. Erdős and L. Pósa. On independent circuits contained in a graph. Canad. J. Math.,

17:347–352, 1965.
16 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensional-

ity and EPTAS. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 748–759. SIAM, 2011. doi:10.1137/1.9781611973082.59.

17 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Moses Charikar, editor, Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, Janu-
ary 17-19, 2010, pages 503–510. SIAM, 2010. doi:10.1137/1.9781611973075.43.

18 Zachary Friggstad and Mohammad R. Salavatipour. Approximability of packing disjoint
cycles. Algorithmica, 60(2):395–400, 2011. doi:10.1007/s00453-009-9349-5.

19 Martin Grohe and Magdalena Grüber. Parameterized approximability of the disjoint cycle
problem. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, edit-
ors, Automata, Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of Lecture Notes in Computer
Science, pages 363–374. Springer, 2007. doi:10.1007/978-3-540-73420-8_33.

ICALP 2017

http://dx.doi.org/10.1007/978-3-540-92182-0_29
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1016/j.tcs.2011.04.039
http://dx.doi.org/10.1145/2488608.2488645
http://dx.doi.org/10.1145/2746539.2746551
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.31
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1016/j.jcss.2012.02.004
http://dx.doi.org/10.1016/j.jcss.2012.02.004
http://dx.doi.org/10.1137/1.9781611973082.59
http://dx.doi.org/10.1137/1.9781611973075.43
http://dx.doi.org/10.1007/s00453-009-9349-5
http://dx.doi.org/10.1007/978-3-540-73420-8_33

71:14 Packing Cycles Faster Than Erdős-Pósa

20 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

21 Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413–423, 1978. doi:10.1137/0207033.

22 Felix Joos. Parity linkage and the erdős-pósa property of odd cycles through prescribed
vertices in highly connected graphs. In Ernst W. Mayr, editor, Graph-Theoretic Concepts
in Computer Science – 41st International Workshop, WG 2015, Garching, Germany, June
17-19, 2015, Revised Papers, volume 9224 of Lecture Notes in Computer Science, pages
339–350. Springer, 2015. doi:10.1007/978-3-662-53174-7_24.

23 Naonori Kakimura and Ken-ichi Kawarabayashi. Half-integral packing of odd cycles
through prescribed vertices. Combinatorica, 33(5):549–572, 2013. doi:10.1007/
s00493-013-2865-6.

24 Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles through
prescribed vertices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011. doi:10.1016/j.jctb.
2011.03.004.

25 Ken-ichi Kawarabayashi and Yusuke Kobayashi. Fixed-parameter tractability for the sub-
set feedback set problem and the s-cycle packing problem. J. Comb. Theory, Ser. B,
102(4):1020–1034, 2012. doi:10.1016/j.jctb.2011.12.001.

26 Ken-ichi Kawarabayashi, Daniel Král’, Marek Krcál, and Stephan Kreutzer. Packing
directed cycles through a specified vertex set. In Sanjeev Khanna, editor, Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 365–377. SIAM, 2013.
doi:10.1137/1.9781611973105.27.

27 Ken-ichi Kawarabayashi and Atsuhiro Nakamoto. The erdos-pósa property for vertex- and
edge-disjoint odd cycles in graphs on orientable surfaces. Discrete Mathematics, 307(6):764–
768, 2007. doi:10.1016/j.disc.2006.07.008.

28 Ken-ichi Kawarabayashi and Bruce A. Reed. Highly parity linked graphs. Combinatorica,
29(2):215–225, 2009. doi:10.1007/s00493-009-2178-y.

29 Ken-ichi Kawarabayashi and Paul Wollan. Non-zero disjoint cycles in highly connected
group labelled graphs. J. Comb. Theory, Ser. B, 96(2):296–301, 2006. doi:10.1016/j.
jctb.2005.08.001.

30 Michael Krivelevich, Zeev Nutov, Mohammad R. Salavatipour, Jacques Yuster, and
Raphael Yuster. Approximation algorithms and hardness results for cycle packing problems.
ACM Trans. Algorithms, 3(4):48, 2007. doi:10.1145/1290672.1290685.

31 D. Lokshtanov, F. Panolan, M. S. Ramanujan, and S. Saurabh. Lossy kernelization.
arXiv:1604.04111v2, to appear in STOC 2017.

32 Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013. doi:10.1007/s00453-012-9630-x.

33 M. Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of vertices. J. Comb.
Theory, Ser. B, 102(5):1134–1141, 2012. doi:10.1016/j.jctb.2012.05.004.

34 Venkatesh Raman, Saket Saurabh, and C.R. Subramanian. Faster fixed parameter tract-
able algorithms for finding feedback vertex sets. ACM Trans. Algorithms, 2(3):403–415,
2006. doi:10.1145/1159892.1159898.

35 Dieter Rautenbach and Bruce A. Reed. The Erdős-Pósa property for odd cycles in highly
connected graphs. Combinatorica, 21(2):267–278, 2001. doi:10.1007/s004930100024.

36 Bruce A. Reed. Mangoes and blueberries. Combinatorica, 19(2):267–296, 1999. doi:
10.1007/s004930050056.

37 Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J.
Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

http://dx.doi.org/10.1137/0207033
http://dx.doi.org/10.1007/978-3-662-53174-7_24
http://dx.doi.org/10.1007/s00493-013-2865-6
http://dx.doi.org/10.1007/s00493-013-2865-6
http://dx.doi.org/10.1016/j.jctb.2011.03.004
http://dx.doi.org/10.1016/j.jctb.2011.03.004
http://dx.doi.org/10.1016/j.jctb.2011.12.001
http://dx.doi.org/10.1137/1.9781611973105.27
http://dx.doi.org/10.1016/j.disc.2006.07.008
http://dx.doi.org/10.1007/s00493-009-2178-y
http://dx.doi.org/10.1016/j.jctb.2005.08.001
http://dx.doi.org/10.1016/j.jctb.2005.08.001
http://dx.doi.org/10.1145/1290672.1290685
http://dx.doi.org/10.1007/s00453-012-9630-x
http://dx.doi.org/10.1016/j.jctb.2012.05.004
http://dx.doi.org/10.1145/1159892.1159898
http://dx.doi.org/10.1007/s004930100024
http://dx.doi.org/10.1007/s004930050056
http://dx.doi.org/10.1007/s004930050056
http://dx.doi.org/10.1016/0095-8956(86)90030-4

D. Lokshtanov, A. E. Mouawad, S. Saurabh, and M. Zehavi 71:15

38 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

39 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discrete Math., 24(1):146–157, 2010. doi:10.1137/070697781.

40 Carsten Thomassen. The Erdős-Pósa property for odd cycles in graphs of large connectivity.
Combinatorica, 21(2):321–333, 2001. doi:10.1007/s004930100028.

ICALP 2017

http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1137/070697781
http://dx.doi.org/10.1007/s004930100028

An Efficient Strongly Connected Components
Algorithm in the Fault Tolerant Model∗†

Surender Baswana1, Keerti Choudhary2, and Liam Roditty3

1 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India
sbaswana@cse.iitk.ac.in

2 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India
keerti@cse.iitk.ac.in

3 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
liam.roditty@biu.ac.il

Abstract
In this paper we study the problem of maintaining the strongly connected components of a graph
in the presence of failures. In particular, we show that given a directed graph G = (V,E) with
n = |V | and m = |E|, and an integer value k ≥ 1, there is an algorithm that computes in
O(2kn log2 n) time for any set F of size at most k the strongly connected components of the
graph G \ F . The running time of our algorithm is almost optimal since the time for outputting
the SCCs of G \ F is at least Ω(n). The algorithm uses a data structure that is computed in a
preprocessing phase in polynomial time and is of size O(2kn2).

Our result is obtained using a new observation on the relation between strongly connected
components (SCCs) and reachability. More specifically, one of the main building blocks in our
result is a restricted variant of the problem in which we only compute strongly connected com-
ponents that intersect a certain path. Restricting our attention to a path allows us to implicitly
compute reachability between the path vertices and the rest of the graph in time that depends
logarithmically rather than linearly in the size of the path. This new observation alone, how-
ever, is not enough, since we need to find an efficient way to represent the strongly connected
components using paths. For this purpose we use a mixture of old and classical techniques such
as the heavy path decomposition of Sleator and Tarjan [29] and the classical Depth-First-Search
algorithm. Although, these are by now standard techniques, we are not aware of any usage of
them in the context of dynamic maintenance of SCCs. Therefore, we expect that our new insights
and mixture of new and old techniques will be of independent interest.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases Fault tolerant, Directed graph, Strongly connected components

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.72

1 Introduction

Computing the strongly connected components (SCCs) of a directed graph G = (V,E), where
n = |V | and m = |E|, is one of the most fundamental problems in computer science. There
are several classical algorithms for computing the SCCs in O(m+ n) time that are taught in
any standard undergraduate algorithms course [9].

∗ Full version of this article is available at https://arxiv.org/abs/1610.04010.
† This research was partially supported by Israel Science Foundation (ISF) and University Grants

Commission (UGC) of India. The research of the second author was partially supported by Google
India under the Google India PhD Fellowship Award.

EA
T

C
S

© Surender Baswana, Keerti Choudhary, and Liam Roditty;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 72; pp. 72:1–72:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.72
https://arxiv.org/abs/1610.04010
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

In this paper we study the following natural variant of the problem in dynamic graphs.
What is the fastest algorithm to compute the SCCs of G \ F , where F is any set of edges or
vertices. The algorithm can use a polynomial size data structure computed in polynomial
time for G during a preprocessing phase.

The main result of this paper is:

I Theorem 1. There is an algorithm that computes the SCCs of G \ F , for any set F of k
edges or vertices, in O(2kn log2 n) time. The algorithm uses a data structure of size O(2kn2)
computed in O(2kn2m) time for G during a preprocessing phase.

Since the time for outputting the SCCs of G \ F is at least Ω(n), the running time of our
algorithm is optimal (up to a polylogarithmic factor) for any fixed value of k.

This dynamic model is usually called the fault tolerant model and its most important
parameter is the time that it takes to compute the output in the presence of faults. It is
an important theoretical model as it can be viewed as a restriction of the deletion only
(decremental) model in which edges (or vertices) are deleted one after another and queries
are answered between deletions. The fault tolerant model is especially useful in cases where
the worst case update time in the more general decremental model is high.

There is wide literature on the problem of decremental SCCs. Recently, in a major
breakthrough, Henzinger, Krinninger and Nanongkai [18] presented a randomized algorithm
with O(mn0.9+o(1)) total update time and broke the barrier of Ω(mn) for the problem. Even
more recently, Chechik et al. [7] obtained an improved total running time of O(m

√
n logn).

However, these algorithms and in fact all the previous algorithms have an Ω(m) worst
case update time for a single edge deletion. This is not a coincidence. Recent developments
in conditional lower bounds by Abboud and V. Williams [1] and by Henzinger, Krinninger,
Nanongkai and Saranurak [19] showed that unless a major breakthrough happens, the worst
case update time of a single operation in any algorithm for decremental SCCs is Ω(m).
Therefore, in order to obtain further theoretical understanding on the problem of decremental
SCCs, and in particular on the worst case update time it is only natural to focus on the
restricted dynamic model of fault tolerant.

In the recent decade several different researchers used the fault tolerant model to study
the worst case update time per operation for dynamic connectivity in undirected graphs.
Pǎtraşcu and Thorup [26] presented connectivity algorithms that support edge deletions in
this model. Their result was improved by the recent polylogarithmic worst case update time
algorithm of Kapron, King and Mountjoy [21]. Duan and Pettie [13, 14] used this model to
obtain connectivity algorithms that support vertex deletions.

In directed graphs, very recently, Georgiadis, Italiano and Parotsidis [16] considered the
problem of SCCs but only for a single edge or a single vertex failure, that is |F | = 1. They
showed that it is possible to compute the SCCs of G \ {e} for any e ∈ E (or of G \ {v} for
any v ∈ V) in O(n) time using a data structure of size O(n) that was computed for G in
a preprocessing phase in O(m + n) time. Our result is the first generalized result for any
constant size F . This comes with the price of an extra O(log2 n) factor in the running time,
a slower preprocessing time and a larger data structure. In [16], Georgiadis, Italiano and
Parotsidis also considered the problem of answering strong connectivity queries after one
failure. They show construction of an O(n) size oracle that can answer in constant time
whether any two given vertices of the graph are strongly connected after failure of a single
edge or a single vertex.

In a previous work [2] we considered the problem of finding a sparse subgraph that
preserves single source reachability. More specifically, given a directed graph G = (V,E) and

S. Baswana, K. Choudhary, and L. Roditty 72:3

a vertex s ∈ V , a subgraph H of G is said to be a k-Fault Tolerant Reachability Subgraph
(k-FTRS) for G if for any set F of at most k edges (or vertices), a vertex v ∈ V is reachable
from s in G \ F if and only if v is reachable from s in H \ F . In [2] we proved that there
exists a k-FTRS for s with at most 2kn edges.

Using the k-FTRS structure, it is relatively straightforward to obtain a data structure
that, for any pair of vertices u, v ∈ V and any set F of size k, answers in O(2kn) time queries
of the form:

“Are u and v in the same SCC of G \ F?”

The data structure consists of a k-FTRS for every v ∈ V . It is easy to see that u and v are
in the same SCC of G \ F if and only if v is reachable from u in k-FTRS(u) \ F and u is
reachable from v in k-FTRS(v) \ F . So the query can be answered by checking, using graph
traversals, whether v is reachable from u in k-FTRS(u) \F and whether u is reachable from
v in k-FTRS(v) \ F . The cost of these two graph traversals is O(2kn). The size of the data
structure is O(2kn2).

This problem, however, is much easier since the vertices in the query reveal which two
k-FTRS we need to scan. In the challenge that we address in this paper all the SCCs of
G \ F , for an arbitrary set F , have to be computed. However, using the same data structure
as before, it is not really clear a-priori which of the k-FTRS we need to scan.

We note that our algorithm uses the k-FTRS which seems to be an essential tool but
is far from being a sufficient one and more involved ideas are required. As an example
to such a relation between a new result and an old tool one can take the deterministic
algorithm of Łącki [23] for decremental SCCs in which the classical algorithm of Italiano [20]
for decremental reachability trees in directed acyclic graphs is used. The main contribution of
Łącki [23] is a new graph decomposition that made it possible to use Italiano’s algorithm [20]
efficiently.

1.1 An overview of our result
We obtain our O(2kn log2 n)-time algorithm using several new ideas. Interestingly, one of
the main building blocks is the following restricted variant of the problem.

Given any set F of k failed edges and any path P which is intact in G \ F , output all
the SCCs of G \ F that intersect with P (i.e. contain at least one vertex of P).

To solve this restricted version, we implicitly solve the problem of reachability from x (and
to x) in G\F , for each x ∈ P . Though it is trivial to do so in time O(2kn|P |) using k-FTRS
of each vertex on P , our goal is to preform this computation in O(2kn logn) time, that is, in
running time that is independent of the length of P (up to a logarithmic factor). For this
we use a careful insight into the structure of reachability between P and V . Specifically, if
v ∈ V is reachable from x ∈ P , then v is also reachable from any predecessor of x on P , and
if v is not reachable from x, then it cannot be reachable from any successor of x as well. Let
w be any vertex on P , and let A be the set of vertices reachable from w in G \ F . Then
we can split P at w to obtain two paths: P1 and P2. We already know that all vertices in
P1 have a path to A, so for P1 we only need to focus on set V \A. Also the set of vertices
reachable from any vertex on P2 must be a subset of A, so for P2 we only need to focus on
set A. This suggests a divide-and-conquer approach which along with some more insight
into the structure of k-FTRS helps us to design an efficient algorithm for computing all the
SCCs that intersect P .

ICALP 2017

72:4 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

In order to use the above result to compute all the SCCs of G \ F , we need a clever
partitioning of G into a set of vertex disjoint paths. A Depth-First-Search (DFS) tree plays
a crucial role here as follows. Let P be any path from root to a leaf node in a DFS tree T . If
we compute the SCCs intersecting P and remove them, then the remaining SCCs must be
contained in subtrees hanging from path P . So to compute the remaining SCCs we do not
need to work on the entire graph. Instead, we need to work on each subtree. In order to
pursue this approach efficiently, we need to select path P in such a manner that the subtrees
hanging from P are of small size. The heavy path decomposition of Sleator and Tarjan [29]
helps to achieve this objective. 1

Our algorithm and data structure can be extended to support insertions as well. More
specifically, we can report the SCCs of a graph that is updated by insertions and deletions of
k edges in the same running time.

1.2 Related work
The problem of maintaining the SCCs of a graph was studied in the decremental model. In
this model the goal is to maintain the SCCs of a graph whose edges are being deleted by an
adversary. The main parameters in this model are the worst case update time per an edge
deletion and the total update from the first edge deletion until the last. Frigioni et al.[15]
presented an algorithm that has an expected total update time of O(mn) if all the deleted
edges are chosen at random. Roditty and Zwick [28] presented a Las-Vegas algorithm with an
expected total update time of O(mn) and expected worst case update time for any single edge
deletion of O(m). Łącki [23] presented a deterministic algorithm with a total update time of
O(mn), and thus solved the open problem posed by Roditty and Zwick in [28]. However, the
worst case update time per a single edge deletion of his algorithm is O(mn). Roditty [27]
improved the worst case update time of a single edge deletion to O(m logn). Recently, in
a major breakthrough, Henzinger, Krinninger and Nanongkai [18] presented a randomized
algorithm with O(mn0.9+o(1)) total update time. Very recently, Chechik et al. [7] obtained a
total update time of O(m

√
n logn). Note that all the previous works on decremental SCC

are with Ω(m) worst case update time. Whereas, our result directly implies O(n log2 n) worst
case update time as long as the total deletion length is constant.

Most of the previous work in the fault tolerant model is on variants of the shortest
path problem. Demetrescu, Thorup, Chowdhury and Ramachandran [10] designed an
O(n2 logn) size data structure that can report the distance from u to v avoiding x for any
u, v, x ∈ V in O(1) time. Bernstein and Karger [3] improved the preprocessing time of [10]
to O(mn polylog n). Duan and Pettie [12] designed such a data structure for two vertex
faults of size O(n2 logn). Weimann and Yuster [31] considered the question of optimizing the
preprocessing time using Fast Matrix Multiplication (FMM) for graphs with integer weights
from the range [−M,M]. Grandoni and Vassilevska Williams [17] improved the result of
[31] based on a novel algorithm for computing all the replacement paths from a given source
vertex in the same running time as solving APSP in directed graphs.

For the problem of single source shortest paths Parter and Peleg [25] showed that for
unweighted graphs there is a subgraph with O(n3/2) edges that supports one fault. They
also showed a matching lower bound. Recently, Parter [24] extended this result to two faults
with O(n5/3) edges for undirected graphs. She also showed a lower bound of Ω(n5/3).

1 We note that the heavy path decomposition was also used in the fault tolerant model in STACS’10
paper of [22], but in a completely different way and for a different problem.

S. Baswana, K. Choudhary, and L. Roditty 72:5

Baswana and Khanna [22] showed that there is a subgraph with O(n logn) edges that
preserves the distances from s up to a multiplicative stretch of 3 upon failure of any single
vertex. For the case of edge failures, sparse fault tolerant subgraphs exist for general k. Bilò
et al. [4] showed that we can compute a subgraph with O(kn) edges that preserves distances
from s up to a multiplicative stretch of (2k + 1) upon failure of any k edges. They also
showed that we can compute a data structure of O(kn log2 n) size that is able to report the
(2k + 1)-stretched distance from s in O(k2 log2 n) time.

The questions of finding graph spanners, approximate distance oracles and compact
routing schemes in the fault tolerant model were studied in [11, 8, 5, 6].

1.3 Organization of the paper
We describe notations, terminologies, some basic properties of DFS, heavy-path decomposition,
and k-FTRS in Section 2. In Section 3, we describe the fault tolerant algorithm for computing
the strongly connected components intersecting any path. We present our main algorithm
for handling k failures in Section 4. The details on how to extend our algorithm and data
structure to support insertions as well is provided in the full version.

2 Preliminaries

Let G = (V,E) denote the input directed graph on n = |V | vertices and m = |E| edges. We
assume that G is strongly connected, since if it is not the case, then we may apply our result
to each strongly connected component of G. We first introduce some notations that will be
used throughout the paper.

T : A DFS tree of G.
T (v): The subtree of T rooted at a vertex v.
Path(a, b): The tree path from a to b in T . Here a is assumed to be an ancestor of b.
depth(Path(a, b)): The depth of vertex a in T .
GR: The graph obtained by reversing all the edges in graph G.
H(A): The subgraph of a graph H induced by the vertices of subset A.
H \ F : The graph obtained by deleting the edges in set F from graph H.
In-Edges(v,H): The set of all incoming edges to v in graph H.
P [a, b]: The subpath of path P from vertex a to vertex b, assuming a and b are in P
and a precedes b.
P ::Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last vertex of P is the same as the first vertex of Q.

Our algorithm for computing SCCs in a fault tolerant environment crucially uses the
concept of a k-fault tolerant reachability subgraph (k-FTRS) which is a sparse subgraph
that preserves reachability from a given source vertex even after the failure of at most k
edges in G. A k-FTRS is formally defined as follows.

I Definition 2 (k-FTRS). Let s ∈ V be any designated source. A subgraph H of G is said
to be a k-Fault Tolerant Reachability Subgraph (k-FTRS) of G with respect to s if for any
subset F ⊆ E of k edges, a vertex v ∈ V is reachable from s in G \ F if and only if v is
reachable from s in H \ F .

In [2], we present the following result for the construction of a k-FTRS for any k ≥ 1.

ICALP 2017

72:6 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

I Theorem 3 ([2]). There exists an O(2kmn) time algorithm that for any given integer
k ≥ 1, and any given directed graph G on n vertices, m edges and a designated source vertex
s, computes a k-FTRS for G with at most 2kn edges. Moreover, the in-degree of each vertex
in this k-FTRS is bounded by 2k.

Our algorithm will require the knowledge of the vertices reachable from a vertex v as
well as the vertices that can reach v. So we define a k-FTRS of both the graphs – G and
GR with respect to any source vertex v as follows.
G(v): The k-FTRS of graph G with v as source obtained by Theorem 3.
GR(v): The k-FTRS of graph GR with v as source obtained by Theorem 3.

The following lemma states that the subgraph of a k-FTRS induced by A ⊂ V can serve
as a k-FTRS for the subgraph G(A) given that A satisfies certain properties.

I Lemma 4. Let s be any designated source and H be a k-FTRS of G with respect to s. Let
A be a subset of V containing s such that every path from s to any vertex in A is contained
in G(A). Then H(A) is a k-FTRS of G(A) with respect to s.

Proof. Let F be any set of at most k failing edges, and v be any vertex reachable from s

in G(A) \ F . Since v is reachable from s in G \ F and H is a k-FTRS of G, so v must be
reachable from s in H \ F as well. Let P be any path from s to v in H \ F . Then (i) all
edges of P are present in H and (ii) none of the edges of F appear on P . Since it is already
given that every path from s to any vertex in A is contained in G(A), therefore, P must be
present in G(A). So every vertex of P belongs to A. This fact combined with the inferences
(i) and (ii) implies that P must be present in H(A) \ F . Hence H(A) is k-FTRS of G(A)
with respect to s. J

The next lemma is an adaptation of Lemma 10 from Tarjan’s classical paper on Depth
First Search [30] to our needs (for proof see the full version).

I Lemma 5. Let T be a DFS tree of G. Let a, b ∈ V be two vertices without any ancestor-
descendant relationship in T , and assume that a is visited before b in the DFS traversal of G
corresponding to tree T . Every path from a to b in G must pass through a common ancestor
of a and b in T .

2.1 A heavy path decomposition
The heavy path decomposition of a tree was designed by Sleator and Tarjan [29] in the
context of dynamic trees. This decomposition has been used in a variety of applications since
then. Given any rooted tree T , this decomposition splits T into a set P of vertex disjoint
paths with the property that any path from the root to a leaf node in T can be expressed as
a concatenation of at most logn subpaths of paths in P. This decomposition is carried out
as follows. Starting from the root, we follow the path downward such that once we are at a
node, say v, the next node traversed is the child of v in T whose subtree is of maximum size,
where the size of a subtree is the number of nodes it contains. We terminate upon reaching
a leaf node. Let P be the path obtained in this manner. If we remove P from T , we are
left with a collection of subtrees each of size at most n/2. Each of these trees hangs from
P through an edge in T . We carry out the decomposition of these trees recursively. The
following lemma is immediate from the construction of a heavy path decomposition.

I Lemma 6. For any vertex v ∈ V , the number of paths in P which start from either v or
an ancestor of v in T is at most logn.

S. Baswana, K. Choudhary, and L. Roditty 72:7

Figure 1 Depiction of X in(v) and Xout(v) for a vertex v whose SCC intersects X.

We now introduce the notion of ancestor path.

I Definition 7. A path Path(a1, b1) ∈ P is said to be an ancestor path of Path(a2, b2) ∈ P ,
if a1 is an ancestor of a2 in T .

In this paper, we describe the algorithm for computing SCCs of graph G after any k edge
failures. Vertex failures can be handled by simply splitting each vertex v into edge (vin, vout),
where the incoming and outgoing edges of v are directed to vin and from vout, respectively.

3 Computation of SCCs intersecting a given path

Let F be a set of at most k failing edges, and X = (x1, x2, . . . , xt) be any path in G from
x1 to xt which is intact in G \ F . In this section, we present an algorithm that outputs in
O(2kn logn) time the SCCs of G \ F that intersect X.

For each v ∈ V , let X in(v) be the vertex of X of minimum index (if exists) that is
reachable from v in G \ F . Similarly, let Xout(v) be the vertex of X of maximum index (if
exists) that has a path to v in G \ F . (See Figure 1).

We start by proving certain conditions that must hold for a vertex if its SCC in G \ F
intersects X.

I Lemma 8. For any vertex w ∈ V , the SCC that contains w in G \ F intersects X if and
only if the following two conditions are satisfied.
(i) Both X in(w) and Xout(w) are defined, and
(ii) either X in(w) = Xout(w), or X in(w) appears before Xout(w) on X.

Proof. Consider any vertex w ∈ V . Let S be the SCC in G \ F that contains w and assume
S intersects X. Let w1 and w2 be the first and last vertices of X, respectively, that are in S.
Since w and w1 are in S there is a path from w to w1 in G \ F . Moreover, w cannot reach a
vertex that precedes w1 in X since such a vertex will be in S as well and it will contradict the
definition of w1. Therefore, w1 = X in(w). Similarly we can prove that w2 = Xout(w). Since
w1 and w2 are defined to be the first and last vertices from S on X, respectively, it follows
that either w1 = w2, or w1 precedes w2 on X. Hence conditions (i) and (ii) are satisfied.

Now assume that conditions (i) and (ii) are true. The definition of X in(·) and Xout(·)
implies that there is a path from Xout(w) to w, and a path from w to X in(w). Also, condition
(ii) implies that there is a path from X in(w) to Xout(w). Thus w, X in(w), and Xout(w) are
in the same SCC and it intersects X. J

The following lemma states the condition under which any two vertices lie in the same
SCC, given that their SCCs intersect X.

I Lemma 9. Let a, b be any two vertices in V whose SCCs intersect X. Then a and b lie in
the same SCC if and only if X in(a) = X in(b) and Xout(a) = Xout(b).

ICALP 2017

72:8 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

Algorithm 1: Binary-Search(i, j, A)
1 if (i = j) then
2 foreach v ∈ A do Xout(v) = xi;
3 else
4 mid← d(i+ j)/2e;
5 B ← Reach(xmid, A); /* vertices in A reachable from xmid */
6 Binary-Search(i,mid-1, A\B);
7 Binary-Search(mid, j, B);
8 end

Proof. In the proof of Lemma 8, we show that if SCC of w intersects X, then X in(w) and
Xout(w) are precisely the first and last vertices on X that lie in the SCC of w. Since SCCs
forms a partition of V , vertices a and b will lie in the same SCC if and only if X in(a) = X in(b)
and Xout(a) = Xout(b). J

It follows from the above two lemmas that in order to compute the SCCs in G \ F that
intersect with X, it suffices to compute X in(·) and Xout(·) for all vertices in V . It suffices
to focus on computation of Xout(·) for all the vertices of V , since X in(·) can be computed
in an analogous manner by just looking at graph GR. One trivial approach to achieve this
goal is to compute the set Vi consisting of all vertices reachable from each xi by performing
a BFS or DFS traversal of graph G(xi) \ F . Using this straightforward approach it takes
O(2knt) time to complete the task of computing Xout(v) for every v ∈ V , while our target
is to do so in O(2kn logn) time.

Observe the nested structure underlying Vi’s, that is, V1 ⊇ V2 ⊇ · · · ⊇ Vt. Consider any
vertex x`, 1 < ` < t. The nested structure implies for every v ∈ V` that Xout(v) must be
on the portion (x`, . . . , xt) of X. Similarly, it implies for every v ∈ V1 \ V` that Xout(v)
must be on the portion (x1, . . . , x`−1) of X. This suggests a divide and conquer approach to
efficiently compute Xout(·). We first compute the sets V1 and Vt in O(2kn) time each. For
each v ∈ V \ V1, we assign NULL to Xout(v) as it is not reachable from any vertex on X;
and for each v ∈ Vt we set Xout(v) to xt. For vertices in set V1 \ Vt, Xout(·) is computed by
calling the function Binary-Search(1, t− 1, V1 \ Vt). See Algorithm 1.

In order to explain the function Binary-Search, we first state an assertion that holds true
for each recursive call of the function Binary-Search. We prove this assertion in the next
subsection.
Assertion 1: If Binary-Search(i, j, A) is called, then A is precisely the set of those vertices

v ∈ V whose Xout(v) lies on the path (xi, xi+1, . . . , xj).

We now explain the execution of function Binary-Search(i, j, A). If i = j, then we assign
xi to Xout(v) for each v ∈ A as justified by Assertion 1. Let us consider the case when
i 6= j. In this case we first compute the index mid = d(i+ j)/2e. Next we compute the set
B consisting of all the vertices in A that are reachable from xmid. This set is computed
using the function Reach(xmid, A) which is explained later in Subsection 3.2. As follows
from Assertion 1, Xout(v) for each vertex v ∈ A must belong to path (xi, . . . , xj). Thus,
Xout(v) for all v ∈ B must lie on path (xmid, . . . , xj), and Xout(v) for all v ∈ A \ B must
lie on path (xi, . . . , xmid-1). So for computing Xout(·) for vertices in A \B and B, we invoke
the functions Binary-Search(i,mid-1, A\B) and Binary-Search(mid, j, B), respectively.

S. Baswana, K. Choudhary, and L. Roditty 72:9

3.1 Proof of correctness of algorithm
In this section we prove that Assertion 1 holds for each call of the Binary-Search function.
We also show how this assertion implies that Xout(v) is correctly computed for every v ∈ V .

Let us first see how Assertion 1 implies the correctness of our algorithm. It follows from the
description of the algorithm that for each i, (1 ≤ i ≤ t−1), the function Binary-Search(i, i, A)
is invoked for some A ⊆ V . Assertion 1 implies that A must be the set of all those vertices
v ∈ V such that Xout(v) = xi. As can be seen, the algorithm in this case correctly sets
Xout(v) to xi for each v ∈ A.

We now show that Assertion 1 holds true in each call of the function Binary-Search. It
is easy to see that Assertion 1 holds true for the first call Binary-Search(1, t − 1, V1 \ Vt).
Consider any intermediate recursive call Binary-Search(i, j, A), where i 6= j. It suffices to
show that if Assertion 1 holds true for this call, then it also holds true for the two recursive
calls that it invokes. Thus let us assume A is the set of those vertices v ∈ V whose Xout(v)
lies on the path (xi, xi+1, . . . , xj). Recall that we compute index mid lying between i and j,
and find the set B consisting of all those vertices in A that are reachable from xmid. From
the nested structure of the sets Vi, Vi+1, . . . , Vj , it follows that Xout(v) for all v ∈ B must lie
on path (xmid, . . . , xj), and Xout(v) for all v ∈ A \B must lie on path (xi, . . . , xmid-1). That
is, B is precisely the set of those vertices whose Xout(v) lies on the path (xmid, . . . , xj), and
A \B is precisely the set of those vertices whose Xout(v) lies on the path (xi, . . . , xmid-1).
Thus Assertion 1 holds true for the recursive calls Binary-Search(i,mid-1, A\B) and Binary-
Search(mid, j, B) as well.

3.2 Implementation of function Reach
The main challenge left now is to find an efficient implementation of the function Reach which
has to compute the vertices of its input set A that are reachable from a given vertex x ∈ X in
G \F . The function Reach can be easily implemented by a standard graph traversal initiated
from x in the graph G(x) \ F (recall that G(x) is a k-FTRS of x in G). This, however, will
take O(2kn) time which is not good enough for our purpose, as the total running time of
Binary-Search in this case will become O(|X|2kn). Our aim is to implement the function
Reach in O(2k|A|) time. In general, for an arbitrary set A this might not be possible. This
is because A might contain a vertex that is reachable from x via a single path whose vertices
are not in A, therefore, the algorithm must explore edges incident to vertices that are not
in A as well. However, the following lemma, that exploits Assertion 1, suggests that in our
case as the call to Reach is done while running the function Binary-Search we can restrict
ourselves to the set A only.

I Lemma 10. If Binary-Search(i, j, A) is called and ` ∈ [i, j], then for each path P from x`

to a vertex z ∈ A in graph in G \ F , all the vertices of P must be in the set A.

Proof. Assertion 1 implies that A is precisely the set of those vertices in V which are
reachable from xi but not reachable from xj+1 in G\F . Consider any vertex y ∈ P . Observe
that y is reachable from xi by the path X[xi, x`]::P [x`, y]. Moreover, y is not reachable from
xj+1, because otherwise z will also be reachable from xj+1, which is not possible since z ∈ A.
Thus vertex y lies in the set A. J

Lemma 10 and Lemma 4 imply that in order to find the vertices in A that are reachable
from xmid, it suffices to do traversal from xmid in the graph GA, the induced subgraph of A
in G(x) \ F , that has O(2k|A|) edges. Therefore, based on the above discussion, Algorithm 2
given below, is an implementation of function Reach that takes O(2k|A|) time.

ICALP 2017

72:10 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

Algorithm 2: Reach(xmid, A)
1 H ← G(xmid) \ F ;
2 GA ← (A, ∅); /* an empty graph */
3 foreach v ∈ A do
4 foreach (y, v) ∈ In-Edges(v,H) do
5 if y ∈ A then E(GA) = E(GA) ∪ (y, v);
6 end
7 end
8 B ← Vertices reachable from xmid obtained by a BFS or DFS traversal of graph GA;
9 Return B;

The following lemma gives the analysis of running time of Binary-Search(1, t− 1, V1 \ Vt).

I Lemma 11. The total running time of Binary-Search(1, t− 1, V1 \ Vt) is O(2kn logn).

Proof. The time complexity of Binary-Search(1, t− 1, V1 \Vt) is dominated by the total time
taken by all invocation of function Reach. Let us consider the recursion tree associated with
Binary-Search(1, t− 1, V1 \ Vt). It can be seen that this tree will be of height O(logn). In
each call of the Binary-Search, the input set A is partitioned into two disjoint sets. As a
result, the input sets associated with all recursive calls at any level j in the recursion tree
form a disjoint partition of V1 \ Vt. Since the time taken by Reach is O(2k|A|), so the total
time taken by all invocations of Reach at any level j is O(2k|V1 \ Vt|). As there are at most
logn levels in the recursion tree, the total time taken by Binary-Search(1, t− 1, V1 \ Vt) is
O(2kn logn). J

We conclude with the following theorem.

I Theorem 12. Let F be any set of at most k failed edges, and X = {x1, x2, . . . , xt} be any
path in G \ F . If we have prestored the graphs G(x) and GR(x) for each x ∈ X, then we can
compute all the SCCs of G \ F which intersect with X in O(2kn logn) time.

4 Main Algorithm

In the previous section we showed that given any path P , we can compute all the SCCs
intersecting P efficiently, if P is intact in G \ F . In the case that P contains ` failed edges
from F then P is decomposed into ` + 1 paths, and we can apply Theorem 12 to each of
these paths separately to get the following theorem:

I Theorem 13. Let P be any given path in G. Then there exists an O(2kn|P |) size data
structure that for any arbitrary set F of at most k edges computes the SCCs of G \ F that
intersect the path P in O((`+ 1)2kn logn) time, where ` (` ≤ k) is the number of edges in
F that lie on P .

Now in order to use Theorem 13 to design a fault tolerant algorithm for SCCs, we need
to find a family of paths, say P, such that for any F , each SCC of G \ F intersects at least
one path in P. As described in the Subsection 1.1, a heavy path decomposition of DFS tree
T serves as a good choice for P . Choosing T as a DFS tree helps us because of the following
reason: let P be any root-to-leaf path, and suppose we have already computed the SCCs in
G \ F intersecting P . Then each of the remaining SCCs must be contained in some subtree
hanging from path P . The following lemma formally states this fact.

S. Baswana, K. Choudhary, and L. Roditty 72:11

Algorithm 3: Compute SCC(G,F)
1 C ← ∅; /* Collection of SCCs */
2 W ← ∅; /* A subset of V whose SCC have been computed */
3 P ← A heavy-path decomposition of T , where paths are sorted in the non-decreasing

order of their depths;
4 foreach Path(a, b) ∈ P do
5 A← Vertices lying in the subtree T (a);
6 (S1, . . . , St)← SCCs intersecting Path(a, b) in G(A) \ F computed using Da,b;
7 foreach i ∈ [1, t] do
8 if (Si *W) then Add Si to collection C and set W = W ∪ Si;
9 end

10 end
11 Return C;

I Lemma 14. Let F be any set of failed edges, and Path(a, b) be any path in P. Let S
be any SCC in G \ F that intersects Path(a, b) but does not intersect any ancestor path of
Path(a, b) in P. Then all the vertices of S must lie in the subtree T (a).

Proof. Consider a vertex u on Path(a, b) whose SCC Su in G\F is not completely contained
in the subtree T (a). We show that Su must contain an ancestor of a in T , thereby proving
that it intersects an ancestor-path of Path(a, b) in P. Let v be any vertex in Su that is not
in the subtree T (a). Let Pu,v and Pv,u be paths from u to v and from v to u, respectively,
in G \ F . From Lemma 5 it follows that either Pu,v or Pv,u must pass through a common
ancestor of u and v in T . Let this ancestor be z. Notice that all the vertices of Pu,v and Pv,u

must lie in Su. In particular, z must also lie in Su. Moreover, since v /∈ T (a) and u ∈ T (a),
their common ancestor z in T is an ancestor of a. Since z ∈ Su and it is an ancestor of a in
T , the lemma follows. J

Lemma 14 suggests that if we process the paths from P in the non-decreasing order
of their depths, then in order to compute the SCCs intersecting a path Path(a, b) ∈ P, it
suffices to focus on the subgraph induced by the vertices in T (a) only. This is because the
SCCs intersecting Path(a, b) that do not completely lie in T (a) would have already been
computed during the processing of some ancestor path of Path(a, b).

We preprocess the graph G as follows. We first compute a heavy path decomposition P
of DFS tree T . Next for each path Path(a, b) ∈ P , we use Theorem 13 to construct the data
structure for path Path(a, b) and the subgraph of G induced by vertices in T (a). We use the
notation Da,b to denote this data structure. Our algorithm for reporting SCCs in G \ F will
use the collection of these data structures associated with the paths in P as follows.

Let C denote the collection of SCCs in G \ F initialized to ∅. We process the paths from
P in non-decreasing order of their depths. Let Path(a, b) be any path in P and let A be
the set of vertices belonging to T (a). We use the data structure Da,b to compute SCCs of
G(A) \ F intersecting Path(a, b). Let these be S1, . . . , St. Note that some of these SCCs
might be a part of some bigger SCC computed earlier. We can detect it by keeping a set W
of all vertices for which we have computed their SCCs. So if Si ⊆W , then we can discard Si,
else we add Si to collection C. Algorithm 3 gives the complete pseudocode of this algorithm.

Note that, in the above explanation, we only used the fact that T is a DFS tree, and
P could have been any path decomposition of T . We now show how the fact that P is a
heavy-path decomposition is crucial for the efficiency of our algorithm. Consider any vertex

ICALP 2017

72:12 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

v ∈ T . The number of times v is processed in Algorithm 3 is equal to the number of paths in
P that start from either v or an ancestor of v. For this number to be small for each v, we
choose P to be a heavy path decomposition of T . On applying Theorem 13, this immediately
gives that the total time taken by Algorithm 3 is O(k2kn log2 n). In the next subsection, we
do a more careful analysis to give a bound of O(2kn log2 n).

4.1 Analysis of time complexity of Algorithm 3
For any path Path(a, b) ∈ P and any set F of failing edges, let `(a, b) denote the number
of edges of F that lie on Path(a, b). It follows from Theorem 13 that the time spent in
processing Path(a, b) by Algorithm 3 is O

(
(`(a, b) + 1)× 2k|T (a)| × logn

)
. Hence the time

complexity of Algorithm 3 is of the order of∑
P ath(a,b)∈P

(`(a, b) + 1)× 2k|T (a)| × logn .

In order to calculate this we define a notation α(v, Path(a, b)) as `(a, b) + 1 if v ∈ T (a), and
0 otherwise, for each v ∈ V and Path(a, b) ∈ P. So the time complexity of Algorithm 3
becomes

2k logn×
(∑

P ath(a,b)∈P

(`(a, b) + 1)× |T (a)|
)

= 2k logn×
(∑

P ath(a,b)∈P

∑
v∈V

α(v, Path(a, b))
)

= 2k logn×
(∑

v∈V

∑
P ath(a,b)∈P

α(v, Path(a, b))
)
.

Observe that for any vertex v and Path(a, b) ∈ P , α(v, Path(a, b)) is equal to `(a, b) + 1 if a
is either v or an ancestor of v, otherwise it is zero. Consider any vertex v ∈ V . We now show
that

∑
P ath(a,b)∈P α(v, Path(a, b)) is at most k + logn. Let Pv denote the set of those paths

in P which starts from either v or an ancestor of v. Then
∑

P ath(a,b)∈P α(v, Path(a, b)) =∑
P ath(a,b)∈Pv

`(a, b) + 1. Note that
∑

P ath(a,b)∈Pv
`(a, b) is at most k, and Lemma 6 implies

that the number of paths in Pv is at most logn. This shows that
∑

P ath(a,b)∈P α(v, Path(a, b))
is at most k + logn which is O(logn), since k ≤ logn.

Hence the time complexity of Algorithm 3 becomes O(2kn log2 n). We thus conclude with
the following theorem.

I Theorem 15. For any n-vertex directed graph G, there exists an O(2kn2) size data
structure that, given any set F of at most k failing edges, can report all the SCCs of G \ F
in O(2kn log2 n) time.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443,
2014. URL: http://dx.doi.org/10.1109/FOCS.2014.53, doi:10.1109/FOCS.2014.53.

2 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for
single source reachability: generic and optimal. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 509–518, 2016. doi:10.1145/2897518.2897648.

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2897518.2897648

S. Baswana, K. Choudhary, and L. Roditty 72:13

3 Aaron Bernstein and David Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In STOC’09: Proceedings of the 41st annual ACM symposium on Theory of
computing, pages 101–110, New York, NY, USA, 2009. ACM. doi:http://doi.acm.org/
10.1145/1536414.1536431.

4 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-
tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14,
2016.

5 Shiri Chechik. Fault-tolerant compact routing schemes for general graphs. Inf. Comput.,
222:36–44, 2013. URL: http://dx.doi.org/10.1016/j.ic.2012.10.009, doi:10.1016/
j.ic.2012.10.009.

6 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + epsilon)-approximate
f -sensitive distance oracles. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1479–1496, 2017. URL: http://dx.doi.org/10.1137/1.9781611974782.96,
doi:10.1137/1.9781611974782.96.

7 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Lacki, and Nikos
Parotsidis. Decremental single-source reachability and strongly connected components in
O(m
√
n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 315–324, 2016.

8 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f-sensitivity distance
oracles and routing schemes. Algorithmica, 63(4):861–882, 2012. URL: http://dx.doi.
org/10.1007/s00453-011-9543-0, doi:10.1007/s00453-011-9543-0.

9 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms (3. ed.). MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

10 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008. doi:http://dx.doi.org/10.1137/S0097539705429847.

11 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011. URL: http:
//doi.acm.org/10.1145/1993806.1993830, doi:10.1145/1993806.1993830.

12 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In SODA’09:
Proceedings of 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 506–515,
Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.

13 Ran Duan and Seth Pettie. Connectivity oracles for failure prone graphs. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachu-
setts, USA, 5-8 June 2010, pages 465–474, 2010. URL: http://doi.acm.org/10.1145/
1806689.1806754, doi:10.1145/1806689.1806754.

14 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 490–509, 2017.

15 Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. An ex-
perimental study of dynamic algorithms for transitive closure. ACM Journal of Exper-
imental Algorithmics, 6:9, 2001. URL: http://doi.acm.org/10.1145/945394.945403,
doi:10.1145/945394.945403.

16 Loukas Georgiadis, Giuseppe F. Italiano, and Nikos Parotsidis. Strong connectivity in
directed graphs under failures, with applications. In Proceedings of the Twenty-Eighth

ICALP 2017

http://dx.doi.org/http://doi.acm.org/10.1145/1536414.1536431
http://dx.doi.org/http://doi.acm.org/10.1145/1536414.1536431
http://dx.doi.org/10.1016/j.ic.2012.10.009
http://dx.doi.org/10.1016/j.ic.2012.10.009
http://dx.doi.org/10.1016/j.ic.2012.10.009
http://dx.doi.org/10.1137/1.9781611974782.96
http://dx.doi.org/10.1137/1.9781611974782.96
http://dx.doi.org/10.1007/s00453-011-9543-0
http://dx.doi.org/10.1007/s00453-011-9543-0
http://dx.doi.org/10.1007/s00453-011-9543-0
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://dx.doi.org/http://dx.doi.org/10.1137/S0097539705429847
http://doi.acm.org/10.1145/1993806.1993830
http://doi.acm.org/10.1145/1993806.1993830
http://dx.doi.org/10.1145/1993806.1993830
http://doi.acm.org/10.1145/1806689.1806754
http://doi.acm.org/10.1145/1806689.1806754
http://dx.doi.org/10.1145/1806689.1806754
http://doi.acm.org/10.1145/945394.945403
http://dx.doi.org/10.1145/945394.945403

72:14 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1880–1899, 2017.

17 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles
via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
748–757, 2012. URL: http://dx.doi.org/10.1109/FOCS.2012.17, doi:10.1109/FOCS.
2012.17.

18 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decre-
mental algorithms for single-source reachability and shortest paths on directed graphs. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June
03, 2014, pages 674–683, 2014. URL: http://doi.acm.org/10.1145/2591796.2591869,
doi:10.1145/2591796.2591869.

19 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 21–30, 2015. URL: http://doi.acm.org/10.1145/2746539.2746609, doi:
10.1145/2746539.2746609.

20 Giuseppe F. Italiano. Finding paths and deleting edges in directed acyclic graphs. Inf. Pro-
cess. Lett., 28(1):5–11, 1988. URL: http://dx.doi.org/10.1016/0020-0190(88)90136-6,
doi:10.1016/0020-0190(88)90136-6.

21 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131–1142, 2013.

22 Neelesh Khanna and Surender Baswana. Approximate shortest paths avoiding a failed ver-
tex: Optimal size data structures for unweighted graphs. In 27th International Symposium
on Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France,
pages 513–524, 2010.

23 Jakub Lacki. Improved deterministic algorithms for decremental transitive closure and
strongly connected components. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1438–1445, 2011. doi:10.1137/1.9781611973082.111.

24 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21-23, 2015, pages 481–490, 2015. doi:10.1145/2767386.2767408.

25 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms – ESA
2013 – 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 779–790, 2013.

26 Mihai Patrascu and Mikkel Thorup. Planning for fast connectivity updates. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007,
Providence, RI, USA, Proceedings, pages 263–271, 2007. doi:10.1109/FOCS.2007.54.

27 Liam Roditty. Decremental maintenance of strongly connected components. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1143–1150, 2013.

28 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008.

29 Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26:362–391, 1983.

http://dx.doi.org/10.1109/FOCS.2012.17
http://dx.doi.org/10.1109/FOCS.2012.17
http://dx.doi.org/10.1109/FOCS.2012.17
http://doi.acm.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://doi.acm.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1016/0020-0190(88)90136-6
http://dx.doi.org/10.1016/0020-0190(88)90136-6
http://dx.doi.org/10.1137/1.9781611973082.111
http://dx.doi.org/10.1145/2767386.2767408
http://dx.doi.org/10.1109/FOCS.2007.54

S. Baswana, K. Choudhary, and L. Roditty 72:15

30 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

31 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles
via fast matrix multiplication. ACM Transactions on Algorithms, 9(2):14, 2013. doi:
10.1145/2438645.2438646.

ICALP 2017

http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1145/2438645.2438646
http://dx.doi.org/10.1145/2438645.2438646

Preserving Distances in Very Faulty Graphs∗†

Greg Bodwin1, Fabrizio Grandoni2, Merav Parter3, and
Virginia Vassilevska Williams4

1 CSAIL, MIT, Cambridge, MA, USA
gbodwin@mit.edu

2 IDSIA, USI-SUPSI, Manno, Switzerland
fabrizio@idsia.ch

3 CSAIL, MIT, Cambridge, MA, USA
parter@mit.edu

4 CSAIL, MIT, Cambridge, MA, USA
virgi@mit.edu

Abstract
Preservers and additive spanners are sparse (hence cheap to store) subgraphs that preserve the
distances between given pairs of nodes exactly or with some small additive error, respectively.
Since real-world networks are prone to failures, it makes sense to study fault-tolerant versions of
the above structures. This turns out to be a surprisingly difficult task. For every small but arbit-
rary set of edge or vertex failures, the preservers and spanners need to contain replacement paths
around the faulted set. Unfortunately, the complexity of the interaction between replacement
paths blows up significantly, even from 1 to 2 faults, and the structure of optimal preservers and
spanners is poorly understood. In particular, no nontrivial bounds for preservers and additive
spanners are known when the number of faults is bigger than 2.

Even the answer to the following innocent question is completely unknown: what is the worst-
case size of a preserver for a single pair of nodes in the presence of f edge faults? There are
no super-linear lower bounds, nor subquadratic upper bounds for f > 2. In this paper we make
substantial progress on this and other fundamental questions:

We present the first truly sub-quadratic size fault-tolerant single-pair preserver in unweighted
(possibly directed) graphs: for any n node graph and any fixed number f of faults,
Õ(fn2−1/2f) size suffices. Our result also generalizes to the single-source (all targets) case,
and can be used to build new fault-tolerant additive spanners (for all pairs).
The size of the above single-pair preserver grows to O(n2) for increasing f . We show that this
is necessary even in undirected unweighted graphs, and even if you allow for a small additive
error: If you aim at size O(n2−ε) for ε > 0, then the additive error has to be Ω(εf). This
surprisingly matches known upper bounds in the literature.
For weighted graphs, we provide matching upper and lower bounds for the single pair case.
Namely, the size of the preserver is Θ(n2) for f ≥ 2 in both directed and undirected graphs,
while for f = 1 the size is Θ(n) in undirected graphs. For directed graphs, we have a
superlinear upper bound and a matching lower bound.

Most of our lower bounds extend to the distance oracle setting, where rather than a subgraph
we ask for any compact data structure.

1998 ACM Subject Classification G.2.2 Graph Theory, I.1.2 Analysis of Algorithms, B.8.1 Re-
liability, Testing, and Fault-Tolerance

∗ A full version of this paper is available at https://arxiv.org/abs/1703.10293.
† The first and fourth author were partially supported by NSF Grants CCF-1417238, CCF-1528078 and

CCF-1514339, and BSF Grant BSF:2012338. The second author was partially supported by the ERC
Starting Grant NEWNET 279352 and the SNSF Grant APPROXNET 200021_159697/1.

EA
T

C
S

© Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 73; pp. 73:1–73:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1703.10293
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

73:2 Preserving Distances in Very Faulty Graphs

Keywords and phrases Fault Tolerance, shortest paths, replacement paths

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.73

1 Introduction

Distance preservers and additive spanners are (sparse) subgraphs that preserve, either exactly
or with some small additive error, the distances between given critical pairs P of nodes. This
has been a subject of intense research in the last two decades [18, 11, 4, 3, 15, 6, 1, 34].

However, real-world networks are prone to failures. For this reason, more recently
(e.g. [16, 14, 17, 32, 30, 9, 33, 8, 21, 27, 19, 28]) researchers have devoted their attention to
fault-tolerant versions of the above structures, where distances are (approximately) preserved
even in the presence of a few edge (or vertex) faults. For the sake of simplicity we focus here
on edge faults, but many of these results generalize to the case of vertex faults where F ⊆ V .

I Definition 1. Given an n-node graph G = (V,E) and P ⊆ V × V , a subgraph H ⊆ G is
an f -fault tolerant (f -FT) β-additive P -pairwise spanner if

distH\F (s, t) ≤ distG\F (s, t) + β, ∀(s, t) ∈ P,∀F ⊆ E, |F | ≤ f.

If β = 0, then H is an f -FT P -pairwise preserver.

Finding sparse FT spanners/preservers turned out to be an incredibly challenging task.
Despite intensive research, many simple questions have remained open, the most striking of
which arguably is the following:

I Question 1. What is the worst-case size of a preserver for a single pair (s, t) and f ≥ 1
faults?

Prior work [31, 32] considered the single-source P = {s} × V unweighted case, providing
super-linear lower bounds for any f and tight upper bounds for f = 1, 2. However, first,
there is nothing known for f > 2, and second, the lower bounds for the {s} × V case do not
apply to the single pair case where much sparser preservers might exist. Prior to this work,
it was conceivable that in this case O(n) edges suffice for arbitrary fixed f .

Our first result is a complete answer to Question 1 for weighted graphs. For f = 1 and
undirected graphs, we show that a O(n) size preserver exists. Our result is achieved by
proving the following interesting fact: for any replacement path Ps,t,e protecting against a
single edge fault e, there is an edge (x, y) ∈ Ps,t,e such that there is no shortest path from
s to x in G that includes e, and there is no shortest path from t to y in G that includes e.
Therefore it is sufficient to build shortest path trees from s and to t, and then add one extra
edge per possible fault e along the shortest path from s to t. With a trivial union bound,
we get that any set P of node pairs can be preserved using O(min(n|P |, n2)) edges. It is
natural to wonder if one can improve this union bound by doing something smarter in the
construction. Surprisingly, the answer is NO: we are able to provide a matching lower bound.

I Theorem 2. For any undirected n-node weighted graph G and any set P of p pairs of
nodes, there exists a P -pairwise 1-FT preserver of size O(min(np, n2)). Furthermore, for
any integer 1 ≤ p ≤

(
n
2
)
, there exists an undirected weighted graph G and a set P of p node

pairs such that every 1-FT P -pairwise preserver of G contains Ω(min(n|P |, n2)) edges.

The lower bound part obtained by adapting the lower bound of [32] to the weighted case;
this allows us to a lower bound graph whose number of edges is a function of the number of
pairs.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.73

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:3

For f = 1 and directed graphs, we achieve the following. Let DP(n) denote a tight bound
for the sparsity of a pairwise distance preserver in directed weighted graphs with n nodes
and O(n) pairs.

I Theorem 3. For every directed weighted n-node graph G = (V,E) and for every pair of
nodes s, t ∈ V , there is a 1-FT (s, t) preserver with O(DP(n)) edges. For every n, there exists
a directed weighted n-node graph G = (V,E) and a node pair s, t ∈ V such that any 1-FT
(s, t) preserver for G has Ω(DP(n)) edges.

Coppersmith and Elkin [18] show that Ω(n4/3) ≤ DP(n) ≤ O(n3/2). It is a major open
question to close this gap, and we show that the no-fault n-pair distance preserver question
is equivalent to the 1-fault single pair preserver question, thereby fully answering the latter
question, up to resolving the major open problem for n-pair preservers.

We show that the situation dramatically changes for f ≥ 2.

I Theorem 4. There exists an undirected weighted graph G and a single node pair (s, t) in
this graph such that every 2-FT (s, t) preserver of G requires Ω(n2) edges.

For unweighted graphs, we achieve several non-trivial upper and lower bounds concerning
the worst-case size of (s, t) preservers and spanners. First of all, we address the following
question.

I Question 2. In unweighted graphs, is the worst-case size of an f-FT (s, t) preserver
subquadratic for every constant f ≥ 2?

Prior work showed that the answer is YES for f = 1, 2 [31, 33], but nothing is known for
f ≥ 3. We show that the answer is YES. Indeed, our result is more general. First, it extends
to the single-source case (i.e., P = {s} × V) and even to a small enough set of sources (i.e.,
P = S × V for small |S|). Second, the same result holds for any fixed number f of vertex
faults. Prior work was only able to address the simple case f = 1 [30]. We also remark that
our preserver can be computed very efficiently in O(fmn) time, and its analysis is relatively
simple (e.g., compared to the cumbersome case analysis in [31]).

I Theorem 5. For every directed or undirected unweighted graph G = (V,E), integer f ≥ 1
and S ⊆ V , one can construct in time O(f nm) an f-FT S-sourcewise (i.e. P = S × V)
preserver of size Õ(f · |S|1/2f · n2−1/2f), both in the case of edge and vertex faults.

By standard techniques, we can exploit our S-sourcewise preserver to build an additive
spanner (for all pairs): Let L be an integer parameter to be fixed later on. A vertex u is
low-degree if it has degree less than L, otherwise it is high-degree. Let S be a random sample
of Θ(nL · f logn) vertices. Our spanner H consists of the f -VFT S-sourcewise preserver from
Theorem 5 plus all the edges incident to low-degree vertices. This way we achieve:

I Theorem 6. For every undirected unweighted graph G = (V,E) and integer f ≥ 1, there
exists a randomized Õ(fnm)-time construction of a +2-additive f-FT spanner of G of size
Õ(f · n2−1/(2f+1)) that succeeds w.h.p.1.

In the above result the size of the preserver grows quickly to O(n2) for increasing f . This
raises the following new question:

1 The term w.h.p. (with high probability) here indicates a probability exceeding 1 − 1/nc, for an
arbitrary constant c ≥ 2. Since randomization is only used to select hitting sets, the algorithm can be
derandomized.

ICALP 2017

73:4 Preserving Distances in Very Faulty Graphs

I Question 3. Does there exist a universal constant ε > 0 such that all unweighted graphs
have an f -FT (s, t) preserver of size Of (n2−ε)? What if we allow a small additive error?

The only result with strongly sub-quadratic size in the above sense is an O(f · n4/3) size
spanner with additive error Θ(f) [14, 8]. Can we remove or reduce the dependence of the
error on f? We show that the answer is NO:

I Theorem 7. For any two integers q, h > 0 and a sufficiently large n, there exists an
unweighted undirected n-node graph G = (V,E) and a pair s, t ∈ V such that any 2hq-FT
(2q − 1)-additive spanner for G for the single pair (s, t) has size Ω((nhq)2−2/(h+1)).

I Corollary 8. For any fixed constants ε > 0 and f , there exists an unweighted undirected
n-node graph G = (V,E) and a pair s, t ∈ V such that any f -FT additive spanner for G for
the single pair (s, t) of size O(n2−ε) must have additive error Ω(εf).

Proof. This follows from Theorem 7 by choosing proper h = Θ(1/ε) and q = Θ(εf). J

Hence the linear dependence in f in the additive error in [14, 8] is indeed necessary. We
found this very surprising.

In Section 3 we present other related lower bounds which exploit the same basic construc-
tion plus ideas in [1, 10]: see Theorems 18, 19, and 20. In particular, we are able to achieve
super-linear lower bounds for any f ≥ 2, even if we allow for a small enough polynomial
additive error nδ.

So far we have focused on sparse distance preserving subgraphs. However, suppose that
the distance estimates can be stored in a different way in memory. Data structures that store
the distance information of a graph in the presence of faults are called distance sensitivity
oracles. Distance sensitivity oracles are also intensely studied [20, 7, 38, 26, 22, 23]. Our
main goal here2 is to keep the size of the data structure as small as possible, leading to the
following question.

I Question 4. How much space do we need to preserve (exactly or with a small additive
error) the distances between a given pair of nodes in the presence of f faults?

Clearly all our preserver/spanner upper bounds extend to the oracle case, however the
lower bounds might not: in principle a distance oracle can use much less space than a
preserver/spanner with the same accuracy. Our main contribution here are the following
incompressibility results:

I Theorem 9. There exists an undirected weighted graph G and a single node pair (s, t)
in this graph such that every 2-FT distance sensitivity oracle for the single pair (s, t) in G
requires Ω(n2) bits of space.

Note that the optimal size for f = 1 is Θ(n) by simple folklore arguments, so our result
completes our understanding in this setting.

We are able to achieve a super-linear lower bound for 3 faults even in the case of a small
enough polynomial additive error : see Theorem 21 in Section 3.

2 Other typical goals are to minimize preprocessing and query time - we will not address these.

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:5

1.1 Related Work
Fault-tolerant spanners were introduced in the geometric setting [27] (see also [28, 19]).
FT-spanners with multiplicative stretch are relatively well understood: the error/sparsity for
f -FT and f -VFT multiplicative spanners is (up to a small polynomial factor in f) the same
as in the nonfaulty case. For f edge faults, Chechik et al. [16] showed how to construct f -FT
(2k − 1)-multiplicative spanners with size Õ(fn1+ 1

k) for any f, k ≥ 1. They also construct
an f -VFT spanner with the same stretch and larger size. This was later improved by Dinitz
and Krauthgamer [21] who showed the construction of f -VFT spanners with 2k − 1 error
and Õ

(
f2− 1

kn1+ 1
k

)
edges.

FT additive spanners were first considered by Braunschvig, Chechik and Peleg in [14]
(see also [8] for slightly improved results). They showed that FT Θ(f)-additive spanners can
be constructed by combining FT multiplicative spanners with (non-faulty) additive spanners.
This construction, however, supports only edge faults. Parter and Peleg showed in [33] a
lower bound of Ω(n1+εβ) edges for single-source FT β-additive spanners. They also provided
a construction of single-source FT-spanner with additive stretch 4 and O(n4/3) edges that is
resilient to one edge fault. The first constructions of FT-additive spanners resilient against
one vertex fault were given in [30] and later on in [8]. Prior to our work, no construction of
FT-additive spanners was known for f ≥ 2 vertex faults.

As mentioned earlier, the computation of preservers and spanners in the non-faulty case
(i.e. when f = 0) has been the subject of intense research in the last few decades. The
current-best preservers can be found in [18, 11, 12]. Spanners are also well understood, both
for multiplicative stretch [4, 25] and for additive stretch [3, 15, 6, 39, 1, 11, 15, 34, 2]. There
are also a few results on “mixed” spanners with both multiplicative and additive stretch
[24, 36, 6]

Distance sensitivity oracles are data structures that can answer queries about the distances
in a given graph in the presence of faults. The first nontrivial construction was given by
Demetrescu et al. [20] and later improved by Bernstein and Karger [7] who showed how to
construct Õ(n2)-space, constant query time oracles for a single edge fault for an m-edge
n-node graph in Õ(mn) time. The first work that considered the case of two faults (hence
making the first jump from one to two) is due to Duan and Pettie in [22]. Their distance
oracle has nearly optimal size of Õ(n2) and query time of Õ(1). The case of bounded
edge weights, and possibly multiple faults, is addressed in [38, 26] exploiting fast matrix
multiplication techniques. The size of their oracle is super-quadratic.

The notion of FT-preservers is also closely related to the problem of constructing replace-
ment paths. For a pair of vertices s and t and an edge e, the replacement path Ps,t,e is the
s-t shortest-path that avoids e3. The efficient computation of replacement paths is addressed,
among others, in [29, 35, 38, 37]. A single-source version of the problem is studied in [26].
Single-source FT structures that preserve strong connectivity have been studied in [5].

1.2 Preliminaries and Notation
Assume throughout that all shortest paths ties are broken in a consistent manner. For
every s, t ∈ V and a subgraph G′ ⊆ G, let πG′(s, t) be the (unique) u-v shortest path in G′
(i.e., it is unique under breaking ties). If there is no path between s and t in G′, we define

3 Replacement paths were originally defined for the single edge fault case, but later on extended to the
case of multiple faults as well.

ICALP 2017

73:6 Preserving Distances in Very Faulty Graphs

πG′(s, t) = ∅. When G′ = G, we simply write π(u, v). For any path P containing nodes
u, v, let P [u v] be the subpath of P between u and v. For s, t ∈ V and F ⊆ E, we let
Ps,t,F = πG\F (s, t) be the s-t shortest-path in G \ F . We call such paths replacement paths.
When F = {e}, we simply write Ps,t,e. By m we denote the number of edges in the graph
currently being considered.

The structure of the paper is as follows. In Sec. 2, we describe an efficient construction
for FT-preservers and additive spanners with a subquadratic number of edges. Then, in
Sec. 3, we provide several lower bound constructions for a single s-t pair, both for the exact
and for the additive stretch case. All the proofs which are omitted due to lack of space
appear in the full version of the paper (see [13]).

2 Efficient Construction of FT-Preservers and Spanners

In this section we prove Theorem 5. We next focus on the directed case, the undirected
one being analogous and simpler. We begin by recapping the currently-known approaches
for handling many faults, and we explain why these approaches fail to achieve interesting
space/construction time bounds for large f .

The limits of previous approaches. A known approach for handling many faults is by
random sampling of subgraphs, as introduced by Weimann and Yuster [38] in the setting
of distance sensitivity oracles, and later on applied by Dinitz and Kraughgamer [21] in the
setting of fault tolerant spanners. The high level idea is to generate multiple subgraphs
G1, . . . , Gr by removing each edge/vertex independently with sufficiently large probability
p; intuitively, each Gi simultaneously captures many possible fault sets of size f . One can
show that, for a sufficiently small parameter L and for any given (short) replacement path
Ps,t,F of length at most L (avoiding faults F), w.h.p. in at least one Gi the path Ps,t,F is
still present while all edges/vertices in F are deleted. Thus, if we compute a (non-faulty)
preserver Hi ⊆ Gi for each i, then the graph H =

⋃
iHi will contain every short replacement

path. For the remaining (long) replacement paths, Weimann and Yuster use a random
decomposition into short subpaths. Unfortunately, any combination of the parameters p, r, L
leads to a quadratic (or larger) space usage.

Another way to handle multiple faults is by extending the approach in [32, 33, 30] that
works for f ∈ {1, 2}. A useful trick used in those papers (inspired by prior work in [35, 37])
is as follows: suppose f = 1, and fix a target node t. Consider the shortest path π(s, t). It
is sufficient to take the last edge of each replacement path Ps,t,e and charge it to the node
t; the rest of the path is then charged to other nodes by an inductive argument. Hence,
one only needs to bound the number of new-ending paths – those that end in an edge that
is not already in π(s, t). In the case f = 1, these new-ending paths have a nice structure:
they diverge from π(s, t) at some vertex b (divergence point) above the failing edge/vertex
and collide again with π(s, t) only at the terminal t; the subpath connecting b and t on the
replacement path is called its detour. One can divide the s-t replacement paths into two
groups: short (resp., long) paths are those whose detour has length at most (resp., at least)√
n. It is then straightforward enough to show that each category of path contributes only

Õ(n1/2) edges entering t, and so (collecting these last edges over all nodes in the graph) the
output subgraph has Õ(n3/2) edges in total. Generalizing this to the case of multiple faults
is non-trivial already for the case of f = 2. The main obstacle here stems from a lack of
structural understanding of replacement paths for multiple faults: in particular, any given
divergence point b ∈ π(s, t) can now be associated with many new-ending paths and not

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:7

only one! In the only known positive solution for f = 2 [31], the approach works only for
edge faults and is based on an extensive case analysis whose extension to larger f is beyond
reasonable reach. Thus, in the absence of new structural understanding, further progress
seems very difficult.

A second source of difficulties is related to the running time of the construction. A priori,
it seems that constructing a preserver H should require computing all replacement paths
Ps,t,F , which leads to a construction time that scales exponentially in f . In particular, by
deciding to omit an edge e from the preserver H, we must somehow check that this edge
does not appear on any of the replacement paths Ps,t,F (possibly, without computing these
replacement paths explicitly).

Our basic approach. The basic idea behind our algorithm is as follows. Similar to [32, 33,
30], we focus on each target node t, and define a set Et of edges incident to t to be added to
our preserver. Intuitively, these are the last edges of new-ending paths as described before.
The construction of Et, however, deviates substantially from prior work. Let us focus on the
simpler case of edge deletions. The set Et is constructed recursively, according to parameter
f . Initially we consider the shortest path tree T from the source set S to t, and add to Et
the edges of T incident to t (at most |S| many). Consider any new-ending replacement path
P for t. By the previous discussion, this path has to leave T at some node b and it meets T
again only at t: let D be the subpath of P between b and t (the detour of P). Note that
D is edge-disjoint from T , i.e. it is contained in the graph G′ = G \ E(T). Therefore, it
would be sufficient to compute recursively the set E′t of final edges of new-ending replacement
paths for t in the graph G′ with source set S′ given by the possible divergence points b and
w.r.t. f − 1 faults (recall that one fault must be in E(T), hence we avoid that anyway in G′).
This set E′t can then be added to Et.

The problem with this approach is that S′ can contain Ω(n) many divergence points
(hence Et Ω(n) many edges), leading to a trivial Ω(n2) size preserver. In order to circumvent
this problem, we classify the divergence points b in two categories. Consider first the nodes b
at distance at most L from t along T , for some parameter L. There are only O(|S|L) many
such nodes Sshort, which is sublinear for |S| and L small enough. Therefore we can safely
add Sshort to S′. For the remaining divergence points b, we observe that the corresponding
detour D must have length at least L: therefore by sampling Õ(n/L) nodes Slong we hit all
such detours w.h.p. Suppose that σ ∈ Slong hits detour D. Then the portion of D from σ to
t also contains the final edge of D to be added to Et. In other terms, it is sufficient to add
Slong (which has sublinear size for polynomially large L) to S′ to cover all the detours of
nodes b of the second type. Altogether, in the recursive call we need to handle one less fault
w.r.t. a larger (but sublinear) set of sources S′. Our approach has several benefits:

It leads to a subquadratic size for any f (for a proper choice of the parameters);
It leads to a very fast algorithm. In fact, for each target t we only need to compute a
BFS tree in f different graphs, leading to an O(fnm) running time;
Our analysis is very simple, much simpler than in [31] for the case f = 2;
It can be easily extended to the case of vertex faults.

Algorithm for Edge Faults. Let us start with the edge faults case. The algorithm constructs
a set Et of edges incident to each target node t ∈ V . The final preserver is simply the union
H =

⋃
t∈V Et of these edges. We next describe the construction of each Et (see also Alg. 1).

The computation proceeds in rounds i = 0, . . . , f . At the beginning of round i we are given
a subgraph Gi (with G0 = G) and a set of sources Si (with S0 = S).

ICALP 2017

73:8 Preserving Distances in Very Faulty Graphs

Algorithm 1 Construction of Et in our f -FT S-Sourcewise Preserver Algorithm.
1: procedure ComputeSourcewiseFT(t, S, f,G)

Input: A graph G with a source set S and terminal t, number of faults f .
Output: Edges Et incident to t in an f -FT S-sourcewise preserver H.

2: Set G0 = G, S0 = S, Et = ∅.
3: for i ∈ {0, . . . , f} do
4: Compute the partial BFS tree Ti =

⋃
s∈Si πGi(s, t).

5: Et = Et ∪ {LastE(πTi(s, t)) | s ∈ Si}.
6: Set distance threshold di =

√
n/|Si| · f logn.

7: Let Sshorti = {v ∈ V (Ti) | distTi(v, t) ≤ di}.
8: Sample a collection Slongi ⊆ V (Gi) of Θ(n/di · f logn) vertices.
9: Set Si+1 = Sshorti ∪ Slongi and Gi+1 = Gi \ E(Ti).

We compute a partial BFS tree Ti =
⋃
s∈Si πGi(s, t)

4 from Si to t, and add to Et
(which is initially empty) the edges {LastE(πTi(s, t)) | s ∈ Si} of this tree incident to
t. Here, for a path π where one endpoint is the considered target node t, we denote
by LastE(π) the edge of π incident to t. The source set Si+1 is given by Sshorti ∪ Slongi .
Here Sshorti = {v ∈ V (Ti) | distTi(v, t) ≤ di} is the set of nodes at distance at most
di =

√
n/|Si| · f logn from t, while Slongi is a random sample of Θ(n/di · f logn) vertices.

The graph Gi+1 is obtained from Gi be removing the edges E(Ti)5.

Adaptation for Vertex Faults. The only change in the algorithm is in the definition of the
graph Gi inside the procedure to compute Et. We cannot allow ourselves to remove all the
vertices of the tree Ti from Gi and hence a more subtle definition is required. To define Gi+1,
we first remove from Gi: (1) all edges of Sshorti × Sshorti , (2) the edges of E(Ti), and (3) the
vertices of V (Ti) \ Sshorti . Finally, we delete all remaining edges incident to Sshorti which are
directed towards any one of these vertices (i.e., the incoming degree of the Sshorti vertices in
Gi+1 is zero).

Analysis. We now analyze our algorithm. Since for each vertex t, we compute f (partial)
BFS trees, we get trivially:

I Lemma 10 (Running Time). The subgraph H is computed within O(f nm) time.

We proceed with bounding the size of H.

I Lemma 11 (Size Analysis). |Et| = Õ(|S|1/2f · (fn)1−1/2f) for every t ∈ V , hence |E(H)| =
Õ(f |S|1/2fn2−1/2f).

Proof. Since the number of edges collected at the end each round i is bounded by the number
of sources Si, it is sufficient to bound |Si| for all i. Observe that for every i ∈ {0, . . . , f − 1},

|Si+1| ≤ |Slongi |+ |Sshorti | ≤ di · |Si|+ Θ(n/di · f logn) = Θ(di · |Si|).

By resolving this recurrence starting with |S0| = |S| one obtains

|Si| = O(|S|1/2i(fn logn)1−1/2i).

The claim follows by summing over i ∈ {0, . . . , f}. J

4 If πGi
(s, t) does not exist, recall that we define it as an empty set of edges.

5 Note that for f = 1, the algorithm has some similarity to the replacement path computation of [35].
Yet, there was no prior extension of this idea for f ≥ 2.

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:9

We next show that the algorithm is correct. We focus on the vertex fault case, the edge
fault case being similar and simpler. Let us define, for t ∈ V and i ∈ {0, . . . , f},

Pt,i = {πGi\F (s, t) | s ∈ Si, F ⊆ V (Gi), |F | ≤ f − i}.

I Lemma 12. For every t ∈ V and i ∈ {0, . . . , f}, it holds that

LastE(π) ∈ Et for every π ∈ Pt,i.

Proof. We prove the claim by decreasing induction on i ∈ {f, . . . , 0}. For the base case
i = f , Pt,f = {πGf (s, t) | s ∈ Sf}. Since we add precisely the last edges of these paths to
the set Et, the claim holds. Assume that the lemma holds for rounds f, f − 1, . . . , i+ 1 and
consider round i. For every πGi\F (s, t) ∈ Pt,i, let P ′s,t,F = πGi\F (s, t). 6 Consider the partial
BFS tree Ti =

⋃
s∈Si πGi(s, t) rooted at t. Note that all (interesting) replacement paths

P ′s,t,F in Gi have at least one failing vertex v ∈ F ∩ V (Ti) as otherwise P ′s,t,F = πGi(s, t).
We next partition the replacement paths π ∈ Pt,i into two types depending on their last

edge LastE(π). The first class contains all paths whose last edge is in Ti. The second class
contains the remaining replacement paths, which end with an edge that is not in Ti. We
call this second class of paths new-ending replacement paths. Observe that the first class
is taken care of, since we add all edges incident to t in Ti. Hence it remains to prove the
lemma for the set of new-ending paths.

For every new-ending path P ′s,t,F , let bs,t,F be the last vertex on P ′s,t,F that is in V (Ti)\{t}.
We call the vertex bs,t,F the last divergence point of the new-ending replacement path. Note
that the detour Ds,t,F = P ′s,t,F [bs,t,F t] is vertex disjoint with the tree Ti except for the
vertices bs,t,F and t. From now on, since we only wish to collect last edges, we may restrict
our attention to this detour subpath. That is, since LastE(Ds,t,F) = LastE(P ′s,t,F), it is
sufficient to show that LastE(Ds,t,F) ∈ Et.

Our approach is based on dividing the set of new-ending paths in Pt,i into two classes
based on the position of their last divergence point bs,t,F . The first class Pshort consists of new-
ending paths in Pt,i whose last divergence point is at distance at most di =

√
n/|Si| · f logn

from t on Ti. In other words, this class contains all new-ending paths whose last divergence
point is in the set Sshorti . We now claim the following.

I Claim 13. For every P ′s,t,F ∈ Pshort, the detour Ds,t,F is in Pt,i+1.

Proof. Since Ds,t,F is a subpath of the replacement path P ′s,t,F , Ds,t,f is the shortest path
between bs,t,F and t in Gi \ F . Recall that Ds,t,F is vertex disjoint with V (Ti) \ {bs,t,F , t}.

Since bs,t,F is the last divergence point of P ′s,t,F with Ti, the detour Ds,t,F starts from
a vertex bs,t,F ∈ Sshorti and does not pass through any other vertex in V (Ti) \ {t}. Recall
that in the construction of Gi+1 we delete from Gi the edges directed towards Sshorti . In
particular, the outgoing edge connecting bs,t,F to its neighbor x on Ds,t,F [bs,t,F t] remains
(i.e., this vertex x is not in V (Ti) \ {t}), this implies that the detour Ds,t,F exists in Gi+1.
In particular, note that the vertex bs,t,F cannot be a neighbor of t in Ti. Indeed, if (bs,t,F , t)
were an edge in Ti, then we can replace the portion of the detour path between bs,t,F and t
by this edge, getting a contradiction to the fact that P ′s,t,F is a new-ending path7.

Next, observe that at least one of the failing vertices in F occurs on the subpath
πGi [bs,t,F , t], let this vertex be v ∈ F . Since v ∈ Sshorti , all the edges incident to v are

6 We denote these replacement paths as P ′
s,t,F as they are computed in Gi and not in G.

7 For the edge fault case, the argument is much simpler: by removing E(Ti) from Gi, we avoid at least
one of the failing edges in Gi+1.

ICALP 2017

73:10 Preserving Distances in Very Faulty Graphs

directed away from v in Gi+1 and hence the paths going out from the source bs,t,F in Gi+1
cannot pass through v. Letting F ′ = F \ V (Ti), it holds that (1) |F ′| ≤ f − i − 1 and (2)
since the shortest path ties are decided in a consistent manner and by definition of Gi+1, it
holds that Ds,t,F = πGi+1\F ′(bs,t,F , t). As bs,t,F ∈ Sshorti , it holds that Ds,t,F ∈ Pt,i+1. J

Hence by the inductive hypothesis for i+ 1, LastE(P ′s,t,F) is in Et for every P ′s,t,F ∈ Pshort.
We now turn to consider the second class of paths Plong which contains all remaining new-
ending paths; i.e., those paths whose last divergence point is at distance at least di from t on
Ti. Note that the detour Ds,t,F = P ′s,t,F [bs,t,F t] of these paths is long – i.e., its length is
at least di. For convenience, we will consider the internal part D′s,t,F = Ds,t,F \ {bs,t,F , t} of
these detours, so that the first and last vertices of these detours are not on Ti.

We exploit the lengths of these detours D′s,t,F and claim that w.h.p, the set Slongi is
a hitting set for these detours. This indeed holds by simple union bound overall possible
O(nf+2) detours. For every P ′s,t,F ∈ Plong, let ws,t,F ∈ V (D′s,t,F) ∩ Slongi . (By the hitting
set property, w.h.p., ws,t,F is well defined for each long detour). Let Ws,t,F = P ′s,t,F [ws,t,F , t]
be the suffix of the path P ′s,t,F starting at a vertex from the hitting set ws,t,F ∈ Slongi . Since
LastE(P ′s,t,F) = LastE(Ws,t,F), it is sufficient to show that LastE(Ws,t,F) is in Et.

I Claim 14. For every P ′s,t,F ∈ Plong, it holds that Ws,t,F ∈ Pt,i+1.

Proof. Clearly, Ws,t,f is the shortest path between ws,t,F and t in Gi \ F . Since Ws,t,F ⊆
D′s,t,F is vertex disjoint with V (Ti), it holds that Ws,t,F = πGi+1\F ′(ws,t,F , t) for F ′ =
F \ V (Ti). Note that since at least one fault occurred on Ti, we have that |F ′| ≤ f − i− 1.
As ws,t,F ∈ Slongi , it holds that Ws,t,F ∈ Pt,i+1. The lemma follows. J

By applying the claim for i = 0, we get that LastE(P ′s,t,F) is in Et as required for every
P ′s,t,F ∈ Plong. This completes the proof. J

I Lemma 15. (Correctness) H is an f -FT S-sourcewise preserver.

Proof. By using Lemma 12 with i = 0, we get that for every t ∈ V , s ∈ S and F ⊆ V ,
|F | ≤ f , LastE(Ps,t,F) ∈ Et (and hence also LastE(Ps,t,F) ∈ H). It remains to show
that taking the last edge of each replacement path Ps,t,F is sufficient. The base case is
for paths of length 1, where we have clearly kept the entire path in our preserver. Then,
assuming the hypothesis holds for paths up to length k − 1, consider a path Ps,t,F of
length k. Let LastE(Ps,t,F) = (u, t). Then since we break ties in a consistent manner,
Ps,t,F = Ps,u,F ◦ LastE(Ps,t,e). By the inductive hypothesis Ps,u,F is in H, and since we
included the last edge, Ps,t,F is also in H. The claim follows. J

Theorem 5 now immediately follows from Lemmas 10, 11, and 15.

3 Lower Bounds for FT Preservers and Additive Spanners

In this section, we provide the first non-trivial lower bounds for preservers and additive
spanners for a single pair s-t.

We start by proving Theorem 7. The main building block in our lower bound is the
construction of an (undirected unweighted) tree Th, where h is a positive integer parameter
related to the desired number of faults f . Tree Th is taken from [31] with mild technical
adaptations. Let d be a size parameter which is used to obtain the desired number n of
nodes. It is convenient to interpret this tree as rooted at a specific node (though edges in
this construction are undirected). We next let rt(Th) and L(Th) be the root and leaf set

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:11

of Th, respectively. We also let `(h) and n(h) be the height and number of nodes of Th,
respectively.

Tree Th is constructed recursively as follows. The base case is given by T 0 which consists
of a single isolated root node rt(T 0). Note that `(0) = 0 and n(0) = 1. In order to construct
Th, we first create d copies Th−1

0 , . . . , Th−1
d−1 of Th−1. Then we add a path v0, . . . , vd−1 of

length d− 1 (consisting of new nodes), and choose rt(Th) = v0. Finally, we connect vj to
rt(Th−1

j) with a path (whose internal nodes are new) of length (d− j) · (`(h− 1) + 3). Next
lemma illustrates the crucial properties of Th.

I Lemma 16. The tree Th satisfies the following properties:
1. n(h) ≤ 3

2 (h+ 1)(d+ 1)h+1

2. |L(Th)| = dh

3. For every ` ∈ L(Th), there exists F` ⊆ E(T), |F`| = h, such that distTh\F`(s, `) ≤
distTh\F`(s, `′) + 2 for every `′ ∈ L(Th) \ {`′}.

We next construct a graph Sh as follows. We create two copies Ts and Tt of Th. We
add to Sh the complete bipartite graph with sides L(Ts) and L(Tt), which we will call the
bipartite core B of Sh. Observe that |L(Ts)| = |L(Tt)| = dh, and hence B contains d2h edges.
We will call s = sr(Sh) = rt(Ts) the source of Sh, and t = tg(Sh) = rt(Tt) its target.

I Lemma 17. Every 2h-FT (s, t) preserver (and 1-additive (s, t) spanner) H for Sh must
contain each edge e = (`s, `t) ∈ B.

Proof. Assume that e = (`s, `t) /∈ H and consider the case where F`s fails in Ts and F`t
fails in Tt. Let G′ := Sh \ (F`s ∪ F`t), and ds (resp., dt) be the distance from s to `s (resp.,
from `t to t) in G′. By Lemma 16.3 the shortest s-t path in G′ passes through e and has
length ds + 1 + dt. By the same lemma, any path in G′, hence in H ′ := H \ (F`s ∪ F`t),
that does not pass through `s (resp., `t) must have length at least (ds + 2) + 1 + dt (resp.,
ds + 1 + (dt + 2)). On the other hand, any path in H ′ that passes through `s and `t must
use at least 3 edges of B, hence having length at least ds + 3 + dt. J

Our lower bound graph Shq is obtained by taking q copies S1, . . . , Sq of graph Sh with
d = (n

3q(h+1) − 1)
1
h+1 , and chaining them with edges (tg(Si), sr(Si+1)), for i = 1, . . . , q − 1.

We let s = sr(S1) and t = tg(Sq).

Proof of Theorem 7. Consider Shq . By Lemma 16.1–2 this graph contains at most n nodes,
and the bipartite core of each Si contains d2h = Ω((nqh)2−2/(h+1)) edges.

Finally, we show that any (2q− 1)-additive (s, t) spanner needs to contain all the edges of
at least one such bipartite core. Let us assume this does not happen, and let ei be a missing
edge in the bipartite core of Si for each i. Observe that each s-t shortest path has to cross
sr(Si) and tg(Si) for all i. Therefore, it is sufficient to choose 2h faulty edges corresponding
to each ei as in Lemma 17. This introduces an additive stretch of 2 in the distance between
s and t for each ei, leading to a total additive stretch of at least 2q. J

The same construction can also be extended to the setting of (2h)-FT S × T preservers.
To do that, we make parallel copies of the Sh graph.

I Theorem 18. For every positive integer f , there exists a graph G = (V,E) and subsets
S, T ⊆ V , such that every (2f)-FT 1-additive S × T spanner (hence S × T preserver) of G
has size Ω(|S|1/(f+1) · |T |1/(f+1) · (n/f)2−2/(f+1)).

ICALP 2017

73:12 Preserving Distances in Very Faulty Graphs

Improving over the Bipartite Core. The proof above only gives the trivial lower bound
of Ω(n) for the case of two faults (using h = q = 1). We can strengthen the proof in this
special case to show instead that Ω(n1+ε) edges are needed, and indeed this even holds in
the presence of a polynomial additive stretch:

I Theorem 19. A 2-FT distance preserver of a single (s, t) pair in an undirected unweighted
graph needs Ω(n11/10−o(1)) edges.

I Theorem 20. There are absolute constants ε, δ > 0 such that any +nδ-additive 2-FT
preserver for a single (s, t) pair in an undirected unweighted graph needs Ω(n1+ε) edges.

Finally, by tolerating one additional fault, we can obtain a strong incompressibility result:

I Theorem 21. There are absolute constants ε, δ > 0 such that any +nδ-additive 3-FT
distance sensitivity oracle for a single (s, t) pair in an undirected unweighted graph uses
Ω(n1+ε) bits of space.

The proofs of Theorems 19, 20 and 21 are similar in spirit. The key observation is that
the structure of Ts, Tt allows us to use our faults to select leaves `s, `t and enforce that a
shortest `s-`t path is kept in the graph. When we use a bipartite core between the leaves of
Ts and Tt, this “shortest path” is simply an edge, so the quality of our lower bound is equal
to the product of the leaves in Ts and Tt. However, sometimes a better graph can be used
instead. In the case h = 1, we can use a nontrivial lower bound graph against (non-faulty)
subset distance preservers (from [10]), which improves the cost per leaf pair from 1 edge
to roughly n11/10 edges, yielding Theorem 19. Alternatively, we can use a nontrivial lower
bound graph against +nδ spanners (from [1]), which implies Theorem 20. The proof of
Theorem 21 is similar in spirit, but requires an additional trick in which unbalanced trees
are used: we take Ts as a copy of T 1 and Tt as a copy of T 2, and this improved number of
leaf-pairs is enough to push the incompressibility argument through.

4 Open Problems

There are lots of open ends to be closed. Perhaps the main open problem is to resolve the
current gap for f -FT single-source preservers. Since the lower bound of Ω(n2−1/(f+1)) edges
given in [31] has been shown to be tight for f ∈ [1, 2], it is reasonable to believe that this
is the right bound for f ≥ 3. Another interesting open question involves lower bounds for
FT additive spanners. Our lower-bounds are super linear only for f ≥ 2. The following
basic question is still open though: is there a lower bound of Ω(n3/2+ε) edges for some
ε ∈ (0, 1] for 2-additive spanners with one fault? Whereas our lower bound machinery can
be adapted to provide non trivial bounds for different types of f -FT P -preservers (e.g.,
P = {s, t}, P = S × T , etc.), our upper bounds technique for general f ≥ 2 is still limited to
the sourcewise setting. Specifically, it is not clear how to construct an f -FT S × S preserver
other than taking a (perhaps wasteful) f -FT S-sourcewise preserver. As suggested by our
lower bounds, these questions are interesting already for a single pair.

References
1 A. Abboud and G. Bodwin. The 4/3 additive spanner exponent is tight. In STOC, pages

351–361, 2016.
2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear

additive spanners. In SODA, pages 568–576, 2017.

G. Bodwin, F. Grandoni, M. Parter, and V. Vassilevska Williams 73:13

3 D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

4 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

5 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant subgraph for single source
reachability: generic and optimal. In STOC, pages 509–518, 2016.

6 S. Baswana, K. Telikepalli, K. Mehlhorn, and S. Pettie. New constructions of (alpha,
beta)-spanners and purely additive spanners. In SODA, pages 672–681, 2005.

7 Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In STOC, pages 101–110, 2009.

8 D. Bilò, F. Grandoni, L. Gualà, S. Leucci, and G. Proietti. Improved purely additive
fault-tolerant spanners. In ESA, pages 167–178. Springer, 2015.

9 D. Bilò, L. Gualà, S. Leucci, and G. Proietti. Fault-tolerant approximate shortest-path
trees. In ESA, pages 137–148. Springer, 2014.

10 G. Bodwin. Linear size distance preservers. In SODA, 2017.
11 G. Bodwin and V. Vassilevska Williams. Better distance preservers and additive spanners.

In SODA, pages 855–872, 2016.
12 Greg Bodwin. Linear size distance preservers. In SODA, pages 600–615, 2017.
13 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Pre-

serving distances in very faulty graphs. CoRR, abs/1703.10293, 2017. URL: http:
//arxiv.org/abs/1703.10293.

14 G. Braunschvig, S. Chechik, D. Peleg, and A. Sealfon. Fault tolerant additive and (µ,
α)-spanners. Theor. Comput. Sci., 580:94–100, 2015.

15 S. Chechik. New additive spanners. In SODA, pages 498–512, 2013.
16 S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault-tolerant spanners for general

graphs. In STOC, pages 435–444, 2009.
17 S. Chechik and D. Peleg. Rigid and competitive fault tolerance for logical information

structures in networks. In Electrical and Electronics Engineers in Israel (IEEEI), 2010
IEEE 26th Convention of, pages 000024–000025. IEEE, 2010.

18 D. Coppersmith and M. Elkin. Sparse sourcewise and pairwise distance preservers. SIAM
Journal on Discrete Mathematics, 20(2):463–501, 2006.

19 A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. Discrete & Computational
Geometry, 32(2):207–230, 2004.

20 C. Demetrescu, M. Thorup, R.A. Chowdhury, and V. Ramachandran. Oracles for distances
avoiding a failed node or link. SIAM Journal on Computing, 37(5):1299–1318, 2008.

21 M. Dinitz and R. Krauthgamer. Fault-tolerant spanners: better and simpler. In PODC,
pages 169–178, 2011.

22 R. Duan and S. Pettie. Dual-failure distance and connectivity oracles. In SODA, pages
506–515, 2009.

23 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
SODA, pages 490–509, 2017.

24 M. Elkin and D. Peleg. (1+epsilon, beta)-spanner constructions for general graphs. SIAM
J. Comput., 33(3):608–631, 2004.

25 P. Erdös. Extremal problems in graph theory. Theory of Graphs and its Applications (Proc.
Sympos. Smolenice, 1963), pages 29–36, 1963.

26 F. Grandoni and V. Vassilevska Williams. Improved distance sensitivity oracles via fast
single-source replacement paths. In FOCS, pages 748–757, 2012.

27 C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32(1):144–156, 2002.

ICALP 2017

http://arxiv.org/abs/1703.10293
http://arxiv.org/abs/1703.10293

73:14 Preserving Distances in Very Faulty Graphs

28 T. Lukovszki. New results on fault tolerant geometric spanners. In Algorithms and Data
Structures, pages 193–204. Springer, 1999.

29 K. Malik, A.K. Mittal, and S.K. Gupta. The k most vital arcs in the shortest path problem.
Operations Research Letters, 8(4):223–227, 1989.

30 M. Parter. Vertex fault tolerant additive spanners. In Distributed Computing, pages 167–
181. Springer, 2014.

31 M. Parter. Dual failure resilient BFS structure. In PODC, pages 481–490, 2015.
32 M. Parter and D. Peleg. Sparse fault-tolerant BFS trees. In ESA, pages 779–790, 2013.
33 M. Parter and D. Peleg. Fault tolerant approximate BFS structures. In SODA, pages

1073–1092, 2014.
34 S. Pettie. Low distortion spanners. ACM Transactions on Algorithms, 6(1), 2009.
35 L. Roditty and U. Zwick. Replacement paths and k simple shortest paths in unweighted

directed graphs. ACM Transactions on Algorithms, 8(4):33, 2012.
36 M. Thorup and U. Zwick. Spanners and emulators with sublinear distance errors. In SODA,

pages 802–809, 2006.
37 V. Vassilevska Williams. Faster replacement paths. In SODA, pages 1337–1346. SIAM,

2011.
38 O. Weimann and R. Yuster. Replacement paths and distance sensitivity oracles via fast

matrix multiplication. ACM Transactions on Algorithms, 9(2):14, 2013.
39 D.P. Woodruff. Additive spanners in nearly quadratic time. In ICALP, pages 463–474,

2010.

All-Pairs 2-Reachability in O(nω log n) Time∗

Loukas Georgiadis1, Daniel Graf2, Giuseppe F. Italiano†3,
Nikos Parotsidis4, and Przemysław Uznański5

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
daniel.graf@inf.ethz.ch

3 University of Rome Tor Vergata, Roma, Italy
giuseppe.italiano@uniroma2.it

4 University of Rome Tor Vergata, Roma, Italy
nikos.parotsidis@uniroma2.it

5 Department of Computer Science, ETH Zürich, Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

Abstract
In the 2-reachability problem we are given a directed graph G and we wish to determine if
there are two (edge or vertex) disjoint paths from u to v, for given pair of vertices u and v.
In this paper, we present an algorithm that computes 2-reachability information for all pairs of
vertices in O(nω logn) time, where n is the number of vertices and ω is the matrix multiplication
exponent. Hence, we show that the running time of all-pairs 2-reachability is only within a log
factor of transitive closure. Moreover, our algorithm produces a witness (i.e., a separating edge
or a separating vertex) for all pair of vertices where 2-reachability does not hold. By processing
these witnesses, we can compute all the edge- and vertex-dominator trees of G in O(n2) additional
time, which in turn enables us to answer various connectivity queries in O(1) time. For instance,
we can test in constant time if there is a path from u to v avoiding an edge e, for any pair of
query vertices u and v, and any query edge e, or if there is a path from u to v avoiding a vertex
w, for any query vertices u, v, and w.

1998 ACM Subject Classification E.1 Graphs and Networks, F.2.2 Computations on Discrete
Structures, G.2.2 Graph Algorithms

Keywords and phrases 2-reachability, All Dominator Trees, Directed Graphs, Boolean Matrix
Multiplication

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.74

1 Introduction

The all-pairs reachability problem consists of preprocessing a directed graph (digraph)
G = (V,E) so that we can answer queries that ask if a vertex y is reachable from a vertex x.
This problem has many applications, including databases, geographical information systems,
social networks, and bioinformatics [11]. A classic solution to this problem is to compute
the transitive closure matrix of G, either by performing a graph traversal (e.g., depth-first
or breadth-first search) once per each vertex as source, or via matrix multiplication. For a

∗ A full version of the paper is available at https://arxiv.org/abs/1612.08075.
† Partially supported by MIUR, the Italian Ministry of Education, University and Research, under Project

AMANDA (Algorithmics for MAssive and Networked DAta).

EA
T

C
S

© Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis,
and Przemysław Uznański;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 74; pp. 74:1–74:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.74
https://arxiv.org/abs/1612.08075
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74:2 All-Pairs 2-Reachability in O(nω log n) Time

digraph with n vertices and m edges, the former solution runs in O(mn) time, while the
latter in O(nω), where ω is the matrix multiplication exponent [4, 13, 17]. Here we study
a natural generalization of the all-pairs reachability problem, that we refer to as all-pairs
2-reachability, where we wish to preprocess G so that we can answer fast the following type
of queries: For a given vertex pair x, y ∈ V , are there two edge-disjoint (resp., internally
vertex-disjoint) paths from x to y? Equivalently, by Menger’s theorem [15], we ask if there is
an edge e ∈ E (resp., a vertex z ∈ V) such that there is no path from x to y in G \ e (resp.,
G \ z). We call such an edge (resp., vertex) separating for the pair x, y.

One solution to the all-pairs 2-reachability problem is to compute all the dominator trees
of G, with each vertex as source. The dominator tree of G with start vertex s is a tree rooted
at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w
include v [14]. All the separating edges and vertices for a pair s, v, appear on the path from
s to v in the dominator tree rooted at s, in the same order as they appear in any path from s

to v in G. Given all the dominator trees, we can process them to compute the 2-reachability
information for all pairs of vertices (see Section 6). Since a dominator tree can be computed
in O(m) time [2, 3], the overall running time of this algorithm is O(mn).

Our Results. In this paper, we show how to beat the O(nm) bound for dense graphs.
Specifically, we present an algorithm that computes 2-reachability information for all pairs of
vertices in O(nω) time in a strongly connected digraph, and in O(nω logn) time in a general
digraph. Hence, we show that the running time of all-pairs 2-reachability is only within a
log factor of transitive closure. This result is tight up to a log factor, since it can be shown
that all-pairs 2-reachability is at least as hard as computing the transitive closure, which
is asymptotically equivalent to Boolean matrix multiplication [6]. Moreover, our algorithm
produces a witness (separating edge or vertex) whenever 2-reachability does not hold. By
processing these witnesses, we can find all the dominator trees of G in O(n2) additional time.
Thus, we also show how to compute all the dominator trees of a digraph in O(nω logn) time
(in O(nω) time if the graph is strongly connected), which improves the previously known
O(mn) bound for dense graphs. This in turn enables us to answer various connectivity
queries in O(1) time. E.g., we can test in O(1) time if there is a path from u to v avoiding
an edge e, for any pair of query vertices u and v, and any query edge e, or if there is a path
from u to v avoiding a vertex w, for any query vertices u, v, and w. We can also report all
the edges or vertices that appear in all paths from u to v, for any query vertices u and v.

Related Work. To the best of our knowledge, ours is the first work that considers the
all-pairs 2-reachability problem and gives a fast algorithm for it. In recent work Georgiadis
et al. [9] investigate the effect of an edge or a vertex failure in a digraph G with respect to
strong connectivity. Specifically, they show how to preprocess G in O(m+ n) time in order
to answer various sensitivity queries regarding strong connectivity in G under an arbitrary
edge or vertex failure. For instance, they can compute in O(n) time the strongly connected
components (SCCs) that remain in G after the deletion of an edge or a vertex, or report
various statistics such as the number of SCCs in constant time per query (failed) edge or
vertex. This result, however, cannot be applied for the solution of the 2-reachability problem.
The reason is that if the deletion of an edge e leaves two vertices u and v in different SCCs
in G \ e, the algorithm of [9] is not able to distinguish if there is still a path or no path from
u to v in G \ e. Previously, King and Sagert [12] gave an algorithm that can quickly answer
sensitivity queries for reachability in a directed acyclic graph (DAG) [12]. Specifically, they
show how to process a DAG G so that, for any pair of query vertices x and y, and a query

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:3

edge e, one can test in constant time if there is a path from x to y in G \ e. Note that the
result of King and Sagert does not yield an efficient solution to the all-pairs 2-reachability
problem, since we need O(m) queries just to find if there is a separating edge for a single pair
of vertices. Moreover, their preprocessing time is O(n3). Another interesting fact that arises
from our work is that, somewhat surprisingly, computing all dominator trees in dense graphs
is currently faster than computing a spanning arborescence from each vertex. The best
algorithm for this problem is given by Alon et al. [1], who studied the problem of constructing
a BFS tree from every vertex, and gave an algorithm that runs in O(n(3+ω)/2) time.

Our Techniques. Our result is based on two novel approaches, one for DAGs and one for
strongly connected digraphs. For DAGs we develop an algebra that operates on paths. We
then use some version of 1-superimposed coding to apply our path algebra in a divide and
conquer approach. This allows us to use Boolean matrix multiplication, in a similar vein
to the computation of transitive closure. Unfortunately, our algebraic approach does not
work for strongly connected digraphs. In this case, we exploit dominator trees in order
to transform a strongly connected digraph G into two auxiliary graphs, so as to reduce
2-reachability queries in G to 1-reachability queries in those auxiliary graphs. This reduction
works only for strongly connected digraphs and does not carry over to general digraphs. Our
algorithm for general digraphs is obtained via a careful combination of those two approaches.

2 Preliminaries

We assume that the reader is familiar with standard graph terminology, as contained for
instance in [5]. Let G = (V,E) be a directed graph (digraph). Given an edge e = (x, y) in E,
we denote x (resp., y) as the tail (resp., head) of e. A directed path in G is a sequence of
vertices v1, v2, . . ., vk, such that edge (vi, vi+1) ∈ E for i = 1, 2, . . . , k − 1. The path is said
to contain vertex vi, for i = 1, 2, . . . , k, and edge (vi, vi+1), for i = 1, 2, . . . , k− 1. The length
of a directed path is given by its number of edges. As a special case, there is a path of length
0 from each vertex to itself. We write u v to denote that there is a path from u to v, and
u6 v if there is no path from u to v. A directed cycle is a directed path, with length greater
than 0, starting and ending at the same vertex. A directed acyclic graph (in short DAG)
is a digraph with no cycles. A DAG has a topological ordering, i.e., a linear ordering of its
vertices such that for every edge (u, v), u comes before v in the ordering (denoted by u < v).
A digraph G is strongly connected if there is a directed path from each vertex to every other
vertex. The strongly connected components of a digraph are its maximal strongly connected
subgraphs. Given a subset of vertices V ′ ⊂ V , we denote by G \ V ′ the digraph obtained
after deleting all the vertices in V ′, together with their incident edges. Given a subset of
edges E′ ⊂ E, we denote by G \ E′ the digraph obtained after deleting all the edges in E’.

2-Reachability and 2-Reachability closure. We write u 2ev (resp., u 2vv) to denote that
there are two edge-disjoint (resp., internally vertex-disjoint) paths from u to v, and u6 2ev

(resp., u6 2vv) otherwise. As a special case, we assume that v 2ev (resp., v 2vv) for each
vertex v in G. We define an abstract set E+ = E ∪ {>,⊥}. The semantic of this set is as
follows: e ∈ E corresponds to an edge e separating two vertices, > corresponds to 2e (there
is no single separating edge) and ⊥ corresponds to 6 (there is no path). Given a digraph G,

ICALP 2017

74:4 All-Pairs 2-Reachability in O(nω log n) Time

a

c

b

d

e

> (a, b) (a, b) (a, b) (a, b)

(b, c) > (b, c) > (d, e)
(c, a) (c, a) > > (d, e)
⊥ ⊥ ⊥ > (d, e)
⊥ ⊥ ⊥ ⊥ >

Figure 1 A graph and its (not unique) 2-reachability closure matrix.

we define a 2-reachability closure of G, denoted by G 2e , to be a matrix such that:

G 2e [u, v] def=

> if u 2ev

⊥ if u6 v
e where e is any separating edge for u and v.

Since v 2ev for each v ∈ V , G 2e [v, v] = >. An example of a graph with a 2-reachability
closure matrix is given in Figure 1. Note that a 2-reachability closure matrix is not necessarily
unique, as there might be multiple separating edges for a given vertex pair. We define the
2-reachability left closure G 2e

L by replacing any separating edge with first separating edge
and the 2-reachability right closure G 2e

R by replacing it with last separating edge.
Note that if there is only one edge separating u and v, then G 2e [u, v] = G 2e

L [u, v] =
G 2e

R [u, v]. Given any 2-reachability closure matrix, one can compute efficiently the 2-
reachability left and right closure matrices. We sketch below the basic idea for the left
closure (the right closure is completely symmetric). Let u and v be any two vertices. If
G 2e [u, v] is either > or ⊥, then G 2e

L [u, v] = G 2e [u, v]. Otherwise, let G 2e [u, v] = (x, y):
if u 2ex (i.e., if G 2e [u, x] = >) then (x, y) is the first separating edge for u and v and
G 2e

L [u, v] = (x, y); otherwise, u 6 2ex (i.e., G 2e [u, x] 6= >) and G 2e
L [u, v] = G 2e

L [u, x].
We show how to compute G 2e

L and G 2e
R from G 2e in a total of O(n2) worst-case time.

3 All-pairs 2-reachability in DAGs

In this section we present our O(nω logn) time algorithm for all-pairs 2-reachability in DAGs.
The high-level idea is to mimic the way Boolean matrix multiplication can be used to compute
the transitive closure of a graph: recursively along a topological order, combine the transitive
closure of the first and the second half of the vertices in a single matrix multiplication.
However, while in transitive closure for each pair (i, j) we have to store only information on
whether there is a path from i to j, for all-pairs 2-reachability this is not enough. First, we
describe a path algebra, used by our algorithm to operate on paths between pairs of vertices in
a concise manner. We then continue with the description of a matrix product-like operation,
which is the backbone of our recursive algorithm. Finally, we show how to implement those
operations efficiently using some binary encoding and decoding at every step of the recursion.

Before introducing our new algorithm, we need some terminology. Let G = (V,E) be a
DAG, and let E1, E2 be a partition of its edge set E, E = E1∪E2. We say that a partition is
an edge split if there is no triplet of vertices x, y, z in G such that (x, y) ∈ E2 and (y, z) ∈ E1
simultaneously. Informally speaking, under such split, any path in G from a vertex u to
a vertex v consists of a sequence of edges from E1 followed by a sequence of edges from
E2 (as a special case, any of those sequences can be empty). We denote the edge split by
G = (V,E1, E2) (See Figure 2). We say that vertex x in G = (V,E1, E2) is on the left (resp.,
right) side of the partition if x is adjacent only to edges in E1 (resp., E2). We assume without
loss of generality that the vertices of G are given in a topological ordering v1, v2, . . . , vn.

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:5

E1 E2

P1

Q1

v1

vn

v2

P2 Q2u v

Pn Qn

v3

v4 Q4

P3

Figure 2 An edge split of a DAG G = (V, E1, E2).

3.1 Algebraic approach
Consider a family of paths P = {P1, P2, . . . , P`}, all sharing the same starting and ending
vertices u and v. We would like to distinguish between the following three possibilities: (i) P
is empty; (ii) at least one edge e belongs to every path Pi ∈ P; or (iii) there is no edge that
belongs to all paths in (nonempty) P. To do that, we define the representation repr(P):

repr(P) def=
⋂̀
i=1

Pi =

U if P = ∅
∅ if no edge belongs to all Pi

{e ∈ E : e ∈ Pi, 1 ≤ i ≤ `} otherwise.

where U denotes the top symbol in the Boolean algebra of sets (i.e., the complement of ∅).
We also define a left representation reprL(P) ∈ E+, where E+ = E ∪ {>,⊥}, as follows:

reprL(P) def=

⊥ if P = ∅
> if no edge belongs to all Pi

e such that e ∈ Pi, 1 ≤ i ≤ `, and tail(e) is minimum
in the topological order

A right representation reprR(P) ∈ E+ is defined symmetrically to reprL(P), by replacing
minimum with maximum. If reprL(P) ∈ E (resp., reprR(P) ∈ E), we say that reprL(P)
(resp., reprR(P)) is the first (resp., last) common edge in P . Note that if P is the set of all the
paths from u to v, then repr(P) contains all the information about G 2e [u, v]. Additionally,
G 2e

L [u, v] = reprL(P) and G 2e
R [u, v] = reprR(P). With a slight abuse of notation we also

say that G 2e [u, v] ∈ repr(P).

I Observation 1. Let G = (V,E1, E2) be an edge split of a DAG, and let u and v be two
arbitrary vertices in G. For 1 ≤ i ≤ n, let Pi = {P ⊆ E1 : P is a path from u to vi}, and
Qi = {Q ⊆ E2 : Q is a path from vi to v} (See Figure 2) and let S be the family of all paths
from u to v. Then: repr(S) =

⋂n
i=1

(
repr(Pi) ∪ repr(Qi)

)
A straightforward application of Observation (1) yields immediately a polynomial time
algorithm for computing G 2e . However, this algorithm is not very efficient, since the size
of repr(P) can be as large as (n− 1). In the following we will show how to obtain a faster
algorithm, by replacing repr(P) with a suitable combination of reprL(P) and reprR(P).

We next define two operations, denoted as serial and parallel. Although those operations
are formally defined on E+ = E ∪ {>,⊥}, they have a more intuitive interpretation as

ICALP 2017

74:6 All-Pairs 2-Reachability in O(nω log n) Time

operations on path families. We start with the serial operation ⊗. For a, b ∈ E+, we define:

a⊗ b def=
{

(⊥,⊥) if a = ⊥ or b = ⊥
(a, b) otherwise.

We define ⊕ as the parallel operator. Namely, for arbitrary a ∈ E+: a⊕⊥ def= a, ⊥⊕ a def= a,
a⊕> def= >, >⊕ a def= >, and otherwise, for e, e′ ∈ E:

e⊕ e′ def=
{
> if e 6= e′

e if e = e′

We extend the definition of ⊕ to operate on elements of E+ × E+, as follows: (a1, b1) ⊕
(a2, b2) def= (a1⊕a2, b1⊕b2). Ideally, we want the operator ⊕ either to preserve consistently the
first common edge or to preserve consistently the last common edge, under the union of path
families. If for instance we preserve the first common edge, that means that if P and P ′ are two
path families sharing the same endpoints then we want reprL(P ∪P ′) = reprL(P)⊕ reprL(P ′)
to hold. However, this is not necessarily the case, as for example both P and P ′ could
consist of a single path, with both paths sharing an intermediate edge e′, but both with two
different initial edges, respectively e1 and e2. Thus reprL(P) ⊕ reprL(P ′) = e1 ⊕ e2 = >
while reprL(P ∪ P ′) = e′. As shown in the following lemma, this is not an issue if the path
families considered are exhaustive in taking every possible path between a pair of vertices.

I Lemma 2. Let G,Pi,Qi and S be as in Observation 1. Then:
(a)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (⊥,⊥) iff repr(S) = U;

(b) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1,>) then repr(S) 3 e1;
(c) if

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>, e2) then repr(S) 3 e2;

(d) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1, e2) then repr(S) 3 e1, e2;
(e)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>,>) iff repr(S) = ∅.

We now consider the special case where one side of the partition defined in Observation 1
contains only paths of length one. In particular, we say that the edge set E′ ⊆ E is thin, if
there exists no triplet of vertices x, y, z such that (x, y) ∈ E′ and (y, z) ∈ E′.

I Lemma 3. Let G,Pi,Qi and S be as in Observation 1. Additionally, let E1 be thin.
Then
(a)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (⊥,⊥) iff reprR(S) = ⊥;

(b) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1,>) then reprR(S) = e1;
(c) if

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>, e2) then reprR(S) = e2;

(d) if
⊕n

i=1(reprL(Pi)⊗ reprR(Qi)) = (e1, e2) then reprR(S) = e2;
(e)

⊕n
i=1(reprL(Pi)⊗ reprR(Qi)) = (>,>) iff reprR(S) = >.

We define the following projection operator π: π(⊥,⊥) def= ⊥, π(>,>) def= >, π(e′, e) =
π(>, e) = π(e,>) def= e. With this new terminology, Lemma 2 and Lemma 3 can be simply
restated as follows:

I Corollary 4. Let G,Pi,Qi and S be as in Observation 1. Then
(i) π(

⊕n
i=1(reprL(Pi)⊗ reprR(Qi))) = > iff repr(S) = ∅,

(ii) π(
⊕n

i=1(reprL(Pi)⊗ reprR(Qi))) = ⊥ iff repr(S) = U, and
(iii) π(

⊕n
i=1(reprL(Pi)⊗ reprR(Qi))) ∈ repr(S) otherwise.

I Corollary 5. Let G,Pi,Qi and S be as in Observation 1, and let E1 be thin. Then
π(
⊕n

i=1(reprL(Pi)⊗ reprR(Qi))) = reprR(S).

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:7

Matrix product. Now we define a path-based matrix product based on the previously defined
operators: (A ◦B)[i, j] def= π

(⊕
k A[i, k]⊗B[k, j]

)
. Throughout, we assume that the vertices

of G are sorted according to a topological ordering. In the following lemma B represents a
thin set of edges (i.e., the set of edges from a subset of vertices to another disjoint subset of
vertices).

I Lemma 6. Let
[
A B

0 C

]
be the adjacency matrix of a DAG G = (V,E), where A,B and

C are respectively k × k, k × (n− k) and (n− k)× (n− k) submatrices. If B is the matrix
containing ⊥ for every 0 in B and the appropriate e ∈ E for every 1 in B, then:[

A 2e
L A 2e

L ◦ (B ◦ C 2e
R)

⊥ C 2e
R

]
is a 2-reachability closure of G (not necessarily unique).

By Lemma 6, the 2-reachability closure can be computed by performing path-based
matrix products on the left and right 2-reachability closures of smaller matrices. This gives
immediately a recursive algorithm for computing the 2-reachability closure: indeed, as already
shown in Section 2, one can compute the left and right 2-reachability closures in O(n2) time
from any 2-reachability closure. In the next section we show how to implement this recursion
efficiently by describing how to compute efficiently path-based matrix products.

3.2 Encoding and decoding for Boolean matrix product
We start this section by showing how to efficiently compute path-based matrix products
using Boolean matrix multiplications. The first step is to encode each entry of the matrix as
a bitword of length 8k where k = dlog2(n+ 1)e. We use Boolean matrix multiplication of
matrices of bitwords, with bitwise AND/OR operations, denoted respectively with symbols
∧ and ∨. Our bitword length is O(logn), so matrix multiplication takes O(nω logn) time by
performing Boolean matrix multiplication for each coordinate separately.

We make use of the fact that after each multiplication we can afford a post-processing
phase, where we perform actions which guarantee that the resulting bitwords represent a
valid 2-reachability closure.

First, we note that when encoding a specific matrix, we know whether it is used as a
left-side or a right-side component of multiplication. The main idea is to encode left-side and
right-side ⊥ as {0}8k, left-side and right-side > as {1}8k. For any other value, append {1}4k

as a prefix or suffix (depending on whether it is used as a left-side or right-side component),
to the encoding of an edge. The encoding of an edge is a simple 1-superimposed code:
concatenation of the edge ID and complement of the edge ID. To be more precise, whenever
a bitword represents an edge e in a left-closure, then it is of the form IDeIDe{1}4k; whenever
a bitword represents an edge e in a right-closure, then it is of the form {1}4kIDeIDe, where
w denotes the complement of bitword w.

The serial operator ⊗ is implemented by coordinate-wise AND over two bitwords. Recall
that the operator ⊗ always has as its first (left) operand an element from a left-closure
matrix and as its second (right) operand an element from a right-closure. It is easy to verify
that result of AND is a concatenation of two bitwords of length 4k encoding either ⊥,> or
e ∈ E. We observe that ⊗ is calculated properly in all cases: (let e, e1, e2 ∈ E, e1 6= e2)
1. e⊗> = (e,>) since IDeIDe{1}4k ∧ {1}8k = IDeIDe{1}4k,
2. >⊗ e = (e,>) since {1}8k ∧ {1}4kIDeIDe = {1}4kIDeIDe,
3. e1 ⊗ e2 = (e1, e2) since IDe1IDe1{1}4k ∧ {1}4kIDe2IDe2 = IDe1IDe1IDe2IDe2 ,
4. e⊗⊥ = >⊗⊥ = ⊥⊗⊥ = ⊥⊗ e = ⊥⊗> = (⊥,⊥) since {0, 1}8k ∧ {0}8k = {0}8k,
5. >⊗> = (>,>) since {1}8k ∧ {1}8k = {1}8k.

ICALP 2017

74:8 All-Pairs 2-Reachability in O(nω log n) Time

The parallel operator ⊕ is implemented as coordinate-wise OR over bitwords of length
8k. Note that all bitwords can be binary representations of pairs of elements in E+ of the
form (e1, e2), (e1,>), (>, e2), (⊥,⊥), (>,>), since only those forms appear as a result of an
⊗ operation. Recall that ⊕ satisfies (a1, b1) ⊕ (a2, b2) = (a1 ⊕ a2, b1 ⊕ b2), thus w.l.o.g. it
is enough to verify the correctness of the implementation over the first 4k bits of encoding.
Observe that all cases, except when both bitwords include encoded edges, are managed
correctly by the execution of coordinate-wise OR: (let e ∈ E)
1. ⊥⊕⊥ = ⊥ since {0}4k ∨ {0}4k = {0}4k,
2. ⊥⊕ e = e⊕⊥ = e since IDeIDe ∨ {0}4k = IDeIDe,
3. ⊥⊕> = >⊕⊥ = > since {1}4k ∨ {0}4k = {1}4k,
4. e⊕> = >⊕ e = > since IDeIDe ∨ {1}4k = {1}4k.

We are only left to take care of operations of the form e1 ⊕ e2 for e1, e2 ∈ E. According
to the definition of the parallel operator ⊕, we would like e1 ⊕ e2 = e ∈ E iff e1 = e2 = e

and otherwise e1 ⊕ e2 = >. This special case is handled by the fact that we encode edges
using 1-superimposed codes. That is, the binary representation of IDe has the property that
IDe[1 .. 2k] = IDe[2k + 1 .. 4k]. Moreover, the coordinate-wise OR of two encodings of edges,
that is X = IDe1 ∨ IDe2 , has such property iff e1 = e2. Thus in order to successfully decode
the result of chained ⊕ from coordinate-wise OR, we need to distinguish the following cases
(our result is encoded as X = X[1 .. 2k]X[2k + 1 .. 4k]):
1. X = {0}4k, then the result is ⊥,
2. X[1 .. 2k] = X[2k + 1 .. 4k], then X is the encoding of the resulting edge,
3. otherwise the result is >.
The implementation of a projection operator follows trivially.

The operations needed to compute the l-th coordinate of all entries of the final path-based
matrix product (before decoding of entries) can be implemented as a Boolean matrix product
of the l-th coordinate of the entries of A 2e

L and B 2e
R . All the tools developed in this section

allow us to compute the 2-reachability closure for DAGs. Our recursive algorithm follows
closely Lemma 6.

I Lemma 7. Given a DAG with n vertices, its 2-reachability closure can be computed in
time O(nω logn).

4 All-pairs 2-reachability in strongly connected graphs

In this section we focus on strongly connected graphs. In this case reachability is simple: for
any pair of vertices (u, v) ∈ V × V we have u v in G. But in case that u 6 2ev in G, finding
a separating edge that appears in all paths from u to v in G can still be a challenge. We
show that we can report such an edge in constant time after O(nω) preprocessing. The main
result of this section is the following theorem.

I Theorem 8. The 2-reachability closure of a strongly connected graph can be computed in
time O(nω).

Our construction is based on the notion of auxiliary graph and it will be given in
Section 4.3. Its running time will be analyzed in Lemma 13 and its correctness hinges on
Lemma 15.

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:9

4.1 Reduction to two single-source problems

Let G = (V,E) be a strongly connected digraph. Let s be a fixed but arbitrary vertex of G.
The proof of the following lemma is immediate.

I Lemma 9. For any pair of vertices u and v: If there is an edge e ∈ E(G) such that u6 v
in G \ e, then either u6 s in G \ e or s6 v in G \ e.

Let Pu,s be the family of all paths from u to s and let Ps,v be the family of all paths
from s to v. We denote by eu the first edge on all paths in Pu,s, and by ev the last edge on
all paths in Ps,v. Note that there might be no edge that is on all paths of Pu,s: in this case
we say that eu does not exist. If there are several edges on all paths in Pu,s, then they are
totally ordered, so it is clear which is the first edge (similarly for ev and Ps,v). We now show
that in order to search for a separation witness for (u, v), it suffices to focus on eu and ev.

I Lemma 10. If there is some e such that u6 v in G \ e, then at least one of the following
statements is true:

eu exists and u6 v in G \ eu.
ev exists and u6 v in G \ ev.

Hence, in order to check whether there is an edge that separates u from v in G, it suffices
to look at the reachability information in G \ eu (a graph which does not depend on u) and at
the reachability information in G \ ev (a graph which does not depend on v). Unfortunately,
this is not enough to derive an efficient algorithm, since we would have still to look at as
many as 2n different graphs (as we explain later, and as it was first shown in [10], there can
be at most 2n− 2 edges whose removal can affect the strong connectivity of the graph). As a
result, computing the transitive closures of all those graphs would require O(nω+1) time. The
key insight to reduce the running time to O(nω) is to construct an auxiliary graph H, whose
reachability is identical to G \ ev for any query pair (u, v), and a second auxiliary graph H ′

whose reachability is identical to G \ eu for any query pair (u, v). Note that the edge that is
missing from the graph depends always on one of the two endpoints of the reachability query.
As a consequence, we have to consider only n2 and not n3 different queries for H and H ′.

4.2 Strong bridges and dominator tree decomposition

Before we construct these auxiliary graphs, we need some more terminology and prior results.

Flow graphs, dominators, and bridges. A flow graph Gs = (V,E, s) is a digraph with a
distinguished start vertex s. We denote by GR

s = (V,ER, s) the reverse flow graph of Gs; the
graph resulted by reversing the direction of all edges e ∈ E. Vertex u is a dominator of a
vertex v (u dominates v) if every path from s to v in Gs contains u; u is a proper dominator
of v if u dominates v and u 6= v. The dominator relation is reflexive and transitive. Its
transitive reduction is a rooted tree, the dominator tree D: u dominates v if and only if u
is an ancestor of v in D. If v 6= s, the parent of v in D, denoted by d(v), is the immediate
dominator of v: it is the unique proper dominator of v that is dominated by all proper
dominators of v. For any vertex v, we let D(v) denote the set of descendants of v in D, i.e.,
the vertices dominated by v. Dominators can be computed in linear time [2, 3, 7]. An edge
(x, y) is a bridge of the flow graph Gs if all paths from s to y include (x, y).

ICALP 2017

74:10 All-Pairs 2-Reachability in O(nω log n) Time

Strong bridges. Let G = (V,E) be a strongly connected digraph. An edge e of G is a
strong bridge if G \ e is no longer strongly connected. Let s be an arbitrary start vertex of G.
Since G is strongly connected, all vertices are reachable from s and reach s, so we can view
both G and GR as flow graphs with start vertex s, denoted respectively by Gs and GR

s .

I Property 11 ([10]). Let s be an arbitrary start vertex of G. An edge e = (x, y) is a strong
bridge of G if and only if it is a bridge of Gs or a bridge of GR

s (or both).

As a consequence of Property 11, all the strong bridges of the digraph G can be obtained
from the bridges of the flow graphs Gs and GR

s , and thus there can be at most (2n−2) strong
bridges in a digraph G. Using the linear time algorithms for computing dominators, we
can thus compute all strong bridges of G in time O(m+ n) ⊆ O(nω). We use the following
lemma from [8] that holds for a flow graph Gs of a strongly connected digraph G.

I Lemma 12 ([8]). Let G be a strongly connected digraph and let (x, y) be a strong bridge
of G. Also, let D and DR be the dominator trees of the corresponding flow graphs Gs and
GR

s , respectively, for an arbitrary start vertex s.
(a) Suppose x = d(y). Let w be any vertex that is not a descendant of y in D. Then there

is a path from w to x in G avoiding all proper descendants of y in D. Moreover, all
paths in G from w to any descendant of y in D contain the edge (d(y), y).

(b) Suppose y = dR(x). Let w be any vertex that is not a descendant of x in DR. Then
there is a path from x to w in G avoiding all proper descendants of x in DR. Moreover,
all paths in G from any descendant of x in DR to w contain the edge (x, dR(x)).

Bridge decomposition. After deleting from the dominator trees D and DR respectively
the bridges of Gs and GR

s , we obtain the bridge decomposition of D and DR into forests
D and DR. Throughout this section, we denote by Tv (resp., TR

v) the tree in D (resp.,
DR) containing vertex v, and by rv (resp., rR

v) the root of Tv (resp., TR
v). Given a digraph

G = (V,E), and a set of vertices S ⊆ V , we denote by G[S] the subgraph induced by S. In
particular, G[D(r)] denotes the subgraph induced by the descendants of vertex r in D.

4.3 Overview of the algorithm and construction of auxiliary graphs
The high-level idea of our algorithm is to compute two auxiliary graphs H and H ′ from G

and GR, respectively, with the following property: Given two vertices u and v, we have that
u 2ev in G if and only u v in H and v u in H ′. To construct the auxiliary graphs H and
H ′, we use the bridge decompositions of D and DR, respectively.

The two extremal edges eu and ev, defined in Section 4.1, can be also defined in terms of
the bridge decompositions. In particular, ev is the bridge entering the tree Tv of the bridge
decomposition of D, so ev = (d(rv), rv), and eu is the reverse bridge entering the tree DR

u of
the bridge decomposition of DR, so eu = (rR

u , d
R(rR

u)). Hence if there exists a path from
u to v avoiding each of the strong bridges ev and eu, then u 2ev in G. By Lemma 10, it
is enough if H models the reachability of G \ ev and H ′ the reachability of G \ eu. So H is
responsible for answering whether u has a path to v avoiding ev, while H ′ is responsible for
answering whether u has a path to v avoiding eu. Then, if any of the reachability queries in
H and H ′ returns false, we immediately have an edge that appears in all paths from u to v.

We next show to compute the auxiliary graphs H and H ′ in O(n2) time. In particular,
the auxiliary graph H = (V,E′) of the flow graph Gs = (V,E, s) is constructed as follows.
Initially, E′ = E \BR, where BR is the set of bridges of Gs. For all bridges (p, q) of Gs do
the following: For each edge (x, y) ∈ E such that x ∈ D(q), y /∈ D(q), we add the edge (p, y)

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:11

a

s

c

d

b

e

g

f

h

Gs

a

s

c

d

b

e

g

f

h

H

a

s

c

d

b

e

g

f

h

GR
s

a

s

c

d

b

e

g

f

h

H′

Figure 3 Auxiliary graphs H and H ′ which are derived from Gs and GR
s , respectively. The

deleted edges, the bridges of Gs and GR
s , are shown in red, the newly added edges are shown in

blue. The blue edges are drawn along the green edges from Gs and GR
s which are the reason for

their insertion. Here we see, that for example b is 2-reachable from e, since there are two (edge and
vertex) disjoint paths (e, g, c, d, b) and (e, f, h, s, b) in G. In H, e reaches b through the path (e, c, b),
and in H ′, b reaches e through the path (b, s, h, e). We also see, that edge (c, d) separates a and f

in G, and even though f reaches a in H ′ through the path (f, d, c, a), a does not reach f in H. To
illustrate why both H and H ′ are relevant in Lemma 15, consider the following example: vertex c is
unreachable from b in G \ (b, c), which we also detect as there is no c-b path in H ′ (even though
there is a b-c path in H).

in E′, i.e., we set E′ = E′ ∪ (p, y). A detailed implementation can be found in full version of
the paper. Together with graph H, the algorithm outputs an array of edges (“witnesses”)
W , such that for each vertex v 6= s, W [v] = (d(rv), rv) is a candidate separating edge for v
and any other vertex. The computation of H ′ is completely analogous.

Once H and H ′ are computed, their transitive closure can be computed in O(nω) time,
after which reachability queries can be answered in constant time. Thus, we can preprocess
a strongly connected digraph G in total time O(nω) and answer 2-reachability queries in
constant time, as claimed by Theorem 8.

I Lemma 13. The auxiliary graph H can be computed in O(n2) time and space.

I Lemma 14. For all w ∈ V , no edge (x, y) ∈ E(H) exists with x /∈ D(rw) and y ∈ D(rw).

To show the correctness of our approach, we consider queries where we are given an
ordered pair of vertices (u, v), and we wish to return whether there exists an edge e such
that u6 v in G \ e. We can answer this query in constant time by answering the queries
u v in H and v u in H ′. Given Lemma 10, it is sufficient to prove the following:

I Lemma 15. The auxiliary graphs H and H ′ satisfy these two conditions:
If ev exists, then u v in G \ ev if and only if u v in H.
If eu exists, then u v in G \ eu if and only if v u in H ′.

5 All-pairs 2-reachability in general graphs

In this section, we show how to compute the 2-reachability of a general digraph by suitably
combining the previous algorithms for DAGs and for strongly connected digraphs. First,
note that the 2-reachability closure of a strongly connected graph G can be constructed as
follows: G 2e [i, j] = > if i has two edge-disjoint paths to j and G 2e [i, j] ∈ E if there is

ICALP 2017

74:12 All-Pairs 2-Reachability in O(nω log n) Time

an edge e ∈ E such that i6 j in G \ e. No entry of G 2e contains ⊥ since G is strongly
connected. After O(nω) time preprocessing all the above queries can be answered in constant
time. Therefore, the 2-reachability closure can be computed in O(nω) time.

Let G be a general digraph. The condensation of G is the DAG resulting after the contrac-
tion of every strongly connected component of G into a single vertex. We assume, without
loss of generality, that the vertices are ordered as follows: The vertices in the same strongly
connected component of G appear consecutively in an arbitrary order, and the strongly con-
nected components are ordered with respect to the topological ordering of the condensation
of G. Moreover, we assume that we have access to a function stronglyConnected(u, v) that
answers whether the vertices u and v are strongly connected.

The key insight is that every idea presented in Section 3 never truly used the fact that
the input graph is a DAG, just the properties of an edge split, that is finding edge partition
into two sets so that no vertex has incoming edge from second set and outgoing edge from
first set simultaneously. If we are able to extend the definition of an edge split to a general
graph in a way highlighted above, and the definitions of repr(), reprR() and reprL(), then
all of the results from Section 3 carry over to a general graph G. Note that given arbitrary
path family P , reprL(P) and reprR(P) might be ill-defined, since paths in an arbitrary path
family might not share the order of common edges. However, we are only using this notation
for path families containing exactly all of paths connecting a given pair of vertices in the
graph: for such families, the order of common edges is shared.

The high-level idea behind our approach is to extend the 2-reachability closure algorithm
for DAGs, as follows. At each recursive call, the algorithm attempts to find a balanced
separation of the set of vertices, with respect to their fixed precomputed order, into two sets
such that there is no pair across the two sets that is strongly connected. If such a balanced
separation can be found, then the instance is (roughly) equally divided into two instances.
Otherwise, if there is no balanced separation of the set of vertices into two subsets, then one
of the following properties holds: (i) the larger instance is a strongly connected component, or
(ii) the recursive call on the larger instance separates a large strongly connected component,
on which we can compute the 2-reachability closure in O(nω) time.

I Theorem 16. The 2-reachability closure for general graphs on n vertices can be computed
in time O(nω logn).

6 An application: computing all dominator trees

Let s be an arbitrary vertex of G. Recall the bridge decomposition D of (vertex-)dominator
tree D and its tree Tv and root rv from Section 4.2. We define the edge-dominator tree D̃ of
G with start vertex s, as the tree that results from D after contracting all vertices in each
tree Tv into its root rv. For any vertex v and edge e = (x, y), e is contained in all paths in G
from s to v if and only if (rx, ry) is in the path from s to rv in D̃. We denote by d̃(y) the
parent of a vertex in D̃. (Both y and d̃(y) are roots in D.)

I Theorem 17. We can compute all sources vertex- and edge-dominator trees from G 2e
R in

time O(n2).

We can preprocess each edge-dominator tree D̃ inO(n) so as to answer ancestor-descendant
relations in constant time [16]. We can also compute in O(n) time the number of descendants
in D of every root r in D. This allows us to answer various queries very efficiently:

Given a pair of vertices s and t and an edge e = (x, y), we can test if G \ e contains a
path from s to t in constant time. This is because e is contained in all paths from s to t

L. Georgiadis, D. Graf, G. F. Italiano, N. Parotsidis, and P. Uznański 74:13

in G if and only if the following conditions hold: e is a bridge of flow graph G with start
vertex s (i.e., ry = y and d̃(y) = rx) and y is an ancestor of rt in D̃.
Similarly, given a vertex s and an edge e = (x, y), we can report how many vertices
become unreachable from s if we delete e from G. If e is a bridge of flow graph G with
start vertex s, then this number is equal to the number of descendants of y in D. Hence,
we find the edge whose removal disconnects the most pairs of vertices in time O(n2).

By computing all vertex-dominator trees of G, we can answer analogous queries for
vertex-separators. Moreover, we can answer efficiently queries regarding junctions. A vertex
s is a junction of vertices u and v in G, if G contains a path from s to u and a path from s

to v that are vertex-disjoint (i.e., s is the only vertex in common in these paths). Yuster [18]
gave a O(nω) algorithm to compute a single junction for every pair of vertices in a DAG. By
having all dominator trees of a digraph G, we can also answer the following queries.

Given vertices s, u and v, test if s is a junction of u and v. This is true if and only if
u and v are descendants of distinct children of s in D. Hence, we perform this test in
constant time.
Similarly, we can report all junctions of a given a pair of vertices in O(n) time. Note that
two vertices may have n junctions (e.g., in a complete graph).

Acknowledgments. We would like to thank Paolo Penna and Peter Widmayer for many
useful discussions on the problem.

References
1 N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for boolean matrix multiplication

and for shortest paths. In Proc. of the 33rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 417–426. IEEE, 1992. doi:10.1109/SFCS.1992.267748.

2 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–21132, 1999. doi:10.1137/S0097539797317263.

3 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008. doi:10.1137/070693217.

4 D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Jour-
nal of Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

5 T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. The MIT Press, 2001.

6 M. J. Fischer and A.R. Meyer. Boolean matrix multiplication and transitive closure. In
Proc. of the 12th Annual Symposium on Switching and Automata Theory (SWAT), pages
129–131. IEEE, 1971. doi:10.1109/SWAT.1971.4.

7 W. Fraczak, L. Georgiadis, A. Miller, and R.E. Tarjan. Finding dominators via disjoint set
union. Journal of Discrete Algorithms, 23:2–20, 2013. doi:10.1016/j.jda.2013.10.003.

8 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. ACM Transactions on Algorithms, 13(1):9:1–9:24, 2016. doi:10.1145/2968448.

9 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong connectivity in directed graphs
under failures, with applications. In Proc. of the 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1880–1899, 2017. doi:10.1137/1.9781611974782.123.

10 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

ICALP 2017

http://dx.doi.org/10.1109/SFCS.1992.267748
http://dx.doi.org/10.1137/S0097539797317263
http://dx.doi.org/10.1137/070693217
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1109/SWAT.1971.4
http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/10.1145/2968448
http://dx.doi.org/10.1137/1.9781611974782.123
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011

74:14 All-Pairs 2-Reachability in O(nω log n) Time

11 R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently answering reachability queries on
very large directed graphs. In Proc. of the 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 595–608, New York, NY, USA, 2008. ACM.
doi:10.1145/1376616.1376677.

12 V. King and G. Sagert. A fully dynamic algorithm for maintaining the transitive closure.
Journal of Computer and System Sciences, 65(1):150–167, 2002. doi:10.1006/jcss.2002.
1883.

13 F. Le Gall. Powers of tensors and fast matrix multiplication. In Proc. of the 39th Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–303, New
York, NY, USA, 2014. ACM. doi:10.1145/2608628.2608664.

14 T. Lengauer and R.E. Tarjan. A Fast Algorithm for Finding Dominators in a Flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–41, 1979. doi:10.
1145/357062.357071.

15 K. Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96–115,
1927.

16 R.E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):62–
89, 1974. doi:10.1137/0203006.

17 V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proc.
of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 887–898, New
York, NY, USA, 2012. ACM. doi:10.1145/2213977.2214056.

18 R. Yuster. All-pairs disjoint paths from a common ancestor in Õ(nω) time. Theoretical
Computer Science, 396(1):145–150, 2008. doi:10.1016/j.tcs.2008.01.032.

http://dx.doi.org/10.1145/1376616.1376677
http://dx.doi.org/10.1006/jcss.2002.1883
http://dx.doi.org/10.1006/jcss.2002.1883
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/357062.357071
http://dx.doi.org/10.1145/357062.357071
http://dx.doi.org/10.1137/0203006
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.1016/j.tcs.2008.01.032

Edge-Orders
Lena Schlipf1 and Jens M. Schmidt∗2

1 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany
lena.schlipf@fernuni-hagen.de

2 Institut für Mathematik, TU Ilmenau, Ilmenau, Germany
jens.schmidt@tu-ilmenau.de

Abstract
Canonical orderings and their relatives such as st-numberings have been used as a key tool in
algorithmic graph theory for the last decades. Recently, a unifying link behind all these orders
has been shown that links them to well-known graph decompositions into parts that have a
prescribed vertex-connectivity.

Despite extensive interest in canonical orderings, no analogue of this unifying concept is
known for edge-connectivity. In this paper, we establish such a concept named edge-orders and
show how to compute (1,1)-edge-orders of 2-edge-connected graphs as well as (2,1)-edge-orders
of 3-edge-connected graphs in linear time, respectively. While the former can be seen as the
edge-variants of st-numberings, the latter are the edge-variants of Mondshein sequences and non-
separating ear decompositions. The methods that we use for obtaining such edge-orders differ
considerably in almost all details from the ones used for their vertex-counterparts, as different
graph-theoretic constructions are used in the inductive proof and standard reductions from edge-
to vertex-connectivity are bound to fail.

As a first application, we consider the famous Edge-Independent Spanning Tree Conjecture,
which asserts that every k-edge-connected graph contains k rooted spanning trees that are pair-
wise edge-independent. We illustrate the impact of the above edge-orders by deducing algorithms
that construct 2- and 3-edge independent spanning trees of 2- and 3-edge-connected graphs, the
latter of which improves the best known running time from O(n2) to linear time.

1998 ACM Subject Classification G.2.2 Graph Theory, Graph Algorithms

Keywords and phrases edge-order, st-edge-order, canonical ordering, edge-independent spanning
tree, Mondshein sequence, linear time

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.75

1 Introduction

Canonical orderings serve as a fundamental tool in various fields of algorithmic graph theory,
see [2, 26] for a wealth of over 30 applications. Under this name, canonical orderings were
published in 1988 for maximal planar graphs [8] and soon after generalized to 3-connected
planar graphs [14]. Interestingly, it turned out only recently [26] that the well-known non-
separating ear decompositions [6] are in fact strict generalizations of canonical orderings
to arbitrary 3-connected graphs, and that this generalization was, independently, already
known as (2,1)-sequences [19] in 1971 long before canonical orderings were even proposed
(anticipating many of their later planar features).

Mondshein [19] characterized (2,1)-sequences, or (2,1)-orders, as we will call them, by
decomposing a graph into 2-connected and connected parts. Indeed, the unifying link above

∗ This research was supported by the DFG grant SCHM 3186/1-1.

EA
T

C
S

© Lena Schlipf and Jens M. Schmidt;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 75; pp. 75:1–75:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.75
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

75:2 Edge-Orders

Table 1 Left: (k, l)-orders of (k + l)-connected graphs known so far and the best-known running
times for constructing them. Right: (k, l)-edge-orders of (k + l)-edge-connected graphs (this paper).

k\l 1 2
1 st-numbering [9] O(m)

2 Mondshein sequence
[25] O(m)

Chain decomposition [7]
O(n2m); if planar [21] O(m)

3 (3,1)-order for tri-
angulations [4] O(m)

5-canonical decomposition for
triangulations [20] O(m)

4

k\l 1
1 st-edge-numbering [1]

O(m) (+in this paper)
2 (2,1)-edge-order O(m)

(in this paper)
3

4

allows to describe any canonical ordering of a graph G = (V,E) as a total order on V such
that for certain i, the first i vertices induce a 2-connected graph and the remaining vertices
induce a connected graph in G [26] (and hence, does not use any reference to planarity). The
general concept behind canonical orderings is thus connectivity, with all of its implications
for planarity, instead of planarity itself.

Several publications [20, 7, 4] extended this approach to (k, l)-orders with (k, l) 6= (2, 1).
Such (k, l)-orders may be described canonically as total orders on V such that for certain i,
the first i vertices induce a k-connected graph and the remaining vertices induce a l-connected
graph (a related description for planar triangulations is given in [4]). We note that this is
not a definition, as “certain i” has to be quantified for every particular (k, l). This is usually
done in dependence of a graph decomposition, which tend to become more complex, as k or
l grow: e.g. for (2, 1)-orders, “certain i” is quantified by taking every vertex i that completes
an ear with the predecessors of i in a fixed open ear decomposition of G.

Several relatives of (2,1)-orders fit into the context of (k, l)-orders: The well-known
st-numberings and st-orientations are actually (1,1)-orders of 2-connected graphs, where i
ranges over all vertices, the chain decompositions of [7] are (2,2)-orders of 4-connected graphs,
and more orders on restricted graph classes such as planar graphs and triangulations are
known (see Table 1 left).

The purpose of this paper is to extend this unifying view further to (k, l)-edge-orders,
each of which can be described as a total order on E such that for certain i, the first i edges
induce a k-edge-connected graph and the remaining edges induce a l-edge-connected graph.
Despite the many known and heavily used vertex-orders above, these natural edge-variants do
not seem to be well-studied. In fact, we are only aware of one technical report by Annexstein
et al. [1], which deals with (1,1)-edge-orders (under the name st-edge-orderings). For the
(1, 1)-edge-order we present, i ranges over all edges except st; for the (2, 1)-edge-order, i ranges
over all edges that complete an ear with the predecessors of i in a fixed ear decomposition
of G.

We show a simple algorithm how a (1,1)-edge-order can be computed and prove that
it has running time O(m). Our main contribution is then an algorithm that computes a
(2,1)-edge-order of a 3-edge-connected graph in time O(m) (see Table 1 right), of which the
corresponding result for the vertex-counterpart took over 40 years.

Just like (2,1)-orders, which immediately led to improvements on the best-known running
time for five applications [5, 26], (2,1)-edge-orders seem to be an important and useful
tool for many graph algorithms. We give an application of them, which is related to the
edge-independent spanning tree conjecture [13]: By using a (2,1)-edge-order, we show that
three edge-independent spanning trees of 3-edge-connected graphs can be computed in time
O(m), improving the best-known running time O(n2) by Gopalan et al. [11].

L. Schlipf and J.M. Schmidt 75:3

We also considered the 3-edge-partition problem, but surprisingly did not find an easy
reduction to (2, 1)-edge-orders. However, we note that this problem can be solved in linear
time using existing algorithms: A 3-edge-partition can be computed by two linear-time
reductions, first to the vertex-subset tripartitioning problem [28, Theorem 2b], and then [27]
to the problem of computing a non-separating ear decomposition. It is also possible to find
an alternative simple and direct linear-time reduction along the lines of [26, Application 5].

After giving preliminary facts on ear decompositions, we explain the linear-time algorithms
for computing (1,1)- and (2,1)-edge-orders in Sections 3–5. Section 6 then shows algorithms
for computing two and three edge-independent spanning trees.

1.1 Vertex-connectivity vs. edge-connectivity
In many cases, the vertex-variant of a connectivity problem is more challenging than its
edge-variant, as the latter may be reduced to the former by taking its line-graph or by using
the reduction from k-edge- to k-vertex-connectivity of Galil and Italiano [10]. From a top-level
perspective, our (2,1)-edge-order algorithm follows the proof outline of its vertex-counterpart
in [26]. Thus, it needs to be motivated that there is no obvious linear-time reduction to [26]
that produces the results of this paper (of course there is a non-obvious reduction that just
takes the algorithm of this paper and does not invoke [26] at all).

Clearly, a reduction to line-graphs is not possible, as this may involve a quadratic blow-up
in the graph size and thus in the running time. Using the reduction of Galil-Italiano, we
can reduce a 3-edge-connected graph G to a 3-connected graph G′, and then compute a
(2,1)-order of G′ in linear time using [26]. However, it can be shown that there is no obvious
way of transforming the (2,1)-order of G′ back to a (2,1)-edge-order of G.

Another hint that such a reduction might be elusive is given by our application to
edge-independent spanning trees. Despite extensive research, it is still not known how to
reduce these to vertex-independent spanning trees (which may in turn be computed from a
(2,1)-order [26]), not even for the corresponding existence results. In fact, an attempt trying
to prove this turned out to be false [12]. If there was a reduction to (2,1)-orders, it would
directly imply a reduction to vertex-independent spanning trees.

Hence, there is no obvious way of producing our results using old ones. Indeed, the
different parts of our proof require substantially new ideas and non-trivial formalizations
in comparison to [26]: Mader-sequences differ from the (BG)-sequences used in [26] (and,
although they are not too far apart, it took a 27-page paper to show that the former can
be computed in linear time as well [18]), the notions of non-separateness and Gi differ
considerably, and, here, we need last-values in addition to just birth-values.

2 Preliminaries

We use standard graph-theoretic terminology and consider only graphs that are finite and
undirected, but may contain parallel edges and self-loops. In particular, cycles may have
length one or two. A separator of size one is called a cut-vertex. The 2-connected components
of a graph are its inclusion-wise maximal connected subgraphs having no cut-vertex. For
k ≥ 1, let a graph G be k-edge-connected if n := |V | ≥ 2 and G has no edge-cut of size less
than k.

I Definition 1 ([15, 29]). An ear decomposition of a graph G = (V,E) is a sequence
(P0, P1, . . . , Pk) of subgraphs of G that partition E such that (i) P0 is a cycle that is no
self-loop and (ii) every Pi, 1 ≤ i ≤ k, is either a path that intersects P0 ∪ · · · ∪ Pi−1 in its

ICALP 2017

75:4 Edge-Orders

endpoints or a cycle that intersects P0 ∪ · · · ∪ Pi−1 in a unique vertex qi (which we call
endpoint as well). Each Pi is called an ear. An ear is short if it is an edge and long otherwise.

I Theorem 2 ([22]). A graph is 2-edge-connected if and only if it has an ear decomposition.

According to Whitney [29], every ear decomposition has exactly m−n+1 ears (m := |E|).
For any i, let Gi = (Vi, Ei) := P0 ∪ · · · ∪ Pi and Ei := E − Ei. We denote the subgraph
of G that is induced by Ei as Gi = (Vi, Ei). Clearly, Gj ⊂ Gi for every i < j. We
note that this definition of Gi differs from the definition Gi := G − Vi that was used for
(2,1)-vertex-orders [26], due to the weaker edge-connectivity assumption.

For any ear Pi, let inner(Pi) := V (Pi) − Gi−1 be the set of inner vertices of Pi (for
P0, every vertex is an inner vertex). Hence, for a cycle Pi 6= P0, inner(Pi) = V (Pi) − qi.
Every vertex of G is an inner vertex of exactly one long ear, which implies that, in an ear
decomposition, the inner vertex sets of the long ears partition V .

I Definition 3. Let D = (P0, P1, . . . , Pm−n) be an ear decomposition of G. For an edge
e, let birthD(e) be the index i such that Pi contains e. For a vertex v, let birthD(v) be
the index i such that Pi contains v as inner vertex and let lastD(v) be the maximal index
birth(vw) over all neighbors w of v. Whenever D is clear from the context, we will omit the
subscript D.

Thus, Plast(v) is the last ear that contains v and, seen from another perspective, the first
ear Pi such that Gi does not contain v. Clearly, a vertex v is contained in Gi if and only if
last(v) > i.

3 The (1,1)-edge-order

Although (1,1)-edge-orders can be seen as edge-counterparts of st-numberings, they do
not seem to be well-known. Let two edges be neighbors if they share a common vertex.
Annexstein et al. gave essentially the following definition.

I Definition 4 ([1]). Let G = (V,E) be a graph with an edge st that is not a self-loop. A
(1,1)-edge-order through st of G is a total order < on the edge set E − st such that m ≥ 2,

every edge e, except for one incident to s, has a neighbor e′ with e′ < e and
every edge e, except for one incident to t, has a neighbor e′ with e < e′.

Hence, the two exceptional edges incident to s and t must be, respectively, the minimal
and maximal edge of E − st with respect to <. Clearly, if G has a (1,1)-edge-order through
st, G is 2-edge-connected, as neither st nor any other edge can be a bridge of G (note that
this requires m ≥ 2). The converse statement was shown in [1, Prop. 4] using a special
type of ear decompositions based on breadth-first-search (however, without giving details
of the linear-time algorithm). Here, we aim for a simple and direct (unlike, e.g., reducing
to (1,1)-orders via line-graphs) exposition of the underlying idea and show that any ear
decomposition can be transformed to a (1,1)-edge-order in linear time.

We will use the incremental list order-maintenance problem, which maintains a total order
subject to the operations of (i) inserting an element after a given element and (ii) comparing
two distinct given elements by returning the one that is smaller in the order. Bender et al. [3]
show a simple solution for an even more general problem with amortized constant time per
operation; we will call this the order data structure.

I Lemma 5. Let G be a 2-edge-connected graph with an edge st that is not a self-loop. Then
a (1,1)-edge-order through st can be computed in time O(m).

L. Schlipf and J.M. Schmidt 75:5

Proof. We compute an ear decomposition D of G such that st ∈ P0. This can be done
in linear time by any text-book-algorithm; see [24] for a simple one. Let <0 be the total
order that orders the edges in P0 − st consecutively from s to t. Thus, every edge has a
smaller and a larger neighbor, except for st and the two exceptional edges incident to s and
t. Clearly, <0 is a (1,1)-edge-order through st of the 2-edge-connected graph G0. We extend
<i−1 iteratively to a (1,1)-edge-order <i of Gi by adding the next ear Pi of D; then <m−n

gives the claim.
The order itself is stored in the order data structure. For every vertex x in Gi−1, let

min(x) be the smaller of its two incident edges in Pbirth(x) with respect to <i−1 (for later
arguments, define max(x) analogously as the larger such edge); clearly, min(x) and max(x)
can be computed in constant time while adding Pj . When adding the ear Pi with (not
necessarily distinct) endpoints x and y, let e be the smallest edge in {min(x),min(y)} with
respect to <i−1 (this needs amortized constant time by using at most one comparison of the
data structure). Consider all edges of Pi in consecutive order starting with a neighbor of e.
We obtain <i from <i−1 by inserting these edges as one consecutive block immediately after
the edge e (if Pi is a cycle with endpoint s the edges are insert in front of the other edges);
this takes amortized time proportional to the length of Pi. Then the first edge of Pi has a
smaller neighbor in <i while the last has a larger neighbor in <i (for cycles Pi 6= P0, this
exploits that qi has another incident edge in Gi−1 or the exceptional edge incident to s (or t)
might change), which implies that <i is a (1,1)-edge-order. J

This (special) (1,1)-edge-order will allow for a very easy computation of two edge-
independent spanning trees in Section 6 and serve as a building block for the computation
of three such trees. If one wants to keep the root-paths in two edge-independent spanning
trees short, a different (1,1)-edge-order [1] may be computed by maintaining min(x) as the
incident edge of x that is minimal in Gi in the above algorithm (this can be done efficiently
by updating min(x) whenever an ear with endpoint x is added). However, the latter order
cannot be used for three edge-independent spanning trees.

4 The (2,1)-edge-order

We define (2,1)-orders as special ear decompositions.

I Definition 6. Let G be a graph with distinct edges rt and ru (t = u is possible). A
(2,1)-edge-order through rt and avoiding ru (see Figure 1) is an ear decomposition D of G
such that
1. rt ∈ P0,
2. Pm−n = ru, and . i.e., the last ear is the short ear ru
3. for every 0 ≤ i < m− n, Gi contains inner(Pi) and, if Pi is short, at least one endpoint

of Pi.

Property 6.2 implies that Gi contains the vertices r and u for every 0 ≤ i < m− n. We
call Property 6.3 the non-separateness of D. The non-separateness of D states that every
inner vertex of a long ear Pi has an incident edge in G that is in Gi, and that every short ear
Pi (seen as edge) has a neighbor in Gi. The name refers to the following helpful property.

I Lemma 7. Let D be a (2,1)-edge-order. Then, for every 0 ≤ i < m− n, Gi is connected.

Proof. Consider any i < m− n and let e be any edge in Gi. By Property 6.2, r ∈ Gi. We
show that Gi contains a path from one of the endpoints of e to r. This gives the claim, as
Gi is an edge-induced graph and therefore does not contain isolated vertices.

ICALP 2017

75:6 Edge-Orders

P0

P1

P2

P4

P3

P7

P9

P5
P6

P8

r

t

u

a

b

c

d

e

f

g

h

Figure 1 A (2,1)-edge-order of a 3-edge connected graph.

Let Pj be the unique ear that contains e. If Pj is short, Pj = e and e has a neighbor in
Gj due to the non-separateness of D. If Pj is long, at least one endpoint of e must be an
inner vertex of Pj and e has a neighbor in Gj for the same reason. Hence, in both cases we
find a neighbor that is contained in an ear Pk with k > j. By applying induction on the
indices of these ears, we find a path that starts with an endpoint of e and ends with the only
edge left in Gm−n−1, namely ru. J

Next, we show that the existence of a (2,1)-edge-order proves the graph to be 3-edge-
connected.

I Lemma 8. If G has a (2,1)-edge-order, G is 3-edge-connected.

Proof. Let D be a (2,1)-edge-order through rt and avoiding ru. Consider any vertex v of G.
By transitivity of edge-connectivity, it suffices to show that G contains three edge-disjoint
paths between v and r. Let Pi be the ear that contains v as inner vertex. In particular
i < m − n, as Pi is long. Then Gi has an ear decomposition and, due to Theorem 2,
contains two edge-disjoint paths between v and r. By Properties 6.2+3, Gi contains v and r.
According to Lemma 7, Gi is connected. Thus, Gi contains a third path between v and r,
which is edge-disjoint from the first two, as Gi and Gi are edge-disjoint. J

Let G have a (2,1)-edge-order. Then Lemma 8 implies δ(G) ≥ 3. This in turn gives that,
for every vertex v, Plast(v) is not the first ear that contains v, which implies that Plast(v)
must have v as endpoint. In particular, if vw is an edge and last(v) = last(w) = birth(vw),
Pbirth(vw) is the short ear vw and, according to the non-separateness of D, we have i = m−n,
which implies vw = ru.

I Lemma 9. For any vertex v, Plast(v) has v as an endpoint. For any edge vw satisfying
last(v) = last(w) = birth(vw), vw = ru.

The converse of Lemma 8 is also true: If G is 3-edge-connected, G has a (2,1)-edge-order.
This gives a full characterization of 3-edge-connected graphs; however, proving the latter
direction is more involved than Lemma 8. In the next section, we will prove the stronger
statement that such a (2,1)-edge-order does not only exist but can actually be computed
efficiently.

5 Computing a (2,1)-edge-order

At the heart of our algorithm is the following classical construction of 3-edge-connected
graphs due to Mader.

L. Schlipf and J.M. Schmidt 75:7

v

w
⇒

v

w

(a) vertex-vertex-
addition: v = w

is allowed.

a bv

w
⇒

a b

w

(b) edge-vertex-addition:
w ∈ {a, b} is allowed.

⇒

a b

c d

v

w

a b

c d

(c) edge-edge-addition: a, b ∈ {c, d}
is allowed.

Figure 2 Mader-operations.

rt ru

P0

r

t/u

P1

Figure 3 A (2,1)-edge-order of K3
2 through rt and avoiding ru.

I Definition 10. The following operations on graphs are called Mader-operations (see
Figure 2).
(a) vertex-vertex-addition: Add an edge between the not necessarily distinct vertices v and

w (possibly a parallel edge or, if v = w, a self-loop).
(b) edge-vertex-addition: Subdivide an edge ab with a vertex v and add the edge vw for a

vertex w.
(c) edge-edge-addition: Subdivide two distinct edges ab and cd with vertices v and w,

respectively, and add the edge vw.

The edge vw is called the added edge of the Mader-operation. Let K3
2 be the graph that

consists of exactly two vertices and three parallel edges.

I Theorem 11 ([16]). A graph G is 3-edge-connected if and only if G can be constructed
from K3

2 using Mader-operations.

According to Theorem 11, applying Mader-operations on 3-edge-connected graphs pre-
serves 3-edge-connectivity. We will call a sequence of Mader-operations that constructs a
3-edge-connected graph a Mader-sequence. It has been shown that a Mader-sequence can be
computed efficiently.

I Theorem 12 ([18, Thm. 4]). A Mader-sequence of a 3-edge-connected graph can be computed
in time O(n+m).

Our algorithm for computing a (2,1)-edge-order works as follows. Assume we want
a (2,1)-edge-order of G through rt and avoiding ru. We first compute a suitable Mader-
sequence of G using Theorem 12 and start with a (2,1)-edge-order of its first graph K3

2 . This
(2,1)-edge-order is easy to find (see Figure 3). The crucial part of the algorithm is then to
iteratively modify the given (2,1)-edge-order to a (2,1)-edge-order of the next graph in the
sequence efficiently.

There are several technical difficulties to master. First, the edges rt and ru may be
contained in different 2-connected components A′ and B′ (implying that r is a cut-vertex).
As this would raise problems in the computation of the initial K3

2 later, we perform in such
a case the following reduction in advance. Let A be the connected component of G \ {r}

ICALP 2017

75:8 Edge-Orders

containing t, A := G[V (A) ∪ {r}] and B := G \ V (A) (note that r may still be a cut-vertex
of B). Since r is a cut-vertex of G, A and B are still 3-edge-connected. We compute a
(2,1)-edge-order DA of A avoiding rt through an arbitrary edge ruA ∈ A′ \ {rt}, and a
(2,1)-edge-order DB of B avoiding an arbitrary edge rtB ∈ B′ \ {ru} through ru. Then
concatenating DA with DB gives a (2,1)-edge-order of G. Hence, we assume from now on
that rt and ru are in the same 2-connected component of the input graph G.

Second, the edge rt (and analogously ru) of G is not necessarily contained in the previous
graph of the Mader-sequence, as it may have been created by a Mader-operation that
subdivided a previous edge rt with the new vertex t (a more general view on this dynamics
follows from the bijection between the graphs H of the Mader-sequence and H-subdivisions
that are contained in G as subgraphs [18, Thm.+Cor. 1]; we refer to [23, Sections 2.3 and 4]
for details of this bijection). In such cases, we take t as replacement vertex for t (and likewise
u for u) in the previous graph, and iterate this procedure to obtain replacement vertices for
t and u in the graph before that previous graph, and so forth. This way, the replacement
vertices t and u in any graph of the Mader-sequence containing r are neighbors of r.

Now a special Mader-sequence is used to harness the dynamics of the vertices r, t and
u: Choose a DFS-tree of G with root r such that rt and ru are backedges (this is possible,
since r has degree at least three) and compute a Mader-sequence of this DFS-tree that
contains these two edges in its initial K3

2 (this is possible, since rt and ru are in the same
2-connected component of G). This way the K3

2 consists of the two vertices r and t = u by
the construction of [18, p. 6], and thus all graphs in the Mader-sequence contain r (and t and
u are always neighbors of r). The vertices t and u are not present in this initial K3

2 unless
they are identical to t = u (they are however contained in the two paths from r to t = u of
the K3

2 -subdivision the bijection maps to). For every graph in the Mader-sequence, we will
compute a (2,1)-edge-order through rt and avoiding ru using the previous (2,1)-edge-order
(which depends on the previous and possibly different replacement vertices); then the choice
of t and u ensures that the final (2,1)-edge-order of G is indeed through rt and avoids ru, as
desired.

Thus, consider a graph G of the above Mader-sequence for which we know a (2,1)-edge-
order D and let G′ be the next graph in that sequence. Then G′ is only one Mader-operation
away and we aim for an efficient modification of D into a (2,1)-edge-order D′ of G′. We will
prove that there is always a modification that is local in the sense that the only ears that are
modified are “near” the added edge of the Mader-operation.

I Lemma 13. Let D = (P0, P1, . . . , Pm−n) be a (2,1)-edge-order of a 3-edge-connected graph
G through rt and avoiding ru for replacement vertices t and u. Let G′ be obtained from G

by applying one Mader-operation Γ and let t′ and u′ be the replacement vertices of G′. Then
a (2,1)-edge-order D′ of G′ through rt′ avoiding ru′ can be computed from D using only
constantly many amortized constant-time modifications.

Lemma 13 is our main technical contribution and we split its proof into the following
three sections. First, we introduce the operations leg, belly and head in order to combine
several cases that can be handled similarly for the different types of Γ. Second, we show how
to modify D to D′ and, third, we discuss computational issues.

For all three sections, let vw be the added edge of Γ such that v subdivides the edge
ab ∈ E(G) and w subdivides cd ∈ E(G) (if applicable). Thus, the vertex t′ in G′ is either t,
v or w, and the vertex u′ in G′ is either u, v or w (hence, t′r and ru′ will never be self-loops).
In all three sections, birth and last will always refer to D, unless stated otherwise.

Let Pi 6= P0 be an ear with a given orientation and let x be a vertex in Pi. If Pi is a
path, we define Pi[, x] and Pi[x,] as the maximal subpaths of Pi that end and start at x,

L. Schlipf and J.M. Schmidt 75:9

a b

w

v

Figure 4 The result of operation leg (dashed lines), black vertices are in Gbirth(ab)−1.

respectively; if Pi is a cycle, we take the same definition with the additional restriction that
Pi[, x] starts at qi and Pi[x,] ends at qi. Occasionally, the orientation of Pi will not matter;
if none is given, an arbitrary orientation can be taken. For paths A and B, let A+B be the
concatenation of A and B.

5.1 Legs, bellies and heads
While the operations leg and belly are inspired by the ones in [26], the operation head is
new. All three operations will show for some special cases how D can be modified to a
(2,1)-edge-order D′. A complete description for all cases (using these operations) will be
given in the next section.

5.1.1 Legs
Let Γ be either an edge-vertex-addition such that ab 6= ru and last(w) < birth(ab) or an
edge-edge-addition such that ab 6= ru and birth(cd) < birth(ab). If Pbirth(ab) is long, at least
one of a and b is an inner vertex, say w.l.o.g. b. Otherwise, Pbirth(ab) = ab is short and, as D
is non-separating, at least one of a and b, say w.l.o.g. b, has an incident edge in Gbirth(ab)
(note that this requires ab 6= ru). In both cases, orient Pbirth(ab) from a to b. The operation
leg constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears
Pbirth(ab)[, a] +av+ vw and vb+Pbirth(ab)[b,] in that order and, if Γ is an edge-edge-addition,
additionally subdividing the edge cd in Pbirth(cd) with w (see Figure 4). Note that this
definition is well-defined also for cycles Pbirth(ab), including self-loops.

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.

5.1.2 Bellies
Let Γ be either an edge-vertex-addition such that last(w) = birth(ab) and w /∈ {a, b} or
an edge-edge-addition such that birth(cd) = birth(ab) (note that c, d ∈ {a, b} is allowed.)
Consider the shortest path in Pbirth(ab) from an endpoint to one of the vertices {a, b}, say
w.l.o.g. b, such that w is contained in this path. We orient Pbirth(ab) from a to b. Pbirth(ab)
is a long ear with b as inner vertex. If Γ is an edge-edge-addition, one of the vertices {c, d},
say w.l.o.g. c, is contained in Pbirth(ab)[, w].

If birth(ab) > 0, the operation belly constructs D′ from D by replacing the ear Pbirth(ab) of
D by the two consecutive ears Pbirth(ab)[, a] +av+vw+Pbirth(ab)[w,] and vb+Pbirth(ab)[b, w]
in that order (if edge-vertex-addition) and by the two consecutive ears Pbirth(ab)[, a] + av +
vw + wd + Pbirth(ab)[d,] and vb + Pbirth(ab)[b, c] + cw (if edge-edge-addition), see Figure 5.
Note that this definition is well-defined also if Pbirth(ab) is a cycle. If birth(ab) = 0, the
vertices v and w cut P0 in two distinct paths P0,1 and P0,2 having endpoints v and w. Let
P0,1 be the path containing r. Then the operation belly constructs D′ from D by replacing
the ear Pbirth(ab) of D by the two consecutive ears P0,1 + vw and P0,2 in this order. If
rt ∈ {ab, cd}, then either v = t′ or w = t′, respectively.

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.

ICALP 2017

75:10 Edge-Orders

a v b

c
w

a v b

c
w

r
P0,1 P0,2

Figure 5 The result of the operation belly (dashed lines).

ba v

Figure 6 The dashed lines show the result of the operation head.

5.1.3 Heads
Let Γ be an edge-vertex-addition such that w ∈ {a, b}, last(a) = birth(ab) and, if ab = ru,
then r 6= a. W.l.o.g. let w = a. Then a is an endpoint of Pbirth(ab) (Pbirth(ab) cannot be
a self-loop, as last(a) = birth(ab)). We orient Pbirth(ab) from a to b. The operation head
constructs D′ from D by replacing the ear Pbirth(ab) of D by the two consecutive ears av+ va

and vb+ Pbirth(ab)[b,] in that order (see Figure 6). Note that this definition is well-defined
also for cycles Pbirth(ab).

We omit the proof that D′ is a (2,1)-edge-order through rt′ avoiding ru′.

5.2 Modifying D to D’
We will now show how to obtain a (2,1)-edge-order D′ through rt′ avoiding ru′ from D. By
symmetry, assume w.l.o.g. that birth(ab) ≥ birth(cd). Note that applying the operations
belly, leg and head preserves all properties of a (2, 1)-edge-order. Recall that, for every
subdivision the Mader-sequences does on rt or ru, respectively, the subdividing vertex is t′
or u′, as explained after Figure 3. We have the following case distinctions:

1. Γ is a vertex-vertex-addition. (See Figure 2a.)
(a) vw is a self-loop at v (v = w): Obtain D′ from D by adding the new short ear vv

directly after the ear Plast(v)−1. This ensures that the new ear is non-separating.
(b) v 6= w and vw 6= {rt, ru}: If last(v) ≤ last(w), D′ is obtained from D by adding

the new short ear vw directly after the ear Plast(w)−1, ensuring that the new ear is
non-separating. If last(v) > last(w), the new short ear vw is added directly after
the ear Plast(v)−1.

(c) vw = rt (the added edge is a parallel edge): the Mader-sequence gives us the
information whether rt is rt′ or the new added edge is rt′. If rt = rt′ then add
the new edge immediately after the ear Plast(t)−1. Otherwise obtain D′ from D by
replacing rt with rt′ in P0 and adding the old edge rt as an short ear immediately
after the ear Plast(t)−1.

(d) vw = ru (the added edge is a parallel edge): the Mader-sequence gives us the
information whether ru is ru′ or the new added edge is ru′. Depending on this
information, obtain D′ from D by either adding the new edge directly before or
directly after the last ear of D.

5. Γ is an edge-vertex-addition. (See Figure 2b.)
(a) birth(ab) < last(w): Obtain D′ from D by adding the new short ear vw directly

after the ear Plast(w)−1 and subdivide the ear Pbirth(ab) with v. This operation is also
well-defined when Pbirth(ab) is a cycle or self-loop. Also, the new ear is non-separating
and, since v is incident to w, the ear Pbirth(ab) remains non-separating.

L. Schlipf and J.M. Schmidt 75:11

(b) last(w) < birth(ab) and ab 6= ru: Apply leg
(c) birth(ab) = last(w) and w /∈ {a, b}: Apply belly.
(d) birth(ab) = last(w) and w ∈ {a, b}; if ab = ru, then r 6= w: Apply head.
(e) ab = ru and if birth(ab) = last(w) and w ∈ {a, b} then r = w: Obtain D′ from D

by replacing the ear ru by the two consecutive ears wv + vu and rv.
6. Γ is an edge-edge-addition. (See Figure 2c.)

(a) birth(ab) = birth(cd): Apply belly.
(b) birth(ab) > birth(cd) and ab 6= ru: Apply leg.
(c) ab = ru: Let w.l.o.g. r = a. Obtain D′ from D by replacing the last ear of D by the

two consecutive ears bv + vw and rv in this order.

In all cases, D′ is clearly an ear decomposition. Properties 6.1–3 are satisfied due to the
given case distinction and the mentioned properties. Hence, D′ is a (2, 1)-edge-order through
rt′ avoiding ru′.

There are several subtleties in sorting out the computational complexity of this approach,
mostly raised by the question how fast we can compute one of the above cases in which we
are in. The proof of the linear runtime is omitted due to space constraints.

I Theorem 14. Given edges tr and ru of a 3-edge-connected graph G, a (2,1)-edge-order D
of G through tr and avoiding ru can be computed in time O(m).

The proposed algorithms for (1,1)-edge-orders and (2,1)-edge-orders (as well as the
computation of edge-independent spanning trees in the next section) are certifying in the
sense of [17]: For (1,1)-edge-orders through st, it suffices to check that every edge e 6= st has
indeed a smaller and larger neighboring edge. For (2,1)-edge-orders, it suffices to check in
linear time that D is an ear decomposition of G and that D satisfies Properties 6.1–3.

6 Edge-Independent Spanning Trees

Let k spanning trees of a graph be edge-independent if they all have the same root vertex r
and, for every vertex x 6= r, the paths from x to r in the k spanning trees are edge disjoint.
The following conjecture was stated 1988 by Itai and Rodeh.

I Conjecture (Edge-Independent Spanning Tree Conjecture [13]). Every k-edge-connected
graph contains k edge-independent spanning trees.

The conjecture has been proven constructively for k ≤ 2 [13] and k = 3 [11] with running
times O(m) and O(n2), respectively, for computing the corresponding edge-independent
spanning trees. For every k ≥ 4, the conjecture is open. We first give a short description of
an algorithm for k = 2 and then show the first linear-time algorithm for k = 3.

For k = 2, compute the (1,1)-edge-order < through tr using Lemma 5. The first tree T1
consists of the edges min(x) for all vertices x 6= r (as defined in Lemma 5), while the second
tree T2 consists of tr and the edges max(x) for all vertices x /∈ {r, t}. Then T1 and T2 are
spanning, as no edge can be taken twice, and edge-independent, as, from every vertex x, the
path of smaller edges to r obtained by iteratively applying min() must be edge-disjoint from
the path of larger edges to r.

For k = 3, choose any vertex r and two distinct edges tr and ru in the 3-edge-connected
graph G. Compute a (2,1)-edge-order D through tr and avoiding ru in time O(m) using
Theorem 14. For every vertex x ∈ V , the idea is now to find two edge-disjoint paths from x

to r in Gbirth(x) (after all, Gbirth(x) is 2-edge-connected and thus contains a (1,1)-edge-order)

ICALP 2017

75:12 Edge-Orders

2 3

57

17
12

6

18

19

8

13
14

16

r

t

u

11

1

15

9

104a

b

c

d

e

f

g

h

(a) A consistent order < and the resulting
three edge-independent spanning trees.

2 3

511

17
12

10

18

19

9

13
14

16

r

t

u

6

1

15

7

8
4

a

b

c

d

e

f

g

h

(b) Although < is a (1,1)-edge-order for every
Gi, 0 ≤ i ≤ m − n, < is not consistent: Any
down-consistent tree contains the root-paths
12, 11, 10, 2 in G2 and 6, 5, 3, 2 in G5, which
implies a cycle.

Figure 7 (1,1)-edge-orders that are consistent and not consistent to the (2,1)-edge-order of
Figure 1.

and a third path from x to r in Gbirth(x) using the non-separateness of D. The subtle part is
to make this idea precise: We have to construct the first tree T1 in such a consistent way
that the paths of smaller edges from x to r for all vertices x ∈ V are contained in T1 (and
the same for T2 and paths of larger edges).

For a (1,1)-edge-order < through tr of G, let a spanning tree T1 ⊆ G be down-consistent
to a given (2,1)-edge-order through tr if (a) every path in T1 to r is strictly decreasing
in < and (b) for every 0 ≤ i ≤ m − n, T1 ∩ Gi is a spanning tree of Gi (analogously,
up-consistent spanning trees T2 of G− r are defined by strictly increasing paths to t). Now
let a (1,1)-edge-order be consistent to a given (2,1)-edge-order D′ if G contains r-rooted
spanning trees T1 and T2 that are down- and up-consistent to D′, respectively. By the very
same argument as used for k = 2, T1 and T2 + tr are edge-independent and, in addition, do
not use any edge of Gbirth(x) for any x ∈ V .

In fact, the special (1,1)-edge-order that is computed by Lemma 5 is consistent to D:
There, the trees T1 and T2 consist of the edges min(x) and max(x) for x ∈ V , which
makes T1 down-consistent and T2 + tr up-consistent to D (see Figure 7a). We note that a
simpler definition of consistent as used for the vertex-variant [6], i.e., as orders that remain
(1,1)-edge-orders for all subgraphs Gi, 0 ≤ i ≤ m− n, does not suffice here (see Figure 7b).

It remains to construct the third edge-independent spanning tree. For every edge e 6= ru

of G, we compute a pointer to an arbitrary neighboring edge e′ in Gbirth(e). This edge e′
exists, as D is non-separating, and satisfies birth(e′) > birth(e). Similarly, for every vertex
x ∈ V −r−u, we compute a pointer to an incident edge e′ of x with birth(e′) > birth(x). Both
computations take linear total time by comparing birth values. The third edge-independent
spanning tree is then the union of ur and the u-rooted spanning tree of G− r that interprets
the pointers as parent edges. Hence, we obtain the following theorem.

I Theorem 15. Given the two edges rt and ru of a 3-edge-connected graph G, three edge-
independent spanning trees of G rooted at r (such that two of them contain rt and ru as
unique root edges, respectively) can be computed in time O(m).

Similarly as for the more general (2,1)-edge-orders, one could be interested why the
reduction from k-edge- to k-vertex-connectivity by Galil and Italiano [10] does not give
edge-independent spanning trees from their vertex-counterparts; we omit the argument due
to space constraints.

L. Schlipf and J.M. Schmidt 75:13

References

1 Fred Annexstein, Ken Berman, and Ram Swaminathan. Independent spanning trees with
small stretch factors. Technical Report 96-13, DIMACS, June 1996.

2 M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph
Algorithms and Applications, 15(1):97–126, 2011.

3 M.A. Bender, R. Cole, E.D. Demaine, M. Farach-Colton, and J. Zito. Two simplified
algorithms for maintaining order in a list. In Proceedings of the 10th European Symposium
on Algorithms (ESA’02), pages 152–164, 2002. doi:10.1007/3-540-45749-6_17.

4 T. Biedl and M. Derka. The (3,1)-ordering for 4-connected planar triangulations. Journal
of Graph Algorithms and Applications, 20(2):347–362, 2016.

5 T. Biedl and J.M. Schmidt. Small-area orthogonal drawings of 3-connected graphs. In
Proceedings of the 23rd International Symposium on Graph Drawing (GD’15), pages 153–
165, 2015. doi:10.1007/978-3-319-27261-0_13.

6 J. Cheriyan and S.N. Maheshwari. Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs. Journal of Algorithms, 9(4):507–537, 1988.

7 S. Curran, O. Lee, and X. Yu. Chain decompositions of 4-connected graphs. SIAM J.
Discrete Math., 19(4):848–880, 2005. doi:10.1137/S0895480103434592.

8 H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting fary embeddings of planar
graphs. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing
(STOC’88), pages 426–433, 1988. doi:10.1145/62212.62254.

9 S. Even and R.E. Tarjan. Computing an st-Numbering. Theor. Comput. Sci., 2(3):339–344,
1976.

10 Z. Galil and G.F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT
News, 22(1):57–61, 1991. doi:10.1145/122413.122416.

11 A. Gopalan and S. Ramasubramanian. On constructing three edge independent spanning
trees. Manuscript (see http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
406.7119), March 2011.

12 A. Gopalan and S. Ramasubramanian. A counterexample for the proof of implication
conjecture on independent spanning trees. Information Processing Letters, 113(14-16):522–
526, 2013. doi:10.1016/j.ipl.2013.04.008.

13 A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks.
Information and Computation, 79:43–59, 1988.

14 G. Kant. Drawing planar graphs using the lmc-ordering. In Proceedings of the 33th Annual
Symposium on Foundations of Computer Science (FOCS’92), pages 101–110, 1992. doi:
10.1109/SFCS.1992.267814.

15 L. Lovász. Computing ears and branchings in parallel. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS’85), pages 464–467, 1985. doi:
10.1109/SFCS.1985.16.

16 W. Mader. A reduction method for edge-connectivity in graphs. In B. Bollobás, editor,
Advances in Graph Theory, volume 3 of Annals of Discrete Mathematics, pages 145–164.
North-Holland, 1978. doi:10.1016/S0167-5060(08)70504-1.

17 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-
puter Science Review, 5(2):119–161, 2011. doi:DOI:10.1016/j.cosrev.2010.09.009.

18 K. Mehlhorn, A. Neumann, and J.M. Schmidt. Certifying 3-edge-connectivity. Algorith-
mica, 77(2):309–335, 2017. doi:10.1007/s00453-015-0075-x.

19 L. F. Mondshein. Combinatorial Ordering and the Geometric Embedding of Graphs. PhD
thesis, M.I.T. Lincoln Laboratory / Harvard University, 1971. Technical Report available
at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882.

ICALP 2017

http://dx.doi.org/10.1007/3-540-45749-6_17
http://dx.doi.org/10.1007/978-3-319-27261-0_13
http://dx.doi.org/10.1137/S0895480103434592
http://dx.doi.org/10.1145/62212.62254
http://dx.doi.org/10.1145/122413.122416
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.7119
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.406.7119
http://dx.doi.org/10.1016/j.ipl.2013.04.008
http://dx.doi.org/10.1109/SFCS.1992.267814
http://dx.doi.org/10.1109/SFCS.1992.267814
http://dx.doi.org/10.1109/SFCS.1985.16
http://dx.doi.org/10.1109/SFCS.1985.16
http://dx.doi.org/10.1016/S0167-5060(08)70504-1
http://dx.doi.org/DOI: 10.1016/j.cosrev.2010.09.009
http://dx.doi.org/10.1007/s00453-015-0075-x
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD0732882

75:14 Edge-Orders

20 S. Nagai and S. Nakano. A linear-time algorithm to find independent spanning trees in
maximal planar graphs. In 26th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’00), pages 290–301, 2000. doi:10.1007/3-540-40064-8_27.

21 S. Nakano, Md. S. Rahman, and T. Nishizeki. A linear-time algorithm for four-partitioning
four-connected planar graphs. Inf. Process. Lett., 62(6):315–322, 1997. doi:10.1016/
S0020-0190(97)00083-5.

22 H.E. Robbins. A theorem on graphs, with an application to a problem of traffic control.
The American Mathematical Monthly, 46(5):281–283, 1939. URL: http://www.jstor.org/
stable/2303897.

23 J.M. Schmidt. Construction sequences and certifying 3-connectedness. In Proceedings of
the 27th Symposium on Theoretical Aspects of Computer Science (STACS’10), pages 633–
644, 2010. URL: http://arxiv.org/abs/0912.2561, doi:10.4230/LIPIcs.STACS.2010.
2491.

24 J.M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information Processing
Letters, 113(7):241–244, 2013. doi:10.1016/j.ipl.2013.01.016.

25 J.M. Schmidt. The Mondshein sequence. In Proceedings of the 41st International Col-
loquium on Automata, Languages and Programming (ICALP’14), pages 967–978, 2014.
doi:10.1007/978-3-662-43948-7_80.

26 J.M. Schmidt. Mondshein sequences (a.k.a. (2,1)-orders). SIAM Journal on Computing,
45(6):1985–2003, 2016. doi:10.1137/15M1030030.

27 K. Wada and K. Kawaguchi. Efficient algorithms for tripartitioning triconnected graphs
and 3-edge-connected graphs. In 19th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG’93), pages 132–143, 1993. doi:10.1007/3-540-57899-4_47.

28 K. Wada, A. Takaki, and K. Kawaguchi. Efficient algorithms for a mixed k-partition
problem of graphs without specifying bases. Theoretical Computer Science, 201:233–248,
1998.

29 H. Whitney. Non-separable and planar graphs. Transactions of the American Mathematical
Society, 34(1):339–362, 1932.

http://dx.doi.org/10.1007/3-540-40064-8_27
http://dx.doi.org/10.1016/S0020-0190(97)00083-5
http://dx.doi.org/10.1016/S0020-0190(97)00083-5
http://www.jstor.org/stable/2303897
http://www.jstor.org/stable/2303897
http://arxiv.org/abs/0912.2561
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2491
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2491
http://dx.doi.org/10.1016/j.ipl.2013.01.016
http://dx.doi.org/10.1007/978-3-662-43948-7_80
http://dx.doi.org/10.1137/15M1030030
http://dx.doi.org/10.1007/3-540-57899-4_47

Relaxations of Graph Isomorphism∗†

Laura Mančinska1, David E. Roberson2, Robert Šámal3,
Simone Severini4, and Antonios Varvitsiotis5

1 University of Bristol, Bristol, UK
laura.mancinska@bristol.ac.uk

2 University College London, London, UK
davideroberson@gmail.com

3 Charles University, Prague, Czech Republic
samal@iuuk.mff.cuni.cz

4 University College London, London, UK; and
Shanghai Jiao-Tong University, Shanghai, China
s.severini@ucl.ac.uk

5 Nanyang Technological University and Centre for Quantum Technologies,
Singapore
avarvits@gmail.com

Abstract
We introduce a nonlocal game that captures and extends the notion of graph isomorphism. This
game can be won in the classical case if and only if the two input graphs are isomorphic. Thus,
by considering quantum strategies we are able to define the notion of quantum isomorphism. We
also consider the case of more general non-signalling strategies, and show that such a strategy
exists if and only if the graphs are fractionally isomorphic. We prove several necessary conditions
for quantum isomorphism, including cospectrality, and provide a construction for producing pairs
of non-isomorphic graphs that are quantum isomorphic.

We then show that both classical and quantum isomorphism can be reformulated as feasibility
programs over the completely positive and completely positive semidefinite cones respectively.
This leads us to considering relaxations of (quantum) isomorphism arrived at by relaxing the
cone to either the doubly nonnegative (DNN) or positive semidefinite (PSD) cones. We show that
DNN-isomorphism is equivalent to the previous defined notion of graph equivalence, a polynomial-
time decidable relation that is related to coherent algebras. We also show that PSD-isomorphism
implies several types of cospectrality, and that it is equivalent to cospectrality for connected
1-walk-regular graphs. Finally, we show that all of the above mentioned relations form a strict
hierarchy of weaker and weaker relations, with non-singalling/fractional isomorphism being the
weakest. The techniques used are an interesting mix of algebra, combinatorics, and quantum
information.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph isomorphism, quantum information, semidefinite programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.76

∗ The full version of this work, including all of the proofs, is given in [3] (https://arxiv.org/abs/1611.
09837) and [16].

† LM is supported by UK EPSRC under grant EP/L021005/1. DR is supported by Cambridge Quantum
Computing Ltd. and the Engineering and Physical Sciences Research Council of the United Kingdom
(EPSRC), as well as Simone Severini and Fernando Brandao. RS is partially supported by grant GA
ČR P202-12-G061 and by grant LL1201 ERC CZ of the Czech Ministry of Education, Youth and Sports.
SS is supported by the Royal Society, the EPSRC, and the National Natural Science Foundation of
China (NSFC). AV is supported in part by the Singapore National Research Foundation under NRF
RF Award No. NRF-NRFF2013-13. Part of this work was done while DR, and SS were visiting the
Simons Institute for the Theory of Computing.

EA
T

C
S

© Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini,
and Antonios Varvitsiotis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 76; pp. 76:1–76:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.76
https://arxiv.org/abs/1611.09837
https://arxiv.org/abs/1611.09837
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76:2 Relaxations of Graph Isomorphism

1 Introduction

Given graphs G and H, an isomorphism from G to H is a bijection ϕ : V (G)→ V (H) such
that ϕ(g) is adjacent to ϕ(g′) if and only if g is adjacent to g′. When such an isomorphism
exists, we say that G and H are isomorphic and write G ∼= H. The notion of isomorphism
is central to a broad area of mathematical research encompassing algebraic and structural
graph theory, but also combinatorial optimization, parameterized complexity, and logic. The
graph isomorphism (GI) problem consists of deciding whether two graphs are isomorphic. It
is a question with fundamental practical interest due to the number of problems that can
be reduced to it. Additionally, the GI problem has a central role in theoretical computer
science as it is one of the few naturally defined problems in NP which is not known to be
polynomial-time solvable or NP-complete. While there is a deterministic quasipolynomial
algorithm for the GI problem [5], regardless of its worst case behavior, the problem can be
solved with reasonable efficiency in practice (e.g. see [17]). In relation to the context of this
paper, it is valuable to notice that the discussion around graph isomorphism has branched
into the analysis of many equivalence relations that form hierarchical structures. Prominent
instances are, for example, cospectrality, fractional isomorphism, etc. [4, 12, 26].

In this work we introduce the graph isomorphism game, which is played by non-
communicating players and allows us to capture and extend the notion of graph isomorphism.
We investigate three classes of strategies for this game: classical, quantum, and non-signalling.
In the classical case, players can win the (G,H)-isomorphism game with certainty if and only
if G ∼= H. This motivates the definition of graphs G and H being quantum, or non-signalling,
isomorphic if there exists a perfect quantum, resp. non-signalling, strategy for this game.
These two relations are denoted by G ∼=q H and G ∼=ns H respectively. We are able to
prove two algebraic characterizations of quantum isomorphism, one of which implies that
quantum isomorphic graphs are cospectral. We also show that non-signalling isomorphism is
equivalent to the previously studied linear relaxation of isomorphism known as fractional
isomorphism [22].

Another approach we take is to develop characterizations of isomorphism and quantum
isomorphism in terms of conic feasibility programs over the completely positive and completely
positive semidefinite cones respectively. This is similar to work done in [13, 24, 25], but
in our case the programs can be somewhat simplified due the highly structured form of
the isomorphism game. By relaxing to either the doubly nonnegative (DNN) or positive
semidefinite (S+) cones, we are able to use this conic feasibility program to define DNN -
and S+-isomorphism, denoted ∼=DNN and ∼=S+ respectively. Interestingly, these semidefinite
relaxations of quantum isomorphism are still stronger than non-signalling isomorphism.
Therefore, for any graphs G and H we have that G ∼= H ⇒ G ∼=q H ⇒ G ∼=DNN H ⇒
G ∼=S+ H ⇒ G ∼=ns H. Moreover, we are able to show that none of these implications can
be reversed. In particular, we give a general method for constructing quantum isomorphic
graphs that are not isomorphic, based on binary linear systems that are not satisfiable but
are quantum satisfiable.

Interestingly, the notion of DNN -isomorphism turns out to be equivalent to a previously
studied relation in graph theory. This relation, known as graph equivalence, is defined in
terms of an isomorphism between a certain matrix algebra associated to each of the graphs.
To prove this equivalence, the main idea is to use the matrix in the conic feasibility program
definition of DNN -isomorphism as the Choi matrix of a linear map from the space of matrices
indexed by V (G) to the space of matrices indexed by V (H). Like fractional isomorphism,
there exists a polynomial time algorithm for deciding graph equivalence.

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:3

We also prove a similar algebraic characterization for S+-isomorphism, but this appears
to be a new relation. However, we are able to prove that this relation is strictly stronger than
cospectrality. We also show that classical, quantum, DNN -, and S+-isomorphism can be
characterized in terms of whether the Lovász theta function, or an appropriate generalization,
achieves a particular value on a certain product graph. This is similar to the results of [24].

The full version of this work, including all of the proofs, is given in [3] and [16].

2 The Graph Isomorphism Game

Given graphs G and H, the (G,H)-isomorphism game is a nonlocal game whose inputs and
outputs are vertices of the graphs G and H. For a detailed explanation of general nonlocal
games see the full version of the paper [3]. The (G,H)-isomorphism game is played as follows:
A referee/verifier selects uniformly at random a pair of vertices xA, xB ∈ V (G) ∪ V (H)
and sends xA to Alice and xB to Bob respectively. The players respond with vertices
yA, yB ∈ V (G) ∪ V (H). Throughout, we assume that V (G) and V (H) are disjoint so that
players know which graph their vertex is from. As with any nonlocal game, Alice and Bob
may agree on a strategy for playing the game beforehand, but they are not allowed to
communicate after the game has commenced. In order to concisely state the conditions under
which Alice and Bob win the (G,H)-isomorphism game, we let rel(g, g′), for vertices g, g′ of
some graph G, denote the relationship of the vertices g and g′, i.e., whether they are equal,
adjacent, or distinct and non-adjacent.

The first winning condition is that each player must respond with a vertex from the graph
that the vertex they received was not from. In other words we require that:

xA ∈ V (G)⇔ yA ∈ V (H) and xB ∈ V (G)⇔ yB ∈ V (H) . (1)

If condition (1) is not met, the players lose. Assuming (1) holds we define gA to be the
unique vertex of G among xA and yA, and we define gB , hA, and hB similarly. In order to
win, the answers of the players must also satisfy the following condition:

rel(gA, gB) = rel(hA, hB) . (2)

In other words, if Alice and Bob are given the same vertex, then they must respond with the
same vertex. If they receive (non-)adjacent vertices, they must return (non-)adjacent vertices.
Also, assuming that Alice receives gA and Bob hB, Alice’s output hA must be related to
hB the same way Bob’s output gB is related to gA. Note that we do not explicitly require
that G and H have the same number of vertices. It is also worth pointing out that the
(G,H)-isomorphism game is equivalent to the (G,H)-isomorphism game, where G denotes
the complement of G, i.e., the graph obtained by switching edges and non-edges of G.

In general one may be interested in the best probability with which Alice and Bob can
win this game for some particular G and H. In this work however, we will only be interested
in whether or not they can win perfectly, i.e., with probability 1. Thus, from henceforth
when we say that Alice and Bob cam win the (G,H)-isomorphism game, we mean that they
can win with probability 1. Similarly, a winning or perfect strategy is one that allows them
to win with certainty.

Given any fixed strategy for the (G,H)-isomorphism game, we denote by p(yA, yB |xA, xB)
the joint conditional probability of Alice and Bob responding with yA and yB upon receiving
inputs xA and xB respectively. We call such a joint conditional probability distribution
a correlation. An easy but important observation is that a given strategy for the (G,H)-

ICALP 2017

76:4 Relaxations of Graph Isomorphism

isomorphism game is perfect if and only if its corresponding correlation p satisfies

p(yA, yB |xA, xB) = 0, whenever conditions (1) or (2) fail. (3)

In this work we will focus on three classes of strategies/correlations for the isomorphism
game: classical, quantum, and non-signalling.

2.1 Classical strategies
A deterministic classical strategy for a nonlocal game is one in which Alice’s response is
determined by her input, and similarly for Bob. In a general classical strategy, the players
may use shared randomness to determine their responses. Once the value that their shared
randomness takes is fixed, Alice and Bob’s strategy becomes deterministic. This means that
the set of (perfect) classical correlations is equal to the convex hull of (perfect) classical
deterministic correlations.

Suppose that ϕ : V (G) → V (H) is an isomorphism of graphs G and H. Then we can
construct a perfect strategy for the (G,H)-isomorphism game as follows: if Alice receives
g ∈ V (G) as her input, then she responds with ϕ(g) as her output, and if she receives h ∈ V (H)
as her input, then she responds with ϕ−1(h) as her output. Bob behaves identically. It is
not hard to see that this allows Alice and Bob to win the game perfectly. It is not much
more difficult to prove the converse (see [3]), and thus we have the following:

I Theorem 1. For graphs G and H, the (G,H)-isomorphism game can be won perfectly
with a classical strategy if and only if G ∼= H.

3 Quantum Isomorphism

In a quantum strategy for the (G,H)-isomorphism game, Alice and Bob are allowed to share
and make joint measurements on an entangled state (see [3] for a detailed explanation of
shared states and measurements). As any classical post-processing of the outcomes that Alice
and Bob perform can be incorporated into the measurements themselves, we may assume
that both Alice and Bob have a measurement for each input (an element of V (G) ∪ V (H))
whose outcomes are indexed by their possible outputs (elements of V (G) ∪ V (H)). Upon
receiving input x, Alice performs her measurement corresponding to x and obtains some
outcome y, which she uses as her output, and Bob behaves similarly. Formally, for each
x ∈ V (G) ∪ V (H), Alice has a measurement Ex = {Exy ∈ CdA×dA : y ∈ V (G) ∪ V (H)}
where Exy � 0 and

∑
y∈V (G)∪V (H) Exy = I, and similarly Bob has measurement Fx =

{Fxy ∈ CdB×dB : y ∈ V (G) ∪ V (H)}. They perform these measurements on their shared
state ψ ∈ CdA ⊗ CdB . Note that there are no restrictions on dA, dB ∈ N. The corresponding
correlation p for this strategy is given by p(y, y′|x, x′) = ψ† (Exy ⊗ Fx′y′)ψ. If there exists
such a strategy that allows Alice and Bob to win the (G,H)-isomorphism game perfectly,
then we say that G and H are quantum isomorphic and write G ∼=q H.

An important property of the isomorphism game is that if Alice and Bob are given the
same inputs, they must respond with the same outputs. Games with this property are
called synchronous, and the perfect quantum strategies for such games are known to have a
particular form [14, 23, 15, 8, 21]. Using this we are able to give the following reformulation
of quantum isomorphism, the full proof of which is given in [3]:

I Theorem 2. Let G and H be graphs. Then G ∼=q H if and only if there exists d ∈ N and
orthogonal projectors Egh ∈ Cd×d for g ∈ V (G) and h ∈ V (H) such that

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:5

(i)
∑

h∈V (H) Egh = I, for all g ∈ V (G);
(ii)

∑
g∈V (G) Egh = I, for all h ∈ V (H);

(iii) EghEg′h′ = 0, if rel(g, g′) 6= rel(h, h′).

The projectors in the above theorem correspond to Alice’s (or Bob’s) measurement
operators in a perfect quantum strategy. One consequence of this is that any winning
quantum correlation p for the (G,H)-isomorphism game is input-output symmetric, i.e.,

p(y, y′|x, x′) = p(x, y′|y, x′) = p(y, x′|x, y′) = p(x, x′|y, y′) for all x, x′, y, y′ ∈ V (G)∪V (H).

Given a set of projectors as in the theorem above, one thing that we could do with them
is to make them elements of a block matrix with rows indexed by V (G) and columns indexed
by V (H). Investigating the properties of such a matrix leads to the following definition:

I Definition 3. A block matrix P with blocks of size d is called a projective permutation
matrix (of block size d) if it is unitary and all of its blocks are orthogonal projectors.

Note that a projective permutation matrix of block size one is a unitary matrix whose
entries square to themselves, i.e., a permutation matrix. The following lemma (see [3] for full
proof) shows that projective permutation matrices can be built out of projectors satisfying
the first two conditions of Theorem 2.

I Lemma 4. A block matrix P with blocks Eij for i, j ∈ [n] is a projective permutation
matrix if and only if the matrix Eij is a projector for all i, j ∈ [n] and
(i)

∑n
j=1 Eij = I, for all i ∈ [n];

(ii)
∑n

i=1 Eij = I, for all j ∈ [n].

We note that in the special case where all of the blocks Eij of a projective permutation
matrix are of rank one, then the unit vectors that the Eij project onto form a quantum Latin
square, a notion introduced in [18].

A useful reformulation of graph isomorphism can be stated in terms of the adjacency
matrices of the corresponding graphs. Given a graph G, the adjacency matrix of G, denoted
AG, is the symmetric 01-matrix whose gg′-entry is 1 if and only if g is adjacent to g′,
which we denote by g ∼ g′. Graphs G and H are isomorphic if and only if there exists
a permutation matrix P such that AGP = PAH , or equivalently PTAGP = AH . The
motivation for considering projective permutation matrices is that they play the role of
permutation matrices in an analogous formulation for quantum isomorphism. This is made
precise by the following theorem, whose proof is given in [3]:

I Theorem 5. For any two graphs G and H we have that G ∼=q H if and only if there exists
d ∈ N and a projective permutation matrix P of block size d such that

(AG ⊗ Id)P = P(AH ⊗ Id). (4)

Since projective permutation matrices are unitary, we can rewrite Equation (4) as
P†(AG⊗ Id)P = (AH ⊗ Id). Again, since P is unitary, this implies that AG⊗ Id and AH ⊗ Id,
and thus also AG and AH , have the same multiset of eigenvalues. Thus we have the following:

I Corollary 6. If G ∼=q H, then G and H are cospectral with cospectral complements.

ICALP 2017

76:6 Relaxations of Graph Isomorphism

3.1 Separating Classical and Quantum Isomorphism
In order to construct graphs that are quantum isomorphic but not isomorphic, we introduce
a type of game investigated by Cleve and Mittal [9] known as binary constraint system (BCS)
games. We will show that, in the linear case, one can reduce the existence of a perfect
classical (quantum) strategy for a BCS game to the existence of a perfect classical (quantum)
strategy to a corresponding isomorphism game.

A linear binary constraint system (BCS) F consists of a family of binary variables
x1, . . . , xn and constraints C1, . . . , Cm, where each C` is a linear equation over F2 in some
subset of the variables. Thus C` takes the form

∑
xi∈S`

xi = b` for some S` ⊆ {x1, . . . , xn}
and b` ∈ {0, 1}. We say that a BCS is satisfiable if there is an assignment of values from F2
to the variables xi such that every constraint C` is satisfied. Such an assignment is known as
a satisfying assignment.

An example of a linear BCS is the following:

x1 + x2 + x3 = 0 x1 + x4 + x7 = 0
x4 + x5 + x6 = 0 x2 + x5 + x8 = 0 (5)
x7 + x8 + x9 = 0 x3 + x6 + x9 = 1

where addition is over F2. Note that the BCS given above is not satisfiable. Indeed, every
variable appears in exactly two constraints and thus summing up all equations modulo 2 we
get 0 = 1.

To any linear BCS F we associate the following nonlocal game, which we call the BCS
game. In the BCS game, the verifier gives Alice a constraint C` and Bob a constraint Ck.
In order to win, they must each respond with an assignment of values to the variables in
their respective constraints such that those constraints are satisfied. Furthermore, for the
variables in S` ∩ Sk, Alice and Bob must agree on their assignment. Note that if they are
given the same constraint, these conditions imply that they must give the same response.
We note that in [9], Cleve and Mittal also define a nonlocal game for any linear BCS. This
game is very similar, though not identical to the above (Bob is only asked single variables in
the game of [9]). However, their results imply that in the quantum and classical cases, these
two games are equivalent.

As with the other nonlocal games we have considered in this work, it is not difficult to
see that Alice and Bob can win the BCS game classically with probability 1 if and only if
the corresponding BCS is satisfiable. This motivates the following definition.

I Definition 7. A linear BCS is called quantum satisfiable if there exists a perfect quantum
strategy for the corresponding BCS game.

To any linear BCS F with m constraints we associate the graph GF which is defined
as follows: For each constraint C`, and each assignment f : S` → F2 that satisfies C` we
include a vertex (`, f). Furthermore, we add an edge between two vertices (`, f) and (k, f ′)
if they are inconsistent, i.e., if there exists xi ∈ S` ∩ Sk such that f(xi) 6= f ′(xi). We remark
that this construction is related to the FGLSS reduction from [10], which is well known in
approximability literature.

Given any linear BCS F , we define the homogenization of F , denoted by F0, to be the
linear BCS obtained from F by changing the righthand sides of all of the constraints to 0.
Note that the homogenization of a linear BCS always has a solution, namely the all-zero
assignment. Also note that GF and GF0 have the same number of vertices.

Using these constructions, we are able to prove the following (see [3] for proof), where
α(G) denotes the independence number of the graph G:

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:7

I Theorem 8. Let F be a linear BCS with m constraints. Then the following are equival-
ent:
(i) F is satisfiable;
(ii) The graphs GF and GF0 are isomorphic;
(iii) α(GF) = m.

Using the notions of quantum independence number, denoted αq, and projective packings,
we can also prove the following quantum analog of the above (see [3]):

I Theorem 9. Let F be a linear BCS with m constraints. Then the following are equival-
ent:
(i) F is quantum satisfiable;
(ii) The graphs GF and GF0 are quantum isomorphic;
(iii) There exists a projective packing of GF of value m;
(iv) αq(GF) = m.

Thus, to find a pair of graphs that are quantum isomorphic but not isomorphic, it suffices
to find a linear BCS that is quantum satisfiable but not satisfiable. One such example is
the one given in (5), which corresponds to the well-known Mermin-Peres magic square game.
The pair of graphs obtained from this BCS are shown in [3]. In fact, Arkhipov has shown
how to construct such a BCS from any non-planar graph [1].

We note here that the first separating example, which was found with the help of Albert
Atserias, was slightly different than the one presented above. It was a version of the celebrated
CFI construction, named after Cai, Fürer and Immerman [7]. The original CFI construction
was designed to produce pairs of non-isomorphic graphs that cannot be distinguished by
the d-dimensional Weisfeiler-Lehman algorithm for any fixed d. The CFI construction was
reinterpreted by Atserias, Bulatov, and Dawar [2] to view it as an encoding of special systems
of linear equations over Z2, where each variable appears in precisely two equations. Our
first separating example was literally the CFI construction corresponding to a system of
linear equations as in [2], in which each variable appears in exactly two equations, and that
is classically unsatisfiable over Z2 but quantum satisfiable. The Mermin-Peres magic square
game gives rise to such a system of linear equations. The final construction which we described
above is a simplified version of this, in which several vertices have been merged together,
and several others have been removed, without changing the outcome. The final graphs have
a few dozens of vertices. As it turns out, this streamlined version of the construction is quite
similar to the FGLSS reduction from the theory of hardness of approximation [10], which
interpreted in this context is a reduction from the feasibility problem for arbitrary systems
of linear equations over Z2 to the graph isomorphism problem. As it turns out, the FGLSS
construction was also used in the context of the graph isomorphism problem in [19].

4 Non-signalling Isomorphism

An important property of any quantum strategy for the (G,H)-isomorphism game (or any
nonlocal game), is that it does not allow the players to communicate any information about
their inputs to one another. Formally, this corresponds to∑

yB

p(yA, yB |xA, xB) =
∑
yB

p(yA, yB |xA, x
′
B), for all xA, yA, xB , x

′
B , and∑

yA

p(yA, yB |xA, xB) =
∑
yA

p(yA, yB |x′A, xB), for all xB , yB , xA, x
′
A

(6)

ICALP 2017

76:8 Relaxations of Graph Isomorphism

Any correlation which obeys this condition is known as non-signalling, and this is known
to be a strictly larger class than quantum correlations. Note that this is a condition on
correlations rather than strategies, and indeed there may not be any way to physically realize
a given non-signalling correlation. Still, there are good reasons for considering this class
of correlations. First, they are a linear relaxation of quantum correlations, and so they
often allow us to obtain useful bounds on what is possible with quantum strategies, which
are notoriously difficult to analyze. Second, they are interesting in their own right since
they represent the extreme class of correlations in two senses. In the physical sense, the
non-signalling condition can be thought of as encoding the notion that nothing, including
information, can travel faster than the speed of light. Thus if Alice and Bob are separated
by a great distance and must respond with their answers within a short window of time,
then their strategy must be non-signalling. From a mathematical perspective, non-signalling
correlations are the most general class of correlations it makes sense to consider for nonlocal
games since any larger class would, by definition, allow the parties to communicate to a
certain extent. This would essentially violate the definition of a nonlocal game which requires
that the parties cannot communicate.

Using the non-signalling condition and the winning conditions of the isomorphism game,
one can prove the following lemma (proof given in [3]):

I Lemma 10. Let p be a winning non-signalling correlation for the (G,H)-isomorphism game.
Then p(h, h|g, g) = p(g, h|h, g) = p(h, g|g, h) = p(g, g|h, h), for all g ∈ V (G), h ∈ V (H).

Note that for a winning correlation p for the (G,H)-isomorphism game, for g ∈ V (G) we
have that p(y, y′|g, x′) = 0 unless y ∈ V (H), and similarly with Alice and Bob or G and H
switched. This, along with the above lemma allows us to take any winning non-signalling
correlation for the (G,H)-isomorphism game and construct the following doubly stochastic
matrix: Dgh = p(h, h|g, g).

It turns out that this matrix has the interesting property that AGD = DAH . Whenever
such a doubly stochastic matrix exists, one says that G and H are fractionally isomorphic,
denoted G ∼=f H. Thus, non-signalling isomorphic graphs are always fractionally isomorphic.

To prove the converse of the above, we need a result of Ramana, Scheinerman, and
Ullman [22] which shows that fractional graph isomorphism is equivalent to deciding whether
the graphs have a common equitable partition. To explain this result we first need to
introduce some definitions.

Let C = {C1, . . . , Ck} be a partition of V (G) for some graph G. The partition C is called
equitable if there exist numbers cij for i, j ∈ [k] such that any vertex in Ci has exactly cij

neighbors in Cj . Note that cij and cji are not necessarily equal, but cij |Ci| = cji|Cj |. We
refer to the numbers cij as the partition numbers of an equitable partition C. A trivial
example of this is the partition where each part has size 1. Less trivially, if G is regular, the
partition with only one cell is equitable.

Equivalently, a partition C = {C1, . . . , Ck} is equitable if for any i ∈ [k], the subgraph
induced by the vertices in Ci is regular, and for any i 6= j ∈ [k] the subgraph with vertex set
Ci ∪ Cj and containing the edges between Ci and Cj is a semiregular bipartite graph.

We say that C and D have a common equitable partition if there exist equitable partitions
C = {C1, . . . , Ck} and D = {D1, . . . , Dk′} for G and H respectively, satisfying k = k′,
|Ci| = |Di| for all i ∈ [k], and lastly, cij = dij for all i, j ∈ [k]. As an example, if G and H
are both d-regular and have the same number of vertices, then the single cell partitions form
a common equitable partition, and thus, by Theorem 11, any such graphs are fractionally
isomorphic. This makes it seem like fractional isomorphism is a weak condition, but in fact it

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:9

is known [6] that asymptotically almost surely no graphs are fractionally isomorphic to any
graphs that they are not isomorphic to. Since non-signalling/fractional isomorphism is the
coarsest relation we will consider in this work, the same holds for all the other relations we will
see. As mentioned above, common equitable partitions characterize fractional isomorphism.

I Theorem 11 ([22]). Two graphs are fractionally isomorphic if and only if they have a
common equitable partition.

Given a common equitable partition C = {C1, . . . , Ck} and D = {D1, . . . , Dk} for graphs
G and H respectively, one can construct a perfect non-signalling strategy for the (G,H)-
isomorphism game. The details are given in [3], but the idea is that if Alice is given g ∈ Ci

and Bob given g′ ∈ Cj and g and g′ are adjacent/non-adjacent/equal, then they respond
uniformly at random with h ∈ Di and h′ ∈ Dj that are adjacent/non-adjacent/equal. The
fact that the corresponding correlation is non-signalling follows from the fact that C and D
form a common equitable partition of G and H. Therefore, we have the following:

I Theorem 12. For any graphs G and H we have that G ∼=f H if and only if G ∼=ns H.

5 Conic Formulations

Given graphs G and H and a winning correlation p for the (G,H)-isomorphism game, define
the matrix Mp to be the matrix with rows and columns indexed by V (G)× V (H) to have
entries Mp

gh,g′h′ = p(h, h′|g, g′).
Note that the matrix Mp does not contain all of the probabilities of p, only those

corresponding to inputs from V (G) and outputs from V (H). Thus, in general the matrix Mp

may not completely determine the correlation p. However, if p is input-output symmetric,
as in the case of classical or quantum correlations, then p is determined by the matrix
Mp. Also note that in the classical and quantum cases Alice and Bob are symmetric, i.e.,
p(y, y′|x, x′) = p(y′, y|x′, x) for all x, x′, y, y′ ∈ V (G) ∪ V (H), and thus Mp is symmetric.

Since p is a correlation, sums of certain entries of Mp must be 1. Furthermore, since p is
winning, certain entries of Mp must be 0. This motivates the following definition:

I Definition 13. Let G and H be graphs and K a matrix cone. We say that a matrix M
with rows and columns indexed by V (G)× V (H) is a K-isomorphism matrix for G to H if
M ∈ K and∑

h,h′∈V (H)

Mgh,g′h′ = 1 for all g, g′ ∈ V (G) (7)

∑
g,g′∈V (G)

Mgh,g′h′ = 1 for all h, h′ ∈ V (H) (8)

Mgh,g′h′ = 0 if rel(g, g′) 6= rel(h, h′). (9)

We will say that graphs G and H are K-isomorphic, and write G ∼=K H, whenever there
exists a K-isomorphism matrix for G to H.

Though we have defined them for any matrix cone K, we will mainly be interested in just
four cones in this work. The first cone is the positive semidefinite cone, denoted S+. Recall
that a matrix M is positive semidefinite if and only if it is the Gram matrix of a set of vectors
v1, . . . , vn, i.e.,Mij = vT

i vj . We will also be interested in the doubly nonnegative cone, denoted
DNN , which consists of all positive semidefinite matrices that are also entrywise nonnegative.
The next cone we will consider is the recently introduced [13] completely positive semidefinite

ICALP 2017

76:10 Relaxations of Graph Isomorphism

cone, denoted CS+, which will correspond to quantum correlations. A matrixM is completely
positive semidefinite if it is the Gram matrix of positive semidefinite matrices ρ1, . . . , ρn, i.e.,
Mij = 〈ρi, ρj〉 := Tr(ρ†iρj). Note that this inner product is equal to the usual inner product
if we think of the matrices ρi as vectors, and thus CS+ ⊆ S+. Moreover, Tr(AB) ≥ 0 for
any positive semidefinite matrices A and B, with equality if and only if AB = 0, and thus
CS+ ⊆ DNN . Lastly, the completely positive cone, denoted CP, will correspond to the
classical correlations. A matrix is completely positive if it is the Gram matrix of entrywise
nonnegative vectors v1, . . . , vn. Note that if Di is the diagonal matrix with diagonal entries
equal to the entries of vi, then Di is positive semidefinite and vT

i vj = Tr(DiDj). Therefore,
CP ⊆ CS+. Altogether we have that CP ⊆ CS+ ⊆ DNN ⊆ S+. Moreover, it is known that
these containments are all strict for square matrices of dimension at least 5. With the above
notions, we can prove the following (full proof given in [16]):

I Theorem 14. Suppose G and H are graphs and p is a correlation for the (G,H)-
isomorphism game. Then p is winning classical correlation if and only if p is input-output
symmetric and Mp is a CP-isomorphism matrix.

I Theorem 15. Suppose G and H are graphs and p is a correlation for the (G,H)-
isomorphism game. Then p is a winning quantum correlation if and only if p is input-output
symmetric and Mp is a CS+-isomorphism matrix.

The above motivates us to investigate the notions of DNN - and S+-isomorphism. In
order to do this, we need to define something we call an isomorphism map.

After submission of this work, a referee informed us that the graph isomorphism problem
has been formulated as a completely positive program previously in [11].

5.1 Isomorphism Maps
Given a K-isomorphism matrixM for G to H, the isomorphism map ΦM is a linear map from
the space of complex matrices indexed by V (G) to the space of complex matrices indexed by
V (H) defined as (ΦM (X))h,h′ =

∑
g,g′ Mgh,g′h′Xg,g′ .

For K ⊆ S+, this map has some remarkable properties. In particular, it is completely
positive, meaning that ΦM ⊗ id maps psd matrices to psd matrices, where id can be an
identity map of any size. This is not related to the completely positive cone, an unfortunate
ambiguity. The map ΦM is trace-preserving and unital, meaning that ΦM (I) = I. It also
preserves the sum of the entries of a matrix, and maps the all ones matrix J to itself. If
K ∈ DNN , then ΦM maps entrywise nonnegative matrices to entrywise nonnegative matrices.
These last three properties define a notion of being doubly stochastic purely in terms of linear
maps. The adjoint of an isomorphism map from G to H is an isomorphism map from H to
G. Lastly, one can show that ΦM (AG) = AH and Φ∗M (AH) = AG, where Φ∗M is the adjoint
of ΦM which will be an isomorphism map for H to G. Since the eigenvalues of a Hermitian
matrix X majorize those of a Hermitian matrix Y if and only if there exists a completely
positive, trace-preserving, unital map taking X to Y , this last property implies Lemma 16
below. None of these properties are difficult to show, and the details are given in [16].

I Lemma 16. If G and H are S+-isomorphic graphs, then they are cospectral.

The idea of isomorphism maps is borrowed from Ortiz and Paulsen who constructed
similar linear maps from winning correlations for the homomorphism game in [20]. These
isomorphism maps will allow us to give characterizations of DNN - and S+-isomorphisms in
terms of certain algebras associated to graphs. But first we must introduce these algebras.

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:11

5.2 Coherent and Partially Coherent Algebras
A subspace of Cn×n which is also closed under matrix multiplication is an algebra. If A is a
subalgebra of Cn×n, then A is a coherent algebra if it contains the identity and the all ones
matrix, is closed under Schur (entrywise) product, and is closed under conjugate transpose,
i.e., is self-adjoint. The simplest example of a coherent algebra is span{I, J − I}. Of course,
Cn×n is itself a coherent algebra. Less trivially, if A is the adjacency matrix of any strongly
regular graph, then span{I, A, J − I −A} is a coherent algebra.

It follows from the fact that a coherent algebra A is closed under Schur product that it
must have an orthogonal (with respect to the Hilbert-Schmidt inner product) basis of 01
matrices A1, . . . , Ar. To each of the matrices Ai, we can associate a subset of V (G)× V (G),
namely the set of ordered pairs (g, g′) such that the gg′-entry of Ai is 1. This gives a partition
of the ordered pairs of vertices of G. One can reformulate the properties of being a coherent
algebra in terms of this partition, and a partition with these properties is known as a coherent
configuration. Conversely, any coherent configuration corresponds to some coherent algebra.
The parts in a coherent configuration are usually referred to as its classes.

Coherent algebras of graphs

It is not hard to see that the intersection of two coherent algebras is a coherent algebra. We
can therefore define the coherent algebra of a graph G, denoted AG, to be the intersection of
all coherent algebras containing its adjacency matrix AG, i.e., the smallest coherent algebra
containing AG. Equivalently, this is the set of all matrices that can be written as a finite
expression involving I, A, J , and the operations of addition, scalar multiplication, matrix
multiplication, Schur multiplication, and conjugate transpose.

An isomorphism between coherent algebras A and B is a bijective linear map φ : A → B
that preserves all operations of a coherent algebra, i.e.,

φ(M†) = φ(M)† for all M ∈ A;
φ(MN) = φ(M)φ(N) for all M,N ∈ A;
φ(M •N) = φ(M) • φ(N) for all M,N ∈ A.

As a consequence of the above, we must have that φ(I) = I and φ(J) = J . More generally,
if φ is an isomorphism of coherent algebras A and B, then φ maps the elements of the unique
01 basis of A to those of B in a manner that preserves how the basis elements relate to one
another (this is made precise in [16]).

I Definition 17. If G and H are two graphs with respective adjacency matrices AG and
AH and coherent algebras AG and AH , then we say that G and H are equivalent if there
exists an isomorphism φ from AG to AH such that φ(AG) = AH . We refer to the map φ as
an equivalence of G and H.

Note that the condition φ(AG) = AH completely determines the function φ on AG. In
Section 5.4, we show that two graphs are DNN -isomorphic if and only if they are equivalent.

5.3 Partially Coherent Algebras
Suppose that S is some subset of Cn×n. We say that an algebra A is an S-partially coherent
algebra if A contains the identity, is self-adjoint, contains the all ones matrix, and is closed
under Schur multiplication by any matrix in S.

As with coherent algebras, it is easy to see that the intersection of two S-partially coherent
algebras is an S-partially coherent algebra. Therefore, there is some minimal S-partially

ICALP 2017

76:12 Relaxations of Graph Isomorphism

coherent algebra for any S. This will be equal to the set of matrices that can be expressed
using the elements of S ∪ {I, J} and a finite number of the operations of addition, scalar
multiplication, matrix multiplication, conjugate transposition, and Schur multiplication
where at least one of the factors is an element of S.

We define the partially coherent algebra of a graph G, denoted ÂG, to be the minimal
S-partially coherent algebra where S = {I, AG}. Note that this will also be S′-partially
coherent for S′ = {I, AG, AG} since AG = J − I −AG and J is the Schur identity.

I Definition 18. Let G and H be graphs with adjacency matrices AG and AH and partially
coherent algebras ÂG and ÂH respectively. We say that G and H are partially equivalent if
there exists a linear bijection φ : ÂG → ÂH such that
1. φ(M†) = φ(M)† for all M ∈ ÂG;
2. φ(MN) = φ(M)φ(N) for all M,N ∈ ÂG;
3. φ(I) = I, φ(AG) = AH , and φ(J) = J ;
4. φ(M •N) = φ(M) • φ(N) for all M ∈ {I, AG} and N ∈ ÂG.
We refer to φ as a partial equivalence of G and H.

5.4 Characterizations of DN N - and S+-Isomorphisms
Using the ideas from the previous sections we can now give our characterizations of DNN -
and S+-isomorphisms (full proof given in [16]):

I Theorem 19. Let G and H be graphs. Then G ∼=DNN H if and only if G and H are
equivalent. Also, G ∼=S+ H if and only if G and H are partially equivalent.

The proof of the above goes roughly as follows: If G ∼=DNN H, then there exists a
DNN -isomorphism matrix M and corresponding isomorphism map ΦM . When restricted to
the coherent algebra AG, the map ΦM is an equivalence of G and H. Conversely, suppose
φ is an equivalence of G and H, and let Π be the orthogonal projection of CV (G)×V (G) to
AG, then the Choi matrix of the map φ ◦Π is a DNN -isomorphism matrix for G to H. The
proof for S+-isomorphism is similar.

There is a well known algorithm, known as the Weisfeiler-Lehman algorithm, that
determines whether two graphs are equivalent. Thus DNN -isomorphism is polynomial time
decidable. We do not yet know the complexity of S+-isomorphism, but we suspect it is also
polynomial time decidable.

We can use the above characterizations of DNN - and S+-isomorphisms to prove the
following results for 1-walk-regular and distance regular graphs (proofs given in [16]):

I Theorem 20. Let G be a connected 1-walk-regular graph. If H is a graph, then G ∼=S+ H

if and only if H is a connected 1-walk-regular graph that is cospectral to G.

I Theorem 21. Let G be a distance regular graph. If H is a graph, then G ∼=DNN H if and
only if H is a distance regular graph that is cospectral to G.

I Lemma 22. If G ∼=DNN H, then G and H have the same radius and diameter.

6 Separations

In Section 3.1 we saw that isomorphism and quantum isomorphism are distinct relations. In
this section we show that the rest of relations we have defined are distinct from one another.
Here we give examples and brief explanations, but the full details are in [16].

L. Mančinska, D. E. Roberson, R. Šámal, S. Severini, and A. Varvitsiotis 76:13

Quantum vs. DN N -Isomorphism. The 4× 4 rook’s graph and the Shrikhande graph are
cospectral distance regular graphs. Therefore, they are DNN -isomorphic by Theorem 21.
However, we show that their complements have different quantum chromatic numbers, a
parameter that is preserved by quantum isomorphism (see [3] for details).

DN N -Isomorphism vs. S+-Isomorphism. The 4-cube graph has the binary strings of
length 4 as its vertices, two being adjacent if they differ in exactly one bit. The Hoffman graph
is the unique cospectral mate of the 4-cube, and they are both connected and 1-walk-regular.
Therefore they are S+-isomorphic by Theorem 20. However, the 4-cube has radius 4 and the
Hoffman graph has radius 3, thus they are not DNN -isomorphic by Lemma 22.

S+-Isomorphism vs. Non-signalling Isomorphism. By Lemma 16, any pair of k-regular
graphs on n vertices for some n and k that are not cospectral will work for this. For example,
the 6-cycle and two disjoint 3-cycles will do.

Acknowledgements. The authors would like to especially thank Albert Atserias who was
instrumental in finding the first separation between isomorphism and quantum isomorphism.

References
1 Alex Arkhipov. Extending and characterizing quantum magic games, 2012. arXiv:1209.

3819.
2 Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affine systems of equations and counting

infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009. A preliminary
version appeared in ICALP 2007. doi:10.1016/j.tcs.2008.12.049.

3 Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini,
and Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms, 2016. URL:
https://arxiv.org/abs/1611.09837, arXiv:1611.09837.

4 László Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of Com-
binatorics (Vol. 2), pages 1447–1540. MIT Press, 1995. doi:233228.233236.

5 László Babai. Graph isomorphism in quasipolynomial time, 2015. arXiv:1512.03547.
6 László Babai, Paul Erdős, and Stanley M. Selkow. Random graph isomorphism. SIAM

Journal on Computing, 9(3):628–635, 1980. doi:10.1137/0209047.
7 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number

of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

8 Peter J. Cameron, Ashley Montanaro, Michael W. Newman, Simone Severini, and Andreas
Winter. On the quantum chromatic number of a graph. Electronic Journal of Combinat-
orics, 14(1), 2007. arXiv:quant-ph/0608016.

9 Richard Cleve and Rajat Mittal. Characterization of binary constraint system games. In
Proceedings of the 41st International Colloquium on Automata, Languages, and Program-
ming, ICALP’14, pages 320–331. Springer, 2014. arXiv:1209.2729.

10 Uriel Feige, Shafi Goldwasser, László Lovász, S. Safra, and M. Szegedy. Approximating
clique is almost NP-complete (preliminary version). In Proceedings of the 32nd Annual
Symposium on Foundations of Computer Science, SFCS’91, pages 2–12, 1991. doi:10.
1109/SFCS.1991.185341.

11 Luuk Gijben. On approximations, complexity, and applications for copositive programming.
PhD thesis, 2015.

12 Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure The-
ory. Draft manuscript, 2013. Available online.

ICALP 2017

http://arxiv.org/abs/1209.3819
http://arxiv.org/abs/1209.3819
http://dx.doi.org/10.1016/j.tcs.2008.12.049
https://arxiv.org/abs/1611.09837
http://arxiv.org/abs/1611.09837
http://dx.doi.org/233228.233236
http://arxiv.org/abs/1512.03547
http://dx.doi.org/10.1137/0209047
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://arxiv.org/abs/quant-ph/0608016
http://arxiv.org/abs/1209.2729
http://dx.doi.org/10.1109/SFCS.1991.185341
http://dx.doi.org/10.1109/SFCS.1991.185341
https://www.lii.rwth-aachen.de/en/13-mitarbeiter/professoren/39-book-descriptive-complexity.html

76:14 Relaxations of Graph Isomorphism

13 Monique Laurent and Teresa Piovesan. Conic approach to quantum graph parameters
using linear optimization over the completely positive semidefinite cone. SIAM Journal on
Optimization, 25(4):2461–2493, 2015. doi:10.1137/14097865X.

14 Laura Mančinska and David E. Roberson. Quantum homomorphisms. Journal of Combin-
atorial Theory, Series B, 118:228–267, 2016. arXiv:1212.1724.

15 Laura Mančinska, David E. Roberson, and Antonios Varvisotis. On deciding the existence
of perfect entangled strategies for nonlocal games. Chicago Journal of Theoretical Computer
Science, 2016(5), 2016. arXiv:1506.07429.

16 Laura Mančinska, David E. Roberson, and Antonios Varvitsiotis. Semidefinite relaxations
of (quantum) graph isomorphism. Available online, 2017.

17 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60:94–112, 2014. arXiv:1301.1493.

18 Benjamin Musto and Jamie Vicary. Quantum Latin squares and unitary error bases, 2015.
arXiv:1504.02715.

19 Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of Robust
Graph Isomorphism,Lasserre Gaps, and Asymmetry of Random Graphs, pages 1659–1677.
ACM/SIAM, 2014. arXiv:1401.2436, doi:10.1137/1.9781611973402.120.

20 Carlos M. Ortiz and Vern I. Paulsen. Quantum graph homomorphisms via operator systems.
Linear Algebra and its Applications, 497:23–43, 2016. arXiv:1505.00483.

21 Vern I. Paulsen, Simone Severini, Daniel Stahlke, Ivan G. Todorov, and Andreas Winter.
Estimating quantum chromatic numbers. Journal of Functional Analysis, 270(6):2188–2222,
2016. arXiv:1407.6918.

22 Motakuri V. Ramana, Edward R. Scheinerman, and Daniel Ullman. Fractional isomorphism
of graphs. Discrete Mathematics, 132(1):247–265, 1994. doi:10.1016/0012-365X(94)
90241-0.

23 David E. Roberson. Variations on a Theme: Graph Homomorphisms. PhD thesis, Univer-
sity of Waterloo, 2013.

24 David E. Roberson. Conic formulations of graph homomorphisms. Journal of Algebraic
Combinatorics, pages 1–37, 2016. arXiv:1411.6723, doi:10.1007/s10801-016-0665-y.

25 Jamie Sikora and Antonios Varvitsiotis. Linear conic formulations for two-party correlations
and values of nonlocal games. Mathematical Programming, pages 1–33, 2015. arXiv:
1506.07297.

26 Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by their
spectrum? Linear Algebra and its Applications, 373:241–272, 2003. doi:10.1016/
S0024-3795(03)00483-X.

http://dx.doi.org/10.1137/14097865X
http://arxiv.org/abs/1212.1724
http://arxiv.org/abs/1506.07429
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxkYXZpZGVyb2JlcnNvbnxneDo1OGUyM2ZlMDQ1YTZlNTI3
http://arxiv.org/abs/1301.1493
http://arxiv.org/abs/1504.02715
http://arxiv.org/abs/1401.2436
http://dx.doi.org/10.1137/1.9781611973402.120
http://arxiv.org/abs/1505.00483
http://arxiv.org/abs/1407.6918
http://dx.doi.org/10.1016/0012-365X(94)90241-0
http://dx.doi.org/10.1016/0012-365X(94)90241-0
http://arxiv.org/abs/1411.6723
http://dx.doi.org/10.1007/s10801-016-0665-y
http://arxiv.org/abs/1506.07297
http://arxiv.org/abs/1506.07297
http://dx.doi.org/10.1016/S0024-3795(03)00483-X
http://dx.doi.org/10.1016/S0024-3795(03)00483-X

Honest Signaling in Zero-Sum Games Is Hard,
and Lying Is Even Harder∗†

Aviad Rubinstein

UC Berkeley, Berkeley, CA, USA
aviad@eecs.berkeley.edu

Abstract
We prove that, assuming the exponential time hypothesis, finding an ε-approximately optimal
signaling scheme in a two-player zero-sum game requires quasi-polynomial time (nΩ̃(lgn)). This
is tight by [8] and resolves an open question of Dughmi [12]. We also prove that finding a
multiplicative approximation is NP-hard.

We also introduce a new model where a dishonest signaler may publicly commit to use one
scheme, but post signals according to a different scheme. For this model, we prove that even
finding a (1− 2−n)-approximately optimal scheme is NP-hard.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Signaling, Zero-sum Games, Algorithmic Game Theory, birthday repeti-
tion

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.77

1 Introduction

Many classical questions in economics involve extracting information from strategic agents.
Lately, there has been growing interest within algorithmic game theory in signaling: the study
of how to reveal information to strategic agents (see e.g. [16, 13, 14, 12, 8] and references
therein). Signaling has been studied in many interesting economic and game theoretic
settings. Among them, Zero-Sum Signaling proposed by Dughmi [12] stands out as a
canonical problem that cleanly captures the computational nature of signaling. In particular,
focusing on zero-sum games clears away issues of equilibrium selection and computational
tractability of finding an equilibrium.

I Definition 1 (Zero-Sum Signaling [12]). Alice and Bob play a Bayesian zero-sum game
where the payoff matrix M is drawn from a publicly known prior. The signaler Sam privately
observes the state of nature (i.e. the payoff matrix), and then publicly broadcasts a signal
ϕ (M) to both Alice and Bob. Alice and Bob Bayesian-update their priors according to
ϕ (M)’s and play the Nash equilibrium of the expected game; but they receive payoffs
according to the true M . Sam’s goal is to design an efficient signaling scheme ϕ (a function
from payoff matrices to strings) that maximizes Alice’s expected payoff.

Dughmi’s [12] main result proves that assuming the hardness of the Planted Clique
problem, there is no additive FPTAS for Zero-Sum Signaling. The main open question

∗ A full version of the paper is available at http://arxiv.org/abs/1510.04991.
† This research was supported by Microsoft Research PhD Fellowship, as well as NSF grant CCF1408635

and by Templeton Foundation grant 3966. This work was done in part at the Simons Institute for the
Theory of Computing.

EA
T

C
S

© Aviad Rubinstein;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 77; pp. 77:1–77:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.77
http://arxiv.org/abs/1510.04991
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

77:2 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

left by [12] is whether there exists an additive PTAS. Here we answer this question in the
negative: we prove that assuming the Exponential Time Hypothesis (ETH) [15], obtaining an
additive-ε-approximation (for some constant ε > 0) requires quasi-polynomial time (nΩ̃(lgn)).
This result is tight thanks to a recent quasi-polynomial (n

lgn
poly(ε)) time algorithm by Cheng

et al. [8]. Another important advantage of our result is that it replaces the hardness of
Planted Clique with a more believable worst-case hardness assumption (see e.g. the
discussion in [7]).

I Theorem 2 (Main Result). There exists a constant ε > 0, such that assuming ETH,
approximating Zero-Sum Signaling with payoffs in [−1, 1] to within an additive ε requires
time nΩ̃(lgn).

Using a similar construction, we also obtain NP-hardness for computing a multiplicative-
(1− ε)-approximation. Unfortunately, in our example Alice can receives both negative and
positive payoffs, which is somewhat non-standard (but not unprecedented [9]) in multiplicative
approximation. One main reason that multiplicative approximation with negative payoffs
is problematic is that this is often trivially intractable for any finite factor: Start with a
tiny additive gap, where Alice’s expected payoff is c in the “yes” case, and s = c− ε in the
“no” case; subtract (c+ s) /2 from all of Alice’s payoffs to obtain an infinite multiplicative
hardness. We note, however, that the combination of negative and positive payoffs in our
construction serves only to obtain structural constraints on the resulting equilibria; the
hardness of approximation is not a result of cancellation of negative with positive payoffs:
Alice’s payoff can be decomposed as a difference of non-negative payoffs U = U+ − U−, such
that it is hard to approximate Alice’s optimal payoff to within ε · E [U+ + U−]. Nevertheless,
we believe that extending this result to non-negative payoffs could be very interesting.

I Theorem 3. There exists a constant ε > 0, such that it is NP-hard to approximate
Zero-Sum Signaling to within a multiplicative (1− ε) factor.

Finally, we note that since all our games are zero-sum, the hardness results for Zero-
Sum Signaling also apply to the respective notions of additive- and multiplicative-ε-Nash
equilibrium.

1.1 The computational complexity of lying
As a motivating example, consider the purchase of a used car (not a zero-sum game, but a
favorite setting in the study of signaling since Akerlof’s seminal “Market for Lemons” [2]),
and let us focus on the information supplied by a third party such as a mechanic inspection.
The mechanic (Sam) publishes a signaling scheme: report any problem found in a one-hour
inspection. Unbeknownst to the buyer (Bob), the mechanic favors the seller (Alice), and
chooses to use a different signaling scheme: always report that the car is in excellent condition.
Notice that it is crucial that the buyer does not know that the mechanic is lying (and more
generally, we assume that neither party knows that the signaler is lying).

Much of the work in economics is motivated by selfish agents manipulating their private
information. Here we introduce a natural extension of Dughmi’s signaling model, where the
signaler manipulates his private information. We formalize this extension in the Zero-Sum
Lying problem, where the signaling scheme consists of two functions ϕalleged (“report any
problem found”) and ϕreal (“car is in excellent condition”) from payoff matrices to signals.
Sam promises Alice and Bob to use ϕalleged, which is what Alice and Bob use to compute
the posterior distribution given the signal (i.e. the seller and buyer look at the mechanic’s

A. Rubinstein 77:3

report and negotiate a price as if the state of the car is correctly reflected). But instead Sam
signals according to ϕreal.

We formally define the Zero-Sum Lying problem below; notice that the original Zero-
Sum Signaling (Definition 1) corresponds to the special case where we restrict ϕreal =
ϕalleged.

I Definition 4 (Zero-Sum Lying). Alice and Bob play a Bayesian, one-shot, zero-sum
game where the payoff matrix is drawn from a publicly known prior. A dishonest signaling
scheme consists of two (possibly randomized) functions ϕalleged, ϕreal from payoff matrices
to signals, that induce the following protocol:

Nature draws a private payoff matrix M ∼ Dnature.
Alice and Bob observe the scheme ϕalleged and the signal σ , ϕreal (M). (But they
don’t know the scheme ϕreal!)
Alice and Bob choose a Nash equilibrium (x; y) for the zero-sum game with payoff matrix
E [M ′ | ϕalleged (M ′) = σ]1.

(We assume that the support of ϕreal is contained in the support of ϕalleged.)
Alice and Bob receive payoffs x>My and −x>My, respectively.

Sam’s goal is to compute a pair (ϕalleged, ϕreal) that maximizes Alice’s expected payoff.

In the toy-setting of a biased car inspection, the Sam’s optimal strategy was very simple.
In contrast, we show that for a general distribution over zero-sum games, it is NP-hard
to find a pair (ϕalleged, ϕreal) that is even remotely close to optimal. Notice that this is
very different from the honest case where, as we mentioned earlier, NP-hardness of additive
approximation is unlikely given the additive quasi-PTAS of [8].

I Theorem 5. Approximating Zero-Sum Lying with Alice’s payoffs in [0, 1] to within an
additive (1− 2−n) is NP-hard.

Further discussion of dishonest signaling

It is important to note that the dishonest signaling model has a few weaknesses:
Alice and Bob must believe the dishonest signaler. (See also further discussion below.)
In particular, Sam cheats in favor of Alice, but Alice doesn’t know about it – so what’s
in it for Sam? Indeed, we assume that Sam has some intrinsic interest in Alice winning,
e.g. because Sam loves Alice or owns some of her stocks.
The game for which players’ strategies are at equilibrium may be very different from the
actual game. Note, however, that this is also the case for the honest signaling model
(when the signaling scheme is not one-to-one).
The players may receive different payoffs for different equilibria; this may raise issues of
equilibrium selection.

Despite those disadvantages, we believe that our simple model is valuable because it already
motivates surprising results such as our Theorem 5. On a higher level, we hope that it
will inspire research on many other interesting aspects on dishonest signaling. For example,
notice that in our model Sam lies without any reservation; if, per contra, the game was
repeated infinitely many times, one would expect that Alice and Bob will eventually stop

1 When ϕalleged, ϕreal are randomized, we have σ ∼ ϕreal (M) and expectation conditioned on
E
[
M ′ | σ ∼ ϕalleged

(
M ′
)]

.

ICALP 2017

77:4 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

believing the signals, hence only honest signaling is possible. There is also a spectrum of
intermediate situations, where Alice and Bob observe some partial information about past
games (e.g. marginal distribution of signals) and may encounter questions about distribution
testing.

Another related direction of potential future research is to think about Sam’s incentives.
When is honest signaling optimal for Sam? When is it approximately optimal? How should
one design an effective “punishing” mechanism?

1.2 Concurrent work of Bhaskar et al.
In independent concurrent work by Bhaskar et al. [5], quasi-polynomial time hardness for
additive approximation of Zero-Sum Signaling was obtained assuming the hardness of
the Planted Clique problem (among other interesting results2 about network routing
games and security games). Although we are not aware of a formal reduction, hardness
of Planted Clique is a qualitatively stronger assumption than ETH in the sense that it
requires average case instances to be hard. Hence in this respect, our result is stronger.

1.3 Techniques
Our main ingredient for the quasi-polynomial hardness is the technique of “birthday repetition”
coined by [1] and recently applied in game theoretic settings in [7, 4]: We reduce from a
2-ary constraint satisfaction problem (2-CSP) over n variables to a distribution over N
zero-sum N × N games, with N = 2Θ(√n). Alice and Bob’s strategies correspond to
assignments to tuples of

√
n variables. By the birthday paradox, the two

√
n-tuples chosen

by Alice and Bob share a constraint with constant probability. If a constant fraction of the
constraints are unsatisfiable, Alice’s payoff will suffer with constant probability. Assuming
ETH, approximating the value of the CSP requires time 2Ω̃(n) = N Ω̃(lgN).

1.3.0.1 The challenge

The main difficulty is that once the signal is public, the zero-sum game is tractable. Thus we
would like to force the signaling scheme to output a satisfying assignment. Furthermore, if the
scheme would output partial assignments on different states of nature (aka different zero-sum
games in the support), it is not clear how to check consistency between different signals.
Thus we would like each signal to contain an entire satisfying assignment. The optimal
scheme may be very complicated and even require randomization, yet by an application of
the Caratheodory Theorem the number of signals is, wlog, bounded by the number of states
of nature [12]. If the state of nature can be described using only lgN = Θ̃ (

√
n) bits3, how

can we force the scheme to output an entire assignment?
To overcome this obstacle, we let the state of nature contain a partial assignment to

a random
√
n-tuple of variables. We then check the consistency of Alice’s assignment

with nature’s assignment, Bob’s assignment with nature’s assignment, and Alice and Bob’s
assignments with each other; let τA,Z , τB,Z , τA,B denote the outcomes of those consistency
checks, respectively. Alice’s payoff is given by:

U = δτA,Z − δ2τB,Z + δ3τA,B

2 For zero-sum games, Bhaskar et al. also rule out an additive FPTAS assuming P 6= NP. This result
follows immediately from our Theorem 14.

3 In other words, N , the final size of the reduction, is an upper bound on the number of states of nature.

A. Rubinstein 77:5

for some small constant δ ∈ (0, 1). Now, both Alice and Bob want to maximize their chances
of being consistent with nature’s partial assignment, and the signaling scheme gains by
maximizing τA,B .

Of course, if nature outputs a random assignment, we have no reason to expect that it
can be completed to a full satisfying assignment. Instead, the state of nature consists of N
assignments, and the signaling scheme helps Alice and Bob play with the assignment that
can be completed.

Several other obstacles arise; fortunately some can be handled using techniques from
previous works on hardness of finding Nash equilibrium [3, 10, 4].

2 Preliminaries

Exponential Time Hypothesis

I Hypothesis 6 (Exponential Time Hypothesis (ETH) [15]). 3SAT takes time 2Ω(n).

PCP Theorem and CSP

I Definition 7 (2CSP). 2-CSP (2-ary Constraint Satisfaction Problem) is a maximization
problem. The input is a graph G = (V,E), alphabet Σ, and a constraint Ce ⊆ Σ × Σ for
every e ∈ E.

The output is a labeling ϕ : V → Σ of the vertices. Given a labeling, we say that a
constraint (or edge) (u, v) ∈ E is satisfied if ϕ (u) , ϕ (v) ∈ C(u,v). The value of a labeling
is the fraction of e ∈ E that are satisfied by the labeling. The value of the instance is the
maximum fraction of constraints satisfied by any assignment.

I Theorem 8 (PCP Theorem [11]; see e.g. [6, Theorem 2.11] for this formulation). Given
a 3SAT instance φ of size n, there is a polynomial time reduction that produces a 2CSP
instance ψ, with size |ψ| = n · polylogn variables and constraints, and constant alphabet size,
such that:
Completeness. If φ is satisfiable, then so is ψ.
Soundness. If φ is not satisfiable, then at most a (1− η)-fraction of the constraints in ψ

can be satisfied, for some η = Ω (1).
Balance. Every variable in ψ participates in exactly d = O (1) constraints.

Finding a good partition

I Lemma 9 (Essentially [4, Lemma 6]). Let G = (V,E) be a d-regular graph and n , |V |.
We can partition V into n/k disjoint subsets

{
S1, . . . , Sn/k

}
of size at most 2k such that:

∀i, j |(Si × Sj) ∩ E| ≤ 8d2k2/n . (1)

See full version for proof [17].

How to catch a far-from-uniform distribution

The following lemma due to [10] implies that:

I Lemma 10 (Lemma 3 in the full version of [10]). Let {ai}ni=1 be real numbers satisfying the
following properties for some θ > 0: (1) a1 ≥ a2 ≥ · · · ≥ an; (2)

∑
ai = 0; (3)

∑n/2
i=1 ai ≤ θ.

Then
∑n
i=1 |ai| ≤ 4θ.

ICALP 2017

77:6 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

3 Additive hardness

I Theorem 11. There exists a constant ε > 0, such that assuming ETH, approximating
Zero-Sum Signaling with payoffs in [−1, 1] to within an additive ε requires time nΩ̃(lgn).

Construction overview

Our reduction begins with a 2CSP ψ over n variables from alphabet Σ. We partition the
variables into n/k disjoint subsets

{
S1, . . . , Sn/k

}
, each of size at most 2k for k =

√
n such

that every two subsets share at most a constant number of constraints.
Nature chooses a random subset Si from the partition, a random assignment ~u ∈ Σ2k to

the variables in Si, and an auxiliary vector b̂ ∈ {0, 1}Σ×[2k]. As mentioned in Section 1.3, ~u
may not correspond to any satisfying assignment. Alice and Bob participate in one of |Σ|2k

subgames; for each ~v ∈ Σ2k, there is a corresponding subgame where all the assignments are
XOR-ed with ~v. The goal of the auxiliary vector b̂ is to force Alice and Bob to participate in
the right subgame, i.e. the one where the XOR of ~v and ~u can be completed to a full satisfying
assignment. In particular, the optimum signaling scheme reveals partial information about b̂
in a way that guides Alice and Bob to participate in the right subgame. The scheme also
outputs the full satisfying assignment, but reveals no information about the subset Si chosen
by nature.

Each player has
(
|Σ|2k × 2

)
×
(
n/k ×

(
n/k
n/2k

)
× |Σ|2k

)
= 2Θ(√n) strategies. The first

|Σ|2k strategies correspond to a Σ-ary vector ~v that the scheme will choose after observing
the random input. The signaling scheme forces both players to play (w.h.p.) the strategy
corresponding to ~v by controlling the information that corresponds to the next 2 strategies.
Namely, for each ~v′ ∈ Σ2k, there is a random bit b (~v′) such that each player receives a payoff
of 1 if they play (~v′, b (~v′)) and 0 for (~v′, 1− b (~v′)). The b’s are part of the state of nature,
and the optimal signaling scheme will reveal only the bit corresponding to the special ~v.
Since there are |Σ|2k bits, nature cannot choose them independently, as that would require
2|Σ|2k states of nature. Instead we construct a pairwise independent distribution.

The next n/k strategies correspond to the choice of a subset Si from the specified partition
of variables. The

(
n/k
n/2k

)
strategies that follow correspond to a gadget due to Althofer [3]

whereby each player forces the other player to randomize (approximately) uniformly over the
choice of subset.

The last |Σ|2k strategies correspond to an assignment to Si. The assignment to each Si
is XOR-ed entry-wise with ~v. Then, the players are paid according to checks of consistency
between their assignments, and a random assignment to a random Si picked by nature.
(The scheme chooses ~v so that nature’s random assignment is part of a globally satisfying
assignment.) Each player wants to pick an assignment that passes the consistency check
with nature’s assignment. Alice also receives a small bonus if her assignment agrees with
Bob’s; thus her payoff is maximized when there exists a globally satisfying assignment.

See formal construction below, or refer to summary table in full version [17].

Formal construction

Let ψ be a 2CSP-d over n variables from alphabet Σ, as guaranteed by Theorem 8. In
particular, ETH implies that distinguishing between a completely satisfiable instance and
(1− η)-satisfiable requires time 2Ω̃(n). By Lemma 9, we can (deterministically and efficiently)
partition the variables into n/k subsets

{
S1, . . . , Sn/k

}
of size at most 2k = 2

√
n, such that

every two subsets share at most 8d2k2/n = O (1) constraints.

A. Rubinstein 77:7

States of nature. Nature chooses a state
(
b̂, i, ~u

)
∈ {0, 1}Σ×[2k] × [n/k]× Σ2k uniformly

at random. For each ~v, b (~v) is the XOR of bits from b̂ that correspond to entries of ~v:

∀~v ∈ Σ2k b (~v) ,

 ⊕
(σ,`) : [~v]`=σ

[
b̂
]

(σ,`)

 .

Notice that the b (~v)’s are pairwise independent and each marginal distribution is uniform
over {0, 1}.

Strategies. Alice and Bob each choose a strategy (~v, c, j, T, ~w) ∈ Σ2k × {0, 1} × [n/k] ×([n/k]
n/2k

)
×Σ2k. We use ~vA, cA, etc. to denote the strategy Alice plays, and similarly ~vB , cB , etc.

for Bob. For σ, σ′ ∈ Σ, we denote σ ⊕Σ σ
′ , σ + σ′ (mod |Σ|), and for vectors ~v,~v′ ∈ Σ2k,

we let ~v ⊕Σ ~v
′ ∈ Σ2k denote the entry-wise ⊕Σ.

Payoffs. Consider state of nature
(
b̂, i, ~u

)
and players’ strategies

(
~vA, cA, jA, TA, ~wA

)
and(

~vB , cB , jB , TB , ~wB
)
.

When ~vA = ~vB = ~v, we set τA,Z = 1 if assignments ~wA and (~v ⊕Σ ~u) to subsets SjA and Si,
respectively, satisfy all the constraints in ψ that are determined by

(
Si ∪ SjA

)
, and τA,Z = 0

otherwise. Similarly, τB,Z = 1 iff ~wB and (~v ⊕Σ ~u) satisfy the corresponding constraints in
ψ; and τA,B checks ~wA and ~wB . When ~vA 6= ~vB , we set τA,Z = τB,Z = τA,B = 0.

We decompose Alice’s payoff as:

UA , UAb + UAAlthofer + UAψ ,

where

UAb , 1
{
cA = b

(
~vA
)}
− 1

{
cB = b

(
~vB
)}
,

UAAlthofer , 1
{
jB ∈ TA

}
− 1

{
jA ∈ TB

}
,

and

UAψ , δτA,Z − δ2τB,Z + δ3τA,B , (2)

for a sufficiently small constant 0 < δ � √η.

Completeness

I Lemma 12. If ψ is satisfiable, there exists a signaling scheme and a mixed strategy for
Alice that guarantees expected payoff δ − δ2 + δ3.

Proof. Fix a satisfying assignment ~α ∈ Σn. Given state of nature
(
b̂, i, ~u

)
, let ~v be such

that (~v ⊕Σ ~u) = [~α]Si . The scheme outputs the signal (~v, b (~v) , ~α). Alice’s mixed strategy
sets

(
~vA, cA

)
= (~v, b (~v)), picks jA and TA uniformly at random, and sets ~wA = [~α]SjA .

Because Bob has no information about b (~v′) for any ~v′ 6= ~v, he has probability 1/2 of
losing whenever he picks ~vB 6= ~v, i.e. E

[
UAb
]
≥ 1

2 Pr
[
~vB 6= ~v

]
. Furthermore, because Alice

chooses TA and jA uniformly, E
[
UAAlthofer

]
= 0.

Since ~α completely satisfies ψ, we have that τA,Z = 1 as long as ~vB = ~v (regardless of the
rest of Bob’s strategy). Bob’s goal is thus to maximize E

[
δ2τB,Z − δ3τA,B

]
. Notice that ~wA

and (~v ⊕Σ ~u) are two satisfying partial assignments to uniformly random subsets from the

ICALP 2017

77:8 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

partition. In particular, they are both drawn from the same distribution, so we have that for
any mixed strategy that Bob plays, E

[
τB,Z

]
= E

[
τA,B

]
. Therefore Alice’s payoff is at least

(
δ − δ2 + δ3)Pr

[
~vB = ~v

]
+ 1

2 Pr
[
~vB 6= ~v

]
≥ δ − δ2 + δ3. J

Soundness

I Lemma 13. If at most a (1− η)-fraction of the constraints are satisfiable, Alice’s maxmin
payoff is at most δ − δ2 + (1− Ωη (1)) δ3, for any signaling scheme.

Proof. Fix any mixed strategy by Alice; we show that Bob can guarantee a payoff of at least
−
(
δ − δ2 + (1− Ωη (1)) δ3). On any signal, Bob chooses

(
~vB , cB

)
from the same distribution

that Alice uses for
(
~vA, cA

)
. He chooses jB uniformly, and picks TB so as to minimize

E
[
UAAlthofer

]
. Finally, for each jB, he draws ~wB from the same marginal distribution that

Alice uses for ~wA conditioning on jA = jB (and uniformly at random if Alice never plays
jA = jB). By symmetry, E

[
UAb
]

= 0 and E
[
UAAlthofer

]
≤ 0.

In this paragraph, we use Althoefer’s gadget to argue that, wlog, Alice’s distribution
over the choice of jA is approximately uniform. In Althofer’s gadget, Alice can guarantee an
(optimal) expected payoff of 0 by randomizing uniformly over her choice of jA and TA. By
Lemma 10, if Alice’s marginal distribution over the choice of jA is 8δ2-far from uniform (in
total variation distance), then Bob can guess that jA is in some subset TB ∈

([n/k]
n/2k

)
with

advantage (over guessing at random) of at least 2δ2. Therefore E
[
UAAlthofer

]
≤ −2δ2; but

this would imply E
[
UA
]
≤ −2δ2 + E

[
UAψ

]
≤ δ − 2δ2 + δ3. So henceforth we assume wlog

that Alice’s marginal distribution over the choice of jA is O
(
δ2)-close to uniform (in total

variation distance).
Since Alice’s marginal distribution over jA is O

(
δ2)-close to uniform, we have that Bob’s

distribution over
(
jB , ~wB

)
is O

(
δ2)-close to Alice’s distribution over

(
jA, ~wA

)
. Therefore

E
[
τB,Z

]
≥ E

[
τA,Z

]
−O

(
δ2), and so we also get:

E
[
UA
]
≤ E

[
UAψ
]
≤ δ − δ2 + δ3E

[
τA,B

]
+O

(
δ4) . (3)

Bounding E
[
τ A,B

]
. To complete the proof, it remains to show an upper bound on E

[
τA,B

]
.

In particular, notice that it suffices to bound the probability that Alice’s and Bob’s induced
assignments agree. Intuitively, if they gave assignments to uniformly random (and independ-
ent) subsets of variables, the probability that their assignments agree cannot be much higher
than the value of the 2CSP; below we formalize this intuition.

By the premise, any assignment to all variables violates at least an η-fraction of the
constraints. In particular, this is true in expectation for assignments drawn according to
Alice’s and Bob’s mixed strategy. This is a bit subtle: in general, it is possible that Alice’s
assignment alone doesn’t satisfy many constraints and neither does Bob’s, but when we check
constraints between Alice’s and Bob’s assignments everything satisfied (for example, think of
the 3-Coloring CSP, where Alice colors all her vertices blue, and Bob colors all his vertices
red). Fortunately, this subtlety is irrelevant for our construction since we explicitly defined
Bob’s mixed strategy so that conditioned on each set Sj of variables, Alice and Bob have the
same distribution over assignments.

The expected number of violations between pairs directly depends on the value of the
2CSP. To bound the probability of observing at least one violations, recall that every pair
of subsets shares at most a constant number of constraints, so this probability is within a

A. Rubinstein 77:9

constant factor of the expected number of violations. In particular, an Ω (η)-fraction of the
pairs of assignments chosen by Alice and Bob violate ψ.

Finally, Alice doesn’t choose jA uniformly at random; but her distribution is O
(
δ2)-close

to uniform. Therefore, we have E
[
τA,B

]
≤ 1− Ω (η) +O

(
δ2). Plugging into (3) completes

the proof. J

4 Multiplicative hardness

I Theorem 14. There exists a constant ε > 0, such that it is NP-hard to approximate
Zero-Sum Signaling to within a multiplicative (1− ε) factor.

Construction overview

Our reduction begins with a 2CSP ψ over n variables from alphabet Σ.
Nature chooses a random index i ∈ [n], a random assignment u ∈ Σ for variable xi, and an

auxiliary vector ~b ∈ {0, 1}Σ. Notice that u may not correspond to any satisfying assignment.
Alice and Bob participate in one of |Σ| subgames; for each v ∈ Σ, there is a corresponding
subgame where all the assignments are XOR-ed with v. The optimum signaling scheme
reveals partial information about ~b in a way that guides Alice and Bob to participate in the
subgame where the XOR of v and u can be completed to a full satisfying assignment. The
scheme also outputs the full satisfying assignment, but reveals no information about the
index i chosen by nature.

Alice has (|Σ| × 2)× (n× n× |Σ|) = Θ
(
n2) strategies, and Bob has an additional choice

among n strategies (so Θ
(
n3) in total). The first |Σ| strategies correspond to a value v ∈ Σ

that the scheme will choose after observing the state of nature. The signaling scheme forces
both players to play (w.h.p.) the strategy corresponding to v by controlling the information
that corresponds to the next 2 strategies. Namely, for each v′ ∈ Σ, there is a random bit b (v′)
such that each player receives a small bonus if they play (v′, b (v′)) and not (v′, 1− b (v′)).
The b’s are part of the state of nature, and the signaling scheme will reveal only the bit
corresponding to the special v.

The next n strategies correspond to a choice of a variable j ∈ [n]. The n strategies that
follow correspond to a hide-and-seek gadget whereby each player forces the other player
to randomize (approximately) uniformly over the choice of j. For Bob, the additional n
strategies induce a hide-and-seek game against nature, which serves to verify that the scheme
does not reveal too much information about the state of nature (this extra verification was
unnecessary in the reduction for additive inapproximability).

The last |Σ| strategies induce an assignment for xj . The assignment to each xj is XOR-
ed with v. Then, the players are paid according to checks of consistency between their
assignments, and a random assignment to a random xi picked by nature. (The scheme
chooses v so that nature’s random assignment is part of a globally satisfying assignment.)
Each player wants to pick an assignment that passes the consistency check with nature’s
assignment. Alice also receives a small bonus if her assignment agrees with Bob’s; thus her
payoff is maximized when there exists a globally satisfying assignment.

Formal construction

Let ψ be a 2CSP-d over n variables from alphabet Σ, as guaranteed by Theorem 8. In
particular, it is NP-hard to distinguish between ψ which is completely satisfiable, and one

ICALP 2017

77:10 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

where at most a (1− η)-fraction of the constraints can be satisfied. We denote (i, j) ∈ ψ if
there is a constraint over variables (xi, xj).

States of nature. Nature chooses a state
(
~b, i, u

)
∈ {0, 1}Σ × [n]×Σ uniformly at random.

Strategies. Alice chooses a strategy
(
vA, cA, jA, tA, wA

)
∈ Σ× {0, 1} × [n]× [n]× Σ, and

Bob chooses
(
vB , cB , jB , tB , qB , wB

)
∈ Σ × {0, 1} × [n] × [n] × [n] × Σ. For σ, σ′ ∈ Σ, we

denote σ ⊕Σ σ
′ , σ + σ′ (mod |Σ|), and for a vector ~α ∈ Σn we let (σ ⊕Σ ~α) ∈ Σn denote

the ⊕Σ of σ with each entry of ~α.

Payoffs. Consider players’ strategies
(
vA, cA, jA, tA, wA

)
and

(
vB , cB , jB , tB , qB , wB

)
and

state of nature
(
~b, i, u

)
.

When vA = vB = v, we set τA,Z = 1 if ψ contains a constraint for variables
(
jA, i

)
, and

the assignments wA and (v ⊕Σ u) to those variables, respectively, satisfy this constraint, and
τA,Z = 0 otherwise. Similarly, τB,Z = 1 iff wB and (v ⊕Σ u) satisfy a corresponding constraint
in ψ; and τA,B checks wA with wB . When vA 6= vB , we set τA,Z = τB,Z = τA,B = 0.

We decompose Alice’s payoff as:

UA , UAb + UAseek + UAψ ,

where

UAb , 1
{
cA =

[
~b
]
vA

}
/n− 1

{
cB =

[
~b
]
vB

}
/n,

UAseek , 2 · 1
{
jB = tA

}
− 1

{
jA = tB

}
− 1

{
i = qB

}
,

and4

UAψ , δ3τA,Z − δ4τB,Z + δ5τA,B ,

for a sufficiently small constant 0 < δ � √η.

Completeness

I Lemma 15. If ψ is satisfiable, there exists a signaling scheme, such that for every signal
s in the support, Alice can guarantee an expected payoff of d

n

(
δ3 − δ4 + δ5).

Notice that the for every signal in the support qualification is different than the corresponding
Lemma 12 (and there is a similar difference between Lemma 16 and Lemma 13). Indeed,
this is stronger than we need for proving Theorem 14, but will come handy in Section 5.

Proof. Fix a satisfying assignment ~α ∈ Σn. Given state of nature
(
b̂, i, u

)
, let v be such

that (v ⊕Σ u) = [~α]i. The scheme outputs the signal s ,
(
v,~bv, ~α

)
. Alice’s mixed strategy

sets
(
vA, cA

)
=
(
v,~bv

)
; picks jA and tA uniformly at random; and sets wA = [~α]jA . See full

version for details [17]. J

4 We use δ3τA,Z − δ4τB,Z + δ5τA,B instead of δ1τA,Z − δ2τB,Z + δ3τA,B as in 2, because the square of
the first coefficient appears in the proof. We have

(
δ3
)2 � δ5, but δ2 � δ3.

A. Rubinstein 77:11

Soundness

I Lemma 16. If at most a (1− η)-fraction of the constraints are satisfiable, then for
any signaling scheme and every signal s in the support, Alice’s maxmin payoff is at most
d
n

(
δ3 − δ4 + (1− Ω (1)) δ5).

Proof. On any signal, Bob chooses
(
vB , cB

)
from the same distribution that Alice uses

for
(
vA, cA

)
. He draws jB uniformly at random, and picks tB and qB so as to minimize

E
[
UAseek | s

]
. Finally, for each jB , Bob draws wB from the same distribution that Alice uses

for wA conditioning on jA = jB (and uniformly at random if Alice never plays jA = jB).
By symmetry, E

[
UAb | s

]
= 0 and E

[
UAseek | s

]
≤ 0. See full version for details [17]. J

5 Lying is even harder

I Theorem 17. Approximating Zero-Sum Lying with Alice’s payoffs in [0, 1] to within an
additive (1− 2−n) is NP-hard.

Construction

Consider the construction from Section 4 for the honest signaling problem. Lemmata 15
and 16 guarantee that there exists a distribution Dhonest of n × n zero-sum games and
constants c1 > c2 such that it is NP-hard to distinguish between the following:
Completeness. If ψ is satisfiable, there exists a signaling scheme ϕhonest, such that for any

signal in ϕhonest’s support, Alice’s maxmin payoff is at least c1/n.
Soundness. If ψ is (1− η)-unsatisfiable, for every signaling scheme ϕ′

honest and every signal
in the support, Alice’s maxmin payoff is at most c2/n.

For Zero-Sum Lying, we construct a hard distribution of n× (n+ 1) zero-sum games as
follows. With probability 2−n Alice’s payoffs matrix is of the form: −A>honest

− (c1 + c2) /2n
...

− (c1 + c2) /2n

 , (4)

where Alice chooses a row (Bob chooses a column), and Ahonest is an n× n matrix drawn
from Dhonest. In other words, Bob has to choose between receiving payoff (c1 + c2) /2n, or
playing a game drawn from Dhonest, but with the roles reversed.

Otherwise (with probability 1− 2−n), Alice’s payoff depends only on Bob: it is 1 if Bob
chooses any of his first n actions, and 0 otherwise; we call this the degenerate game.

Notice that we promised payoffs in [0, 1], whereas (4) has payoffs in [−1, 0]. [0, 1] payoffs
can be obtained, without compromising the inapproximability guarantee, by scaling and
shifting the entries in (4) in a straightforward manner.

Completeness

I Lemma 18. If ψ is satisfiable, there exists a dishonest signaling scheme, such that Alice’s
expected payoff is at least 1− 2−n.

Proof. We first construct ϕalleged as follows. Whenever nature samples a payoff matrix as
in (4), ϕalleged outputs the signal that ϕhonest would output for Ahonest. Whenever Alice
and Bob play the degenerate game, ϕalleged outputs a special symbol ⊥.

ICALP 2017

77:12 Honest Signaling in Zero-Sum Games Is Hard, and Lying Is Even Harder

When Bob observes any symbol from the support of ϕhonest, he can guarantee a payoff
of c1/n > (c1 + c2) /2n by playing a mix of his first n strategies. Therefore he only uses his
last strategy when observing the special symbol ⊥.

Our true signaling scheme ϕreal always outputs an (arbitrary) signal from the support
of ϕhonest, regardless of the state of nature. With probability 1− 2−n, Alice and Bob are
actually playing the degenerate game, so Alice’s payoff is 1. J

Soundness

I Lemma 19. If ψ is (1− η)-unsatisfiable, then for any dishonest signaling scheme(
ϕ

′

alleged, ϕ
′

real

)
, Alice’s expected payoff is negative.

Proof. Any signal in the support of ϕ′

alleged corresponds to a mixture of the degenerate
game, and the distribution induced by some signal s′ in the support of some honest signaling
scheme ϕ′

honest for Dhonest. In the degenerate game, Bob always prefers to play his last
strategy. For any s′ , Bob again prefers a payoff of (c1 + c2) /2n for playing his last strategy
over a maxmin of at most c2/n when playing any mixture of his first n strategies. Therefore,
Bob always plays his last strategy, regardless of the signal he receives, which guarantees him
a payoff of (c1 + c2) /2n+1n > 0. J

Acknowledgements. I thank Shaddin Dughmi for explaining [8]. I thank Jonah Brown-
Cohen, Rishi Gupta, Christos Papadimitriou, Tselil Schramm, and anonymous reviewers for
helpful comments on earlier drafts.

References
1 Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. AM with multiple merlins.

In Computational Complexity (CCC), 2014 IEEE 29th Conference on, pages 44–55. IEEE,
2014.

2 George Akerlof. The market for lemons: Qualitative uncertainty and the market mechanism.
The Quarterly Journal of Economics, 84(3):488–500, 1970.

3 Ingo Althofer. On sparse approximations to randomized strategies and convex combinations.
Linear Algebra and its Applications, 199:339–355, 1994.

4 Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein. Can almost every-
body be almost happy? In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 1–9,
2016. doi:10.1145/2840728.2840731.

5 Umang Bhaskar, Yu Cheng, Young Kun Ko, and Chaitanya Swamy. Hardness results for
signaling in bayesian zero-sum and network routing games. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC’16, Maastricht, The Netherlands,
July 24-28, 2016, pages 479–496, 2016. doi:10.1145/2940716.2940753.

6 Mark Braverman, Young Kun-Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness
for densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1326–1341, 2017. doi:10.1137/1.9781611974782.
86.

7 Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best Nash
Equilibrium in no(log n)-time breaks the Exponential Time Hypothesis. In Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

http://dx.doi.org/10.1145/2840728.2840731
http://dx.doi.org/10.1145/2940716.2940753
http://dx.doi.org/10.1137/1.9781611974782.86
http://dx.doi.org/10.1137/1.9781611974782.86

A. Rubinstein 77:13

2015, San Diego, CA, USA, January 4-6, 2015, pages 970–982, 2015. doi:10.1137/1.
9781611973730.66.

8 Yu Cheng, Ho Yee Cheung, Shaddin Dughmi, Ehsan Emamjomeh-Zadeh, Li Han, and
Shang-Hua Teng. Mixture selection, mechanism design, and signaling. In FOCS, 2015. To
appear. URL: http://arxiv.org/pdf/1508.03679v1.pdf.

9 Constantinos Daskalakis. On the Complexity of Approximating a Nash Equilibrium. ACM
Transactions on Algorithms, 9(3):23, 2013. doi:10.1145/2483699.2483703.

10 Constantinos Daskalakis and Christos H. Papadimitriou. On oblivious PTAS’s for Nash
equilibrium. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 – June 2, 2009, pages 75–84, 2009. Full version
available at http://arxiv.org/abs/1102.2280. doi:10.1145/1536414.1536427.

11 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

12 Shaddin Dughmi. On the hardness of signaling. In 55th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21,
2014, pages 354–363, 2014. doi:10.1109/FOCS.2014.45.

13 Shaddin Dughmi, Nicole Immorlica, and Aaron Roth. Constrained signaling for welfare and
revenue maximization. SIGecom Exchanges, 12(1):53–56, 2013. doi:10.1145/2509013.
2509022.

14 Yuval Emek, Michal Feldman, Iftah Gamzu, Renato Paes Leme, and Moshe Tennenholtz.
Signaling schemes for revenue maximization. ACM Trans. Economics and Comput., 2(2):5,
2014. doi:10.1145/2594564.

15 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

16 Peter Bro Miltersen and Or Sheffet. Send mixed signals: earn more, work less. In ACM
Conference on Electronic Commerce, EC’12, Valencia, Spain, June 4-8, 2012, pages 234–
247, 2012. doi:10.1145/2229012.2229033.

17 Aviad Rubinstein. Honest signaling in zero-sum games is hard, and lying is even harder.
CoRR, abs/1510.04991, 2015. URL: http://arxiv.org/abs/1510.04991.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611973730.66
http://dx.doi.org/10.1137/1.9781611973730.66
http://arxiv.org/pdf/1508.03679v1.pdf
http://dx.doi.org/10.1145/2483699.2483703
http://arxiv.org/abs/1102.2280
http://dx.doi.org/10.1145/1536414.1536427
http://dx.doi.org/10.1145/1236457.1236459
http://dx.doi.org/10.1145/1236457.1236459
http://dx.doi.org/10.1109/FOCS.2014.45
http://dx.doi.org/10.1145/2509013.2509022
http://dx.doi.org/10.1145/2509013.2509022
http://dx.doi.org/10.1145/2594564
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1145/2229012.2229033
http://arxiv.org/abs/1510.04991

A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs∗†

Pasin Manurangsi1 and Prasad Raghavendra2

1 University of California, Berkeley, CA, USA
pasin@berkeley.edu

2 University of California, Berkeley, CA, USA
prasad@berkeley.edu

Abstract
A (k× l)-birthday repetition Gk×l of a two-prover game G is a game in which the two provers are
sent random sets of questions from G of sizes k and l respectively. These two sets are sampled
independently uniformly among all sets of questions of those particular sizes. We prove the
following birthday repetition theorem: when G satisfies some mild conditions, val(Gk×l) decreases
exponentially in Ω(kl/n) where n is the total number of questions. Our result positively resolves
an open question posted by Aaronson, Impagliazzo and Moshkovitz [Aaronson et al., CCC, 2014].

As an application of our birthday repetition theorem, we obtain new fine-grained inapprox-
imability results for dense CSPs. Specifically, we establish a tight trade-off between running
time and approximation ratio by showing conditional lower bounds, integrality gaps and approx-
imation algorithms; in particular, for any sufficiently large i and for every k ≥ 2, we show the
following:

We exhibit an O(q1/i)-approximation algorithm for dense Max k-CSPs with alphabet size q
via Ok(i)-level of Sherali-Adams relaxation.
Through our birthday repetition theorem, we obtain an integrality gap of q1/i for Ω̃k(i)-level
Lasserre relaxation for fully-dense Max k-CSP.
Assuming that there is a constant ε > 0 such that Max 3SAT cannot be approximated to
within (1−ε) of the optimal in sub-exponential time, our birthday repetition theorem implies
that any algorithm that approximates fully-dense Max k-CSP to within a q1/i factor takes
(nq)Ω̃k(i) time, almost tightly matching our algorithmic result.

As a corollary of our algorithm for dense Max k-CSP, we give a new approximation algorithm for
Densest k-Subhypergraph, a generalization of Densest k-Subgraph to hypergraphs. When
the input hypergraph is O(1)-uniform and the optimal k-subhypergraph has constant density, our
algorithm finds a k-subhypergraph of density Ω(n−1/i) in time nO(i) for any integer i > 0.

1998 ACM Subject Classification G.1.6 Linear Programming, G.2.2 Graph Algorithms

Keywords and phrases Birthday Repetition, Constraint Satisfaction Problems, Linear Program

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.78

1 Introduction

Polynomial-time reductions between computational problems are among the central tools
in complexity theory. The rich and vast theory of hardness of approximation emerged out

∗ The full version of this extended abstract can be found at [42], https://arxiv.org/abs/1607.02986.
† This material is based upon work supported by NSF CCF-1343104 and the Okawa Research Grant.

EA
T

C
S

© Pasin Manurangsi and Prasad Raghavendra;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 78; pp. 78:1–78:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.78
https://arxiv.org/abs/1607.02986
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78:2 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

of the celebrated PCP Theorem [6] and the intricate web of polynomial-time reductions
developed over the past two decades. During this period, an extensive set of reduction
techniques such as parallel repetition and long-codes have been proposed and a variety of
mathematical tools including discrete harmonic analysis, information theory and Gaussian
isoperimetry have been applied towards analyzing these reductions. These developments
have led to an almost complete understanding of the approximability of many fundamental
combinatorial optimization problems like Set Cover and Max 3SAT. Yet, there are a few
central problems such as computing approximate Nash equlibria, Densest k-Subgraph and
Small Set Expansion, that remain out of reach of the web of polynomial-time reductions.

A promising new line of work proposes to understand the complexity of these problems
through the lens of sub-exponential time reductions. Specifically, the idea is to construct a
sub-exponential time reduction from 3SAT to the problem at hand, say, the Approximate
Nash Equilibrium problem. Assuming that 3SAT does not admit sub-exponential time
algorithms (also known as the Exponential Time Hypothesis (ETH) [35]), this would rule
out polynomial time algorithms for the Approximate Nash Equilibrium problem.

At the heart of this line of works, lies the so-called birthday repetition of two-prover games.
To elaborate on this, we begin by formally defining the notion of two-prover games.

I Definition 1. A two-prover game G consists of
A finite set of questions X,Y and corresponding answer sets (aka alphabets) ΣX ,ΣY .
A distribution Q over pairs of questions X × Y .
A verification function P : X × Y × ΣX × ΣY → {0, 1}.

The value of G is the maximum over all strategies φ : X ∪ Y → ΣX ∪ ΣY of the output of P ,
i.e., val(G) = maxφ:X∪Y→ΣX∪ΣY E(x,y)∼Q[P (x, y, φ(x), φ(y))]. We use n and q to denote the
number of variables |X|+ |Y | and the alphabet size |ΣX |+ |ΣY | respectively.

Two prover games earn their name from the following interpretation of the above definition:
The game G is played between a verifier V and two cooperating proversMerlin1 andMerlin2
who have agreed upon a common strategy, but cannot communicate with each other during
the game. The verifier samples two questions (x, y) ∼ Q and sends x to Merlin1 and y to
Merlin2. The provers respond with answers φ(x) and φ(y), which the verifier accepts or
rejects based on the value of the verification function P (x, y, φ(x), φ(y)).

Two-prover games and, more specifically, a special class of two-prover games known
as Label Cover are the starting points for reductions in a large body of hardness of
approximation results. The PCP theorem implies that for some constant ε0, approximating
the value of a two prover game to within an additive ε0 is NP-hard. However, this hardness
result on its own is inadequate to construct reductions to other combinatorial optimization
problems. To this end, this hardness result can be strengthened to imply that it is NP-hard
to approximate the value of two-prover games to any constant factor, using the parallel
repetition theorem.

For an integer k, the k-parallel repetition G⊗k of G can be described as follows. The
question and answer sets in G⊗k consist of k-tuples of questions and answers from G. The
distribution over questions in G⊗k is given by the product distribution Qk. The verifier for
G⊗k accepts the answers if and only if the verifier for G accepts each of the k individual
answers.

Roughly speaking, the parallel repetition theorem asserts that the value of Gk decays
exponentially in k. The theorem forms a key ingredient in obtaining hardness of approximation
results, and have aptly received considerable attention in literature [51, 34, 50, 25, 46, 14].

Birthday repetition, introduced by Aaronson et al. [2], is an alternate transformation on
two-prover games defined as follows.

P. Manurangsi and P. Raghavendra 78:3

I Definition 2. The (k × l)-birthday repetition of a two-prover game G consists of
The set of questions in Gk×l are

(
X
k

)
and

(
Y
l

)
respectively, i.e., each question is a subset

S ⊆ X of size k and subset T ⊆ Y of size l.
The distribution over questions is the uniform product distribution over

(
X
k

)
×
(
Y
l

)
.

The verifier accepts only if, for every (x, y) ∈ S × T such that (x, y) form a valid pair of
questions in G, i.e., (x, y) ∈ supp(Q), the answers to x and y are accepted G.

The basic idea of birthday repetition can be traced back to the work of Aaronson et al. [1]
on quantum multiprover proof systems QMA(k) for 3SAT. Subsequent work by Aaronson
et al. [2] on the classical analogue of QMA(k) formally defined birthday repetition for
two-prover games, and set the stage for applications in hardness of approximation.

Unlike parallel repetition, birthday repetition is only effective for large values of k and
l. In particular, if k, l < o(

√
n), then, for most pairs of S and T , there is no (x, y) ∈ S × T

such that (x, y) belongs to the support of the questions in the original game. However, if
we pick k = l = ω(

√
n), then by the birthday paradox, with high probability the sets S, T

contain an edge (x, y) from the original game G. Hence, for this choice of k and l, the game
played by the provers is seemingly at least as difficult to succeed, as the original game G.
Aaronson et al. [2] confirmed this intuition by proving the following theorem.

I Theorem 3 ([2]). For any two-prover game G such that Q is uniform over its support, if the
bipartite graph induced by (X,Y, supp(Q)) is biregular, then val(Gk×l) ≤ val(G) +O(

√
n
kl).

On the one hand, birthday repetition is ineffective in that it has to incur a blowup of
2
√
n in the size, to even simulate the original game G. The distinct advantage of birthday

repetition is that the resulting game Gk,l has a distinct structure – in that it is a free game.

I Definition 4. A free game is a two-player game such that Q is uniform over X × Y .

The birthday repetition theorem of [2] immediately implies a hardness of approximation
for the value of free games. Specifically, they show that it is ETH-hard to approximate free
games to some constant ratio in almost quasi-polynomial time. Interestingly, this lower bound
is nearly tight in that free games admit a quasipolynomial time approximation scheme [10, 2].

Following Aaronson et al.’s work, birthday repetition has received numerous applications,
which can be broadly classified in to two main themes. On the one hand, there are problems
such as computing approximate Nash equilibria [16, 8, 54], approximating free games [2],
approximating learning dimensions [43], and approximate symmetric signaling in zero sum
games [53], where the underlying problems admit quasipolynomial-time algorithms [26, 38, 28]
and birthday repetition can be used to show that such a running time is necessary, assuming
ETH. On the other hand, there are computational problems like Densest k-Subgraph [15,
39], injective tensor norms [1, 33, 9], 2-to-4-norms [1, 33, 9] wherein an NP-hardness of
approximation result seems out of reach of current techniques. But the framework of birthday
repetition can be employed to show a quasi-polynomial hardness assuming ETH1.

Unlike the parallel repetition theorem, the birthday repetition theorem of [2] does not
achieve any reduction in the value of the game. It is thus natural to ask whether birthday
repetition can also be used to decrease the value of a game. Aaronson et al. conjectured
that the value of the birthday repetition game indeed deteriorates exponentially in Ω(kl/n),
which is the expected number of edges between S and T in birthday repetition. Our main
contribution is that we resolve the conjecture positively by showing the following theorem.

1 Although the hardness results for injective tensor norms and 2-to-4-norms build over quantum multiprover
proof systems, the basic idea of birthday repetition [1] lies at the heart of these reductions.

ICALP 2017

78:4 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

I Theorem 5 (Birthday Repetition Theorem (informal)). Let G = (X,Y,Q,ΣX ,ΣY , P) be a
two-prover game such that Q is uniform over its support, (X,Y, supp(Q)) is biregular and
|ΣX |, |ΣY | are constant. If val(G) = 1− ε, then val(Gk×l) ≤ 2(1− ε/2)Ω(ε5kl/n).

Note that our result is more general than stated above and can handle irregular graphs and
non-constant alphabet sizes as well (see Theorem 12 and Theorem 13).

By definition, our theorem immediately implies the following inapproximability of free
games.

I Corollary 6. Unless ETH is false, no polynomial time algorithm can approximate the value
of a free game to within a factor of 2Ω̃(log(nq)).

1.1 Dense CSPs
Free games can be viewed as 2-ary constraint satisfaction problems (CSP). From this
perspective, free games are dense, in that there are constraints on a constant fraction of all
pairs of variables. As an application of our birthday repetition theorem, we show almost-tight
lower bounds for dense CSPs. To this end, we begin by defining CSPs and its density.

I Definition 7. A Max k-CSP instance G consists of
A finite set of variables V and a finite alphabet set Σ.
A distribution Q over k-tuple of variables V k.
A predicate P : V k × Σk → [0, 1].

Similar to two-prover games, val(G) is defined as maxφ:V→Σ ES∼Q[P (S, φ|S)] where φ|S is
the restriction of the assignment to S, and we use n to denote the number of variables |V |
and q to denote the alphabet size |Σ| of G. Finally, G is called ∆-dense if ∆ · Q(S) ≤ 1/|V |k
for every S ∈ V k. The 1-dense instances are also said to be fully-dense.

There has been a long line of works on approximating dense CSPs. Arora et al. were
first to devise a polynomial-time approximation scheme for the problem when alphabet size
is constant [5]. Since then, numerous algorithms have been invented for approximating
dense CSPs using variety of techniques such as combinatorial algorithms with exhaustive
sampling [5, 21, 44, 58, 40, 29], subsampling of instances [3, 10], regularity lemmas [30, 20]
and LP/SDP hierarchies [22, 11, 31, 60]. Among the known algorithms, the fastest is
Yaroslavtsev’s [58] that achieves (1 + ε)-approximation in qOk(log q) + (nq)O(1) time2.

Unfortunately, when q is (almost-)polynomial in n, none of the above algorithms run in
polynomial time. CSPs in such regime of parameters have long been studied in hardness of
approximation (e.g. [12, 52, 7, 24, 47, 45]) and have recently received more attention from the
approximation algorithm standpoint, both in the general case [48, 17, 41, 19] and the dense
case [40]. The approximabilities of these two cases are vastly different. In the general case,
approximating Max 2-CSP to within a factor of 2log1−ε(nq) is NP-hard for any constant
ε > 0 [24]. Moreover, the long-standing Sliding Scale Conjecture [12] states that this ratio
can be improved to (nq)ε for some constant ε > 0. On the other hand, aforementioned
algorithms for dense CSPs rule out such hardnesses for the dense case.

While the gap between known approximation algorithms and inapproximability results
in the general case is tiny (2logε(nq) for any constant ε > 0), the story is different for the
dense case, especially when we restrict ourselves to polynomial-time algorithms. Aaronson
et al. only ruled out, assuming ETH, polylog(nq)-approximation for such algorithms [2].

2 [58] states that the algorithm takes qOk(1) + (nq)O(1) time, which is incorrect [59].

P. Manurangsi and P. Raghavendra 78:5

However, for k > 2, no non-trivial polynomial-time algorithm for dense Max k-CSP on
large alphabet is even known. In this paper, we settle down the complexity of approximating
dense Max k-CSP almost completely by answering the following fine-grained question: for
each i ∈ N, what is the best approximation for dense Max k-CSP, achievable in time (nq)i?

Manurangsi and Moshkovitz developed an algorithm for dense Max 2-CSP that, when the
instance has value Ω(1), obtains O(q1/i)-approximation in (nq)O(i) time [40]. Unfortunately,
the algorithm does not work for dense Max k-CSP when k > 2. Using a conditioning-
based rounding technique developed in [11, 49, 60], we show that the Sherali-Adams (SA)
relaxation [56] exhibits a similar approximation even when k > 2, as stated below.

I Theorem 8 (Informal). For every i > 0 and any dense Max k-CSP instance of value 1−ε,
an Ok,ε(i/∆)-level of the SA relaxation yields an O(q1/i)-approximation for the instance.

Using our birthday repetition theorem, we prove that the above tradeoff between run-time
and approximation ratio cannot be improved even with the stronger Lasserre hierarchy [37].
Specifically, by applying the birthday repetition theorem with k, l = Ω(n log i/i) on an
Ω(n)-level Lasserre integrality gap for Max 3XOR [55], we show the following.

I Lemma 9 (Informal). For every sufficiently large i > 0, there is a fully-dense Max k-CSP
instance of value 1/(nq)1/i such that the value of Ω̃k(i)-level Lasserre relaxation is one.

Instead, if we assume that there exists a constant ε > 0 so that Max 3SAT cannot
be approximated to 1 − ε in sub-exponential time (which we call the Exponential Time
Hypothesis for Approximating 3SAT (ETHA)3), we can similarly arrive at the following
hardness result.

I Lemma 10 (Informal). Unless ETHA is false, for every sufficiently large i > 0, no
(nq)Õk(i)-time algorithm approximates fully-dense Max k-CSP to within a factor of (nq)1/i.

Thus, assuming ETHA, our results resolve complexity of approximating dense CSPs up
to a factor of polylog i and a dependency on k in the exponent of the running time.

1.2 Densest k-Subhypergraph
As a by-product of our algorithm for dense Max k-CSP, we give an approximation algorithm
for the following Densest k-Subhypergraph problem: given a hypergraph (V,E), find
S ⊆ V of k vertices that maximizes the number of edges contained in S.

When the input hypergraph is simply a graph, the problem becomes Densest k-
Subgraph, which has been extensively studied dating back to the early ’90s [36, 27, 28, 57, 13].
On the other hand, Densest k-Subhypergraph was first studied in 2006, when Hajiaghayi
et al. [32] proved that, if 3SAT /∈ DTIME(2n3/4+ε) for some ε > 0, then no polynomial-time
algorithm approximates the problem to within a factor of 2logδ n for some δ > 0. Later, Apple-
baum [4] showed, under a cryptographic assumption, that, for sufficiently large d, Densest
k-Subhypergraph on d-uniform hypergraph is hard to approximate to a factor of nε for
some ε > 0. More recently, Chlamtác et al. [18] provided the first non-trivial approximation
algorithm for the problem; their algorithm works only on 3-uniform hypergraph and achieves
O(n4(4−

√
3)/13+ε)-approximation for any constant ε > 0 in polynomial time.

3 ETHA is also introduced independently as gap-ETH by Dinur [23] who uses it to provide a supporting
evidence to the Sliding Scale Conjecture.

ICALP 2017

78:6 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

Thanks to Charikar et al.’s [17] reduction from Densest k-Subgraph to Max 2-CSP,
which can be adapted to reduce Densest k-Subhypergraph on d-uniform hypergraph to
Max d-CSP, Theorem 8 implies the following algorithm for Densest k-Subhypergraph.

I Corollary 11 (Informal). There is a randomized algorithm that, given a d-uniform hypergraph
on n vertices whose densest k-subhypergraph is ∆-dense and an integer i > 0, runs in nOd(i/∆)

time and outputs a k-subhypergraph of density Ωk(∆/n1/i) with high probability.

Here the density of a d-uniform hypergraph is defined as d!|E|/|V |d. Note that the density
condition required is on the optimum not the input. Moreover, when ∆ and d are constant,
the algorithm provides an O(n1/i) approximation in nO(i) time for every i > 0. When d = 2,
this matches the previously known algorithms for Densest k-Subgraph [28, 57, 40].

Organization of the Paper

In Section 2, we provide preliminaries and notations used in the paper. Then, in Section 3, we
outline the proofs of our main theorems; the full proofs are deferred to the full version of this
work [42]. Next, the algorithm for dense CSPs is described in Section 4. Finally, we conclude
by proposing open questions in Section 5. Note that the lower bounds for dense CSPs and
the algorithm for Densest k-Subhypergraph are also deferred to the full version.

2 Preliminaries and Notations

For n ∈ N, we use [n] to denote {1, . . . , n}. For two sets X and S, define XS to be the set
of tuples (xs)s∈S . We sometimes view (xs)s∈S as a function from S to X. For a set S and
n ∈ N,

(
S
n

)
denotes the collection of subsets of S of size n. Moreover, let

(
S
0
)

= {∅} and(
S
[n]
)

=
(
S
0
)
∪ · · · ∪

(
S
n

)
. For any bipartite graph (A,B,E) and S ⊆ A, T ⊆ B, let E(S, T)

denote the set of all edges with one endpoint in S and the other in T .
Let X be a probability distribution over a finite probability space Θ. We use x ∼ X to

denote a random variable x sampled from X . Sometimes we abuse the notation and write
Θ in place of the uniform distribution over Θ. For each θ ∈ Θ, we denote Prx∼X [x = θ] by
X (θ). The support of X or supp(X) is the set of all θ ∈ Θ such that X (θ) 6= 0. For any event
E, we use 1[E] to denote the indicator variable for the event.

The informational divergence between distributions X and Y is defined as DKL(X‖Y) =∑
θ∈supp(X) X (θ) log(X (θ)/Y(θ)). The total correlation between random variables x1, . . . , xn

is C(x1; . . . ;xn) = DKL(X1,...,n‖X1 × · · · × Xn) where X1,...,n is the joint distribution of
x1, . . . , xn and Xi is the marginal distribution of xi. Finally, the conditional total correlation
is defined as C(x1; . . . ;xn−1|xn) = Eθ∼supp(Xn)[C(x1; . . . ;xn−1)|xn = θ].

For Max k-CSP, we use N to denote the instance size (nq)k. For convenience, we
write the predicates as PS(φ|S) instead of P (S, φ|S). Moreover, for an assignment φ of
G = (V,W, {PS}), its value is valG(φ) = ES∼W [PS(φ|S)]. When G is clear from the
context, we simply write val(φ). Note that val(G) = maxφ valG(φ). For any S, T ⊆ V ,
φS ∈ ΣS and φT ∈ ΣT are said to be consistent if they agree on S ∩ T and inconsistent
otherwise. For consistent φS , φT , we define φS ◦ φT ∈ ΣS∪T by φS ◦ φT (x) = φS(x) if
x ∈ S and φS ◦ φT (x) = φT (x) otherwise. Similar notations are also used for two-prover
games. Finally, recall that a game (X,Y,Q,ΣX ,ΣY , {P(x,y)}) is a projection game if, for
each (x, y) ∈ supp(Q), there is f : ΣX → ΣY such that, for all σx ∈ ΣX , σy ∈ ΣY ,
P(x,y)(σx, σy) = 1[f(σx) = σy].

P. Manurangsi and P. Raghavendra 78:7

3 Birthday Repetition Theorem: Proof Overview

In this section, we outline the proofs of our birthday repetition theorems. We first state our
main theorems formally, starting with the birthday repetition theorem for general games.

I Theorem 12. There exists a constant α > 0 such that the following is true. Let G =
(X,Y,E,ΣX ,ΣY , {P(x,y)}) be any two-prover game of value 1− ε. Let dmax be the maximum
degree of a vertex in (X,Y,E) and c = log |ΣX ||ΣY |. For all 0 ≤ k ≤ |X| and 0 ≤ l ≤ |Y |,

val(Gk×l) ≤ 2(1− ε/2)
αε5kl|E|

dmax|X||Y |c2

For projection games, we can improve the dependency on ε and avoid the dependency on
c:

I Theorem 13. There exists a constant α > 0 such that the following is true. Let G =
(X,Y,E,ΣX ,ΣY , {P(x,y)}) be any projection game of value 1− ε. Let dmax be the maximum
degree of a vertex in (X,Y,E). For all 0 ≤ k ≤ |X| and 0 ≤ l ≤ |Y |, we have

val(Gk×l) ≤ 2(1− ε/2)
αε3kl|E|

dmax|X||Y |

In short, we will to show that Gk×l has small value by “embedding” an Ω
(

kl|E|
dmax|X||Y |

)
-

parallel repetition game, which has low value by the parallel repetition theorem, into it.
For convenience, let s denote kl|E|

|X||Y | , the expected number of edges in E(S, T) when S
and T are independently uniformly sampled from

(
X
k

)
and

(
Y
l

)
respectively. Let s1 and s2 be

s(1 + δ) and s(1− δ) respectively for some δ ∈ [0, 1/2] that will be chosen later. We will use
r = βs/dmax rounds of parallel repetition where β ∈ [0, δ/40] will be specified later. Lastly,
let Er = {((x1, . . . , xr), (y1, . . . , yr)) | (x1, y1), . . . , (xr, yr) ∈ E}.
I Remark. δ and β will be chosen based on ε, c and whether G is a projection game. When
ε and c are constant, both δ and β are small constants. This is the most representative case
and is good to keep in mind when reading through the proof.

Our overall strategy is to reduce G⊗r to Gk×l. Since val(G⊗r) is exponentially small
in r = Ω

(
kl|E|

dmax|X||Y |

)
due to the parallel repetition theorem, such reduction would give a

similar upper bound on val(Gk×l). Unfortunately, we do not know how to do this in one
step so we will have to go through a sequence of reductions. The sequence of games that we
reduce to are G⊗rset ,Gk×lem ,Gk×lem,[s1,s2] and G

k×l
[s1,s2] respectively. The game G⊗rset share the same

questions, alphabet sets and predicates with G⊗r while Gk×lem ,Gk×lem,[s1,s2] and G
k×l
[s1,s2] share

those with Gk×l. The distribution of each game is defined as follows.
The distribution of G⊗rset is uniform over the set Erset of all ((x1, . . . , xr), (y1, . . . , yr)) ∈ Er
such that x1, . . . , xr, y1, . . . , yr are all distinct. Note that this distribution is simply G⊗r’s
distribution conditioned on x1, . . . , xr, y1, . . . , yr being all distinct.
We will try to make the distribution Qk×lem of Gk×lem reflect an embedding of the game
G⊗rset . We define Qk×lem based on the following sampling process for (S, T) ∼ Qk×lem . First,
sample ((x1, . . . , xr), (y1, . . . , yr)) uniformly at random from Erset. Then, sample S̃ and
T̃ independently uniformly from

(
X−{x1,...,xr}

k−r
)
and

(
Y−{y1,...,yr}

l−r
)
respectively. Finally,

set S = {x1, . . . , xr} ∪ S̃ and T = {y1, . . . , yr} ∪ T̃ .
The distribution Qk×lem,[s1,s2] of Gk×lem,[s1,s2] is the distribution Qk×lem conditioned on the
number of edges between the two sets being in the range [s1, s2]. In other words,
Qk×lem,[s1,s2](S, T) = Pr(S′,T ′)∼Qk×lem

[S = S′ ∧ T = T ′ | s1 ≤ |E(S′, T ′)| ≤ s2].

ICALP 2017

78:8 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

Finally, the distribution of Gk×l[s1,s2] is uniform over the set Ek×l[s1,s2] of all (S, T) such that
|E(S, T)| ∈ [s1, s2]. In other words, we ignore weights in Qk×lem,[s1,s2] and use the uniform
distribution over supp(Qk×lem,[s1,s2]).

Before we present the overview of the proofs, let us list simple bounds that will be useful
in understanding the intuitions. Their proofs can be found in the full version of this work [42].

I Lemma 14. Let (X,Y,E) be any bipartite graph with maximum degree dmax. For any
non-negative integers k ≤ |X| and l ≤ |Y |, let s = kl|E|

|X||Y | . For any 0 ≤ γ < 1/2, we have

Pr
S∼(Xk),T∼(Yl)

[|E(S, T)| /∈ [(1− γ)s, (1 + γ)s]] ≤ 4 exp
(
− γ2s

54dmax

)
.

I Lemma 15. Let G and G′ be two games on the same questions, alphabets, and predicates
but on different distributions Q and Q′ respectively. If, for some α, Q(x, y) ≤ α · Q′(x, y)
for all x ∈ X, y ∈ Y , then val(G) ≤ α · val(G′). In particular, when Q and Q′ are uniform
distributions on some E ⊆ E′, val(G) ≤ |E

′|
|E| · val(G

′).

I Lemma 16. Let G = (X,Y,Q,ΣX ,ΣY , {Px,y}(x,y)∈supp(Q)) be any two player game and
let A be any event occurring with probability 1− p > 0 (w.r.t. Q). Let Q′ be the conditional
probability Q given A, i.e., Q′(x̃, ỹ) = Pr(x,y)∼Q[x = x̃ ∧ y = ỹ | A]. For the game
G′ = (X,Y,Q′,ΣX ,ΣY , {Px,y}(x,y)∈supp(Q′)), we have val(G)− p ≤ val(G′) ≤ val(G) + 2p.

We will next give intuitions on why val(G⊗r) ≈ val(G⊗rset) ≈ val(Gk×lem) ≈ val(Gk×lem,[s1,s2]) ≈
val(Gk×l[s1,s2]) ≈ val(G

k×l) where each ≈ hides some multiplicative or additive losses in each
step. With the right choice of δ and β, we can ensure that each loss is significantly smaller
than val(G⊗r), and, thus, we will be able to bound val(Gk×l). Below, we state these losses
more precisely and summarize the overview of each proof.

I Lemma 17. val(G⊗rset) ≤
(

1
1−2β

)r
· val(G⊗r)

Proof Idea. From Lemma 15, it suffices to lower bound the ratio |Erset|/|Er|. This is the
probability that r random edges from E do not share any endpoints, which is easy to
bound. J

I Lemma 18. val(Gk×lem) ≤ val(G⊗rset)

Proof Idea. Based on how Qk×lem is defined, it induces a canonical map from each strategy
in Gk×lem to a “mixed strategy” in G⊗rset . We can show that each strategy φ in Gk×lem has value
no more than the value of the mixed strategy in G⊗rset that φ maps to, which yields the
lemma. J

I Lemma 19. val(Gk×lem,[s1,s2]) ≤ val(G
k×l
em) + 8 exp

(
− δ2r

432β

)
Proof Idea. Qk×lem,[s1,s2] is Q

k×l
em conditioned on the event E(S, T) ∈ [s1, s2]. From Lemma 16,

it suffices to bound the probability of such event. From the definition of Qk×lem , S and T

can be sampled by first sampling x1, . . . , xr, y1, . . . , yr according to Er and then sampling
the rest of S and T from X − {x1, . . . , xr} and Y − {y1, . . . , yr} respectively. When r is
small enough, we can show, with the help of Lemma 14, that, for any x1, . . . , xr, y1, . . . , yr,
|E(S, T)| concentrates around s. This gives us the desired bound. J

I Lemma 20. val(Gk×l[s1,s2]) ≤
(

1+δ
1−δ−2β

)2r
· val(Gk×lem,[s1,s2])

P. Manurangsi and P. Raghavendra 78:9

Proof Idea. We will show that the two distributions are (multiplicatively) close and evoke
Lemma 15 to arrive at the bound. Since the distribution of Gk×l[s1,s2] is uniform, we only need
to show that the maximum and the minimum (non-zero) probabilities in Qk×lem,[s1,s2] are close.

Fortunately, we know that Qk×lem,[s1,s2] is Q
k×l
em conditioned on an event. This means that,

when Qk×lem,[s1,s2](S, T) is not zero, it is proportional to Qk×lem (S, T). The latter, in turn, is
proportional to the number of edges (x1, y1), . . . , (xr, yr) ∈ Er such that x1, . . . , xr, y1, . . . , yr
are all distinct and x1, . . . , xr ∈ S and y1, . . . , yr ∈ T . In other words, we want to upper
bound and lower bound the number of r edges in E(S, T) with distinct endpoints. This
is feasible since we know that |E(S, T)| ∈ [s1, s2] and r is so small that with a reasonable
probability r edges picked will not share any endpoint with each other. J

I Lemma 21. val(Gk×l) ≤ val(Gk×l[s1,s2]) + 4 exp
(
− δ2r

54β

)
Proof Idea. By realising that Gk×l[s1,s2]’s distribution is simply Gk×l’s distribution conditioned
on |E(S, T)| ∈ [s1, s2], this follows immediately from Lemma 14 and Lemma 16. J

We defer proofs of the above lemmas to the full version [42]. Let us now use them to
prove the birthday repetition theorems. To avoid repeating arguments for general games and
projection games, we prove the following lemma. Its proof, mostly calculations, is deferred
to the full version.

I Lemma 22. Let G be any game of value 1− ε and k, l, β, δ, r be as above. If val(G⊗r) ≤
(1−ε/2)R for some R such that 200δr

ε ≤ R ≤ min{r, δ2r
1000βε}, then val(G

k×l) ≤ 2(1−ε/2)R/10.

The final ingredient for our main proof is the parallel repetition theorem. For general
games, we use Holenstein’s version of the theorem [34], which is stated below.

I Theorem 23 ([34]). There is a constant C > 0 such that, for every k > 0 and any two-
prover game G = (X,Y,Q,ΣX ,ΣY , {P(x,y)}) of value 1−ε, val(G⊗k) ≤ (1−ε/2)Cε2k/ log(|ΣX ||ΣY |).

Equipped with Lemma 22 and the parallel repetition theorem, we can now prove our
birthday repetition theorems just by selecting the right δ and β.

Proof of Theorem 12. Pick δ = ε3C
103c and β = ε3C

1010c where C is the constant from The-
orem 23. From Theorem 23, we have val(G⊗r) ≤ (1 − ε/2)Cε2r/c. Let R = Cε2r/c. We
can see that R, δ, β satisfy the conditions in Lemma 22. Hence, we can conclude that

val(Gk×l) ≤ 2(1− ε/2)R/10 = 2(1− ε/2)
(C2/1011)

(
ε5kl|E|

c2|X||Y |dmax

)
as desired. J

In the case of projection games, we can improve dependency on ε and get rid of dependency
on c thanks to the stronger bound in Rao’s parallel repetition theorem for projection
games [50].

I Theorem 24 ([50]). There exists a constant C > 0 such that, for any projection game G
of value 1− ε and for every k > 0, we have val(G⊗k) ≤ (1− ε/2)Cεk.

Proof of Theorem 13. Pick δ = ε2C
103 and β = ε2C

1010 where C is the constant from Theorem 24.
From the theorem, we have val(G⊗r) ≤ (1− ε/2)Cεr. Let R = Cεr. By evoking Lemma 22,

we have val(Gk×l) ≤ 2(1− ε/2)R/10 = 2(1− ε/2)
(C2/1011)

(
ε3kl|E|

|X||Y |dmax

)
as desired. J

ICALP 2017

78:10 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

4 Improved Approximation Algorithm for Dense CSPs

To describe our algorithm, we first explain ingredients central in conditioning-based algorithms:
a LP/SDP hierarchy, a conditioning operator, and an independent rounding procedure.

Sherali-Adams (SA) relaxation of Max k-CSP. An r-level SA solution µ of G = (V,W, {PS})
is a collection {XS} of distributions XS on ΣS for every S ∈

(
V
[r]
)
such that, for every

S, T ∈
(
V
[r]
)
, the marginal probability of XS and XT on ΣS∩T agrees. For r ≥ k, the

value of µ is valSA(µ) = ES∼W [ExS∼µ[PS(xS)]] where ExS∼µ[PS(xS)] is a shorthand for
EφS∼X{i1,...,ik} [PS(φS)] when S = (xi1 , . . . , xik). The optimum of the r-level SA relaxation
of G, optrSA(G), is the maximum value among all the r-level SA solutions. Clearly, finding
optrSA(G) can be formulated as a LP and can be computed in (nq)O(r) time.

Conditioning SA Solution. Let µ = {XS} be any r-level SA solution. For any T ⊆ V and
φT ∈ ΣT such that XT (φT) > 0, µ conditioned on φT is µ|φT = {X̃S}|S|≤r−|T | where

X̃S(φS) =
{
XS∪T (φS ◦ φT)/XT (φT) if φS is consistent with φT ,
0 otherwise.

It is not hard to see that µ|φT is an (r − |T |)-level SA solution.

Independent Rounding. A natural way to round a SA solution {XS} is to independently
assign each variable x based on Xx. This gives a solution with expected value at least
ES=(xi1 ,...,xik)∼W

[
EφS∼Xi1×···×Xik [PS(φS)]

]
and can be easily derandomized.

Without going into too much detail, conditioning-based algorithms typically proceed as
follows. First, solve a LP/SDP relaxation of the problem. As long as the solution has large
“total correlation”, try conditioning it on an assignment to a random variable. Once the
solution has small total correlation, use independent rounding on the solution to get the
desired assignment. The intuition here is that, if the solution has large total correlation,
conditioning on one variable substantially reduces the total correlation. Hence, after a certain
number of rounds of conditioning, the total correlation becomes small. At this point, the
solution is quite independent and independent rounding gives a good approximation.

Our algorithm will also follow this framework. In fact, it remains largely unchanged
from [60] except that we use a stronger relaxation to avoid arguing about values of conditioned
solutions. However, our main contribution lies in the analysis: we will show that independent
rounding does well even when the total correlation is large (super-constant). This is in
contrast to the previously known conditioning-based algorithms [11, 49, 60], all of which
require their measures of correlation to be small constants to get any meaningful result.

The new relaxation, which we call the r-level SA with Conditioning (SAC), is defined
below.

maximize λ
subject to {XS}|S|≤r is a valid r-level SA solution

E
S∼W

[E
φS∼(µ|φT)

[PS(φS)]] ≥ λ ∀T, φT s.t. |T | ≤ r − k,XT (φT) > 0.

If λ is a constant, the program can be easily written as a LP. Thus, the relaxation can be
solved to within arbitrarily small error in (nq)O(r) time by binary search on λ.

P. Manurangsi and P. Raghavendra 78:11

Algorithm 1 Approximation Algorithm for Dense CSPs
Input: a ∆-dense Max k-CSP instance G, an integer i
Output: An assignment φ : V → Σ
r ← k, λ← 0
while (r − k)λ < k2i/∆ and r < n do

r ← r + 1
µ, λ← solve r-level of SAC relaxation for G

for T ∈
(

V
[r−k]

)
, φT ∈ ΣT do

φ← independent rounding of µ|φT
return φ from the previous step with maximum value

Figure 1 Approximation Algorithm for Dense CSPs. The difference between this and the above
summary is that we iteratively increase the number of levels r. This is because the number of levels
depends on the value of the solution (see Lemma 28). Specifically, we need r ≥ k2i/(∆λ) + k.

Roughly speaking, our algorithm first solves an O(k
2i
∆ + k)-level SAC relaxation for the

instance. We then try every possible conditioning (i.e., every assignment to T ⊆ V of size
≤ k2i/∆). For each conditioned solution, we use independent rounding to arrive at an
assignment. Finally, output the best such assignment. The pseudo-code for the full algorithm
is shown in Figure 1. This algorithm yields the following approximation for the problem.

I Theorem 25 (Theorem 8, Restated). On any ∆-dense Max k-CSP instance of value 1− δ,
Algorithm 1 outputs an assignment of value at least (1− δ)δ

δ
1−δ /q1/i in time NO

(
ki

(1−δ)∆

)
.

We spend the rest of the section sketching the proof of Theorem 25. First, we define
and state a bound on the total correlation of conditioned solutions in Section 4.1. Then, in
Subsection 4.2, we state our main contribution of this section, i.e., that even when the total
correlation is super-constant, independent rouding still yields non-trivial approximation.

4.1 Total Correlation of Conditioned Sherali-Adams Solution
For a k-level SA solution µ = {XS} and a tuple S = (xi1 , . . . , xij) ∈ V j where j ≤ k, the
total correlation of S is Cµ(xS) = C(σi1 ; . . . ;σij) where σi1 , . . . , σij are jointly sampled from
X{xi1 ,...,xij }. The total correlation of µ is then defined as C(µ) = ES∼W [Cµ(xS)]. µ is said
to be κ-independent if C(µ) ≤ κ. Yoshida and Zhou [60] show that, for any l > 0 and any
(l+ k)-level SA solution µ, there exists an assignment φT ∈ ΣT to a subset T of size ≤ l such
that the total correlation of (µ|φT) is at most 3k log q/(l∆). Here we can improve this bound
as stated below. Since the proof is similar to that of [60], we defer it to the full version of
this work [42].

I Lemma 26. Let µ be a r-level SA solution of a ∆-dense Max k-CSP instance (V,W, {PS}).
Then, for any 0 < l ≤ r − k, there is t ≤ l such that ET∼V t,φT∼ΣT [C(µ|φT)] ≤ k2 log q

l∆ .

4.2 New Bound on Rounding κ-independent Solution
For the known conditioning-based algorithms, once the solution is fairly independent, it is
easy to show that independent rounding gives a good solution. Specifically, [49] and [60]
conclude this step using the Pinsker’s inequality, which states that, for any distributions X
and Y, DKL(X‖Y) ≥ (2 log 2)‖X − Y‖21. Roughly speaking, X is the distribution in the LP

ICALP 2017

78:12 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

solution whereas Y is the distribution from independent rounding. Hence, once DKL(X‖Y) is
at most a small constant ε, it follows that, for any predicate f , |Ex∼X [f(x)]−Ey∼Y [f(y)]| ≤√
ε/(2 log 2). Thus, if Ex∼X [f(x)], the value of the LP solution, is large, then Ey∼Y [f(y)],

the expected value of a solution from independent rouding, is also large.
While this works for small ε, it completely fails when ε is larger than a certain constant.

In this regard, we prove the following lemma, which gives a non-trivial bound even for large
ε. For convenience, 00 is defined to be 1 and (δδe−κ)

1
1−δ (1− δ) is defined to be 0 when δ = 1.

I Lemma 27. For any two probability distributions X ,Y over Θ such that DKL(X‖Y) ≤ κ
and any f : Θ→ [0, 1], if Ex∼X [f(x)] = 1− δ, then Ey∼Y [f(y)] ≥

(
δδe−κ

) 1
1−δ (1− δ).

Lemma 27 can then be used to prove a new lower bound for the value of the output from
independent rounding on a κ-independent k-level SA solution as stated below.

I Lemma 28. If {XS} is a κ-independent k-level SA solution of value 1−δ for a Max k-CSP
instance, then independent rounding gives an assignment of value at least (δδe−κ)

1
1−δ (1− δ).

Theorem 25 can now be proved by combining Lemma 26 and 28. Due to space constraint,
we omit the proofs of Lemma 27, Lemma 28 and Theorem 25 from this extended abstract.

5 Conclusion and Open Problems

While we settle down the approximability of dense Max k-CSP up to a k polylog(ki) factor
in the exponent, our work raises many interesting questions such as the two listed below:

Can Lemma 27 be used to prove new approximation guarantees for other problems?
Lemma 27 is a generic bound relating expectations of a function on two distributions
based on their informational divergence. Thus, it may help yield new approximation
guarantees for other correlation-based algorithms.
What is the right dependency on ε and c in the birthday repetition theorem? It is likely
that the dependency of ε and c in our birthday repetition is not tight. In particular,
parallel repetition for general games only has 1/c factor in the exponent whereas our
theorem has 1/c2; would it be possible to reduce the dependency to 1/c in birthday
repetition? Similar question also applies to ε.

Acknowledgements. PM would like to thank Aviad Rubinstein, Dana Moshkovitz, Grigory
Yaroslavtsev and Madhur Tulsiani for useful discussions. We also thank Irit Dinur for
informing us about her result based on gap-ETH.

References
1 Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter W. Shor. The

power of unentanglement. Theory of Computing, 5(1):1–42, 2009.
2 Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. AM with multiple Merlins. In

IEEE CCC, pages 44–55, June 2014.
3 Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ran-

dom sampling and approximation of MAX-CSPs. J. Comput. Syst. Sci., 67(2):212–243,
September 2003.

4 Benny Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.

5 Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of NP-hard problems. In ACM STOC, pages 284–293, 1995.

P. Manurangsi and P. Raghavendra 78:13

6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May
1998.

7 Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. Com-
binatorica, 23(3):365–426, 2003.

8 Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein. Can almost every-
body be almost happy? In ACM ITCS, pages 1–9, 2016.

9 Boaz Barak, Fernando G. S. L. Brandao, AramW. Harrow, Jonathan Kelner, David Steurer,
and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In ACM
STOC, pages 307–326, 2012.

10 Boaz Barak, Moritz Hardt, Thomas Holenstein, and David Steurer. Subsampling math-
ematical relaxations and average-case complexity. In ACM-SIAM SODA, pages 512–531,
2011.

11 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In IEEE FOCS, pages 472–481, 2011.

12 Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Efficient prob-
abilistically checkable proofs and applications to approximations. In ACM STOC, pages
294–304, 1993.

13 Aditya Bhaskara, Moses Charikar, Eden Chlamtác, Uriel Feige, and Aravindan Vi-
jayaraghavan. Detecting high log-densities: An O(n1/4) approximation for densest k-
subgraph. In ACM STOC, pages 201–210, 2010.

14 Mark Braverman and Ankit Garg. Small value parallel repetition for general games. In
ACM STOC, pages 335–340, 2015.

15 Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness
for densest-k-subgraph with perfect completeness. In ACM-SIAM SODA, pages 1326–1341,
2017.

16 Mark Braverman, Young Kun Ko, and Omri Weinstein. Approximating the best Nash
equilibrium in no(logn)-time breaks the exponential time hypothesis. In ACM-SIAM SODA,
pages 970–982, 2015.

17 Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff. Improved approxima-
tion algorithms for label cover problems. Algorithmica, 61(1):190–206, 2011.

18 Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca.
The densest k-subhypergraph problem. In APPROX, pages 6:1–6:19, 2016.

19 Eden Chlamtác, Pasin Manurangsi, Dana Moshkovitz, and Aravindan Vijayaraghavan. Ap-
proximation algorithms for label cover and the log-density threshold. In ACM-SIAM SODA,
pages 900–919, 2017.

20 Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity concept.
SIAM J. Discret. Math., 23(4):2000–2034, 2010.

21 Wenceslas Fernandez de la Vega, Marek Karpinski, Ravi Kannan, and Santosh Vempala.
Tensor decomposition and approximation schemes for constraint satisfaction problems. In
ACM STOC, pages 747–754, 2005.

22 Wenceslas Fernandez de la Vega and Claire Kenyon-Mathieu. Linear programming relaxa-
tions of Maxcut. In ACM-SIAM SODA, pages 53–61, 2007.

23 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
ECCC, 23:128, 2016.

24 Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP characteriz-
ations of NP: Toward a polynomially-small error-probability. Computational Complexity,
20(3):413–504, 2011.

25 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In ACM STOC,
pages 624–633, 2014.

ICALP 2017

78:14 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

26 Shaddin Dughmi. On the hardness of signaling. In IEEE FOCS, pages 354–363, 2014.
27 Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algorithmica,

29(3), 2001.
28 Uriel Feige and Michael Seltser. On the densest k-subgraph problems, 1997.
29 Dimitris Fotakis, Michael Lampis, and Vangelis Th. Paschos. Sub-exponential approxima-

tion schemes for CSPs: From dense to almost sparse. In STACS, pages 37:1–37:14, 2016.
30 Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for

dense problems. In FOCS, pages 12–20, 1996.
31 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and

approximation schemes for graph partitioning and quadratic integer programming with
PSD objectives. In IEEE FOCS, pages 482–491, 2011.

32 Mohammad Taghi Hajiaghayi, Kamal Jain, Kishori M. Konwar, Lap Chi Lau, Ion I. Măn-
doiu, Alexander Russell, Alexander A. Shvartsman, and Vijay V. Vazirani. The minimum
k-colored subgraph problem in haplotyping and DNA primer selection. In IWBRA, 2006.

33 Aram W. Harrow and Ashley Montanaro. Testing product states, quantum Merlin-Arthur
games and tensor optimization. J. ACM, 60(1):3:1–3:43, February 2013.

34 Thomas Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory
of Computing, 5(1):141–172, 2009.

35 Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, March 2001.

36 Guy Kortsarz and David Peleg. On choosing a dense subgraph. In IEEE SFCS, pages
692–701, 1993.

37 Jean B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. on Optimization, 11(3):796–817, March 2000.

38 Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using
simple strategies. In ACM EC, pages 36–41, 2003.

39 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In ACM STOC, 2017. To appear.

40 Pasin Manurangsi and Dana Moshkovitz. Approximating dense Max 2-CSPs. In APPROX,
pages 396–415, 2015.

41 Pasin Manurangsi and Dana Moshkovitz. Improved approximation algorithms for projection
games. Algorithmica, pages 1–40, 2015.

42 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. CoRR, abs/1607.02986, 2016. URL: https://arxiv.org/
abs/1607.02986.

43 Pasin Manurangsi and Aviad Rubinstein. Inapproximability of VC Dimension and Little-
stone’s Dimension. Unpublished manuscript, 2017.

44 Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: go greedy.
In ACM-SIAM SODA, pages 176–182, 2008.

45 Dana Moshkovitz. The projection games conjecture and the NP-hardness of lnn-
approximating set-cover. In APPROX 2012, pages 276–287, 2012.

46 Dana Moshkovitz. Parallel repetition from fortification. In IEEE FOCS, pages 414–423,
2014.

47 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5):29:1–29:29, June 2008.

48 David Peleg. Approximation algorithms for the label-cover max and red-blue set cover
problems. Journal of Discrete Algorithms, 5(1):55–64, 2007.

49 Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality con-
straints using SDP hierarchies. In ACM-SIAM SODA, pages 373–387, 2012.

https://arxiv.org/abs/1607.02986
https://arxiv.org/abs/1607.02986

P. Manurangsi and P. Raghavendra 78:15

50 Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM J.
Comput., 40(6):1871–1891, 2011.

51 Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.
52 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-

constant error-probability PCP characterization of NP. In ACM STOC, pages 475–484,
1997.

53 Aviad Rubinstein. ETH-hardness for signaling in symmetric zero-sum games. CoRR,
abs/1510.04991, 2015.

54 Aviad Rubinstein. Settling the complexity of computing approximate two-player Nash
equilibria. In IEEE FOCS, pages 258–265, 2016.

55 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. In IEEE FOCS,
pages 593–602, 2008.

56 Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxation between the continuous
and convex hull representations. SIAM J. Discret. Math., 3(3):411–430, May 1990.

57 Akiko Suzuki and Takeshi Tokuyama. Dense subgraph problems with output-density con-
ditions. ACM Trans. Algorithms, 4(4):43:1–43:18, August 2008.

58 Grigory Yaroslavtsev. Going for speed: Sublinear algorithms for dense r-CSPs. CoRR,
abs/1407.7887, 2014.

59 Grigory Yaroslavtsev. Personal communication, March 2016.
60 Yuichi Yoshida and Yuan Zhou. Approximation schemes via Sherali-Adams hierarchy for

dense constraint satisfaction problems and assignment problems. In ITCS 2014, pages
423–438, 2014.

ICALP 2017

Inapproximability of Maximum Edge Biclique,
Maximum Balanced Biclique and Minimum k-Cut
from the Small Set Expansion Hypothesis∗†

Pasin Manurangsi

University of California, Berkeley, CA, USA
pasin@berkeley.edu

Abstract
The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-
hard to distinguish between a graph with a small set of vertices whose expansion is almost zero
and one in which all small sets of vertices have expansion almost one. In this work, we prove
conditional inapproximability results for the following graph problems based on this hypothesis:

Maximum Edge Biclique (MEB): given a bipartite graphG, find a complete bipartite subgraph
of G with maximum number of edges. We show that, assuming SSEH and that NP * BPP,
no polynomial time algorithm gives n1−ε-approximation for MEB for every constant ε > 0.
Maximum Balanced Biclique (MBB): given a bipartite graph G, find a balanced complete
bipartite subgraph of G with maximum number of vertices. Similar to MEB, we prove n1−ε

ratio inapproximability for MBB for every ε > 0, assuming SSEH and that NP * BPP.
Minimum k-Cut: given a weighted graph G, find a set of edges with minimum total weight
whose removal splits the graph into k components. We prove that this problem is NP-hard
to approximate to within (2− ε) factor of the optimum for every ε > 0, assuming SSEH.

The ratios in our results are essentially tight since trivial algorithms give n-approximation to
both MEB and MBB and 2-approximation algorithms are known for Minimum k-Cut [35].

Our first two results are proved by combining a technique developed by Raghavendra, Steurer
and Tulsiani [33] to avoid locality of gadget reductions with a generalization of Bansal and Khot’s
long code test [4] whereas our last result is shown via an elementary reduction.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Hardness of Approximation, Small Set Expansion Hypothesis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.79

1 Introduction

Since the PCP theorem was proved two decades ago [2, 3], our understanding of approximab-
ility of combinatorial optimization problems has grown enormously; tight inapproximability
results have been obtained for fundamental problems such as Max-3SAT [15], Max Clique [14]
and Set Cover [27, 9]. Yet, for other problems, including Vertex Cover and Max Cut, known
NP-hardness of approximation results come short of matching best known algorithms.

The introduction of the Unique Games Conjecture (UGC) by Khot [19] propelled another
wave of development in hardness of approximation that saw many of these open problems
resolved (see e.g. [23, 21]). Alas, some problems continue to elude even attempts at proving

∗ A full version of the paper is available at https://arxiv.org/abs/1705.03581.
† This material is based upon work supported by the National Science Foundation under Grants No. CCF

1540685 and CCF 1655215.

EA
T

C
S

© Pasin Manurangsi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 79; pp. 79:1–79:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.79
https://arxiv.org/abs/1705.03581
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

79:2 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

UGC-hardness of approximation. For a class of such problems, the failure stems from the
fact that typical reductions are local in nature; many reductions from unique games to graph
problems could produce disconnected graphs. If we try to use such reductions for problems
that involve some forms of expansion of graphs (e.g. Sparsest Cut), we are out of luck.

One approach to overcome the aforementioned issue is through the Small Set Expansion
Hypothesis (SSEH) of Raghavendra and Steurer [32]. To describe the hypothesis, recall that,
on a d-regular undirected unweighted graph G = (V,E), the edge expansion Φ(S) of S ⊆ V
is defined as

Φ(S) = |E(S, V \ S)|
dmin{|S|, |V \ S|}

where E(S, V \ S) is the set of edges across the cut (S, V \ S). The small set expansion
problem SSE(δ, η), where η, δ are two parameters that lie in (0, 1), can be defined as follows.

I Definition 1 (SSE(δ, η)). Given a regular graph G = (V,E), distinguish between:
(Completeness) There exists S ⊆ V of size δ|V | such that Φ(S) 6 η.
(Soundness) For every S ⊆ V of size δ|V |, Φ(S) > 1− η.

For simplicity, we always assume that the input graphs of SSE are regular and unweighted
and defer the treatment of arbitrary weighted graphs to the full version.

Roughly speaking, SSEH asserts that it is NP-hard to distinguish between a graph that
has a small non-expanding subset of vertices and one in which all small subsets of vertices
have almost perfect edge expansion. More formally, the hypothesis can be stated as follows.

I Conjecture 1 (SSEH [32]). For every η > 0, there is δ > 0 such that SSE(δ, η) is NP-hard.

Interestingly, SSEH not only implies UGC [32], but it is also equivalent to a stregthened
version of the latter, in which the graph is required to have almost perfect small set
expansion [33].

Since its proposal, SSEH has been used as a starting point for proving inapproximability
of many problems whose hardnesses are not known otherwise. Most relevant to us is the
work of Raghavendra, Steurer and Tulsiani (henceforth RST) [33] who devised a technique
that exploited structures of SSE instances to avoid locality in reductions. In doing so, they
obtained hardness of approximation for Min Bisection, Balanced Separator, and Minimum
Linear Arrangement; these problems are not known to be hard to approximate under UGC.

1.1 Maximum Edge Biclique and Maximum Balanced Biclique
Our first result is adapting RST technique to prove inapproximability results for Maximum
Edge Biclique (MEB) and Maximum Balanced Biclique (MBB). For both problems, the
input is a bipartite graph. The goal for the former is to find a complete bipartite subgraph
that contains as many edges as possible whereas, for the latter, the goal is to find a balanced
complete bipartite subgraph that contains as many vertices as possible.

Both problems are NP-hard. MBB was stated (without proof) to be NP-hard in [12, page
196]; several proofs of this exist such as one provided in [17]. For MEB, it was proved to be
NP-hard more recently by Peeters [31]. Unfortunately, much less is known when it comes
to approximability of both problems. Similar to Maximum Clique, folklore algorithms give
O(n/polylogn) approximation ratio for both MBB and MEB, and no better algorithm is
known. However, not even NP-hardness of approximation of some constant ratio is known for
the problems. This is in stark contrast to Maximum Clique for which strong inapproximability

P. Manurangsi 79:3

results are known [14, 18, 22, 39]. Fortunately, the situation is not completely hopeless as
the problems are known to be hard to approximate under stronger complexity assumptions.

Feige [10] showed that, assuming that random 3SAT formulae cannot be refuted in
polynomial time, both problems1 cannot be approximated to within nε of the optimum
in polynomial time for some ε > 0. Later, Feige and Kogan [11] proved 2(logn)ε ratio
inapproximability for both problems for some ε > 0, assuming that 3SAT /∈ DTIME(2n3/4+δ)
for some δ > 0. Moreover, Khot [20] showed, assuming 3SAT /∈ BPTIME(2nδ) for some
δ > 0, that no polynomial time algorithm achieves nε-approximation for MBB for some
ε > 0. Ambühl et al. [1] subsequently built on Khot’s result and showed a similar hardness
for MEB. Recently, Bhangale et al. [6] proved that both problems are hard to approximate
to within2 n1−ε factor for every ε > 0, assuming a certain strengthened version of UGC and
NP 6= BPP. In addition, while not stated explicitly, the author’s recent reduction for Densest
k-Subgraph [25] yields n1/ polyloglogn ratio inapproximability for both problems under the
Exponential Time Hypothesis [16] (3SAT /∈ DTIME(2o(n))) and this ratio can be improved
to nf(n) for any f ∈ o(1) under the stronger Gap Exponential Time Hypothesis [8, 26] (no
2o(n) time algorithm can distinguish a fully satisfiable 3SAT formula from one which is only
(1− ε)-satisfiable for some ε > 0); these ratios are better than those in [11] but worse than
those in [20, 1, 6].

In this work, we prove strong inapproximability results for both problems, assuming
SSEH:

I Theorem 2. Assuming SSEH, there is no polynomial time algorithm that approximates
MEB or MBB to within n1−ε factor of the optimum for every ε > 0, unless NP ⊆ BPP.

We note that the only part of the reduction that is randomized is the gap amplification
via randomized graph product [5, 7]. If one is willing to assume only that NP 6= P (and
SSEH), our reduction still implies that both are hard to approximate to within any constant
factor.

Only Bhangale et al.’s result [6] and our result achieve the inapproximability ratio of
n1−ε for every ε > 0; all other results achieve at most nε ratio for some ε > 0. Moreover,
only Bhangale et al.’s reduction and ours are candidate NP-hardness reductions, whereas
each of the other reductions either uses superpolynomial time [11, 20, 1, 25] or relies on an
average-case assumption [10]. It is also worth noting here that, while both Bhangale et al.’s
result and our result are based on assumptions which can be viewed as stronger variants of
UGC, the two assumptions are incomparable and, to the best of our knowledge, Bhangale
et al.’s technique does not apply to SSEH. Due to space constraint, we defer a more in-depth
discussion on the differences between the two assumptions to a longer version of this work.

Along the way, we prove inapproximability of the following hypergraph bisection problem,
which may be of independent interest: given a hypergraph H = (VH , EH) find a bisection3
(T0, T1) of VH such that the number of uncut hyperedges is maximized. We refer to this
problem as Max UnCut Hypergraph Bisection (MUCHB). Roughly speaking, we show that,
assuming SSEH, it is hard to distinguish a hypergraph whose optimal bisection cuts only ε
fraction of hyperedges from one in which every bisection cuts all but ε fraction of hyperedges:

1 While Feige only stated this for MBB, the reduction clearly works for MEB too.
2 In [6], the inapproximability ratio is only claimed to be nε for some ε > 0. However, it is not hard to

see that their result in fact implies n1−ε factor hardness of approximation as well.
3 (T0, T1) is a bisection of VH if |T0| = |T1| = |VH |/2, T0 ∩ T1 = ∅ and VH = T0 ∪ T1.

ICALP 2017

79:4 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

I Lemma 3. Assuming SSEH, for every ε > 0, it is NP-hard to, given a hypergraph
H = (VH , EH), distinguish between the following two cases:

(Completeness) There is a bisection (T0, T1) of VH s.t.

|EH(T0)|, |EH(T1)| > (1/2− ε)|EH | .

(Soundness) For every set T ⊆ VH of size at most |VH |/2, |EH(T)| 6 ε|EH |.
Here EH(T) , {e ∈ EH | e ⊆ T} denotes the set of hyperedges inside of the set T ⊆ VH .

Our result above is similar to Khot’s quasi-random PCP [20]; roughly speaking, Khot’s
result states that it is hard (if 3SAT /∈

⋂
δ>0 BPTIME(2nδ)) to distinguish between a d-

uniform hypergraph where 1/2d−2 fraction of hyperedges are uncut in the optimal bisection
from one where roughly 1/2d−1 fraction of hyperedges are uncut in any bisection. In this
sense, [20] provides better soundness at the expense of worse completeness compared ours.

1.2 Minimum k-Cut

In addition to the above biclique problems, we prove an inapproximability result for the
Minimum k-Cut problem, in which a weighted graph is given and the goal is to find a set
of edges with minimum total weight whose removal paritions the graph into (at least) k
connected components. For any fixed k, the problem was proved to be in P by Goldschmidt
and Hochbaum [13], who also showed that, when k is part of the input, the problem is
NP-hard. To circumvent this, Saran and Vazirani [35] devised two simple polynomial
time (2 − 2/k)-approximation algorithms for the problem. In the ensuing years, different
approximation algorithms [29, 38, 34, 37] have been proposed for the problem, none of which
are able achieve an approximation ratio of (2− ε) for some ε > 0. In fact, Saran and Vazirani
themselves conjectured that (2− ε)-approximation is intractible for the problem [35]. In this
work, we show that their conjecture is indeed true, if the SSEH holds:

I Theorem 4. Assuming SSEH, it is NP-hard to approximate Minimum k-Cut to within
(2− ε) factor of the optimum for every constant ε > 0.

Note that the problem was claimed to be APX-hard in [35]. However, to the best of our
knowledge, the proof has never been published and no other inapproximability is known.

2 Inapproximability of Minimum k-Cut

We now proceed to prove our main results. Let us start with the simplest: Minimum k-Cut.

Proof of Theorem 4. The reduction from SSE(δ, η) to Minimum k-Cut is simple; the graph
G remains the input graph for Minimum k-Cut and we let k = δn+ 1 where n = |V |.

Completeness. If there is S ⊆ V of size δn such that Φ(S) 6 η, then we partition the graph
into k groups where the first group is V \ S and each of the other groups contains one vertex
from S. The edges cut are the edges in E(S, V \ S) and the edges within the set S itself.
There are d|S|Φ(S) 6 ηd|S| edges of the former type and only at most d|S|/2 of the latter.
Hence, the number of edges cut in this partition is at most (1/2 + η)d|S| = (1/2 + η)δdn.

P. Manurangsi 79:5

Soundness. Suppose that, for every S ⊆ V of size δn, Φ(S) > 1− η. Let T1, . . . , Tk ⊆ V be
any k-partition of the graph. Assume w.l.o.g. that |T1| 6 · · · 6 |Tk|. Let A = T1 ∪ · · · ∪ Ti
where i is the maximum index such that |T1 ∪ · · · ∪ Ti| 6 δn.

We claim that |A| > δn −
√
n. To see that this is the case, suppose for the sake of

contradiction that |A| < δn −
√
n. Since |A ∪ Ti+1| > δn, we have Ti+1 >

√
n. Moreover,

since A = T1 ∪ · · ·Ti, we have i 6 |A| < δn−
√
n. As a result, we have n = |T1 ∪ · · · ∪ Tk| >

|Ti+1 ∪ · · · ∪Tk| > (k− i)|Ti| >
√
n ·
√
n = n, which is a contradiction. Hence, |A| > δn−

√
n.

Now, note that, for every S ⊆ V of size δn, Φ(S) > 1− η implies that |E(S)| 6 ηdδn/2
where E(S) denote the set of all edges within S. Since |A| 6 δn, we also have |E(A)| 6 ηdδn/2.
As a result, the number of edges in the cut (A, V \A) is at least

d|A| − ηdδn > (1− η)dδn− d
√
n =

(
1− η − 1

δ
√
n

)
δdn.

For every constant ε > 0, by setting η = ε/20 and n > 100/(ε2δ2), the ratio between the
two cases is at least (2− ε), which concludes the proof of Theorem 4. J

3 Inapproximability of MEB and MBB

Let us now turn our attention to MEB and MBB. First, note that we can reduce MUCHB
to MEB/MBB by just letting the two sides of the bipartite graph be EH and creating an
edge (e1, e2) iff e1 ∩ e2 = ∅. This immediately shows that Lemma 3 implies the following:

I Lemma 5. Assuming SSEH, for every δ > 0, it is NP-hard to, given a bipartite graph
G = (L,R,E) with |L| = |R| = n, distinguish between the following two cases:

(Completeness) G contains K(1/2−δ)n,(1/2−δ)n as a subgraph.
(Soundness) G does not contain Kδn,δn as a subgraph.

Here Kt,t denotes the complete bipartite graph in which each side contains t vertices.

Note that Theorem 2 follows from Lemma 5 by gap amplification via randomized graph
product [5, 7]. Since this has been analyzed before even for biclique [20, Appendix D], we do
not repeat the argument here.

We are now only left to prove Lemma 3; we devote the rest of this section to this task.

3.1 Preliminaries
Before we continue, we need additional notations and preliminaries. For every graph G and
every vertex v, we will write G(v) to denote the uniform distribution on its neighbors.

It will be convenient for us to use a different (but equivalent) formulation of SSEH. To
state it, we will define a variant of SSE(δ, η) called SSE(δ, η,M); the completeness remains
the same whereas the soundness is strengtened to include all S of size between δ|V |

M and
δ|V |M .

I Definition 6 (SSE(δ, η,M)). Given a regular graph G = (V,E), distinguish between:
(Completeness) There exists S ⊆ V of size δ|V | such that Φ(S) 6 η.
(Soundness) For every S ⊆ V with |S| ∈

[
δ|V |
M , δ|V |M

]
, Φ(S) > 1− η.

The new formulation of the hypothesis can now be stated as follows.

I Conjecture 2. For every η,M > 0, there is δ > 0 such that SSE(δ, η,M) is NP-hard.

ICALP 2017

79:6 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

Raghavendra et al. [33] showed that this formulation is equivalent to the earlier formulation
(Conjecture 1); please refer to Appendix A.2 of [33] for more details of the proof.

While our reduction can be understood without notation of unique games, it is best
described in a context of unique games reductions. We provide a definition of unique games
below.

I Definition 7 (Unique Game (UG)). A unique game instance (G, [R], {πe}e∈E) consists of a
bipartite graph G = (V, E), a label set [R] = {1, . . . , R}, and, for each e ∈ E , a permutation
πe : [R]→ [R]. The goal is to find an assignment F : V → [R] such that, for as many edges
(u, v) ∈ E as possible, we have π(u,v)(F (u)) = F (v); these edges are said to be satisfied.

Khot’s UGC [19] states that, for every ε > 0, it is NP-hard to distinguish between a
unique game in which there exists an assignment satisfying at least (1− ε) fraction of edges
from one in which every assignment satisfies at most ε fraction of edges.

Finally, we need some preliminaries in discrete Fourier analysis. We state here only few
facts that we need. We refer interested readers to [30] for more details about the topic.

For any discrete probability space Ω, f : ΩR → [0, 1] can be written as
∑
σ∈[|Ω|]R f̂(σ)φσ

where {φσ}σ∈[|Ω|]R is the product Fourier basis of L2(ΩR) (see [30, Chapter 8.1]). The
degree-d influence on the j-th coordinate of f is infldj (f) ,

∑
σ∈[|Ω|]R,σj 6=1,#σ6d f̂

2(σ) where
#σ , |{i ∈ [R] | σi 6= 1}|. It is well known that

∑R
j=1 infldj (f) 6 d (see [28, Proposition 3.8]).

We also need the following theorem. It follows easily4 from the so-called “It Ain’t Over
Till It’s Over” conjecture, which is by now a theorem [28, Theorem 4.9].

I Theorem 8 ([28]). For any β, εT , γ > 0, there exists κ > 0 and t, d ∈ N such that, if any
functions f1, . . . , ft : ΩR → {0, 1} where Ω is a probability space whose probability of each
atom is at least β satisfy5

∀i ∈ [t], E
x∈ΩR

[fi(x)] 6 0.99 and ∀j ∈ [R],∀1 6 i1 6= i2 6 t,min{infldj (fi1), infldj (fi2)} 6 κ,

then

Pr
x∈ΩR,D∼SεT (R)

[
t∧
i=1

fi(CD(x)) ≡ 1
]
< γ

where D ∼ SεT (R) is a random subset of [R] where each i ∈ [R] is included independently w.p.
εT , CD(x) , {x′ | x′[R]\D = x[R]\D} and fi(CD(x)) ≡ 1 is short for ∀x′ ∈ CD(x), fi(x′) = 1.

3.2 Bansal-Khot Long Code Test and A Candidate Reduction
Theorem 8 leads us nicely to the Bansal-Khot long code test [4]. For UGC hardness
reductions, one typically needs a long code test (aka dictatorship gadget) which, on input
f1, . . . , ft : {0, 1}R → {0, 1}, has the following properties:

(Completeness) If f1 = · · · = ft is a long code6, the test accepts with large probability.
(Soundness) If f1, . . . , ft are balanced (i.e. E f1 = · · · = E ft = 1/2) and are “far from
being a long code”, then the test accepts with low probability.
A widely-used notion of “far from being a long code”, and one we will use here, is that
the functions do not share a coordinate with large low degree influence (i.e. for every
j ∈ [R] and every i1 6= i2 ∈ [t], at least one of infldj (fi1), infldj (fi2) is small),

4 For more details on how this version follows from there, please refer to [36, page 769].
5 0.99 could be replaced by any constant less than one; we use it to avoid introducing more parameters.
6 A long code is simply j-junta (i.e. a function that depends only on the xj) for some j ∈ [R].

P. Manurangsi 79:7

Input: A unique game (G = (V, E), [R], {πe}e∈E) and parameters ` ∈ N and εT ∈ (0, 1).
Output: A hypergraph H = (VH , EH).
The vertex set VH is V × {0, 1}R and the hyperedges are distributed as follows:

Sample u ∼ V and sample v1 ∼ G(u), . . . , v` ∼ G(u).
Sample x ∼ {0, 1}R and a subset D ∼ SεT (R).
Output a hyperedge e = {(vp, x′) | p ∈ [`], x′ ∈ CD(x)}.

Figure 1 A Candidate Reduction from UG to MUCHB.

Bansal and Khot’s long code test works as follows: pick x ∼ {0, 1}R and D ∼ SεT (R).
Then, test whether fi evaluates to 1 on the whole CD(x). Note that this can be viewed
as an “algorithmic” version of Theorem 8; more specifically, the theorem (with Ω = {0, 1})
immediately implies the soundness property of this test. On the other hand, it is obvious
that, if f1 = · · · = ft is a long code, then the test accepts with probability 1/2− εT .

Bansal and Khot used this test to prove tight hardness of approximation of Vertex Cover.
The reduction is via a natural composition of the test with unique games. Their reduction
also gives a cadidate reduction from UG to MUCHB, which is stated below in Figure 1.

As is typical for gadget reductions, for T ⊆ VH , we view the indicator function fu(x) ,
1[(u, x) ∈ T] for each u ∈ V as the intended long code. If there exists an assignment φ to the
unique game instance that satisfies nearly all the constraints, then the bisection corresponding
to fu(x) = xφ(u) cuts only small fraction of edges, which yields the completeness of MUCHB.

As for the soundness, we would like to decode an UG assignment from T ⊆ VH of size
at most |VH |/2 which contains at least ε fraction of hyperedges. In terms of the tests, this
corresponds to a collection of functions {fu}u∈V such that Eu∼V Ex∼{0,1}R fu(x) = 1/2 and
the Bansal-Khot test on fv1 , . . . , fvt passes with probability at least ε where v1, . . . , vt are
sampled as in Figure 1. Now, if we assume that Ex fu(x) 6 0.99 for all u ∈ V, then such
decoding is possible via a similar method as in [4] since Theorem 8 can be applied here.

Unfortunately, the assumption Ex fu(x) 6 0.99 does not hold for an arbitrary T ⊆ VH
and the soundness property indeed fails. For instance, imagine the constraint graph G of the
starting unique game instance consisting of two disconnected components of equal size; let
V0 and V1 be the set of vertices in the two components. In this case, if we set T0 = V0 and
T1 = V1, then the bisection (T0, T1) does not even cut a single edge! This is regardless of
whether there exists an assignment to the UG that satisfies a large fraction of edges.

3.3 RST Technique and The Reduction from SSE to MUCHB

The issue described above is common for graph problems that involves some form of expansion
of the graph. The RST technique [33] was indeed invented to specifically circumvent this issue.
It works by first reducing SSE to UG and then exploiting the structure of the constructed
UG instance when composing it with a long code test; this allows them to avoid extreme
cases such as one above. There are four parameters in the reduction: R, k ∈ N and εV , β.
Before we describe the reduction, let us define additional notations here:

Let G⊗R denote the R-tensor graph of G; the vertex set of G⊗R is V R and there is an
edge between A,B if and only if there is an edge between Ai, Bi in G for every i ∈ [R].
For each A ∈ V R, TV (A) denote the distribution on V R where the i-th coordinate is set
to Ai with probability 1− εV and is randomly sampled from V otherwise.

ICALP 2017

79:8 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

Let ΠR,k denote the set of all permutations π’s of [R] such that, for each j ∈ [k],
π({R(j − 1)/k + 1, . . . , Rj/k}) = {R(j − 1)/k + 1, . . . , Rj/k}.
Let {0, 1,⊥}β denote the probability space such that the probability for 0, 1 are both β/2
and the probability for ⊥ is 1− β.

The first step of reduction takes an SSE(δ, η,M) instance G = (V,E) and produces a
unique game U = (G = (V, E), [R], {πe}e∈E) where V = V R and the edges are distributed as
follows:
1. Sample A ∼ V R and Ã ∼ TV (A).
2. Sample B ∼ G⊗R(Ã) and B̃ ∼ TV (B).
3. Sample two random πA, πB ∼ ΠR,k.
4. Output an edge e = (πA(Ã), πB(B̃)) with π(A,B) = πB ◦ π−1

A .

Here εV is a small constant, k is large and R/k should be think of as Θ(1/δ). When
there exists a set S ⊆ V of size δ|V | with small edge expansion, the intended assignment is
to, for each A ∈ V R, find the first block j ∈ [k] such that |A(j) ∩ S| = 1 where A(j) denotes
the multiset {AR(j−1)/k+1, . . . , ARj/k} and let F (A) be the coordinate of the vertex in that
intersection. If no such j exists, we assign F (A) arbitrarily. Note that, since R/k = Θ(1/δ),
Pr[|A(j)∩ S| = 1] is constant, which means that only 2−Ω(k) fraction of vertices are assigned
arbitrarily. Moreover, it is not hard to see that, for the other vertices, their assignments rarely
violate constraints as εV and Φ(S) are small. This yields the completeness. In addition, the
soundness was shown in [32, 33], i.e., if every S ⊆ V of size δ|V | has near perfect expansion,
no assignment satisfies many constraints in U (see Lemma 13).

The second step is to reduce this UG instance to a hypergraph H = (VH , EH). Instead of
making the vertex set V R × {0, 1}R as in the previous candidate reduction, we will instead
make VH = V R ×ΩR where Ω = {0, 1,⊥}β and β is a small constant. This does not seem to
make much sense from the UG reduction standpoint because we typically want to assign
which side of the bisection (A, x) ∈ VH is in according to xF (A) but xF (A) could be ⊥ in
this construction. However, it makes sense when we view this as a reduction from SSE
directly: let us discard all coordinates i’s such that xi = ⊥ and define A(j, x) , {Ai | i ∈
{R(j − 1)/k + 1, . . . , Rj/k} ∧ xi 6= ⊥}. Then, let j∗(A, x) , min{j | |A(j, x) ∩ S| = 1} and
let i∗(A, x) be the coordinate in the intersection between A(j∗(A, x), x) and S, and assign
(A, x) to Txi∗(A,x) . (If j∗(A, x) does not exists, then assign (A, x) arbitrarily.)

Observe that, in the intended solution, the side that (A, x) is assigned to does not change
if (1) Ai is modified for some i ∈ [R] s.t. xi = ⊥ or (2) we apply some permutation π ∈ ΠR,k

to both A and x. In other words, we can “merge” two vertices (A, x) and (A′, x′) that are
equivalent through these changes together in the reduction. For notational convenience,
instead of merging vertices, we will just modify the reduction so that, if (A, x) is included in
some hyperedge, then every (A′, x′) reachable from (A, x) by these operations is also included
in the hyperedge. More specifically, if we define Mx(A) , {A′ ∈ V R | A′i = Ai for all i ∈
[R] such that xi 6= ⊥} corresponding to the first operation, then we add π(A′, x) to the
hyperedge for every A′ ∈Mx(A) and π ∈ ΠR,k. The full reduction is shown in Figure 2.

Note that the test we apply here is slightly different from Bansal-Khot test as our test is on
Ω = {0, 1,⊥}β instead of {0, 1} used in [4]. Another thing to note is that now our vertices and
hyperedges are weighted, the vertices according to the product measure of V R × ΩR and the
edges according to the distribution produced from the reduction. We write µH to denote the
measure on the vertices, i.e., for T ⊆ V R × {0, 1,⊥}R, µH(T) = PrA∼V R,x∼ΩR [(A, x) ∈ T],
and we abuse the notation EH(T) and use it to denote the probability that a hyperedge as
generated in Figure 2 lies completely in T . We note here that, while the MUCHB as stated

P. Manurangsi 79:9

Input: A graph G with vertex set V and parameters R, k, ` ∈ N and εT , εV , β ∈ (0, 1).
Output: A hypergraph H = (VH , EH).
VH , V R × ΩR where Ω , {0, 1,⊥}β and the hyperedges are distributed as follows:

Sample A ∼ V R and Ã1, . . . , Ã` ∼ TV (A).
Sample B1 ∼ G⊗R(Ã1), . . . , B` ∼ G⊗R(Ã`) and B̃1 ∼ TV (B1), . . . , B̃` ∼ TV (B`)
Sample x ∈ ΩR and a subset D ∼ SεT (R).
Output a hyperedge e = {π(B′, x′) | p ∈ [`], π ∈ ΠR,k, x

′ ∈ CD(x), B′ ∈Mx′(B̃p)}.

Figure 2 Reduction from SSE to Max UnCut Hypergraph Bisection.

in Lemma 3 is unweighted, it is not hard to see that we can go from weighted version to
unweighted by copying each vertex and each edge proportional7 to their weights.

The advantage of this reduction is that the vertex “merging” makes gadget reduction non-
local; for instance, it is clear that even if the starting graph V has two connected components,
the resulting hypergraph is now connected. In fact, Raghavendra et al. [33] show a much
stronger quantitative bound. To state this, let us consider any T ∈ VH with µH(T) = 1/2.
From how the hyperedges are defined, we can assume w.l.o.g. that, if (A, x) ∈ T , then
π(A′, x) ∈ T for every A′ ∈ Mx(A) and every π ∈ ΠR,k. Again, let fA(x) , 1[(A, x) ∈ T].
The following bound on the variance of Ex fA(x) is implied by the proof of Lemma 6.6 in [33]:

E
A∼V R

(
E

x∼ΩR
fA(x)− 1/2

)2
6 β.

The above bound implies that, for most A’s, the mean of fA cannot be too large. This will
indeed allow us to ultimately apply Theorem 8 on a certain fraction of the tuples (B̃1, . . . , B̃`)
in the reduction, which leads to an UG assignment with non-negligible value.

3.4 Completeness
In the completeness case, we define a bisection similar to that described above. This bisection
indeed cuts only a small fraction of hyperedges; quantitatively, this yields the following
lemma. Since its proof consists mainly of calculations, we omit it from this extended abstract.

I Lemma 9. If there is a set S ⊆ V such that Φ(S) 6 η and |S| = δ|V | where δ ∈
[

k
10βR ,

k
βR

]
,

then there is a bisection (T0, T1) of VH such that EH(T0), EH(T1) > 1/2−O(εT /β)−O(η`/β)−
O(εV `/β)− 2−Ω(k) where O(·) and Ω(·) hide only absolute constants.

3.5 Soundness
Let us consider any set T such that µH(T) 6 1/2. We would like to give an upper bound on
EH(T). From how we define hyperedges, we can assume w.l.o.g. that (A, x) ∈ T if and only
if π(A′, x) ∈ T for every A′ ∈Mx(A) and π ∈ ΠR,k. We call such T ΠR,k-invariant.

Let f : V R×ΩR → {0, 1} denote the indicator function for T , i.e., f(A, x) = 1 if and only
if (A, x) ∈ T . Note that EA∼V R,x∼ΩR f(A, x) = µH(T) 6 1/2. Following notation from [33],
we write fA(x) as a shorthand for f(A, x). In addition, for each A ∈ V R, we will write
B̃ ∼ Γ(A) as a shorthand for B̃ generated randomly by sampling Ã ∼ TV (A), B ∼ G⊗R(Ã)

7 Note that this is doable since we can pick β, εV , εT to be rational.

ICALP 2017

79:10 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

and B̃ ∼ TV (B) respectively. Let us restate Raghavendra et al.’s [33] Lemma regarding the
variance of Ex fA(x) in a more convenient formulation below.

I Lemma 10 ([33, Lemma 6.6]8). For every A ∈ V R, let µA , Ex∼ΩR fA(x). We have

E
A∼V R

(
E

B̃∼Γ(A)
µB̃ − µH(T)

)2

6 β.

To see how the above lemma helps us decode an UG assignment, observe that, if our test
accepts on fB̃1 , . . . , fB̃` , x,D, then it also accepts on any subset of the functions (with the
same x,D); hence, to apply Theorem 8, it suffices that t of the functions have means 6 0.99.
We will choose ` to be large compared to t. Using above lemma and a standard tail bound,
we can argue that Theorem 8 is applicable for almost all tuples B̃1, . . . , B̃`, as stated below.
Due to space constraint, we omit its proof from this extended abstract.

I Lemma 11. For any positive integer t 6 0.01`,

Pr
A∼V R,B̃1,...,B̃`∼Γ(A)

[|{i ∈ [`] | µB̃i 6 0.99}| > t] > 1− 10β − 2−`/100.

3.5.1 Decoding an Unique Games Assignment
With Lemma 11 ready, we can now decode an UG assignment via a similar technique from [4].

I Lemma 12. For any εT , γ, β > 0, let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β) be
as in Theorem 8. For any integer ` > 100t, if there exists T ⊆ VH of such that µH(T) 6 1/2
and EH(T) > 2γ + 10β + 2−`/100, then there exists F : V R → [R] such that

Pr
A∼V R,B̃∼Γ(A),πA,πB∼ΠR,k

[π−1
A (F (πA(Ã))) = π−1

B (F (πB(B̃)))] > γκ2

4d2`2
.

Proof. The decoding procedure is as follows. For each A ∈ V R, we construct a set of
candidate labels Cand[A] , {j ∈ [R] | infldj (fA) > κ}. We generate F randomly by, with
probability 1/2, setting F (A) to be a random element of Cand[A] and, with probability 1/2,
sampling B̃ ∼ Γ(A) and setting F (A) to be a random element from Cand[B]. Note that, if
the candidate set is empty, then we simply pick an arbitrary assignment.

From our assumption that T is ΠR,k-invariant, it follows that, for every A ∈ V R, π ∈ ΠR,k

and j ∈ [R], PrF [π−1(F (π(A))) = j] = PrF [F (A) = j]. In other words, we have

Pr
F,A∼V R,B̃∼Γ(A),πA,πB∼ΠR,k

[π−1
A (F (πA(Ã))) = π−1

B (F (πB(B̃)))]

= Pr
F,A∼V R,B̃∼Γ(A)

[F (Ã) = F (B̃)]. (1)

Next, note that, from how our reduction is defined, EH(T) can be written as

EH(T) = Pr
A∼V R,B̃1,...,B̃`∼Γ(A),x∼ΩR,D∼SεT (R)

[∧̀
i=1

fB̃i(CD(x)) ≡ 1
]
.

8 Lemma 6.6 in [33] involves symmetrizing f ’s, but we do not need it here since T is ΠR,k-invariant.

P. Manurangsi 79:11

From EH(T) > 2γ + 10β + 2−`/100 and from Lemma 11, we can conclude that

Pr
A,B̃1,...,B̃`,x,D

[(∧̀
i=1

fB̃i(CD(x)) ≡ 1
)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
> 2γ.

From Markov’s inequality, we have

γ 6 Pr
A,B̃1,...,B̃`

[
Pr
x,D

[(∧̀
i=1

fB̃i(CD(x)) ≡ 1
)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
> γ

]

= Pr
A,B̃1,...,B̃`

[(
Pr
x,D

[∧̀
i=1

fB̃i(CD(x)) ≡ 1
]
> γ

)
∧
(
|{i ∈ [`] | µB̃i 6 0.99}| > t

)]
.

A tuple (A, B̃1, . . . , B̃`) is said to be good if Prx∼ΩR,D∼SεT (R)

[∧`
i=1 fB̃i(CD(x)) ≡ 1

]
> γ

and |{i ∈ [`] | µB̃i 6 0.99}| > t. For such tuple, Theorem 8 implies that there exist i1 6= i2 ∈
[`], j ∈ [R] s.t. infldj (fB̃i1), infldj (fB̃i2) > κ. This means that Cand(B̃i1) ∩ Cand(B̃i2) 6= ∅.

Hence, if we sample a tuple (A, B̃1, . . . , B̃`) at random, and then sample two different
B̃, B̃′ randomly from B̃1, . . . , B̃`, then the tuple is good with probability at least γ and, with
probability 1/`2, we have B̃ = B̃i1 , B̃′ = B̃i2 . This gives the following bound:

Pr
A,B̃,B̃′

[
Cand(B̃) ∩ Cand(B̃′) 6= ∅

]
>

γ

`2
.

Now, observe that B̃ and B̃′ above are distributed in the same way as if we pick both
of them independently with respect to Γ(A). Recall that, with probability 1/2, F (A) is
a random element of Cand(B̃) where B̃ ∼ Γ(A) and, with probability 1/2, F (B̃′) is a
random element of Cand(B̃′). Moreover, since the sum of degree d-influence is at most d [28,
Proposition 3.8], the candidate sets are of sizes at most d/κ. As a result, the above bound
yields

Pr
A∼V R,B̃′∼Γ(A)

[F (A) = F (B̃′)] > γκ2

4d2`2
,

which, together with (1), concludes the proof of the lemma. J

3.5.2 Decoding a Small Non-Expanding Set
To relate our decoded UG assignment back to a small non-expanding set in G, we use the
following lemma of [33], which roughly states that, with the right parameters, the soundness
case of SSEH implies that only small fraction of constriants in the UG can be satisfied.

I Lemma 13 ([33, Lemma 6.11]). If there exists F : V R → [R] such that

Pr
A∼V R,B̃∼Γ(A),πA,πB∼ΠR,k

[π−1
A (F (πA(Ã))) = π−1

B (F (πB(B̃)))] > ζ,

then there exists a set S ⊆ V with |S||V | ∈
[

ζ
16R ,

3k
εV R

]
with Φ(S) 6 1− ζ

16k .

By combining the above lemma with Lemma 12, we immediately arrive at the following:

I Lemma 14. For any εT , γ, β > 0, let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β)
be as in Theorem 8. For any integer ` > 100t and any εV > 0, if there exists T ⊆ VH with
µH(T) 6 1/2 such that EH(T) > 2γ + 10β + 2−`/100, then there exists a set S ⊆ V with
|S|
|V | ∈

[
ζ

16R ,
3k
εV R

]
with Φ(S) 6 1− ζ

16k where ζ = γκ2

4d2`2 .

ICALP 2017

79:12 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

3.6 Putting Things Together
We can now deduce inapproximability of MUCHB by simply picking appropriate parameters.

Proof of Lemma 3. The parameters are chosen as follows:
Let β = ε/30, γ = ε/6, and k = Ω(log(1/ε)) so that the term 2−Ω(k) in Lemma 9 is 6 ε/4.
Let εT = O(βε) so that the error term O(εT /β) in Lemma 9 is at most ε/4.
Let t = t(εT , γ, β), κ = κ(εT , γ, β) and d = d(εT , γ, β) be as in Theorem 8.
Let ζ = γκ2

4d2`2 be as in Lemma 14 and let ` = max{100t, 1000 log(1/ε)}.
Let εV = O(εβ/`) where so that the error term O(εV `/β) in Lemma 9 is at most ε/4.
Let η = min{ ζ

32k , O(εβ/`)} so that the error term O(η`/β) in Lemma 9 is at most ε/4.
Let M = max{ 16k

βζ ,
3β
εV
}.

Finally, let R = k
βδ where δ = δ(η,M) is the parameter from the SSEH (Conjecture 2).

Let G = (V,E) be an instance of SSE(η, δ,M) and let H = (VH , GH) be the hypergraph
resulted from our reduction. If there exists S ⊆ V of size δ|V | of expansion at most η,
Lemma 9 implies that there is a bisection (T0, T1) of VH such that EH(T0), EH(T1) > 1/2−ε.

As for the soundness, Lemma 14 with our choice of parameters implies that, if there exists
a set T ⊆ VH with µ(T) 6 1/2 and EH(T0) > ε, there exists S ⊆ V with |S| ∈

[
δ|V |
M , δ|V |M

]
whose expansion is less than 1−η. The contrapositive of this yields the soundness property. J

4 Conclusion

In this work, we prove essentially tight inapproximability of MEB, MBB and Minimum k-Cut
based on SSEH. Our results, expecially for the biclique problems, demonstrate further the
applications of the hypothesis and particularly the RST technique [33] in proving hardness
of graph problems that involve some form of expansion. An obvious but intriguing research
direction is to try to utilize the technique to other problems. One plausible candidate problem
to this end is the 2-Catalog Segmentation Problem [24] since a natural candidate reduction
for this problem fails due to a similar counterexample as in Section 3.2.

Acknowledgement. I am grateful to Prasad Raghavendra for providing his insights on
the Small Set Expansion problem and techniques developed in [32, 33] and Luca Trevisan
for lending his expertise in PCPs with small free bits. I would also like to thank Haris
Angelidakis for useful discussions on Minimum k-Cut and Daniel Reichman for inspiring
me to work on Maximum Edge Biclique and Maximum Balanced Biclique. Finally, I thank
anonymous reviewers for their useful comments and, more specifically, for pointing me to [6].

References
1 Christoph Ambühl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for

maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput.,
40(2):567–596, April 2011.

2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, May
1998.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP. J. ACM, 45(1):70–122, January 1998.

4 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In IEEE FOCS,
pages 453–462, 2009.

P. Manurangsi 79:13

5 Piotr Berman and Georg Schnitger. On the complexity of approximating the independent
set problem. Inf. Comput., 96(1):77–94, 1992.

6 Amey Bhangale, Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Rohit Khandekar, and Guy
Kortsarz. Bicovering: Covering edges with two small subsets of vertices. In ICALP, pages
6:1–6:12, 2016.

7 Avrim Blum. Algorithms for approximate graph coloring. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1991.

8 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
ECCC, 23:128, 2016.

9 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In ACM STOC,
pages 624–633, 2014.

10 Uriel Feige. Relations between average case complexity and approximation complexity. In
ACM STOC, pages 534–543, 2002.

11 Uriel Feige and Shimon Kogan. Hardness of approximation of the balanced complete bi-
partite subgraph problem. Technical report, Weizmann Institute of Science, Israel, 2004.

12 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

13 Olivier Goldschmidt and Dorit S Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Mathematics of operations research, 19(1):24–37, 1994.

14 Johan Håstad. Clique is hard to approximate within n1−ε. In IEEE FOCS, pages 627–636,
1996.

15 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, December 2001.
17 David S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms,

8(5):438–448, September 1987.
18 Subhash Khot. Improved inaproximability results for MaxClique, chromatic number and

approximate graph coloring. In IEEE FOCS, pages 600–609, 2001.
19 Subhash Khot. On the power of unique 2-prover 1-round games. In ACM STOC, pages

767–775, 2002.
20 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite

clique. SIAM J. Comput., 36(4), 2006.
21 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxim-

ability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357,
2007.

22 Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for Max-
Clique, chromatic number and Min-3Lin-Deletion. In ICALP, pages 226–237, 2006.

23 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
J. Comput. Syst. Sci., 74(3):335–349, 2008.

24 Jon Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan. Segmentation problems.
J. ACM, 51(2):263–280, March 2004.

25 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In ACM STOC, 2017. To appear.

26 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. In ICALP, 2017. To appear.

27 Dana Moshkovitz. The projection games conjecture and the NP-hardness of lnn-
approximating set-cover. Theory of Computing, 11:221–235, 2015.

28 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: Invariance and optimality. Ann. Math., pages 295–341, 2010.

ICALP 2017

79:14 Inapproximability of MEB, MBB, Minimum k-Cut from SSEH

29 Joseph (Seffi) Naor and Yuval Rabani. Tree packing and approximating k-cuts. In ACM-
SIAM SODA, pages 26–27, 2001.

30 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
31 René Peeters. The maximum edge biclique problem is NP-complete. Discrete Appl. Math.,

131(3):651–654, September 2003.
32 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.

In ACM STOC, pages 755–764, 2010.
33 Prasad Raghavendra, David Steurer, and Madhur Tulsiani. Reductions between expansion

problems. In IEEE CCC, pages 64–73, 2012.
34 R. Ravi and Amitabh Sinha. Approximating k-cuts via network strength. In ACM-SIAM

SODA, pages 621–622, 2002.
35 Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM J.

Comput., 24(1):101–108, February 1995.
36 Ola Svensson. Hardness of vertex deletion and project scheduling. Theory of Computing,

9(24):759–781, 2013.
37 Mingyu Xiao, Leizhen Cai, and Andrew Chi-Chih Yao. Tight approximation ratio of a

general greedy splitting algorithm for the minimum k-way cut problem. Algorithmica,
59(4):510–520, 2011.

38 Liang Zhao, Hiroshi Nagamochi, and Toshihide Ibaraki. Approximating the minimum k-
way cut in a graph via minimum 3-way cuts. J. Comb. Optim., 5(4):397–410, 2001.

39 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(6):103–128, 2007.

On the Bit Complexity of Sum-of-Squares Proofs∗

Prasad Raghavendra1 and Benjamin Weitz2

1 UC Berkeley, Berkeley, CA, USA
raghavendra@berkeley.edu

2 UC Berkeley, Berkeley, CA, USA
bsweitz@eecs.berkeley.edu

Abstract
It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if
one exists via the Ellipsoid algorithm. In [16], Ryan O’Donnell notes this widely quoted claim is
not necessarily true. He presents an example of a polynomial system with bounded coefficients
that admits low-degree proofs of non-negativity, but these proofs necessarily involve numbers
with an exponential number of bits, causing the Ellipsoid algorithm to take exponential time. In
this paper we obtain both positive and negative results on the bit complexity of SoS proofs.

First, we propose a sufficient condition on a polynomial system that implies a bound on
the coefficients in an SoS proof. We demonstrate that this sufficient condition is applicable
for common use-cases of the SoS algorithm, such as Max-CSP, Balanced Separator, Max-
Clique, Max-Bisection, and Unit-Vector constraints.

On the negative side, O’Donnell asked whether every polynomial system containing Boolean
constraints admits proofs of polynomial bit complexity. We answer this question in the negative,
giving a counterexample system and non-negative polynomial which has degree two SoS proofs,
but no SoS proof with small coefficients until degree Ω(

√
n).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Sum-of-Squares, Combinatorial Optimization, Proof Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.80

1 Introduction

The Sum of squares (SoS) proof system is a versatile and powerful approach to certifying
polynomial inequalities. SoS certificates can be shown to underlie a vast number of algorithms
in combinatorial optimization. On the one hand, SoS certificates hold the promise of yielding
algorithms that possibly refute the notorious unique games conjecture [3, 2, 10]. On the other
hand, a flurry of recent works have applied SoS proofs to develop algorithms for problems
ranging from constraint satisfaction problems to tensor problems.

To illustrate sum of squares certificates, let us consider the example of the Balanced
Separator problem. Here we are given a graph G = (V,E) and the goal is to find a
balanced cut (S, S) with the minimum number of crossing edges. Like many problems in
combinatorial optimization, it can be reformulated as a low-degree polynomial optimization
problem. Specifically if we associate {0, 1} variables {x1, . . . , xn} for the vertices of the graph

∗ This work partially supported by NSF Graduate Research Fellowship (DGE 1106400), NSF Career
Award, NSF CCF-1407779 and the Alfred. P. Sloan Fellowship.

EA
T

C
S

© Prasad Raghavendra and Benjamin Weitz;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 80; pp. 80:1–80:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

80:2 On the Bit Complexity of Sum-of-Squares Proofs

G then we can rewrite the Balanced Separator problem as follows:

Minimize
∑

(i,j)∈E

(xi − xj)2 subject to
{
x2
i = xi∀i ,

n

3 ≤
∑
i

xi ≤
2n
3

}
.

Here the constraint x2
i = xi ensures xi ∈ {0, 1} while the inequalities enforce the condition

that the cut is balanced. More generally, a low-degree polynomial optimization is of the
form:

Minimize r(x) subject to
equalities P = {pi(x) = 0|i ∈ [n]} and inequalities Q = {qi(x) ≥ 0|i ∈ [m]} .

An SoS certificate of a lower bound r(x) ≥ θ is given by a polynomial identity of the form

r(x)− θ =
∑
i

hi(x)2 +
∑
i∈[m]

 ti∑
j

s2
j (x)

 · qi(x) +
∑
i∈[n]

λi(x)pi(x) .

Notice that for all x satisfying the equalities P and the inequalities Q, the right hand
side of the above identity is manifestly non-negative, thereby certifying that r(x) ≥ θ.
The degree of the SoS certificate is the maximum degree of the polynomials involved, i.e.,
d = max{deg h2

i ,deg s2
jqi,deg λipi}.

The main appeal of SoS certificates for polynomial optimization is that the existence of a
degree d SoS certificate can be formulated as the feasibility of a semidefinite program (SDP).
This is the degree d SoS relaxation first introduced by Shor [18], and expanded upon by later
works of Nesterov [15], Grigoriev and Vorobjov [9], Lasserre [12, 11] and Parrilo [17]. (see,
e.g., [13, 4] for many more details).

The degree d SoS SDP has nO(d) variables, and if the coefficients of p and q are reasonably
bounded (smaller than 2nO(d)), the resulting SDP has a compact description of size nO(d).
From this, several works including those by the authors, asserted that the resulting feasibility
SDP can be solved in time nO(d) using the Ellipsoid algorithm.

In a recent work, O’Donnell [16] observed that this often repeated claim is far from true.
Specifically, O’Donnell exhibited systems of polynomial inequalities with bounded coefficients
such that only degree 2 SoS certificates of non-negativity involve coefficients that are doubly
exponential in size. Thus all SoS certificates need an exponential number of bits to represent
and consequently, the ellipsoid algorithm will incur an exponential running time.

As pointed out by O’Donnell, the issue at hand here is not just that of additive error
in the solution, i.e., the difference between testing feasibility and near-feasibility. Indeed,
semidefinite programming via the ellipsoid algorithm can only test feasibility up to a very small
additive error. However, in a majority of applications of SoS SDP relaxations in combinatorial
optimization, the variables in the underlying polynomial system are explicitly bounded (also
known as Archimedian). Specifically, these include constraints such as {x2

i ≤ 1|i ≤ [n]},
which yield explicit bounds on the values of the variables. In these settings, if there is
an approximate SoS certificate for r(x) ≥ θ, then there exists a proper SoS certificate
for a slightly weaker lower bound r(x) ≥ θ − o(1). Therefore, additive error incurred in
semidefinite programming can often be traded off for a slightly weaker objective value. The
issue highlighted by O’Donnell is far more serious in that the coefficients of the SoS certificate
are too large – thereby directly affecting the runtime of the ellipsoid algorithm.

On a positive note, O’Donnell shows that a polynomial system whose only constraints
are the Boolean constraints {x2

i = xi|i ∈ [n]} always admit SoS certificates with polynomial

P. Raghavendra and B. Weitz 80:3

bit complexity. He proceeds to ask whether all polynomial systems that include Boolean
constraints, potentially among others, always admit bounded SoS certificates.

1.1 Our Results
In this work, we further explore the issue of bit complexity of SoS proofs, and obtain both
positive and negative results.

First, we present an easily verifiable and broadly applicable set of sufficient conditions
under which a polynomial optimization problem has small SoS certificates. Roughly speaking,
we show that polynomial systems with rich sets of solutions have bounded SoS certificates of
non-negativity. Consider a system consisting of polynomial equalities P and inequalities Q.
Our approach consists of looking for assignments S satisfying three criteria (see Definition 5
and Theorem 10 for formal statements).

I Theorem 1. Assume (P,Q, S) satisfies:
1. The assignments S robustly satisfy the inequalities in Q.
2. The polynomial calculus (also called Nullstellensatz) proof system is both complete and

efficient over S. In other words, all degree d polynomial identities over S can be derived
using a degree O(d) polynomial derivation from the equalities P.

3. The assignments S are spectrally rich in that smallest non-zero eigenvalue of their
covariance matrix is at least 2− poly(nd).

Then if r has a degree d proof of non-negativity from P and Q, it also has a degree O(d)
proof of non-negativity with coefficients bounded by 2poly(nd).

We demonstrate the broad applicability of the above set of sufficient conditions by using
them to show upper bounds on bit complexity for Max-CSP, Max-Clique, Matching,
Balanced Separator, Max-Bisection, and optimization over the unit sphere. In each
case, the above sufficient conditions can be verified easily.

The above set of sufficient conditions are widely applicable in combinatorial optimization,
wherein the polynomial system is typically a relaxation of a well-known set of integer solutions.
In such a setup with integer solutions, we observe in Section 3 that spectral richness is an
immediate consequence of the discrete nature of the set of solutions. Therefore, in all these
setups, the only non-trivial thing to verify is the efficiency of the polynomial calculus proof
system.

The work of O’Donnell [16] exhibited a polynomial system with bounded coefficients which
admitted degree 2 SoS certificate, whose coefficients were necessarily doubly-exponential.
However, the variables in this polynomial system were not all Boolean, i.e. did not have the
x2
i = xi constraint. In fact, O’Donnell asked whether every polynomial system with Boolean

constraints admits a small SoS proof. Moreover, the polynomial system in [16] admits a
degree 4 SoS certificate with small bit complexity. This opens up the possibility that one
can effectively reduce the bit-complexity by raising the degree of the proof. For instance, if a
system admits a degree d SoS certificate then does it always admit a degree 2d SoS certificate
with small bit complexity (even under Boolean constraints)? Unfortunately, we refute both
of the above possibilities by exhibiting a counterexample. Formally, we show the following:

I Theorem 2. There exists a system of quadratic equations on n variables such that
The system includes the equation x2

i − xi = 0 for each i ∈ [n].
There exists a polynomial with a degree 2 SoS certificate of non-negativity, albeit with
doubly exponentially large coefficients.
No SoS certificate of degree d ≤

√
n has coefficients smaller than Ω

(
1
nd
· 2exp(

√
n)
)
.

ICALP 2017

80:4 On the Bit Complexity of Sum-of-Squares Proofs

2 Preliminaries

For a set of real polynomials P = {p1, p2, . . . , pm}, we denote their generated ideal in R[x]
by 〈P〉 or 〈p1, . . . , pm〉. We will be working with systems of polynomial constraints, and we
will use the P to denote the equality constraints, and Q to denote the inequality constraints,
i.e. p(x) = 0 and q(x) ≥ 0 for p ∈ P and q ∈ Q. We will usually use S for the set of points
satisfying these constraints. We use R[x]d for the set of polynomials of degree at most d,
and Sd+ for the cone of positive semidefinite d× d matrices. We write vd for the vector of
polynomials whose entries are the elements of the usual monomial basis of R[x]d. Similarly,
we use v(α)d for the vector of reals whose entries are the entries of vd evaluated at α. We
usually omit the dependencies on d as it is clear from context.

2.1 Polynomial Proofs

Let P = {p1, . . . , pn} be a set of polynomials, and let S = {x ∈ Rn|∀p ∈ P : p(x) = 0}. We
define a proof of membership in 〈P〉 as follows:

I Definition 3. We say that r(x) has a derivation from P if there is a polynomial identity
of the form

r(x) =
n∑
i

λi(x)pi(x).

We say that the proof has degree d if maxi{deg λipi} = d.

A set of polynomials forming a derivation is called a Polynomial Calculus (PC) or
Nullstellensatz proof. The above proof system is useful for proving when polynomials are zero
on S, but often we want to prove that they are positive. To that end, let P = {p1, . . . , pn}
and Q = {q1, . . . , qm} be two sets of polynomials, and let S = {x ∈ Rn|∀p ∈ P : p(x) =
0,∀q ∈ Q : q(x) ≥ 0}. We define a proof of non-negativity as follows:

I Definition 4. We say that r(x) has a Sum-of-Squares proof of non-negativity from P and
Q if there is a polynomial identity of the form

r(x) =
t0∑
i

h2
i (x) +

m∑
i

 ti∑
j

s2
j (x)

 qi(x) +
n∑
i

λi(x)pi(x).

We say the proof has degree d if max{deg h2
i , deg s2

jqi, deg λip} = d.

The idea behind this terminology is that if such a proof exists, then r must be non-negative
on S since the first two terms are non-negative, and the last term is zero. We will be
concerned with not just the degree of these proofs, but also their bit complexity. To this
end, we define the following norms on polynomials and proofs: For p(x) ∈ R[x], we write ‖p‖
for the maximum absolute value of coefficients of p in the standard monomial basis, and for
any collection of polynomials P, we write ‖P‖ = maxp∈P ‖p‖. For a vector α ∈ Rn, we also
write ‖α‖ for the maximum absolute value of entries of α, and we write ‖S‖ = maxα∈S ‖α‖.
These norms are usually called infinity norms and denoted ‖ · ‖∞ in other works, but since
we do not use other norms in this work we will omit the subscript. Throughout this paper
we will assume that the solutions α are explicitly bounded by ‖α‖ ≤ 2poly(nd).

P. Raghavendra and B. Weitz 80:5

2.2 Rich Solution Spaces
In this section we define the conditions we require in order to guarantee that SoS proofs from
P and Q have low bit-complexity. For a polynomial system (P,Q) and a set S ⊆ {x | ∀p ∈
P : p(x) = 0}, define the moment matrix as

MS,d := Eα∈S [v(α)dv(α)Td] ,

where the expectation is over the uniform distribution over S. We will omit the subscripts
and write M , if S and d are clear from the context.

I Definition 5. With the above definitions,
We say that S is δ-spectrally rich for (P,Q) up to degree d if every nonzero eigenvalue of
MS,d is at least δ.
We say that (P,Q) is k-complete on S up to degree d if every zero eigenvector c of MS,d

(which can be seen as a degree d polynomial cTvd) has a degree k derivation from P.
We say that S is ε-robust for Q if ∀q ∈ Q,∀α ∈ S : q(α) > ε.

Spectral richness of the solutions S is equivalent to requiring if p(x) is small on S, then
there is a polynomial q which agrees with p on S and that has small coefficients. If (P,Q, S)
satisfies all three conditions then we say that S is (δ, k, ε)-rich for (P,Q) up to degree d. If
1/δ = 2poly(nd), k = O(d), and 1/ε = 2poly(nd) we simply say S is rich for (P,Q) or simply
rich. We choose these bounds because Theorem 10 will imply that any constraints with a
rich solution space has proofs of non-negativity that can be taken to have polynomial bit
complexity.
I Remark. There is nothing special about the uniform distribution on S for these definitions.
In fact, our results hold if there is any distribution over a set S ⊆ {x | ∀p ∈ P : p(x) = 0}
with the above properties. In this work we consider mostly combinatorial problems where S
is finite, and the uniform distribution is sufficient for all of our examples, so we restrict to
this case for simplicity.

Before we get into the proof of the main theorem, we exhibit polynomial systems that
admit rich solutions.

3 Examples with Rich Solution Spaces

In this section we present examples of polynomial systems that admit rich solution spaces.
First, we consider the case S ⊆ {0, 1}n. In this case, the spectral richness is a consequence
of the following easy observation.

I Lemma 6. Let M ∈ SN+ be an integer matrix with |Mij | ≤ B for all i, j ∈ [N]. The
smallest non-zero eigenvalue of M is at least (BN)−N .

Proof. Let A be a full-rank principal minor of M (which must exist because M is PSD and
has a Cholesky decomposition), and for convenience let it be at the upper-left block of M (by
permuting rows and columns if necessary). We claim the least eigenvalue of A lower bounds
the least nonzero eigenvalue of M . Since M is symmetric, there must be a C such that

M =
[

I

C

]
A
[

I CT
]
.

Let P = [I, CT], ρ be the least eigenvalue of A, and x be a unit vector perpendicular to the
zero eigenspace of M . Then we have xTMx = (Px)TA(Px) ≥ ρxTPTPx. Now PTP has

ICALP 2017

80:6 On the Bit Complexity of Sum-of-Squares Proofs

the same nonzero eigenvalues as PPT = I + CTC � I, and the zero eigenspace of PTP is
the same as the zero eigenspace of M . Because x is perpendicular to the zero eigenspace,
xTPTPx ≥ 1, and so every nonzero eigenvalue of M is at least ρ. Now A is a full-rank
bounded integer matrix with dimension at most N . The magnitude of its determinant is at
least 1 and all eigenvalues are at most N ·B. Therefore, its least eigenvalue must be at least
(BN)−N in magnitude. J

I Lemma 7. Let P and Q be such that S ⊆ {0, 1}n. Then S is δ-spectrally rich with
1
δ = 2poly(nd).

Proof. Recall M = Eα∈S [v(α)v(α)T], and note that |S| ·M is an integer O(nd) × O(nd)
matrix with entries at most 2n. The proof follows by applying Lemma 6. J

To prove completeness, we typically want to show two things. First, that every degree d
polynomial in 〈P〉 has a degree at most k derivation. Second, that there are no polynomials
outside 〈P〉 that are zero on S. This second condition can be thought of as saying that the
set of equations P is somehow maximal, i.e., if there are extra polynomial equalities implied
by Q, they should be included in P. Here we consider a few examples.

Max-CSP: P = {x2
i − xi|i ∈ [n]}

Here S = {0, 1}n. Any polynomial p of degree d can be multilinearized one monomial at a
time. Specifically, we can find degree d multilinear p∗ such that p− p∗ = 0 has a degree d
derivation from P. Furthermore, the multilinear polynomial p∗ is zero over S if and only if
all its coefficients are zero. Thus P is d-complete up to degree d for all d ∈ N.

Max-Clique: P = {x2
i − xi|i ∈ [n]} ∪ {xixj|(i, j) /∈ E}

Here S is the set of all cliques in the graph. Suppose p is a polynomial that is identically
zero over S. Without loss of generality, we may assume p is multilinear, if otherwise we can
multilinearize it using {x2

i − xi|i ∈ [n]}. For a multilinear polynomial p(x) =
∑
α⊂[n] p̂αxα,

we claim that if p(x) = 0∀x ∈ S then for all cliques α ⊂ [n], the corresponding coefficient
p̂α = 0, i.e., all non-zero coefficients of p are non-cliques. Suppose not, then let α be the
smallest clique with p̂α 6= 0. Then, we will have p(Iα) = p̂α 6= 0, a contradiction. Since all
coefficients of p are non-cliques, each monomial in p can be eliminated using an appropriate
polynomial from {xixj |(i, j) /∈ E}.

I Remark. More generally, the above two cases are special cases of the following general
setup: Q is empty, and P is a Gröbner basis. A Gröbner basis for an ideal is a generating set
of polynomials that allow a well-defined multivariate polynomial division (see [1] for more
information). Computing the Gröbner basis is often the first step in practical polynomial
equation solvers, and we note the following easy lemma:

I Lemma 8. If Q = ∅ and P is a Gröbner basis for 〈P〉, then S is d-complete up to degree d.

Proof. If P is a Gröbner basis, then every degree d polynomial in 〈P〉 has a degree d
derivation via multivariate division. Because Q = ∅, the polynomials that are zero on S are
exactly the polynomials in 〈P〉. J

P. Raghavendra and B. Weitz 80:7

Balanced Separator: P = {x2
i − xi|i ∈ [n]}, Q = {2n/3−

∑
i xi,

∑
i xi − n/3}

The solution space S here is all bit strings with hamming weight between n/3 and 2n/3.
Suppose r is a polynomial that is zero on S. Without loss of generality, we may assume that
r is multilinear by using the constraints {x2

i −xi|i ∈ [n]}. Suppose r is a non-zero multilinear
polynomial which is zero on S, then its symmetrized version r∗ = 1

n!
∑
σ∈Sn σr must also

be zero on S, where σ acts by permuting the variable names. However, r∗ is a univariate
polynomial in

∑
i xi (modulo the Boolean constraints). This univariate polynomial has n/3

zeros, and thus must have degree at least n/3. Since symmetrizing does not change degree,
we conclude that r also has degree at least n/3. Thus every non-zero multilinear polynomial
that is zero on S but not in 〈P〉, has degree at least n/3. Therefore the system is d-complete
up to degree d for d ≤ n

3 . The polynomials in Q can be perturbed by 1/2 to make them
1/2-robust, and thus S is rich for (P,Q).

Matching: P = {x2
ij − xij |i, j ∈ [n]} ∪ {

∑
i xij − 1|i ∈ [n]} ∪ {xijxik|i, j, k ∈ [n]}

These constraints are 2d-complete as proven in [5].

Max-Bisection: P = {x2
i − xi|i ∈ [n]} ∪ {

∑
i xi − n/2}

We will prove in Section 6 that these constraints are d-complete. The proof will be very
similar to the one for Matching, due to the similar symmetry of the constraints.

Unit-Vector: P = {
∑

i x2
i − 1}

Here S = {x : ‖x‖ = 1}. This constraint appears frequently in tensor norm problems as a
way to enforce scaling. Since Q = ∅, it is clearly robust. It may be well-known that P is
d-complete, but we could not find a reference so we record it here for completeness. Let p(x)
be any degree d polynomial which is zero on the unit sphere, and define p0(x) = p(x)+p(−x).
Clearly p0 is also zero on the unit sphere, with degree k = 2b(d+1)/2c. Note that p0 has only
terms of even degree. Define a sequence of polynomials {pi}i∈{0,...,k} as follows. Define qi to
be the part of pi which has degree strictly less than k, and let pi+1 = pi + qi · (

∑
i x

2
i − 1).

Then each pi is zero on the unit sphere and has no monomials of degree strictly less than 2i.
Thus pk/2 is homogeneous of degree k. But then p(tx) = tkpk(x) = 0 for any unit vector x
and t > 0, and thus pk(x) must be the zero polynomial. This implies that p0 is a multiple of∑
i x

2
i − 1. The same logic shows that p(x)− p(−x) is also a multiple of

∑
i x

2
i − 1, and thus

so is p(x). Now 〈P〉 is principal, so every degree d polynomial in it has a degree d derivation,
so (P,Q, S) is d-complete.

To prove spectral-richness, we note that in [7] the author gives an exact formula for
each entry of the matrix M =

∫
S
p(x) for any polynomial p. The formulas imply that

(n+ d)!π−n/2M is an integer matrix with entries (very loosely) bounded by (n+ d)!d!2n. By
Lemma 6, we conclude that S is δ-spectrally rich with 1/δ = 2poly(nd).

We collect the examples discussed in this section here:

I Corollary 9. The following constraints admit rich solutions:
Max-CSP: P = {x2

i − xi|i ∈ [n]}.
Max-Clique: P = {x2

i − xi|i ∈ [n]} ∪ {xixj |(i, j) /∈ E}.
Balanced Separator: P = {x2

i − xi|i ∈ [n]}, Q = {2n/3−
∑
i xi,

∑
i xi − n/3}.

Matching: P = {x2
ij − xij |i, j ∈ [n]} ∪ {

∑
i xij − 1|i ∈ [n]} ∪ {xijxik|i, j, k ∈ [n]}.

Max-Bisection: P = {x2
i − xi|i ∈ [n]} ∪ {

∑
i xi − n/2}.

Unit-Vector: P = {
∑
i x

2
i − 1}.

ICALP 2017

80:8 On the Bit Complexity of Sum-of-Squares Proofs

3.1 Limitations
While Theorem 10 allows us to prove that many different systems of polynomial constraints
have well-behaved SoS proofs, there are a few areas where it comes up short. Most noticeably,
to contain a rich set of solutions the solution space has to be nonempty. This can be a
problem when trying to find SoS proofs of infeasibility. For example, one common technique
is to introduce lower bounds on an objective function f(x) of a maximization problem as
constraints and attempt to use SoS to find a refutation, i.e. a proof of non-negativity for
the constant polynomial −1. We are unable to show that these proofs can be taken to have
polynomial bit complexity since they have empty solution spaces. As another example, we
are unable to use our framework to show that refutations of the knapsack constraints use only
polynomially many bits, even though it is clear by simply examining these known refutations
that they only involve small coefficients.

4 Rich Solution Spaces Yield Bounded SoS Proofs

In this section we prove our main theorem:

I Theorem 10. Let P = {p1, . . . , pm} and Q = {q1, . . . , q`} be sets of polynomials with
S ⊆ {α ∈ Rn|∀p ∈ P : p(α) = 0}. Assume that the set S is (k, δ, ε)-rich for (P,Q).

Let r(x) be a polynomial non-negative on S, and assume r has a degree d sum-of-squares
proof of non-negativity

r(x) =
t0∑
i=1

h2
i +

∑̀
i=1

 ti∑
j=1

s2
j

 qi +
m∑
i=1

λipi.

Then r has a degree k sum-of-squares proof of non-negativity such that the coefficients of
every polynomial appearing in the proof are bounded by 2poly(nk,log 1

δ ,log 1
ε). In particular, if S

is rich then every coefficient can be written down with only poly(nd) bits.

Proof. First, we rewrite the proof into a more convenient form before proving bounds on
each individual term. Because the elements of v are a basis for R[x]d, every polynomial in
the proof can be expressed as cTv, where c is a vector of reals:

r(x) =
t0∑
i=1

(cTi v)2 +
∑̀
i=1

 ti∑
j=1

(dTijv)2

 qi +
m∑
i=1

λipi

= 〈C,vvT 〉+
∑̀
i=1
〈Di,vvT 〉qi +

m∑
i=1

λipi .

for PSD matrices C, D1, . . . , D`. Next, we average this polynomial identity over all the
points α ∈ S:

E
α∈S

[r(α)] = 〈C, E
α∈S

[v(α)v(α)T]〉+
∑̀
i=1
〈Di, E

α∈S
[qi(α)v(α)v(α)T]〉+ 0 .

The LHS is at most poly(‖r‖, ‖S‖), and the RHS is a sum of positive numbers, so the LHS is
a bound on each term of the RHS. We would like to say that since S is δ-spectrally rich, the
first term is at least δTr(C). Unfortunately the averaged matrix may have zero eigenvectors,
and it is possible that C could have very large eigenvalues in these directions. However

P. Raghavendra and B. Weitz 80:9

these eigenvectors must correspond to polynomials that are zero on S. Because (P,Q, S) is
complete, these can be absorbed into the final term. More formally, let Π =

∑
u uu

T be the
projector onto the zero eigenspace of M = Eα∈S [v(α)v(α)T]. Because (P,Q, S) is complete,
for each u we have a degree k derivation uTv =

∑
i σuipi. Then ΠvvT =

∑
u(uTv)uvT .

Thus we can write

〈C,vvT 〉 = 〈C, (Π + Π⊥)vvT (Π + Π⊥)〉

= 〈C,Π⊥vvTΠ⊥〉+
∑
u

uTv
(
〈C,Π⊥vuT + vuTΠ⊥ + vuTΠ〉

)
= 〈Π⊥CΠ⊥,vvT 〉+

∑
i

σipi.

Doing the same for the other terms and setting C ′ = Π⊥CΠ⊥ and similarly for D′i, we get a
new proof:

r(x) = 〈C ′,vvT 〉+
∑̀
i=1
〈D′i,vvT 〉qi +

m∑
i=1

λ′ipi.

Now after averaging over S, the zero eigenspaces of C ′ and each D′i are contained in the zero
eigenspace of M . Furthermore, ε-robustness implies, for each i,

〈D′i, E
α∈S

[v(α)v(α)T qi(α)]〉 ≥ ε〈D′i, E
α∈S

[v(α)v(α)T]〉 .

Taken with the δ-spectral richness, we have

poly(‖r‖, ‖S‖) ≥ δTr(C ′) +
∑̀
i=1

εδTr(D′i).

The Frobenius norm of any PSD matrix is bounded by its trace, so we conclude that C ′ and
each D′i have entries bounded by poly(‖r‖, ‖S‖, 1

δ ,
1
ε).

The only thing left to do is to bound the coefficients λ′i, but this is easy because the SoS
proof is linear in these coefficients. If we imagine the coefficients of the λ′i as variables, then
the linear system induced by the polynomial identity

r(x)− 〈C ′,vvT 〉 −
∑̀
i=1
〈D′i,vvT 〉 =

m∑
i=1

λ′ipi

is clearly feasible, and the coefficients of the LHS are bounded by poly(‖r‖, ‖S‖, 1
δ ,

1
ε). There

are O(nk) variables, so by Cramer’s rule, the coefficients of the λ′i can be taken to be bounded
by poly(‖P‖nk , 1

δ ,
1
ε , ‖r‖, ‖S‖, n!). ‖P‖, ‖r‖ ≤ 2poly(nd) as they are considered part of the

input, ‖S‖ ≤ 2poly(nd) by the explicitly bounded assumption, and d ≤ k. Thus, this bound is
at most 2poly(nk,log 1

δ ,log 1
ε). J

5 Boolean Systems With No Small-Coefficient Proofs

In [16], the author gives an example of a polynomial system for which degree two SoS
proofs can certify non-negativity of a certain polynomial, but the proofs necessarily involves
coefficients of doubly-exponential size. However, there are two weaknesses in his example
system. First, it is not a Boolean one, i.e. it contains variables yi for which the constraint
y2
i − yi = 0 is not present in the constraints. Many practical optimization problems have

ICALP 2017

80:10 On the Bit Complexity of Sum-of-Squares Proofs

Boolean constraints, and in [16], the author hoped that having those constraints might suffice
to imply that all proofs could have small bit complexity. Second, while the degree two proofs
must have exponential bit complexity, there were degree four proofs of non-negativity with
polynomial bit complexity. In this section, we strengthen his counterexample, giving an
example of a Boolean system with n variables for which there is a polynomial that has a
degree two proof of non-negativity, but no proof with polynomial bit complexity until degree
Ω(
√
n).

5.1 A First Example
The original example given in [16] essentially contains the following system whose repeated
squaring is responsible for the blowup of the coefficients in the proofs:

y2
1 − y2 = 0, y2

2 − y3 = 0, . . . , y2
n−1 − yn = 0, y2

n = 0.

Clearly, the only solution to the system is (0, 0, 0, . . . , 0), and therefore the polynomial ε− y1
must be non-negative over the solution space for any ε > 0. It is not as obvious whether or
not an SoS proof of this non-negativity exists. It turns out that there is a degree two SoS
proof as follows:

ε− y1 ≡
(√

ε

n
−
(n

4ε

)1/2
y1

)2

+
(√

ε

n
−
(n

4ε

)3/2
y2

)2

+
(√

ε

n
−
(n

4ε

)7/2
y3

)2

+

+ · · ·+
(√

ε

n
−
(n

4ε

)(2n−1)/2
yn

)2

. (∗)

where the ≡ is equality modulo the ideal generated by the constraints. Of course, this proof
involves coefficients of doubly-exponential size, but one can prove that they are required. We
will take ε < 1/2 for simplicity. We will define a linear functional φ : R[Y]d → R satisfying
the following:

φ[ε− y1] = −ε
φ[p2] ≥ 0 for any p2 of degree at most d
φ[σi(y2

i − yi+1)] = 0 for any i ≤ n− 1 and σi of degree at most d− 2
|φ[λy2

n]| ≤ (2ε)2n−1
nd‖λ‖.

If such a φ exists, then for any degree d SoS proof of non-negativity

ε− y1 =
∑
i

hi(y)2 +
n−1∑
i=1

σi(y2
i − yi+1) + λ · y2

n,

apply φ to both sides. We obtain −ε ≤ P + 0 + φ[λy2
n], where P ≥ 0. Because |φ[λy2

n]| ≤
(2ε)2n−1

nd‖λ‖, λ must contain a coefficient of size at least Ω(1
nd

(1
2ε
)2n).

To show that such a φ exists, we define it as follows. By the constraints, every monomial
is equivalent to some power of y1. For example, y1y2y3 ≡ y7

1 . More generally, the constraints

imply that
∏n
i=1 y

βi
i = y

∑n

j=1
2j−1βj

1 . Define φ by,

φ

(
n∏
i=1

yβii

)
= (2ε)

∑
i

2i−1βi .

One can easily check that this φ satisfies the above. Note that none of the variables yi in the
above system are Boolean, which we achieve in the upcoming section.

P. Raghavendra and B. Weitz 80:11

5.2 A Boolean System
One simple way to try to make the system Boolean is to just add the constraints y2

i = yi to
the system. Unfortunately, in that case it is easy to prove that yi − yj = 0 for each i and j,
and of course yn = y2

n = 0. It is too easy for SoS to figure out what each yi should look like.
Previously, the variables were unconstrained in any way, and we want to imitate that. We
draw inspiration from the Knapsack problem, and we instead replace each instance of the
variable yi with a sum of 2k Boolean variables

yi →
∑
j

wij − k,

and we consider the non-negative polynomial ε− (
∑
j w1j − k). Clearly there is a degree two

proof of non-negativity for this polynomial since we can just replace each instance of yi with∑
j wij − k in (∗).
It remains to show that there are no other proofs that have only small coefficients. Here,

we use the fact that the Knapsack problem is hard for SoS: there is no SoS proof of degree
less than Ω(k) that

∑
j wij−k is not equal to any number r ∈ (0, 1) [8]. This allows us to use

the Knapsack pseudodistribution to "pretend" that
∑
j wij − k = (2ε)2i−1 . Specifically, for

each r ∈ (0, 1), there is a linear functional φr defined on polynomials of 2k Boolean variables
which satisfies

φr[σij(w2
ij − wij)] = 0 for any σij up to degree O(k)

φr[λ · ((
∑
j wij − k)− r)] = 0 for any polynomial λ up to degree O(k)

φr[p2] ≥ 0 for any polynomial p2 of degree at most O(k).
Now, take the linear functional Φ defined on each polynomials of 2kn variables defined in
the following way: Let T = T1 ∪ T2 ∪ · · · ∪ Tn where Ti is a multiset that contains only the
variables corresponding to yi, and let wT denote the associated monomial. Then define

Φ[wT] = φ2ε(wT1)φ(2ε)2(wT2) . . . φ(2ε)2n−1 (wTn).

Clearly Φ is non-negative on squares and Φ[σij(w2
ij −wij)] = 0 for any σij up to degree Ω(k).

Because Φ[λ(
∑
j wij − k)] = Φ[(2ε)2i−1

λ], Φ also satisfies Φ[λ((
∑
j wij − k)2 − (

∑
j wi+1,j −

k))] = 0 for each λ and 1 ≤ i ≤ n− 1. Finally, because each variable is Boolean, Φ of any
monomial is at most one, so for any monomial wM , Φ[wM (

∑
j wnj −k)2] = Φ[(2ε)2n−1

wM] ≤
(2ε)2n−1 . There are at most (nk)d monomials, so Φ[λ(

∑
j wnj − k)2] ≤ (nk)d(2ε)2n−1‖λ‖.

Just as before, the existence of Φ implies that any degree d proof of non-negativity for
ε− (

∑
j w1j − k) must contain coefficients of size at least Ω(1

(nk)d ·
(1

2ε
)2n). If we set k = n,

then there are n2 variables and no proof of non-negativity with coefficients smaller than
doubly-exponential until degree n. This proves Theorem 2.

6 Max-Bisection Constraints

In this section, we prove our earlier claim that the Max-Bisection constraints admit rich
solutions. Recall the constraints:

P(n) =
{
x2
i − xi|i ∈ [2n]

}
∪

{∑
i

xi − n

}
.

Recall that to prove S is rich, we have to prove that it is spectrally rich, robust, and complete.
Since the solution space lies in the hypercube, it is spectrally rich by Lemma 7, and it is
clearly robust since Q is empty. It remains to prove that it is complete for some k. This
proof follows a very similar path to [5], due to the similar symmetry of the constraints.

ICALP 2017

80:12 On the Bit Complexity of Sum-of-Squares Proofs

I Lemma 11. P(n) is d-complete for any d ≤ n.

I Remark. A reviewer has pointed out that this is already essentially known by combining
Corollary B.6 of [14] with Theorem 3.5 of [6]. We include a proof here for completeness.

Proof. Let S(n) denote the solution space of P(n), and let M = Eα∈S [v(α)v(α)T]. Any zero
eigenvector c of M can be associated with a polynomial cTv. Since cTMc = Eα∈S [(cT v(α))2]
and cTMc = 0, we must have cT v(α) = 0 for each α ∈ S. We argue that any degree d
polynomial which is identically zero on S(n) must have a degree d derivation from P(n).

We proceed by induction on d. If d = 0, the only constant polynomial zero on S(n) is the
zero polynomial, which has the trivial derivation. Now consider the case of d = c+ 1. We
proceed in two parts. First, if r is fully symmetric, we show that it has a degree d derivation.
Secondly, for any polynomial p which is zero on S(n), we prove that p− 1

(2n)!
∑
σ∈Sn σp has

a degree d derivation from P, where σ acts on p by permuting the labels of the variables.
Taken together, these two facts imply that r has a degree d derivation from P(n).

To prove the first part, note that a symmetric polynomial r is a linear combination of the
elementary symmetric polynomials e1, . . . , ec, and it is clear that ek(x) can be derived by
taking the polynomial (

∑
i xi − n)k, reducing it to multilinear using the Boolean constraints,

and then reducing by el(x) for each l < k. This will result in a constant polynomial, which
must be the zero polynomial since we are only adding polynomials which are zero on S(n),
so the resulting polynomial must be zero on S(n).

To prove the second part, let σij be the transposition of labels i and j, and consider the
polynomial r − σijr. Writing r = rixi + rjxj + rijxixj + qij , where none of ri,rj ,rij , nor qij
depend on xi or xj , we can rewrite

r − σijr = (ri − rj)(xi − xj).

Now because r − σijr evaluates to zero on any Boolean string with exactly n ones, if we
set xi = 1 and xj = 0, we know that ri − rj is a polynomial that must evaluate to zero on
any Boolean string with exactly n− 1 ones. Because deg(ri − rj) = d− 1, by the inductive
hypothesis, ri− rj has a degree d− 1 proof from P(n− 1) (since d ≤ n, clearly d− 1 ≤ n− 1).
This implies that (ri − rj)(xi − xj) has a degree d− 1 proof from P(n):

(ri − rj)(xi − xj) =

∑
t 6=i,j

λt(x2
t − xt) + λ

∑
t 6=i,j

xt − (n− 1)

 (xi − xj)

=
∑
t

λ′t(x2
t − xt) + λ

∑
t 6=i,j

xt − (n− 1) + (xi + xj − 1)

 (xi − xj)

=
∑
t

λ′t(x2
t − xt) + λ′

(∑
t

xt − n

)

where we used the fact that (xi+xj−1)(xi−xj)−(x2
i −xi)+(x2

j−xj) = 0. The degree of this
derivation is at most d because each λt has degree at most d− 3, and λ′t = λt(xi − xj), and
similarly for λ. Thus the inductive hypothesis implies that r− σijr has a degree d derivation,
and since transpositions generate the symmetric group, this implies that r − 1

(2n)!
∑
σ∈Sn σr

has a degree d proof from P(n). J

I Remark. In this example, P is not a Gröbner basis for its ideal 〈P〉. Indeed, the Gröbner
basis for this ideal has exponential size. This is an example where our framework is applicable,
even though Gröbner bases are intractable to compute.

P. Raghavendra and B. Weitz 80:13

References
1 William Adams and Philippe Loustaunau. An Introduction to Gröbner Bases. American

Mathematical Society, 1994.
2 B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies

via global correlation. In Proc. FOCS, pages 472–481. IEEE, 2011.
3 Boaz Barak, Fernando G. S. L. Brandao, AramW. Harrow, Jonathan Kelner, David Steurer,

and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In Pro-
ceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC’12,
pages 307–326, New York, NY, USA, 2012. ACM. doi:10.1145/2213977.2214006.

4 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal al-
gorithms. In Proceedings of the 2014 International Congress of Mathematicians. Interna-
tional Mathematical Union, 2014.

5 Gábor Braun, Jonah Brown-Cohen, Arefin Huq, Sebastian Pokutta, Prasad Raghavendra,
Aurko Roy, Benjamin Weitz, and Daniel Zink. The Matching Problem Has No Small
Symmetric SDP. In Proc. of the 27th Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA’16), pages 1067–1078. SIAM, 2016. URL: http://dl.acm.org/citation.cfm?id=
2884435.2884510.

6 Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the boolean
cube. In Proc. of the 31st Conf. on Computational Complexity (CCC’16), LIPIcs, pages
16:1–16:13, Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.CCC.2016.16.

7 Gerald B. Folland. How to integrate a polynomial over a sphere. The American Mathem-
atical Monthly, 108(5):446–448, 2001. URL: http://www.jstor.org/stable/2695802.

8 D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. computational
complexity, 10(2):139–154, 2001. doi:10.1007/s00037-001-8192-0.

9 Dima Grigoriev and Nicolai Vorobjov. Complexity of Null-and Positivstellensatz proofs.
Annals of Pure and Applied Logic, 113(1-3):153–160, 2001.

10 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with
PSD objectives. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 482–491, 2011. doi:
10.1109/FOCS.2011.36.

11 Jean B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization, 11(3):796–817, 2001.

12 Jean Bernard Lasserre. Optimisation globale et théorie des moments. Comptes Rendus de
l’Académie des Sciences-Series I-Mathematics, 331(11):929–934, 2000.

13 Monique Laurent. Sums of squares, moment matrices and optimization over polynomials.
In Emerging applications of algebraic geometry, pages 157–270. Springer, 2009.

14 Troy Lee, Anupam Prakash, Ronald de Wolf, and Henry Yuen. On the sum-of-squares de-
gree of symmetric quadratic functions. In Proc. of the 31st Conf. on Computational Com-
plexity (CCC’16), LIPIcs, pages 17:1–17:31, Germany, 2016. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2016.17.

15 Yurii Nesterov. Squared functional systems and optimization problems. In High perform-
ance optimization, pages 405–440. Springer, 2000.

16 Ryan O’Donnell. SOS is not obviously automatizable, even approximately. Innovations in
Theoretical Computer Science (ITCS), 2017.

17 Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

18 Naum Z. Shor. Class of global minimum bounds of polynomial functions. Cybernetics,
23(6):731–734, 1987.

ICALP 2017

http://dx.doi.org/10.1145/2213977.2214006
http://dl.acm.org/citation.cfm?id=2884435.2884510
http://dl.acm.org/citation.cfm?id=2884435.2884510
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.16
http://www.jstor.org/stable/2695802
http://dx.doi.org/10.1007/s00037-001-8192-0
http://dx.doi.org/10.1109/FOCS.2011.36
http://dx.doi.org/10.1109/FOCS.2011.36
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.17

The Dependent Doors Problem: An Investigation
into Sequential Decisions without Feedback∗†

Amos Korman1 and Yoav Rodeh2

1 CNRS and University Paris Diderot, Paris, France
amos.korman@irif.fr

2 Weizmann Institute of Science, Rehovot, Israel
yoav.rodeh@gmail.com

Abstract
We introduce the dependent doors problem as an abstraction for situations in which one must
perform a sequence of possibly dependent decisions, without receiving feedback information on
the effectiveness of previously made actions. Informally, the problem considers a set of d doors
that are initially closed, and the aim is to open all of them as fast as possible. To open a door,
the algorithm knocks on it and it might open or not according to some probability distribution.
This distribution may depend on which other doors are currently open, as well as on which
other doors were open during each of the previous knocks on that door. The algorithm aims
to minimize the expected time until all doors open. Crucially, it must act at any time without
knowing whether or which other doors have already opened. In this work, we focus on scenarios
where dependencies between doors are both positively correlated and acyclic.

The fundamental distribution of a door describes the probability it opens in the best of condi-
tions (with respect to other doors being open or closed). We show that if in two configurations of
d doors corresponding doors share the same fundamental distribution, then these configurations
have the same optimal running time up to a universal constant, no matter what are the dependen-
cies between doors and what are the distributions. We also identify algorithms that are optimal
up to a universal constant factor. For the case in which all doors share the same fundamental
distribution we additionally provide a simpler algorithm, and a formula to calculate its running
time. We furthermore analyse the price of lacking feedback for several configurations governed
by standard fundamental distributions. In particular, we show that the price is logarithmic in d
for memoryless doors, but can potentially grow to be linear in d for other distributions.

We then turn our attention to investigate precise bounds. Even for the case of two doors,
identifying the optimal sequence is an intriguing combinatorial question. Here, we study the case
of two cascading memoryless doors. That is, the first door opens on each knock independently
with probability p1. The second door can only open if the first door is open, in which case it will
open on each knock independently with probability p2. We solve this problem almost completely
by identifying algorithms that are optimal up to an additive term of 1.

1998 ACM Subject Classification F.1.2 Modes of Computation, F.2.2 Sequencing and Schedul-
ing

Keywords and phrases No Feedback, Sequential Decisions, Probabilistic Environment, Explora-
tion and Exploitation, Golden Ratio

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.81

∗ The full version of this paper appears in https://arxiv.org/abs/1704.06096.
† This work has received funding from the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No 648032).

EA
T

C
S

© Amos Korman and Yoav Rodeh;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 81; pp. 81:1–81:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.81
https://arxiv.org/abs/1704.06096
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

81:2 The Dependents Doors Problem

1 Introduction

Often it is the case that one must accomplish multiple tasks whose success probabilities are
dependent on each other. In many cases, failure to achieve one task will tend to have a more
negative affect on the success probabilities of other tasks. In general, such dependencies
may be quite complex, and balancing the work load between different tasks becomes a
computational challenge. The situation is further complicated if the ability to detect whether
a task has been accomplished is limited. For example, if task B highly depends on task A
then until A is accomplished, all efforts invested in B may be completely wasted. How should
one divide the effort between these tasks if feedback on the success of A is not available?

In this preliminary work we propose a setting that captures some of the fundamental
challenges that are inherent to the process of decision making without feedback. We
introduce the dependent doors problem, informally described as follows. There are d ≥ 2
doors (representing tasks) which are initially closed, and the aim is to open all of them as
fast as possible. To open a door, the algorithm can “knock” on it and it might open or
not according to some governing probability distribution, that may depend on other doors
being open or closed1. We focus on settings in which doors are positively correlated, which
informally means that the probability of opening a door is never decreased if another door is
open. The governing distributions and their dependencies are known to the algorithm in
advance. Crucially, however, during the execution, it gets no direct feedback on whether or
not a door has opened unless all d doors have opened, in which case the task is completed.

This research has actually originated from our research on heuristic search on trees [4].
Consider a tree of depth d with a treasure placed at one of its leaves. At each step the
algorithm can “check” a vertex, which is child of an already checked vertex. Moreover, for
each level of the tree, the algorithm has a way to compare the previously checked vertices on
that level. This comparison has the property that if the ancestor of the treasure on that level
was already checked, then it will necessarily be considered as the “best” on that level. Note,
however, that unless we checked all the vertices on a given level, we can never be sure that
the vertex considered as the best among checked vertices in the level is indeed the correct
one. With such a guarantee, and assuming that the algorithm gets no other feedback from
checked vertices, any reasonable algorithm that is about to check a vertex on a given level,
will always choose to check a child of the current best vertex on the level above it. Therefore,
the algorithm can be described as a sequence of levels to inspect. Moreover, if we know the
different distributions involved, then we are exactly at the situation of the dependent doors
problem. See the full version for more details on this example.

Another manifestation of d dependent doors can arise in the context of cryptography.
Think about a sequence of d cascading encryptions, and separate decryption protocols to
attack each of the encryptions. Investing more efforts in decrypting the i’th encryption would
increase the chances of breaking it, but only if previous encryptions where already broken.
On the other hand, we get no feedback on an encryption being broken unless all of them are.

The case of two doors can serve as an abstraction for exploration vs. exploitation problems,
where it is typically the case that deficient performances on the exploration part may result
in much waste on the exploitation part [10, 17]. It can also be seen as the question of balance
between searching and verifying in algorithms that can be partitioned thus [1, 15]. In both

1 Actually, the distribution associated with some door i may depend on the state of other doors (being
open or closed) not only at the current knock, but also at the time of each of the previous knocks on
door i.

A. Korman and Y. Rodeh 81:3

examples, there may be partial or even no feedback in the sense that we don’t know that the
first procedure succeeded unless the second one also succeeds.

For simplicity, we concentrate on scenarios in which the dependencies are acyclic. That is,
if we draw the directed dependency graph between doors, then this graph does not contain
any directed cycles. The examples of searching and verifying and the heuristic search on
trees can both be viewed as acyclic. Moreover, despite the fact that many configurations are
not purely acyclic, one can sometimes obtain a useful approximation that is.

To illustrate the problem, consider the following presumably simple case of two dependent
memoryless doors. The first door opens on each knock independently with probability 1/2.
The second door can only open if the first door is open, in which case it opens on each knock
independently, with probability 1/2. What is the sequence of knocks that minimizes the
expected time to open both doors, remembering that we don’t know when door 1 opens? It is
easy to see that the alternating sequence 1, 2, 1, 2, 1, 2, . . . results in 6 knocks in expectation.
Computer simulations indicate that the best sequence gives a little more than 5.8 and starts
with 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2. Applied to this particular scenario, our theoretical
lower bound gives 5.747, and our upper bound gives a sequence with expected time 5.832.

1.1 Context and Related Work
This paper falls under the framework of decision making under uncertainty, a large research
subject that has received significant amount of attention from researchers in various disciplines,
including computer science, operational research, biology, sociology, economy, and even
psychology and cognition, see, e.g., [2, 3, 5, 6, 7, 8, 9, 16].

Performing despite limited feedback would fit the framework of reinforced learning [17]
and is inherent to the study of exploration vs. exploitation type of problems, including
Multi-Armed Bandit problems [10]. In this paper we study the impact of having no feedback
whatsoever. Understanding this extreme scenario may serve as an approximation for cases
where feedback is highly restricted, or limited in its impact. For example, if it turns out that
the price of lacking feedback is small, then it may well be worth to avoid investing efforts in
complex methods for utilizing the partial feedback.

Of particular interest is the case of two doors. As mentioned, difficulties resulting from
the lack of feedback can arise when one aims to find a solution by alternating between
two subroutines: Producing promising candidate solutions and verifying these candidates.
Numerous strategies are based on this interplay, including heuristics based on brute force or
trail and error approaches [1, 15], sample and predict approaches [11, 14, 17], iterative local
algorithms [12, 13], and many others. Finding strategies for efficiently balancing these two
tasks can be therefore applicable.

1.2 Setting
There are d ≥ 2 doors and each door can be either open or closed. Doors start closed, and
once a door opens it never closes. To open a door, an algorithm can knock on it and it might
open or not according to some probability distribution. The goal is to minimize the expected
number of knocks until all doors open. Crucially, the algorithm has no feedback on whether
or not a door has opened, unless all doors have opened, in which case the task is completed.

The probability that a door opens may depend on the state of other doors (being open or
closed) at the time of the current knock as well as on their state during each of the previous
knocks on the door. For example, the probability that a certain knock at door i succeeds
may depend on the number of previous knocks on door i, but counting only those that were

ICALP 2017

81:4 The Dependents Doors Problem

made while some other specific door j was open. The idea behind this definition is that the
more time we invest in opening a door the more likely it is to open, and the quality of each
knock depends on what is the state of the doors it depends on at the time of the knock.

Below we provide a semi-formal description of the setting. The level of detail is sufficient
to understand the content of the main text, which is mainly concerned with independent and
cascading configurations. The reader interested in a more formal description of the model is
referred to the full version.

A specific setting of doors is called a configuration (normally denoted C). This includes
a description of all dependencies between doors and the resulting probability distributions.
In this paper we assume that the dependency graph of the doors is acyclic, and so we may
assume that a configuration describes an ordering of the doors, such that each door depends
only on lower index doors. Furthermore, we assume that the correlation between doors is
positive, i.e., a door being open can only improve the chances of other doors to open.

Perhaps the simplest configuration is when all doors are independent of each other. In this
case, door i can be associated with a function pi : N→ [0, 1], where pi(n) is the probability
that door i is not open after knocking on it n times. Another family of acyclic configurations
are cascading configurations. Here, door i cannot open unless all doors of lower index are
already open. In this case, the configuration can again be described by a set of functions
{pi}di=1, where pi(n) describes the probability that door i is not open after knocking on it n
times, where the count starts only after door i− 1 is already open.

In general, given a configuration, each door i defines a non-decreasing function pi : N→
[0, 1], called the fundamental distribution of the door, where pi(n) is the probability that the
door is not open after knocking on it n times in the best of conditions, i.e., assuming all
doors of lower index are open. In the case of independent and cascading configurations, the
fundamental distribution pi coincides with the functions mentioned above. Two doors are
similar if they have the same fundamental distribution. Two configurations are similar if for
every i, door i of the first configuration is similar to door i of the second.

When designing an algorithm, we will assume that the configuration it is going to run in
is known. As there is no feedback, a deterministic algorithm can be thought of as a possibly
infinite sequence of door knocks. A randomized algorithm is therefore a distribution over
sequences, and as all of them will have expected running time at least as large as that of
an optimal sequence (if one exists), the expected running time of a randomized algorithm
cannot be any better. Denote by TC(π), the expected time until all doors open when running
sequence π in configuration C. We define TC = minπ TC(π). As proved in the full version of
the paper, there exists a sequence achieving this minimum. Therefore, by the aforementioned
arguments, we can restrict our discussion to deterministic algorithms only.

If we had feedback we would knock on each door until it opens, and then continue to
the next. Denoting by Ei =

∑∞
n=0 pi(n) the expected time to open door i on its own, the

expected running time then does not depend on the specific dependencies between doors
at all, and is

∑
iEi. Also, this value is clearly optimal. To evaluate the impact of lacking

feedback for a configuration C, we therefore define:

Price(C) = TC∑
iEi

.

Obviously Price(C) ≥ 1, and for example, if all doors start closed and open after just 1 knock,
it is in fact equal to 1. In the full version of this paper we also show that Price(C) ≤ d.

A. Korman and Y. Rodeh 81:5

1.3 Our Results
We have two main results. The first one, presented in Section 2, states that any two similar
configurations have the same optimal running time up to a constant factor. We stress
that this constant factor is universal in the sense that it does not depend on the specific
distributions or on the number of doors d.

Furthermore, given a configuration, we identify an algorithm that is optimal for it up to a
constant factor. We then show that for configurations where all doors are similar, there is a
much simpler algorithm which is optimal up to a constant factor, and describe a formula that
computes its approximate running time. We conclude Section 2 by analysing the price of
lacking feedback for several configurations governed by standard fundamental distributions.
In particular, we show that the price is logarithmic in d for memoryless doors, but can
potentially grow to be linear in d for other distributions.

We then turn our attention to identify exact optimal sequences. Perhaps the simplest
case is the case of two cascading memoryless doors. That is, the first door opens on each
knock independently with probability p1. The second door can only open if the first door is
open, in which case it opens on each knock independently, with probability p2. In Section 3
we present our second main result: Algorithms for these configurations that achieve the
precise optimal running time up to an additive term of 1.

On the technical side, to establish such an extremely competitive algorithm, we first
consider a semi-fractional variant of the problem and find a sequence that achieves the precise
optimal bound. We then approximate this semi-fractional sequence to obtain an integer
solution losing only an additive term of 1 in the running time. A nice anecdote is that in the
case where p1 = p2 and are very small, the ratio of 2-knocks over 1-knocks in the sequence
we get approaches the golden ratio. Also, in this case, the optimal running time approaches
3.58/p1 as p1 goes to zero. It follows that in this case, the price of lacking feedback tends to
3.58/2 and the price of dependencies, i.e., the multiplicative gap between the cascading and
independent settings, tends to 3.58/3.

2 Near Optimal Algorithms

The following important lemma is proved in the full version using a coupling argument:

I Lemma 1. Consider similar configurations C,X and I, where X is cascading and I
is independent. For every sequence π, TI(π) ≤ TC(π) ≤ TX (π). This also implies that
TI ≤ TC ≤ TX .

The next theorem presents a near optimal sequence of knocks for a given configuration. In
fact, by Lemma 1, this sequence is near optimal for any similar configuration, and so we
get that the optimal running time for any two similar configurations is the same up to a
universal multiplicative factor.

I Theorem 2. There is a polynomial algorithm2, that given a configuration C generates a
sequence π such that TC(π) = Θ(TI). In fact, TC(π) ≤ 2 + 4TI ≤ 2 + 4TC.

Proof. Denote by p1, . . . , pd the fundamental distributions of the doors of C. For a finite
sequence of knocks α, denote by SCC(α) the probability that after running α in configuration

2 A polynomial algorithm in our setting generates the next knock in the sequence in polynomial time in
the index of the knock and in d, assuming that reading any specific value of any of the fundamental
distributions of a door takes constant time.

ICALP 2017

81:6 The Dependents Doors Problem

C, some of the doors are still closed. Note that if α is sorted, that is, if all knocks on door 1
are done first, followed by the knocks on doors 2, etc., then SCX (α) = SCI(α).

We start by showing that for any T , we can construct in polynomial time a finite sequence
αT of length T that maximizes the probability that all doors will open, i.e., minimizes
SCI(αT). As noted above, if we sort the sequence, this is equal to SCX (αT).

The algorithm follows a dynamic programming approach, and calculates a matrix A,
where A[i, t] holds the maximal probability that a sequence of length t has of opening all of
the doors 1, 2, . . . , i. All the entries A[0, ·] are just 1, and the key point is that for each i and
t, knowing all of the entries in A[i, ·], it is easy to calculate A[i+ 1, t]:

A[i+ 1, t] = tmax
k=0

A[i, t− k] · (1− pi+1(k)) .

Calculating the whole table takes O(dT 2) time, and A[d, T] will give us the highest probability
a sequence of length T can have of opening all doors. Keeping tabs on the choices the max
in the formula makes, we can get an optimal sequence αT , and can take it to be sorted.

Consider the sequence π = α2 ·α4 · · ·α2n · · · . The complexity of generating this sequence
up to place T is O(dT 2), and so this algorithm is polynomial. Our goal will be to compare
TX (π) with TI(π?), where π? is the optimal sequence for I.

The following observation stems from the fact that for any natural valued random variable
X, E [X] =

∑∞
n=0 Pr [X > n] and Pr [X > n] is a non-increasing function of n.

I Observation 3. Let {an}∞n=1 be a strictly increasing sequence of natural numbers, and X
be some natural valued random variable. Then:

∞∑
n=1

(an+1 − an)Pr [X > an+1] ≤ E [X] ≤ a1 +
∞∑
n=1

(an+1 − an)Pr [X > an] .

For a sequence π, denote by π[n] the prefix of π of length n. In this terminology, TC(π) =∑∞
n=0 SCC(π[n]). Setting an = 2 + 4 + . . .+ 2n in the right side of Observation 3, and letting

X be the number of rounds until all doors open when using π, we get:

TX (π) ≤ 2 +
∞∑
n=1

2n+1 · SCX (π[2 + . . .+ 2n]) ≤ 2 +
∞∑
n=1

2n+1 · SCX (α2n)

= 2 +
∞∑
n=1

2n+1 · SCI(α2n) ≤ 2 +
∞∑
n=1

2n+1 · SCI(π?[2n]) ≤ 2 + 4TI(π?)

The last step is using Observation 3 with an = 2n−1. Theorem 2 concludes. J

2.1 Configurations where all Doors are Similar
In this section we focus on configurations where all doors have the same fundamental
distribution p(n). We provide simple algorithms that are optimal up to a universal constant,
and establish the price of lacking feedback with respect to a few natural distributions.
Corresponding proofs appear in the full version of the paper.

2.1.1 Simple Algorithms
Let us consider the following very simple algorithm Asimp. It runs in phases, where in
each phase it knocks on each door once, in order. As a sequence, we can write Asimp =
(1, 2, . . . , d)∞. Let X1, . . . , Xd be i.i.d. random variables taking positive integer values,
satisfying Pr [Xi > n] = p(n). The following is straightforward:

A. Korman and Y. Rodeh 81:7

I Claim 4. TI(Asimp) = Θ (d · E [max {X1, . . . , Xd}])

This one is less trivial:

I Claim 5. If all doors are similar then TI(Asimp) = Θ(TI)

The claim above states that Asimp is optimal up to a multiplicative constant factor in the
independent case, where all doors are similar. As a result, we can also show:

I Claim 6. Denote by αn the sequence 12n

, . . . , d2n . If all doors are similar then for any
configuration C, TC (α0 · α1 · α2 · · ·) = Θ(TC).

In plain words, the above claim states that the following algorithm is optimal up to a universal
constant factor for any configuration where all doors are similar: Run in phases where phase
n consists of knocking 2n consecutive times on each door, in order.

2.1.2 On the Price of Lacking Feedback

By Claims 4 and 5, investigating the price of lacking feedback when all doors are similar
boils down to understanding the expected maximum of i.i.d. random variables.

Price = Θ
(

E [max {X1, . . . , Xd}]
E [X1]

)
(1)

Note that we omitted dependency on the configuration, as by Theorem 2, up to constant
factors, it is the same price as in the case where the doors are independent. Let us see a few
examples of this value. First:

I Lemma 7. If X1, . . . , Xd are i.i.d. random variables taking natural number values, then:

E [max(X1, . . . , Xd)] = Θ
(
κ+ d

∞∑
n=κ

Pr [Xi > n]
)

Where κ = min {n ∈ N | Pr [X1 > n] < 1/d}

I Example 8. After the first knock on it, each door opens with probability 1− 1/d and if it
doesn’t, it will open at its d+ 1’st knock. The expected time to open each door on its own is
2. By Lemma 7, as κ = d+ 1, we get that Price = Ω(κ) = Ω(d). Since always Price ≤ d,
Price = Θ(d).

I Example 9. If p(n) = qn for some 1/2 < q < 1, then Price = Θ(log(d)).

I Example 10. If for some c > 0 and a > 1, p(n) = min(1, c/na), then Price = Θ(d 1
a).

Sometimes we know a bound on some moment of the distribution of opening a door. If
E [X1] < M , since Price ≤ d, then T = O(d2M). Also,

I Example 11. If E [Xa
1] < M for some a > 1, then T = O

(
d1+ 1

aM1/a(1 + 1
a−1)

)
.

For example, if the second moment of the time to open a door on its own is bounded, we get
an O(d3/2) algorithm.

ICALP 2017

81:8 The Dependents Doors Problem

3 Two Memoryless Cascading Doors

One can say that by Theorem 2 we solved much of the dependent doors problem. There
is an equivalence of the independent and cascading models, and we give an up to constant
factor optimal algorithm for any situation. However, we still find the question of finding the
true optimal sequences for cascading doors to be an interesting one. What is the precise cost
of having no feedback, in numbers? Even the simple case of two doors, each opening with
probability 1/2 on each knock, turns out to be quite challenging and has a not so intuitive
optimal sequence.

In this section, we focus on a very simple yet interesting case of the cascading door
problem, and solve it almost exactly. We have two doors. Door 1 opens with probability
p1 each time we knock on it, and door 2 opens with probability p2. We further extend the
setting to consider different durations. Specifically, we assume that a knock on door 1 takes
one time unit, and a knock on door 2 takes c time units. Denote q1 = 1− p1 and q2 = 1− p2.
For brevity, we will call a knock on door 1 a 1-knock, and a knock on door 2 a 2-knock.

The Semi-Fractional Model. As finding the optimal sequence directly proved to be difficult,
we introduce a relaxation of our original model, termed the semi-fractional model. In this
model, we allow 1-knocks to be of any length. A knock of length t, where t is a non-negative
real number, will have probability of 1 − qt1 of opening the door. In this case, a sequence
consists of the alternating elements 1t and 2, where 1t describes a knock of length t on door 1.
We call sequences in the semi-fractional model semi-fractional sequences, and to differentiate,
we call sequences in the original model integer sequences.

As our configuration C will be clear from context, for a sequence π, we define E [π] = TC(π)
to be the expected running time of the sequence. Clearly, every integer sequence has a similar
semi-fractional sequence with the same expected running time. As we will see, the reverse is
not far from being true. That being so, finding the optimal semi-fractional sequence will
give an almost optimal integer sequence.

3.1 Equivalence of Models
I Theorem 12. Every semi-fractional sequence π has an integer sequence π′, s.t., E [π′] ≤
E [π] + 1.

For this purpose, in this subsection only, we describe a semi-fractional sequence π as a
sequence of non-decreasing non-negative real numbers: π0, π1, π2, . . ., where π0 = 0. This
sequence describes the following semi-fractional sequence (in our original terms):

1π1−π0 · 2 · 1π2−π1 · 2 · · ·

This representation simplifies our proofs considerably. Here are some observations:
1-knocks can be of length 0, yet we still consider them in our indexing.
The sequence is an integer sequence iff for all i, πi ∈ N.
The i-th 2-knock starts at time πi + c(i− 1) and ends at πi + ci.
The probability of door 1 being closed after the completion of the i-th 1-knock is qπi

1 ,
and so the probability it opens at 1-knock i is qπi−1

1 − qπi
1

I Lemma 13. For two sequences π = (π0, π1, . . .) and π′ = (π′1, π′2, . . .), if for all i, πi ≤
π′i ≤ πi + 1 then E [π′] ≤ E [π] + 1.

A. Korman and Y. Rodeh 81:9

Lemma 13 is the heart of our theorem. Indeed, once proven, Theorem 12 follows in a
straightforward manner. Given a semi-fractional sequence π, define π′i = dπie. Then, π′
is an integer sequence, and it satisfies the conditions of the lemma, so we are done. The
lemma makes sense, as the sequence π′ in which for all i > 0, π′i = πi + 1, can be thought
of as adding a 1-knock of length one in the beginning of the sequence. Even if this added
1-knock did nothing, the running time would increase by at most 1. However, the proof is
more involved, since in the lemma, while some of the 2-knocks may have an increased chance
of succeeding, some may actually have a lesser chance.

Proof. Given a sequence π and an event X, we denote by E [π |X] the expected running
time of π given the event X. Let Xi denote the event that door 1 opens at its i-th 1-knock.
As already said:

Pr [Xi] = q
πi−1
1 − qπi

1 =
∫ πi

πi−1

qx1 ln(q1) dx

Where the last equality comes as no surprise, as it can be seen as modelling door 1 in a
continuous fashion, having an exponential distribution fitting its geometrical one. Now:

E [π] =
∞∑
i=1

Pr [Xi] E [π |Xi] =
∞∑
i=1

∫ πi

πi−1

qx1 ln(q1) dx·E [π |Xi] =
∫ ∞

0
qx1 ln(q1)·E

[
π
∣∣Xi(x)

]
dx

Where i(x) = maxi {x ≥ πi−1}, that is, the index of the 1-knock that x belongs to when
considering only time spent knocking on door 1. Defining X ′i and i′(x) in an analogous way
for π′, we want to show that for all x,

E
[
π′
∣∣∣X ′i′(x)

]
≤ 1 + E

[
π
∣∣Xi(x)

]
as using it with the last equality will prove the lemma. We need the following three claims:
1. If j ≤ i, then E [π |Xj] ≤ E [π |Xi]
2. For all x, i′(x) ≤ i(x)
3. For all i, E [π′ |X ′i] ≤ 1 + E [π |Xi]
Together they give what we need:

E
[
π′
∣∣∣X ′i′(x)

]
≤ 1 + E

[
π
∣∣Xi′(x)

]
≤ 1 + E

[
π
∣∣Xi(x)

]
The first is actually true trivially for all sequences, as the sooner the first door opens, the
better the expected time to finish. For the second, since for all i, π′i ≥ πi, then x ≥ π′i implies
that x ≥ πi, and so:

i′(x) = max
i

{
x ≥ π′i−1

}
≤ max

i
{x ≥ πi−1} = i(x)

For the third, denote by Yj the event that door 2 opens at the j’th 2-knock. Then:

E [π |Xi] =
∞∑
j=i

(πj + cj)Pr [Yj |Xi]

Let us consider this same expression as it occurs in π′. First note that Pr [Yj |Xi] =
Pr
[
Y ′j
∣∣X ′i], as all that matters for its evaluation is j − i. Therefore:

E [π′ |X ′i] =
∞∑
j=i

(π′j + cj)Pr
[
Y ′j
∣∣X ′i] ≤ ∞∑

j=i
(πj + 1 + cj)Pr [Yj |Xi]

= E [π |Xi] +
∞∑
j=i

Pr [Yj |Xi] ≤ E [π |Xi] + 1 . J

ICALP 2017

81:10 The Dependents Doors Problem

3.2 The Optimal Semi-Fractional Sequence
A big advantage of the semi-fractional model is that we can find an optimal sequence for it.
For that we need some preparation:

I Definition 14. For a semi-fractional sequence π, and some 0 ≤ x ≤ 1, denote by Ex [π]
the expected running time of π when started with door 1 being closed with probability x. In
this notation, E [π] = E1 [π].

I Lemma 15. Let y = x/(q2 + p2x). Then:

Ex
[
1t · π

]
= t+ Eqt

1x
[π] Ex [2 · π] = c+ x

y
Ey [π]

Proof. The first equation is clear, since starting with door 1 being closed with probability x,
and then knocking on it for t rounds, the probability that this door is closed is qt1x.

As for the second equation, if door 1 is closed with probability x, then knocking on door 2,
we have a probability of p2(1− x) of terminating, and so the probability we did not finish is:

1− p2(1− x) = 1− p2 + p2x = q2 + p2x = x

y

It remains to show that conditioning on the fact that we indeed continue, the probability
that door 1 is closed is y. It is the following expression, evaluated after a 2-knock:

Pr [door 1 is closed]
Pr [door 1 is closed] + Pr [door 1 is open but not door 2] = x

x+ (1− x)q2
= y . J

Applying Lemma 15 iteratively on a finite sequence w, we get:

Ex [wπ] = a(x,w) + b(x,w)Eδ(x,w) [π] (2)

Of specific interest is δ(x,w). It can be thought of as the state3 of our algorithm after
running the sequence w, when we started at state x. Lemma 15 and Equation (2) give us
the behaviour of δ(x,w):

δ(x, 1t) = qt1x , δ(x, 2) = x

q2 + p2x
, δ(x, aw) = δ(δ(x, a), w) .

We start with the state being 1, since we want to calculate E1 [π]. Except for this first
moment, as we can safely assume any reasonable algorithm will start with a 1-knock, the
state will always be in the interval (0, 1). A 1-knock will always decrease the state and a
2-knock will increase it.

Our point in all this, is that we wish to exploit the fact that our doors are memoryless,
and if we encounter a state we’ve already been at during the running of the sequence, then
we should probably make the same choice now as we did then. The following definition and
lemma capture this point.

I Definition 16. We say a non-empty finite sequence w is x-invariant, if δ(x,w) = x.

The following Lemma is proved in the full version of this paper, and formalizes our intuition
about how an optimal algorithm should behave.

I Lemma 17. If w is x-invariant, and Ex [wπ] ≤ Ex [π] then Ex [w∞] ≤ Ex [wπ].

3 There is an intuitive meaning behind this. Going through Lemma 15, we can see that δ(1, w) is actually
the probability that after running w, door 1 is closed conditioned on door 2 being closed. Indeed, After
running some finite sequence, the only feedback we have is that the algorithm did not finish yet. We
can therefore calculate from our previous moves what is the probability that door 1 is closed, and that
is the only information we need for our next steps.

A. Korman and Y. Rodeh 81:11

Figure 1 How the state evolves as a function of time. 1-knocks decrease the state, and 2-knocks
increase it. Note that r = logq1 (y) and s = logq1 (x).

3.2.1 The Actual Semi-Fractional Sequence
I Theorem 18. There is an optimal semi-fractional sequence π? of the form 1s(21t)∞, for
some positive real values s and t, and its running time is:

E [π?] = min
z∈[0,1]

(
logq1(1− z) +

c+ (1− p2z) logq1(1− p2z)
p2z

)
.

Proof. In the full version of this paper, we prove that there is an optimal semi-fractional
sequence π. It clearly starts with a non-zero 1-knock, and so we can write π = 1s2π′.
Intuitively, in terms of its state, this sequence starts at 1, goes down for some time with
a 1-knock, and then jumps back up with a 2-knock. The state it reaches now was already
passed through on the first 1-knock, and so as this is an optimal sequence we can assume it
will choose the same as it did before, and keep zig-zaging up and down.

We next prove that indeed there is an optimal sequence following the zig-zaging form
above. Again, take some optimal π, and write π = 1s2π′. Denote x = δ(1, 1s) and
y = δ(1, 1s2) = δ(x, 2) > x (see Figure 1). Taking r = logq1(y) < s, we get δ(1, 1r) = y.
Denoting t = s− r, this means that 1t2 is y-invariant. Since π is optimal, then:

E [π] = E
[
1r(1t2)π′

]
≤ E [1rπ′] which implies: Ey

[
1t2π′

]
≤ Ey [π′] .

So by Lemma 17:

Ey
[
(1t2)∞

]
≤ Ey

[
1t2π′

]
which implies: E

[
1r(1t2)∞

]
≤ E

[
1r1t2π′

]
= E [π] .

Therefore, 1r(1t2)∞ = 1s(21t)∞ is optimal. We denote this sequence π?.
Now for the analysis of the running time of this optimal sequence. We will use Lemma 15

many times in what follows.

E1
[
1s(21t)∞

]
= s+ Ex

[
(21t)∞

]
.

Denote α = (21t)∞.

Ex [α] = Ex
[
21tα

]
= c+ x

y
Ey
[
1tα
]

= c+ x

y
(t+ Ex [α]) .

Since t = s− r = logq1(x/y):

Ex [α] = c

1− x
y

+
x
y

1− x
y

logq1(x/y) .

ICALP 2017

81:12 The Dependents Doors Problem

By Lemma 15, as our y is the state resulting from a 2-knock starting at state x, it follows
that y = x/(q2 + p2x). Since x/y = q2 + p2x, then 1− x/y = p2(1− x) and then we get:

c

p2(1− x) + q2 + p2x

p2(1− x) logq1(q2 + p2x) .

And in total:

E1
[
1s(21t)∞

]
= logq1(x) +

c+ (q2 + p2x) logq1(q2 + p2x)
p2(1− x) .

Changing variable to z = 1− x, results in q2 + p2x = 1− p2z, and we get the expression in
the statement of the theorem. J

3.3 Actual Numbers
Theorem 18 gives the optimal semi-fractional sequence and a formula to calculate its expected
running time. This formula can be approximated as accurately as we wish for any specific
values of p1, p2 and c, but it is difficult to obtain a closed form formula from it. In the full
version, we show an approximation with an additive error term p2/ log(1/q1). This is pretty
close to p2/p1, and so when p1 ≥ p2 it is just an additive error of 1.

In general, when p1 is small, then the running time is shown to depend on θ ≈ cp1/p2,
which is the expected time to open door 2 on its own, divided by the time to open door 1 on
its own - a natural measure of the system. Then, ignoring the additive mistake, we show there
that the lower bound is approximately F(θ)/p1, where F is some function not depending
on the parameters of the system. For example F(1) = 3.58. So opening two similar doors
without feedback when p is small takes about 3.58 times more time than opening one door
as opposed to the case with feedback, where the factor is only 2.

We also note, that when the two doors are independent and similar, it is quite easy to
see that the optimal expected running time is at most 3/p. As a last interesting point, if
c = 1 and p = p1 = p2 approaches zero, then the ratio between the number of 2-knocks and
the number of 1-knocks approaches 1

2 (1 +
√

5), which is the golden ratio. These last two
points are also shown in the full version of the paper.

3.4 Examples
For p1 = p2 = 1/2 and c = 1, the lower bound is 5.747. Simulations show that the best
algorithm for this case is slightly more than 5.8, so the lower bound is quite tight, but our
upper bound is 6.747 which is pretty far. However, the sequence we get from the upper
bound proof starts with:

1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, . . .

The value it gives is about 5.832, which is very close to optimal. For p1 = p2 = 1/100 and
c = 1, the sequence we get is:

197, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, . . .

And the value it gives is about 356.756, while the lower bound can be calculated to be
approximately 356.754. As we see this is much tighter than the +1 that our upper bound
promises.

A. Korman and Y. Rodeh 81:13

References
1 Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error. In

Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 31–40, 2013. doi:10.1145/2488608.2488613.

2 David E. Bell. Regret in decision making under uncertainty. Operations Research, 30(5):961–
981, 1982. doi:10.1287/opre.30.5.961.

3 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary
search (and pretty good for quantum as well). In 49th Annual IEEE Symposium on Found-
ations of Computer Science, FOCS, 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 221–230, 2008. doi:10.1109/FOCS.2008.58.

4 Lucas Boczkowski, Amos Korman, and Yoav Rodeh. Searching on trees with noisy memory.
CoRR, abs/1611.01403, 2016. URL: http://arxiv.org/abs/1611.01403.

5 Matthias Brand, Christian Laier, Mirko Pawlikowski, and Hans J. Markowitsch. Decision
making with and without feedback: The role of intelligence, strategies, executive functions,
and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31(8):984–998,
2009. PMID: 19358007. doi:10.1080/13803390902776860.

6 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabil-
istic binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
519–532, 2016. doi:10.1145/2897518.2897656.

7 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with
noisy information. SIAM J. Comput., 23(5):1001–1018, October 1994. doi:10.1137/
S0097539791195877.

8 L.A. Giraldeau and T. Caraco. Social Foraging Theory. Monographs in behavior and
ecology. Princeton University Press, 2000.

9 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’07, pages 881–890, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

10 Michael N. Katehakis and Arthur F. Veinott, Jr. The multi-armed bandit problem:
Decomposition and computation. Math. Oper. Res., 12(2):262–268, May 1987. doi:
10.1287/moor.12.2.262.

11 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, USA, 1994.

12 Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward more localized local
algorithms: removing assumptions concerning global knowledge. Distributed Computing,
26(5-6):289–308, 2013. doi:10.1007/s00446-012-0174-8.

13 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.

14 Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

15 Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.
16 Andrzej Pelc. Searching games with errors – fifty years of coping with liars. Theor. Comput.

Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.
17 Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT

Press, Cambridge, MA, USA, 1st edition, 1998.

ICALP 2017

http://dx.doi.org/10.1145/2488608.2488613
http://dx.doi.org/10.1287/opre.30.5.961
http://dx.doi.org/10.1109/FOCS.2008.58
http://arxiv.org/abs/1611.01403
http://dx.doi.org/10.1080/13803390902776860
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1137/S0097539791195877
http://dx.doi.org/10.1137/S0097539791195877
http://dl.acm.org/citation.cfm?id=1283383.1283478
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1007/s00446-012-0174-8
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1016/S0304-3975(01)00303-6

A Tight Lower Bound for the Capture Time of the
Cops and Robbers Game∗†

Sebastian Brandt1, Yuval Emek2, Jara Uitto3, and
Roger Wattenhofer4

1 ETH Zürich, Zürich, Switzerland
brandts@ethz.ch

2 Technion, Haifa, Israel
yemek@technion.ac.il

3 ETH Zürich, Zürich, Switzerland; and
University of Freiburg, Freiburg, Germany
jara.uitto@inf.ethz.ch

4 ETH Zürich, Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
For the game of Cops and Robbers, it is known that in 1-cop-win graphs, the cop can capture
the robber in O(n) time, and that there exist graphs in which this capture time is tight. When
k ≥ 2, a simple counting argument shows that in k-cop-win graphs, the capture time is at most
O(nk+1), however, no non-trivial lower bounds were previously known; indeed, in their 2011
book, Bonato and Nowakowski ask whether this upper bound can be improved. In this paper,
the question of Bonato and Nowakowski is answered on the negative, proving that the O(nk+1)
bound is asymptotically tight for any constant k ≥ 2. This yields a surprising gap in the capture
time complexities between the 1-cop and the 2-cop cases.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases cops and robbers, capture time, lower bound

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.82

1 Introduction

The game of Cops and Robbers is a perfect information two-player zero-sum game played
on an undirected n-vertex graph G = (V,E), where the first player is identified with k ≥ 1
cops, indexed by the integers 0, . . . , k − 1, and the second player is identified with a single
robber. In round 0, the cop player chooses the initial (not necessarily distinct) cop locations
c0(0), . . . , ck−1(0) ∈ V and following that, the robber player chooses the initial robber location
r(0) ∈ V . Then, in round t = 1, 2, . . . , the cop player chooses the next (not necessarily
distinct) cop locations c0(t), . . . , ck−1(t) ∈ V under the constraint that ci(t) ∈ N +(ci(t− 1))
for every 0 ≤ i ≤ k − 1, where N +(v) denotes the neighborhood of vertex v in G including v
itself; following that, the robber player chooses the next robber location r(t) ∈ N +(r(t− 1)).

The goal of the cop player is to ensure that r(t− 1) ∈ {c0(t), . . . , ck−1(t)} for some finite
round t, referred to as capturing the robber. Conversely, the goal of the robber player is to

∗ A full version of this paper can be found at http://www.disco.ethz.ch/publications/
icalp2017-copsandrobbers.pdf.

† This work was partially supported by ERC Grant No. 336495 (ACDC).

EA
T

C
S

© Sebastian Brandt, Yuval Emek, Jara Uitto, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 82; pp. 82:1–82:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.82
http://www.disco.ethz.ch/publications/icalp2017-copsandrobbers.pdf
http://www.disco.ethz.ch/publications/icalp2017-copsandrobbers.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82:2 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

avoid being captured indefinitely. Graph G is said to be a k-cop-win graph if it admits a cop
strategy S that guarantees capture. The capture time of S is defined to be the maximum
number of rounds until capture is achieved, assuming optimal play by the robber. The
capture time of graph G is then defined to be the minimum capture time of any cop strategy
over G (notice that in this definition, it is assumed that k is clear from the context).

Bonato et al. [7] studied the capture time in single cop games and proved that every 1-cop-
win graph admits a cop strategy that captures the robber in O(n) rounds. By considering
a path, it is straightforward to verify that this bound is asymptotically tight. A simple
configuration-counting argument (see, e.g., [5, 7]) shows that for any constant k ≥ 2, if G
is a k-cop-win graph, then its capture time is O(nk+1). One may suspect that this simple
upper bound can be improved as it does not generalize the tight O(n) bound in the 1-cop
setting. Answering an open question from Bonato and Nowakowski’s book [9, Chapter 8],
the main result of our paper is that perhaps surprisingly, this is not the case.

I Theorem 1. There exist a universal positive constant α such that for every k ≥ 2, there
exists an infinite family G of k-cop-win graphs such that the capture time of any n-vertex
graph G ∈ G is at least (n/ (αk))k+1. Moreover, the smallest graph in G has n = O(k2)
vertices.

Notice that for constant k ≥ 2, this theorem provides an (existential) Ω(nk+1) lower
bound on the capture time in k-cop-win graphs. Furthermore, it can be extended to non-
constant values of k = k(n) up to the conjectured maximum of k(n) = Θ(

√
n) (see the

related literature discussion), stating that in some k-cop-win graphs, the capture time is
exponential in k and stretched exponential in n.

Related Literature

The Cops and Robbers game with a single cop was introduced by Quilliot [21] and independ-
ently by Nowakowski and Winkler [19] who also provided a full characterization of 1-cop-win
graphs. This was generalized to the multiple cop setting by Aigner and Fromme [2] who
defined the cop number of graph G to be the minimum number of cops that guarantees
that the robber can be captured (that is, the minimum k for which G is a k-cop-win graph).
Cast in this terminology, Aigner and Fromme proved that the cop number of any planar
graph is at most 3. An upper bound of O(r2) on the cop number of graphs excluding Kr

as minor was established by Andreae [4]; this result lies at the heart of the recent graph
decomposition technique of Abraham et al. [1] for the same family of graphs. For general
graphs, the maximum possible cop number is still an open question: the famous Meyniel’s
Conjecture [14, 6] states that this number is Θ(

√
n), where the state of the art is that it

is bounded between Ω(
√
n) [20] and O(n/2(1−o(1))

√
log n) [17]. Several characterizations of

graphs with cop number k are presented in [11].
As mentioned earlier, Bonato et al. [7] established a tight linear bound on the capture time

in 1-cop-win graphs. For k > 1 cops, non-trivial bounds on the capture time in k-cop-win
graphs were obtained mainly in the context of special graph classes, e.g., hypercubes [8] and
Cartesian products of trees [18]. To the best of our knowledge, the linear lower bound of [7]
is the (asymptotically) best previously known lower bound on the capture time in any class
of graphs for any k ≥ 1.

The capture time has been studied also for variants of the classic Cops and Robbers
game. For example, the multiple robber setting was investigated by Förster et al. [13] who
showed that the capture time may increase linearly with the number of robbers. Kehagias
and Pralat [16] analyzed the expected capture time of a drunk robber whose strategy is

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:3

simply a random walk on the graph. For a broader overview of the results on the game of
Cops and Robbers, the reader is referred to the book of Bonato and Nowakowski [9] and
recent surveys [3, 10, 12, 15].

Techniques

Our lower bound proof relies on designing a bad (from the perspective of the cops) graph
G that consists of several components, of which each has a different role (see the overview
in Section 2.1). Here, we provide a glimpse into this design from an alternative (strictly
informal and somewhat inaccurate) angle that may shed additional light on the techniques
we use. At the heart of our construction lies the concept of forcing each entity (cop or
robber) to follow a designated (non-simple) path in G, where in the scope of this discussion,
we assume that every vertex in G admits a self-loop so that these paths may include null
moves. Specifically, graph G contains equally long paths χ0, . . . , χk−1 and ρ, referred to in
this discussion as the canonical paths of the cops and robber, respectively. The best strategy
of the cop player is then to assign one cop, say Cop i, to each path χi so that ci(t) = χi(t)
for every t; in response to that, the best strategy of the robber is to play r(t) = ρ(t). This
induces a sequence σ of (distinct) configurations and the analysis is completed by showing
that σ is sufficiently long and that the robber is captured only at its end.

The most challenging part in the design of such canonical paths is to prove that the
aforementioned strategies are indeed optimal. To that end, we show that if the robber
deviates from her canonical path at time t, then she is either captured immediately or the
game shifts forward to a more advanced configuration σ(t′) for some t′ > t. Conversely, if
some cop deviates from her canonical path at time t, then the game shifts backwards to a
less advanced configuration σ(t′) for some t′ < t. The main feature in the latter argument is
an exit component X ; if the robber manages to reach X , then she can force the game to shift
backwards to the beginning, i.e., to σ(0). This threat is the key ingredient in the analysis of
the cop strategy: we construct the cops’ components so that they must strictly follow their
canonical paths in order to cover all exits in X .

Due to the verbosity of our construction and to the space limitations, we defer all the
proofs and the discussion of the case of more than 2 cops to the full version.

Technical Terminology

We call the set {c0(t), c1(t), . . . , ck−1(t)}, for some t, a cop combination. We say that Cop i
covers node v at time t if v ∈ N +(ci(t)). We may omit t if it is clear from the context. We
extend this covering notion to more than one cop and more than one node, e.g., we say that
the cops cover a set of nodes {v1, v2, . . . , vj} if each of the vi is covered by at least one of the
cops. Also, we say that a node is covered, resp. uncovered, if at least one cop covers it, resp.
if no cop covers it.

2 The Case of 2 Cops

2.1 Overview
In this section, we construct a family {Gn̂}n̂≥3,n̂≡0 (mod 3) of 2-cop-win graphs, where
n̂ ∈ Θ(n).1 Then, we show that the capture time for 2 cops in Gn̂ is Ω(n3) by giving an

1 Throughout the paper, we denote the number of nodes of a graph by n.

ICALP 2017

82:4 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

R0

· · · · · ·

· · ·

· · ·

S0

S1
U

T D

P

C

A X
R

Figure 1 The graph Gn̂ with its different components.

explicit strategy for the robber that achieves this capture time against any cop strategy.
We conclude by presenting a cop strategy for 2 cops that achieves a capture time of O(n3)
against any robber strategy, which also serves as a proof that the graphs are indeed 2-cop-win.
The other reason for explicitly specifying such a cop strategy (which must exist in 2-cop-win
graphs, by the aforementioned simple configuration-counting argument) is that it forms the
basis for a generalized cop strategy in the case of k ≥ 2 cops. For a simplified overview of
our graph construction, please refer to Figure 1.

The general idea behind the graph construction and the specified strategies for the cops
and the robber is as follows: Our graph Gn̂ contains a U component, where the robber
cannot be captured, simply because each node in U has enough neighbors so that 2 cops
cannot cover all of these neighbors simultaneously. Moreover, the robber can always stay in
U (because each node in U has enough neighbors in U) except if the cops go to two special
nodes S0 and S1 which together cover all of U .

When the robber is thereby flushed out of U , she has to go to the R component of the
graph. Note that the nodes of R induce a simple path on Gn̂ and that after being flushed
out of U , the robber is located in the middle of this path. Now, the cops will continuously
prevent the robber from escaping R and slowly force the robber to one end of the path
where they will finally capture her. In order for this to take a long time, each node in R is
connected to a set of so-called exits which are nodes that together form the X component
of the graph. If the robber should manage to get to some exit, then she will be able to go
back to her preferred U component, unless the cops go again to the special S0 and S1 nodes,
in which case the robber can go back to the middle of the R path and thereby revert to a
previous configuration. Hence, in order to capture the robber, the cops have to continuously
cover these exits.

Unfortunately for the cops, there are only a few cop combinations that actually cover
all exits of a node in R. Moreover, only some of these cop combinations are proper in the
sense that they also prevent the robber from moving back on the R path towards the middle
which is essential for the cops in order to capture the robber. These proper exit-covering
cop combinations are described in the following. For an illustration of the underlying graph
structure, we refer to Figure 2.

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:5

C3

C0

R−1R−2 R0 R1 R2

· · · · · ·

C1
C2

C4

C5

C8
C7

C6

D3

D0

D1

D2 D4

D5

D8

D7

D6

X 2
0 , . . . ,X 2

5 X 0
0 , . . . ,X 0

5 X 1
0 , . . . ,X 1

5

Figure 2 A part of the structure of Gn̂ around the X nodes. A C node and a D node together
cover the exits of an R node if and only if they have the same color.

One cop, say Cop 0, has to be in the C component of Gn̂ and the other one (Cop 1) in
the D component. The nodes in the C (resp., D) component induce a simple cycle on Gn̂.
Assume for simplicity that the number of nodes in these two cycles are both multiples of 3.
Now, we can imagine that the nodes in the C cycle are consecutively colored 0, 1, 2, 0, 1, 2, . . .
and that the nodes in the D cycle are colored 0, . . . , 0, 1, . . . , 1, 2, . . . , 2, resulting in three
equally-sized monochromatic blocks. Now, the nodes in C and D are connected to the nodes
in X in so that Cop 0 (in C) and Cop 1 (in D) cover all exits of an R node if and only if the
nodes the two cops are occupying have the same color. Thus, if Cop 0 wants to move, e.g.,
clockwise, in her C cycle, then between any two consecutive steps, she has to wait for Cop 1
to travel roughly a third of her D cycle.

Similarly, using an independent color pallet, we color the nodes along the R path
3, 4, 5, 3, 4, 5, . . . and color the nodes along the C cycle 3, . . . , 3, 4, . . . , 4, 5, . . . , 5. To prevent
the robber from moving back towards the middle of her R path, we construct Gn̂ so that
a C node covers an R node if and only if they do not have the same color. Thus, if Cop
0 proceeds along her C cycle, then as soon as the color of the C node changes, the robber
is forced to move one step forward along the R path. This accounts for Cop 0 traversing
roughly a third of the C cycle for each step of the robber along the R path. The direction of
the robber’s movement (towards either end of the R path) is determined by the direction
(clockwise or counterclockwise) of the movement of Cop 0 along the C cycle. We refer to
Figure 3 for an illustration of how the robber is pushed along the R by a cop residing in C.

Now, we design the graph Gn̂ so that the C, D, and R components consist of roughly n̂
nodes. Thus, the robber takes Ω(n̂) steps until she is captured, for each of her steps Cop 0

ICALP 2017

82:6 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

R−1 R0 R1 R2R−2

· · · · · ·

C3

C0

C1
C2

C4

C5

C8
C7

C6

Figure 3 The edge structure between the C nodes and the R nodes. If a cop is in a C node and
the robber in an R node, then the robber has to make sure that that these two nodes have the same
color in order to avoid capture in the next move. By circling clockwise in C, the cop can force the
robber towards one end of the R path, by circling counterclockwise towards the other.

has to take Ω(n̂) steps, and for each step of Cop 0, Cop 1 has to take Ω(n̂) steps, resulting
in a total capture time of Ω(n̂3). Since every component of the Gn̂ except R, C and D is
of constant size, n̂ is linear in the number n of nodes. Hence, we obtain a capture time of
Ω(n3) for the graph class {Gn̂}n̂≥3,n̂≡0 (mod 3).

Before proceeding to the exact details of the graph construction, four remarks are in order.
Firstly, when the robber is flushed out of U to R, there is an intermediate step between
leaving U and arriving in R for technical reasons: Flushed out of U , the robber actually has
to go to a graph component called A. Then, one cop moves to another graph component
denoted T from which she covers all of A while ensuring that all nodes in U the robber could
go to are covered. Thus, the robber is flushed out of A and is forced to go to R so that we
can proceed as explained above.

Secondly, since Cop 0 has to be able to cover nodes from R when she is in C, there have
to be edges between R and C. To prevent the robber from escaping R by going to a node in
C via one of these edges, we augment the graph with a special P node. If, after the robber
indeed moves to the C component, Cop 1 moves to P and Cop 0 moves to S0, then together
they cover all C nodes and all their neighbors, ensuring that the robber will be captured in
the next round.

Thirdly, the robber does not have to start in U , but in fact it is best for her if she does
(in the sense of increasing the capture time against the best cop strategy), provided that she
cannot be captured immediately. In turn, this means that the cops should start in S0 and S1
in order to force the robber to start elsewhere. Even if the robber starts elsewhere, the cop
strategy explained above forces the robber to the R component. Moreover, the robber can
simply start in the middle of the R path and the cops cannot avoid having to go through
the exit-covering routine explained above.

Fourthly, while the cop strategy explained above chases the robber from the middle of
the R path to one of its ends, for simplicity, we will formally present a slightly simplified
version where the end of the path the robber is chased to is fixed in advance (so the robber
will be chased from one end of the path to the other end in the worst case for the cops).

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:7

(0, 0)

(10, 10)
(0, 0)

(0, 1)

(0, 2) ···
···

(2, 0)

(2, 1)

(2, 2)

(2, 10)

(1, 0)

(0, 1)

(10, 0)

(0, 10)

(0, 10)

Figure 4 The construction of U . On the left side, we see the 11 × 11 grid constituting E and
three example lines L0,0, L0,1 and L2,0 from L. On the right side, we see the nodes of the bipartite
graph GE,L where the left-hand column of nodes constitutes (a part of) one side of the bipartition,
L, and the right-hand grid the other side, E . The edges between E and L are determined by the
incidence relation of the nodes and lines in the left-hand 11× 11 grid.

2.2 The Graph Construction
As explained above, the graphs Gn̂ we are about to construct contain a component U in
which the robber cannot be captured and from which the robber can only be flushed out by
a specific cop combination outside of U . Hence, the subgraph of any Gn̂ induced by (the
respective) U cannot be a 2-cop-win graph. As we want to generalize our graph construction
to the case of more than 2 cops, we thus need a way to construct a graph where k cops
cannot capture the robber. For this, inspired by the use of projective planes for constructing
graphs with high cop numbers in [20], we will use incidence graphs of objects resembling
affine planes. An explicit construction (for the case of 2 cops) is given in the following. For
an illustration of the construction, we refer to Figure 4.

Let E = {Ei,j | 0 ≤ i ≤ 10 ∧ 0 ≤ j ≤ 10} be a set of elements which we can imagine as
arrayed in an 11× 11 grid. Let L = {Li,j | 0 ≤ i ≤ 9 ∧ 0 ≤ j ≤ 10} be a set of lines where
each Li,j is defined as Li,j = {Eh,h(i+1)+j (mod 11) | 0 ≤ h ≤ 10}. Thus, each line Li,j may
be considered as a “line modulo 11” in our grid which goes through the element E0,j and
whose slope is determined by the parameter i (or more precisely i+ 1).

Now consider the incidence graph GE,L for E and L which is defined as follows: The
nodes of GE,L are exactly the elements and lines defined above, i.e., V (GE,L) = E ∪ L, and
there is an edge between some node Ei,j and some node Li′,j′ if and only if Ei,j is contained
in the set Li′,j′ (i.e., if and only if Ei,j lies on the line Li′,j′). There are no other edges, hence
GE,L is bipartite where one side of the bipartition is given by E and the other side by L.

I Lemma 2. In GE,L, any two nodes in E have at most one common neighbor in L. Also,
any two nodes in L have at most one common neighbor in E.

I Lemma 3. Let i ∈ {0, . . . , 10} be fixed. Any node from L has exactly one neighbor in GE,L
of the form Ei,j and exactly one neighbor in GE,L of the form Ej,i.

I Lemma 4. Let i ∈ {0, . . . , 9} be fixed. Any node from E has exactly one neighbor in GE,L
of the form Li,j.

For the construction of Gn̂, we will borrow nodes from GE,L and we will assume that the
borrowed nodes take along their relationship concerning edges between them, i.e., there is an

ICALP 2017

82:8 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

edge between two borrowed nodes in our graph construction if and only if there is an edge
between those two nodes in GE,L.

We construct Gn̂ as given in the following. The vertex set of Gn̂ is defined as the (disjoint)
union of smaller vertex sets that constitute different parts of the graph with different purposes:

V (Gn̂) = E ∪ L∗ ∪ S ∪ A ∪ T ∪R ∪ C ∪ D ∪ {P} ∪ X , where
L∗ = {Li,j | 0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 10}
S = {S0,S1}
A = {A0, . . . ,A3}
T = {T0, . . . , T3}
R = {R−n̂, . . . ,Rn̂}
C = {C0, . . . , Cn̂−1}
D = {D0, . . . ,Dn̂−1}
X = X 0 ∪ X 1 ∪ X 2

X j = {X j
0 , . . . ,X

j
5 } for all 0 ≤ j ≤ 2

The edges of Gn̂ are specified in Table 1. Moreover, we set U = E ∪L∗. Furthermore, we call
the nodes in X exits, and for each node Ri ∈ R we call the nodes from X , that are connected
to Ri, the exits of Ri.

The node subsets E and L∗ are borrowed from GE,L, but also the (renamed) nodes in X
are borrowed from GE,L: We consider X as a subset of L \ L∗. To ensure that no node in E
covers too many exits of some R node, the exits of any R node are borrowed (disjointly)
from a set of L \ L∗ nodes of the same slope. More precisely,

X 0 is borrowed from {L4,j | 0 ≤ j ≤ 10} ,
X 1 is borrowed from {L5,j | 0 ≤ j ≤ 10} ,
X 2 is borrowed from {L6,j | 0 ≤ j ≤ 10} .

As long as the above conditions are met, we do not care about the explicit choice of X as a
subset of L \ L∗. We obtain the following corollary from Lemma 2:

I Corollary 5. Any two nodes in E have at most one common neighbor in L∗. Any two
nodes in L∗ ∪ X have at most one common neighbor in E.

2.3 Observations
Before specifying asymptotically best strategies for the robber and the cops in Gn̂, we gather
some useful observations about the structure of Gn̂. In particular, we examine which cop
combinations cover certain neighbors of certain nodes. We start by showing that the cops
have to be in S0 and S1 in order to flush the robber out of U .

I Lemma 6. Consider any u ∈ U . The only cop combination not containing u that covers
all neighbors of u in U is {S0,S1}.

We proceed by showing that if the robber has been flushed out of U to some node Ai,
then the cops can only make progress by going to {S0, Ti} because otherwise the robber can
go back to U (or there is no progress if the cops simply stay in {S0,S1}).

I Lemma 7. Consider any Ai. The only cop combinations not containing Ai that cover all
neighbors of Ai in U are {S0,S1} and {S0, Ti}.

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:9

Table 1 A listing of the edges of Gn̂. In each block, the nodes listed in the right column are the
neighboring nodes of the node listed in the left column. For simplicity, we omit a separate block for
specifying the neighbors of the X nodes. They can be inferred from the other blocks. The X nodes
do not have any edges connecting them to each other since they are borrowed from the L part of
GE,L.

Node Neighbors
Ei,j L∗ nodes as determined by GE,L

Si (mod 2)
Aj (mod 4)
Tj (mod 4) if i (mod 2) = 1
X nodes as determined by GE,L

Li,j E nodes as determined by GE,L

Si (mod 2)
Ai (mod 4)
Ti (mod 4)

Node Neighbors
Ri Aj for all j if i = 0

Rj for j = i− 1 and j = i + 1
Cj for all 0 ≤ j ≤ n̂/3 if i (mod 3) = 0
Cj for all n̂/3 ≤ j ≤ 2n̂/3 if i (mod 3) = 1
C0 and Cj for all 2n̂/3 ≤ j ≤ n̂− 1 if i (mod 3) = 2
P
X j

h where j = i (mod 3) and h ∈ {0, 1, 2, 3, 4, 5}
Ci S0

Rj for all j (mod 3) = 0 if 0 ≤ i ≤ n̂/3
Rj for all j (mod 3) = 1 if n̂/3 ≤ i ≤ 2n̂/3
Rj for all j (mod 3) = 2 if i = 0 or 2n̂/3 ≤ i ≤ n̂− 1
Cj for j ≡ i− 1 (mod n̂) and j ≡ i + 1 (mod n̂)
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 1, 3} if i (mod 3) = 0
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 2, 3} if i (mod 3) = 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 2, 3} if i (mod 3) = 2
Di Aj for all j

Tj for all j

Dj for j ≡ i− 1 (mod n̂) and j ≡ i + 1 (mod n̂)
P
X j

h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if 0 ≤ i ≤ n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 4, 5} if n̂/3 ≤ i ≤ 2n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 4, 5} if 2n̂/3 ≤ i ≤ n̂− 1
P Ti for all i

Ri for all i

Di for all i

X j
i where j ∈ {0, 1, 2} and i = 3

Node Neighbors
S0 Ci for all i

X j
i , where j ∈ {0, 1, 2} and i ∈ {0, 1, 2}

every Ei,j with i (mod 2) = 0
every Li,j with i (mod 2) = 0

S1 Ti for all i

X j
i , where j ∈ {0, 1, 2} and i ∈ {3, 4, 5}

every Ei,j with i (mod 2) = 1
every Li,j with i (mod 2) = 1

Ai Tj for all j

R0

Dj for all j

Ej,h for all h (mod 4) = i

Lj,h for all j (mod 4) = i

Ti S1

Aj for all j

Tj for all j 6= i

Dj for all j

P
X j

h , where j ∈ {0, 1, 2} and h ∈ {3, 4, 5}
Ej,h for all j (mod 2) = 1 and h (mod 4) = i

Lj,h for all j (mod 4) = i

The following lemma shows that if the cops allow the robber to go to an exit of some R
node, then they have to go back to {S0,S1} in order to prevent the robber from going to U .

I Lemma 8. Consider any X j
i . The only cop combination not containing X j

i that covers all
neighbors of X j

i in U is {S0,S1}.

As Lemma 8 already indicates, the cops do not want the robber to be able to go to an
exit from an R node. The next lemma characterizes the cop combinations from where they
can prevent the robber from doing that.

I Lemma 9. Consider any Ri. The only cop combinations not containing any Rj with j ≡ i
(mod 3) that cover all exits of Ri are {S0,S1}, {S0, Tj} for any j, and {Cj ,Dh} for any pair
(j, h) satisfying one of the following three conditions:
1. j (mod 3) = 0 and 0 ≤ h ≤ n̂/3− 1,
2. j (mod 3) = 1 and n̂/3 ≤ h ≤ 2n̂/3− 1,
3. j (mod 3) = 2 and 2n̂/3 ≤ h ≤ n̂− 1.

Observe that the cop combinations from Lemma 9 are independent of the choice of the
considered Ri which implies that these cop combinations cover all nodes in X . We call such

ICALP 2017

82:10 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

Table 2 The robber’s strategy.

{c0(t), c1(t)} r(t− 1) r(t)

6= {S0,S1} some node in U some uncovered node in U
{S0,S1} some node in U some node in A

{S0,S1} or {S0, Ti} Ai R0

6= {S0,S1} and 6= {S0, Ti} Ai some uncovered node in U
not covering all exits of Ri Ri some uncovered exit of Ri

covering all exits of Ri Ri the uncovered node from {Ri−1,Ri,Ri+1}
with smallest absolute index; if all are

covered, stay in Ri

6= {S0,S1} X j
i some uncovered node in U

{S0,S1} X j
i some node from {R−1,R0,R1}

a cop combination exit-blocking. Furthermore, we call an exit-blocking cop combination
proper if it does not contain a node from S (i.e., it consists of a node from C and a node
from D). Lastly, we call a proper exit-blocking cop combination {Ci,Dj} forcing if there
exist h, h′ ∈ {−1, 0, 1}, h 6= h′, such that the cops cover all Rh (mod 3) and all Rh′ (mod 3).
A close look at the construction of Gn̂ shows that a proper exit-blocking cop combination
{Ci,Dj} is forcing if and only if i ∈ {0, n̂/3, 2n̂/3}.

Proper exit-blocking cop combinations prevent the robber from going back (too much)
towards the middle of the R path since they contain a C node which by its nature is connected
to every third R node. Thus, in order to be able to chase the robber towards one end of the
R path, the cops have to stay in proper exit-blocking cop combinations.

The C node in a forcing proper exit-covering cop combination covers more R nodes than
the C node in a usual proper exit-covering cop combination and thereby forces the robber to
move one step towards the end of her R path. In order to chase the robber another step, the
cops have to go to a forcing proper exit-covering cop combination containing a different C
node. The following lemma shows a lower bound on the time it takes the cops to go from
one forcing proper exit-covering cop combination to another with a different C node, while
using only proper exit-covering cop combinations on the way. Refer to Figures 2 and 3 for
illustrations of the underlying idea.

I Lemma 10. Let ({Ci,Dj} = {c0(t), c1(t)}, {c0(t+ 1), c1(t+ 1)}, . . . , {c0(t+h), c1(t+h)} =
{Ci′ ,Dj′}) be a sequence of proper exit-blocking cop combinations describing the combined
movement of the two cops from time t to time t+ h. If {Ci,Dj} and {Ci′ ,Dj′} are forcing
and i 6= i′, then h ≥ n̂/3 · (n̂/3− 1) ∈ Ω(n̂2).

2.4 The Robber’s Strategy
Here, we explicitly specify a strategy for the robber that ensures that 2 cops need time Ω(n3)
to capture the robber in Gn̂:

If the cops are in S0 and S1 in round 0, then the robber starts in R0, otherwise the robber
starts in some node in U that is not covered by any of the cops (which exists by Lemma 6).
Depending on where the cops are, the robber moves as specified in Table 2 (as long as she is
not captured yet).

We show now that the specified strategy is well-defined, i.e., that the robber can perform
any step in the strategy and that no other situations than the specified ones can occur if the
robber follows the strategy. For the first part, we go through the table line by line:

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:11

Table 3 The cops’ strategy.

r(t− 1) (c0(t− 1), c1(t− 1)) (c0(t), c1(t))

Ai (S0,S1) (S0, Ti)
6= Ai for all i (S0,S1) (S0, Tj) for some j

arbitrary (S0, Ti) (C0,D0)
6= Ch for all h (Ci,Dj)

(
Ci+1 (mod n̂),Dj+1 (mod n̂)

)
if this covers all nodes in X(

Ci,Dj+1 (mod n̂)
)
otherwise

Ch (Ci,Dj) (S0,P)

By Lemma 6, if the robber is in some node u ∈ U , then she can always go to some
uncovered node in U , provided the cops are not in S0 and S1. She can also go from u to
some node in A since any node in U has some node in A as a neighbor, by the construction
of Gn̂. Similarly, the robber can go from any node in A to R0. By Lemma 7, if the robber is
in some node Ai, then she can always go to some uncovered node in U , provided the cops
are not in S0 and S1 or in S0 and Ti. The instructions where to go to from Ri are trivially
satisfiable. From X j

i , the robber can always go to some uncovered node in U if the cops are
not in S0 and S1, by Lemma 8. She can also go to either R−1, R0 or R1 from X j

i since each
X j

i is connected to exactly one of those three R nodes, by the construction of Gn̂.
Moreover since the robber starts in a node in U or R, Table 2 covers all situations where

the robber is in some node in U , A, R or X , and each instruction ends with the robber being
in one of those nodes, the presented strategy specifies what the robber has to do for every
possibly occurring situation.

2.5 The Cops’ Strategy
Now, we explicitly specify a strategy for the cops that ensures that the robber is captured in
time O(n3) in Gn̂:

Cop 0 starts in S0 and Cop 1 starts in S1 in round 0. Depending on where the robber is,
the cops move as specified in Table 3. There is one exception however: If a cop can capture
the robber immediately, then she does so, overriding any possible instruction from the table.

We show now that the specified strategy is well-defined, i.e., that the cops can actually
perform any step in the strategy and that no other situations than the specified ones can
actually occur2 if the cops follow the strategy:

The construction of Gn̂ ensures that the cops can actually move from the cop combinations
at time t− 1 given in Table 3 to the cop combinations at time t. Since the cops start in S0
and S1, the only thing that is left to show is that from (S0,P) (which is the only output
combination that is not dealt with on the input side) the cops can capture the robber at
time t+ 1, provided that the robber is in some Ch at time t− 1. For that, it is sufficient to
observe that any neighbor of Ch, and Ch itself, is covered by S0 or P.

2.6 A Lower Bound for the Robber’s Strategy
Here, we show that the strategy for the robber specified in Table 2 ensures that the cops
need time Ω(n3) to capture the robber in Gn̂. For convenience, we assume throughout the

2 More precisely, if a situation occurs that is not specified in Table 3, then the cops can capture the
robber immediately.

ICALP 2017

82:12 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

following lower bound considerations that if a cop can capture the robber immediately, then
she does so. This certainly cannot worsen any strategy the cops follow.

We start by observing that the set of R nodes can be partitioned into three roughly
equally-sized sets such that the R nodes in each such set have exactly the same exits. As the
following lemma shows, if the robber is in an R node, then she does not need to worry about
a cop being in another R node that has (and therefore covers) the same exits, since such a
situation cannot occur if the robber follows the specified strategy.

We proceed by determining the nodes the robber can be captured in. Then, using
Lemma 11 and Lemma 12, we give a lower bound on the capture time of Gn̂.

I Lemma 11. If the robber follows the strategy specified in Section 2.4, then the following
holds: If the robber is in some node Ri at time t and is not captured at time t + 1, then
neither of the 2 cops can be in some node Rj with j ≡ i (mod 3) at time t+ 1.

I Lemma 12. If the robber follows the strategy specified in Section 2.4, then she can only be
captured in Rn̂ or R−n̂.

I Lemma 13. If the robber follows the strategy specified in Section 2.4, then 2 cops need
time Ω(n̂3) to capture the robber in Gn̂.

2.7 An Upper Bound for the Cops’ Strategy
While the aim of this work is a lower bound, we need to show that 2 cops can actually
capture the robber in Gn̂, in order to use Gn̂ as a lower bound graph for the capture time
for 2 cops in 2-cop-win graphs. We start by showing that from a proper exit-blocking cop
combination the cops can always go to another proper exit-blocking cop combination by
doing one of the following: Both cops move to the next node in their respective cycle or only
the cop in the D cycle moves to the next node.

I Lemma 14. If (Ci,Dj) is an exit-blocking cop combination, then it holds that at least one
of (Ci,Dj+1 (mod n̂)) and (Ci+1 (mod n̂),Dj+1 (mod n̂)) is an exit-blocking cop combination.

The following lemma shows that, once the cops reach C0 and D0, the robber cannot
ever leave R without being captured in the next two moves. Then, using Lemma 14 and
Lemma 15, we give an upper bound on the capture time of Gn̂.

I Lemma 15. Let r(t) ∈ R and (c0(t+ 1), c1(t+ 1)) = (C0,D0) for some point in time t. If
the robber leaves R at some later point in time t′, i.e., if r(t′) /∈ R for some t′ > t, then the
robber will be captured at time t′′ ≤ t′ + 2, provided the two cops follow the strategy specified
in Section 2.5.

I Lemma 16. If the two cops follow the strategy specified in Section 2.5, then they capture
the robber in time O(n̂3) in Gn̂.

Finally, by Lemma 13 we get that for the case of 2 cops, the capture time of the graph
family {Gn̂}n̂≥3,n̂≡0 (mod 3) is Ω(n̂3) ⊆ Ω(n3) and by Lemma 16 we get that every graph in
{Gn̂}n̂≥3,n̂≡0 (mod 3) is 2-cop-win. Together, these lemmas yield Theorem 1 for 2 cops.

The Case of k > 2

Our graph construction and the corresponding lower bound proofs follow closely the design
of the case of two cops. To accommodate a third cop, Cop 2, we essentially copy the D
component and ensure, that for every step of Cop 1, Cop 2 has to perform Ω(n̂) steps. For
the case of k > 3 cops, we simply apply this trick inductively. Due to space limitations, we
defer the detailed discussion of the case of k > 2 cops to the full version.

S. Brandt, Y. Emek, J. Uitto, and R. Wattenhofer 82:13

References
1 I. Abraham, C. Gavoille, A. Gupta, O. Neiman, and K. Talwar. Cops, robbers, and threat-

ening skeletons: padded decomposition for minor-free graphs. In Proccedings of the 46th
ACM Symposium on Theory of Computing, STOC, pages 79–88, 2014.

2 M. Aigner and M. Fromme. A Game of Cops and Robbers. Discrete Applied Mathematics,
8(1):1–12, 1984. doi:10.1016/0166-218X(84)90073-8.

3 B. Alspach. Searching and Sweeping Graphs: a Brief Survey. Le Matematiche, 59:5–37,
2006.

4 T. Andreae. On a pursuit game played on graphs for which a minor is excluded. Journal
of Combinatorial Theory, Series B, 41(1):37–47, 1986.

5 A. Berarducci and B. Intrigila. On the Cop Number of a Graph. Advances in Applied
Mathematics, 14(4):389–403, 1993. doi:10.1006/aama.1993.1019.

6 A. Bonato and W. Baird. Meyniel’s Conjecture on the Cop Number: a Survey. Journal of
Combinatorics, 3:225–238, 2012.

7 A. Bonato, P.A. Golovach, G. Hahn, and J. Kratochvíl. The Capture Time of a Graph.
Discrete Mathematics, 309(18):5588–5595, 2009. doi:10.1016/j.disc.2008.04.004.

8 A. Bonato, P. Gordinowicz, B. Kinnersley, and P. Pralat. The Capture Time of the Hyper-
cube. Electr. J. Comb., 20(2):P24, 2013.

9 A. Bonato and R. J. Nowakowski. The Game of Cops and Robbers on Graphs, volume 61
of Student Mathematical Library. American Mathematical Society, Providence, RI, 2011.

10 A. Bonato and B. Yang. Graph Searching and Related Problems. In Handbook of
Combinatorial Optimization, pages 1511–1558. Springer New York, 2013. doi:10.1007/
978-1-4419-7997-1_76.

11 N.E. Clarke and G. MacGillivray. Characterizations of k-copwin Graphs. Discrete Math-
ematics, 312(8):1421–1425, 2012. doi:10.1016/j.disc.2012.01.002.

12 F.V. Fomin and D.M. Thilikos. An Annotated Bibliography on Guaranteed Graph Search-
ing. Theor. Comput. Sci., 399(3):236–245, 2008.

13 K.-T. Förster, R. Nuridini, J. Uitto, and R. Wattenhofer. Lower Bounds for the Capture
Time: Linear, Quadratic, and Beyond. In 22nd International Colloquium on Structural
Information and Communication Complexity (SIROCCO), pages 342–356, 2015.

14 P. Frankl. Cops and Robbers in Graphs with Large Girth and Cayley Graphs. Discrete
Appl. Math., 17(3):301–305, June 1987. doi:10.1016/0166-218X(87)90033-3.

15 G. Hahn. Cops, Robbers and Graphs. Tatra Mt. Math. Publ, 36(163):163–176, 2007.
16 A. Kehagias and P. Pralat. Some Remarks on Cops and Drunk Robbers. Theoretical

Computer Science, 463:133–147, 2012.
17 L. Lu and X. Peng. On Meyniel’s Conjecture of the Cop Number. Journal of Graph Theory,

71(2):192–205, 2012. doi:10.1002/jgt.20642.
18 A. Mehrabian. The Capture Time of Grids. Discrete Mathematics, 311(1):102–105, 2011.

doi:10.1016/j.disc.2010.10.002.
19 R. J. Nowakowski and P. Winkler. Vertex-to-vertex Pursuit in a Graph. Discrete Mathem-

atics, 43(2-3):235–239, 1983. doi:10.1016/0012-365X(83)90160-7.
20 P. Pralat. When Does a Random Graph Have a Constant Cop Number. Australasian

Journal of Combinatorics, 46:285–296, 2010.
21 A. Quilliot. Jeux et Pointes Fixes sur les Graphes. PhD thesis, Universite de Paris VI,

1978.

ICALP 2017

http://dx.doi.org/10.1016/0166-218X(84)90073-8
http://dx.doi.org/10.1006/aama.1993.1019
http://dx.doi.org/10.1016/j.disc.2008.04.004
http://dx.doi.org/10.1007/978-1-4419-7997-1_76
http://dx.doi.org/10.1007/978-1-4419-7997-1_76
http://dx.doi.org/10.1016/j.disc.2012.01.002
http://dx.doi.org/10.1016/0166-218X(87)90033-3
http://dx.doi.org/10.1002/jgt.20642
http://dx.doi.org/10.1016/j.disc.2010.10.002
http://dx.doi.org/10.1016/0012-365X(83)90160-7

Stochastic Control via Entropy Compression∗

Dimitris Achlioptas†1, Fotis Iliopoulos‡2, and Nikos Vlassis3

1 Department of Computer Science, UC Santa Cruz, Santa Cruz, CA, USA
optas@cs.ucsc.edu

2 Department of Electrical Engineering and Computer Science, UC Berkeley,
Berkeley, CA, USA
fotis.iliopoulos@berkeley.edu

3 Adobe Research, San Jose, CA, USA
nikos.vlassis@gmail.com

Abstract
Consider an agent trying to bring a system to an acceptable state by repeated probabilistic action.
Several recent works on algorithmizations of the Lovász Local Lemma (LLL) can be seen as
establishing sufficient conditions for the agent to succeed. Here we study whether such stochastic
control is also possible in a noisy environment, where both the process of state-observation and
the process of state-evolution are subject to adversarial perturbation (noise). The introduction
of noise causes the tools developed for LLL algorithmization to break down since the key LLL
ingredient, the sparsity of the causality (dependence) relationship, no longer holds. To overcome
this challenge we develop a new analysis where entropy plays a central role, both to measure the
rate at which progress towards an acceptable state is made and the rate at which noise undoes
this progress. The end result is a sufficient condition that allows a smooth tradeoff between the
intensity of the noise and the amenability of the system, recovering an asymmetric LLL condition
in the noiseless case.

1998 ACM Subject Classification G.3 Probabilistic Algorithms, I.2.8 Control Theory

Keywords and phrases Stochastic Control, Lovász Local Lemma

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.83

1 Introduction

Consider a system with a large state space Ω, hidden from view inside a box. On the outside
of the box there are lightbulbs and buttons. Each lightbulb corresponds to a set fi ⊆ Ω and
is lit whenever the current state of the system is in fi. We think of each set fi as containing
all states sharing some negative feature i ∈ [m] and refer to each such set as a flaw, letting
F = {f1, f2, . . . , fm}. For example, if the system corresponds to a graph G with n vertices
each of which can take one of q colors, then Ω = [q]n, and we can define for each edge ei of
G the flaw fi to contain all assignments of colors to the vertices of G that assign the same
color to the endpoints of ei. Following linguistic convention, instead of mathematical, we will
say that flaw f is present in state σ whenever f 3 σ and that state σ is flawless if no flaw
is present in σ. The buttons correspond to actions, i.e., to mechanisms for state evolution.
Specifically, taking action a while in state σ moves the system to a new state τ , selected
from a probability distribution that depends on both σ and a.

∗ A full version of this paper appears as [1], https://arxiv.org/abs/1607.06494.
† Research supported by NSF grant CCF-1514128.
‡ Research supported by NSF grant CCF-1514434. Part of of this work was done while at Adobe Research.

EA
T

C
S

© Dimitris Achlioptas, Fotis Iliopoulos, and Nikos Vlassis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 83; pp. 83:1–83:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.83
https://arxiv.org/abs/1607.06494
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

83:2 Stochastic Control via Entropy Compression

Outside the box, an agent called the controller observes the lightbulbs and pushes buttons,
in an effort to bring the system to a flawless state. Specifically, if O(σ) ∈ {0, 1}m denotes the
lightbulb bitvector, with 1 corresponding to lit, the controller repeatedly applies a function P ,
called a policy, that maps O(σ) to a distribution over actions. Thus, overall, state evolution
proceeds as follows: if the current (hidden) state is σ ∈ Ω, the controller observes O(σ) and
samples an action from P (O(σ)); after she takes the chosen action, the system, internally
and probabilistically, moves to a new (hidden) state τ , selected from a distribution that
depends on both σ and the action taken.

Our work begins with the observation that several recent results [23, 24, 18, 14, 3, 15, 2, 19]
on LLL algorithmization can be seen as giving sufficient conditions for a controller as above
to be able to bring the system to a flawless state quickly, with high probability. Motivated
by this viewpoint we ask if conditions for LLL algorithmizations can be seen as stability
criteria and give results for more general settings, e.g., Partially Observable Markov Decision
Processes (POMDPs). Given the capacity of LLL algorithmization arguments to establish
convergence in highly non-convex domains, a major pain point in control theory, we believe
that bringing such arguments to stochastic control is a first step in a fruitful direction. In
order to move in that direction we generalize the setting described so far in two ways:

The mapping O from states to observations is stochastic: the lightbulbs are unreliable,
exhibiting both false-positives and false-negatives.
Both the environment surrounding the system and the implementation of actions are
noisy: the controller is not the only agent affecting state evolution and flaws may be
introduced into the state for reasons unrelated to her actions, even spontaneously.

Naturally, the question is whether sufficient conditions for quick convergence to flawless
states can still be established in this setting. We answer the question affirmatively and show,
in a precise mathematical sense, that the less internal conflict there is in the system, the
more noise the controller can tolerate. In order to prove this we require the controller to
be focused and to prioritize. That is, we will assume that the flaws are ordered by priority
according to an arbitrary but fixed permutation π of F , and we will ascribe the action taken
by the controller in each step to the present flaw (focus) of highest priority (prioritization).
The analysis will then take into account both how good the actions are at ridding the state
of that flaw and how damaging they are in terms of introducing new flaws. In particular,
with this attribution mechanism in place, and similarly to LLL algorithmization arguments,
we will say that flaw fi can cause flaw fj if there exists a state transition with non-zero
probability under the policy, from a state in which fi is the highest priority flaw and fj is
absent, to a state in which fj is present.

The main challenge we face is that in the presence of noise the causality relationship
becomes dense. To overcome this we develop a new analysis in which causality is not a
binary relationship, but one weighted by the frequency of interactions. In particular, our
condition guaranteeing that the controller will succeed within a reasonable amount of time
allows the causality graph to become arbitrarily dense, if the frequency of interactions is
sufficiently small. Turning the sparsity of the causality relationship into a soft requirement
is a major departure from the LLL setting and our main technical contribution. We do this
by developing an entropy compression argument, in which we carefully amortize the entropy
injected into the system to encode the effect of noise on the state trajectory. It is worth
pointing out that even though our technique applies to the far more general noisy setting, in
the absence of noise it recovers the main result of [3], thus providing a smooth relationship
between lack of internal conflict and robustness to noise.

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:3

2 Formal Setting and Statement of Results

In the absence of observational and environmental noise we can think of the state evolution
under a policy P as a random walk on a certain digraph on Ω. Specifically, at each flawed
state σ ∈ Ω, for each action in the support of P (O(σ)), there is a bundle of outgoing arcs
of total probability 1, corresponding to the state-transitions from σ under this action. The
convolution of P (O(σ)) with the distribution inside each bundle yields the state-transition
probability distribution from each flawed state σ.

The presence of observational and environmental noise both distorts the transition
probabilities and introduces new transitions. For example, whenever observational noise
causes O(σ) to differ from the set of flaws truly present in σ, the controller may chose an
action (from the support of P (O(σ))) under which there are transitions from σ that were not
present in the noise-free digraph. We model the overall distortion induced by noise by taking
the noise-free digraph, which we think of as the principal mechanism for state evolution,
reducing the probabilities on all its edges uniformly by a factor of 1− p, and allowing the
leftover probability mass to be distributed arbitrarily, in order to form the noise. More
precisely:

Let Dpo be the digraph on Ω of possible state-transitions under policy P , with a self-loop
added at every flawless state. Let ρpo be the P -induced state-transition probability
distribution, augmented so that all self-loops at flawless states have probability 1.
Let Dns be an arbitrary digraph on Ω. For each vertex σ in Dns, let ρns(σ, ·) be an
arbitrary probability distribution on the arcs leaving σ.
We will analyze the Markov chain on Ω which at every σ ∈ Ω, with probability p follows
an arc in Dns and with probability 1− p follows an arc in Dpo. Formally, for every σ ∈ Ω,

ρ(σ, ·) = (1− p) · ρpo(σ, ·) + p · ρns(σ, ·) .

We assume that the system starts at a state σ1, according to some unknown probability
distribution θ.

Requiring that the effect of noise is captured by a mixture of the original (principal)
chain and an arbitrary chain is the only assumption that we make. In particular, by allowing
Dns and ρns to be arbitrary we forego the need to posit specific models of observational and
environmental noise, lending greater generality to our results. To see this, let U(σ) denote
the set of flaws actually present in σ (and, slightly abusing notation, also the characteristic
vector of U(σ) ⊆ F). In any step where the state transition distribution is not the principal
one, we can think of this as occurring because O(σ) 6= U(σ) and the distribution corresponds
to P (O(σ)), or because O(σ) 6= U(σ) and the distribution does not even correspond to
P (O(σ)), or because O(σ) = U(σ) but, silently, the distribution followed is different from
P (O(σ)). In particular, notice that whenever O(σ) = 0, the controller thinks she has arrived
at a flawless state and, thus, authorizes a self-loop with probability 1. In such a case, the
fact that the system will follow ρns with probability p means that we are allowing the noise
not only to trick the controller to inactivity but also to silently move the system to a new
state. Similarly, after the system arrives at a flawless state, i.e., U(σ) = 0, with probability
p it will then follow an arc in Dns, potentially to a flawed state. We allow this to occur
to be consistent with (i) the idea that observational noise can occur at any state, even a
flawless one, thus causing unneeded, potentially detrimental action, and (ii) with the idea
that flaws can be introduced spontaneously from the environment at any state. Our goal
is, thus, to prove that from any initial state, after a small number of steps, the system will

ICALP 2017

83:4 Stochastic Control via Entropy Compression

reach a flawless state, despite the noise. As we will see, what will matter about the noise is
the extent to which noise-induced transitions introduce flaws in the state.

Let D = Dpo ∪ Dns. To avoid certain trivialities we will assume that there exists a
constant B < ∞ such that 2−B < ρ(σ, τ) < 1 − 2−B for every arc (σ, τ) ∈ D. For each
state σ, we denote the highest priority flaw present in σ by π(σ); if π(σ) = fi, we label all
arcs leaving σ as σ i−→ ·, i.e., with the index of the flaw to which we attribute the transition
(we use i instead of fi as the label to lighten notation). We will refer to π(σ) as the flaw
addressed at σ.

I Causality. For an arc σ i−→ τ in D and a flaw fj present in τ we say that fi causes fj if
fj 63 σ. The digraph on [m] where i→ j iff D contains an arc such that fi causes fj is the
causality digraph C(D).

I Neighborhood. The neighborhood of a flaw fi in C = C(D) is Γ(fi) = {fi} ∪ {fj : i→
j exists in C}.

For our condition we will need to bound from below the entropy injected into the system
in each step. To that end we define the potential of each flaw fi to be

Potential(fi) = min
σ:π(σ)=fi

H[ρ(σ, ·)] . (1)

We extend the definition to sets of flaws i.e., Potential(S) =
∑
f∈S Potential(f), where

Potential(∅) = 0.
In the absence of noise, Potential(fi) expresses a lower bound on the diversity of ways

to address flaw fi, by bounding from below the “average number of random bits consumed”
whenever fi is addressed. Thus, it bounds from below the rate at which the controller
explores the state space locally. The presence of noise may decrease or may increase the
potential. For example, if all arcs in Dns are self-loops, then the noise is equivalent to the
action-buttons “sometimes not working” and its only (and very benign) effect is to slow
down the exploration by a constant factor. At the other extreme, if Dns is the complete
digraph on Ω and ρns is uniform, then (unless p is extremely small) the situation is, clearly,
hopeless. Correspondingly, even though the potential has been greatly increased, the causality
relationship is complete. We note that, trivially, the potential of each flaw is bounded from
below by the minimum entropy injected by the principal alone whenever the flaw is addressed,
i.e., Potential(fi) ≥ (1− p) minσ:π(σ)=fi H[ρpo(σ)].

The other important characteristic of each flaw fi is its congestion, i.e., the maximum
number of arcs with label i that lead to the same state. For the same reason we would
like the potential of a flaw to be big, we would like its congestion to be small: if arcs from
different states in fi lead to the same state, then exploration slows down and the entropy
injected into the system must be appropriately discounted in order to yield a good measure
of the rate of state space exploration. To see this observe that Potential(fi) is independent
of the destinations of the arcs leaving fi and compare the case where these destinations are
all distinct with the case where they all lie in a small (bottleneck) set. As the congestion
due to the principal and the congestion due to noise will have different effects, we need to
account for them separately. Let Apo(σ) denote the support of ρpo(σ, ·) and Ans(σ) denote
the support of ρns(σ, ·).

I Congestion. For any flaw fi ∈ F , let

Congestionpo(fi) = max
τ∈Ω
|{σ ∈ fi : τ ∈ Apo(σ)}|

Congestionns(fi) = max
τ∈Ω
|{σ ∈ fi : τ ∈ Ans(σ)}| .

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:5

Let bfipo = log2 Congestionpo(fi). Let bfins = log2 Congestionns(fi). Let bns = maxfi∈F bfins.

Let Cpo and Cns be the causality graphs of Dpo and Dns, respectively, and let Γpo(fi)
and Γns(fi) be the corresponding neighborhoords. Let ∆i = |Γns(fi)|. Recall that h(p) =
−p log2 p− (1− p) log2(1− p) is the binary entropy of p ∈ [0, 1]. To express the lost efficiency
due to noise in addressing flaw fi, we let

qi(p) = p

(
∆i

(
bns + 5

2 + h(p)
)
− 2− h(p)

)
≤ p∆i(bns + 4) .

Observe that qi(p) is independent of the policy and that its leading term is p∆i. This
means that, unlike the LLL, the number, ∆i, of different flaws that may be introduced when
addressing a flaw can be arbitrarily large if the frequency of interactions between flaws,
captured by p, is sufficiently small. Our main result establishes a condition under which
the probability of not reaching a flawless state within O(log2 |Ω|+m) steps is exponentially
small. To state it define for each flaw fi,

Amenability(fi) = Potential(fi)− bfipo .

I Theorem 1. If for every flaw fi ∈ F ,∑
fj∈Γpo(fi)

2−Amenability(fj)+qj(p) < 2−(2+h(p)) , (2)

then there exists a constant R > 0 depending on the slack in (2), such that for every s > 1/2,
the probability of not reaching a flawless state after Rs(log2 |Ω| + m) steps is less than
exp(−s).

I Remark. In the noiseless case, i.e., when p = 0, equation (2) becomes an asymmetric LLL
criterion. In particular, the main result of [3] is that if bfipo = 0 and all distributions ρpo(σ, ·)
are uniform over their support Apo(σ), then, a sufficient condition for reaching a flawless state
quickly is that for every fi ∈ F ,

∑
fj∈Γpo(fi) 1/aj < 1/e, where aj = minσ∈fj :π(σ)=fj |Apo(σ)|.

We see that in this setting our condition (2) recovers this, up to the constant on the right
hand side, i.e., 1/4 vs. 1/e.

3 Related Work

3.1 POMDPs and the Reachability Problem
Markov Decision Processes (MDPs) are widely used models for describing problems in
stochastic dynamical systems [13, 28, 7], where an agent repeatedly takes actions to achieve
a specific goal while the environment reacts to these actions in a stochastic way. In an MDP
the agent is assumed to be able to perfecty observe the current state of the system and
take action based on her observations. In a partially observable Markov Decision Process
(POMDP) the agent only receives limited, and possibly inaccurate, information about the
current state of the system. POMDPs have been used to model and analyze problems in
artificial intelligence and machine learning such as reinforcement learning [9, 17], planning
under uncertainty [16], etc.

Formally, a discrete POMDP is defined by the following primitives (all sets are assumed
finite): (i) a state space Ω, (ii) a finite alphabet of actions A, (iii) an observation space
O, (iv) an action-conditioned state transition model Pr(τ |σ, a), where σ, τ ∈ Ω and a ∈ A,

ICALP 2017

83:6 Stochastic Control via Entropy Compression

(v) an observation model Pr(o|σ), where σ ∈ Ω and o ∈ O, (vi) a cost function c : Ω 7→ R
(or more generally a map from state-action pairs to the reals), and (vii) a desired criterion
to minimize, e.g., expected total cumulative cost

∑∞
t=0 E [c(σt)], where σt is the random

variable that equals the t-th state of the trajectory of the agent. Finally, various choices
of controllers are possible. For instance, a stochastic memoryless controller is a map from
the current observation to a probability distribution over actions, whereas a belief-based
controller conditions its actions on probability distributions over the state space (i.e., beliefs)
that are sequentially updated (using Bayes rule or some approximation of it) while the agent
is interacting with the environment.

Unfortunately, the problem of computing an optimal policy for a POMDP, i.e., designing
a controller that minimizes the expected cost, is highly intractable [27, 25] and, in general,
undecidable [21]. Notably, the problem remains hard even if we severely restrict the class of
controllers over which we optimize [27, 20, 12, 31]. As far as we know, the only tractable
case [31] requires both the cost function and the class of controllers over which we optimize to
be extremely restricted. In particular, the controller can not observe or remember anything
and must apply the same distribution over actions in every step.

An important special case that has motivated our work is the reachability problem for
POMPDs. Here, one has a set of target states T ⊆ Ω, and the goal is to design a controller
that starting from a distribution θ over Ω, guides the agent to a state in T (almost surely)
with the optimal expected total cumulative cost. As shown in [8], the problem is undecidable
in the general case. In the same work, for the case where the costs are positive integers and
the observation model is deterministic, i.e., the observations induce a partition of the state
space, the authors give an algorithm which runs in time doubly-exponential in |Ω| and returns
doubly-exponential lower and upper bounds for the optimal expected total cumulative cost,
using a belief-based controller. On the other hand, our work establishes a sufficient condition
for a stochastic memoryless controller to reach the target set T rapidly (in time logarithmic
in |Ω| and linear in |F |), in the case where each individual observation is binary valued (set
membership) and the observation model is arbitrarily stochastic. To our knowledge, this is
the first tractability result for a nontrivial class of POMDPs under stochastic memoryless
controllers.

3.2 Focusing and Prioritization
To achieve our results the controller must be focused and prioritize. The idea of focusing was
introduced by Papadimitriou [26] in the context of satisfiability algorithms, and amounts
to “if it ain’t broken don’t fix it”, i.e., state evolution should only happen by changing the
values of variables that participate in at least one violated constraint. One way to implement
this idea is to always first select a violated constraint (flaw) and then take actions that
tend to get rid of it. This has been an extremely successful idea in practice [29, 4] and it is
often materialized by selecting a random flaw to address in each step. We remark that our
methods allow, in fact, also the analysis of controllers that address a random flaw in each
step, but for simplicity of exposition we chose to only present the case of a fixed permutation
(prioritization).

Focusing is not only a good algorithmic idea, but also enables proofs of termination.
Specifically, at the foundation of the argument of Moser and Tardos [24] is the following
observation: whenever an algorithm (focused or not) takes t or more steps to reach a flawless
state, say through flawed states σ1, σ2, . . . , σt, there exists, by definition, a sequence of flaws
w1, w2, . . . , wt such that σi ∈ wi. Therefore, by establishing a (potentially randomized) rule
for selecting a flaw present in the state at each step, we can construct a random variable

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:7

Wt = w1, w2, . . . , wt to act as a witness of the fact that the algorithm took at least t steps.
While, though, prima facie all constructions are equivalent, our capacity to bound the set
of all possible such sequences is not. In particular, if the algorithm is focused and in each
step we report the flaw on which the algorithm focused, then we can take advantage of
the following observation: each appearance of a flaw fi in the witness sequence, with the
potential exception of the very first, must be preceded by a distinct appearance of a flaw fj
that causes fi. This allows us to bound the rate at which the entropy of the set of t-witness
sequences grows with t. Of course, in a general setting, there is good reason to believe that
prioritization, i.e., focusing on the flaw determined by a fixed permutation, will be not be
the best one can do. In particular, observe that for the same Dpo, different permutations π
give rise to different causality graphs. On the other hand, at the level of generality of this
work, i.e., without any assumptions about the system at hand, we can not really hope for a
more intelligent choice.

3.3 LLL algorithmization
The Lovász Local Lemma (LLL) [11] is a non-constructive method for proving the existence
of flawless states that has served as a cornerstone of the probabilistic method. To use the
LLL one provides a probability measure µ on Ω, often the uniform measure, transforming
flaws to (“bad”) events, so that the existence of flawless states is equivalent to µ(

⋃m
i=1 fi) < 1.

The key quantity to control in order to prove this is negative dependence, i.e., the extent
to which the probability of a bad event may be increased (boosted) by conditioning on the
non-occurrence of other bad events. Roughly speaking, the LLL requires that for each bad
event f , only a small number of other bad events should be able to boost µ(f) in this manner,
whereas conditioning on the non-occurrence of all other bad events should not increase µ(f).
Representing the boosting relationship in a graphical manner, with vertices corresponding to
bad events pointing to their potential boosters, at a high level, the LLL requirement is that
this digraph is sparse.

As one can imagine, whenever one proves that Ω contains flawless objects via the LLL
it is natural to then ask if some such object can be found efficiently. Making the LLL
constructive has been a long quest, starting with the work of Beck [6], with subsequent works
of Alon [5], Molloy and Reed [22], Czumaj and Scheideler [10], Srinivasan [30] and others.
Each of these works established a method for finding flawless objects efficiently, but with
additional conditions relative to the LLL. A breakthrough was made by Moser [23] who gave
a very elegant algorithmization of the LLL for satisfiability via entropy compression. Very
shortly afterwards, Moser and Tardos in a landmark paper [24] made the LLL constructive
for every product measure µ. Specifically, they proved that if one starts by sampling an
initial state according to µ, and in every step selects an arbitrary occurring bad event and
resamples its variables according to µ, then with high probability a flawless state will be
reached within O(m) steps.

Following [24], several works [18, 14, 3, 15, 2, 19] have extended the scope of LLL
algorithmization beyond product measures. In these works, unlike [24], one has to also
provide either an explicit algorithm [18, 14], or an algorithmic framework [3, 2, 15, 19], along
with a way to capture the compatibility between the algorithm’s actions for addressing each
flaw fi and the measure µ. As was shown in [15, 2, 19], one can capture compatibility by
letting

di = max
τ∈Ω

νi(τ)
µ(τ) ≥ 1 , (3)

ICALP 2017

83:8 Stochastic Control via Entropy Compression

where νi(τ) is the probability of ending up at state τ at the end of the following experiment:
sample σ ∈ fi according to µ and address flaw fi at σ. An algorithm achieving di = 1 is
a resampling oracle for flaw fi. If di = 1 for every i ∈ [m], then it was proven in [15] that
the causality digraph equals the boosting digraph mentioned above and the condition for
success is identical to that of the LLL (observe that the resampling algorithm of Moser
and Tardos [24] is trivially a resampling oracle for every flaw). More generally, ascribing to
each flaw fi the charge γ(fi) = di · µ(fi), yields the following user-friendly algorithmization
condition [2], akin to the asymmetric Local Lemma: if for every flaw fi ∈ F ,∑

fj∈Γ(fi)

γ(fj) <
1
4 , (4)

then with high probability the algorithm will reach a sink after O(log |Ω|+m) steps.
Even though the noiseless case is only tangential to the main point of this work, as

an indication of the sharpness of our analysis, we point out that in the noiseless case, our
condition (2) is identical to (4) with γ(fi) replaced by χ(fi) := 2−Potential(fi)+b

fi
po . In general,

γ(fi) and χ(fi) are incomparable. Roughly speaking, settings where bfipo is small and di is
large favor χ(fi) over γ(fi) and vice versa, while the two meet when bfipo = 0, µ is uniform,
and the transition probabilities are uniform, as in [3].

In terms of techniques, as hinted in Section 3.2, proofs of LLL algorithmizations consist
of two independent parts. In one part, one bounds from above the probability of any witness
sequence occurring, or in the case of Moser’s entropic argument, bounds from below the
entropy injected to the system while addressing the sequence. In the other part, one has to
estimate the [entropy of the] set of possible witness sequences, using syntactic properties
mandated by causality: roughly speaking every occurrence of a flaw in a witness sequence,
with the potential exception of the very first, must be preceded by an occurrence of some flaw
that causes it. Finally, one compares the rate at which the probability of a t-step witness
sequence decreases (or the rate at which entropy is increased) with the rate at which the
[entropy of the] set of possible witness sequences increases, to establish that their product
tends to 0 with t.

In this paper, exactly because we aim to capture the intensity of interactions between
flaws under adversarial noise, we need to take a different approach. In particular, our proof
can be thought of as entangling the two parts described above in order to establish that, while
adversarial noise can make the imposed syntactic requirements inherited by the causality
graph very weak (by making the graph extremely dense), the fact that the intensity of the
noise is low, suffices to control the growth rate of the entropy of the set of witness sequences.
The result is a carefully tuned argument that amortizes the entropy injected into the system
against its effect on the entropy of the set of Break Forests. Key to the capacity to perform
this amortization is the use of so-called Break Forests, introduced in [3], which localize in
time the introduction of new flaws in the state. This property of Break Forests was not used
in earlier works [3, 2] and allows us to use a different amortization for the flaws introduced
by the principal vs. those introduced by noise.

4 Termination via Compression

Our analysis will not depend in any way on the distribution θ of the initial state. As a
result, without loss of generality, we can assume that the process starts at an arbitrary but
fixed state σinit. We let A(σ) denote the support of ρ(σ, ·), i.e., A(σ) is the set of all states
reachable by the process in a single step from σ.

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:9

I Definition 2. We refer to the (random) sequence σinit = σ1, . . . , σt+1, entailing the first t
steps of the process, as the t-trajectory. A t-trajectory is bad iff σ1, . . . , σt+1 are all flawed.

We model the set of all possible trajectories as an infinite tree whose root is labelled by
σ1 = σinit. The root has |A(σinit)| children corresponding to (and labelled by) each possible
value of σ2. More generally, a vertex labeled by σ has |A(σ)| children, each child labeled by
a distinct element of A(σ), i.e., a distinct possible value of σi+1. Every edge of this infinite
vertex-labelled tree is oriented away from the root and labelled by the probability of the
corresponding transition, i.e., ρ(σ, τ), where σ is the parent and τ is the child vertex. By our
assumption, every such edge label is at least 2−B .

We call the above labelled infinite tree the process tree and note that it is nothing but
the unfolding of the Markov chain corresponding to the state-evolution of the process. In
particular, for every vertex v of the tree, the probability, pv, that an infinite trajectory will
go through v equals the product of the edge-labels on the root-to-v path. In visualizing the
process tree it will be helpful to draw each vertex v at Euclidean distance − log2 pv from
the root. This way all trajectories whose last vertex is at the same distance from the root
are equiprobable, even though they may entail wildly different numbers of steps (this also
means that sibling vertices are not necessarily equidistant from the root). Finally, we color
the vertices of the process tree as follows. For every infinite path that starts at the root
determine its maximal prefix forming a bad trajectory. Color the vertices of the prefix red
and the remaining vertices of the path blue.

In terms of the above picture, our goal will be to prove that there exist a critical radius
x0 and δ > 0, such that the proportion of red states at distance x0 from the root is at most
1− δ. Crucially, x0 will be polynomial, in fact linear, in m = |F | and log2 |Ω|. Since we will
prove this for every possible initial state and the process is Markovian, it follows that the
probability that the process reaches distance x from the root while going only through red
states is at most (1− δ)bx/x0c.

To prove that red vertices thin out as we move away from the root we stratify the process
tree as follows. Fix any real number x > 0 and on each infinite path from the root mark
the first vertex of probability 2−x or less, i.e., the first vertex that has distance at least x
from the root. Truncate the process tree so that the marked vertices become leaves of a
finite tree. Let L(x) be the set of all root-to-leaf paths (trajectories) in this finite tree and let
B(x) ⊆ L(x) consist of the bad trajectories. Now, let I be the random variable equal to an
infinite trajectory of the process and let Σ = Σ(x) be the random variable equal to the prefix
of I that lies in L(x). By definition,

∑
`∈L(x) Pr[Σ = `] = 1, while Pr[`] ∈ (2−x−B , 2−x]

for every ` ∈ L(x), since − log2 ρ ≥ B. Let P = P (Σ) be the maximal red prefix of Σ and
observe that if Σ ∈ B(x) then P = Σ. Therefore,

H[P] ≥
∑

`∈B(x)

Pr[Σ = `](− log2 Pr[Σ = `]) ≥ x
∑

`∈B(x)

Pr[Σ = `] = xPr[Σ ∈ B(x)] . (5)

Assume now that there exist M0 > 0 and λ < 1, such that H[P] ≤ λx+M0, for every x > 0.
Then (5) implies that for x0 = 2M0/(1− λ),

Pr[Σ ∈ B(x0)] ≤ H[P]
x0

≤ λx0 +M0

x0
= λ+ 1− λ

2 = 1 + λ

2 < 1 . (6)

If Σ ∈ B(x0), we treat the reached state as the root of a new finite tree and repeat the
same analysis, as it is independent of the starting state. It follows in this manner that for
every integer T ≥ 1, the probability that the process reaches a state at distance T (x0 +B)

ICALP 2017

83:10 Stochastic Control via Entropy Compression

or more from the root by going only through red states is at most ((1 + λ)/2)T . Thus, for
any s > 1/2, the probability that the process reaches a state at distance

E =
⌈

2s
1 + λ

⌉
(x0 +B) = O

(
sM0

1− λ2

)
or more from the root by going only through red states is at most ((1 + λ)/2)d

2s
1+λe < exp(−s).

Since ρ(σ, τ) < 1−2−B , it follows that − log2 ρ(σ, τ) > 2−B , for every arc inD. Thus, after
2BE steps the process is always at distance E or more from the root. Thus, the probability of
not reaching a flawless state after 2BE = O

(
sM0
1−λ2

)
steps is exp(−s). Therefore Theorem 1

follows from the following.

I Theorem 3. Let Ξ = max{bns, bpo} and ∆ = maxj∈F ∆j. If there exists λ < 1 such that
for all j ∈ [m],∑

fi∈Γpo(fj)

2−(λPotential(fi)−bfipo−qi(p)) < 2−(2+h(p)) ,

then H[P] ≤ λx+M0 for every x > 0, where M0 = log2 |Ω|+m(∆ + 1)(Ξ + 4) + λB.

The proof of Theorem 3 can be found in the full version of the paper [1]. To bound the
entropy H[P] we show how to represent trajectories as break sequences, described in the
next section, and then show how to bound the entropy of break sequences by showing that
they can be compressed in fewer bits, on average, than those consumed by the algorithm.

5 Break Sequences

Recall that π is an arbitrary but fixed ordering of the set of flaws F and that the highest
flaw present in each state σ is denoted by π(σ). We will refer to π(σ) as the flaw addressed
at state σ, i.e., as in the noiseless case, even though the action distribution P (O(σ)) may be
“misguided” whenever O(σ) 6= U(σ).

I Definition 4. Given a bad t-trajectory Σ, its witness sequence is W (Σ) = w1, . . . , wt =
{π(σi)}ti=1.

To prove Theorem 3, i.e., to gain control of bad trajectories and thus of H[P], we introduce
the notion of break sequences (see also [3, 2]). Recall that U(σ) denotes the set of flaws
present in σ.

I Definition 5. Let B0 = U(σ1). For 1 ≤ i ≤ t− 1, let Bi = U(σi+1) \ (U(σi) \ wi).

Thus, Bi is the set of flaws “introduced” during the i-th step, where if a flaw is addressed
in a step but remains present in the resulting state we say that it “introduced itself”. Each
flaw f ∈ Bi may or may not be addressed during the rest of the trajectory. For example,
f may get fixed “collaterally” during some step taken to address some other flaw, before
the controller had a chance to address it. Alternatively, it may be that f remains present
throughout the rest of the trajectory, but in each step i < j ≤ t − 1 some other flaw has
greater priority than f . It will be crucial to identify and focus on the subset of flaws B∗i ⊆ Bi
that do get addressed during the t-trajectory, causing entropy to enter the system. Per the
formal Definition 6 below, the set of such flaws is B∗i = Bi \ {Oi ∪Ni}, where Oi comprises
any flaws in Bi that get eradicated collaterally, while Ni comprises any flaws in Bi that
remain present in every subsequent state after their introduction without being addressed.

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:11

I Definition 6. The Break Sequence of a t-trajectory is B∗0 , B∗1 , . . . , B∗t , where for 0 ≤ i ≤ t,

B∗i = Bi \ {Oi ∪Ni} ,where
Oi = {f ∈ Bi | ∃j ∈ [i+ 1, t] : f /∈ U(σj+1) ∧ ∀` ∈ [i+ 1, j] : f 6= w`} ,
Ni = {f ∈ Bi | ∀j ∈ [i+ 1, t] : f ∈ U(σj+1) ∧ ∀` ∈ [i+ 1, t] : f 6= w`} .

Given B∗0 , B∗1 , . . . , B∗i−1 we can determine the sequence w1, w2, . . . , wi of flaws addressed
inductively, as follows. Define E1 = B∗0 , while for i ≥ 1, let

Ei+1 = (Ei − wi) ∪B∗i . (7)

Observe that, by construction, Ei ⊆ U(σi) and wi ∈ Ei. Therefore, for every i, the highest
flaw in Ei is wi.

References
1 D. Achlioptas, F. Iliopoulos, and N. Vlassis. Stochastic Control via Entropy Compres-

sion. ArXiv e-prints, July 2016. URL: https://arxiv.org/abs/1607.06494, arXiv:
1607.06494.

2 Dimitris Achlioptas and Fotis Iliopoulos. Focused stochastic local search and the Lovász
local lemma. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 2024–
2038. SIAM, 2016. doi:10.1137/1.9781611974331.ch141.

3 Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the
Lovász local lemma. J. ACM, 63(3):22, 2016. doi:10.1145/2818352.

4 Mikko Alava, John Ardelius, Erik Aurell, Petteri Kaski, Supriya Krishnamurthy, Pekka
Orponen, and Sakari Seitz. Circumspect descent prevails in solving random constraint
satisfaction problems. Proceedings of the National Academy of Sciences, 105(40):15253–
15257, 2008. doi:10.1073/pnas.0712263105.

5 Noga Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms,
2(4):367–378, 1991. doi:10.1002/rsa.3240020403.

6 József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures
Algorithms, 2(4):343–365, 1991. doi:10.1002/rsa.3240020402.

7 Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena Scien-
tific, 2012.

8 Krishnendu Chatterjee, Martin Chmelik, Raghav Gupta, and Ayush Kanodia. Optimal
cost almost-sure reachability in POMDPs. Artif. Intell., 234:26–48, 2016. doi:10.1016/j.
artint.2016.01.007.

9 Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinc-
tions approach. In AAAI, pages 183–188. Citeseer, 1992.

10 Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algo-
rithmic approach to the general Lovász local lemma. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 2000), pages 30–39,
2000.

11 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and
some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to
P. Erdős on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai,
Vol. 10. North-Holland, Amsterdam, 1975.

12 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

ICALP 2017

https://arxiv.org/abs/1607.06494
http://arxiv.org/abs/1607.06494
http://arxiv.org/abs/1607.06494
http://dx.doi.org/10.1137/1.9781611974331.ch141
http://dx.doi.org/10.1145/2818352
http://dx.doi.org/10.1073/pnas.0712263105
http://dx.doi.org/10.1002/rsa.3240020403
http://dx.doi.org/10.1002/rsa.3240020402
http://dx.doi.org/10.1016/j.artint.2016.01.007
http://dx.doi.org/10.1016/j.artint.2016.01.007

83:12 Stochastic Control via Entropy Compression

13 Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer-Verlag New
York, Inc., New York, NY, USA, 1996.

14 David G. Harris and Aravind Srinivasan. A constructive algorithm for the Lovász lo-
cal lemma on permutations. In SODA, pages 907–925. SIAM, 2014. doi:10.1137/1.
9781611973402.68.

15 Nicholas J.A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma
via resampling oracles. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October,
2015, pages 1327–1346. IEEE Computer Society, 2015. URL: http://ieeexplore.ieee.
org/xpl/mostRecentIssue.jsp?punumber=7352273, doi:10.1109/FOCS.2015.85.

16 Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting
in partially observable stochastic domains. Artificial intelligence, 101(1):99–134, 1998.

17 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research, 4:237–285, 1996.

18 Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In
STOC, pages 235–244. ACM, 2011. doi:10.1145/1993636.1993669.

19 Vladimir Kolmogorov. Commutativity in the algorithmic lovász local lemma. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 780–787. IEEE
Computer Society, 2016. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=7781469, doi:10.1109/FOCS.2016.88.

20 Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complex-
ity of probabilistic planning. Journal of Artificial Intelligence Research, 9(1):1–36, 1998.

21 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic plan-
ning and infinite-horizon partially observable Markov decision problems. In AAAI/IAAI,
pages 541–548, 1999.

22 Michael Molloy and Bruce Reed. Further algorithmic aspects of the local lemma. In
STOC’98 (Dallas, TX), pages 524–529. ACM, New York, 1999.

23 Robin A. Moser. A constructive proof of the Lovász local lemma. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 – June 2, 2009, pages 343–350. ACM, 2009. doi:
10.1145/1536414.1536462.

24 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):Art. 11, 15, 2010. doi:10.1145/1667053.1667060.

25 Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender. Complexity of
finite-horizon Markov decision process problems. Journal of the ACM (JACM), 47(4):681–
720, 2000.

26 Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract).
In 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
1-4 October 1991, pages 163–169. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.
185365.

27 Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision
processes. Mathematics of operations research, 12(3):441–450, 1987.

28 Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

29 Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for satisfi-
ability testing. In David S. Johnson and Michael A. Trick, editors, Cliques, Color-
ing, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jer-
sey, USA, October 11-13, 1993, volume 26 of DIMACS Series in Discrete Mathematics

http://dx.doi.org/10.1137/1.9781611973402.68
http://dx.doi.org/10.1137/1.9781611973402.68
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7352273
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7352273
http://dx.doi.org/10.1109/FOCS.2015.85
http://dx.doi.org/10.1145/1993636.1993669
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://dx.doi.org/10.1109/FOCS.2016.88
http://dx.doi.org/10.1145/1536414.1536462
http://dx.doi.org/10.1145/1536414.1536462
http://dx.doi.org/10.1145/1667053.1667060
http://dx.doi.org/10.1109/SFCS.1991.185365
http://dx.doi.org/10.1109/SFCS.1991.185365

D. Achlioptas, F. Iliopoulos, and N. Vlassis 83:13

and Theoretical Computer Science, pages 521–532. DIMACS/AMS, 1993. URL: http:
//dimacs.rutgers.edu/Volumes/Vol26.html.

30 Aravind Srinivasan. Improved algorithmic versions of the Lovász local lemma. In Shang-Hua
Teng, editor, SODA, pages 611–620. SIAM, 2008. URL: http://dl.acm.org/citation.
cfm?id=1347082.1347150.

31 Nikos Vlassis, Michael L. Littman, and David Barber. On the computational complexity of
stochastic controller optimization in POMDPs. ACM Transactions on Computation Theory
(TOCT), 4(4):12, 2012. doi:10.1145/2382559.2382563.

ICALP 2017

http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dimacs.rutgers.edu/Volumes/Vol26.html
http://dl.acm.org/citation.cfm?id=1347082.1347150
http://dl.acm.org/citation.cfm?id=1347082.1347150
http://dx.doi.org/10.1145/2382559.2382563

Approximation Strategies for Generalized Binary
Search in Weighted Trees∗†

Dariusz Dereniowski1, Adrian Kosowski2, Przemysław Uznański3,
and Mengchuan Zou4

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk
University of Technology, Gdańsk, Poland
deren@eti.pg.gda.pl

2 Inria Paris and IRIF, Université Paris Diderot, Paris, France
adrian.kosowski@inria.fr

3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

4 Inria Paris and IRIF, Université Paris Diderot, Paris, France
mengchuan.zou@inria.fr

Abstract
We consider the following generalization of the binary search problem. A search strategy is
required to locate an unknown target node t in a given tree T . Upon querying a node v of
the tree, the strategy receives as a reply an indication of the connected component of T \ {v}
containing the target t. The cost of querying each node is given by a known non-negative weight
function, and the considered objective is to minimize the total query cost for a worst-case choice
of the target. Designing an optimal strategy for a weighted tree search instance is known to
be strongly NP-hard, in contrast to the unweighted variant of the problem which can be solved
optimally in linear time. Here, we show that weighted tree search admits a quasi-polynomial
time approximation scheme (QPTAS): for any 0 < ε < 1, there exists a (1 + ε)-approximation
strategy with a computation time of nO(logn/ε2). Thus, the problem is not APX-hard, unless
NP ⊆ DTIME(nO(logn)). By applying a generic reduction, we obtain as a corollary that the
studied problem admits a polynomial-time O(

√
logn)-approximation. This improves previous

Õ(logn)-approximation approaches, where the Õ-notation disregards O(poly log logn)-factors.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms

Keywords and phrases Approximation Algorithm, Adaptive Algorithm, Graph Search, Binary
Search, Vertex Ranking, Trees

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.84

1 Introduction

In this work we consider a generalization of the fundamental problem of searching for an
element in a sorted array. This problem can be seen, using graph-theoretic terms, as a
problem of searching for a target node in a path, where each query reveals on which ‘side’
of the queried node the target node lies. The generalization we study is two-fold: a more
general structure of a tree is considered and we assume non-uniform query times. Thus,

∗ The full version can be found at https://arxiv.org/abs/1702.08207.
† Partially supported by ANR DESCARTES and by National Science Centre (Poland) grant number

2015/17/B/ST6/01887.

EA
T

C
S

© Dariusz Dereniowski, Adrian Kosowski, Przemysław Uznański, and Mengchuan Zou;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 84; pp. 84:1–84:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.84
https://arxiv.org/abs/1702.08207
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

84:2 Approximation Strategies for Generalized Binary Search in Weighted Trees

Table 1 Computational complexity of the search problem in different graph classes, including
our results for weighted trees. Completeness results refer to the decision version of the problem. In
the case of unweighted paths, the solution is the classical binary search algorithm.

Graph class Unweighted Weighted

Paths: exact in O(n) time exact in O(n2) time [4]

Trees: exact in O(n) time [26, 28]

strongly NP-complete [9]

(1 + ε)-approx. in nO(log n/ε) time (Thm. 3.3)

O(
√

log n)-approx. in poly-time (Thm. 3.4)

Undirected:
exact in nO(log n) time [10] PSPACE-complete [10]

O(log n)-approx. in poly-time [10] O(log n)-approx. in poly-time [10]

Directed: PSPACE-complete [10] PSPACE-complete [10]

our problem can be stated as follows. Given a node-weighted input tree T (in which the
query time of a node is provided as its weight), design a search strategy (sometimes called
a decision tree) that locates a hidden target node x by asking queries. Each query selects
a node v in T and after the time that equals the weight of the selected node, a reply is
given: the reply is either ‘yes’ which implies that v is the target node and thus the search
terminates, or it is ‘no’ in which case the search strategy receives the edge outgoing from v

that belongs to the shortest path between u and v. The goal is to design a search strategy
that locates the target node and minimizes the search time in the worst case.

The vertex search problem is more general than its ‘edge variant’ that has been more
extensively studied. In the latter problem one selects an edge e of an edge-weighted tree
T = (V,E,w) in a query and learns in which of the two components of T − e the target node
is located. Indeed, this edge variant can be reduced to our problem as follows: first assign a
‘large’ weight to each node of T (for example, one plus the sum of the weights of all edges in
the graph) and then subdivide each edge e of T giving to the new node the weight of the
original edge, w(e). It is apparent that an optimal search strategy for the new node-weighted
tree should never query the nodes with large weights, thus immediately providing a search
strategy for the edge variant of T .

We also point out that the considered problem, as well as the edge variant, being quite
fundamental, were historically introduced several times under different names: minimum
height elimination trees [27], ordered colourings [15], node and edge rankings [13], tree-depth
[25] or LIFO-search [11]. Table 1 summarizes the complexity status of the node-query model
and places our result in the general context.

1.1 State-of-the-Art
In this work we focus on the worst case search time for a given input graph and we only
remark that other optimization criteria has been also considered [3, 16, 17, 30]. For other
closely related models and corresponding results see e.g. [1, 12, 19, 21, 29].

The node-query model. An optimal search strategy can be computed in linear-time for an
unweighted tree [26, 28]. The number of queries performed in the worst case may vary from
being constant (for a star one query is enough) to being at most log2 n for any tree [26] (by

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:3

always querying a node that halves the search space). Several following results have been
obtained in [10]. First, it turns out that log2 n queries are always sufficient for general simple
graphs and this implies a O(mlog2 nn2 logn)-time optimal algorithm for arbitrary unweighted
graphs. The algorithm which performs log2 n queries also serves as a O(logn)-approximation
algorithm, also for the weighted version of the problem. On the other hand, it is shown
in the same work that an optimal algorithm (for unweighted case) with a running time
of O(no(logn)) would be in contradiction with the Exponential-Time-Hypothesis. When
weighted graphs are considered, the problem becomes PSPACE-complete.

The edge-query model. In the case of unweighted trees, an optimal search strategy can
be computed in linear time [20, 24]. (See [7] for a correspondence between edge rankings
and the searching problem.) The computational complexity of the problem on weighted
trees attracted a lot of attention. On the negative side, it has been proved that it is strongly
NP-hard to compute an optimal search strategy [6] for bounded diameter trees, which has
been improved by showing hardness for several specific topologies: trees of diameter at most
6, trees of degree at most 3 [4] and spiders [5] (trees having at most one node of degree
greater than two). On the other hand, polynomial-time algorithms exist for weighted trees
of diameter at most 5 and weighted paths [4]. We note that for weighted paths there exists
a linear-time but approximate solution given in [16]. For approximate polynomial-time
solutions, a simple O(logn)-approximation has been given in [6] and a O(logn/ log log logn)-
approximate solution is given in [4]. Then, the best known approximation ratio has been
further improved to O(logn/ log logn) in [5].

Some bounds on the number of queries for unweighted trees have been developed. Observe
that an optimal search strategy needs to perform at least log2 n queries in the worst case.
However, there exist trees of maximum degree ∆ that require ∆ log∆+1 n queries [2]. On
the other hand, Θ(∆ logn) queries are always sufficient for each tree [2], which has been
improved to (∆ + 1) log∆ n [18], ∆ log∆ n [8] and 1 + ∆−1

log2(∆+1)−1 log2 n [10].

1.2 Organization of the Paper
The aim of Section 2 is to give the necessary notation and a formal statement of the problem
(Sections 2.1 and 2.2) and to provide two different but equivalent problem formulations that
will be more convenient for our analysis. As opposed to the classical problem formulation in
which a strategy is seen as a decision tree, Section 2.3 restates the problem in such a way
that with each vertex v of the input tree we associate a sequence of vertices that need to be
iteratively queried when v is the root of the current subtree that contains the target node.
In Section 2.4 we extend this approach by associating with each vertex a sequence of not
only vertices to be queried but also time points of the queries.

The latter problem formulation is suitable for a dynamic programming algorithm provided
in Section 3.1. In this section we introduce an auxiliary, slightly modified measure of the cost
of a search strategy. First we provide a quasi-polynomial time dynamic programming scheme
that provides an arbitrarily good approximation of the output search strategy with respect
to this modified cost (the analysis is deferred to Section 4), and then we prove that the new
measure is sufficiently close to the original one (the analysis is deferred to Section 5). These
two facts provide the quasi-polynomial time scheme for the tree search problem, achieving a
(1 + ε)-approximation with a computation time of nO(logn/ε2), for any 0 < ε < 1.

In Section 3.2 we observe how to use the above algorithm to derive a polynomial-time
O(
√

logn)-approximation algorithm for the tree search problem. This is done by a divide
and conquer approach: a sufficiently small subtree T ∗ of the input tree T is first computed

ICALP 2017

84:4 Approximation Strategies for Generalized Binary Search in Weighted Trees

so that the quasi-polynomial time algorithm runs in polynomial (in the size of T) time for
T ∗. This decomposes the problem: having a search strategy for T ∗, the search strategies for
T − T ∗ are computed recursively.

2 Preliminaries

2.1 Notation and Query Model
We now recall the problem of searching of an unknown target node x by performing queries
on the vertices of a given node-weighted rooted tree T = (V,E,w) with weight function
w : V → R+. Each query selects one vertex v of T and after w(v) time units receives an
answer: either the query returns true, meaning that x = v, or it returns a neighbor u of
v which lies closer to the target x than v. Since we assume that the queried graph T is a
tree, such a neighbor u is unique and is equivalently described as the unique neighbor of v
belonging to the same connected component of T \ {v} as x.

All trees we consider are rooted. Given a tree T , the root is denoted by r(T). For a node
v ∈ V , we denote by Tv the subtree of T rooted at v. For any subset V ′ ⊆ V (respectively,
E′ ⊆ E) we denote by T [V ′] (resp., T [E′]) the minimal subtree of T containing all nodes
from V ′ (resp., all edges from E′). For v ∈ V , N(v) is the set of neighbors of v in T .

For U ⊆ V and a target node x /∈ U , there exists a unique maximal subtree of T \U that
contains x; we will denote this subtree by T 〈U, x〉.

We denote |V | = n. We will assume w.l.o.g. that the maximum weight of a vertex is
normalized to 1. (This normalization is immediately obtained by a proportional scaling of all
units of cost.) We will also assume w.l.o.g. that the weight function satisfies the following star
condition: for all v ∈ V , w(v) ≤

∑
u∈N(v) w(u). Observe that if this condition is not fulfilled,

i.e., for some vertex v will have w(v) >
∑
u∈N(v) w(u), then vertex v will never be queried by

any optimal strategy in v, since a query to v can then be replaced by a sequence of queries to
all neighbors of v, obtaining not less information at strictly smaller cost. In general, given an
instance which does not satisfy the star condition, we enforce it by performing all necessary
weight replacements w(v)← min{w(v),

∑
u∈N(v) w(u)}, for v ∈ V . Replacements terminate

definitely since no vertex will be replaced more than once.
For a, ω ∈ R≥0, we denote the rounding of a down (up) to the nearest multiple of ω as

bacω = ωba/ωc and daeω = ωda/ωe, respectively.

2.2 Definition of a Search Strategy
A search strategy A for a rooted tree T = (V,E,w) is an adaptive algorithm which defines
successive queries to the tree, based on responses to previous queries, with the objective of
locating the target vertex in a finite number of steps. Note that search strategies can be
seen as decision trees in which each node represents a subset of vertices of T that contains x,
with leaves representing singletons consisting of x.

Let QA(T, x) be the time-ordering (sequence) of queries performed by strategy A on tree
T to find a target vertex x, with QA,i(T, x) denoting the i-th queried vertex in this time
ordering, 1 ≤ i ≤ |QA(T, x)|.

We denote by COSTA(T, x) =
∑|QA(T,x)|
i=1 w(QA,i(T, x)) the sum of weights of all vertices

queried by A with x being the target node, i.e., the time after which A finishes. Let
COSTA(T) = maxx∈V COSTA(T, x) be the cost of A. We define the cost of T to be OPT(T) =
min{COSTA(T)

∣∣ A is a search strategy for T}. We say that a search strategy is optimal for
T if its cost equals OPT(T).

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:5

Algorithm 2.1 Search strategy AS for a query sequence assignment S.
1: v ← r(T) // stores current root
2: U ← ∅
3: while |T 〈U, x〉| > 1 do
4: for u ∈ S(v) do
5: if u ∈ T 〈U, x〉 then // u is the first vertex in S(v) that belongs to T 〈U, x〉
6: QueryVertex(u)
7: U ← U ∪ {u}
8: if v 6= r(T 〈U, x〉) then // query reply is ‘down’
9: v ← r(T 〈U, x〉)
10: break // for loop

As a consequence of normalization and the star condition, we have the following bound.

I Observation 2.1. For any tree T , we have 1 ≤ OPT(T) ≤ dlog2 ne.

All omitted proofs are provided in the full version.
We also introduce the following notation. If the first |U | queried vertices by a search

strategy A are exactly the vertices in U , U = {QA,i(T, x) : 1 ≤ i ≤ |U |}, then we say that A
reaches T 〈U, x〉 through U , and w(U) is the cost of reaching T 〈U, x〉 by A. We also say that
we receive an ‘up’ reply to a query to a vertex v if the root of the tree remaining to be searched
remains unchanged by the query, i.e., r(T 〈U, x〉) = r(T 〈U ∪ {v}, x〉), and we call the reply a
‘down’ reply when the root of the remaining tree changes, i.e., r(T 〈U, x〉) 6= r(T 〈U ∪ {v}, x〉).

2.3 Query Sequences and Stable Strategies
By a slight abuse of notation, we will call a search strategy polynomial-time if it can be
implemented using a dynamic (adaptive) algorithm which computes the next queried vertex
in polynomial time.

We give most of our attention herein to search strategies in trees which admit a natural
(non-adaptive, polynomial-space) representation called a query sequence assignment. Formally,
for a rooted tree T , the query sequence assignment S is a function S : V → V ∗, which assigns
to each vertex v ∈ V an ordered sequence of vertices S(v), known as the query sequence of v.
The query sequence assignment directly induces a strategy AS , presented as Algorithm 2.1.
Intuitively, the strategy processes successive queries from the sequence S(v), where v is the
root vertex of the current search tree, v = r(T 〈U, x〉), where U is the set of queries performed
so far. This processing is performed in such a way that the strategy iteratively takes the first
vertex in S(v) that belongs to T 〈U, x〉 and queries it. As soon as the root of the search tree
changes, the procedure starts processing queries from the sequence of the new root, which
belong to the remaining search tree. The procedure terminates as soon as T 〈U, x〉 has been
reduced to a single vertex, which is necessarily the target x.

In what follows, in order to show that our approximation strategies are polynomial-
time, we will confine ourselves to presenting a polynomial-time algorithm which outputs an
appropriate sequence assignment.

A sequence assignment is called stable if the replacement of line 9 in Algorithm 2.1 by any
assignment of the form v ← v′′, where v′′ is an arbitrary vertex which is promised to lie on
the path from r(T 〈U, x〉) to the target x, always results in a strategy which performs a (not
necessarily strict) subsequence of the sequence of queries performed by the original strategy
AS . Sequence assignments computed on trees with a bottom-up approach usually have the
stability property; we provide a proof of stability for one of our main routines in Section 4.

ICALP 2017

84:6 Approximation Strategies for Generalized Binary Search in Weighted Trees

Without loss of generality, we will also assume that if v ∈ S(v), then v is the last element
of S(v). Indeed, when considering a subtree rooted at v, after a query to v, if v was not the
target, then the root of the considered subtree will change to one of the children of v, hence
any subsequent elements of S(v) may be removed without changing the strategy.

2.4 Strategies Based on Consistent Schedules
Intuitively, we may represent search strategies by a schedule consisting of some number of
jobs, with each job being associated to querying a node in the tree (cf. e.g. [14, 22, 23]). Each
job has a fixed processing time, which is set to the weight of a node. Formally, in this work
we will refer to the schedule Ŝ only in the very precise context of search strategies AS based
on some query sequence assignment S. The schedule assignment Ŝ is the following extension
of the sequence assignment S, which additionally encodes the starting time of any search
query job. If the query sequence S of a node v is of the form S(v) = (v1, . . . , vk), k = |S(v)|,
then the corresponding schedule for v will be given as Ŝ(v) = ((v1, t1), . . . , (vk, tk)), with
ti ∈ R≥0 denoting the starting time of the query for vi. We will call Ŝ(v) the schedule of
node v. We will call a schedule assignment Ŝ consistent with respect to search in a given
tree T if the following conditions are fulfilled:
(i) No two jobs in the schedule of a node overlap: for all v ∈ V , for two distinct jobs

(u1, t1), (u2, t2) ∈ Ŝ(v), we have |[t1, t1 + w(u1)] ∩ [t2, t2 + w(u2)]| = 0.
(ii) If v is the parent of v′ in T and (u, t) ∈ Ŝ(v′), then we either also have (u, t) ∈ Ŝ(v), or

the job (v, tv) ∈ Ŝ(v) completes before the start of job (u, t): tv + w(v) ≤ t.
It follows directly from the definition that a consistent schedule assignment (and the underlying
query sequence assignment) is uniquely determined by the collection of jobs {(v, tv) : (v, tv) ∈
Ŝ(u), u ∈ V }. Note that not every vertex has to contain a query to itself in its schedule; we
will occasionally write tv =⊥ to denote that such a job is missing.

By extension of notation for sequence assignments, we will denote a strategy following a
consistent schedule assignment Ŝ (i.e., executing the query jobs of schedule Ŝ at the prescribed
times) as AŜ . We will then have: COSTAŜ

(T) = |Ŝ|, where |Ŝ| is the duration of schedule
assignment Ŝ, given as: |Ŝ| = maxv∈V |Ŝ(v)|, with: |Ŝ(v)| = max(u,t)∈Ŝ(v)(t+ w(u)).

We remark that there always exists an optimal search strategy which is based on a
consistent schedule. By a well-known characterization (cf. e.g. [6]), tree T satisfies OPT(T) =
τ ∈ R if and only if there exists an assignment I : V → Iτ of intervals of time to nodes before
deadline τ , Iτ = {[a, b] : 0 ≤ a < b ≤ τ}, such that |I(v)| = w(v) and if |I(u) ∩ I(v)| > 0
for any pair of nodes u, v ∈ V , then the u − v path in T contains a separating vertex z
such that max I(z) ≤ min(I(u) ∪ I(v)). The corresponding schedule assignment of duration
τ is obtained by adding, for each node u ∈ V , the job (u,min I(u)) to the schedule of all
nodes on the path from u towards the root, until a node v such that max I(v) ≤ min I(u)
is encountered on this path. The consistency and correctness of the obtained schedule is
immediate to verify.

I Observation 2.2. For any tree T , there exists a query sequence assignment S and a
corresponding consistent schedule Ŝ on T such that |Ŝ| = OPT(T).

3 The Results

3.1 (1 + ε)-Approximation in nO(log n/ε2) Time
We first present an approximation scheme for the weighted tree search problem with nO(logn)

running time. The main difficulty consists in obtaining a constant approximation ratio for

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:7

the problem with this running time; we at once present this approximation scheme with
tuned parameters, so as to achieve (1 + ε)-approximation in nO(logn/ε2) time.

Our construction consists of two main building blocks. First, we design an algorithm
based on a bottom-up (dynamic programming) approach, which considers exhaustively
feasible sequence assignments and query schedules over a carefully restricted state space
of size nO(logn) for each node. The output of the algorithm provides us both with a lower
bound on OPT(T), and with a sequence assignment-based strategy AS for solving the tree
search problem. The performance of this strategy AS is closely linked to the performance
of OPT(T), however, there is one type of query, namely a query on a vertex of small weight
leading to a ‘down’ response, due to whose repeated occurrence the eventual cost difference
between COSTAS

(T) and OPT(T) may eventually become arbitrarily large. To alleviate this
difficulty, we introduce an alternative measure of cost which compensates for the appearance
of the disadvantageous type of query.

We start by introducing some additional notation. Let ω ∈ R+, be an arbitrarily
fixed value of weight and let c ∈ N. The choice of constant c ∈ N will correspond to an
approximation ratio of (1 + ε) of the designed scheme for ε = 168/c.

We say that a query to a vertex v is a light down query in some strategy if w(v) < cω

and x ∈ V (Tv), i.e., it is also a ‘down’ query, where x is the target vertex.
For any strategy A, we denote by COST(ω,c)

A (T, x) its modified cost of finding target x,
defined as follows. Let dx be the number of light down queries when searching for x: dx =∣∣∣{i : w(QA,i(T, x)) < cω and x ∈ V (TQA,i(T,x))}

∣∣∣ . Then, the modified cost COST(ω,c)
A (T, x) is:

COST(ω,c)
A (T, x) = COSTA(T, x)− (2c+ 1)ωdx. (1)

and by a natural extension of notation: COST(ω,c)
A (T) = maxx∈V COST(ω,c)

A (T, x).
The technical result which we will obtain in Section 4 may now be stated as follows.

I Proposition 3.1. For any c ∈ N, L ∈ N, there exists an algorithm running in time (cn)O(L),
which for any tree T constructs a stable sequence assignment S and computes a value of ω
such that ω ≤ 1

LCOST(ω,c)
AS

(T) and: COST(ω,c)
AS

(T) ≤
(
1 + 12

c

)
OPT(T).

In order to convert the obtained strategy AS with a small value of COST(ω,c) into a strategy
with small COST, we describe in Section 5 an appropriate strategy conversion mechanism.
The approach we adopt is applicable to any strategy based on a stable sequence assignment
and consists in concatenating, for each vertex v ∈ V , a prefix to the query sequence S(v)
in the form of a separately computed sequence R(v), which does not depend on S(v). The
considered query sequences are thus of the form R(v) ◦S(v), where the symbol “◦” represents
sequence concatenation. Intuitively, the sequences R, taken over the whole tree, reflect the
structure of a specific solution to the unweighted tree search problem on a contraction of tree
T , in which each edge connecting a node to a child with weight at least cω is contracted. We
recall that the optimal number of queries to reach a target in an unweighted tree is O(logn),
and the goal of this conversion is to reduce the number of light down queries in the combined
strategy to at most O(logn).

I Proposition 3.2. For any fixed ω > 0 there exists a polynomial-time algorithm which for a
tree T computes a sequence assignment R : V → V ∗, such that, for any strategy AS based on
a stable sequence assignment S, the sequence assignment S+, given by S+(v) = R(v) ◦ S(v)
for each v ∈ V , has the following property:

COSTAS+ (T) ≤ COST(ω,c)
AS

(T) + 4(2c+ 1)ω log2 n.

ICALP 2017

84:8 Approximation Strategies for Generalized Binary Search in Weighted Trees

The proof of Proposition 3.2 is provided in Section 5.
We are now ready to put together the two bounds. Combining the claims of Proposition 3.1

for L = dc2 log2 ne (with ω ≤ 1
LCOST(ω,c)

AS
(T) ≤

COST(ω,c)
AS

(T)
c2 log2 n

) and Proposition 3.2, we obtain:

COSTAS+ (T) ≤ COST(ω,c)
AS

(T) + 4(2c+ 1)ω log2 n ≤ COST(ω,c)
AS

(T) + 12cω log2 n ≤

≤ COST(ω,c)
AS

(T) + 12c log2 n
COST(ω,c)

AS
(T)

c2 log2 n
≤
(

1 + 12
c

)
COST(ω,c)

AS
(T) ≤

≤
(

1 + 12
c

)2
OPT(T) ≤

(
1 + 168

c

)
OPT(T).

After putting ε = 168
c and noting that in stating our result we can safely assume

c = O(poly(n)) (beyond this, the tree search problem can be trivially solved optimally in
O(nn) time using exhaustive search), we obtain the main theorem of the section.

I Theorem 3.3. There exists an algorithm running in nO(log n

ε2) time, providing a (1 + ε)-
approximation solution to the weighted tree search problem for any 0 < ε < 1.

3.2 Extension: A Poly-Time O(
√

log n)-Approximation Algorithm
We now present the second main result of this work. By recursively applying the previously
designed QPTAS (Theorem 3.3) with ε = 1, we obtain a polynomial-time O(

√
logn)-

approximation algorithm for finding search strategy for an arbitrary weighted tree. We start
by informally sketching the algorithm – we follow here the general outline of the idea from [5].
The algorithm is recursive and starts by finding a minimal subtree T ∗ of an input tree whose
removal disconnects T into subtrees, each of size bounded by n/2

√
logn. The tree T ∗ will be

processed by our QPTAS algorithm described in Section 3.1. This results either in locating
the target node, if it belongs to T ∗, or identifying the component of T − T ∗ containing the
target, in which case the search continues recursively in the component. Subtrees considered
at each level of recursion are disjoint, thus factors of approximation add up over recursion
levels. However, for the final algorithm to have polynomial running time, the tree T ∗ needs
to be of size 2O(

√
logn). This is obtained by contracting paths in T ∗ (each vertex of the path

has at most two neighbors in T ∗) into single nodes having appropriately chosen weights.
Since T ∗ has 2O(

√
logn) leaves, this narrows down the size of T ∗ to the required level and we

argue that an optimal search strategy for the ‘contracted’ T ∗ provides a search strategy for
the original T ∗ that is within a constant factor from the cost of T ∗.

A formal exposition and analysis of the obtained algorithm is provided in the full version.

I Theorem 3.4. There is a O(
√

logn)-approximation polynomial time algorithm for the
weighted tree search problem.

4 Quasi-Polynomial Computation of Strategies with Small COST(ω,c)

4.1 Preprocessing: Time Alignment in Schedules
We adopt here a method similar but arguably more refined than rounding techniques in
scheduling problems of combinatorial optimization, showing that we could discretize the
starting and finishing time of jobs, as well as weights of vertices, in a way to restrict the size
of state space for each node to nO(logn), without introducing much error.

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:9

Fix c ∈ N and ω = a
cn for some a ∈ N. (In subsequent considerations, we will have

c = Θ(1/ε), a = O(n
logn) and ω = Ω(ε/ logn).) Given a tree T = (V,E,w), let T ′ = (V,E,w′)

be a tree with the same topology as T but with weights rounded up as follows:

w′(v) =
{
dw(v)eω, if w(v) > cω,

dw(v)e 1
cn
, otherwise.

(2)

We will informally refer to vertices with w(v) > cω (equivalently w′(v) > cω) as heavy
vertices and vertices with w(v) ≤ cω (equivalently w′(v) ≤ cω) as light vertices. (Note that
w(v) ≤ cω if and only if w′(v) ≤ cω.)

When designing schedules, we consider time divided into boxes of duration ω, with the
i-th box equal to [iω, (i+ 1)ω]. Each box is divided into a identical slots of length 1

cn .
In the tree T ′, the duration of a query to a heavy vertex is an integer number of boxes,

and the duration of a query to a light vertex is an integer number of slots. We next show
that, without affecting significantly the approximation ratio of the strategy, we can align
each query to a heavy vertex in the schedule so that it occupies an interval of full adjacent
boxes, and each query to a light vertex in the schedule so that it occupies an interval of full
adjacent slots (possibly contained in more than one box).

We start by showing the relationship between the costs of optimal solutions for trees T
and T ′.

I Lemma 4.1. OPT(T) ≤ OPT(T ′) ≤ (1 + 2
c)OPT(T).

I Lemma 4.2. There exists a consistent schedule assignment Ŝ for tree T ′ such that
COSTAŜ

(T ′) ≤ (1 + 3
c)OPT(T ′) and for all v ∈ V we have that

if w′(v) > cω, (v is heavy), then the starting time t of any job (v, t) in the schedule Ŝ(u)
of any u ∈ V is an integer multiple of ω (aligned to a box),
if w′(v) ≤ cω, (v is light), then the starting time t of any query (v, t) in the schedule Ŝ(u)
of any u ∈ V is an integer multiple of 1

cn (aligned to a slot).

A schedule on tree T ′ satisfying the conditions of Lemma 4.2, and the resulting search
strategy, are called aligned. Subsequently, we will design an aligned strategy on tree T ′, and
compare the quality of the obtained solution to the best aligned strategy for T ′.

The intuition between the separate treatment of heavy vertices (aligned to boxes) and light
vertices (aligned to slots) in aligned schedules is the following. Whereas the time ordering of
boxes is essential in the design of the correct strategy, in our dynamic programming approach
we will not be concerned about the order of slots within a single box (i.e., the order of queries
to light vertices placed in a single box). This allows us to reduce the state space of a node.
Whereas the ordering of slots in the box will eventually have to be repaired to provide a
correct strategy, this will not affect the quality of the overall solution too much (except for
the issue of light down queries pointed out earlier, which are handled separately in Section 5).

4.2 Dynamic Programming Routine for Fixed Box Size
Let the values of parameter c and box size ω be fixed as before. Additionally, let L ∈ N be a
parameter representing the time limit for the duration of the considered vertex schedules
when measured in boxes, i.e., the longest schedule considered by the procedure will be of
length Lω (we will eventually choose an appropriate value of L = O(logn) as required when
showing Theorem 3.3).

In order to lower-bound the duration of the consistent aligned schedule assignment with
minimum cost, we perform an exhaustive bottom-up evaluation of aligned schedules which

ICALP 2017

84:10 Approximation Strategies for Generalized Binary Search in Weighted Trees

satisfy constraints on the occupancy of slots. However, instead of considering individual
slots of a schedule which may be empty or full, for reasons of efficiency we consider the load
sv[p] of each box, 0 ≤ p < L, in the same schedule, defined informally as the proportion of
the duration of the occupied slots within the box to the duration ω of the box. In the full
version, we formally show the following claim.

I Lemma 4.3. Assume that the data structure (sv, tv)v∈V corresponds to a consistent
schedule. Let v ∈ V be an arbitrarily chosen node with set of children {v1, . . . , vl}. Then the
set of queried nodes forms an edge cover of the tree:

If tv =⊥, then tvj
6=⊥, for all 1 ≤ j ≤ l. (3)

Moreover, let completion time tvend of the query to v given as:

tvend =
{
tv + w′(v), if tv 6=⊥,
+∞, if tv =⊥.

Let ap be the contribution to the load of the p-th time box of the query job for vertex v, i.e.

ap =
{

1
ω |[tv, t

v
end] ∩ [pω, (p+ 1)ω]| if tv 6=⊥,

0 if tv =⊥.

Then, for any box [pω, (p+ 1)ω], 0 ≤ p < L, we have the following bounds on the amount of
load which can be packed into the box:

sv[p] = ap +
l∑

j=1
svj

[p] ∈ [0, 1], when tvend ≥ (p+ 1)ω,

sv[p] ≥ ap, when pω < tvend < (p+ 1)ω,
sv[p] = 0, when tvend ≤ pω.

(4)

Moreover, for any box [pω, (p+ 1)ω], 0 ≤ p < L, we have that the total load of a query to v
and queries propagated from any of the subtrees cannot exceed 1:

For all 1 ≤ j ≤ l, the following bound holds: svj [p] + ap ≤ 1. (5)

We now show that the shortest schedule assignments satisfying the set of constraints (3),
(4), and (5) can be found in nO(logn) time. This is achieved by using the procedure
BuildStrategy, presented in Algorithm 4.1, which returns for a node v a non-empty
set of schedules Ŝ[v], such that each sv ∈ Ŝ[v] can be extended into the sought assignment of
schedules in its subtree, (su, tu)u∈V (Tv). In the statement of Algorithm 4.1, we recall that,
given a tree T = (V,E,w), tree T ′ = (V,E,w′) is the tree with weights rounded up to the
nearest multiple of the length of a slot (see Equation (2)).

The subsequent steps taken in procedure BuildStrategy can be informally sketched as
follows. The input tree T ′ is processed in a bottom-up manner and hence, for an input vertex
v, the recursive calls for its children v1, . . . , vl are first made, providing schedule assignments
for the children (see lines 3–4). Then, the rest of the pseudocode is responsible for using
these schedule assignments to obtain all valid schedule assignments for v. Lines 10–14 merge
the schedules of the children in such a way that a set Ŝ∗i , i ∈ {1, . . . , l}, contains all schedule
assignments computed on the basis of the schedules for the children v1, . . . , vi. Thus, the set
Ŝ∗l is the final product of this part of the procedure and is used in the remaining part. Note

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:11

Algorithm 4.1 Dynamic programming routine BuildStrategy for a tree T ′. L, c ∈ N are
global parameters. Subroutines MergeSchedules and InsertVertex are provided in the
full version.
1: procedure BuildStrategy(vertex v, box size ω ∈ R)
2: l← number of children of v in T ′ // Denote by v1, . . . , vl the children of v.
3: for i = 1..l do
4: Ŝ[vi]← BuildStrategy(vi, ω);
5: s← 0L

6: s.max_child_load← 0L

7: s.must_contain_v ← false

8: Ŝ0 ← {s} // Ŝ0 contains the schedule with no queries.
9: // Inductively, Ŝ∗i is based on merging schedules at v1, . . . , vi.
10: for i = 1..l do
11: Ŝ∗i ← ∅
12: for each schedule s ∈ Ŝ∗i−1 do
13: for each schedule sadd ∈ Ŝ[vi] do
14: Ŝ∗i ← Ŝ∗i ∪ MergeSchedules(s, sadd, ω);
15: Ŝ[v]← ∅
16: for each s ∈ Ŝ∗l do
17: if w′(v) > cω then // v is heavy
18: for p = 0..L−1 do //attempt to insert (into s) query to v starting from time-box p

19: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω, p · ω)
20: else //v is light
21: for real t = 0..L · ω step 1

cn
do

22: //attempt to insert (into s) query to v at a slot from time t

23: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω, t)
24: if s.must_contain_v = false then
25: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω,⊥)
26: return Ŝ[v]

that a schedule assignment in Ŝ∗l may not be valid since a query to v is not accommodated
in it – the rest of the pseudocode is responsible for taking each schedule s ∈ Ŝ∗l and inserting
a query to v into s. More precisely, the subroutine InsertVertex is used to place the
query to v at all possible time points (depending whether v is heavy or light). We note
that the subroutine MergeSchedules, for each schedule s it produces, sets a Boolean ‘flag’
s.must_contain_v that whenever equals false, indicates that querying v is not necessary
in s to obtain a valid schedule for v (this happens if s queries all children of v). A detailed
analysis of procedure BuildStrategy can be found in the full version.

I Lemma 4.4. For fixed constants L, c ∈ N, calling procedure BuildStrategy(r(T), ω),
where r(T) is the root of the tree, determines if there exists a tuple (sv, tv)v∈V which satisfies
constraints (3), (4), and (5), or returns an empty set otherwise.

It follows directly from Lemma 4.4 that, for any value ω∗, tree T may only admit an
aligned schedule assignment of duration at most ω∗L if a call to procedure BuildStrategy
(r(T), ω∗) returns a non-empty set. Taking into account Lemmas 4.1 and 4.2, we directly
obtain the following lower bound on the length of the shortest aligned schedule in tree T ′.

I Lemma 4.5. If BuildStrategy(r(T), ω∗) = ∅, then:

ω∗L <

(
1 + 3

c

)
OPT(T ′) ≤

(
1 + 3

c

)(
1 + 2

c

)
OPT(T) ≤

(
1 + 11

c

)
OPT(T).

ICALP 2017

84:12 Approximation Strategies for Generalized Binary Search in Weighted Trees

I Lemma 4.6. The running time of procedure BuildStrategy(r(T), ω) is at most O((cn)γL),
for some absolute constant γ = O(1), for any ω ≤ n.

To complete the proof of Proposition 3.1, we can now provide a strategy which achieves a
small value of COST(ω,c). This relies on procedure BuildStrategy(r(T), ω) as an essential
subroutine, first determining the minimum value of ω = i

cn , i ∈ N, for which BuildStrategy
produces a schedule. Details of the approach are provided in the full version.

5 Reducing the Number of Down-Queries

We start with defining a function ` : V → {1, . . . , dlog2 ne} which in the following will be
called a labeling of T and the value `(v) is called the label of v. We say that a subset of
nodes H ⊆ V is an extended heavy part in T if H = {v} ∪H ′, where all nodes in H ′ are
heavy, no node in H ′ has a heavy neighbor in T that does not belong to H ′ and v is the
parent of some node in H ′. Let H1, . . . ,Hl be all extended heavy parts in T . Obtain a tree
TC = (VC , EC) by contracting, in T , the subgraph Hi into a node denoted by hi for each
i ∈ {1, . . . , l}. In the tree TC , we want to find its labeling `′ : VC → {1, . . . , dlog2 |VC |e} that
satisfies the following condition: for each two nodes u and v in VC with `′(u) = `′(v), the
path between u and v has a node z satisfying `′(z) < `′(u). One can obtain such a labeling
by a following procedure that takes a subtree T ′C of TC and an integer i as an input. Find a
central node v in T ′C , set `′(v) = i and call the procedure for each subtree T ′′C of T ′C − v with
input T ′′C and i+ 1. The procedure is initially called for input T and i = 1. We also remark
that, alternatively, such a labeling can be obtained via vertex rankings [13, 28].

Once the labeling `′ of TC is constructed, we extend it to a labeling ` of T in such a way
that for each node v of T we set `(v) = `′(v) if v /∈ H1 ∪ · · · ∪Hl and `(v) = `′(hi) if v ∈ Hi,
i ∈ {1, . . . , l}.

Having the labeling ` of T , we are ready to define a query sequence R(v) for each node
v ∈ V . R(v) contains all nodes u from Tv such that `(u) < `(v) and each internal node z of
the path connecting v and u in T satisfies `(z) > `(u). Additionally, the nodes in R(v) are
ordered by increasing values of their labels.

By x we refer to the target node in T . Fix S to be a stable sequence assignment in the
remaining part of this section and by R we refer to the sequence assignment constructed
above. Then, we fix S+ to be S+(v) = R(v) ◦S(v) for each v ∈ V . A query made by AS+ to
a node that belongs to R(v) for some v ∈ V is called an R-query; otherwise it is an S-query.
In the full version we show that, in AS+ , the total number of R-queries does not exceed
2 log2 n. Moreover, since S is stable, for each target node x, the S-queries performed by AS+

are a subsequence of the queries performed by AS . Therefore, the potentially additional
queries made by AS+ with respect to AS are R-queries. We then formally show that each
R-query is made on a light node and that any R-query increases the value of COST(ω,c) of
AS+ with respect to the value of COST(ω,c) of AS by at most (2c + 1)ω. Hence we have:
COST(ω,c)

AS+
(T) ≤ COST(ω,c)

AS
(T) + 2(2c+ 1)ω log2 n.

Moreover, we show in the full version that the total number of queries in strategy AS+

to light nodes receiving ‘down’ replies can be likewise bounded by 2 log2 n. Since each such
query introduces a rounding difference of at most (2c+ 1)ω when comparing cost functions
COST and COST(ω,c), we thus obtain: COSTAS+ (T) ≤ COST(ω,c)

AS+
(T) + 2(2c+ 1)ω log2 n.

Combining the above observations gives the claim of the Proposition.

D. Dereniowski, A. Kosowski, P. Uznański, and M. Zou 84:13

References

1 Esther M. Arkin, Henk Meijer, Joseph S.B. Mitchell, David Rappaport, and Steven Skiena.
Decision trees for geometric models. Int. J. Comput. Geometry Appl., 8(3):343–364, 1998.
doi:10.1142/S0218195998000175.

2 Yosi Ben-Asher and Eitan Farchi. The cost of searching in general trees versus complete
binary trees. Technical report, Technical report, 1997.

3 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Marco Molinaro. On the
complexity of searching in trees and partially ordered structures. Theor. Comput. Sci.,
412(50):6879–6896, 2011. doi:10.1016/j.tcs.2011.08.042.

4 Ferdinando Cicalese, Tobias Jacobs, Eduardo Sany Laber, and Caio Dias Valentim. The
binary identification problem for weighted trees. Theor. Comput. Sci., 459:100–112, 2012.
doi:10.1016/j.tcs.2012.06.023.

5 Ferdinando Cicalese, Balázs Keszegh, Bernard Lidický, Dömötör Pálvölgyi, and Tomás
Valla. On the tree search problem with non-uniform costs. Theor. Comput. Sci., 647:22–32,
2016. doi:10.1016/j.tcs.2016.07.019.

6 Dariusz Dereniowski. Edge ranking of weighted trees. Discrete Applied Mathematics,
154(8):1198–1209, 2006. doi:10.1016/j.dam.2005.11.005.

7 Dariusz Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Math-
ematics, 156(13):2493–2500, 2008. doi:10.1016/j.dam.2008.03.007.

8 Dariusz Dereniowski and Marek Kubale. Efficient parallel query processing by graph rank-
ing. Fundam. Inform., 69(3):273–285, 2006.

9 Dariusz Dereniowski and Adam Nadolski. Vertex rankings of chordal graphs and weighted
trees. Inf. Process. Lett., 98(3):96–100, 2006. doi:10.1016/j.ipl.2005.12.006.

10 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabil-
istic binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
519–532, 2016. doi:10.1145/2897518.2897656.

11 Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. Lifo-search: A min-
max theorem and a searching game for cycle-rank and tree-depth. Discrete Applied Math-
ematics, 160(15):2089–2097, 2012. doi:10.1016/j.dam.2012.03.015.

12 Brent Heeringa, Marius Catalin Iordan, and Louis Theran. Searching in dynamic tree-
like partial orders. In Algorithms and Data Structures – 12th International Symposium,
WADS 2011, New York, NY, USA, August 15-17, 2011. Proceedings, pages 512–523, 2011.
doi:10.1007/978-3-642-22300-6_43.

13 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. Optimal node ranking of
trees. Inf. Process. Lett., 28(5):225–229, 1988. doi:10.1016/0020-0190(88)90194-9.

14 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. Parallel assembly of
modular products – an analysis. Technical report, Technical Report 88-86, Georgia Institute
of Technology, 1988.

15 Meir Katchalski, William McCuaig, and Suzanne M. Seager. Ordered colourings. Discrete
Mathematics, 142(1-3):141–154, 1995. doi:10.1016/0012-365X(93)E0216-Q.

16 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary search-
ing with nonuniform costs. SIAM J. Comput., 31(4):1022–1047, 2002. doi:10.1137/
S0097539700381991.

17 Eduardo Sany Laber and Marco Molinaro. An approximation algorithm for binary searching
in trees. Algorithmica, 59(4):601–620, 2011. doi:10.1007/s00453-009-9325-0.

18 Eduardo Sany Laber and Loana Tito Nogueira. Fast searching in trees. Electronic Notes
in Discrete Mathematics, 7:90–93, 2001. doi:10.1016/S1571-0653(04)00232-X.

ICALP 2017

http://dx.doi.org/10.1142/S0218195998000175
http://dx.doi.org/10.1016/j.tcs.2011.08.042
http://dx.doi.org/10.1016/j.tcs.2012.06.023
http://dx.doi.org/10.1016/j.tcs.2016.07.019
http://dx.doi.org/10.1016/j.dam.2005.11.005
http://dx.doi.org/10.1016/j.dam.2008.03.007
http://dx.doi.org/10.1016/j.ipl.2005.12.006
http://dx.doi.org/10.1145/2897518.2897656
http://dx.doi.org/10.1016/j.dam.2012.03.015
http://dx.doi.org/10.1007/978-3-642-22300-6_43
http://dx.doi.org/10.1016/0020-0190(88)90194-9
http://dx.doi.org/10.1016/0012-365X(93)E0216-Q
http://dx.doi.org/10.1137/S0097539700381991
http://dx.doi.org/10.1137/S0097539700381991
http://dx.doi.org/10.1007/s00453-009-9325-0
http://dx.doi.org/10.1016/S1571-0653(04)00232-X

84:14 Approximation Strategies for Generalized Binary Search in Weighted Trees

19 Eduardo Sany Laber and Loana Tito Nogueira. On the hardness of the minimum height
decision tree problem. Discrete Applied Mathematics, 144(1-2):209–212, 2004. doi:10.
1016/j.dam.2004.06.002.

20 Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time. Algorith-
mica, 30(1):12–33, 2001. doi:10.1007/s004530010076.

21 Nathan Linial and Michael E. Saks. Searching ordered structures. J. Algorithms, 6(1):86–
103, 1985. doi:10.1016/0196-6774(85)90020-3.

22 Joseph W.H. Liu. Computational models and task scheduling for parallel sparse cholesky
factorization. Parallel Computing, 3(4):327–342, 1986. doi:10.1016/0167-8191(86)
90014-1.

23 Joseph W.H. Liu. The role of elimination trees in sparse factorization. SIAM. J. Matrix
Anal. & Appl., 11(1):134–172, 1990.

24 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching
strategy in linear time. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008,
pages 1096–1105, 2008.

25 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.
010.

26 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
379–388, 2006. doi:10.1109/FOCS.2006.32.

27 Alex Pothen. The complexity of optimal elimination trees. Technical report, Technical
Report CS-88-13, Pennsylvannia State University, 1988.

28 Alejandro A. Schäffer. Optimal node ranking of trees in linear time. Inf. Process. Lett.,
33(2):91–96, 1989. doi:10.1016/0020-0190(89)90161-0.

29 George Steiner. Searching in 2-dimensional partial orders. J. Algorithms, 8(1):95–105, 1987.
doi:10.1016/0196-6774(87)90029-0.

30 Jayme Luiz Szwarcfiter, Gonzalo Navarro, Ricardo A. Baeza-Yates, Joísa de S. Oliveira,
Walter Cunto, and Nivio Ziviani. Optimal binary search trees with costs depending on the
access paths. Theor. Comput. Sci., 290(3):1799–1814, 2003. doi:10.1016/S0304-3975(02)
00084-1.

http://dx.doi.org/10.1016/j.dam.2004.06.002
http://dx.doi.org/10.1016/j.dam.2004.06.002
http://dx.doi.org/10.1007/s004530010076
http://dx.doi.org/10.1016/0196-6774(85)90020-3
http://dx.doi.org/10.1016/0167-8191(86)90014-1
http://dx.doi.org/10.1016/0167-8191(86)90014-1
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1109/FOCS.2006.32
http://dx.doi.org/10.1016/0020-0190(89)90161-0
http://dx.doi.org/10.1016/0196-6774(87)90029-0
http://dx.doi.org/10.1016/S0304-3975(02)00084-1
http://dx.doi.org/10.1016/S0304-3975(02)00084-1

Tighter Hard Instances for PPSZ
Pavel Pudlák∗1, Dominik Scheder†2, and Navid Talebanfard‡3

1 Czech Academy of Sciences, Prague, Czech Republic
pudlak@math.cas.cz

2 Shanghai Jiaotong University, Shanghai, China
dominik@cs.sjtu.edu.cn

3 Czech Academy of Sciences, Prague, Czech Republic
talebanfard@math.cas.cz

Abstract
We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the
currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying
assignment by picking a random variable at a time and attempting to derive its value using
some inference heuristic and otherwise assigning a random value. The “weak PPSZ” checks
all subformulas of a given size to derive a value and the “strong PPSZ” runs resolution with
width bounded by some given function. Firstly, we construct graph-instances on which “weak
PPSZ” has savings of at most (2 + ε)/k; the saving of an algorithm on an input formula with n
variables is the largest γ such that the algorithm succeeds (i.e. finds a satisfying assignment) with
probability at least 2−(1−γ)n. Since PPSZ (both weak and strong) is known to have savings of at
least π2+o(1)

6k , this is optimal up to the constant factor. In particular, for k = 3, our upper bound
is 20.333...n, which is fairly close to the lower bound 20.386...n of Hertli [SIAM J. Comput.’14]. We
also construct instances based on linear systems over F2 for which strong PPSZ has savings of at
most O

(
log(k)
k

)
. This is only a log(k) factor away from the optimal bound. Our constructions

improve previous savings upper bound of O
(

log2(k)
k

)
due to Chen et al. [SODA’13].

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases k-SAT, Strong Exponential Time Hypothesis, PPSZ, Resolution

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.85

1 Introduction

The k-SAT problem is one of the most fundamental NP-complete problems: given a k-CNF
formula decide if there is an assignment to the variables that satisfies all the clauses. While
a simple exhaustive search algorithm solves the problem, attempting to beat this trivial
approach remains an active direction (see e.g. [11, 12, 4, 10]). Formalizing the true hardness
of k-SAT, Impagliazzo and Paturi [7] presented two hypotheses: Exponential Time Hypothesis
(ETH) which rules out any 2o(n) time algorithm for k-SAT where n is the number of variables
and Strong Exponential Time Hypothesis (Strong ETH) which says that for any ε > 0 there
exists k > 0 such that k-SAT cannot be solved in time 2(1−ε)n. Both ETH and Strong ETH

∗ The author is supported by the grant P202/12/G061 of GAČR and by the institute grant RVO:67985840.
† Dominik Scheder gratefully acknowledges support by the National Natural Science Foundation of China

under grant 61502300.
‡ Supported by supported by the institute grant RVO:67985840. Part of the work was done while Navid
Talebanfard was with Tokyo Institute of Technology and visiting Saint Petersburg State University
during the special semester in complexity.

EA
T

C
S

© Pavel Pudlák, Dominik Scheder, and Navid Talebanfard;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 85; pp. 85:1–85:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.85
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

85:2 Tighter Hard Instances for PPSZ

have successfully been used to explain the hardness of many other problems; under ETH
one can prove tight lower bounds for many fixed parameter tractable problems (see [8]), and
under Strong ETH several lower bounds for polynomial time solvable problems are proved
(see e.g. [1]). However the validity of both these hypotheses remains a matter of mystery and
in particular regarding Strong ETH no consensus seems to be within reach any time soon.

In this paper we focus on Strong ETH and the problem of constructing hard instances
for known classes of algorithms for k-SAT. Paturi, Pudlák, Saks and Zane [10] presented
the currently best known randomized algorithm for k-SAT. The algorithm roughly does the
following: pick uniformly at random a variable x from the input formula. Try to infer the
value of x using some sound heuristic. If this check fails, pick a random value for x. Set x to
be this value and repeat. A sound heuristic is an algorithm P that receives a formula F and
a variable x such that P (F, x) = 0 implies F |= (x = 0) and P (F, x) = 1 implies F |= (x = 1).
We will consider two heuristics, Pweak

w amd P strong
w , where Pweak

p checks if the value of x can
be derived from any set of w clauses of F , and P strong

w checks if the value of x can be derived
by a width-w resolution derivation from F . Note that if F is O(1)-CNF then both Pweak

w

and P strong
w run in subexponential time as long as w = o(n

logn). The first result showing that
even simple sound heuristics can yield non-trivial savings over exhaustive search was proved
by Paturi, Pudlák and Zane.

I Theorem 1 ([11]). Let F be a k-CNF formula on n variable. Then

Pr[ppsz(F, Pweak
1) ∈ sat(F)] ≥ 2−(1− 1

k)n.

Naturally one can ask if stronger heuristics can improve the success probability. It was
indeed shown in the following theorem that using ω(1)-width resolution yields improvements.

I Theorem 2 ([10]). Let F be a k-CNF formula on n variables. Then

Pr[ppsz(F, P strong
ω(1)) ∈ sat(F)] ≥ 2−(1−π2

6k−o(1))n.

Later Hertli [6] showed among other things that even Pweak
ω(1) yields the same improvement

over the trivial Pweak
1 .

I Theorem 3 ([6]). Let F be a k-CNF formula on n variables. Then

Pr[ppsz(F, Pweak
ω(1)) ∈ sat(F)] ≥ 2−(1−π2

6k−o(1))n.

The first construction of hard instances for PPSZ was given by Chen, Scheder, Talebanfard
and Tang [3]. These instances are hard even for P strong

ω(1) .

I Theorem 4 ([3]). For any large enough k, n > 0 there are k-CNF formulas F such that

Pr[ppsz(F, P strong
n/k) ∈ sat(F)] ≤ 2−(1−O(log2 k/k))n.

In this paper we improve this upper bound. For Pweak
ω(1) we give completely different construc-

tions for which we can show that the success probability of PPSZ is essentially tight. For
P strong
ω(1) we can improve the asymptotics of k from O(log2 k/k) to O(log k/k).

I Theorem 5. For every k ≥ 3 and every large enough n there exists a uniquely satisfiable
k-CNF formula F on n variables such that
1. Pr[ppsz(F, Pweak

w) ∈ sat(F)] ≤ 2−(1− 2
k)n for some w = Θ(logn),

2. for any ε > 0, Pr[ppsz(F, Pweak
w) ∈ sat(F)] ≤ 2−(1− 2(1+ε)

k)n for some w = nΘ(ε) .

P. Pudlák, D. Scheder, and N. Talebanfard 85:3

In particular, for k = 3, our upper bound is 20.333...n, which is fairly close to the lower
bound 20.386...n of [6].

I Theorem 6. For every k ≥ 3 and every large enough n, there exists a k-CNF formula F
on n variables with a unique satisfying assignment such that ppsz(F, P strong

n/k) is successful

with probability at most 2(−1+ε)n, where ε = O
(

log(k)
k

)
.

Unfortunately we fail to obtain 2−(1−O(1/k))n upper bounds for strong PPSZ. Is this
possible at all or indeed strong PPSZ succeeds with probability at least 2−(1−ω(1/k))n?

The analysis of our hard instances is based on an encoding view of PPSZ. Given a formula
F on variables x1, . . . , xn and a satisfying assignment b, PPSZ produces an encoding of the
assignment with respect to a given permutation π of the variables in the following way.

encode(b, π, F, P)
c := empty string
for i = 1, . . . , n do

if P (F, xπ(i)) 6∈ {0, 1} then
append bπ(i) to c;

end
F := F |xπ(i)→bπ(i) ;

end

It is not hard to see that we can express the success probability of PPSZ in terms of expected
code lengths as follows.

I Lemma 7 ([10]). Let F be a k-CNF and let P be a sound heuristic. We have Pr[ppsz(F, P) ∈
sat(F)] =

∑
b∈sat(F) Eπ 2−|encode(b,π,F,P)|.

Thus our goal is to construct instances having a few satisfying assignments, all of which
admitting only long encodings. Defining the optimal encoding length a satisfying assignment
b to be codelength(F, P,b) := minπ |encode(b, π, F, P)| we get

Pr[ppsz(F, P) ∈ sat(F)] ≤
∑

b∈sat(F)

2−codelength(b,F,P) .

The formulas in Theorem 5 and Theorem 6 have the unique satisfying assignment 0. Thus
our goal will be to prove a lower bound on codelength(F, P,0).

2 Notation and Preliminaries

Let F be a CNF formula with variable set V . A restriction (or partial assignment) is a
partial function ρ : V → {0, 1}. For b ∈ {0, 1}n, the notation S 7→ b is the restriction that
maps x ∈ S to bx and is undefined on V \ S. By F |ρ we denote the formula arising from
fixing the variables according to ρ and then simplifying the resulting formula by removing
unsatisfied literals and satisfied clauses. For a matrix A ∈ Fm×n2 and U ⊆ [n] we denote by
AU the (m× |U |) submatrix formed by taking all columns indexed by some i ∈ U . By 0 we
denote the all-0-assignment as well as the null vector in Fn2 .

We will identify a vector a ∈ Fn2 with its support {i ∈ [n] | ai = 1}. Thus we will liberally
write things like a ∪ b, a \ b, |a|, and so on.

We list some key observations relating PPSZ and resolution. The (easy) proofs can be
found in the appendix.

ICALP 2017

85:4 Tighter Hard Instances for PPSZ

I Definition 8. Let F be a formula with a unique satisfying assignment, which without loss
of generality is 0, and let P be a proof heuristic. We say F collapses under P if there is
an ordering x1, . . . , xn of the variables in F such that F |(x1,...,xi−1 7→0) `P (xi = 0) for all
1 ≤ i ≤ n.

I Proposition 9. If codelength(F, P,b) ≤ m then there is a set S of m variables such that
F |S 7→b collapses under P .

The next lemma states that if F collapses “sequentially” under bounded-width resolution,
then it collapses “simultaneously” as well.

I Proposition 10. Let F be a k-CNF formula with the unique satisfying assignment 0, and
let w ≥ k. If F collapses under P strong

w then F `strong
w (x = 0) for all variables x of F .

The next proposition connects logical implication and collapse under Pweak to linear
algebra.

I Proposition 11. Let A ∈ Fm×n2 and FA be its linear formula. If `weak
w (F, xi) ∈ {0, 1}

then there is a row vector r ∈ Fm2 of Hamming weight at most w such that r ·A = ei.

3 Hard Instances for Weak PPSZ: Proof of Theorem 5

The construction in this section is based on a modification of satisfiable Tseitin formulas.
Unsatisfiable Tseitin formulas are extensively studied in proof complexity (see e.g. [13, 14]).
Given a graph G = (V,E), the girth of G is defined as the size of the shortest cycle in
G. We denote this by g(G). For every pair e, e′ ∈ E(G) of edges we define the distance
between e and e′ by minu∈e,v∈e′{d(u, v)}. We will need graphs of bounded degree with
large girth. According to a well-known result of Erdős and Sachs [5], for every k ≥ 3 and
every sufficiently large n, there exists a k-regular graph with n vertices and girth > logk−1 n.
Explicit constructions for infinitely many values of k with a better constant are also known [9].

Given a degree-k graph G = (V,E), the Tseitin formula T (G) is defined as follows. For
each edge e ∈ E, there is a propositional variable xe. For each vertex v ∈ V we add the
constraint

∑
e3v xe = 0 (mod 2), which can be written as a conjunction of 2k−1 k-clauses. 1

In our formulas we assume that the girth of the graph is at least logk−1 n, where n denotes
the number of vertices. Furthermore, we add a clause ¬xe ∨ ¬xe′ for each pair of edges e, e′
of distance at least g(G)

2 − 1 (which is ≥ 1
2 logk−1 n− 1). We call these clauses bridges and

we denote the conjunction of all of them by B. Define FG := T (G) ∧B. Note that FG has
N = kn/2 variables.

The following proposition follows readily.

I Proposition 12. FG has the unique satisfying assignment 0.

Proof. For an assignment α let Gα denote the spanning subgraph of G containing the edges
e with α(e) = 1. Note that α satisfies T (G) if and only if Gα is even, i.e., every vertex has
even degree. There are two cases: either Gα is the empty graph, in which case α = 0 and
satisfies FG, too. Or Gα contains a cycle C, which has length at least g(G) and therefore
contains a bridge. In this case, α violates B. J

1 The original Tseitin tautologies express the fact that the system
∑

e3v
xe = av (mod 2) is unsatisfiable

if
∑

v
av = 1 (mod 2).

P. Pudlák, D. Scheder, and N. Talebanfard 85:5

We will consider PPSZ with Pweak
w when w = O(logn)

I Lemma 13. In FG any encoding of the all-0 assignment has length at least (1 − 2
k)N

under w ≤ 1
2 logk−1 n− 1.

Proof. Suppose for contradiction that codelength(F, Pweak
w) ≤

(
1− 2

k

)
N collapses. Then

there is a restriction ρ that sets some
(
1− 2

k

)
N variables to 0 such that FG|ρ collapses

under Pweak
w . Note that ρ leaves at least 2

kN = n variables (i.e., edge) unset. Obviously this
set of edges contains a cycle C. Let σ := (E \ C 7→ 0). Clearly FG|σ also collapses. This
contradicts the next lemma:

I Lemma 14. Let C ⊆ E be a cycle and σ := (E \ C 7→ 0). Then FG|σ does not collapse
under Pweak

w .

Proof. Suppose it does collapse. Then there exists an edge e ∈ C and a set F ′ ⊆ F |σ of at
most w clauses such that F ′ |= ¬xe.

The clauses in F ′ are either coming from the Tseitin part or from the bridges. Consider
a path P = v1, . . . , vs of maximum length on which e appears and the vertices of P are
mentioned by Tseitin clauses in F ′. Note that P cannot contain the whole cycle, since
otherwise there would be too many clauses in F ′. Let v0 and vs+1 be vertices on C \ P
connected to v1 and vs, respectively. We extend P by v0 and vs+1. Since w ≤ 1

2 logk−1 n− 1,
there is no bridge between any pair of edges appearing on P . We can now simply set all the
variables in P to 1 and all other variables to 0. This would satisfy F ′ and yet it sets xe to 1,
contradicting that F ′ |= ¬xe. J

This concludes the proof of Lemma 13. J

Below we show that it is possible to obtain similar lower bounds even when w is some
function in nO(ε).

I Lemma 15. For every ε > 0 and every sufficiently large n, any encoding of the all-0
assignment with w < n

ε
8(k−1) has length at least (1− 2(1+ε)

k)N .

Proof. Let S be the set of edges appearing in any encoding of the all-0 assignment. We will
show that |E \ S| < (1 + ε)n. Assume for a contradiction that |E \ S| ≥ (1 + ε)n. We will
show that E \ S contains a large subgraph which is expanding in a certain sense.

I Definition 16. In a graph G we say that a path P = v1, . . . , vt is slender if for all 1 ≤ i ≤ t
we have d(vi) ≤ 2.

I Lemma 17. Let G = (V,E) be a graph on n vertices such that |E| ≥ (1 + ε)n for some
ε > 0. There exists an induced subgraph H ⊆ G on at least Ω(ε3/4n1/4) vertices with δ(G) ≥ 2
with no slender path of length ≥ 2/ε.

Proof. Let r = 2/ε. We first find a subgraph of minimum degree at least 2 on at least
Ω(
√
n/r) vertices with many edges. To do this we can remove vertices of degree at most 1

at a time. Having removed t vertices we are left with a graph on n− t vertices and at least
(1 + 2

r)n− t edges. It holds that (1 + 2
r)n− t ≥ (1 + 2

r)(n− t). As the remaining graph has
at most

(
n−t

2
)
edges we have (1 + 2/r)n ≤

(
n−t

2
)

+ t. This implies t ≤ n − Ω(
√
n/r). Let

n′ = n− t. We thus have n′ ≥ Ω(
√
n/r).

If the remaining graph has no slender path of length r we are done. Otherwise let
v1, . . . , vt1 be a maximal slender path, i.e., d(vi) = 2 for all 1 ≤ i ≤ t1 and v1 and vt1 have a
neighbor (possibly the same) outside P of degree at least 3. We remove v1, . . . , vt1 from the

ICALP 2017

85:6 Tighter Hard Instances for PPSZ

graph. If there are any vertices of degree 1 we remove them one at a time until there are
no more such vertices. Let the total number removed vertices be t′1. We repeat this for d
rounds until there are no more slender paths of length r and all vertices have degree at least
2. Let ti and t′i be defined similarly for the ith iteration. We have t′i ≥ r and thus d ≤ n′/r.
Note that the total number of removed edges is t′1 + . . .+ t′d + d and hence at most n′ + n′/r.
We are left with a graph with at least n′/r edges and hence at least Ω(

√
n′/r) = Ω(ε3/4n1/4)

vertices. J

Applying Lemma 17 on E \ S we obtain a subgraph H with minimum degree at least
2 which does not contain any slender path of length ≥ 2/ε. Setting all edges outside of H
to 0, we obtain that there exists a set of at most w clauses F ′ in the restricted formula
which implies xe = 0 for some e ∈ H. Let e = (u, v). We will construct a tree Tuv in H by
growing two disjoint rooted trees Tu and Tv, starting at u and v, respectively. The crucial
requirement is that in both Tu and Tv any path of length ≥ 2/ε that goes downwards in the
rooted tree there exists a vertex of degree ≥ 3. We call such a vertex a branching vertex.
Furthermore, in Tuv the distance between the first branching vertices in Tu and Tv is at most
2/ε. Using the fact that the minimum degree in H is at least 2 and it does not contain any
slender path of length 2/ε and that the girth is at least logk−1 n, we can easily construct Tuv
so that each root to leaf path in both Tu and Tv has ε

8 logk−1 n branching vertices. Since
the horizon w < n

ε
8(k−1) , there are vertices u′ and v′ in Tu and Tv, respectively, that are not

mentioned in F ′. Consider the unique path between u′ and v′ in Tuv. Note that this path
has length at most 1

2 logk−1 n. However, since we put bridges only between edges of distance
more that 1

2 logk−1 n, there is no bridge between any pair of edges on this path. Setting all
edges on the path including e to 1 and everything else to 0 satisfies F ′, contradicting to
F ′ |= ¬xe. J

Lemma 13 implies that codelength(FG, Pweak
w) ≥ (1 − 2

k)N for w ≤ 1
2 logk−1 n − 1.

Similarly, Lemma 15 implies that codelength(FG, Pweak
w) ≥ (1 − 2(1+ε)

k)N for w < n
ε

8(k−1) .
This completes the proof of Theorem 5.

4 Hard Linear Formulas for Strong PPSZ: Proof of Theorem 6

Suppose A ∈ Fm×n is a matrix in which every row has Hamming weight at most k. Then
the system A · x = 0 consists of m linear equations over n variables, each of which involves
at most k variables. One can encode it as a k-CNF formula with 2k−1 ·m clauses. Let us
denote this formula by FA. A CNF formula which in this way encodes a system of linear
equations will be called a linear CNF formula.

4.1 Robust Expanding Matrices

As often in the realm of resolution, our proof of hardness relies on a certain notion of
expansion. Loosely speaking, a matrix A is a robust expander if for every “sufficiently
large” submatrix AU and every “sufficiently diverse” set of row vectors u1, . . . ,u` at least
one of the vectors ui · AU has “large” Hamming weight. We will now define this notion
formally. Throughout this section, let k ∈ N be arbitrary but fixed (this is the k for which
we want to construct hard k-CNF formulas). A sequence u1, . . . ,u` ∈ Fn2 is well-increasing
if n/k ≤ |ui \ (u1 ∪ · · · ∪ ui−1)| ≤ 4n/k for every 1 ≤ i ≤ `. This is what we mean by
“sufficiently diverse”.

P. Pudlák, D. Scheder, and N. Talebanfard 85:7

I Definition 18 (Robust Expanders). A matrix A ∈ Fn×n2 is called a t-robust (`, w)-expander
if for every U ⊆ [n] of size t and well-increasing sequence u1 . . . ,u`, there is some 1 ≤ i ≤ `
such that |ui ·AU | > w.

I Theorem 19 (Robust Expanders Are Hard). Let t, w ∈ N, w ≥ 2n/k, and ` :=
⌊
k·t
4n
⌋
. If A

is a t-robust (`, w)-expander, then codelength(F, P strong
w ,0) ≥ n− t.

I Theorem 20 (Robust Expanders Exist). For every sufficiently large n, there is a matrix
A ∈ Fn×n2 such that (1) every row of A has Hamming weight at most k + 1; (2) the rank of
A is at least n− 2 log(n); (3) A is a t-robust (`, w)-expander for t = 60·log(k)

k · n, ` =
⌊
k·t
4n
⌋
,

and w = 2n/k.

With these theorems we can prove Theorem 6 for strong PPSZ. Write t = 60·log(k)
k ·

n and let A be a matrix as promised by Theorem 20. By Theorem 19 we know that
codelength(FA, P strong

2n/k ,0) ≥ n− t. The Steinitz exchange lemma from linear algebra gives us
2 log(n) unit row vectors that we can add to A to obtain a matrix A′ ∈ F (n+2 log(n))×n

2 of row
rank n. This means that FA′ has the unique satisfying assignment 0. Each added unit row
vector in A′ is a unit clause in FA′ . It can easily be verified that adding a unit clause reduces
codelength by at most 1. Therefore codelength(FA′ , Pweak

n/k ,0) ≥ codelength(FA, Pweak
n/k ,0)−

2 log(n) ≥ n− t− 2 log(n). This proves Theorem 6.

Proof of Theorem 19. Let P be the strong proof heuristic which performs resolution of
width up to w. We assume that codelength(FA, P,0) ≤ n− t and will derive a contradiction
to the assumption that A is a robust expander.

By Proposition 9 and 10, codelength(FA, P,0) ≤ n − t means that there is a partition
[n] = U] S with |U | = t such that F ′ `P (xi = 0) for every i ∈ U , where F ′ := FA|S 7→0 is
the formula obtained from F by setting every variable in S to 0. For notational simplicity
assume U = {1, . . . , t}. By a connection between resolution and linear algebra which is
folklore by now (see e.g. [2]), the fact that F ′ `P (xi = 0) means the following:

I Proposition 21 (Connection Between Resolution and Linear Algebra). For every i ∈ U

there exists a binary tree Ti in which every node v is labeled with a row vector rv ∈ Fn2 such
that:
1. for a leaf v, the label rv is a unit vector,
2. if v is an inner node and v0, v1 are its children then rv = rv0 + rv1 .
3. |rv ·AU | ≤ w for every node v of Ti,
4. rroot ·AU = ei.
We call Ti the resolution tree of xi.

For i ∈ {1, . . . , t} let ri be the root labels of the tree Ti. Since ri ·AU = ei we conclude that
the vectors r1, . . . , rt are linearly independent. In particular this means that |r1∪· · ·∪rt| ≥ t.
Equipped with these observations and the previous proposition, we can now construct a
well-increasing sequence u1, . . . ,u`∗ with `∗ :=

⌊
k·t
4n
⌋
and |ui · AU | ≤ w for all 1 ≤ i ≤ `∗.

This will be a contradiction to the assumption that A is a robust expander.
Start with the empty sequence and ` = 0. While ` < `∗, we try to extend the current well-

increasing sequence u1, . . . ,u` by considering two cases. For convenience let u = u1∪· · ·∪u`.
Note that `·n

k ≤ |u| ≤
4`·n
k .

Case 1. Suppose some vector ri among r1, . . . , rt satisfies |ri \ u| > 2n/k. Recall that ri is
the root label of the tree Ti. We walk from the root of Ti to a leaf by always choosing the
child v for which the “weight” |rv \ u| is largest. Note that this weight is more than 2n/k at

ICALP 2017

85:8 Tighter Hard Instances for PPSZ

the root and at most 1 at a leaf. Also, in every step the weight decreases by at most a factor
of 2. Thus we find a node v on the path for which n/k ≤ |rv \ u| ≤ 2n/k. We set u`+1 := rv
and see that the sequence u1, . . . ,u`+1 is well-increasing by the choice of u`+1. Also, since
u`+1 is the label of a node in a resolution tree, it holds that |u`+1 ·AU | ≤ w.

Case 2. Suppose |ri \ u| ≤ 2n/k for all 1 ≤ i ≤ t. Since |(r1 ∪ · · · ∪ rt) \ u| ≥ t − |u| ≥
t − 4`·n

k ≥ t − 4`∗·n
k + 4n

k ≥
4n
k , we can find a subset I ⊆ [t] with |I| ≤ 2n/k such that

2n/k ≤
∣∣⋃

i∈I ri \ u
∣∣ ≤ 4n/k. If we let v be a random linear combination of the ri, i ∈ I,

we see that E[|v \ u|] ≥ n/k. Thus, there is some vector v which is a linear combination
of the ri, i ∈ I and n/k ≤ |v \ u| ≤ 4n/k. Furthermore, since |ri · AU | = |ei| = 1 we get
|v · AU | ≤

∑
i∈I |ri · AU | = |I| ≤ 2n/k ≤ w. We can extend the sequence u1, . . . ,u` by

setting u`+1 = v.
To summarize, this iteratively constructs a well-increasing sequence u1, . . . ,u`∗ with

|ui · AU | ≤ w. We obtain a contradiction to the assumption that A is a robust expander,
which completes the proof. J

4.2 Robust Kernel Expanders Exist – Proof of Theorem 20
Proof of Theorem 20. We will show that a matrix A sampled from a suitable probability
distribution is a t-robust (`, w) expander with high probability, for t = 60·log(k)

k ·n, ` = 5 log(k),
and w = 2n/k. Note that by definition, this will also be a t-robust (`′, w)-expander for every
`′ ≥ `, thus also for `′ =

⌊
k·t
4n
⌋

=
⌊ 60

4 · log(k)
⌋
≥ 5 log(k) = `.

Take a step k random walk in the Hamming cube {0, 1}n and let X be its endpoint. We
view X as a row vector in Fn2 . Repeating this experiment n times independently gives n row
vectors that form a matrix B ∈ Fn×n2 . Surely each row of B has Hamming weight at most
k, and B turns out to be a robust expander. Unfortunately its kernel will have dimension
Θ
(

log2(k)n
k

)
on expectation—too large for our purposes. We introduce a nice trick that

boosts the rank of B.

I Lemma 22. Let B ∈ Fn×n2 be a matrix and let P be a random permutation matrix. Then
E[| ker(B + P)|] ≤ n+ 1.

Proof. The kernel of a matrix A ∈ Fn×n2 is the set {x ∈ Fn2 | A · x = 0}. With linearity of
expectation we calculate:

E[| ker(B + P)|] =
∑
x∈F2

Pr[(B + P) · x = 0]

=
∑
x∈F2

Pr[B · x = P · x]

Note that B · x is a fixed vector whereas P · x is a uniformly distributed over all vectors of
weight |x|. Thus, the probability that this happens to be B ·x is exactly

(
n
|x|
)−1 if |B ·x| = |x|

and 0 otherwise. Thus the above is at most
n∑

w=0

∑
x∈Fn2 :|x|=w

(
n

w

)−1
= n+ 1 . J

We set A := B + P . By Markov’s inequality, | ker(A)| ≤ n2 with high probability, and
therefore also rank(A) ≥ n−2 log(n) with high probability. Also, each row of A has Hamming
weight at most k + 1.

P. Pudlák, D. Scheder, and N. Talebanfard 85:9

It remains to show that A has the desired expansion properties. First we fix a set U of size
t and a well-increasing sequence u1, . . . ,u` and estimate the probability that |ui ·AU | ≤ w
for all i. For this we need the following fact about random walks in the Hamming cube which
we will prove later.

I Lemma 23 (Hamming Cube Mixing Lemma). Let U ⊆ [n] and z ∈ {0, 1}U . Let x be the
endpoint of a length d random walk in {0, 1}n starting at 0. Then

Pr[xU = z] ≤ 2
(

1 + (1− 2/n)d

2

)|U |
.

In particular if d ≥ n and |U | = t is sufficiently large, then this probability is at most 2−2t/3.
From this lemma it is easy to show the following:

I Lemma 24. Let u1, . . . ,u` be a well-increasing sequence. Then the probability that
|ui ·AU | ≤ w for all i is at most 2− 2·`·t

3 ·
(
t
≤w
)`.

Proof. Let Ej be the event that |ui · AU | ≤ 2n/k for all 1 ≤ i ≤ j. We want to bound
Pr[E`] =

∏`
j=1 Pr[|uj ·AU | ≤ 2n/k | Ej−1]. We claim that for each 1 ≤ j ≤ ` the probability

Pr[|uj ·AU | ≤ 2n/k | Ej−1] is at most 2−2t/3 ·
(

t
≤2n/k

)
.

We divide ui into an “old part” vi and a “new part” wi. Formally, we write vi =
ui ∩ (u1 ∪ . . .ui−1) and wi = ui \ (u1 ∪ . . .ui−1). We know that |wi| ≥ n/k since the
sequence is well-increasing. Also, ui = vi + wi. Let y ∈ Ft2 be a fixed vector. Note that

Pr[uj ·AU = y | Ej−1] = Pr[wj ·AU = vj ·AU + y | Ej−1]

Now vj · AU and Ej−1 both only depend on the rows ah of A with h ∈ vj , and wj · AU is
independent these. Thus, it suffices to bound Pr[wj ·AU = z] for some unknown but fixed
vector z. Remember that A = B + P where P is a random n× n permutation matrix.

Pr[wj ·AU = z] = Pr[wj ·BU = z + PU ·wj]

What is the distribution of wj ·BU? It is the sum of |wj | rows of BU and thus distributed like
the endpoint of a |wj | ·k ≥ n step random walk in {0, 1}n starting at 0 and then projected to
the coordinates in U . By the Hamming Cube Mixing Lemma (Lemma 23) with d = n we get

Pr[wj ·AU = z] ≤ 2
(

1 +
(
1− 2

n

)n
2

)t
≤ 2−2t/3 .

We conclude that Pr[uj ·AU = y | Ej−1] ≤ 2−2t/3 for every fixed y ∈ Ft2. Therefore

Pr[|uj ·AU | ≤ 2n/k | Ej−1] ≤ 2−2t/3 ·
(

t

≤ 2n/k

)
.

This proves the claim. Via the chain rule, the claim immediately implies the lemma. J

To prove the theorem, it remains to do a union bound over the choices of U ⊆ [n] and the
well-increasing sequence. The number of ways to choose U ⊆ [n] of size t is

(
n
t

)
≤
(
en
t

)t ≤ kt.
Bounding the number of well-increasing sequences is more subtle.

I Lemma 25. The number of well-increasing sequences is at most k 4`n
k · 2 4`2

k ·n.

ICALP 2017

85:10 Tighter Hard Instances for PPSZ

Proof. First, write u := u1 ∪ · · · ∪ u` and note that |u| ≤ 4`n
k . Thus, the number of possible

u is at most
(

n
≤ 4`n

k

)
≤ k 4`n

k Once we have chosen u, there are at most 2|u| choices for each

individual ui and at most 2`·|u| ≤ 2 4`2
k ·n well-increasing sequences. J

Let us now multiply (1) the number of choices for U , (2) the number of well-increasing
sequences, and (3) for a fixed U and well-increasing sequence u1, . . . ,u`, the probability that
|ui ·AU | ≤ w. We see that this is at most

kt · k 4`n
k · 2 4`2

k ·n · 2− 2·`·t
3 ·

(
t

≤ w

)`
= 2

log2(k)·n
k ·(60+4·5+4·52− 2

3 5·60+2·5) = o(1) .

Here we used
(
t
≤w
)
≤
(
et
w

)w ≤ k2n/k. We conclude that A has the desired expansion
properties with high probability. In addition, it has rank at least n− 2 log(n), and every row
has Hamming weight at most k + 1. This concludes the proof. J

5 Proof of Lemma 23

Let Q be the random walk matrix of the n-dimensional Hamming cube. That is, Qx,y = 1/n
if x and y have Hamming distance 1, and 0 otherwise. Note that Q is a (2n × 2n)-matrix,
i.e., it takes as input vectors of dimension 2n, or equivalently, functions from Fn2 to R. If
f : Fn2 → [0, 1] is a probability distribution over Fn2 , then Qdf is the distribution that we get
when sampling x ∼ f and performing a random walk of length d. Let f be the function that
is 1 at 0 and 0 elsewhere. For X being the endpoint of an d-step random walk starting at 0,
it holds that

Pr[X = y] = (Qtf)(y) .

Fortunately, we can understand Qtf , since we know the eigenvalues of Q: The Hamming
cube is the Cayley graph of the additive group of Fn2 with generating set {e1, . . . , en}. The
reader who could not make sense of this last sentence may read the next couple of paragraphs.
The reader who is familiar with Cayley graphs and the discrete Fourier transform can skip
them.

I Definition 26. For S ⊆ [n], define χS : Fn2 → R by

χS(x) := (−1)
∑

i∈S
xi .

One checks that the χS form an orthonormal basis of the space of functions Fn2 → R when
we choose the following inner product:

〈f, g〉 := E
x∈Fn2

[f(x)g(x)] .

Each χS is an eigenvector of Q:

(Q · χS)(x) =
∑

y
Qx,yχS(y) =

∑
y:dH(x,y)=1

1
n
χS(y)

=
n∑
i=1

1
n
χS(x + ei) =

n∑
i=1

1
n
χS(x)χS(ei)

= χS(x) 1
n

n∑
i=1

χS(ei) .

P. Pudlák, D. Scheder, and N. Talebanfard 85:11

So λS := 1
n

∑n
i=1 χS(ei) is the eigenvector of χS . Let us evaluate λS :

λS = 1
n

n∑
i=1

χS(ei) = 1
n

n∑
i=1

(−1)[i∈S] = 1
n

(n− 2|S|) = 1− 2|S|
n

.

Let f : Fn2 → R be the function that is 1 on 0 and 0 otherwise. To understand Qtf , we
write f in the basis of the eigenvectors of Q. Since the χS are orthonormal under the scalar
product 〈·, ·〉, we can write

f =
∑
S⊆[n]

f̂SχS ,

where the coefficients f̂S are

f̂S := 〈f, χS〉 = E
x∈Fn2

[f(x)χS(x)] = 2−n,

since x = 0 is the only element that contributes to the expectation. Thus,

Qtf = Qt

(∑
S

f̂SχS

)
= Qt

(∑
S

2−nχS

)
= 2−n

∑
S

λtSχS .

For y ∈ Fn2 , let us bound the probability Pr[X = y]: With the above equation, we get

(Qtf)(y) = 2−n
∑
S

λtSχS(y) = 2−n
∑
S

(
1− 2|S|

n

)t
χS(y)

≤ 2−n
n∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t (since |χS(y)| = 1)

≤ 2−n
bn/2c∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t + 2−n
n∑

s=dn/2e

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t

= 2−n
bn/2c∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t + 2−n
bn/2c∑
r=0

(
n

n− r

) ∣∣∣∣1− 2(n− r)
n

∣∣∣∣t

= 2 · 2−n
bn/2c∑
s=0

(
n

s

)(
1− 2s

n

)t

≤ 2 · 2−n
bn/2c∑
s=0

(
n

s

)(
1− 2

n

)st
≤ 2 · 2−n

n∑
s=0

(
n

s

)(
1− 2

n

)st

= 2
(

1 +
(
1− 2

n

)t
2

)n
.

This proves the lemma for U = [n]. In general, however, we are interested in the
distribution of XU , i.e., X projected to the coordinates in U .

I Observation 27. Perform a “lazy” random walk on {0, 1}|U | as follows: Start at 0. At
each step, take each edge with probability 1/n. With the remaining probability 1 − |U |/n,
don’t move in this step. Then the end point of this walk after t steps has distribution XU .

Let Q be transition matrix of the random walk on {0, 1}|U |. Then

Q̃ := |U |
n
Q+ n− |U |

n
I

ICALP 2017

85:12 Tighter Hard Instances for PPSZ

is the transition matrix of the lazy random walk described above. For each S ⊆ U , χS is an
eigenvector of Q, and the corresponding eigenvalue is λS = 1− 2|S|

|U | . The matrix Q̃ has the
same eigenvectors as Q, and its eigenvalues are

λ̃S = |U |
n
λS + n− |U |

n
· 1 = 1− 2|S|

n
.

Let f : {0, 1}|U | → R be the function that is 1 at 0 and 0 elsewhere. We write f =
∑
S⊆U f̂SχS .

Let u := |U |. By the same calculation as above, f̂S = 2−u. Thus, for y ∈ {0, 1}u we get

(Q̃tf)(y) = 2−u
∑
S

λtSχS(y) = 2−u
∑
S

(
1− 2|S|

n

)t
χS(y)

≤ 2−u
u∑
s=0

(
u

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t (siuce |χS(y)| = 1) .

If u ≤ n/2, we observe that all eigenvalues 1 − 2s/n are non-negative.2 In this case we
continue:

2−u
u∑
s=0

(
u

s

)(
1− 2s

n

)t
≤ 2−u

u∑
s=0

(
u

s

)(
1− 2

n

)st
=
(

1 +
(
1− 2

n

)t
2

)u
(1)

and we are done. If u > n/2, things get more tricky. We split the sum in two parts:

2−u
bn/2c∑
s=0

(
u

s

)(
1− 2s

n

)t
+ 2−u

u∑
s=bn/2c+1

(
u

s

)(
2s
n
− 1
)t

. (2)

We can bound the first sum exactly similar as in (1):

2−u
bn/2c∑
s=0

(
u

s

)(
1− 2s

n

)t
≤ 2−u

bn/2c∑
s=0

(
u

s

)(
1− 2

n

)st
≤ 2−u

u∑
s=0

(
u

s

)(
1− 2

n

)st

=
(

1 +
(
1− 2

n

)t
2

)u
.

Let us bound the second sum in (2). For notational convenience, we let it run from dn/2e to
u, only making it larger. We change the parameter s to r := u− s. Thus

2−u
u∑

s=dn/2e

(
u

s

)(
2s
n
− 1
)t

= 2−u
u−dn/2e∑
r=0

(
u

u− r

)(
2(u− r)

n
− 1
)t

= 2−u
u−dn/2e∑
r=0

(
u

r

)(
2u− n
n

− 2r
n

)t

≤ 2−u
u−dn/2e∑
r=0

(
u

r

)(
1− 2r

n

)t
(since u ≤ n)

≤ 2−u
u−dn/2e∑
r=0

(
u

r

)(
1− 2

n

)rt

≤ 2−u
u∑
r=0

(
u

r

)(
1− 2

n

)rt
=
(

1 +
(
1− 2

n

)t
2

)u
.

Thus, both sums in (2) are bounded by (1) and the lemma follows.

2 The reader might observe that in our application indeed |U | � n/2.

P. Pudlák, D. Scheder, and N. Talebanfard 85:13

References
1 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-

ratic time (unless SETH is false). In Rocco A. Servedio and Ronitt Rubinfeld, editors,
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58. ACM, 2015. URL:
http://dl.acm.org/citation.cfm?id=2746539, doi:10.1145/2746539.2746612.

2 Eli Ben-Sasson and Russell Impagliazzo. Random cnf’s are hard for the polynomial calculus.
Computational Complexity, 19(4):501–519, 2010. doi:10.1007/s00037-010-0293-1.

3 Shiteng Chen, Dominik Scheder, Navid Talebanfard, and Bangsheng Tang. Exponential
lower bounds for the PPSZ k-SAT algorithm. In Sanjeev Khanna, editor, Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1253–1263. SIAM, 2013. doi:
10.1137/1.9781611973105.91.

4 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2-
2/(k+1))n algorithm for k-sat based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

5 Paul Erdős and Horst Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl. (Regular graphs with given girth and minimal number of knots.). Wiss. Z.
Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss., 12:251–258, 1963.

6 Timon Hertli. 3-sat faster and simpler – unique-sat bounds for PPSZ hold in general. SIAM
J. Comput., 43(2):718–729, 2014. doi:10.1137/120868177.

7 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

8 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96.

9 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988. doi:10.1007/BF02126799.

10 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

11 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago
J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/
1999/11/contents.html.

12 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science, FOCS’99,
17-18 October, 1999, New York, NY, USA, pages 410–414. IEEE Computer Society,
1999. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6604,
doi:10.1109/SFFCS.1999.814612.

13 G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies in Con-
structive Mathematics and Mathematical Logic, (2):115–125, 1968.

14 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

ICALP 2017

http://dl.acm.org/citation.cfm?id=2746539
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1007/s00037-010-0293-1
http://dx.doi.org/10.1137/1.9781611973105.91
http://dx.doi.org/10.1137/1.9781611973105.91
http://dx.doi.org/10.1016/S0304-3975(01)00174-8
http://dx.doi.org/10.1137/120868177
http://dx.doi.org/10.1006/jcss.2000.1727
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://dx.doi.org/10.1007/BF02126799
http://dx.doi.org/10.1145/1066100.1066101
http://dx.doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6604
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1145/7531.8928
http://dx.doi.org/10.1145/7531.8928

Subspace Designs Based on Algebraic Function
Fields∗

Venkatesan Guruswami†1, Chaoping Xing‡2, and Chen Yuan3

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
guruswami@cmu.edu

2 School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore
xingcp@ntu.edu.sg

3 School of Physical and Mathematical Sciences, Nanyang Technological
University, Singapore
yuan0064@e.ntu.edu.sg

Abstract
Subspace designs are a (large) collection of high-dimensional subspaces {Hi} of Fmq such that
for any low-dimensional subspace W , only a small number of subspaces from the collection have
non-trivial intersection with W ; more precisely, the sum of dimensions of W ∩Hi is at most some
parameter L. The notion was put forth by Guruswami and Xing (STOC’13) with applications
to list decoding variants of Reed-Solomon and algebraic-geometric codes, and later also used for
explicit rank-metric codes with optimal list decoding radius.

Guruswami and Kopparty (FOCS’13, Combinatorica’16) gave an explicit construction of
subspace designs with near-optimal parameters. This construction was based on polynomials
and has close connections to folded Reed-Solomon codes, and required large field size (specifically
q > m). Forbes and Guruswami (RANDOM’15) used this construction to give explicit constant
degree “dimension expanders" over large fields, and noted that subspace designs are a powerful
tool in linear-algebraic pseudorandomness.

Here, we construct subspace designs over any field, at the expense of a modest worsening of
the bound L on total intersection dimension. Our approach is based on a (non-trivial) extension
of the polynomial-based construction to algebraic function fields, and instantiating the approach
with cyclotomic function fields. Plugging in our new subspace designs in the construction of
Forbes and Guruswami yields dimension expanders over Fn for any field F, with logarithmic
degree and expansion guarantee for subspaces of dimension Ω(n/(log logn)).

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, F.2.2 Nonnumer-
ical Algorithms and Problems, G.1.3 Numerical Linear Algebra

Keywords and phrases Pseudorandomness, algebraic codes, explicit constructions, expanders,
linear algebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.86

∗ A full version of the paper is available at https://arxiv.org/abs/1704.05992.
† Research supported in part by NSF CCF-1422045.
‡ Research supported in part by the Singapore MoE Tier 1 grants RG20/13 and RG25/16.

EA
T

C
S

© Venkatesan Guruswami, Chaoping Xing, and Chen Yuan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl; Article No. 86; pp. 86:1–86:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.86
https://arxiv.org/abs/1704.05992
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

86:2 Subspace Designs Based on Algebraic Function Fields

1 Introduction

An emerging theory of “linear-algebraic pseudorandomness” studies the linear-algebraic
analogs of fundamental Boolean pseudorandom objects where the rank of subspaces plays the
role of the size of subsets. A recent work [4] studied the interrelationships between several
such algebraic objects such as subspace designs, dimension expanders, rank condensers, and
rank-metric codes, and highlighted the fundamental unifying role played by subspace designs
in this web of connections.

Informally, a subspace design is a collection of subspaces of a vector space Fmq (throughout
we denote by Fq the finite field with q elements) such that any low-dimensional subspace W
intersects only a small number of subspaces from the collection. More precisely:

I Definition 1. A collection H1, H2, . . . ,HM of b-dimensional subspaces of Fmq form an (s, L)-
(strong) subspace design, if for every s-dimensional subspace W ⊂ Fmq ,

∑M
i=1 dim(W ∩Hi) 6

L.

In particular, this implies that at most L subspaces Hi have non-trivial intersection with
W . A collection meeting this weaker requirement is called a weak subspace design; unless
we mention otherwise, by subspace design we always mean a strong subspace design in this
paper. One would like the dimension b of each subspace in the subspace design to be large,
typically Ω(m) for applications of interest, L to be small, and the number of subspaces M to
be large.

Subspace designs were introduced by the first two authors in [11], where they used them
to improve the list size and efficiency of list decoding algorithms for algebraic-geometric
codes, yielding efficiently list-decodable codes with optimal redundancy over fixed alphabets
and small output list size. A standard probabilistic argument shows that a random collection
of subspaces forms a good subspace design with high probability. Subsequently, Guruswami
and Kopparty [7] gave an explicit construction of subspace designs, nearly matching the
parameters of random constructions, albeit over large fields.

Intriguingly, the construction in [7] was based on algebraic list-decodable codes (specifically
folded Reed-Solomon codes). Recall that improving the list-decodability of such codes was
the motivation for the formulation of subspace designs in the first place! This is yet another
compelling example of the heavily intertwined nature of error-correcting codes and other
pseudorandom objects. The following states one of the main trade-offs achieved by the
construction in [7].

I Theorem 2 (Folded Reed-Solomon based construction [7]). For every ε ∈ (0, 1), positive
integers s,m with s 6 εm/4, and a prime power q > m, there exists an explicit1 collection
of M = qΩ(εm/s) subspaces in Fmq , each of dimension at least (1 − ε)m, which form a
(s, 2s

ε)-(strong) subspace design.

Note the requirement of the field size q being larger than the ambient dimension m in
their construction. To construct subspace designs over small fields, they use a construction
over a large extension field Fqr , and view b-dimensional subspaces of Fm′qr as br-dimensional
subspaces of Frm′q . However, this transformation need not preserve the “strongness" of
the subspace design, and an (s, L)-subspace design over the extension field only yields an
(s, L)-weak subspace design over Fq.

1 By explicit, we mean a deterministic construction that runs in time poly(q, m, M) and outputs a basis
for each of the subspaces in the subspace design.

V. Guruswami, C. Xing, and C. Yuan 86:3

The strongness property is crucial for all the applications of subspace designs in [4]. In par-
ticular, the strongness is what drives the construction of dimension expanders (defined below)
of low degree. The weak subspace design property does not suffice for these applications.

I Definition 3. A collection of linear maps A1, A2, . . . , Ad : Fn → Fn is said to be a (b, α)-
dimension expander if for every subspace V of Fn of dimension at most b, dim(

∑d
i=1Ai(V)) >

(1+α)·dim(V). The number of maps d is the “degree" of the expander, and α is the expansion
factor.

Using the subspace designs constructed in Theorem 2 in a black-box fashion, Forbes
and Guruswami [4] gave explicit (Ω(n),Ω(1))-dimension expanders of O(1) degree when
|F| > poly(n). Here explicit means that the maps Ai are specified explicitly, say by the
matrix representing their action with respect to some fixed basis. Extending Theorem 2 to
smaller fields will yield constant-degree (Ω(n),Ω(1))-dimension expanders over all fields. The
only known constructions of such dimension expanders over finite fields rely on monotone
expanders [3, 2], a rather complicated (and remarkable) form of bipartite vertex expanders
whose neighborhood maps are monotone. Even the existence of constant-degree monotone
expanders does not follow from standard probabilistic methods, and the only known explicit
construction is a sophisticated one using the group SL2(R) by Bourgain and Yehudayoff [1].
(Earlier, Dvir and Shpilka [2] constructed monotone expanders of logarithmic degree using
Cayley graphs over the cyclic group, yielding logarithmic degree (Ω(n),Ω(1))-dimension
expanders.)

In light of this, it is a very interesting question to remove the field size restriction
in Theorem 2 above, as it will yield an arguably simpler construction of constant-degree
dimension expanders over every field, and which might also offer a quantitatively better
trade-off between the degree and expansion factor. We note that probabilistic constructions
achieve similar parameters (in fact a slightly larger sized collection with qΩ(εm) subspaces)
with no restriction on the field size (one can even take q = 2).

Our construction. The large field size in Theorem 2 was inherited from Reed-Solomon
codes, which are defined over a field of size at least the code length. Our main contribution
in this work is a construction of subspace designs based on algebraic function fields, which
permits us to construct subspace designs over small fields. By instantiating this approach
with a construction based on cyclotomic function fields, we are able to prove the following
main result in this work:

I Theorem 4 (Main Theorem). For every ε ∈ (0, 1), a prime power q and positive integers
s,m such that s ≤ εm/4, there exists an explicit construction of M = Ω(qbεm/(2s)c/ε)
subspaces in Fmq , each of dimension at least (1− ε)m, which form an

(
s′,

2s′dlogq(m)e
ε

)
-strong

subspace design for all s′ 6 s.

Note that we state a slightly stronger property that the bound on intersection size
improves for subspaces of lower dimension s′ 6 s. This property also holds for Theorem 2
and in fact is important for the dimension expander construction in [4], and so we make it
explicit.

The bound on intersection size we guarantee above is worse than the one from the random
construction by a factor of logqm. The result of Theorem 2 can be viewed as a special case
of Theorem 4 since logqm 6 1 when q > m. The factor logqm comes out as a trade-off
of the explicit construction vs the random construction given in [11]. The extension field
based construction using Theorem 2 would yield an (s,O(s2/ε))-subspace design (since an

ICALP 2017

86:4 Subspace Designs Based on Algebraic Function Fields

(s, L)-weak subspace design is trivially an (s, sL)-(strong) subspace design). The bound we
achieve is better for all s = Ω(logqm). In the use of subspace designs in the dimension
expander construction of [4], s governs the dimension of the subspaces which are guaranteed
to expand, which we would like to be large (and ideally Ω(m)). The application of subspace
designs to list decoding [11, 9] employs the parameter choice m = O(s) in order keep the
alphabet size qm small. Therefore, our improvement applies to a meaningful setting of
parameters that is important for the known applications of (strong) subspace designs.

Application to dimension expanders over small fields. By plugging in the subspace designs
of Theorem 4 into the dimension expander construction of [4], we can get the following:

I Theorem 5. For every prime power q and positive integer n > q, there exists an explicit
construction of a

(
b = Ω

(
n

logq logq n

)
, 1/3

)
-dimension expander with O(logq n) degree.

For completeness, let us very quickly recap how such dimension expanders may be obtained
from the subspace designs of Theorem 4, using the “tensor-then-condense" approach in [4].
We begin with linear maps T1, T2 : Fn → F2n, where T1(v) = (v; 0) and T2(v) = (0; v) – these
trivially achieve expansion factor 2 by doubling the ambient dimension. Then we take the
subspace design of Theorem 4 with m = 2n, ε = 1/2, s = 2b, and M = 12dlogqme subspaces
Hi (if b = βn/(logq logq n) for small enough absolute constant β > 0, Theorem 4 guarantees
these many subspaces). Let Ei : F2n → Fn be linear maps such that Hi = ker(Ei). The
dimension expander consists of the 2M composed maps Ei◦Tj for i = 1, 2, . . . ,M and j = 1, 2.
Briefly, the analysis of the expansion in dimension proceeds as follows. Let V be a subspace
of Fn with dim(V) = ` 6 b, and let W = T1(V) + T2(V) be the 2`-dimensional subspace of
F2n after the tensoring step. The strong subspace design property implies that the number
of maps Ei for which dim(EiW) < 4`/3 – which is equivalent to dim(W ∩Hi) > 2`/3 – is
less than 12dlogqme = M . So there must be an i for which dim(EiW) > 4`/3, and this Ei
when composed with T1 and T2 will expand V to a subspace of dimension at least 4

3 dim(V).
By using a method akin to the conversion of Reed-Solomon codes over extension fields to

BCH codes over the base field, applied to the large field subspace designs of Theorem 2, Forbes
and Guruswami [4] constructed (Ω(n/ logn),Ω(1))-dimension expanders of O(logn) degree.
In contrast, our construction here guarantees expansion for dimension up to Ω(n/(log logn)).
The parameters offered by Theorem 5 are, however, weaker than both the construction given
in [2], which has logarithmic degree but expands subspaces of dimension Ω(n), as well as the
one in [1], which further gets constant degree. However, we do not go through monotone
expanders which are harder to construct than vertex expanders, and our construction works
fully within the linear-algebraic setting. We hope that the ideas in this work pave the way for
a subspace design similar to Theorem 2 over small fields, and the consequent construction of
constant-degree (Ω(n),Ω(1))-dimension expanders over all fields. In fact, all that is required
for this is an (s,O(s))-subspace design with a sufficiently large constant number of subspaces,
each of dimension Ω(m).

Construction approach. The generalization of the polynomials-based subspace design from
[7] to take advantage of more general algebraic function fields is not straightforward. The
natural approach would be to replace the space of low-degree polynomials by a Riemann-Roch
space consisting of functions of bounded pole order ` at some place. We prove that such a
construction can work, provided the degree ` is less than the degree of the field extension
(and some other mild condition is met). However, this degree restriction is a severe one,
and the dimension of the associated Riemann-Roch space will typically be too small (as

V. Guruswami, C. Xing, and C. Yuan 86:5

the “genus" of the function field, which measures the degree minus dimension “defect," will
be large), unless the field size is large. Therefore, we don’t know an instantiation of this
approach that yields a family of good subspace designs over a fixed size field.

Let us now sketch the algebraic crux of the polynomial based construction in [7], and
the associated challenges in extending it to other function fields. The core property of a
dimension s subspace W of polynomials underlying the construction of Theorem 2 is the
following: If f1, f2, . . . , fs ∈ Fq[X] of degree less than q − 1 are linearly independent over
Fq (these s polynomials being a basis of the subspace W), then the “folded Wronskian,"
which is the determinant of the matrix M(f1, f2, . . . , fs) whose i, j’th entry is fj(γi−1X), is
a nonzero polynomial in Fq[X]. Here γ is an arbitrary primitive element of Fq. One might
compare this with the classical Wronskian criterion for linear dependence over characteristic
zero fields (and also holds when characteristic is bigger than the degree of the fi’s), based on
the singularity of the s× s matrix whose i, j’th entry is di−1fj

dXi−1 .
One approach is to prove this claim about the folded Wronskian is via a “list size" bound

from list decoding: one can prove that for any A1, . . . , As ∈ Fq[X], not all 0, the space of
solutions f ∈ Fq[X]<(q−1) to

A1(X)f(X) +A2(X)f(γX) + · · ·+As(X)f(γs−1X) = 0 (1)

has dimension at most s − 1. (This was the basis of the linear-algebraic list decoding
algorithm for folded Reed-Solomon codes [6, 8].) Stating the contrapositive, if f1, f2, . . . , fs
are linearly independent over Fq[X], then the rows of the matrix M(f1, f2, . . . , fs) are
linearly independent, and therefore its determinant, the folded Wronskian, is a nonzero
polynomial. On the other hand, being the determinant of an s × s matrix whose entries
are degree m polynomials, the folded Wronskian has degree at most ms. To prove the
subspace design property, one then establishes that for each subspace Hi in the collection
that intersects W = span(f1, . . . , fs), the determinant picks up a number of distinct roots
each with dim(W ∩Hi) multiplicity, the set of roots for different intersecting Hi being disjoint
from each other. The total intersection bound then follows because the folded Wronskian
has at most ms roots, counting multiplicities.

One can try to mimic the above approach for folded algebraic-geometric (AG) codes,
with fσ for some suitable automorphism σ playing the role of the shifted polynomial f(γX).
This, however, runs into significant trouble, as the bound on number of solutions f to the
functional equation analogous to (1), A1f +A2f

σ + · · ·+Asf
σs−1 = 0, is much higher. The

list of solutions is either exponentially large and needs pruning via pre-coding the folded AG
codes with subspace-evasive sets [10], or it is much bigger than qs−1 in the constructions
based on cyclotomic function fields and narrow ray class fields where the folded AG codes
work directly [5, 12].

Let F/K be a function field where the extension is Galois with Galois group generated
by an automorphism σ. We choose the m-dimensional ambient space V ∼= Fmq to be a
carefully chosen subspace of a Riemann-Roch space in F of degree `� m (specifically, we
require ` > m + 2g where g is the genus). We then establish that if f1, f2, . . . , fs ∈ V are
linearly independent over Fq, a certain “automorphism Moore matrix" Mσ(f1, f2, . . . , fs) is
non-singular. The determinant of this Moore matrix is thus a non-zero function in F , and
this generalizes the folded Wronskian criterion for polynomials mentioned above.

This non-singularity result is proved in two steps. First, we show that for functions in
V, linear independence over Fq implies linear independence over K. Then we show that
for any f1, . . . , fs ∈ F that are linearly independent over K = Fσ, the automorphism
Moore matrix associated with σ is non-singular. With our hands on the non-zero function

ICALP 2017

86:6 Subspace Designs Based on Algebraic Function Fields

∆ = det(Mσ(f1, f2, . . . , fs)), we can proceed as in the folded Reed-Solomon case – the
part about ∆ picking up many zeroes whenever a subspace in the collection intersects
span(f1, . . . , fs) also generalizes. The pole order of ∆, however, is now `s instead of ms in
the polynomial-based construction. This is the cause for the worse bound on total intersection
dimension in our Theorem 4. The detailed analysis of the above function field generalization
will be presented in a full version of this paper. In the current version, we present only
constructions without proof and hence “automorphism Moore matrix" is not introduced.

Organization. We begin with a quick review of background on algebraic function fields in
general and cyclotomic function fields in particular in Section 2. We presentour constructions
of subspace designs from function fields in Section 3 In Section 4, we instantiate our
construction with specific cyclotomic function fields and derive our main consequence for
subspace designs and establish Theorem 4.

2 Preliminaries on function fields

Background on function fields. Throughout this paper, Fq denotes the finite field of q
elements. A function field F over Fq is a field extension over Fq in which there exists an
element z of F that is transcendental over Fq such that F/Fq(z) is a finite extension. Fq is
called the full constant field of F if the algebraic closure of Fq in F is Fq itself. In this paper,
we always assume that Fq is the full constant field of F , denoted by F/Fq.

Each discrete valuation ν from F to Z∪{∞} defines a local ring O = {f ∈ F : ν(f) > 0}.
The maximal ideal P of O is called a place. We denote the valuation ν and the local ring O
corresponding to P by νP and OP , respectively. The residue class field OP /P , denoted by
FP , is a finite extension of Fq. The extension degree [FP : Fq] is called degree of P , denoted
by deg(P).

Let PF denote the set of places of F . A divisor D of F is a formal sum
∑
P∈PF

mPP ,
where mP ∈ Z are equal to 0 except for finitely many P . The degree of D is defined to be
deg(D) =

∑
P∈PF

mP deg(P). We say that D is positive, denoted by D > 0, if mP > 0 for all
P ∈ PF . For a nonzero function f , the principal divisor (f) is defined to be

∑
P∈PF

νP (f)P .
Then the degree of the principal divisor (f) is 0. The Riemann-Roch space associated with a
divisor D, denoted by L(D), is defined by

L(D) := {f ∈ F \ {0} : (f) +D > 0} ∪ {0}. (2)

Then L(D) is a finite dimensional space over Fq. By the Riemann-Roch theorem [15],
the dimension of L(D), denoted by dimFq (D), is lower bounded by deg(D) − g + 1, i.e.,
dimFq

(D) > deg(D)−g+1, where g is the genus of F . Furthermore, dimFq
(D) = deg(D)−g+1

if deg(D) > 2g−1. In addition, we have the following results [15, Lemma 1.4.8 and Corollary
1.4.12(b)]:
(i) If deg(D) < 0, then dimFq

(D) = 0;
(ii) For a positive divisor G, we have dimFq (D)− dimFq (D −G) 6 deg(G), i.e., dimFq (D −

G) > dimFq
(D)− deg(G).

Let Aut(F/Fq) denote the set of automorphisms of F that fix every element of Fq, i.e.,

Aut(F/Fq) = {τ : τ is an automorphism of F and ατ = α for all α ∈ Fq}.

For a place P ∈ PF and an automorphism σ ∈ Aut(F/Fq), we denote by Pσ the set
{fσ : f ∈ P}. Then Pσ is a place and moreover we have deg(Pσ) = deg(P). The place
Pσ is called a conjugate place of P . σ also induces an automorphsim of Aut(FP /Fq). This

V. Guruswami, C. Xing, and C. Yuan 86:7

implies that there exists an integer e > 0 such that ασ = αq
e for all α ∈ FP . σ is called the

Frobenius of P if e = 1, i.e., ασ = αq for all α ∈ FP . For a place P and a function f ∈ OP , we
denote by f(P) the residue class of f in FP . Thus, we have (f(P))qe = (f(P))σ = fσ(Pσ).

Background on cyclotomic function fields. Let x be a transcendental element over Fq and
denote by K the rational function field Fq(x). Let Kac be an algebraic closure of K. Denote
by Fq[x] the polynomial ring Fq[x]. Let End(Kac) be the ring of homomorphisms from Kac

to Kac. We define ρx(z) = zq+xz for all z ∈ Kac. For i > 2, we define ρxi(z) = ρx(ρxi−1(z)).
For a polynomial p(x) =

∑n
i=0 aix

i ∈ Fq[x], we define ρp(x)(z) =
∑n
i=0 aiρxi(z). For

simplicity, we denote ρp(x)(z) by zp(x). It is easy to see that zp(x) ∈ Fq[x][z] is a q-linearized
polynomial in z of degree qd, where d = deg(p(x)).

For a polynomial p(x) ∈ Fq[x] of degree d, define the set

Λp(x) := {α ∈ Kac : αp(x) = 0}. (3)

Then Λp(x) ' Fq[x]/(p(x)) is an Fq[x]-module and it has exactly qd elements. Furthermore,
Λp(x) is a cyclic Fq[x]-module. For any generator λ of Λp(x), one has Λp(x) = {λA : A ∈
Fq[x]/(p(x))} and λA is a generator of Λp(x) if and only if gcd(A, p(x)) = 1. The extension
K(λ) = K(Λp(x)) is a Galois extension over K with Gal(K(Λp(x))/K) ' (Fq[x]/p(x))∗,
where (Fq[x]/p(x))∗ is the unit group of the ring Fq[x]/(p(x)). We use σA to denote
the automorphism of Aut(K(λ)/K) corresponding to A, i.e., λσA = λA. The size of
(Fq[x]/p(x))∗ is denoted by Φ(p(x)). If p(x) is an irreducible polynomial of degree d over
Fq, we have Φ(p(x)) = qd − 1. In this case, the extension K(Λp(x))/K is cyclic and
Gal(K(Λp(x))/K) ' (Fq[x]/p(x))∗ ' F∗qd .

3 Construction of subspace design

Let σ ∈ Aut(F/Fq) be an automorphism of a finite order. Denote by Fσ the fixed field by
〈σ〉, i.e., Fσ = {x ∈ F : xσ = x}. By the Galois theory, F/F σ is a Galois extension and
Gal(F/F σ) = 〈σ〉. Let D be a divisor of F such that Dσ = D. Assume that Q′ is a place of
F lying above a rational place Q of Fσ and Q′ 6∈ supp(D). Furthermore, assume that V is
an Fq-subspace of L(D) such that V ∩ L(D −Q′) = {0}.

For each place P ∈ PF such that P 6∈ supp(D) and P, P σ−1
, . . . , P σ

−(t−1) are distinct, we
define the subspace HP :

HP = {f ∈ V : f(Pσ
−i

) = 0 for each i ∈ {0, . . . , t− 1}} = V ∩ L
(
D −

t−1∑
i=0

Pσ
−i

)
. (4)

Recall that f(P) is defined to be the residue class of f in the residue field OP /P . Hence, it
is clear that

dimFq (HP) > dimFq (V) + dimFq

(
D −

t−1∑
i=0

Pσ
−i

)
− dimFq (D) > dimFq (V)− t deg(P).

Let f(P)σ = f(P)qe for some integer e > 0. Thus, we have fσi(Pσi) = f(P)σi = f(P)qei for
all integers i > 0.

Define SP = {Pσ−i : i ∈ {0, . . . , t− 1}}, and denote by Fr a set of places P with degree
r such that SP are disjoint and |SP | = t.

ICALP 2017

86:8 Subspace Designs Based on Algebraic Function Fields

I Theorem 6. For any integers s, t with 1 6 s 6 t, the collection (HP)P∈Fr of subspaces
of V, each of codimension at most rt, is an

(
s, `s
r(t−s+1)

)
strong subspace design, where

` = deg(D).

In the above construction, there is no upper bound on the degree of the divisor D. This
makes it possible to compute the dimension of the Riemann-Roch space L(D). The next
construction is for the case when the degree of D is upper bounded by [F : Fσ]. This
construction works for function fields of small genus.

Suppose that there exists a rational place Q in Fσ such that there is only one place Q′ of
F lying above Q. Let D be a positive divisor of F with Q′ 6∈ supp(D) and deg(D) < n. For
each place P ∈ PF such that P 6∈ supp(D) and P, P σ−1

, . . . , P σ
−(t−1) are distinct, we define

the subspace IP :

IP = {f ∈ L(D) : f(Pσ
−i

) = 0 for each i ∈ {0, . . . , t− 1}}. (5)

I Theorem 7. For any integers s, t with 1 6 s 6 t, the collection (IP)P∈Fr of subspaces
of L(D), each of codimension at most rt, is an

(
s, `s
r(t−s+1)

)
strong subspace design, where

` = deg(D).

4 Subspace design from cyclotomic function fields

In this section, we will present subspace design from the construction given in Section 3 by
applying cyclotomic function fields. We start with the subspace design in an ambient space
of smaller dimension.

The small dimension case. If deg(D) is smaller than n = [F : Fσ] and n is smaller than
the genus g(F) of F , in general it is hard to compute dimension of the Riemann-Roch space
L(D). Therefore, we cannot use the construction given in Theorem 7. In this subsection, we
apply Theorem 7 to the case where we can estimate the dimension of L(D).

Let F be the rational function field Fq(x). Let σ ∈ Aut(F/Fq) be given by x 7→ γx, where
γ is a primitive element of F∗q . By Theorem 7, one can obtain the subspace design given in
[7]. Below we show that the subspace design given in [7] can be realized by using cyclotomic
function fields.

Put K = Fq(x). Let p1(x) be a monic linear polynomial. For instance, we can simply
take p1(x) = x. Then the cyclotomic function field F1 := K(Λp1) is a cyclic extension over
K with Gal(F1/K) ' F∗q . In fact, F1 = K(λ) = Fq(λ) with λ satisfying λq−1 + x = 0.
Thus, K = Fq(λq−1). Let γ be a primitive root of Fq and let σ ∈ Gal(F/K) be defined by
λσ = λγ = γλ. This gives the exactly the same function fields and automorphism σ as in [7].
Therefore, we conclude that this cyclotomic function field also realizes the subspace design
given in [7].

Next we consider a monic primitive quadratic polynomial p2(x) = x2 + αx + β with
α, β ∈ Fq. Then the cyclotomic function field F2 := K(Λp2) is a cyclic extension over K with
Gal(F2/K) ' (Fq[x]/(p2)∗. In fact, F2 = K(λ) with λ satisfying λq2−1 + λq−1(xq + x+ α) +
x2 + αx+ β = 0. (see [14]). Let σ be a generator of Gal(F2/K). Then by the Galois theory,
the fixed field Fσ2 is the rational function field K = Fq(x). The genus of the function field F2
is g(F2) = (q−2)(q+1)

2 [13, 14].
The zero of p2(x) is the unique ramified place in Fq(x) and it is totally ramified. Let P ′

be the unique place of F2 that lies over the zero of p2(x). Let ` be an even positive integer
with ` < q2 − 1 and let D = (`/2)P ′. Then deg(D) = ` and Dσ = D. Furthermore, we know

V. Guruswami, C. Xing, and C. Yuan 86:9

that the the zero of (x − α) is fully inert in F2/K. By Theorem 7, we have the following
result.

I Theorem 8. For all positive integers s, r, t,m and prime powers q satisfying s ≤ t ≤ m =
ζq2 for some ζ ∈ (0, 1/2], the above construction yields a collection of M = Ω(q

r

rt) spaces
I1, . . . , IM ⊂ Fmq , each of codimension rt, which forms an

(
s′, (1+1/(2ζ))ms′

r(t−s′+1)

)
strong subspace

design for all s′ 6 s.

Proof. Choose ` such that the dimension of L((`/2)P ′) is m = ζq2. By the Riemman-Roch
Theorem, we have ζq2 > deg((`/2)P ′)− g(F2) + 1, i.e., ` ≤ ζq2 + g − 1 ≤ (1/2 + ζ)q2. The
desired result follows from Theorem 7. J

The large dimension case. In this subsection, we will make use of Theorem 6 due to large
genus. Let p(x) ∈ Fq[x] be a monic primitive polynomial of degree d > 2. Consider the
cyclotomic function field F := K(Λp(x)), where K is the rational function field Fq(x). Then
F/K is a Galois extension with Gal(F/K) ' (Fq[x]/(p(x)))∗. Thus, Gal(F/K) is a cyclic
group of order qd − 1. Let σ be a generator of this group. Then by the Galois theory, the
fixed field Fσ is the rational function field Fq(x).

The zero of p(x) is the unique ramified place in Fq(x) and it is totally ramified. Let P ′
be the unique place of F lying over the zero of p(x). Let Q′ be the unique place of F that
lies over the zero of x. Since Q′ is totally inert, we have deg(Q′) = [F : Fσ] = qd − 1 := m.

The genus of the function field F is g = 1
2

(
d− 2 + q−2

q−1

)
(qd − 1) + 1. Put D =⌈ 2g+m−1

d

⌉
P ′. Then ` = deg(D) > 2g +m and hence, dimFq

(D −Q′) = deg(D −Q′)− g + 1.
Choose V ⊆ L(D) such that V and L(D − Q′) are a direct sum of L(D). Thus, we have
V ∩ L(D −Q′) = {0} and dimFq

(V) = dimFq
(D)− dimFq

(D −Q′) = qd − 1 = m.
By Theorem 6, we have the following.

I Theorem 9. For all positive integers s, r, t, d,m and prime powers q satisfying gcd(r,m) = 1
and s ≤ t ≤ m/r = (qd − 1)/r, there is an explicit collection of M = Ω(m·q

r

rt) spaces
H1, . . . ,HM ⊂ Fmq , each of codimension at most rt, which forms an (s′, (d−1/(q−1))ms′

r(t−s′+1))-
strong subspace design for all s′ 6 s. Furthermore, the subspace design can be constructed in
poly(q,m, r) time.

Proof. The subspace design property follows from Theorem 6 since ` = deg(D) 6 (d −
1/(q − 1))m. The construction of the subspace design mainly involves finding a basis of V
and evaluations of functions at places of degree r which can be computed in poly(q,m, r).
We can enumerate over all degree r irreducible polynomials R ∈ Fq[x] by brute-force in qO(r)

time. None of these places are ramified, and each of these places R splits completely into m
places of degree r, say {Pσi−1 | 1 6 i 6 m}, in F . So we can pick b = bmt c of these places
P, P σ

t

, . . . , P σ
(b−1)t , and define a particular subspace of co-dimension rt associated with each

of them as in (4). J

By setting t ≈ 2s and r ≈ b εm2s c in Theorem 9, we obtain the Main Theorem 4.

References
1 Jean Bourgain and Amir Yehudayoff. Expansion in SL2(R) and monotone expanders. Geo-

metric and Functional Analysis, 23(1):1–41, 2013. doi:10.1007/s00039-012-0200-9.
2 Zeev Dvir and Amir Shpilka. Towards dimension expanders over finite fields. Combinatorica,

31(3):305–320, 2011. doi:10.1007/s00493-011-2540-8.

ICALP 2017

http://dx.doi.org/10.1007/s00039-012-0200-9
http://dx.doi.org/10.1007/s00493-011-2540-8

86:10 Subspace Designs Based on Algebraic Function Fields

3 Zeev Dvir and Avi Wigderson. Monotone expanders: Constructions and applications. The-
ory of Computing, 6(12):291–308, 2010. doi:10.4086/toc.2010.v006a012.

4 Michael A. Forbes and Venkatesan Guruswami. Dimension expanders via rank condensers.
In Proceedings of the 19th International Workshop on Randomization and Computation
(RANDOM), pages 800–814, 2015. Extended full version available as ECCC Technical
Report TR14-162.

5 Venkatesan Guruswami. Cyclotomic function fields, Artin-Frobenius automorphisms, and
list error-correction with optimal rate. Algebra and Number Theory, 4(4):433–463, 2010.
Preliminary version in STOC 2009.

6 Venkatesan Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes. In
Proceedings of the 26th IEEE Conference on Computational Complexity, June 2011.

7 Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Com-
binatorica, 36(2):161–185, 2016. Preliminary version in FOCS 2013. doi:10.1007/
s00493-014-3169-1.

8 Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of
Reed-Solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.
doi:10.1109/TIT.2013.2246813.

9 Venkatesan Guruswami, Carol Wang, and Chaoping Xing. Explicit list-decodable rank-
metric and subspace codes via subspace designs. IEEE Trans. Information Theory,
62(5):2707–2718, 2016. Preliminary versions in STOC 2013 and RANDOM 2014. doi:
10.1109/TIT.2016.2544347.

10 Venkatesan Guruswami and Chaoping Xing. Folded codes from function fields and improved
optimal rate list decoding. In Proceedings of the 44th ACM Symposium on Theory of
Computing, pages 339–350, 2012.

11 Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, Algebraic-
Geometric, and Gabidulin subcodes up to the Singleton bound. In Proceedings of the 45th
ACM Symposium on Theory of Computing, pages 843–852, June 2013. Extended version
available as ECCC Technical Report TR12-146.

12 Venkatesan Guruswami and Chaoping Xing. Optimal rate algebraic list decoding using
narrow ray class fields. J. Comb. Theory, Ser. A, 129:160–183, 2015. Preliminary version
in SODA 2014 under slightly different title.

13 David R. Hayes. Explicit class field theory for rational function fields. Trans. Amer. Math.
Soc., 189:77–91, March 1974.

14 Liming Ma, Chaoping Xing, and Sze Ling Yeo. On automorphism groups of cyclotomic
function fields over finite fields. Journal of Number Theory, 169:406–419, 2016. doi:10.
1016/j.jnt.2016.05.026.

15 Henning Stichtenoth. Algebraic function fields and codes. GMT 254, Springer-Verlag, Berlin,
2008.

http://dx.doi.org/10.4086/toc.2010.v006a012
http://dx.doi.org/10.1007/s00493-014-3169-1
http://dx.doi.org/10.1007/s00493-014-3169-1
http://dx.doi.org/10.1109/TIT.2013.2246813
http://dx.doi.org/10.1109/TIT.2016.2544347
http://dx.doi.org/10.1109/TIT.2016.2544347
http://dx.doi.org/10.1016/j.jnt.2016.05.026
http://dx.doi.org/10.1016/j.jnt.2016.05.026

Bipartite Perfect Matching in
Pseudo-Deterministic NC∗

Shafi Goldwasser1 and Ofer Grossman2

1 Massachusetts Institute of Technology, Cambridge, MA, USA
shafi@theory.csail.mit.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
ofer@mit.edu

Abstract
We present a pseudo-deterministic NC algorithm for finding perfect matchings in bipartite graphs.
Specifically, our algorithm is a randomized parallel algorithm which uses poly(n) processors,
poly(log n) depth, poly(log n) random bits, and outputs for each bipartite input graph a unique
perfect matching with high probability. That is, on the same graph it returns the same matching
for almost all choices of randomness. As an immediate consequence we also find a pseudo-
deterministic NC algorithm for constructing a depth first search (DFS) tree. We introduce a
method for computing the union of all min-weight perfect matchings of a weighted graph in RNC
and a novel set of weight assignments which in combination enable isolating a unique matching
in a graph.

We then show a way to use pseudo-deterministic algorithms to reduce the number of random
bits used by general randomized algorithms. The main idea is that random bits can be reused by
successive invocations of pseudo-deterministic randomized algorithms. We use the technique to
show an RNC algorithm for constructing a depth first search (DFS) tree using only O(log2 n) bits
whereas the previous best randomized algorithm used O(log7 n), and a new sequential randomized
algorithm for the set-maxima problem which uses fewer random bits than the previous state of
the art.

Furthermore, we prove that resolving the decision question NC = RNC, would imply an
NC algorithm for finding a bipartite perfect matching and finding a DFS tree in NC. This is not
implied by previous randomized NC search algorithms for finding bipartite perfect matching, but
is implied by the existence of a pseudo-deterministic NC search algorithm.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases Parallel Algorithms, Pseudo-determinism, RNC, Perfect Matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.87

1 Introduction

Perfect Matching: Computing a maximum matching in a graph is a paradigm-setting
algorithmic problem whose understanding has paved the way to formulating some of the
central themes of theoretical computer science. In particular, Edmonds [6] proposed the
definition of tractable polynomial-time solvable problems versus intractable non-polynomial
time solvable problems following the study of the graph matching problem versus the graph
clique problem.

∗ Full version available on ECCC as TR15-208, https://eccc.weizmann.ac.il/report/2015/208/.

EA
T

C
S

© Shafi Goldwasser and Ofer Grossman;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 87; pp. 87:1–87:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.87
https://eccc.weizmann.ac.il/report/2015/208/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

87:2 Bipartite Perfect Matching in Pseudo-Deterministic NC

A distinction of importance to our work is between the decision version of the perfect
matching problem, which asks whether a perfect matching exists, and the search version,
which asks to return a perfect matching if any exist. Lovász [15] showed that using random-
ization, determining the decision problem is reducible to testing that certain integer matrices
are non-singular1. Since the latter can be done in NC, an RNC algorithm for deciding if a
perfect matching in a graph exists follows. The search version was subsequently shown to
be in RNC by Karp, Upfal, and Wigderson [14] via a Monte-Carlo algorithm and by Karloff
[13] via a Las-Vegas algorithm.

The next breakthrough was the RNC algorithm of Mulmuley, Vazirani, and Vazirani
[16]. They assigned random weights to the edges of the graph and proved the elegant
isolation lemma which states that with high probability such a random assignment induces
(isolates) a unique min-weight perfect matching if at least one exists. Subsequently, the
unique minimum weight perfect matching can be determined in parallel by assigning each
edge to a different processor whose task is to essentially determine if the edge participates in
the unique min-weight perfect matching. However, we emphasize that for the same graph
and different isolating weight assignments it is highly likely that different perfect matchings
will be found.

Quite recently, a significant step forward has been made by Fenner, Gurjar, and Thierauf
[7] who showed how to remove randomization but increase the number of processors, for both
the decision and the search variants of the perfect matching problem in bipartite graphs.
They show a quasi-NC algorithm: that is, a deterministic poly(log n) time algorithm which
uses quasi-polynomially many processors. A main idea of their work was to construct a
set of weight assignments and analyze the union of min-weight matchings with respect to
these weight assignments. In their algorithm, the union of min-weight perfect matchings is
never explicitly constructed, but is only used in the analysis. Indeed, it is not known how
to deterministically construct the union of min-weight matchings, and our algorithm uses
randomness to construct the union of min-weight matchings. Their algorithm to find the
matching follows from applying the procedure of Mulmuley et al [16] to the graph with each
of the weight functions they construct until an isolating one is found. Furthermore, the
weight assignments used by [7] are different from ours. See the discussion in Section 3 after
Lemma 8 of its relation to Lemma 2.3 of [7].

Pseudo-determinism: In a different line of work, initiated by Goldwasser and Gat, [8, 5,
11, 12] the class of search problems which can be solved by pseudo-deterministic polynomial
time algorithms was introduced – these are probabilistic polynomial-time algorithms for
search problems that produce a unique output for each given input except with small
probability. That is, they return the same output for all but few of the possible random
choices. Algorithms that satisfy the aforementioned condition are named pseudo-deterministic
(for a formal definition, see Section 2), as they essentially offer the same functionality as
deterministic algorithms: from the point of view of a computationally bounded observer,
pseudo-deterministic and deterministic algorithms behave the same, since they always output
the same answer.

Efficient pseudo-deterministic algorithms have been shown [5, 8, 12, 11] for several search
problems for which no efficient deterministic algorithms are known. These problems include
number theoretic search problems [12, 8, 5], multi-variate polynomial non-zero findings [8],

1 The decision problem is equivalent to testing whether the determinant of the Tutte matrix of the graph
(or a simplified version of it in the bipartite case) is identically 0.

S. Goldwasser and O. Grossman 87:3

and several sub-linear algorithms [11]. The latter work of Goldwasser, Goldreich and Ron [11]
shows separations between deterministic, randomized and pseudo-deterministic sub-linear
algorithms in accordance with the (asymptotic) number of queries they must require.

The larger question of whether the class of pseudo-deterministic polynomial time search
problems is strictly contained in the class of probabilistic polynomial time search problems
remains open (see the discussion by Goldreich [10] and in [8, 11] and the discussion below).
However, the significance of showing a pseudo-deterministic algorithm in lieu of deterministic
ones is amply illustrated by the following observation: If P = BPP then any pseudo-
deterministic polynomial time algorithm for a search problem implies a polynomial time
deterministic algorithm for the problem.2 In contrast, the randomized versus deterministic
complexity of search problems may not be settled by all proofs of P = BPP . That is, certain
proofs of P = BPP may not generalize to the search setting. A similar situation emerges for
the question of randomized versus deterministic parallel complexity of search problems.

We remark that the study of pseudo-deterministic algorithms seems particularly relevant
in the parallel and distributed settings: if two parties invoke a pseudo-deterministic algorithm
on the same input, they would be guaranteed to obtain the same result with high probability,
regardless of the randomness used. In the distributed setting, pseudo-determinism has been
used for scheduling algorithms [9].

1.1 Our Results
In this work we initiate the study of pseudo-deterministic algorithms in the context of NC. In
particular, in lieu of deterministic NC algorithms for both the decision and search versions of
perfect matching in a graph, we ask the following question: Does a pseudo-deterministic NC
algorithm exist for the perfect matching search problem? We settle this question affirmatively
for bipartite graphs.

We present a pseudo-deterministic NC algorithm for finding perfect matchings in bipartite
graphs. Namely, we present a randomized NC algorithm which on input a bipartite graph
G outputs a unique (canonical) perfect matching with high probability, if at least one
perfect matching exists. All previous RNC algorithms (including [16]) would output different
matchings on different executions.

I Theorem 1 (Main Theorem). There exists a pseudo-deterministic NC algorithm that, given
a bipartite graph G, returns a perfect matching of G, or states that none exist. The algorithm
uses O(log2(n)) random bits.

Aggarwal, Anderson, and Kao [1] present an RNC algorithm for constructing a depth
first search tree for directed graphs. Their algorithm’s only use of randomization is to solve
bipartite min-weight perfect matching as a subroutine. We can adapt our algorithm to find
a unique min-weight perfect matching. Hence, our results imply a pseudo-deterministic NC
algorithm for computing depth first search (DFS) in general directed graphs.

I Corollary (DFS). There exists a pseudo-deterministic NC algorithm that, given a directed
graph G, returns a depth first search tree of G.

In the full version of the paper, we show a general method for using pseudo-determinism
to reducing the number of random bits used by general randomized algorithms. The main

2 This follows from the characterization of Gat and Goldwasser [8] showing that search problems solvable
by polynomial time pseudo-deterministic algorithms are exactly the problems solvable by a polynomial
time algorithm with access to a BP P oracle for an analogous decision problem.

ICALP 2017

87:4 Bipartite Perfect Matching in Pseudo-Deterministic NC

idea is that random bits used to solve problems pseudo-deterministically can later be reused,
thus avoiding the need to sample more random bits. We then show applications of the
technique, including the following Theorem:

I Theorem (DFS With Few Random Bits). There exists an RNC algorithm that, given a
directed graph G, returns a depth first search tree of G using only O(log2(n)) random bits.
Furthermore, the algorithm is pseudo-deterministic.

Previously, the best known algorithm for computing a DFS in RNC used O(log7(n))
random bits (and, furthermore, was not pseudo-deterministic).

It is possible to show, as stated below, that the set of problems solvable by NC pseudo-
deterministic algorithms are exactly the set of problems solvable by an NC algorithm with
an oracle to RNC decision problems. Thus, our main result implies the existence of a
deterministic NC algorithm for finding a bipartite perfect matching if NC = RNC. Prior
works on the perfect matching search problem in bipartite or general graphs do not imply a
deterministic NC solution for the perfect matching search problem, even if an NC algorithm
were found for the decision version of the problem. More generally, even if NC = RNC, it
does not generally imply that every search problem that is solvable by an RNC algorithm
has a deterministic NC solution.

I Lemma (Pseudo-deterministic NC). The class of search problems with pseudo-deterministic
NC algorithms is the class of search problems solvable by an NC machine given access to an
oracle for RNC decision problems.

Combining the above lemma with Theorem 1, we prove the following:

I Corollary. If NC = RNC, then there exists a deterministic NC algorithm that given a
bipartite graph G, outputs a perfect matching of G (or states that none exists).

Combining with the reduction of Aggarwal, Anderson, and Kao [1], we also obtain the
following:

I Corollary. If NC = RNC, then given a graph G, there exists an NC algorithm that returns
a depth first search tree of G.

1.2 High Level Ideas of the Algorithm
We now present an overview of the algorithm and proof of Theorem 1.

Let G be the given bipartite graph. At a high level the algorithm will proceed as follows.
1. In deterministic NC we construct a weight assignment w to the edges of G for which the

union graph of all min-weight perfect matchings with respect to w (i.e., the union of
all edges participating in at least one minimum weight matching) is significantly smaller
than G.

2. In randomized NC we construct the union graph of all min-weight perfect matchings
with respect to w.

3. We repeat steps 1 and 2 above, and every so often we contract some edges of the graph,
until we arrive at a graph small enough that we can deterministically construct a perfect
matching using brute force.

4. We then “uncontract" to arrive at a matching of the original graph.
Note that the only randomized step of the algorithm is step (2): the construction of the
union graph of min-weight perfect matchings. Because the union graph of min-weight perfect
matchings is unique (i.e., there is only one union of min-weight perfect matchings), this step

S. Goldwasser and O. Grossman 87:5

of the algorithm is pseudo-deterministic. As all steps in the algorithm are either deterministic
or pseudo-deterministic, the resulting algorithm will be in pseudo-deterministic.

Constructing the union of all min-weight perfect matchings of G with respect to w will be
an important step in our solution, as it will allow us to prune the graph (removing the edges
which participate in no min-weight perfect matching) while maintaining the property that
the graph has a perfect matching. We will next show how to use randomization to construct
the union.

We remark that it remains an open problem to deterministically compute the union of
min-weight perfect matchings in NC. Whereas the analysis of the union graph with respect
to a particular set of weight assignments plays an important role in the recent quasi-NC
result of [7], they do not explicitly construct it as part of their decision or search algorithms.

I Lemma (Union of min-weight perfect matchings). Let G(V, E) be a bipartite graph with a
polynomially bounded weight assignment w to the edges. Let E1 be the union of all min-weight
perfect matchings in G. There exists an RNC algorithm for finding the set E1.

The Lemma appears in Section 3 as Lemma 9. We outline the proof below.
We compute the union of min-weight perfect matchings by creating a process, for each

edge ei, whose goal is to determine whether ei participates in some min-weight perfect
matching. To this end, the process creates a new weight assignment wi which lowers the
weight of ei by a small amount. The new weight assignment is picked so that if ei is in some
w-minimal perfect matching, then ei must be in all wi-minimal perfect matchings; whereas
if ei is not in any w-minimal perfect matching, then it must be in none of the wi-minimal
perfect matchings. By finding any (not necessarily unique) wi-minimal perfect matching
(which can be done in RNC using techniques in [16], and is the only randomized step of our
algorithm) and checking whether ei participates in the matching, we can determine whether
ei is in the union of min-weight matchings with respect to w. We can then return the union
of all ei which are in some min-weight matching.

Recall that the goal of constructing the union graph is to reduce the problem to a smaller
graph by removing many edges. To apply the above procedure so as to effectively reduce
the size of the graph, we deterministically construct a set of weight assignments with the
property that constructing the union of all min-weight perfect matchings in G with respect to
these assignments (by going through the weight assignments in sequence and removing edges
in each iteration) leaves G with many vertices of degree at most 2. We can then contract
all vertices of degree at most 2 with their neighbors to get a smaller graph in which we
recursively run our algorithm until we remain with only a constant number of vertices. At
this point, we can deterministically compute a unique perfect matching in O(1) time. We
note that although performing the contraction procedure in NC takes some care, if it is done
properly it is easy to extend a perfect matching in the contracted graph to the original graph.

The construction of weight assignments with the above property proceeds as follows. By a
theorem in [2], we learn that if the girth (length of the shortest cycle) of G is at least 4 log n,

then at least 1
10 of the vertices have degree at most 2. Therefore, if our weight assignments

w1, . . . , wt can make all small cycles disappear (when we construct the union of w1-minimal
matchings, then construct the union of w2-minimal matchings on this new graph, etc., then
at the end are left with a graph with no small cycles), we will be able to reduce our problem
to a smaller graph by contracting vertices of degree up to 2. It was shown in [7] that for any
weight assignment w, every cycle with nonzero circulation (the sum of the weights of the
odd edges of a cycle minus the sum of the weights of the even edges of the cycle) disappears

ICALP 2017

87:6 Bipartite Perfect Matching in Pseudo-Deterministic NC

when we look at the union of w-minimal perfect matchings 3. We thus need to show how to
construct a set of weight functions which will ensure that each small (containing fewer than
4 log n vertices) cycle will have nonzero circulation with respect to at least one of the weight
functions.

I Lemma (Non-Zero Circulation for Small Cycles). Let G be a bipartite graph on n vertices.
Then one can construct in NC a set of O(log n) weight assignments with weights bounded by
poly(n) such that every cycle of length up to 4 log n has nonzero circulation for at least one
of the weight assignments.

This Lemma appears in Section 3 as Lemma 8. We remark that the weight assignments
used by [7] are different from ours. We point the reader to a discussion following Lemma 8
for its relation to Lemma 2.3 of [7].

To prove this Lemma we first note that if a cycle of length up to 2k = 4 log n has
circulation 0, then the sum of the weights of the odd edges equals the sum of the weights of
the even edges. That means that there are two subsets of E(G) of size up to k that have the
same sum of weights. If we could construct weight functions such that no two sets of size up
to k have the same sum of weights with respect to all of the weight functions, we will have
proved the Lemma.

The idea of the construction in the Lemma’s proof is to have k + 1 weight assignments,
and let the mth edge have weight

wi(m) = [mi]p

with respect to the ith weight function, where [x]p denotes the number between 1 and p

which is equal to x modulo p, and where p is an arbitrary prime greater than n2.
Then, given the sum of the weights (with respect to each of the wi) of k elements labeled

m1 through mk, we can retrieve the sums
∑k

j=1 mi
j (mod p), for all 1 ≤ i ≤ k + 1. Using

these sums, we can use Newton’s identities to find the minimal polynomial over Fp with
roots m1, m2, . . . , mk, which uniquely determines the set of elements m1, m2, . . . , mk,. Thus,
no two distinct subsets of size up to k can have the same sum of weights.

We note that the weights in the Lemma (where k = 2 log n) are of polynomial size.
We now can construct the union of min-weight matchings with respect to w1 to get a

graph G1. Then, we can construct the union of min-weight matchings in G1, with respect to
w2, and so on until wk. When we are done, we have a graph of high girth, so we can contract
many vertices of degree up to 2 (recall that a graph of girth greater than 4 log n has at least
one tenth of its vertices of degree up to 2). We now have a smaller graph, and we recurse,
completing the proof’s outline.

1.3 Pseudo-Determinism and Search vs Decision Derandomization
Understanding the role of randomness in computation is one of the main problems in
complexity theory. In the context of decision problems the separation between P and BPP

indeed captures the gap between randomized and deterministic polynomial time algorithms.
However, in the context of search problems, it does not. Even if we assume P = BPP,

there may exist search problems solvable by known randomized polynomial time algorithms

3 We note that in [7] the authors do not construct the union of w-minimal perfect matchings, but only use
the union in their analysis of the algorithm. The algorithm in this paper, on the other hand, constructs
the union of w-minimal perfect matchings.

S. Goldwasser and O. Grossman 87:7

which may not succumb to deterministic polynomial time algorithms. In other words, there
exist polynomial time search problems whose randomized vs deterministic complexity may
not be settled by a proof of P = BPP (it is worth noting that many approaches towards
P = BPP , such as pseudorandom generators, may generalize to show that search-P =
search-BPP , for certain definitions of search-BPP . In particular, any proof of P = BPP

strong enough to prove that promise-P = promise-BPP would generalize to the search
setting as shown by Goldreich [10]). For example, the problem of generating primes (given
1n, output a prime with n bits) has an efficient randomized algorithm. However, even under
the assumption P = BPP , it is not known if there exists a polynomial time deterministic
algorithm. A similar situation is the case for the primitive root problem (given a prime
p, output a primitive root modulo p). In [8], the authors prove that a problem admits a
pseudo-deterministic polynomial time algorithm (i.e., a randomized search algorithm which
outputs the same result for all but few random seeds, formally defined in Section 2) if and
only if it is polynomial time reducible to a decision problem in BPP . Thus, any pseudo-
deterministic algorithm one demonstrates for a search problem would immediately provide a
derandomized algorithm for the problem if P = BPP . Our understanding of the randomized
complexity for search problems in the parallel setting is quite similar to the polynomial time
setting. The NC vs RNC question does not capture the full power of randomization in the
parallel setting, since resolving the question for decision problems has no direct bearing on
the search-NC vs search-RNC question. We remark that the leading derandomization effort
in complexity theory, the so called “hardness vs randomness" paradigm, applies to search
problems as well. In a nutshell, the tool of the paradigm is to construct pseudo-random
generators or hitting-set generators to derandomize. However, other proofs of NC = RNC

may have no direct implication about the relationship of NC and RNC in the context of
search. The existence of a pseudo-deterministic algorithm for a problem has direct bearing
on the derandomization question under the assumption NC = RNC. We show in the full
version of the paper that if NC = RNC, then the set of problems with NC search algorithms
equals the set of problems with NC pseudo-deterministic algorithms (i.e., search algorithms in
RNC which output the same solution for all but few random seeds). Our argument is similar
to the argument shown in [8] regarding the polynomial time setting. Viewed in this light,
our main theorem is that if NC = RNC, then there exists a deterministic NC algorithm for
finding a perfect matching in a bipartite graph. While it would be interesting to find general
implications about derandomization of search problems under the assumption that decision
problems are derandomized, our paper is specifically about the bipartite perfect matching
problem.

1.3.1 Organization
In Section 2, we discuss useful definitions and lemmas from prior works. In Section 3, we
prove the main lemmas used in the algorithm. In Section 4, we describe the algorithm, and
prove its correctness In the full version of the paper, we show a general method for saving
random bits using pseudo-determinism, and apply it to save bits in the matching algorithm,
as well as in a depth first search algorithm. Furthermore, in the full version we show that if
NC = RNC, then all pseudo-deterministic NC algorithms can be fully derandomized. In
the full version of the paper, we show how to reduce the number of random bits used by our
matching algorithm.

2 Background and Preliminaries

We begin with a formal definition of pseudo-deterministic:

ICALP 2017

87:8 Bipartite Perfect Matching in Pseudo-Deterministic NC

I Definition 2 (Pseudo-deterministic). An algorithm A for a relation R is pseudo-deterministic
if there exists some function s such that A, when executed on input x, outputs s(x) with
high probability, and s satisfies (x, s(x)) ∈ R.

To contrast the definition with that of a standard randomized algorithm, we note that a
standard randomized algorithm may output a different y on different executions, as long as
(x, y) ∈ R.

I Definition 3 (Pseudo-Deterministic NC). We call an algorithm pseudo-deterministic NC if
it is in RNC, and is pseudo-deterministic.

We now present some lemmas from previous work.

I Lemma 4 (Theorem 2 in [16]). Given a graph G with a weight function w : E → Z, with
polynomially bounded weights, it is possible to construct a w-minimal perfect matching of G

in RNC.

I Definition 5 (Circulation). Let G(V, E) be a graph with weight assignment w. The
circulation cw(C) of an even length cycle C = (v1, v2, . . . , vk) is defined as the alternating
sum of the edge weights of C,

cw(C) = |w(v1, v2)− w(v2, v3) + w(v3, v4)− · · · − w(vk, v1)|.

Circulation has been used for an NC algorithm for perfect planar bipartite matching [4]
and for a quasi-NC algorithm for bipartite matching [7].

I Lemma 6 (Lemma 3.2 in [7]). Let G be a bipartite graph, and let C be a cycle in G. Let
w be a weight function such that the cycle C has nonzero circulation. Then the graph G1
obtained by taking the union of all min-weight perfect matchings on G does not contain the
cycle C.

The proof in [7] relies on the matching polytope. We present a combnatorial proof found
by Anup Rao, Amir Shpilka, and Avi Wigderson, based on Hall’s Theorem:

Proof. Let G′ be the multigraph obtained by taking the disjoint union of all min-weight
perfect matchings (i.e., if an edge e appears in k min-weight perfect matchings of G, then G′

contains k copies of e).
Suppose that there exists a cycle C of nonzero circulation in G′. Then suppose without

loss of generality that the sum of weights of the odd edges of C is larger than the sum of the
weights of the even edges. Then we remove a single copy of each odd edge of C from G′, and
add a single copy of each even edge of C to G′. Call this new graph G′′.

We note that G′ is a regular graph since it is the disjoint union of matchings, and
matchings are regular graphs of degree 1. We also see that every vertex has the same degree
in G′′ as in G′. Hence, G′′ is regular.

We know that every regular bipartite graph is a union of perfect matchings (to prove
this, we can induct on the degree. A regular bipartite graph must satisfy Hall’s condition.
Therefore, it has a perfect matching, which we can remove. We now obtain a new regular
graph of lower degree, which by induction must be a union of perfect matchings).

If we let M be the minimal weight of a matching in G, and we suppose G has d min-weight
matchings, then the sum of the weights of edges of G′ is Md. However, the total weight of all
edges in G′′ is lower than the total weight of all edges in G′. We know that G′′ is regular of
degree d, and therefore is a union of d perfect matchings. If we decompose G′′ into d perfect

S. Goldwasser and O. Grossman 87:9

matchings, it is impossible that they all have weight at least M , because G′′ had total weight
less than Md. Therefore, G′′ has a matching of weight less than M, which corresponds to a
matching of weight less than M in G. This contradicts the assumption that M is the minimal
weight of a matching in G. J

The following lemma originates in [2].

I Lemma 7. Let H be a graph with girth (length of shortest cycle) g ≥ 4 log n. Then H

has average degree < 2.5. In particular, at least 1
10 (a constant fraction) of the vertices have

degree at most 2.

3 Key Lemmas

We present some definitions, as well as key lemmas from previous work, in Section 2.
In [16], a weight assignment is chosen at random such that with high probability there is

a unique min-weight perfect matching. Our goal will be to deterministically construct weight
assignments with similar properties. Specifically, we will construct weight assignments which
give nonzero circulation to small cycles.

I Lemma 8 (Non-Zero Circulation for Small Cycles). Let G be a bipartite graph on n vertices.
Then one can construct in NC a set of O(log n) weight assignments with weights bounded by
poly(n) such that every cycle of length up to 4 log n has nonzero circulation for at least one
of the weight assignments.

We would like to point out the differences between this Lemma and Lemma 2.3 of [7]
(which originates in [3]). At heart, the two Lemmas are quite different, but they seem similar
at first glance. Lemma 2.3 of [7] proves that for any number t, one can construct a set of
O(n2t) weight assignments with weights bounded by O(n2t), such that for any set of t cycles,
one of the weight assignments gives nonzero circulation to each of the t cycles.

Since the number of length s cycles is at most ns, their theorem implies a set of O(ns+2)
weight assignments with weights bounded by O(ns+2) (note that this is quasi-polynomial
for s = 4 log n, which will be our setting of parameters) such that at least one of the weight
assignments gives non-zero circulation to all small cycles.

We can think about the Lemma as an assignment which isolates all small subsets of S.

We will later use this Lemma to construct a weight assignment for the graph G.

Proof. Let S = {s1, . . . , sm} be the edges of G. Consider the following weight assignments
w1, w2, . . . , w2 log n+1, where we write wi(m) as shorthand for wi(sm):

wi(m) = [mi]p,

where [x]p denotes the number between 1 and p which is equal to x modulo p, and where p

is an arbitrary prime greater than n2. We can find such a prime by having n2 processes each
check a different number between n2 and 2n2. Each of these processes initiate 2n2 processes
which each test divisibility by an integer up to 2n2. (Note that this has no implications
regarding generating primes in NC since our input is of size n instead of log n).

We will show that there exist no two subsets of size up to 2 log n which have the same sum
of weights. Then, in particular, there exists no cycle of length up to 4 log n with circulation
0.

Suppose there exist two distinct subsets of size up to k = 2 log n with equal sums of weights
with respect to each of the wi. We can add zeroes to both subsets such that the sizes of the

ICALP 2017

87:10 Bipartite Perfect Matching in Pseudo-Deterministic NC

sets are exactly k. Suppose that the sums of the weights of two subsets A = {a1, a2, . . . , ak}
and B = {b1, b2, . . . , bk} are the same. This gives us the following equivalences modulo p:

a1 + a2 + · · ·+ ak ≡ b1 + b2 + · · ·+ bk (mod p)
a2

1 + a2
2 + · · ·+ a2

k ≡ b2
1 + b2

2 + · · ·+ b2
k (mod p)

· · ·
ak+1

1 + ak+1
2 + · · ·+ ak+1

k ≡ bk+1
1 + bk+1

2 + · · ·+ bk+1
k (mod p).

We claim that this implies that A = B. We note that if ai ≡ bj modulo p, then ai = bj

because p is larger than n2 which is larger than the maximal size of ai or bj . Therefore, it
will suffice to show that the set A and the set B are equivalent in Fp.

Given the sums of the ith powers of the aj for i between 1 and k + 1, Newton’s identities
uniquely determine the values of the fundamental symmetric polynomials in the aj . Therefore,
Newton’s identities also uniquely determine the minimal polynomial which has as roots all of
the aj (with multiplicity). We know that this polynomial will be of degree k and therefore
since the bj share this polynomial, the set of the ai and the set of the bj must be equal (they
are both the set of roots of the same polynomial), completing the proof that the weight
assignment has no two distinct subsets of size up to k with the same sum of weights with
respect to all of the weight assignments. J

The following lemma shows that in RNC we can construct the union of min-weight perfect
matchings of a graph G with a weight assignment w.

I Lemma 9 (Union of min-weight perfect matchings). Let G(V, E) be a bipartite graph with a
polynomially bounded weight assignment w to the edges. Let E1 be the union of all min-weight
perfect matchings in G. There exists an RNC algorithm for finding the set E1.

The idea behind the proof is that for each edge ei, we run a process whose goal is to
tell whether ei is part of a min-weight perfect matching. To do so, the process creates a
new weight function which lowers the weight of ei so that if ei was in a min-weight perfect
matching, under the new weight assignment ei is in every min-weight perfect matching (but
if ei was not in any min-weight perfect matching, it should still not be in any min-weight
matching). Then, we use Lemma 4 to find a min-weight perfect matching, and we check if
ei is in the matching. ei will be in the matching if and only if it is part of a min-weight
matching with respect to the original weight function w.

Proof. For each edge ei ∈ E, consider the weight function wi defined by

wi(ej) =
{

2w(ej)− 1 if i = j,

2w(ej) if i 6= j.

Suppose that M is the minimum weight for a matching with respect to w. Then with
respect to wi, the min-weight matching will have weight 2M if ei is in no w-minimal matching.
Otherwise, the min-weight matching will have weight 2M − 1. By finding a wi-minimal
perfect matching (which we can do in RNC by Lemma 4) and checking its weight (or whether
ei participates in the matching), we can determine whether ei is in a w-minimal matching.

Note that this is highly parallelizable: we can run the above for each edge in parallel.
Then, we return the set of all ei which are part of some w-minimal matching. J

4 The Algorithm

We now put everything together to construct an algorithm:

S. Goldwasser and O. Grossman 87:11

Perfect-Matching(G)
1 Check if G has a matching in RNC using the algorithm of [16].
2 If G does not have a perfect matching, return ⊥.
3 If |E(G)| ≤ 100 :
4 Find and return a perfect matching of G using brute force.
5 Let {w1, . . . , wt} be the weight assignments from Lemma 8 with t = O(log n).
6 Let G0 = G.

7 For i = 1, 2, . . . , t:
8 Let Gi be the union of wi-minimal perfect matchings of Gi−1 (use Lemma 9).
9 Contract vertices of degree up to 2 in Gt to create G′

(see full version of paper for details).
10 Let M ′ = Perfect-Matching(G′).
11 Extend the matching M ′ in G′ to a matching M in Gt

(see full version of paper for details).
12 Return M .

We first argue that the algorithm returns a perfect matching with high probability. To
do so, we first note that since Gt and G have the same vertices, it is enough to find a perfect
matching on Gt. It is therefore enough to show that G′ has a perfect matching, and that
in step 11 we can extend the perfect matching M ′ in G′ to a perfect matching M in Gt.

This requires analyzing the contraction procedure of step 9. The contraction procedure takes
some care, but its ideas are non-central to our proof.

The main idea behind the contraction step is that if we contract both edges adjacent to
a vertex of degree 2 and find a matching in the new contracted graph, it is easy to turn a
perfect matching in the contracted graph to a perfect matching in the original graph. If v is
the vertex of degree 2, and its two neighbors are u1 and u2, then once we contract the three
vertices we can call the new vertex u′. A perfect matching in the contracted graph will have
an edge (v′, u′) adjacent to u′. That edge, in the original graph, must either be of the form
(v′, u1) or of the form (v′, u2) (note that it cannot be of the form (u′, v), with v being the
vertex of degree 2). Suppose without loss of generality that the edge is (v′, u1). Then we can
add the edge (v, u2) to the matching to form a perfect matching M in Gt from the matching
M ′ in G′. Doing this for multiple vertices in parallel leads to some complications which we
elaborate on in the full version of the paper.

Note that we can amplify the success probability of step 8 so that the probability of
failure is at most 1

n . Since the step gets executed a total of O(log2 n) times (O(log n) times
on each of the O(log(n)) steps of the recursion), by the union bound the probability that
step 8 ever fails is at most log2(n)

O(n) , which can be further amplifies through repetition.
We now argue the algorithm is pseudo-deterministic. We note that randomization is only

used in step 8 to construct the union of min-weight matchings. We use the randomization in
the following context: given a weight assignment on a graph, construct the union of min-
weight perfect matchings of the graph. Since this has a unique correct answer, correctness
implies uniqueness. Therefore, our algorithm returns the same output with high probability,
and is therefore pseudo-deterministic.

We will now show the algorithm lies in RNC. We note that step 4 takes O(1) time and
step 5 is in NC by Lemma 8. The number of iterations of the loop in step 7 is of length
O(log(n)2), by Lemma 8, and taking the union of min-weight perfect matchings within the
loop in step 8 is in RNC by Lemma 9. Note that if Gi−1 has a perfect matching, then so

ICALP 2017

87:12 Bipartite Perfect Matching in Pseudo-Deterministic NC

does Gi, since Gi is a non-empty union of perfect matchings of Gi−1. Therefore, the loop
iterations can be performed in RNC.

By Lemma 8 and Lemma 6, we see that after completing the loop, Gt has no cycles of
length up to 4 log n. By Lemma 7, in step 9 we contract a constant fraction of the vertices, so
G′ has a constant fraction of the number of vertices of Gt. Therefore, the number of recursive
calls of step 10 is O(log n).

This completes the algorithm’s analysis, proving the following theorem:

I Theorem 10. There exists a pseudo-deterministic NC algorithm that, given a bipartite
graph G on n vertices, returns a perfect matching of G, or states that none exist.

We note that as a consequence of Theorem 10 and a result appearing in the full version
of the paper (the result that if NC = RNC, then every pseudo-deterministic NC algorithm
can be fully derandomized), if NC = RNC then the bipartite perfect matching search
problem can be solved in NC. In the full version, we improve upon Theorem 10 by showing a
pseudo-deterministic NC algorithm for bipartite perfect matching which uses only O(log4 n)
random bits. In the full version of the paper, we further improve upon that by showing a
pseudo-deterministic NC algorithm using only O(log2 n) random bits.

5 Discussion

We can adapt our algorithm to bipartite maximum matching. Given a bipartite graph G,

we add edges such that we have a complete graph, and give weight 1 to each edge of G

and weight 0 to each edge not in G. Now, we take the union of max-weight matchings. We
know that any matching on this graph will have the same maximal weight (the symmetric
difference of two matchings of different weights will contain a cycle of non-zero circulation).
We now pseudo-deterministically find a perfect matching in this new graph, and restrict it to
G to output a maximum matching.

The above also implies pseudo-deterministic NC algorithms for some network flow problems
such as max-flow approximation, which was shown in [17] to be NC-reducible to maximum
bipartite matching. In addition, as an immediate corollary we get a pseudo-deterministic
algorithm for max flow, where capacities are expressed in unary (this problem was shown to
be NC-reducible to bipartite perfect matching in [14])

It remains open to find a pseudo-deterministic NC algorithm for perfect matching in
general (non-bipartite) graphs.

In the context of polynomial time pseudo-determinism, there are many fundamental
problems with polynomial time randomized algorithms where the existence of pseudo-
deterministic polynomial time algorithms remains open. These problems include generating
primes (given 1n, output a prime with n bits); given a prime p and 1d, finding an irreducible
degree d polynomial over Fp; and finding a primitive root modulo p given a prime p and
the factorization of p− 1. We hope for more progress towards finding pseudo-deterministic
polynomial time algorithms for these problems.

Acknowledgments. Thanks to Anup Rao for communicating to us his proof with Amir
Shpilka and Avi Wigderson of Lemma 6 (also Lemma 3.2 in [7]). We are very grateful to
Oded Goldreich for many helpful discussions on this paper and on the connections between
the questions of decision versus search derandomization and pseudo-determinism.

S. Goldwasser and O. Grossman 87:13

References
1 Alok Aggarwal, Richard J. Anderson, and M.-Y. Kao. Parallel depth-first search in general

directed graphs. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 297–308. ACM, 1989.

2 Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular graphs.
Graphs and Combinatorics, 18(1):53–57, 2002.

3 Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique ele-
ment isolation with applications to perfect matching and related problems. SIAM Journal
on Computing, 24(5):1036–1050, 1995.

4 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47(3):737–757, 2010.

5 Bart de Smit and Hendrik W. Lenstra. Standard models for finite fields. In Handbook of
finite fields, Discrete Mathematics and Its Applications. CRC Press, Hoboken, NJ, 2013.

6 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

7 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, pages 754–763, New York, NY, USA, 2016. ACM. doi:10.1145/
2897518.2897564.

8 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. In Electronic Colloquium on Computational Complexity
(ECCC), volume 18, page 136, 2011.

9 Mohsen Ghaffari. Near-optimal scheduling of distributed algorithms. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing, pages 3–12. ACM, 2015.

10 Oded Goldreich. In a world of P= BPP. In Studies in Complexity and Cryptography. Mis-
cellanea on the Interplay between Randomness and Computation, pages 191–232. Springer,
2011.

11 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations
of pseudodeterministic algorithms. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, pages 127–138. ACM, 2013.

12 Ofer Grossman. Finding primitive roots pseudo-deterministically. ECCC, 23rd December
2015. URL: http://eccc.hpi-web.de/report/2015/207/.

13 Howard J. Karloff. A Las Vegas RNC algorithm for maximum matching. Combinatorica,
6(4):387–391, 1986.

14 Richard M Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in
random NC. In Proceedings of the seventeenth annual ACM symposium on Theory of
computing, pages 22–32. ACM, 1985.

15 László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79,
pages 565–574, 1979.

16 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

17 Maria Serna and Paul Spirakis. Tight RNC approximations to max flow. In STACS 91,
pages 118–126. Springer, 1991.

ICALP 2017

http://dx.doi.org/10.1145/2897518.2897564
http://dx.doi.org/10.1145/2897518.2897564
http://eccc.hpi-web.de/report/2015/207/
http://dx.doi.org/10.1007/BF02579206

A Linear Lower Bound for Incrementing a
Space-Optimal Integer Representation in the
Bit-Probe Model∗

Mikhail Raskin

Department of Computer Science, Aarhus University, Aarhus, Denmark
raskin@mccme.ru

Abstract
We present the first linear lower bound for the number of bits required to be accessed in the
worst case to increment an integer in an arbitrary space-optimal binary representation. The best
previously known lower bound was logarithmic. It is known that a logarithmic number of read
bits in the worst case is enough to increment some of the integer representations that use one
bit of redundancy, therefore we show an exponential gap between space-optimal and redundant
counters.

Our proof is based on considering the increment procedure for a space optimal counter as a
permutation and calculating its parity. For every space optimal counter, the permutation must be
odd, and implementing an odd permutation requires reading at least half the bits in the worst case.
The combination of these two observations explains why the worst-case space-optimal problem is
substantially different from both average-case approach with constant expected number of reads
and almost space optimal representations with logarithmic number of reads in the worst case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases binary counter, data structure, integer representation, bit-probe model,
lower bound

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.88

1 Introduction

We consider the problem of representing integers in a certain range by binary codes to support
efficient increment operations in the bit-probe model. Our main interest is representing
integers in the range 0, . . . , 2n − 1 by exactly n bits.

Most computational tasks require storing integers, and in some cases special encodings
are better suited to the task. Probably the first encodings used in bit-based memory are
the standard positional binary notation and binary coded decimal. We will consider the
task of incrementing an integer counter in the bit probe model. Following [5], an increment
algorithm is defined as a decision assignment tree (DAT), a binary tree where each inner
node specifies a bit of the code that has to be read to make a decision, and every leaf node
contains a set of changes to the code to perform. In this model the number of bits read by

∗ The author acknowledges support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61361136003) for the Sino-Danish Center for the Theory
of Interactive Computation. This work was partially supported by the French National Research Agency
(ANR project GraphEn / ANR-15-CE40-0009).

EA
T

C
S

© Mikhail Raskin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 88; pp. 88:1–88:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.88
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

88:2 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

Table 1 A summary of best known results.

Number of bits read
to increment

Space-optimal Single extra bit

Average Θ(1) (binary notation)
Worst-case > log2 n [4]

6 n − 1 [2]

> n
2 our contribution

> log2 n [4]
6 log2 n + O(1) [8]

an increment is the depth of the corresponding leaf, and the number of bits written is the
number of changes in the leaf.

The standard binary notation with n bits reads and writes only 2 bits on average, but has
to read and write n bits in the worst case. It is also space-optimal, i.e. every combination of
bits represents a unique integer. Gray codes [6] allow writing only one bit for each increment
operation, but they still require reading all n bits. In the article [5] Fredman introduces the
notion of DAT and considers codes that can use more bits than necessary but still require
writing only a single bit per update. A logarithmic lower bound is proven for the number of
bits read in the worst case for such a code. This bound is sometimes cited in connection with
the codes that write a constant number of bits per increment; while the bound is correct, the
proof in [5] does use the fact that only one bit is written. Fredman also gave a construction of
a code such that the increment procedure needs to read only O(logn) bits in the worst case,
but the code length is worse than for the standard notation by a large multiplicative factor.
Frandsen, Miltersen and Skyum consider a more general problem of encoding elements of
a generic monoid; their article [4] provides a general lower bound for the number of bits
read by an increment procedure for integers in the worst case and a construction of a code
with an increment procedure that needs to read log2 n+ 1 bits in the worst case. This code
needs log2 n extra bits. Constructions developed by Bose et al. in [1] and Rahman and
Munro [8] require a single extra bit or less and achieve logarithmic number of bits read by
the corresponding increment procedures. Rahman and Munro also prove a lower bound of
Ω(
√
n) bits read in the worst case for the special case when increment reads a different subset

of bits for every input or at least each subset of bits is read only for a constant number
of inputs (this is a strong condition; for example, the standard binary notation reads only
the last bit for half of all the inputs). Elmasry and Katajainen provide a code [3] that uses
a logarithmic number of extra bits and requires the increment procedure to read only a
logarithmic number of bits in the worst case while ensuring efficient implementation on a
word-based RAM machine.

For the space-optimal case there is a code [2] that allows reading n− 1 bits in the worst
case and writes no more than 3 bits for each increment operation. This code has been found
by brute force search. The best previously known lower bound on the number of bits to read
in the worst case given in [4] is logarithmic in n.

In this paper we close the exponential gap and settle the complexity of the problem up
to a multiplicative factor of 2 by proving that every representation of integers from 0 to
2n − 1 using n bits require the increment operation to read at least n

2 bits in the worst
case. The proof uses properties of permutations to explain why the space-optimal codes
and the redundant codes are qualitatively different from the point of view of the worst-case
complexity of the increment operation.

In the next section we give the standard definitions related to permutations and cite their
standard properties. Then we define our model of computation. In the section 3 we give an
overview of the core ideas and an outline of the proof.

M. Raskin 88:3

The Section 4 contains the detailed definitions of the constructions and the proofs of
their basic properties. The Section 5 contains the combinatorial details and the final part of
the proof. The purpose of the Sections 4 and 5 is to remove any remaining uncertainty after
the brief presentation of the proof in the Section 3.

2 Preliminaries

2.1 Algebraic preliminaries
In this subsection we recall algebraic notions and the standard theorems about permutations
required by our proof. We follow the definitions from [7], but equivalent definitions can be
found in many other abstract algebra books. This subsection can be skipped at the reader’s
discretion.

I Definition 1. A group is a pair (G, ◦) consisting of a set G and a function ◦ : G×G→ G,
such that the following conditions hold:

Associativity: ∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c.
Neutral element: ∃e ∈ G : ∀a ∈ G : e ◦ a = a ◦ e = a.
e is called a neutral element of a group
Inverse element: ∀a ∈ G : ∃b ∈ G : a ◦ b = b ◦ a = e.
b is called an inverse element of a.

I Theorem 2. There can be only one neutral element in a group G. Let e denote the unique
neutral element in the group. Also, for every a ∈ G there can be only one inverse element.
Let a−1 denote the unique inverse element of a. The inverse element of a composition a ◦ b
is b−1 ◦ a−1.

I Definition 3. The symmetric group Sn is the group of all bijections (one-to-one corres-
pondences) from the set {1, 2, 3, . . . , n} to itself. The group operation ◦ is the composition
of functions. Each bijection in the symmetric group is called a permutation. The neutral
element in the symmetric group is the identity permutation σ(x) = x. The inverse element
of a permutation σ is the inverse function σ−1, also called the inverse permutation of σ.
A permutation σ ∈ Sn can be denoted by

(
1

σ(1)
2

σ(2)
3

σ(4) · · ·
n

σ(n)

)
. In the present paper ◦ will

always be written explicitly.

I Definition 4. Suppose we are given k 6 n different elements x1, . . . , xk ∈ {1, . . . , n}. A
permutation σ given by

σ(x1) = x2, σ(x2) = x3, σ(x3) = x4, . . . , σ(xk−1) = xk, σ(xk) = x1

and σ(x) = x if x /∈ {x1, . . . , xk} is called a k-cycle. It is denoted σ = (x1 x2 . . . xk). A
2-cycle is also called a transposition.

I Definition 5. Let σ ∈ Sn be a permutation. A pair of indices (i, j) where 1 6 i < j 6 n is
called an inversion (of the permutation σ) if σ(i) > σ(j) (i.e. if the permutation inverts the
order in which i and j go).

I Definition 6. A permutation is called even if it has an even number of inversions; otherwise
it is called odd.

I Theorem 7. The composition of two even permutations or two odd permutations is an
even permutation. The composition of an even permutation and an odd permutation in any
order is an odd permutation. A k-cycle is an odd permutation if k is even and an even
permutation if k is odd. The inverse of a permutation has the same parity.

ICALP 2017

88:4 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

2.2 The model
I Definition 8. A space-optimal code is an encoding function Enc from {0, 1, 2, . . . , 2n−1}
to the set of bit sequences of length n. Each code implicitly defines the decoding function
Dec = Enc−1 and the increment function Inc(x) = Enc(Dec(x) + 1). We will also call
such codes counters.

I Definition 9. A decision assignment tree (DAT) is a binary tree where each inner
node specifies a single position in the code and every leaf node contains a set of changes
(assignments) in the code. Execution of a DAT on an input bit sequence starts in the root
node and then the next node is the left child of the current node if the bit in the specified
position of the input code is 0 and the right child of the current node otherwise. When a
leaf node is reached, the output is calculated by taking the input and setting the bits in the
positions specified for this leaf node to the specified values.

Each DAT defines a function from bit sequences of some length to bit sequences of the
same length. We will say that all the nodes visited during execution of DAT on some input
(including the root and the leaf node) handle this input. The number of bits read is the
depth of the corresponding leaf, and the number of bits written to the code is the number of
assignments in the leaf.

I Definition 10. The set {0, 1}n is called an n-dimensional hypercube. An element of
a hypercube is called a vertex. Every vertex has n coordinates. A k-dimensional face is
a subset of the n-dimensional hypercube defined by specifying the values of some n − k
coordinates (we will call these coordinates fixed) and allowing all the possible combinations
of values of the remaining k coordinates (we will call these coordinates free). Each vertex of
a hypercube is a bit sequence; we will identify each vertex with the integer it represents in
the standard binary notation. The order on the hypercube vertices given by comparing the
vertices as integers is called the lexicographic order.

3 The bound and the proof outline

The main result of the present paper is: the increment function for every space-optimal code
representing integers from 0 to 2n − 1 must read at least n

2 bits in the worst case. In other
words, there is no space optimal code such that the corresponding increment function never
reads more than L(n) := n

2 − 1 bits.
In this section we present an informal outline of the proof. The core idea of the proof

is representing the permutation specified by Inc as a composition of two permutations,
Before and After , defined in terms of vertices handled by the same leaf node in the DAT
implementing Inc.

Assume that for some n there is a way to encode integers such that the corresponding
increment function Inc can be implemented by a DAT that reads at most L(n) bits in the
worst case. Without loss of generality we can consider an implementation that always reads
exactly L(n) bits. The increment function maps the n-dimensional hypercube into itself and
can be considered as a permutation. This permutation is a cycle of length 2n, and, therefore,
an odd permutation.

We will use a representation of the increment function as a composition of two permuta-
tions, Before and After . Each leaf of the DAT implementing Inc handles some (n− L(n))-
dimensional face of the n-dimensional hypercube. By definition, the restriction of Inc on
each of these faces changes some of the bits in the same way for all the vertices in the face.

M. Raskin 88:5

We also know that Inc is a bijection, therefore only the fixed bits can be changed. This
can be interpreted as a parallel translation of the face. The image of each of the faces in
F under Inc is again a (n − L(n))-dimensional face. Let F denote the set of all the faces
handled by any leaf of the DAT. The set of their images, Inc(F), is also a set of faces.
Every vertex lies in exactly one face from F and in exactly one face from Inc(F). Let’s
fix some order of enumeration of F , i.e. F = {F0, F1, . . . , F2n−L(n)−1}. This also defines
an order on Inc(F), namely, Inc(F) = {Inc(F0), . . . , Inc(F2n−L(n)−1)}. We can consider
three orders on the hypercube: the standard lexicographic ordering; the ordering where
we compare two vertices by first compare their corresponding faces in F and fall back to
lexicographic order inside each face; and the ordering where we first compare the containing
faces from Inc(F). We can enumerate all the vertices of the hypercube according to these
three orders. Enumeration in the lexicographic order is the identity permutations. The
remaining two orders give non-trivial permutations; we will call them Before and After . Note
that Inc = After ◦ Before−1, because the i-th vertex in the j-th face of F is by definition of
F mapped to the i-th vertex of the j-th face of Inc(F).

We prove that Before and After are both even. The proof is the same for both per-
mutations. We need to calculate the number of inversions. Every face is enumerated in
lexicographic order, so there can be no inversion including two vertices from the same face.
When we consider two different faces, they do not intersect and therefore have to have a
coordinate which is fixed in both the faces and has a different value. There have to be at
least two common free coordinates between the faces if each of them has L(n) < n

2 fixed bits
and at least one fixed bit position is shared. Faces with two common free coordinates have
an even number of inversions using one vertex from each of the faces, because inversions
where the less significant common free coordinate doesn’t affect the comparison come in
multiples of four (two bits in the less significant common position can be flipped at will), and
those where the bits in the less significant common position matter come in the multiples of
two (the coordinates in the more significant common position must match, and it doesn’t
matter if both are equal to zero or to one). Therefore the total number of inversions in the
permutation Before (the same holds for the permutation After) is even.

But if Before and After are both even, Inc = After ◦ Before−1 has to be even. The
contradiction proves that our initial assumption was wrong and the implementation of Inc
has to read at least n

2 bits in the worst case.

4 Defining the constructions used in the proof

To illustrate some of the notation, we will use the space-optimal integer representation from
[2]. This representation was initially found by a brute-force search. Its increment function
was presented as a decision assignment tree (Figure 1).

4.1 The cycle defined by the increment function
I Observation 11. If the increment function can be described by a decision assignment tree
(DAT), it can be represented by a DAT of the same depth with all the leaves having the same
depth.

I Lemma 12. For a space-optimal representation of integers in the range {0, . . . , 2n − 1}
the increment function is a bijection of the set of bit strings of length n. By interpreting these
strings as integers using standard binary notation, we can represent the increment function
as a permutation of {0, 1, 2, . . . , 2n − 1}. This permutation is a cycle of length 2n. This cycle
is an odd permutation.

ICALP 2017

88:6 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

x0

x1 x2

x3 x3 x1 x3

x0 ← 1; x1 ← 1; x0 ← 1; x3 ← 0; x0 ← 0,
x2 ← 1;

x0 ← 0,
x1 ← 0;

x3 ← 1; x2 ← 0;

Figure 1 The decision tree from [2].

0000 [0]
0001 [1]

0100 [4]

0101 [5]

1101 [13]

1001 [9]

1100 [12]

1110 [14]
0110 [6]

0111 [7]

1111 [15]

1011 [11]

1000 [8]

1010 [10]

0010 [2]

0011 [3]

Figure 2 The cycle corresponding to the example from [2].

Proof. The increment function Inc maps Enc(2n − 1) to Enc(0), Enc(0) to Enc(1), Enc(1)
to Enc(2), etc. Enc(0), . . . ,Enc(2n − 1) are all the different binary strings of length n with
each string used exactly once, so Inc is a bijection. If we interpret the bit strings as integers
we get the cycle (Enc(0) Enc(1) . . . Enc(2n − 1)). The cycle is an odd permutation because
its length is even.

In the example from [2] the cycle is as shown in the figure. The “first” (x0) bit from the
algorithm’s explanation is used as the least significant bit. We can also write this cycle as a
table of Inc function values:

code Inc(code) code Inc(code) code Inc(code) code Inc(code)
0000 [0] 0001 [1] 0100 [4] 0101 [5] 1000 [8] 1010 [10] 1100 [12] 1110 [14]
0001 [1] 0100 [4] 0101 [5] 1101 [13] 1001 [9] 1100 [12] 1101 [13] 1001 [9]
0010 [2] 0011 [3] 0110 [6] 0111 [7] 1010 [10] 0010 [2] 1110 [14] 0110 [6]
0011 [3] 0000 [0] 0111 [7] 1111 [15] 1011 [11] 1000 [8] 1111 [15] 1011 [11]

The standard notation for this permutation is
(0

1
1
4

2
3

3
0

4
5

5
13

6
7

7
15

8
10

9
12

10
2

11
8

12
14

13
9

14
6

15
11

)
, the cycle

notation is (0 1 4 5 13 9 12 14 6 7 15 11 8 10 2 3). This permutation has 39 inversions, so it is an
odd permutation. J

M. Raskin 88:7

4.2 Decision assignment trees and the corresponding faces
I Lemma 13. Given a DAT for a n-bit integer representation and a node of depth k, the set
of all inputs handled (in the sense of Definition 9) by the chosen node is an (n−k)-dimensional
face.

Proof. The proof goes by induction. The root has depth 0 and handles all the hypercube,
which can be considered an n-dimensional face. A child of node of depth k has depth k + 1;
the set of vertices handled by the child node can be obtained from the set of vertices handled
by the parent node by fixing the coordinate inspected in the parent node to one of the two
possible values. This coordinate was a free coordinate, so we get an (n− k − 1)-dimensional
face out of a (n− k)-dimensional one. J

I Lemma 14. If a DAT implements a bijection, every coordinate in every assignment in
the leaf nodes is a fixed coordinate of the face handled by the corresponding node, i.e. this
coordinate is inspected in one of the ancestor nodes of the leaf node.

Proof. All the vertices need to have different images. Assume a leaf node handled two
vertices which differ in the assigned coordinate. This leaf node would handle some face
containing both vertices, and this face would also contain some two vertices that differ only
in the assigned coordinate. But these two latter vertices would have the same image, and
this is not allowed. J

I Lemma 15. If a DAT implements a bijection, the image of the face handled by a leaf node
is a translation of this face. In particular, the image is also a face of the hypercube.

Proof. Changing some of the fixed coordinates of a face performs a parallel translation. J

We will now illustrate how the faces are moved. The 4-bit counter using 3 reads for
every increment corresponds to a 4-dimensional hypercube. It is more convenient to draw it
as two 3-dimensional cubes side by side (so the extra coordinate is projected to the vector
proportionate to the projection of the first coordinate). In this case the faces corresponding
to the decision assignment tree (DAT) leaves are 1-dimensional faces. We will represent
the faces corresponding to the DAT leaves by solid lines. Both pictures use the same set of
arrows to represent the movement of the faces. The top picture shows the faces before the
moves, and the bottom picture shows the faces after the moves.

We can list the vertices by face. Initially they are split in the following way:

face vertices vertices (decimal) face vertices vertices (decimal)
a 0000 and 0100 0 and 4 e 0001 and 1001 1 and 9
b 1000 and 1100 8 and 12 f 0011 and 1011 3 and 11
c 0010 and 0110 2 and 6 g 0101 and 0111 5 and 7
d 1010 and 1110 10 and 14 h 1101 and 1111 13 and 15

and after the faces are moved we get a new split:

face vertices vertices (decimal) face vertices vertices (decimal)
a 0001 and 0101 1 and 5 e 0100 and 1100 4 and 12
b 1010 and 1110 10 and 14 f 0000 and 1000 0 and 8
c 0011 and 0111 3 and 7 g 1101 and 1111 13 and 15
d 0010 and 0110 2 and 6 h 1001 and 1011 9 and 11

ICALP 2017

88:8 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

Figure 3 The translations corresponding to the counter from [2]; two pictures show the positions
of the 1-dimensional “faces” before and after applying the increment operation.

4.3 Enumerating the faces and the vertices
Assume we have a balanced DAT implementing the increment function Inc for a space-optimal
integer representation. Each leaf handles the vertices forming a face, these faces are disjoint,
have the same dimension and cover the entire hypercube. The Inc-images of these faces are
again disjoint faces of the same dimension covering the entire hypercube. We need to choose
some order on the faces handled by different leaves; it is not important which order we use
so we will use the order of leaves in the DAT.

I Definition 16. Let Fi denote the i-th face in the chosen order.

I Definition 17. Let Inc be a permutation implemented by a balanced DAT of depth l.
The Before permutation is the enumeration of all the vertices in the hypercube by first
enumerating all the vertices in F0 in the lexicographic order, then all the vertices in F1, etc.
In general, the j-th vertex in the lexicographic order on the face Fi will have the number
i× 2l + j. We could write Before(i × 2 l + j) = Fi[j]. The After permutation is defined in a
similar way with the j-th vertex in the face Inc(Fj) having the number i× 2l + j.

I Lemma 18. The Inc permutation is the composition of permutations Before−1 and
After , i.e. Inc = After ◦ Before−1. This can also be written as ∀k ∈ {0, . . . , 2n − 1} :
Inc(Before(k)) = After(k).

M. Raskin 88:9

Proof. Let k be represented as i×2l+j. We have Inc(Before(k)) = Inc(Before(i×2l+j)) =
Inc(Fi[j]) = Inc(Fi)[j] = After(i× 2l + j) = After(k) (the j-th element in the i-th face gets
translated together with the entire face).

For the example algorithm the Before(·) numbering is:(
0000
0000

0001
0100

0010
1000

0011
1100

0100
0010

0101
0110

0110
1010

0111
1110

1000
0001

1001
1001

1010
0011

1011
1011

1100
0101

1101
0111

1110
1101

1111
1111

)
in binary, or

(0
0

1
4

2
8

3
12

4
2

5
6

6
10

7
14

8
1

9
9

10
3

11
11

12
5

13
7

14
13

15
15

)
in decimal notation. The After numbering is(

0000
0001

0001
0101

0010
1010

0011
1110

0100
0011

0101
0111

0110
0010

0111
0110

1000
0100

1001
1100

1010
0000

1011
1000

1100
1101

1101
1111

1110
1001

1111
1011

)
or

(0
1

1
5

2
10

3
14

4
3

5
7

6
2

7
6

8
4

9
12

10
0

11
8

12
13

13
15

14
9

15
11

)
. We first enumerate the two vertices in the a face, then

the two vertices in the b face, etc. using the positions of the faces before and after the move,
respectively. We can see that the Before permutation is odd and the After permutation
is even. As the example algorithm reads more than a half of all the bits, getting an odd
permutation is possible.

As an illustration, 10 is the first vertex in the d face before the translation of the face
by the increment function, Inc(10) = 2. The first vertex in the face d (the fourth face) has
number 6 in the Before ordering; we see that Before−1(10) = 6. After the shift the first
vertex in the face d is 2. We see that After(6) = 2 and Inc(10) = After(Before−1(10)) =
(After ◦ Before−1)(10) = 2. J

5 Calculating the parity of the permutations

Both of the permutations Before and After are specified in the same way, by cutting the
hypercube into faces and enumerating the faces. It is now sufficient to show that any
permutation specified in that way is even if the faces have no more than L(n) = n

2 − 1 fixed
coordinates. We will prove that the After permutation is even; exactly the same proof will
work for the Before permutation.

5.1 Faces and the inversions
Recall that an inversion of a permutation σ is a pair of numbers x < y such that σ(x) > σ(y).

I Lemma 19. There are no inversions of the permutation After such that After(x) and
After(y) are in the same face.

Proof. If After(x) and After(y) are in the same face and x < y then x has a lower number
inside the face than y. But the face is enumerated in the lexicographic order, so After(x) <
After(y). J

I Lemma 20. Consider two faces, Inc(Fi) and Inc(Fi′) such that i < i′. The number of
inversions such that After(x) ∈ Inc(Fi) and After(y) ∈ Inc(Fi′) is even.

I Note 21. If i > i′ then there are no inversions because x would always be larger than y.

Proof. Note that the vertices are enumerated face-by-face, so the condition that After(x) ∈
Inc(Fi) and After(y) ∈ Inc(Fi′) guarantees x < y. Every vertex in each face has exactly one
number, so we can just count the number of pairs (u, v) where u ∈ Inc(Fi) and v ∈ Inc(Fi′)
and u > v. We will use the assumption that each of the faces has L(n) = n

2 − 1 fixed
coordinates. This means that no more than n− 2 coordinates are fixed in any of the two

ICALP 2017

88:10 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

faces. Therefore there are at least two coordinates that are free for both faces. We can
write the faces’ coordinates one on top of the other one: 0

0
0
∗
∗
1 · · · Let us consider the least

significant of the common free coordinates and call it p.
We will split all the pairs (u, v) into two groups based on the number of coordinates that

have to be checked to perform a lexicographic comparison if we read from the most significant
bit. Either it is enough to read only some of the coordinates that are more significant than
p, or we need to to read the coordinate p and maybe some more.

(1) The number of pairs of codes where the comparison can be made without considering
the bits on the position p (and less significant positions) is even, because half of these codes
have 0 in the first face on the position p and the other half have 1.

(2) If we have to consider the bits in the position p, the bits in every more significant
common position must be equal. There is an even number of such pairs because changing a
pair of bits in the same position from 0, 0 to 1, 1 doesn’t affect the comparison.

We have split all the pairs with u > v into two even-sized sets, as we have to consider
either only bits more significant that the position p or the bits including position p. Therefore
the total number of such pairs is even.

This finishes the proof that the number of inversions containing two vertices in the two
given faces is even. J

5.2 Summarizing the inversion counts
I Lemma 22. The After permutation (and the Before permutation) for a Inc function
represented by a DAT of depth less than n

2 are even.

Proof. In the previous subsection we have proven that every inversion of the After permuta-
tion has to include elements from different faces (Lemma 19). We have also proven that for
every pair of faces the number of inversions represented by their elements is even (Lemma 20).
If we sum the inversions for all the pairs of faces we get all the inversions of the permutation.
Therefore the number of inversions of the permutation is even. J

Now we can prove the main theorem.

I Theorem 23. The increment function for every space-optimal binary code representing
integers from 0 to 2n − 1 must read at least n

2 bits in the worst case. In other words, there
is no space optimal binary code such that the corresponding increment function never reads
more than L(n) := n

2 − 1 bits.

Proof. If there is an increment function for a space-optimal binary integer representation
reading at most L(n) bits in the worst case, the corresponding Before and After permutation
would both be even. Then the Inc function would be an even permutation. But the increment
function for a space-optimal binary integer representation has to be a cycle of length 2n, i.e.
an odd permutation. The contradiction proves that our assumption was impossible. J

6 Handling a weaker definition of increment

Our definition of increment assumed that incrementing the largest value always yields zero.
This requirement can be removed from the definition.

I Theorem 24. Consider an increment procedure for a space-optimal integer representation
that correctly handles all the possible values except the maximum and always leaves at least
two bits unread. Such a procedure always maps the encoding of the maximum value to the
encoding of zero.

M. Raskin 88:11

Proof. Let n denote the total amount of bits in the code. Let us assume that the increment
procedure applied to the maximum values doesn’t yield zero. Let k denote a position where
the encoding of zero and the result of incrementing the encoding of the maximum value differ.
Without loss of generality we can assume that the encoding of zero has 0 at the position k
and the value a = Inc(Enc(2n − 1)) has 1 at the position k.

Let us count the vertices x such that Inc(x) has the value 1 at the position k. Almost all
vertices have exactly one preimage, Enc(0) has no preimages and a has 2 preimages, so the
answer should be 2n−1 + 1. On the other hand, a face corresponding to a vertex of the DAT
can have no, all or half of its vertices in the set, depending on the orientation; in any case
this is an even number and the total sum has to be an even number.

The contradiction proves that our assumption is false and incrementing the maximum
values has to yield zero as the result. J

7 Future directions

Minor tweaks of the presented proof allow to extend the result to cover nondeterministic
increment procedures. For n > 10 the same bound can be proven even if we allow arbitrary
changes of the inspected bits together with an arbitrary reversible linear transformation of
the unread bits in every leaf node of a DAT.

Closing the gap between the n
2 lower bound and n − 1 upper bound remains an open

problem. Our conjecture is that the true value is n− o(n).

Acknowledgements. I am grateful to Gerth Brodal for attracting attention to this problem
and his help with editing the present paper. I am extremely grateful to Gudmund Frandsen
for a lot of useful discussions and the efforts he has spent on reading multiple draft versions
of this proof. I am grateful to the anonymous reviewers of this and previous versions of the
present paper for their valuable advice regarding presentation. I am grateful to an anonymous
reviewer for the suggestion that the existence of common fixed coordinates for disjunct faces
improves the bound by one; and for the suggestion that the image of the maximum element
can be proven to be zero even if this assumption is not included in the definition.

References
1 Prosenjit Bose, Paz Carmi, Dana Jansens, Anil Maheshwari, Pat Morin, and Michiel H. M.

Smid. Improved methods for generating quasi-gray codes. In Algorithm Theory – SWAT
2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Norway,
June 21-23, 2010. Proceedings, pages 224–235, 2010. doi:10.1007/978-3-642-13731-0_
22.

2 Gerth Stølting Brodal, Mark Greve, Vineet Pandey, and Srinivasa Rao Satti. Integer
representations towards efficient counting in the bit probe model. J. Discrete Algorithms,
26:34–44, 2014. doi:10.1016/j.jda.2013.11.001.

3 Amr Elmasry and Jyrki Katajainen. In-place binary counters. In Mathematical
Foundations of Computer Science 2013 – 38th International Symposium, MFCS 2013,
Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 349–360, 2013. doi:
10.1007/978-3-642-40313-2_32.

4 Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word
problems. J. ACM, 44(2):257–271, 1997. doi:10.1145/256303.256309.

5 Michael L. Fredman. Observations on the complexity of generating quasi-gray codes. SIAM
J. Comput., 7(2):134–146, 1978. doi:10.1137/0207012.

ICALP 2017

http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1007/978-3-642-13731-0_22
http://dx.doi.org/10.1016/j.jda.2013.11.001
http://dx.doi.org/10.1007/978-3-642-40313-2_32
http://dx.doi.org/10.1007/978-3-642-40313-2_32
http://dx.doi.org/10.1145/256303.256309
http://dx.doi.org/10.1137/0207012

88:12 A Linear Lower Bound for Incrementing a Space-Optimal Integer Representation

6 F. Gray. Pulse code communication, March 17 1953. US Patent 2,632,058. URL: https:
//www.google.com/patents/US2632058.

7 N. Lauritzen. Concrete Abstract Algebra: From Numbers to Gröbner Bases. Concrete
Abstract Algebra: From Numbers to Gröbner Bases. Cambridge University Press, 2003.

8 M. Ziaur Rahman and J. Ian Munro. Integer representation and counting in the bit probe
model. Algorithmica, 56(1):105–127, 2010. doi:10.1007/s00453-008-9247-2.

https://www.google.com/patents/US2632058
https://www.google.com/patents/US2632058
http://dx.doi.org/10.1007/s00453-008-9247-2

Rerouting Flows When Links Fail∗†

Jannik Matuschke1, S. Thomas McCormick2, and
Gianpaolo Oriolo3

1 TUM School of Management and Department of Mathematics, Technische
Universität München, Munich, Germany
jannik.matuschke@tum.de

2 Sauder School of Business, University of British Columbia, Vancouver, Canada
tom.mccormick@sauder.ubc.ca

3 Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di
Roma “Tor Vergata”, Roma, Italy
oriolo@disp.uniroma2.it

Abstract
We introduce and investigate reroutable flows, a robust version of network flows in which link
failures can be mitigated by rerouting the affected flow. Given a capacitated network, a path
flow is reroutable if after failure of an arbitrary arc, we can reroute the interrupted flow from
the tail of that arc to the sink, without modifying the flow that is not affected by the failure.
Similar types of restoration, which are often termed “local”, were previously investigated in the
context of network design, such as min-cost capacity planning. In this paper, our interest is
in computing maximum flows under this robustness assumption. An important new feature of
our model, distinguishing it from existing max robust flow models, is that no flow can get lost
in the network.

We also study a tightening of reroutable flows, called strictly reroutable flows, making more
restrictive assumptions on the capacities available for rerouting. For both variants, we devise
a reroutable-flow equivalent of an s-t-cut and show that the corresponding max flow/min cut
gap is bounded by 2. It turns out that a strictly reroutable flow of maximum value can be
found using a compact LP formulation, whereas the problem of finding a maximum reroutable
flow is NP -hard, even when all capacities are in {1, 2}. However, the tightening can be used
to get a 2-approximation for reroutable flows. This ratio is tight in general networks, but we
show that in the case of unit capacities, every reroutable flow can be transformed into a strictly
reroutable flow of same value. While it is NP -hard to compute a maximal integral flow even for
unit capacities, we devise a surprisingly simple combinatorial algorithm that finds a half-integral
strictly reroutable flow of value 1, or certifies that no such solutions exits. Finally, we also give
a hardness result for the case of multiple arc failures.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases network flows, network interdiction, robust optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.89

1 Introduction

Network infrastructures for transportation, communication, or energy transmission are an
important backbone of our society. However, they are also prone to failure or intentional

∗ A full version of this article is available at https://arxiv.org/abs/1704.07067.
† This work was supported by the Alexander von Humboldt Foundation with funds of the German Federal

Ministry of Education and Research (BMBF) and by an NSERC Discovery Grant.

EA
T

C
S

© Jannik Matuschke, S. Thomas McCormick, and Gianpaolo Oriolo;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 89; pp. 89:1–89:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.89
https://arxiv.org/abs/1704.07067
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

89:2 Rerouting Flows When Links Fail

sabotage, and in such cases it is desirable to quickly recover the service provided through
the network. A crucial frequent requirement of actual network restoration techniques is
that restoration is handled locally [13]. As a motivating example, consider a communication
network in which data packets are routed along paths. When a link in the network fails, it is
desirable to only reroute the traffic that is actually affected by the failure, i.e., those paths
that traverse the failing link, without changing or rerouting any part of the flow that is not
affected by the failure. Note that arbitrary rearrangement of the flow after a failure is in
general more powerful, but it is both undesirable to interrupt customer service and hard to
do so reliably and safely [9, 16].

To cope with such a situation, we introduce the concept of reroutable network flows: A
flow on s-t-paths is reroutable if after failure of any arc ā = (v̄, w̄) in the network, we can
reroute all flow that was traversing ā from v̄ to the sink t, while not changing any flow that
was not affected by the interruption. Similar concepts were previously discussed in a few other
papers [6, 7, 17, 18], but with an emphasis on network design issues, e.g., minimizing the
cost of the installed capacity. In contrast, our interest is in computing maximum flows (but
we point out that a potential application are feasibility/separation subroutines for capacity
reservation). Note that in this setting, we cannot simply send a standard maximum flow, as
we need to leave space for rerouting. Before we discuss our findings and better relate them
to existing literature, let us formalize the definition of our model.

Network flows. Let D = (V,A) be a digraph with source s ∈ V , a sink t ∈ V and arc
capacities u ∈ RA

+. Let P ⊆ 2A be the set of simple1 s-t-paths in D. For arcs a, ā ∈ A, define

Pa := {P ∈ P : a ∈ P} and Pā→a := {P ∈ P : a, ā ∈ P, ā ≺P a},

where ā ≺P a means that P traverses ā before a. An s-t-flow is a vector x ∈ RP+ that assigns a
flow value x(P) ≥ 0 to each P ∈ P such that the arc flow values x(a) :=

∑
P∈Pa

x(P) fulfill the
capacity constraint x(a) ≤ u(a) for all a ∈ A. The value of a flow x is val(x) :=

∑
P∈P x(P).

Reroutable flows. Let x be an s-t-flow. If an arc ā = (v̄, w̄) ∈ A fails, all flow on paths
containing the failing arc gets interrupted when it reaches v̄. For any a ∈ A \ {ā}, we define
the available capacity of a after failure of ā by

ūx,ā(a) := u(a)−
∑

P∈Pa\Pā→a

x(P).

A rerouting of x for the failing arc ā is a v̄-t-flow xā of value x(ā) in (V,A \ {ā}) with
capacities ūx,ā. The flow x is reroutable if for every failing arc ā ∈ A there is a rerouting xā

of x.

Strictly reroutable flows. A rerouting xā of a flow x for a failing arc ā is strict if xā(a) ≤
ūx(a) := u(a)− x(a) for every a ∈ A \ {ā}. We say that x is strictly reroutable if for every
failing arc ā ∈ A there is a strict rerouting of x.

Strictly reroutable flows are both a helpful tool for computing reroutable flows and
interesting in their own right, in situations where more conservative assumptions have to be

1 All our results also work for the case that P contains non-simple paths, but we restrict to simple paths
for ease of notation.

J. Matuschke, S. T. McCormick, and G. Oriolo 89:3

made on the capacities available for rerouting. A natural question is what is the maximum
flow value that can be sent by a (strictly) reroutable flow in a given network. We denote the
corresponding optimization problem as Max RF and Max SRF, respectively.

1.1 Our results
Complexity of the problems (Sections 2.1 and 2.2). We observe that Max SRF can be
solved in polynomial time by formulating it as a linear program. In contrast, Max RF is
NP -hard, even when u(a) ∈ {1, 2} for all a ∈ A. On the positive side, by showing that the
maximum value of a reroutable flow is at most twice as large as the maximum value of a
strictly reroutable flow, we obtain a 2-approximation for Max RF for arbitrary capacities.
The problem can further be solved exactly in unit capacity networks (see below).

Max flow/min cut gap (Section 2.3). Max flow/min cut results play a central role in
network flow theory. We devise a combinatorial upper bound for the maximum reroutable
flow value, called R-cut, and prove that the corresponding flow/cut gap for both reroutable
and strictly reroutable flows is bounded by 2. In fact, our proof is constructive and provides
a combinatorial 2-approximation algorithm for the minimum capacity R-cut problem.

Unit capacity networks (Section 3). We consider the case of unit capacities. It turns out
that in this case, Max RF and Max SRF are equivalent. Our proof is based on a careful
uncrossing argument that allows to transform any reroutable flow into a strictly reroutable
flow.

Computing (half-)integral solutions (Section 4). A common property of many flow prob-
lems is the existence of an integral optimal solution when capacities are integral. In the case
of reroutable flows, this property does not hold. In fact, if we require flow to be integral, the
problem becomes NP -hard, even for sending a single unit of flow in a unit capacity network.
However, for this special case, we devise a simple combinatorial algorithm that computes a
half-integral solution or certifies that no flow of value 1 exists. Via our max flow/min cut
analysis we also show how to compute 2-approximate half-integral solutions.

Multiple arc failures (Section 5.2). We consider the natural generalization of our problems
to multiple simultaneous arc-failures. We show that in this case both variants of the problem
are NP -hard, even when only two arcs can fail and all arcs have unit capacity. All hardness
results in this paper are based on reduction from an intermediary problem, called Forbidden
Pairs s-t-Path. They are therefore grouped together in Section 5.

1.2 Related work
As we already pointed out above, “local” rerouting schemes, i.e., schemes that only change
flow affected by the failure, have been investigated in network design. A routing scheme in
which flow has to be sent along arc-disjoint paths was investigated in [6], see also [18]. The
problem of finding a local rerouting from the tail to the head of a failed arc was investigated
in [7] and [17]. However, in all these papers the focus was on min-cost capacity planning.

Concepts that deal with the maximization of flow subject to robustness constraints
commonly fall under the moniker of robust flows. Aggarwal and Orlin [2] studied k-route
flows. Such a flow is a conic combination of elementary flows, each of which consists of a
uniform flow along k disjoint paths. Because of this structure, the failure of any arc can only

ICALP 2017

89:4 Rerouting Flows When Links Fail

destroy a 1/k fraction of the flow. A maximum k-route flow can be computed in polynomial
time by means of a parametric max flow problem. Another classic model is the maximum
robust flow problem: Here, the goal is to find a path flow that maximizes the surviving flow
after a worst-case failure of k arcs. Aneja et al. [3] showed that for k = 1 both an optimal
fractional and an optimal integral solution can be found in polynomial time. If k is not
bounded by a constant the problem is NP -hard [10], but the complexity for any constant
value k ≥ 2 is open. Bertsimas et al. [4] provide an Ω(1/k)-approximation algorithm for
the maximum robust flow. Robust flows are closely related to network flow interdiction,
which takes a dual perspective: The goal is to find a subset of arcs whose removal minimizes
the maximum flow value in the remaining network; see the recent article by Chestnut and
Zenklusen [8] for an up-to-date overview of this topic.

To the best of our knowledge, the only other flow maximization model that allows for
adjustment after the failure are adaptive flows, first introduced by Bertsimas et al. [5]: In the
first step, an arc flow is specified. After failure of k arcs, a new flow is sent, with the flow
value on every arc being bounded by the original flow value. Note that adaptive flows differ
from reroutable flows in two important aspects: Adaptive flows allow flow to be ‘lost’ (the
flow value after the failure is lower than the original flow value), whereas in reroutable
flows all flow has to reach the sink. Furthermore, adaptive flows can reconfigure the flow
in the entire network, whereas in reroutable flows, only the flow affected by the failure can
be rerouted.

Another model closely related to reroutable flows is the online replacement path prob-
lem (ORP) introduced by Adjiashvili et al. [1]. The ORP is a generalization of the shortest
path problem: Given a digraph with costs on the arcs, we have to specify an s-t-path. Along
the path, we may encounter a failing arc ā = {v̄, w̄}, and we have to find a replacement path
from v̄ to t avoiding ā. The goal is to minimize the total traveled distance, assuming ā is
chosen by an adversary. Adjiashvili et al. [1] show that the ORP can be solved in polynomial
time, even when a constant number of arcs fail.

2 LP formulation, approximation, and max flow/min cut

In this section, we discuss the complexity of the two problems and provide bounds on the
gap between Max RF and Max SRF. We also introduce an analogue to minimum cuts for
reroutable flows and bound the corresponding duality gap. At the end of the section, we
show that all our bounds are tight.

2.1 Complexity of Max RF and Max SRF
We now consider an LP formulation for Max SRF. For ā ∈ A, let R(ā) be the set of all
tail(ā)-t-paths in (V,A \ {ā}), which are exactly the paths that a rerouting for failing arc ā
can use.

[LPstrict] max
∑
P∈P

x(P)

s.t.
∑

P∈Pa

x(P) +
∑

R∈R(ā) : a∈R

xā(R) ≤ u(a) ∀ a, ā ∈ A

∑
P∈Pā

x(P) −
∑

R∈R(ā)

xā(R) = 0 ∀ ā ∈ A

x, xā ≥ 0 ∀ ā ∈ A

J. Matuschke, S. T. McCormick, and G. Oriolo 89:5

The first set of constraints bound the capacities for each rerouting; note in particular
that for ā = a, the second term becomes 0, ensuring x(a) ≤ u(a) for all a ∈ A. The second
set of constraints ensures that the rerouting flow xā has value x(ā). Although [LPstrict] has
an exponential number of variables, it can be solved in polynomial time via dual separation.

I Theorem 1. Max SRF can be solved in polynomial time.

For the special case of unit capacity networks, we show in Section 3 that an optimal
solution to [LPstrict] is also optimal for Max RF.

I Theorem 2. For u ≡ 1, Max RF can be solved in polynomial time.

An LP for Max RF can be obtained by replacing
∑

P∈Pa
x(P) by

∑
P∈Pā→a

x(P) in
the capacity constraints of [LPstrict]. Unfortunately, this modification prevents the dual
separation approach from working. In fact, it turns out that Max RF is hard as soon as
two different capacities occur. The proof of this result is discussed in Section 5.1.

I Theorem 3. Max RF is NP -hard, even when u(a) ∈ {1, 2} for all a ∈ A.

2.2 Reroutable flows vs. strictly reroutable flows
As Max SRF is a tightening of Max RF, the optimal value of the former is at most that of
the latter. We show that the gap between the two values cannot be larger than 2. As we can
compute maximum strictly reroutable flows, we obatain a 2-approximation for Max RF.

I Lemma 4. Let x be an s-t-flow. If x is strictly reroutable, then x is reroutable. If x is
reroutable, then 1

2x is strictly reroutable.

I Corollary 5. There is a 2-approximation algorithm for Max RF.

2.3 Max flow/min cut gap for reroutable flows
An s-t-cut is a set of arcs that intersects every s-t-path. Its capacity is the sum of capacities
of its arcs. A fundamental result in network flow theory is that the value of a maximum
s-t-flow is equal to the capacity of a minimum s-t-cut. This result has been successfully
generalized to many variants of network flows, such as abstract flows [14] or flows over
time [11]. However, in other cases, such as multicommodity flows, the equality does not
hold and instead, researchers investigate the worst case ratio between maximum flow and
minimum cut; see, e.g., [15].

We present a counterpart to an s-t-cut for reroutable flows. It turns out that max flow
and min cut are not necessarily equal and we give a tight bound on the corresponding max
flow/min cut gap. An R-cut is a set of arcs R ⊆ A together with a collection of cuts (Ca)a∈R,
where each Ca is a tail(a)-t-cut containing a. We denote (R, (Ca)a∈R) by (R,C) for short.
The capacity of the R-cut (R,C) is

cap(R,C) := φ(R,C) +
∑
a∈R

u(Ca \ {a}),

where φ(R,C) is the capacity of a minimum s-t-cut in (V,A \ ∪a∈RCa).
The intuition behind this definition is the following: For every a ∈ R, all flow that crossed

the cut Ca must cross the Ca \ {a} if a fails. If a flow path does not cross any cut in Ca,
then it crosses the minimum s-t-cut in (V,A \ ∪a∈RCa). Therefore the capacity of an R-cut
is an upper bound on the value of any reroutable flow.

ICALP 2017

89:6 Rerouting Flows When Links Fail

I Lemma 6. val(x) ≤ cap(R,C) for any reroutable flow x and any R-cut (R,C).

It can be shown that R-cuts correspond to integral solutions to the dual of [LPstrict]. We
now give a constructive proof bounding the duality gap between maximum strictly reroutable
flow and minimum R-cut (or, equivalently, the integrality gap of the dual LP). In Section 2.4
we give an example showing that the bound is tight.

I Theorem 7. Let x be a strictly reroutable flow of maximum value and let (R,C) be an
R-cut of minimum capacity. Then val(x) ≥ 1

2 cap(R,C).

Proof. For a ∈ A, let Ca be minimum tail(a)-t-cut in D containing a and define u′(a) :=
min{u(a), u(Ca \ {a})}. Let C ′ be a minimum s-t-cut in D with respect to the capacities
u′ and let x′ be a corresponding maximum flow. Now define R := {a ∈ C ′ : u′(a) < u(a)}.
Observe that R and (Ca)a∈R define an R-cut and that φ(R,C) ≤ u(C ′ \R). We obtain

cap(R,C) ≤
∑

a∈C′\R

u(a) +
∑
a∈R

u(Ca \ {a}) =
∑

a∈C′

u′(a) = val(x′).

Now let x := x′/2. It is sufficient to show that x is a strictly reroutable flow. By contradiction
assume that there is ā ∈ A for which there is no strict rerouting of x. By the max flow/min
cut theorem, there must be a tail(ā)-t-cut C̄ in (V,A \ {ā}) with

∑
a∈C̄ ūx(a) < x(ā). Note

that x(a) ≤ u′(a)/2 ≤ u(a)/2 for every a ∈ A by construction of x. Thus

1
2

∑
a∈C̄

u(a) ≤
∑
a∈C̄

(u(a)− x(a)) < x(ā) ≤ 1
2u
′(ā) ≤ 1

2u(Cā \ {ā}).

However, this implies that C̄ ∪ {ā} is a smaller tail(ā)-t-cut than Cā, a contradiction. J

Computing a minimum capacity R-cut. Let us denote the problem of finding an R-cut of
minimum capacity by Min R-Cut. The proof of Theorem 7 describes how to compute a
2-approximate solution to this problem.

I Corollary 8. There is a 2-approximation algorithm for Min R-Cut.

2.4 Summary of the bounds and tightness
Putting the bounds from Lemma 4 and Theorem 7 together, we obtain the following corollary.

I Corollary 9. Let (R,C) be a minimum capacity R-cut and let xRF and xSRF be maximal
reroutable and strictly reroutable flows, respectively. Then

val(xRF) ≤ cap(R,C) ≤ 2 val(xSRF) ≤ 2 val(xRF).

The example given in Figure 1 shows that each of the bounds proven in this section is
tight. It also shows that optimal solutions to both Max RF and Max SRF can be fractional,
even when capacities are integral. In the depicted network, and in further examples and
reductions throughout the paper, we use the following gadget.

Backup links. A backup link from v to w is a v-w-path (a′, a′′) of length 2 in which the
intermediate node is incident only to the two arcs of the path and u(a′) := u(a′′) :=
maxa∈A u(a). Note that x(a′) = x(a′′) = 0 for any reroutable flow, because when a′′ fails,
there is no tail(a′′)-t-path for rerouting the flow on that arc. A bidirected backup link between
v and w consists of two distinct backup links, one from v to w and one from w to v.

J. Matuschke, S. T. McCormick, and G. Oriolo 89:7

s
a1 a2

t
a3

Figure 1 Example showing that the bounds given in Lemma 4 and Theorem 7 are tight. Dashed
arcs correspond to (bidirected) backup links, which can only be used for rerouting. When all arcs
have unit capacities, the maximum (strictly) reroutable flow has a value of 1/2. When changing
the capacity of a1 to 2, the maximum reroutable flow value increases to 1, whereas the maximum
strictly reroutable flow value remains 1/2. The minimum R-cut capacity is 1 in both cases.

I Remark. Note that the worst-case for the bounds in Corollary 9 cannot be attained
simultaneously, i.e., in any given instance either the max flow/min cut gap or the gap
between reroutable and strictly reroutable flow has to be significantly smaller than 2—in
fact, at least one of them has to be within

√
2.

3 Unit capacity networks

Throughout this section, we assume u ≡ 1. We will show that in this case, any reroutable
flow can be transformed into a strictly reroutable flow of the same value. We start by giving
an alternative characterization for strictly reroutable flows in unit capacity networks.

Cuts separating t. For S ⊆ V , let δ+(S) := {a ∈ A : tail(a) ∈ S, head(a) ∈ V \ S} denote
the cut induced by S. We define S := {S ⊂ V \ {t} : S 6= ∅} and let C := {δ+(S) : S ∈ S}
be the set of t-separating cuts. W.l.o.g. we assume δ+(S) 6= ∅ for all S ∈ S, as no vertex in a
set S with δ+(S) = ∅ can be on an s-t-path.

I Lemma 10. Let x be an s-t-flow for capacities u ≡ 1. Then x is strictly reroutable if and
only if

∑
a∈C(1− x(a)) ≥ 1 for all C ∈ C.

In the following, we identify those cuts that might violate the condition given in Lemma 10
for a (non-strictly) reroutable flow. We then show that this class of cuts forms a semi-lattice.
This allows us to apply an uncrossing of the flow paths that iteratively eliminates the
problematic cuts while maintaining reroutability.

Bad cuts. Let x be an s-t-flow and let C ∈ C be a t-separating cut. An arc ā ∈ C is
(x,C)-bad if there is an arc a ∈ C and a path P ∈ Pā→a with x(P) > 0. A cut C is x-bad if
all arcs ā ∈ C are (x,C)-bad.

I Lemma 11. Let x be a reroutable flow for capacities u ≡ 1. Let C ∈ C be a t-separating
cut. If

∑
a∈C(1− x(a)) < 1 then C is x-bad.

Proof. By contradiction assume C is not x-bad. Then there must be an arc ā ∈ C that is
not (x,C)-bad. This implies that

∑
P∈Pā→a

x(P) = 0 for every a ∈ C \ {ā}. In particular,
ūx,ā(a) = ūx(a) = 1− x(a) for all a ∈ C \ {ā}. Since all flow in the rerouting of x for failure
of ā needs to cross C \ {ā}, we obtain

∑
a∈C\{ā} ūx,ā(a) ≥ x(ā). Adding 1 − x(ā) to both

sides of this inequality yields a contradiction. J

I Lemma 12. Let x be a flow and let S, S′ ∈ S be such that δ+(S) and δ+(S′) are both
x-bad. Then δ+(S ∪ S′) is an x-bad t-separating cut as well.

ICALP 2017

89:8 Rerouting Flows When Links Fail

s

P1

a3

P2 a1

P3
a2

t s

P
′
3

a3

P ′1 a1

P ′
2 a2

t

Figure 2 Uncrossing of paths on a bad cut.

Uncrossing paths. Let P ∈ P. For two nodes v, w ∈ V visited by P (in that order), we
let P [v, w] denote the subpath of path P starting at v and ending at w. Given another
path Q ∈ P and an arc a ∈ P ∩Q, let P ×a Q be a simple s-t-path in the concatenation of
P [s,head(a)] and Q[head(a), t].

I Theorem 13. Let x be a reroutable flow for capacities u ≡ 1. Then there is a strictly
reroutable flow x′ with val(x′) = val(x) and x′(a) ≤ x(a) for all a ∈ A.

Sketch of Proof. If x is not strictly reroutable, then by Lemmas 10 and 11 there must be
an x-bad cut. By Lemma 12, there is a “rightmost” x-bad cut C∗ := δ+(S∗) where S∗ is
the union of all vertex sets defining x-bad cuts. Because C∗ is bad, we obtain flow-carrying
paths P1, . . . , Pk and arcs a1, . . . , ak such that ai ∈ Pi ∩ Pi+1 is the last arc of Pi that
crosses C∗ for each i ∈ [k] (with Pk+1 := P1). See Figure 2 for an illustration.

We uncross these paths by defining P ′i := Pi+1 ×ai
Pi for i ∈ [k]. We obtain a new flow

x′ by decreasing the flow on all paths Pi by ε := mini x(Pi) and increasing the flow on paths
P ′i by ε for all i ∈ [k]. Observe that val(x′) = val(x) and x′(a) ≤ x(a) for all a ∈ A. We show
that x′ is also a reroutable flow. To this end, let ā ∈ A and let S ⊆ V \ {t} with tail(ā) ∈ S
and define C := δ+(S). If S 6⊆ S∗, then C is not x-bad by construction of S∗. In this case, it
is easy to show that

∑
a∈C\{ā} ūx′,ā(a) ≥ x′(ā). If S ⊆ S∗, then a careful analysis shows that

ūx′,ā(a) ≥ ūx,ā(a) for all a ∈ C. Thus in both cases there is sufficient capacity to reroute
flow when ā fails. We repeat this procedure until we arrive at a strictly reroutable flow. J

I Remark. The proof of Theorem 13 preserves integrality. More specifically, if x(P) is an
integer multiple of α for every P ∈ P, then x′ can be chosen such that also x′(P) is an
integer multiple of α for every P ∈ P.

I Remark. The characterization of strictly reroutable flows for unit capacities given in
Lemma 10 can be extended to instances with arbitrary capacities. However, in the general
case, a non-strictly reroutable flow might not have a bad cut.

4 Computing (half-)integral solutions

In some application contexts, flow cannot be split into arbitrarily small pieces. This is the
setting we consider in this section. We say a flow x is integral, if x(P) ∈ Z for all P ∈ P. We
say that x is half-integral if 2x is integral.

For many fundamental flow problems, such as Max Flow or Min Cost Flow, integrality
comes for free, i.e., as long as capacities are integral, there exists an optimal integral solution.
In the case of reroutable flows, this property does not hold, see, e.g., Figure 3. In fact, it
turns out to be NP -hard to decide whether there is a non-zero integral reroutable flow in a
network.

J. Matuschke, S. T. McCormick, and G. Oriolo 89:9

s v t

Figure 3 Example network in which no integral or half-integral reroutable flow is optimal. Dashed
arcs represent bidirected backup links (see Section 2.4), all arcs have unit capacities. The maximum
reroutable flow value is 2. This can only be achieved when x(s, v) = 1, the three s-v-paths all carry
1/3 unit of flow, and the three v-t-paths all carry 2/3 unit of flow.

I Theorem 14. It is NP -hard to decide whether there is an integral (strictly) reroutable flow
of value 1, even when restricted to instances with u ≡ 1.

Note that this problem corresponds to sending a unit of flow along a single s-t-path. The
hardness stems from a problem named Forbidden Pairs s-t-Path, which we introduce in
Section 5. While it seems that Theorem 14 does not give much space for positive algorithmic
results, we can do much better if we relax the integrality requirement slightly.

I Theorem 15. Given a network with u ≡ 1, the algorithm given in Listing1 computes
in polynomial time either a half-integral strictly reroutable flow of value 1, or correctly
determines that no reroutable flow of value 1 exists.

In particular, this implies that if we are interested in sending a single unit of flow, we
never need to split our flow in more than two paths. Before we discuss the algorithm from
Theorem 15, let us shortly discuss the case of arbitrary capacities. As a consequence of the
max flow/min cut result proven in Section 2.3, we obtain the following approximation.

I Theorem 16. If u is integral, then there is a strictly reroutable half-integral flow x with
val(x) ≥ OPT /2, where OPT is the value of a maximum reroutable flow. The flow x can be
computed in polynomial time.

Proof. Recall that in the proof of Theorem 7 we computed an s-t-flow x′ that was maximal
with respect to capacities u′(a) := min{u(a), u(Ca \ {a})}. We then showed that the
flow x := x′/2 is strictly reroutable and within a factor of 2 of a corresponding R-cut. In
particular, val(x) is within a factor of 2 of the maximum reroutable flow value. Note that
if u is integral, also u′ is integral, and hence we can choose x′ to be integral, ensuring that x
is half-integral. J

Algorithm for computing a half-integral flow for unit demand

A natural starting point for an algorithm is to identify arcs a ∈ A such that tail(a) is
disconnected from t in (V,A \ {a}). Obviously, no reroutable flow can send a positive amount

ICALP 2017

89:10 Rerouting Flows When Links Fail

Listing 1 Computing a half-integral reroutable unit demand flow
A0 := ∅, A1 := ∅
while ∃ a ∈ A \A0 : A1 ∪ {a} is a tail(a)-t-cut in D

A0 := A0 ∪ {a}
A1 ← {a′ : a′ is an s-t-bridge in (V, A \A0)}

end while
if A0 is an s-t-cut in D

return ”No reroutable flow of value 1 exists.“
else

Let P1, P2 be two s-t-paths in (V, A \A0) such that P1 ∩ P2 = A1.
Let x be the flow defined by x(P1) = x(P2) = 1/2.
return x

end if

of flow along such arcs, as after failure of a, the flow cannot be rerouted to t. Surprisingly,
this simple preprocessing step can be generalized to an iterative procedure that solves the
problem.

The algorithm, which is formally given in Listing 1, maintains two sets A0 and A1. In
every iteration, it identifies an arc that cannot carry any flow in any reroutable flow and adds
it to A0. The set A1 contains the s-t-bridges in the graph (V,A \ A0), i.e., all arcs whose
removal disconnects s from t in that graph. Clearly, if x(a) = 0 for all a ∈ A0, then every
arc in A1 must carry 1 unit of flow. If at some point A0 becomes an s-t-cut, we know that
no reroutable flow of value 1 exists. On the other hand, if the algorithm finds no more arcs
to add to A0 while s and t are still connected in (V,A \A0), it computes two paths P1, P2
that only intersect at the bridges, and sends 1/2 units of flow along each of them.

Proof of Theorem 15. To see that Algorithm 1 terminates in polynomial time, observe that
|A0| is increased in every iteration of the while-loop and the loop thus terminates after at
most |A| iterations, each of which can be carried out in polynomial time.

Case 1: No flow exists. We now show that if Algorithm 1 denies the existence of a
reroutable flow of value 1, this is indeed correct. By contradiction assume A0 contains an
s-t-cut but there exists a reroutable flow x of value 1. We prove by induction that at any
step of algorithm the set A0 fulfills the property that x(a) = 0 for all a ∈ A0, yielding a
contradiction. The claim is clearly true initially, when A0 = ∅. Now consider any iteration of
the while-loop, considering arc a. By induction hypothesis, every s-t-path P with x(P) > 0
must be a path in (V,A\A0). Note that there is an order a1, . . . , a` of the set A1 of s-t-bridges
of (V,A \A0) such that every such flow-carrying path contains all of these bridges in exactly
that order. In particular x(a1) = . . . = x(a`) = 1. Now consider the next arc a added
to A0 and assume by contradiction that x(a) > 0. By choice of a there is a tail(a)-t-cut
C ⊆ A1 ∪ {a} in D. Note that if C ∩A1 = ∅, there is no rerouting of x in case of failure of
arc a, as there is no tail(a)-t-path in (V,A \ {a}). Thus, let ak ∈ C ∩A1 be the bridge with
the highest index k on the cut. We distinguish two cases:
(i) Assume a appears before ak on every flow-carrying path. Note that C is a tail(ak)-t-cut

because ak ∈ C and that
∑

a′∈C ūx,ak
(a′) = 1 − x(a) < 1. Therefore, the one unit of

flow on ak cannot be rerouted when ak fails.
(ii) Now assume a occurs after ak on every flow-carrying path. But then, when a fails,

the flow on a cannot be rerouted as all edges in C \ {a} ⊆ A1 occur before a on every
flow-carrying path and thus

∑
a′∈C\{a} ūx,a(a′) = 0.

We thus deduce that x(a) = 0, completing the induction.

J. Matuschke, S. T. McCormick, and G. Oriolo 89:11

Case 2: Algorithm returns flow. Finally, we show that if (V,A \A0) contains an s-t-path
after completing the while-loop, then the flow x returned by the algorithm is a strictly
reroutable flow. First observe that two s-t-paths P1, P2 in (V,A \ A0) with P1 ∩ P2 = A1
exist by the max flow/min cut theorem, as A1 contains exactly the bridges of (V,A \ A0).
Now consider the failure of any arc ā ∈ A \ A0. Let C be a tail(ā)-t-cut in D minimizing
U(C) :=

∑
a∈C\{ā} ūx(a). We show that U(C) ≥ x(ā), which by max flow/min cut implies

that there is a rerouting of x in case of failure of ā. By termination condition of the while-loop,
there is at least one arc a′ ∈ C \ (A1∪{ā}). Note that x(a′) ∈ {0, 1/2} and thus U(C) ≥ 1/2.
If ā /∈ A1, then x(ā) ≤ 1/2 ≤ U(C). If ā ∈ A1, we distinguish two cases.
(i) If x(a′) = 0 then U(C) ≥ 1 and the one unit of flow on ā can be rerouted.
(ii) If x(a′) = 1/2, then a′ /∈ A0. Note that C is a tail(a′)-t-cut in D and thus there is

a′′ ∈ C \ A1 ∪ {a′} by termination condition of the while-loop. Note that, because
a′′ /∈ A1, we have a′′ 6= a and x(a′′) ≤ 1/2. Thus U(C) ≥ 1 also in this last case.

We conclude that x is indeed strictly reroutable. J

I Remark. Note that our proof of Theorem 15 does not make use of Theorem 13. Instead, it
gives a simple alternative argument for the equivalence of reroutable and strictly reroutable
flows in unit capacity networks, for the special case of unit value flows.

I Remark. Theorem 15 implies that, for networks with u ≡ 1, if there exists any reroutable
flow of value 1, then there exists a half-integral strictly reroutable flow of value 1. The
example given in Figure 3, however, reveals that this is no longer true for flows of higher
value, as the unique maximum reroutable flow uses paths with flow value 1/3.

5 Hardness results

In this section, we give hardness results for Max RF and some variants of the problem.

Paths avoiding forbidden pairs. Our hardness results are based on reductions from For-
bidden Pairs s-t-Path, which is defined as follows: We are given a digraph D′ = (V ′, A′),
two nodes s′, t′ ∈ V ′, and a set of forbidden arc pairs F ⊆ {{a, ā} : a, ā ∈ A}. The task is
to find an s′-t′-path P that does not contain both arcs of any pair, i.e., |S ∩ P | ≤ 1 for all
S ∈ F . It is not hard to see that Forbidden Pairs s-t-Path is NP -hard [12].

5.1 General capacities
I Theorem 3. Max RF is NP -hard, even when u(a) ∈ {1, 2} for all a ∈ A.

Sketch of Proof. We construct a gadget that allows us to introduce forbidden pairs for flow
paths in the network. Starting with an instance of Forbidden Pairs s-t-Path, we append
a sequence of parallel length-2 paths (gi, hi) and (ḡi, h̄i), one pair of paths for each pair
{ai, āi} ∈ F , leading from t′ to the new sink t. For each i, we connect ai and hi, and āi and
h̄i, respectively, with bidirected backup links. The construction is depicted in Figure 4. In a
reroutable s-t-flow of value 2, both hi and h̄i are saturated. When ai fails, the only path for
rerouting leads via hi, hence all flow that traverses ai must be on paths in Pai→hi

. Likewise
all flow that traverses āi must be on paths in Pāi→h̄i

. As Phi
∩ Ph̄i

= ∅, no flow-carrying
path can use both ai and āi for any i. Thus if a reroutable flow of value 2 exists, there is a
path avoiding the forbidden pairs. For the converse of this argument, it is important that
u(ai) = u(āi) = 2. This allows for a rerouting when hi or h̄i fails. J

ICALP 2017

89:12 Rerouting Flows When Links Fail

D′

s . . .

. . .

. . .

zi

•
ai

z̄i

•
āi

. . .

. . .

. . .

t′

g1 w1

ḡ1
w̄1

•

h1

h̄1

. . . •

gi wi

ḡ
i

w̄i

•

h
i

h̄i

. . . t

Figure 4 Construction for the proof of Theorem 3. The dashed box contains the graph D′ from
the Forbidden Pairs s-t-Path instance. The arcs ai, āi have capacity 2 for all i, all other arcs
have unit capacity. In a reroutable flow of value 2, the arcs hi and h̄i must be saturated for all i.
Any rerouting for ai has to traverse hi and any rerouting for āi has to traverse h̄i.

5.2 Multiple arc failures
A natural generalization of Max RF and Max SRF allows multiple simultaneous arc failures.
When a set of arcs S fails, flow is interrupted where it first encounters an arc from S and
has to be rerouted from that point to the sink. A flow is (strictly) k-reroutable, if there
is a rerouting for any failure of a set S ⊆ A with |S| ≤ k. We denote the corresponding
problem of finding a (strictly) k-reroutable flow of maximum value by Max (Strictly)
k-Reroutable Flow. It turns out that dealing even with only 2 arc failures in unit capacity
networks is NP -hard in both cases.

I Theorem 17. Max (Strictly) k-Reroutable Flow is NP -hard, even when restricted
to instances with k = 2 and u ≡ 1.

Acknowledgments. We thank David Adjiashvili and Marco Senatore for helpful discussions.

References
1 David Adjiashvili, Gianpaolo Oriolo, and Marco Senatore. The online replacement path

problem. In Algorithms – ESA 2013, volume 8125 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2013.

2 Charu C. Aggarwal and James B. Orlin. On multiroute maximum flows in networks. Net-
works, 39(1):43–52, 2002.

3 Y.P. Aneja, R. Chandrasekaran, and K.P.K. Nair. Maximizing residual flow under an arc
destruction. Networks, 38(4):194–198, 2001.

4 Dimitris Bertsimas, Ebrahim Nasrabadi, and James B. Orlin. On the power of randomiza-
tion in network interdiction. Operations Research Letters, 44(1):114–120, 2016.

5 Dimitris Bertsimas, Ebrahim Nasrabadi, and Sebastian Stiller. Robust and adaptive net-
work flows. Operations Research, 61:1218–1242, 2013.

6 Graham Brightwell, Gianpaolo Oriolo, and F. Bruce Shepherd. Reserving resilient capacity
in a network. SIAM Journal on Discrete Mathematics, 14(4):524–539, 2001.

7 Chandra Chekuri, Anupam Gupta, Amit Kumar, Joseph Naor, and Danny Raz. Building
edge-failure resilient networks. Algorithmica, 43(1-2):17–41, 2005.

J. Matuschke, S. T. McCormick, and G. Oriolo 89:13

8 Stephen R. Chestnut and Rico Zenklusen. Hardness and approximation for network flow
interdiction. Networks, 2017.

9 Amaro de Sousa and Gil Soares. Improving load balance and minimizing service disruption
on ethernet networks with IEEE 802.1 S MSTP. In Workshop on IP QoS and Traffic
Control, pages 25–35, 2007.

10 Yann Disser and Jannik Matuschke. The complexity of computing a robust flow, 2017.
11 Lester R. Ford and Delbert R. Fulkerson. Flows in networks. Princeton Univ. Press, 1962.
12 Harold N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil. On two problems

in the generation of program test paths. IEEE Transactions on Software Engineering,
SE-2(3):227–231, 1976.

13 Fabrizio Grandoni, Gaia Nicosia, Gianpaolo Oriolo, and Laura Sanità. Stable routing under
the spanning tree protocol. Operations Research Letters, 38(5):399–404, 2010.

14 Alan J. Hoffman. A generalization of max flow—min cut. Mathematical Programming,
6(1):352–359, 1974.

15 Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM, 46(6):787–832, 1999.

16 Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local
computer networks. Communications of the ACM, 19(7):395–404, 1976.

17 Steven J. Phillips and Jeffery R. Westbrook. Approximation algorithms for restoration
capacity planning. In Algorithms – ESA’99, volume 1643 of Lecture Notes in Computer
Science, pages 101–115. Springer, 1999.

18 F. Bruce Shepherd. Single-sink multicommodity flow with side constraints. In Research
Trends in Combinatorial Optimization, pages 429–450. Springer, 2009.

ICALP 2017

The Parameterized Complexity of Positional
Games∗

Édouard Bonnet1, Serge Gaspers2, Antonin Lambilliotte3,
Stefan Rümmele4, and Abdallah Saffidine5

1 Middlesex University, London, UK
edouard.bonnet@dauphine.fr

2 The University of New South Wales, Sydney, Australia; and
Data61, CSIRO, Sydney, Australia
sergeg@cse.unsw.edu.au

3 École Normale Supérieure de Lyon, Lyon, France
antonin.lambilliotte@ens-lyon.fr

4 The University of New South Wales, Sydney, Australia; and
The University of Sydney, Sydney, Australia
s.rummele@unsw.edu.au

5 The University of New South Wales, Sydney, Australia
abdallah.saffidine@gmail.com

Abstract
We study the parameterized complexity of several positional games. Our main result is that
Short Generalized Hex is W[1]-complete parameterized by the number of moves. This solves
an open problem from Downey and Fellows’ influential list of open problems from 1999. Pre-
viously, the problem was thought of as a natural candidate for AW[*]-completeness. Our main
tool is a new fragment of first-order logic where universally quantified variables only occur in
inequalities. We show that model-checking on arbitrary relational structures for a formula in this
fragment is W[1]-complete when parameterized by formula size.

We also consider a general framework where a positional game is represented as a hypergraph
and two players alternately pick vertices. In a Maker-Maker game, the first player to have picked
all the vertices of some hyperedge wins the game. In a Maker-Breaker game, the first player
wins if she picks all the vertices of some hyperedge, and the second player wins otherwise. In an
Enforcer-Avoider game, the first player wins if the second player picks all the vertices of some
hyperedge, and the second player wins otherwise.

Short Maker-Maker, Short Maker-Breaker, and Short Enforcer-Avoider are
respectively AW[*]-, W[1]-, and co-W[1]-complete parameterized by the number of moves. This
suggests a rough parameterized complexity categorization into positional games that are complete
for the first level of the W-hierarchy when the winning condition only depends on which vertices
one player has been able to pick, but AW[*]-complete when it depends on which vertices both
players have picked. However, some positional games with highly structured board and winning
configurations are fixed-parameter tractable. We give another example of such a game, Short
k-Connect, which is fixed-parameter tractable when parameterized by the number of moves.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Hex, Maker-Maker games, Maker-Breaker games, Enforcer-Avoider games,
parameterized complexity theory

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.90

∗ Serge Gaspers is the recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048).
Abdallah Saffidine is the recipient of an ARC DECRA Fellowship (DE150101351). This work received
support under the ARC’s Discovery Projects funding scheme (DP150101134).

EA
T

C
S

© Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele,
and Abdallah Saffidine;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 90; pp. 90:1–90:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.90
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

90:2 The Parameterized Complexity of Positional Games

1 Introduction

In a positional game [13], two players alternately claim unoccupied elements of the board of
the game. The goal of a player is to claim a set of elements that form a winning set, and/or
to prevent the other player from doing so.

Tic-Tac-Toe, its competitive variant played on a 15× 15 board, Gomoku, as well as
Hex are the most well-known positional games. When the size of the board is not fixed,
the decision problem, whether the first player has a winning strategy from a given position
in the game is PSPACE-complete for many such games. The first result was established for
Generalized Hex, a variant played on an arbitrary graph [8]. Reisch [15] soon followed
up with results for gomoku [15] and Hex played on a board [16]. More recently, PSPACE-
completeness was obtained for Havannah [4] and several variants of Connect(m, n, k, p,
q) [14], a framework that encompasses Tic-Tac-Toe and Gomoku.

In a Maker-Maker game, also known as strong positional game, the winner is the first
player to claim all the elements of some winning set. In a Maker-Breaker game, also known
as weak positional game, the first player, Maker, wins by claiming all the elements of a
winning set, and the second player, Breaker, wins by preventing Maker from doing so. In an
Enforcer-Avoider game, the first player, Enforcer, wins if the second player claims all the
vertices of a winning set, and the second player, Avoider, wins otherwise.

In this paper, we consider the corresponding short games, of deciding whether the first
player has a winning strategy in ` moves from a given position in the game, and parameterize
them by `. The parameterized complexity of short games is known for games such as
generalized chess [19], generalized geography [1, 2], and pursuit-evasion games [20]. For Hex,
played on a hexagonal grid, the short game is FPT and for Generalized Hex, played on an
arbitrary graph, the short game is W[1]-hard and in AW[*].

When winning sets are given as arbitrary hyperedges in a hypergraph, we refer to
the three game variants as Maker-Maker, Maker-Breaker, and Enforcer-Avoider,
respectively. Maker-Breaker was first shown PSPACE-complete by Schaefer [17] under
the name Gpos(POS DNF). A simpler proof was later given by Byskov [5] who also showed
PSPACE-completeness of Maker-Maker. To the best of our knowledge, the classical
complexity of Enforcer-Avoider has not been established yet.

We will show that the short game for Generalized Hex is W[1]-complete, solving an
open problem stated numerous times [4, 7, 6, 10, 18], we establish that the short game for a
generalization of Tic-Tac-Toe is FPT, and we determine the parameterized complexity of the
short games for Maker-Maker, Maker-Breaker, and Enforcer-Avoider. One of our
main tools is a new fragment of first-order logic where universally-quantified variables only
occur in inequalities and no other relations. After giving some necessary definitions in the
next section, we will state our results precisely, and discuss them. The rest of the paper is
devoted to the proofs, with some parts deferred to the long version [3].

2 Preliminaries

Finite structures. A vocabulary τ is a finite set of relation symbols, each having an
associated arity. A finite structure A over τ consists of a finite set A, called the universe,
and for each R in τ a relation over A of corresponding arity. An (undirected) graph is a
finite structure G = (V,E), where E is a symmetric binary relation. A hypergraph is a finite
structure G = (V ∪E, IN), where IN ⊆ V ×E is the incidence relation between vertices and
edges. Sometimes it is more convenient to denote a hypergraph instead by a tuple G = (V,E)
where E is a set of subsets of V .

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:3

First-order logic. We assume a countably infinite set of variables. Atomic formulas over
vocabulary τ are of the form x1 = x2 or R(x1, . . . , xk) where R ∈ τ and x1, . . . , xk are
variables. The class FO of all first-order formulas over τ consists of formulas that are
constructed from atomic formulas over τ using standard Boolean connectives ¬,∧,∨ as well
as quantifiers ∃,∀ followed by a variable. Let ϕ be a first-order formula. The size of (a
reasonable encoding of) ϕ is denoted by |ϕ|. The variables of ϕ that are not in the scope of a
quantifier are called free variables. We denote by ϕ(A) the set of all assignments of elements
of A to the free variables of ϕ such that ϕ is satisfied. We call A a model of ϕ if ϕ(A) is not
empty. The class Σ1 contains all first-order formulas of the form ∃x1, . . . ,∃xkϕ where ϕ is a
quantifier free first-order formula.

Parameterized complexity. The class FPT contains all parameterized problems that can
be decided by an FPT-algorithm. An FPT-algorithm is an algorithm with running time
f(k) · nO(1), where f(·) is an arbitrary computable function that only depends on the
parameter k and n is the size of the problem instance. An FPT-reduction of a parameterized
problem Π to a parameterized problem Π′ is an FPT-algorithm that transforms an instance
(I, k) of Π to an instance (I ′, k′) of Π′ such that: (i) (I, k) is a yes-instance of Π if and only
if (I ′, k′) is a yes-instance of Π′, and (ii) k′ = g(k), where g(·) is an arbitrary computable
function that only depends on k. Hardness and completeness with respect to parameterized
complexity classes is defined analogously to the concepts from classical complexity theory,
using FPT-reductions. The following parameterized classes will be needed in this paper:
FPT ⊆ W[1] ⊆ AW[*]. Many parameterized complexity classes can be defined via a version of
the following model checking problem.

MC(Φ)
Instance: Finite structure A and formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Decide whether ϕ(A) 6= ∅.

In particular, the problem MC(Σ1) is W[1]-complete and the problem MC(FO) is AW[*]-
complete (see for example [9]).

Positional games. Positional games are played by two players on a hypergraph G = (V,E).
The vertex set V indicates the set of available positions, while the each hyperedge e ∈ E
denotes a winning configuration. For some games, the hyperedges are implicitly defined,
instead of being explicitly part of the input. The two players alternatively claim unclaimed
vertices of V until either all elements are claimed or one player wins. A position in a positional
game is an allocation of vertices to the players, who have already claimed these vertices. The
empty position is the position where no vertex is allocated to a player. The notion of winning
depends on the game type. In a Maker-Maker game, the first player to claim all vertices of
some hyperedge e ∈ E wins. In a Maker-Breaker game, the first player (Maker) wins if she
claims all vertices of some hyperedge e ∈ E. If the game ends and player 1 has not won, then
the second player (Breaker) wins. In an Enforcer-Avoider game, the first player (Enforcer)
wins if the second player (Avoider) claims all vertices of some hyperedge e ∈ E. If the game
ends and player 1 has not won, then the second player wins. A positional game is called an
`-move game, if the game ends either after a player wins or both players played ` moves. A
winning strategy for player 1 is a move for player 1 such that for all moves of player 2 there
exists a move of player 1. . . such that player 1 wins.

ICALP 2017

90:4 The Parameterized Complexity of Positional Games

3 Results

The first game we consider is a Maker-Maker game that generalizes well-known games
Tic-Tac-Toe, Connect6, and Gomoku (also known as Five in a Row). In Connect(m,
n, k, p, q), the vertices are cells of an m× n grid, each set of k aligned cells (horizontally,
vertically, or diagonally) is a winning set, the first move by player 1 is to claim q vertices,
and then the players alternate claim p unclaimed vertices at each turn. Tic-Tac-Toe
corresponds to Connect(3, 3, 3, 1, 1), Connect6 to Connect(19, 19, 6, 2, 1), and Gomoku
to Connect(19, 19, 5, 1, 1). Variations with different board sizes are also common. In the
Short k-Connect problem, the input is the set of m · n vertices, an assignment of some
of these vertices to the two players, the integer p, and the parameter `. The winning sets
corresponding to the k aligned cells are implicitly defined. The question is whether player 1
has a winning strategy from this position in at most ` moves. We omit q from the problem
definition of Short k-Connect since we are modeling games that advanced already past
the initial moves. Our first result (proved in Section 4) is that Short k-Connect is
fixed-parameter tractable for parameter `. (In all our results, the parameter is the number
of moves, `.)

I Theorem 1. Short k-Connect is FPT.

The main reason for this tractability is the rather special structure of the winning sets.
It helps reducing the problem to model checking for first-order logic on locally bounded
treewidth structures, which is FPT [11].

A similar strategy was recently used to show that Short Hex is FPT [4]. The Hex game
is played on a parallelogram board paved by hexagons, each player owns two opposite sides
of the parallelogram. Players alternately claim an unclaimed cell, and the first player to
connect their sides with a path of connected hexagons wins the game. Note that we may
view Hex as a Maker-Breaker game: if the second player manages to disconnect the first
players sides, he has created a path connecting his sides. Bonnet et al. [4] also considered a
well-known generalization to arbitrary graphs. The Generalized Hex game is played on a
graph with two specified vertices s and t. The two players alternately claim an unclaimed
vertex of the graph, and player 1 wins if she can connect s and t by vertices claimed by her,
and player 2 wins if he can prevent player 1 from doing so. The Short Generalized Hex
problem has as input a graph G, two vertices s and t in G, an allocation of some of the
vertices to the players, and an integer `. The parameter is `, and the question is whether
player 1 has a winning strategy to connect s and t in ` moves.

The Short Generalized Hex problem is known to be in AW[*] and was conjectured to
be AW[*]-complete [4, 7, 6, 10, 18]. In fact, AW[*] is thought of as the natural home for most
short games [7], playing a similar role in parameterized complexity as PSPACE in classical
complexity for games with polynomial length. However, Bonnet et al. [4] only managed to
show that Short Generalized Hex is W[1]-hard, leaving a complexity gap between W[1]
and AW[*]. Our next result is to show that Short Generalized Hex is in W[1]. Thus,
Short Generalized Hex is in fact W[1]-complete.

I Theorem 2. Short Generalized Hex is W[1]-complete.

Our main tool is a new fragment of first-order logic for which model-checking on arbitrary
relational structures is W[1]-complete parameterized by the length of the formula. This
fragment, which we call ∀6=-FO, is the fragment of first-order logic where universally-quantified
variables appear only in inequalities.

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:5

I Theorem 3. MC(∀6=-FO) is W[1]-complete.

This result is proved by reducing a formula in ∀6=-FO to a formula in Σ1. The ∀6=-FO
logic makes it convenient to express short games where we can express that player 1 can reach
a certain configuration without being blocked by player 2, no matter what configurations
player 2 reaches. This is indeed the case for Generalized Hex, where we are merely
interested in knowing if player 1 can connect s and t without being blocked by player 2.

More generally, this is the case for Short Maker-Breaker, where the input is a
hypergraph G = (V,E), a position, and an integer `, and the question is whether player 1
has a winning strategy to claim all the vertices of some hyperedge in ` moves.

I Theorem 4. Short Maker-Breaker is W[1]-complete.

The fact that Short Maker-Breaker is PSPACE-complete and W[1]-complete (and not
AW[*]-complete) may challenge the intuition one has on alternation. Looking at the classical
complexity (PSPACE-completeness), it seems that both players have comparable expressivity
and impact over the game. As the game length is polynomially bounded, if the outcome could
be determined by only guessing a sequence of moves from one player, then the problem would
lie in NP. Now from the parameterized complexity standpoint, Short Maker-Breaker is
equivalent under FPT reductions to guessing the k vertices of a clique (as in the seminal
W[1]-complete k-Clique problem); no alternation there. Those considerations may explain
why it was difficult to believe that Generalized Hex is not AW[*]-complete as conjectured
repeatedly [18, 6, 7].

This is also in contrast to Short Maker-Maker, where the input is a hypergraph
G = (V,E), a position, and an integer `, and the question is whether player 1 has a strategy
to be the first player claiming all the vertices of some hyperedge in ` moves.

I Theorem 5. Short Maker-Maker is AW[*]-complete.

For the remaining type of positional games, the Short Enforcer-Avoider problem has
as input a hypergraph G = (V,E), a position, and an integer `, and the question is whether
player 1 has a strategy to claim ` vertices that forces player 2 to complete a hyperedge.
Again, player 1 can only block some moves of player 2, and the winning condition for player
1 can be expressed in ∀6=-FO.

I Theorem 6. Short Enforcer-Avoider is co-W[1]-complete.

Our results suggest that a structured board may suggest that a positional game is FPT,
but otherwise, the complexity depends on how the winning condition for player 1 can be
expressed. If it only depends on what positions player 1 has reached, our results suggest that
the problem is W[1]-complete, but when the winning condition for player 1 also depends on
the position player 2 has reached, the game is probably AW[*]-complete.

4 Short k-Connect is FPT

Graph G represents an m× n board in the following sense. Every board cell is represented
by a vertex. Horizontal, vertical and diagonal neighbouring cells are connected via an edge.
Vertex sets V1 and V2 represent the vertices already occupied by Player 1 and Player 2. While
integer p, the number of stones to be placed during a move, is part of the input, we restrict
it to values below constant k as games with p ≥ k are trivial.

ICALP 2017

90:6 The Parameterized Complexity of Positional Games

Short k-Connect
Instance: A graph G = (V, E) representing an m×n board, occupied vertices V1, V2 ⊆ V ,

and integer p and `.
Parameter: `.

Problem: Decide whether Player 1 has a winning strategy with at most ` moves.

I Theorem 1. Short k-Connect is FPT.

Proof. We reduce Short k-Connect to first-order model checking MC(FO) on a bounded
degree graph. Using a result by Seese [21], it follows that Short k-Connect is FPT.
Let (G,V1, V2, p, `) be an instance of Short k-Connect, where G = (V,E). We con-
struct instance (A, ϕ) of MC(FO) as follows. Let EDGE be a binary relation symbol
and let V1 and V2 be unary relation symbols. Then A is the {EDGE ,V1 ,V2}-structure
(V,EDGEA,V1A,V2A) with EDGEA := E, V1A := V1, and V2A := V2. FO-formula ϕ is
defined as ϕ ≡ ∃x1

1∃x2
1 . . . ∃x

p
1∀y1

1 . . . ∀y
p
1∃x1

2 . . . ∃x
p
2∀y1

2 . . . ∃x
p
`∃u1∃u2 . . . ∃uk∀v1∀v2 . . . ∀vkψ,

ψ ≡
∨̀
i=0

[
legalP1 i(x1

1, . . . , x
p
1, y

1
1 , . . . , x

p
`) ∧

(
¬legalP2 i(x1

1, . . . , x
p
1, y

1
1 , . . . , x

p
`)∨

(
configP1 i(x1

1, . . . , x
p
` , u1, . . . , uk) ∧

k−2∧
j=1

aligned(uj , uj+1, uj+2)∧

(
¬configP2 i(y1

1 , . . . , y
p
` , v1, . . . , vk) ∨ ¬

k−2∧
j=1

aligned(vj , vj+1, vj+2)
)))]

,

path(u, v, w) ≡EDGE(u, v) ∧ EDGE(v, w),
hor_vert(u, v, w) ≡∃x∃y path(u, v, w) ∧ path(u, x, w) ∧ path(u, y, w) ∧ path(x, v, y)∧

∀z
[(
z 6= v ∧ z 6= x ∧ z 6= y

)
→ ¬path(u, z, w)

]
,

diag(u, v, w) ≡ path(u, v, w) ∧ ∀x
[
x 6= v =⇒ ¬path(u, x, w)

]
,

aligned(u, v, w) ≡ hor_vert(u, v, w) ∨ diag(u, v, w).

Variables xj
i represent the jth stone in Player 1’s ith move and variables yj

i represent the
jth stone in Player 2’s ith move. The sequences u1 . . . uk and v1 . . . vk represent possible
winning configurations for Player 1 and Player 2. The structure of ψ is the following. The
first disjunction ranging from i = 0 to i = ` represents the number of moves Player 1
needs to win the game. We then ensure that the x variables represent legal moves by
Player 1. Further, either variables y do not represent legal moves by Player 2, or Player 1
achieved a winning configuration. For the latter, we assure that variables u represent aligned
vertices occupied by Player 1. Finally, we check that Player 2 did not achieve a winning
configuration before, that is vertices v do not represent aligned vertices occupied by Player
2. Formula path(u, v, w) expresses that there is a path of length 2 between vertices u and
w via v (configP1 i and configP2 i ensure that the arguments are disjoint vertices). Formula
hor_vert(u, v, w) expresses that vertices u, v, and w are aligned horizontally or vertically in
this order. A case analysis shows that u, v and w are horizontally or vertically aligned if and
only if there are exactly three nodes at distance 1 of u and w, and that v is in the middle
of the other two. In case u, v and w are located on one of the border lines of the board,
there are exactly two nodes at distance 1. Formula diag(u, v, w) expresses that vertices u, v,
and w are diagonally aligned in this order. This is the case if there exists no other length

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:7

2 path between u and w. Formula aligned(u, v, w) expresses that vertices u, v, and w are
aligned (in that order). Formula legalP1 i (see [3]) ensures that variables xj

i represent legal
moves of Player 1, that is vertices not contained in V1 or V2 or previously played vertices.
Analogously, legalP2 i ensures that variables y

j
i represent legal moves of Player 2. Formula,

configP1 i (see [3]) expresses that variables u1, . . . , uk form a valid configuration of exactly k
vertices out of the set of V1 or vertices played by Player 1. Analogously, configP2 i states
that variables v1, . . . , vk form a valid configuration of exactly k vertices out of the set of
V2 or vertices played by Player 2. The size of ϕ is polynomial in `, k, and p. Since k is a
constant and p is bounded by k, we have an FO formula polynomial in our parameter `.
Graph G represents a grid with diagonals. Hence, G has maximum degree 8. It follows from
Seese [21] that Short Connect is FPT. J

5 MC(∀6=-FO) is W[1]-complete

The class ∀6=-FO contains all first-order formulas of the form Q1x1Q2x2Q3x3 . . . Qkxkϕ, with
Qi ∈ {∀,∃} and ϕ being a quantifier free first-order formula such that every ∀-quantified
variable xi only occurs in inequalities, that is in relations of the form xi 6= xj for some
variable xj . Furthermore, ϕ does not contain any other variables besides x1, . . . , xk.

I Theorem 3. MC(∀6=-FO) is W[1]-complete.

Proof. Hardness: Every Σ1 formula is contained in the class ∀6=-FO. Hence, W[1]-hardness
follows from W[1]-completeness of MC(Σ1).

Membership: By reduction to MC(Σ1). Let (A, ϕ) be an instance of MC(∀6=-FO). If ϕ
contains only existential quantifiers then (A, ϕ) is already an instance of MC(Σ1). Hence,
let ϕ = Q1x1Q2x2 . . . Qi−1xi−1∀xi∃xi+1∃xi+2 . . . ∃xkψ with Qj ∈ {∀,∃} for 1 ≤ j < i, ψ is
in negation normal form and |ϕ| = `. That is, xi is the rightmost of the universal quantified
variables. In order to reduce (A, ϕ) to an instance of MC(Σ1), we need a way to remove all
universal quantifications. We will show how to eliminate the universal quantification of xi.
This technique can then be used to iteratively eliminate all the universal quantifiers. Let
ϕ1(x1, . . . , xi−1) be the subformula ϕ1(x1, . . . , xi−1) = ∀xi∃xi+1 . . . ∃xkψ. We will show that
we can replace ϕ1(x1, . . . , xi−1) by

ϕ2(x1, . . . , xi−1) =∃yi∃yi+1 . . . ∃yk

(
ψ[yi/xi, yi+1/xi+1, . . . , yk/xk]∧ (1)

i−1∧
j=1
∃yj

i+1∃y
j
i+2 . . . ∃y

j
kψ[xj/xi, y

j
i+1/xi+1, y

j
i+2/xi+2, . . . , y

j
k/xk]∧ (2)

k∧
j=i+1

∃yj
i+1∃y

j
i+2 . . . ∃y

j
kψ[yj/xi, y

j
i+1/xi+1, y

j
i+2/xi+2, . . . , y

j
k/xk]

)
. (3)

This reduction is an FPT-reduction, since the size of formula ϕ2 is a function of the size of for-
mula ϕ1. Let c1, . . . , ci−1 be arbitrary but fixed elements of the universe A of A. We will show
that ϕ1(x1, . . . , xi−1) ≡ ϕ2(x1, . . . , xi−1) by proving (a) ϕ1(c1, . . . , ci−1)→ ϕ2(c1, . . . , ci−1)
and (b) ϕ2(c1, . . . , ci−1) → ϕ1(c1, . . . , ci−1). For (a) assume that ϕ1(c1, . . . , ci−1) is true.
This means, ϕ1[ci/xi] is true for all ci ∈ A, that is for all ci ∈ A there exists an assignment
to xi+1, . . . , xk such that ψ is true. Part (1) of ϕ2(c1, . . . , ci−1) asks for some ci ∈ A such
that there exists an assignment to xi+1, . . . , xk such that ψ is true. Part (2) asks for the
existence of an assignment to xi+1, . . . , xk such that ψ is true for each of the cases where
xi is one of the elements c1, . . . , ci−1. Part (3) asks for the existence of an assignment to

ICALP 2017

90:8 The Parameterized Complexity of Positional Games

xi+1, . . . , xk such that ψ is true for each of the cases where xi is one of the elements that are
assigned to xi+1, . . . , xk in the model of Part (1). All these are special cases of the universal
quantification over xi, hence ϕ2(c1, . . . , ci−1) is true.

For direction (b) assume towards a contradiction that ϕ1(c1, . . . , ci−1) is false and that
ϕ2(c1, . . . , ci−1) is true. Since ϕ1 is false, there exists ci ∈ A such that ϕ1[ci/xi] is false. We
perform a case distinction on the value ci. First let ci = cj for some j ∈ {1, . . . , i− 1}. Then
let ci+1, . . . , ck be the assignments to variables yj

i+1, . . . , y
j
k in the model of ϕ2. The jth

conjunct of Part (2) of ϕ2 states that ψ holds for xi = xj using the assignment ci+1, . . . , ck.
Hence, assigning ci+1, . . . , ck to variables xi+1, . . . , xk in ϕ1 is a model for ϕ1[ci/xi], which
contradicts our assumption. As the next case, let ci+1, . . . , ck be the assignment to variables
yi+1, . . . , yk in the model of ϕ2 and let ci = cj for some j ∈ {i+ 1, . . . , k}. Let c′i+1, . . . , c

′
k

be the assignments to variables yj
i+1, . . . , y

j
k in the model of ϕ2. The conjunct with index

j of Part (3) of ϕ2 states that ψ holds for xi = xj = cj using the assignment c′i+1, . . . , c
′
k.

Hence, assigning c′i+1, . . . , c
′
k to variables xi+1, . . . , xk in ϕ1 is a model for ϕ1[ci/xi], which

contradicts our assumption. For the last case, let ci be one of the remaining values. Let
`1, . . . , `m be all the literals in ψ that contain xi. All of them are inequalities of the form
xi 6= xj for j 6= i. Let c′i be the assignment to yi in the model of ϕ2. Let `′1, . . . , `′m be the
literals in ψ[yi/xi, yi+1/xi+1, . . . , yk/xk] in Part (1) of ϕ2 that correspond to `1, . . . , `m. We
have no knowledge about the truth value of these literals `′j with 1 ≤ j ≤ m, but all of
the literals `j in ψ evaluate to true when assigning ci+1, . . . , ck to the variables xi+1, . . . , xk.
Since ψ is in negation normal form and the literals `1, . . . , `m never occur in unnegated
form, that is as equalities, changing the truth value of these literal from false to true will
never result in changing the truth value of the whole formula from true to false. But since
c′i together with ci+1, . . . , ck is a model of Part (1) of ϕ2, it holds that for all values of ci

that we consider in this case, that ϕ1[ci/xi] is true, which contradicts our assumption. This
completes the case distinction and we have ϕ1(x1, . . . , xi−1) ≡ ϕ2(x1, . . . , x2). J

6 Short Generalized Hex is W[1]-complete

Short Generalized Hex
Instance: Graph G = (V, E), vertices s, t ∈ V , vertex sets V1, V2 ⊆ V with V1 ∩ V2 = ∅,

and integer `.
Parameter: `.

Problem: Decide whether Player 1 has a winning strategy with at most ` moves in the
generalized Hex game (G, s, t, V1, V2).

A generalized Hex game (G, s, t, V1, V2) is a positional game (V ′, E′), where the positions V ′
and the winning configurations E′ are defined as follows. Set V ′ contains all vertices of G,
that is V ′ = V . Set E′ contains a set of vertices {v1, . . . , vk} if and only if {v1, . . . , vk}∪{s, t}
form an s− t path in G. Additionally, vertices in V1 and V2 are already claimed by player 1
and player 2, respectively. Since the set of winning configurations of Short Generalized
Hex is only defined implicitly, the input size of Short Generalized Hex can be exponential
smaller than the number of winning configurations.

I Theorem 2. Short Generalized Hex is W[1]-complete.

Proof. Hardness is already known [4]. For membership, we reduce Short Generalized
Hex to MC(∀6=-FO). Let (G, s, t, V1, V2, `) be an instance of Short Generalized Hex,
where G = (V,E). Claimed vertices V1 and V2 can be preprocessed: (i) every v ∈ V1 and
its incident edges are removed from G and the neighbourhood of v is turned into a clique;

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:9

(ii) every v ∈ V2 and its incident edges are removed from G. Hence, w.l.o.g. we assume
that V1 = V2 = ∅. We construct an instance (A, ϕ) of MC(∀6=-FO) as follows. Let EDGE
be a binary relation symbol and let S and T be unary relation symbols. Then A is the
{EDGE , S, T}-structure (V,EDGEA, SA, TA) with EDGEA := E, SA := {s}, and TA := {t}.
The ∀6=-FO-formula ϕ is defined as ϕ = ∃s∃t∃x1∀y1∃x2∀y2 . . . ∀y`−1∃x`∃z1∃z2 . . . ∃z`ψ, with

ψ ≡ S(s) ∧ T (t) ∧
(

EDGE(s, t)∨
∨̀
i=1

i∨
j=1

(
EDGE(s, z1) ∧ EDGE(zj , t)∧

pathi,j(x1, . . . , xi, z1, . . . , zj) ∧ diff i(x1, y1, . . . , yi−1, xi)
))
,

pathi,j(x1, . . . , xi, z1, . . . , zj) ≡
j−1∧
h=1

EDGE(zh, zh+1) ∧
j∧

h=1

i∨
k=1

zh = xk,

diff i(x1, y1, . . . , xi−1, yi−1, xi) ≡
∧

1≤j<k≤i

xj 6= xk ∧
∧

1≤j<k≤i

yj 6= xk.

The intuition of ϕ is the following. The variables xi, yi, and zi represent the moves of
Player 1, the moves of Player 2, and the ordered (s, t)-path induced by Player 1’s moves,
respectively. The variables s and t represent the vertices of the same name. Formula ϕ
expresses that there is either a direct edge between s and t or a s-t path of length j was
played. The main disjunctions (

∨
) ensure that we consider wins that take up to ` moves, and

build s-t path of length up to `. Subformula pathi,j will be true if and only if the z variables
form a path using only values of the selected values for the x variables. Subformula diff i

ensures that all x variables are pairwise distinct and they are distinct from all y variables
with smaller index.

We have |ϕ| = O(`4), so this is indeed an FPT-reduction and W[1]-membership follows. J

7 Short Maker-Breaker is W[1]-complete

Short Maker-Breaker
Instance: Hypergraph G = (V, E), vertex sets V1, V2 ⊆ V with V1 ∩V2 = ∅, and integer `.

Parameter: `.
Problem: Decide whether Player 1 has a winning strategy with at most ` if vertices V1

and V2 are already claimed by Player 1 and Player 2, respectively.

I Theorem 4. Short Maker-Breaker is W[1]-complete.

Proof. For showing membership, we reduce Short Maker-Breaker to MC(∀6=-FO). Let
(G,V1, V2, `) be an instance of Short Maker-Breaker, where G = (V,E) is a hypergraph.
Claimed vertices V1 and V2 can be preprocessed: (i) every v ∈ V1 is removed from V

and every hyperedge e ∈ E; (ii) every v ∈ V2 is removed from V and every hyperedge
e ∈ E with v ∈ e is removed from E. Hence, w.l.o.g. we assume that V1 = V2 = ∅.
We construct an instance (A, ϕ) of MC(∀6=-FO) as follows. Let IN and SIZE be binary
relation symbols. Then A is the {IN ,SIZE}-structure (V ∪ E ∪ {1, . . . , |V |}, INA,SIZEA)
with INA := {(x, e) | x ∈ V, e ∈ E, x ∈ e} and SIZEA := {(e, i) | e ∈ E, |e| = i}.
Hence, the universe of A consists of the vertices of G, an element for each hyperedge, and
an element for some bounded number of integers. The ∀6=-FO-formula ϕ is defined as
ϕ ≡ ∃x1∀y1 . . . ∀y`−1∃x`∃e∃z1∃z2 . . . ∃z`ψ, with

ψ ≡
∨

1≤j≤i≤`

(
diff i(x1, y1, . . . , xi) ∧ SIZE(e, j) ∧

j∧
k=1

i∨
h=1

zk = xh ∧
∧

1≤k<h≤j

zk 6= zh ∧
j∧

k=1
IN (zk, e)

)
.

ICALP 2017

90:10 The Parameterized Complexity of Positional Games

The subformula diff i(x1, y1, . . . , xi) refers to the subformula with same name used in the
proof of Theorem 2. That is, it ensures that all x variables are pairwise distinct and that
they are distinct from all y variables with smaller index. The intuition of ϕ is the following.
The variables xi and yi represent the moves of Maker and the moves of Breaker, respectively.
The variables zi represent the vertices forming the winning configuration of Maker and e
represents the hyperedge of this winning configuration. The first disjunction ensures that
we consider wins that take up to ` moves. The second disjunction ensures that we consider
winning configurations that consist of up to i vertices. After checking that e has the correct
size (SIZE(e, j)), we encode that the values of the z variables are contained in the hyperedge
represented by e and that these variables are pairwise disjoint and selected among the moves
of Maker (the x variables).

We have |ϕ| = O(`4), so this is indeed an FPT-reduction and W[1]-membership follows.
For hardness, we reduce k-Multicolored Clique to Short Maker-Breaker. The

reduction is essentially the same as the reduction used for showing W[1]-hardness of Gener-
alized Hex [4]. The crucial observation is that the construction of Bonnet et al. [4] contains
only a polynomial number of possible s− t paths. Hence, we can encode every such s− t-path
as a unique hyperedge denoting a winning configuration in Short Maker-Breaker. J

8 Short Maker-Maker is AW[*]-complete

Short Maker-Maker
Instance: Hypergraph G = (V, E), vertex sets V1, V2 ⊆ V with V1 ∩V2 = ∅, and integer `.

Parameter: `.
Problem: Decide whether Player 1 has a winning strategy with at most ` if vertices V1

and V2 are already claimed by Player 1 and Player 2.

I Theorem 5. Short Maker-Maker is AW[*]-complete.

Proof. For membership, we reduce Short Maker-Maker to MC(FO). Let (G,V1, V2, `)
be an instance of Short Maker-Maker, where G = (V,E) is a hypergraph. We construct
an instance (A, ϕ) of MC(FO) as follows. Let V1 , V2 , and EDGE be unary relation
symbols. Let IN be a binary relation symbol. Then A is the {V1 ,V2 ,EDGE , IN}-structure
(V ∪ E,V1A,V2A,EDGEA, INA) with V1A := V1, V2A := V2, EDGEA := E, and INA :=
{(x, e) | x ∈ V, e ∈ E, x ∈ e}. Hence, the universe of A consists of the vertices and the
hyperedges of G. The FO-formula ϕ is defined as ϕ ≡ ∃x1∀y1 . . . ∀y`−1∃x`ψ, with

ψ ≡
∨̀
i=0

legalP1 i(x1, y1, . . . , x`) ∧
(
¬legalP2 i−1(x1, y1, . . . , x`)∨

(
winP1 i(x1, y1, . . . , x`) ∧ ¬winP2 i−1(x1, y1, . . . , x`)

))
.

winP1 i(x1, y1, . . . , x`) ≡ ∃e∀zEDGE(e) ∧
(
¬IN (z, e) ∨V1 (z) ∨

i∨
j=1

z = xj

)
,

winP2 i(x1, y1, . . . , x`) ≡ ∃e∀zEDGE(e) ∧
(
¬IN (z, e) ∨V2 (z) ∨

i∨
j=1

z = yj

)
.

Variable xj represent Player 1’s jth move and variable yj represent Player 2’s jth move.
The first disjunction represents the number of moves i that Player 1 needs to win the game.
Formula legalP1 i (see [3]) ensures that variables (xj)1≤j≤i represent legal moves of Player 1,
that is vertices not contained in V1 or V2 or previously played vertices. Analogously, legalP2 i

ensures that variables (yj)1≤j≤i represent legal moves of Player 2. Formula winP1 i ensures

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:11

that Player 1 has won within the i first moves, that is, it has completed a hyperedge with
V1 and variables up to xi. Analogously, winP2 i ensures that Player 2 has won within the i
first moves. We have |ϕ| = O(`3) and |A| = O(|G|2), so this is indeed an FPT-reduction and
AW[*]-membership follows.

For hardness, we reduce from the AW[*]-complete problem Short Generalized Geo-
graphy on bipartite graphs. The reduction is deferred to the long version [3]. J

9 Short Enforcer-Avoider is co-W[1]-complete

Short Enforcer-Avoider
Instance: Hypergraph G = (V, E), vertex sets V1, V2 ⊆ V with V1 ∩V2 = ∅, and integer `.

Parameter: `.
Problem: Decide whether Player 1 has a winning strategy with at most ` moves if vertices

V1 and V2 are already claimed by Player 1 and Player 2, respectively.

I Theorem 6. Short Enforcer-Avoider is co-W[1]-complete.

Proof. We show that the co-problem of Short Enforcer-Avoider is W[1]-complete. The
co-problem of Short Enforcer-Avoider is to decide whether for all strategies of Enforcer,
there exists a strategy of Avoider such that during the first ` moves, Avoider does not
claim a hyperedge. Again, vertices V1 and V2 are already claimed by Enforcer and Avoider,
respectively. We prove W[1]-hardness by a parameterized reduction from Independent Set
and W[1]-membership by reduction to MC(∀6=-FO).

In the W[1]-complete Independent Set problem [6], the input is a graph G = (V,E)
and an integer parameter k, and the question is whether G has an independent set of size k,
i.e., a set of k pairwise non-adjacent vertices. We construct a positional game G′ = (V ′, E′)
by replacing each vertex of G by a clique of size k + 1. The vertex set V ′ has vertices
v(1), . . . , v(k + 1) for each vertex v ∈ V , and hyperedges are E′ = {{v(i), v(j)} : v ∈
V and 1 ≤ i < j ≤ k + 1} ∪ {{u(i), v(j)} : uv ∈ E and 1 ≤ i, j ≤ k + 1}. We claim
that G has an independent set of size k if and only if Avoider does not claim a hyperedge
in the first k moves in the positional game G′ starting from the empty position, that is
V1 = V2 = ∅. For the forward direction, suppose I = {v1, . . . , vk} is an independent set of
G of size k. Then, a winning strategy for Avoider is to claim an unclaimed vertex from
{vi(1), . . . , vi(k + 1)} at round i ∈ {1, . . . , k}. We note that Enforcer cannot claim all the
vertices from {vi(1), . . . , vi(k + 1)}, since there are not enough moves to do so, and Avoider
does not complete a hyperedge with this strategy. On the other hand, suppose Avoider has
a winning strategy in k moves. For an arbitrary play by Enforcer, let {v1(i1), . . . , vk(ik)}
denote the vertices claimed by Player 1. Then, vi 6= vj and vivj /∈ E for any 1 ≤ i < j ≤ k,
since Player 1 would otherwise claim all the vertices of a hyperedge. Therefore, {v1, . . . , vk}
is an independent set of G of size k.

For membership, we reduce to MC(∀6=-FO). Let (G,V1, V2, `) be an instance of the
co-problem of Short Enforcer-Avoider where G = (V,E) is a hypergraph. First we do
some preprocessing. We remove all vertices from G that are contained in V2, that is the
vertices already claimed by Avoider. If this results in an empty hyperedge, the instance
is a no-instance. Otherwise, we remove all hyperedges that contain a vertex in V1, that
is the vertices already claimed by Enforcer, since Avoider will never lose via these edges
anymore. Finally, we remove all vertices from G that are contained in V1. Let G = (V,E)
now refer to the outcome of this preprocessing. By construction all vertices of G are
unoccupied and some vertices might not be contained in any hyperedge. If G contains

ICALP 2017

90:12 The Parameterized Complexity of Positional Games

less than 2` vertices we can solve the problem via brute force in FPT time. Hence, in
what follows we assume that there are at least 2` unoccupied vertices in G. We construct
an instance (A, ϕ) of MC(∀6=-FO) as follows. Let EDGEi be a i-ary relation symbol for
1 ≤ i ≤ `. Then A is the {EDGE1 , . . . ,EDGE`}-structure (V,EDGE1

A, . . . ,EDGE`
A) with

EDGEi
A := {(v1, . . . , vi) | e ∈ E, |e| = i, e = {v1, . . . , v`}}, that is EDGEi

A contains every
permutation of all hyperedges of cardinality i. The ∀6=-FO-formula ϕ is defined as

ϕ ≡ ∀y1∃x1∀y2∃x2 . . . ∃x` diff `(y1, x1, . . . , x`)∧
∧

1≤i≤`

∧
{z1,...,zi}⊆{x1,...,x`}

¬EDGEi(z1, . . . , zi),

where diff i(y1, x1, . . . , xi) ≡
∧

1≤j<k≤i xj 6= xk ∧
∧

1≤j≤k≤i yj 6= xk.

Subformula diff i(y1, x1, . . . , xi) ensures that all x variables are pairwise distinct and they
are distinct from all y variables with index less or equal theirs. The intuition of ϕ is the
following. The variables xi and yi represent the moves of Avoider and the moves of Enforcer,
respectively. Avoider wins if the x variables do not cover a whole hyperedge after ` moves.
We only have to check hyperedges of size up to `. Hence, for each cardinality i ≤ `, we check
for all subsets z1, . . . , z` of the x variables that they do not form a hyperedge. Formula ϕ
does not pose any restrictions on the y variables, that is we do not force Enforcer to pick
unoccupied vertices. We call a move by Enforcer that picks an already occupied vertex
cheating. To prove correctness, we need to show that whenever Enforcer has a winning
strategy σE that involves cheating, Enforcer also has a winning strategy σ′E without cheating.
We construct σ′E as follows. We follow strategy σE while σE does not perform a cheating
move. If the next move would be a cheating move, we play a random unoccupied vertex
instead and keep track of this vertex in a new set Vr. The next time we need to select a
move, we construct a board state s by removing all vertices in Vr from the picks of Enforcer
and query strategy σE on this state s. If the answer is an unoccupied vertex, we perform
this move normally. If instead the answer is a previously played vertex (which might be in
Vr), we play a random unoccupied vertex instead and add it to Vr. Since σE was a winning
strategy, so is σ′E . Hence, formula ϕ does not need to check if the y variables correspond
to unoccupied vertices. The construction can be done by an FPT algorithm since for each
hyperedge e ∈ E of cardinality i, we create i! ≤ `! entries in the EDGEi relation. We have
|ϕ| = O(``), so this is indeed an FPT reduction and W[1]-membership follows. J

10 Conclusion

We have seen that the parameterized complexity of short positional games depends crucially
on whether both players compete for achieving winning sets, or whether the game can be
seen as one player aiming to achieve a winning set and the other player merely blocking the
moves of the first player. Naturally, blocking moves correspond to inequalities in first-order
logic, and our ∀6=-FO fragment of first-order logic therefore captures that the universal player
can only block moves of the existential player. Our W[1]-completeness of MC(∀6=-FO) has
been used several times in this paper, but our transformation of ∀6=-FO formulas into Σ1
formulas may have other uses. As a concrete example related to positional games, Bonnet et
al. [4] established that Short Hex is FPT by expressing the problem as a FO formula, and
making use of Frick and Grohe’s meta-theorem [11], similarly as we did in Section 4. This
establishes that the problem is FPT but the running time is non-elementary in `. However,
we remark that their FO formula is actually a ∀6=-FO formula of size polynomial in `. Our
transformation gives an equivalent Σ1 formula whose length is single-exponential in `, and
the meta-theorem of Grohe and Wöhrle [12] then gives a running time for solving Short
Hex that is triply-exponential in `.

É. Bonnet, S. Gaspers, A. Lambilliotte, S. Rümmele, and A. Saffidine 90:13

Acknowledgments We thank anonymous reviewers for helpful comments and we thank
Yijia Chen and Paul Hunter for bringing Grohe and Wöhrle’s work [12] to our attention.

References
1 Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter intract-

ability II (extended abstract). In Proceedings of the 10th Annual Symposium on Theoretical
Aspects of Computer Science (STACS 93), volume 665 of Lecture Notes in Computer Sci-
ence, pages 374–385. Springer, 1993. doi:10.1007/3-540-56503-5_38.

2 Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tract-
ability and completeness IV: on completeness for W[P] and PSPACE analogues. Annals of
Pure and Applied Logic, 73(3):235–276, 1995. doi:10.1016/0168-0072(94)00034-Z.

3 Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele, and Abdallah
Saffidine. The parameterized complexity of positional games. CoRR, abs/1704.08536, 2017.
URL: https://arxiv.org/abs/1704.08536.

4 Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the complexity of connection
games. Theoretical Computer Science, 644:2–28, 2016. doi:10.1016/j.tcs.2016.06.033.

5 Jesper Makholm Byskov. Maker-Maker and Maker-Breaker games are PSPACE-complete.
Technical Report RS-04-14, BRICS, Department of Computer Science, Aarhus University,
2004.

6 Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag,
New York, 1999.

7 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

8 Shimon Even and Robert Endre Tarjan. A combinatorial problem which is complete in poly-
nomial space. Journal of the ACM, 23(4):710–719, 1976. doi:10.1145/321978.321989.

9 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 1998.
10 Fedor V. Fomin and Dániel Marx. FPT suspects and tough customers: Open problems of

downey and fellows. In Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel
Marx, editors, The Multivariate Algorithmic Revolution and Beyond – Essays Dedicated to
Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in
Computer Science, pages 457–468. Springer, 2012. doi:10.1007/978-3-642-30891-8_19.

11 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-
decomposable structures. Journal of the ACM, 48(6):1184–1206, 2001.

12 Martin Grohe and Stefan Wöhrle. An existential locality theorem. Annals of Pure and
Applied Logic, 129(1):131–148, 2004. doi:10.1016/j.apal.2004.01.005.

13 Alfred W. Hales and Robert I. Jewett. Regularity and positional games. Transactions of
the American Mathematical Society, 106:222–229, 1963.

14 Ming Yu Hsieh and Shi-Chun Tsai. On the fairness and complexity of generalized k-in-a-row
games. Theoretical Computer Science, 385(1):88–100, 2007. doi:10.1016/j.tcs.2007.05.
031.

15 Stefan Reisch. Gobang ist PSPACE-vollständig. Acta Informatica, 13(1):59–66, 1980.
16 Stefan Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15:167–191, 1981. doi:

10.1007/BF00288964.
17 Thomas J. Schaefer. On the complexity of some two-person perfect-information

games. Journal of Computer and System Sciences, 16(2):185–225, 1978. doi:10.1016/
0022-0000(78)90045-4.

18 Allan Scott. On the Parameterized Complexity of Finding Short Winning Strategies in
Combinatorial Games. PhD thesis, University of Victoria, 2009.

ICALP 2017

http://dx.doi.org/10.1007/3-540-56503-5_38
http://dx.doi.org/10.1016/0168-0072(94)00034-Z
https://arxiv.org/abs/1704.08536
http://dx.doi.org/10.1016/j.tcs.2016.06.033
http://dx.doi.org/10.1145/321978.321989
http://dx.doi.org/10.1007/978-3-642-30891-8_19
http://dx.doi.org/10.1016/j.apal.2004.01.005
http://dx.doi.org/10.1016/j.tcs.2007.05.031
http://dx.doi.org/10.1016/j.tcs.2007.05.031
http://dx.doi.org/10.1007/BF00288964
http://dx.doi.org/10.1007/BF00288964
http://dx.doi.org/10.1016/0022-0000(78)90045-4
http://dx.doi.org/10.1016/0022-0000(78)90045-4

90:14 The Parameterized Complexity of Positional Games

19 Allan Scott and Ulrike Stege. Parameterized chess. In Proceedings of the 3rd Interna-
tional Workshop on Parameterized and Exact Computation (IWPEC 2008), volume 5018
of Lecture Notes in Computer Science, pages 172–189. Springer, 2008. doi:10.1007/
978-3-540-79723-4_17.

20 Allan Scott and Ulrike Stege. Parameterized pursuit-evasion games. Theoretical Computer
Science, 411(43):3845–3858, 2010. doi:10.1016/j.tcs.2010.07.004.

21 Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996.

http://dx.doi.org/10.1007/978-3-540-79723-4_17
http://dx.doi.org/10.1007/978-3-540-79723-4_17
http://dx.doi.org/10.1016/j.tcs.2010.07.004

Directed Hamiltonicity and Out-Branchings via
Generalized Laplacians∗†

Andreas Björklund1, Petteri Kaski2, and Ioannis Koutis3

1 Department of Computer Science, Lund University, Lund, Sweden
andreas.bjorklund@yahoo.se

2 Department of Computer Science, Aalto University, Helsinki, Finland
petteri.kaski@aalto.fi

3 Department of Computer Science, University of Puerto Rico – Rio Piedras,
San Juan, Puerto Rico
ioannis.koutis@upr.edu

Abstract
We are motivated by a tantalizing open question in exact algorithms: can we detect whether an
n-vertex directed graph G has a Hamiltonian cycle in time significantly less than 2n?
We present new randomized algorithms that improve upon several previous works:
1. We show that for any constant 0 < λ < 1 and prime p we can count the Hamiltonian cycles

modulo pb(1−λ) n3p c in expected time less than cn for a constant c < 2 that depends only on
p and λ. Such an algorithm was previously known only for the case of counting modulo
two [Björklund and Husfeldt, FOCS 2013].

2. We show that we can detect a Hamiltonian cycle in O∗(3n−α(G)) time and polynomial
space, where α(G) is the size of the maximum independent set in G. In particular, this
yields an O∗(3n/2) time algorithm for bipartite directed graphs, which is faster than the
exponential-space algorithm in [Cygan et al., STOC 2013].

Our algorithms are based on the algebraic combinatorics of “incidence assignments” that we
can capture through evaluation of determinants of Laplacian-like matrices, inspired by the
Matrix–Tree Theorem for directed graphs. In addition to the novel algorithms for directed
Hamiltonicity, we use the Matrix–Tree Theorem to derive simple algebraic algorithms for de-
tecting out-branchings. Specifically, we give an O∗(2k)-time randomized algorithm for detect-
ing out-branchings with at least k internal vertices, improving upon the algorithms of [Zehavi,
ESA 2015] and [Björklund et al., ICALP 2015]. We also present an algebraic algorithm for the
directed k-Leaf problem, based on a non-standard monomial detection problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases counting, directed Hamiltonicity, graph Laplacian, independent set, k-
internal out-branching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.91

∗ A full version of the paper is available at http://arxiv.org/abs/1607.04002.
† The research leading to these results has received funding from the Swedish Research Council grants

VR 2012-4730 “Exact Exponential-Time Algorithms” and VR 2016-03855 “Algebraic Graph Algorithms”
(A.B.), the European Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement 338077 “Theory and Practice of Advanced Search and
Enumeration” (P.K.), and grant NSF CAREER CCF-1149048 (I.K.). Work done in part while the
authors were at Dagstuhl Seminar 17041 in January 2017 and at the Simons Institute for the Theory of
Computing in December 2015.

EA
T

C
S

© Andreas Björklund, Petteri Kaski, and Ioannis Koutis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 91; pp. 91:1–91:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.91
http://arxiv. org/abs/1607.04002
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

91:2 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

1 Introduction

The Hamiltonian cycle problem has played a prominent role in development of techniques
for the design of exact algorithms for hard problems. The early O∗(2n) algorithms based on
dynamic programming and inclusion-exclusion [1, 20, 19], remained un-challenged for several
decades. In 2010, Björklund [3], gave a randomized algorithm running in O(1.657n) time for
the case of undirected graphs. The algorithm taps into the power of algebraic combinatorics,
and in particular determinants that enumerate cycle covers.

Despite this progress in the undirected Hamiltonian cycle problem, a substantial improve-
ment in the more general directed version of the problem remains an open problem and a
key challenge in the area of exact algorithms. The currently best known general algorithm
runs in O∗(2n−Θ(

√
n/ logn)) time [4], and there are no known connections with the theory of

SETH-hardness [18] that would – at least partly – dash the hope for a faster algorithm.
A number of recent works have attempted to crack directed Hamiltonicity, revealing that

the problem is indeed easier in certain restricted settings. Cygan and Pilipczuk [13] showed
that the problem admits an O∗(2(1−εd)n) time algorithm for graphs with average degree
bounded by d, where εd is a constant with a doubly exponential dependence on d. Cygan
et al. [12] showed that the problem admits an O∗(1.888n) time randomized algorithm for
bipartite graphs and that the parity of directed Hamiltonian cycles can also be computed
within the same time bound. Björklund and Husfeldt [6] showed that the parity of Hamiltonian
cycles can be computed in O∗(1.619n) randomized time in general directed graphs. Finally,
Björklund et al. [5] showed that the problem can be solved in O∗((2−Θ(1))n) time when the
graph contains less than 1.038n Hamiltonian cycles, via a reduction to the parity problem.
In this paper we improve or generalize all of these works.

Our results. As one would expect, all recent “below-2n” algorithm designs for the Hamilton-
icity problem rely on algebraic combinatorics and involve formulas that enumerate Hamilto-
nian cycles. But somewhat surprisingly, none of these approaches employs the directed
version of the Matrix–Tree Theorem (see e.g. Gessel and Stanley [17, §11]), one of the most
striking and beautiful results in algebraic graph theory. The theorem enables the enumeration
of spanning out-branchings, that is, rooted spanning trees with all arcs oriented away from
the root, via a determinant polynomial. Our results in this paper derive from a detailed
combinatorial understanding and generalization of this classical setup.

The combinatorial protagonist of this paper is the following notion that enables a “two-way”
possibility to view each arc in a directed graph:

I Definition 1 (Incidence assignment). Let G be a directed graph with vertex set V and arc
set E. For a subset W ⊆ V we say that a mapping µ : W → E is an incidence assignment if
for all u ∈W it holds that µ(u) is incident with u.

In particular, looking at a single arc uv ∈ E, an incidence assignment µ can assign uv in
two1 possible ways: as an out-arc µ(u) = uv at u, or as an in-arc µ(v) = uv at v.

From an enumeration perspective the serendipity of this “two-way” possibility to assign
an arc becomes apparent when one considers how an incidence assignment µ can realize a

1 Strictly speaking we are here assuming that both u ∈ W and v ∈ W . To break symmetry in our
applications we do allow also situations where uv has only one possible assignment due to either u /∈ W
or v /∈ W .

A. Björklund, P. Kaski, and I. Koutis 91:3

directed cycle in its image µ(W). Indeed, let

u1u2, u2u3, . . . , u`−1u`, u`u1 ∈ E

be the arcs of a directed cycle C of length ` ≥ 2 in G with V (C) ⊆W . It is immediate that
there are now exactly two2 ways to realize C in the image µ(W). Namely, we can realize C
either (i) using only in-arcs with

µ(u1) = u`u1, µ(u2) = u1u2, µ(u3) = u2u3, . . . , µ(u`) = u`−1u` , (1)

or (ii) using only out-arcs with

µ(u1) = u1u2, µ(u2) = u2u3, µ(u3) = u3u4, . . . , µ(u`) = u`u1 . (2)

Incidence assignments thus enable two distinct ways to realize a directed cycle. Furthermore,
it is possible to switch between (1) and (2) so that only the images of u1, u2, . . . , u` under
µ are affected. The algebraization of this combinatorial observation is at the heart of the
directed Matrix–Tree Theorem (which we will review for convenience of exposition in Sect. 2)
and all of our results in this paper.

Our warmup result involves a generalization of the directed Hamiltonian path problem,
namely the k-Internal Out-Branching problem, where the goal is to detect whether a given
directed graph contains a spanning out-branching that has at least k internal vertices. This is
a well-studied problem on its own, with several successive improvements the latest of which is
an O∗(3.617k) algorithm by Zehavi [24] and an O∗(3.455k) algorithm by Björklund et al. [9]
for the undirected version of the problem.

Using a combination of the directed Matrix–Tree Theorem and a monomial-sieving idea
due to Floderus et al. [15], in Sect. 3 we show the following:

I Theorem 2 (Detecting a k-Internal Out-Branching). There exists a randomized algorithm
that solves the k-internal out-branching problem in time O∗(2k) and with negligible probability
of reporting a false negative.

In the full version of the paper [10] we give a further application for the k-Leaf problem, that
is, detecting a spanning out-branching with at least k leaves. We note that Gabizon et al. [16]
have recently given another application of the directed Matrix–Tree Theorem for the problem
of detecting out-branchings of bounded degree.

Proceeding to our two main results, in Sect. 4 we observe that the directed Matrix–Tree
Theorem leads to a formula for computing the number of Hamiltonian paths in arbitrary
characteristic by using a standard inclusion–exclusion approach, which leads to a formula
that involves the summation of 2n determinants. To obtain a below-2n design, we present a
way to randomize the underlying Laplacian matrix so that the number of Hamiltonian paths
does not change but in expectation most of the summands vanish modulo a prime power.
Furthermore, to efficiently list the non-vanishing terms, we use a variation of an algorithm of
Björklund et al. [8] that was used for a related problem, computing the permanent modulo a
prime power. This leads to our first main result:

I Theorem 3 (Counting directed Hamiltonian cycles modulo a prime power). For all 0 < λ < 1
there exists a randomized algorithm that, given an n-vertex directed graph and a prime p
as input, counts the number of Hamiltonian cycles modulo pb(1−λ)n/(3p)c in expected time
O∗
(
2n(1−λ2/(19p log2 p))

)
. The algorithm uses exponential space.

2 Again strictly speaking it will be serendipitous to break symmetry so that certain cycles will have only
one realization instead of two.

ICALP 2017

91:4 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

A corollary of Theorem 3 is that if G has at most dn Hamiltonian cycles, we can detect
one in time O(cnd), where d is any fixed constant and cd < 2 is a constant that only depends
on d. As a further corollary we obtain a randomized algorithm for counting Hamiltonian
cycles in graphs of bounded average (out-)degree d in O(2(1−εd)n) time. The constant εd has
a polynomial dependency in d. Previous algorithms had a constant εd with an exponential
dependency on d [7, 13]. (The proofs of these results are relegated to the full version of the
paper [10].)

Returning to undirected Hamiltonicity, a key to the algorithm in [3] was the observation
that determinants enumerate all non-trivial cycle covers an even number of times. This is
due to the fact that each undirected cycle can be traversed in both directions. By picking a
special vertex, one can break symmetry and force this to happen only for non-Hamiltonian
cycle covers, so that the corresponding monomials cancel in characteristic 2. In Sect. 5 we
present a “quasi-Laplacian” matrix whose determinant enables a similar approach for the
directed case via algebraic combinatorics of incidence assignments, and furthermore enables
one to accommodate a speedup assuming the existence of a good-sized independent set. We
specifically prove the following as our second main result:

I Theorem 4 (Detecting a directed Hamiltonian cycle). There exists a randomized algorithm
that solves the directed Hamiltonian cycle problem on a given directed graph G with a maximum
independent set of size α(G), in O∗(3n(G)−α(G)) time, polynomial space and with negligible
probability of reporting a false negative.

Theorem 4 improves and generalizes the exponential-space algorithm of Cygan et al. [12].

Terminology and conventions. All graphs in this paper are directed and without loops
and parallel arcs unless indicated otherwise. For an arc e starting from vertex u and ending
at vertex v we say that u is the tail of e and v is the head of e. The vertices u and v are
the ends of e. A directed graph is connected if the undirected graph obtained by removing
orientation from the arcs is connected. A subgraph of a graph is spanning if the subgraph
has the same set of vertices as the graph. A connected directed graph is an out-branching if
every vertex has in-degree 1 except for the root vertex that has in-degree 0. We say that a
vertex is internal to an out-branching if it has out-degree at least 1; otherwise the vertex is a
leaf of the out-branching. The (directed) Hamiltonian cycle problem asks, given a directed
graph G as input, whether G has a spanning directed cycle as a subgraph. The notation
O∗() suppresses a multiplicative factor polynomial in the input size. We say that an event
parameterized by n has negligible probability if the probability of the event tends to zero as
n grows without bound.

2 The symbolic Laplacian of a directed graph

This section develops the relevant preliminaries on directed graph Laplacians.

Permutations and the determinant. A bijection σ : U → U of a finite set U is called a
permutation of U . A permutation σ moves an element u ∈ U if σ(u) 6= u; otherwise σ fixes u.
The identity permutation fixes every element of U . A permutation σ of U is a cycle of length
k ≥ 2 if there exist distinct u1, u2, . . . , uk ∈ U with σ(u1) = u2, σ(u2) = u3 , . . . , σ(uk−1) =
uk, σ(uk) = u1 and σ fixes all other elements of U . Two cycles are disjoint if every point
moved by one is fixed by the other. The set of all permutations of U forms the symmetric
group Sym(U) with the composition of mappings as the product operation of the group.

A. Björklund, P. Kaski, and I. Koutis 91:5

Every nonidentity permutation factors into a unique product of pairwise disjoint cycles.
The sign of a permutation σ that factors into c disjoint cycles of lengths k1, k2, . . . , kc is
sgn(σ) = (−1)

∑c

j=1
(kj−1). The sign of the identity permutation is 1.

The determinant of a square matrix A with rows and columns indexed by U is the
multivariate polynomial

detA =
∑

σ∈Sym(U)

sgn(σ)
∏
u∈U

au,σ(u) .

The punctured Laplacian determinant via incidence assignments. Let G be a directed
graph with n vertices. Associate with each arc uv ∈ E = E(G) an indeterminate xuv. The
symbolic Laplacian L = L(G) of G is the n× n matrix with rows and columns indexed by
the vertices u, v ∈ V = V (G) and the (u, v)-entry defined3 by

`uv =

∑
w∈V :wu∈E xwu if u = v;

−xuv if uv ∈ E;
0 if u 6= v and uv /∈ E.

(3)

Observe that for each v ∈ V we have that column v of L sums to zero because the diagonal
entries cancel the negative off-diagonal entries. Furthermore, for each u ∈ V we have that
the monomials on row u of L correspond to the arcs incident to u. Indeed, each monomial
at the diagonal corresponds to an in-arc to u, and each monomial at an off-diagonal entry
corresponds to an out-arc from u. Thus, selecting one monomial from each row corresponds
to selecting an incidence assignment.

To break symmetry, select an r ∈ V . The symbolic Laplacian of G punctured at r
is obtained from L by deleting both row r and column r. We write Lr = Lr(G) for the
symbolic Laplacian of G punctured at r. Let us write Br = Br(G) for the set of all spanning
out-branchings of G with root r ∈ V . The following theorem is well-known (see e.g. Gessel
and Stanley [17, §11]) and is presented here for purposes of displaying a proof that presents
the cancellation argument using incidence assignments.

I Theorem 5 (Directed Matrix–Tree Theorem). detLr =
∑
H∈Br

∏
uv∈E(H) xuv.

Proof. Let us abbreviate Vr = V (G) \ {r} and study the determinant

detLr =
∑

σ∈Sym(Vr)

sgn(σ)
∏
u∈Vr

`u,σ(u) . (4)

In particular, let us fix an arbitrary permutation σ ∈ Sym(Vr) and study the monomials of
the polynomial

∏
u∈Vr `u,σ(u) with the assumption that this polynomial is nonzero. From

(3) it is immediate for each u ∈ Vr that `u,σ(u) expands either (i) to the diagonal sum∑
w∈V :wu∈E xwu, which happens precisely when σ fixes u with σ(u) = u, or (ii) to the

off-diagonal −xuv, which happens precisely when σ moves u with σ(u) = v.
Let us write M(σ) for the set of all incidence assignments µ : Vr → E with the properties

that (i) each u ∈ Vr fixed by σ is assigned to an in-arc µ(u) = wu ∈ E for some w ∈ V , and
(ii) each u ∈ Vr moved by σ is assigned to the unique out-arc µ(u) = uv ∈ E with σ(u) = v.

3 Recall that we assume that G is loopless so the entries with u = v are well-defined.

ICALP 2017

91:6 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

Let us write f = f(σ) for the number of elements in Vr fixed by σ. It is immediate by (i)
and (ii) that we have∏

u∈Vr

`u,σ(u) =
∑

µ∈M(σ)

(−1)n−1−f(σ)
∏
u∈Vr

xµ(u) . (5)

Next observe that from µ we can reconstruct σ = σ(µ) by (i) setting σ(u) = u for each u
assigned to an in-arc in µ, and (ii) setting σ(u) = v for each u assigned to an out-arc uv in
µ. Thus the union M =

⋃
σ∈Sym(Vr)M(σ) is disjoint. Let us call the elements of M proper

incidence assignments. By (4) and (5) we have

detLr =
∑
µ∈M

(−1)n−1−f(σ)sgn(σ(µ))
∏
u∈Vr

xµ(u) . (6)

We claim that an incidence assignment µ is proper if and only if for every u ∈ Vr there is
exactly one u′ ∈ Vr such that µ(u′) is an in-arc to u. For the “only if” direction, let σ be the
permutation underlying a proper µ, and observe that vertices moved by σ partition to cycles
so a σ never moves a vertex to a fixed vertex. Thus, we have u′ = u for the points fixed by σ,
and u′ = σ−1(u) is the vertex preceding u along a cycle of σ for points moved by σ. For the
“if” direction, define σ(u) = u if u = u′ and σ(u′) = u if u′ 6= u. In the latter case we have
µ(u′) = u′u, which means that u′′ 6= u′ and thus σ(u′′) = u′; by uniqueness of u′ eventually
a cycle must close so σ is a well-defined permutation underlying µ and thus µ is proper.

Let us write Hr for the set of all spanning subgraphs of G with the property that every
vertex in Vr has in-degree 1 and the root r has in-degree 0. From the previous claim it
follows that we can view the set µ(Vr) = {µ(u) : u ∈ Vr} for a proper µ as an element of Hr.
Furthermore, µ(Vr) is connected (and hence a spanning out-branching with root r) if and
only if µ(Vr) is acyclic.

Consider an arbitrary H ∈ Hr. If H has a cycle, let C be the least cycle in H according
to some fixed but arbitrary ordering of the vertices of G. (Observe that any two cycles in
H must be vertex-disjoint and cannot traverse r because r has in-degree 0.) Now consider
an arbitrary proper µ that realizes H by µ(Vr) = H. The cycle C is realized in µ by either
(1) (in which case σ(µ) fixes all vertices in C), or (2) (in which case σ(µ) traces the cycle
C). Furthermore, we may switch between realizations (1) and (2) so that the number of
fixed points in the underlying permutation changes by |V (C)| and the sign of the underlying
permutation gets multiplied by (−1)|V (C)|−1. It follows that the realizations (1) and (2)
have different signs and thus cancel each other in (6). If H does not have a cycle, that is,
H ∈ Br, it follows that there is a unique proper µ that realizes H. Indeed, first observe that
H can be realized only by assigning in-arcs since any assignment of an out-arc in µ implies a
cycle in H = µ(Vr), a contradiction. Second, the in-arcs are unique since each u ∈ Vr has
in-degree 1 in H. Finally, since µ assigns only in-arcs the underlying permutation σ(µ) is the
identity permutation which has sgn(σ(µ)) = 1 and (−1)n−1−f(σ(µ)) = 1. Thus, each acyclic
H contributes to (6) through a single µ ∈M with coefficient 1. The theorem follows. J

3 Corollary for k-internal out-branchings

This section proves Theorem 2. We rely on a substitution idea of Floderus et al. [15,
Theorem 1] to detect monomials with at least k distinct variables.

Let G be an n-vertex directed graph given as input together with a nonnegative integer
k. Without loss of generality we may assume that k ≤ n − 1. Iterate over all choices
for a root vertex r ∈ V . Introduce an indeterminate yu for each vertex u ∈ V and an

A. Björklund, P. Kaski, and I. Koutis 91:7

indeterminate zuv for each arc uv ∈ E. Introduce one further indeterminate t. Construct
the symbolic Laplacian L of G given by (3) and with the assignment xuv = (1 + tyu)zuv to
the indeterminate xuv for each uv ∈ E. Puncture L at r to obtain Lr. Using, for example,
Berkowitz’s determinant circuit design [2] for an arbitrary commutative ring with unity,
in time O∗(1) build an arithmetic circuit C of size O∗(1) for detLr. Viewing detLr as a
multivariate polynomial over the polynomial ring R[t, yu, zuv : u ∈ V, uv ∈ E] where R is an
abstract ring with unity, from Theorem 5 it follows that G has a spanning out-branching
rooted at r with at least k internal vertices if and only if the coefficient of tk in detLr (which
is a polynomial that is either identically zero or both (i) homogeneous of degree k in the
indeterminates yu and (ii) homogeneous of degree n − 1 in the indeterminates zuv) has a
monomial that is multilinear of degree k in the indeterminates yu. Indeed, observe that
the substitution xuv = (1 + tyu)zuv tracks in the degree of the indeterminate yu whether u
occurs as an internal vertex or not; the indeterminates zuv make sure that distinct spanning
out-branchings will not cancel each other.

To detect a multilinear monomial in C restricted to the coefficient of tk we can invoke [11,
Lemma 1] or [21, Lemma 2.8]. This results in a randomized algorithm that runs in time
O∗(2k) and has a negligible probability of reporting a false negative. This completes the
proof of Theorem 2. J

4 Modular counting of Hamiltonian cycles

This section proves Theorem 3. Fix an arbitrary constant 0 < λ < 1. Let 0 < β < 1/2 be
a constant whose precise value is fixed later. Let p be a prime and let G be an n-vertex
directed graph with vertex set V and arc set E given as input. Without loss of generality
(by splitting any vertex u into two vertices, s and t, with s receiving the out-arcs from u, and
t receiving the in-arcs to u) we may count the spanning paths starting from s and ending
at t instead of spanning cycles. Similarly, without loss of generality we may assume that
2 ≤ p < n. (Indeed, for p ≥ n the counting outcome from Theorem 3 is trivial.)

Sieving for Hamiltonian paths among out-branchings. Let s, t ∈ V be distinct vertices.
Let us write hp(G, s, t) for the set of spanning directed paths that start at s and end at t in
G. Recall that we write Vt = V \ {t} for the t-punctured version of the vertex set V . Let us
also write Vst = V \ {s, t}. For O ⊆ Vt, let LOs be the matrix obtained from the Laplacian
(3) by first puncturing at s and then substituting xuv = 0 for all arcs uv ∈ E with u ∈ Vt \O.
Since a path P ∈ hp(G, s, t) is precisely a spanning out-branching rooted at s such that every
vertex u ∈ Vt has out-degree 1, we have, by Theorem 5 and the principle of inclusion and
exclusion,∑

P∈hp(G,s,t)

∏
uv∈E(P)

xuv =
∑
O⊆Vt

(−1)|Vt\O| detLOs . (7)

In particular observe that (7) holds in any characteristic.

Cancellation modulo a power of p. With foresight, select k = b(1− λ)(1/2− β)n/pc. Our
objective is next to show that by carefully injecting entropy into the underlying Laplacian
we can, in expectation and working modulo pk, cancel all but an exponentially negligible
fraction of the summands on the right-hand side of (7). Furthermore, we can algorithmically
narrow down to the nonzero terms, leading to an exponential improvement to 2n.

Let us assign xuv = 1 for all uv ∈ E with u 6= t. Since no spanning path that ends at t may
contain an arc tu ∈ E for any u ∈ Vt, we may without loss of generality assume that G contains

ICALP 2017

91:8 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

all such arcs, and assign, independently and uniformly at random xtu ∈ {0, 1, . . . , p − 1}.
Thus, the summands detLOs for O ⊆ Vt are now integer-valued random variables and (7)
evaluates to |hp(G, s, t)| with probability 1.

Let us next study a fixed O ⊆ Vt. Let FO be the event that LOs has no more than k rows
where each entry is divisible by p. In particular, detLOs 6≡ 0 (mod pk) implies FO. To bound
the probability of FO from above, observe that LOs is identically zero at each row u ∈ Vst \O
except possibly at the diagonal entries. Furthermore, because of the random assignment to
the indeterminates xtu, each diagonal entry at these rows is divisible by p with probability
1/p. Let us take this intuition and turn it into a listing algorithm for (a superset of the) sets
O ⊆ Vt that satisfy FO.

Bipartitioning. For listing we will employ a meet-in-the-middle approach based on building
each set O ⊆ Vt from two parts using the following bipartitioning. Let V (1)

t ∪ V (2)
t = Vt be a

bipartition with |V (1)
t | = dn/3e and |V

(2)
t | = n− 1− dn/3e. Associate with each O1 ⊆ V (1)

t

a vector zO1 ∈ {0, 1, . . . , p− 1,∞}Vst with the entry at u ∈ Vst defined by

zO1
u =

{
∞ if u ∈ O1;(
xtu +

∑
w∈O1:wu∈E xwu

)
mod p otherwise.

(8)

Similarly, associate with each O2 ⊆ V (1)
t a vector zO2 ∈ {0, 1, . . . , p− 1,∞}Vst with the entry

at u ∈ Vst defined by

zO2
u =

{
∞ if u ∈ O2;(
−
∑
w∈O2:wu∈E xwu

)
mod p otherwise.

(9)

Suppose now that we have O1 ⊆ V
(1)
t and O2 ⊆ V

(2)
t with O = O1 ∪ O2. We claim that

FO holds only if the vectors zO1 and zO2 agree in at most k entries. Indeed, observe that
zO1
u = zO2

u holds only if both u ∈ Vst \O and the (u, u)-entry of LOs is divisible by p. That
is, zO1

u = zO2
u implies the entire row u of LOs consists only of elements divisible by p. Thus it

suffices to list all pairs (O1, O2) such that zO1 and zO2 have at most k agreements.

Balanced and unbalanced sets. To set up the listing procedure, let us now partition the
index domain Vst of our vectors into b = b3 log2 pc pairwise disjoint sets S1, S2, . . . , Sb such
that we have b(n− 2)/bc ≤ |Si| ≤ d(n− 2)/be.

Let us split the sets O ⊆ Vt into two types. Let us say that O is balanced if (1/2−β)n/b ≤
|(Vst \ O) ∩ Si| ≤ (1/2 + β)n/b holds for all i = 1, 2, . . . , b; otherwise O is unbalanced.
Recalling that

∑`
j=0

(
n
j

)
≤ 2nH(`/n) holds for all integers 1 ≤ ` ≤ n/2, where H(ρ) =

−ρ log2 ρ− (1− ρ) log2(1− ρ) is the binary entropy function, observe that there are in total
at most

2n+1−mini |Si|b

d(1/2−β)n/be∑
j=0

(bn/b+2c
j

)
≤ 2n−(n−2)/b+32(n/b+2)H(1/2−β)b

≤ 2n(1−(1−H(1/2−β))/b)+7b (10)

sets O that are unbalanced.

Precomputation and listing. Suppose that O1 ⊆ V (1)
t and O2 ⊆ V (1)

t are compatible in the
sense that zO1 and zO2 agree in at most k entries. For S ⊆ Vst and a vector z whose entries

A. Björklund, P. Kaski, and I. Koutis 91:9

are indexed by Vst, let us write zS for the restriction of z to S. If O1 and O2 are compatible,
then by an averaging argument there must exist an i = 1, 2, . . . , b such that zO1

Si
and zO2

Si

agree in at most k/b entries. In particular, this enables us to iterate over O2 and list all
compatible O1 by focusing only on each restriction to Si for i = 1, 2, . . . , b. Furthermore,
the search inside Si can be precomputed to look-up tables. Indeed, for each i = 1, 2, . . . , b
and each key g ∈ {0, 1, . . . , p− 1,∞}Si , let us build a complete list of all subsets O1 ⊆ V (1)

t

such that zO1
Si

and g agree in at most k/b entries. These b look-up tables can be built by
processing in total at most

b∑
i=1

2V
(1)
t (p+ 1)|Si| ≤ 2n/3+72(n/(b3 log2 pc)+2) log2(p+1) log2 p = O(20.87n)

pairs (O1, g). This takes time O∗(20.87n) in total.
The main listing procedure now considers each O2 ⊆ V

(2)
t in turn, and for each i =

1, 2, . . . , b consults the look-up table for direct access to all O1 such that zO1
Si

and zO2
Si

agree
in at most k/b entries. In particular this will list all compatible pairs (O1, O2) and hence all
sets O = O1 ∪O2 such that FO holds.

Expected running time. Let us now analyze the expected running time of the algorithm.
We start by deriving an upper bound for the expected number of pairs (O1, O2) considered by
the main listing procedure. First, observe that the total number of pairs (O1, O2) considered
by the procedure with O = O1 ∪O2 unbalanced is bounded from above by our upper bound
(10) for the total number of unbalanced O. Indeed, O1 = O ∩ V (1)

t and O2 = O ∩ V (2)
t are

uniquely determined by O.
Next, for a pair (O1, O2) with balanced O = O1 ∪ O2 and i = 1, 2, . . . , b, let GO1,O2,i

be the event that zO1
Si

and zO2
Si

agree in at most k/b entries. We seek an upper bound for
the probability of GO1,O2,i to obtain an upper bound for the expected number of pairs with
balanced O = O1 ∪O2 considered by the main listing procedure. Let AO1,O2,i be the number
of entries in which zO1

Si
and zO2

Si
agree. We observe that AO1,O2,i is binomially distributed with

expectation |(Vt \O) ∩ Si|/p. Since O is balanced, we have (1/2− β)n/b ≤ |(Vt \O) ∩ Si| ≤
(1/2 + β)n/b. We also recall that k = b(1− λ)(1/2− β)n/pc. A standard Chernoff bound
now gives

Pr(GO1,O2,i) ≤ Pr
(
AO1,O2,i ≤ k/b

)
≤ Pr

(
AO1,O2,i ≤ (1− λ)|(Vt \O) ∩ Si|/p

)
≤ exp

(
−λ2|(Vt \O) ∩ Si|/(2p)

)
≤ exp

(
−λ2(1/2− β)n/(2pb)

)
.

Recalling that b = b3 log2 pc, the main listing procedure thus considers in expectation at most
2n exp

(
−λ2(1/2−β)n/(2p(3 log2 p)

)
pairs (O1, O2) with O = O1∪O2 balanced. Recalling our

upper bound for the total number of unbalanced sets (10), we thus have that the main listing
procedure runs in O∗

(
2n exp

(
−λ2(1/2 − β)n/(2p(3 log2 p))

)
+ 2n(1−(1−H(1/2−β))/(3 log2 p))

)
expected time. Recalling that precomputation runs in O∗(20.87n) time, we thus have for
β = 1/6 that the entire algorithm runs in O∗(2n(1−λ2/(19p log2 p))) expected time and computes
|hp(G, s, t)| modulo pb(1−λ)n/(3p)c. This completes the proof of Theorem 3. J

5 Directed Hamiltonicity via quasi-Laplacian determinants

This section proves Theorem 4. Let G be a directed n-vertex graph given as input.

ICALP 2017

91:10 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

Finding a maximum independent set. Let B ∪ Y = V (G) be a partition of the vertex set
into two disjoint sets B (“blue”) and Y (“yellow”) such that no arc has both of its ends in Y .
That is, Y is an independent set.

We can find an Y of the maximum possible size as follows. First, in time polynomial
in n compute the maximum-size matching in the undirected graph obtained from G by
disregarding the orientation of the arcs. This maximum-size matching must consist of at
least bn/2c edges or G does not admit a Hamiltonian cycle. (Indeed, from a Hamiltonian
cycle we can obtain a matching with bn/2c edges by taking every other arc in the cycle.)
Since for each matching edge it holds that both ends of the edge cannot be in an independent
set, we can in time O∗(3n/2) find a maximum-size independent set Y of G. Furthermore,
α(G) = |Y | ≤ bn/2c+ 1, so we are within our budget of O∗(3n(G)−α(G)) in terms of running
time. In fact, |Y | ≤ bn/2c or otherwise G trivially does not admit a Hamiltonian cycle.

The symbolic quasi-Laplacian. We will first define the quasi-Laplacian and then give
intuition for its design. Let us work over a field of characteristic 2. For each y ∈ Y introduce
a copy yin and let Yin be the set of all such copies. Similarly, for each y ∈ Y introduce a
copy yout and let Yout be the set of all such copies. We assume that Yin and Yout are disjoint.
For each j ∈ Yin ∪ Yout let us write j ∈ Y for the underlying element of Y of which j is a
copy. Let B∗ be a set of n− 2|Y | elements that is disjoint from both Yin and Yout. For each
uv ∈ E and each j ∈ B∗ ∪ Yin ∪ Yout, introduce an indeterminate x(j)

uv .
Select an arbitrary vertex s ∈ B for purposes of breaking symmetry and let I,O ⊆ B.

The quasi-Laplacian QI,O,s = QI,O,s(G) of G with skew at s be the n×n matrix whose rows
are indexed by u ∈ B ∪ Y and whose columns are indexed by j ∈ B∗ ∪ Yin ∪ Yout such that
the (u, j)-entry is defined by

qI,O,suj =

∑
w∈O:wu∈E,u∈I x

(j)
wu

+
∑
w∈I:uw∈E,u∈O\{s} x

(j)
uw (a) if u ∈ B and j ∈ B∗;

x
(j)
uj (b) if u ∈ O \ {s} and j ∈ Yin with uj ∈ E;
x

(j)
ju (c) if u ∈ I and j ∈ Yout with ju ∈ E;∑
w∈O:wu∈E x

(j)
wu (d) if u ∈ Y and j ∈ Yin with u = j;∑

w∈I:uw∈E x
(j)
uw (e) if u ∈ Y and j ∈ Yout with u = j;

0 otherwise.

(11)

Let us next give some intuition for (11) before proceeding with the proof.
Analogously to the Laplacian (3), the quasi-Laplacian (11) has been designed so that the

monomials of each row u ∈ B ∪ Y of QI,O,s control the assignment of either an in-arc or an
out-arc to u in an incidence assignment, and the skew at s is used to break symmetry so that
s is always assigned an in-arc to s. In particular, without the skew at row s and with I = O,
each column of QI,O,s would sum to zero, in analogy with the (non-punctured) Laplacian.

Let us now give intuition for the columns j ∈ Yin and j ∈ Yout. First, observe by (b)
and (d) in (11) that selecting a monomial from column j ∈ Yin corresponds to making sure
that the in-degree of j is 1. Such a selection may be either a “quasi-diagonal” assignment of
the in-arc wj to u = j ∈ Y via (d) for some w ∈ B; or an “off-diagonal” assignment of the
out-arc uj to u ∈ B via (b). Second, observe by (c) and (e) in (11) that selecting a monomial
from column j ∈ Yout corresponds to making sure that the out-degree of j is 1. Thus, the
columns j ∈ Yin ∪ Yout enable us to make sure that an incidence assigment has both in-degree
1 and out-degree 1 at each u ∈ Y without the use of sieving. This gives us the speed-up from
O∗(3n) to O∗(3n−|Y |) running time. Observe also that the structure for the quasi-Laplacian

A. Björklund, P. Kaski, and I. Koutis 91:11

QI,O,s is enabled precisely because Y is an independent set and thus no arc contributes to
both in-degree and out-degree in Y .

The quasi-Laplacian determinant sieve. Recalling that we are working over a field of
characteristic 2, let us study the sum∑

I,O⊆B
I∪O=B
s∈I

detQI,O,s =
∑
I⊆B

∑
O⊆B

detQI,O,s =
∑

σ:B∪Y→B∗∪Yin∪Yout
σ bijective

∑
I⊆B

∑
O⊆B

∏
u∈B∪Y

qI,O,su,σ(u) . (12)

Observe that the first equality in (12) holds because QI,O,s has by (11) an identically zero
row unless I ∪O = B and s ∈ I; the second equality holds by definition of the determinant
in characteristic 2 and changing the order of summation. From (11) and the right-hand side
of (12) it is immediate that (12) is either identically zero or a homogeneous polynomial of
degree n in the n|E| indeterminates x(j)

uv for j ∈ B∗ ∪Yin ∪Yout and uv ∈ E. 4 We claim that
(12) is not identically zero if and only if G admits at least one spanning cycle. Furthermore,
each spanning cycle in G defines precisely |B∗|! distinct monomials in (12).

To establish the claim, fix a bijection σ : B ∪ Y → B∗ ∪ Yin ∪ Yout. Let us write M(σ) for
the set of all incidence assignments µ : B ∪ Y → E that are proper in the sense that all of
the following six requirements hold (cf. (11)):

(s): µ(s) is an in-arc to s;
(a): for all u ∈ B with σ(u) ∈ B∗ it holds that µ(u) has both of its vertices in B;
(b): for all u ∈ B with σ(u) ∈ Yin it holds that µ(u) is an in-arc to σ(u);
(c): for all u ∈ B with σ(u) ∈ Yout it holds that µ(u) is an out-arc from σ(u);
(d): for all u ∈ Y with σ(u) ∈ Yin it holds that µ(u) is an in-arc to u and u = σ(u); and
(e): for all u ∈ Y with σ(u) ∈ Yout it holds that µ(u) is an out-arc from u and u = σ(u).

Observe that each µ ∈M(σ) defines a collection of n arcs µ(B ∪Y) = {µ(u) : u ∈ B ∪Y }.
Let us write Zµin (respectively, Zµout) for the set of vertices in B ∪ Y with zero in-degree
(out-degree) with respect to the arcs in µ(B ∪ Y). Since σ is a bijection and thus has a
preimage for each j ∈ Yin ∪ Yout, from (b,c,d,e) above it follows that Zµin ⊆ B and Zµout ⊆ B.
Furthermore, from (a,b,c,d,e) it follows that for the arcs in µ(B∪Y) the sum of the in-degrees
(and the sum of the out-degrees) of the vertices in B is |B| = |B∗|+ |Y |. Thus, we have that
Zµin and Zµout are both empty if and only if for the arcs µ(B ∪ Y) both the in-degree and the
out-degree of every vertex u ∈ B ∪ Y is 1. (Note that the claim is immediate for u ∈ Y by
(b,c,d,e) and bijectivity of σ.)

Let us now study the right-hand side of (12) for a fixed σ. Using (a,b,c,d,e) and (11) to
rearrange in terms of incidence assignments, we have∑

I⊆V

∑
O⊆V

∏
u∈B∪Y

qI,O,su,σ(u) =
∑

µ∈M(σ)

∏
u∈B∪Y

x
(σ(u))
µ(u)

∑
I⊆Zµin

∑
O⊆Zµout

1 . (13)

Since we are working in characteristic 2, all other µ ∈M(σ) except those for which µ(B ∪ Y)
is a cycle cover will cancel in the right-hand side of (13).

Take the sum of (13) over all bijections σ. Consider an arbitrary cycle cover of B∪Y . Let
C be a cycle in this cycle cover. Assuming that C does not contain s, we can realize C in an
incidence assignment µ : B ∪ Y → E either using (1) or (2). If C contains s and µ is proper,

4 Our algorithm for deciding Hamiltonicity will naturally not work with a symbolic representation of (12)
but rather in a homomorphic image under a random evaluation homomorphism.

ICALP 2017

91:12 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

only the realization (1) is possible by (s). To see that realization with a proper µ ∈M(σ) for
some σ is possible, consider an arbitrary u ∈ B ∪ Y and observe that each image µ(u) by
(b,c,d,e) uniquely determines the image σ(u) ∈ Yin ∪ Yout when µ(u) has one vertex in Y ;
when µ(u) has both vertices in B, an unused σ(u) ∈ B∗ may be chosen arbitrarily so that
µ ∈ M(σ). It follows that any cycle cover with c cycles is realized as exacly |B∗|! distinct
monomials

∏
u∈B∪Y x

(σ(u))
µ(u) in (12), each with coefficient 2c−1. This coefficient is nonzero if

and only if c = 1.

Completing the algorithm. To detect whether the given n-vertex directed graph G admits
a Hamiltonian cycle, first decompose the vertex set into disjoint V = B ∪ Y with Y an
independent set of size |Y | = α(G) using the algorithm described earlier. Next, in time O∗(1)
construct an irreducible polynomial of degree 2dlog2 ne over F2 (see e.g. von zur Gathen and
Gerhard [23, §14.9]) to enable arithmetic in the finite field of order q = 22dlog2 ne ≥ n2 in
time O∗(1) for each arithmetic operation. Next, assign an independent uniform random
value from Fq to each indeterminate x(j)

uv with j ∈ B∗ ∪ Yin ∪ Yout and uv ∈ E. Finally, using
the assigned values for the indeterminates, compute the left-hand side of (12) using, for
example, Gaussian elimination to compute each determinant detQI,O,s in O∗(1) operations
in Fq. Let us write r ∈ Fq for the result of this computation. In particular, we can compute
r from a given G in total O∗(3|B|) = O∗(3n(G)−α(G)) operations in Fq, and consequently in
total O∗(3n(G)−α(G)) time. If (12) is identically zero, then clearly r = 0 with probability 1.
If (12) is not identically zero (and hence a homogeneous polynomial of degree d = n in the
indeterminates) then by the DeMillo–Lipton–Schwartz–Zippel lemma [14, 22, 25] we have
r 6= 0 with probability at least 1− d/q ≥ 1− n/n2 ≥ 1− 1/n = 1− o(1). Thus we can decide
whether G is Hamiltonian based on whether r 6= 0. In particular this gives probability o(1)
of reporting a false negative. This completes the proof of Theorem 4. J

References

1 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.
ACM, 9(1):61–63, January 1962. doi:10.1145/321105.321111.

2 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18:147–150, 1984. doi:10.1016/
0020-0190(84)90018-8.

3 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM Journal on
Computing, 43(1):280–299, 2014. doi:10.1137/110839229.

4 Andreas Björklund. Below All Subsets for Some Permutational Counting Problems . In
Rasmus Pagh, editor, 15th Scandinavian Symposium and Workshops on Algorithm The-
ory (SWAT 2016), volume 53 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 17:1–17:11, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. doi:10.4230/LIPIcs.SWAT.2016.17.

5 Andreas Björklund, Holger Dell, and Thore Husfeldt. The parity of set systems under
random restrictions with applications to exponential time problems. In Automata, Lan-
guages, and Programming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 231–242, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg. doi:10.1007/978-3-662-47672-7_19.

6 Andreas Björklund and Thore Husfeldt. The parity of directed hamiltonian cycles. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, pages 724–735, Oct
2013. doi:10.1109/FOCS.2013.83.

http://dx.doi.org/10.1145/321105.321111
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1137/110839229
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.17
http://dx.doi.org/10.1007/978-3-662-47672-7_19
http://dx.doi.org/10.1109/FOCS.2013.83

A. Björklund, P. Kaski, and I. Koutis 91:13

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling
salesman problem in bounded degree graphs. ACM Trans. Algorithms, 8(2):18:1–18:13,
April 2012. doi:10.1145/2151171.2151181.

8 Andreas Björklund, Thore Husfeldt, and Isak Lyckberg. Computing the permanent modulo
a prime power. Unpublished manuscript, 2015.

9 Andreas Björklund, Vikram Kamat, Lukasz Kowalik, and Meirav Zehavi. Spotting
trees with few leaves. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi,
and Bettina Speckmann, editors, Automata, Languages, and Programming – 42nd In-
ternational Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part
I, volume 9134 of Lecture Notes in Computer Science, pages 243–255. Springer, 2015.
doi:10.1007/978-3-662-47672-7_20.

10 Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed Hamiltonicity and Out-
Branchings via Generalized Laplacians. CoRR, abs/1607.04002, 2017. URL: http://arxiv.
org/abs/1607.04002.

11 Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Constrained multilinear detec-
tion and generalized graph motifs. Algorithmica, 74(2):947–967, 2016. doi:10.1007/
s00453-015-9981-1.

12 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing, STOC’13, pages 301–310, New York, NY, USA, 2013. ACM. doi:10.1145/
2488608.2488646.

13 Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of
bounded average degree. Information and Computation, 243:75–85, 2015. 40th Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2013). doi:
10.1016/j.ic.2014.12.007.

14 R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7:193–195, 1978.

15 Peter Floderus, Andrzej Lingas, Mia Persson, and Dzmitry Sledneu. Detecting monomials
with k distinct variables. Information Processing Letters, 115(2):82–86, 2015. doi:10.
1016/j.ipl.2014.07.003.

16 Ariel Gabizon, Daniel Lokshtanov, and Michał Pilipczuk. Fast algorithms for parameterized
problems with relaxed disjointness constraints. In Algorithms – ESA 2015: 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 545–556,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg. doi:10.1007/978-3-662-48350-3_
46.

17 Ira M. Gessel and Richard P. Stanley. Algebraic enumeration. In R. L. Graham,
M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, volume II, pages 1021–
1061. North-Holland, Amsterdam, 1995.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

19 Richard M. Karp. Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters, 1(2):49–51, 1982. doi:10.1016/0167-6377(82)90044-X.

20 Samuel Kohn, Allan Gottlieb, and Meryle Kohn. A generating function approach to the
traveling salesman problem. In Proceedings of the Annual Conference (ACM’77), Associ-
ation for Computing Machinery, pages 294–300, 1977.

21 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for para-
meterized problems. ACM Transactions on Algorithms, 12:Art. 31, 18, 2016. doi:
10.1145/2885499.

22 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27:701–717, 1980.

ICALP 2017

http://dx.doi.org/10.1145/2151171.2151181
http://dx.doi.org/10.1007/978-3-662-47672-7_20
http://arxiv.org/abs/1607.04002
http://arxiv.org/abs/1607.04002
http://dx.doi.org/10.1007/s00453-015-9981-1
http://dx.doi.org/10.1007/s00453-015-9981-1
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1016/j.ic.2014.12.007
http://dx.doi.org/10.1016/j.ic.2014.12.007
http://dx.doi.org/10.1016/j.ipl.2014.07.003
http://dx.doi.org/10.1016/j.ipl.2014.07.003
http://dx.doi.org/10.1007/978-3-662-48350-3_46
http://dx.doi.org/10.1007/978-3-662-48350-3_46
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1016/0167-6377(82)90044-X
http://dx.doi.org/10.1145/2885499
http://dx.doi.org/10.1145/2885499

91:14 Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

23 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, Cambridge, 3rd edition, 2013.

24 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms ESA 2015: 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037–1049. Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-48350-3_86.

25 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. International
Symposium on Symbolic and Algebraic Computati on, volume 72 of Lecture Notes in Com-
puter Science, pages 216–226, Berlin, 1979. Springer.

http://dx.doi.org/10.1007/978-3-662-48350-3_86

Improved Hardness for Cut, Interdiction, and
Firefighter Problems∗†

Euiwoong Lee

Carnegie Mellon University, Pittsburgh, PA, USA
euiwoonl@cs.cmu.edu

Abstract
We study variants of the classic s-t cut problem and prove the following improved hardness results
assuming the Unique Games Conjecture (UGC).

For Length-Bounded Cut and Shortest Path Interdiction, we show that both problems are
hard to approximate within any constant factor, even if we allow bicriteria approximation. If
we want to cut vertices or the graph is directed, our hardness ratio for Length-Bounded Cut
matches the best approximation ratio up to a constant. Previously, the best hardness ratio
was 1.1377 for Length-Bounded Cut [4] and 2 for Shortest Path Interdiction [24].
For any constant k ≥ 2 and ε > 0, we show that Directed Multicut with k source-sink pairs
is hard to approximate within a factor k − ε. This matches the trivial k-approximation
algorithm. By a simple reduction, our result for k = 2 implies that Directed Multiway Cut
with two terminals (also known as s-t Bicut) is hard to approximate within a factor 2 − ε,
matching the trivial 2-approximation algorithm.
Assuming a variant of the UGC (implied by another variant of Bansal and Khot [6]), we
prove that it is hard to approximate Resource Minimization Fire Containment within any
constant factor. Previously, the best hardness ratio was 2 [28]. For directed layered graphs
with b layers, our hardness ratio Ω(log b) matches the best approximation algorithm [3, 9].

Our results are based on a general method of converting an integrality gap instance to a
length-control dictatorship test for variants of the s-t cut problem, which may be useful for other
problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases length bounded cut, shortest path interdiction, multicut, firefighter,
unique games conjecture

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.92

1 Introduction

One of the most important implications of the Unique Games Conjecture (UGC, [25]) is the
results of Khot et al. [26] and Raghavendra [40], which say that for any maximum constraint
satisfaction problem (Max-CSP), an integrality gap instance of the standard semidefinite
programming (SDP) relaxation can be converted to the NP-hardness result with the same
gap. These results initiated the study of beautiful connections between power of convex
relaxations and hardness of approximation, from which surprising results for both subjects
have been discovered.

∗ The full version of this paper is available as [30], https://arxiv.org/abs/1607.05133.
† Supported by the Samsung Scholarship, the Simons Award for Graduate Students in TCS, and Venkat

Guruswami’s NSF CCF-1115525.

EA
T

C
S

© Euiwoong Lee;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 92; pp. 92:1–92:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.92
https://arxiv.org/abs/1607.05133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92:2 Improved Hardness for Cut, Interdiction, and Firefighter Problems

While their results hold for problems in Max-CSPs, the framework of converting an
integrality gap instance to hardness has been successfully applied to covering and graph cut
problems. For graph cut problems, Manokaran et al. [34] showed that for Undirected Multiway
Cut and its generalizations, an integrality gap of the standard linear programming (LP)
relaxation implies the hardness result assuming the UGC. Their result is further generalized
by Ene et al. [16] by formulating them as Min-CSPs. In addition, Kumar et al. [29] studied
Strict CSPs and showed the same phenomenon for the standard LP relaxation.

One of the limitations of the previous CSP-based transformations from LP gap instances
to hard instances is based on the fact that they do not usually preserve the desired structure
of the constraint hypergraph.1 For example, consider the Length-Bounded Edge Cut problem
where the input consists of a graph G = (V,E), two vertices s, t ∈ V , and a constant l ∈ N,
and the goal is to remove the fewest edges to ensure there is no path from s to t of length
less than l. This problem can be viewed as a special case of Hypergraph Vertex Cover (HVC)
by viewing each edge as a vertex of a hypergraph and creating a hyperedge for every s-t path
of length less than l. While HVC is in turn a Strict CSP, its integrality gap instance cannot
be converted to hardness using Kumar et al. [29] as a black-box, since the set of hyperedges
created in the resulting hard instance is not guaranteed to correspond to the set of short s-t
paths of some graph.

For Undirected Multiway Cut, Manokaran et al. [34] bypassed this difficulty by using
2-ary constraints so that the resulting constraint hypergraph becomes a graph again. For
Undirected Node-weighted Multiway Cut, Ene et al. [16] used the equivalence to Hypergraph
Multiway Cut [38] so that the resulting hypergraph does not need to satisfy additional
structure. These problems are then formulated as a Min-CSP by using many labels which
are supposed to represent different connected components. However, these Min-CSP based
techniques often require nontrivial problem-specific ideas and do not seem to be easily
generalized to many other cut problems.

We study variants of the classical s-t cut problem in both directed and undirected graphs
that have been actively studied. We prove the optimal hardness or the first super-constant
hardness for them. See Section 1.1 for the definitions of the problems and our results. All
our results are based on the general framework of converting an integrality gap instance
to a length-control dictatorship test. The structure of our length-control dictatorship tests
allows us to naturally convert an integrality gap instance for the basic LP for various cut
problems to hardness based on the UGC. Section 1.2 provides more detailed intuition of
this framework. We believe that our framework is general and will be useful to prove tight
inapproximability of other cut problems.

1.1 Problems and Results
Length-Bounded Cut and Shortest Path Interdiction. The Length-Bounded Cut problem
is a natural variant of s-t cut, where given a graph (directed or undirected), s, t ∈ V , and an
integer l, we only want to cut s-t paths of length strictly less than l.2 Its practical motivation
is based on the fact that in most communication / transportation networks, short paths are
preferred to be used to long paths [32].

Lovász et al. [31] gave an exact algorithm for Length-Bounded Vertex Cut (l ≤ 5) in
undirected graphs. Mahjoub and McCormick [32] proved that Length-Bounded Edge Cut

1 One of notable exceptions we are aware is the result of Guruswami et al. [21], using Kumar et al. [29] to
show that k-Uniform k-Partite Hypergraph Vertex Cover is hard to approximate within a factor k

2 − ε
for any ε > 0.

2 It is more conventional to cut s-t paths of length at most l. We use this slightly nonconventional way to
be more consistent with Shortest Path Interdiction.

Euiwoong Lee 92:3

admits an exact polynomial time algorithm for l ≤ 4 in undirected graphs. Baier et al. [4]
showed that both Length-Bounded Vertex Cut (l > 5) and Length-Bounded Edge Cut (l > 4)
are NP-hard to approximate within a factor 1.1377. They presented O(min(l, nl)) = O(

√
n)-

approximation algorithm for Length-Bounded Vertex Cut and O(min(l, n
2

l2 ,
√
m)) = O(n2/3)-

approximation algorithm for Length-Bounded Edge Cut, with matching LP gaps. Length-
Bounded Cut problems have been also actively studied in terms of their fixed parameter
tractability [19, 15, 8, 17].

If we exchange the roles of the objective k and the length bound l, the problem becomes
Shortest Path Interdiction, where we want to maximize the length of the shortest s-t path
after removing at most k vertices or edges. It is also one of the central problems in a broader
class of interdiction problems, where an attacker tries to remove some edges or vertices to
destroy a desirable property (e.g., short s-t distance, large s-t flow, cheap MST) of a network
(see the survey of [42]). The study of Shortest Path Interdiction started in 1980’s when the
problem was called as the k-most-vital-arcs problem [14, 33, 5] and proved to be NP-hard [5].
Khachiyan et al. [24] proved that it is NP-hard to approximate within a factor less than 2.
While many heuristic algorithms were proposed [23, 7, 35] and hardness in planar graphs [39]
was shown, whether the general version admits a constant factor approximation was still
unknown.

Given a graph G = (V,E) and s, t ∈ V , let dist(G) be the length of the shortest s-t path.
For V ′ ⊆ V , let G \ V ′ be the subgraph induced by V \ V ′. For E′ ⊆ E, we use the same
notation G \ E′ to denote the subgraph (V,E \ E′). We primarily study undirected graphs.
We first present our results for the vertex version of both problems (collectively called as
Short Path Vertex Cut onwards).

I Theorem 1. Assuming the Unique Games Conjecture, for infinitely many values of constant
l ∈ N, the following three tasks are NP-hard: Given an undirected graph G = (V,E) and
s, t ∈ V where there exists C∗ ⊆ V \ {s, t} such that dist(G \ C∗) ≥ l,
1. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l) · |C∗| and dist(G \ C) ≥ l.
2. Find C ⊆ V \ {s, t} such that |C| ≤ |C∗| and dist(G \ C) ≥ O(

√
l).

3. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l ε2) · |C∗| and dist(G \ C) ≥ O(l 1+ε
2) for some

0 < ε < 1.

The first result shows that Length Bounded Vertex Cut is hard to approximate within a
factor Ω(l). This matches the best O(l)-approximation [4] when l is a constant. The second
result shows that Shortest Path Vertex Interdiction is hard to approximate with in a factor
Ω(
√

OPT), and the third result rules out bicriteria approximation – for any constant c, it is
hard to approximate both l and |C∗| within a factor of c.

The above results hold for directed graphs by definition. Our hard instances will have a
natural layered structure, so it can be easily checked that the same results (up to a constant)
hold for directed acyclic graphs. Since one vertex can be split as one directed edge, the same
results hold for the edge version in directed acyclic graphs.

For Length-Bounded Edge Cut and Shortest Path Edge Interdiction in undirected graphs
(collectively called Short Path Edge Cut onwards), we prove the following theorems.

I Theorem 2. Assuming the Unique Games Conjecture, for infinitely many values of constant
l ∈ N, the following three tasks are NP-hard: Given an undirected graph G = (V,E) and
s, t ∈ V where there exists C∗ ⊆ E such that dist(V \ C∗) ≥ l,
1. Find C ⊆ E such that |C| ≤ Ω(

√
l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ E such that |C| ≤ |C∗| and dist(G \ C) ≥ l 2
3 .

3. Find C ⊆ E such that |C| ≤ Ω(l 2ε
3) · |C∗| and dist(G \C) ≥ O(l 2+2ε

3) for some 0 < ε < 1
2 .

ICALP 2017

92:4 Improved Hardness for Cut, Interdiction, and Firefighter Problems

Our hardness factors for the undirected edge versions, Ω(
√
l) for Length-Bounded Edge

Cut and Ω(3
√

OPT) for Shortest Path Edge Interdiction, are slightly weaker than those for
their vertex counterparts, but we are not aware of any approximation algorithm specialized
for the undirected edge versions. It is an interesting open problem whether there exist better
approximation algorithms for the undirected edge versions.

Directed Multicut and Directed Multiway Cut. Given a directed graph and two vertices
s and t, one of the most natural variants of s-t cut is to remove the fewest edges to ensure
that there is no directed path from s to t and no directed path from t to s. This problem
is known as s-t Bicut and admits the trivial 2-approximation algorithm by computing the
minimum s-t cut and t-s cut.

Directed Multiway Cut is a generalization of s-t Bicut that has been actively studied.
Given a directed graph with k terminals s1, . . . , sk, the goal is to remove the fewest number
of edges such that there is no path from si to sj for any i 6= j. Directed Multiway Cut also
admits 2-approximation [37, 11]. If k is allowed to increase polynomially with n, there is
a simple reduction from Vertex Cover that shows (2− ε)-approximation is hard under the
UGC [18, 27].

Directed Multiway Cut can be further generalized to Directed Multicut. Given a directed
graph with k source-sink pairs (s1, t1), . . . , (sk, tk), the goal is to remove the fewest number
of edges such that there is no path from si to ti for any i. Computing the minimum si-ti cut
for all i separately gives the trivial k-approximation algorithm. Chuzhoy and Khanna [13]
showed Directed Multicut is hard to approximate within a factor 2Ω(log1−ε n) = 2Ω(log1−ε k)

when k is polynomially growing with n. Agarwal et al. [2] showed Õ(n 11
23)-approximation

algorithm, which improves the trivial k-approximation when k is large.
Chekuri and Madan [11] showed simple approximation-preserving reductions from Directed

Multicut with k = 2 to s-t Bicut (the other direction is trivially true), and (Undirected)
Node-weighted Multiway Cut with k = 4 to s-t Bicut. Since Node-weighted Multiway Cut
with k = 4 is hard to approximate within a factor 1.5 − ε under the UGC [16] (matching
the algorithm of Garg et al. [18]), the same hardness holds for s-t Bicut, Directed Multiway
Cut, and Directed Multicut for constant k. To the best of our knowledge, 1.5− ε is the best
hardness factor for constant k even assuming the UGC. In the same paper, Chekuri and
Madan [11] asked whether a factor 2− ε hardness holds for s-t Bicut under the UGC.

We prove that for any constant k ≥ 2, the trivial k-approximation for Directed Multicut
might be optimal. Our result for k = 2 gives the optimal hardness result for s-t Bicut,
answering the question of Chekuri and Madan.

I Theorem 3. Assuming the Unique Games Conjecture, for every k ≥ 2 and ε > 0, Directed
Multicut with k source-sink pairs is NP-hard to approximate within a factor k − ε.

I Corollary 4. Assuming the Unique Games Conjecture, for any ε > 0, s-t Bicut is hard to
approximate within a factor 2− ε.

I Remark. Chekuri and Madan [12] obtained an independent and different proof of Theorem 3.

RMFC. Resource Minimization for Fire Containment (RMFC) is a problem closely related
to Length-Bounded Cut with the additional notion of time. Given a graph G, a vertex s,
and a subset T of vertices, consider the situation where fire starts at s on Day 0. For each
Day i (i ≥ 1), we can save at most k vertices, and the fire spreads from currently burning
vertices to its unsaved neighbors. Once a vertex is burning or saved, it remains so from then
onwards. The process is terminated when the fire cannot spread anymore. RMFC asks to

Euiwoong Lee 92:5

find a strategy to save k vertices each day with the minimum k so that no vertex in T is
burnt. These problems model the spread of epidemics or ideas through a social network, and
have been actively studied recently [9, 3, 1, 10].

RMFC, along with other variants, is first introduced by Hartnell [22]. Another well-
studied variant is called the Firefighter problem, where we are only given s ∈ V and want to
maximize the number of vertices that are not burnt at the end. It is known to be NP-hard
to approximate within a factor n1−ε for any ε > 0 [3]. King and MacGillivray [28] proved
that RMFC is hard to approximate within a factor less than 2. Anshelevich et al. [3]
presented an O(

√
n)-approximation algorithm for general graphs, and Chalermsook and

Chuzhoy [9] showed that RMFC admits O(log∗ n)-approximation in trees. Very recently,
the approximation ratio in trees has been improved to O(1) [1]. Both Anshelevich et al. [3]
and Chalermsook and Chuzhoy [9] independently studied directed layer graphs with b layers,
showing O(log b)-approximation.

Our final result on RMFC assumes a variant of the Unique Games Conjecture which is
not known to be equivalent to the original UGC. Given a bipartite graph as an instance of
Unique Games, it states that in the completeness case, all constraints incident on (1 − ε)
fraction of vertices in one side are satisfied, and in the soundness case, in addition to having
a low value, every 1

10 fraction of vertices on one side have at least a 9
10 fraction of vertices

on the other side as neighbors. Our conjecture is implied by the conjecture of Bansal and
Khot [6] that is used to prove the hardness of Minimizing Weighted Completion Time with
Precedence Constraints and requires a more strict expansion condition. See [30] for the exact
statement.

I Theorem 5. Assuming Conjecture 7.5 of [30], it is NP-hard to approximate RMFC in
undirected graphs within any constant factor.

Again, our reduction has a natural layered structure and the result holds for directed
layered graphs. With b layers, we prove that it is hard to approximate with in a factor
Ω(log b), matching the best approximation algorithms [9, 3].

1.2 Techniques
All our results are based on a general method of converting an integrality gap instance to
a dictatorship test. This method has been successfully applied by Raghavendra [40] for
Max-CSPs, Manokaran et al. [34] and Ene et al. [16] for Multiway Cut and Min CSPs, and
Kumar et al. [29] for strict CSPs, and by Guruswami et al. [21] for k-uniform k-partite
Hypergraph Vertex Cover, and Chekuri and Madan [12] for Directed Multicut. As mentioned
in the introduction, the previous CSP-based results do not generally preserve the structure
of constraint hypergraphs or use ingenious and specialized tricks to reduce the problem to a
CSP.

We bypass this difficulty by constructing a special class of dictatorship tests that we
call length-control dictatorship tests. Consider a meta-problem where given a directed graph
G = (V,E), some terminal vertices, and a set P of desired paths between terminals, we want
to remove the fewest number of non-terminal vertices to cut every path in P . The integrality
gap instances we use in this work [41, 4, 32, 9] share the common feature that every p ∈ P is
of length at least r, and the fractional solution cuts 1

r fraction of each non-terminal vertex
so that each path p ∈ P is cut. This gives a good LP value, and additional arguments are
required to ensure that there is no efficient integral cut.

Given such an integrality gap instance, we construct our dictatorship test instance as
follows. We replace every non-terminal vertex by a hypercube ZRr and put edges such that

ICALP 2017

92:6 Improved Hardness for Cut, Interdiction, and Firefighter Problems

for two vertices (v, x) and (w, y) where v, w ∈ V and x, y ∈ ZRr , there is an edge from
(v, x) to (w, y) if (1) (v, w) ∈ E and (2) yj = xj + 1 for all j ∈ [R]. The set of desired
paths P ′ is defined to be {(s, (v1, x1), . . . , (vl, xl), t) : (s, v1, . . . , vl, t) ∈ P} (s, t denote some
terminals). Note that each path in P ′ is also of length at least r. We want to ensure that in
the completeness case (i.e., every hypercube reveals the same influential coordinate), there
is a very efficient cut, while in the soundness case (i.e., no hypercube reveals an influential
coordinate), there is no such efficient cut.

In the completeness case, let q ∈ [R] be an influential coordinate. For each vertex
(v, x) where v ∈ V, x ∈ ZRr , remove (v, x) if xq = 0. Consider a desired path p =
(s, (v1, x1), . . . , (vl, xl), t) ∈ P ′ for some terminals s, t and some vj ∈ V, xj ∈ ZRr (1 ≤ j ≤ l),
and let yj = (xj)q. By our construction, yj+1 = yj + 1 for 0 ≤ j < l. Since p is desirable,
l ≥ r, so there exists j such that yj = (xj)q = 0, but (vj , xj) is already removed by our
previous definition. Therefore, every desired path is cut by this vertex cut. Note that this
cut is integral and cuts exactly 1

r fraction of non-terminal vertices. This corresponds to the
fractional solution to the gap instance that cuts 1

r fraction of every vertex.
For the soundness analysis, our final dictatorship test has additional noise vertices and

edges to the test defined above. If no hypercube reveals an influential coordinate, the standard
application of the invariance principle [36] proves that we can always take an edge between
two hypercubes unless we almost completely cut one hypercube. We can then invoke the
proof for the integrality gap instance to show that there is no efficient cut.

This idea is implicitly introduced by the work of Svensson [43] for Feedback Vertex Set
(FVS) and DAG Vertex Deletion (DVD) by applying the It ain’t over till it’s over theorem to
ingeniously constructed dictatorship tests with auxiliary vertices. Guruswami and Lee [20]
gave a simpler construction and a new proof using the invariance principle instead of the It
ain’t over till it’s over theorem. Our results are based on the observation that length-control
dictatorship tests and LP gap instances fool algorithms in a similar way for various cut
problems as mentioned above, so that the previous LP gap instances can be plugged into our
framework to prove matching hardness results.

This method for the above meta-problem can be almost directly applied to Directed
Multicut. For Length-Bounded Cut and RMFC in undirected graphs, we use the fact that
the known integrality gap instances have a natural layered structure with s in the first layer
and t in the last layer. Every edge is given a natural orientation, and the similar analysis
can be applied. For Length-Bounded Cut, another set of edges called long edges are added
to the dictatorship test. More technical work is required for edge cut versions in undirected
graphs (Short Path Edge Cut), and the notion of time (RMFC).

Our framework seems general enough so that they can be applied to integrality gap
instances to give strong hardness results. It would be interesting to further abstract this
method of converting integrality gap instances to length-bounded dictatorship tests, as well
as to apply it to other problems whose approximability is not well-understood.

2 Preliminaries

Graph Terminologies. Depending on whether we cut vertices or edges, we introduce weight
wt(v) for each vertex v, or weight wt(e) for each edge e. Some weights can be ∞, which
means that some vertices or edges cannot be cut. For vertex-weighted graphs, we naturally
have wt(s) = wt(t) =∞. To reduce the vertex-weighted version to the unweighted version,
we duplicate each vertex according to its weight and replace each edge by a complete bipartite
graph between corresponding copies. To reduce the edge-weighted version to the unweighted

Euiwoong Lee 92:7

version, we replace a single edge with parallel edges according to its weight. To reduce to
simple graphs, we split each parallel into two edges by introducing a new vertex.

For the Length-Bounded Cut problems, we also introduce length len(e) for each edge e.
It can be also dealt with serially splitting an edge according to its weight. We allow weights
to be rational numbers, but as our hardness results are stated in terms of the length, all
lengths in this work will be a positive integer.

For a path p, depending on the context, we abuse notation and interpret it as a set of
edges or a set of vertices. The length of p is always defined to be the number of edges.

Gaussian Bounds for Correlated Spaces. We introduce the standard tools on correlated
spaces from Mossel [36]. Given a probability space (Ω, µ) (we always consider finite probability
spaces), let L(Ω) be the set of functions {f : Ω→ R} and for an interval I ⊆ R, LI(Ω)
be the set of functions {f : Ω→ I}. For a subset S ⊆ Ω, define measure of S to be
µ(S) :=

∑
ω∈S µ(ω). A collection of probability spaces are said to be correlated if there is a

joint probability distribution on them. We will denote k correlated spaces Ω1, . . . ,Ωk with a
joint distribution µ as (Ω1 × · · · × Ωk, µ).

Given two correlated spaces (Ω1×Ω2, µ), we define the correlation between Ω1 and Ω2 by

ρ(Ω1,Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f] = Var[g] = 1} .

Given a probability space (Ω, µ) and a function f ∈ L(Ω) and p ∈ R+, let ‖f‖p :=
Ex∼µ[|f(x)|p]1/p.

Consider a product space (ΩR, µ⊗R) and f ∈ L(ΩR). The Efron-Stein decomposition of
f is given by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS)

where (1) fS depends only on xS and (2) for all S 6⊆ S′ and all xS′ , Ex′∼µ⊗R [fS(x′)|x′S′ =
xS′] = 0. The influence of the ith coordinate on f is defined by

Infi[f] := E
x1,...,xi−1,xi+1,...,xR

[Var
xi

[f(x1, . . . , xR)].

The influence has a convenient expression in terms of the Efron-Stein decomposition.

Infi[f] = ‖
∑
S:i∈S

fS‖22 =
∑
S:i∈S

‖fS‖22.

We also define the low-degree influence of the ith coordinate.

Inf≤di [f] :=
∑

S:i∈S,|S|≤d

‖fS‖22.

For a, b ∈ [0, 1] and ρ ∈ (0, 1), let

Γρ(a, b) := Pr[X ≤ Φ−1(a), Y ≥ Φ−1(1− b)],

where X and Y are ρ-correlated standard Gaussian variables and Φ denotes the cumulative
distribution function of a standard Gaussian. The following theorem bounds the product
of two functions that do not share an influential coordinate in terms of their Gaussian
counterparts.

I Theorem 6 (Theorem 6.3 and Lemma 6.6 of [36]). Let (Ω1 × Ω2, µ) be correlated spaces
such that the minimum nonzero probability of any atom in Ω1 × Ω2 is at least α and such
that ρ(Ω1,Ω2;µ) ≤ ρ. Then for every ε > 0 there exist τ, d depending on ε and α such
that if f : ΩR

1 → [0, 1], g : ΩR
2 → [0, 1] satisfy min(Inf≤di [f], Inf≤di [g]) ≤ τ for all i, then

E(x,y)∈µ⊗R [f(x)g(y)] ≥ Γρ(Ex[f],Ey[g])− ε.

ICALP 2017

92:8 Improved Hardness for Cut, Interdiction, and Firefighter Problems

Organization. The dictatorship tests for Short Path Edge Cut and Short Path Vertex Cut
are presented in Section 3 and 4 respectively. Dictatorship tests for RMFC and Directed
Multicut, as well as the reduction from Unique Games based on these tests, will appear in
the full version of this paper [30].

3 Short Path Edge Cut

We propose our dictatorship test for Short Path Edge Cut that will be used for proving
Unique Games hardness. It is parameterized by positive integers a, b, r, R. It is inspired
by the integrality gap instances by Baier et al. [4] Mahjoub and and McCormick [32], and
made such that the edge cuts that correspond to dictators behave the same as the fractional
solution that cuts 1

r fraction of every edge. All graphs in this section are undirected.
For positive integers a, b, r, R, we construct DE

a,b,r,R = (V,E). Let Ω = {0, . . . , r − 1},
and µ : Ω 7→ [0, 1] with µ(x) = 1

r for each x ∈ Ω. We also define a correlated probability
space (Ω1 × Ω2, ν) where both Ω1,Ω2 are copies of Ω. It is defined by the following process
to sample (x, y) ∈ Ω2.

Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.
With probability 1− 1

r , output (x, y). Otherwise, resample x, y ∈ Ω independently and
output (x, y).

Note that the marginal distribution of both x and y is equal to µ. Given x = (x1, . . . , xR) ∈ ΩR
and y = (y1, . . . , yR) ∈ ΩR, let ν⊗R(x, y) =

∏R
i=1 ν(xi, yi). We define DE

a,b,r,R = (V,E) as
follows.

V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x∈ΩR .
For any x ∈ ΩR, there is an edge from s to v0

x and an edge from vbx to t, both with weight
∞ and length 1.
For 0 ≤ i < b, x ∈ ΩR, there is an edge (vix, vi+1

x) of length a and weight ∞. Call it a
long edge.
For any 0 ≤ i < b x, y ∈ ΩR, there is an edge (vix, vi+1

y) of length 1 and weight ν⊗R(x, y).
Note that ν⊗R(x, y) > 0 for any x, y ∈ ΩR. Call it a short edge. The sum of finite weights
is b.

Completeness. We first prove that edge cuts that correspond to dictators behave the same
as the fractional solution that gives 1

r to every short edge. Fix q ∈ [R] and let Eq be the set
of short edges defined by

Eq := {(vix, vi+1
y) : 0 ≤ i < b, yq 6= xq + 1 mod R or (xq, yq) = (0, 1)}.

When (x, y) ∈ Ω1 × Ω2 is sampled according to ν, the probability that yq 6= xq + 1
mod R or (xq, yq) = (0, 1) is at most 2

r . The total weight of Eq is 2b
r .

I Lemma 7. After removing edges in Eq, the length of the shortest path is at least a(b−r+1).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to t where ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.
For each 1 ≤ j < z, the edge (pj , pj+1) is either a long edge or a short edge, and either

taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB be the
number of long edges taken forward, short edges taken forward, long edges taken backward,
and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z − 1). By considering
how ij changes,

zLF + zSF − zLB − zSB = b. (1)

Euiwoong Lee 92:9

Consider how yj changes. Taking a long edge does not change yj . Taking a short edge
forward increases yj by 1 mod r, taking a short edge backward decreases yj by 1 mod r.
Since Eq is cut, yj can never change from 0 to 1. This implies

zSF − zSB ≤ r − 1. (2)

(1)− (2) yields zLF−zLB ≥ b−r+1. The total length of p is at least a ·zLF ≥ a(b−r+1). J

Soundness. We first bound the correlation ρ(Ω1,Ω2; ν). The following lemma of Wenner [44]
gives a convenient way to bound the correlation.

I Lemma 8 (Corollary 2.18 of [44]). Let (Ω1 × Ω2, δµ+ (1− δ)µ′) be two correlated spaces
such that the marginal distribution of at least one of Ω1 and Ω2 is identical on µ and µ′.
Then,

ρ(Ω1,Ω2; δµ+ (1− δ)µ′) ≤
√
δ · ρ(Ω1,Ω2;µ)2 + (1− δ) · ρ(Ω1,Ω2;µ′)2.

When (x, y) is sampled from ν, they are completely independent with probability 1
r . Therefore,

we have ρ := ρ(Ω1,Ω2; ν) ≤
√

1− 1
r . By Sheppard’s Formula,

Γρ(
1
2 ,

1
2) = 1

4 + 1
2π arcsin(−ρ) ≥ 1

4−
1

2π arccos(1√
r

) =
∞∑
n=0

(2n)!
4n(n!)2(2n+ 1)(1√

r
)2n+1 ≥ 1√

r
.

Apply Theorem 6 (ρ← ρ, α← 1
r3 , ε←

Γρ(1
2 ,

1
2)

3) to get τ and d. We will later apply this
theorem with the parameters obtained here.

Fix an arbitrary subset C ⊆ E of short edges. For 0 ≤ i < b, let Ci = C ∩ (vi × vi+1).
Call a pair (i, i+ 1) as the ith layer, and say it is blocked when ν⊗R(Ci) ≥

Γρ(1
2 ,

1
2)

2 . Let b′ be
the number of blocked layers. For 0 ≤ i ≤ b, let Si ⊆ vi be such that x ∈ Si if there exists a
path (s, p0, . . . , pi = vix) such that

For 0 ≤ i′ ≤ i, pi′ ∈ vi
′ .

For 0 ≤ i′ < i, (pi′ , pi′+1) is short if and only if the i′th layer is unblocked.

Let fi : ΩR 7→ [0, 1] be the indicator function of Si. We prove that if none of fi reveals
any influential coordinate, Sb is nonempty, implying that there exists a path using b′ long
edges and b− b′ short edges. Therefore, even after removing edges in C, the length of the
shortest path is at most 2 + ab′ + (b− b′).

I Lemma 9. Suppose that for any 0 ≤ i ≤ b and 1 ≤ j ≤ R, Inf≤dj [fi] ≤ τ . Then Sb 6= ∅.

Proof. Assume towards contradiction that Sb = ∅. Since S0 = ΩR and Si = Si+1 if the
ith layer is blocked (and we use long edges), there must exist i such that the ith layer is
unblocked and µ⊗R(Si) ≥ 1

2 , µ
⊗R(Si+1) < 1

2 . All short edges between Si and v
i+1 \ Si+1 are

in Ci. Theorem 6 implies that ν⊗R(Ci) > 2
3Γρ(1

2 ,
1
2). This contradicts the fact that the ith

layer is unblocked. J

In summary, in the completeness case, if we cut edges of total weight k := k(a, b, r) = 2b
r ,

the length of the shortest path is at least l := l(a, b, r) = a(b− r + 1). In the soundness case,
even after cutting edges of total weight k′, at most 2k′

Γρ(1
2 ,

1
2) ≤ 2k′

√
r layers are blocked, the

length of the shortest path is at most l′ = 2 + (b− 2k′
√
r) + 2ak′

√
r.

ICALP 2017

92:10 Improved Hardness for Cut, Interdiction, and Firefighter Problems

Let a = 4, b = 2r − 1 so that k ≤ 4, l = 4r. Requiring l′ ≥ l results in k′ = Ω(
√
r),

giving a gap of Ω(
√
r) = Ω(

√
l) between the completeness case and the soundness case

for Length-Bounded Edge Cut.
Let a =

√
r, b = 2r − 1 so that k ≤ 4, l = r1.5. Requiring k′ ≤ 4 results in l′ = O(r),

giving a gap of Ω(
√
r) = Ω(l1/3) for Shortest Path Interdiction. Generally, k′ ≤ O(rε)

results in l′ ≤ O(r1+ε), giving an (O(rε), O(r1/2−ε))-bicriteria gap for any ε ∈ (0, 1
2).

4 Short Path Vertex Cut

We propose our dictatorship test for Short Path Vertex Cut that will be used for proving
Unique Games hardness. It is parameterized by positive integers a, b, r, R and small ε > 0. It
is inspired by the integrality gap instances by Baier et al. [4] Mahjoub and and McCormick [32],
and made such that the vertex cuts that correspond to dictators behave the same as the
fractional solution that cuts 1

r fraction of every vertex. All graphs in this section are
undirected.

For positive integers a, b, r, R, and ε > 0, define DV
a,b,r,R,ε = (V,E) be the graph defined as

follows. Consider the probability space (Ω, µ) where Ω := {0, . . . , r− 1, ∗}, and µ : Ω 7→ [0, 1]
with µ(∗) = ε and µ(x) = 1−ε

r for x 6= ∗.

V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x.
For 0 ≤ i ≤ b and x ∈ ΩR, wt(vix) = µ⊗R(x). Note that the sum of weights is b+ 1.
For any 0 ≤ i ≤ b, there are edges from s to each vertex in vi with length ai + 1 and
edges from each vertex in vi to t with length (b− i)a+ 1.
For x, y ∈ ΩR, we call that x and y are compatible if

For any 1 ≤ j ≤ R: [yj = (xj + 1) mod r] or [yj = ∗] or [xj = ∗].
For any 0 ≤ i < b and compatible x, y ∈ ΩR, we have an edge (vix, vi+1

y) of length 1
(called a short edge).
For any i, j such that 0 ≤ i < j − 1 < b and compatible x, y ∈ ΩR, we have an edge
(vix, vjy) of length (j − i)a (called a long edge).

Completeness. We first prove that vertex cuts that correspond to dictators behave the
same as the fractional solution that gives 1

r to every vertex. For any q ∈ [R], let Vq := {vix :
0 ≤ i ≤ b, xq = ∗ or 0}. Note that the total weight of Vq is (b+ 1)(ε+ 1−ε

r).

I Lemma 10. After removing vertices in Vq, the length of the shortest path is at least
a(b− r + 2).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to t where ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.
For each 1 ≤ j < z, the edge (vijxj , v

ij+1
xj+1) is either a long edge or a short edge, and either

taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB be the
number of long edges taken forward, short edges taken forward, long edges taken backward,
and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z− 1). For 1 ≤ j ≤ zLF

(resp. zLB), consider the jth long edge taken forward (resp. backward) – it is (vij′
xj′
, v
ij′+1

xj′+1)
for some j′. Let sF

j (resp. sB
j) be |ij′ − ij′+1|. The following equality holds by observing how

ij changes.

i1 +
zLF∑
j=1

sF
j + zSF −

zLB∑
j=1

sB
j − zSB = iz ⇒ i1 +

zLF∑
j=1

sF
j + zSF − zLB − zSB − iz ≥ 0. (3)

Euiwoong Lee 92:11

Consider how yj changes. Taking any edge forward increases yj , and taking any edge
backward decreases yj . Since yj can never be 0 or ∗, we can conclude that

zLF + zSF − zLB − zSB ≤ r − 2. (4)

(3)− (4) yields

i1 − iz +
zLF∑
j=1

(sF
j − 1) ≥ 2− r ⇒ i1 − iz +

zLF∑
j=1

sF
j ≥ 2− r. (5)

The total length of p is

2 + a
(
i1 + b− iz +

zLF∑
j=1

sF
j +

zLB∑
j=1

sB
j) + zSF + zSB

≥ a
(
i1 + b− iz +

zLF∑
j=1

sF
j)

≥ a(b− r + 2).

J

Soundness. To analyze soundness, we define a correlated probability space (Ω1 × Ω2, ν)
where both Ω1,Ω2 are copies of Ω = {0, . . . , r − 1, ∗}. It is defined by the following process
to sample (x, y) ∈ Ω2.

Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.
Change x to ∗ with probability ε. Do the same for y independently.

Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2r , the

minimum probability of any atom in Ω1 × Ω2 is ε2. Furthermore, in our correlated space,
ν(x, ∗) > 0 for all x ∈ Ω1 and ν(∗, x) > 0 for all x ∈ Ω2. We use the following lemma to
bound the correlation.

I Lemma 11 (Lemma 2.9 of [36]). Let (Ω1 × Ω2, µ) be two correlated spaces such that the
probability of the smallest atom in Ω1 × Ω2 is at least α > 0. Define a bipartite graph
G = (Ω1 ∪Ω2, E) where (a, b) ∈ Ω1 ×Ω2 satisfies (a, b) ∈ E if µ(a, b) > 0. If G is connected,
then ρ(Ω1,Ω2;µ) ≤ 1− α2

2 .

Therefore, we can conclude that ρ(Ω1,Ω2; ν) ≤ ρ := 1 − ε4

2 . Apply Theorem 6 (ρ ←
ρ, α← ε2, ε← Γρ(ε3 ,

ε
3)

2) to get τ and d. We will later apply this theorem with the parameters
obtained here. Fix an arbitrary subset C ⊆ V , and Ci := C ∩ vi. For 0 ≤ i ≤ b, call vi
blocked if µ⊗R[Ci(x)] ≥ 1− ε. At most bwt(C)

1−ε c v
i’s can be blocked. Let k′ be the number of

blocked vi’s, and z = b+ 1− k′ be the number of unblocked vi’s. Let {vi1 , . . . , viz} be the
set of unblocked vi’s with i1 < i2 < · · · < iz.

For 1 ≤ j ≤ z, let Sj ⊆ vij be such that x ∈ Sj if there exists a path (p0 =
s, p1, . . . , pj−1, v

ij
x) such that each pj′ ∈ vij′ \ C (1 ≤ j′ < j). For 1 ≤ j ≤ z, let

fj : ΩR 7→ [0, 1] be the indicator function of Sj .
We prove that if none of fj reveals any influential coordinate, µ⊗R(Sz) > 0. Since any

path passing vi1 , . . . , viz (bypassing only blocked vi’s) uses short edges at least b− 2k′ times,
so the length of the shortest path after removing C is at most 2 + (b− 2k′) + 2ak′.

I Lemma 12. Suppose that for any 1 ≤ j ≤ z and 1 ≤ i ≤ R, Inf≤di [fj] ≤ τ . Then
µ⊗R(Sz) > 0.

ICALP 2017

92:12 Improved Hardness for Cut, Interdiction, and Firefighter Problems

Proof. We prove by induction that µ⊗R(Sj) ≥ ε
3 . It holds when j = 1 since vi1 is unblocked.

Assuming µ⊗R(Sj) ≥ ε
3 , since Sj does not reveal any influential coordinate, Theorem 6 shows

that for any subset Tj+1 ⊆ vij+1 with µ⊗R(Tj+1) ≥ ε
3 , there exists an edge between Sj and

Tj+1. If S′j+1 ⊆ vij+1 is the set of neighbors of Sj , we have µ⊗R(S′j+1) ≥ 1− ε
3 . Since v

ij+1

is unblocked, µ⊗R(S′j+1 \ C) ≥ 2ε
3 , completing the induction. J

In summary, in the completeness case, if we cut vertices of total weight k := k(a, b, r, ε) =
(b+ 1)(ε+ 1−ε

r), the length of the shortest path is at least l := l(a, b, r, ε) = a(b− r + 2). In
the soundness case, even after cutting vertices of total weight k′, the length of the shortest
path is at most 2 + (b− k′

1−ε) + 2a(k′

1−ε).

Let a = 4, b = 2r − 2 and ε small enough so that k ≤ 2, l = 4r. Requiring l′ ≥ l results in
k′ = Ω(r), giving a gap of Ω(r) = Ω(l) for Length Bounded Cut.
Let a = r, b = 2r − 2 and ε small enough so that k ≤ 2, l = r2. Requiring k′ ≤ 2 results
in l′ = O(r), giving a gap of Ω(r) = Ω(

√
l) for Shortest Path Interdiction. Generally,

k′ ≤ O(rε) results in l′ ≤ O(r1+ε), giving an (O(rε), O(r1−ε))-bicriteria gap for any
ε ∈ (0, 1).

Acknowledgments. The author thanks Konstantin Makarychev for useful discussions on
Directed Multicut, and Marek Elias for introducing Shortest Path Interdiction.

References
1 David Adjiashvili, Andrea Baggio, and Rico Zenklusen. Firefighting on trees beyond integ-

rality gaps. arXiv preprint arXiv:1601.00271, 2016.
2 Amit Agarwal, Noga Alon, and Moses S. Charikar. Improved approximation for directed

cut problems. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of
Computing, STOC’07, pages 671–680, New York, NY, USA, 2007. ACM. doi:10.1145/
1250790.1250888.

3 Elliot Anshelevich, Deeparnab Chakrabarty, Ameya Hate, and Chaitanya Swamy. Approx-
imability of the firefighter problem. Algorithmica, 62(1-2):520–536, 2012.

4 Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej
Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM Trans-
actions on Algorithms, 7(1):4:1–4:27, December 2010. Preliminary version in ICALP’06.
doi:10.1145/1868237.1868241.

5 Michael O Ball, Bruce L Golden, and Rakesh V Vohra. Finding the most vital arcs in a
network. Operations Research Letters, 8(2):73–76, 1989.

6 N. Bansal and S. Khot. Optimal long code test with one free bit. In Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS’09, pages 453–462,
Oct 2009. doi:10.1109/FOCS.2009.23.

7 Halil Bayrak and Matthew D Bailey. Shortest path network interdiction with asymmetric
information. Networks, 52(3):133–140, 2008.

8 Cristina Bazgan, André Nichterlein, and Rolf Niedermeier. A refined complexity analysis
of finding the most vital edges for undirected shortest paths. In Vangelis Th. Paschos
and Peter Widmayer, editors, Algorithms and Complexity, volume 9079 of Lecture Notes
in Computer Science, pages 47–60. Springer International Publishing, 2015. doi:10.1007/
978-3-319-18173-8_3.

9 Parinya Chalermsook and Julia Chuzhoy. Resource minimization for fire containment. In
Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’10, pages 1334–1349, Philadelphia, PA, USA, 2010. Society for Industrial and Ap-
plied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1873601.1873709.

http://dx.doi.org/10.1145/1250790.1250888
http://dx.doi.org/10.1145/1250790.1250888
http://dx.doi.org/10.1145/1868237.1868241
http://dx.doi.org/10.1109/FOCS.2009.23
http://dx.doi.org/10.1007/978-3-319-18173-8_3
http://dx.doi.org/10.1007/978-3-319-18173-8_3
http://dl.acm.org/citation.cfm?id=1873601.1873709

Euiwoong Lee 92:13

10 Parinya Chalermsook and Daniel Vaz. New integrality gap results for the firefighters prob-
lem on trees. arXiv preprint arXiv:1601.02388, 2016.

11 Chandra Chekuri and Vivek Madan. Simple and fast rounding algorithms for directed and
node-weighted multiway cut. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 797–807, 2016.

12 Chandra Chekuri and Vivek Madan. Approximating multicut and the demand graph. arXiv
preprint arXiv:1607.07200, 2017. To appear in SODA’17.

13 Julia Chuzhoy and Sanjeev Khanna. Polynomial flow-cut gaps and hardness of directed
cut problems. Journal of the ACM, 56(2), 2009.

14 HW Corley and Y Sha David. Most vital links and nodes in weighted networks. Operations
Research Letters, 1(4):157–160, 1982.

15 Pavel Dvořák and Dušan Knop. Parametrized complexity of length-bounded cuts and multi-
cuts. In Rahul Jain, Sanjay Jain, and Frank Stephan, editors, Theory and Applications of
Models of Computation, volume 9076 of Lecture Notes in Computer Science, pages 441–452.
Springer International Publishing, 2015. doi:10.1007/978-3-319-17142-5_37.

16 Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap: Approx-
imability of multiway partitioning problems. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 306–325. SIAM, 2013.

17 Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for
kernelization lower bounds, with an application to length-bounded cut problems. arXiv
preprint arXiv:1512.00333, 2015.

18 Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Multiway cuts in directed and
node weighted graphs. In Automata, Languages and Programming, pages 487–498. Springer,
1994.

19 Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts: Para-
meterized complexity and algorithms. Discrete Optimization, 8(1):72 – 86, 2011. Paramet-
erized Complexity of Discrete Optimization. doi:http://dx.doi.org/10.1016/j.disopt.
2010.09.009.

20 Venkatesan Guruswami and Euiwoong Lee. Simple proof of hardness of feedback vertex
set. Theory of Computing, 12(6):1–11, 2016.

21 Venkatesan Guruswami, Sushant Sachdeva, and Rishi Saket. Inapproximability of minimum
vertex cover on k-uniform k-partite hypergraphs. SIAM Journal on Discrete Mathematics,
29(1):36–58, 2015.

22 Bert Hartnell. Firefighter! an application of domination. presentation. In 25th Manitoba
Conference on Combinatorial Mathematics and Computing, University of Manitoba in Win-
nipeg, Canada, 1995.

23 Eitan Israeli and R Kevin Wood. Shortest-path network interdiction. Networks, 40(2):97–
111, 2002.

24 Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich,
Gabor Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-
wise limited interdiction. Theory of Computing Systems, 43(2):204–233, 2007. doi:
10.1007/s00224-007-9025-6.

25 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
annual ACM Symposium on Theory of Computing, STOC’02, pages 767–775, 2002.

26 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapprox-
imability results for Max-Cut and other 2-variable CSPs? SIAM Journal on Computing,
37(1):319–357, 2007.

27 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

ICALP 2017

http://dx.doi.org/10.1007/978-3-319-17142-5_37
http://dx.doi.org/http://dx.doi.org/10.1016/j.disopt.2010.09.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.disopt.2010.09.009
http://dx.doi.org/10.1007/s00224-007-9025-6
http://dx.doi.org/10.1007/s00224-007-9025-6

92:14 Improved Hardness for Cut, Interdiction, and Firefighter Problems

28 Andrew King and Gary MacGillivray. The firefighter problem for cubic graphs. Discrete
Mathematics, 310(3):614–621, 2010.

29 Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On LP-
based approximability for strict CSPs. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’11, pages 1560–1573. SIAM, 2011. URL:
http://dl.acm.org/citation.cfm?id=2133036.2133157.

30 Euiwoong Lee. Improved hardness for cut, interdiction, and firefighter problems. arXiv
preprint arXiv:1607.05133, 2016. URL: https://arxiv.org/abs/1607.05133

31 László Lovász, V Neumann-Lara, and M Plummer. Mengerian theorems for paths of
bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

32 A Ridha Mahjoub and S Thomas McCormick. Max flow and min cut with bounded-length
paths: complexity, algorithms, and approximation. Mathematical programming, 124(1-
2):271–284, 2010.

33 K. Malik, A. K. Mittal, and S. K. Gupta. The k most vital arcs in the shortest path problem.
Oper. Res. Lett., 8(4):223–227, August 1989. doi:10.1016/0167-6377(89)90065-5.

34 Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. Sdp gaps
and ugc hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 11–20. ACM, 2008.

35 David P Morton. Stochastic network interdiction. Wiley Encyclopedia of Operations Re-
search and Management Science, 2011.

36 Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and
Functional Analysis, 19(6):1713–1756, 2010. doi:10.1007/s00039-010-0047-x.

37 Joseph Naor and Leonid Zosin. A 2-approximation algorithm for the directed multiway cut
problem. SIAM Journal on Computing, 31(2):477–482, 2001.

38 K. Okumoto, T. Fukunaga, and H. Nagamochi. Divide-and-conquer algorithms for parti-
tioning hypergraphs and submodular systems. Algorithmica, 62(3):787–806, 2012.

39 Feng Pan and Aaron Schild. Interdiction problems on planar graphs. In Prasad Raghav-
endra, Sofya Raskhodnikova, Klaus Jansen, and JoséD.P. Rolim, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, volume 8096
of Lecture Notes in Computer Science, pages 317–331. Springer Berlin Heidelberg, 2013.
doi:10.1007/978-3-642-40328-6_23.

40 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th annual ACM symposium on Theory of computing, STOC’08, pages
245–254, 2008.

41 Michael Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on the integrality
gap for minimum multicut in directed networks. Combinatorica, 24(3):525–530, 2004.

42 J Cole Smith, Mike Prince, and Joseph Geunes. Modern network interdiction problems
and algorithms. In Handbook of Combinatorial Optimization, pages 1949–1987. Springer,
2013.

43 Ola Svensson. Hardness of vertex deletion and project scheduling. Theory of Comput-
ing, 9(24):759–781, 2013. Preliminary version in APPROX’12. doi:10.4086/toc.2013.
v009a024.

44 Cenny Wenner. Circumventing d-to-1 for approximation resistance of satisfiable predicates
strictly containing parity of width four. Theory of Computing, 9(23):703–757, 2013.

http://dl.acm.org/citation.cfm?id=2133036.2133157
https://arxiv.org/abs/1607.05133
http://dx.doi.org/10.1016/0167-6377(89)90065-5
http://dx.doi.org/10.1007/s00039-010-0047-x
http://dx.doi.org/10.1007/978-3-642-40328-6_23
http://dx.doi.org/10.4086/toc.2013.v009a024
http://dx.doi.org/10.4086/toc.2013.v009a024

Subspace-Invariant AC0 Formulas
Benjamin Rossman∗

University of Toronto, Toronto, Canada
rossman@utoronto.ca

Abstract
The n-variable PARITY function is computable (by a well-known recursive construction) by
AC0 formulas of depth d+ 1 and leafsize n·2dn1/d . These formulas are seen to possess a certain
symmetry: they are syntactically invariant under the subspace P of even-weight elements in
{0, 1}n, which acts (as a group) on formulas by toggling negations on input literals. In this
paper, we prove a 2d(n1/d−1) lower bound on the size of syntactically P -invariant depth d + 1
formulas for PARITY. Quantitatively, this beats the best 2Ω(d(n1/d−1)) lower bound in the non-
invariant setting [16].

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases lower bounds, size-depth tradeoff, parity, symmetry in computation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.93

1 Introduction

Let U be a linear subspace of {0, 1}n. We say that a Boolean function f : {0, 1}n → {0, 1}
is U-invariant if f(x) = f(x ⊕ u) for all u ∈ U and x ∈ {0, 1}n. (Note that U -invariant
Boolean functions are in one-to-one correspondence with functions from the quotient space
{0, 1}n/U to {0, 1}.) An obvious example is the PARITY function x 7→

⊕n
i=1 x, which is

P -invariant where P is the linear subspace of even-weight elements in {0, 1}n.
We may also view U as a group that acts on the set of n-variable Boolean circuits (as

well as the set of n-variable Boolean formulas). Here we consider circuits with unbounded
fan-in AND and OR gates and inputs labeled by literals in the set {X1, X1, . . . , Xn, Xn},
also known as AC 0 circuits in the setting where depth is bounded. For a circuit C and an
element u ∈ U , let Cu be the circuit obtained from C by negating the ith pair of literals (i.e.
exchanging Xi and Xi as labels on inputs) for all coordinates i ∈ [n] such that ui = 1. This
action of U on circuits is compatible with the action on Boolean functions: for all u ∈ U and
x ∈ {0, 1}n, we have Cu(x) = C(x⊕ u).

There are two notions of U -invariance for circuits. We say that C is syntactically U-
invariant if C is identical to Cu for every u ∈ U (we define this notion precisely for formulas),
while we say that C is semantically U-invariant if it computes a U -invariant function.
Syntactic U -invariance clearly implies semantic U -invariance. However, the converse is false:
a circuit may compute a U -invariant function without being syntactically U -invariant.

For a U -invariant Boolean function f , we define its U-invariant circuit size as the
minimum number of gates in a syntactically U -invariant circuit that computes it. This
quantity may be compared to the usual (“non-invariant”) circuit size of f . There are several
questions we may ask: What gap, if any, is there between the U -invariant circuit size and
non-invariant circuit size of f? Are lower bounds for U -invariant circuit size easier to prove,

∗ Supported by NSERC.

EA
T

C
S

© Benjamin Rossman;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 93; pp. 93:1–93:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.93
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

93:2 Subspace-Invariant AC0 Formulas

and do they suggest new strategies for proving lower bound in the non-invariant setting?
The same questions may be asked with respect to U -invariant versions of other complexity
measures, such as formula size and bounded-depth versions of both circuit and formula size
(noting that the action of U on circuits preserves fan-out and depth).1

In this paper, we focus on bounded-depth formula size. Our primary target is the P -
invariant PARITY function where P is the linear subspace of even-weight elements in {0, 1}n.
We start from the observation that the best known construction of bounded-depth circuits
and formulas for PARITY are syntactically P -invariant. Here we refer to the well-known
recursive construction, for all d ≥ 1, of depth d+ 1 circuits and formulas for PARITY, of
size at most n·2n1/d and n·2dn1/d respectively. The main result of this paper (Theorem 1)
yields a nearly matching lower bound of 2d(n1/d−1) on the P -invariant depth d+ 1 formula
size of PARITY. This implies a 2n1/d−1 lower bound on P -invariant depth d + 1 circuit
size.2 Quantitatively, the lower bounds are stronger than the best known Ω(2 1

10n
1/d) and

Ω(2 1
84d(n1/d−1)) lower bounds for non-invariant depth d+ 1 circuits [10] and formulas [16],

respectively. Qualitatively, syntactic P -invariance appears to be a severe restriction and
unnatural from the standpoint of computation.

The general form of our lower bound is the following theorem.

I Theorem 1. Let U ⊂ V be linear subspaces of {0, 1}n, and suppose F is a syntactically
U-invariant depth d + 1 formula which is non-constant over V . Then F has size at least
2d(m1/d−1) where m = min{|x| : x ∈ U⊥ \ V ⊥} (i.e. m is the minimum Hamming weight of a
vector x which is orthogonal to U but non-orthogonal to V).

Some observations: first, notice that the bound in Theorem 1 does not depend on the
parameter n, i.e. the dimension of the ambient hypercube. The lower bound for PARITY
described in the previous paragraph is the special case U = P and V = {0, 1}n. Theorem 1
implies anm1/ log2(e) lower bound for unbounded-depth formulas, since limd→∞ d(m1/d−1) =
ln(m). It also implies a 2m1/d−1 lower bound for depth d+ 1 circuits. (However, we get no
non-trivial lower bound for unbounded-depth circuits, since limd→∞m1/d − 1 = 0.)

The proof of Theorem 1 uses elementary linear algebra, in particular a small lemma on
the existence of linear retractions with small Hamming-weight distortion (Lemma 5). Overall,
this is much simpler than the random restriction and polynomial approximation methods
typically used to prove AC0 lower bounds.

1.1 Related Work
Syntactically invariant models of computation have been previously studied from the per-
spective of Descriptive Complexity, an area that characterizes complexity classes in terms
of definability in different logics [11]. In this context, the notion of invariance pertains to
the action of Sm on n =

(
m
2
)
binary variables, encoding the edge relation of a simple graph

on m vertices. More generally, for a finite relational signature σ, one may consider the
action of Sm on n =

∑
R∈σm

arity(R) binary variables (encoding the possible σ-structures
with universe {1, . . . ,m}). The action of Sm on the set of variables {X1, . . . , Xn} induces a

1 These questions have been asked previously concerning, e.g., the action of the symmetric group Sn on
n-invariable circuits. For Sn-invariant Boolean functions (a.k.a. symmetric functions) including PARITY
and MAJORITY, there is known to be an exponential gap between U -invariant and non-invariant circuit
and formula size. (See the Related Work section, below.)

2 This follows from the observation that every [syntactically U -invariant] depth d + 1 circuit of size s is
equivalent to a [syntactically U -invariant] depth d + 1 formula of size at most sd.

B. Rossman 93:3

syntactic action of Sm on the set of n-variable Boolean circuits (and many other concrete
models of computation, such as branching programs, etc.)

An early result in this area, due to Denenberg et al [8], shows that syntactically Sm-
invariant circuits of polynomial size and constant depth (subject to a certain uniformity
condition) capture precisely the first-order definable properties of finite σ-structures. A
decade later, Otto [13] introduced a certain limit object of finite circuits (also viewed as a
form of uniformity) and showed a correspondence between infinitary logic with a bounded
number of variables (Lω∞ω) and syntactically Sm-invariant circuits of polynomial size and
arbitrary depth. Otto also gives characterizations of fixed point and partial fixed point logic
in terms of syntactically Sm-invariant networks. More recently, Anderson and Dawar [2]
showed a correspondence (under a different uniformity condition) between fixed-point logic
(FP) and syntactically Sm-invariant polynomial-size circuits, as well between fixed-point
logic with counting (FPC) and syntactically Sm-invariant polynomial-size circuits in the
basis that includes majority gates.

So far as I know, this paper is the first to study syntactic invariance under the action of
linear subspaces of {0, 1}n (i.e. subgroups on Zn2) on n-variable Boolean circuits. A different
notion of syntactic invariance — with respect to the automorphism group of the input
structure — can be found in the literature on Choiceless Polynomial Time [3, 4, 6, 7, 9, 15].
On Sm-invariant tautologies in proof complexity, see [1, 14].

2 Preliminaries

Let N = {0, 1, 2, . . . }. Let n and d be arbitrary positive integers. Let [n] = {1, . . . , n}.
Our lower bound makes use of the following inequality involving the function n 7→ dn1/d:

I Lemma 2. For all real numbers a, b, c > 0, we have

a+ c(b/a)1/c ≥ (c+ 1)b1/(c+1)

with equality iff a = b1/(c+1).

Proof. We have ∂
∂a

(
a+ c(b/a)1/c) = 1− (b/a(c+1))1/c. Thus, the function a 7→ a+ c(b/a)1/c

is seen to have a unique minimum at a = b1/(c+1) where it takes value (c+ 1)b1/(c+1). J

2.1 Linear Algebra

For x, y ∈ {0, 1}n, we write |x| :=
∑n
i=1 xi for the Hamming weight of x, we write x⊕ y for

the bitwise sum of x and y modulo 2 (i.e. the element z ∈ {0, 1}n with zi := xi ⊕ yi), and we
write 〈x, y〉 :=

⊕n
i=1 xiyi for the inner product of x and y.

We write L for the lattice of linear subspaces of {0, 1}n. For U, V ∈ L, we write dim(V)
for the dimension of V , we write V ⊥ := {x ∈ {0, 1}n : 〈x, v〉 = 0 for all v ∈ V } for the
orthogonal complement of V , and we write U + V for the subspace spanned by U and V .
We say that U is a codimension-k subspace of V if U ⊆ V and dim(V)− dim(U) = k.

The orthogonal complement has the following properties:

dim(V) + dim(V ⊥) = n, U ⊆ V ⇐⇒ V ⊥ ⊆ U⊥,
V = (V ⊥)⊥, (U + V)⊥ = U⊥ ∩ V ⊥, (U ∩ V)⊥ = U⊥ + V ⊥.

ICALP 2017

93:4 Subspace-Invariant AC0 Formulas

2.2 AC0 Formulas
We write F for the set of n-variable AC0 formulas (with unbounded fan-in AND and OR
gates and leaves labeled by literals). Formally, let F =

⋃
d∈N Fd where Fd is the set of

depth-d formulas, defined inductively as follows:3
F0 is the set of literals {X1, . . . , Xn, X1, . . . , Xn},
Fd+1 is the set of ordered pairs {(γ,G) : γ ∈ {AND,OR} and G is a nonempty subset of Fd}.

Every F ∈ F computes a Boolean function {0, 1}n → {0, 1}, defined in the usual way.
For x ∈ {0, 1}n, we write F (x) for the value of F on x.

For a nonempty set S ⊆ {0, 1}n and b ∈ {0, 1}, notation F (S) ≡ b is the assertion that
F (x) = b for all x ∈ S. We say that F is non-constant on S if F (S) 6≡ 0 and F (S) 6≡ 1 (i.e.
there exist x, y ∈ S such that F (x) = 0 and F (y) = 1).

The depth of F is the minimum d such that F ∈ Fd. The leafsize of a formula is
the number of depth-0 subformulas. Let size of a formula refer to the number of depth-1
subformulas. Inductively,

leafsize(F) =
{

0 if F ∈ F0,∑
G∈G size(G) if F = (γ,G) ∈ F \ F0,

size(F) =

0 if F ∈ F0,

1 if F ∈ F1,∑
G∈G size(G) if F = (γ,G) ∈ F \ (F0 ∪ F1).

Clearly size(F) ≤ leafsize(F). (Note that size is within a factor 2 of the number of gates in F ,
which is how one usually measures size of circuits.) We define these two complexity measures
since our lower bound naturally applies to size, while the upper bounds are naturally stated
in terms of leafsize.

2.3 The Action of {0, 1}n

We define a group action of {0, 1}n on F as follows. For u ∈ {0, 1}n and F ∈ F , let Fu be
the formula obtained from F by exchanging literals Xi and Xi for every i ∈ [n] with ui = 1.
Formally, this action is defined inductively by

Fu =

Xi (resp. Xi) if F = Xi (resp. Xi) and ui = 0,
Xi (resp. Xi) if F = Xi (resp. Xi) and ui = 1,
(γ, {Gu : G ∈ G}) if F = (γ,G).

Clearly Fu has the same depth and size as F . Note that Fu(x) = F (x⊕u) for all x ∈ {0, 1}n.
If U is a linear subspace of {0, 1} (i.e. subgroup of {0, 1}n), then we say that an AC0

formula F is:
syntactically U -invariant if Fu = F for every u ∈ U ,
semantically U -invariant if F (x) = F (x⊕ u) for every u ∈ U and x ∈ {0, 1}n.

As remarked in Section 1, syntactic U -invariance implies semantic U -invariance (but not
conversely).

3 As a minor convenience, we do not include constants 0 and 1 in F0, nor do we allow identical sibling
subformulas (i.e. multisets G) in the definition of Fd+1. This is without loss of generality: the depth-d
formula size of a Boolean function is unaffected by these restrictions.

B. Rossman 93:5

2.4 Upper Bound
We briefly review the smallest known construction of bounded-depth formulas for PARITY
and observe that these formulas are syntactically P -invariant.

I Proposition 3. For all d, n ≥ 1, the n-variable PARITY function is computable by
syntactically P -invariant depth d + 1 formulas of leafsize at most n·2dn1/d where P is the
even-weight subspace of {0, 1}n. If n1/d is an integer, this bound improves to n·2d(n1/d−1).

Proof. For an optimal choice of k, n1, . . . , nk ≥ 1 with n1 + · · · + nk = n, we construct a
syntactically Pn-invariant depth d+ 1 formula for PARITYn — with output gate OR (resp.
AND) — by composing the brute-force DNF (resp. CNF) for PARITYk (in which each
variable occurs 2k−1 times) with syntactically Pni

-invariant depth d formulas for PARITYni

(or 1 − PARITYni
) with output gate AND (resp. OR). The minimum leafsize β(d + 1, n)

achievable by this construction is given by the recurrence

β(1, n) =
{

1 if n = 1,
∞ if n > 1,

β(d+ 1, n) = min
k,n1,...,nk≥1
n1+···+nk=n

2k−1
k∑
i=1

β(d, ni).

We now observe:
If n1/d is an integer, we get β(d+ 1, n) ≤ n·2d(n1/d−1) by setting k = n1/d and n1 = · · · =
nk = n(d−1)/d.
For arbitrary d, n ≥ 1, we get β(d+1, n) ≤ n·2dn1/d by setting k = dn/te and n1, . . . , nk ∈
{t− 1, t} where t = bn(d−1)/dc. J

An aside

I suspect that, by analyzing the above recurrence more carefully, the upper bound in
Proposition 3 can be improved to O(n·2d(n1/d−1)) for all d ≤ dlogne. This is suggested by
the observation that PARITY is computable by syntactically P -invariant formulas of depth
dlogne+ 1 and leafsize O(n2). Note that the upper bound of Proposition 3 is slack (except
when n1/d is an integer), since setting d = logn, we have n·2d(n1/d−1) = n2 and n·2dn1/d = n3.
Also note that O(n·2d(n1/d−1)) is not an upper bound for d � logn, since Ω(n2) is lower
bound even for non-invariant formulas of unbounded depth [12].

3 Linear-Algebraic Lemmas

In this section, we prove a linear-algebraic lemma (Lemma 9) which plays a key role in our
lower bound. Recall that S, T, U, V range over the set of linear subspaces of {0, 1}n, denoted
by L.

I Definition 4. For linear spaces U ⊆ V , a linear retraction from V to U is a linear function
ρ : V → U such that ρ(u) = u for every u ∈ U .

We next give a small lemma on the existence of linear retractions with small (one-sided)
Hamming-weight distortion.

I Lemma 5. If U is a codimension-k subspace of V , then there exists a linear retraction
ρ : V → U such that |ρ(v)|/|v| ≤ k + 1 for all v ∈ V .

Proof. Greedily choose a basis w1, . . . , wk for V over U such that wi has minimal Hamming
weight among elements of V \ Span(U ∪ {w1, . . . , wi−1}) for all i ∈ [k]. Each v ∈ V has a

ICALP 2017

93:6 Subspace-Invariant AC0 Formulas

unique representation v = u⊕ a1w1 ⊕ · · · ⊕ akwk where u ∈ U and a1, . . . , ak ∈ {0, 1}. Let
ρ : V → U be the map v 7→ u and observe that this is a linear retraction.

To show that |ρ(v)| ≤ (k + 1)|v|, we first notice that |aiwi| ≤ |v| for all i ∈ [k]. If ai = 0,
this is obvious, as |aiwi| = 0. If ai = 1, then v ∈ V \ Span(U ∪ {w1, . . . , wi−1}), so by our
choice of wi we have |aiwi| = |wi| ≤ |v|. Completing the proof, we have

|ρ(v)| = |v ⊕ a1v1 ⊕ · · · ⊕ akvk|
≤ |v|+ |a1v1|+ · · ·+ |akvk|
≤ (k + 1)|v|. J

I Definition 6. Define sets L2 and L4 as follows:

L2 =
{

(U, V) ∈ L × L : U is a codimension-1 subspace of V
}
,

L4 =
{

((S, T), (U, V)) ∈ L2 × L2 : T ∩ U = S and T + U = V
}
.

The next lemma shows that L4 is symmetric under orthogonal complementation.

I Lemma 7. For all ((S, T), (U, V)) ∈ L4, we have ((V ⊥, U⊥), (T⊥, S⊥)) ∈ L4.

Proof. This follows from the properties of the orthogonal complement listed in §2.1. Consider
any ((S, T), (U, V)) ∈ L4. First note that (V ⊥, U⊥) ∈ L2 by the fact that U ⊆ V =⇒ V ⊥ ⊆
U⊥ and dim(U⊥) − dim(V ⊥) = (n − dim(U)) − (n − dim(V)) = dim(V) − dim(U) =
1. Similarly, we have (T⊥, S⊥) ∈ L2. We now have ((V ⊥, U⊥), (T⊥, S⊥)) ∈ L4 since
U⊥ ∩ T⊥ = (T + U)⊥ = V ⊥ and U⊥ + T⊥ = (T ∩ U)⊥ = S⊥. J

I Lemma 8. For all S ⊂ T ⊆ V such that (S, T) ∈ L2, there exists U ⊇ S such that
((S, T), (U, V)) ∈ L4 and

min
x∈V \U

|x| ≥ 1
dim(V)− dim(T) + 1 min

y∈T\S
|y|.

Proof. By Lemma 5, there exists a linear retraction ρ : V → T such that |ρ(v)|/|v| ≤
dim(V) − dim(T) + 1 for all v ∈ V . Let U = ρ−1(S) and note that U is a codimension-1
subspace of V . (This follows from applying the Rank-Nullity Theorem to linear functions
ρ : V → T and ρ�U : U → S and noting that ker(ρ) = ker(ρ�U).) We have S = T ∩ U and
T + U = V , hence ((S, T), (U, V)) ∈ L4. Choosing x with minimum Hamming weight in
V \ U , we observe that ρ(x) ∈ T \ S and |x| ≥ |ρ(v)|/(dim(V)− dim(T) + 1), which proves
the lemma. J

I Lemma 9. For all S ⊆ U ⊂ V such that (U, V) ∈ L2, there exists T ⊆ V such that
((S, T), (U, V)) ∈ L4 and

min
x∈S⊥\T⊥

|x| ≥ 1
dim(U)− dim(S) + 1 min

y∈U⊥\V ⊥
|y|.

Proof. Follows directly from Lemmas 7 and 8. J

4 Proof of Theorem 1

The following lemma gives the base case of Theorem 1 for depth-2 formulas (a.k.a. DNFs
and CNFs). In this case, we merely require the hypothesis of semantic rather than syntactic
U -invariance. The proof is similar to the standard argument showing that depth-2 formulas
for PARITY require 2n−1 clauses of width n.

B. Rossman 93:7

I Lemma 10. Suppose F is a depth-2 formula and (U, V) ∈ L2 such that F (U) ≡ b and
F (V \ U) ≡ 1 − b for some b ∈ {0, 1}. Then size(F) ≥ 2m−1 and leafsize(F) ≥ m·2m−1

where m = min{|x| : x ∈ U⊥ \ V ⊥}.

Proof. Without loss of generality, assume that F is a DNF formula (i.e. an OR-of-ANDs
formula) and F (U) ≡ 0 and F (V \ U) ≡ 1. (The argument is similar if we replace DNF
with CNF, or if we assume that F (U) ≡ 1 and F (V \ U) ≡ 0.) We further assume that F is
minimal with respect to the number of clauses and the number of literals in any particular
clause.

Consider a clause G of F . This clause G is the AND of some number ` of literals. Without
loss of generality, suppose these literals involve the first ` coordinates. Let π be the projection
map {0, 1}n → {0, 1}`. Then there is a point p ∈ {0, 1}` such that G(x) = 1⇐⇒ π(x) = p

for all x ∈ {0, 1}n. Observe that G(U) ≡ 0 (since F (U) ≡ 0) and, therefore, p /∈ π(U).
We claim that p ∈ π(V \ U). To see why, assume for contradiction that p /∈ π(V \ U).

Then G(V) ≡ 0. But this means that the clause G can be removed from F and the resulting
function would still satisfy F (U) ≡ 0 and F (V \ U) ≡ 1. This contradicts the minimality of
F with respect to number of clauses.

For each i ∈ [`], let p(i) be the neighbor of p in {0, 1}` along the ith coordinate. We
claim that p(1), . . . , p(`) ∈ π(U). Without loss of generality, we give the argument showing
p(`) ∈ π(U). Let G′ be the AND of the first `− 1 literals in G, and let F ′ be the formula
obtained from F by replacing G with G′. For all x ∈ {0, 1}n, we have G(x) ≤ G′(x) and
hence F (x) ≤ F ′(x). Therefore, F ′(V \ U) ≡ 1. We now note that there exists u ∈ U such
that F ′(u) = 1 (otherwise, we would have F ′(u) ≡ 0, contradicting the minimality of F with
respect to the width of each clause). Since F (u) = 0 and G′ is the only clause of F ′ distinct
from the clauses of F , it follows that G′(u) = 1. This means that u{1,...,`−1} = p{1,...,`−1}.
We now have π(u) = p(`) (otherwise, we would have π(u) = p and therefore G(u) = 1 and
F (u) = 1, contradicting that fact that F (U) ≡ 0).

Since π is a linear function and π(U) 6= π(V), it follows that π(U) is a codimension-
1 subspace of π(V). The fact that p ∈ π(V \ U) and p(1), . . . , p(`) ∈ π(U) now forces
π(V) = {0, 1}` and π(U) = {q ∈ {0, 1}` : |q| is even}. Therefore, 1` ∈ π(U)⊥ \ π(V)⊥
(writing 1` for the all-1 vector in {0, 1}`). It follows that 1`0n−` ∈ U⊥ \ V ⊥ and, therefore,
` = |1`0n−`| ≥ m (by definition of m).

We now observe that

P
v∈V

[G(v) = 1] = P
v∈V

[π(v) = p] = P
q∈π(V)

[q = p] = P
q∈{0,1}`

[q = p] = 2−` ≤ 2−m.

That is, each clause in F has value 1 over at most 2−m fraction of points in V . Since the set
V \ U has density 1/2 in V , we see that 2m−1 clauses are required to cover V \ U .

Subject to the stated minimality assumptions on F (with respect to the number of clauses
and, secondarily, to the width of each clause), we conclude that F contains ≥ 2m−1 clauses,
each of width ≥ m. Therefore, size(F) ≥ 2m−1 and leafsize(F) ≥ m·2m−1. J

On to our main result:

I Theorem 1 (restated). Let U ⊂ V be linear subspaces of {0, 1}n, and suppose F is a
syntactically U-invariant depth d+ 1 formula which is non-constant over V . Then F has
size at least 2d(m1/d−1) where m = min{|x| : x ∈ U⊥ \ V ⊥}.

Proof. We first observe that it suffices to prove the theorem in the case where (U, V) ∈ L2,
that is, U has codimension-1 in V . To see why, note that for any U ⊂ V where F is

ICALP 2017

93:8 Subspace-Invariant AC0 Formulas

syntactically U -invariant and non-constant over V , there must exist U ⊂W ⊆ V such that
(U,W) ∈ L2 and F is non-constant over W . Assuming the theorem holds with respect
to U ⊂ W , it also hold with respect to U ⊂ V , since U⊥ \ V ⊥ ⊆ U⊥ \W⊥ and hence
min{|x| : x ∈ U⊥ \ V ⊥} ≥ min{|x| : x ∈ U⊥ \W⊥}.

Therefore, we assume (U, V) ∈ L2 and prove the theorem by induction on d. The base
case d = 1 is established by Lemma 10.4 For the induction step, let d ≥ 2 and assume
F ∈ Fd+1 is a syntactically U -invariant and non-constant over V . Without loss of generality,
we consider the case where F = (OR,G) for some nonempty G ⊆ Fd. (The case where
F = (AND,G) is symmetric, with the roles of 0 and 1 exchanged.)

Since F is syntactically U -invariant, we have Gu ∈ G for every u ∈ U and G ∈ G. We
claim that it suffices to prove the theorem in the case where the action of U on G is transitive
(i.e. G = {Gu : u ∈ U} for every G ∈ G). To see why, consider the partition G = G1 t · · · t Gt,
t ≥ 1, into orbits under U . For each i ∈ [t], let Fi be the formula (OR,Gi). Note that Fi is
syntactically U -invariant and U acts transitively on Gi. Clearly, we have F (v) =

∨
i∈[t] Fi(v)

for all v ∈ V . Since every U -invariant Boolean function is constant over sets U and V \ U
(using the fact that U has codimension-1 in V), this means that each Fi satisfies either
Fi(V) ≡ 0 or F (v) = Fi(v) for all v ∈ V . Because F is non-constant over V , it follows that
there exists i ∈ [t] such that F (v) = Fi(v) for all v ∈ V . In particular, this Fi is non-constant
over V . Since size(F) ≥ size(Fi), we have reduced proving the theorem for F to proving to
theorem for Fi.

In light of the preceding paragraph, we proceed under the assumption that U acts
transitively on G. Fix an arbitrary choice of G ∈ G. Let

S = StabU (G) (= {u ∈ U : Gu = G}),
a = dim(U)− dim(S) + 1.

By the Orbit-Stabilizer Theorem,

|G| = |OrbitU (G)| = [U : S] = |U |/|S| = 2a−1.

Since size(G′) = size(G) for every G′ ∈ G, we have

size(F) =
∑
G′∈G

size(G′) = |G| · size(G) = 2a−1 · size(G). (1)

We next observe that Gu is syntactically S-invariant for every u ∈ U (in fact, S =
StabU (Gu)). This follows from the fact that (Gu)s = Gu⊕s = (Gs)u = Gu for every s ∈ S.

By Lemma 9, there exists T such that ((S, T), (U, V)) ∈ L4 and

min
x∈S⊥\T⊥

|x| ≥ 1
dim(U)− dim(S) + 1 min

y∈U⊥\V ⊥
|y| = m

a
.

We claim that there exists u ∈ U such that Gu is non-constant on T . There are two cases to
consider:

Case 1: Suppose F (U) ≡ 0 and F (V \ U) ≡ 1.
We have G(U) ≡ 0 and G(V) 6≡ 0. Fix any v ∈ V \U such that G(v) = 1. In addition, fix
any w ∈ T \U (noting that T \U is nonempty since U+T = V and U ⊂ V). Let u = v⊕w
and note that u ∈ U (since U is a codimension-1 subspace of V and v, w ∈ V \ U). We
have Gu(U) ≡ 0 and Gu(w) = G(w ⊕ u) = G(v) = 1. By the S-invariance of Gu, it
follows that Gu(S) ≡ 0 and Gu(T \ S) ≡ 1. In particular, Gu is non-constant on T .

4 Note that Theorem 1 makes sense even when d = 0, if we interpret 0·(m1/0 − 1) as 0 if m = 1 and ∞ if
m > 1.

B. Rossman 93:9

Case 2: Suppose F (U) ≡ 1 and F (V \ U) ≡ 0.
We have G(U) 6≡ 0 and G(V \ U) ≡ 0. Fix any u ∈ U such that G(u) = 1. In addition,
fix any w ∈ T \ U and let v = w ⊕ u. We have Gu(v) = G(v ⊕ u) = G(w) = 0 (since
w ∈ V \ U and G(V \ U) ≡ 0). We also have Gu(~0) = G(u) = 1 where ~0 is the origin
in {0, 1}n. By S-invariance of Gu, it follows that Gu(S) ≡ 1 and Gu(T \ S) ≡ 0. In
particular, Gu is non-constant on T .

Since Gu is syntactically S-invariant and non-constant on T and depth(Gu) = (d− 1) + 1,
we may apply the induction hypothesis to Gu. Thus, we have

size(G) = size(Gu) ≥ 2(d−1)((m/a)1/(d−1)−1). (2)

Since d ≥ 2, Lemma 2 tells us

a+ (d− 1)(m/a)1/(d−1) ≥ d(m/a)1/d. (3)

Putting together (1), (2), (3), we get the desired bound

size(F) ≥ 2a−1 · 2(d−1)((m/a)1/(d−1)−1)

= 2a+(d−1)(m/a)1/(d−1)−d

≥ 2d(m1/d−1).

This completes the proof of Theorem 1. J

5 Further Remarks and Open Questions

5.1 Another Application of Theorem 1
Theorem 1 applies to interesting subspaces U besides the even-weight subspace P . Here we
describe one example. Let G be a simple graph with n edges, so that {0, 1}n is identified with
the set of spanning subgraphs of G. The cycle space of G is the linear subspace Z ⊆ {0, 1}n
consisting of even subgraphs of G (i.e. spanning subgraphs in which every vertex has even
degree). Consider the even-weight subspace Z0 = {z ∈ Z : |z| is even}. Provided G is
non-bipartite, Z0 is a codimension-1 subspace of Z.

Let m = min{|z| : z ∈ Z⊥0 \Z⊥} as in Theorem 1 with U = Z0 and V = Z. It is not hard
to show that m is equal to the minimum number of edges whose removal makes G bipartite.
(It follows that m = n− c where c is the number edges in a maximum cut in G.) Moreover,
if G is a uniform random 3-regular graph on 2

3n vertices, then m = Ω(n) asymptotically
almost surely [5]. By these observations, we have:

I Corollary 11. Let Z ⊆ {0, 1}n be the cycle space of a random 3-regular graph with n edges,
and let Z0 = {z ∈ Z : |z| is even}. Then a.a.s. every syntactically Z0-invariant depth d+ 1
formula that computes PARITYn over Z has size 2d(Ω(n)1/d−1).

5.2 The (U, V)-Search Problem
For linear subspaces U ⊂ V of {0, 1}n, consider the following (U, V)-search problem: there
is a hidden vector x ∈ V \ U and the goal is to learn a nonzero coordinate of x (i.e. any
i ∈ [n] such that wi = 1) by asking queries (i.e. yes/no questions) in the form of linear
functions {0, 1}n → {0, 1}. The d-round query complexity of this problem is the minimum
number of queries required by protocols that solve this problem on all w ∈ V \ U by asking

ICALP 2017

93:10 Subspace-Invariant AC0 Formulas

queries in d consecutive batches (thus, 1-round = non-adaptive). By a slightly simpler
version of the argument in the proof of Theorem 1, we can show a d(m1/d − 1) lower
bound on the d-round query complexity of the (U, V)-search problem for all U ⊂ V where
m = min{|x| : x ∈ U⊥ \ V ⊥}.

This (U, V)-search problem is, in some sense, related to the Karchmer-Wigderson game
where Alice gets u ∈ U and Bob gets v ∈ V \ U and their common goal is to learn a nonzero
coordinate of u⊕ v. For an appropriate definition of “U -invariant protocols” (i.e. whatever
comes from syntactically U -invariant formulas), we can translate the pair (u, v) to (0, u⊕ v)
without loss of generality and it becomes Alice’s task to learn a nonzero coordinate of u⊕ v
by asking linear queries.

5.3 Open Questions
We conclude by mentioning some open questions and challenges raised by this work:
1. Does the lower bound of Theorem 1 (or something weaker like 2mΩ(1/d)) hold under the

weaker assumption of semantic U -invariance, in place of syntactic U -invariance? What
about Corollary 11?

2. Considering leafsize (rather than size, i.e. the number of depth-1 subformulas), improve
the lower bound of Theorem 1 from 2d(m1/d−1) to m·2d(m1/d−1).

3. Improve the upper bound of Proposition 3 from n·2dn1/d to O(n·2d(n1/d−1)) for all
d ≤ dlogne.

4. What is the maximum gap, if any, between U -invariant [depth d] formula size and
non-invariant [depth d] formula size?

Acknowledgements. I thank the anonymous referees for their helpful comments.

References
1 Miklos Ajtai. Symmetric systems of linear equations modulo p. In TR94-015 of the Elec-

tronic Colloquium on Computational Complexity, 1994.
2 Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory

of Computing Systems, pages 1–31, 2016.
3 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Ann. Pure

& Applied Logic, 100(1–3):141–187, 1999.
4 Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time computation over

unordered structures. Journal of Symbolic Logic, 67(3):1093–1125, 2002.
5 Béla Bollobás. The isoperimetric number of random regular graphs. European Journal of

combinatorics, 9(3):241–244, 1988.
6 Anuj Dawar. On symmetric and choiceless computation. In International Conference on

Topics in Theoretical Computer Science, pages 23–29. Springer, 2015.
7 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless polynomial time, count-

ing and the Cai-Fürer-Immerman graphs. Annals of Pure and Applied Logic, 152:31–50,
2008.

8 Larry Denenberg, Yuri Gurevich, and Saharon Shelah. Definability by constant-depth
polynomial-size circuits. Information and Control, 70(2-3):216–240, 1986.

9 Erich Grädel and Martin Grohe. Is polynomial time choiceless? In Fields of Logic and
Computation II, pages 193–209. Springer, 2015.

10 Johan Håstad. Almost optimal lower bounds for small depth circuits. In STOC’86: Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20,
1986.

B. Rossman 93:11

11 Neil Immerman. Descriptive complexity. Springer, 2012.
12 V.M. Khrapchenko. Complexity of the realization of a linear function in the class of π-

circuits. Mathematical Notes of the Academy of Sciences of the USSR, 9(1):21–23, 1971.
13 Martin Otto. The logic of explicitly presentation-invariant circuits. In International Work-

shop on Computer Science Logic, pages 369–384. Springer, 1996.
14 Søren Riis and Meera Sitharam. Generating hard tautologies using predicate logic and the

symmetric group. Logic Journal of IGPL, 8(6):787–795, 2000.
15 Benjamin Rossman. Choiceless computation and symmetry. In Fields of logic and compu-

tation, pages 565–580. Springer, 2010.
16 Benjamin Rossman. The average sensitivity of bounded-depth formulas. In Proc. 56th

Annual IEEE Symposium on Foundations of Computer Science, pages 424–430. IEEE, 2015.

ICALP 2017

On the Complexity of Quantified Integer
Programming
Dmitry Chistikov∗1 and Christoph Haase2

1 Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Warwick, UK; and
Department of Computer Science, University of Oxford, Oxford, UK
d.chistikov@warwick.ac.uk, dmitry.chistikov@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
christoph.haase@cs.ox.ac.uk

Abstract
Quantified integer programming is the problem of deciding assertions of the form Qkxk . . . ∀x2
∃x1 : A·x ≥ c where vectors of variables xk, . . . ,x1 form the vector x, all variables are interpreted
over N (alternatively, over Z), and A and c are a matrix and vector over Z of appropriate sizes.
We show in this paper that quantified integer programming with alternation depth k is complete
for the kth level of the polynomial hierarchy.

1998 ACM Subject Classification G.2 Discrete Mathematics

Keywords and phrases integer programming, semi-linear sets, Presburger arithmetic, quantifier
elimination

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.94

1 Introduction

The problem of integer programming is, given a system of linear inequalities A · x ≥ b, to
decide whether there exists a solution for x in the non-negative integers. This problem has
been studied for decades, and its 0–1 version (in which the components of x are constrained
to be either 0 or 1) is one of Karp’s seminal 21 NP-complete problems [8]. In this paper, we
study quantified integer programming (QIP), an extension of integer programming where
some of the variables can be quantified universally – so that its instances have the form

Qkxk . . . ∀x2. ∃x1 : A · x ≥ c (1)

where Qi ∈ {∃,∀} and x consists of all first-order variables appearing in the vectors xi.
Our main contribution is settling the complexity of QIP with k quantifier blocks (as

above): we prove this problem complete for the kth level of the polynomial hierarchy, similarly
to the quantified version of SAT.1 We also show that QIP with an unbounded number of
quantifier blocks is PSPACE-hard and decidable in STA(∗, 2nO(1)

, n) ⊆ EXPSPACE.2

∗ Supported by the ERC grant AVS-ISS (648701).
1 As in the case of quantified CNF SAT, the innermost block of universal quantifiers, if present, is

disregarded; e.g., the ∀∗∃∗∀∗ fragment is complete for ΠP
2 . So we find fragments of QIP complete for

ΣP
1 = NP, ΠP

2 , ΣP
3 , . . . , but not for coNP = ΠP

1 , ΣP
2 , . . .

2 The complexity class STA(s(n), t(n), a(n)) was introduced by Berman [1] and contains all decision
problems that can be decided by an alternating Turing machine in time t(n) using space at most s(n)
and alternating at most a(n) times on every computation branch.

EA
T

C
S

© Dmitry Chistikov and Christoph Haase;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 94; pp. 94:1–94:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.94
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

94:2 On the Complexity of Quantified Integer Programming

Related work and discussion. While the decidability of QIP is immediate – it can be
viewed as a syntactic fragment of Presburger arithmetic, the (decidable) first-order theory of
the natural numbers with addition and order, in which matrix formulas are constrained to be
conjunctions of linear inequalities – its computational complexity has been unknown. It is, of
course, not difficult to see that QIP (and in fact Presburger arithmetic) is PSPACE-complete
if the interpretation of every first-order variable xi is restricted to an interval [li, ui] that is
given as part of the input: xi ∈ [li, ui]; see, e.g., [14]. But if xi ∈ N, then the best known
upper bounds seem to be STA(∗, 22nO(1)

, O(n)) ⊆ 2-EXPSPACE, the generic upper bound for
deciding Presburger arithmetic [1], and the (k− 1)th level of the weak EXP hierarchy for the
fragment with k quantifier blocks [6]. The best known lower bound has been ΠP

2 , established
recently by the authors for Π2-instances of QIP [3, Sec. 4.2].

It may be surprising, and certainly was to the authors, that the complexity of QIP, a
natural decision problem, has not yet been established. The main reason is probably that
standard quantifier-elimination and automata-based techniques – which are at the core of
decision procedures for Presburger arithmetic – fail to yield tight upper bounds for QIP:

Weispfenning shows that quantifier-elimination procedures for Presburger arithmetic
run in time 2O(|Φ|(4j)k

) [17, Thm. 2.1], where |Φ| denotes the size of an input formula Φ
with k quantifier blocks and at most j variables in each quantifier block, and that this
upper bound is essentially tight [18, Thm. 3.1]. In particular, even the NP upper bound
for standard integer programming instances (Σ1-IP) cannot be obtained by quantifier
elimination.

Automata-based decision procedures for Presburger arithmetic do not suffice either to
obtain the bounds for QIP that we establish in this paper. Klaedtke shows [9, Thm. 4.6]
that the size of the minimal deterministic finite automaton (DFA) for a formula Φ is upper-
bounded by 2|Φ|(j+1)(k+4)

, which does not give any complexity bounds asymptotically
better than those obtained via quantifier elimination.

Yet another approach to QIP is to construct the semi-linear representation of the set of
solutions to the system of linear inequalities of the matrix formula, and then to repeatedly
project and complement this set. By an application of [2, Thm. 21], this approach gives
a ΠP

2 upper bound for the Π2-fragment of QIP; however, as every complementation step
increases the number of generators of semi-linear sets by one exponential, this approach
would only yield a non-elementary upper bound for general QIP instances and fail to
place fragments with bounded alternation depth inside PSPACE.

Our main results are, in short, obtained by means of a new quantifier elimination procedure
on hybrid linear sets, which are semi-linear sets that represent sets of solutions to systems
of linear inequalities. While existential projection (L 7→ {x | ∃y. (x, y) ∈ L}) is a trivial
operation on semi-linear sets (in generator representation), in this paper we define a dual
operation, which we call universal projection (L 7→ {x | ∀y. (x, y) ∈ L}), and show that its
application enables us to eliminate blocks of universal quantifiers without resorting to double
complementation (∀ = ¬∃¬; this would lead to a non-elementary blowup). We spell out
(these and other) results of the paper in more detail in Section 3 and outline the techniques
in Section 4.

Concurrently with our work and building upon a theorem of Kannan [7], Nguyen and
Pak [11] have shown that Presburger arithmetic with fixed number of variables and fixed
Boolean structure of the matrix formula (and, by necessity, where the total number of
occurrences of atomic predicates is fixed) can be solved in polynomial time.

D. Chistikov and C. Haase 94:3

2 Preliminaries

By Z and N we denote the sets of integers and non-negative integers, respectively. Given
sets X and Y , we denote by X ⇒ Y the set of all functions with domain X and co-domain
Y . Let X be a countably infinite set of first-order variables, and with no loss of generality
assume some total ordering ≺ on X . Given a finite set X ⊆ X , an X-indexed integer vector
is a function v ∈ (X ⇒ Z), and an X-indexed non-negative integer vector is a function
v ∈ (X ⇒ N). We often call v just an integer vector respectively a (non-negative) vector
when X is clear from the context. Due to the total ordering on X , we can interchangeably
write v as a tuple (v1, . . . , vn) ∈ Zn such that n = |X|. We denote by ei the ith unit vector
(mapping the ith variable to 1 and all other variables to 0). Addition and multiplication of a
vector by a scalar value are defined component-wise. Given a set of non-negative vectors
V ⊆ Nn, its complement is defined as V := {w ∈ Nn : w /∈ V }.

A vector of (first-order) variables over X ⊆ X is a tuple y = (y1, . . . , y`) ∈ X` such
that each yi ∈ X and yi ≺ yi+1. For vi ∈ (Xi ⇒ Z), i ∈ {1, 2}, with X1 ∩ X2 = ∅, by
v1 ◦ v2 we denote the vector from (X1 ∪ X2) ⇒ Z that agrees with vi on Xi for both
i ∈ {1, 2}. Given a vector v ∈ (X ⇒ N) and a vector of variables y = (y1, . . . , y`) ∈ X`, the
projection of v removing variables y is the vector πy(v) ∈ ((X \ {y1, . . . , y`})⇒ N) such that
πy(v)(x) := v(x) for all x ∈ X \ {y1, . . . , y`}. This definition of projection naturally extends
to sets of vectors:

πy(V) :=
⋃

v∈V
{πy(v)} = {v1 | there is a v2 ∈ ({y1, . . . , y`} ⇒ N) such that v1 ◦ v2 ∈ V }.

For sets of vectors V ⊆ (X ⇒ N), we additionally define the universal projection

π∗y(V) := πy(V) = {v1 | for all v2 ∈ ({y1, . . . , y`} ⇒ N) the vector v1 ◦ v2 is in V }.

For a vector v ∈ Zn, we denote by ‖v‖ := max{maxx∈X |v(x)|, 2} the maximum norm
of v. For V ⊆ Zn, we define ‖V ‖ := maxv∈V ‖v‖. For a matrix A, we define ‖A‖ to be the
norm of its set of column vectors.

Quantified integer programming (QIP). LetA be an n×m integer matrix, x = (x1, . . . , xm) ∈
Xm a vector of first-order variables for some finite X ⊆ X , and c ∈ Zn. We call S : A ·x ≥ c
a system of linear inequalities. A solution to S is a vector v ∈ (X ⇒ Z) such that A · v ≥ c,
where “≥” is interpreted component-wise. We denote by JSK ⊆ (X ⇒ N) the set of all
non-negative solutions to S.

Let x1, . . . ,xk be vectors of first-order variables over disjoint sets of variables X1, . . . , Xk,
and let S : A · x ≥ c be a system of linear inequalities. A formula of QIP is given by

ψ = Qkxk. Qk−1xk−1 . . . Q1x1 : A · x ≥ c,

where S : A · x ≥ c is a system of linear inequalities as above, Qi ∈ {∃,∀}, and Qi 6= Qi+1
for all 1 ≤ i < k, i.e., quantifiers alternate between blocks of variables. The size |ψ| of ψ is
the number of bits required to write down ψ, where we assume binary encoding of numbers,
and also that |ψ| ≥ max{2, n+m, log‖A‖, log‖c‖}. The set JψK ⊆ (X \ (X1 ∪ · · · ∪Xk)⇒ N)
of non-negative solutions to ψ is inductively defined as follows:

for k = 0, JψK := JSK;
for k > 0 and ψ = ∃xk.ψk, JψK := πxk

JψkK; and
for k > 0 and ψ = ∀xk.ψk, JψK := π∗xk

JψkK.

ICALP 2017

94:4 On the Complexity of Quantified Integer Programming

A set M ⊆ (X ⇒ N) is QIP-definable if there is a QIP-formula ψ such that M = JψK.
Whenever X ⊆ X1 ∪ · · · ∪ Xk, we say that ψ is a sentence. In this case, ψ is valid if
JψK = {>} where > denotes the unique function from ∅ to N, and invalid if JψK = ∅. If
X \ (X1 ∪ · · · ∪Xk) = Y = {y1, . . . , ym}, we write ψ(y1, . . . , ym) to indicate that ψ is open
in Y . Given a1, . . . , am ∈ N, we write ψ[a1/x1, . . . , am/xm] to denote the instance of QIP
obtained from replacing every occurrence of xi by ai in S. We say that two QIP formulas ψ
and φ are equivalent if JψK = JφK; note that we may always assume with no loss of generality
that ψ and φ are open in the same set of variables.

A (valid) instance of the QIP problem is a (valid) sentence ψ. We call such a ψ an
instance of Σk-IP if Qk = ∃, and an instance of Πk-IP if Qk = ∀. The alternation depth of
ψ is the number k of quantifier blocks.

Hybrid linear and semi-linear sets. Given finite sets B,P = {p1, . . . ,pn} ⊆ Nm called base
and period vectors, the hybrid linear set generated by B and P is the set

L(B,P) := {b+ λ1 · p1 + · · ·+ λn · pn : b ∈ B, λi ∈ N, 1 ≤ i ≤ n} .

The representation of L(B,P) as the pair B,P (written explicitly) is called the generator
representation. If B is singleton then L(B,P) is called a linear set; a finite union of (hybrid)
linear sets is called a semi-linear set. For a hybrid linear set in the generator representation
L = L(B,P), we denote ‖L‖ := max(max‖B‖,max‖P‖).

Hybrid linear sets represent sets of solutions to systems of linear inequalities and equalities.
The following bounds on the norm in the generator representation follow from [12, Cor. 1]
and [2, Prop. 4].

I Proposition 1. Let S : A ·x ≥ c be a system of linear inequalities such that A is an n×m
integer matrix. Then JSK = L(B,P) such that ‖B‖, ‖P‖ ≤ (m · ‖A‖+ ‖c‖+ 2)n+m.

3 Summary

The main result of this paper is the following theorem.

I Theorem 2. Σk-IP is complete for ΣP
k if k is odd, and Πk-IP is complete for ΠP

k if k is
even.

What happens if the parity of k is different? In this case the innermost quantifiers are
universal, and it turns out that they can be eliminated in a trivial way.

I Corollary 3. Σk+1-IP is complete for ΣP
k if k is odd, and Πk+1-IP is complete for ΠP

k if k
is even.

The lower bound of Theorem 2 is proved by a reduction from an alternating version of the
subset sum problem, which is essentially shown complete for the respective levels of the
polynomial-time hierarchy by Travers [15]. Our reduction and more details are given in
Section 7.

The upper bound of Theorem 2 is more challenging. Note that in the well-known case
of Σ1-IP, i.e., of the standard integer programming, in order to prove membership of the
problem in NP, one needs to obtain polynomial upper bounds on the bit size of minimal
solutions to systems of integer linear inequalities. Such bounds were derived by, e.g., von zur
Gathen and Sieveking [16]. In our work, we build upon these bounds and generalize them
from Σ1-IP instances to QIP instances.

D. Chistikov and C. Haase 94:5

I Proposition 4 (Small Witness Property). For a QIP instance ψ of the form (1) with k
quantifier blocks, the validity of ψ does not change if variables of the vector xk (bound by
the quantifiers of the outermost block) are interpreted over [0,M − 1] instead of N, where
logM = |ψ|O(k).

The domains of other variables can then be bounded in turn as follows – which places QIP
with fixed alternation depth into PH.

I Proposition 5 (Relativization-Type Theorem). For a QIP instance ψ of the form (1) with k
quantifier blocks, the validity of ψ does not change if, for each i ∈ [1, k], all variables of the
vector xi (bound by the quantifiers of the ith innermost block) are interpreted over [0,Mi− 1]
instead of N, where logMi = |ψ|O(2k−i) and the constant of O(·) is independent of ψ, k,
and i.

Let us point out that in Proposition 5 it is not possible to substitute [0,M − 1] for the range
of all variables; not only using M = maxMi, but in fact using any finite M . For example,
the sentence ∀x. ∃y : y = x+ 1 is true if x and y are interpreted in N, but false if they are
interpreted in any finite segment [0,M − 1].

I Remark. The last observation, of course, also holds for Presburger arithmetic in general:
any relativization-type theorem (analogous to Proposition 5) must assign different ranges to
variables from different quantifier blocks; for instance, this reveals a flaw in the formulation
of the relativization-type Theorem 2.2 in [17].

Notice that our small witness property (Proposition 4) is specific to QIP, in the sense that
its bound is smaller by one exponential compared to its analogue for general Presburger
formulas [17, Thm. 2.2] (the latter is, in fact, tight, as shown implicitly in, e.g., [5, 6]). At
the core of our small witness property is a new quantifier elimination procedure for QIP:

I Proposition 6 (Quantifier Elimination). Given a QIP formula φ(x) with alternation depth
k, there exists an equivalent Σ1-IP formula φ′(x) with at most 2|ψ|O(k) existentially quantified
variables and numbers of absolute value bounded by 2|ψ|O(k) .

The ideas behind Propositions 4 and 6 are outlined in the following Section 4.

Further results. Our results give a uniform upper bound for the general QIP problem, where
the number of quantifier blocks can be unbounded. For such a QIP instance, our relativization-
type theorem (Proposition 5) suggests doubly exponential ranges for all variables, which
places QIP in the complexity class STA(∗, 2nO(1)

, n), as k ≤ n. The best lower bound is
PSPACE, by the arguments of Section 7.

Another by-product of our techniques is a pseudo-polynomial algorithm for QIP in which
the total number of variables is fixed and the matrix formula is A ·x = c instead of A ·x ≥ c.

In terms of auxiliary techniques, on the way to our quantifier elimination procedure
for QIP we discover (in Sections 5 and 6) some new properties of hybrid linear sets. In
particular, these properties enable us to find, as a side result, a polynomial-time algorithm
for universality of hybrid linear sets in the generator representation, even if all input numbers
are written in binary (Proposition 17 in Section 5).

Finally, our results extend in a natural way to the version of quantified integer program-
ming where all variables are interpreted over Z instead of over N: the results of Theorem 2
and Corollary 3 still hold.

ICALP 2017

94:6 On the Complexity of Quantified Integer Programming

4 Main ideas

As explained in Section 3, bounding the range of the outermost quantifier is the main technical
task in our development. In this section we explain how to do this, thus sketching the ideas
behind both the small witness property (Proposition 4) and the quantifier elimination
procedure (Proposition 6).

Suppose we start with a QIP instance ψ of the form (1); to find a suitable upper bound
Mk for the range of the xk variables of ψ, we will compute generator representations for the
sets of models of formulas

ψj(xk, . . . ,xj+1) = Qjxj . . . ∀x2. ∃x1 : A · x ≥ c

for all j ∈ [0, k], where, as previously, x is the concatenation of x1, . . . ,xk. For each value of
the parameter j, we will find upper bounds on the integers appearing in these representations,
starting with j = 0 and culminating with j = k. The upper bound for the value of parameter
j = k will be a valid choice for Mk.

Let us now describe this computation in more detail. Consider a simple abstract example,
a Σ3-IP instance with 3 variables, ψ : ∃x. ∀y. ∃z : A ·x ≥ c where x = (x, y, z). Let L0 ⊆ N3

be the set of all models of ψ0 : A ·x ≥ c; this is a hybrid linear set – denote it L(C0, Q0) – with
‖C0‖, ‖Q0‖ upper-bounded by a polynomial in ‖A‖, ‖c‖ with degree at most the size of ψ (see,
e.g., Proposition 1). It follows that log‖C0‖ and log‖Q0‖ are polynomial in the size of ψ. It
is clear that the the set L1 = Jψ1K = {(x, y) ∈ N2 | there exists a z ∈ N such that (x, y, z) ∈
L0} is simply a projection of L(C0, Q0), and in particular L1 = L(C,Q) where the sets C
and Q are obtained by removing z-coordinates from all vectors in C0 and Q0, respectively.
Hence, log‖C‖ and log‖Q‖ are also polynomial in the size of ψ. (This will, of course, work
for all occurrences of the existential quantifier in ψ, including ∃x in our example; but we will
need to handle the universal quantifier ∀y before handling ∃x.)

The next step is to transform the generator representation L(C,Q) of the set L1 = Jψ1K
into a generator representation of the set

L2 = Jψ2K = {x ∈ N | for all y ∈ N it holds that (x, y) ∈ L1}.

This set L2 is the universal projection of L(C,Q): L2 = π∗y(L(C,Q)); cf. Section 2. As the
main technical contribution of the present paper, we show that, in general, (i) universal
projections of hybrid linear sets are hybrid linear sets themselves and that (ii) universal
projection as an operation on hybrid linear sets can only lead to a moderate increase in the
magnitude of generators. (These results are summarized in Proposition 10 below. For the
usual projection, such facts are obvious.)

We now briefly introduce the techniques that we develop for handling the universal
projection. Define for each y ∈ N the cross section S(y) = {x ∈ N | (x, y) ∈ L1}, then

L2 =
⋂
y∈N

S(y) (2)

by definition. Each set S(y) is a semi-linear set (and, in fact, a hybrid linear set – because it is
essentially the intersection of two hybrid linear sets, see Lemma 13, and such intersections are
hybrid linear sets themselves, see, e.g., [2, Theorem 6]), but the intersection in (2) is infinite,
and, in general, an infinite intersection of semi-linear sets does not have to be semi-linear.3
However, we prove (in Section 5) the following lemma, which is our first and key insight:

3 For every n ≥ 1, consider the hybrid linear set Ln = N \ {0, n} = L([1, n− 1] ∪ {2n}, {n}). Given any
A ⊆ N, the intersection

⋂
n∈A

Ln = N \ ({0}∪A) is only semi-linear (i.e., ultimately periodic) if so is A.

D. Chistikov and C. Haase 94:7

I Lemma 7. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let the
components of vectors be indexed by m variables X, let U ⊆ X, |U | = s, and suppose u is
the corresponding vector of variables. Then the following statements hold:

If, for some variable ui ∈ U , the set Q contains no multiple of the unit vector ei associated
with ui, then π∗u(L) = ∅.
Otherwise, denote ai = min{a | a · ei ∈ Q} and H = {b ∈ Ns | 0 ≤ b(ui) ≤ ai − 1 for all
ui ∈ U}. Then

π∗u(L) =
⋂

b∈H

πu

(
L(C,Q) ∩ {u = b}

)
where {u = b} denotes the hybrid linear set {c ∈ Nm | c(ui) = b(ui) for all ui ∈ U}.

In other words, unless L2 = ∅, the intersection in (2) can be made finite without changing
its result:

⋂
y∈N S(y) =

⋂
y<N S(y), where logN is polynomial in the size of ψ. Since, as we

have just mentioned, hybrid linear sets are closed under finite intersections, this shows that
the set L2 is hybrid linear, and, in fact, the following general result follows:

I Proposition 8. A set in Nm is QIP-definable iff it is hybrid linear.

Furthermore, the set L2 turns out to have a small generator representation as well. Indeed,
we first observe that all sets S(y) have representations L(By, P) with a common set of
periods P and with ‖By‖, ‖P‖ small if so is ‖y‖ (Lemma 13 in Section 5). We then prove
(in Section 6) the following lemma, which is our second insight:

I Lemma 9. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. The
set S =

⋂n
i=1 Li has a representation S = L(B,Q) where ‖B‖ ≤ maxi∈[1,n]‖Li‖O(m3)

independently of n.

In other words, long intersections of hybrid linear sets with a common set of periods preserve
small representations, regardless of the number of sets in the intersection. Combining
Lemmas 7 and 9, we obtain the following statement:

I Proposition 10. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let
the components of vectors be indexed by m variables u,v, and suppose the vector u has
s variables. Then the universal projection π∗u(L) has a representation L(B,P) where P =
πu ({q ∈ Q | q1 = . . . = qs = 0}) and ‖B‖ ≤ ‖L‖O(m5).

In particular, we conclude that the set L2 =
⋂
y<N L(By, P) has a representation L(B,P)

with ‖B‖ < M where logM is polynomial in the size of ψ. But note that ψ = ψ3 is true
iff L2 = Jψ2K is non-empty; therefore, the validity of ψ is unchanged if the range of ∃x is
changed from N to [0,M − 1]. Thus, in our example the bound M3 can be chosen as M ; it
can hence be deduced that a ΣP

3 algorithm can handle such instances. The argument for the
general case follows the same lines.

5 Universal projection and universality

A semi-linear set in Nd is called universal if it is equal to Nd.

I Example 11. A one-dimensional hybrid linear set L = L(B,P) ⊆ N with B,P ⊆ N is
universal iff P \ {0} 6= ∅ and L contains the integer segment [0, k− 1] where k = minP \ {0}.
Indeed, the right-to-left direction is immediate: if L satisfies the conditions above, then
N = L([0, k − 1], {k}) ⊆ L. For the left-to-right direction, suppose L = N. First observe that
the set P \ {0} is non-empty because L is infinite. Therefore, k > 0 is well-defined. Second,
as L = N, the set L contains all natural numbers, in particular those in [0, k − 1].

ICALP 2017

94:8 On the Complexity of Quantified Integer Programming

The following lemma generalizes Example 11; recall that ei denotes the ith unit vector.

I Lemma 12. A hybrid linear set L = L(B,P) ⊆ Nm with B,P ⊆ Nm is universal iff
P contains vectors ai · ei for some ai > 0, for every i ∈ [1,m], and L contains the box
H = [0, a1 − 1]× . . .× [0, am − 1].

Proof. The right-to-left direction is immediate: if L satisfies the conditions of the lemma,
then Nm = L(H, {a1 · e1, . . . , am · em}) ⊆ L. For the left-to-right direction, suppose L = Nm.
We first prove that, for each i ∈ [1,m], the set of periods P contains a vector ai · ei with
ai > 0. Assume without loss of generality that i = 1 and denote N = N× 0 ⊆ Nm. Since L
is universal (and Q≥0×0 is a face of Qm≥0), N = L(B,P)∩N ⊆ L(B ∩N,P ∩N). Therefore,
the set P ∩N contains at least one vector a1 · e1 with a1 > 0, otherwise the set N would be
finite. Hence, P contains a1 · e1, . . . , am · em with all ai > 0. It now remains to note that, as
L = Nm, the set L contains all nonnegative integer vectors, in particular those in H. This
completes the proof. J

I Remark. If m = 1, then in the statement of Lemma 12, the condition H ⊆ L(B,P) is
equivalent to the condition H ⊆ B, as long as H is defined using the shortest vector a1 · e1
in P \ {0}. For m ≥ 2, this is no longer the case.

I Lemma 13. Suppose L = L(C,Q) ⊆ Nm and M = L(D,E) ⊆ Nm where E = {e1, . . . , es}.
Then the set L ∩M has a representation L(B,P) where P = {q ∈ Q | qs+1 = . . . = qm = 0}
and ‖B‖ ≤ ‖L‖O(m2) · ‖M‖O(m).

We can now restate and prove Lemma 7, which appeared previously in Section 4.

I Lemma 14. Let L = L(C,Q) ⊆ Nm be a hybrid linear set with C,Q ⊆ Nm. Let the
components of vectors be indexed by m variables X, let U ⊆ X, |U | = s, and suppose u is
the corresponding vector of variables. Then the following statements hold:

If, for some variable ui ∈ U , the set Q contains no multiple of the unit vector ei associated
with ui, then π∗u(L) = ∅.
Otherwise, denote ai = min{a | a · ei ∈ Q} and H = {b ∈ Ns | 0 ≤ b(ui) ≤ ai − 1 for all
ui ∈ U}. Then

π∗u(L) =
⋂

b∈H

πu

(
L(C,Q) ∩ {u = b}

)
where {u = b} denotes the hybrid linear set {c ∈ Nm | c(ui) = b(ui) for all ui ∈ U}.

Proof. Denote V = X \ U ; we will abuse notation and let symbols u and v refer to U - and
V -indexed integer vectors (wherever this creates no confusion). By definition, a vector v∗
belongs to π∗u(L) if and only if for all u the vector (u,v∗) belongs to L. This condition is
equivalent to the requirement that

L ∩ {(u,v) ∈ Nm | v = v∗} = {(u,v) ∈ Nm | v = v∗}. (3)

Note that {(u,v) ∈ Nm | v = v∗} = L((0,v∗), E) where E is the set of all unit vectors
associated with variables u. We now apply Lemma 13: L ∩ L((0,v∗), E) = L(Dv∗ , R) where
R = {q = (u,v) ∈ Q | v = 0}. Now the requirement (3) has the form L(Dv∗ , R) = {(u,v) ∈
Nm | v = v∗} and, by Lemma 12, is equivalent to the requirement that, first, the set R
contains some multiple of the unit vector, ai ·ei for some ai > 0, associated with each variable
ui ∈ U , and, second, the set L(Dv∗ , R) contains the box

H(v∗) = {(u,v) ∈ Nm | v = v∗, 0 ≤ ui ≤ ai − 1 for all variables ui ∈ U}.

D. Chistikov and C. Haase 94:9

Note that in the statement of Lemma 12 we can always choose ai · ei to be the shortest
vectors of the required form in R; expanding the definition of R then gives

ai = min{a | a · ei ∈ Q} for each variable ui ∈ U . (4)

We now make the following observations. First, the set R does not depend on the vector v∗,
but only on Q and on the way the variables are split into u and v. Therefore, the condition
that R contains ai·ei for some ai > 0 is either satisfied or not satisfied for all v∗ simultaneously.
In the former case, π∗u(L) = ∅; so it suffices to consider the latter case. We have the following
equivalence:

v∗ ∈ π∗u(L) iff (u,v∗) ∈ L(Dv∗ , R) for all u ∈ H

where H = {u | 0 ≤ ui ≤ ai − 1 for all variables ui ∈ U} and ai are as defined in (4). Since
L(Dv∗ , R) was chosen as L ∩ {(u,v) ∈ Nm | v = v∗}, this is the same as

v∗ ∈ π∗u(L) iff (u,v∗) ∈ L for all u ∈ H,

and the equation of the lemma follows. J

I Example 15. Consider any set L = L(C, {3 e2}) ⊆ N2 with a finite C ⊆ N2. Its universal
projection L′ = π∗y(L) = {x | (x, y) ∈ L for all y ∈ N} can be obtained by taking cross
sections Sb = {x | (x, b) ∈ L} for b = 0, 1, 2, removing the y coordinate, and intersecting
the results: L′ = πy(S0) ∩ πy(S1) ∩ πy(S2) where the projection πy : N2 → N removes the
y coordinate. So whether or not a specific a ∈ N belongs to L′ is fully determined by whether
the vectors (a, 0), (a, 1), and (a, 2) belong to L. In fact, this conclusion will also hold if
instead of L we consider any set M = L(C, {3 e2} ∪Q) where Q contains no vectors of the
form a · e2.

Intermezzo: Deciding universality of hybrid linear sets

The technique developed above, in fact, enables us to show that universality of hybrid linear
sets (given in generator representation) can be decided in polynomial time, even if all numbers
are written in binary. Consider the following lemma, which is a more general version of
Example 11 and Lemma 12.

I Lemma 16. Let L = L(B,P) ⊆ Nm be a hybrid linear set with B,P ⊆ Nm. Define the
set of shallow points,

W =
{
w ∈ Nm | there is no p ∈ P \ {0} with w ≥ p

}
= Nm \

⋃
p∈P\{0}

(p+ Nm).

Then L is universal iff W ⊆ B.

Indeed, for Example 11, observe that for m = 1 the set W is the integer segment [0, k− 1]
where k = minP \ {0}; cf. Remark 5.

For Lemma 12, note thatW ⊆ B is only possible ifW is finite, which implies that for each
i ∈ [1,m] there is a vector ai·ei ∈ P with ai > 0 (otherwise all such vectors for some given i are
inW , and there are infinitely many of them). But thenW ⊆ H = [0, a1−1]× . . .× [0, am−1].

I Proposition 17. There is a polynomial-time algorithm that takes a hybrid linear set
L(B,P) ⊆ Nm, presented as B,P ⊆ Nm with numbers written in binary, and decides if
L(B,P) is universal.

ICALP 2017

94:10 On the Complexity of Quantified Integer Programming

Proof. By the characterization of Lemma 16, it is sufficient to check if W ⊆ B. First check
that the necessary condition of Lemma 12 is satisfied: if for some i there is no ai · ei ∈ P
with ai > 0, then L(B,P) is not universal. Otherwise consider the Hasse diagram of the
partial order (H,≤), i.e., the directed acyclic graph with vertex set H and all edges (x,y)
where x < y and there is no z with x < z < y. Notice that this graph does not have to be
of polynomial size with respect to the input.

Run the depth-first search (DFS) procedure on (a part of) this graph, starting from 0 and
for each x ∈ H ordering the outgoing edges (x,y) according to the (unique) index i ∈ [1,m]
for which xi < yi. Whenever the current node is outside W , the algorithm backtracks
(observe that the set W is always downward closed, i.e., whenever w ∈W and w′ ≤ w, then
also w′ ∈W); if it is in W but not in B, the algorithm terminates immediately, reporting
that L(B,P) is not universal. If the search finishes, the algorithm concludes that W ⊆ B and
reports that L(B,P) is universal. All visited nodes are marked and not re-entered, ensuring
that no node is ever visited twice. As all visited notes are checked for inclusion in B, which
is given as part of the input, it follows that the running time of the search is proportional to
the size of the input, and the entire procedure works in polynomial time. J

6 Long intersections

I Lemma 18. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. Suppose
the vectors of Q are linearly independent. Then the set S =

⋂n
i=1 Li has a representation

S = L(B,Q) where ‖B‖ ≤ 2O(m logm) ·maxi∈[1,n]‖Li‖ · ‖Q‖m independently of n.

Proof (Sketch). Note that
⋂n
i=1 L(Ci, Q) is the union over all c1 ∈ C1, . . . , cn ∈ Cn of⋂n

i=1 L(ci, Q), so we shall assume with no loss of generality that Ci = {ci} for all i.
Define a point lattice L = Q · Zr = {Q · u | u ∈ Zr} where r = |Q|; see, e.g., [10,

Chapter 2]. Vectors x,y ∈ Zm are called congruent modulo L, written x ≡ y (mod L), if
and only if x− y ∈ L. This congruence splits Zm into a disjoint union of equivalence classes,
which have the form x + L where x ∈ Zm. Note that the relation ≡ is compatible with
addition and subtraction of elements of Q, in the sense that vectors x± q, q ∈ Q, belong to
the same equivalence class as x; therefore, Li = ci + Q · Nr ≡ ci (mod L). Hence, unless
the intersection

⋂n
i=1 Li is empty, it must be the case that ci ≡ cj (mod L) for all i, j. We

assume in the sequel that this is indeed the case, i.e., all sets Li are contained in the same
equivalence class c1 + L.

Let us now define the coordinates in c1 + L in a natural way. Consider the mapping
ψ : c1 + L → Zr that maps each x into a vector u = ψ(x) such that x = c1 + Q · u;
note that u exists as long as x ∈ c1 + L and is determined uniquely because the vectors
in Q are linearly independent. The mapping ψ is, in fact, a bijection between c1 + L
and Zr, so L1 ∩ . . . ∩ Ln = ψ−1 (ψ(L1) ∩ . . . ψ(Ln)). Denote fi = ψ(ci) and observe that
ψ(Li) = ψ(ci) + Nr. So a vector v ∈ Zr belongs to the intersection of all ψ(Li) if and only
if v ≥ fi for all i ∈ [1, n]. This condition is satisfied if and only if v ≥ f where f is the
component-wise maximum of vectors f1, . . . ,fn; in other words,

⋂n
i=1 ψ(Li) = f + Nr and

L1 ∩ . . . ∩ Ln = L(ψ−1(f), Q).
It remains to find an upper bound on ‖ψ−1(f)‖. Note that ψ−1(f) = c1 + Q · f ,

so ‖ψ−1(f)‖ ≤ ‖c1‖ + ‖Q · f‖. Suppose f = (f1, . . . , fr) and Q = {q1, . . . , qr}, then
Q · f = f1 · q1 + . . .+ fr · qr. Recall that each f j is, in fact, a component of some fi = ψ(ci).

D. Chistikov and C. Haase 94:11

For this i = i(j) it holds that ci = c1 +Q · fi, and by [2, Proposition 3] we have

|f j | ≤ 2O(m logm) ·max (‖ci − c1‖, ‖Q‖) · ‖Q‖m−1 and

‖ψ−1(f)‖ ≤ ‖C1‖+m · max
j∈[1,r]

‖f j · qj‖ ≤ 2O(m logm) · max
i∈[1,n]

‖Li‖ · ‖Q‖m. J

We can now restate and prove Lemma 9, which appeared previously in Section 4.

I Lemma 19. Let Li = L(Ci, Q), i ∈ [1, n], be hybrid linear sets with Ci, Q ⊆ Nm. The
set S =

⋂n
i=1 Li has a representation S = L(B,Q) where ‖B‖ ≤ maxi∈[1,n]‖Li‖O(m3)

independently of n.

Proof (Sketch). We first apply a discrete version of the Carathéodory theorem [2, Pro-
position 5] to the set L1, decomposing it into a union of hybrid linear sets with linearly
independent periods:

L1 =
⋃
j

Mj where Mj = L(Dj , Qj) and ‖Dj‖ ≤ ‖C1‖+ (#Q · ‖Q‖)O(m),

with each Qj ⊆ Q a set of linear independent vectors (here and below # denotes the
cardinality of a set). The intent is to make it possible to invoke Lemma 18.

Notice that, whereas intersecting two hybrid linear sets L and L′ with sets of periods P
and P ′ ⊆ P , respectively, will always give a hybrid linear set with the set of periods P ′ (see,
e.g., [2, Theorem 6] and, transitively, Theorem 5.6.1 of [4, p. 180]), this observation would
not suffice for our purposes. Indeed, the magnitude of the base vectors in the hybrid linear
representation of L∩L′ can still increase compared to the magnitude of the base vectors of L
and L′; and so n− 1 consecutive applications of this operation would lead to a blowup in the
representation size if n grows. Instead of using this observation, we will rely on Lemma 18
to defeat the effect of large n, and will use another trick to make its application possible.

Indeed, observe that

L1 ∩ L2 ∩ . . . ∩ Ln =
⋃
j

Mj ∩ L2 ∩ . . . ∩ Ln =
⋃
j

(Mj ∩ L2) ∩ . . . ∩ (Mj ∩ Ln).

Since the sets of periods ofMj and Li are Qj and Q, respectively, it follows by [2, Theorem 6]
that each Mj ∩ Li is a hybrid linear set with representation L(Bi,j , Qj), where

‖Bi,j‖ ≤ ((#Qj + #Q) ·max(‖Mj‖, ‖Li‖))O(m) ≤ max
(
‖C1‖+ (#Q · ‖Q‖)O(m), ‖Li‖

)O(m)
.

But now, for each j, the intersection of L(Bi,j , Qj), i ∈ [2, n], satisfies the conditions of
Lemma 18, and thus can be written as L(Bj , Qj) with ‖Bj‖ small with respect to ‖Bi,j‖
and ‖Qj‖ (estimations to follow). Now S =

⋃
j L(Bj , Qj), and it remains to note that, as

Li + L(0, Q) = Li for all i, it also holds that S + L(0, Q) = S and hence

S =
⋃
j

L(Bj , Qj) + L(0, Q) =
⋃
j

L(Bj , Q) = L
(⋃
j

Bj , Q
)
, with

‖Bj‖ ≤ 2O(m logm) ·max
(

max
i∈[2,n]

‖Bi,j‖, ‖Qj‖
)
· ‖Qj‖m ≤ max

i∈[1,n]
‖Li‖O(m3). J

7 Lower bounds

We show lower bounds for QIP and Σk-IP via a reduction from a generalisation of the
classical SubsetSum problem. For odd k, let ak ∈ Nmk , . . . ,a1 ∈ Nm1 be vectors of natural

ICALP 2017

94:12 On the Complexity of Quantified Integer Programming

numbers, and let t ∈ N be a target. An instance of Σk-SubsetSum is a tuple (ak, . . . ,a1, t).
This instance is a valid instance whenever the following holds:

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∃x1 ∈ {0, 1}m1 :
k∑
i=1

ai · xi = t. (5)

Thus, Σk-SubsetSum can be viewed as the 0–1 variant of Σk-IP, i.e., variables are only
interpreted over {0, 1}. For even k, Πk-SubsetSum is defined analogously. When we take
the union of Σk-SubsetSum for all k > 0, we obtain QSubsetSum.

I Proposition 20. For every fixed k > 0, for odd k Σk-SubsetSum is ΣP
k-complete, and for

even k Πk-SubsetSum is ΠP
k-complete. QSubsetSum is PSPACE-complete.

Upper bounds for Σk-SubsetSum and QSubsetSum can be obtained trivially. The PSPACE
lower bound for QSubsetSum was established by Travers in [15, Lem. 4]. Unfortunately,
the construction given in [15] does not directly yield ΣP

k hardness for Σk-SubsetSum, as the
lower bound for QSubsetSum is shown in [15] by a reduction from 3-CNF QBF in which
the alternating quantifiers range over single variables, and ΣP

k hardness for 3-CNF k-QBF
requires an unbounded number of variables in every quantifier block [13]. It is not difficult
to show that the construction from [15] can indeed be adapted in order to yield ΣP

k hardness
for Σk-SubsetSum for odd k, and likewise for even k.

Proof of lower bounds in Theorem 2

We reduce from Σk-SubsetSum and show how to transform an instance given as (5) into an
equivalent instance of Σk-IP. Note that the existentially quantified variables do not present
an issue, since, for instance, x1 ∈ {0, 1}m1 iff x1 ≤ 1, i.e., (5) is equivalent to

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∀x2 ∈ {0, 1}m2 . ∃x1 :
k∑
i=1

ai ·xi = t∧x1 ≤ 1. (6)

The key insight is that, for universally quantified variables, conjunctions of linear integer
constraints can express division with remainder using any fixed divisor. In particular, consider

∃xk ∈ {0, 1}mk . ∀xk−1 ∈ {0, 1}mk−1 . . . ∀x2. ∃x1. ∃λ :
k∑
i=3

ai · xi + a2 · (x2 − 2 · λ) + a1 · x1 = t ∧ x1 ≤ 1 ∧ 0 ≤ x2 − 2 · λ ≤ 1. (7)

We claim that the sentences (6) and (7) are equivalent. First, no matter what x2 is, λ has
to be bx2/2c in order to satisfy the last constraint of (7). If sentence (6) is true, then (7) is
also true. Indeed, if x2 ∈ {0, 1}m2 , then we can choose λ = 0 and the inequalities become
the same as before (and thus, for instance, there is an appropriate x1). Analogously, if x2
is outside {0, 1}m, then it is the vector x2 − 2 · λ that is in {0, 1}m2 , and for this vector
we already know the appropriate x1 from the previous formula. Conversely, suppose the
sentence (7) is true, then it is in particular true for all choices x2 ∈ {0, 1}m2 in which case
λ = bx2/2c = 0. Hence, the assignment for x1 chosen in (7) given x2 will also work for (6).
This proves the claim.

In fact, the trick above works regardless of how many universal variables we have and
at which positions they occur in the quantifier prefix. So we can handle both existential
and universal variables and can transform any instance of Σk-SubsetSum respectively
Πk-SubsetSum into an equivalent instance of Σk-IP respectively Πk-IP, which yields the
desired lower bounds, when variables are interpreted over the natural numbers.

D. Chistikov and C. Haase 94:13

References
1 Leonard Berman. The complexitiy of logical theories. Theor. Comput. Sci., 11:71–77, 1980.

doi:10.1016/0304-3975(80)90037-7.
2 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Automata,

Languages, and Programming, ICALP, volume 55 of LIPIcs, pages 128:1–128:13. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.
128.

3 Dmitry Chistikov, Christoph Haase, and Simon Halfon. Context-free commutative gram-
mars with integer counters and resets. Theor. Comput. Sci., pages –, 2017. To appear.
doi:10.1016/j.tcs.2016.06.017.

4 Seymour Ginsburg. The mathematical theory of context-free languages. McGraw-Hill, 1966.
5 Erich Grädel. Dominoes and the complexity of subclasses of logical theories. Ann. Pure

Appl. Logic, 43(1):1–30, 1989. doi:10.1016/0168-0072(89)90023-7.
6 Christoph Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In Com-

puter Science Logic and Logic in Computer Science, CSL-LICS, pages 47:1–47:10. ACM,
2014. doi:10.1145/2603088.2603092.

7 Ravi Kannan. Test sets for integer programs, ∀∃ sentences. In Polyhedral Combinatorics,
Proceedings of a DIMACS Workshop, Morristown, New Jersey, USA, June 12-16, 1989,
pages 39–48, 1990.

8 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

9 Felix Klaedtke. Bounds on the automata size for Presburger arithmetic. ACM Trans.
Comput. Log., 9(2):11:1–11:34, 2008. doi:10.1145/1342991.1342995.

10 Jiri Matoušek. Lectures on discrete geometry. Graduate texts in mathematics. Springer,
2002. doi:10.1007/978-1-4613-0039-7.

11 Danny Nguyen and Igor Pak. Complexity of short Presburger arithmetic. In Symposium
on the Theory of Computing, STOC, 2017. To appear. URL: https://arxiv.org/abs/
1704.00249.

12 Loïc Pottier. Minimal solutions of linear Diophantine systems: Bounds and algorithms. In
Rewriting Techniques and Applications, RTA, volume 488 of Lect. Notes Comp. Sci., pages
162–173. Springer, 1991. doi:10.1007/3-540-53904-2_94.

13 Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.
doi:10.1016/0304-3975(76)90061-X.

14 K. Subramani. Tractable fragments of Presburger arithmetic. Theory Comput. Syst.,
38(5):647–668, 2005. doi:10.1007/s00224-004-1220-0.

15 Stephen D. Travers. The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci., 369(1-3):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

16 Joachim von zur Gathen and Malte Sieveking. A bound on solutions of linear integer
equalities and inequalities. P. Am. Math. Soc., 72(1):155–158, 1978. doi:10.1090/
S0002-9939-1978-0500555-0.

17 Volker Weispfenning. The complexity of almost linear Diophantine problems. J. Symb.
Comp., 10(5):395–403, 1990. doi:10.1016/S0747-7171(08)80051-X.

18 Volker Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic.
In Symbolic and Algebraic Computation, ISSAC, pages 48–53. ACM, 1997. doi:10.1145/
258726.258746.

ICALP 2017

http://dx.doi.org/10.1016/0304-3975(80)90037-7
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.1016/j.tcs.2016.06.017
http://dx.doi.org/10.1016/0168-0072(89)90023-7
http://dx.doi.org/10.1145/2603088.2603092
http://dx.doi.org/10.1145/1342991.1342995
http://dx.doi.org/10.1007/978-1-4613-0039-7
https://arxiv.org/abs/1704.00249
https://arxiv.org/abs/1704.00249
http://dx.doi.org/10.1007/3-540-53904-2_94
http://dx.doi.org/10.1016/0304-3975(76)90061-X
http://dx.doi.org/10.1007/s00224-004-1220-0
http://dx.doi.org/10.1016/j.tcs.2006.08.017
http://dx.doi.org/10.1090/S0002-9939-1978-0500555-0
http://dx.doi.org/10.1090/S0002-9939-1978-0500555-0
http://dx.doi.org/10.1016/S0747-7171(08)80051-X
http://dx.doi.org/10.1145/258726.258746
http://dx.doi.org/10.1145/258726.258746

Word Equations in Nondeterministic Linear Space∗

Artur Jeż

Institute of Computer Science, University of Wrocław, Wrocław, Poland
aje@cs.uni.wroc.pl

Abstract
Satisfiability of word equations is an important problem in the intersection of formal languages
and algebra: Given two sequences consisting of letters and variables we are to decide whether
there is a substitution for the variables that turns this equation into true equality of strings.
The computational complexity of this problem remains unknown, with the best lower and upper
bounds being, respectively, NP and PSPACE. Recently, the novel technique of recompression
was applied to this problem, simplifying the known proofs and lowering the space complexity to
(nondeterministic) O(n logn). In this paper we show that satisfiability of word equations is in
nondeterministic linear space, thus the language of satisfiable word equations is context-sensitive.
We use the known recompression-based algorithm and additionally employ Huffman coding for
letters. The proof, however, uses analysis of how the fragments of the equation depend on each
other as well as a new strategy for nondeterministic choices of the algorithm, which uses several
new ideas to limit the space occupied by the letters.

1998 ACM Subject Classification F.4.3 [Formal Languages] Decision Problems, Classes Defined
by Grammars or Automata, F.4.2 Grammars and Other Rewriting Systems, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases Word equations, string unification, context-sensitive languages, space
efficient computations, linear space

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.95

1 Introduction

Solving word equations was an intriguing problem since the dawn of computer science,
motivated first by its ties to Hilbert’s 10th problem. Initially it was conjectured that this
problem is undecidable, which was disproved in a seminal work of Makanin [10]. At first little
attention was given to computational complexity of Makanin’s algorithm and the problem
itself; these questions were reinvestigated in the ’90 [6, 18, 9], culminating in the EXPSPACE
implementation of Makanin’s algorithm by Gutiérrez [5].

The connection to compression was first observed by Plandowski [16], who showed that
a length-minimal solution of size N has a compressed representation of size poly(n, logN).
Plandowski further explored this approach [14] and proposed a PSPACE algorithm [13], which
is the best bound up to date; a simpler PSPACE solution also based on compression was
proposed by Jeż [8]. On the other hand, this problem is only known to be NP-hard, and it is
conjectured that it is in NP.

The importance of these mentioned algorithms lays with the possibility to extend them (in
nontrivial ways) to various scenarios: free groups [11, 1, 3], representation of all solutions [15,
8, 17], traces [12, 2], graph groups [4], terms [7] and others.

∗ Work supported under National Science Centre, Poland project number 2014/15/B/ST6/00615.

EA
T

C
S

© Artur Jeż;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 95; pp. 95:1–95:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

95:2 Word Equations in Nondeterministic Linear Space

While the computational complexity of word equations remains unknown, its exact
space complexity is intriguing as well: Makanin’s algorithm uses exponential space [5],
Plandowski [13] gave no explicit bound on the space usage of his algorithm, a rough estimation
is NSPACE(n5), the recent solution of Jeż [8] yields NSPACE(n logn). Moreover, for O(1)
variables a linear bound on space complexity was shown [8]; recall that languages recognisable
in nondeterministic linear space are exactly the context-sensitive languages.

In this paper we show that satisfiability of word equations can be tested in nondeterministic
linear space in terms of the number of bits of the input, thus showing that the language of
satisfiable word equations is context-sensitive (and by the famous Immerman–Szelepcsényi
theorem: the language of unsatisfiable word equations). The employed algorithm is a (variant
of) algorithm of Jeż [8], which additionally uses Huffman coding for letters in the equation.
On the other hand, the actual proof uses a different encoding of letters, which extends the
ideas used in a (much simpler) proof in case of O(1) variables [8, Section 5]; the other new
ingredient is a different strategy of compression: roughly speaking, previously a strategy
that minimised the length of the equation was used. Here, a more refined strategy is used:
it simultaneously minimises the size of a particular bit encoding, enforces that changes in
the equation (during the algorithm) are local, and limits the amount of new letters that are
introduced to the equation.

The bound holds when letters and variables in the input are encoded using an arbitrary
encoding, in particular, the Huffman coding (so the most efficient one) is allowed.

2 The (known) algorithm

We first present a slight variation of the algorithm of Jeż [8] and the notions necessary to
understand how it works. The proofs are omitted, yet they should be intuitively clear.

Notions. The word equation is a pair (U, V), written as U = V , where U, V ∈ (Γ ∪ X)∗
and Γ and X are disjoint alphabets of letters and variables, both are collectively called
symbols. By nX we denote the number of occurrences of X in the (current) equation; in
the algorithm nX does not change till X is removed from the equation, in which case nX

becomes 0. A substitution is a morphism S : X ∪ Γ→ Γ′∗, where Γ′ ⊇ Γ and S(a) = a for
every a ∈ Γ, a substitution naturally extends to (X ∪ Γ)∗. A solution of an equation U = V

is a substitution S such that S(U) = S(V); given a solution S of an equations U = V we
call S(U) the solution word. We allow the solution to use letters that are not present in
the equation, this does not change the satisfiability: all such letters can be changed to a
fixed letter from Γ, and the obtained substitution is still a solution. Yet, the proofs become
easier, when we allow the usage of such letters. The alphabet Γ′ is usually given implicitly:
as the set of letters used by the substitution. A block is a string a` with ` ≥ 1 that cannot
be extended to the left nor to the right with a.

As we deal with linear-space, the encoding used by the input equation matters. We
assume only that the input is given by a fixed (uniquely decodable) coding: each symbol
in the input is always given by the same bitstring and given the bitstrings representing the
sides of the equation there is only one pair of strings (over Γ∪X) that is encoded in this way.
It is folklore that among such codes the Huffman code yields the smallest space consumption
(counted in bits) and moreover the Huffman coding can be efficiently computed, also in
linear space. As we focus on space counted in bits and use encodings, by ||α|| we denote the
space consumption of the encoding of α, the encoding shall be always clear from the context.
Furthermore, whenever we talk about space complexity, it is counted in bits.

A. Jeż 95:3

Nondeterministic Linear Space. We recall some basic facts about the nondeterministic
space-bounded computation. A nondeterministic procedure is sound, when given a unsat-
isfiable word equation U = V it cannot transform it to a satisfiable one, regardless of the
nondeterministic choices; a procedure is complete, if given a satisfiable equation U = V for
some nondeterministic choices it returns a satisfiable equation U ′ = V ′. A composition of
sound (complete) procedures is sound (complete, respectively). It is enough that we show
linear-space bound for one particular computation: as the bound is known, we limit the
space available to the algorithm and reject the computations exceeding it.

The algorithm. We use (a variant of) recompression algorithm [8], which conceptually
applies the following two operations on S(U) and S(V): given a string w and alphabet Γ

the Γ block compression of w is a string w′ obtained by replacing every block a`, where
a ∈ Γ and ` ≥ 2, with a fresh letter a`;
the (Γ`,Γr) pair compression of w, where Γ`,Γr is a partition of Γ, is a string w′ obtained
by replacing every occurrence of a pair ab ∈ Γ`Γr with a fresh letter cab.

A fresh letter means that it is not currently used in the equation, nor in Γ, yet each occurrence
of a fixed ab is replaced with the same letter. The a` and cab are just notation conventions,
the actual letters in w′ do not store the information how they were obtained. For shortness,
we call Γ block compression the Γ compression or block compression, when Γ is clear from the
context; similar convention applies to (Γ`,Γr) pair compression, called (Γ`,Γr) compression
or pair compression, when (Γ`,Γr) is clear from the context. We say that a pair ab ∈ Γ`Γr is
covered by a partition Γ`,Γr.

The intuition is that the algorithm aims at performing those compression operations
on the solution word and to this end it modifies the equation a bit and then performs the
compression operations on U and V (and conceptually also on the solution, i.e. on S(X) for
each variable X). Below we describe, how it is performed on the equation.

BlockComp: For the equation U = V and the alphabet Γ of letters in this equation for
each variable X we first guess the first and last letter of S(X) as well as the lengths `, r
of the longest prefix consisting only of a, called a-prefix, and b-suffix (defined similarly) of
S(X). Then we replace X with a`Xbr (or a`br or a` when S(X) = a`br or S(X) = a`); this
operation is called popping a-prefix and b-suffix. Then we perform the Γ-block compression
on the equation (this is well defined, as we can treat variables as symbols from outside Γ).

PairComp: For the alphabet Γ, which will always be the alphabet of letters in the equation
right before the block compression we partition Γ into Γ` and Γr (in a way described in
Section 3.2) and then for each variable X guess whether S(X) begins with a letter b ∈ Γr

and if so, replace X with bX or b, when S(X) = b, and then do a symmetric action for the
last letter and Γ`; this operation is later referred to as popping letters. Then we perform the
(Γ`,Γr) compression on the equation.

LinWordEq works in phases, until an equation with both sides of length 1 is obtained:
in a single phase it establishes the alphabet Γ of letters in the equation, performs the Γ
compression and then repeats: guess the partition of Γ to Γ` and Γr and perform the (Γ`,Γr)
compression, until each pair ab ∈ Γ2 was covered by some partition.

Correctness. Given a solution S we say that some nondeterministic choices correspond to
S, if they are done as if LinWordEq knew S. For instance, it guesses correctly the first letter
of S(X) or whether S(X) = ε. (The choice of a partition does not fall under this category.)

I Lemma 1 ([8, Lemma 2.8 and Lemma 2.10]). BlockComp is sound and complete; to be
more precise, for any solution S of an equation U = V for the nondeterministic choices

ICALP 2017

95:4 Word Equations in Nondeterministic Linear Space

corresponding to S the returned equation U ′ = V ′ has a solution S′ such that S′(U ′) is the Γ
compression of S(U) and S′(X) is obtained from S(X) by removing the a-prefix and b-suffix,
where a is the first letter of S(X) and b the last, and then performing the Γ compression.

When Γ` and Γr are disjoint, the PairComp(Γ`,Γr) is sound and complete; to be more
precise, for any solution S of an equation U = V for the nondeterministic choices corres-
ponding to S the returned equation U ′ = V ′ has a solution S′ such that S′(U ′) is the (Γ`,Γr)
compression of S(U) and S′(X) is obtained from S(X) by removing the first letter of S(X),
if it is in Γr, and the last, if it is in Γ`, and then performing the (Γ`,Γr) compression.

The solution S′ from Lemma 1 is called a solution corresponding to S after (Γ`,Γr)
compression (Γ compression, respectively); we also talk about a solution corresponding to S,
when the compression operation is clear from the context and extend this notion to a solution
corresponding to S after a phase. What is important later on is how S′ is obtained from S:
it is modified as if the subprocedures knew first/last letter of S(X) and popped appropriate
letters from the variables and then compressed pairs/blocks in substitution for variables.

Lemma 1 yields the soundness and completeness of LinWordEq, for the termination we
observe that iterating the compression operations shortens the string by a constant fraction,
thus the length of a solution word shortens by a constant fraction in each phase.

I Lemma 2. Let w be a string over an alphabet Γ and w′ a string obtained from w by a Γ
compression followed by a sequence of (Γ`,Γr) compressions (where Γ`,Γr is a partition of
Γ) such that each pair ab ∈ Γ2 is covered by some partition. Then |w′| ≤ 2|w|+1

3 .

I Theorem 3. LinWordEq is sound, complete and terminates (for appropriate nondetermin-
istic choices) for satisfiable equations. It runs in linear (bit) space.

In the following, we will also need one more technical property of block compression.

I Lemma 4. Consider a solution S during a phase with nondeterministic choices corres-
ponding to S and the corresponding solution S′ of U ′ = V ′ after the block compression. Then
S′(U ′) has no two consecutive letters aa ∈ Γ.

This is true after block compression and afterwards no letters from Γ are introduced.

Compressing blocks in small space. Storing, even in a concise way, the lengths of popped
prefixes and suffixes in Γ compression makes attaining the linear space difficult. This was
already observed [8] and a linear-space implementation of BlockComp was given [8]. It
performs a different set of operations, yet the effect is the same as for BlockComp. Instead
of explicitly naming the lengths of blocks, we treat them as integer parameters; then we
declare, which maximal blocks are of the same length (those lengths depend linearly on the
parameters); verifying the validity of such a guess is done by writing a system of (linear)
Diophantine equations that formalise those equalities and checking its satisfiability. This
procedure is described in detail in [8, Section 4]. In the end, it can be implemented in linear
bitspace.

I Lemma 5 ([8, Lemma 4.7]). BlockComp can be implemented in space linear in the bit-size
of the equation

Huffman coding. At each step of the algorithm we encode letters (though not variables) in
the equation using Huffman coding. This may mean that when going from U = V to U ′ = V ′

the encoding of letters changes and in fact using the former encoding in the latter equation

A. Jeż 95:5

may lead to super-linear space (imagine that we pop from each variable a letter that has a
very long code). Using standard methods changing the encoding during a transition from
U = V to U ′ = V ′ can be done in O(||U = V ||+ ||U ′ = V ′||) bit-space.

I Lemma 6. Given a string (encoded using some uniquely decodable code), its Huffman
coding can be computed in linear bitspace.

Each subprocedure of LinWordEq that transforms an equation U = V to U ′ = V ′ can
be implemented in bit-space O(||U = V ||1 + ||U ′ = V ′||2), where || · ||1 and || · ||2 are the
Huffman codings for letters in U = V and U ′ = V ′, respectively.

3 Space consumption

In order to bound the space consumption, we will use bit-encoding of letters that depends on
the current equation. We use the term ‘encoding’ even though it may assign different codes
to different occurrences of the same letter, but two different letters never have the same
code. Since we are interested in linear space only, we do not care about the multiplicative
O(1) factors in the space consumption and can assume that our code is prefix-free, say by
terminating each encoding with a special symbol $. We show that such an encoding uses
linear space, which also shows that the Huffman encoding of the letters in the equation uses
linear space, as Huffman encoding uses the smallest space among the prefix codes.

The idea of our ‘encoding’ is: for each letter in the current equation we establish an
interval I of indices in the original equation (viewed as as string U0V0[1 . . |U0V0|]) on which
it ‘depends’ (this has to be formalised) and encode this letter as U0V0[I]#i, when it is ith in
the sequence of letters assigned I and U0V0[I] is the original equation restricted to indices in
I The dependency is formalised in Section 3.1, while Section 3.2 first gives the high-level
intuition and then upper-bound on the used space.

For technical reasons we insert into the equation ending markers at the beginning and
end of U and V , i.e. write them as @U@,@V@ for some special symbol @. Those markers
are ignored by the algorithm, yet they are needed for the encoding.

3.1 Dependency intervals

First, we need some notation. The input equation is denoted by U0 = V0, the U = V and
U ′ = V ′ are used for the current equation and equation after performing some operation. We
treat the input equation as a single string U0V0 and consider its indices, i.e. numbers from 1
to |U0V0|, denoted by letters i, i′, j and intervals of such indices, denoted by letter I, I ′ or
[i . . j]. The U0V0[I] and U0V0[i . . j] denotes the substring of U0V0 restricted to indices in [I]
or in [i . . j]. We use a partial order ≤ on intervals: [i . . j] ≤ [i′ . . j′] if i ≤ i′ and j ≤ j′.

In the current equation, i.e. the one stored by LinWordEq, we do not consider indices
but rather positions and denote them by letters p, q. We do not think of them as numbers
but rather as pointers: when U = V is transformed by some operation to U ′ = V ′ but the
letter/variable at position p was not affected by this transformation, we still say that this
letter/variable is at position p. On the other hand, the affected letters are on positions that
were not present in U = V . In the same spirit we denote by p the positions in U = V and the
corresponding position in S(U) = S(V). We still use the left-to-right ordering on positions,
use p− 1 and p+ 1 to denote the previous and next position; we also consider intervals of
positions, yet they are used rarely so that they are not confused with intervals of indices, on
which we focus mostly. Given an equation U = V and an interval of positions P by UV [P]

ICALP 2017

95:6 Word Equations in Nondeterministic Linear Space

we denote the string of letters and variables at positions in P , again, this notation is used
rarely. In the input equation the index and position is the same.

With each position p in the (current) equations (including the endmarkers) we associate
dependency interval dep(p), called depint; if the depint is a single index {i}, we denote it i.
The idea is that the letter at position p is uniquely determined by U0V0[dep(I)] (and the
nondeterministic choices of the algorithm), note that it may include both variables and letters.
We use the notions of ⊆ and ⊇ for the depints with a usual meaning; we take unions of the
them, denoted by ∪, but only when the result is an interval. We say that I and I ′ are similar,
denoted as I ∼ I, if U0V0[I] = U0V0[I ′]. Given an interval I of indices in U0V0 by Pos(I) we
denote positions in the current equation whose depint is I, i.e. Pos(I) = {p | dep(p) = I}.
In the analysis it is also convenient to look at positions whose depint is a superset of I:
Pos⊇(I) = {p | dep(p) ⊇ I}, this is usually used for I = {i}

We shall ensure the following properties:
(I1) Given a depint I, the Pos(I) is an interval of positions, similarly Pos⊇(I).
(I2) Given depints I, I ′ such that Pos(I) 6= ∅ 6= Pos(I ′) either I ≤ I ′ or I ≥ I ′.
(I3) For depints I ∼ I ′ it holds that U0V0[I] = U0V0[I ′].

Assigning depints to letters. When X at position p pops a letter into position p′ then
dep(p′) ← dep(p) (which is the position of this occurrence of X in the input equation).
Whenever we perform the (Γ`,Γr) compression then in parallel for each position p such that
UV [p] ∈ Γ` we assign dep(p)← dep(p) ∪ dep(p+ 1) (p+ 1 may be a a position variable or
an endmarker). Then we perform a symmetric action for positions whose letters are in Γr

(so for p− 1).
For Γ compression, we perform in parallel the following operation for each block (perhaps

of length 1) of a letter in Γ: given a maximal block a` at positions p, p+ 1, . . . , p+ `− 1 we
set the depints of those positions to

⋃`
i=−1 dep(p+ i) (note that p− 1 and p+ ` are included).

In the following we mostly focus on Pos⊇(i). As this is an interval of positions, we
visualize that Pos⊇(I) extends to the neighbouring positions. Thus we will refer to operations
of changing the depints before the block compression and pair compression as extending of
Pos⊇(I) to new positions; those positions get their depints extended. Note that this notion
does not apply to the case when we pop letters from variables.

Depints defined in this way satisfy the conditions (I1–I3).

I Lemma 7. (I1–I3) hold during LinWordEq.

Proof. We first show (I1) for Pos⊇(i). The proof is by induction; this is true at the
beginning. If we make a union of depints, a position adjacent to a position in Pos⊇(i) symbol
can become part of Pos⊇(i) (this can be iterated when the depints are changed before the
blocks compression), which is fine. During the compression, we compress symbols on positions
with the same depints, so this is fine. When we pop a letter from variable at position p to
position p′ then dep(p′) = dep(p) ∈ Pos⊇(i) and by inductive assumption Pos⊇(i) was an
interval, which shows the claim.

We now show by induction that i ≤ i′ implies Pos⊇(i) ≤ Pos⊇(i′). Clearly this holds
at the beginning, as then Pos⊇(i) = Pos(i) = {i} and Pos⊇(i′) = Pos(i′) = {i′}. Consider
the moment, in which the condition Pos⊇(i) ≤ Pos⊇(i′) is first violated, by symmetry it is
enough to consider the case in which the first position in Pos⊇(i′) is smaller than the first
in Pos⊇(i). If this position was just popped then it cannot be popped to the right, as the
position of popping variable is in Pos⊇(i′). So it was popped to the left. But then the variable
that popped it was on position in Pos⊇(i′) and by induction assumption Pos⊇(i′) ≥ Pos⊇(i),

A. Jeż 95:7

so it had a position from Pos⊇(i) to its left, contradiction. The other option is that this
happened when a depint of a position was changed so that it got into Pos⊇(i′). But then
the position to its right was in Pos⊇(i′) and by induction assumption either this position
was in Pos⊇(i) or some position to the left of it was; in both cases the position also got into
Pos⊇(i).

Now (I1) for Pos⊇([i . . j]) for an arbitrary depint [i . . j] follows: Pos⊇([i . . j]) =
⋂j

k=i Pos⊇(k)
and as each Pos⊇(k) is an interval, also Pos⊇([i . . j]) is.

For the purpose of the proof, define Pos⊆(I) = {p | dep(p) ⊆ I} (a dual notion to
Pos⊇(I)).

I Claim 8. Pos⊆(I) consists of consecutive positions. Given two similar depints I ∼ I ′

UV [Pos⊆(I)] and UV [Pos⊆(I ′)] are equal as sequences of symbols and the corresponding
positions in them have similar depints.

The proof follows by a simple, yet tedious induction and it is omitted.
Claim 8 is stronger than (I3) and so it implies it. Concerning (I1): Pos(I) = Pos⊇(I) ∩

Pos⊆(I); as both are intervals, also Pos(I) is.
Concerning (I2), we show a stronger statement: given positions p, p + 1 it holds that

dep(p) ≤ dep(p+1). Let i, i′ be the leftmost indices in dep(p),dep(p+1), respectively. Assume
for the sake of contradiction that i > i′. We already showed that then Pos⊇(i) ≥ Pos⊇(i′).
So if p+ 1 ∈ Pos⊇(i′) ≤ Pos⊇(i) 3 p then also p ∈ Pos⊇(i′), i.e. i′ ∈ dep(p). As i′ < i then
the leftmost index in dep(p′) cannot be i. The proof for rightmost index is similar. J

Encoding of letters. Letters in Pos(I) are encoded as U0V0[I]#1, U0V0[I]#2, etc. Note,
that there is no a priori bound on the size of such numbers. Furthermore, if I ′ ∼ I then
encoding I#i and I ′#i is the same (these are the same symbols by (I3).

3.2 Pair compression strategy
We assume that LinWordEq makes the nondeterministic choices according to the solution,
thus the space consumption of a run depends only on the choices of the partitions during
pair compression, called a strategy. We describe a linear-space strategy.

Idea. Imagine we ensured that during one phase each variable popped O(1) letters and each
Pos⊇(i) expanded by O(1) letters. Then |Pos⊇(i)| = O(1): we introduced O(1) positions to
Pos(i), say at most k, and by Lemma 2 among positions in Pos⊇(i) at the beginning of the
phase there were at least 2/3 took part in compression, so their number dropped by 1/3;
thus |Pos⊇(i)| ≤ 3k. As a result, |Pos(I)| ≤ 3k for each depint I: as Pos(I) ⊆ Pos⊇(i) for
i ∈ I. This would yield that the whole bit-space used for the encoding is linear: each number
m used in U0V0[I]#m is at most 3k = O(1), so they increase the size by at most a constant
fraction. On the other hand, the depints consume:∑

I:depint
||U0V0[I]|| · |Pos(I)| =

∑
i:index

||U0V0[i]|| · |Pos⊇(i)|

(a simple proof is given later) and the right hand side is linear in terms of the input equation:
|Pos⊇(i)| = O(1) and

∑
i:index ||U0V0[i]|| is the the bit-size of the input equation.

It remains to ensure that Pos⊇(i) do not extend too much and variables do not pop too
much letters. Given a phase, we call a letter new, if it was introduced during this phase.
New letters cannot be popped nor can Pos⊇(i) be extended to positions with new letters.
Thus they are used to prevent extending Pos⊇(i) and popping: it is enough to ensure that

ICALP 2017

95:8 Word Equations in Nondeterministic Linear Space

the first/last letter of a variable is new and that a letter on the position to the left/right of
Pos⊇(I) is new.

Unfortunately, we cannot ensure this for all variables Pos⊇(i). We can make this true in
expectation: given a random partition there is a 1/4 probability that a fixed pair is compressed
(and the resulting letter is new). This requires formalisation and calculations.

Strategy. Given a solution S of an equation we say that a variable X is left blocked if S(X)
has at most one letter or the first or second letter in S(X) is new, otherwise a variable is
left unblocked; define right blocked and right unblocked variables similarly. An index i is left
blocked if in S(U) (or S(V), respectively) there is at most position to the left of Pos⊇(i) or
one of the letters on the positions one and two to the left of Pos⊇(i) is new, otherwise i is
left unblocked; define right blocked and right unblocked indices similarly.

I Lemma 9. Consider a solution S = S0 and consecutive solutions S1, S2, . . . corresponding
to it during a phase. If a variable X becomes left (right) blocked for some Sk, then it is left
(right, respectively) blocked for each S` for ` ≥ k and it pops to the left (right, respectively)
at most 1 letter after it became left (right, respectively) blocked. If an index i becomes left
(right) blocked for some Sk then it is left (right, respectively) blocked for each S` for ` ≥ k
and at most one letter to the left (right, respectively) will have its depint extended by i after i
became left (right, respectively) blocked.

The proof follows by a simple case inspection and it is omitted.
The strategy iterates steps 1, 2, 3 and 4. In a step i it chooses a partition so that the

corresponding i-th sum below decreases by 1/2, unless this sum is already 0:∑
X∈X left unblocked

nX · ||X||+
∑

X∈X right unblocked
nX · ||X|| (1)

∑
i: left unblocked index

||U0V0[i]||+
∑

i: right unblocked index
||U0V0[i]|| (2)

∑
X∈X left unblocked

nX +
∑

X∈X right unblocked
nX (3)

∑
i: left unblocked index

1 +
∑

i: right unblocked index
1 (4)

The idea of the steps is: (1) upper-bounds the increase of bit-size of depints in the equation
after popping letters. So by iteratively halving it we ensure that total encoding increase
caused by popping letters is small. Similarly, (2) upper-bounds the increase due to expansion
of indices to new depints. The following (3) is connected (in a more complex way) to an
increase, after popping, of number of bits used for numbers in the encoding. Similarly (4) to
an increase after the extension of depints.

I Lemma 10. During the pair compression LinWordEq can always choose a partition that at
least halves the value of a chosen non-zero sum among (1)–(4).

Proof. Consider (1) and take a random partition, in the sense that each letter a ∈ Γ goes
to the Γ` with probability 1/2 and to Γr with probability 1/2. Let us fix a variable X and
its side, say left. What happens with nX · ||X|| in (1) in the sum corresponding to left
unblocked variables? If X is left blocked then, by Lemma 9, it will stay left blocked and so
the contribution is and will be 0. If it is left unblocked, then its two first letters a, b are not
new, so they are in Γ. If S(X) has only those two letters, then with probability 1/2 the a

A. Jeż 95:9

will be in Γr and it will be popped and X will become left blocked (as S(X) has only one
letter), the same analysis applies, when the third leftmost letter is new. The remaining case
is that the three leftmost letters in S(X) are not new, let them be a, b, c ∈ Γ. By Lemma 4
a 6= b 6= c. With probability 1/4 ab ∈ Γ`Γr and with probability 1/4 bc ∈ Γ`Γr. Those
events are disjoint (as in one b ∈ Γr and in the other b ∈ Γ`) and so their union happens
with probability 1/2. In both cases X will become left blocked, as a new letter is its first or
second in S(X). In all uninvestigated cases the contribution of nX · ||X|| cannot raise, which
shows the claim in this case. The case of (3) is shown in the same way.

For (2), the analysis for an index i that is left unblocked is similar, but this time we
consider the positions to the left of Pos⊇(i) and Pos⊇(i) can extend to them (instead of
letters being popped from variables in case of (1)) and some of them may be compressed to
one. Note that if there are no letters to the left/right then this index is blocked from this
side. The case of (4) is shown in the same way. J

Space consumption. We now give the linear space bound on the size of equation. This
formalises the intuition from the beginning of Section 3.2. As a first step, we show an
upper-bound on the encoding size of the equation; define

Hd(U, V) =
∑

i:index

||U0V0[i]|| · |Pos⊇(i)|, Hn(U, V) =
∑

i:index

2|Pos⊇(i)| · log(|Pos⊇(i)|+1) ,

and H(U, V) = Hd(U, V) +Hn(U, V). Hd corresponds to the size of U0V0[I] in the encoding
and Hd: of the numbers in the encoding.

I Lemma 11. Given the equation (U, V) it holds that ||(U, V)|| ≤ Hd(U, V) +Hn(U, V).

The proof follows by simple symbolic transformation of the definitions.
Instead of showing a linear bound on ||(U, V)|| we give a linear bound on H(U, V). Recall

that (U0, V0) denotes the input equation.

I Lemma 12. Consider an equation U = V , its solution S, a phase of LinWordEq which
makes the nondeterministic choices according to S and partitions according to the strategy.
Let the returned equation be (U ′, V ′). Then H(U ′, V ′) ≤ 5

6H(U, V) + α||(U0, V0)|| and in a
phase H on intermediate equations is at most βH(U, V) + γ||(U0, V0)|| for some constants
α, β, γ.

Proof. We separately estimate the Hd and Hn. Concerning Hd, let us first estimate
||U0V0[dep(p)]|| summed over positions p of letters popped into the equation during a
phase (note, this does not include the size of numbers used in the encoding). For each
variable we pop perhaps several letters to the left and right before block compression, but
those letters are immediately replaced with single letters, so we count each as 1; also, when
this side of a variable becomes blocked, it can pop at most one letter. Otherwise, a side of a
variable pops at most 1 letter per pair compression, in which it is unblocked from this side.
Note that the depint is the same as for variable, so the encoding size is ||X||. So in total the
bit-size of popped letters is at most:∑

X∈X
2nX · ||X||︸ ︷︷ ︸

block compression

+
∑

X∈X
2nX · ||X||︸ ︷︷ ︸

after X becomes blocked

+

+
∑

P : partition

 ∑
X∈X

left unblocked in P

nX · ||X||+
∑

X∈X
right unblocked in P

nX · ||X||

 . (5)

ICALP 2017

95:10 Word Equations in Nondeterministic Linear Space

Observe that the third sum (the one summed over all partitions) at the beginning of the
phase is equal to

∑
X 2nX · ||X||, as no side of the variable is blocked, and by the strategy

point (1) its value at least halves every 4th pair compression (and it cannot increase, as by
Lemma 9 no side of the variable can cease to be blocked). Thus (5) is at most

4
∑
X

nX · ||X||+ 8
∑
X

nX · ||X||
(

1 + 1
2 + 1

4 + · · ·
)

= 20
∑
X

nX · ||X|| ≤ 20||(U0, V0)|| .

We now similarly estimate how many positions got into Pos⊇(i) due to expansion of Pos⊇(i):
Pos⊇(i) can expand to two letters during the block compression (to be more precise: to
positions that are inside a block and to the positions to the let/right ones, but positions in a
block are replaced with a single letter and one of them was in Pos⊇(i)) to one position at
each side after i becomes blocked and by one position for each partition P in which this side
of i is not blocked. So the increase in the bit-size is∑
i: index

4||U0V0[i]||+
∑

P : partition

(∑
i: index

left unblocked in P

||U0V0[i]||+
∑

i: index
right unblocked in P

||U0V0[i]||
)
(6)

and as in (5) similarly at the beginning of the phase the second sum (so the one summed by
partitions) is

∑
i: index 2||U0V0[i]|| = 2||(U0, V0)|| and it at least halves every 4th partition,

by strategy point (2). Thus similar calculations show that (6) is at most 20||(U0, V0)||.
On the other hand, the number of positions in Pos⊇(i) drops till the end of the phase by

at least |Pos⊇(i)|
3 − 1 due to compression:

1. If U0V0[i] is a letter, then Pos⊇(i) are all positions of letters and Lemma 2 yields that
Pos⊇(i) looses at least |Pos⊇(i)|−1

3 positions.
2. If U0V0[i] is an ending marker, then the marker itself is unchanged and the remaining

positions in Pos⊇(i) are letter-positions and Lemma 2 applies to them, so Pos⊇(i) looses
at least |Pos⊇(i)|−2

3 <
|Pos⊇(i)|

3 − 1 positions.
3. If U0V0[i] is a variable then Pos⊇(i) includes the position of a variable and Lemma 2 applies

to strings of letters to the left and right, say of length `, r, where `+ r = |Pos⊇(i)| − 1.
Then due to compressions Pos⊇(i) looses at least `−1

3 + r−1
3 = |Pos⊇(i)|

3 − 1 positions.
Thus:

Hd(U ′, V ′) ≤ 40||(U0, V0)||︸ ︷︷ ︸
new positions in depints

+
∑

i: index
||U0V0[i]|| ·

(
2
3 |Pos⊇(i)|+ 1

)
︸ ︷︷ ︸

old positions lost

= 40||(U0, V0)||+
∑

i: index

2
3 ||U0V0[i]|| · |Pos⊇(i)|+

∑
i: index

||U0V0[i]||

= 41||(U0, V0)||+ 2
3Hd(U, V) .

We also estimate the maximal value of Hd during the phase, as for intermediate equations
we cannot guarantee that the compression reduced the length of all letters. We already
showed that in a phase we increase Hd by 40||(U0, V0)||. This yields a bound of Hd(U, V) +
40||(U0, V0)||, which shows the part of the claim of Lemma for Hd.

Concerning Hn, for an index i let ki, oi, ei denote, respectively: |Pos⊇(i)| at the beginning
of the phase, number of positions of letters popped from a variable with depint i and number
of positions to whose depint i extended. First we estimate

∑
i: index h(oi) and

∑
i: index h(ei)

A. Jeż 95:11

and then use those estimations to calculate the bound on Hn(U ′, V ′). We first inspect the
case of oi; let P1, P2, . . . denote the consecutive partitions in phase. We show that∑

i: index

h(oi) ≤
∑

X∈X
25nX +

∑
m≥1

m ·
(∑

X∈X
left unblocked in Pm

nX +
∑

X∈X
right unblocked in Pm

nX

)
. (7)

The inequality follows as: if (one occurrence of) X popped oX letters, then it was not blocked
on left/right side for o1/o2 partitions, where o1 + o2 ≥ oX − 4 (note that one sequence can
be popped to the left and right during block compression but it is immediately replaced
with a single letter, so we treat them as one letter, also one letter can be popped to the
left/right after X became blocked). Then in right hand side of (7) the contribution from
(one occurrence of) X is at least

25 + o1(o1 + 1) + o2(o2 + 1)
2 ≥ (oX − 4)2

4 + oX − 4
2 + 25 ≥ oX log(oX + 1) ,

where the first inequality follows as o1 + o2 ≥ oX − 4 and the second can be checked by
simple numerical calculation. Lastly, in (7) each oi is equal to an appropriate oX .

The sum in braces on the right hand side of (7) initially is at most 2|U0V0| ≤ 2||(U0, V0)||
and by strategy choice (3) it is at least halved every 4th step. So this sum is at most:∑

i≥0
(16i+ 10)︸ ︷︷ ︸

4 consecutive steps

· 2||(U0, V0)||︸ ︷︷ ︸
initial size

· (1/2)i = 104||(U0, V0)||

and consequently∑
i: index

h(oi) ≤ 129||(U0, V0)|| . (8)

The analysis for ei is similar: for a single index i the estimation of the number of position
by which Pos⊇(i) extends is the same as the estimation of number of letters popped from an
occurrence of a variable, thus∑

i: index
h(ei) ≤ 129||(U0, V0)|| . (9)

We now estimate, how many positions were lost due to compression, recall that ki is
the size of Pos⊇(i) at the beginning of the phase. Using the same analysis as in the case
of Hd, from Lemma 2 it follows that at least ki

3 − 1 positions were lost in the phase due to
compression . Thus

Hn(U ′, V ′) ≤
∑

i: index
h

(
2
3ki + 1 + oi + ei

)
. (10)

Consider two subcases: if 2
3ki + 1 + oi + ei ≤ 5

6ki, then the summand can be estimated as
h(5

6ki) ≤ 5
6h(ki) and we can upper bound the sum over those cases by 5

6
∑

i: index h(ki). If
2
3ki + 1 + oi + ei >

5
6ki then 1 + oi + ei >

1
6ki and so 2

3ki + 1 + oi + ei < 5(1 + oi + ei). Thus
(10) is upper-bounded by:

Hn(U ′, V ′) ≤ 5
6
∑

i: index
h(ki) +

∑
i: index

h(5(1 + oi + ei)) .

Using simple properties of h as well as (8)–(9) we upper-bound the right hand side by
5
6Hn(U, V) + 15540||(U0, V0)||.

ICALP 2017

95:12 Word Equations in Nondeterministic Linear Space

We should estimate the maximal Hn value during the phase, as inside a phase we cannot
guarantee that letters get compressed, i.e. estimate

∑
i: index h (ki + oi + ei). Using similar

calculation as in the case of (10) and properties of h we obtain:∑
i: index

h (ki + oi + ei) ≤ 8Hn(U, V) + 2064||(U0, V0)|| ,

which shows the claim of the Lemma in the case of Hn and so also in case of H. J

3.3 Proof of Theorem 3
By Lemma 1 all our subprocedures are sound, so we never accept an unsatisfiable equation.

We now give analyse the nondeterministic choices that yield termination, completeness
and linear space consumption. Consider an equation U = V at the beginning of the phase,
let Γ be the set of letters in this equation. If it has a solution S′, then it also has a solution
S over Γ such that |S(X)| =|S′(X)| for each variable: we can replace letters outside Γ with
a fixed letter from Γ. During the phase we will make nondeterministic choices according to
this S.

Let the equation obtained at the end of the phase be U ′ = V ′ and S′ be the corresponding
solution. Then |S′(U ′)| ≤ 2|S(U)|+1

3 by Lemma 2 and we begin the next phase with S′. Hence
we terminate after O(logN) phases, where N is the length of some solution of the input
equation.

Let the run also choose the partitions according to the strategy. We show by induction
that for an equation (U, V) at the beginning of a phase H(U, V) ≤ δ||(U0, V0)||, where
δ is a constant. Initially Hn(U0, V0) = ||(U0, V0)|| and Hd(U0, V0) = 2||(U0, V0)||, as for
each index dep(i) = {i}; hence the claim holds. By Lemma 12 the inequality at the
end of each phase holds for δ = 6α for α from Lemma 12. For intermediate equations
H(U, V) ≤ (6αγ + β)||(U0, V0)||, by Lemma 12, where β, γ are the constants from Lemma 12.

To upper-bound the space consumption, we also estimate other stored information: we
also store the alphabet from the beginning of the phase (this is linear in the size of the
equation at the beginning of the phase) and the mapping of this alphabet to the current
symbols (linear in the equation at the beginning of the phase plus the size of the current
equation). The terminating condition that some pair of letters in Γ2 was not covered is guessed
nondeterministically, we do not store Γ2. The pair compression and block compression can
be performed in linear space, see Lemma 6. Note that this includes the change of Huffman
coding.

References
1 Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of

equations with rational constraints in free groups is PSPACE-complete. Inf. Comput.,
202(2):105–140, 2005.

2 Volker Diekert, Artur Jeż, and Manfred Kufleitner. Solutions of word equations over par-
tially commutative structures. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, ICALP, volume 55 of LIPIcs, pages 127:1–127:14.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.
2016.127.

3 Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equations in
free groups and monoids with involution. Inf. Comput., 251:263–286, 2016. doi:10.1016/
j.ic.2016.09.009.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.127
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.127
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1016/j.ic.2016.09.009

A. Jeż 95:13

4 Volker Diekert and Markus Lohrey. Word equations over graph products. International
Journal of Algebra and Computation, 18(3):493–533, 2008.

5 Claudio Gutiérrez. Satisfiability of word equations with constants is in exponential space. In
FOCS, pages 112–119. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743434.

6 Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
7 Artur Jeż. Context unification is in PSPACE. In Elias Koutsoupias, Javier Esparza, and

Pierre Fraigniaud, editors, ICALP, volume 8573 of LNCS, pages 244–255. Springer, 2014.
doi:10.1007/978-3-662-43951-7_21.

8 Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):4:1–4:51, Mar 2016. doi:10.1145/2743014.

9 Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algorithm. J. ACM,
43(4):670–684, 1996.

10 Gennadií Makanin. The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik, 2(103):147–236, 1977. (in Russian).

11 Gennadií Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:1199–
1273, 1983. English transl. in Math. USSR Izv. 21 (1983).

12 Yuri Matiyasevich. Some decision problems for traces. In Sergej Adian and Anil Nerode,
editors, LFCS, volume 1234 of LNCS, pages 248–257. Springer, 1997. Invited lecture.

13 Wojciech Plandowski. Satisfiability of word equations with constants is in NEXPTIME. In
STOC, pages 721–725. ACM, 1999. doi:10.1145/301250.301443.

14 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE.
J. ACM, 51(3):483–496, 2004. doi:10.1145/990308.990312.

15 Wojciech Plandowski. An efficient algorithm for solving word equations. In Jon M. Klein-
berg, editor, STOC, pages 467–476. ACM, 2006. doi:10.1145/1132516.1132584.

16 Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the
solution of word equations. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel,
editors, ICALP, volume 1443 of LNCS, pages 731–742. Springer, 1998. doi:10.1007/
BFb0055097.

17 Alexander A. Razborov. On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics, 1987. In Russian.

18 Klaus U. Schulz. Makanin’s algorithm for word equations – two improvements and a gen-
eralization. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages 85–150.
Springer, 1990. doi:10.1007/3-540-55124-7_4.

ICALP 2017

http://dx.doi.org/10.1109/SFCS.1998.743434
http://dx.doi.org/10.1007/978-3-662-43951-7_21
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/301250.301443
http://dx.doi.org/10.1145/990308.990312
http://dx.doi.org/10.1145/1132516.1132584
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/3-540-55124-7_4

Solutions of Twisted Word Equations, EDT0L
Languages, and Context-Free Groups∗†

Volker Diekert1 and Murray Elder2

1 Universität Stuttgart, Formal Methods in CS, Stuttgart, Germany
diekert@fmi.uni-stuttgart.de

2 University of Technology Sydney, Sydney, Australia
murray.elder@uts.edu.au

Abstract
We prove that the full solution set of a twisted word equation with regular constraints is an EDT0L
language. It follows that the set of solutions to equations with rational constraints in a context-
free group (= finitely generated virtually free group) in reduced normal forms is EDT0L. We can
also decide whether or not the solution set is finite, which was an open problem. Moreover, this
can all be done in PSPACE. Our results generalize the work by Lohrey and Sénizergues (ICALP
2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to complexity and with
respect to expressive power. Both papers show that satisfiability is decidable, but neither gave
any concrete complexity bound. Our results concern all solutions, and give, in some sense, the
“optimal” formal language characterization.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.4.2 Gram-
mars and Other Rewriting Systems, F.4.3 Formal Languages

Keywords and phrases Twisted word equation, EDT0L, virtually free group, context-free group

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.96

1 Introduction

In a seminal paper [21] Makanin showed that the problem WordEquations is decidable. The
first complexity estimation of that problem was a tower of several exponential functions,
but this dropped down to PSPACE by Plandowski [24] using compression. The insight that
long solutions of word equations can be efficiently compressed is due to [25], which led to
the conjecture that WordEquations is NP-complete. In 2013 Jeż applied his recompression
technique: he presented a new and simple NSPACE(n logn) algorithm to solve word equations
[16]. (Very recently, he lowered the complexity to NSPACE(n) [17]). Actually his method
achieved more: it describes all solutions, copes with rational constraints (which is essential
in applications), and it extends to free groups [6]. Building on ideas in [6], Ciobanu and
the present authors showed that the full solution set of a given word equation with rational
constraints is EDT0L [3]. This was known before only for quadratic word equations by
[11]. EDT0L-languages are defined by a certain type of Lindenmayer system, see [27]. The
motivation for [3] was to prove that the full solution set in reduced words of equations in
free groups is an indexed language, an open problem at the time [12, 15]. But EDT0L is
better: it is strictly included in the class of indexed languages [9].

∗ A full version of the paper is available at https://arxiv.org/abs/1701.03297.
† Research supported by Australian Research Council (ARC) Project DP 160100486 and German Research

Foundation (DFG) Project DI 435/7-1

EA
T

C
S

© Volker Diekert and Murray Elder;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 96; pp. 96:1–96:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.96
https://arxiv.org/abs/1701.03297
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

96:2 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

The class of finitely generated (f.g. for short) virtually free groups arises in many different
ways. A fundamental theorem of Muller and Schupp (relying on [8]) says that a f.g. group is
virtually free if and only if it is context-free [23]. This means that, given any set of monoid
generators A, the set of words w ∈ A∗ which represent 1 ∈ V forms a context-free language.
Other characterizations include: (1) fundamental groups of finite graphs of finite groups
[18], (2) f.g. groups having a Cayley graph with finite treewidth [19], (3) groups having a
finite presentation by some geodesic string rewriting system [13], and (4) f.g. groups having
a Cayley graph with decidable monadic second-order theory [19], etc. See [7]. We show that
given a f.g. virtually free group V there is a PSPACE-algorithm which produces, for a given
equation with rational constraints, an EDT0L grammar which describes the full solution set
in reduced words over a natural set of generators. Several remarks are in order here. First,
virtually free groups (which are not free) have torsion, and this is serious obstacle to applying
the techniques used in [24, 16, 6, 3]. A driving motivation to study virtually free groups is the
connection to word hyperbolic groups [14]. Solving equations in torsion-free hyperbolic groups
reduces to solving equations in free groups [26], but solving equations in word hyperbolic
groups with torsion reduces to solving equations in virtually free groups which in turn reduces
to solving “twisted” word equations with rational constraints [4]. The question how to solve
“twisted” word equations was asked by Makanin ([22, Problem 10.26(b)]) and solved by
Lohrey and Sénizergues [20] and Dahmani and Guirardel [4]. Both papers show more general
results, and yield independent proofs that satisfiability for equations over a f.g. virtually
free group is decidable. The approach in [4] assumes a bound on the so-called “exponent of
periodicity”, thus it does not handle the full set of solutions. Lohrey and Sénizergues [20]
prove a general transfer result which applies to all solutions, but this does not produce any
“nice” description. Note that to have “some description” of all solutions is not enough to
decide finiteness, in general. Our EDT0L description pays attention that every solution is
represented exactly once. The other achievement here is a first known concrete complexity
bound: PSPACE, a surprisingly low complexity given the circumstances.

Therefore, the present paper extends [4, 20] in various aspects. As in [4] we are working
over twisted word equations with rational constraints, which is the natural approach due
to Bass-Serre theory [31], see [18] (and [29, 30] for effective constructions). Our main
new contribution is within combinatorics on words. Although we follow the general scheme
[16, 6, 3] to define a sound and complete algorithm to produce an NFA describing all solutions,
the technical details are quite far from previous methods.

Proofs omitted from the present paper can be found in [5].

1.1 Preliminaries
An alphabet is a finite set of letters; and Σ∗ denotes the free monoid of words over Σ. The
empty word is denoted by 1. The length w ∈ Σ∗ is |w|, and |w|a counts how often a letter
a appears in w. Let M be any monoid. Then u ∈ M is a factor of v ∈ M if we can write
v = xuy for some x, y. If x = 1 (resp. y = 1), then we say that u is a prefix (resp. suffix)
of v. For a prefix, we also write u ≤ v. An involution is a bijection x 7→ x such that x = x

for all x in the set. A monoid with involution additionally has to satisfy xy = y x. If G is
a group, then it is a monoid with involution by taking g = g−1 for all g ∈ G. Thus, we
identify g and g−1 in groups. In the following, every alphabet comes with an involution.
This is no restriction since the identity is always an involution for sets. A morphism between
sets with involution is a mapping respecting the involution. A morphism between monoids
with involution is a homomorphism ϕ : M → N such that ϕ(x) = ϕ(x). For ∆ ⊆ M ∩N
we say that it is a ∆-morphism if ϕ(x) = x for all x ∈ ∆. A bijective morphism from a
set to itself is called an automorphism and the set of automorphisms on a set (or monoid)

V. Diekert and M. Elder 96:3

M forms the group Aut(M). Let G be a group. It acts on a set (with involution) X by
a mapping x 7→ g · x if 1 · x = x, f · (g · x) = (fg) · x (and f · x = f · x). If G acts on a
monoid (with involution) M , then we additionally demand that every group element acts
as an automorphism: f · (xy) = (f · x)(f · y). Frequently, we write f(x) instead of f · x.
The specification of regular constraints is given here by assigning to each constant and
variable an element in a finite monoid (typically the finite monoid is a monoid of Boolean
matrices and arises as the transformation monoid of a finite automaton.) By making the
finite monoid larger, we can turn it into a monoid N with involution and where G acts on it.
This allows us to represent regular constraints using a morphism µ : (A ∪ (G×X))∗ → N

which respects the involution and the action of G. In the following we fix the finite monoid
N and we assume that all morphisms to N respect the involution and G action. We say
that M is an NG-i-monoid if M is a monoid with involution and a G action together with a
morphism µ : M → N . (In this abbreviation the i stands for “involution”.) If not explicitly
stated otherwise all monoids under consideration are NG-i-monoids (including N itself). A
morphism between NG-i-monoids M,M ′ with morphisms µ, µ′ is a morphism ϕ : M →M ′

such that ϕ(g · x) = g · (ϕ(x)) and µ′ϕ = µ. Henceforth, by default, a morphism means a
morphism between NG-i-monoids.

Regular languages in finitely generated free monoids can be defined via nondeterministic
finite automata (NFA for short) or via recognizability via homomorphisms to finite monoids,
to mention just two possible definitions. This notion extends to every monoid M : an NFA
is a directed finite graph A with initial and final states, where the transitions are labeled
with elements of the monoid M . A transition labeled by 1 ∈M is called an ε-transition. We
say that m ∈ M is accepted by the automaton A if there exists a path from some initial
to some final state such that multiplying the edge labels together yields m. This defines
the accepted language L(A) = {m ∈M | m is accepted by A}. According to [10] a subset
L ⊆ M is rational if and only if L is accepted by some NFA over M . An NFA is called
trim if every state is on some path from an initial to a final state. Ensuring the NFA that
we construct in our proof below is trim, allows us to decide emptiness or finiteness of the
solution set.

A subset L ⊆ A∗ × · · · ×A∗ is called EDT0L if there some (extended) alphabet C with
c1, . . . , ck ∈ C such that A ⊆ C and a rational set R ⊆ End(C∗) of endomorphisms over
C∗ such that L = {(h(c1), . . . , h(ck)) | h ∈ R} . The classical definition for EDT0L refers to
k = 1. Our definition uses a characterization of EDT0L languages due to Asveld [1, 28].

Let B and Y be two disjoint NG-i-alphabets. We call B the alphabet of constants and Y
the set of twisted variables. It is convenient to choose a minimal subset X ⊆ Y such that
every Y ∈ Y has the form Y = f · X for some X ∈ X and f ∈ G. Moreover, we assume
X 6= X for all variables. If G acts without fixed points on Y, then we identify Y = G×X
and the action becomes g · (f,X) = (gf,X). By M(B,X , θ, µ) we denote an NG-i-monoid
which is generated by B∪{f(X) | f ∈ G,X ∈ X} together with a finite set θ of homogeneous
defining relations, which means every (x, y) ∈ θ satisfies |x| = |y|. We always assume that
(x, y) ∈ θ implies µ(x) = µ(y), (x, y) ∈ θ, and (f(x), f(y)) ∈ θ for all f ∈ G, even if these
relations are not listed in the specification of θ. For complexity issues we require |x| ≤ 2 for
each (x, y) ∈ θ and |θ| ∈ O(|G| ‖S‖2) where ‖S‖ is specified in Theorem 1. The homogeneity
condition makes it possible to solve the word problem and all other computational issues for
the quotient M(B,X , θ, µ) = M(B,X , ∅, µ)/ {x = y | (x, y) ∈ θ} within our space bound.

2 The main results

Let A an alphabet of constants and G be a subgroup of Aut(A). Initially, the set of twisted
variables is G × V. For a word w ∈ A∗ and f ∈ G we use the notation f(w) = (f, w);

ICALP 2017

96:4 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

and we hence identify (A ∪ (G × V))∗ = ((G × (A∗ ∪ V))∗. We abbreviate (1, x) as x for
x ∈ A∗∪V . A system S of twisted word equations with rational constraints is given by a set of
pairs {(Ui, Vi) | 1 ≤ i ≤ s} where Ui, Vi ∈ (A ∪ (G× V))∗ are twisted words and a morphism
µ0 : (A ∪ (G × V))∗ → N . It is specified by its restriction to A ∪ V; and µ0 respects the
involution and the action of G.

As usual, a twisted equation (Ui, Vi) is also written as Ui = Vi. A solution of S is given
a morphism σ : V → A∗ which is (uniquely) extended to an A-morphism of NG-i-monoids
σ : (A ∪ (G × V))∗ → A∗ such that σ(Ui) = σ(Vi) for all i and µ0σ(X) = µ0(X) for all
variables. Hence, µ0σ = µ0. The full solution set Sol(S) for V =

{
X1, X1, . . . , Xk, Xk

}
is Sol(S) = {(σ(X1), . . . , σ(Xk)) ∈ A∗ × · · · ×A∗ | σ solves S} . We define the size ‖S‖ by
‖S‖ = |G|+ |A|+ |V|+ s+

∑
1≤i≤s |UiVi| .

Convention. For better readability we don’t measure N , but we add the general hypotheses
that N is given in such a way that the specification and all necessary computations over N
(multiplication, computing the involution and the G action) can be done in polynomial space
with respect to ‖S‖. This is no restriction, as we can add trivial equations to enlarge ‖S‖.

I Theorem 1. There is a PSPACE algorithm which takes as input a system of twisted word
equations with rational constraints S as above with input size ‖S‖. The output is an extended
alphabet C of size O(|G|2 ‖S‖2), letters cX ∈ C for each X ∈ V, and a trim NFA A accepting
a rational set of A-morphisms L(A) ⊆ End(C∗) such that

Sol(S) =
{

(h(cX1), . . . , h(cX|V|)) ∈ C
∗ × · · · × C∗

∣∣ h ∈ L(A)
}
. (1)

Intermediate equations, which label states of the NFA, have a length bound in O(|G| ‖S‖2).
Moreover, Sol(S) = ∅ if and only if L(A) = ∅, and |Sol(S)| < ∞ if and only if A doesn’t
contain any directed cycle.

The result above is far-reaching extension of Makanin’s classical result on pure word
equations. It combines combinatorics on words, automata theory, formal languages, and
group actions on alphabets. It doesn’t use band complexes, Makanin-Razborov diagrams
or results from algebraic geometry over groups [4, 2]. Here, a virtually free group V is
given by a group extension of a free group F (B) with a finite group G with the natural set
A = B ∪B−1 ∪G \ {1} as generators. We represent elements of V by reduced normal forms
in V̂ , where V̂ is the set of words in B∗G ⊆ A∗ without factors bb. Thus, we have a natural
notion of solution in reduced normal forms.

I Corollary 2. Let V be a f.g. virtually free group. There is an NSPACE(m2‖S‖2 log(‖S‖))
algorithm such that:
Input. A system S of s equations Ui = Vi over V with rational constraints and in variables
X1, . . . , Xk, where ‖S‖ = k +

∑
1≤i≤s |UiVi| and m denotes the number of states for the

NFA’s to encode constraints.
Output. An extended alphabet C of size O(‖S‖2), letters cX ∈ C for each variable, and a
trim NFA A accepting a rational set of A-morphisms over C∗ such that{

(h(cX1), . . . , h(cXk)) ∈ (C∗)k
∣∣ h ∈ L(A)

}
=
{

(σ(X1), . . . , σ(Xk)) ∈ V̂ k
∣∣∣ σ solves S

}
.

Moreover, there is no solution if and only if L(A) = ∅, and there are infinitely many solutions
if and only if A contains a directed cycle.

The reduction of Corollary 2 to Theorem 1 follows [4] very closely, see [5] for details:

V. Diekert and M. Elder 96:5

1. Embed V into a semi-direct product F (S) oG using Bass-Serre theory. This encodes V̂
as a rational set in S∗G and allows us to view a system of equations over V (with rational
constraints) as a system of twisted word equations with rational constraints over S.

2. Handling of rational constraints by transformations on NFA’s by standard methods.

3. Projection of EDT0L languages and respecting reduced normal forms using the fact that
the embedding satisfies B ⊆ S.

3 Outline of the proof of Theorem 1

The actual proof of Theorem 1 is rather technical, so this extended abstract outlines the
central ideas only. The focus is on those parts which are original and where the twisting
forces us to deviate from what has been done elsewhere. Jeż’s recompression technique is
based on two procedures: block-compression and pair-compression; solutions are obtained
by iteratively popping the first and last letters of variables (performing moves of the form
X 7→ aX), which increases the length of the equation, and compressing factors by replacing
pairs ab and powers aλ by a single (new) letter. In the “untwisted” setting, when we compress
a pair ab we replace every occurrence of the factor that is “visible” in the equation, but in
the twisted case, the pair ab appearing on one side of the equation needs to match with
f(ab) on the other side, which causes complications. The basic problem is that twisting
of a word (ab)λ by some f ∈ G may result in f(ab)λ = (ba)λ. The complications related
to this will become clear below. Therefore we introduce two new procedures. First we
define a new and more general δ-periodic-compression w.r.t. some δ ∈ Θ(|G| ‖S‖). In some
sense, δ-periodic-compression removes the problem caused by f(p)λ = qλ where p and q

are primitive words of length at most δ. (Powers of long primitive words are then handled
in later iterations.) Performing one δ-periodic-compression will result in a situation where
“equivalent” positions in the solution are far apart. This property is used for our version of
pair-compression without the possibility to “uncross” pairs as is the usual strategy. Instead
we do the following. First we pop out from every σ(X) rather long prefixes and suffixes. After
that we find room to compress enough pairs ab into fresh letters c. We cannot compress pairs
by their label (twisting prevents that), so we compress only pairs ab where the corresponding
two positions have no equivalent position which is located at some border of an occurrence
of a variable. This is our leads to a new definition of twisted-pair-compression. Of course, we
must define precisely when positions are equivalent and everything must take the action of G
and rational constraints into account. Last but not least, we must realize the procedure by
following arcs in an NFA where the labels are endomorphisms over some extended alphabet
C. This yields the EDT0L property of the full solution set, more importantly it transforms
questions about solvability of equations into structural properties of a finite graph.

One of the new features presented here is the ambient algebraic structure: in the case
of free monoids (resp. free groups) the intermediate monoids were partially commutative.
Twisting leads to more complicated defining relations. More concretely, when working with
an equation U = V over constants B and variables X with constraints defined by an NG-i-
monoid morphism µ : B ∪ X → N , we deal with an NG-i-monoid denoted by M(B,X , θ, µ).
The algebraic structure is a quotient monoid (B ∪ X)∗/ {xy = zx | (xy, zx) ∈ θ}, where
x ∈ B ∪ X and y, z ∈ (B ∪ X)∗ with |y| = |z|. The idea is that, reading a word in
w ∈ (B ∪ X)∗, the position of x is not fixed, it “floats” by conjugating y to z or vice versa,
without changing the length of W . This possibility of “floating” is essential in our approach.

ICALP 2017

96:6 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

Z

Z

Y

X

↑h ↑f
↓1 ↓g

Y

h−1(rs)

rs f(rs) f2(rs)

rs f(rs) f2(rs)

fj(r)

fj(r)

Figure 1 “Graphical” proof of Proposition 3.

3.1 States of the NFA
We start with a system of S of s equations Ui = Vi over some alphabet A of constants and
in variables Xj . We encode S as a single word using a marker symbol and we obtain the
initial equation as:

Winit = #X1# · · ·#Xk#U1# · · ·Us# #X1# · · ·#Xk#V1# · · ·Vs#. (2)

Note that σ(W) = σ(W) if and only if σ(Ui) = σ(Vi) for all i. We fix n = |Winit|. Note that
this implies n > |A|+ |V| and ‖S‖ ∈ |G|+ Θ(n). States of the transition system are denoted
as (W,B,X , θ, µ). We call a state an extended equation. Here, B are the current constants
and X are the current variables with A ⊆ B ⊆ C and X ⊆ Ω where C and Ω are fixed and
of size O(|G|2‖S‖2) and W ∈M(B,X , θ, µ) has length bounded by O(|G|‖S‖2). A solution
is a morphism (of NG-i-monoids) σ : M(B,X , θ, µ)→M(B, θ, µ) such that σ(W) = σ(W).
Here, M(B, θ, µ) is the submonoid of M(B,X , θ, µ). If θ is empty, then we speak about a
standard state. We begin at a standard state and the aim is to track for every solution a
path from the initial standard state (Winit, A,G× V, ∅, µ0) to some final state (W,B, ∅, ∅, µ)
without types and variables such that W = W .

We need to reuse names for constants, so we also need a procedure, called alphabet-
reduction, to get rid of invisible constants. These are letters b ∈ B where for no f ∈ G the
letter f(b) appears in W . Since a given solution σ might use them, we cannot simply throw
them out. This forces us to consider entire solutions which are pairs (α, σ) where σ is a
solution as above and α : M(B, θ, µ)→ A∗ is an A-morphism.

3.2 Twisted conjugacy
An important concept in our approach is twisted conjugacy. We say that words x, y ∈ A∗ are
twisted conjugate if there are f, g, h ∈ G and z ∈ A∗ such that zg(y) = h(x)f(z).

I Proposition 3. Let σ be a solution of Z(g, Y) = (h,X)(f, Z) such that |σ(X)| satisfies
1 ≤ |σ(X)| < |σ(Z)|. Then there are words r ∈ A+, s ∈ A∗ and e, j ∈ N with 0 ≤ j < |G|
such that σ(X) = h−1(rs) and σ(Z) = ((rs)f(rs) · · · f |G|−1(rs))e f0(rs) · · · f j−1(rs)f j(r).

3.3 δ-periodic-compression
Recall that w = a1 · · · an with a ∈ A has period p ∈ N if ai = ai+p for all 1 ≤ i ≤ n− p. Let
δ be some positive natural number. We say that a word w is δ-periodic if it has some period
less or equal to than δ. Let u be a prefix (resp. factor, resp. suffix) of some nonempty word
w. We say that u is a maximal δ-periodic prefix (resp. factor, resp. suffix) in w if we cannot
extend the occurrence of the factor u inside w by any letter to the right or left, to get a
δ-periodic word. A δ-periodic word w is called long if |w| ≥ 3δ, and very long if |w| ≥ 10δ.
Standard knowledge in combinatorics on words tells us:

V. Diekert and M. Elder 96:7

I Lemma 4. Let w be a δ-periodic word and w = per = qfs such that p, q are primitive,
|p| ≤ |q| ≤ δ, 1 6= r ≤ p, 1 6= s ≤ q, and |w| ≥ 2δ. Then p = q, e = f ≥ 1, and r = s.

Let us give a high-level description of our new procedure δ-periodic-compression. For
simplicity, we deal just with a single “triangulated” twisted equation (f,X)w(g, Y) = Z

where X, Y , Z are variables and w ∈ B∗ is word over the current constants B. We consider
a fixed solution σ and we ignore rational constraints by assuming N = {1}. Moreover, we
assume that for every letter b ∈ B there is some f ∈ G such that f(b) is a letter in w. Thus,
we start with an alphabet-reduction which removes invisible letters for a given solution.
Since σ is a solution, we can identify positions in w with positions in σ(Z). These identified
positions carry the same label and we also say that these positions are visible.

Let us consider all very long maximal δ-periodic factors qdq′, written as uperv, of σ(Z)
which have an occurrence with a visible position. Note that their total number is bounded
by |w|/δ. In the description we assume that |u| = |v| = 3δ, p is primitive of length at most δ
and 1 6= r ≤ p. Hence, uperv defines the triple (p, r, e) uniquely by Lemma 4.

The idea is that at the end we arrive at a state with a solution where all occurrences of
these factors upeλrv are replaced by u[r, s, λ]v where [r, s, λ] is the notation for a single fresh
letter and rs = p. Here λ is a formal symbol taken from some some index set Λ of size at
most |w|/δ. In order to avoid many case distinctions we consider the following (in some sense
most interesting) special case, only. We assume that σ(X) is a very long periodic word, σ(Y)
has a very long δ-periodic prefix, and σ(Z) has a δ-periodic prefix longer than |σ(X)|, but no
long δ-periodic suffix. Moreover, we assume that w has more than two very long δ-periodic
factors. Note that upeλrv = urqeλv if 1 6= r 6= p, p = rs, and q = sr. Let us resume: let
uλp

eλ
λ rλvλ be an occurrence of a very long δ-periodic factor in σ(Z) with at least one visible

position, |uλ| = |vλ| = 3δ, and pλ is primitive with |pλ| ≤ δ. Thus, λ ∈ Λ. There are three
cases which we distinguish by using the names λ, ν, ρ ∈ Λ. First, the occurrence of uλpeλλ rλvλ
is the δ-periodic prefix of σ(Z). As, by our simplification assumption, this prefix is longer
than σ(X), we deduce that we can write σ(f,X) = uλp

e
λp
′ with p′ ≤ pλ. Second, all “inner”

positions peνν rν of z = uνp
eν
ν rνvν are visible. In this case, since σ(X) (resp. σ(Y)) has a very

long prefix (resp. suffix), this corresponds to an occurrence of the factor z in w. Third we
can write σ(g, Y) = p′′pe

′

ρ rρvρy with e′ ≥ 6 and p′′ ≤ pρ for some maximal δ-periodic factor
uρp

eρ
ρ rρvρ of σ(Z) with ρ ∈ Λ. Moreover, we are in the case that the maximal δ-periodic

prefix of vρy is vρ and y 6= 1. As we assumed that w has more than two very long δ-periodic
factors, we can write w = w1p

ν
νrνw2.

The procedure introduces at this point (for each λ ∈ Λ) new “typed” variables: [X, pλ],
[Y, pλ], and [Z, pλ]. Actually, we need many more variables. Whenever we introduce variable
[V, p] we also introduce [V , p] and [V, qa] for p = aq; and we iterate this process. Finally,
the action of G is defined by identifying (f, [V, p]) with (1, [V, f(p)]) = [V, f(p)]. (Note that
(f, [V, p]) = (g, [V, p]) ⇐⇒ f(p) = g(p).)

The maximal number of these typed variables introduced by any equation with at most n
variables is at most 2n|G|δ. The factor 2n is there because we consider for every variable a
prefix and a suffix; and the factor δ comes in because |p| ≤ δ and with p = aq every conjugate
qa is also considered. Let X ′ be the enlarged set of untyped variables X ∈ X and fresh typed
variables [V, p]. Together with introducing these variables we switch to the algebraic structure
to read the equation in the monoid M(B,X ′, θ, µ′) where the defining relations are given by
θ = {(a[V, p], [V, q]a | ap = qa ∧ a ∈ B}. We define the type of [V, p] to be θ([V, p]) = p and
we observe that the defining relations imply p[V, p] = [V, p]p in M(B,X ′, θ, µ′). We need a
stronger notion of solution for typed variables in order to prevent that an unsolvable equation
is transformed in a solvable one. If θ([V, p]) = p, then we require σ([V, p]) ∈ p∗. Since σ is

ICALP 2017

96:8 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

a morphism, it also satisfies the defining relations. Hence, aσ([V, p]) = σ([V, q])a implies
|σ([V, p])| = |σ([V, p])|, too. The value of µ′([V, p]) is defined implicitly in the following loop.

The loop is over all variables in some order. Of course, whatever happens to a variable V
forces a simultaneous change in V , too. We pop from each variable the maximal δ-periodic
suffix of σ(X) if this suffix is longer than 3δ. Otherwise we do nothing. As we have no control
on the length of this suffix, we introduce a new typed variable. (Clearly, as we consider X
and X prefixes and suffixes are popped out, and each X may produce two typed variable.)
What we do in our concrete situation (where we have Λ = {λ, ν, ρ}) is the following:
1. We substitute (f,X) by τ(f,X) = uλ[X, pλ]p`λp′. (So, X vanishes.) Moreover, for

technical reasons, we require 5δ < |p`λp′| ≤ 6δ. We can define σ′([X, pλ]) ∈ p∗λ such that
σ(f,X) = uλσ

′([X, pλ])p`λp′.
2. We substitute (g, Y) by τ(g, Y) = p′′prρ[Y, pρ](g, Y) with the length condition 5δ <∣∣p′′prρ∣∣ ≤ 6δ. We can define σ′(g, Y) = vρy and σ′([Y, pρ]) ∈ p∗ρ such that σ(g, Y) =

p′′prρσ
′([Y, pρ])σ′(g, Y).

3. We substitute Z by τ(Z) = sq`
′ [Z, q]Z with the length condition 5δ < |sq`′ | ≤ 6δ. Here

q is the conjugate of pλ such that q = srλ, pλ = rλs. We can define σ′(Z) = vλz and
σ′([Z, q]) ∈ q∗ with sq`′σ′([Z, q])σ′(Z) = σ(Z).

This leads to a new solution σ′ to the twisted equation uλ[X, pλ]p`λp′wp′′pr
′

ρ [Y, pρ](g, Y) =
sq`
′ [Z, q]Z. We rename σ′ as σ. Note that uλ is a prefix of sq`′ . The positions of [X, pλ] and

[Z, q] are not adjusted, but our defining relations do not fix these positions. So, we use these
defining relations to represent the equation by the following equation between words

uλ[X, pλ]p`
′′

λ rλvλw
′uρp

r′

ρ rρ[Y, pρ](g, Y) = uλ[Z, q]p`
′′′

λ rλZ. (3)

The morphism σ solves this equation. Moreover, in our concrete situation we have vλw′uρ =
vuνp

ν
νrνu; and again, we content ourselves to consider the special case where uνpννrν is

the only occurrence of very long δ-periodic factor in vλw′uρ. Ignoring uλ on the left, the
remaining task is to compress the equation (where vλ ≤ vuν and uρ ≤ u vν)

[X, pλ]p`
′′

λ rλvuνp
ν
νrνvνup

r′

ρ rρ[Y, pρ](g, Y) = [Z, q]p`
′′′

λ rλZ (4)

with respect to the solution σ. The crucial idea comes next: we use a larger alphabet of
constants, we change the type of variables and we introduce more defining relations. For
each λ ∈ Λ we introduce a new constant, denoted as [pλ, rλ, λ], and for each variable [V, p] we
introduce a constant [p]. Thus, [pλ, rλ, λ] and [p] are fresh letters. We also let act G on these
letters in the obvious way, so we actually introduce more letters. Let h be the morphism
defined by h([pλ, rλ, λ]) = pλrλ and h([p]) = p, it means h compresses the words pλrλ and p
into single letters, then Equation (4) is the image under h of the equation

[X, pλ][pλ]`
′′−1 [pλ, rλ, λ] vuν [pν]ν−1 [pν , rν , ν] vνu[pρ]r

′−1 [pρ, rρ, ρ] [Y, pρ](g, Y) (5)

= [Z, q][pλ]`
′′′−1 [pλ, rλ, λ] Z (6)

To have a visual notation we color the letters of the form [pλ, rλ, λ] green . The procedure
continues by redefining the type of a twisted variable [V, p] as the letter [p]. We augment θ
by more defining relations:

{[V, p][p] = [p][V, p] | [V, p] twisted variable}∪
{

[pλ, rλ, λ] [srλ] = [pλ] [pλ, rλ, λ]
∣∣∣ pλ = rλs

}
.

It is not hard to see that we find a solution σ′ of the new equation over the larger alphabet
of constants such that hσ′ = σh which is needed to prove the EDT0L property. The

V. Diekert and M. Elder 96:9

remaining procedure is essentially the same as in [3]: using transformations either based on
substitutions [V, p] 7→ [V, p][p] and [V, p] 7→ 1 or homomorphisms based on [p] 7→ [p][p] and
[pλ, rλ, λ] 7→ [pλ, rλ, λ] [pλ] we can compress the above equation and simultaneously the
solution such that the equation becomes its final form. We finish δ-periodic compression with

[pλ, rλ, λ] vuν [pν , rν , ν] vνu [pρ, rρ, ρ] (g, Y) = [Z, q] [pλ, rλ, λ] Z. (7)

The typed variables are gone, the letters [p] are not visible anymore, moreover, the new
solution doesn’t use them. We are back in a free monoid, because none of the defining
relations is used anymore. Note that Equation (7) is shorter than the original equation.
Indeed, while the initial increase in the length of the equation is in O(nδ), each green letter
represents the inner part of a very long δ-periodic word of length at least 6δ.

I Proposition 5. Let Es = (Ws, Bs,Xs, ∅, µs) be the state where we started δ-periodic-
compression with |Ws| ≥ 8δn; and let Et = (Wt, Bt,Xt, ∅, µt) the standard state where we
finish δ-periodic-compression, and (W,B,X , θ, µ) any state which we have seen on the path
from Es to Et during the procedure. Then we have |Wt| ≤ |Ws|+20δn and |W | ≤ |Ws|+O(δn).
Moreover, let nnew =

∑
b∈Bt\Bs |Wt|b. If nnew ≥ 10n, then |Wt| < |Ws|.

I Remark. Note that nnew is the number of green letters we see in Wt. Let σ be the solution
after δ-periodic-compression, then for X ∈ Xt the length of a δ-periodic prefix (and suffix
resp.) is bounded by 3δ. Hence, there is no very long δ-periodic prefix or suffix in σ(X).

3.4 Twisted pair-compression
We place ourselves after a sequence of rounds of popping out letters for each variable, alphabet-
reduction, and δ-periodic compression. We are at a standard state E = (W,B,X , ∅, µ) where
∅ 6= X ⊆ V. Without restriction, we may assume that |W | ∈ Θ(|G|n2) and that the number
of visible green letters is at most 10n: our construction ensures that |W | ∈ O(|G|n2), and we
can always pop out letters to make the equation longer; and if the number of visible green
letters exceeds 10n then according to Proposition 5 the most recent δ-periodic-compression
had decreased the length of the equation, so we can perform another round.

Throughout, it is possible to write W = U1#u(f,X)w(g, Y)v#U2U ′2 # vZu#U ′1 with
|U ′i |# = |U ′i |#, i = 1, 2. Here u(f,X)w(g, Y)v = uZv is called a local equation. For
simplicity we may assume that u, v, w ∈ B∗ and that (f,X), (g, Y), Z = (1, Z) are twisted
variables. Moreover, we may assume that for each local equation its “dual” equation
v(g, Y)w(f,X)u = vZv is also part of the system encoded in W . Since W is long, we can
assume that |uwv| is long, too. Since there are at most O(n) green letters, there are long
intervals without green letters. The goal is to compress enough pairs ab ≤W of constants
into single letters without causing any conflict or overlap with other pairs or variables that
are connected via twisting. We compress pairs according to an equivalence relation between
positions. The idea is that whenever we modify a solution at position i, then we must modify
σ(W) at all equivalent positions j ≡ i.

The notion of equivalent positions is defined for a given solution σ, it has a reasonably
intuitive definition. We write W = UV with σ(U) = σ(V) and σ(U) = a1 · · · am with ai ∈ B.
We associate with U (resp. V) the interval [1,m] ⊆ N (resp. [m+ 1, 2m]) of positions and we
let i ∼ m+ i for 1 ≤ i ≤ m. We say that position i sits directly “above” m+ i, see Figure 2.

Each occurrence of a twisted variable (f,X) in UV corresponds to some interval of
length |σ(X)| in [1, 2m] and we identify the i-th positions in each of these intervals for
1 ≤ i ≤ |σ(X)|. Identified positions are represented by a unique position corresponding to

ICALP 2017

96:10 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

U1 U2

U ′1 U ′2

X

Z

Y

u

u

v

vw

↓f ↓g

Figure 2 W = UV viewed as U on top and V on the bottom and σ(U) = σ(V) in the middle.

X

Y

i

j(red) (red)

Figure 3 Red positions. We use ∼ to put i ≈ j into a “domino tower”.

the leftmost occurrence of a twisted variable (f,X) in U . This interval is denoted by I(X).
Thus, we identify various positions and we carry over the relation ∼: if i and j are identified
with i′ and j′ and if i′ ∼ j′, then we also let i ∼ j. By ≈ we denote the generated equivalence
relation of ∼. The relation ≈ can be visualized in so-called domino towers as in Figure 3.
Clearly, we may have i ≈ j for various i, j ∈ I(X). For example, an equation (f,X)a = bX

forces i ≈ j for all i, j ∈ I(X). There is also a natural notion of duality: I(X) and I(X)
are disjoint, but if we change σ(X) at the first position, we must change σ(X) at the last
position. Thus, for the i-th position in I(X) we let i be the (|σ(X)| − i+ 1)-st position in
I(X); and we write i↔ i. Finally, we let ≡⊆ [1, 2m]× [1, 2m] be the equivalence relation
generated by ≈ and ↔. Clearly, if i ≈ j ↔ j and the label at position i is a ∈ B, then a
labels j and a labels j.

Positions at the borders of some σ(X) inside σ(W) play a special role because we cannot
compress over borders. We color the first and last position in each I(X) red (unless it has
already the color green) to signal “danger”. We color red all positions equivalent to a red
position, too. Since the set of green positions is closed under equivalence (they are the fresh
letters [pλ, rλ, λ]), no conflict between red and green is introduced here. It follows that there
are at most n pairwise different equivalence classes of red positions.

We extend the notion of equivalence to intervals (without red positions). Let p ∈ N. We
directly link an interval [i, i + p] of positions in σ(X) (resp. w, σ(Y)) to [j, j + p] in σ(Z)
if there is an equation, for example like u(f,X)w(g, Y)v = uZv, such that σ(X)[i, i + p]
(resp. w[i, i + p], σ(Y)[i, i + p]) sits directly above the σ(Z)[j, j + p]; and we write [i, i +
p] ∼ [j, j + p] in this case. For each interval [i, i + p] of positions in σ(X) we also let
[i, i+ p]↔ [i+ p, i]. As above, we let ≈ and ≡ be the generated equivalence relations of ∼
resp. ∼ ∪↔. Since i ∼ j ⇐⇒ i ∼ j we can deduce

[i, i+ p] ≡ [j, j + p] ⇐⇒ [i, i+ p] ≈ [j, j + p] ∨ [i, i+ p] ≈ [j + p, j]. (8)

I Lemma 6. Let [i− 1, i, i+ 1, i+ 2] be an interval without any red position and where the
four positions are pairwise inequivalent. Consider [i, i + 1] ≡ [j, j + 1] ≡ [k, k + 1]. Then
either k = j and [j, j + 1] 6≈ [k − 1, k] or [j, j + 1] ∩ [k, k + 1] = ∅.

V. Diekert and M. Elder 96:11

X

Y

i

j

pp

p

(a) W : [i− p, i+ p] ∼ [j − p, j + p]

X

Y

i

j

(b) Wp : i ∼ j

Figure 4 Example illustrating the proof of Lemma 7.

Let p ∈ N and σ be a solution for W . For each X we do:
if |σ(X)| ≤ 2p, then replace X by σ(X) and remove X from the set of variables;
if |σ(X)| > 2p, then write σ(X) = uwv with |u| = |v| = p and replace X by uXv. Change
the interval I(X) = [l, r] to Ip(X) = [l + p, r − p]. (So, it is smaller.)

Denote the new solution for Wp defined by that procedure by σp.

I Lemma 7. Let i and j be positions in σp(Wp) = σ(W) which belong to variables in Wp.
This means i, j ∈

⋃
{Ip(X) | X ∈ Xp}. Then we have i ∼ j (resp. i↔ j) for Wp and σp if

and only if [i− p, i+ p] ∼ [j − p, j + p] (resp. [i− p, i+ p]↔ [j − p, j + p]) for W and σ.

We define and fix δ = |G| ε and ε = 30n. We start at a standard state E = (W,B,X , ∅, µ)
together with a solution σ. For simplicity, we assume that all local equations have the
form u(f,X)w(g, Y)v = uZv. Moreover, when we start pair-compression (directly after
δ-periodic-compression) there are some green letters and corresponding green visible positions.
1. For every X in some order do: either replace X by σ(X) (if |σ(X)| ≤ 10δ) or write

σ(X) = ux with |u| = 10δ; replace X by τ(X) = uX; rename the new equation and new
solution as (E, σ). Define the intervals I(X) as done above color red positions in σ(W)
which are equivalent to a first or last position in I(X) unless they are green.

2. while there is an interval [i− 1, i, i+ 1, i+ 2] such that (1) all four positions are pairwise
inequivalent, (2) no position is colored, and (3) all positions are visible
do
a. Let ab the label of the middle interval [i, i + 1]. Choose fresh letter c and define
a morphism h by h(c) = ab. (Hence, f(c) = c ⇐⇒ f(ab) = ab, too.) Whenever
[i, i + 1] ≈ [j, j + 1], then the label of [j, j + 1] is f(ab) for some f ∈ G. Replace each
of the intervals [j, j + 1] and [j − 1, j] by a single new position and label this position
with f(c) and f(c) resp. There is no conflict in this relabeling by Lemma 6. Since there
is no red position, there is no “crossing” of the intervals [j, j + 1] or [j − 1, j]. So, this
gives a new but shorter equation W ′. We have h(W ′) = W and new solution σ′ such that
hσ′(W ′) = σ(W) There is a new numbering for the positions, but the colored positions
can still be identified.
b. Define B′ = B ∪ {f(c), f(c) | f ∈ G} and E′ = (W ′, B′,X , ∅, µ′).
c. Rename (E′, σ′) as (E, σ) and transfer the induced coloring.
end while

If we started the procedure with W and the while loop with W`, then the loop terminates
with an equation W ′ and we introduced at most |G| (|W`| − |W ′|) new letters. It is also
clear that |W ′| ≤ |W | + 20δn since any increase of length is due to the first steps, where
we replaced each variable X either by σ(X) or by uXv. The worst case for |W ′| is that no
compression took place. However, we assume that there at most 10n green letters. Hence,
we can use the following fact.

ICALP 2017

96:12 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

I Proposition 8. Let (E, σ) with equation W just after a δ-periodic-compression where
at most 10n green letters are visible. If |W | ∈ 20`δn + O(δn), then the pair-compression
procedure outputs an equation W ′ such that |W ′| ≤ |W |+ 20δn and |W ′| ≤ 59|W |

60 +O(δn).

Let us highlight that Proposition 8 is the key step in the proof of Theorem 1 and it is
here where twisted conjugacy comes into play. Following any given solution at the initial
state, it bounds the lengths of all intermediate equations in O(δn) = O(|G|n2). Since at a
standard state we can perform an alphabet reduction we can bound the size of the extended
alphabet C in O(|G|2n2). Moreover, the number of untyped variables is never increasing.
Typed variables disappear and reappear, but their number never grows beyond the size of C.

After δ-periodic compression, no σ(X) started or ended in a very long δ-periodic word. In
the procedure above either X vanished or we replaced X by uXv where |u| = |v| = 10δ. We
carefully colored some position red after that replacement. Consider the new equation with
the new solution just after that step; and rename the corresponding pair as (W,σ). Consider
positions i < k in σ(W) such that no position k with i ≤ k ≤ j is green. With the help of
Proposition 3, Lemma 7 and “domino towers” as depicted in Figure 4, one can show the
following fact: if i ≡ k ≡ j for some k, then |j− i| > ε. The fact is not obvious but extremely
useful: knowing that equivalent positions are far apart allows one to find enough intervals of
length four, such that pair-compression reduces their length to at most three by Lemma 6.

Putting all this together, the overall compression method has the following high-level
description. Start at the initial state Einit with a given initial entire solution (idA∗ , σinit).

begin compression
Rename Einit as E = (W,B,X , ∅, µ); rename (idA∗ , σinit) as (α, σ).
Repeat the following loop until X = ∅.
begin loop
1. Pop out letters from variables until |W | ≥ 100δn.
2. Define κ > 0 by κδn = |W |. Call δ-periodic-compression (starting with an alphabet-
reduction), and let W ′ denote the equation at the end of the procedure.
3. If |W ′| < κδn, then do nothing, else call pair-compression.
end loop
end compression

Proposition 8 implies that κ ∈ Q is bounded above by some effective constant in O(1).
Defining a weight in N4 (ordered lexicographically) by

‖E,α, σ‖ =

 ∑
X has no type

|ασ(X)| ,
∑

X is typed
|ασ(X)| , |W | , |B|

finally shows that the compression method terminates for every given solution because every
step in the procedures is weight-reducing. This means our algorithm finds all solutions. This
finishes the outline of the proof of Theorem 1.

Acknowledgements. We thank the anonymous referees for very helpful feedback.

References
1 Peter R. J. Asveld. Controlled iteration grammars and full hyper-AFL’s. Information and

Control, 34(3):248–269, 1977. doi:10.1016/S0019-9958(77)90308-4.

http://dx.doi.org/10.1016/S0019-9958(77)90308-4

V. Diekert and M. Elder 96:13

2 Gilbert Baumslag, Alexei Myasnikov, and Vladimir Remeslennikov. Algebraic geometry
over groups. In Algorithmic problems in groups and semigroups (Lincoln, NE, 1998),
Trends Math., pages 35–50. Birkhäuser Boston, Boston, MA, 2000. doi:10.1007/
978-1-4612-1388-8_3.

3 Laura Ciobanu, Volker Diekert, and Murray Elder. Solution sets for equations over free
groups are EDT0L languages. Internat. J. Algebra Comput., 26(5):843–886, 2016. Confer-
ence version in ICALP 2015, LNCS 9135. doi:10.1142/S0218196716500363.

4 François Dahmani and Vincent Guirardel. Foliations for solving equations in groups: free,
virtually free, and hyperbolic groups. J. Topol., 3(2):343–404, 2010. doi:10.1112/jtopol/
jtq010.

5 Volker Diekert and Murray Elder. Solutions of twisted word equations, EDT0L languages,
and context-free groups. ArXiv e-prints, January 2017. URL: https://arxiv.org/abs/
1701.03297, arXiv:1701.03297.

6 Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equations
in free groups and monoids with involution. Inform. and Comput., 251:263–286, 2016.
Conference version in Proc. CSR 2014, LNCS 8476 (2014). doi:10.1016/j.ic.2016.09.
009.

7 Volker Diekert and Armin Weiß. Context-free groups and Bass-Serre theory. ArXiv e-prints,
July 2013. arXiv:1307.8297.

8 Martin J. Dunwoody. The accessibility of finitely presented groups. Inventiones Mathem-
aticae, 81(3):449–457, 1985. doi:10.1007/BF01388581.

9 Andrzej Ehrenfeucht and Grzegorz Rozenberg. On some context free languages that are
not deterministic ET0L languages. RAIRO Theor. Inform. Appl., 11:273–291, 1977.

10 Samuel Eilenberg. Automata, languages, and machines. Vol. A. Academic Press [A sub-
sidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974. Pure and Applied
Mathematics, Vol. 58.

11 Julien Ferté, Nathalie Marin, and Géraud Sénizergues. Word-mappings of level 2. Theory
Comput. Syst., 54:111–148, 2014. doi:10.1007/s00224-013-9489-5.

12 Robert H. Gilman. Personal communication, 2012.
13 Robert H. Gilman, Susan Hermiller, Derek F. Holt, and Sarah Rees. A characterisa-

tion of virtually free groups. Arch. Math. (Basel), 89(4):289–295, 2007. doi:10.1007/
s00013-007-2206-3.

14 Mikhael Gromov. Hyperbolic groups. In Essays in group theory, volume 8 ofMath. Sci. Res.
Inst. Publ., pages 75–263. Springer, New York, 1987. doi:10.1007/978-1-4613-9586-7_3.

15 Sanjay Jain, Alexei Miasnikov, and Frank Stephan. The complexity of verbal languages
over groups. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 405–414. IEEE Computer Soc., Los Alamitos, CA, 2012. doi:
10.1109/LICS.2012.50.

16 Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):Art. 4, 51, 2016. Conference version in Proc. STACS 2013. doi:10.1145/2743014.

17 Artur Jeż. Word Equations in Nondeterministic Linear Space, 2017. doi:10.4230/LIPIcs.
ICALP.2017.95.

18 Abe Karrass, Alfred Pietrowski, and Donald Solitar. Finite and infinite cyclic extensions
of free groups. J. Austral. Math. Soc., 16:458–466, 1973. Collection of articles dedicated to
the memory of Hanna Neumann, IV. doi:10.1017/S1446788700015445.

19 Dietrich Kuske and Markus Lohrey. Logical aspects of Cayley-graphs: the group case. Ann.
Pure Appl. Logic, 131(1-3):263–286, 2005. doi:10.1016/j.apal.2004.06.002.

20 Markus Lohrey and Géraud Sénizergues. Theories of HNN-extensions and amalgamated
products. In Automata, languages and programming. Part II, volume 4052 of Lecture Notes
in Comput. Sci., pages 504–515. Springer, Berlin, 2006. doi:10.1007/11787006_43.

ICALP 2017

http://dx.doi.org/10.1007/978-1-4612-1388-8_3
http://dx.doi.org/10.1007/978-1-4612-1388-8_3
http://dx.doi.org/10.1142/S0218196716500363
http://dx.doi.org/10.1112/jtopol/jtq010
http://dx.doi.org/10.1112/jtopol/jtq010
https://arxiv.org/abs/1701.03297
https://arxiv.org/abs/1701.03297
http://arxiv.org/abs/1701.03297
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://arxiv.org/abs/1307.8297
http://dx.doi.org/10.1007/BF01388581
http://dx.doi.org/10.1007/s00224-013-9489-5
http://dx.doi.org/10.1007/s00013-007-2206-3
http://dx.doi.org/10.1007/s00013-007-2206-3
http://dx.doi.org/10.1007/978-1-4613-9586-7_3
http://dx.doi.org/10.1109/LICS.2012.50
http://dx.doi.org/10.1109/LICS.2012.50
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://dx.doi.org/10.1017/S1446788700015445
http://dx.doi.org/10.1016/j.apal.2004.06.002
http://dx.doi.org/10.1007/11787006_43

96:14 Solutions of Twisted Word Equations, EDT0L Languages, and Context-Free Groups

21 Gennadií S. Makanin. The problem of solvability of equations in a free semigroup. Math.
Sbornik, 103:147–236, 1977. English transl. in Math. USSR Sbornik 32 (1977).

22 Victor Mazurov and Evgeny Khukhro. Unsolved Problems in Group Theory. The Kourovka
Notebook. No. 18 (English version). ArXiv e-prints, January 2014. arXiv:1401.0300.

23 David E. Muller and Paul E. Schupp. Groups, the theory of ends, and context-free languages.
J. Comput. System Sci., 26(3):295–310, 1983. doi:10.1016/0022-0000(83)90003-X.

24 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE. Journal
of the ACM, 51:483–496, 2004. Conference version in FOCS’99. doi:doi:10.1145/990308.
990312.

25 Wojciech Plandowski andWojciech Rytter. Application of Lempel-Ziv encodings to the solu-
tion of word equations. In K. G. Larsen et al., editors, Proc. 25th International Colloquium
Automata, Languages and Programming (ICALP’98), Aalborg (Denmark), 1998, volume
1443 of Lecture Notes in Computer Science, pages 731–742, Heidelberg, 1998. Springer-
Verlag.

26 Eliyahu Rips and Zlil Sela. Canonical representatives and equations in hyperbolic groups.
Invent. Math., 120(3):489–512, 1995. doi:10.1007/BF01241140.

27 Grzegorz Rozenberg and Arto Salomaa. The Book of L. Springer, 1986.
28 Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of formal languages.

Vol. 1. Springer-Verlag, Berlin, 1997. Word, language, grammar. doi:10.1007/
978-3-642-59126-6.

29 Géraud Sénizergues. An effective version of Stallings’ theorem in the case of context-
free groups. In Automata, languages and programming (Lund, 1993), volume 700 of
Lecture Notes in Comput. Sci., pages 478–495. Springer, Berlin, 1993. doi:10.1007/
3-540-56939-1_96.

30 Géraud Sénizergues. On the finite subgroups of a context-free group. In Geometric and
computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ,
1994), volume 25 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 201–212.
Amer. Math. Soc., Providence, RI, 1996.

31 Jean-Pierre Serre. Trees. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the
1980 English translation.

http://arxiv.org/abs/1401.0300
http://dx.doi.org/10.1016/0022-0000(83)90003-X
http://dx.doi.org/doi:10.1145/990308.990312
http://dx.doi.org/doi:10.1145/990308.990312
http://dx.doi.org/10.1007/BF01241140
http://dx.doi.org/10.1007/978-3-642-59126-6
http://dx.doi.org/10.1007/978-3-642-59126-6
http://dx.doi.org/10.1007/3-540-56939-1_96
http://dx.doi.org/10.1007/3-540-56939-1_96

Pumping Lemma for Higher-Order Languages∗†

Kazuyuki Asada1 and Naoki Kobayashi2

1 The University of Tokyo, Tokyo, Japan
asada@kb.is.s.u-tokyo.ac.jp

2 The University of Tokyo, Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

Abstract
We study a pumping lemma for the word/tree languages generated by higher-order grammars.
Pumping lemmas are known up to order-2 word languages (i.e., for regular/context-free/indexed
languages), and have been used to show that a given language does not belong to the classes
of regular/context-free/indexed languages. We prove a pumping lemma for word/tree languages
of arbitrary orders, modulo a conjecture that a higher-order version of Kruskal’s tree theorem
holds. We also show that the conjecture indeed holds for the order-2 case, which yields a pumping
lemma for order-2 tree languages and order-3 word languages.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases pumping lemma, higher-order grammars, Kruskal’s tree theorem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.97

1 Introduction

We study a pumping lemma for higher-order languages, i.e., the languages generated by
higher-order word/tree grammars where non-terminals can take higher-order functions as
parameters. The classes of higher-order languages [26, 18, 4, 5, 6] form an infinite hierarchy,
where the classes of order-0, order-1, and order-2 languages are those of regular, context-free
and indexed languages. Higher-order grammars and languages have been extensively studied
by Damm [4] and Engelfriet [5, 6] and recently re-investigated in the context of model
checking and program verification [9, 20, 15, 24, 11, 16, 12, 23].

Pumping lemmas [2, 7] are known up to order-2 word languages, and have been used to
show that a given language does not belong to the classes of regular/context-free/indexed
languages. To our knowledge, however, little is known about languages of order-3 or
higher. Pumping lemmas [21, 12] are also known for higher-order deterministic grammars
(as generators of infinite trees, rather than tree languages), but they cannot be applied to
non-deterministic grammars.

In the present paper, we state and prove a pumping lemma for unsafe1 languages of
arbitrary orders modulo an assumption that a “higher-order version” of Kruskal’s tree
theorem [17, 19] holds. Let � be the homeomorphic embedding on finite ranked trees2, and

∗ A full version of the paper is available at http://arxiv.org/abs/1705.10699.
† This work was supported by JSPS Kakenhi 15H05706.
1 See, e.g., [16] for the distinction between safe vs unsafe languages; the class of unsafe languages subsumes

that of safe languages.
2 I.e., T1 � T2 if there exists an injective map from the nodes of T1 to those of T2 that preserves the

labels of nodes and the ancestor/descendant-relation of nodes; see Section 2 for the precise definition.

EA
T

C
S

© Kazuyuki Asada and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 97; pp. 97:1–97:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.97
http://arxiv.org/abs/1705.10699
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

97:2 Pumping Lemma for Higher-Order Languages

≺ be the strict version of �. The statement of our pumping lemma3 is that for any order-n
infinite tree language L, there exist a constant c and a strictly increasing infinite sequence of
trees T0 ≺ T1 ≺ T2 ≺ · · · in L such that |Ti| ≤ expn(ci) for every i ≥ 0, where exp0(x) = x

and expn+1(x) = 2expn(x). Due to the correspondence between word/tree languages [4, 1],
it also implies that for any order-n infinite word language L (where n ≥ 1), there exist a
constant c and a strictly increasing infinite sequence of words w0 ≺ w1 ≺ w2 ≺ · · · in L such
that |wi| ≤ expn−1(ci) for every i ≥ 0, where ≺ is the subsequence relation. The pumping
lemma can be used, for example, to show (modulo the conjecture) that the order-(n + 1)
language {aexpn(k) | k ≥ 0} does not belong to the class of order-n word languages, for n > 0.
Thus the lemma would also provide an alternative proof of the strictness of the hierarchy of
the classes of higher-order languages.4

We now informally explain the assumption of “higher-order Kruskal’s tree theorem”
(see Section 2 for details). Kruskal’s tree theorem [17, 19] states that the homeomorphic
embedding � is a well-quasi order, i.e., that for any infinite sequence of trees T0, T1, T2, . . .,
there exist i < j such that Ti � Tj . The homeomorphic embedding � can be naturally lifted
(e.g. via the logical relation) to a family of relations (�κ)κ on higher-order tree functions
of type κ. Our conjecture of “higher-order Kruskal’s theorem” states that, for every simple
type κ, �κ is also a well-quasi order on the functions expressed by the simply-typed λ-terms.
We prove that the conjecture indeed holds up to order-2 functions, if we take �κ as the
logical relation induced from the homeomorphic embedding �. Thus, our pumping “lemma”
is indeed true for order-2 tree languages and order-3 word languages. To our knowledge, the
pumping lemma for those languages is novel. The conjecture remains open for order-3 or
higher, which should be of independent interest.

Our proof of the pumping lemma (modulo the conjecture) uses the recent work of Parys [23]
on an intersection type system for deciding the infiniteness of the language generated by a
given higher-order grammar, and our previous work on the relationship between higher-order
word/tree languages [1].

The rest of this paper is organized as follows. Section 2 prepares several definitions
and states our pumping lemma and the conjecture more formally. Section 3 derives some
corollaries of Parys’ result [23]. Section 4 prepares a simplified and specialized version
of our previous result [1]. Using the results in Sections 3 and 4, we prove our pumping
lemma (modulo the conjecture) in Section 5. Section 6 proves the conjecture on higher-order
Kruskal’s tree theorem for the order-2 case, by which we obtain the (unconditional) pumping
lemma for order-2 tree languages and order-3 word languages. Section 7 discusses related
work and Section 8 concludes.

2 Preliminaries

We first give basic definitions needed for explaining our main theorem. We then state the
main theorem and provide an overview of its proof.

3 This should perhaps be called a pumping “conjecture” since it relies on the conjecture of the higher-order
Kruskal’s tree theorem.

4 The strictness of the hierarchy of higher-order safe languages has been shown by Engelfriet [5] using a
complexity argument, and Kartzow [8] observed that essentially the same argument is applicable to
obtain the strictness of the hierarchy of unsafe languages as well. Their argument cannot be used for
showing that a particular language does not belong to the class of order-n languages.

K. Asada and N. Kobayashi 97:3

2.1 λ-terms and Higher-order Grammars

This section gives basic definitions for terms and higher-order grammars.

I Definition 1 (Types and Terms). The set of simple types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order of a simple type κ, written order(κ) is defined by order(o) = 0
and order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)). The type o describes trees, and
κ1 → κ2 describes functions from κ1 to κ2. The set of λ→,+-terms (or terms), ranged over
by s, t, u, v, is defined by:

t ::= x | a t1 · · · tk | t1 t2 | λx : κ.t | t1 + t2 .

Here, x ranges over variables, and a over constants (which represent tree constructors).
Variables are also called non-terminals, ranged over by x, y, z, f, g, A,B; and constants are
also called terminals. A ranked alphabet Σ is a map from a finite set of terminals to natural
numbers called arities; we implicitly assume a ranked alphabet whose domain contains all
terminals discussed, unless explicitly described. + is non-deterministic choice. As seen below,
our simple type system forces that a terminal must be fully applied; this does not restrict the
expressive power, as λx1, . . . , xk.a x1 · · ·xk is available. We often omit the type κ of λx : κ.t.
A term is called an applicative term if it does not contain λ-abstractions nor +, and called a
λ→-term if it does not contain +. As usual, we identify terms up to the α-equivalence, and
implicitly apply α-conversions.

A (simple) type environment K is a sequence of type bindings of the form x : κ such
that if K contains x : κ and x′ : κ′ in different positions then x 6= x′. In type environments,
non-terminals are also treated as variables. A term t has type κ under K if K `ST t : κ is
derivable from the following typing rules.

K, x : κ, K′ `ST x : κ
Σ(a) = k K `ST ti : o (for each i ∈ {1, . . . , k})

K `ST a t1 · · · tk : o

K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ
K, x : κ1 `ST t : κ2

K `ST λx : κ1.t : κ1 → κ2

K `ST t1 : o K `ST t2 : o

K `ST t1 + t2 : o

We consider below only well-typed terms. Note that given K and t, there exists at most one
type κ such that K `ST t : κ. We call κ the type of t (with respect to K). We often omit “with
respect to K” if K is clear from context. The (internal) order of t, written orderK(t), is the
largest order of the types of subterms of t, and the external order of t, written eorderK(t),
is the order of the type of t (both with respect to K). We often omit K when it is clear from
context. For example, for t = (λx : o.x)e, order∅(t) = 1 and eorder∅(t) = 0.

We call a term t ground (with respect to K) if K `ST t : o. We call t a (finite, Σ-ranked)
tree if t is a closed ground applicative term consisting of only terminals. We write TreeΣ for
the set of Σ-ranked trees, and use the meta-variable π for trees.

The set of contexts, ranged over by C, D, G, H, is defined by C ::= [] | C t | t C | λx.C.
We write C[t] for the term obtained from C by replacing [] with t. Note that the replacement
may capture variables; e.g., (λx.[])[x] is λx.x. We call C a (K′, κ′)-(K, κ)-context if K `ST C :
κ is derived by using axiom K′ `ST [] : κ′. We also call a (∅, κ′)-(∅, κ)-context a κ′-κ-context.
The (internal) order of a (K′, κ′)-(K, κ)-context, is the largest order of the types occurring in
the derivation of K `ST C : κ. A context is called a λ→-context if it does not contain +.

We define the size |t| of a term t by: |x| := 1, |a t1 · · · , tk| := 1 + |t1| + · · · + |tk|,
|s t| := |s|+ |t|+ 1, |λx.t| := |t|+ 1, and |s+ t| := |s|+ |t|+ 1. The size |C| of a context C is
defined similarly, with |[]| := 0.

ICALP 2017

97:4 Pumping Lemma for Higher-Order Languages

I Definition 2 (Reduction and Language). The set of (call-by-name) evaluation contexts is
defined by:

E ::= [] t1 · · · tk | a π1 · · ·πiE t1 · · · tk

and the call-by-name reduction for (possibly open) ground terms is defined by:

E[(λx.t)t′] −→ E[[t′/x]t] E[t1 + t2] −→ E[ti] (i = 1, 2)

where [t′/x]t is the usual capture-avoiding substitution. We write −→∗ for the reflexive
transitive closure of −→. A call-by-name normal form is a ground term t such that t 6−→ t′

for any t′. For a closed ground term t, we define the tree language L(t) generated by t by
L(t) := {π | t −→∗ π}. For a closed ground λ→-term t, L(t) is a singleton set {π}; we write
T (t) for such π and call it the tree of t.

Note that t −→∗ t′ implies [s/x]t −→∗ [s/x]t′, and that the set of call-by-name normal forms
equals the set of trees and ground terms of the form E[x].

For x : κ `ST t : o where t does not contain the non-deterministic choice, t is called linear
(with respect to x) if x occurs exactly once in the call-by-name normal form of t. A pair of
contexts [] : κ `ST C : o and [] : κ `ST D : κ is called linear if x : κ `ST C[Di[x]] : o is linear
for any i ≥ 0 where x is a fresh variable that is not captured by the context applications.

I Definition 3 (Higher-Order Grammar). A higher-order grammar (or grammar for short) is
a quadruple (Σ,N ,R, S), where (i) Σ is a ranked alphabet; (ii) N is a map from a finite
set of non-terminals to their types; (iii) R is a finite set of rewriting rules of the form
A → λx1. · · ·λx`.t, where N (A) = κ1 → · · · → κ` → o, t is an applicative term, and
N , x1 : κ1, . . . , x` : κ` `ST t : o holds; (iv) S is a non-terminal called the start symbol, and
N (S) = o. The order of a grammar G is the largest order of the types of non-terminals. We
sometimes write ΣG ,NG ,RG , SG for the four components of G. We often write Ax1 · · · xk → t

for the rule A→ λx1. · · ·λxk.t.
For a grammar G = (Σ,N ,R, S), the rewriting relation −→G is defined by:

(A→ λx1. · · ·λxk.t) ∈ R
A t1 · · · tk −→G [t1/x1, . . . , tk/xk]t

ti −→G t′i i ∈ {1, . . . , k} Σ(a) = k

a t1 · · · tk −→G a t1 · · · ti−1 t
′
i ti+1 · · · tk

We write −→∗G for the reflexive transitive closure of −→G . The tree language generated by G,
written L(G), is the set {π | S −→∗G π}.

I Remark. An order-n grammar can also be represented as a ground closed order-n λ→,+-term
extended with the Y-combinator such that Yκx.t −→ [Yκx.t/x]t. Conversely, any ground
closed order-n λ→,+-term (extended with Y) can be represented as an equivalent order-n
grammar.

The grammars defined above may also be viewed as generators of word languages.

I Definition 4 (Word Alphabet / br-Alphabet). We call a ranked alphabet Σ a word alphabet
if it has a special nullary terminal e and all the other terminals have arity 1; also we call a
grammar G a word grammar if its alphabet is a word alphabet. For a tree π = a1(· · · (an e) · · ·)
of a word grammar, we define word(π) = a1 · · · an. The word language generated by a word
grammar G, written Lw(G), is {word(π) | π ∈ L(G)}.

The frontier word of a tree π, written leaves(π), is the sequence of symbols in the leaves
of π. It is defined inductively by: leaves(a) = a when Σ(a) = 0, and leaves(a π1 · · · πk) =
leaves(π1) · · · leaves(πk) when Σ(a) = k > 0. The frontier language generated by G, written

K. Asada and N. Kobayashi 97:5

Lleaf(G), is the set: {leaves(π) | S −→∗G π}. A br-alphabet is a ranked alphabet such that
it has a special binary constant br and a special nullary constant e and the other constants
are nullary. We consider e as the empty word ε: for a grammar with a br-alphabet, we also
define Lεleaf(G) := (Lleaf(G) \ {e}) ∪ {ε | e ∈ Lleaf(G)}. We call a tree π an e-free br-tree if
it is a tree of some br-alphabet but does not contain e.

We note that the classes of order-0, order-1, and order-2 word languages coincide with
those of regular, context-free, and indexed languages, respectively [26].

2.2 Homeomorphic Embedding and Kruskal’s Tree Theorem
In our main theorem, we use the notion of homeomorphic embedding for trees.

I Definition 5 (Homeomorphic Embedding). Let Σ be an arbitrary ranked alphabet. The
homeomorphic embedding order � between Σ-ranked trees5 is inductively defined by the
following rules:

πi � π′i (for all i ≤ k)
a π1 · · ·πk � a π′1 · · ·π′k

(k = Σ(a)) π � πi
π � a π1 · · ·πk

(k = Σ(a) > 0, i ∈ {1, . . . , k})

For example, br a b � br (br a c) b. We extend � to words: for w = a1 · · · an and w′ =
a′1 · · · a′n′ , we define w � w′ if a1(· · · (an(e))) � a′1(· · · (a′n′(e))), where ai and a′i are regarded
as unary constants and e is a nullary constant (this order on words is nothing but the
(scattered) subsequence relation). We write π ≺ π′ if π � π′ and π′ 6� π.

Next we explain a basic property on �, Kruskal’s tree theorem. A quasi-order (also
called a pre-order) is a reflexive and transitive relation. A well quasi-order on a set S is
a quasi-order ≤ on S such that for any infinite sequence (si)i of elements in S there exist
j < k such that sj ≤ sk.

I Proposition 6 (Kruskal’s Tree Theorem [17]). For any (finite) ranked alphabet Σ, the
homeomorphic embedding � on Σ-ranked trees is a well quasi-order.

2.3 Conjecture and Pumping Lemma for Higher-order Grammars
As explained in Section 1, our pumping lemma makes use of a conjecture on “higher-order”
Kruskal’s tree theorem, which is stated below.

I Conjecture 7. There exists a family (�κ)κ of relations indexed by simple types such that
�κ is a well quasi-order on the set of closed λ→-terms of type κ modulo βη-equivalence;
i.e., for an infinite sequence t1, t2, . . . of closed λ→-terms of type κ, there exist i < j such
that ti �κ tj.
�o is a conservative extension of �, i.e., t �o t

′ if and only if T (t) � T (t′).
(�κ)κ is closed under applications, i.e., if t �κ1→κ2 t

′ and s �κ1 s
′ then t s �κ2 t

′ s′.
A candidate of (�κ)κ would be the logical relation induced from �. Indeed, if we choose
the logical relation as (�κ)κ, the above conjecture holds up to order-2 (see Theorem 18 in
Section 6).

Actually, for our pumping lemma, the following, slightly weaker property called the
periodicity is sufficient.

5 In the usual definition, a quasi order on labels (tree constructors) is assumed. Here we fix the quasi-order
on labels to the identity relation.

ICALP 2017

97:6 Pumping Lemma for Higher-Order Languages

I Conjecture 8 (Periodicity). There exists a family (�κ)κ indexed by simple types such that
�κ is a quasi-order on the set of closed λ→-terms of type κ modulo βη-equivalence.
for any `ST t : κ→ κ and `ST s : κ, there exist i, j > 0 such that

ti s �κ ti+j s �κ ti+2j s �κ · · · .

�o is a conservative extension of �.
(�κ)κ is closed under applications.

Note that Conjecture 7 implies Conjecture 8, since if the former holds, for the infinite
sequence (ti s)i, there exist i < i+ j such that ti s �κ ti+j s, and then by the monotonicity
of u 7→ tj u, we have ti+kj s �κ ti+(k+1)j s for any k ≥ 0.

We can now state our pumping lemma.

I Theorem 9 (Pumping Lemma). Assume that Conjecture 8 holds. Then, for any order-n tree
grammar G such that L(G) is infinite, there exist an infinite sequence of trees π0, π1, π2, . . . ∈
L(G), and constants c, d such that: (i) π0 ≺ π1 ≺ π2 ≺ · · ·, and (ii) |πi| ≤ expn(ci+ d) for
each i ≥ 0. Furthermore, we can drop the assumption on Conjecture 8 when G is of order up
to 2.

By the correspondence between order-n tree grammars and order-(n+ 1) grammars [4, 1],
we also have:

I Corollary 10 (Pumping Lemma for Word Languages). Assume that Conjecture 8 holds.
Then, for any order-n word grammar G (where n ≥ 1) such that Lw(G) is infinite, there
exist an infinite sequence of words w0, w1, w2, . . . ∈ Lw(G), and constants c, d such that:
(i) w0 ≺ w1 ≺ w2 ≺ · · ·, and (ii) |wi| ≤ expn−1(ci+ d) for each i ≥ 0. Furthermore, we can
drop the assumption on Conjecture 8 when G is of order up to 3.

We sketch the overall structure of the proof of Theorem 9 below. Let G be an order-n tree
grammar. By using the recent type system of Parys [23], if L(G) is infinite, we can construct
order-n linear λ→-contexts C,D and an order-n λ→-term t such that {T (C[Di[t]]) | i ≥ 0}
(⊆ L(G)) is infinite. It then suffices to show that there exist constants p and q such
that T (C[Dp[t]]) ≺ T (C[Dp+q[t]]) ≺ T (C[Dp+2q[t]]) ≺ · · ·. The bound T (C[Dp+iq]) ≤
expn(c+ id) would then follow immediately from the standard result on an upper-bound
on the size of β-normal forms. Actually, assuming Conjecture 8, we can easily deduce
T (C[Dp[t]]) � T (C[Dp+q[t]]) � T (C[Dp+2q[t]]) � · · ·. Thus, the main remaining difficulty is
to show that the “strict” inequality holds periodically. To this end, we prove it by induction
on the order, by making use of three ingredients: an extension of the result of Parys’ type
system (again) [23], an extension of our previous work on a translation from word languages
to tree languages [1], and Conjecture 8. In Sections 3 and 4, we derive corollaries from the
results of Parys’ and our previous work respectively. We then provide the proof of Theorem 9
(except the statement “Furthermore, ...”) in Section 5. We then, in Section 6, discharge the
assumption on Conjecture 8 for order up to 2, by proving Conjecture 7 for order up to 2.

3 Corollaries of Parys’ Results

Parys [23] developed an intersection type system with judgments of the form Γ ` s : τ . c,
where s is a term of a simply-typed, infinitary λ-calculus (that corresponds to the λY-calculus)
extended with choice, and c is a natural number. He proved that for any order-n closed
ground term s, (i) ∅ ` s : τ .c implies that s can be reduced to a tree π such that c ≤ |π|, and
(ii) if s can be reduced to a tree π, then ∅ ` s : τ . c holds for some c such that |π| ≤ expn(c).

K. Asada and N. Kobayashi 97:7

Let G be an order-n tree grammar and S be its start symbol. By Parys’ result,6 if L(G)
is infinite, there exists a derivation for ∅ ` S : o . c1 + c2 + c3 in which Θ ` A : γ . c1 + c2 is
derived from Θ ` A : γ . c1 for some non-terminal A. Thus, by “pumping” the derivation of
Θ ` A : γ . c1 + c2 from Θ ` A : γ . c1, we obtain a derivation for ∅ ` S : o . c1 + kc2 + c3 for
any k ≥ 0. From the derivation, we obtain a λ→-term t and λ→-contexts C,D of at most
order-n, such that C[Dk[t]] generates a tree πk such that c1 + kc2 + c3 ≤ |πk|. By further
refining the argument above (see the full version for details), we can also ensure that the
pair (C,D) is linear. Thus, we obtain the following lemma.

I Lemma 11. Given an order-n tree grammar G such that L(G) is infinite, there exist
order-n linear λ→-contexts C,D, and an order-n λ→-term t such that:
1. {T (C[Dk[t]]) | k ≥ 1} ⊆ L(G),
2. {T (C[D`k [t]]) | k ≥ 1} is infinite for any strictly increasing sequence (`k)k.

By slightly modifying Parys’ type system, we can also reason about the length of a
particular path of a tree. Let us annotate each constructor a as a〈i〉, where 0 ≤ i ≤ Σ(a).
We call i a direction. We define |π|p by:

|a〈0〉 π1 · · · πk|p = 1 |a〈i〉 π1 · · · πk|p = |πi|p + 1 (1 ≤ i ≤ k).

We define rmdir as the function that removes all the direction annotations.

I Lemma 12. For any order-n linear λ→-contexts C,D and any order-n λ→-term t such that
{T (C[Dk[t]]) | k ≥ 1} is infinite, there exist direction-annotated order-n linear λ→-contexts
G,H, a direction-annotated order-n λ→-term u, and p, q > 0 such that
1. rmdir(T (G[Hk[u]])) = T (C[Dpk+q[t]]) for any k ≥ 1,
2. {|T (G[H`k [u]])|p | k ≥ 1} is infinite for any strictly increasing sequence (`k)k.

4 Word to Frontier Transformation

We have an “order-decreasing” transformation [1] that transforms an order-(n + 1) word
grammar G to an order-n tree grammar G′ (with a br-alphabet) such that Lw(G) = Lεleaf(G′).
We use this as a method for induction on order; this method was originally suggested by
Damm [4] for safe languages.

The transformation in the present paper has been modified from the original one in [1].
On the one hand, the current transformation is a specialized version in that we apply the
transformation only to λ→-terms instead of terms of (non-deterministic) grammars. On the
other hand, the current transformation has been strengthened in that the transformation
preserves linearity. Due to the preservation of linearity, a single-hole context is transformed
to a single-hole context, and the uniqueness of an occurrence of [] will be utilized for the
calculation of the size of “pumped trees” in Lemma 16.

The definition of the current transformation is given just by translating the transformation
rules in [1] by following the idea of the embedding of λ→-terms into grammars. For the
detailed definition, see the full version. By using this transformation, we have:

I Lemma 13. Given order-n λ→-contexts C, D, and an order-n λ→-term t such that
the constants in C, D, t are in a word alphabet,

6 See Section 6 of [23]. Parys considered a λ-calculus with infinite regular terms, but the result can be
easily adapted to terms of grammars.

ICALP 2017

97:8 Pumping Lemma for Higher-Order Languages

{T (C[D`i [t]]) | i ≥ 0} is infinite for any strictly increasing sequence (`i)i, and
C and D are linear,

there exist order-(n− 1) λ→-contexts G, H, order-(n− 1) λ→-term u, and some constant
numbers c, d ≥ 1 such that

the constants in G, H, u are in a br-alphabet
for i ≥ 0, T (G[Hi[u]]) is either an e-free br-tree or e, and

word(T (C[Dci+d[t]])) =
{
ε (T (G[Hi[u]]) = e)
leaves(T (G[Hi[u]])) (T (G[Hi[u]]) 6= e)

G and H are linear.

Proof. The preservation of meaning (the second condition) follows as a corollary of a theorem
in [1]. Also, the preservation of linearity (the third condition) can be proved in a manner
similar to the proof of the preservation of meaning in [1], using a kind of subject-reduction.
See the full version for the detail. J

5 Proof of the Main Theorem

We first prepare some lemmas.

I Lemma 14. For e-free br-trees π and π′, if π ≺ π′ then leaves(π) ≺ leaves(π′).

Proof. We can show that π � π′ implies leaves(π) � leaves(π′) and then the statement,
both by straightforward induction on the derivation of π � π′. J

I Remark. The above lemma does not necessarily hold for an arbitrary ranked alphabet,
especially that with a unary constant; e.g., a e ≺ a (a e) but their leaves are both e. Also,
it does not hold if a tree contains e and if we regard e as ε in the leaves word; e.g., for
br a b ≺ br (br a e) b, their leaves are ab ≺ aeb, but if we regard e as ε then ab 6≺ ab.

I Lemma 15. For direction-annotated trees π and π′, if π ≺ π′ then rmdir(π) ≺ rmdir(π′).

Proof. We can show that π � π′ implies rmdir(π) � rmdir(π′) and then the statement,
both by straightforward induction on the derivation of π � π′. J

Now, we prove the following lemma (Lemma 16) by the induction on order. Theorem 9
(except the last statement) will then follow as an immediate corollary of Lemmas 11 and 16.

I Lemma 16. Assume that the statement of Conjecture 8 is true. For any order-n linear
λ→-contexts C,D and any order-n λ→-term t such that {T (C[Di[t]]) | i ≥ 1} is infinite,
there exist c, d, j, k ≥ 1 such that
T (C[Dj [t]]) ≺ T (C[Dj+k[t]]) ≺ T (C[Dj+2k[t]]) ≺ · · ·
|T (C[Dj+ik[t]])| ≤ expn(ci+ d) (i = 0, 1, . . .)

Proof. The proof proceeds by induction on n. The case n = 0 is clear, and we discuss the
case n > 0 below. By Lemma 12, from C, D, and t, we obtain direction-annotated order-n
linear λ→-contexts G,H, a direction-annotated order-n λ→-term u, and j0, k0 > 0 such that

rmdir(T (G[Hi[u]])) = T (C[Dj0+ik0 [t]]) for any i ≥ 1 (1)
{|T (G[H`i [u]])|p | i ≥ 1} is infinite for any strictly increasing sequence (`i)i. (2)

K. Asada and N. Kobayashi 97:9

Next we transform G, H, and u by choosing a path according to directions, i.e., we define
Gp, Hp, and up as the contexts/term obtained from G, H, and u by replacing each a〈i〉 with:
(i) λx1 . . . x`.aixi if i > 0 or (ii) λx1 . . . x`.e if i = 0, where ` = Σ(a) and ai is a fresh unary
constant. For any i ≥ 0,

|T (G[Hi[u]])|p = |word(T (Gp[Hp
i[up]]))|+ 1. (3)

We also define a function path on trees annotated with directions, by the following induction:
path(a〈i〉 π1 · · ·π`) = ai path(πi) if i > 0 and path(a〈0〉 π1 · · ·π`) = e. Then for any i ≥ 0,

path(T (G[Hi[u]])) = T (Gp[Hp
i[up]]). (4)

By (2) and (3), {T (Gp[Hp
`i [up]]) | i ≥ 0} is infinite for any strictly increasing sequence

(`i)i. Also, the transformation from G, H to Gp, Hp preserves the linearity, because: let
N be the normal form of G[Hi[x]] where x is fresh, and Np be the term obtained by
applying this transformation to N ; then Gp[Hp

i[x]] −→∗ Np, and by the infiniteness of
{T (Gp[Hp

i[up]]) | i ≥ 0}, Np must contain x, which implies Np is a linear normal form.
Now we decrease the order by using the transformation in Section 4. By Lemma 13 to Gp,

Hp, and up, there exist order-(n− 1) linear λ→-contexts Gl , Hl , an order-(n− 1) λ→-term
ul , and some constant numbers c′, d′ ≥ 1 such that, for any i ≥ 0, T (Gl [Hl

i[ul]]) is either an
e-free br-tree or e, and

word(T (Gp[Hp
c′i+d′

[up]])) =
{
ε (T (Gl [Hl

i[ul]]) = e)
leaves(T (Gl [Hl

i[ul]])) (T (Gl [Hl
i[ul]]) 6= e).

(5)

By (2), (3), and (5), {T (Gl [Hl
i[ul]]) | i ≥ 1} is also infinite.

By the induction hypothesis, there exist j1 and k1 such that

T (Gl [Hl
j1 [ul]]) ≺ T (Gl [Hl

j1+k1 [ul]]) ≺ T (Gl [Hl
j1+2k1 [ul]]) ≺ · · · .

Hence by Lemma 14, we have

leaves(T (Gl [Hl
j1 [ul]])) ≺ leaves(T (Gl [Hl

j1+k1 [ul]])) ≺ leaves(T (Gl [Hl
j1+2k1 [ul]])) ≺ · · · .

Then by (5), we have

T (Gp[Hp
c′j1+d′

[up]]) ≺ T (Gp[Hp
c′(j1+k1)+d′

[up]]) ≺ T (Gp[Hp
c′(j1+2k1)+d′

[up]]) ≺ · · · .

Let j′1 = c′j1 + d′ and k′1 = c′k1; then

T (Gp[Hp
j′

1 [up]]) ≺ T (Gp[Hp
j′

1+k′
1 [up]]) ≺ T (Gp[Hp

j′
1+2k′

1 [up]]) ≺ · · · . (6)

Now, by Conjecture 8, there exist j2 ≥ 0 and k2 > 0 such that

Hj2 [u] �κ Hj2+k2 [u] �κ Hj2+2k2 [u] �κ · · · . (7)

Let j3 be the least j3 such that j3 = j′1 + i3 k
′
1 = j2 +m0 for some i3 and m0, and k3 be the

least common multiple of k′1 and k2, whence k3 = m1k
′
1 = m2k2 for some m1 and m2. Then

since the mapping s 7→ T (G[Hm0 [s]]) is monotonic, from (7) we have:

T (G[Hj3 [u]]) � T (G[Hj3+k2 [u]]) � T (G[Hj3+2k2 [u]]) � · · · .

Since j3 + ik3 = j3 + (im2)k2, we have

T (G[Hj3 [u]]) � T (G[Hj3+k3 [u]]) � T (G[Hj3+2k3 [u]]) � · · · . (8)

ICALP 2017

97:10 Pumping Lemma for Higher-Order Languages

Also, since j3 + ik3 = j′1 + (i3 + im1)k′1, from (6) we have

T (Gp[Hp
j3 [up]]) ≺ T (Gp[Hp

j3+k3 [up]]) ≺ T (Gp[Hp
j3+2k3 [up]]) ≺ · · · . (9)

Thus, from (4), (8), and (9) we obtain

T (G[Hj3 [u]]) ≺ T (G[Hj3+k3 [u]]) ≺ T (G[Hj3+2k3 [u]]) ≺ · · · . (10)

By applying rmdir to this sequence, and by (1) and Lemma 15, we have

T (C[Dj0+j3k0 [t]]) ≺ T (C[Dj0+(j3+k3)k0 [t]]) ≺ T (C[Dj0+(j3+2k3)k0 [t]]) ≺ · · · . (11)

We define j = j0 + k0j3 and k = k0k3; then we obtain

T (C[Dj [t]]) ≺ T (C[Dj+k[t]]) ≺ T (C[Dj+2k[t]]) ≺ · · · .

Finally, we show that |T (C[Dj+ik[t]])| ≤ expn(ci + d) for some c and d. Since C
and D are single-hole contexts, |C[Dj+ik[t]]| = |C| + (j + ik)|D| + |t|. Let c = k|D| and
d = |C| + j|D| + |t|; then |C[Dj+ik[t]]| = ci + d. It is well-known that, for an order-
n λ→-term s, we have |T (s)| ≤ expn(|s|) (see, e.g., [25, Lemma 3]). Thus, we have
|T (C[Dj+ik[t]])| ≤ expn(ci+ d). J

The step obtaining (10) (the steps using Lemma 14 and obtaining (11), resp.) indic-
ates why we need to require T (C[Dj+ik[t]]) ≺ T (C[Dj+i′k[t]]) for any i < i′ rather than
|T (C[Dj+ik[t]])| < |T (C[Dj+i′k[t]])| (T (C[Dj+ik[t]]) 6= T (C[Dj+i′k[t]]), resp.) to make the
induction work.

6 Second-order Kruskal’s theorem

In this section, we prove Conjecture 7 (hence also Conjecture 8) up to order-2. First, we
extend the homeomorphic embedding � on trees to a family of relations �κ by using logical
relation: (i) t1 �o t2 if ∅ `ST t1 : o, ∅ `ST t2 : o, and T (t1) � T (t2). (ii) t1 �κ1→κ2 t2
if ∅ `ST t1 : κ1 → κ2, ∅ `ST t2 : κ1 → κ2, and t1s1 �κ2 t2s2 holds for every s1, s2
such that s1 �κ1 s2. We often omit the subscript κ and just write � for �κ. We also
write x1 : κ1, . . . , xk : κk |= t �κ t′ if [s1/x1, . . . , sk/xk]t �κ [s′1/x1, . . . , s

′
k/xk]t′ for every

s1, . . . , sk, s
′
1, . . . , s

′
k such that si �κi

s′i.
The relation �κ is well-defined for βη-equivalence classes, and by the abstraction lemma

of logical relation, it turns out that the relation �κ is a pre-order for any κ (see the full
version for these). Note that the relation is also preserved by applications by the definition of
the logical relation. It remains to show that �κ is a well quasi-order for κ of order up to 2.

For `-ary terminal a and k ≥ `, we write CTermsa,k for the set of terms

{λx1. · · ·λxk.a xi1 . . . xi` | i1 · · · i` is a subsequence of 1 · · · k}.

We define o0 → o := o and on+1 → o := o→ (on → o).
The following lemma allows us to reduce t�κ t′ on any order-2 type κ to (finitely many

instances of) that on order-0 type o.

I Lemma 17. Let Σ be a ranked alphabet; κ be (ok1 → o)→ · · · → (okm → o)→ o; aji be a
j-ary terminal not in Σ for 1 ≤ i ≤ m and 0 ≤ j ≤ ki; and t, t′ be λ→-terms whose type is
κ and whose terminals are in Σ. Then t �κ t′ if and only if t u1 . . . um �o t

′ u1 . . . um for
every ui ∈ ∪j≤kiCTermsaj

i
,ki

.

K. Asada and N. Kobayashi 97:11

Proof. The “only if” direction is trivial by the definition of �κ. To show the opposite,
assume the latter holds. We need to show that t s1 . . . sm �o t

′ s1 . . . sm holds for every
combination of s1, . . . , sm such that `ST si : κi for each i. Without loss of generality, we can
assume that t, t′, s1, . . . , sm are βη long normal forms, and hence that

t = λf1. · · ·λfm.t0 f1 : ok1 → o, . . . , fm : okm → o `ST t0 : o

t′ = λf1. · · ·λfm.t′0 f1 : ok1 → o, . . . , fm : okm → o `ST t
′
0 : o

si = λx1. . . . λxki
.si,0 x1 : o, . . . , xki

: o `ST si,0 : o (for each i)

For each i ≤ m, let FV(si,0) = {xq(i,1), . . . , xq(i,`i)}, and ui ∈ CTerms
a

`i
i
,ki

be the term
λx1. · · ·λxki .a

`i
i xq(i,1) · · · xq(i,`i). Let θ and θ′ be the substitutions [u1/f1, . . . , um/fm] and

[s1/f1, . . . , sm/fm] respectively. It suffices to show that θt0 �o θt
′
0 implies θ′t0 �o θ

′t′0, which
we prove by induction on |t′0|.

By the condition f1 :ok1 → o, . . . , fm :okm → o `ST t0 : o, t0 must be of the form h t1 · · · t`
where h is fi or a terminal a in Σ, and ` may be 0. Then we have

T (θt0)=
{
aT (θt1) · · · T (θt`) (h= a)
a`i
i T (θtq(i,1)) · · · T (θtq(i,`i)) (h= fi)

Similarly, t′0 must be of the form h′ t′1 · · · t′`′ and the corresponding equality on T (θt′0) holds.
By the assumption θt0 �o θt

′
0, we have T (θt0) � T (θt′0). We perform case analysis on the

rule used for deriving T (θt0) � T (θt′0) (recall Definition 5).
Case of the first rule: In this case, the roots of T (θt0) and T (θt′0) are the same and hence
h = h′ and ` = `′. We further perform case analysis on h.

Case h = a: For 1 ≤ j ≤ `, since T (θtj) � T (θt′j), by induction hypothesis, we have
θ′tj �o θ

′t′j . Hence θ′t0 �o θ
′t′0.

Case h = fi: For 1 ≤ j ≤ `i, since T (θtq(i,j)) � T (θt′q(i,j)), by induction hypothesis,
we have θ′tq(i,j) �o θ

′t′q(i,j). Hence, [θ′tq(i,j)/xq(i,j)]j≤`i
si,0 �o [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0.
By the definition of q(i, j), θ′t0 −→ [θ′tj/xj]j≤kisi,0 = [θ′tq(i,j)/xq(i,j)]j≤`isi,0, and
similarly, θ′t′0 −→ [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0; hence we have θ′t0 �o θ
′t′0.

Case of the second rule: We further perform case analysis on h′.
Case h′ = a: We have T (θt0) � T (θt′p) for some 1 ≤ p ≤ `′. Hence by induction
hypothesis, we have θ′t0 �o θ

′t′p, and then θ′t0 �o θ
′t′0.

Case h′ = fi: We have T (θt0) � T (θt′q(i,p)) for some 1 ≤ p ≤ `i. Hence by induction
hypothesis, we have θ′t0 �o θ

′t′q(i,p). Also, by the definition of q(i, p), xq(i,p) occurs in
si,0. Since si,0 is a βη long normal form of order-0, the order-0 variable xq(i,p) occurs
as a leaf of si,0; hence T (θ′t′q(i,p)) � [T (θ′t′q(i,j))/xq(i,j)]j≤`i

si,0. Therefore θ′t0 �o

[θ′t′q(i,j)/xq(i,j)]j≤`i
si,0. Since θ′t′0 −→ [θ′t′q(i,j)/xq(i,j)]j≤`i

si,0, we have θ′t0 �o θ
′t′0.

J

As a corollary, we obtain a second-order version of Kruskal’s tree theorem.

I Theorem 18. Let Σ be a ranked alphabet, κ be an at most order-2 type, and t0, t1, t2, . . .
be an infinite sequence of λ→-terms whose type is κ and whose terminals are in Σ. Then,
there exist i < j such that ti �κ tj.

Proof. Since κ is at most order-2, it must be of the form (ok1 → o)→ · · · → (okm → o)→ o.
Let aji be a j-ary terminal not in Σ for 1 ≤ i ≤ m and 0 ≤ j ≤ ki; (∪j≤k1CTermsaj

1,k1
)×· · ·×

(∪j≤kmCTermsaj
m,km

) be {(u1,1, . . . , u1,m), . . . , (up,1, . . . , up,m)}; b be a p-ary terminal not
in Σ∪{aji | 1 ≤ i ≤ m, 0 ≤ j ≤ ki}; and si be the term b (ti u1,1 · · · u1,m) · · · (ti up,1 · · · up,m)

ICALP 2017

97:12 Pumping Lemma for Higher-Order Languages

for each i ∈ {0, 1, 2, . . .}. Since the set of terminals in s0, s1, s2, . . . is finite, by Kruskal’s tree
theorem, there exist i, j such that si �o sj and i < j. Since b occurs just at the root of sk
for each k, si �o sj implies ti uk,1 · · · uk,m �o tj uk,1 · · · uk,m for every k ∈ {1, . . . , p}. Thus,
by Lemma 17, we have ti �κ tj as required. J

7 Related Work

As mentioned in Section 1, to our knowledge, pumping lemmas for higher-order word languages
have been established only up to order-2 [7], whereas we have proved (unconditionally) a
pumping lemma for order-2 tree languages and order-3 word languages. Hayashi’s pumping
lemma for indexed languages (i.e., order-2 word languages) is already quite complex, and it is
unclear how to generalize it to arbitrary orders. In contrast, our proof of a pumping lemma
works for arbitrary orders, although it relies on the conjecture on higher-order Kruskal’s tree
theorem. Parys [21] and Kobayashi [12] studied pumping lemmas for collapsible pushdown
automata and higher-order recursion schemes respectively. Unfortunately, they are not
applicable to word/tree languages generated by (non-deterministic) grammars.

As also mentioned in Section 1, the strictness of hierarchy of higher-order word languages
has already been shown by using a complexity argument [5, 8]. We can use our pumping
lemma (if the conjecture is discharged) to obtain a simple alternative proof of the strictness,
using the language {aexpn(k) | k ≥ 0} as a witness of the separation between the classes
of order-(n+ 1) word languages and order-n word languages. In fact, the pumping lemma
would imply that there is no order-n grammar that generates {aexpn(k) | k ≥ 0}, whereas an
order-(n+ 1) grammar that generates the same language can be easily constructed.

We are not aware of studies of the higher-order version of Kruskal’s tree theorem
(Conjecture 7) or the periodicity of tree functions expressed by the simply-typed λ-calculus
(Conjecture 8), which seem to be of independent interest. Zaionc [27, 28] characterized the
class of (first-order) word/tree functions definable in the simply-typed λ-calculus. To obtain
higher-order Kruskal’s tree theorem, we may need some characterization of higher-order
definable tree functions instead.

We have heavily used the results of Parys’ work [23] and our own previous work [1], which
both use intersection types for studying properties of higher-order languages. Other uses of
intersection types in studying higher-order grammars/languages are found in [10, 15, 22, 12,
3, 14, 13].

8 Conclusion

We have proved a pumping lemma for higher-order languages of arbitrary orders, modulo
the assumption that a higher-order version of Kruskal’s tree theorem holds. We have also
proved the assumption indeed holds for the second-order case, yielding a pumping lemma for
order-2 tree languages and order-3 word languages. Proving (or disproving) the higher-order
Kruskal’s tree theorem is left for future work.

Acknowledgments. We would like to thank Pawel Parys for discussions on his type system,
and anonymous referees for useful comments.

References
1 Kazuyuki Asada and Naoki Kobayashi. On Word and Frontier Languages of Unsafe Higher-

Order Grammars. In 43rd International Colloquium on Automata, Languages, and Pro-

K. Asada and N. Kobayashi 97:13

gramming (ICALP 2016), volume 55 of LIPIcs, pages 111:1–111:13. Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2016.

2 Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties of simple
phrase structure grammars. Z. Phonetik Sprachwiss. und Kommunikat., 14:143–172, 1961.

3 Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal
problem for higher-order recusion schemes is decidable. In Proceedings of LICS 2016, 2016.

4 Werner Damm. The IO- and OI-hierarchies. Theor. Comput. Sci., 20:95–207, 1982.
5 Joost Engelfriet. Iterated stack automata and complexity classes. Info. Comput., 95(1):21–

75, 1991.
6 Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated pushdown tree

transducers. Acta Inf., 26(1/2):131–192, 1988.
7 Takeshi Hayashi. On derivation trees of indexed grammars – an extension of the uvwxy-

theorem. Publ. RIMS, Kyoto Univ., pages 61–92, 1973.
8 Alexander Kartzow. Personal communication, via Pawel Parys, 2013.
9 Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Deciding monadic theories of

hyperalgebraic trees. In TLCA 2001, volume 2044 of LNCS, pages 253–267. Springer,
2001.

10 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order
programs. In Proc. of POPL, pages 416–428. ACM Press, 2009.

11 Naoki Kobayashi. Model checking higher-order programs. Journal of the ACM, 60(3), 2013.
12 Naoki Kobayashi. Pumping by typing. In Proceedings of LICS 2013, pages 398–407. IEEE

Computer Society, 2013.
13 Naoki Kobayashi, Kazuhiro Inaba, and Takeshi Tsukada. Unsafe order-2 tree languages are

context-sensitive. In Proceedings of FoSSaCS 2014, volume 8412 of LNCS, pages 149–163.
Springer, 2014.

14 Naoki Kobayashi, Kazutaka Matsuda, Ayumi Shinohara, and Kazuya Yaguchi. Functional
programs as compressed data. Higher-Order and Symbolic Computation, 2013.

15 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus
model checking of higher-order recursion schemes. In Proceedings of LICS 2009, pages
179–188. IEEE Computer Society Press, 2009.

16 Gregory M. Kobele and Sylvain Salvati. The IO and OI hierarchies revisited. Inf. Comput.,
243:205–221, 2015.

17 J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Trans-
actions of the American Mathematical Society, 95(2):210–225, 1960. URL: http://www.
jstor.org/stable/1993287.

18 A.N. Maslov. The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl.,
15:1170–1174, 1974.

19 C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Mathematical Proceedings
of the Cambridge Philosophical Society, 59(4):833–835, 1963.

20 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS 2006, pages 81–90. IEEE Computer Society Press, 2006.

21 Pawel Parys. A pumping lemma for pushdown graphs of any level. In Proceedings of
STACS 2012, volume 14 of LIPIcs, pages 54–65. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2012.

22 Pawel Parys. How many numbers can a lambda-term contain? In Proceedings of
FLOPS 2014, volume 8475 of LNCS, pages 302–318. Springer, 2014. doi:10.1007/
978-3-319-07151-0_19.

23 Pawel Parys. Intersection types and counting. CoRR, abs/1701.05303, 2017. A shorter
version will appear in Post-proceedings of ITRS 2016. URL: http://arxiv.org/abs/1701.
05303.

ICALP 2017

http://www.jstor.org/stable/1993287
http://www.jstor.org/stable/1993287
http://dx.doi.org/10.1007/978-3-319-07151-0_19
http://dx.doi.org/10.1007/978-3-319-07151-0_19
http://arxiv.org/abs/1701.05303
http://arxiv.org/abs/1701.05303

97:14 Pumping Lemma for Higher-Order Languages

24 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. In
Proceedings of ICALP 2011, volume 6756 of LNCS, pages 162–173. Springer, 2011.

25 Kazushige Terui. Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In 23rd International Conference on Rewriting Techniques and Applica-
tions (RTA’12), volume 15 of LIPIcs, pages 323–338. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2012.

26 Mitchell Wand. An algebraic formulation of the Chomsky hierarchy. In Category Theory
Applied to Computation and Control, volume 25 of LNCS, pages 209–213. Springer, 1974.

27 Marek Zaionc. Word operation definable in the typed lambda-calculus. Theor. Comput.
Sci., 52:1–14, 1987. doi:10.1016/0304-3975(87)90077-6.

28 Marek Zaionc. On the “lambda”-definable tree operations. In Algebraic Logic and Universal
Algebra in Computer Science, Conference, Ames, Iowa, USA, June 1-4, 1988, Proceedings,
volume 425 of Lecture Notes in Computer Science, pages 279–292, 1990.

http://dx.doi.org/10.1016/0304-3975(87)90077-6

A Strategy for Dynamic Programs: Start over and
Muddle Through∗†

Samir Datta1, Anish Mukherjee2, Thomas Schwentick3,
Nils Vortmeier4, and Thomas Zeume5

1 Chennai Mathematical Institute, Chennai, India
sdatta@cmi.ac.in

2 Chennai Mathematical Institute, Chennai, India
anish@cmi.ac.in

3 TU Dortmund, Dortmund, Germany
thomas.schwentick@tu-dortmund.de

4 TU Dortmund, Dortmund, Germany
nils.vortmeier@tu-dortmund.de

5 TU Dortmund, Dortmund, Germany
thomas.zeume@tu-dortmund.de

Abstract
A strategy for constructing dynamic programs is introduced that utilises periodic computation
of auxiliary data from scratch and the ability to maintain a query for a limited number of change
steps. It is established that if some program can maintain a query for logn change steps after an
AC1-computable initialisation, it can be maintained by a first-order dynamic program as well,
i.e., in DynFO. As an application, it is shown that decision and optimisation problems defined
by monadic second-order (MSO) and guarded second-order logic (GSO) formulas are in DynFO,
if only change sequences that produce graphs of bounded treewidth are allowed. To establish
this result, Feferman–Vaught-type composition theorems for MSO and GSO are established that
might be useful in their own right.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases dynamic complexity, treewidth, monadic second order logic

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.98

1 Introduction

Updating the result of a query after a small change to a relational database is an important
problem. A theoretical framework for studying when a query can be updated in a declarative
fashion was formalised by Patnaik and Immerman [11], and Dong, Su, and Topor [5]. In their
formalisation, a dynamic program has a set of logical formulas that update a query after the
insertion or deletion of a tuple. The formulas may use additional auxiliary relations that,
of course, need to be updated as well. The queries maintainable in this way via first-order
formulas constitute the dynamic complexity class DynFO.

∗ The full version of this paper is available as [4], http://arxiv.org/abs/1704.07998.
† The authors acknowledge the financial support by the DAAD-DST grant “Exploration of New Frontiers

in Dynamic Complexity”. The first and the second authors were partially funded by a grant from Infosys
foundation. The second author was partially supported by a TCS PhD fellowship. The last three
authors acknowledge the financial support by DFG grant SCHW 678/6-2 on “Dynamic Expressiveness
of Logics”.

EA
T

C
S

© Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 98; pp. 98:1–98:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.98
http://arxiv.org/abs/1704.07998
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

98:2 A Strategy for Dynamic Programs: Start over and Muddle Through

Recent work has confirmed that DynFO is quite a powerful class, since it captures, e.g.,
the reachability query for directed graphs [2], and can even take care of pretty complex
change operations [12].

In this paper, we introduce a general strategy for dynamic programs that further un-
derscores the expressive power of DynFO. For a complexity class C and a function f , we
call a query Q (C, f)-maintainable, if there is a dynamic program (with first-order definable
updates) that, starting from some input structure A and auxiliary relations computed in C
from A, can answer Q for f(|A|) many steps, where |A| denotes the size of the universe of A.

We feel that this notion might be interesting in its own right. However, in this paper
we concentrate on the case where C is (uniform) AC1 and f(n) = logn. We show that
(AC1, logn)-maintainable queries are actually in DynFO. We apply this insight to show
that all queries and optimisation problems definable in monadic second-order logic (MSO)
are in DynFO for (classes of) structures of bounded treewidth, by proving that they are
(AC1, logn)-maintainable. Likewise for guarded second-order logic (GSO). This implies
that decision problems like 3-Colourability or HamiltonCycle as well as optimisation
problems like VertexCover and DominatingSet are in DynFO, for such classes of
structures.

The proof that MSO-definable queries are (AC1, logn)-maintainable on structures of
bounded treewidth makes use of a Feferman–Vaught-type composition theorem for MSO
which might be useful in its own right.

The result that (AC1, logn)-maintainable queries are in DynFO comes with a technical
restriction: in a nutshell, it holds for queries that are invariant under insertion of (many)
isolated elements. We call such queries almost domain-independent and refer to Section 3 for
a precise definition.

We emphasise that the main technical challenge in maintaining MSO-queries on graphs of
bounded treewidth is that tree decompositions might change drastically after an edge insertion,
and can therefore not be maintained incrementally in any obvious way. In particular, the
result does not simply follow from the DynFO-maintainability of regular tree languages shown
in [8]. We circumvent this problem by periodically recomputing a new tree decomposition
(in logarithmic space and thus in AC1) and by showing that MSO-queries can be maintained
for O(logn) many change operations, even if they make the tree decomposition invalid.

Contributions
We introduce the notion of (C, f)-maintainability.
We show that (almost domain-independent) (AC1, logn)-maintainable queries are in
DynFO.
We show that MSO-definable (Boolean) queries are (AC1, logn)-maintainable and there-
fore in DynFO, for structures of bounded treewidth. Likewise for MSO-definable optim-
isation problems and GSO-definable queries and optimisation problems.
We state a Feferman–Vaught-type composition theorem for MSO-logic.

Related work. The simulation-based technique for proving that (AC1, logn)-maintainable
queries are in DynFO is inspired by proof techniques from [2] and [12]. As mentioned above,
in [8] it has been shown that tree languages, i.e. MSO on trees, can be maintained in DynFO.
In [1], the maintenance of parity games has been studied for graphs of bounded treewidth,
though in the restricted setting where the tree decomposition stays the same for all changes.

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:3

Organisation. Basic terminology is recalled in Section 2, followed by a short introduction
into dynamic complexity in Section 3. In Section 4 we introduce the notion of (C, f)-
maintainability and show that (AC1, logn)-maintainable queries are in DynFO. A glimpse
on the proof techniques for proving that MSO and GSO queries are in DynFO for graphs
of bounded treewidth is given in Section 5 via the example 3-Colourability. The proof of
the general results is presented in Section 6. An extension to optimisation problems can be
found in Section 7. For many proofs, details are deferred to the full version of this paper [4].

2 Preliminaries

We assume familiarity with first-order logic FO and other notions from finite model theory
[9, 10]. Some further notation regarding MSO logic and types will be introduced in Section 6.

In this paper we consider finite relational structures over relational signatures Σ =
{R1, . . . , R`, c1, . . . , cm}, where each Ri is a relation symbol with a corresponding arity
Ar(Ri), and each cj is a constant symbol. A Σ-structure A consists of a finite domain A,
a relation RA

i ⊆ AAr(Ri), and a constant cA
j ∈ A, for each i ∈ {1, . . . , `}, j ∈ {1, . . . ,m}.

Sometimes, especially in Section 3, we consider relational structures as relational databases
This is basically a different terminology that is common in the context of dynamic complexity,
since the original motivation for considering the class DynFO came from relational databases.
In particular, the class DynFO will be defined as a class of queries of arbitrary arity.

However, we will mostly consider Boolean queries over structures with a single binary
relation symbol E, which can equivalently be viewed as decision problems for graphs G =
(V,E). For a set U ⊆ V , G[U] denotes the induced subgraph (U,E ∩ (U × U)).

We will often use structures that have a linear order ≤ and compatible ternary relations
encoding arithmetical operations + and × or a binary BIT relation on the universe. We
write FO(+,×) or FO(BIT) to emphasise that we allow first-order formulas to use such
additional relations.1 We also use that FO(+,×) = FO(BIT) [9].

A tree decomposition (T,B) of G consists of a (rooted) tree T = (I, F, r) and a function
B : I → 2V such that (1) for all v ∈ V , the set {i ∈ I | v ∈ B(i)} is non-empty, (2) for all
(u, v) ∈ E, there is an i ∈ I with {u, v} ⊆ B(i), and (3) the subgraph T [{i ∈ I | v ∈ B(i)}]
is connected. We refer to the number of children of a node of T as its degree. We denote
the parent node of a node i by p(i). The width of a tree decomposition is defined as the
maximal size of a bag minus 1. The treewidth of a graph G is the minimal width among all
tree decompositions of G. A tree decomposition is nice if (1) T has depth at most O(logn),
(2) the degree of the nodes is at most 2, and (3) all bags are distinct. We use the following
lemma which is an adaption of [7, Lemma 3.1].

I Lemma 1. For every graph of treewidth k, a nice tree decomposition of width 4k + 5 can
be computed in logarithmic space.

In this paper we only consider nice tree decompositions, and due to property (3) of these
decompositions we can identify bags with nodes from I.

For two nodes i, i′ of I, we write i′ � i if i′ is in the subtree of T rooted at i and i′ ≺ i if,
in addition, i′ 6= i. A triangle δ of T is a triple (i0, i1, i2) of nodes from I such that i1 � i0,
i2 � i0, and (1) i1 = i2 or (2) neither i1 � i2 nor i2 � i1. In case of (2) we call the triangle
proper, in case of (1) unary, unless i0 = i1 = i2 in which we call it open.

1 The question of <-invariance will not be relevant in the context of this paper since the order of insertion
of elements to a structure will determine a linear order on the universe.

ICALP 2017

98:4 A Strategy for Dynamic Programs: Start over and Muddle Through

(a) r

i0

i1 i2

(b) r

i0

i1

(c) r

i0

Figure 1 Illustration of (a) a proper triangle (i0, i1, i2), (b) a unary triangle (i0, i1, i1), and (c) an
open triangle (i1, i1, i1). The blue shaded area is the part of the tree contained in the triangle.

The subtree T (δ) induced by a triangle consists of all nodes j of T for which the following
holds: (i) j � i0, (ii) if i1 ≺ i0 then j 6≺ i1, and (iii) if i2 ≺ i0 then j 6≺ i2. That is, for a
proper or unary triangle, T (δ) contains all nodes of the subtree rooted at i0 which are not
below i1 or i2. For an open triangle δ = (i0, i0, i0), T (δ) is just the subtree rooted at i0.

Each triangle δ induces a subgraph G(δ) of G as follows: V (δ) is the union of all bags
of T (δ). By B(δ) we denote the set B(i0) ∪ B(i1) ∪ B(i2) of interface nodes of V (δ). All
other nodes are called inner nodes. The edge set of G(δ) consists of all edges of G that
involve at least one inner node of V (δ).

Our main result refers to the complexity class (uniform) AC1 whose definition can be
found, e.g., in [15]. The precise definition of the class is not relevant for this paper. It suffices
to know that it contains the classes LOGSPACE and NL and that it can be characterised
as the class IND[logn] of problems that can be expressed by applying a first-order formula
O(logn) times [9, Theorem 5.22]. Here, n denotes the size of the universe and the formulas
can use built-in relations + and ×. Our proofs often assume that logn is a natural number,
but they can be easily adapted to the general case.

3 Dynamic Complexity

We briefly repeat the essentials of dynamic complexity, closely following [13, 3].
The goal of a dynamic program is to answer a given query on an input database subjected

to changes that insert or delete single tuples. The program may use an auxiliary data
structure represented by an auxiliary database over the same domain. Initially, both input
and auxiliary database are empty; and the domain is fixed during each run of the program.

A dynamic program has a set of update rules that specify how auxiliary relations are
updated after a change of the input database. An update rule for updating an auxiliary
relation T is basically a formula ϕ. As an example, if ϕ(~x, ~y) is the update rule for auxiliary
relation T under insertions into input relation R, then the new version of T after insertion
of a tuple ā to R is T def= {~b | (I, Aux) |= ϕ(~a,~b)} where I and Aux are the current input
and auxiliary databases. For a state S = (I, Aux) of the dynamic program with input
database I and auxiliary database Aux we denote the state of the program after applying the
change sequence α by Pα(S). The dynamic program maintains a k-ary query Q if, for each
non-empty sequence α of changes and each empty input structure I∅, relation Q in Pα(S∅)
and Q(α(I∅)) coincide. Here, S∅ = (I∅, Aux∅), where Aux∅ denotes the empty auxiliary
structure over the domain of I∅, and α(I∅) is the input database after applying α.

In this paper, we are particularly interested in maintaining queries for structures of
bounded treewidth. There are several ways to adjust the dynamic setting to restricted classes
C of structures. Here, we simply disallow change sequences that construct structures outside
C. That is, in the above definition, only change sequences α are considered, for which each
prefix transforms an initially empty structure into a structure from C. We say that a program

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:5

maintains Q for a class C of structures, if Q contains its result after each change sequence α
such that the application of each prefix of α to I∅ yields a structure from C.

The class of queries that can be maintained by a dynamic program is called DynFO.
Programs for queries in DynFO(+,×) have three particular auxiliary relations that are
initialised as a linear order and the corresponding addition and multiplication relations.

We say that a query Q is in DynFO for a class C of structures, if there is a dynamic
program that maintains Q for C.

The active domain adom(A) of a structure A contains all elements used in some tuple of A.
A query Q is almost domain-independent if there is a c ∈ N such that Q(A)�(adom(A)∪B) =
Q(A � (adom(A) ∪ B)) for all structures A and sets B ⊆ A \ adom(A) with |B| ≥ c. The
following proposition adapts Proposition 7 from [3].

I Proposition 2. If a query Q ∈ DynFO(+,×) is almost domain-independent, then also
Q ∈ DynFO.

4 Algorithmic Technique

There are alternative definitions of DynFO, where the initial structure is non-empty and
the initial auxiliary relations can be computed within some complexity [11, 16]. However,
in a practical scenario of dynamic query answering it is conceivable that the quality of the
auxiliary relations decreases over time and that they are therefore recomputed from scratch
at times. We formalise this notion by a relaxed definition of maintainability in which the
initial structure is non-empty, the dynamic program is allowed to apply some preprocessing,
and query answers need only be given for a certain number of change steps.

We call a query Q (C, f)-maintainable, for some complexity class2 C and some func-
tion f : N→ R, if there is a dynamic program P and a C-algorithm A such that for each
input database I over a domain of size n, each linear order ≤ on the domain, and each
change sequence α of length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(I)) coincide where
S = (I,A(I,≤)).

Although we feel that (C, f)-maintainability deserves further investigation, in this paper
we exclusively use it as a tool to prove that queries are actually maintainable in DynFO. To
this end, we show next that every (AC1, logn)-maintainable query is actually in DynFO
and prove later that the queries in which we are interested are (AC1, logn)-maintainable.

I Theorem 3. Every (AC1, logn)-maintainable, almost domain-independent query is in
DynFO.

Proof Sketch (of Theorem 3. Assume that a dynamic program P witnesses that an almost
domain-independent query Q is (AC1, logn)-maintainable. Thanks to Proposition 2 it suffices
to construct a dynamic program P ′ that witnesses Q ∈ DynFO(+,×). We restrict ourselves
to graphs, for simplicity.

The overall idea is to use a simulation technique similar to the ones used in [2] and [12].
We consider each application of one change as a time step. We refer to the graph after time
step t as Gt = (V,Et). After each time step t, P ′ starts a thread that uses 1

2 logn steps to
compute the auxiliary relations for Gt (using AC1 = IND[logn]) and then another 1

2 logn
steps to apply the logn changes of time steps t+ 1, . . . , t+ logn (two at a time). After these

2 Strictly speaking C should be a complexity class of functions. In this paper, the implied class of functions
will always be clear from the stated class of decision problems.

ICALP 2017

98:6 A Strategy for Dynamic Programs: Start over and Muddle Through

logn steps the thread is ready to answer query Q about Gt+logn at time step t+ logn. Since
one such thread starts at every time point, the program can answer query Q, for each time
point ≥ logn.

We next give details on the two phases and describe how to deal with earlier time points.
For the first phase, we make use of the equality AC1 = IND[logn]. Let ψ be an inductive

formula that is applied d logn times, for some d, to get the auxiliary relations for a given
graph G and the given order ≤. The program P ′ simply applies ψ to Gt for 2d times
during each time step, and thus the fixpoint of ψ is reached after 1

2 logn steps. The change
operations that occur during these steps are not applied to Gt directly but rather stored in
some additional relation.

During the second phase the 1
2 logn stored change operations and the 1

2 logn change
operations that happen during the next 1

2 logn steps are applied to the state after phase 1.
To this end, it suffices for P ′ to apply two changes during each time step by simulating two
update steps of P . Since P can maintain Q for logn changes, at the end of phase 2, at time
point t+ logn, P ′ can give the correct query answer for Q about Gt+logn.

To enable P ′ to answer Q also for time steps t < logn, it proceeds as follows. It starts a
new thread at time t

2 with a graph with at most t
2 edges and applies ψ relative to a domain

Dt of size 2t+ c, where c is the constant from (almost) domain-independence. The first phase
of this thread lasts from time points t

2 + 1 to 3t
4 , and applies ψ for 4d times during each

step. As a fixpoint is reached after log(2t+c)
4 < t

4 steps, the auxiliary relations are initialised
properly (very small t can be handled separately). From time 3t

4 + 1 to time t the changes are
applied, again two at a time and the thread is ready to answer Q at time point t. As at time
t at most 2t elements are used by edges, the almost domain-independence of Q guarantees
that the result computed by the thread relative to Dt coincides with the Dt-restriction of the
query result for Gt. The full query result for Gt, possibly including tuples with elements from
V \Dt, is obtained as follows: a tuple t̄ is included in the query result, if it can be generated
from a tuple t̄′ of the restricted query result by replacing elements from Dt \ adom(Gt) by
elements from V \Dt (under consideration of equality constraints among these elements).

The above presentation assumes a separate thread for each time point and each thread
uses its own relations. These threads can be combined into one dynamic program as follows.
We can safely assume that n ≥ logn and since at each time point at most logn threads are
active, we can number them in a round robin fashion with numbers 1, . . . , n. The arity of all
auxiliary relations is incremented by one and the additional dimension is used to indicate
the number of the thread to which a tuple belongs. J

5 Warm-up: 3-Colourability

In this section, we show that the 3-colourability problem 3Col for graphs of bounded
treewidth can be maintained in DynFO. Given an undirected graph, 3Col asks whether its
vertices can be coloured with three colours such that adjacent vertices have different colours.

I Theorem 4. For every k, 3Col is in DynFO for graphs with treewidth at most k.

The remainder of this section is dedicated to a proof sketch for this theorem. Thanks to
Theorem 3 and the fact that 3Col is almost domain-independent, it suffices to show that
3Col is (AC1, logn)-maintainable for graphs with treewidth at most k. In a nutshell, our
approach can be summarised as follows.

The AC1-initialisation computes a nice tree decomposition T = (I, F, r) of width at most
4k + 5 and maximum bag size ` def= 4k + 6, as well as information about the 3-colourability

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:7

of induced subgraphs of G. More precisely, it computes, for each triangle δ of T and each
3-colouring C of the nodes of B(δ), whether there exists a colouring C ′ of the inner vertices
of G(δ), such that all edges involving at least one inner vertex are consistent with C ∪ C ′.

During the following logn change operations, the dynamic program does not need to
do much. It only maintains a set S of special bags: for each affected graph node v that
participates in any changed (i.e. deleted or inserted) edge, S contains one bag in which v
occurs. Also, if two bags are special, their least common ancestor is considered special and is
included in S. It will be guaranteed that there are at most 4 logn special bags. With the
auxiliary information, a first-order formula ϕ can test whether G is 3-colourable as follows.
By existentially quantifying 8` variables, the formula can choose two bits of information for
each of the at most 4` logn nodes in special bags. For each such node, these two bits are
interpreted as encoding of one of three colours and all that the formula ϕ needs to do is
checking that this colouring of the special bags can be extended to a colouring of G. This
can be done with the help of the auxiliary relations computed during the initialisation which
provide all necessary information about subgraphs induced by triangles consisting of special
bags.

6 MSO and GSO Queries

In this section, we show that for each k and each MSO-sentence ϕ the model checking
problem for ϕ on structures of treewidth at most k is in DynFO.

After some definitions regarding MSO types, we will state a Feferman–Vaught-type
composition theorem for the composition of at most O(logn) many structures that meet in
a set C of at most O(logn) elements. We will show that if the structure is suitably extended
by information about the types of the (disjoint) structures outside C, then MSO formulas can
be replaced by first-order formulas. This part is formulated for arbitrary relational structures
instead of graphs since we think it might be useful in other contexts as well.

Afterwards, we will use the Feferman–Vaught-type composition theorem to show the
maintainability of MSO properties on structures of bounded treewidth. Finally, we explain
how these results can be lifted to guarded second-order logic.

6.1 MSO-types
MSO-logic is the extension of first-order logic, which allows existential and universal quanti-
fication over set variables X,X1, The depth of a MSO formula is the maximum nesting
depth of (second-order and first-order) quantifiers in the syntax tree of the formula. For a
signature Σ and a natural number d ≥ 0, the depth-d MSO-type of a Σ-structure A is defined
as the set of all MSO-sentences ϕ over Σ of quantifier depth at most d, for which A |= ϕ

holds.
We also need to deal with situations, where we have to take a variable assignment and

some additional elements of the structure into account, and therefore the general notion
of types is slightly more involved. Let A be a Σ-structure and v̄ = (v1, . . . , vm) a tuple of
elements from A. We write (A, v̄) for the structure over Σ ∪ {c1, . . . , cm} which interprets
ci as vi, for every i ∈ {1, . . . ,m}. For a set Y of first-order and second-order variables and
an assignment α for the variables of Y, the depth-d MSO-type of (A, v̄, α) is the set of
MSO-formulas with free variables from Y of depth d that hold in (A, v̄, α).

We summarise some basic properties of types in the following. Unless not otherwise
stated, type always refers to MSO-type. For any d′ < d the depth-d′ type of a structure
results from its depth-d type by simply removing all formulas of depth larger than d′.

ICALP 2017

98:8 A Strategy for Dynamic Programs: Start over and Muddle Through

For every depth-d type, there is a depth-d MSO formula ατ that is true in exactly the
structures and for those assignments of type τ .

Each depth-d type τ induces a set of depth-(d− 1) types over Y ∪ {x} (assuming x 6∈ Y)
that can be realised in a structure of type τ , represented by the set of all formulas ατ ′ for
depth-(d − 1) types τ ′ with free variables set Y ∪ {x}, for which ∃xατ ′ is in τ . We call a
type τ ′, for which ∃x ατ ′ is in τ , an x-realisation of τ . Likewise, a depth-(d− 1) type τ ′ is
an X-realisation for a depth-d type τ , if ∃X ατ ′ is in τ . For more background on MSO-logic,
types, and the above properties readers might consult, e.g., [10].

6.2 A Feferman–Vaught-type composition theorem
In the following, we give an adaptation of the Feferman–Vaught-type composition theorem
from [6] that will be useful for maintaining MSO properties.

Intuitively, the idea is very easy, but the formal presentation will come with some technical
complications. For simplicity, we explain the basic idea for graphs first.

In a nutshell, we consider graphs G = (V,E) with a center C ⊆ V , such that the graph
G[V − C] is a disjoint union of components D1 − C, . . . ,D` − C, such that, for some w > 0,
|Di ∩ C| ≤ w, for every i,
all edges in E have both end nodes in C or in some Di, and
for each i there is some element vi ∈ Di ∩ C that is not contained in any Dj , for j 6= i.

In this case, we say that (C,D1, . . . , D`, v1, . . . , v`) is a weak partition of G with center C,
and connection width w. We refer to the sets D1, . . . , D` as petals and the nodes v1, . . . , v`
as identifiers of their respective petals. We emphasise that ` is not assumed to be bounded
by any constant, only by |C|.

Readers who have read the proof sketch for Theorem 4 can think of C as the set of
vertices from special bags (plus one inner vertex per clean triangle as identifier).

Our goal is to show that, if a graph G with a weak partition of logarithmic center size is
extended by the information about the MSO types of its petals in a suitable way, resulting
in a structure G′, then MSO formulas over G have equivalent first-order formulas over G′.

In a first step, we show that, if (the center) of G is suitably extended by the information
about the MSO types of its petals, then every MSO formula has an equivalent MSO formula
whose quantification is restricted to C.3 In a second step we show that, if in a MSO formula
quantification is restricted to some node set C of logarithmic size then there is an equivalent
(unrestricted) first-order formula. For the second step we assume that the graph has an
additional relation that encodes subsets of C by bounded-size tuples over V .

In the following, we work out the above plan in more detail. We fix some relational
signature Σ and assume that it contains a unary relation symbol C.

The definition of weak partitions easily carries over to general Σ-structures. In particular,
tuples need to be entirely in C or in some petal Di. For every i, we call the set Ii

def= Di ∩C
the interface of Di and the nodes of a petal Di that are not in C inner elements of Di.

Let A be a Σ-structure, P = (C,D1, . . . , D`, v1, . . . , v`) a weak partition of connection
width w, and d > 0. For every i, let ūi = (ui1, . . . , uiw) be a tuple of elements from the
interface of Di such that ui1 = vi and every node from Ii occurs in ūi. By Ai we denote the
substructure of A induced by Di with ui1, . . . , uiw as constants but without all tuples over C,

3 As remarked by a reviewer, Proposition 5 below can probably be concluded from Shelah’s Composition
Theorem for generalised sums [14].

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:9

i.e., Ai only contains tuples with at least one inner element of Di. The depth d, width w
MSO indicator structure of A relative to P and tuples ūi is the unique structure B such that:
B is an expansion of A (with the same universe and the same Σ-relations),
B has an additional w-ary relation J that contains all tuples ūi, and
B has additional unary relation symbols Rτ , one for every depth-d MSO-type over
Σ ∪ {c1, . . . , cw}, and for each such τ , Rτ contains the identifier nodes vi, for all i, for
which the depth-d MSO-type of (Ai, ūi) is τ .

The set of all indicator structures of A relative to P for varying tuples ūi is denoted
by S(A, P, w, d).

We call a MSO-formula C-restricted, if all its quantified subformulas are of one of the
following forms.
∃x (C(x) ∧ ϕ) or ∀x (C(x)→ϕ),
∃X (∀x(X(x)→C(x)) ∧ ϕ) or ∀X (∀x(X(x)→C(x))→ϕ).

I Proposition 5. For each d > 0, every MSO sentence ϕ with depth d, and each w, there is
a C-restricted MSO sentence ψ such that for every Σ-structure A with a weak partition P of
connection width w and every B ∈ S(A, P, w, d) it holds A |= ϕ if and only if B |= ψ.

Proof. The construction of ψ and the proof of its correctness is by induction on the structure
of ϕ. It can be found in the full version of the paper [4]. J

To formalise the second step, we need some further notation. Let A be a structure with
a unary relation C and a (k + 1)-ary relation Sub, for some k. We say that Sub encodes
subsets of C if, for each subset C ′ ⊆ C, there is a k-tuple t̄ such that, for every element c ∈ C
it holds c ∈ C ′ if and only if (t̄, c) ∈ Sub. Clearly, such an encoding of subsets only exists if
|V |k ≥ 2|C| and thus if |C| ≤ k log |V |.

I Proposition 6. For each C-restricted MSO-sentence ψ over a signature Σ (containing C)
and every k there is a first-order sentence χ over Σ ∪ {S} where S is a (k + 1)-ary relation
symbol such that, for every Σ-structure A and (k + 1)-ary relation Sub that encodes subsets
of C (in A), it holds A |= ψ if and only if (A,Sub) |= χ.

Proof. The proof is straightforward. Formulas ∃X (∀x(X(x)→C(x))∧ϕ) are translated into
formulas ∃x̄ ϕ′, where x̄ is a tuple of k variables and ϕ′ results from ϕ by simply replacing
every atomic formula X(y) by Sub(x̄, y). And likewise for universal set quantification. J

By combining Propositions 5 and 6 we immediately get the following result.

I Theorem 7. For each d > 0, every MSO sentence ϕ with depth d, and each w, there
is a first-order sentence χ such that, for every Σ-structure A with a weak partition P =
(C,D1, . . . , D`, v1, . . . , v`) of connection width w, every B ∈ S(A, P, w, d) and a relation Sub
that encodes subsets of C, it holds A |= ϕ if and only if (B,Sub) |= χ.

6.3 MSO on structures of bounded treewidth
In this subsection we prove a dynamic version of Courcelle’s Theorem: all MSO properties
can be maintained in DynFO for graphs with bounded treewidth. More precisely, for a given
MSO sentence ϕ we consider the model checking problem MCϕ that asks whether a given
graph G satisfies ϕ, that is, whether G |= ϕ holds.

I Theorem 8. For every MSO sentence ϕ and every k, MCϕ is in DynFO for graphs with
treewidth at most k.

ICALP 2017

98:10 A Strategy for Dynamic Programs: Start over and Muddle Through

Thanks to Theorem 3 it suffices to show that MCϕ is (AC1, logn)-maintainable for
graphs G with treewidth at most k. We note that it is easy to see MSO-definable queries
are almost domain-independent and the respective constant c depends only on the formula
ϕ. The reason is that MSO-formulas can not make use of more than a constant number
of isolated nodes.4 The dynamic program that will be constructed in the proof works very
similarly to the one of Theorem 4: during its initialisation it constructs a tree decomposition
and appropriate MSO-types for all triangles. During the change sequence, a set C of special
nodes is used that contains, for each affected graph node v, at least one bag containing v.
The union of all bags represented by the set C induces a weak partition P and the dynamic
program basically maintains an MSO indicator structure for G relative to P . Since there are
only O(logn) many change steps, |C| = O(logn) and therefore Theorem 7 yields that from
this auxiliary data it can be inferred in a first-order fashion whether G |= ϕ.

Proof (of Theorem 8). Thanks to Theorem 3 and the fact that MSO queries are almost
domain-independent it suffices to show that MCϕ is (AC1, logn)-maintainable in DynFO
for graphs with treewidth at most k. Let d be the quantifier depth of ϕ.

Given a graph G = (V,E), the AC1 initialisation first computes a nice tree decomposition
T = (I, F, r) with bags of size at most ` def= 4k + 6, together with �. With each node i, we
associate a tuple v̄(i) = (v1, . . . , vm, v1, . . . , v1) of length `, where B(i) = {v1, . . . , vm} and
v1 < · · · < vm. That is, if the bag size of i is `, this tuple just contains all graph nodes of
the bag in increasing order. If the bag size is smaller, the smallest graph node is repeated.
The AC1-initialisation also ensures that arithmetic relations +, × and BIT are available.

The dynamic program further uses additional auxiliary relations S, N , and Dτ , for each
depth-d MSO-type τ over the signature that consists of the binary relation symbol E and
3`+ 1 constant symbols c1, . . . , c3`+1. From these relations all ingredients needed to apply
Theorem 7 can be first-order defined: a weak partition P with center C, an MSO indicator
structure, and a relation Sub that encodes subsets of C.

The relation S stores tuples representing special bags, as in the proof of Theorem 4. The
relations Dτ provide MSO type information for all triangles. More precisely, for each triangle
δ = (i0, i1, i2) for which the subgraph G(δ) has at least one inner node, Dτ contains the tuple
(v(δ), v̄(i0), v̄(i1), v̄(i2)) if and only if the MSO depth-d type of (G(δ), v(δ), v̄(i0), v̄(i1), v̄(i2))
is τ , where v(δ) denotes the smallest inner node of G(δ) with respect to ≤.

The set C always contains all graph nodes that occur in special bags (and thus in S), plus
one inner node v(δ), for each maximal5 clean triangle with at least one inner node. Relation
N maintains a bijection between C and an initial segment of ≤. From the auxiliary relations,
the relations used for Theorem 7 can be defined as follows.

The relations S and C are used to define a weak partition as follows. Clean triangles
with at least two inner nodes become petals of the weak partition. Thus the interface I(δ) of
a petal corresponding to a clean triangle δ = (i0, i1, i2) contains the nodes from B(i0), B(i1),
and B(i2) as well as the node v(δ). Now, an indicator structure B ∈ S(A, P, w, d) can be
first-order defined as follows. Clearly, clean triangles can be easily first-order defined from
the relation S. For each clean triangle δ = (i0, i1, i2) with at least two inner nodes, the
relation J contains a tuple (δ(v), v̄(i0), v̄(i1), v̄(i2)), and the relation Rτ contains δ(v) if and
only if is (δ(v), v̄(i0), v̄(i1), v̄(i2)) ∈ Dτ . For defining Sub, we observe that C is of size b logn
for some b ∈ N. Thus a subset C ′ of C can be represented by a tuple (a1, . . . , ab) of nodes,

4 It should be mentioned that structures with a linear order ≤ do not have any isolated nodes.
5 Maximal basically means that all its corner nodes are special.

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:11

where an element c ∈ C is in C ′ if and only if c is the m-th element of C with respect to the
mapping defined by N , m = (`− 1) logn+ j and the j-th bit of a` is one. It is easy to see
that the relations can be first-order defined from S,N and Dτ .

How the auxiliary relations are initialised and updated is detailed in the full version. J

6.4 Extension to GSO logic
We finally sketch how the results of this section can be extended to guarded second-order logic
(GSO). In a nutshell, GSO extends MSO by guarded second-order quantification. Thus, it
syntactically allows to quantify over non-unary relation variables. However, this quantification
is semantically restricted: a tuple t̄ = (a1, . . . , am) can only occur in a quantified relation, if
all elements from {a1, . . . , am} occur together in some tuple of the structure, in which the
formula is evaluated.

To state the analogue of Proposition 5 for GSO, two definitions need to be modified:
GSO indicator structures store information about the respective GSO types instead of MSO
types. C-restricted formulas can use GSO-quantifiers only to quantify relations over C, e.g.,
formulas need to be restricted as in ∃X (∀x̄(X(x1, . . . , xm)→(C(x1) ∧ · · · ∧ C(xm))) ∧ ϕ).
In the statement of Proposition 5 MSO can simply be replaced by GSO. The proof hardly
changes. Of course, there is an additional case for GSO quantification but the types of petals
can still be handled by MSO quantification. For Proposition 6, encoding of subsets has to be
extended to encoding of subrelations. For the quantification of m-ary relations this encoding
has to be done by a (k +m)-ary relation, for some k. Such an encoding only exists, if the
number of tuples over C in A is only logarithmic. Analogously, Theorem 7 can be extended.

7 MSO Optimisation Problems

With the techniques presented in the previous section also MSO definable optimisation
problems can be maintained in DynFO for graphs with bounded treewidth. An MSO
definable optimisation problem OPTϕ is induced by an MSO formula ϕ(X) with a free set
variable X. Given a graph G with vertex set V , it asks for a set A ⊆ V of minimal6 size
such that G |= ϕ(A).

From the point of view of dynamic programs, such an optimisation problem is just a unary
query, that is, the result is defined by some formula ψ(x) with a free first-order variable x.

I Theorem 9. For every MSO formula ϕ(X) and every k, OPTϕ is in DynFO for graphs
with treewidth at most k.

A dynamic program for an optimisation problem OPTϕ can be constructed by a modifica-
tion of a program for the decision problem for the MSO sentence ∃X ϕ, as constructed in the
proof of Theorem 8. Basically, we enrich the type information for each petal by information
about the smallest set with which a given (X-realisation) type τ can be obtained.

Proof Sketch (of Theorem 9). We describe how a dynamic program for model checking
ψ

def= ∃X ϕ, where ϕ(X) is an MSO-formula of quantifier depth d, can be adapted to a
program for OPTϕ. We reuse the notation from the proof of Theorem 8.

Most auxiliary relations remain as in the program of that proof. However, instead
of relations Dτ for depth-(d + 1)-types τ the program uses relations #Dτ ′ and Sτ ′ for

6 The adaptation to maximisation problems is straightforward.

ICALP 2017

98:12 A Strategy for Dynamic Programs: Start over and Muddle Through

X-realisations τ ′ of such types with the following intention. Let δ be a triangle. If τ ′

is a depth-d type over {E,X, c1, . . . , c3`+1} that can be realised by some set A, then for
the minimal size s of such a set A, #Dτ ′ shall contain a tuple (v(δ), v̄(i0), v̄(i1), v̄(i2), vs),
similarly as in the proof of Theorem 8, but with vs chosen as the (s+ 1)-th element7 with
respect to ≤. Furthermore, for the lexicographically minimal set A of this kind and size s,
Sτ ′ shall contain all tuples (v(δ), v̄(i0), v̄(i1), v̄(i2), v), where v ∈ A.

The proof of Theorem 8 can be extended to show that the initial versions of these auxiliary
relations can be computed in AC1. For the inductive step of this computation, a type τ of a
triangle δ might be achievable by a finite number of combinations of types of its sub-triangles.
Here, the overall sizes of the underlying sets for X need to be computed and the minimal
solution needs to be picked. This is possible by a FO(+,×)-formula since the number of
possible combinations is bounded by a constant depending only on d and k.

The updates of the auxiliary relations are exactly as in the proof of Theorem 8. Since Dτ

needs no updates there, neither #Dτ nor Sτ do, here.
It remains to explain how the actual query result can be defined. A close inspection of

the proofs of Propositions 5 and 6 reveals that the first-order formula χ equivalent to ∃Xϕ,
as guaranteed by Theorem 7, is of the form ∃x̄∃(x̄τ)τ χ̂, where, in a nutshell, x̄ represents all
center nodes from C in X and x̄τ selects all petals G(δj) that have depth-d MSO type τ .
The formula χ can first be adapted such that it defines the set of all nodes v selected in C
or occurring in a tuple (v(δ), v̄(i0), v̄(i1), v̄(i2), v) of Sτ ′ for the type τ ′ that was chosen for
the petal associated with δ. Next, using the ability of FO(+,×) to add up logarithmically
many numbers [15, Theorem 1.21], the size of the thus represented set can be determined
using #Dτ ′ . Then, a similar formula can check that there is no (lexicographically) smaller
set that makes ϕ true. We emphasise that the resulting formula so far can become true
only for one assignment α for x̄ and x̄τ and thus a final formula with free variable x can be
constructed which becomes true for an assignment α′, if and only if α′(x) occurs in the set
encoded by this assignment α. J

From the proof sketch it is easy to see that a dynamic program can also maintain the size
s of an optimal solution, either implicitly as |Q| for a distinguished relation Q or as {vs}.
Also, with the adjustments sketched in subsection 6.4, the result can be extended to GSO
definable optimisation problems. We can conclude the following corollary from the results of
this and the previous section.

I Corollary 10. For every k, the Boolean queries 3-Colourability and HamiltonCycle
and the optimisation problems VertexCover, DominatingSet and ShortestPath are
in DynFO for graphs of treewidth at most k.

8 Conclusion

In this paper, we introduced a strategy for maintaining queries by periodically restarting its
computation from scratch and limiting the number of change steps that have to be taken
into account. This has been captured in the notion of (C, f)-maintainable queries, and we
proved that all (AC1, logn)-maintainable, almost domain-independent queries are actually
in DynFO. As a consequence, decision and optimisation queries definable in MSO- and

7 We ignore the case that the size could be as large as |V |, which can be handled by some additional
encoding.

S. Datta, A. Mukherjee, T. Schwentick, N. Vortmeier, and T. Zeume 98:13

GSO-logic are in DynFO for graphs of bounded treewidth. For this, we stated a Feferman-
Vaught-type composition theorem for these logics, which might be interesting in its own
right. Though we phrase our results for MSO and GSO for graphs only, their proofs translate
swiftly to general relational structures.

We believe that our strategy will find further applications. For instance, it is conceivable
that interesting queries on planar graphs, such as the shortest-path query, can be maintained
for a bounded number of changes using auxiliary data computed by an AC1 algorithm (in
particular since many important data structures for planar graphs can be constructed in
logarithmic space and therefore in AC1).

References
1 Patricia Bouyer, Vincent Jugé, and Nicolas Markey. Dynamic complexity of parity games

with bounded tree-width. CoRR, abs/1610.00571, 2016. URL: http://arxiv.org/abs/
1610.00571.

2 Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume.
Reachability is in DynFO. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming – 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume
9135 of Lecture Notes in Computer Science, pages 159–170. Springer, 2015. doi:10.1007/
978-3-662-47666-6_13.

3 Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume.
Reachability is in DynFO. CoRR, abs/1502.07467, 2015. URL: http://arxiv.org/abs/
1502.07467.

4 Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume.
A strategy for dynamic programs: Start over and muddle through. CoRR, abs/1704.07998,
2017. URL: http://arxiv.org/abs/1704.07998.

5 Guozhu Dong, Jianwen Su, and Rodney W. Topor. Nonrecursive incremental evalu-
ation of datalog queries. Ann. Math. Artif. Intell., 14(2-4):187–223, 1995. doi:10.1007/
BF01530820.

6 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-
order logic coincide. ACM Trans. Comput. Log., 17(4):25:1–25:18, 2016. doi:10.1145/
2946799.

7 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 143–152. IEEE
Computer Society, 2010. doi:10.1109/FOCS.2010.21.

8 Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic complexity
of formal languages. ACM Trans. Comput. Log., 13(3):19, 2012. doi:10.1145/2287718.
2287719.

9 Neil Immerman. Descriptive complexity. Graduate texts in computer science. Springer,
1999.

10 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
11 Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. J.

Comput. Syst. Sci., 55(2):199–209, 1997. doi:10.1006/jcss.1997.1520.
12 Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic complexity under defin-

able changes. In 20th International Conference on Database Theory, ICDT 2017, March
21-24, 2017, Venice, Italy, pages 19:1–19:18, 2017. doi:10.4230/LIPIcs.ICDT.2017.19.

13 Thomas Schwentick and Thomas Zeume. Dynamic complexity: recent updates. SIGLOG
News, 3(2):30–52, 2016. doi:10.1145/2948896.2948899.

ICALP 2017

http://arxiv.org/abs/1610.00571
http://arxiv.org/abs/1610.00571
http://dx.doi.org/10.1007/978-3-662-47666-6_13
http://dx.doi.org/10.1007/978-3-662-47666-6_13
http://arxiv.org/abs/1502.07467
http://arxiv.org/abs/1502.07467
http://arxiv.org/abs/1704.07998
http://dx.doi.org/10.1007/BF01530820
http://dx.doi.org/10.1007/BF01530820
http://dx.doi.org/10.1145/2946799
http://dx.doi.org/10.1145/2946799
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1145/2287718.2287719
http://dx.doi.org/10.1145/2287718.2287719
http://dx.doi.org/10.1006/jcss.1997.1520
http://dx.doi.org/10.4230/LIPIcs.ICDT.2017.19
http://dx.doi.org/10.1145/2948896.2948899

98:14 A Strategy for Dynamic Programs: Start over and Muddle Through

14 Saharon Shelah. The monadic theory of order. Annals of Mathematics, pages 379–419,
1975. doi:10.2307/1971037.

15 Heribert Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 1999.

16 Volker Weber and Thomas Schwentick. Dynamic complexity theory revisited. Theory
Comput. Syst., 40(4):355–377, 2007. doi:10.1007/s00224-006-1312-0.

http://dx.doi.org/10.2307/1971037
http://dx.doi.org/10.1007/s00224-006-1312-0

Definability by Horn Formulas and Linear Time on
Cellular Automata∗

Nicolas Bacquey1, Etienne Grandjean2, and Frédéric Olive3

1 INRIA Lille, Université de Lille, CRIStAL, Villeneuve d’Ascq, France
nicolas.bacquey@inria.fr

2 Normandie Université, ENSICAEN, CNRS, GREYC, Caen, France
etienne.grandjean@unicaen.fr

3 Aix Marseille Université, CNRS, LIF UMR 7279, Marseille, France
frederic.olive@lif.univ-mrs.fr

Abstract
We establish an exact logical characterization of linear time complexity of cellular automata of
dimension d, for any fixed d: a set of pictures of dimension d belongs to this complexity class
iff it is definable in existential second-order logic restricted to monotonic Horn formulas with
built-in successor function and d+1 first-order variables. This logical characterization is optimal
modulo an open problem in parallel complexity. Furthermore, its proof provides a systematic
method for transforming an inductive formula defining some problem into a cellular automaton
that computes it in linear time.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic, F.4.3 Formal Languages

Keywords and phrases Picture languages, linear time, cellular automata of any dimension, local
induction, descriptive complexity, second-order logic, Horn formulas, logic programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.99

1 Introduction

Descriptive complexity provides machine-independent views of complexity classes. Typically,
Fagin’s Theorem [5] characterizes NP as the class of problems definable in existential second-
order logic (ESO). Similarly, Immerman-Vardi’s Theorem [15] and Grädel’s Theorem [8, 9]
characterize the class P by first-order logic plus least fixed-point, and second-order logic
restricted to Horn formulas, respectively. The link between computational and descriptive
complexity can be made as tight as possible, i.e. linear time or time O(nd), for a fixed
integer d, can be exactly characterized [20, 14, 17, 11]. Two of the present authors have
proved in [12, 13] that a problem is recognized in linear time on a non-deterministic cellular
automaton of dimension d iff it is definable in ESO logic with built-in successor and d+ 1
first-order variables. Is there such a natural characterization in logic for the more interesting
deterministic case? This question motivates the present paper.

A number of algorithmic problems (linear context-free language recognizability, product of
integers, product of matrices, sorting. . .) are computable in linear time on cellular automata
of appropriate dimension. For each such problem, the literature describes the algorithm
of the cellular automaton in an informal way [2, 16]. In parallel computational models,

∗ This work was partially supported by ANR AGGREG.

EA
T

C
S

© Nicolas Bacquey and Etienne Grandjean and Frédéric Olive;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 99; pp. 99:1–99:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.99
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

99:2 Horn Formulas and Linear Time on Cellular Automata

algorithms are often difficult to design. However, the problems they solve can often be simply
defined inductively. For instance, the product of two integers in binary notation is inductively
defined by the classical Horner rule.

The first contribution of this paper is the observation that those inductive processes are
naturally formalized by Horn formulas [9]. As our second and main contribution, we notice
that for every concrete problem defined by a Horn formula with d+ 1 first-order variables
(d ≥ 1), this inductive computation by Horn rules has a precise geometrical characterization:
It can be modeled as the displacement of a d-dimensional hyperplane H along some fixed line
D in a space of dimension d+ 1. Provided we interpret the line D as a temporal axis, the
parallel displacement of H with respect to D coincides with a computation of a d-dimensional
cellular automaton. The converse is obvious: a d-dimensional cellular automaton computation
can be regarded as the parallel displacement of a d-dimensional hyperplane – its set of cells –
along the time axis.

In the next section, a logic is designed which captures these inductive behaviors (see
Def. 14). Roughly speaking, it is obtained from the logic ESO-HORN taylored by Grädel to
characterize P, by restricting both the number of first-order variables and the arity of second-
order predicate symbols. Besides, it includes an additional restriction – the ‘monotonicity
condition’ – that reflects the geometrical consideration above-mentioned. We denote this
logic by mon-ESO-HORNd(∀d+1, arity d+1).

Now we can quote the main result of the paper (Thm. 15): a set L of d-pictures can be
decided in linear time by a deterministic cellular automaton – written L ∈ DLINd

ca – if, and
only if, it can be expressed in mon-ESO-HORNd(∀d+1, arity d+1). For short:

DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1). (1)

A noticeable interest of this result is the constructive method of its proof. In order
to design a cellular automaton that computes a problem in linear time, one has to define
inductively the problem with a monotonic Horn formula. The normalized form of the formula
is automatically obtained: this is the program of the cellular automaton1.

The paper is structured as follows: The next section collects the preliminary definitions
and gives a precise statement of our main result. In Sec. 3, we establish the left-to-right
inclusion of the identity displayed in (1). The rest of the paper is devoted to the converse
inclusion, whose proof is far more involved. In Sec. 4 we build a monotonic Horn formula
expressing the language of palindromes (a “toy” example) and deduce from it a cellular
automaton that recognizes this language in linear time. Sec. 5 generalizes this construction to
any problem defined in mon-ESO-HORNd(∀d+1, arity d+1), thus completing the proof of (1).
In Sec. 6, we conclude by arguing for the optimality of our result.

2 Preliminaries

2.1 Cellular automata, picture languages, linear time
We use the standard terminology of cellular automata as presented in [10].

I Definition 1. A cellular automaton of dimension d (d-CA or CA, for short) is a quadruple
A = (d,Q,N , δ), where d ∈ N is the dimension of the automaton, Q is a finite set whose
elements are called states , N is a finite subset of Zd called the neighborhood of the
automaton, and δ : QN → Q is the local transition function of the automaton.

1 For lack of space, this paper gives only one example of this method on a “toy” problem.

N. Bacquey and E. Grandjean, and F. Olive 99:3

A d-CA acts on a grid of dimension d:

I Definition 2. A d-dimensional configuration C over the set of states Q is a mapping
from Zd to Q. The elements of Zd will be referred to as cells .

I Definition 3. Given a cellular automaton A = (d,Q,N , δ), a configuration C and a
cell c ∈ Zd, we call neighborhood of c in C the mapping NC(c) : N → Q defined by
NC(c)(v) = C(c+ v).

From the local transition function δ of A = (d,Q,N , δ), we can define the global transition
function of the automaton ∆ : QZd → QZd obtained by applying the local rule on each cell,
that means ∆(C)(c) = δ(NC(c)) = δ((C(c+ v))v∈N), for each cell c.

One identifies the CA A with its global rule: A(C) = ∆(C) is the image of a configuration
C by the action of A. Moreover, At(C) is the configuration resulting from applying t times
the global rule of A from the initial configuration C.

I Definition 4. For a given cellular automaton: a state q is permanent if a cell in state q
remains in this state regardless of the states of its neighbors; a state q is quiescent if a cell
in state q remains in this state if all its neighbors are also in state q.

The natural inputs of cellular automata of dimension d are d-pictures:

I Definition 5. Let Σ be a finite alphabet. For integers d, n ≥ 1, a picture of dimension
d (d-picture) and side n over Σ is a mapping p : J1, nKd → Σ. We denote by Σ(d) the
set of d-pictures over Σ. Any subset of Σ(d) is called a d-picture language over Σ.

I Remark. d-picture languages can capture a wide variety of decision problems if the
alphabet Σ is sufficiently expressive. For instance, the product problem of boolean square
matrices is a 2-picture problem over the three-part alphabet Σ = {0, 1}3 that consists of
square pictures M such that the projection of M over the last part of the alphabet is equal
to the product of its projections over the first two parts.

I Definition 6. Given a picture p : J1, nKd → Σ, we define the picture configuration
associated with p with permanent or quiescent state2 q0 6∈ Σ as the function Cp,q0 : Zd →
Σ ∪ {q0} such that Cp,q0(x) = p(x) if x ∈ J1, nKd and Cp,q0(x) = q0 otherwise.

I Definition 7. Given a d-picture language L ⊆ Σd, we say that a cellular automaton
A = (d,Q,N , δ) such that Σ ⊆ Q with permanent states qa and qr (accepting and rejecting
states) recognizes L with permanent state (quiescent state, respectively) q0 ∈ Q\(Σ∪{qa, qr})
in time τ : N → N (for short, τ(n)) if for any picture p : J1, nKd → Σ, starting from the
configuration Cp,q0 at time 0, the state of cell n = (n, . . . , n) of A, called the reference cell, is
qa or qr at time τ(n) with Aτ(n)(Cp,q0)(n) = qa if p ∈ L and Aτ(n)(Cp,q0)(n) = qr if p 6∈ L.

I Definition 8. For d ≥ 1, we call DLINd
ca the class of d-picture problems L for which

there exist a d-CA A with quiescent state q0 and a function τ(n) = O(n) such that L can be
recognized by A in time τ(n). Such a problem is said to be recognizable in linear time .

The class DLINd
ca is very robust: it is closed under many changes: neighborhoods, precise

time/space bounds, input presentation, etc. The proof of the first part of our main result

2 The condition that each cell outside the input domain J1, nKd remains in a permanent state (resp.
quiescent state) q0 means that the computation space is exactly the set of input cells (resp. is not
bounded).

ICALP 2017

99:4 Horn Formulas and Linear Time on Cellular Automata

will use the following restrictive characterization which is a consequence of a general linear
acceleration theorem3 (see e.g. [10, 19]).

I Lemma 9 ([10]). DLINd
ca is the class of d-picture problems that can be recognized in time

n− 1 by a d-CA of neighborhood N2 = {−2,−1, 0, 1, 2}d with permanent state q0.

2.2 Picture structures and monotonic Horn formulas
The local nature of cellular automata acting on pictures is captured by logical formulas
acting on first-order structures, the so-called picture structures, that represent these pictures.
Before defining picture structures, let us detail their signatures. Given a dimension d ≥ 1
and k alphabets Σ1, . . . ,Σk, we denote by sg(d; Σ1, . . . ,Σk) the signature below:

sg(d; Σ1, . . . ,Σk) = {(Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred}.

Here, each Qis is a d-ary relation symbol, min and max are unary relation symbols, and suc
and pred are unary function symbols.

I Definition 10. Let p1, . . . , pk be pictures of respective alphabets Σ1, . . . ,Σk. We assume
that the pi’s have the same dimension d and the same side n. The picture structure of the
k-tuple (p1, . . . , pk) is the structure of signature sg(d; Σ1, . . . ,Σk) defined as follows:

S(p1, . . . , pk) = 〈J1, nK, (Q1
s)s∈Σ1 , . . . , (Qks)s∈Σk

,min,max, suc, pred〉.

Symbols of sg(d; Σ1, . . . ,Σk) are interpreted on S(p1, . . . , pk) as follows, where we denote the
same way a symbol and its interpretation:

each Qis is the set of cells of pi labelled by s. Formally: Qis = {a ∈ J1, nKd : pi(a) = s};
min and max are the singleton sets {1} and {n}, respectively;
suc and pred are the successor and predecessor functions: that is suc(n) = n and
suc(a) = a+ 1 for a ∈ J1, n− 1K; pred(1) = 1 and pred(a) = a− 1 for a ∈ J2, nK.

In the following, we will freely use the natural notation x+ i , for any fixed integer i ∈ Z.
It abbreviates suci(x) if i > 0, and pred−i(x) if i < 0. For i = 0, it represents x.

We will use the usual definitions and notations in logic (see [4, 18, 9]). All formulas
considered hereafter belong to existential second-order logic. More precisely, we shall focus
on the following logic:

I Definition 11. ESOd(∀d+1, arity d+1) is the class of formulas of the form ∃R∀xψ, where
R = (R1, . . . , Rr) is a tuple of (d+ 1)-ary relation symbols, x = (x0, . . . , xd) is a (d+ 1)-tuple
of first-order variables, and ψ is a quantifier-free first-order formula of signature sg(d; Σ)∪R
for some tuple of alphabets Σ = (Σ1, . . . ,Σk).

Such a formula involves two sorts of predicate symbols: those of sg(d; Σ) are called input
predicates and those of R are called guessed predicates .

It is proved in [13] that the above logic exactly characterizes NLINd
ca, the non-deterministic

counterpart of DLINd
ca. The ‘inclusion’ DLINd

ca ⊆ ESOd(∀d+1, arityd+1) immediately fol-
lows, but the converse inclusion is quite unlikely, since it entails DLINd

ca = NLINd
ca, which

in turn implies P = NP. Nevertheless, this engages us in looking for a logic characterizing
DLINd

ca inside the logic ESOd(∀d+1, arityd+1). A first restriction of this logic is naturally
suggested by the Grädel’s characterization of P already mentioned in the introduction:

3 For such a result, we need to increase the set of states of the automaton.

N. Bacquey and E. Grandjean, and F. Olive 99:5

I Definition 12. ESO-HORNd(∀d+1, arity d+1) brings together formulas ∃R∀xψ among
ESOd(∀d+1, arity d+1) whose quantifier-free part ψ is a conjunction of Horn clauses of the
form4 α1 ∧ . . . ∧ αm → α0 such that:

each premise α1, . . . , αm is
either a guessed atom R(x0 + i0, . . . , xd + id) with R ∈ R and i0, . . . , id ∈ Z,
or an input literal I(t1 + i1, . . . , tq + iq) or ¬I(t1 + i1, . . . , tq + iq), with I ∈ sg(d; Σ),
t1, . . . , tq ∈ x, and i0, . . . , iq ∈ Z ;

the conclusion literal α0 is either a ‘constant’ – the boolean ⊥ or an input literal – or a
guessed atom5 of the restricted form R(x0, . . . , xd) with R ∈ R.

We will see that this new logic still contains DLINd
ca but that here again the converse

inclusion is unlikely, as argued in Sec. 6. Whence the necessity of a further restriction of the
logic, detailed in Def. 14. For now, let us give some motivation for this restriction.

The first-order part of an ESO-HORNd(∀d+1, arityd+1)-formula can be viewed as a
program whose execution, on a given picture structure taken as input, computes the guessed
predicates from the input ones. Consider for instance the Horn clause R(x − 2, y − 1) ∧
R′(x+ 1, y− 2)→ R(x, y) built on guessed predicates R and R′. It establishes a dependence
between the values of the guessed predicates (taken as a whole) at place (x, y) and their
values at place (x− 2, y − 1), on one hand, and at place (x+ 1, y − 2), on the other hand.
This notion is formalized by the definition below.

I Definition 13. Let Φ = ∃R∀x0, . . . , xdψ be in ESO-HORNd(∀d+1, arityd+1). A nonzero
tuple (i0, . . . , id) ∈ Zd+1 is an induction vector of Φ if there exists a Horn clause C in ψ
and two guessed predicates R,R′ in R such that C includes R(x0, . . . , xd) as its conclusion
and R′(x0 + i0, . . . , xd + id) among its hypotheses. The set of induction vectors of Φ is called
its induction system .

The logic involved in the characterization of DLINd
ca that constitutes the core of this

paper is defined as follows:

I Definition 14. A formula Φ ∈ ESO-HORNd(∀d+1, arity d+1) with induction system S is
monotonic and we write Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1) if there exist a0, . . . , ad ∈ Z
such that each induction vector (v0, . . . , vd) ∈ S fulfils a0v0 + · · ·+ advd < 0. This condition
is called the monotonicity condition .

In other words, there exists a hyperplane a0x0 + · · · + adxd = 0, called a reference
hyperplane of S, such that each vector (v0, . . . , vd) ∈ S belongs to the same strict half-space
determined by this hyperplane, that means a0v0 + · · · + advd < 0. One also says that
S ⊂ Zd+1 satisfies the monotonicity condition w.r.t. the reference hyperplane.

We are now in a position to state formally the main result of the paper:

I Theorem 15. For d ≥ 1, DLINd
ca = mon-ESO-HORNd(∀d+1, arity d+1).

The two ‘inclusions’ underlying the above characterization are proved in Sec. 3 and 5.

4 We will always assume that conjunction has priority over implication.
5 Alternatively, in Horn formulas, ‘guessed’ predicates and ‘guessed’ atoms can be called more intuitively
‘computed’ predicates and ‘computed’ atoms.

ICALP 2017

99:6 Horn Formulas and Linear Time on Cellular Automata

3 DLINca ⊆ mon-ESO-HORN

I Proposition 16. For d ≥ 1, DLINd
ca ⊆ mon-ESO-HORNd(∀d+1, arity d+1).

Proof. Let L ⊆ Σ(d) be a d-picture language in DLINd
ca. By Lemma 9, there exists a CA A =

(d,Q,N2, δ) of neighborhood N2 = {−2,−1, 0, 1, 2}d that recognizes L in time τ(n) = n− 1
with permanent state q0. Let J1, nK denote the interval of the n instants of the computation
of A on a d-picture of side n; in particular, the initial and final instants are numbered 1 and
n, respectively. We are going to construct a formula Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1)
that defines L, i.e., that expresses that the computation of A on a d-picture p accepts it. It is
of the form Φ ≡ ∃(Rs)s∈Q∀t∀cψ where c denotes the d-tuple of variables (c1, . . . , cd) and, for
s ∈ Q, the intended meaning of the guessed atom Rs(t, c) is the following: at the instant t,
the cell c is in the state s. For simplicity of notation, let us assume d = 1. Also assume
n ≥ 5. The quantifier-free part ψ of Φ is the conjunction of three kinds of Horn clauses:
1. the initialization clauses: for each s ∈ Σ, the clause min(t) ∧Qs(c)→ Rs(t, c);
2. five kinds of computation clauses that compute the state at instant t > 1 of any cell c

according to its possible neighborhoods for N2 = {−2,−1, 0, 1, 2} :
(i) c = 1; (ii) c = 2; (iii) general case c ∈ J3, n− 2K; (iv) c = n− 1; (v) c = n.

Let us consider the general case: for any 5-tuple of states (s−2, s−1, s0, s1, s2) ∈ (Q −
{q0, qa, qr})5, the clause(

Rs−2(t− 1, c− 2) ∧Rs−1(t− 1, c− 1) ∧
Rs0(t− 1, c) ∧Rs1(t− 1, c+ 1) ∧Rs2(t− 1, c+ 2)

)
→ Rδ(s−2,s−1,s0,s1,s2)(t, c)

computes the state at any instant t > 1 of any cell c in the interval J3, n− 2K, which can
be tested by the use of ¬min() and ¬max() in the premises;

3. the accepting clause Rqr
(t, c)→⊥, which says that the computation does not reject, and

hence accepts, since by hypothesis each computation of A either accepts or rejects.

By construction, Φ belongs to ESO-HORNd(∀d+1, arity d+1) and the induction system
is {−1} × {−2,−1, 0, 1, 2}d, which has a reference hyperplane of equation t = 0. Hence,
Φ ∈ mon-ESO-HORNd(∀d+1, arity d+1), which completes the proof. J

4 From the formula to the automaton: the example of palindromes

As the proof of the inclusion mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca we will give in

Sec. 5 is much more elaborate than its converse, we first give in this section its main ideas
which are essentially of geometrical nature by now presenting the inductive definition of a
“toy” problem by a monotonic Horn formula from which we will derive a cellular automaton
that recognizes the problem.

Let Palindrome(Σ) denote the language of palindromes over a fixed alphabet Σ.

4.1 A monotonic Horn formula defining the language of palindromes
Let us prove that Palindrome(Σ) is definable in mon-ESO-HORN1(∀2, arity 2). In addition
to the set of input unary predicates Input = {min,max, (Qs)s∈Σ} involved in the picture
structure that represents a word w = w1w2 . . . wn ∈ Σ∗, we need to consider three guessed
binary predicates symbols R=, R< and RnoPal. The first one is enforced to contain the
equality relation. It is used to inductively map the second one on the usual strict linear order
over J1, nK. This is done with the clauses θ1, . . . , θ5 below:

N. Bacquey and E. Grandjean, and F. Olive 99:7

θ1 = min(x) ∧min(y)→ R=(x, y);
θ2 = ¬min(x) ∧ ¬min(y) ∧R=(x− 1, y − 1)→ R=(x, y);
θ3 = ¬max(x) ∧R=(x+ 1, y)→ R<(x, y);
θ4 = ¬max(x) ∧R<(x+ 1, y)→ R<(x, y);
θ5 = R<(x, x)→ ⊥.

The (set of) clauses θ6 and θ7 below inductively define RnoPal as the set of couples (x, y) ∈
J1, nK2 that fulfill: x < y and the factor wx . . . wy of the input word w is not a palindrome.
Then the clause θ8 forces w to be a palindrome:

θ6 = R<(x, y) ∧Qs(x) ∧Qs′(y)→ RnoPal(x, y), for all s 6= s′ in Σ;
θ7 = R<(x, y) ∧RnoPal(x+ 1, y − 1)→ RnoPal(x, y);
θ8 = min(x) ∧max(y) ∧RnoPal(x, y)→ ⊥.

In conclusion, Palindrome(Σ) is defined by the following formula Φpal, over the structure
S(w) = 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉 associated with an input word w = w1 . . . wn:

Φpal ≡ ∃R=, R<, RnoPal∀x, y
∧
i≤8

θi.

Moreover, Φpal belongs to ESO-HORN1(∀2, arity 2) and has S = {(−1,−1), (1, 0), (1,−1)} as
its induction system (see Def. 13) Clearly, the system S satisfies the monotonicity condition
of Def. 14 with the line of equation −x+ 2y = 0 as its reference hyperplane. It follows:

I Proposition 17. Palindrome(Σ) ∈ mon-ESO-HORN1(∀2, arity 2).

4.2 From Φpal to Apal

It remains to transform the formula Φpal above into a one-dimensional cellular automaton
Apal that recognizes the language Palindrome(Σ). For sake of simplicity, we first ignore
the input literals and only take account of guessed atoms in the Horn clauses θi. Notice
that in each clause whose conclusion is a guessed atom R(x, y), R ∈ {R=, R<, RnoPal}, the
guessed atoms occurring as premises have one of the following forms:

R′(x, y), R′(x+ 1, y), R′(x+ 1, y − 1), R′(x− 1, y − 1).

Intuitively, if one regards the set Dt = {(x, y) ∈ J1, nK2 | −x + 2y = t} as the line of
cells of a one-dimensional CA at instant t, then the conjunction of the above clauses θi can
be regarded as the transition function of such a CA (see Fig. 1). More formally, in order
to introduce the time parameter t, we eliminate one of the variables, x for example, and
we regard the other variable, y, as the space variable c. That is, one makes the change of
variables6 : t = −x+ 2y ; c = y.

Let us now explain how the automaton Apal to be constructed can take account of the
input literals. For each point (x, y) ∈ J1, nK2, we call state(x, y) the tuple of boolean values
of all input and output atoms on x and y. That is,

state(x, y) =

 min(x), min(y), max(x), max(y),
(Qs(x))s∈Σ, (Qs(y))s∈Σ,

R=(x, y), R<(x, y), RnoPal(x, y)

 ,

where the values R=(x, y), R<(x, y), RnoPal(x, y), are deduced by the Horn formula.

6 There is an analogy between our method and the so-called loop-skewing or polytope/polyhedron method
in compilation and parallel algorithms [6, 1, 7].

ICALP 2017

99:8 Horn Formulas and Linear Time on Cellular Automata

y

x

Dt

Figure 1 Induction system for
guessed atoms before the change of
variables.

t

c

Dt

Figure 2 Induction system after the change of vari-
ables for guessed atoms (left) and input atoms (right).

We will now discuss the information transit in Apal ; the initialization and termination of
the computation will be discussed later. By the change of variables (x, y) 7→ (t = −x+2y, c =
y) whose converse is the function (t, c) 7→ (x = −t+ 2c, y = c), each input atom of the form
I(x) becomes I(−t+ 2c) and each input atom of the form I(y) becomes I(c). The CA we
construct has to memorize in each cell c at instant t the boolean values I(c) and I(−t+ 2c),
for I ∈ Input. This can be realized as follows:
(a) For each I(c) (former I(y)): the CA conserves on cell c the boolean value I(c) from an

instant t− 1 to the next instant t;
(b) For each I(−t+ 2c) (former I(x)): because of the identity −t+ 2c = −(t− 2) + 2(c− 1),

whence I(−t+ 2c) ≡ I(−(t− 2) + 2(c− 1)), the CA only has to move to each cell c at
instant t the boolean value I(−(t− 2) + 2(c− 1)) that is present at instant t− 2 on the
cell c− 1.
All in all, the state of each point P = (t, c) = (−x+ 2y, y) is determined by the states of

the following points (as shown on Fig. 2):
P1 = (−(x− 1) + 2(y− 1), y− 1) = (t− 1, c− 1), P2 = (−(x+ 1) + 2y, y) = (t− 1, c) and
P3 = (−(x+ 1) + 2(y − 1), y − 1) = (t− 3, c− 1), because of guessed atoms, and
P2 = (t− 1, c) and P4 = (t− 2, c− 1) because of the above items (a) and (b), respectively,
for input atoms.

Hence, the state of a cell c at instant t is determined by the states of: (i) cell c− 1 at
instant t− 1; (ii) cell c at instant t− 1; (iii) cell c− 1 at instant t− 3; (iv) cell c− 1 at
instant t− 2. Figures 1 and 2 below summarize the effects of the change of variables on the
induction system.7

It seems that we have achieved the design of an automaton of neighborhood {−1, 0} that
recognizes the language Palindrome(Σ) in linear time since t = −x+ 2y and x, y ∈ J1, nK
imply −n+ 2 ≤ t ≤ 2n− 1. However, it remains to describe both the initialization and the
end of the computation.

The result and the initialization of the computation

The result of the computation is accept or reject according to whether S(w) does or does
not satisfy the formula Φpal, where S(w) is the structure 〈J1, nK, (Qs)s∈Σ,min,max, suc, pred〉

7 At first glance, Conditions (iii) and (iv) seem to contradict the requirement that the state of any cell c
of a CA at instant t should be determined by the only states of its neighbour cells at the previous
instant t − 1. However, we can overcome the problem by using the ability of a cell to memorize at any
instant t its states at instants t − 1 and t − 2 with a finite number of states.

N. Bacquey and E. Grandjean, and F. Olive 99:9

associated with the input word w = w1 . . . wn. As this is testified by the clause θ8 =
min(x)∧max(y)∧RnoPal(x, y)→ ⊥, on the point of coordinates (x = 1, y = n) which become
after the change of variables (t = −x+ 2y = 2n− 1, c = y = n), the acceptance/rejection
can be read on the state of cell c = n at the instant t = 2n− 1 so that the final state qa or
qr is obtained at the following instant 2n.

The initialization of the computation requires some care in connection with the items (a)
and (b) of the previous paragraph, about the input bits:
(1) Initializing each I(c) (former I(y)): The state of each cell c ∈ J1, nK at the instant

just before −n+ 2, i.e. at instant −n+ 1, should store the boolean value I(c), for each
I ∈ Input.

(2) Initializing each I(−t+ 2c) (former I(x)): Because of the correspondence x = −t+ 2c
or, equivalently, c = (x+ t)/2, for all x ∈ J1, nK, the boolean value I(x) should be stored
in the state of the cell c = (x+ t)/2 at the maximal instant t < −n+ 2 such that (x+ t)/2
is an integer ; that is the cell c = (x − n)/2 at instant −n if x − n ≡ 0 (mod 2) and
c = (x− n+ 1)/2 at instant −n+ 1 if x− n ≡ 1 (mod 2): see Fig. 3.

The two configurations at the successive instants −n and −n+ 1 described in items (1)
and (2) are called initialization configurations. By construction, the space of both configur-
ations – their informative cells, i.e. those in non-quiescent states – is included in the interval
J−dn/2e+ 1, nK.

According to our conventions, the initial configuration of the automaton should be the
configuration Cw,q0 associated with the input word w, as defined in Def. 6. However, one can
design a routine which, starting from configuration Cw,q0 (with quiescent state q0), computes
the two initialization configurations by using classical techniques of signals in CA’s (such
as seen in [3]) as shown on Fig. 4. Once each cell contains the right input information,
the proper computation can begin. This start will be triggered by a synchronization of all
cells of the interval J−dn/2e+ 1, n+ 1K at time −n+ 1. The subject of synchronization on
cellular automata has been extensively studied (see [21]), here we merely assert that this
process can be performed in parallel with no time increase. By a careful examination of this
figure, we precisely observe that this precomputation is performed on the interval of cells
J−dn/2e+ 1, n+ 1K during the time interval J−3n,−n+ 1K.8

We have now achieved the design of a cellular automaton Apal that recognizes in linear
time the language Palindrome(Σ) from the monotonic Horn formula Φpal that defines it.

5 mon-ESO-HORN ⊆ DLINca

The main problem we have to deal with in the general case as in the previous example is the
integration of the input to the computation of the CA to be constructed. For that purpose,
we will need the following technical lemma whose proof is easy and left to the reader:

I Lemma 18. Let S ⊂ Zd+1 be an induction system satisfying the monotonicity condition
w.r.t. some reference hyperplane. Then, S has another reference hyperplane of equation
a0x0 + · · ·+ adxd = 0 where each coefficient ai (i ∈ J0, dK) is a non-zero integer.

8 Notice that our numbering of instants is not canonical. It is only a convenient time scale for describing
our algorithm. In particular, the initial instant of the (pre)-computation of the upper part of Fig. 4 is
−2n when n is even and −2n − 1 when n is odd, and the initial instant of the two signals of the lower
part of Fig. 4 is −3n. We let the reader imagine the variants of Fig. 3 and Fig. 4 for the odd case.

ICALP 2017

99:10 Horn Formulas and Linear Time on Cellular Automata

t

c

−n2 + 1 1 n

−n
−n+ 1

1

2n− 1

I(1)

I(2)

I(3)

I(4)

I(5)

I(6)

I(1)I(2)I(3)I(4)I(5)I(6)

Figure 3 Initial positions and translation vectors
for I(x) = I(−t+2c) (in red) and I(y) = I(c) (in blue)
when n is even (here n = 6). The gray parallelogram
is where the induction actually happens. The result
of the computation lies at the upper right cell.

t

c
−n2 + 1 1 n

1 2 3 4 5 6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

t

c
−n2 + 1 1 n+ 1

Figure 4 The linear precomputation of
I(x) can be done by stacking the informa-
tion of the cells in the odd columns, then
packing it to the left against a “wall” at
c = − n

2 + 1 (n even). The bottom figure
shows how the wall can be constructed in
linear time with two signals of slope − 1

3
(resp. −1) starting in cell 1 (resp. n + 1) at
instant −3n.

We are now ready to prove the most difficult inclusion of Thm. 15:

I Proposition 19. For each d ≥ 1, mon-ESO-HORNd(∀d+1, arity d+1) ⊆ DLINd
ca.

Proof. Let L be a d-picture language defined by a formula Φ ≡ ∃R1 . . . ∃Rr∀x0 . . . ∀xd ψ in
mon-ESO-HORNd(∀d+1, arity d+1) with an induction system S and a reference hyperplane
a0x0 + a1x1 + · · · + adxd = 0, with coefficients ai ∈ Z∗ for all i ∈ J0, dK, as justified by
Lemma 18. For simplicity of notation, assume all the coefficients ai are positive.

First, for sake of simplicity, let us ignore the input literals and take account of the only
guessed atoms Ri(x0 + i0, . . . , xd + id) in the Horn clauses. Intuitively, if one regards the
hyperplane Ht = {(x0, x1, . . . , xd) ∈ J1, nKd+1 | a0x0 + a1x1 + · · ·+ adxd = t} as the set of
cells of a d-dimensional CA at instant t, then the conjunction of Horn clauses ψ can be

N. Bacquey and E. Grandjean, and F. Olive 99:11

regarded as the transition function of such a CA. More formally, in order to introduce the
time parameter t, we eliminate one of the variables, x0 for example, and we regard the other
variables, x1, . . . , xd, as the space variables, i.e. the respective d coordinates c1, . . . , cd of a
cell. More precisely, one makes the following change of variables:(

t = a0x0 + · · ·+ adxd,

c1 = x1, . . . , cd = xd

)
, whose converse is

(
x0 = (t− a1c1 − · · · − adcd)/a0,

x1 = c1, . . . , xd = cd

)
.

As in Section 4.2, we associate with each point x = (x0, . . . , xd) ∈ J1, nKd+1, the tuple
state(x) of boolean values of all input and guessed atoms on x. That is,

state(x) =
(

(I(u))I∈Input
u(x

, (R(x))R∈Guess

)
.

Here, we denote by Input (resp. Guess) the set of input (resp. guessed) predicates occurring
in the formula. Furthermore, u ∈ x means that u is any variable among x0, . . . , xd, while
u (x means that u is any m-tuple built from those variables, where m ≤ d is the arity
of I. Besides, the values of the guessed litterals R(x), R ∈ Guess, are deduced by the Horn
formula ∀xψ.

If one ignores the input literals, the state of each point

P = (t, c1, . . . , cd) =

 d∑
j=0

ajxj , x1, . . . , xd

is determined by the states of the points

Pv =

 d∑
j=0

aj(xj + vj), x1 + v1, . . . , xd + vd

 =

t+
d∑
j=0

ajvj , c1 + v1, . . . , cd + vd

for each vector v = (v0, . . . , vd) of the induction system S. In other words the state of the
cell (c1, . . . , cd) at instant t is determined by the states of the cells (c1 + v1, . . . , cd + vd) at
the respective previous instants t+

∑d
j=0 ajvj for the vectors v = (v0, . . . , vd) ∈ S. (Recall

that
∑d
j=0 ajvj < 0, by hypothesis.)

Let us now explain how the CA we construct can take account of the input atoms, i.e.
let us describe how the CA moves the input bits. The crucial point is that at least one of
the d+ 1 variables x0, . . . , xd does not occur in each input atom because the arity of each
input predicate is at most d. This missing variable is used as a ‘transport variable’ of the
values of the concerned input atom. As a generic example, let us consider the input atom
I(x0, x2, . . . , xd) where I is an input predicate of arity d and where the variable x1 does not
occur9. After the above-mentioned change of variables, this atom becomes

I(1
a0

(t− a1c1 · · · − adcd), c2, . . . , cd).

Because of the identity (t − a1) − a1(c1 − 1) − a2c2 · · · − adcd = t − a1c1 − a2c2 · · · − adcd
the automaton only has to move to each cell (c1, c2, . . . , cd) at instant t the boolean value

I(1
a0

((t− a1)− a1(c1 − 1)− a2c2 · · · − adcd), c2, . . . , cd)

9 As we have seen in previous examples the case where one variable among x2, . . . , xd does not occur
in an input atom is similar; the case where x0 does not occur or the case where the arity of the input
predicate is less than d are easier to deal with as we have also seen.

ICALP 2017

99:12 Horn Formulas and Linear Time on Cellular Automata

which is stored at instant t− a1 in the state of cell (c1 − 1, c2, . . . , cd). In terms of cellular
automaton, the values of the input atom I(x0, x2, . . . , xd) are moved/transmitted by linear
parallel “signals” which cover all the inductive space J1, nKd+1.

Time and initialization of the computation: Since the d+ 1 original variables x0, . . . , xd
lie in J1, nK, the domain of the time variable t = a0x0 + · · · + adxd is JA,AnK, where
A = a0 + · · · + ad . As a consequence, the equation of the cell hyperplane at the initial
instant (resp. final instant) in the space-time diagram is t = A (resp. t = An)10.

The initialization of the input values (input “signals”) before the instant t = A is the most
delicate/technical part of the computation. It is sufficient to describe the initialization of the
values of the input “signals” for our generic example11 of input atom α ≡ I(x0, x2, . . . , xd)
or, equivalently, α ≡ I(1

a0
(t− a1c1− · · · − adcd) , c2, . . . , cd), for which c1 (that is the missing

variable x1 of α) is the “transport” variable. To give the reader the geometric intuition of the
following construction in the general case we invite her to consult Fig. 3 and 4 of Sec. 4.2 in
the particular case of atom α ≡ I(x) ≡ I(−t+ 2c) of the formula that defines Palindrome.

Because of the correspondence t = a0x0 + a1c1 + a2x2 · · · + adxd or, equivalently,
c1 = (t−a0x0−a2x2 · · ·−adxd)/a1, with c2 = x2, . . . , cd = xd, for all (x0, x2, . . . , xd) ∈ J1, nKd,
the boolean value I(x0, x2, . . . , xd) should be stored – for the initialization of its input “sig-
nal” – in the state of the cell (c1, x2, . . . , xd) such that c1 = (t0−a0x0−a2x2 · · ·−adxd)/a1 at
the maximal instant t0 < A (depending on the tuple (x0, x2, . . . , xd)) such that the quotient
(t0 − a0x0 − a2x2 · · · − adxd)/a1 is an integer. Let i be the integer in J0, a1 − 1K such that
A− a0x0 − a2x2 · · · − adxd ≡ −i (mod a1). It is easy to verify that t0 = A− a1 + i. So, the
boolean value I(x0, x2, . . . , xd) should be stored/initialized at the instant t0 = A− a1 + i in
(the state of) the cell (c1, x2, . . . , xd) where c1 = (A − a1 + i − a0x0 − a2x2 · · · − adxd)/a1:
see Fig. 3.

Note that for the atom α ≡ I(x0, x2, . . . , xd), there are a1 distinct “initialization” config-
urations in the respective a1 hyperplanes Ht0 , where t0 = A − a1 + i with i ∈ J0, a1 − 1K,
according to the possible values of the function f(x0, x2, . . . , xd) = A−a0x0−a2x2 · · ·−adxd
modulo a1. Furthermore, one can verify that, by construction, the space of the “initialization”
configurations – their informative cells, in non-quiescent states – is included in a hypercube
of the form J−bn, bnKd, for some constant integer b > 0.

Pre-computation and end of computation: The initial configuration of a d-CA that recog-
nizes the d-picture language L should be the picture configuration Cp,q0 where p is the input
picture. Therefore, there should be a pre-computation starting from Cp,q0 that computes the
“initialization” configurations of the input atoms of Φ. By the classical technique of signals
in CAs (see [3]) we have exemplified above in the case of Palindrome (see Fig. 4), this can
be done in linear space and linear time.

Similarly, the result of the computation should be given by the accept/reject state, qa or
qr, in the reference cell n = (n, . . . , n). This is realized in linear time by gathering in the
reference cell the possible contradictions deduced in cells for Horn clauses.

For lack of space, we have omitted to deal with loops in Horn clauses: the possible
presence of guessed atoms of the form R(t, c), i.e. without predecessor/successor functions,
both as conclusions and as hypotheses of clauses of monotonic Horn formulas seemingly

10 In the sequel, A always denote the sum a0 + · · · + ad. Also, recall that each ai is positive.
11Here again, all the other examples have either exactly the same treatment or a simpler one.

N. Bacquey and E. Grandjean, and F. Olive 99:13

contradicts the “strict monotonicity” of the induction. We leave the reader to cope with this
point. This achieves the proof of Prop. 19 and Thm. 15. J

6 Optimality of our main result

It is natural to ask whether the monotonicity condition can be removed or weakened in our
main result. This is unlikely because it would imply (as the reader can convince herself) the
following time-space trade-off which would be a breakthrough in computational complexity:

I Proposition 20. If we had DLINd
ca = ESO-HORNd(∀d+1, arity d+1) or the weaker equality

DLINd
ca = weak-mon-ESO-HORNd(∀d+1, arity d+1) for a given d > 1, then any set of words

recognizable by a 1-CA in time nd on n cells would be recognizable by a d-CA in time O(n)
on O(nd) cells.

Here, weak-mon-ESO-HORNd(∀d+1, arity d+1) denotes the variant of the class
mon-ESO-HORNd(∀d+1, arity d+1) where the strict inequality a0x0 + · · ·+ adxd < 0 of the
monotonicity condition is replaced by the non-strict inequality a0x0 + · · ·+ adxd ≤ 0.

References
1 Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-

matic polyhedral parallelizer and locality optimizer. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA,
June 7-13, 2008, pages 101–113, 2008. doi:10.1145/1375581.1375595.

2 Walter Bucher, II Culik, et al. On real time and linear time cellular automata. RAIRO,
Informatique théorique, 18(4):307–325, 1984.

3 Marianne Delorme and Jacques Mazoyer. Signals on cellular automata. In Andrew Adam-
atzky, editor, Collision-Based Computing, pages 231–275. Springer London, London, 2002.
doi:10.1007/978-1-4471-0129-1_9.

4 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
5 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In R.M.

Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, pages 43–73, 1974.
6 Paul Feautrier. Some efficient solutions to the affine scheduling problem. part II. mul-

tidimensional time. International Journal of Parallel Programming, 21(6):389–420, 1992.
doi:10.1007/BF01379404.

7 Paul Feautrier and Christian Lengauer. Polyhedron model. In Encyclopedia of Parallel
Computing, pages 1581–1592. 2011. doi:10.1007/978-0-387-09766-4_502.

8 E. Grädel. Capturing complexity classes by fragments of second order logic. In Proceedings
of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois, USA,
June 30 – July 3, 1991, pages 341–352, 1991. doi:10.1109/SCT.1991.160279.

9 E. Grädel, Ph.G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M.Y. Vardi, Y. Venema, and
S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. Springer, 2007.

10 A. Grandjean and V. Poupet. A Linear Acceleration Theorem for 2D Cellular Automata
on All Complete Neighborhoods. In I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani,
and D. Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 115:1–115:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2016.115.

11 E. Grandjean and F. Olive. Graph properties checkable in linear time in the number of
vertices. J. Comput. Syst. Sci., 68(3):546–597, 2004. doi:10.1016/j.jcss.2003.09.002.

ICALP 2017

http://dx.doi.org/10.1145/1375581.1375595
http://dx.doi.org/10.1007/978-1-4471-0129-1_9
http://dx.doi.org/10.1007/BF01379404
http://dx.doi.org/10.1007/978-0-387-09766-4_502
http://dx.doi.org/10.1109/SCT.1991.160279
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.115
http://dx.doi.org/10.1016/j.jcss.2003.09.002

99:14 Horn Formulas and Linear Time on Cellular Automata

12 E. Grandjean and F. Olive. Descriptive complexity for pictures languages. In P. Cégielski
and A. Durand, editors, Computer Science Logic (CSL’12) – 26th International Work-
shop/21st Annual Conference of the EACSL, volume 16 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 274–288, Dagstuhl, Germany, 2012. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2012.274.

13 E. Grandjean and F. Olive. A logical approach to locality in pictures languages. J. Comput.
Syst. Sci., 82(6):959–1006, 2016. doi:10.1016/j.jcss.2016.01.005.

14 E. Grandjean and T. Schwentick. Machine-independent characterizations and complete
problems for deterministic linear time. SIAM J. Comput., 32(1):196–230, 2002. doi:10.
1137/S0097539799360240.

15 N. Immerman. Descriptive complexity. Graduate texts in computer science. Springer, 1999.
16 J. Kari. Basic concepts of cellular automata. In G. Rozenberg, T. Bäck, and J.N. Kok,

editors, Handbook of Natural Computing, volume 1, pages 3–24. Springer, 2012.
17 C. Lautemann, N. Schweikardt, and T. Schwentick. A logical characterisation of linear

time on nondeterministic turing machines. In STACS 99, 16th Annual Symposium on
Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings,
pages 143–152, 1999. doi:10.1007/3-540-49116-3_13.

18 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
19 Jacques Mazoyer and Nicolas Reimen. A linear speed-up theorem for cellular automata.

Theoretical Computer Science, 101(1):59–98, 1992.
20 T. Schwentick. Descriptive complexity, lower bounds and linear time. In Computer

Science Logic, 12th International Workshop, CSL’98, Annual Conference of the EACSL,
Brno, Czech Republic, August 24-28, 1998, Proceedings, pages 9–28, 1998. doi:10.1007/
10703163_2.

21 Hiroshi Umeo. Firing squad synchronization problem in cellular automata. In Robert A.
Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 3537–3574. Springer
New York, New York, NY, 2009. doi:10.1007/978-0-387-30440-3_211.

http://dx.doi.org/10.4230/LIPIcs.CSL.2012.274
http://dx.doi.org/10.1016/j.jcss.2016.01.005
http://dx.doi.org/10.1137/S0097539799360240
http://dx.doi.org/10.1137/S0097539799360240
http://dx.doi.org/10.1007/3-540-49116-3_13
http://dx.doi.org/10.1007/10703163_2
http://dx.doi.org/10.1007/10703163_2
http://dx.doi.org/10.1007/978-0-387-30440-3_211

Asynchronous Distributed Automata:
A Characterization of the Modal Mu-Fragment∗

Fabian Reiter

IRIF, Université Paris Diderot, Paris, France
fabian.reiter@gmail.com

Abstract
We establish the equivalence between a class of asynchronous distributed automata and a small
fragment of least fixpoint logic, when restricted to finite directed graphs. More specifically, the
logic we consider is (a variant of) the fragment of the modal µ-calculus that allows least fixpoints
but forbids greatest fixpoints. The corresponding automaton model uses a network of identical
finite-state machines that communicate in an asynchronous manner and whose state diagram
must be acyclic except for self-loops. Exploiting the connection with logic, we also prove that
the expressive power of those machines is independent of whether or not messages can be lost.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.1 Models of Computation,
F.4.1 Mathematical Logic

Keywords and phrases Finite automata, distributed computing, modal logic, µ-calculus

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.100

1 Introduction

One of the core disciplines of distributed computing is to design and analyze message passing
algorithms that solve graph problems in computer networks. Usually, the problem instance
considered in that context is precisely the graph defined by the network in which the compu-
tations are performed. All nodes of the network run the same algorithm concurrently, and
often make no prior assumptions about the size and topology of the graph. Typical problems
that can be solved by such distributed algorithms include graph coloring, leader election,
and the construction of spanning trees and maximal independent sets. A comprehensive
treatment of the subject can be found in [10] and [11].

The present paper follows up on relatively recent results by Hella et al. and Kuusisto, which
establish novel connections between modal logic and some restricted classes of distributed
algorithms. These weak types of algorithms, referred to in the following as distributed
automata, can be represented as deterministic finite-state machines that read sets of states
instead of the usual alphabetic symbols. Intuitively, to run a distributed automaton on some
node-labeled directed graph G, a separate copy of the same machine is placed on every node
and initialized to a state that may depend on the node’s label. Each node v communicates
with its peers by sending its current state q to every outgoing neighbor, while at the same
time collecting the states received from its incoming neighbors into a set S. The successor
state of q is then computed as a function of q and S. In particular, this means that v
cannot distinguish between two incoming neighbors that share the same state. Acting as a
semi-decider, the automaton accepts G at position v precisely if v visits an accepting state at
some point in time. Either way, all machines of the network run and communicate forever.

∗ This work is supported by the DeLTA project (ANR-16-CE40-0007).

EA
T

C
S

© Fabian Reiter;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 100; pp. 100:1–100:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.100
http://delta.labri.fr/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

100:2 Asynchronous Distributed Automata

In [5, 6], Hella et al. have compared several classes of distributed algorithms, of which
the weakest uses the restricted communication model described above. Deviating only in
nonessential details from their original definition, we can think of those weakest algorithms
as local synchronous distributed automata. Here, “synchronous” means that all nodes of the
network share a global clock, thereby allowing the computation to proceed in an infinite
sequence of rounds. In each round, all the nodes compute their next state simultaneously,
based on the information collected in the previous round. By the term “local” we mean that
the nodes stop changing their state after a constant number of rounds, a usage in accordance
with the established terminology of distributed computing (see, e.g., [12]). Equivalently,
the state diagram of a local automaton is acyclic as long as we ignore sink states (i.e.,
states that cannot be left once reached). The work of Hella et al. reveals an intriguing
link between distributed computing and modal logic. In particular, it follows immediately
from [5, 6, Thm. 1] that the graph properties recognizable by local synchronous automata
are precisely those definable in backward modal logic, the variant of (basic) modal logic where
the usual modal operators are replaced by their backward-looking variants.

Motivated by the preceding result, the connection with modal logic was further investigated
by Kuusisto in [7] and [8]. The former paper lifts the constraint of locality imposed in [5, 6],
thereby allowing automata with arbitrary state diagrams. These (nonlocal) synchronous
automata are then given a logical characterization in terms of a new recursive logic dubbed
modal substitution calculus. Furthermore, [7, Prp. 7] shows that on finite graphs, synchronous
automata can easily recognize all the properties definable in the least fixpoint fragment of the
backward µ-calculus. This logic, which we shall refer to simply as the backward µ-fragment,
extends backward modal logic with a least fixpoint operator that may not be negated. It
thus allows to express statements using least fixpoints, but unlike in the full backward
µ-calculus, greatest fixpoints are forbidden. On the other hand, the reverse conversion from
synchronous automata to the backward µ-fragment is not possible in general. As explained
in [7, Prp. 6], it is easy to come up with a synchronous automaton that makes crucial use
of the fact that a node can determine whether it receives the same information from all
of its incoming neighbors at exactly the same time. Such a behavior cannot be simulated
in the backward µ-fragment. By the same token, even the much more expressive monadic
second-order logic (MSO) is incomparable with synchronous automata.

Given that the preceding argument relies solely on synchrony, it seems natural to ask
whether removing this feature can lead to a distributed automaton model that has the same
expressive power as the backward µ-fragment. The present paper provides a positive answer
to this question. We introduce several classes of asynchronous automata that transfer the
standard notion of asynchronous algorithm to the setting of finite-state machines. Basically,
this means that we eliminate the global clock from the network, thus making it possible for
nodes to operate at different speeds and for messages to be delayed for arbitrary amounts
of time, or even be lost. From the syntactic point of view, an asynchronous automaton is
the same as a synchronous one, but it has to satisfy an additional semantic condition: its
acceptance behavior must be independent of any timing-related issues. Taking a closer look
at the automata obtained by translating formulas of the backward µ-fragment, we can easily
see that they are in fact asynchronous. Furthermore, their state diagrams are almost acyclic,
except that all the states are allowed to have self-loops (not only the sink states). We call
this property quasi-acyclic. The paper’s main contribution is to show that now we can also
go in the other direction: every quasi-acyclic asynchronous automaton can be converted into
an equivalent formula of the backward µ-fragment. Incidentally, this remains true even if we
consider a seemingly more powerful variant of asynchronous automata, where all messages

F. Reiter 100:3

are guaranteed to be delivered. To illustrate the basic concepts, an example of an automaton
and an equivalent formula will be provided in Figure 1, at the end of the next section.

The remainder of this paper is organized as follows: After giving the necessary formal
definitions in Section 2, we state and briefly discuss the main result in Section 3. The proof
is then developed in the last two sections. Section 4 presents the rather straightforward
translation from logic to automata. The reverse translation is given in Section 5, which is a
bit more involved and therefore occupies the largest part of the paper.

2 Preliminaries

We denote the set of Boolean values by 2 = {0, 1}, the set of non-negative integers by
N = {0, 1, 2, . . . }, and the set of positive integers by N>0 = N \ {0}. With respect to a given
set S, we write 2

S for the power set, Sk for the set of k-tuples (k ∈ N), and |S| for the
cardinality. As a special case of k-tuples, 2k denotes the set of all binary strings of length k.
Furthermore, the length of a string x is written as |x| .

For ` ∈ N, a (finite) `-bit labeled directed graph , abbreviated digraph , is a structure
G = (V,E, λ), where V is a finite nonempty set of nodes, E ⊆ V × V is a set of directed
edges, and λ : V → 2

` is a labeling that assigns a binary string of length ` to each node.
Isomorphic digraphs are considered to be equal. If v lies in V , we call the pair (G, v) a
pointed digraph . Moreover, if uv is an edge in E, then u is called an incoming neighbor
of v.

I Definition 1 (Distributed Automaton). A (distributed) automaton with `-bit input is
a tuple A = (Q, δ0, δ, F), where Q is a finite set of states, δ0 : 2` → Q is an initialization
function, δ : Q× 2Q → Q is a transition function, and F ⊆ Q is a set of accepting states.

To run such an automaton A on a digraph G, we regard the edges of G as FIFO buffers.
Each buffer vw will always contain a sequence of states previously traversed by node v. An
adversary chooses when v evaluates δ to push a new state to the back of the buffer, and when
the current first state gets popped from the front. The details are clarified in the following.

A trace of an automaton A = (Q, δ0, δ, F) is a finite nonempty sequence σ = q1 . . . qn
of states in Q such that qi 6= qi+1 and δ(qi, Si) = qi+1 for some Si ⊆ Q. We say that A
is quasi-acyclic if its set of traces Q is finite. In other words, its state diagram must not
contain any directed cycles, except for self-loops.

For any states p, q ∈ Q and any (possibly empty) sequence σ of states in Q, we define the
unary postfix operators first , last , pushlast and popfirst as follows: pσ.first = σp.last = p,

σp.pushlast(q) =
{
σpq if p 6= q,
σp if p = q,

and pσ.popfirst =
{
σ if σ is nonempty,
pσ if σ is empty.

An (asynchronous) timing of a digraph G = (V,E, λ) is an infinite sequence τ =
(τ1, τ2, τ3, . . .) of maps τt : V ∪E → 2, indicating which nodes and edges are active at time t,
where 1 is assigned infinitely often to every node and every edge. More formally, for all
t ∈ N>0, v ∈ V and e ∈ E, there exist i, j > t such that τi(v) = 1 and τj(e) = 1. We refer to
this as the fairness property of τ . As a restriction, we say that τ is lossless-asynchronous
if τt(uv) = 1 implies τt(v) = 1 for all t ∈ N>0 and uv ∈ E. Furthermore, τ is called the
(unique) synchronous timing of G if τt(v) = τt(e) = 1 for all t ∈ N>0, v ∈ V and e ∈ E.

I Definition 2 (Asynchronous Run). Let A = (Q, δ0, δ, F) be a distributed automaton with
`-bit input and Q be its set of traces. Furthermore, let G = (V,E, λ) be an `-bit labeled

ICALP 2017

100:4 Asynchronous Distributed Automata

digraph and τ = (τ1, τ2, τ3, . . .) be a timing of G. The (asynchronous) run of A on G timed
by τ is the infinite sequence ρ = (ρ0, ρ1, ρ2, . . .) of configurations ρt : V ∪ E → Q, with
ρt(V) ⊆ Q, which are defined inductively as follows, for t ∈ N, v ∈ V and vw ∈ E:

ρ0(v) = ρ0(vw) = δ0(λ(v)),

ρt+1(v) =
{
ρt(v) if τt+1(v) = 0,
δ
(
ρt(v), {ρt(uv).first | uv ∈ E}

)
if τt+1(v) = 1,

ρt+1(vw) =
{
ρt(vw).pushlast(ρt+1(v)) if τt+1(vw) = 0,
ρt(vw).pushlast(ρt+1(v)).popfirst if τt+1(vw) = 1.

If τ is the synchronous timing of G, we refer to ρ as the synchronous run of A on G.

Throughout this paper, we assume that our digraphs, automata and logical formulas
agree on the number ` of labeling bits. An automaton A accepts a pointed digraph (G, v)
under timing τ if v visits an accepting state at some point in the run ρ of A on G timed by τ ,
i.e., if there exists t ∈ N such that ρt(v) ∈ F . If we simply say that A accepts (G, v), without
explicitly specifying a timing τ , then we stipulate that ρ is the synchronous run of A on G.

Given a digraph G = (V,E, λ) and a class T of timings of G, the automaton A is called
consistent for G and T if for all v ∈ V , either A accepts (G, v) under every timing in T , or
A does not accept (G, v) under any timing in T . We say that A is asynchronous if it is
consistent for every possible choice of G and T , and lossless-asynchronous if it is consistent
for every choice where T contains only lossless-asynchronous timings. By contrast, we call
an automaton synchronous if we wish to emphasize that no such consistency requirements
are imposed. Intuitively, all automata can operate in the synchronous setting, but only some
of them also work reliably in environments that provide fewer guarantees.

A digraph property is a set L of pointed digraphs. We call L the digraph property
recognized by an automaton A if it consist precisely of those pointed digraphs that are
accepted by A. We denote by AA , LA and SA the classes of digraph properties
recognizable by asynchronous, lossless-asynchronous and synchronous automata, respectively.
Similarly, QAA , QLA and QSA are the corresponding classes recognizable by quasi-acyclic
automata.

Turning to logic, let Var be an infinite supply of propositional variables. We define the
formulas of backward modal logic with ` propositional constants by means of the grammar

ϕ ::= ⊥ | > | Pi | ¬Pi | X | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | ϕ | ϕ ,

where 0 ≤ i < ` and X ∈ Var. Note that this syntax ensures that variables cannot be
negated. Given such a formula ϕ, an `-bit labeled digraph G = (V,E, λ) and a variable
assignment α : Var→ 2

V , we write JϕKG,α to denote the subset of nodes of G at which ϕ
holds with respect to α. For atomic propositions Pi and X, the corresponding semantics are
defined by JPiKG,α = {v ∈ V | λ(v)(i) = 1} and JXKG,α = α(X), where λ(v)(i) is the i-th bit
of λ(v). The Boolean constants and connectives are interpreted in the usual way, for instance,
J>KG,α = V and J(ϕ ∨ ψ)KG,α = JϕKG,α ∪ JψKG,α. Finally, the backward diamond and
the backward box represent backward-looking modal operators, with the semantics

J ϕKG,α =
{
v ∈ V

∣∣ u ∈ JϕKG,α for some u ∈ V such that uv ∈ E
}

and
J ϕKG,α =

{
v ∈ V

∣∣ u ∈ JϕKG,α for all u ∈ V such that uv ∈ E
}
.

Traditionally, the modal µ-calculus is defined to comprise individual fixpoints which
may be nested. However, it is well-known that we can add simultaneous fixpoints to the

F. Reiter 100:5

µ-calculus without changing its expressive power, and that nested fixpoints of the same type
(i.e., least or greatest) can be rewritten as non-nested simultaneous ones (see, e.g., [3, § 3.7]
or [9, § 4.3]). The following definition directly takes advantage of this fact. We shall restrict
ourselves to the µ-fragment of the backward µ-calculus , abbreviated backward µ-fragment ,
where only least fixpoints are allowed, and where the usual modal operators are replaced by
their backward-looking variants. Without loss of generality, we stipulate that each formula
of the backward µ-fragment with ` propositional constants is of the form

ϕ = µ

X0
...
Xk

.
ϕ0(P0, . . . , P`−1, X0, . . . , Xk)

...
ϕk(P0, . . . , P`−1, X0, . . . , Xk)

 ,

where X0, . . . , Xk ∈ Var, and ϕ0, . . . , ϕk are formulas of backward modal logic with `

propositional constants that may contain no other variables than X0, . . . , Xk.
For every digraph G = (V,E, λ), the tuple (ϕ0, . . . , ϕk) gives rise to an operator

f : (2V)k+1 → (2V)k+1 that takes some valuation of ~X = (X0, . . . , Xk) and reassigns
to each Xi the resulting valuation of ϕi. More formally, f maps ~W = (W0, . . . ,Wk) to
(W ′0, . . . ,W ′k) such that W ′i = JϕiKG,[~X 7→ ~W]. Here, [~X 7→ ~W] can be any variable assignment
that interprets each Xi as Wi. A (simultaneous) fixpoint of the operator f is a tuple
~W ∈ (2V)k+1 such that f(~W) = ~W . Since, by definition, variables occur only positively in
formulas, the operator f is monotonic . This means that ~W ⊆ ~W ′ implies f(~W) ⊆ f(~W ′)
for all ~W, ~W ′ ∈ (2V)k+1, where set inclusions are to be understood componentwise (i.e.,
Wi ⊆ W ′i for each i). Therefore, by virtue of a theorem due to Knaster and Tarski, f has
a least fixpoint , which is defined as the unique fixpoint ~U = (U0, . . . , Uk) of f such that
~U ⊆ ~W for every other fixpoint ~W of f . As a matter of fact, the Knaster-Tarski theorem
even tells us that ~U is equal to

⋂
{ ~W ∈ (2V)k+1 | f(~W) ⊆ ~W}, where set operations must

also be understood componentwise. Another, perhaps more intuitive, way of characterizing ~U
is to consider the inductively constructed sequence of approximants (~U0, ~U1, ~U2, . . .), where
~U0 = (∅, . . . , ∅) and ~U j+1 = f(~U j). Since this sequence is monotonically increasing and V is
finite, there exists n ∈ N such that ~Un = ~Un+1. It is easy to check that ~Un coincides with
the least fixpoint ~U . For more details and proofs, see, e.g., [4, § 3.3.1].

Having introduced the necessary background, we can finally establish the semantics of ϕ
with respect to G: the set JϕKG of nodes at which ϕ holds is precisely U0, the first component
of ~U . A pointed digraph (G, v) satisfies ϕ, in symbols (G, v) |= ϕ , if v ∈ JϕKG. Accordingly,
the digraph property defined by ϕ is {(G, v) | (G, v) |= ϕ}, and we denote by Σµ1 the class
of all digraph properties defined by some formula of the backward µ-fragment.

As usual, two devices (i.e., automata or formulas) are equivalent if they specify (i.e.,
recognize or define) the same property. Figure 1 provides an example of such an equivalence.

3 Main result

Based on the definitions given in Section 2, asynchronous automata are a special case of
lossless-asynchronous automata, which in turn are a special case of synchronous automata.1
Furthermore, quasi-acyclicity constitutes an additional (possibly orthogonal) restriction on
these models. We thus immediately obtain the hierarchy of classes depicted in Figure 2a.

1 This may seem counterintuitive at first sight, but it is actually consistent with the standard terminology
of distributed computing: an asynchronous algorithm can always serve as a synchronous algorithm (i.e.,
it can be executed in a synchronous environment), but the converse is not true.

ICALP 2017

100:6 Asynchronous Distributed Automata

1
(P0)1

20

3
(X)

4
(Y)

5
(X,Y)

otherwise

if S * {4, 5}
and S * {1, 2, 4}

otherwise

if S
*
{4,

5}

an
d S

*
{1,

2, 4
}

if S ⊆ {4}

if {5
} ⊆

S ⊆
{4, 5
}

otherwise

if S ⊆ {4, 5}

otherwise

if {
5}
⊆
S

always

if
S ⊆
{4, 5
}

S: set of
received

states

Figure 1 A quasi-acyclic asynchronous distributed automaton equivalent to the formula

µ

(
X

Y

)
.

(
(P0 ∧ Y) ∨ X

Y

)
of the backward µ-fragment. A given pointed 1-bit labeled digraph (G, v) is accepted by this
automaton if and only if, starting at v and following G’s edges in the backward direction, it is
possible to reach some node u labeled with 1 from which it is impossible to reach any directed cycle.

SA

LA

AA

QSA

QLA

QAA

(a) immediate by the definitions

SA

LA

AA

QSA

Σµ1 = QAA = QLA

(b) collapse shown in this paper

Figure 2 Hierarchy of the classes of digraph properties recognizable by distributed automata,
depending on whether the automata are synchronous (S), lossless-asynchronous (L), asynchronous (A),
or quasi-acyclic (Q). The arrows denote inclusion (e.g., LA ⊆ SA).

Our main result provides a simplification of this hierarchy: the classes QAA and QLA
are actually equal to the class of digraph properties definable in the backward µ-fragment.
This yields the revised diagram shown in Figure 2b.

I Theorem 3 (Σµ
1 = QAA = QLA). When restricted to finite digraphs, the backward

µ-fragment is effectively equivalent to the classes of quasi-acyclic asynchronous automata
and quasi-acyclic lossless-asynchronous automata.

Proof. The forward direction is given by Proposition 4 (in Section 4), which asserts that
Σµ1 ⊆ QAA, and the trivial observation that QAA ⊆ QLA. For the backward direction, we
use Proposition 7 (in Section 5), which asserts that QLA ⊆ Σµ1 . J

As stated before, synchronous automata are more powerful than the backward µ-fragment
(and incomparable with monadic second-order logic). This holds even if we consider only
quasi-acyclic automata, i.e., the inclusion Σµ1 ⊂ QSA is known to be strict (see [7, Prp. 6]).
Moreover, an upcoming paper will show that the inclusion QSA ⊂ SA is also strict.

F. Reiter 100:7

In contrast, it remains open whether quasi-acyclicity is in fact necessary for characterizing
Σµ

1 . On the one hand, this notion is crucial for our proof (see Proposition 7), but on the
other hand, no digraph property separating AA or LA from Σµ1 has been found so far.

4 Computing least fixpoints using asynchronous automata

In this section, we prove the easy direction of the main result. Given a formula ϕ of
the backward µ-fragment, it is straightforward to construct a (synchronous) distributed
automaton A that computes on any digraph the least fixpoint ~U of the operator associated
with ϕ. As long as it operates in the synchronous setting, A simply follows the sequence
of approximants (~U0, ~U1, . . .) described in Section 2. It is important to stress that the
very same observation has previously been made in [7, Prp. 7] (formulated from a different
point of view). In the following proposition, we refine this observation by giving a more
precise characterization of the obtained automaton: it is always quasi-acyclic and capable of
operating in a (possibly lossy) asynchronous environment.

I Proposition 4 (Σµ
1 ⊆ QAA). For every formula of the backward µ-fragment, we can

effectively construct an equivalent quasi-acyclic asynchronous automaton.

Proof. Let ϕ = µ(X0, . . . , Xk).(ϕ0, . . . , ϕk) be a formula of the backward µ-fragment with `
propositional constants. Without loss of generality, we may assume that the subformulas
ϕ0, . . . , ϕk do not contain any nested modal operators. To see this, suppose that ϕi = ψ.
Then ϕ is equivalent to ϕ′ = µ(X0, . . . , Xi, . . . , Xk, Y).(ϕ0, . . . , ϕ

′
i, . . . , ϕk, ψ), where Y is a

fresh propositional variable and ϕ′i = Y . The operator and Boolean combinations of
and are handled analogously.

We now convert ϕ into an equivalent automaton A = (Q, δ0, δ, F) with state set Q =
2
{P0,...,P`−1,X0,...,Xk}. The idea is that each node v of the input digraph has to remember

which of the atomic propositions P0, . . . , P`−1, X0, . . . , Xk have, so far, been verified to hold
at v. Therefore, we define the initialization function such that δ0(x) = {Pi | x(i) = 1}
for all x ∈ 2`. Let us write (q, S) |= ϕi to indicate that a pair (q, S) ∈ Q × 2

Q satisfies a
subformula ϕi of ϕ. This is the case precisely when ϕi holds at any node v that satisfies exactly
the atomic propositions in q and whose incoming neighbors satisfy exactly the propositions
specified by S. Note that this satisfaction relation is well-defined in our context because
the nesting depth of modal operators in ϕi is at most 1. With that, the transition function
of A can be succinctly described by δ(q, S) = q ∪ {Xi | (q, S) |= ϕi}. Since q ⊆ δ(q, S), we
are guaranteed that the automaton is quasi-acyclic. Finally, the accepting set is given by
F = {q | X0 ∈ q}.

It remains to prove that A is asynchronous and equivalent to ϕ. Let G = (V,E, λ) be an
`-bit labeled digraph and ~U = (U0, . . . , Uk) ∈ (2V)k+1 be the least fixpoint of the operator f
associated with (ϕ0, . . . , ϕk). Due to the asynchrony condition, we must consider an arbitrary
timing τ = (τ1, τ2, . . .) of G. The corresponding run ρ = (ρ0, ρ1, . . .) of A on G timed
by τ engenders an infinite sequence (~W 0, ~W 1, . . .), where each tuple ~W t = (W t

0 , . . . ,W
t
k) ∈

(2V)k+1 specifies the valuation of every variable Xi at time t, i.e., W t
i = {v ∈ V | Xi ∈ ρt(v)}.

Since A is quasi-acyclic and V is finite, this sequence must eventually stabilize at some value
~W∞, and each node accepts if and only if it belongs to W∞0 . Reformulated this way, our
task is to demonstrate that ~W∞ equals ~U , regardless of the timing τ .

“ ~W∞ ⊆ ~U”: We show by induction that ~W t ⊆ ~U for all t ∈ N. This obviously holds for
t = 0, since ~W 0 = (∅, . . . , ∅). Now, consider any node v ∈ V at an arbitrary time t. Let q be
the current state of v and S be the set of current states of its incoming neighbors. Depending

ICALP 2017

100:8 Asynchronous Distributed Automata

on τ , it might be the case that v actually receives some outdated information S′ instead of S.
However, given that the neighbors’ previous states cannot contain more variables than their
current ones (by construction), and that variables can only occur positively in each ϕi, we
know that (q, S′) |= ϕi implies (q, S) |= ϕi. Hence, if v performs a local transition at time t,
then the only new variables that can be added to its state must lie in {Xi | (q, S) |= ϕi}. On a
global scale, this means that ~W t+1 \ ~W t ⊆ f(~W t). Furthermore, by the induction hypothesis,
the monotonicity of f , and the fact that ~U is a fixpoint, we have f(~W t) ⊆ f(~U) = ~U . Putting
both together, and again relying on the induction hypothesis, we obtain ~W t+1 ⊆ ~U .

“ ~W∞ ⊇ ~U”: For the converse direction, we make use of the Knaster-Tarski theorem,
which gives us the equality ~U =

⋂
{ ~W ∈ (2V)k+1 | f(~W) ⊆ ~W}. With this, it suffices to

show that f(~W∞) ⊆ ~W∞. Consider some time t ∈ N such that ~W t′ = ~W∞ for all t′ ≥ t.
Although we know that every node has reached its final state at time t, the FIFO buffers of
some edges might still contain obsolete states from previous times. However, the fairness
property of τ guarantees that our customized popfirst operation is executed infinitely often at
every edge, while the pushlast operation has no effect because all the states remain unchanged.
Therefore, there must be a time t′ ≥ t from which on each buffer contains only the current
state of its incoming node, i.e., ρt′′(uv) = ρt′′(u) for all t′′ ≥ t′ and uv ∈ E. Moreover,
the fairness property of τ also ensures that every node v reevaluates the local transition
function δ infinitely often, based on its own current state q and the set S of states in the
buffers associated with its incoming neighbors. As this has no influence on v’s state, we
can deduce that {Xi | (q, S) |= ϕi} ⊆ q. Consequently, we have f(~W t′) ⊆ ~W t′ , which is
equivalent to f(~W∞) ⊆ ~W∞. J

5 Capturing asynchronous runs using least fixpoints

This section is dedicated to proving the converse direction of the main result, which will allow
us to translate any quasi-acyclic lossless-asynchronous automaton into an equivalent formula
of the backward µ-fragment (see Proposition 7). Our proof builds on two concepts: the
invariance of distributed automata under backward bisimulation (stated in Proposition 5) and
an ad-hoc relation “.” that captures the possible behaviors of a fixed lossless-asynchronous
automaton A (in a specific sense described in Lemma 6).

We start with the notion of backward bisimulation, which is defined like the standard
notion of bisimulation (see, e.g., [1, Def. 2.16] or [2, Def. 5]), except that edges are followed
in the backward direction. Formally, a backward bisimulation between two `-bit labeled
digraphs G = (V,E, λ) and G′ = (V ′, E′, λ′) is a binary relation R ⊆ V × V ′ that fulfills the
following conditions for all vv′ ∈ R:
1. λ(v) = λ′(v′),
2. if uv ∈ E, then there exists u′ ∈ V ′ such that u′v′ ∈ E′ and uu′ ∈ R, and, conversely,
3. if u′v′ ∈ E′, then there exists u ∈ V such that uv ∈ E and uu′ ∈ R.
We say that the pointed digraphs (G, v) and (G′, v′) are backward bisimilar if there exists
such a backward bisimulation R relating v and v′. It is easy to see that distributed automata
cannot distinguish between backward bisimilar structures:

I Proposition 5. Distributed automata are invariant under backward bisimulation. That is,
for every automaton A, if two pointed digraphs (G, v) and (G′, v′) are backward bisimilar,
then A accepts (G, v) if and only if it accepts (G′, v′).

Proof. Let R be a backward bisimulation between G and G′ such that vv′ ∈ R. Since
acceptance is defined with respect to the synchronous behavior of the automaton, we need

F. Reiter 100:9

only consider the synchronous runs ρ = (ρ0, ρ1, . . .) and ρ′ = (ρ′0, ρ′1, . . .) of A on G and G′,
respectively. Now, given that the FIFO buffers on the edges of the digraphs merely contain
the current state of their incoming node, it is straightforward to prove by induction on t that
every pair of nodes uu′ ∈ R satisfies ρt(u) = ρ′t(u′) for all t ∈ N. J

We now turn to the mentioned relation “.”, which is defined with respect to a fixed
automaton. For the remainder of this section, let A denote an automaton (Q, δ0, δ, F), and
let Q denote its set of traces. The relation . ⊆ (2Q ×Q) specifies whether, in a lossless-
asynchronous environment, a given trace σ can be traversed by a node whose incoming
neighbors traverse the traces of a given set S. Loosely speaking, the intended meaning of
S . σ (“S enables σ”) is the following: Take an appropriately chosen digraph under some
lossless-asynchronous timing τ , and observe the corresponding run of A up to a specific
time t; if node v was initially in state σ.first and at time t it has seen its incoming neighbors
traversing precisely the traces in S, then it is possible for τ to be such that at time t, node v
has traversed exactly the trace σ. This relation can be defined inductively: As the base case,
we specify that for every q ∈ Q and S ⊆ Q, we have S . q.pushlast(δ(q, S)). For the inductive
clause, consider a trace σ ∈ Q and two finite (possibly equal) sets of traces S,S′ ⊆ Q such
that the traces in S′ can be obtained by appending at most one state to the traces in S. More
precisely, if π ∈ S, then π.pushlast(p) ∈ S′ for some p ∈ Q, and conversely, if π′ ∈ S′, then
π′ = π.pushlast(π′.last) for some π ∈ S. We shall denote this auxiliary relation by S⇒ S′ .
If it holds, then S . σ implies S′ . σ.pushlast(q), where q = δ(σ.last, {π′.last | π′ ∈ S′}).

The next step is to show (in Lemma 6) that our definition of “.” does indeed capture the
intuition given above. To formalize this, we first introduce two further pieces of terminology.

First, the notions of configuration and run can be enriched to facilitate discussions about
the past. Let ρ = (ρ0, ρ1, . . .) be a run of A on a digraph G = (V,E, λ) (timed by some
timing τ). The corresponding enriched run is the sequence ρ̂ = (ρ̂0, ρ̂1, . . .) of enriched
configurations that we obtain from ρ by requiring each node to remember the entire trace it
has traversed so far. Formally, for t ∈ N, v ∈ V and e ∈ E,

ρ̂0(v) = ρ0(v), ρ̂t+1(v) = ρ̂t(v).pushlast(ρt+1(v)) and ρ̂t(e) = ρt(e).

Second, we will need to consider finite segments of timings and enriched runs. A lossless-
asynchronous timing segment of a digraph G is a finite sequence τ = (τ1, . . . , τr) that could
be extended to a whole lossless-asynchronous timing (τ1, . . . , τr, τr+1, . . .). Likewise, for an
initial enriched configuration ρ̂0 of G, the corresponding enriched run segment timed by τ
is the sequence (ρ̂0, . . . , ρ̂r), where each ρ̂t+1 is computed from ρ̂t and τt+1 in the same way
as for an entire enriched run.

Equipped with the necessary terminology, we can now state and prove a (slightly technical)
lemma that will allow us to derive benefit from the relation “.”. This lemma essentially
states that if S . σ holds and we are given enough nodes that traverse the traces in S, then
we can take those nodes as the incoming neighbors of a new node v and delay the messages
received by v in such a way that v traverses σ, without losing any messages.

I Lemma 6. For every trace σ ∈ Q and every finite (possibly empty) set of traces S =
{π1, . . . , π`} ⊆ Q that satisfy the relation S . σ, there exist lower bounds m1, . . . ,m` ∈ N>0
such that the following statement holds true:

For any n1, . . . , n` ∈ N>0 satisfying ni ≥ mi, let G be a digraph consisting of the nodes
(uji)i,j and v, and the edges (ujiv)i,j , with index ranges 1 ≤ i ≤ ` and 1 ≤ j ≤ ni. If we start
from the enriched configuration ρ̂0 of G, where

ρ̂0(uji) = πi, ρ̂0(ujiv) = πi and ρ̂0(v) = σ.first,

ICALP 2017

100:10 Asynchronous Distributed Automata

then we can construct a (nonempty) lossless-asynchronous timing segment τ = (τ1, . . . , τr)
of G, where τt(uji) = 0 and τt(v) = 1 for 1 ≤ t ≤ r, such that the corresponding enriched run
segment ρ̂ = (ρ̂0, . . . , ρ̂r) timed by τ satisfies

ρ̂r−1(ujiv) = πi.last and ρ̂r(v) = σ.

Proof. We proceed by induction on the definition of “.”. In the base case, where S =
{p1, . . . , p`} ⊆ Q and σ = q.pushlast(δ(q,S)) for some q ∈ Q, the statement holds with
m1 = · · · = m` = 1. This is witnessed by a timing segment τ = (τ1), where τ1(uji) = 0,
τ1(v) = 1, and τ1(ujiv) can be chosen as desired.

For the inductive step, we assume that the statement holds for σ and S = {π1, . . . , π`}
with some values m1, . . . ,m`. Now consider any other set of traces S′ = {π′1, . . . , π′`′}
such that S ⇒ S′, and let σ′ = σ.pushlast(q), where q = δ(σ. last, {π′k.last | π′k ∈ S′}).
Since S . σ, we have S′ . σ′. The remainder of the proof consists in showing that the
statement also holds for σ′ and S′ with some large enough integers m′1, . . . ,m′`′ . Let us fix
m′k =

∑
{mi | πi.pushlast(π′k.last) = π′k}. (As there is no need to find minimal values, we

opt for easy expressibility.)
Given any numbers n′1, . . . , n′`′ with n′k ≥ m′k, we choose suitable values n1, . . . , n` with

ni ≥ mi, and consider the corresponding digraph G described in the lemma. Because we have
S⇒ S′, we can assign to each node uji a state pji such that πi.pushlast(pji) ∈ S′. Moreover,
provided our choice of n1, . . . , n` was adequate, we can also ensure that for each π′k ∈ S′,
there are exactly n′k nodes uji such that πi.pushlast(pji) = π′k. (Note that nodes with distinct
traces πi, πi′ ∈ S might be mapped to the same trace π′k ∈ S′, in case πi′ = πip

j
i .) It is

straightforward to verify that such a choice of numbers and such an assignment of states are
always possible, given the lower bounds m′1, . . . ,m′`′ specified above.

Let us now consider the lossless-asynchronous timing segment τ = (τ1, . . . , τr) and the
corresponding enriched run segment ρ̂ = (ρ̂0, . . . , ρ̂r) provided by the induction hypothesis.
Since the popfirst operation has no effect on a trace of length 1, we may assume without loss
of generality that τt(ujiv) = 0 if ρ̂t−1(ujiv) has length 1, for t < r. Consequently, if we start
from the alternative enriched configuration ρ̂′0, where

ρ̂′0(uji) = πi.pushlast(pji), ρ̂′0(ujiv) = πi.pushlast(pji) and ρ̂′0(v) = σ.first,

then the corresponding enriched run segment (ρ̂′0, . . . , ρ̂′r) timed by τ can be derived from ρ̂

by simply applying “pushlast(pji)” to ρ̂t(uji) and ρ̂t(ujiv), for t < r. We thus get

ρ̂′r−1(ujiv) = πi.last.pushlast(pji) and ρ̂′r(v) = σ.

We may also assume without loss of generality that τr(ujiv) = 1 if ρ̂′r−1(ujiv) has length 2,
since this does not affect ρ̂ and lossless-asynchrony is ensured by τr(v) = 1. Hence, it suffices
to extend τ by an additional map τr+1, where τr+1(uji) = 0, τr+1(v) = 1, and τr+1(ujiv) can
be chosen as desired. The resulting enriched run segment (ρ̂′0, . . . , ρ̂′r+1) satisfies

ρ̂′r(u
j
iv) = pji = π′k.last (for some π′k ∈ S′) and ρ̂′r+1(v) = σ.pushlast(q) = σ′. J

Finally, we can put the pieces together and prove the converse direction of Theorem 3:

I Proposition 7 (QLA ⊆ Σµ1). For every quasi-acyclic lossless-asynchronous automaton, we
can effectively construct an equivalent formula of the backward µ-fragment.

Proof. Assume that A = (Q, δ0, δ, F) is a quasi-acyclic lossless-asynchronous automaton
with `-bit input. Since it is quasi-acyclic, its set of traces Q is finite, and thus we can afford

F. Reiter 100:11

to introduce a separate propositional variable Xσ for each trace σ ∈ Q. Making use of the
relation “.”, we convert A into an equivalent formula ϕ = µ

[
X0, (Xσ)σ∈Q

]
.
[
ϕ0, (ϕσ)σ∈Q

]
of

the backward µ-fragment, where

ϕ0 =
∨
σ∈Q

σ.last∈F

Xσ, (a)

ϕq =
∨
x∈2`

δ0(x)=q

(∧
x(i)=1

Pi ∧
∧

x(i)=0

¬Pi
)

for each q ∈ Q, and (b)

ϕσ = Xσ.first ∧
∨

S⊆Q
S.σ

((∧
π∈S

Xπ

)
∧
(∨

π∈S

Xπ

))
for each σ ∈ Q with |σ| ≥ 2. (c)

Note that this formula can be constructed effectively because an inductive computation of “.”
must terminate after at most |Q| · 2|Q| iterations.

To prove that ϕ is indeed equivalent to A, let us consider an arbitrary `-bit labeled
digraph G = (V,E, λ) and the corresponding least fixpoint ~U = (U0, (Uσ)σ∈Q) ∈ (2V)|Q|+1

of the operator f associated with (ϕ0, (ϕσ)σ∈Q).
The easy direction is to show that for all nodes v ∈ V , if A accepts (G, v), then (G, v)

satisfies ϕ. For that, it suffices to consider the synchronous enriched run ρ̂ = (ρ̂0, ρ̂1, . . .)
of A on G. (Any other run timed by a lossless-asynchronous timing would exhibit the same
acceptance behavior.) As in the proof of Proposition 5, we can simply ignore the FIFO buffers
on the edges of G because ρ̂t(uv) = ρ̂t(u).last. Using this, a straightforward induction on t
shows that every node v ∈ V satisfies {ρ̂t(u) | uv ∈ E} . ρ̂t+1(v) for all t ∈ N. (For t = 0,
the claim follows from the base case of the definition of “.””; for the step from t to t+ 1, we
can immediately apply the inductive clause of the definition.) This in turn allows us to prove
that each node v is contained in all the components of ~U that correspond to a trace traversed
by v in ρ̂, i.e., v ∈ Uρ̂t(v) for all t ∈ N. Naturally, we proceed again by induction: For t = 0,
we have ρ̂0(v) = δ0(λ(v)) ∈ Q, hence the subformula ϕρ̂0(v) defined in equation (b) holds
at v, and thus v ∈ Uρ̂0(v). For the step from t to t+ 1, we need to distinguish two cases. If
ρ̂t+1(v) is of length 1, then it is equal to ρ̂t(v), and there is nothing new to prove. Otherwise,
we must consider the appropriate subformula ϕρ̂t+1(v) given by equation (c). We already
know from the base case that the conjunct Xρ̂t+1(v).first = Xρ̂0(v) holds at v, with respect
to any variable assignment that interprets each Xσ as Uσ. Furthermore, by the induction
hypothesis, Xρ̂t(u) holds at every incoming neighbor u of v. Since {ρ̂t(u) | uv ∈ E} . ρ̂t+1(v),
we conclude that the second conjunct of ϕρ̂t+1(v) must also hold at v, and thus v ∈ Uρ̂t+1(v).
Finally, assuming A accepts (G, v), we know by definition that ρ̂t(v).last ∈ F for some t ∈ N.
Since v ∈ Uρ̂t(v), this implies that the subformula ϕ0 defined in equation (a) holds at v, and
therefore that (G, v) satisfies ϕ.

For the converse direction of the equivalence, we have to overcome the difficulty that ϕ
is more permissive than A, in the sense that a node v might lie in Uσ, and yet not be able
to follow the trace σ under any timing of G. Intuitively, the reason why we still obtain an
equivalence is that A cannot take advantage of all the information provided by any particular
run, because it must ensure that for all digraphs, its acceptance behavior is independent
of the timing. It turns out that even if v cannot traverse σ, some other node v′ in an
indistinguishable digraph will be able to do so. More precisely, we will show that

if v ∈ Uσ, then there exists a pointed digraph (G′, v′), backward bisimilar to (G, v),
and a lossless-asynchronous timing τ ′ of G′, such that ρ̂′t(v′) = σ for some t ∈ N, (∗)

where ρ̂′ is the enriched run of A on G′ timed by τ ′. Now suppose that (G, v) satisfies ϕ. By

ICALP 2017

100:12 Asynchronous Distributed Automata

equation (a), this means that v ∈ Uσ for some trace σ such that σ.last ∈ F . Consequently,
A accepts the pointed digraph (G′, v′) postulated in (∗), based on the claim that v′ traverses σ
under timing τ ′ and the fact that A is lossless-asynchronous. Since (G, v) and (G′, v′) are
backward bisimilar, it follows from Proposition 5 that A also accepts (G, v).

It remains to verify (∗). We achieve this by computing the least fixpoint ~U inductively
and proving the statement by induction on the sequence of approximants (~U0, ~U1, . . .). Note
that we do not need to consider the limit case, since ~U = ~Un for some n ∈ N.

The base case is trivially true because all the components of ~U0 are empty. Furthermore,
if σ consists of a single state q, then we do not even need to argue by induction, as it is
evident from equation (b) that for all j ≥ 1, node v lies in U jq precisely when δ0(λ(v)) = q.
It thus suffices to set (G′, v′) = (G, v) and choose the timing τ ′ arbitrarily. Clearly, we have
ρ̂′0(v′) = δ0(λ(v)) = q if v ∈ U jq .

On the other hand, if σ is of length at least 2, we must assume that statement (∗) holds
for the components of ~U j in order to prove it for U j+1

σ . To this end, consider an arbitrary
node v ∈ U j+1

σ . By the first conjunct in (c) and the preceding remarks regarding the trivial
cases, we know that δ0(λ(v)) = σ.first (and incidentally that j ≥ 1). Moreover, the second
conjunct ensures the existence of a (possibly empty) set of traces S that satisfies S . σ and
that represents a “projection” of v’s incoming neighborhood at stage j. By the latter we
mean that for all π ∈ S, there exists u ∈ V such that uv ∈ E and u ∈ U jπ, and conversely,
for all u ∈ V with uv ∈ E, there exists π ∈ S such that u ∈ U jπ.

Now, for each trace π ∈ S and each incoming neighbor u of v that is contained in U jπ,
the induction hypothesis provides us with a pointed digraph (G′u:π, u

′
π) and a corresponding

timing τ ′u:π, as described in (∗). We make nu:π ∈ N distinct copies of each such digraph G′u:π.
From this, we construct G′ = (V ′, E′, λ′) by taking the disjoint union of all the

∑
nu:π

digraphs, and adding a single new node v′ with λ′(v′) = λ(v), together with all the edges of
the form u′πv

′ (i.e., one such edge for each copy of every u′π). Given that every (G′u:π, u
′
π) is

backward bisimilar to (G, u), we can guarantee that the same holds for (G′, v′) and (G, v)
by choosing the numbers of digraph copies in G′ such that each incoming neighbor u of v is
represented by at least one incoming neighbor of v′. That is, for every u, we require that
nu:π ≥ 1 for some π.

Finally, we construct a suitable lossless-asynchronous timing τ ′ of G′, which proceeds in
two phases to make v′ traverse σ in the corresponding enriched run ρ̂′. In the first phase,
where 0 < t ≤ t1, node v′ remains inactive, which means that every τt assigns 0 to v′ and its
incoming edges. The state of v′ at time t1 is thus still σ.first. Meanwhile, in every copy of
each digraph G′u:π, the nodes and edges behave according to timing τ ′u:π until the respective
copy of u′π has completely traversed π, whereupon the entire subgraph becomes inactive. By
choosing t1 large enough, we make sure that the FIFO buffer on each edge of the form u′πv

′

contains precisely π at time t1. In the second phase, which lasts from t1 + 1 to t2, the only
active parts of G′ are v′ and its incoming edges. Since the number nu:π of copies of each
digraph G′u:π can be chosen as large as required, we stipulate that for every trace π ∈ S, the
sum of nu:π over all u exceeds the lower bound mπ that is associated with π when invoking
Lemma 6 for σ and S. Applying that lemma, we obtain a lossless-asynchronous timing
segment of the subgraph induced by v′ and its incoming neighbors. This segment determines
our timing τ ′ between t1 + 1 and t2 (the other parts of G′ being inactive), and gives us
ρ̂′t2(v′) = σ, as desired. Naturally, the remainder of τ ′, starting at t2 + 1, can be chosen
arbitrarily, so long as it satisfies the properties of a lossless-asynchronous timing.

As a closing remark, note that the pointed digraph (G′, v′) constructed above is very
similar to the standard unraveling of (G, v) into a (possibly infinite) tree. (The set of nodes

F. Reiter 100:13

of that tree-unraveling is precisely the set of all directed paths in G that start at v; see, e.g.,
[1, Def. 4.51] or [2, § 3.2]). However, there are a few differences: First, we do the unraveling
backwards, because we want to generate a backward bisimilar structure, where all the edges
point toward the root. Second, we may duplicate the incoming neighbors (i.e., children) of
each node in the tree, in order to satisfy the lower bounds imposed by Lemma 6. Third, we
stop the unraveling process at a finite depth (not necessarily the same for each subtree), and
place a copy of the original digraph G at every leaf. J

Acknowledgments. I would like to thank Olivier Carton, my PhD supervisor, for many
pleasant discussions and constructive comments.

References

1 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic, volume 53 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,
2002. doi:10.1017/CBO9781107050884.

2 Patrick Blackburn and Johan van Benthem. Modal logic: a semantic perspective. In
Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of Modal
Logic, volume 3 of Studies in Logic and Practical Reasoning, pages 1–84. Elsevier, 2007.
doi:10.1016/S1570-2464(07)80004-8.

3 Julian Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, Johan van
Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic
and Practical Reasoning, pages 721–756. Elsevier, 2007. doi:10.1016/S1570-2464(07)
80015-2.

4 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/
3-540-68804-8.

5 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen,
Kerkko Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing,
with connections to modal logic. In Darek Kowalski and Alessandro Panconesi, editors,
ACM Symposium on Principles of Distributed Computing, PODC’12, Funchal, Madeira,
Portugal, July 16-18, 2012, pages 185–194. ACM, 2012. doi:10.1145/2332432.2332466.

6 Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo Lempiäinen,
Kerkko Luosto, Jukka Suomela, and Jonni Virtema. Weak models of distributed computing,
with connections to modal logic. Distributed Computing, 28(1):31–53, 2015. doi:10.1007/
s00446-013-0202-3.

7 Antti Kuusisto. Modal logic and distributed message passing automata. In Simona
Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, Septem-
ber 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 452–468. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.452.

8 Antti Kuusisto. Infinite networks, halting and local algorithms. In Adriano Peron and Carla
Piazza, editors, Proceedings Fifth International Symposium on Games, Automata, Logics
and Formal Verification, GandALF 2014, Verona, Italy, September 10-12, 2014, volume
161 of EPTCS, pages 147–160, 2014. doi:10.4204/EPTCS.161.14.

9 Giacomo Lenzi. The modal µ-calculus: a survey. TASK Quarterly – Scientific Bulletin of
the Academic Computer Centre in Gdansk, 9(3):293–316, 2005. URL: http://task.gda.
pl/quart/05-3.html.

10 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

ICALP 2017

http://dx.doi.org/10.1017/CBO9781107050884
http://dx.doi.org/10.1016/S1570-2464(07)80004-8
http://dx.doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/10.1016/S1570-2464(07)80015-2
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1145/2332432.2332466
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://dx.doi.org/10.4204/EPTCS.161.14
http://task.gda.pl/quart/05-3.html
http://task.gda.pl/quart/05-3.html

100:14 Asynchronous Distributed Automata

11 David Peleg. Distributed Computing: A Locality-Sensitive Approach, volume 5 of SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics (SIAM), 2000. doi:10.1137/1.9780898719772.

12 Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40, 2013.
doi:10.1145/2431211.2431223.

http://dx.doi.org/10.1137/1.9780898719772
http://dx.doi.org/10.1145/2431211.2431223

A Counterexample to Thiagarajan’s Conjecture on
Regular Event Structures∗

Jérémie Chalopin1 and Victor Chepoi1

1 LIF, CNRS and Aix-Marseille Université, Marseille, France
jeremie.chalopin@lif.univ-mrs.fr

2 LIF, CNRS and Aix-Marseille Université, Marseille, France
victor.chepoi@lif.univ-mrs.fr

Abstract
We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that regular prime
event structures correspond exactly to those obtained as unfoldings of finite 1-safe Petri nets. The
same counterexample is used to disprove a closely related conjecture by Badouel, Darondeau, and
Raoult (1999) that domains of regular event structures with bounded \-cliques are recognizable by
finite trace automata. Event structures, trace automata, and Petri nets are fundamental models
in concurrency theory. There exist nice interpretations of these structures as combinatorial
and geometric objects and both conjectures can be reformulated in this framework. Namely, the
domains of prime event structures correspond exactly to pointed median graphs; from a geometric
point of view, these domains are in bijection with pointed CAT(0) cube complexes.

A necessary condition for both conjectures to be true is that domains of respective regular
event structures admit a regular nice labeling. To disprove these conjectures, we describe a
regular event domain (with bounded \-cliques) that does not admit a regular nice labeling. Our
counterexample is derived from an example by Wise (1996 and 2007) of a nonpositively curved
square complex X whose universal cover X̃ is a CAT(0) square complex containing a particular
plane with an aperiodic tiling.

1998 ACM Subject Classification F.1.1 Models of Computation, G.2.2 Graph Theory

Keywords and phrases Discrete event structures, Trace automata, Median graphs and CAT(0)
cube Complexes, Unfoldings and universal covers

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.101

1 Introduction

Event structures, introduced by Nielsen, Plotkin, and Winskel [18, 29, 30], are a widely
recognized abstract model of concurrent computation. An event structure is a partially
ordered set of events together with a conflict relation. The partial order captures the causal
dependency of events. The conflict relation models incompatibility of events so that two
events that are in conflict cannot simultaneously occur in any state of the computation.
Consequently, two events that are neither ordered nor in conflict may occur concurrently.
The domain of an event structure consists of all computation states, called configurations.
Each computation state is a subset of events subject to the constraints that no two conflicting
events can occur together in the same computation and if an event occurred in a computation
then all events on which it causally depends have occurred too. Therefore, the domain of an
event structure E is the set D(E) of all finite configurations ordered by inclusion. An event e

∗ A full version of the paper is available at https://arxiv.org/abs/1605.08288.

EA
T

C
S

© Jérémie Chalopin and Victor Chepoi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 101; pp. 101:1–101:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.101
https://arxiv.org/abs/1605.08288
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

101:2 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

is said to be enabled by a configuration c if e /∈ c and c ∪ {e} is a configuration. The degree
of an event structure E is the maximum number of events enabled by a configuration of E .
The future of a configuration c is the set of all finite configurations c′ containing c.

Among other things, the importance of event structures stems from the fact that several
fundamental models of concurrent computation lead to event structures. Nielsen, Plotkin,
and Winskel [18] proved that every 1-safe Petri net N unfolds into an event structure EN .
Later results of [19] and [30] show in fact that 1-safe Petri nets and event structures represent
each other in a strong sense. In the same vein, Stark [25] established that the domains of
configurations of trace automata are exactly the conflict event domains; a presentation of
domains of event structures as trace monoids (Mazurkiewicz traces) or as asynchronous
transition systems was given in [22] and [6], respectively. In both cases, the events of the
resulting event structure are labeled in a such a way that any two events enabled by the
same configuration are labeled differently (such a labeling is usually called a nice labeling).
To deal with finite 1-safe Petri nets, Thiagarajan [26, 27] introduced the notions of regular
event structure and regular trace event structure. A regular event structure E is an event
structure with a finite number of isomorphism types of futures of configurations and finite
degree. A regular trace event structure is an event structure E whose events can be nicely
labeled by the letters of a finite trace alphabet M = (Σ, I) in a such a way that any two
concurrent events define a pair of I and there exists only a finite number of isomorphism
types of labeled futures of configurations. These definitions were motivated by the fact that
the event structures EN arising from finite 1-safe Petri nets N are regular: Thiagarajan [26]
proved that event structures of finite 1-safe Petri nets correspond to regular trace event
structures. This lead Thiagarajan to formulate the following conjecture:

I Conjecture 1 ([26, 27]). An event structure E is isomorphic to the event structure EN
arising from a finite 1-safe Petri net N if and only if E is regular.

Badouel, Darondeau, and Raoult [2] formulated two similar conjectures about conflict
event domain that are recognizable by finite trace automata. The first one is equivalent to
Conjecture 1, while the second one is formulated in a more general setting with an extra
condition. We formulate their second conjecture in the particular case of event structures:

I Conjecture 2 ([2]). The domain of an event structure E is recognizable if and only if E is
regular and has bounded \-cliques.

In view of previous results, to establish Conjecture 1, it is necessary for a regular event
structure E to define a regular nice labeling with letters from some trace alphabet (Σ, I).
Nielsen and Thiagarajan [20] proved in a technically involved but very nice combinatorial
way that all regular conflict-free event structures satisfy Conjecture 1. In a equally difficult
and technical proof, Badouel et al. [2] proved that their conjectures hold for context-free
event domains, i.e., for domains whose underlying graph is a context-free graph sensu Müller
and Schupp [17]. In this paper, we present a counterexample to Thiagarajan’s Conjecture
based on a more geometric and combinatorial view on event structures. We show that our
example also provides a counterexample to Conjecture 2 of Badouel et al.

We use the striking bijections between the domains of event structures, median graphs,
and CAT(0) cube complexes. Median graphs have many nice properties and admit numerous
characterizations. They have been investigated in several contexts for more than half a
century, and play a central role in metric graph theory; for more detailed information, the
interested reader can consult the surveys [3, 4]. On the other hand, CAT(0) cube complexes
are central objects in geometric group theory [23, 24, 33]. They have been characterized in a

J. Chalopin and V. Chepoi 101:3

nice combinatorial way by Gromov [12] as simply connected cube complexes in which the
links of 0-cubes are simplicial flag complexes. It was proven in [9, 21] that 1-skeleta of CAT(0)
cube complexes are exactly the median graphs. Barthélemy and Constantin [5] proved that
the Hasse diagrams of domains of event structures are median graphs and every pointed
median graph is the domain of an event structure. The bijection between pointed median
graphs and event domains established in [5] can be viewed as the classical characterization of
prime event domains as prime algebraic coherent partial orders provided by Nielsen, Plotkin,
and Winskel [18]. Via these bijections, the events of an event structure E correspond to the
parallelism classes of edges of the domain D(E) viewed as a median graph.

Our counter-example is based on Wise’s [31, 32] nonpositively curved square complex X
with one vertex and six squares, whose edges are colored in five colors, and whose colored
universal cover X̃ contains a particular plane with an aperiodic tiling. As a result, X̃ is a
CAT(0) square complex whose edges are colored by the colors of their images in X and are
directed in such a way that all edges in the same parallelism class are oriented in the same
way. With respect to this orientation, all vertices of X̃ are equivalent up to automorphism.
We modify the complex X by taking its barycentric subdivision and by adding to the middles
of the edges of X directed paths of five different lengths in order to encode the colors of the
edges of X (and X̃) and to obtain a nonpositively curved square complex W . The universal
cover W̃ of W is a directed (but no longer colored) CAT(0) square complex. Since W̃ is
the universal cover of a finite complex W , W̃ has a finite number of equivalence classes of
vertices up to automorphism. From W̃ we derive a domain of a regular event structure W̃ṽ

by considering the future of an arbitrary vertex ṽ of X̃. Using the fact that X̃ contains a
particular plane with an aperiodic tiling, we prove that W̃ṽ does not admit a regular nice
labeling, thus W̃ṽ does not have a regular trace labeling.

Due to space limitations, some proofs are omitted; a full version of the paper is available
on arXiv [8].

2 Event structures

2.1 Event structures and domains
An event structure is a triple E = (E,≤,#), where

E is a set of events,
≤ ⊆ E × E is a partial order of causal dependency,
⊆ E × E is a binary, irreflexive, symmetric relation of conflict,
↓e := {e′ ∈ E : e′ ≤ e} is finite for any e ∈ E,
e#e′ and e′ ≤ e′′ imply e#e′′.

What we call here an event structure is usually called a prime event structure. Two events
e′, e′′ are concurrent (notation e′‖e′′) if they are order-incomparable and they are not in
conflict. The conflict e′#e′′ between two elements e′ and e′′ is said to be minimal (notation,
e′#µe

′′) if there is no event e 6= e′, e′′ such that either e ≤ e′ and e#e′′ or e ≤ e′′ and e#e′.
Also define the binary relation l ⊆ E ×E as follows: set el e′ if and only if e ≤ e′, e 6= e′,
and for every e′′ if e ≤ e′′ ≤ e′, then e′′ = e or e′′ = e′. Given two event structures
E1 = (E1,≤1,#1) and E2 = (E2,≤2,#2), a map f : E1 → E2 is an isomorphism if f is a
bijection such that e ≤1 e

′ iff f(e) ≤2 f(e′) and e#1e
′ iff f(e)#2f(e′) for every e, e′ ∈ E1. If

such an isomorphism exists, then E1 and E2 are said to be isomorphic; notation E1 ≡ E2.
A labeled event structure Eλ = (E , λ) is defined by an underlying event structure E =

(E,≤,#) and a labeling λ that is a map from E to some alphabet Σ. Two labeled event
structures Eλ1

1 = (E1, λ1) and Eλ1
2 = (E2, λ2) are isomorphic (notation Eλ1

1 ≡ Eλ2
2) if there

ICALP 2017

101:4 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

exists an isomorphism f between the underlying event structures E1 and E2 such that
λ2(f(e1)) = λ1(e1) for every e1 ∈ E1.

A configuration of an event structure E = (E,≤,#) is any finite subset c ⊂ E of events
which is conflict-free (e, e′ ∈ c implies that e, e′ are not in conflict) and downward-closed
(e ∈ c and e′ ≤ e implies that e′ ∈ c) [30]. Notice that ∅ is always a configuration and that
↓e and ↓e \ {e} are configurations for any e ∈ E. The domain of an event structure is the
set D := D(E) of all configurations of E ordered by inclusion; (c′, c) is a (directed) edge of
the Hasse diagram of the poset (D(E),⊆) if and only if c = c′ ∪ {e} for an event e ∈ E \ c.
An event e is said to be enabled by a configuration c if e /∈ c and c ∪ {e} is a configuration.
Denote by en(c) the set of all events enabled at the configuration c. Two events are called
co-initial if they are both enabled at some configuration c. Note that if e and e′ are co-initial,
then either e#µe

′ or e‖e′. It is easy to see that two events e and e′ are in minimal conflict
e#µe

′ if and only if e#e′ and e and e′ are co-initial. The degree deg(E) of an event structure
E is the least positive integer d such that |en(c)| ≤ d for any configuration c of E . We say
that E has finite degree if deg(E) is finite. The future (or the filter) F(c) of a configuration c
is the set of all configurations c′ containing c: F(c) = ↑c := {c′ ∈ D(E) : c ⊆ c′}, i.e., F(c) is
the principal filter of c in the ordered set (D(E),⊆).

For an event structure E = (E,≤, \), let \ be the least irreflexive and symmetric relation
on the set of events E such that e1\e2 if (1) e1‖e2, or (2) e1#µe2, or (3) there exists an
event e3 that is co-initial with e1 and e2 at two different configurations such that e1‖e3 and
e2#µe3. If e1\e2 and this comes from condition (3), then we write e1\(3)e2. A \-clique is a
subset S of events such that e1\e2 for any e1, e2 ∈ S.

A labeling λ : E → Σ of an event structure E (or of its domain D(E)) is called a nice
labeling if any two events that are co-initial have different labels [22]. A nice labeling of E
can be reformulated as a coloring of the directed edges of the Hasse diagram of its domain
D(E) subject to the following local conditions:

Determinism: The edges outgoing from the same vertex of D(E) have different colors.
Concurrency: the opposite edges of each square of D(E) are colored with the same color.

2.2 Regular event structures

In this subsection, we recall the definitions of regular event structures, regular trace event
structures, and regular nice labelings of event structures. We closely follow the definitions and
notations of [26, 27, 20]. Let E = (E,≤,#) be an event structure. Let c be a configuration
of E . Set #(c) = {e′ : ∃e ∈ c, e#e′}. The event structure rooted at c is defined to be the
triple E\c = (E′,≤′,#′), where E′ = E \ (c ∪ #(c)), ≤′ is ≤ restricted to E′ × E′, and
#′ is # restricted to E′ × E′. It can be easily seen that the domain D(E\c) of the event
structure E\c is isomorphic to the filter F(c) of c in D(E) such that any configuration c′ of
D(E) corresponds to the configuration c′ \ c of D(E\c).

For an event structure E = (E,≤,#), define the equivalence relation RE on its configura-
tions in the following way: for two configurations c and c′ set cREc′ if and only if E\c ≡ E\c′.
The index of an event structure E is the number of equivalence classes of RE , i.e., the number
of isomorphism types of futures of configurations of E . The event structure E is regular
[26, 27, 20] if E has finite index and finite degree.

Now, let Eλ = (E , λ) be a labeled event structure. For any configuration c of E , if
we restrict λ to E\c, then we obtain a labeled event structure (E\c, λ) denoted by Eλ\c.
Analogously, define the equivalence relation REλ on its configurations by setting cREλc′ if
and only if Eλ\c ≡ Eλ\c′. The index of Eλ is the number of equivalence classes of REλ . We

J. Chalopin and V. Chepoi 101:5

say that an event structure E admits a regular nice labeling if there exists a nice labeling λ
of E with a finite alphabet Σ such that Eλ has finite index.

We continue by recalling the definition of regular trace event structures from [26, 27]. A
(Mazurkiewicz) trace alphabet is a pair M = (Σ, I), where Σ is a finite non-empty alphabet
set and I ⊂ Σ× Σ is an irreflexive and symmetric relation called the independence relation.
As usual, Σ∗ is the set of finite words with letters in Σ. The independence relation I induces
the equivalence relation ∼I , which is the reflexive and transitive closure of the binary relation
↔I : if σ, σ′ ∈ Σ∗ and (a, b) ∈ I, then σabσ′ ↔I σbaσ

′. The relation D := (Σ × Σ) \ I is
called the dependence relation. An M -labeled event structure is a labeled event structure
Eλ = (E , λ), where E = (E,≤,#) is an event structure and λ : E → Σ is a labeling function
which satisfies the following conditions:

(LES1) e#µe
′ implies λ(e) 6= λ(e′),

(LES2) el e′ or e#µe
′, then (λ(e), λ(e′)) ∈ D,

(LES3) if (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e or e#e′.
We call λ a trace labeling of E . The conditions (LES2) and (LES3) on the labeling

function ensures that the concurrency relation ‖ of E respects the independence relation I
of M . In particular, since I is irreflexive, from (LES3) it follows that any two concurrent
events are labeled differently. Since by (LES1) two events in minimal conflict are also labeled
differently, this implies that λ is a finite nice labeling of E .

An M -labeled event structure Eλ = (E , λ) is regular if Eλ has finite index. Finally, an
event structure E is called a regular trace event structure [26, 27] iff there exists a trace
alphabet M = (Σ, I) and a regular M -labeled event structure Eλ such that E is isomorphic
to the underlying event structure of Eλ. From the definition immediately follows that every
regular trace event structure is also a regular event structure. It turns out that the converse
is equivalent to Conjecture 1. Namely, [27] establishes the following equivalence (this result
dispenses us from giving a formal definition of 1-safe Petri nets; the interested readers can
find it in the papers [27, 20]):
I Theorem 3 ([27, Theorem 1]). E is a regular trace event structure if and only if there
exists a finite 1-safe Petri net N such that E and EN are isomorphic.

In view of this theorem, Conjecture 1 is equivalent to the following conjecture:
I Conjecture 4. E is a regular event structure iff E is a regular trace event structure.

Badouel et al. [2] considered recognizable conflict event domains that are more general
than the domains of event structures we consider in this paper. Since the domain of an event
structure E is recognizable if and only if E is a regular trace event structure (see [16, Section
5]), Conjecture 2 can be reformulated as follows:
I Conjecture 5. E is a regular event structure iff E is a regular trace event structure and E
has bounded \-cliques.

Since any regular trace labeling is a regular nice labeling, any regular event structure
E not admitting a regular nice labeling is a counter-example to Conjecture 4 (and thus to
Conjecture 1). If, additionally, E has bounded \-cliques, E is also a counter-example to
Conjecture 5 (and thus to Conjecture 2).

3 Domains, median graphs, and CAT(0) cube complexes

In this section, we recall the bijections between domains of event structures and median
graphs/CAT(0) cube complexes established in [1] and [5], and between median graphs and
1-skeleta of CAT(0) cube complexes established in [9] and [21].

ICALP 2017

101:6 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

Let G = (V,E) be a simple, connected, not necessarily finite graph. The distance dG(u, v)
between two vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v)
between u and v consists of all vertices on shortest (u, v)–paths. A graph G is median if for
any three vertices x, y, z of G, there exists a unique vertex m = m(x, y, z), called the median
of x, y, z, simultaneously lying on the intervals I(x, y), I(x, z), and I(y, z). Basic examples of
median graphs are trees, hypercubes, rectangular grids, and Hasse diagrams of distributive
lattices and of median semilattices [3]. With any vertex v of a median graph G = (V,E) is
associated a canonical partial order ≤v defined by setting x ≤v y if and only if x ∈ I(v, y);
v is called the basepoint of ≤v. Since G is bipartite, the Hasse diagram Gv of the partial
order (V,≤v) is the graph G in which any edge xy is directed from x to y if and only if the
inequality dG(x, v) < dG(y, v) holds. We call Gv a pointed median graph.

Median graphs can be obtained from hypercubes by amalgams and median graphs are
themselves isometric subgraphs of hypercubes. The canonical isometric embedding of a
median graph G into a (smallest) hypercube can be determined by the so called Djoković-
Winkler (“parallelism”) relation Θ on the edges of G [11, 28]. For median graphs, the
equivalence relation Θ can be defined as follows. First say that two edges uv and xy are in
relation Θ0 if they are either equal or opposite edges of a 4-cycle uvxy in G. Then let Θ be
the transitive closure of Θ0. We denote by {Θi : i ∈ I} the equivalence classes of the relation
Θ (in [5], they were called parallelism classes). Each equivalence class Θi, i ∈ I, is a cutset
of G: namely, it splits V (G) in two convex subgraphs Ai, Bi of G (A subgraph H of G is
convex if for all u, v ∈ V (H), I(u, v) ⊆ V (H)). The equivalence relation Θ is fundamental in
the bijection between event structures and median graphs:

I Theorem 6 ([5]). The Hasse diagram of the domain (D(E),⊆) of any event structure
E = (E,≤,#) is a median graph. Conversely, for any median graph G and any basepoint v
of G, the pointed median graph Gv is isomorphic to the Hasse diagram of the domain of an
event structure.

In the construction of an event structure Ev from a median graph G pointed at a vertex
v, the events ei, i ∈ I of Ev correspond to the equivalence classes Θi, i ∈ I of Θ. Two classes
Θi and Θj define concurrent events if and only if they cross, i.e., there exists a square uvxy
where uv, xy ∈ Θi and uy, vx ∈ Θj . For two events ei, ej , we have ei ≺ ej if and only if the
cutset Θi separates v from the edges of Θj . Finally, two events ei, ej are in conflict if and
only if Θi and Θj do not cross and neither separates the other from v.

A cube complex is a cell complex X whose cells are unit Euclidean cubes of various
dimensions such that any two intersecting cubes of X intersect in a common face. The
0-cubes and the 1-cubes of X are called vertices and edges of X and define the graph X(1),
the 1-skeleton of X. The star St(v,X) of a vertex v of X is the subcomplex spanned by all
cubes containing v. A cube complex X is simply connected if every cycle C of its 1-skeleton is
null-homotopic, i.e., it can be contracted to a single point by elementary homotopies. Given
two cube complexes X and Y , a covering (map) is a surjection p : Y → X mapping cubes to
cubes and such that p|St(v,Y) : St(v, Y)→ St(p(v), X) is an isomorphism for every vertex v
in Y . The space Y is then called a covering space of X. A universal cover of X is a simply
connected covering space; it always exists and it is unique up to isomorphism [13, Sections
1.3 and 4.1]. The universal cover of a complex X will be denoted by X̃. In particular, if X
is simply connected, then its universal cover X̃ is X itself.

An important class of cube complexes studied in geometric group theory and combinatorics
is the class of CAT(0) cube complexes. In this case, being CAT(0) is equivalent to the
unicity of geodesics in the `2 metric; see [7] for this and other properties of CAT(0) spaces.
Gromov [12] gave a beautiful combinatorial characterization of CAT(0) cube complexes as

J. Chalopin and V. Chepoi 101:7

simply connected cube complexes satisfying the following condition: if three (k + 2)-cubes
pairwise intersect in a (k+ 1)-cube and all three intersect in a k-cube, then they are included
in a (k + 3)-cube. A cube complex X satisfying this combinatorial condition is called a
nonpositively curved (NPC) complex. As a corollary of Gromov’s result, for any NPC complex
X, its universal cover X̃ is CAT(0).

There is a well-known bijection between median graphs and CAT(0) cube complexes [9, 21].
Each median graph G gives rise to a cube complex X(G) obtained by replacing all hypercubes
of G by Euclidean unit cubes. Endowed with the intrisic `2-metric, X(G) is a CAT(0) space.
Conversely, the 1-skeleton of any CAT(0) cube complex is a median graph. In fact, a graph
G is median if and only if its cube complex is simply connected and G satisfies the 3-cube
condition [9]: if three squares of G pairwise intersect in an edge and all three intersect in a
vertex, then they belong to a 3-cube.

This link between event domains, median graphs, and CAT(0) cube complexes allows a
more geometric and combinatorial approach to several questions on event structures (and to
work only with CAT(0) cube complexes viewed as event domains). For example, this allowed
[10] to disprove the so-called nice labeling conjecture of Rozoy and Thiagarajan [22] asserting
that any event structure of finite degree admits a finite nice labeling.

4 Directed NPC Complexes

Since we can define event structures from their domains, universal covers of NPC complexes
represent a rich source of event structures. To obtain regular event structures, it is natural
to consider universal covers of finite NPC complexes. Moreover, since domains of event
structures are directed, it is natural to consider universal covers of NPC complexes whose
edges are directed. However, the resulting directed universal covers are not in general domains
of event structures. In particular, the domains corresponding to pointed median graphs
given by Theorem 6 cannot be obtained in this way. In order to overcome this difficulty, we
introduce directed median graphs and directed NPC complexes. Using these notions, one
can naturally define regular event structures starting from finite directed NPC complexes.

A directed median graph is a pair (G, o), where G is a median graph and o is an orientation
of the edges of G in a such a way that opposite edges of squares of G have the same direction.
By transitivity of Θ, all edges from the same parallelism class Θi of G have the same direction.
Since each Θi partitions G into two parts, o defines a partial order ≺o on the vertex-set of G.
For a vertex v of G, let Fo(v,G) = {x ∈ V : v ≺o x} be the principal filter of v in the partial
order (V (G),≺o).

The following lemma shows that choosing an arbitrary vertex in a directed median graph
as a basepoint, one can define the domain of an event structure.

I Lemma 7. For any vertex v of a directed median graph (G, o), the following holds:
1. Fo(v,G) induces a convex subgraph of G;
2. the restriction of the partial order ≺o on Fo(v,G) coincides with the restriction of the

canonical basepoint order ≤v on Fo(v,G);
3. Fo(v,G) with ≺o is the domain of an event structure;
4. for any vertex u ∈ Fo(v,G), the principal filter Fo(u,G) is included in Fo(v,G) and
Fo(u,G) coincides with the principal filter of u with respect to the canonical basepoint
order ≤v on Fo(v,G).

A directed NPC complex is a pair (Y, o), where Y is a NPC complex and o is an orientation
of the edges of Y in a such a way that the opposite edges of the same square of Y have the

ICALP 2017

101:8 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

same direction. The orientation o of the edges of Y induces in a natural way an orientation õ
of the edges of its universal cover Ỹ , so that (Ỹ , õ) is a directed NPC complex and (Ỹ (1), õ)
is a directed median graph. We now formulate the crucial regularity property of directed
median graphs (Ỹ (1), õ) when (Y, o) is finite.

I Lemma 8. If (Y, o) is a finite directed NPC complex, then (Ỹ (1), õ) is a directed median
graph with at most |V (Y)| isomorphism types of principal filters.

Combining Lemmas 7 and 8, we obtain the following result.

I Proposition 9. Let (Y, o) be a finite directed NPC complex. Then for any vertex ṽ of the
universal cover Ỹ of Y , the principal filter Fõ(ṽ, Ỹ (1)) with the partial order ≺õ is the domain
of a regular event structure with at most |V (Y)| different isomorphism types of futures.

A square complex X is a combinatorial 2-complex whose 2-cells are attached by closed
combinatorial paths of length 4. Thus, one can consider each 2-cell as a square attached
to the 1-skeleton X(1) of X. A square complex X is a V H-complex (vertical-horizontal
complex) if the 1-cells (edges) of X are partitioned into two sets V and H called vertical
and horizontal edges respectively, and the edges in each square alternate between edges in
V and H. Notice that if X is a V H-complex, then X satisfies the Gromov’s nonpositive
curvature condition since no three squares may pairwise intersect on three edges with a
common vertex. A V H-complex X is a complete square complex (CSC) [32] if any vertical
edge and any horizontal edge incident to a common vertex belong to a common square of X.
By [32, Theorem 3.8], if X is a complete square complex, then the universal cover X̃ of X is
isomorphic to the Cartesian product of two trees. By a plane Π in X̃ we will mean a convex
subcomplex of X̃ isometric to R2 tiled by the grid Z2 into unit squares.

5 Wise’s event domain W̃ṽ

In this section, we construct the domain W̃ṽ of a regular event structure (with bounded
\-cliques) that does not admit a regular nice labelling. To do so, we start with a directed
colored CSC X introduced by Wise [32]. In the following, we consider directed colored
V H-complexes, in which each edge has an orientation and a color. Such complexes will be
denoted by bold letters, like X. Sometimes, we need to forget the colors and the orientations
of the edges of these complexes. For a complex X, we denote by X the complex obtained by
forgetting the colors and the orientations of the edges of X (X is called the support of X),
and we denote by (X, o) the directed complex obtained by forgetting the colors of X.

5.1 Wise’s square complex X and its universal cover X̃
The complex X consists of six squares as indicated in Figure 1 (reproducing Figure 3 of [32]).
Each square has two vertical and two horizontal edges. The horizontal edges are oriented
from left to right and vertical edges from bottom to top. Denote this orientation of edges
by o. The vertical edges of squares are colored white, grey, and black and denoted a, b, and
c, respectively. The horizontal edges of squares are colored by single or double arrow, and
denoted x and y, respectively. The six squares are glued together by identifying edges of the
same color and respecting the directions to obtain the square complex X. Note that X has a
unique vertex, five edges, and six squares. It can be directly checked that X is a complete
square complex, and consequently (X, o) is a directed NPC complex. Let HX denote the
subcomplex of X consisting of the 2 horizontal edges and let VX denote the subcomplex of
X consisting of the 3 vertical edges.

J. Chalopin and V. Chepoi 101:9

x

x

a b

y

y

a b

x

y

c c

x

y

b a

y

x

c a

y

x

b c

Figure 1 The 6 squares defining the complex X.

The universal cover H̃X of HX is the 4-regular infinite tree F4. Its edges inherit the
orientations from their images in HX : each vertex of H̃X has two incoming and two outgoing
arcs. Analogously, the universal cover H̃V of HV is the 6-regular infinite tree F6 where each
vertex has three incoming and three outgoing arcs. Let ṽ1 be any vertex of H̃X . Then the
principal filter of ṽ1 is the infinite binary tree T2 rooted at ṽ1: all its vertices except ṽ1 have
one incoming and two outgoing arcs, while ṽ1 has two outgoing arcs and no incoming arc.
Analogously, the principal filter of any vertex ṽ2 in the ordered set H̃V is the infinite ternary
tree T3 rooted at ṽ2.

Let X̃ be the universal cover of X and let p : X̃→ X be a covering map. Let X̃ denote
the support of X̃. Since X is a CSC, by [32, Theorem 3.8], X̃ is the Cartesian product
F4×F6 of the trees F4 and F6. The edges of X̃ are colored and oriented as their images in X,
and are also classified as horizontal or vertical edges. The squares of X̃ are oriented as their
images in X, thus two opposite edges of the same square of X̃ have the same direction. This
implies that all classes of parallel edges of X̃ are oriented in the same direction. Denote this
orientation of the edges of X̃ by õ. The 1-skeleton X̃(1) of X̃ together with õ is a directed
median graph. Let ṽ = (ṽ1, ṽ2) be any vertex of X̃, where ṽ1 and ṽ2 are the coordinates of ṽ
in the trees F4 and F6. Then the principal filter Fõ(ṽ, X̃(1)) of ṽ is the Cartesian product of
the principal filters of ṽ1 in F4 and of ṽ2 in F6, i.e., is isomorphic to T2 × T3.

By Lemma 7, the orientation of the edges of Fõ(ṽ, X̃(1)) corresponds to the canonical
basepoint orientation of Fõ(ṽ, X̃(1)) with ṽ as the basepoint. Moreover, by Proposition 9,
Fõ(ṽ, X̃(1)) is the domain of a regular event structure with one isomorphism type of futures.

5.2 Aperiodicity of X̃
We recall here the main properties of X̃ established in [32, Section 5]. Let ṽ = (ṽ1, ṽ2) be
an arbitrary vertex of X̃, where ṽ1 and ṽ2 are defined as before. From the definition of
the covering map, the loop of X colored y gives rise to a bi-infinite horizontal path Py of
X̃(1) passing via ṽ and whose all edges are colored y and are directed from left to right.
Analogously, there exists a bi-infinite vertical path Pc of X̃(1) passing via ṽ and whose all
edges are colored c and are directed from bottom to top.

The projection of Py on the horizontal factor F4 is a bi-infinite path Ph of F4 passing via
ṽ1. Analogously, the projection of Pc on the vertical factor F6 is a bi-infinite path P v of F6
passing via ṽ2. Consequently, the convex hull conv(Py ∪ Pc) of Py ∪ Pc in the graph X̃(1)

is isomorphic to the Cartesian product of Ph × P v of the paths Ph and P v. Therefore the
subcomplex of X̃ spanned by conv(Py ∪Pc) is a plane Πyc tiled into squares (recall that each
square is of one of 6 types and its sides are colored by the letters a, b, c, x, y), see Figure 2.

In our counterexample we will use the following result of [32] that was used to show that
the plane Πyc is not tiled periodically by the preimages of the squares of X. Denote by P+

y

the (directed) subpath of Py having ṽ as the origin (this is a one-infinite horizontal path).
Analogously, let P+

c be the (vertical) subpath of Pc having ṽ as the origin. The convex hull
of P+

y ∪ P+
c is a quarter of the plane Πyc, which we denote by Π++

yc . Any shortest path in

ICALP 2017

101:10 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

ṽ

c3

M5(3)

y5

Figure 2 Part of the plane Π++
yc appearing in X̃.

X̃(1) from ṽ to a vertex ũ ∈ Π++
yc can be viewed as a word in the alphabet A = {a, b, c, x, y}.

For an integer n ≥ 0, denote by yn the horizontal subpath of P+
y beginning at ṽ and having

length n. Analogously, for an integer m ≥ 0, denote by cm the vertical subpath of P+
c

beginning at ṽ and having length m. Let Mn(m) denote the horizontal path of Π++
yc of length

n beginning at the endpoint of the vertical path cm. Mn(m) determines a word which is the
label of the side opposite to yn in the rectangle which is the convex hull of yn and cm (see
Figure 2). Let Mn(m) also denote this corresponding word.

I Proposition 10 ([32, Proposition 5.9]). For each n, the words {Mn(m) : 0 ≤ m ≤ 2n − 1}
are all distinct, and thus, every positive word in x and y of length n is Mn(m) for some m.

5.3 The square complex W and its universal cover W̃

Let βX denote the first barycentric subdivision of X: each square C of X is subdivided
into four squares C1, C2, C3, C4 by adding a middle vertex to each edge of C and connecting
it to the center of C by an edge. This way each edge e of C is subdivided into two edges
e1, e2, which inherit the orientation and the color of e. The four edges connecting the middle
vertices of the edges of C to the center of C are oriented from left to right and from bottom
to top (see the middle figure of Figure 3). Denote the resulting orientation by o′. This way,
(βX, o′) is a directed and colored square complex. Again, denote by βX the support of βX.
The universal cover β̃X of βX is the Cartesian product βF4 × βF6 of the trees βF4 and
βF6, where βF4 is the first barycentric subdivision of F4 and βF6 is the first barycentric
subdivision of F6. Additionally, (β̃X, õ′) is a directed CAT(0) square complex. We assign a
type to each vertex of β̃X: the preimage of the unique vertex of X is of type 0 and is called
a 0-vertex, the preimages of the middles of edges of X are of type 1 and are called 1-vertices,
and the preimages of centers of squares of X are of type 2 and are called 2-vertices.

To encode the colors of the edges of X, we introduce our central object, the square complex
W (whose edges are no longer colored). Let A = {a, b, c, x, y} and let r : A→ {1, 2, 3, 4, 5}
be a bijective map. The complex W is obtained from βX by adding to each 1-vertex z of
βX a path Rz of length r(α) if z is the middle of an edge colored α ∈ A in X. The path Rz
has one end at z (called the root of Rz) and z is the unique common vertex of Rz and βX
(we call such added paths Rz tips). Denote by o∗ the orientation of the edges of W defined
as follows: the edges of βX are oriented as in (βX, o) and the edges of tips are oriented away

J. Chalopin and V. Chepoi 101:11

y

x

b c

x

b

b c

c

x

y y

Figure 3 A square of X and the corresponding subcomplexes in (βX, o′) and (W, o∗).

from their roots (see the rightmost figure of Figure 3 for the encoding of the last square of
Figure 1). As a result, we obtain a finite directed NPC square complex (W, o∗).

Consider the universal cover W̃ of W . It can be viewed as the complex β̃X with a path
of length r(α) added to each 1-vertex which encodes an edge of X̃ of color α ∈ A. We say
that the vertices of W̃ lying only on tips are of type 3 and they are called 3-vertices. Let õ∗
denote the orientation of the edges of W̃ induced by the orientation o∗ of W . Then (W̃ , õ∗)
is a directed CAT(0) square complex. Since W is finite, the directed median graph (W̃ (1), õ∗)
has a finite number of isomorphisms types of principal filters Fõ∗(z̃, W̃ (1)).

Let ṽ be any 0-vertex of W̃ . Denote by W̃ṽ the principal filter Fõ∗(ṽ, W̃ (1)) of vertex ṽ
in (W̃ (1),≺õ∗). By Proposition 9, W̃ṽ together with the partial order ≺õ∗ is the domain of a
regular event structure, which we call Wise’s event domain. Since vertices of different types
of W̃ are incident to a different number of outgoing squares, any isomorphism between two
filters of (W̃ṽ,≺õ∗) preserves the types of vertices. We summarize all this in the following:

I Proposition 11. (W̃ṽ,≺õ∗) is the domain of a regular event structure. Any isomorphism
between any two filters of (W̃ṽ,≺õ∗) preserves the types of vertices.

5.4 (W̃ṽ, ≺õ∗) does not have a regular nice labeling
In this subsection we prove that the event structure associated to Wise’s event domain is a
counterexample to Thiagarajan’s conjecture (Theorem 12) and to the conjecture of Badouel
et al. [2] (Theorem 12 and Proposition 13).

I Theorem 12. (W̃ṽ,≺õ∗) does not admit a regular nice labeling.

Proof. Since W̃ṽ is the principal filter of a 0-vertex ṽ, W̃ṽ contains all vertices of X̃ located
in the quarter of plane Π++

yc of X̃, in particular it contains the vertices of the paths P+
c and

P+
y . Notice also that W̃ṽ contains the barycenters and the tips corresponding to the edges of

Π++
yc . Suppose by way of contradiction that W̃ṽ has a regular nice labeling λ. Since W̃ṽ has

only a finite number of isomorphism types of labeled filters, the vertical path P+
c contains

two 0-vertices, z̃′ and z̃′′, which have isomorphic labeled principal filters. Let z̃′ be the end
of the vertical subpath ck of P+

c and z̃′′ be the end of the vertical subpath cm of P+
c , and

suppose without loss of generality that k < m. Let n > 0 be a positive integer such that
m ≤ 2n − 1. Consider the horizontal convex paths Mn(k) and Mn(m) of Π++

yc of length
n beginning at the vertices z̃′ and z̃′′, respectively. For any 0 ≤ i ≤ n, denote by z̃k,i the
ith vertex of Mn(k) (in particular, z̃k,0 = z̃′). Analogously, denote by z̃m,i the ith vertex
of Mn(m) (in particular, z̃m,0 = z̃′′). In W̃ṽ, the paths Mn(k) and Mn(m) give rise to two
convex horizontal paths M∗n(k) and M∗n(m) obtained from Mn(k) and Mn(m) by subdividing
their edges. Denote by ũk,i the unique common neighbor of z̃k,i and z̃k,i+1, 0 ≤ i < n, in

ICALP 2017

101:12 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

M∗n(k) (and in W̃ (1)). Analogously, denote by ũm,i the unique common neighbor of z̃m,i and
z̃m,i+1, 0 ≤ i < n. The paths M∗n(k) and M∗n(m) belong to the principal filters Fõ∗(z̃′, W̃ (1))
and Fõ∗(z̃′′, W̃ (1)), respectively.

By Proposition 10, the words Mn(k) and Mn(m) are different. Let f be an isomorphism
between the filters Fõ∗(z̃k,0, W̃ (1)) and Fõ∗(z̃m,0, W̃ (1)). Since the words Mn(k) and Mn(m)
are different, from the choice of the lengths of tips in the complexes W and W̃ it follows
that f cannot map the path M∗n(k) to the path M∗n(m) by a vertical translation, i.e., there
exists an index 0 ≤ j < n such that f(z̃k,j+1) 6= z̃m,j+1; let i be the smallest such index.
Set z̃ := f(z̃k,i+1) and ũ := f(ũk,i). Since f preserves the types of vertices, z̃ is a 0-vertex
and ũ is a 1-vertex. Since f maps a convex path M∗n(k) to a convex path, ũ is the unique
common neighbor of z̃m,i and z̃. Since each 1-vertex is the barycenter of a unique edge
of X̃ and z̃ 6= z̃m,i+1, we deduce that ũ 6= ũm,i. The edge z̃k,iũk,i is directed from z̃k,i
to ũk,i. Analogously the edges z̃m,iũm,i and z̃m,iũ are directed from z̃m,i to ũm,i and ũ,
respectively. Since z̃k,iũk,i and z̃m,iũm,i are parallel edges, they define the same event and
therefore λ(z̃k,iũk,i) = λ(z̃m,iũm,i). On the other hand, since f maps the edge z̃k,iũk,i to
the edge z̃m,iũ and the map f preserves the labels, we have λ(z̃k,iũk,i) = λ(z̃m,iũ). As a
result, z̃m,i has two outgoing edges, z̃m,iũm,i and z̃m,iũ, having the same label, contrary to
the assumption that λ is a nice labeling. This contradiction shows that (W̃ṽ,≺õ∗) does not
admit a regular nice labeling. This concludes the proof of the theorem. J

I Proposition 13. Wise’s event domain (W̃ṽ,≺õ∗) has bounded \-cliques.

6 Conclusions and open questions

In this paper, we presented an example of a regular event domain W̃ṽ with bounded degree
and bounded \-cliques which does not admit a regular nice labeling. Consequently, the
domain W̃ṽ is not recognizable and the prime event structure whose domain is W̃ṽ is not a
regular trace event structure. This provides a counterexample to Conjecture 1 of Thiagarajan
and Conjecture 2 of Badouel, Darondeau, and Raoult.

The event domain W̃ṽ is a 2-dimensional CAT(0) cube complex. The proof that our
example W̃ṽ does not admit a regular nice labeling strongly uses the fact that the universal
cover X̃ of Wise’s complex X [32] contains a particular aperiodic tiled plane (that is called
antitorus by Wise). We think that the relationship between the existence of aperiodic planes
and nonexistence of regular labelings is more general. As observed by Kari and Papasoglu [14],
any 4-way deterministic tile-set gives rise to a CAT(0) VH-complex that is the universal cover
of a finite NPC complex. In [14], they presented a 4-way deterministic aperiodic tile-set TKP ,
i.e., all tilings of R2 using tiles from TKP are aperiodic. Based on this result, Lukkarila [15]
proved that for 4-way deterministic tile-sets the tiling problem is undecidable. We conjecture
that one can use this result to show that deciding if a regular event domain admits a regular
nice labeling is undecidable. As a first step in this direction, our proof can be adapted to
show that any 4-way deterministic aperiodic tile-set T (in particular, TKP) also provides a
counterexample to Conjectures 1 and 2.

Even if Conjecture 1 does not hold in general, it would be interesting to exhibit classes
of event structures for which this conjecture is true. Badouel et al. [2] showed that both
conjectures hold for context-free domains. Context-free graphs are particular Gromov-
hyperbolic graphs. An interesting challenge would be to establish Conjecture 1 for Gromov-
hyperbolic domains. A positive answer would settle the previous undecidability question.
As we noticed already, Conjecture 1 was positively solved by Nielsen and Thiagarajan [20]
for conflict-free event structures. A possible way to extend their result is to consider this

J. Chalopin and V. Chepoi 101:13

conjecture for confusion-free domains introduced by Nielsen et al. [18]. From geometric
and combinatorial points of view, context-free and conflict-free domains have quite different
structural properties and give rise to different kinds of CAT(0) cube complexes. For instance,
in context-free domains (and more generally, hyperbolic domains), isometric square-grids are
bounded while conflict-free domains can contain arbitrarily large square-grids.

Acknowledgements. We are grateful to P. S. Thiagarajan for some email exchanges on
Conjecture 1 and paper [20] and to our colleague R. Morin for several useful discussions.

References
1 F. Ardila, M. Owen, and S. Sullivant. Geodesics in CAT(0) cubical complexes. Adv. Appl.

Math., 48(1):142–163, 2012.
2 E. Badouel, Ph. Darondeau, and J.-C. Raoult. Context-free event domains are recognizable.

Inf. Comput., 149(2):134–172, 1999.
3 H.-J. Bandelt and V. Chepoi. Metric graph theory and geometry: a survey. In J. E. Good-

man, J. Pach, and R. Pollack, editors, Surveys on Discrete and Computational Geometry:
Twenty Years Later, volume 453 of Contemp. Math., pages 49–86. AMS, Providence, RI,
2008.

4 H.-J. Bandelt and J. Hedlíková. Median algebras. Discr. Math., 45(1):1–30, 1983.
5 J.-P. Barthélemy and J. Constantin. Median graphs, parallelism and posets. Discr. Math.,

111(1-3):49–63, 1993.
6 M.A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, University of Sussex,

1987.
7 M.R. Bridson and A. Haefliger. Metric Spaces of Non-Positive Curvature, volume 319 of

Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1999.
8 J. Chalopin and V. Chepoi. A counterexample to Thiagarajan’s conjecture. arXiv preprint,

2016. URL: https://arxiv.org/abs/1605.08288, arXiv:1605.08288.
9 V. Chepoi. Graphs of some CAT(0) complexes. Adv. Appl. Math., 24(2):125–179, 2000.

10 V. Chepoi. Nice labeling problem for event structures: a counterexample. SIAM J. Comput.,
41(4):715–727, 2012.

11 D.Ž. Djoković. Distance-preserving subgraphs of hypercubes. J. Comb. Theory, Ser. B,
14(3):263–267, 1973.

12 M. Gromov. Hyperbolic groups. In S.M. Gersten, editor, Essays in group theory, volume 8
of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.

13 A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge„ 2002.
14 J. Kari and P. Papasoglu. Deterministic aperiodic tile sets. GAFA, Geom. Funct. Anal.,

9(2):353–369, 1999.
15 V. Lukkarila. The 4-way deterministic tiling problem is undecidable. Theor. Comput. Sci.,

410(16):1516–1533, 2009.
16 R. Morin. Concurrent automata vs. asynchronous systems. In MFCS 2005, volume 3618

of LNCS, pages 686–698. Springer, 2005.
17 D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order

logic. Theor. Comput. Sci., 37:51–75, 1985.
18 M. Nielsen, G.D. Plotkin, and G. Winskel. Petri nets, event structures and domains, part

I. Theor. Comput. Sci., 13:85–108, 1981.
19 M. Nielsen, G. Rozenberg, and P. S. Thiagarajan. Transition systems, event structures and

unfoldings. Inf. Comput., 118(2):191–207, 1995.
20 M. Nielsen and P. S. Thiagarajan. Regular event structures and finite Petri nets: the

conflict-free case. In ICATPN 2002, volume 2360 of LNCS, pages 335–351. Springer, 2002.

ICALP 2017

https://arxiv.org/abs/1605.08288
http://arxiv.org/abs/1605.08288

101:14 A Counterexample to Thiagarajan’s Conjecture on Regular Event Structures

21 M. Roller. Poc sets, median algebras and group actions. Technical report, Univ. of
Southampton, 1998.

22 B. Rozoy and P. S. Thiagarajan. Event structures and trace monoids. Theor. Comput. Sci.,
91(2):285–313, 1991.

23 M. Sageev. Ends of group pairs and non-positively curved cube complexes. Proc. London
Math. Soc., s3-71(2):585–617, 1995.

24 M. Sageev. CAT(0) cube complexes and groups. In M. Bestvina, M. Sageev, and K. Vogt-
mann, editors, Geometric Group Theory, volume 21 of IAS/Park City Mathematics Series,
pages 6–53. AMS, Institute for Advanced Study, 2012.

25 E.W. Stark. Connections between a concrete and an abstract model of concurrent systems.
In Mathematical Foundations of Programming Semantics 1989, volume 442 of LNCS, pages
53–79. Springer, 1989.

26 P. S. Thiagarajan. Regular trace event structures. Technical Report BRICS RS-96-32,
Computer Science Department, Aarhus University, Aarhus, Denmark, 1996.

27 P. S. Thiagarajan. Regular event structures and finite Petri nets: A conjecture. In Formal
and Natural Computing, volume 2300 of LNCS, pages 244–256. Springer, 2002.

28 P.M. Winkler. Isometric embedding in products of complete graphs. Discr. Appl. Math.,
7(2):221–225, 1984.

29 G. Winskel. Events in computation. PhD thesis, Edinburgh Univ., 1980.
30 G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, Dov M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science (Vol. 4), pages 1–148.
Oxford University Press, 1995.

31 D.T. Wise. Non-positively curved squared complexes, aperiodic tilings, and non-residually
finite groups. PhD thesis, Princeton University, 1996.

32 D.T. Wise. Complete square complexes. Comment. Math. Helv, 82(4):683–724, 2007.
33 D.T. Wise. From Riches to Raags: 3-manifolds, Right-angled Artin Groups, and Cubi-

cal Geometry, volume 117 of CBMS Regional Conference Series in Mathematics. AMS,
Providence, RI, 2012.

?-Liftings for Differential Privacy∗†

Gilles Barthe1, Thomas Espitau2, Justin Hsu3, Tetsuya Sato4, and
Pierre-Yves Strub5

1 IMDEA Software Institute, Madrid, Spain
gjbarthe@gmail.com

2 Sorbonne Universités, UPMC Paris 6, Paris, France
t.espitau@gmail.com

3 University of Pennsylvania, Philadelphia, PA, USA
email@justinh.su

4 Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
satoutet@kurims.kyoto-u.ac.jp

5 École Polytechnique, Palaiseau, France
pierre-yves@strub.nu

Abstract
Recent developments in formal verification have identified approximate liftings (also known as ap-
proximate couplings) as a clean, compositional abstraction for proving differential privacy. There
are two styles of definitions for this construction. Earlier definitions require the existence of
one or more witness distributions, while a recent definition by Sato uses universal quantification
over all sets of samples. These notions have different strengths and weaknesses: the universal
version is more general than the existential ones, but the existential versions enjoy more precise
composition principles.

We propose a novel, existential version of approximate lifting, called ?-lifting, and show that
it is equivalent to Sato’s construction for discrete probability measures. Our work unifies all
known notions of approximate lifting, giving cleaner properties, more general constructions, and
more precise composition theorems for both styles of lifting, enabling richer proofs of differential
privacy. We also clarify the relation between existing definitions of approximate lifting, and
generalize our constructions to approximate liftings based on f -divergences.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Differential Privacy, Probabilistic Couplings, Formal Verification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.102

1 Introduction

Differential privacy [7] is a rigorous notion of statistical privacy that delivers strong individual
guarantees for privacy-preserving computations. Informally, differential privacy guarantees to
every individual that their (non)-participation in a database will have a small (in a rigorous,
quantitative sense) effect on the results obtained by third parties when querying the database.
The formal definition of differential privacy is parametrized by two non-negative real numbers,
(ε, δ). These parameters quantify the effect of individuals on the output of the private query;

∗ A full version of the paper is available at https://arxiv.org/abs/1705.00133.
† This work is partially supported by a grant from the NSF (TWC-1513694) and a grant from the Simons

Foundation (#360368 to Justin Hsu).

EA
T

C
S

© Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, and Pierre-Yves Strub;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 102; pp. 102:1–102:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.102
https://arxiv.org/abs/1705.00133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

102:2 ?-Liftings for Differential Privacy

smaller values give stronger privacy guarantees. The main strengths of differential privacy
lie in its theoretical elegance, minimal assumptions, and flexibility for many applications.

Motivated by the importance of differential privacy, programming language researchers
have developed approaches based on dynamic analysis, type systems, and program logics
for formally proving differential privacy for programs. (We refer the interested reader to a
recent survey [4] for an overview of this growing field.) In this paper, we consider approaches
based on relational program logics [5, 6, 10, 2, 3, 11]. To capture the quantitative nature
of differential privacy, these systems rely on a quantitative generalization of probabilistic
couplings (see, e.g., [9, 13, 14]), called approximate liftings or (ε, δ)-liftings. Existing works
have considered several potential definitions. While all definitions support compositional
reasoning and enable program logics that can verify complex examples from the privacy
literature, the various notions of approximate liftings have different strengths and weaknesses.

Broadly speaking, one class of definitions require the existence of one or two witness
distributions that “couple’ the two executions of programs. The earliest definition [5] supports
accuracy-based reasoning for the Laplace mechanism, while subsequent definitions [6, 10]
support more precise composition principles from differential privacy and can be generalized
to other notions of distance on distributions. These definitions, and their associated program
logics, were designed for discrete distributions.

In the course of extending these ideas to continuous distributions, Sato [11] proposes a
radically different notion of approximate lifting, which does not rely on witness distributions.
Instead, it uses a universal quantification over all sets of samples. Sato shows that this
definition is strictly more general than the existential versions, but it is unclear (a) whether
the gap can be closed and (b) whether his construction satisfies the same composition
principles enjoyed by some existential definitions.

As a consequence, there is currently no single approximate lifting with the properties
needed to support all existing formalized proofs of differential privacy. Furthermore, some
of the most involved privacy proofs cannot be formalized at all, as their proofs require a
combination of tools from several kinds of approximate liftings.

Outline of the paper

After reviewing the necessary mathematical preliminaries in Section 2, we introduce our
main technical contribution: a new, existential definition of approximate lifting. This
construction, which we call ?-lifting, is a generalization of an existing definition by Barthe
and Olmedo [6, 10]. The key idea is to allow the witness distributions to have a larger
domain, broadening the class of approximate liftings. By a maximum flow/minimum cut
argument, we show that ?-liftings are equivalent to Sato’s lifting over discrete distributions.
This equivalence can be viewed as an approximate version of Strassen’s theorem [12], a
classical result in probability theory describing the existence of probabilistic couplings. We
present the definition of ?-lifting and the proof of equivalence in Section 3.

Then, we show that ?-liftings satisfy desirable theoretical properties. We are able to
leverage the equivalence of liftings in two ways. In one direction, Sato’s definition gives
simpler proofs of more general properties of ?-liftings. In the other direction, ?-liftings –
like other existential definitions – can smoothly incorporate composition principles from the
theory of differential privacy. Our connection shows that Sato’s definition can use these
principles in the discrete case. We describe the key theoretical properties of ?-liftings in
Section 4.

Finally, we provide a thorough comparison of ?-lifting with existing definitions of approx-
imate lifting in Section 5, and describe how to construct ?-liftings for more general version of
approximate liftings based on f -divergences in Section 6.

G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:3

Overall, the equivalence of ?-liftings and Sato’s lifting, along with the natural theoretical
properties satisfied by the common notion, suggest that these definitions are two views on
the same concept: an approximate version of probabilistic coupling.

2 Background

To model probabilistic behavior, we work with discrete sub-distributions.

I Definition 1. A sub-distribution over a set A is defined by its mass function µ : A→ R+,
which gives the probability of the singleton events a ∈ A. This mass function must be s.t.
|µ| 4=

∑
a∈A µ(a) is well-defined and at most 1. In particular, the support supp(µ) 4= {a ∈

A | µ(a) 6= 0} must be discrete (i.e. finite or countably infinite). When the weight |µ| is
equal to 1, we call µ a (proper) distribution. We let D(A) denote the set of sub-distributions
over A. The probability of an event E(x) w.r.t. µ, written Px∼µ[E(x)] or Pµ[E], is defined
as
∑
x∈A|E(x) µ(x).

Simple examples of sub-distributions include the null sub-distribution 0A ∈ D(A), which
maps each element of A to 0, and the Dirac distribution centered on x, written 1x, which
maps x to 1 and all other elements to 0. One can equip distributions with a monadic structure
using the Dirac distributions 1x for the unit and distribution expectation Ex∼µ[f(x)] for
the bind; if µ is a distribution over A and f has type A → D(B), then the bind defines a
sub-distribution over B: Ea∼µ[f(a)] : b 7→

∑
a µ(a) · f(a)(b).

If f : A→ B, we can lift f to a function f] : D(A)→ D(B) as follows: f](µ) 4= Ea∼µ[1f(a)]
– or, equivalently, f](µ) : b 7→ Pa∼µ[a ∈ f−1(b)]. For instance, when working with sub-
distributions over pairs, this allows to obtain the probabilistic versions π]1 and π]2 (called
marginals) of the usual projections π1 and π2. One can check that the first and second
marginals π]1(µ) and π]2(µ) of a distribution µ over A × B are also given by the following
equations: π]1(µ)(a) =

∑
b∈B µ(a, b) and π]2(µ)(b) =

∑
a∈A µ(a, b). When f : A→ D(B), we

will abuse notation and write the lifting f] : D(A)→ D(B) to mean f](µ) 4= Ex∼µ[f(x)].
Finally, if α : A → R+, we write α[X] ∈ R+ ∪ {∞} for

∑
x∈X α(x). Moreover, if

α : A× B → R+, we write α[X,Y] (resp. α[x, Y], α[X, y]) for α[X × Y] (resp. α[{x} × Y ,
α[X × {y}]). Note that for a sub-distribution µ ∈ D(A) and an event E ⊆ A, Pµ[E] = µ[E].

We now review the definition of differential privacy.

I Definition 2 (Dwork et al. [7]). A probabilistic computation M : A → D(B) satisfies
(ε, δ)-differential privacy w.r.t. an adjacency relation φ ⊆ A×A iff for every pair of inputs
a, a′ ∈ A such that a φ a′ and every subset of outputs E ⊆ B,

PM(a)[E] ≤ eε · PM(a′)[E] + δ.

It is useful to define a notion of distance on distributions, reflecting differential privacy.

I Definition 3 (Barthe and Olmedo [5], Barthe et al. [6], Olmedo [10]). Let ε ≥ 0. The ε-DP
divergence ∆ε(µ1, µ2) between two sub-distributions µ1, µ2 ∈ D(B) is defined as

sup
E⊆B

(Pµ1 [E]− eε · Pµ2 [E]) .

Then, differential privacy admits an alternative characterization based on DP divergence.

I Lemma 4. A probabilistic computation M : A→ D(B) satisfies (ε, δ)-differential privacy
w.r.t. an adjacency relation φ ⊆ A × A iff ∆ε(M(a),M(a′)) ≤ δ for every pair of inputs
a, a′ ∈ A such that a φ a′.

ICALP 2017

102:4 ?-Liftings for Differential Privacy

Our new definition of approximate lifting is inspired by a version of approximate liftings
involving two witness distributions, proposed by Barthe and Olmedo [6], Olmedo [10].

I Definition 5 (Barthe and Olmedo [6], Olmedo [10]). Let µ1 ∈ D(A) and µ2 ∈ D(B) be
sub-distributions, ε, δ ∈ R+ and R be a binary relation over A & B. An (ε, δ)-approximate
2-lifting of µ1 & µ2 for R is a pair (µC, µB) of sub-distributions over A×B s.t.
1. π]1(µC) = µ1 and π]2(µB) = µ2;
2. ∆ε(µC, µB) ≤ δ; and
3. supp(µ) ⊆R.
We write µ1 R(2)

ε,δ µ2 if there exists an (ε, δ)-approximate (2-)lifting of µ1 & µ2 for R; the (2)
indicates that there are two witnesses in this definition of lifting.

Combined with Lemma 4, a probabilistic computation M : A→ D(B) is (ε, δ)-differentially
private if and only if for every two adjacent inputs a φ a′, there is an approximate lifting of
the equality relation: M(a) =(2)

ε,δ M(a′).
2-liftings can be generalized by varying the notion of distance given by ∆ε; we will return

to this point in Section 6. These liftings also satisfy useful theoretical properties, but some
of the properties are not as general as we would like. For example, it is known that 2-liftings
satisfy the following mapping property.

I Theorem 6 (Barthe et al. [2]). Let µ1 ∈ D(A1), µ2 ∈ D(A2), f1 : A1 → B1, f2 : A2 → B2
surjective maps and R a binary relation on B1 & B2. Then

f]1(µ1) R(2)
ε,δ f

]
2(µ2) ⇐⇒ µ1 S(2)

ε,δ µ2

where a1 S a2
4⇐⇒ f1(a1) R f2(a2).

This property can be used to pull back an approximate lifting on two distributions
over B1, B2 to an approximate lifting on two distributions over A1, A2. For applications in
program logics, B1, B2 could be the domain of a program variable, A1, A2 could be the set
of memories, and f1, f2 could project a memory to a program variable. While the mapping
theorem is quite useful, it is puzzling why it only applies to surjective maps. For instance,
this theorem cannot be used when the maps f1, f2 embed a smaller space into a larger space.

For another example, there exist 2-liftings of the following form, sometimes called the
optimal subset coupling.

I Theorem 7 (Barthe et al. [2]). Let µ ∈ D(A) and consider two subsets P1 ⊆ P2 ⊆ A.
Suppose that P2 is a strict subset of A. Then, we have the following equivalence:

Pµ[P2] ≤ eε · Pµ[P1] ⇐⇒ µ R(2)
ε,0 µ,

where a1 R a2
4⇐⇒ a1 ∈ P1 ⇐⇒ a2 ∈ P2.

In this construction, it is puzzling why the larger subset P2 must be a strict subset of the
domain A. For example, this theorem does not apply for P2 = A, but we may be able to
construct the approximate lifting if we simply embed A into a larger space B – even though
µ has support over A! Furthermore, it is not clear why the subsets must be nested, nor is it
clear why we can only relate µ to itself.

These shortcomings suggest that the definition of 2-liftings may be problematic. While
the distance condition appears to be the most constraining requirement, the marginal and
support conditions are responsible for the main issues.

G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:5

Witnesses can only use pairs in the relation

For some relations R, there may be elements a such that a R b does not hold for any b, or vice
versa. It can be impossible find witnesses with the correct marginals on these elements, even
if the distance condition can be easily satisfied. For instance, we can sometimes construct a
pair µC and µB satisfying the distance requirement, but where µB needs additional mass to
achieve the marginal requirement for an element b. Adding this mass anywhere preserves the
distance bound, but there may not be an element a such that a R b.

No canonical choice of witnesses

A related problem is that the marginal requirement only constrains one marginal of each
witness distribution. Along the other component, the witnesses may place the mass anywhere
on any pair in the relation. As a result, witnesses to an approximate lifting µ1 R(2)

ε,δ µ2 may
have mass outside of supp(µ1)× supp(µ2), even though it seems that only elements in the
support should be relevant to the lifting.

3 ?-Liftings and Strassen’s Theorem

To improve the theoretical properties of 2-liftings, we propose a simple extension: allow
witnesses to be distributions over a larger set.

I Notation 8. Let A be a set. We write A? for A] {?}.

I Definition 9 (?-lifting). Let µ1 ∈ D(A) and µ2 ∈ D(B) be sub-distributions, ε, δ ∈ R+ and
R be a binary relation over A & B. An (ε, δ)-approximate ?-lifting of µ1 & µ2 for R is a pair
of sub-distributions ηC ∈ D(A×B?) and ηB ∈ D(A? ×B) s.t.
1. π]1(ηC) = µ1 and π]2(ηB) = µ2;
2. supp(ηC|A×B), supp(ηB|A×B) ⊆ R; and
3. ∆ε(ηC, ηB) ≤ δ, where η• is the canonical lifting of η• to A? ×B?.
We write µ1 R

(?)
ε,δ µ2 if there exists an (ε, δ)-approximate lifting of µ1 & µ2 for R.

By adding an element ?, we address both problems discussed at the end of the previous
section. First, for every a ∈ A, witnesses may place mass at (a, ?); for every b ∈ B, witnesses
may place mass at (?, b). Second, ? can serve as a generic element where all mass that lies
outside the supports supp(µ1)× supp(µ2) may be placed, while preserving the marginal and
distance requirements, giving more control over the form of the witnesses.

I Lemma 10. Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions such that µ1 R(?)
ε,δ µ2 . Then,

there are witnesses with support contained in supp(µ1)? × supp(µ2)?.

3.1 Basic Properties
?-liftings satisfy all basic properties satisfied by other notions of lifting. We start by proving
that this new definition of lifting still characterizes differential privacy.

I Lemma 11. A randomized algorithm P : A→ D(B) is (ε, δ)-differentially private for φ iff
for all a1, a2 ∈ A, a1 φ a2 implies P (a1) =(?)

ε,δ P (a2).

The next lemma establishes several other basic properties of ?-liftings: monotonicity, and
closure under relational and sequential composition.

ICALP 2017

102:6 ?-Liftings for Differential Privacy

I Lemma 12.
Let µ1 ∈ D(A), µ2 ∈ D(B), and R be a binary relation over A & B. If µ1 R(?)

ε,δ µ2, then
for any ε′ ≥ ε, δ′ ≥ δ and S ⊇ R, we have µ1 S(?)

ε′,δ′ µ2.
Let µ1 ∈ D(A), µ2 ∈ D(B), µ2 ∈ D(C) and R (resp. S) be a binary relation over A & B

(resp. over B & C). If µ1 R(?)
ε,δ µ2 and µ2 S(?)

ε′,δ′ µ3, then µ1 (S ◦ R)(?)
ε+ε′,δ+eε·δ′ µ3.

For i ∈ {1, 2}, let µi ∈ D(Ai) and ηi : Ai → D(Bi). Let R (resp. S) be a binary relation
over A1 & A2 (resp. over B1 & B2). If µ1 R(?)

ε,δ µ2 for some ε, δ ≥ 0 and for any
(a1, a2) ∈R, η1(a1) S(?)

ε′,δ′ η2(a2) for some ε′, δ′ ≥ 0, then

Eµ1 [η1] S(?)
ε+ε′,δ+δ′ Eµ2 [η2].

3.2 Equivalence with Sato’s Definition
In recent work on verifying differential privacy over general, continuous distributions, Sato [11]
proposes an alternative definition of approximate lifting. In the special case of discrete
distributions, where measurability of events can be forgotten, his definition can be stated as
follows.

I Definition 13 (Sato [11]). Let µ1 ∈ D(A) and µ2 ∈ D(B), R be a binary relation over
A & B and ε, δ ≥ 0. Then, there is an (ε, δ)-approximate lifting of µ1 & µ2 for R if

∀X ⊆ A.µ1[X] ≤ eε · µ2[R(X)] + δ.

Notice that this definition has no witness distributions at all; instead, it uses a universal
quantifier over all subsets. We can show that ?-liftings are equivalent to Sato’s definition in
the case of discrete distributions. This equivalence is reminiscent of Strassen’s theorem from
probability theory, which characterizes the existence of probabilistic couplings.

I Theorem 14 (Strassen [12]). Let µ1 ∈ D(A), µ2 ∈ D(B) be two proper distributions, and
R let be a binary relation over A & B. Then there exists a joint distribution µ ∈ D(A×B)
with support in R such that π]1(µ) = µ1 and π]2(µ) = µ2 if and only if

∀X ⊆ A.µ1[X] ≤ µ2[R(X)].

Our result (Theorem 19) can be viewed as a generalization of Strassen’s theorem to ap-
proximate couplings. The key ingredient in our proof is the max-flow min-cut theorem for
countable networks; we begin by reviewing the basic setting.

I Definition 15 (Flow network). A flow network is a structure ((V,E),>,⊥, c) s.t. N = (V,E)
is a loop-free directed graph without infinite simple path (or rays), > and ⊥ are two distinct
distinguished vertices of N s.t. no edge starts from ⊥ and ends at >, and c : E → R+∪{+∞}
is a function assigning to each edge of N a capacity. The capacity c is extended to V 2 by
assigning capacity 0 to any pair (u, v) s.t. (u, v) /∈ E.

I Definition 16 (Flow). Given a flow network N 4= ((V,E),>,⊥, c), a function f : V 2 → R

is a flow for N iff
1. ∀u, v ∈ V. f(u, v) ≤ c(u, v),
2. ∀u, v ∈ V. f(u, v) = −f(v, u), and
3. ∀u ∈ V. u /∈ {>,⊥} =⇒

∑
v∈V f(u, v) = 0 (Kirchhoff’s Law).

The mass |f | of a flow f is defined as |f | 4=
∑
v∈V f(>, v) ∈ R{∪+∞}.

G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:7

?>

a>1

a>2

a>n

?⊥

b⊥1

b⊥2

b⊥n

> ⊥
ai R bj
⇓
∞

∞

e−ε · µ1(ai)

ω − e−ε|µ1|

µ2(bj)

e−εδ

Figure 1 Flow Network in Theorem 19.

I Definition 17 (Cut). Given a flow network N 4= ((V,E),>,⊥, c), a cut for N is any set
C ⊆ V that partition V s.t. > ∈ V but ⊥ /∈ V . The cut-set E(C) of a cut C is defined
as: {(u, v) ∈ E | u ∈ S, v /∈ S}. The capacity |C| ∈ R+ ∪ {∞} of a cut is defined as
|C| 4=

∑
(u,v)∈E(C) c(u, v).

For flow networks with finitely many vertices an edges, the maximum flow is equal to the
minimum cut. Aharoni et al. [1] consider when this is the case for a countable network. For
the flow networks that we consider in this paper – where there are no infinite directed paths
– equality holds.

I Theorem 18 (Weak Countable Max-Flow Min-Cut). Let N be a network flow. Then,

sup{|f | | f is a flow for N} = inf{|C| | C is a cut for N}

and both the supremum and infimum are reached.

We are now ready to prove an approximate version of Strassen’s theorem, thereby showing
equivalence between ?-liftings and Sato’s liftings.

I Theorem 19. Let µ1 ∈ D(A) and µ2 ∈ D(B), R be a binary relation over A & B and
ε, δ ∈ R+. Then, µ1 R

(?)
ε,δ µ2 iff ∀X ⊆ A.µ1(X) ≤ eε · µ2(R(X)) + δ.

Proof. We only detail the reverse direction. We can assume that A and B are countable; in
the case where A and B are not both countable, we first consider the restriction of µ1 and
µ2 to their respective supports – which are countable sets – and construct witnesses to the
?-lifting. The witnesses can then be extended to a coupling of µ1 and µ2 by adding a null
mass to the extra points.

Let ω 4= |µ2|+ e−ε · δ and let > and ⊥ be fresh symbols. For any set X, define X> and
X⊥ resp. as {x> | x ∈ X} and {x⊥ | x ∈ X}. Let N be the flow network of Figure 1 whose
resp. source and sink are > and ⊥, whose set of vertices V is {>,⊥}] (A?)>] (B?)⊥, and
whose set of edges E is E>] E⊥] ER] E? with

E>
4= {> 7→µ1(a) a

> | a ∈ A} E⊥
4= {b⊥ 7→e−εµ2(b) ⊥ | b ∈ B}

ER
4= {a> 7→∞ b⊥ | a R b ∨ a = ? ∨ b = ?} E?

4= {> 7→(ω−e−ε|µ1|) ?
>, ?⊥ 7→e−εδ ⊥}.

Let C be a cut of N – in the following, we use C independently for the cut C and its cut-set
E(C). We check |C| ≥ ω. If C ∩ ER 6= ∅ then |C| = ∞. Note that C ∩ E? = ∅ implies
C ∩ ER 6= ∅. If (>, ?>) ∈ C and (⊥, ?⊥) /∈ C then we must have E> ⊆ C. This implies that
|C| ≥ ω since E>] {(>, ?>)} is a cut with capacity ω. If (>, ?>) /∈ C and (⊥, ?⊥) ∈ C then

ICALP 2017

102:8 ?-Liftings for Differential Privacy

we have |C| ≥ ω in the similar way as above. Otherwise (i.e. C ∩ ER = ∅ and E? ⊆ C),
for C to be a cut, we must have R(A − A†) ⊆ B† where A† 4= {x ∈ A | (>, x>) ∈ C} and
B†

4= {y ∈ B | (y⊥,⊥) ∈ C}. Thus,

|C| = e−ε · µ1[A†] + µ2[B†] + |E?|
≥ e−ε · µ1[A†] + µ2[R(A − A†)] + e−ε · δ + (ω − e−ε · |µ1|)
≥ e−ε · (µ1[A†] + µ1[A − A†]) + ω − e−ε · |µ1| = ω.

Hence, E>] {(?⊥,⊥)} is a minimum cut with capacity ω. By Theorem 18, we obtain a
maximum flow f with mass ω. Note that the flow f saturates the capacity of all edges
in E>, E⊥, and E?. Let f̂ : (a, b) ∈ A? × B? 7→ f(a>, b⊥). We now define the following
distributions:

ηC : A×B? → R+

(a, b) 7→ eε · f̂(a, b)
ηB : A? ×B → R+

(a, b) 7→ f̂(a, b).

We clearly have π]1(ηC) = µ1 and π]2(ηB) = µ2. Moreover, by construction of the flow
network N , supp(f̂|A×B) ⊆ R. Hence, supp(ηC|A×B), supp(ηB|A×B) ⊆ R. It remains to
show that ∆ε(ηC, ηB) ≤ δ. Let X be a subset of A? × B?. Let Xa

4= {a ∈ A | (a, ?) ∈ X},
Xb

4= {b ∈ B | (?, b) ∈ X} and X 4= X ∩ (A×B). Then,

ηC[X]− eε · ηB[X] = eε
(
f̂ [X] + f̂ [Xa × {?}]

)
− eε

(
f̂ [X] + f̂ [{?} ×Xb]

)
≤ eε · f̂ [Xa × {?}] ≤ eε · f̂ [A× {?}] = δ.

The last equality holds by Kirchhoff’s law: f̂ [A × {?}] =
∑
a∈A f(a>, ?⊥) = f(?⊥,⊥) =

e−ε · δ. J

4 Properties of ?-Liftings

Our main theorem can be used to show a variety of natural properties of ?-liftings. To begin,
we can generalize the mapping property from Theorem 6, lifting the requirement that the
maps must be surjective.

I Lemma 20. Let µ1 ∈ D(A1), µ2 ∈ D(A2), f1 : A1 → B1, f2 : A2 → B2 and R a binary
relation on B1 & B2. Let S such that a1 S a2

4⇐⇒ f1(a1) R f2(a2). Then

f]1(µ1) R(?)
ε,δ f

]
2(µ2) ⇐⇒ µ1 S(?)

ε,δ µ2.

Similarly, we can generalize the existing rules for up-to-bad reasoning (cf. Barthe et al. [2,
Theorem 13]), which restrict the post-condition to be equality. There are two versions: the
conditional event is either on the left side, or the right side. Note that the resulting index δ
are different in the two cases.

I Lemma 21. Let µ1 ∈ D(A), µ2 ∈ D(B), θ ⊆ A and R ⊆ A × B. Assume that
µ1 (θC =⇒ R)(?)

ε,δ µ2 for some parameters ε, δ ≥ 0. Then, µ1 R(?)
ε,δ

µ2, where δ
4= δ + µ1[θ].

I Lemma 22. Let µ1 ∈ D(A), µ2 ∈ D(B), θ ⊆ B and R ⊆ A × B. Assume that
µ1 (θB =⇒ R)(?)

ε,δ µ2 for some parameters ε, δ ≥ 0. Then, µ1 R(?)
ε,δ

µ2, where δ
4= δ+ eε ·µ2[θ].

G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:9

As a consequence, an approximately lifted relation can be conjuncted with a one-sided
predicate if the δ parameter is increased. This principle is useful for constructing approximate
liftings that express accuracy bounds: when θa,C is an event that happens with high
probability, we can assume that θa,C holds if we increase the δ parameter of the approximate
lifting.

I Lemma 23. Let µ1 ∈ D(A), µ2 ∈ D(B), θa ⊆ A, θb ⊆ B and R ⊆ A × B. Assume that
µ1 R(?)

ε,δ µ2. Then, µ1 (θa,C∧ R)(?)
ε,δa

µ2 and µ1 (θb,B∧ R)(?)
ε,δb

µ2 where δa
4= δ + µ1[θa] and

δb
4= δ + eε · µ2[θb].

?-liftings also support a significant generalization of optimal subset coupling. Unlike the
known construction for 2-liftings (Theorem 7), the two subsets need not be nested, and either
subset may be the entire domain. Furthermore, the distributions µ1, µ2 need not be the
same, or even have the same domain. Finally, the equivalence is valid for any parameters
(ε, δ), not just δ = 0.

I Theorem 24 (Barthe et al. [2]). Let µ1 ∈ D(A1), µ2 ∈ D(A2) and consider two subsets
P1 ⊆ A1, P2 ⊆ A2. Then, we have the following equivalence:

Pµ1 [P1] ≤ eε · Pµ2 [P2] + δ ∧ Pµ1 [A1 − P1] ≤ eε · Pµ2 [A2 − P2] + δ ⇐⇒ µ1 R(?)
ε,δ µ2,

where a1 R a2
4⇐⇒ a1 ∈ P1 ⇐⇒ a2 ∈ P2.

Proof. Immediate by Theorem 19. J

Finally, we can directly extend known composition theorems from differential privacy
to ?-liftings. This connection is quite useful for lifting existing results from the privacy
literature–which can be quite sophisticated – to approximate liftings.

I Lemma 25. Pose R+
2
4= R+ × R+ and let (R+

2)∗ be the set of finite sequences over R+
2 .

Let r : (R+
2)∗ → R+

2 be a DP-composition operator, i.e. r is an operator such that for any
sets A,D and family {fi : D × A → D(A)}i<n of functions, if for every a ∈ A and i < n,
fi(−, a) : D → D(A) is (εi, δi)-differentially private for some parameters εi, δi ≥ 0 and fixed
adjacency relation φ, then, for any a ∈ A, F (−, a) is (ε∗, δ∗)-differentially private for φ,
where F : (d, a) 7→ (©i<n (fi(d,−))])(1a) is the the n-fold composition of the [fi]i<n and
(ε∗, δ∗) 4= r([(εi, δi)]i<n).

Let n ∈ N and assume given two families of sets {Ai}i≤n and {Bi}i≤n, together with a
family of binary relations {R(i) ⊆ Ai × Bi}i≤n. Fix two families of functions {gi : Ai →
D(Ai+1)}i<n and {hi : Bi → D(Bi+1)}i<n s.t. for any i < n and (a, b) ∈ R(i) we have:
1. gi(a) R(i+ 1)(?)

εi,δi
hi(b) for some parameters εi, δi ≥ 0, and

2. gi(a) and hi(b) are proper distributions.
Then, for (a0, b0) ∈ R0, there exists a ?-lifting

G(a0) R(n)(?)
ε∗,δ∗ H(b0)

where (ε∗, δ∗) 4= r([(εi, δi)]i<n), and G : A0 → D(An) and H : B0 → D(Bn) are the
n-fold compositions of [gi]i≤n and [hi]i≤n respectively – i.e. G(a) 4= (©i<n g]i)(1a) and
H(b) 4= (©i<n h

]
i)(1b).

For some of the more sophisticated composition results (notably, the advanced composition
theorem by Dwork et al. [8]), Lemma 25 is not quite strong enough and requires a slight
adaptation of the notion of ?-lifting. We refer to the full version of the paper for more details.

ICALP 2017

102:10 ?-Liftings for Differential Privacy

5 Comparison with Existing Approximate Liftings

Now that we have seen ?-liftings, we briefly consider other definitions of approximate liftings.
We have already seen 2-liftings, which involve two witnesses (Definition 5). Evidently,
?-liftings strictly generalize 2-liftings.

I Theorem 26. For all binary relations R over A & B and parameters ε, δ ≥ 0, we have
R(2)
ε,δ⊆R

(?)
ε,δ . There exist relations and parameters where the inclusion is strict.

Proof. The inclusion R(2)
ε,δ⊆R

(?)
ε,δ is immediate. We have a strict inclusion R(2)

ε,δ(R
(?)
ε,δ even for

δ = 0 by considering the optimal subset coupling from Theorem 7. Consider a distribution µ
over set A, and let P1 ⊆ P2 = A. There is an (ε, 0)-approximate ?-lifting (by Theorem 24),
but a (ε, 0)-approximate 2-lifting does not exist if µ has non-zero mass outside of P1: the first
witness µC must place non-zero mass at (a1, a2) with a1 /∈ P1 in order to have π]1(µC) = µ,
but we must have a2 /∈ P2 for the support requirement, and there is no such a2. J

It is more interesting to compare ?-liftings with the original definitions of (ε, δ)-approximate
lifting, by Barthe et al. [5]. They introduce two notions, a symmetric lifting and an asym-
metric lifting, each using a single witness distribution. We will focus on the asymmetric
version.

I Definition 27 (Barthe et al. [5]). Let µ1 ∈ D(A) and µ2 ∈ D(B) be sub-distributions,
ε, δ ∈ R+ and R be a binary relation over A & B. An (ε, δ)-approximate 1-lifting of µ1 & µ2
for R is a sub-distribution µ ∈ D(A×B) s.t.
1. π]1(µ) ≤ µ1 and π]2(µ) ≤ µ2;
2. ∆ε(µ1, π

]
1(µ)) ≤ δ; and

3. supp(µ) ⊆R.
In the first point we take the point-wise order on sub-distributions: if µ and µ′ are sub-
distributions over X, then µ ≤ µ′ when µ(x) ≤ µ′(x) for all x ∈ X. We will write µ1 R(1)

ε,δ µ2
if there exists an (ε, δ)-approximate 1-lifting of µ1 & µ2 for R; the (1) indicates that there is
one witness for this lifting.

1-liftings bear a close resemblance to probabilistic couplings from probability theory, which
also have a single witness. However, 1-liftings are less well-understood theoretically than
2-liftings – basic properties such as mapping (Theorem 20) are not known to hold; the subset
coupling (Theorem 7) is not known to exist.

Somewhat surprisingly, 1-liftings are equivalent to ?-liftings (and hence by Theorem 19,
also to Sato’s approximate lifting).

I Theorem 28. For all binary relations R over A & B and parameters ε, δ ≥ 0, we have
R(1)
ε,δ=R(?)

ε,δ .

6 ?-Lifting for f-Divergences

The definition of ?-lifting can be extended to lifting constructions based on general f -
divergences, as previously proposed by Barthe and Olmedo [6], Olmedo [10]. Roughly, a
f -divergence a function ∆f (µ1, µ2) that measures the difference between two probability
distributions µ1 and µ2. Much like we generalized their definition for (ε, δ)-liftings, we can
define ?-lifting with f -divergences. Before going any further, let us first define formally
f -divergences. We denote by F the set of non-negative convex functions vanishing at 1:
F = {f : R+ → R+ | f(1) = 0}. We also adopt the following notational conventions:
0 · f(0/0) 4= 0, and 0 · f(x/0) 4= x · limt→0+ t · f(1/t); we write Lf for the limit.

G. Barthe, T. Espitau, J. Hsu, T. Sato, and P.-Y. Strub 102:11

I Definition 29. Given f ∈ F , the f -divergence ∆f (µ1, µ2) between two distributions µ1
and µ2 in D(A) is defined as:

∆f (µ1, µ1) =
∑
a∈A

ν(a)f
(
µ1(a)
µ2(a)

)
.

Examples of f -divergences include statistical distance (f(t) = 1
2 |t− 1|), Kullback-Leibler

divergence (f(t) = ln(t)− t+ 1), and Hellinger distance (f(t) = 1
2 (
√
t− 1)2).

I Definition 30 (?-lifting for f -divergences). Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions,
R be a binary relation over A & B, and f ∈ F . An (f ; δ)-approximate lifting of µ1 & µ2 for
R is a pair of distributions ηC ∈ D(A×B?) and ηB ∈ D(A? ×B) s.t.

π]1(ηC) = µ1 and π]2(ηB) = µ2;
supp(ηC|A×B), supp(ηB|A×B) ⊆R; and
∆f (ηC, ηB) ≤ δ,

where η• is the canonical lifting of η• to A? ×B?. We will write: µ1 R
(?)
f ;δ µ2 if there exists

an (f ; δ)-approximate lifting of µ1 & µ2 for R.

?-liftings for f -divergences compose sequentially.

I Lemma 31. Suppose f has divergence statistical distance, Kullback-Leibler, or Hellinger
distance. For i ∈ {1, 2}, let µi ∈ D(Ai) and ηi : Ai → D(Bi). Let R (resp. S) be a binary
relation over A1 & A2 (resp. over B1 & B2). If µ1 R(?)

f ;δ µ2 for some δ ≥ 0 and for any
(a1, a2) ∈R we have η1(a1) S(?)

f ;δ′ η2(a2) for some δ′ ≥ 0, then

Eµ1 [η1] S(?)
f ;δ+δ′ Eµ2 [η2].

Much like the ?-liftings we saw before, ?-liftings for f -divergences have witness distribu-
tions with support determined by the support of µ1 and µ2 (cf. Lemma 10).

I Lemma 32. Let µ1 ∈ D(A) and µ2 ∈ D(B) be distributions such that µ1 R
(?)
f ;δ µ2 . Then,

there are witnesses with support contained in supp(µ1)? × supp(µ2)?.

Finally, the mapping property from Lemma 20 holds also for these ?-liftings. While the
proof of Lemma 20 relies on the equivalence for Sato’s definition, there is no such equivalence
(or definition) for general f -divergences. Therefore, we must work directly with the witnesses
of the approximate lifting.

I Lemma 33. Let µ1 ∈ D(A1), µ2 ∈ D(A2), g1 : A1 → B1, g2 : A2 → B2 and R a binary
relation on B1 & B2. Let S such that a1 S a2

4⇐⇒ g1(a1) R g2(a2). Then

g]1(µ1) R(?)
f ;δ g

]
2(µ2) ⇐⇒ µ1 S(?)

f ;δ µ2.

7 Conclusion

We have proposed a new definition of approximate lifting that unifies existing constructions
and satisfies an approximate variant of Strassen’s theorem. Our notion is useful both to
simplify the soundness proof of existing program logics and to strengthen some of their proof
rules. We see at least two important directions for future work. First, adapting existing
program logics (for instance, apRHL [5]) to use ?-liftings, and formalizing examples that
were out of reach of previous systems. Second, our notion of ?-liftings only applies when
distributions have discrete support. It would be interesting to see if ?-liftings – and the
approximate Strassen’s theorem – can be generalized to the continuous setting.

ICALP 2017

102:12 ?-Liftings for Differential Privacy

Acknowledgments. We thank the anonymous reviewers for their helpful suggestions.

References
1 Ron Aharoni, Eli Berger, Agelos Georgakopoulos, Amitai Perlstein, and Philipp Sprüssel.

The max-flow min-cut theorem for countable networks. J. Comb. Theory, Ser. B, 101(1):1–
17, 2011. doi:10.1016/j.jctb.2010.08.002.

2 Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. Advanced probabilistic couplings for differential privacy. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), Vienna, Austria, 2016. URL:
https://arxiv.org/abs/1606.07143.

3 Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.
Proving differential privacy via probabilistic couplings. In IEEE Symposium on Logic in
Computer Science (LICS), New York, New York, 2016. URL: http://arxiv.org/abs/
1601.05047.

4 Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce. Programming
language techniques for differential privacy. SIGLOG News, 3(1):34–53, 2016. doi:
10.1145/2893582.2893591.

5 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-Béguelin. Probabil-
istic relational reasoning for differential privacy. ACM Transactions on Programming Lan-
guages and Systems, 35(3):9, 2013. URL: http://software.imdea.org/~bkoepf/papers/
toplas13.pdf.

6 Gilles Barthe and Federico Olmedo. Beyond differential privacy: Composition theorems
and relational logic for f -divergences between probabilistic programs. In International
Colloquium on Automata, Languages and Programming (ICALP), Riga, Latvia, volume
7966 of Lecture Notes in Computer Science, pages 49–60. Springer-Verlag, 2013. URL:
http://certicrypt.gforge.inria.fr/2013.ICALP.pdf.

7 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In IACR Theory of Cryptography Conference (TCC),
New York, New York, pages 265–284, 2006. doi:10.1007/11681878_14.

8 Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In
IEEE Symposium on Foundations of Computer Science (FOCS), Las Vegas, Nevada, pages
51–60, 2010. URL: http://research.microsoft.com/pubs/155170/dworkrv10.pdf.

9 Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.
10 Federico Olmedo. Approximate Relational Reasoning for Probabilistic Programs. PhD thesis,

Universidad Politécnica de Madrid, 2014. URL: http://software.imdea.org/~federico/
thesis.pdf.

11 Tetsuya Sato. Approximate relational Hoare logic for continuous random samplings. In
Conference on the Mathematical Foundations of Programming Semantics (MFPS), Pitt-
sburgh, Pennsylvania, volume 325 of Electronic Notes in Theoretical Computer Science,
pages 277–298. Elsevier, 2016. URL: https://arxiv.org/abs/1603.01445.

12 Volker Strassen. The existence of probability measures with given marginals. The Annals of
Mathematical Statistics, pages 423–439, 1965. URL: http://projecteuclid.org/euclid.
aoms/1177700153.

13 Hermann Thorisson. Coupling, Stationarity, and Regeneration. Springer-Verlag, 2000.
14 Cédric Villani. Optimal transport: old and new. Springer-Verlag, 2008.

http://dx.doi.org/10.1016/j.jctb.2010.08.002
https://arxiv.org/abs/1606.07143
http://arxiv.org/abs/1601.05047
http://arxiv.org/abs/1601.05047
http://dx.doi.org/10.1145/2893582.2893591
http://dx.doi.org/10.1145/2893582.2893591
http://software.imdea.org/~bkoepf/papers/toplas13.pdf
http://software.imdea.org/~bkoepf/papers/toplas13.pdf
http://certicrypt.gforge.inria.fr/2013.ICALP.pdf
http://dx.doi.org/10.1007/11681878_14
http://research.microsoft.com/pubs/155170/dworkrv10.pdf
http://software.imdea.org/~federico/thesis.pdf
http://software.imdea.org/~federico/thesis.pdf
https://arxiv.org/abs/1603.01445
http://projecteuclid.org/euclid.aoms/1177700153
http://projecteuclid.org/euclid.aoms/1177700153

Bisimulation Metrics for Weighted Automata∗†

Borja Balle1, Pascale Gourdeau2, and Prakash Panangaden3

1 Department of Mathematics and Statistics, Lancaster University,
Lancaster, UK
b.deballepigem@lancaster.ac.uk

2 School of Computer Science, McGill University, Montreal, Quebec, Canada
pascale.gourdeau@mail.mcgill.ca

3 School of Computer Science, McGill University, Montreal, Quebec, Canada
prakash@cs.mcgill.ca

Abstract
We develop a new bisimulation (pseudo)metric for weighted finite automata (WFA) that gener-
alizes Boreale’s linear bisimulation relation. Our metrics are induced by seminorms on the state
space of WFA. Our development is based on spectral properties of sets of linear operators. In
particular, the joint spectral radius of the transition matrices of WFA plays a central role. We
also study continuity properties of the bisimulation pseudometric, establish an undecidability res-
ult for computing the metric, and give a preliminary account of applications to spectral learning
of weighted automata.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Weighted automata, bisimulation, metrics, spectral theory, learning

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.103

1 Introduction

Weighted finite automata (WFA) form a fundamental computational model that subsumes
probabilistic automata and various other types of quantitative automata. They are much
used in machine learning and natural language processing, and are certainly relevant to
quantitative verification and to the theory of control systems [16]. The theory of minimization
of weighted finite automata goes back to Schützenberger [30] which implicitly exploits duality
as made explicit in [9]. In [6] we began studying approximate minimization of WFA by using
spectral methods. The idea there was to obtain automata for a given weighted language,
smaller than the minimal possible which, of course, means that the automaton constructed
does not exactly recognize the given weighted language but comes “close enough.”

In [6] the notion of proximity to the desired language was captured by an `2 distance.
However, a powerful technique for understanding approximate behavioural equivalence is
by using more general behavioural metrics. In particular, with a behavioural pseudometric
we recover bisimulation as the kernel. Such behavioural metrics for Markov processes were
proposed by Giacalone et al. [20] and the first successful pseudometric that has bisimulation
as its kernel is due to Desharnais et al. [14, 15]; see [28] for an expository account. The
subject was greatly developed by van Breugel and Worrell [32] among others. For WFA,
a beautiful treatment of linear bisimulation relations was given by Boreale [10]. We were

∗ The full version of this paper, including the appendix, can be found at https://arxiv.org/abs/1702.
08017.

† This research has been supported by a grant from NSERC (Canada).

EA
T

C
S

© Borja Balle and Pascale Gourdeau and Prakash Panangaden;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 103; pp. 103:1–103:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.103
https://arxiv.org/abs/1702.08017
https://arxiv.org/abs/1702.08017
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

103:2 Bisimulation Metrics for Weighted Automata

motivated to develop a metric analogue of Boreale’s linear bisimulation with the eventual goal
of using it to analyze approximate minimization. In the present paper we develop the general
theory of bisimulation (pseudo)metrics for WFA (and for weighted languages) deferring the
application to approximate minimization to future work.

It turns out that in the linear algebraic setting appropriate to WFA it is a (semi)norm
rather than a (pseudo)metric that is the fundamental quantity of interest. Indeed, as one
might expect, in a vector space setting norms and seminorms are the natural objects from
which metrics and pseudometrics can be derived. The bisimulation metric that we construct
actually comes from a bisimulation seminorm which is obtained, as usual, using the Banach
fixed-point theorem. Interestingly, we also provide a closed-form expression for the fixed
point bisimulation seminorm and use it to study several of its properties.

Our main contributions are:
1. The construction of bisimulation seminorms and the associated pseudometric on WFA

(Section 3). The existence of the fixed point depends on some delicate applications of
spectral theory, specifically the joint spectral radius of a set of matrices.

2. We obtain metrics on the space of weighted languages from the metrics on WFA (Section 3).
3. We show two continuity properties of the metric; one using definitions due to Jaeger et

al. [24] and the other developed here (Section 4).
4. We show undecidability results for computing our metrics (Section 5).
5. Nevertheless, we show that one can successfully exploit these metrics for applications in

machine learning (Section 6).

The metric of the present paper led naturally to some sophisticated topological and
spectral theory arguments which one would not have anticipated from the treatment of linear
bisimulation in [10].

2 Background

In this section we recall preliminary definitions and results that will be used throughout the
rest of the paper. We assume the reader is familiar with norms and vector spaces; these topics
are reviewed in the appendix [4]. Here we discuss Boreale’s linear bisimulation relations for
weighted automata and provide a short primer on the joint spectral radius of a set of linear
operators.

2.1 Strings and Weighted Automata
Given a finite alphabet Σ we let Σ? denote the set of all finite strings with symbols in Σ and
let Σ∞ denote the set of all infinite strings with symbols in Σ and we write Σω = Σ? ∪ Σ∞.
The length of a string x ∈ Σω is denoted by |x|; |x| =∞ whenever x ∈ Σ∞. Given a string
x ∈ Σω and an integer 0 ≤ t ≤ |x| we write x≤t to denote the prefix containing the first
t symbols from x, with x≤0 = ε. Given an integer t ≥ 0 we will write Σt (resp. Σ≤t) for
the set of all strings with length equal to (resp. at most) t. The reverse of a finite string
x = x1x2 · · ·xt is given by x̄ = xtxt−1 · · ·x1.

We only consider automata with weights in the real field R. We will mostly be concerned
with properties of weighted automata that are invariant under change of basis. Accordingly,
our presentation uses weighted automata whose state space is an abstract real vector space.

A weighted finite automaton (WFA) is a tuple A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 where Σ is a
finite alphabet, V is a finite-dimensional vector space, α ∈ V is a vector representing the
initial weights, β ∈ V ∗ is a linear form representing the final weights, and τσ : V → V is a

B. Balle, P. Gourdeau, and P. Panangaden 103:3

linear map representing the transition indexed by σ ∈ Σ. The vectors in V are called states
of A. We shall denote by n = dim(A) = dim(V) the dimension of A. The transition maps
τσ can be extended to arbitrary finite strings in the obvious way.

A weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 computes the function fA : Σ? → R
(sometimes also referred to as the weighted language in RΣ? recognized by A) given by
fA(x) = β(τx(α)). Given a WFA A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 and a state v ∈ V we define the
weighted automaton Av = 〈Σ, V, v, β, {τσ}σ∈Σ〉 obtained from A by taking v as the initial
state. We call fAv

the function realized by state v. Similarly, give a linear form w ∈ V ∗
we define the weighted automaton Aw = 〈Σ, V, α, w, {τσ}σ∈Σ〉 where the final weights are
replaced by w. The reverse of a weighted automaton A is Ā = 〈Σ, V ∗, β, α, {τ>σ }σ∈Σ〉, where
τ>σ : V ∗ → V ∗ is the transpose of τσ. It is easy to check that the function computed by Ā
satisfies fĀ(x) = fA(x̄) for all x ∈ Σ?.

2.2 Linear Bisimulations

Linear bisimulations for weighted automata were introduced by Boreale in [10]. Here we
recall the key definition and several important facts.

I Definition 1. A linear bisimulation for a weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉
on a vector space V is a linear subspace W ⊆ V satisfying the following two conditions:
1. β(v) = 0 for all v ∈W ; that is, W ⊆ ker(β), and
2. W is invariant by each τσ; that is, τσ(W) ⊆W for all σ ∈ Σ.
Furthermore, two states u, v ∈ V are called W -bisimilar if u− v ∈W .

In particular, the trivial subspace W = {0} is always a linear bisimulation. The notion of
W -bisimilarity induces an equivalence relation on V which we will denote by ∼W . The kernel
of an equivalence relation ∼ on a vector space V is the set of vectors in the equivalence class
of the null vector: ker(∼) = {v ∈ V : v ∼ 0}. It is immediate from the definition that for
any bisimulation relation ∼W we have ker(∼W) = W .

Given a weighted automaton A we say that u, v ∈ V are A-bisimilar if there exists a
bisimulation W for A such that u ∼W v. The corresponding equivalence relation is denoted
by ∼A. Boreale showed in [10] that for every WFA A there exists a bisimulation WA such
that ∼WA

exactly coincides with ∼A, and the bisimulation can be obtained asWA = ker(∼A).
He also showed that WA is in fact the largest linear bisimulation for A in the sense that any
other linear bisimulation W for A must be a subspace of WA. Accordingly, we shall refer to
the relation ∼A and the subspace WA as A-bisimulation.

Note that the subspaces considered in Definition 1 are independent of the initial state α
of A. In fact, A-bisimilarity can be understood as a relation between possible initial states
for A. Indeed, using the definition of ∼A it is immediate to check that for any states u, v ∈ V
we have u ∼A v if and only if fAu

= fAv
. This implies that in a WFA where the bisimulation

WA corresponding to ∼A satisfies WA = {0} every state realizes a different function. Such
an automaton is called observable. A weighted automaton is called reachable if the reverse
Ā is observable.

A weighted automaton A is minimal if for any other weighted automaton A′ over the
same alphabet such that fA = fA′ we have dim(A) ≤ dim(A′). It is also shown in [10] that
linear bisimulations can be used to characterize minimality, in the sense that A is minimal if
and only if it is observable and reachable.

ICALP 2017

103:4 Bisimulation Metrics for Weighted Automata

2.3 Joint Spectral Radius
The joint spectral radius of a set of linear operators is a natural generalization of the spectral
radius of a single linear operator. The joint spectral radius and several equivalent notions
have been thoroughly studied since the 1960’s. These radiuses arise in many fundamental
problems in operator theory, control theory, and computational complexity. See [25] for an
introduction to their properties and applications. Here we recall the basic definitions and
some important facts related to quasi-extremal norms.

I Definition 2. The joint spectral radius of a collection M = {τi}i∈I of linear maps τi : V →
V on a normed vector space (V, ‖ · ‖) is defined as

ρ(M) = lim sup
t→∞

(
sup
T∈It

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

= lim
t→∞

(
sup
T∈It

∥∥∥∥∥∏
i∈T

τi

∥∥∥∥∥
)1/t

.

The second equality above is a generalization of Gelfand’s formula for the spectral radius
of a single operator due to Daubechies and Lagarias [11, 12]. An important fact about the
joint spectral radius is that ρ(M) is independent of the norm ‖ · ‖, i.e. one obtains the same
radius regardless of the norm given to the vector space V . The joint spectral radius behaves
nicely with respect to direct sums, in the sense that given two sets of operators M = {τi}i∈I
and M ′ = {τ ′i}i∈I , then ρ({τi ⊕ τ ′i}i∈I) = max{ρ(M), ρ(M ′)}.

The notion of joint spectral radius can be readily extended to weighted automata. Let
A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton with states on a normed vector space
(V, ‖ · ‖). Then the spectral radius of A is defined as ρ(A) = ρ(M) where M = {τσ}σ∈Σ. In
this case the definition above can be rewritten as

ρ(A) = lim
t→∞

(
sup
x∈Σt

‖τx‖
)1/t

.

Now we discuss several fundamental properties of the joint spectral radius that will play a
role in the rest of the paper. Like in the case of the classic spectral radius, the joint spectral
radius is upper bounded by the norms of the operators in M : ρ(M) ≤ supi∈I ‖τi‖. Obtaining
lower bounds for ρ(M) is a major problem directly related to the hardness of computing
approximations to ρ(M). An approach often considered in the literature is to search for
extremal norms. A norm ‖ · ‖ on V is extremal for M if the corresponding induced norm
satisfies ‖τi‖ ≤ ρ(M) for all i ∈ I. This immediately implies that given an extremal norm for
M we have ρ(M) = supi∈I ‖τi‖. Conditions on M guaranteeing the existence of an extremal
norm have been derived by Barabanov and others; see [33] and references therein. However,
most of these conditions are quite technical and algorithmically hard to verify. On the other
hand, if one only insists on approximate extremality, the following result, due to Rota and
Strang, guarantees the existence of such norms for any set of matrices M that is compact
with respect to the topology generated by the operator norm in V .

I Theorem 3 ([29]). Let M = {τi}i∈I be a compact set of linear maps on V . For any η > 0
there exists a norm ‖ · ‖ on V that satisfies ‖τi(v)‖ ≤ (ρ(M) + η)‖v‖ for every i ∈ I and
every v ∈ V .

The statement above is in fact a special case of Proposition 1 in [29]; a proof for finite sets
M can be found in [8]. An important result due to Barabanov [7] states that the function
M 7→ ρ(M) defined on compact sets of operators is continuous (see also [22]). Another result
that we will need was again proved by Barbanov in [7] and it states that if M is a bounded

B. Balle, P. Gourdeau, and P. Panangaden 103:5

set of linear operators and M̄ denotes its closure then ρ(M) = ρ(M̄). Note that if M is
bounded then its closure M̄ is compact by the Heine–Borel theorem.

A special case which makes the joint spectral radius easier to work with is when the
set of matrices M is irreducible. A set of linear maps M is called irreducible if the only
subspaces W ⊆ V such that τi(W) ⊆ W for all i ∈ I are W = {0} and W = V . If there
exists a non-trivial subspace W ⊂ V invariant by all τi we say that M is reducible. In fact,
almost all sets of matrices are irreducible in following sense. The Hausdorff distance between
two sets of linear maps M and M ′ on the same normed vector space (V, ‖ · ‖) is given by

dH(M,M ′) = max
{

sup
τ∈M

inf
τ ′∈M ′

‖τ − τ ′‖, sup
τ ′∈M ′

inf
τ∈M
‖τ − τ ′‖

}
.

It is possible to show that irreducible sets of matrices are dense among compact sets of
matrices with respect to the topology induced by the Haussdorff distance. Furthermore,
Wirth showed in [33] that the joint spectral radius is locally Lipschitz continuous around
irreducible sets of matrices with respect to the Hausdorff topology (see also [26] for explicit
expressions for the Lipschitz constants). This can be seen as an extension of Barabanov’s
continuity result providing extra information about the behaviour of the function M 7→ ρ(M).

Again, the concept of irreducibility can be readily extended to WFA. We say that the
weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 is irreducible if M = {τσ}σ∈Σ is irreducible.
This concept will play a role in Section 6. The following result provides a characterization
of irreducibility for weighted automata in terms of minimality. In particular, the result
shows that irreducibility is a stronger condition than minimality. A proof is provided in the
appendix [4].

I Theorem 4. A weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 is irreducible if and only if
Awv is minimal for all v ∈ V and w ∈ V ∗ with v 6= 0 and w 6= 0.

3 Bisimulation Seminorms and Pseudometrics for WFA

In the same way that the largest bisimulation relation in many settings can be obtained
as a fixed point of a certain operator on equivalence relations, a possible way to define
bisimulation (pseudo)metrics is via a similar fixed-point construction. See [17] for an example
in the case of Markov decision processes. In this section, the fixed-point construction is used
to obtain a bisimulation seminorm on states of a given WFA. Given two WFA we can build
their difference automaton A and compute the corresponding seminorm of the initial state of
A. This construction yields a bisimulation pseudometric between weighted automata.

Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton over the vector space V . Let S
denote the set of all seminorms on V . Given γ > 0 we define the map FA,γ : S → S between
seminorms given by

FA,γ(s)(v) = |β(v)|+ γmax
σ∈Σ

s(τσ(v)) . (1)

Note that this definition is independent of the initial state α, as is the linear bisimulation for
A described in Section 2.2. In the sequel we shall write F instead of FA,γ whenever A and γ
are clear from the context.

To verify that F : S → S is well defined we must check that the image F (s) of any
seminorm s is also a seminorm. Absolute homogeneity is immediate by the linearity of β

ICALP 2017

103:6 Bisimulation Metrics for Weighted Automata

and τσ and the absolute homogeneity of s. For the subadditivity we have

F (s)(u+ v) = |β(u+ v)|+ γmax
σ∈Σ

s(τσ(u+ v))

= |β(u) + β(v)|+ γmax
σ∈Σ

s(τσ(u) + τσ(v))

≤ |β(u)|+ |β(v)|+ γmax
σ∈Σ

(s(τσ(u)) + s(τσ(v)))

≤ F (s)(u) + F (s)(v) ,

where the last inequality uses subadditivity of the maximum.
To construct bisimulation seminorms for the states of a weighted automaton A we shall

study the fixed points of FA,γ . We start by showing that FA,γ has a unique fixed point
whenever γ is small enough.

I Theorem 5. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. If γ < 1/ρ(A), then FA,γ has a unique fixed
point.

Proof. For simplicity, let F = FA,γ . By the assumption on γ there exists some δ > 0 such
that γ ≤ 1/(ρ(A)+δ). Now takeM = {τσ}σ∈Σ and η = δ/2 and let ‖·‖ be the corresponding
quasi-extremal norm on V obtained from Theorem 3. Using this norm we can endow S
with the metric given by d(s, s′) = sup‖v‖≤1 |s(v)− s′(v)| to obtain a complete metric space
(S, d). To see this, note that for a fixed v with ‖v‖ ≤ 1 the sequence (sn(v)) is Cauchy, hence
convergent. Call this limit s(v); it is straightforward to see that this defines a seminorm.
Thus, if we show that F is a contraction on S with respect to this metric, then by Banach’s
fixed point theorem F has a unique fixed point. To see that F is indeed a contraction we
start by observing that:

d(F (s), F (s′)) = sup
‖v‖≤1

|F (s)(v)−F (s′)(v)| = γ sup
‖v‖≤1

∣∣∣max
σ

s(τσ(v))−max
σ′

s′(τσ′(v))
∣∣∣ . (2)

Fix any v ∈ V with ‖v‖ ≤ 1 and suppose without loss of generality (otherwise we exchange
s and s′) that maxσ s(τσ(v)) ≥ maxσ′ s′(τσ′(v)). Then, letting σ∗ = arg maxσ s(τσ(v)) and
using the absolute homogeneity of s and s′, it can be shown that:∣∣∣max

σ
s(τσ(v))−max

σ′
s′(τσ′(v))

∣∣∣ ≤ ‖τσ∗(v)‖d(s, s′) . (3)

We refer the reader to the appendix [4], for a full derivation. Finally, we use the definition of
‖ · ‖ and the choices of δ and η to see that

γ‖τσ∗(v)‖ ≤ γ(ρ(A) + η)‖v‖ ≤ ρ(A) + δ/2
ρ(A) + δ

< 1 ,

from which we conclude by combining (2) with (3) that d(F (s), F (s′)) < d(s, s′). J

We now exhibit the fixed point of FA,γ in closed form. This provides a useful formula for
studying properties of the resulting seminorm.

I Theorem 6. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. Suppose γ < 1/ρ(A) and let sA,γ ∈ S be the
fixed point of FA,γ . Then for any v ∈ V we have

sA,γ(v) = sup
x∈Σ∞

∞∑
t=0

γt|β(τx≤t
(v))| = sup

x∈Σ∞

∞∑
t=0

γt|fAv
(x≤t)| . (4)

B. Balle, P. Gourdeau, and P. Panangaden 103:7

The proof can be found in the appendix [4]. The next theorem is the main result of this
section. It shows that any seminorm arising as a fixed point of FA,γ captures the notion of
A-bisimulation through its kernel for any γ. Namely, two states u, v ∈ V are A-bisimilar if
and only if sA,γ(u− v) = 0. Note that this result is independent of the choice of γ, as long
as the fixed point of FA,γ is guaranteed to exist.

I Definition 7. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a weighted automaton with A-bisimulation
∼A. We say that a seminorm s over V is a bisimulation seminorm for A if ker(s) = ker(∼A).

I Theorem 8. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉. For any 0 < γ < 1/ρ(A) the fixed point
sA,γ ∈ S of FA,γ is a bisimulation seminorm for A.

Proof. For simplicity, let F = FA,γ and s = sA,γ . Since WA = ker(∼A) is the largest
bisimulation for A, it suffices to show that ker(s) is a bisimulation for A with WA ⊆ ker(s).
For the first property we recall that ker(s) is a linear subspace of V and note that for any
v ∈ ker(s) we have, using Theorem 6,

0 = s(v) = |β(v)|+ sup
x∈Σ∞

∞∑
t=1

γt|β(τx≤t
(v))| ≥ |β(v)| ≥ 0 .

Therefore ker(s) ⊆ ker(β). Using the fact that β(v) = 0, we can also verify the invariance of
ker(s) under all τσ, namely s(τσ(v)) = 0 for all v ∈ ker(s) and σ ∈ Σ (the full derivation is
shown in the appendix [4]). Therefore ker(s) is a bisimulation for A.

Now let v ∈WA. Since WA is contained in the kernel of β and is invariant for all τσ, we
see that β(τx(v)) = 0 for all x ∈ Σ?. Therefore, using the expression for s given in Theorem 6
we obtain s(v) = 0. This concludes the proof. J

Because every fixed point of FA,γ is a seminorm whose kernel agrees with that of Boreale’s
bisimulation relation ∼A, we shall call them γ-bisimulation seminorms for A. Interestingly,
we can show that when A is observable then every γ-bisimulation seminorm is in fact a norm.

I Corollary 9. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 and γ < 1/ρ(A). If A is observable then the
γ-bisimulation seminorm sA,γ is a norm.

Proof. By Theorem 8 and the observability of A we have ker(sA,γ) = ker(∼A) = {0}. Thus,
sA,γ is a norm. J

Given an automaton A, and state vectors v, w ∈ V , the pseudometric between states of
A induced by sA,γ is dA,γ(v, w) = sA,γ(v − w). Pseudometrics of this form will be called
γ-bisimulation pseudometrics. By Corollary 9, if A is observable then dA,γ is in fact a metric.

To conclude this section we show how to use our γ-bisimulation pseudometrics to define a
pseudometric between weighted automata. In order to capture the idea of distance between
two WFA let us build the automaton computing the difference between their functions.
Given weighted automata Ai = 〈Σ, Vi, αi, βi, {τi,σ}σ∈Σ〉 for i = 1, 2, we define their difference
automaton as A = A1 − A2 = 〈Σ, V, α, β, {τσ}σ∈Σ〉 where V = V1 ⊕ V2, α = α1 ⊕ (−α2),
β = β1⊕β2, and τσ = τ1,σ⊕ τ2,σ for all σ ∈ Σ. Note that A satisfies fA(x) = fA1(x)−fA2(x)
for all x ∈ Σ? and that ρ(A) = max{ρ(A1), ρ(A2)}. Then, letting sA,γ be the bisimulation
seminorm for A we are ready to define our bisimulation distance between weighted automata.

I Definition 10. Let A1 and A2 be two weighted automata and let A be their difference
automaton. For any γ < 1/ρ(A) we define the γ-bisimulation distance between A1 and A2
as dγ(A1, A2) = sA,γ(α).

ICALP 2017

103:8 Bisimulation Metrics for Weighted Automata

By exploiting the closed form expression for sA,γ given in Theorem 6 we can provide a
closed form expression for dγ .

I Corollary 11. Let A1 and A2 two weighted automata and γ < 1/max{ρ(A1), ρ(A2)}. Then
the γ-bisimulation distance between A1 and A2 is given by

dγ(A1, A2) = sup
x∈Σ∞

∞∑
t=0

γt |fA1(x≤t)− fA2(x≤t)| . (5)

Using the properties of our bisimulation seminorms one can immediately see that dγ is
indeed a pseudometric between all pairs of WFA such that γ < 1/ρ(A1 −A2). It is also easy
to see that dγ captures the notion of equivalence between weighted automata, in the sense
that dγ(A1, A2) = 0 if and only if fA1 = fA2 . Therefore, since minimal weighted automata
are unique up to a change of basis, the only way to have dγ(A1, A2) = 0 when A1 is minimal
is to have either A1 = A2 or A2 is a non-minimal WFA recognizing the same weighted
language as A1. In particular, this implies that dγ is a metric on the set of all minimal WFA
A with γ < 1/ρ(A).

4 Continuity Properties

In this section we study several continuity properties of our bisimulation pseudometrics
between weighted automata. The continuity notions we consider are adapted from those
presented by Jaeger et al. in [24], which are developed for labelled Markov chains. Here
we extend their definitions of parameter continuity and property continuity to the case
of weighted automata. Such notions can be motivated by applications of metrics between
transition systems to problems in machine learning [15, 19, 18]; see Section 6 for a discussion
on how to use our bisimulation pseudometrics in the analysis of learning algorithms.

4.1 Parameter Continuity
Given a sequence of weighted automata Ai converging to a weighted automaton A, parameter
continuity captures the notion that, as the weights in Ai converge to the weights in A, the
behavioural distance between Ai and A tends to zero. To make this formal we first define
convergence for a sequence of automata and then parameter continuity.

I Definition 12. Let (Ai)i∈N be a sequence of WFA Ai = 〈Σ, V, αi, βi, {τi,σ}σ∈Σ〉 over
the same alphabet Σ and normed vector space (V, ‖ · ‖). We say that the sequence (Ai)
converges to A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 if limi→∞ ‖αi − α‖ = 0, limi→∞ ‖βi − β‖∗ = 0, and
limi→∞ ‖τi,σ − τσ‖ = 0 for all σ ∈ Σ.

I Definition 13. A pseudometric d between weighted automata is parameter continuous if for
any sequence (Ai)i∈N converging to some weighted automaton A we have limi→∞ d(A,Ai) = 0.

The main result of this section is the following theorem stating that our bisimulation
pseudometric dγ is parameter continuous.

I Theorem 14. The γ-bisimulation distance between weighted automata is parameter con-
tinuous for any sequence of weighted automata (Ai)i∈N converging to a weighted automaton
A with γ < 1/ρ(A).

The proof of this result is quite technical and combines the following two tools:

B. Balle, P. Gourdeau, and P. Panangaden 103:9

1. A technical estimate of dγ(A,Ai) in terms of the distance between the weights of A and
Ai with respect to a certain norm (Lemma 25 in the appendix [4]). This result also plays
a prominent result in Section 6.

2. Several topological properties of the joint spectral radius discussed in Section 2.3.
These proofs are given in the appendix [4].

4.2 Input Continuity
Inspired by the notion of property continuity presented in [24], input g-continuity encapsulates
the idea that an upper bound on the behavioural distance between two systems should entail
an upper bound on the difference between their outputs on any input x ∈ Σ?.

I Definition 15. Let g : N→ R be such that g(l) > 0 for all l ∈ N. A distance function d
between weighted automata is input g-continuous when the following holds: if (Ai)i∈N is a
sequence of weighted automata such that limi→∞ d(A,Ai) = 0 for some weighted automaton
A, then one has

lim
i→∞

sup
x∈Σ?

|fA(x)− fAi(x)|
g(|x|) = 0 . (6)

Note the special case g(l) = 1 is tightly related to the notion of property continuity
presented in [24]. The authors of that paper consider differences between the probabilities of
the same event under different labelled Markov chains, and therefore always have numbers
between 0 and 1. However, for general weighted automata the quantity |fA(x)− fA′(x)| can
grow unboundedly with |x|. Thus, in some cases we will need to have a g(|x|) growing with
|x| in order to guarantee that (6) stays bounded. The next two results, whose proofs are
deferred to the appendix [4], show that essentially g(|x|) = γ−|x| is the threshold between
input continuity and input non-continuity in our γ-bisimulation pseudometrics.

I Theorem 16. The pseudometric dγ from Definition 10 is input g-continuous for any
g(l) = Ω(γ−l).

Note that when γ > 1 (i.e. when dealing with weighted automata with ρ(A) ≤ 1) we
have g(l) = 1 ∈ Ω(γ−l). This shows that in the case of weighted automata A where every
transition operator τσ can be represented by a stochastic matrix – a fact that implies ρ(A) = 1
– our γ-bisimulation pseudometric is property continuous with respect to the definition in
[24].

Further, if g does not grow fast enough as a function of the size of x ∈ Σ?, then our
bisimulation pseudometric is not input g-continuous. In particular, the proof of Theorem 17
provides simple examples of cases where dγ is not input g-continuous.

I Theorem 17. Let 0 < γ < 1. The pseudometric dγ from Definition 10 is not input
g-continuous for any g(l) = co(l) with c > 1.

5 An Undecidability Result

In this section we will prove that given a weighted automaton A = 〈Σ, V, α, β, {τσ}σ∈Σ〉,
a discount factor γ < 1/ρ(A), and a threshold ν > 0, it is undecidable to check whether
sA,γ(α) > ν. This implies that in general the seminorms and pseudometrics studied in the
previous sections are not computable.

The proof of our undecidability result involves a reduction from an undecidable planning
problem. Partially observable Markov decision processes (POMDPs) are a generalization of

ICALP 2017

103:10 Bisimulation Metrics for Weighted Automata

Markov Decision Processes (MDPs) where we have a set of observations Ω and conditional
observation probabilities O. Each state emits some observation o ∈ Ω with a certain
probability, and so we have a belief over which state we are in after taking an action and
observing o. An MDP is a special case of a POMDP where each state has a unique observation,
and an unobservable Markov decision process (UMDP) is a special case of a POMDP where
all the states emit the same observation. While planning for infinite-horizon UMDPs is
undecidable [27], planning for finite-horizon POMDPs is decidable.

Formally, a UMDP is a tuple U = 〈Σ, Q, α, {βσ}σ∈Σ, {Tσ}σ∈Σ, γ〉 where Σ is a finite set
of actions, Q is a finite set of states, α : Q→ [0, 1] is a probability distribution over initial
states in Q, βσ : Q→ R represents the rewards obtained by taking action σ from every state
in Q, Tσ : Q×Q→ [0, 1] is the transition kernel between states for action σ (i.e. Tσ(q, q′)
is the probability of transitioning to q′ given that action σ is taken in q), and 0 < γ < 1 is
a discount factor. The value VU (x) of an infinite sequence of actions x ∈ Σ∞ in U is the
expected discounted cumulative reward collected by executing the actions in x in U starting
from a state drawn from α. This can be obtained as follows:

VU (x) =
∞∑
t=1

γt−1α>Tx≤t−1βxt
, (7)

where Ty = Ty1 · · ·Tyt
for any finite string y = y1 · · · yt and Tε = I. The following undecid-

ability result was proved by Madani et al. in [27].

I Theorem 18 (Theorem 4.4 in [27]). The following problem is undecidable: given a UMDP
U and a threshold ν decide whether there exists a sequence of actions x ∈ Σ∞ such that
VU (x) > ν.

Given a UMDP U = 〈Σ, Q, α, {βσ}σ∈Σ, {Tσ}σ∈Σ, γ〉, we say that U has action-independent
rewards if βσ = β for all σ ∈ Σ. We say that U has non-negative rewards if βσ(q) ≥ 0
for all q ∈ Q and σ ∈ Σ. A careful inspection of the proof in [27] reveals that in fact the
reduction provided in the paper always produces as output a UMDP with non-negative
action-independent rewards. Thus, we have the following corollary, which forms the basis of
our reduction showing that sγ is not computable.

I Corollary 19. The problem in Theorem 18 remains undecidable when restricted to UMDP
with non-negative action-independent rewards.

I Theorem 20. The following problem is undecidable: given a weighted automaton A =
〈Σ, V, α, β, {τσ}σ∈Σ〉, a discount factor γ < 1/ρ(A), and a threshold ν > 0, decide whether
sA,γ(α) > ν.

Proof. Let U = 〈Σ, Q, α, β, {Tσ}σ∈Σ, γ〉 be a UMDP with non-negative action-independent
rewards. With each UMDP of this form we associate the weighted automaton A =
〈Σ,RQ, α, β, {τσ}σ∈Σ〉. Here we assume that the linear form β : RQ → R is given by
β(v) = v>β, and that the linear operators τσ : RQ → RQ are given by τσ(v) = v>Tσ.

Note that the matrices Tσ are row-stochastic and therefore we have ρ(A) ≤ maxσ ‖τσ‖∞ =
1. Thus, the discount factor in U satisfies γ < 1 ≤ 1/ρ(A) and the bisimulation seminorm
sA,γ associate with A is defined. Using that U has non-negative action-independent rewards
we can write for any x ∈ Σ∞:

VU (x) =
∞∑
t=1

γt−1α>Tx≤t−1β =
∞∑
t=0

γtα>Tx≤t
β =

∞∑
t=0

γt|α>Tx≤t
β| =

∞∑
t=0

γt|β(τx≤t(α))| .

B. Balle, P. Gourdeau, and P. Panangaden 103:11

Therefore we have the relation sA,γ(α) = supx∈Σ∞ VU (x) between the bisimulation seminorm
of A and the value of U . Since deciding whether VU (x) > ν for some x ∈ Σ∞ is undecidable,
the theorem follows. J

6 Application: Spectral Learning for WFA

An important problem in machine learning is that of finding a weighted automaton Â

approximating an unknown automaton A given only access to data generated by A. A variety
of algorithms in different learning frameworks have been considered in the literature; see [5]
for an introductory survey. In most learning scenarios it is impossible to exactly recover
the target automaton A from a finite amount of data. In that case one aims for algorithms
with formal guarantees of the form “the output Â automaton gets closer to A as the amount
of training data grows”. To prove such a result one obviously needs a way to measure the
distance between two WFA. In this section we show how our γ-bisimulation pseudometric
can be used to provide formal learning guarantees for a family of learning algorithms widely
referred to as spectral learning. We also briefly discuss the case for behavioural metrics in
automata learning problems and compare our metric to other metrics used in the spectral
learning literature.

Generally speaking, spectral learning algorithms for WFA work in two phases: the first
phase uses the data obtained from the target automaton A to estimate a finite sub-block of
the Hankel matrix of fA; the second phase computes the singular value decomposition of
this Hankel matrix and uses the corresponding singular vectors to solve a set of systems of
linear equations yielding the weights of the output WFA Â. The Hankel matrix of a function
f : Σ? → R is an infinite matrix Hf ∈ RΣ?×Σ? with entries given by Hf (x, y) = f(xy), where
xy denotes the string obtained by concatenating the prefix x with the suffix y. Spectral
learning algorithms work with a finite sub-block H ∈ RP×S of this Hankel matrix indexed
by a set of prefixes P ⊂ Σ? and a set of suffixes S ⊂ Σ?. The pair B = (P, S) is usually
an input to the algorithm, in which case formal learning guarantees can be provided under
the assumption that B is complete for HfA

. This assumption essentially states that the
sub-block of HfA

indexed by B contains enough information to recover a WFA equivalent to
A, and is composed of a syntactic condition ensuring B contains a set of prefixes and their
extensions by any symbol in Σ, and an algebraic condition ensuring the rank of the Hankel
sub-matrix indexed by B has the same rank as the full Hankel matrix HfA

. We refer the
reader to [5, 3] for further details about the spectral learning algorithm and a discussion of
the completeness property for B. In the sequel we focus on the analysis of the error in the
output of the spectral learning algorithm, and show how to provide learning guarantees in
terms of our distance dγ .

The following lemma encapsulates the first step of the analysis of spectral learning
algorithms. It shows how the error between the operators of A and Â depends on the error
between the true and the approximated Hankel matrix as measured by the standard operator
`2-norm.

I Lemma 21. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be a WFA and let H be a finite sub-block of the
Hankel matrix HfA

indexed by B = (P, S). Suppose Â = 〈Σ, V, α̂, β̂, {τ̂σ}σ∈Σ〉 is the WFA
returned by the spectral learning algorithm using an estimation Ĥ of H. Let ‖ · ‖ be any norm
on V . If B is complete, then we have ‖α− α̂‖, ‖β − β̂‖∗,maxσ∈Σ ‖τσ − τ̂σ‖ ≤ O(‖H − Ĥ‖2)
as ‖H − Ĥ‖2 → 0. Furthermore, the constants hidden in the big-O notation only depend on
the norm ‖ · ‖, the Hankel sub-block indices B = (P, S), and the size of the alphabet |Σ|.

Proof. Combine Lemma 9.3.5 and Lemma 6.3.2 from [2]. J

ICALP 2017

103:12 Bisimulation Metrics for Weighted Automata

The results from [2] also provide explicit expressions for the constants hidden in the big-O
notation. Concentration of measure for random matrices can be used to show that as the
amount of training data increases then the distance between H and Ĥ converges to zero
with high probability (see e.g. [13]). Thus, Lemma 21 implies that as more training data
becomes available, spectral learning will output a WFA Â converging to A.

The last step in the analysis involves showing that as the weights of Â get closer to the
weights of A, the behaviour of the two automata also gets closer. Invoking the parameter
continuity of dγ (Theorem 14) one readily sees that dγ(A, Â) → 0 as ‖H − Ĥ‖2 → 0.
This provides a proof of consistency of spectral learning with respect to the γ-bisimulation
pseudometric. However, machine learning applications often require more precise information
about the convergence rate of dγ(A, Â) in order to, for example, compute the amount of data
required to achieve a certain error. The following result provides such rate of convergence in
the case where the target automaton is irreducible.

I Theorem 22. Let A = 〈Σ, V, α, β, {τσ}σ∈Σ〉 be an irreducible WFA and let H be a finite
sub-block of the Hankel matrix HfA

indexed by B = (P, S). Suppose Â = 〈Σ, V, α̂, β̂, {τ̂σ}σ∈Σ〉
is the WFA returned by the spectral learning algorithm using an estimation Ĥ of H. Suppose
B is complete. Then for any γ < 1/ρ(A) we have dγ(A, Â) ≤ O(‖H−Ĥ‖2) as ‖H−Ĥ‖2 → 0.
Furthermore, the hidden constants in the big-O notation only depend on A, γ, the Hankel
block indices B = (P, S), and the size of the alphabet |Σ|.

The local Lipschitz continuity of ρ around irreducible sets of matrices plays an important
role in the proof of this result (see the appendix [4]). Nonetheless, the irreducibility constraint
is not a stringent one since the sets of irreducible matrices are known to be dense among
compact sets of matrices with respect to the Hausdorff metric.

We conclude this section by comparing Theorem 22 with analyses of spectral learning
based on other error measures. We start by noting that all finite-sample analyses of spectral
learning for WFA we are aware of in the literature provide error bounds in terms of some finite
variant of the `1 distance. In particular, the analyses in [23, 31] bound

∑
x∈Σt |fA(x)−fÂ(x)|

for a fixed t ≥ 0, while the analyses in [1, 2, 21] extend the bounds to
∑
x∈Σ≤t |fA(x)−fÂ(x)|

for a fixed t ≥ 0. This approach poses several drawbacks, including:
1. Finite `1-norms provide a pseudo-metric between WFA whose kernel includes pairs of

non-equivalent WFA.
2. The number of samples required to achieve a certain error increase with the horizon t,

meaning that more data is required to get the same error on longer strings, and that
existing bounds become vacuous in the case t→∞.

In contrast, our result in terms of dγ establishes a bound on the discrepancy between A and
Â on strings of arbitrary length and will never assign zero distance to a pair of automata
realizing different functions. Furthermore, our bisimulation metric still makes sense outside
the setting of spectral learning of probabilistic automata where most of the techniques
mentioned above have been developed.

7 Conclusion

The metric developed in this paper was very much motivated and informed by spectral ideas.
Not surprisingly it was well suited for analyzing spectral learning algorithms for weighted
automata. Two obvious directions for future work are:
1. Approximation algorithms for the bisimulation metric.
2. Exploring the relation to approximate minimization.

B. Balle, P. Gourdeau, and P. Panangaden 103:13

Both of these are well underway. It seems that some recent ideas from non-linear optimization
are very useful in developing approximation algorithms and we hope to be able to report our
results soon. Exploring the relation to approximate minimization is less further along, but
the spectral ideas at the heart of the approximate minimization algorithm in [6] should be
well adapted to the techniques of the present paper.

Acknowledgements. We would like to thank Doina Precup who was actively involved in
the approximate minimization work.

References
1 R. Bailly. Méthodes spectrales pour l’inférence grammaticale probabiliste de langages

stochastiques rationnels. PhD thesis, Aix-Marseille Université, 2011.
2 Borja Balle. Learning Finite-State Machines: Algorithmic and Statistical Aspects. PhD

thesis, Universitat Politècnica de Catalunya, 2013.
3 Borja Balle, Xavier Carreras, Franco M. Luque, and Ariadna Quattoni. Spectral learning

of weighted automata: A forward-backward perspective. Machine Learning, 2014.
4 Borja Balle, Pascale Gourdeau, and Prakash Panangaden. Bisimulation metrics for

weighted automata, 2017. URL: https://arxiv.org/abs/1702.08017.
5 Borja Balle and Mehryar Mohri. Learning weighted automata. In Conference on Algebraic

Informatics, 2015.
6 Borja Balle, Prakash Panangaden, and Doina Precup. A canonical form for weighted

automata and applications to approximate minimization. In Proceedings of the Thirtieth
Annual ACM-IEEE Symposium on Logic in Computer Science, July 2015.

7 Nikita E. Barabanov. On the Lyapunov indicator of discrete inclusions, part I, II, and III.
Avtomatika i Telemekhanika, 2:40–46, 1988.

8 Vincent D. Blondel, Yurii Nesterov, and Jacques Theys. On the accuracy of the ellips-
oid norm approximation of the joint spectral radius. Linear Algebra and its Applications,
394:91–107, 2005.

9 Filippo Bonchi, Marcello M. Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan
Rutten, and Alexandra Silva. Algebra-coalgebra duality in Brzozowski’s minimization al-
gorithm. ACM Transactions on Computational Logic, 2014.

10 Michele Boreale. Weighted bisimulation in linear algebraic form. In CONCUR 2009 –
Concurrency Theory, pages 163–177. Springer, 2009.

11 Ingrid Daubechies and Jeffrey C. Lagarias. Sets of matrices all infinite products of which
converge. Linear algebra and its applications, 161:227–263, 1992.

12 Ingrid Daubechies and Jeffrey C. Lagarias. Corrigendum/addendum to: Sets of matrices
all infinite products of which converge. Linear Algebra and its Applications, 327(1-3):69–83,
2001.

13 François Denis, Mattias Gybels, and Amaury Habrard. Dimension-free concentration
bounds on hankel matrices for spectral learning. Journal of Machine Learning Research,
17(31):1–32, 2016.

14 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled Markov
systems. In Proceedings of CONCUR99, number 1664 in Lecture Notes in Computer Science.
Springer-Verlag, 1999.

15 Josée Desharnais, Vineet Gupta, Radhakrishnan Jagadeesan, and Prakash Panangaden. A
metric for labelled Markov processes. Theoretical Computer Science, 318(3):323–354, June
2004.

16 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of weighted automata.
EATCS Monographs on Theoretical Computer Science. Springer, 2009.

ICALP 2017

https://arxiv.org/abs/1702.08017

103:14 Bisimulation Metrics for Weighted Automata

17 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision
processes. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence,
pages 162–169. AUAI Press, 2004.

18 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for Markov decision pro-
cesses with infinite state spaces. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, pages 201–208, July 2005.

19 Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous
markov decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

20 A. Giacalone, C. Jou, and S. Smolka. Algebraic reasoning for probabilistic concurrent
systems. In Proceedings of the Working Conference on Programming Concepts and Methods,
IFIP TC2, 1990.

21 Hadrien Glaude and Olivier Pietquin. PAC learning of Probabilistic Automaton based on
the Method of Moments. In Proceedings of The 33rd International Conference on Machine
Learning, pages 820–829, 2016.

22 Christopher Heil and Gilbert Strang. Continuity of the joint spectral radius: application
to wavelets. In Linear Algebra for Signal Processing, pages 51–61. Springer, 1995.

23 Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for learning hidden
markov models. Journal of Computer and System Sciences, 78(5), 2012.

24 Manfred Jaeger, Hua Mao, Kim Guldstrand Larsen, and Radu Mardare. Continuity prop-
erties of distances for Markov processes. In Proceedings of QEST 2014 Quantitative Eval-
uation of Systems: 11th International Conference, pages 297–312. Springer International
Publishing, 2014.

25 Raphaël Jungers. The joint spectral radius: theory and applications, volume 385. Springer
Science and Business Media, 2009.

26 Victor Kozyakin. An explicit lipschitz constant for the joint spectral radius. Linear Algebra
and its Applications, 433(1):12–18, 2010.

27 Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelligence, 147(1-2):5–
34, 2003.

28 Prakash Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
29 Gian-Carlo Rota and W. Strang. A note on the joint spectral radius. Indag. Math.,

22:379–381, 1960.
30 Marcel Paul Schützenberger. On the definition of a family of automata. Information and

control, 4(2):245–270, 1961.
31 S.M. Siddiqi, B. Boots, and G. Gordon. Reduced-rank hidden Markov models. In AISTATS,

2010.
32 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic

systems. In Proceedings of the Twenty-eighth International Colloquium on Automata, Lan-
guages and Programming. Springer-Verlag, July 2001.

33 Fabian Wirth. The generalized spectral radius and extremal norms. Linear Algebra and its
Applications, 342(1-3):17–40, 2002.

On the Metric-Based Approximate Minimization
of Markov Chains∗

Giovanni Bacci1, Giorgio Bacci2, Kim G. Larsen3, and
Radu Mardare4

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
giovbacci@cs.aau.dk

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
grbacci@cs.aau.dk

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
klg@cs.aau.dk

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
mardare@cs.aau.dk

Abstract
We address the behavioral metric-based approximate minimization problem of Markov Chains
(MCs), i.e., given a finite MC and a positive integer k, we are interested in finding a k-state
MC of minimal distance to the original. By considering as metric the bisimilarity distance of
Desharnais at al., we show that optimal approximations always exist; show that the problem
can be solved as a bilinear program; and prove that its threshold problem is in PSPACE and
NP-hard. Finally, we present an approach inspired by expectation maximization techniques that
provides suboptimal solutions. Experiments suggest that our method gives a practical approach
that outperforms the bilinear program implementation run on state-of-the-art bilinear solvers.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Reducibility and Com-
pleteness, I.2.6 Parameter Learning

Keywords and phrases Behavioral distances, Probabilistic Models, Automata Minimization.

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.104

1 Introduction

Minimization of finite automata, i.e., the process of transforming a given finite automaton
into an equivalent one with minimum number of states, has been a major subject since the
1950s due to its fundamental importance for any implementation of finite automata tools.

The first algorithm for the minimization of deterministic finite automata (DFAs) is due
to Moore [27], with time complexity O(n2s), later improved by the now classical Hopcroft’s
algorithm [17] to O(ns logn), where n is the number of states and s the size of the alphabet.
Their algorithms are based on a partition refinement of the states into equivalence classes
of the Myhill-Nerode equivalence relation. Partition refinement has been employed in the
definition of efficient minimization procedures for a wide variety of automata: by Kanellakis
and Smolka [19, 20] for the minimization of labelled transition systems (LTSs) w.r.t. Milner’s

∗ Work supported by the EU 7th Framework Programme (FP7/2007-13) under Grants Agreement
nr.318490 (SENSATION), nr.601148 (CASSTING), the Sino-Danish Basic Research Center IDEA4CPS
funded by Danish National Research Foundation and National Science Foundation China, the ASAP
Project (4181-00360) funded by the Danish Council for Independent Research, the ERC Advanced
Grant LASSO, and the Innovation Fund Denmark center DiCyPS.

EA
T

C
S

© Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 104; pp. 104:1–104:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.104
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

104:2 On the Metric-Based Approximate Minimization of Markov Chains

strong bisimulation [26]; by Baier [4] for the reduction of Markov Chains (MCs) w.r.t.
Larsen and Skou’s probabilistic bisimulation [23]; by Alur et al. [2] and by Yannakakis and
Lee [30], respectively, for the minimization of timed transition systems and timed-automata.
This technique was used also in parallel and distributed implementations of the above
algorithms [31, 8], and in the online reachability analysis of transition systems [24].

In [18], Jou and Smolka observed that for reasoning about the behavior of probabilistic
systems (and more in general, all type of quantitative systems), rather than equivalences, a
notion of distance is more reasonable in practice, since it permits “a shift in attention from
equivalent processes to probabilistically similar processes”. This observation motivated the
development of metric-based semantics for quantitative systems, that consists in proposing
1-bounded pseudometrics capturing the similarities of the behaviors in the presence of small
variations of the quantitative data. These pseudometrics generalize behavioral equivalences
in the sense that, two processes are at distance 0 iff they are equivalent, and at distance 1 if
no significant similarities can be observed between them.

The first proposal of a behavioral pseudometric is due to Desharnais et al. [12] on labelled
MCs, a.k.a. probabilistic bisimilarity distance, with the property that two MCs are at distance
0 iff they are probabilistic bisimilar. Its definition is parametric on a discount factor λ ∈ (0, 1]
that controls the significance of the future steps in the measurement. This pseudometric
has been greatly studied by van Breugel and Worrell [28, 29, 10] who noticed, among other
notable results, its relation with the Kantorovich distance on probability distributions and
provided a polynomial-time algorithm for its computation.

The introduction of metric-based semantics motivated the interest in the approximate
minimization of quantitative systems. The goal of approximate minimization is to start from
a minimal automaton and produce a smaller automaton that is close to the given one in a
certain sense. The desired size of the approximating automaton is given as input. Inspired
by the aggregation of equivalent states typical of partition refinement techniques, in [15],
the approximate minimization problem has been approached by aggregating states having
relative smaller distance. An example of this approach on MCs using the λ-bisimilarity
distance of Desharnais et al. is shown below.

m0

m1 m2

m3 m5m4

1
6

1
3

1
2

1
2

1
2

1
2

1
2

1 1 1

m0

m1 2

m3 m5m4

1
2

1
2

1
6 1

2

1
3

1 1 1

m0

m1 m2

m5m4

1
6

1
3

1
2

1
1
2

1
2

1 1

LetM be the MC on the left and assume we want to approximate it by an MC with at most
5 states. Since m1,m2 are the only two states at distance less than 1, the most natural choice
for an aggregation shall collapse (via convex combination) m1 and m2, obtaining the MC in
the middle, which has distance 4

9 (λ2

2−λ) fromM. However, the approximate aggregation of
states does not necessarily yield the closest optimal solution. Indeed, the MC on the right is
a closer approximant ofM, at distance 1

6 (λ2

2−λ) from it.
In this paper we address the issue of finding optimal solutions to the approximate

minimization problem. Specifically we aim to answer to the following problem, left open
in [15]: “given a finite MC and a positive integer k, what is its ‘best’ k-state approximant?
Here by ‘best’ we mean a k-state MC at minimal distance to the original”. We refer to this

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:3

problem as Closest Bounded Approximant (CBA) and we present the following results related
to it.
1. We characterize CBA as a bilinear optimization problem, proving the existence of optimal

solutions. As a consequence of this result, approximations of optimal solutions can be
obtained by checking the feasibility of bilinear matrix inequalities (BMIs) [22, 21].

2. We provide upper- and lower-bound complexity results for the threshold problem of CBA,
called Bounded Approximant problem (BA), that asks whether there exists a k-state
approximant with distance from the original MC bounded by a given rational threshold.
We show that BA is in PSPACE and NP-hard. As a corollary we obtain NP-hardness for
CBA.

3. We introduce the Minimum Significant Approximant Bound (MSAB) problem, that asks
what is the minimum size k for an approximant to have some significant similarity to
the original MC (i.e., at distance strictly less than 1). We show that this problem is
NP-complete when one considers the undiscounted bisimilarity distance.

4. Finally, we present an algorithm for finding suboptimal solutions of CBA that is inspired
by Expectation Maximization (EM) techniques [25, 7]. Experiments suggest that our
method gives a practical approach that outperforms the bilinear program implementation
– state-of-the-art bilinear solvers [21] fails to handle MCs with more than 5 states!

Related Work. In [16], the approximate minimization of MCs is addressed via the notion
of quasi-lumpability. An MC is quasi-lumpable if the given aggregations of the states can be
turned into actual bisimulation-classes by a small perturbation of the transition probabilities.
This approach differs from ours since there is no relation to a proper notion of behavioral
distance (the approximation is w.r.t. the supremum norm of the difference of the stochastic
matrices) and we do not consider any approximate aggregation of states. In [6], Balle et al.
consider the approximate minimization of weighted finite automata (WFAs). Their method
is via a truncation of a canonical normal form for WFAs that they introduced for the SVD
decomposition of infinite Hankel matrices. Both [16] and [6] do not consider the issue of
finding the closest approximant, which is the main focus of this paper, instead they give
upper bounds on the distance from the given model.

2 Markov Chains and Bisimilarity Pseudometric

In this section we introduce the notation and recall the definitions of (discrete-time) Markov
chains (MCs), probabilistic bisimilarity of Larsen and Skou [23], and the probabilistic bisimil-
arity pseudometric of Desharnais et al. [13].

For R ⊆ X ×X an equivalence relation, X/R denotes its quotient set and [x]R denotes
the R-equivalence class of x ∈ X. D(X) denotes the set of discrete probability distributions
on X, i.e., functions µ : X → [0, 1], s.t. µ(X) = 1, where µ(E) =

∑
x∈E µ(x) for E ⊆ X.

In what follows we fix a countable set L of labels.

I Definition 1 (Markov Chain). A Markov chain is a tuple M = (M, τ, `) consisting of a
finite nonempty set of states M , a transition distribution function τ : M → D(M), and a
labelling function ` : M → L.

Intuitively, if M is in state m it moves to state m′ with probability τ(m)(m′). Labels
represent atomic properties that hold in certain states. The set of labels ofM is denoted by
L(M) = {`(m) | m ∈M}. Hereafter, we useM = (M, τ, `) and N = (N, θ, α) to range over
MCs and we refer to their constituents implicitly.

ICALP 2017

104:4 On the Metric-Based Approximate Minimization of Markov Chains

I Definition 2 (Probabilistic Bisimulation [23]). An equivalence relation R ⊆ M ×M is a
probabilistic bisimulation onM if whenever m R n, then
1. `(m) = `(n), and
2. for all C ∈M/R, τ(m)(C) = τ(n)(C).
Two states m,n ∈M are probabilistic bisimilar w.r.t.M, written m ∼M n if they are related
by some probabilistic bisimulation onM. In fact, probabilistic bisimilarity is the greatest
probabilistic bisimulation.

Any bisimulation R on M induces a quotient construction, the R-quotient of M, de-
notedM/R = (M/R, τ/R, `/R), having R-equivalence classes as states, transition function
τ/R([m]R)([n]R) =

∑
u∈[n]R

τ(m)(u), and labelling function `/R([m]R) = `(m). An MCM
is said minimal if it is isomorphic to its quotient w.r.t. probabilistic bisimilarity.

A 1-bounded pseudometric on X is a function d : X × X → [0, 1] such that, for any
x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≥ d(x, z). 1-bounded
pseudometrics on X forms a complete lattice under the point-wise partial order d v d′ iff,
for all x, y ∈ X, d(x, y) ≤ d′(x, y).

A pseudometric is said to lift an equivalence relation if it enjoys the property that two
points are at distance zero iff they are related by the equivalence. A lifting for the probabilistic
bisimilarity is provided by the bisimilarity distance of Desharnais et al. [13]. Its definition is
based on the Kantorovich (pseudo)metric on probability distributions over a finite set X,
defined as K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
, where d is a (pseudo)metric on X and

Ω(µ, ν) denotes the set of couplings for (µ, ν), i.e., distributions ω ∈ D(X ×X) such that,
for all E ⊆ X, ω(E ×X) = µ(E) and ω(X × E) = ν(E).

I Definition 3 (Bisimilarity Distance). Let λ ∈ (0, 1]. The λ-discounted bisimilarity pseudo-
metric onM, denoted by δλ, is the least fixed-point of the following functional operator on
1-bounded pseudometrics over M (ordered point-wise)

Ψλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ · K(d)(τ(m), τ(n)) otherwise .

The operator Ψλ is monotonic, hence, by Tarski fixed-point theorem, δλ is well defined.
Intuitively, if two states have different labels δλ considers them as “incomparable” (i.e., at

distance 1), otherwise their distance is given by the Kantorovich distance w.r.t. δλ between
their transition distributions. The discount factor λ ∈ (0, 1] controls the significance of the
future steps in the measurement of the distance; if λ = 1, the distance is said undiscounted.

The distance δλ has also a characterization based on the notion of coupling structure.

I Definition 4 (Coupling Structure). A function C : M ×M → D(M ×M) is a coupling
structure forM if for all m,n ∈M , C(m,n) ∈ Ω(τ(m), τ(n)).

Intuitively, a coupling structure can be thought of as an MC on the cartesian productM×M ,
obtained as the probabilistic combination of two copies ofM.

Given a coupling structure C forM and λ ∈ (0, 1], let γCλ be the least fixed-point of the
following operator on [0, 1]-valued functions d : M ×M → [0, 1] (ordered point-wise)

ΓCλ(d)(m,n) =
{

1 if `(m) 6= `(n)
λ
∫
d dC(m,n) otherwise .

The function γCλ is called λ-discounted discrepancy of C, and the value γCλ(m,n) is the
λ-discounted probability of hitting from (m,n) a pair of states with different labels in C.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:5

I Theorem 5 (Minimal coupling criterion [10]). For arbitrary MCsM and discount factors
λ ∈ (0, 1], δλ = min

{
γCλ | C coupling structure forM

}
.

Usually, MCs are associated with an initial state to be thought of as their initial configur-
ations. In the rest of the paper when we talk about the distance between two MCs, written
δλ(M,N), we implicitly refer to the distance between their initial states computed over the
disjoint union of their MCs.

3 The Closest Bounded Approximant Problem

In this section we introduce the Closest Bounded Approximant problem w.r.t. δλ (CBA-λ),
and give a characterization of it as a bilinear optimization problem.

I Definition 6 (Closest Bounded Approximant). Let k ∈ N and λ ∈ (0, 1]. The closest bounded
approximant problem w.r.t. δλ for an MCM is the problem of finding an MC N with at
most k states minimizing δλ(M,N).

Clearly, when k is greater than or equal to the number of bisimilarity classes ofM, an
optimal solution of CBA-λ is the bisimilarity quotient. Therefore, without loss of generality,
we will assume 1 ≤ k < |M | andM to be minimal. Note that, under these assumptionsM
must have at least two nodes with different labels.

Let MC(k) denote the set of MCs with at most k states and MCA(k) its restriction to
those using only labels in A ⊆ L. Using this notation, the optimization problem CBA-λ on
the instance 〈M, k〉 can be reformulated as finding an MC N ∗ such that

δλ(M,N ∗) = min {δλ(M,N) | N ∈ MC(k)} , (1)

In general, it is not obvious that for arbitrary instances 〈M, k〉 a minimum in (1) exists. At
the end of the section, we will show that such a minimum always exists (Corollary 9).

A useful property of CBA-λ is that an optimal solution can be found among the MCs
using labels from the given MC.

I Lemma 7 (Meaningful labels). LetM be an MC. Then, for any N ′ ∈ MC(k) there exists
N ∈ MCL(M)(k) such that δλ(M,N) ≤ δλ(M,N ′).

In the following, fix 〈M, k〉 as instance of CBA-λ, let m0 ∈M be the initial state ofM.
By Lemma 7, Theorem 5 and Tarski fixed-point theorem

inf {δλ(M,N) | N ∈ MC(k)} = (2)
= inf

{
γCλ(M,N) | N ∈ MCL(M)(k) and C ∈ Ω(M,N)

}
(3)

= inf
{
d(M,N) | N ∈ MCL(M)(k), C ∈ Ω(M,N), and ΓCλ(d) v d

}
, (4)

where Ω(M,N) denotes the set of all coupling structures for the disjoint union ofM and
N . This simple change in perspective yields a translation of the problem of computing the
optimal value of CBA-λ to the bilinear program in Figure 1.

In our encoding, N = {n0, . . . , nk−1} are the states of an arbitraryN = (N, θ, α) ∈ MC(k)
and n0 is the initial one. The variable θn,v is used to encode the transition probability θ(n)(v).
Hence, a feasible solution satisfying (9–11) will have the variable cm,nu,v representing the value
C(m,n)(u, v) for a coupling structure C ∈ Ω(M,N). An assignment for the variables αn,l
satisfying (7–8) encodes (uniquely) a labeling function α : N → L(M) satisfying the following
property:

for all n ∈ N, l ∈ L(M) αn,l = 1 iff α(n) = l . (12)

ICALP 2017

104:6 On the Metric-Based Approximate Minimization of Markov Chains

mimimize dm0,n0

such that λ
∑

(u,v)∈M×N c
m,n
u,v · du,v ≤ dm,n m ∈M , n ∈ N (5)

1− αn,l ≤ dm,n ≤ 1 n ∈ N , l ∈ L(M), `(m) 6= l (6)
αn,l · αn,l′ = 0 n ∈ N , l, l′ ∈ L(M), l 6= l′ (7)∑

l∈L(M) αn,l = 1 n ∈ N (8)∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (9)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (10)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N (11)

Figure 1 Characterization of CBA-λ as a bilinear optimization problem.

The constraint (7) models the fact that each node n ∈ N is assigned to at most one label
l ∈ L(M), and the constraint (8) ensures that each node is assigned to at least one label.
Conversely, any labeling α : N → L(M) admits an assignment of the variables αn,l that
satisfy (7–8) and (12). Finally, an assignment for the variables dm,n satisfying the constraints
(5–6) represents a prefix point of ΓCλ. Note that (6) guarantees that dm,n = 1 whenever
α(n) 6= `(m) – indeed, by (7), αn,l = 0 iff α(n) 6= `(m).

Let Fλ〈M, k〉 denote the bilinear optimization problem in Figure 1. Directly from the
arguments stated above we obtain the following result.

I Theorem 8. inf {δλ(M,N) | N ∈MC(k)} is the optimal value of Fλ〈M, k〉.

I Corollary 9. Any instance of CBA-λ admits an optimal solution.

Proof. Let h be the number of variables in Fλ〈M, k〉. The constraints (6–11) describe a
compact subset of Rh – it is an intersection of closed sets bounded by [0, 1]h. The objective
function of Fλ〈M, k〉 is linear, hence the infimum is attained by a feasible solution. The
thesis follows by Theorem 8. J

The following example shows that even by starting with a MC with rational transition
probabilities, optimal solutions for CBA-λ may have irrational transition probabilities.

I Example 10. Consider the MC M depicted below, with initial state m0 and labeling
represented by colors. An optimal solution of CBA-1 on 〈M, 3〉 is the MC Nxy depicted
below, with initial state n0 and parameters x = 1

30
(
10 +

√
163
)
, y = 21

100 .

M =
m0 m1 m2 m3

m4

79
100

21
100

79
100

21
100

79
100

21
100

1

1

Nxy =
n0 n1

n2

y

1− x− y
x

1

1

Since the distance δ1(M,Nxy) = 436
675 −

163
√

163
13500 ≈ 0.49 is irrational, by [10, Proposition 13],

any optimal solution must have some irrational transition probability.
Next we show that the above is indeed an optimal solution. Assume by contradiction

that N ∗ 6∼ Nxy is an optimal solution. By Lemma 7, we can assume L(N ∗) ⊆ L(M). If

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:7

L(N ∗) = L(M), then δ1(M,N ∗) = min {δ1(M,Nzy) | z ∈ [0, 1− y]} since one can show
that for any y′ 6= y and z′, there exists z ∈ [0, 1− y], such that δ1(M,Nzy) ≤ δ1(M,Nz′y′).
δ1(M,Nzy) is analytically solved by z3 − z2 − 21

100z −
79

100 and its minimum value is achieved
at z = 1

30
(
10 +

√
163
)
. This contradicts N ∗ 6∼ Nxy. Assume L(N ∗) (L(M). By [10,

Corollary 11], for any measurable set A ⊆ Lω, δ1(M,N ∗) ≥ |PM(A)−PN∗(A)|, where PN (A)
denotes the probability that a run of N is in A. If `(m0) /∈ L(N ∗), we have that δ1(M,N ∗) ≥
|PM(`(m0)Lω) − PN∗(`(m0)Lω)| = PM(`(m0)Lω) = 1 > δ1(M,Nxy). Analogously, if
`(m3) /∈ L(N ∗) we have δ1(M,N ∗) ≥ PM(L∗`(m3)Lω) =

(79
100
)3
> δ1(M,Nxy). Finally, if

`(m4) /∈ L(N ∗), δ1(M,N ∗) ≥ PM(L∗`(m4)Lω) = 21
100
∑2
i=0
(79

100
)i
> δ1(M,Nxy). J

4 The Bounded Approximant Threshold Problem

The Bounded Approximant problem w.r.t. δλ (BA-λ) is the threshold decision problem of
CBA-λ, that, given MC M, integer k ≥ 1, and rational ε ≥ 0, asks whether there exists
N ∈ MC(k) such that δλ(M,N) ≤ ε.

From the characterization of CBA-λ as a bilinear optimization problem (Theorem 8) we
immediately get the following complexity upper-bound for BA-λ.

I Theorem 11. For any λ ∈ (0, 1], BA-λ is in PSPACE.

Proof. By Theorem 8, deciding an instance 〈M, k, ε〉 of BA-λ can be encoded as a decision
problem for the existential theory of the reals, namely, checking the feasibility of the
constraints (6–11) in conjunction with dm0,n0 ≤ ε. The encoding is polynomial in the size of
〈M, k, ε〉, thus it can be solved in PSPACE (cf. Canny [9]). J

In the rest of the section we provide a complexity lower-bound for BA-λ, by showing
that BA-λ is NP-hard via a reduction from Vertex Cover. Recall that, a vertex cover of
an undirected graph G is a subset C of vertices such that every edge in G has at least one
endpoint in C. Given a graph G and a positive integer h, the Vertex Cover problem asks
if G has a cover of size at most h.

Before presenting the reduction we establish structural properties for an optimal solution
of CBA-λ in the case the given MC has injective labeling (i.e., no two distinct states with
the same label). Specifically, we show that an optimal solution for an instance 〈M, k〉 of
CBA-λ can be found among MCs with injective labeling into L(M).

I Lemma 12. IfM has injective labeling, there exists N ∈ MCL(M)(k) with injective labeling
that minimizes the distance δλ(M,N).

I Lemma 13. For all m ∈M and n ∈ N , δλ(m,n) ≥ λ · τ(m)({u ∈M | `(u) /∈ L(N)}).

Note that Lemma 13 provides a lower-bound on the optimal distance betweenM and
any N ∈ MC(k). This lower-bound will be useful in the proof of the following result.

I Theorem 14. For any λ ∈ (0, 1], BA-λ is NP-hard.

Proof. We provide a polynomial-time many-one reduction from Vertex Cover.
Let 〈G = (V,E), h〉 be an instance of Vertex Cover and let e = |E|. Without loss of

generality we assume e ≥ 2 and k < n. From G we construct the MC MG = (M, τ, `) as
follows. The set of states M is given as the union of V and E to which we add two extra
states: a root r (thought of as the initial state) and a sink s. Each node ofMG is associated
with a unique label (i.e., ` is injective). The sink state s and all v ∈ V loop to themselves

ICALP 2017

104:8 On the Metric-Based Approximate Minimization of Markov Chains

1

2

3

4

e3

e2

e1

r

e3 e1e2

1 2 3 4

s

1
9

1
9

1
9

1
6

1
6 1

6
1
6

1
6 1

6

1 1 1 1

1

2
3

2
3 2

3

2
3

r̄

ē3 ē1ē2

2̄ 3̄

s̄

1
9

1
9

1
9

1
6 1

6
1
6

1
6

1 1

1

5
6

2
3

5
6

2
3

Figure 2 (Left) An undirected graph G; (Center) The MCMG associated to the graph G; (Right)
The MCMC associated to the vertex cover C = {2, 3} of G. (see Thm. 14).

with probability 1. All the other states go with probability 1− 1
e to the sink state s. The rest

of their transition probability mass is assigned as follows. The root r goes with probability 1
e2

to each a ∈ E, and all (u, v) ∈ E go with probability 1
2e to their endpoints u, v. An example

of construction forMG is given in Figure 2. Next we show that

〈G, h〉 ∈ Vertex Cover iff 〈MG, e+ h+ 2, λ
2

2e2 〉 ∈ BA-λ .

(⇒) Let C be a h-vertex cover of G. ConstructMC ∈ MC(e+ h+ 2) by taking a copy
ofMG, removing all states in V \ C, and redirecting the exceeding transition probability to
the sink state s (an example is shown in Figure 2). Next we show that δλ(MG,MC) ≤ λ2

2e2 .
For convenience, the states inMC will be marked with a bar. By construction ofMG,MC ,
for each a ∈ E, δλ(a, a) ≤ λ

2e . Thus, δλ(MG,MC) = δλ(r, r̄) = λ
e2

∑
a∈E δλ(a, a) ≤ λ2

2e2 .

(⇐) By contradiction, assume there exists N = (N, θ, α) ∈ MC(e + h + 2) such that
δλ(MG,N) ≤ λ2

2e2 but no vertex cover of G of size h. Since ` is injective, by Lemma 12 we
can assume α to be injective and L(N) ⊆ L(MG). We consider three cases separately:

Case: `(s) /∈ L(N). By Lemma 13 and the fact that e > 1 and λ ∈ (0, 1], we get the
following contradiction: δλ(MG,N) = δλ(r, n0) ≥ λ · τ(r)(s) = λ(e−1)

e > λ2

2e2 .
Case: `((u, v)) /∈ L(N), for some (u, v) ∈ E. By Lemma 13 and the fact that λ ∈ (0, 1]

and e > 1, leading to the contradiction δλ(MG,N) = δλ(r, n0) ≥ λ · τ(r)((u, v)) = λ
e2 >

λ2

2e2 .
Case: `(s) ∈ L(N) and {`((u, v)) | (u, v) ∈ E} ⊆ L(N). Let N ′ ⊆ N be the states with

labels in {`(u) | u ∈ V }. By the structural hypothesis assumed on N , we have |N ′| ≤ h.
For each (u, v) ∈ E, two possible cases apply: if α(n) ∈ {`(u), `(v)}, for some n ∈ N ′, then
δλ((u, v), (u, v)) ≥ λ

2e ; otherwise δλ((u, v), (u, v)) ≥ λ
e >

λ
2e . By hypothesis, there is no vertex

cover of size h, hence there is at least one edge (u, v) ∈ E for which the second case applies.
Therefore, δλ(MG,N) = δλ(r, n0) = λ

e2

∑
(u,v)∈E δλ((u, v), (u, v)) > λ

e2 · e · λ2e = λ2

2e2 .

The instance 〈MG, e+ h+ 2, λ
2

2e2 〉 of BA-λ can be constructed in polynomial time in the
size of 〈G, h〉. Thus, since Vertex Cover is NP-hard, so is BA-λ. J

5 Minimum Significant Approximant Bound

Recall that, two MCs are at distance 1 from each other when there is no significant similarity
between their behaviors. Thus an MC N is said to be a significant approximant for the MC
M w.r.t. δλ if δλ(M,N) < 1.

Given an MC M, the Minimum Significant Approximant Bound problem w.r.t. δλ
(MSAB-λ) looks for the smallest k such that δλ(M,N) < 1, for some N ∈ MC(k). The
decision version of this problem is called Significant Bounded Approximant problem w.r.t. δλ

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:9

e3 e2 e1 e0

1

2

2

3

3

4

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

1

1

1

1
e3 2

e2

e1

3 e0

1

1
2

1
2

1
2

1
2

1
2

1

1
2

1

Figure 3 (Left) The MC MG associated to the graph G in Figure 2 and (right) an MC N
associated to the vertex cover C = {1, 2} of G such that δ1(MG,N) < 1 (cf. Theorem 16).

(SBA-λ), and asks whether, for a given positive integer k, there exists N ∈ MC(k) such that
δλ(M,N) < 1.

When the discount factor λ < 1, the two problems above turn out to be trivial. Indeed,
δλ(M,N) ≤ λ when the initial states ofM and N have the same label. On the contrary,
in the case the distance is undiscounted (λ = 1), these problems are NP-complete. Before
presenting the result, we provide the following technical lemma.

I Lemma 15. LetM be a MC (assumed to be minimal) with initial state m0 and G(M) its
underlying directed graph. Then, 〈M, k〉 ∈ SBA-1 iff there exists a bottom strongly connected
component (SCC) G′ = (V,E) in G(M) and a path m0 . . .mh in G(M) such that mh ∈ V
and | {`(mi) | i < h,@ a path vi . . . vh−1mh in G′ s.t. ∀i ≤ j < h. `(mj) = `(vj)} |+ |V | ≤ k.

I Theorem 16. SBA-1 is NP-complete.

Proof. The membership in NP is easily proved by using the characterization in Lemma 15
and exploiting Tarjan’s algorithm for generating bottom SCCs. As for the NP-hardness, we
provide a polynomial-time many-one reduction from Vertex Cover. Let G = (V,E) be a
graph with E = {e1, . . . , en}. We construct the MCMG as follows. The set of states is given
by the set of edges E along with two states e1

i and e2
i , for each edge ei ∈ E, representing

the two endpoints of ei and an extra sink state e0. The initial state is en. The transition
probabilities are given as follows. The sink state e0 loops with probability 1 to itself. Each
edge ei ∈ E goes with probability 1

2 to e1
i and e2

i , respectively. For 1 ≤ i ≤ n, the states
e1
i and e2

i go with probability 1 to the state ei−1. The edge states and the sink state are
labelled by pairwise distinct labels, while the endpoints states e1

i and e2
i are labelled by the

node in V they represent. An example of construction forMG is shown in Figure 3.
Next we show the following equivalence:

〈G, h〉 ∈ Vertex Cover iff 〈MG, h+ n+ 1〉 ∈ SBA-1 (13)

By construction,MG is minimal and its underlying graph H has a unique bottom strongly
connected component, namely the self-loop in e0. Each path p = en ; e0 in H passes
through all edge states, and the set of labels of the endpoint states in p is a vertex cover of
G. Since e0, . . . , en have pairwise distinct labels, we have that G has a vertex cover of size at
most h iff there exists a path in H from en to e0 that has at most n+ 1 + h different labels.
Thus, (13) follows by Lemma 15. J

6 An Expectation Maximization-like Heuristic

In this section we describe an approximation algorithm for determining suboptimal solutions
of CBA-λ for an arbitrary instance 〈M, k〉.

ICALP 2017

104:10 On the Metric-Based Approximate Minimization of Markov Chains

Algorithm 1 Approximate Minimization – Expectation Maximization-like heuristic
Input: M = (M, τ, `), N0 = (N, θ0, α), and h ∈ N.
1. i← 0
2. repeat
3. i← i+ 1
4. compute C ∈ Ω(M,Ni−1) such that δλ(M,Ni−1) = γCλ(M,Ni−1)
5. θi ← UpdateTransition(θi−1, C)
6. Ni ← (N, θi, α)
7. until δλ(M,Ni) > δλ(M,Ni−1) or i ≥ h
8. return Ni−1

Given an initial approximant N0 ∈ MC(k), the algorithm produces a sequence of MCs
N0,N1, . . . in MC(k) having successively decreased distance fromM. We defer until later a
discussion of how the initial MC N0 is chosen. The procedure is described in Algorithm 1.

The intuitive idea of the algorithm is to iteratively update the initial MC by assigning
relatively greater probability to transitions that are most representative of the behavior of
the MCM w.r.t. δλ. The procedure stops when the last iteration has not yield an improved
approximant w.r.t. the preceding one. The input also includes a parameter h ∈ N that
bounds the number of iterations.

The rest of the section explains two heuristics for implementing the UpdateTransition
function invoked at line 5. This function shall return the transition probabilities for the
successive approximant (see line 6).

Define βCλ to be the least fixed-point of the following functional operator on 1-bounded
real-valued functions d : M ×N → [0, 1] (ordered point-wise):

BCλ(d)(m,n) =

1 if γCλ(m,n) = 0
0 if `(m) 6= α(n)
(1− λ) + λ

∫
M×N d dC(m,n) otherwise .

By Theorem 5, the relation RC =
{

(m,n) | γCλ(m,n) = 0
}
is easily shown to be a bisimulation,

specifically, the greatest bisimulation induced by C.
Define Cλ as the MC obtained by augmenting C with an ‘sink’ state ⊥ to which any other

state moves with probability (1− λ). Intuitively, the value βCλ(m,n) can be interpreted as
the reachability probability in Cλ of either hitting the sink state or a pair of bisimilar states
in RC along a path formed only by pairs of states with identical labels starting from (m,n).

I Lemma 17. For all m ∈M and n ∈ N , βCλ(m,n) = 1− γCλ(m,n).

From equation (3) and Lemma 17, we can turn the problem CBA-λ as

argmax
{
βCλ(M,N) | N ∈ MCL(M)(k), C ∈ Ω(M,N)

}
. (14)

Equation (14) says that a solution of CBA-λ is the right marginal of a coupling structure
C such that Cλ maximizes the probability of generating paths with prefix in ∼=∗(RC ∪ ⊥)
starting from the pair (m0, n0) of initial states1, where ∼= = {(m,n) /∈ RC | `(m) = α(n)}.

In the rest of the section we assume Ni−1 ∈ MC(k) to be the current approximant with
associated coupling structure C ∈ Ω(M,Ni−1) as in line 4 in Algorithm 1.

1 We borrowed notation from regular expressions, such as union, concatenation, and Kleene star, to
express the set of finite paths ∼=∗RC as a language over the alphabet M ×N .

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:11

The “Averaged Marginal” Heuristic. The first heuristic is inspired by the Expectation
Maximization (EM) algorithm described in [7]. The idea is to count the expected number of
occurrences of the transitions in C in the set of paths ∼=∗RC and, in accordance with (14),
updating C by increasing the probability of the transitions that were contributing the most.

For each m,u ∈M and n, v ∈ N let Zm,nu,v : (M ×N)ω → N be the random variable that
counts the number of occurrences of the edge ((m,n)(u, v)) in a prefix in ∼=∗(RC ∪ ⊥) of
the given path. We denote by E[Zm,nu,v | C] the expected value of Zm,nu,v w.r.t. the probability
distribution induced by Cλ. Using these values we define the optimization problem EM〈N , C〉:

maximize
∑
m,u∈M

∑
n,v∈N E[Zm,nu,v | C] · ln(cm,nu,v)

such that
∑
v∈N c

m,n
u,v = τ(m)(u) m,u ∈M , n ∈ N (15)∑

u∈M cm,nu,v = θn,v m ∈M , n, v ∈ N (16)
cm,nu,v ≥ 0 m,u ∈M , n, v ∈ N

A solution of EM〈N , C〉 can be used to improve a pair 〈N , C〉 in the sense of (14).

I Theorem 18. If βCλ(M,N) > 0, then an optimal solution for EM〈N , C〉 describes an MC
N ′ ∈ MC(k) and a coupling structure C′ ∈ Ω(M,N ′) such that βC′λ (M,N ′) ≥ βCλ(M,N).

Unfortunately, EM〈N , C〉 does not have an easy analytic solution and turns out to
be inefficiently solved by nonlinear optimization methods. On the contrary, the relaxed
optimization problem obtained by dropping the constraints (16) has a simple analytic solution,
and the first heuristic at line 5, updates θi as follows2

cm,nu,v =
τ(m)(n) ·E[Zm,nu,v | C]∑

x∈N E[Zm,nu,x | C]
, θi(n)(v) =

θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M cm,nu,v∑
x∈N

∑
m,u∈M cm,nu,x

otherwise

Note that, the cm,nu,v above may not describe a coupling structure. Nevertheless we recover
the transition probability θi, from it by averaging the right marginals.

The “Averaged Expectations” Heuristic. In contrast to the previous case, the second
heuristic will update θi by directly averaging the expected values of Zm,nu,v as follows

θi(n)(v) =

θi−1(n)(v) if ∃m ∈M.n RC m∑

m,u∈M E[Zm,nu,v | C]∑
x∈N

∑
m,u∈M E[Zm,nu,x | C]

otherwise .

Computing the Expected Values. We compute E[Zm,nu,v | C] using a variant of the forward-
backward algorithm for hidden Markov models. Let Zm,n : (M ×N)ω → N be the random
variable that counts the number of occurrences of the pair (m,n) in a prefix in ∼=∗(RC ∪ ⊥)
of the path. We compute the expected value of Zm,n w.r.t. the probability induced by Cλ as
the solution zm,n of the following system of equations

zm,n =
{

0 if m 6∼= n

ι(m,n) + λ
∑
u,v(zu,v + 1) · C(u, v)(m,n) otherwise ,

where ι denotes the characteristic function for {(m0, n0)}. Then, the expected value of Zm,nu,v

w.r.t. the probability induced by Cλ is given by E[Zm,nu,v | C] = λ · zm,n · C(m,n)(u, v) · βCλ(u, v).

2 By abusing the notation, whenever the nominator is 0, we consider entire expression equal to 0, regardless
of any division by 0. The same convention is used implicitly in the rest of the section.

ICALP 2017

104:12 On the Metric-Based Approximate Minimization of Markov Chains

Table 1 Comparison of the performance of Algorithm 1 on the IPv4 zeroconf protocol and the
classic Drunkard’s Walk w.r.t. the heuristics AM and AE.

Case |M | k
λ = 1 λ = 0.8

δλ-init δλ-final h time δλ-init δλ-final h time

IPv4
(AM)

53 5 0.856 0.062 3 25.7 0.667 0.029 3 25.9
103 5 0.923 0.067 3 116.3 0.734 0.035 3 116.5
53 6 0.757 0.030 3 39.4 0.544 0.011 3 39.4
103 6 0.837 0.032 3 183.7 0.624 0.017 3 182.7

IPv4
(AE)

53 5 0.856 0.110 2 14.2 0.667 0.049 3 21.8
103 5 0.923 0.110 2 67.1 0.734 0.049 3 100.4
53 6 0.757 0.072 2 21.8 0.544 0.019 3 33.0
103 6 0.837 0.072 2 105.9 0.624 0.019 3 159.5

DrkW
(AM)

39 7 0.565 0.466 14 259.3 0.432 0.323 14 252.8
49 7 0.568 0.460 14 453.7 0.433 0.322 14 420.5
59 8 0.646 – – TO 0.423 – – TO

DrkW
(AE)

39 7 0.565 0.435 11 156.6 0.432 0.321 2 28.6
49 7 0.568 0.434 10 247.7 0.433 0.316 2 46.2
59 8 0.646 0.435 10 588.9 0.423 0.309 2 115.7

Choosing the initial approximant. Similarly to EM algorithms, the choice of the initial
approximant N0 may have a significant effect on the quality of the solution. For the labeling
of the states, one should follow Lemma 7. As for the choice of the underlying structure one
shall be guided by Lemma 15. However, due to Theorem 14, it seems unlikely to have generic
good strategies for a starting approximant candidate. Nevertheless, good selections for the
transition probabilities may be suggested by looking at the problem instance.

Experimental Results Table 1 shows the results of some tests3 on Algorithm 1. run on
a number of instances 〈M, k〉 of increasing size, where M is the bisimilarity quotient of
either the IPv4 protocol [5, Ex.10.5] or the drunkard’s walk, parametric on the number of
states |M |. As initial approximant we use a suitably small instance of the same model. Each
row reports the distance to the original model respectively from N0 and Nh, where h is the
total number of iterations; and execution time (in seconds). We compare the two heuristics,
averaged marginals (AM) and averaged expectation (AE), on the same initial approximant.

The results obtained on the IPv4 protocol show significant improvements between the
initial and the returned approximant. Notably, these are obtained in very few iterations. On
this model, AM gives approximants of better quality compared with those obtained using
AE; however AE seems to be slightly faster than AM. On the drunkard’s walk model, the
two heuristics exhibit opposite results w.r.t. the previous experiment: AE provides the best
solutions with fewer iterations and significantly lower execution times.

7 Conclusions and Future Work

To the best of our knowledge, this is the first paper addressing the complexity of the optimal
approximate minimization of MCs w.r.t. a behavioral metric semantics. Even though for a
good evaluation of our heuristics more tests are needed, the current results seem promising.
Moreover, in the light of [10, 3], relating the probabilistic bisimilarity distance to the LTL-
model checking problem as δ1(M,N) ≥ |PM(ϕ)−PN (ϕ)|, for all ϕ ∈ LTL, our results might
be used to lead saving in the overall model checking time. A deeper study of this topic

3 The tests are done on a prototype implementation coded in Mathematicar (http://people.cs.aau.
dk/giovbacci/tools.html) running on an Intel Core-i5 2.5GHz with 8GB of DDR3 RAM 1600MHz.

http://people.cs.aau.dk/giovbacci/tools.html
http://people.cs.aau.dk/giovbacci/tools.html

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 104:13

will be the focus of future work. We close with an interesting open problem. Membership
of BA-λ in NP is left open. However, by arguments analogous to [11, 14] and leveraging
on the ideas that made us produce the MC in Example 10, we suspect that BA-λ is hard
for the square-root-sum problem. The latter is known to be NP-hard and in PSPACE, but
membership in NP has been open since 1976. Allender et al. [1] showed that it can be decided
in the 4th level of the counting hierarchy, thus it is unlikely its PSPACE-completeness.

References
1 Eric Allender, Peter B urgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On

the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987–2006, 2009.
doi:10.1137/070697926.

2 Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, David L. Dill, and Howard Wong-
Toi. Minimization of timed transition systems. In CONCUR, volume 630 of Lecture Notes
in Computer Science, pages 340–354. Springer, 1992. doi:10.1007/BFb0084802.

3 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Converging from
Branching to Linear Metrics on Markov Chains. In ICTAC, volume 9399 of LNCS, pages
349–367. Springer, 2015. doi:10.1007/978-3-319-25150-9_21.

4 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simu-
lation. In CAV, volume 1102 of Lecture Notes in Computer Science, pages 50–61. Springer,
1996. doi:10.1007/3-540-61474-5_57.

5 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
6 Borja Balle, Prakash Panangaden, and Doina Precup. A canonical form for weighted

automata and applications to approximate minimization. In LICS, pages 701–712. IEEE
Computer Society, 2015. doi:10.1109/LICS.2015.70.

7 Michael Benedikt, Rastislav Lenhardt, and James Worrell. LTL Model Checking of Interval
Markov Chains. In TACAS, volume 7795 of Lecture Notes in Computer Science, pages 32–
46. Springer, 2013. doi:10.1007/978-3-642-36742-7_3.

8 Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation reduction
of state spaces. International Journal on Software Tools for Technology Transfer, 7(1):74–
86, 2005. doi:10.1007/s10009-004-0159-4.

9 John F. Canny. Some Algebraic and Geometric Computations in PSPACE. In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing (STOC’88), pages 460–467.
ACM, 1988. doi:10.1145/62212.62257.

10 Di Chen, Franck van Breugel, and James Worrell. On the Complexity of Computing
Probabilistic Bisimilarity. In FoSSaCS, volume 7213 of LNCS, pages 437–451. Springer,
2012. doi:10.1007/978-3-642-28729-9_29.

11 Taolue Chen and Stefan Kiefer. On the Total Variation Distance of Labelled Markov Chains.
In CSL-LICS‘14, pages 33:1–33:10. ACM, 2014. doi:10.1145/2603088.2603099.

12 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
Labeled Markov Systems. In CONCUR, volume 1664 of LNCS, pages 258–273. Springer,
1999. doi:10.1007/3-540-48320-9_19.

13 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Compututer Science, 318(3):323–354, 2004. doi:
10.1016/j.tcs.2003.09.013.

14 Kousha Etessami and Mihalis Yannakakis. Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. J. ACM, 56(1):1:1–1:66, 2009. doi:10.
1145/1462153.1462154.

15 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov Decision
Processes. In UAI, pages 162–169. AUAI Press, 2004.

ICALP 2017

http://dx.doi.org/10.1137/070697926
http://dx.doi.org/10.1007/BFb0084802
http://dx.doi.org/10.1007/978-3-319-25150-9_21
http://dx.doi.org/10.1007/3-540-61474-5_57
http://dx.doi.org/10.1109/LICS.2015.70
http://dx.doi.org/10.1007/978-3-642-36742-7_3
http://dx.doi.org/10.1007/s10009-004-0159-4
http://dx.doi.org/10.1145/62212.62257
http://dx.doi.org/10.1007/978-3-642-28729-9_29
http://dx.doi.org/10.1145/2603088.2603099
http://dx.doi.org/10.1007/3-540-48320-9_19
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1016/j.tcs.2003.09.013
http://dx.doi.org/10.1145/1462153.1462154
http://dx.doi.org/10.1145/1462153.1462154

104:14 On the Metric-Based Approximate Minimization of Markov Chains

16 Giuliana Franceschinis and Richard R. Muntz. Bounds for quasi-lumpable markov chains.
Perform. Eval., 20(1-3):223–243, 1994. doi:10.1016/0166-5316(94)90015-9.

17 John Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Zvi
Kohavi and Azaria Paz, editors, Theory of Machines and Computations, pages 189–196.
Academic Press, 1971. doi:10.1016/B978-0-12-417750-5.50022-1.

18 Chi-Chang Jou and Scott A.Smolka. Equivalences, congruences, and complete axiomatiz-
ations for probabilistic processes. In CONCUR’90 Theories of Concurrency: Unification
and Extension, volume 458 of LNCS, pages 367–383, 1990. doi:10.1007/BFb0039071.

19 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. In Proceedings of the 2nd Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pages 228–240. ACM, 1983. doi:
10.1145/800221.806724.

20 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43–68, 1990. doi:
10.1016/0890-5401(90)90025-D.

21 Michal Ko1cmcvara and Michael Stingl. PENBMI 2.0. http://www.penopt.com/penbmi.
html. Accessed: 2016-08-28.

22 Michal Ko1cmcvara and Michael Stingl. PENNON: A code for convex nonlinear and
semidefinite programming. Optimization Methods and Software, 18(3):317–333, 2003.
doi:10.1080/1055678031000098773.

23 Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing. In-
formation and Computation, 94(1):1–28, 1991.

24 David Lee and Mihalis Yannakakis. Online minimization of transition systems (extended
abstract). In Annual ACM Symposium on Theory of Computing, pages 264–274. ACM,
1992. doi:10.1145/129712.129738.

25 Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Extensions.
Wiley-Interscience, 2 edition, 2008.

26 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer, 1980. doi:10.1007/3-540-10235-3.

27 Edward F. Moore. Gedanken Experiments on Sequential Machines. In Automata Studies,
pages 129–153. Princeton University, 1956.

28 Franck van Breugel and James Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. In ICALP, volume 2076 of LNCS, pages 421–432, 2001.

29 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theoretical Computer Science, 360(3):373–385,
2006. doi:10.1016/j.tcs.2006.05.021.

30 Mihali Yannakakis and David Lee. An efficient algorithm for minimizing real-time trans-
ition systems. Formal Methods in System Design, 11(2):113–136, 1997. doi:10.1023/A:
1008621829508.

31 Shipei Zhang and Scott A. Smolka. Towards efficient parallelization of equivalence checking
algorithms. In FORTE, volume C-10 of IFIP Transactions, pages 121–135. North-Holland,
1992.

http://dx.doi.org/10.1016/0166-5316(94)90015-9
http://dx.doi.org/10.1016/B978-0-12-417750-5.50022-1
http://dx.doi.org/10.1007/BFb0039071
http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/10.1145/800221.806724
http://dx.doi.org/10.1016/0890-5401(90)90025-D
http://dx.doi.org/10.1016/0890-5401(90)90025-D
http://www.penopt.com/penbmi.html
http://www.penopt.com/penbmi.html
http://dx.doi.org/10.1080/1055678031000098773
http://dx.doi.org/10.1145/129712.129738
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/j.tcs.2006.05.021
http://dx.doi.org/10.1023/A:1008621829508
http://dx.doi.org/10.1023/A:1008621829508

Expressiveness of Probabilistic Modal Logics
Nathanaël Fijalkow∗1, Bartek Klin†2, and Prakash Panangaden‡3

1 University of Warwick, Warwick, UK
nfijalkow@turing.ac.uk

2 University of Warsaw, Warsaw, Poland
klin@mimuw.edu.pl

3 McGill University, Montreal, Canada
prakash@cs.mcgill.ca

Abstract
Labelled Markov processes are probabilistic versions of labelled transition systems. In general,
the state space of a labelled Markov process may be a continuum. Logical characterizations of
probabilistic bisimulation and simulation were given by Desharnais et al. These results hold for
systems defined on analytic state spaces and assume that there are countably many labels in the
case of bisimulation and finitely many labels in the case of simulation.

In this paper, we first revisit these results by giving simpler and more streamlined proofs. In
particular, our proof for simulation has the same structure as the one for bisimulation, relying
on a new result of a topological nature. This departs from the known proof for this result, which
uses domain theory techniques and falls out of a theory of approximation of Labelled Markov
processes.

Both our proofs assume the presence of countably many labels. We investigate the necessity
of this assumption, and show that the logical characterization of bisimulation may fail when there
are uncountably many labels. However, with a stronger assumption on the transition functions
(continuity instead of just measurability), we can regain the logical characterization result, for
arbitrarily many labels. These new results arose from a new game-theoretic way of understanding
probabilistic simulation and bisimulation.

1998 ACM Subject Classification F.1.2 [Modes of Computation] Probabilistic Computation,
F.4.1 Mathematical Logic

Keywords and phrases probabilistic modal logic, probabilistic bisimulation, probabilistic simu-
lation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.105

1 Introduction

It is now 40 years since the logical characterization of bisimulation was established by van
Benthem [14] and by Hennessy and Milner [10] for nondeterministic transition systems. It
was shown that two states (or processes) are bisimilar if and only if they satisfied the same
formulas of a modal logic that has come to be called Hennessy-Milner logic. The probabilistic
version was studied by Larsen and Skou [12] who defined probabilistic bisimulation for
discrete probabilistic transition systems and established a logical characterization theorem
for discrete systems with a strong finite-branching assumption.

∗ Supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1.
† Supported by the Polish National Science Centre (NCN) grant 2012/07/E/ST6/03026.
‡ Supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

EA
T

C
S

© Nathanaël Fijalkow, Bartek Klin and Prakash Panangaden;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 105; pp. 105:1–105:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.105
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

105:2 Expressiveness of Probabilistic Modal Logics

The analysis of bisimulation was extended to continuous state spaces by Blute et al. [4] and
a logical characterization was shown by Desharnais et al. [6, 7] who proved the result without
using any negative constructs in the logic nor any kind of finite branching assumptions.
Their proofs marked a departure from the usual combinatorial arguments and used some
non-trivial results from measure theory, specifically using remarkable properties of analytic
spaces; see [13] for an expository account.

The fact that the logical characterization result can be established with a purely positive
logic was a surprise at the time. It opened the door to the possibility that there could be a
logical characterization of simulation; we define this precisely below but the idea should be
intuitively clear. A clever example, due to Josée Desharnais [8], showed that this cannot be
done with the same logic as the one used for bisimulation; one needs to have disjunction in
the logic. A logical characterization of simulation was proved [8] for transition systems with
finitely many labels. The main contribution of [8] was approximation theory which included
a domain-theoretic treatment; the logical characterization result fell out of the domain theory
results. Desharnais [5] in her thesis gave a proof not using domain theory in the discrete
case. What remained unknown until now is a proof that works for countably many labels,
continuous state spaces and, if possible, not using domain theory. We provide such a result,
extending the characterization for simulation to countably many labels with a proof very
much analogous to the one given for bisimulation.

1.1 Results
1. We give a characterization of bisimulation and simulation in terms of Spoiler/Duplicator

games. This is elementary but interesting: it was the main driver of the intuitions that
led to the proofs of the present paper though, in the end, one does not actually need the
games to establish the results.

2. The logical characterization of bisimulation has a proof which has a structure which can
be boiled down to two main ingredients: Dynkin’s π-λ theorem and the Unique Structure
Theorem for analytic spaces. For simulation, it turns out that a completely analogous
proof exists. It is enough to replace the two main ingredients by new positive versions:
a positive analogue of the monotone class theorem and a positive UST, both of which
we prove. This simplifies the previous domain-theoretic proof and clarifies the picture.
The small price to pay is to move from analytic spaces to Polish ones; moving back to
analytic is future work.

3. Both proofs rely on the countability of the set of formulas. This is necessary, as an
explicit counterexample shows. But if the transition structure is continuous, logical
characterization results are regained for arbitrary sized sets of labels. As far as we know,
this is the first result of this type for uncountable label spaces.

Both logical characterization proofs, for bisimulation and simulation, have a similar structure
and can even be said to follow the same top-level strategy as the original Hennessy-Milner
proof.

2 Probabilistic systems and logics

We review some definitions and concepts from measure theory and topology. We assume
that the reader is familiar with concepts like: σ-algebra, measurable functions, measures,
topology and continuity.

Given a topological space X the σ-algebra induced by its open sets (or its closed sets) is
called the Borel algebra; we will always work with Borel algebras of topological spaces. We
call them Borel spaces.

N. Fijalkow, B. Klin, and P. Panangaden 105:3

A topological space is said to be separable if it has a countable dense subset. For metric
spaces this is equivalent to having a countable base of open sets. A Polish space is the
topological space underlying a complete separable metric space. Note that a space like
(0, 1) which is not complete in its usual metric is nevertheless Polish, since it can be given a
complete metric that produces the same topology. If X,Y are Polish spaces and f : X → Y

is a continuous function then the image f(X) ⊂ Y is an analytic space. The class of analytic
spaces is not altered if we allow f to be measurable instead of continuous or if we take the
image of a Borel set instead of all of X.

I Definition 1. A Markov kernel on a Borel space (X,Σ) is a function τ : X ×Σ→ [0, 1]
such that for each fixed x ∈ X, the set function τ(x, ·) is a sub-probability measure, and for
each fixed C ∈ Σ the function τ(·, C) is a measurable function.

One interprets τ(x,C) as the probability of the process starting in state x making a transition
into one of the states in C.

I Definition 2. A labelled Markov process (LMP) S with label set A is a structure
(X,Σ, {τa | a ∈ A}), where (X,Σ) is a Borel space and

τa : X × Σ −→ [0, 1]

is a Markov kernel for each a ∈ A.

A key concept is bisimulation. The following definition is adapted from Larsen and
Skou [12] to deal with measurability issues.

IDefinition 3 (Bisimulation). Let S = (X,Σ, τ) be a labelled Markov process. An equivalence
relation R on X is a bisimulation if whenever xRy, with x, y ∈ X, we have that for all
a ∈ A and every R-closed measurable set C ∈ Σ, τa(x,C) = τa(y, C). We say that x and y
are bisimilar, denoted x ≈ y, if there exists a bisimulation R such that xRy.

The modal logic L∧ used in the logical characterization theorem of [7] is generated by
the grammar:

φ ::= > | φ ∧ φ | 〈a〉pφ

where p ranges over rational numbers between 0 and 1. A state x satisfies the modal formula
〈a〉pφ if there exists a measurable subset C with every state in C satisfying φ and τa(x,C) > p.
It is easy to show that the sets defined by formulas [[φ]] := {x | x |= φ} are all measurable.
We write x ≡∧ y to say that x and y satisfy the same formulas in L∧.

The logical characterization theorem for probabilistic bisimulation is:

I Theorem 4 ([7]). For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and
A is countable, and for any x, y ∈ X, we have that x ≡∧ y if and only if x ≈ y. J

For a preorder R on a set X, we say that C ⊆ X is R-closed if x ∈ C and xRy implies
y ∈ C, for all x, y ∈ X.

I Definition 5 (Simulation). Let S = (X,Σ, τ) be a labelled Markov process. An preorder
relation R on X is a simulation if whenever xRy, with x, y ∈ X, we have that for all a ∈ A
and every R-closed measurable set C ∈ Σ, τa(x,C) ≤ τa(y, C). We say that x is simulated
by y, denoted x . y, if there exists a simulation R such that xRy.

ICALP 2017

105:4 Expressiveness of Probabilistic Modal Logics

The logic L∨∧ extends L∧ with disjunction:

φ = > | φ ∧ φ | φ ∨ φ | 〈a〉pφ.

We write x ≤∨∧ y to say that every formula in L∨∧ satisfied by x is also satisfied by y.
The previous logical characterization theorem for probabilistic simulation is:

I Theorem 6 ([8]). For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and
A is finite, and for any x, y ∈ X, we have that x ≤∨∧ y if and only if x . y.

Existing proofs of Theorems 4 and 6 span several pages each, and are markedly dissim-
ilar. In particular, the latter relies on the machinery of domain theory. One of our main
contributions is to provide new, short proofs of both results.

3 Probabilistic (bi)simulation games

The classical notion of bisimulation and simulation for nondeterministic processes has a
simple and elegant characterization in terms of games. These games, played between two
players named Spoiler (who tries to prove that some two states in a process are not bisimilar)
and Duplicator (who claims the opposite), provide convenient intuitions about the essence of
bisimilarity.

To the best of our knowledge, probabilistic bisimulation and simulations have not been
characterized by games before. In this section we fill this gap; as we shall see, the relevant
games have a pleasantly simple structure, even in the setting of continuous space processes.

We begin with the case of bisimulation game. As in the classical case, we consider a
spoiler/duplicator game with two players. Duplicator’s plays are pairs of states that she
claims are bisimilar. Spoiler tries to show that a given pair of states proffered by Duplicator
are not bisimilar. Let S = (X,Σ, τ) be a labelled Markov process, and x, y ∈ X. The
bisimulation game starting from the position (x, y) alternates between moves of the following
kinds:

Spoiler chooses a ∈ A and C ∈ Σ such that τa(x,C) 6= τa(y, C),
Duplicator answers by choosing x′ ∈ C and y′ 6∈ C and the game continues from (x′, y′).

A player who cannot make a move at any point loses. Duplicator wins if the game goes on
forever.

Note that the only way for Spoiler to win is to choose C = X at some point; otherwise
Duplicator can always choose some x′ and y′ as prescribed. (The only other situation where
Duplicator cannot proceed would be C = ∅, but that is not a legal move for Spoiler since
always τa(x, ∅) = τa(y, ∅) = 0.) On the other hand, Duplicator can win either by forcing an
infinite play or by reaching a position (x, y) where τa(x,C) = τa(y, C) for every C ∈ Σ.

The intuition behind the game should be clear. Spoiler tries to prove that states x and y
are not bisimilar by showing a label a and a set C, purportedly closed under bisimilarity,
such that the probabilities of a-labelled transitions to C are different for x and y. This
difference of probabilities is checked but not disputed by Duplicator, who instead claims that
C, in fact, is not closed under bisimilarity. She does that by choosing x′ ∈ C and y′ 6∈ C and
claiming that these two are bisimilar; the game then proceeds in the same fashion.

Before we formally prove the correctness of this game, let us spend a moment to consider
what makes a game-theoretic characterization “elegant”. In our opinion, the classical bisimu-
lation game for nondeterministic processes is elegant because it allows one to characterize a
global property of behaviours (bisimilarity) in terms of a game whose rules only depend on
local considerations. Indeed, whether a move in the game is legal or not does not depend on

N. Fijalkow, B. Klin, and P. Panangaden 105:5

bisimilarity or other long-range properties, but merely on local observations about transition
capabilities that cannot be disputed by either player.

We argue that this criterion of elegance is satisfied by our probabilistic game. One can
imagine the players engaging in a brief experiment with the given Markov process after
each move by Spoiler, to determine that the two transition probabilities involved are indeed
different. By performing random a-transitions from x and y sufficiently many times, Spoiler
can demonstrate to Duplicator, with an arbitrarily high confidence level, that the probabilities
of getting to C are different and so that the move to C is legal for Spoiler. It is important to
note, comparing the game to the definition of probabilistic bisimulation itself, that the legality
of a Spoiler’s move does not depend on the set C being actually closed under bisimilarity; a
game with such a condition would not be “elegant”.

The question of how many random transitions are enough to convince Duplicator that
a Spoiler’s move is legal, and hence how much time it takes for Spoiler to win the game if
x and y are not bisimilar, suggests a potentially interesting connection of the bisimulation
game to the quantitative framework of metrics on labelled Markov processes [9]. We leave
this for future work.

Back to formal development. Since all infinite plays are won by the same player (Duplic-
ator), standard game-theoretic arguments prove that:

I Fact 7. The bisimulation game is determined, i.e., from every position (x, y) either Spoiler
has a winning strategy or Duplicator does. J

From this we infer:

I Theorem 8. The states x and y are bisimilar if and only if Duplicator has a winning
strategy from (x, y).

Proof. For the left-to-right implication, for bisimilar x and y, we construct a winning strategy
from (x, y) for Duplicator. In this strategy, for any move a and C by Spoiler, Duplicator
chooses some arbitrary x′ ∈ C and y′ 6∈ C such that x′ and y′ are bisimilar. This is always
possible: since Spoiler’s move was legal, and it originated from a pair of bisimilar states, C
cannot be closed under bisimilarity. This strategy is winning for Duplicator since it allows
her response to any move by Spoiler, and Duplicator wins all infinite plays.

For the right-to-left implication, we shall show that the set R of all pairs (x, y) whence
Duplicator has a winning strategy, is a bisimulation. To this end, first we need to show that
R is an equivalence relation. Reflexivity is immediate, since from a position (x, x) Spoiler
has no legal moves. For symmetry, given a winning strategy from (x, y) Duplicator builds a
strategy from (y, x) trivially: she simply replies to any first move by Spoiler as if she would
reply to a move from (x, y), and then she follows the given strategy. For transitivity, assume
winning strategies for Duplicator from (x, y) and (y, z). A winning strategy for (x, z) works
as follows: for a legal move a and C from Spoiler, it must be that τa(x,C) 6= τa(y, C) or
τa(y, C) 6= τa(z, C). Depending on which of these inequalities holds, reply according to the
strategy from (x, y) or from (y, z), and then follow that winning strategy.

Now assume towards contradiction that R is not a bisimulation. This means that for
some x, y such that xRy, there exists a letter a in A and an R-closed subset C of X such
that τa(x,C) 6= τa(y, C). Consider a and C as a Spoiler’s move from (x, y). No matter what
Duplicator chooses as x′ ∈ C and y′ 6∈ C, since C is R-closed we have that not (x′Ry′) and,
by Fact 7, Spoiler has a winning strategy from (x′, y′). This forms a winning strategy for
Spoiler from (x, y), contradicting the assumption that xRy. J

ICALP 2017

105:6 Expressiveness of Probabilistic Modal Logics

p1 p2 p3 p4 q

1
2

1
2

1
2

1
2

1
2 1

2

1

Figure 1 It takes four steps for Spoiler to convince Duplicator that the state p1 does not
simulate q.

Simulation game is defined in a very similar fashion, alternating the following moves:
Spoiler chooses a ∈ A and C ∈ Σ such that τa(x,C) > τa(y, C),
Duplicator answers by choosing x′ ∈ C and y′ 6∈ C and the game continues from (x′, y′).

Again, a player who cannot make a move at any point loses, and Duplicator wins all infinite
plays.

The intuition behind the game is as before, except now Spoiler maintains that his chosen
sets C are .-closed, and Duplicator contradicts that by choosing x′ ∈ C and y′ 6∈ C and
maintaining that x′ . y′. All other considerations remain virtually the same, up to and
including:

I Theorem 9. x . y if and only if Duplicator has a winning strategy from (x, y).

I Example 10. We illustrate the simulation game on an example (see Fig. 1). In this Markov
process there is only one label. From the state q, the process loops forever. On the other
hand, from the state p1, one can reach the deadlock state p4 through the path to p2 and p3.

We examine the simulation game and how Spoiler can successfully prove to Duplicator
that the state p1 does not simulate q. We start the simulation game from (q, p1). A possible
first move is C = {q, p2} since τ(q, C) = 1 > τ(p1, C) = 1

2 , but it allows Duplicator to play
(q, p1), back to the original position. A smarter move is C = {q, p1}, to which Duplicator
has several possible answers, all losing. For instance, if Duplicator plays (q, p4), Spoiler wins
immediately by choosing C = X. Duplicator may survive more steps by playing (q, p2), then
(q, p3), before the fatal (q, p4).

4 Logical characterization of bisimulation, revisited

In this section, we give a short proof for the logical characterization of bisimulation, which
relies on two ingredients: the π-λ theorem and the Unique Structure Theorem.

4.1 The π-λ Theorem and the Unique Structure Theorem
A π-system is a family of subsets of a set X closed under finite intersections. A λ-system is
a family that contains X and is closed under complement and countable disjoint unions. A
σ-algebra is a family closed under complement, countable unions and countable intersections.
For a family E , let σ(E) denote the least σ-algebra that contains E .

I Theorem 11 (Dynkin’s π-λ theorem, [3]). For any π-system Π and a λ-system Λ on the
same set X, if Π ⊆ Λ then σ(Π) ⊆ Λ.

Below, ≡E is the relation of equivalence up to E , i.e., x ≡E y if and only if, for every
Y ∈ E , x ∈ Y iff y ∈ Y .

N. Fijalkow, B. Klin, and P. Panangaden 105:7

I Theorem 12 (Unique Structure Theorem, [1]). In any analytic space (X,Σ), for every
countable family E ⊆ Σ such that X ∈ E, every measurable, ≡E-closed subset of X is an
element of σ(E).

4.2 Logical Characterization
I Theorem 13. For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and A is
countable, ≡∧ is a bisimulation.

Proof. Take some x, y ∈ X and assume that there exists some a ∈ A such that τa(x,C) 6=
τa(y, C) for some ≡∧-closed set C ∈ Σ. We need to prove that x 6≡∧ y.

Denote δ = τa(x,−) and γ = τa(y,−). If δ(X) > γ(X), then pick a rational number
p such that δ(X) > p > γ(X); it is easy so see that x |= 〈a〉p> and y 6|= 〈a〉p>, therefore
x 6≡∧ y. The same formula distinguishes x and y if δ(X) < γ(X).

If δ(X) = γ(X) then pick any ≡∧-closed C ∈ Σ such that δ(C) 6= γ(C). Define

Π = {[[φ]] | φ ∈ L∧} and Λ = {Y ∈ Σ | δ(Y) = γ(Y)}.

It is easy to see that Π is a π-system and Λ is a λ-system (in particular, Λ is closed under
complement since δ(X) = γ(X)). Clearly, ≡Π = ≡∧. Moreover, since there are only countably
many formulas, Π is countable and, by Theorem 12, C ∈ σ(Π). Since by assumption C 6∈ Λ,
we have σ(Π) 6⊆ Λ, hence (by Theorem 11) Π 6⊆ Λ. In other words, there exists an L∧
formula φ such that δ([[φ]]) 6= γ([[φ]]).

Without loss of generality, assume δ([[φ]]) > γ([[φ]]) and pick p ∈ Q such that δ([[φ]]) >
p > γ([[φ]]). We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ, hence x 6≡∧ y as requested. J

This easily implies Theorem 4, repeated here:

I Corollary 14. For any labelled Markov process (X,Σ, τ) where (X,Σ) is analytic and A is
countable, and for any x, y ∈ X, we have that x ≡∧ y if and only if x ≈ y.

Proof. The right-to-left implication is an easy induction on the structure of formulas. The
left-to-right implication is immediate by Theorem 13. J

5 Logical characterization of simulation, revisited

Our proof of the logical characterization of simulation is completely analogous to the one for
bisimulation. It is enough to replace the two main ingredients (Theorems 11 and 12) by new
ones.

5.1 The Positive Monotone Class Theorem and the Positive Unique
Structure Theorem

A lattice of sets is a family of subsets of a set X closed under finite unions and intersections.1
A monotone class is a family closed under unions of increasing chains and under intersections
of decreasing chains. A σ-lattice of sets is a family of sets closed under countable unions
and countable intersections. For a family E , let L(E) denote the least σ-lattice of sets that
contains E .

1 A lattice of sets is sometimes called ring of sets. However, in measure theory ring of sets means
something else (a family closed under union and set difference), so we choose a different name.

ICALP 2017

105:8 Expressiveness of Probabilistic Modal Logics

I Theorem 15 (Positive Monotone Class Theorem). For any lattice of sets E and any monotone
classM on the same set X, if E ⊆M then L(E) ⊆M.

This result is similar and easier to prove than Theorem 11, and it should be treated as
folklore.

Below, vE is the preorder determined by E , i.e., x vE y if and only if, for every Y ∈ E ,
x ∈ Y implies y ∈ Y .
I Theorem 16 (Positive Unique Structure Theorem). In any Polish space (X,Σ), for every
countable family E ⊆ Σ, every nonempty, different from X, measurable and vE -closed subset
of X is an element of L(E).

This result strengthens Theorem 12, albeit on the restricted domain of Polish spaces.
(Extending it to analytic spaces is future work.) Its proof is also more involved, using ideas
similar to the proof of Lusin’s Separation Theorem for analytic sets (see [11]). The proof
was pointed out to us by Roman Pol.

5.2 The logical characterization
I Theorem 17. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and A is
countable, ≤∨∧ is a simulation.
Proof. Take some x, y ∈ X and assume that there exists some a ∈ A such that τa(x,C) >
τa(y, C) for some ≤∨∧-closed set C ∈ Σ. We need to prove that x 6≤∨∧ y.

Denote δ = τa(x,−) and γ = τa(y,−). Pick any ≤∨∧-closed C ∈ Σ such that δ(C) > γ(C).
Then C cannot be empty, since δ(∅) = γ(∅) = 0. If C = X, pick a rational number p such
that δ(X) > p > γ(X); it is easy so see that x |= 〈a〉p> and y 6|= 〈a〉p>, therefore x 6≤∨∧ y.

If C 6= X, define

E = {[[φ]] | φ ∈ L∨∧} and M = {Y ∈ Σ | δ(Y) ≤ γ(Y)}.

It is easy to see that E is a lattice of sets and (by continuity of measure)M is a monotone class.
Clearly, vE = ≤∨∧. Moreover, since there are only countably many formulas, E is countable
hence, by Theorem 16, C ∈ L(E). Since by assumption C 6∈ M, we have L(E) 6⊆ M, hence
(by Theorem 15) E 6⊆ M. In other words, there exists a formula φ such that δ([[φ]]) > γ([[φ]]).
Pick p ∈ Q such that δ([[φ]]) > p > γ([[φ]]). We readily obtain x |= 〈a〉pφ and y 6|= 〈a〉pφ,
hence x 6≤∨∧ y as requested. J

Compared to Theorem 6, the following easy consequence is restricted to Polish spaces
but generalized to countable sets of labels.
I Corollary 18. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and A is
countable, and for any x, y ∈ X, we have that x ≤∨∧ y if and only if x . y.
Proof. The right-to-left implication is an easy induction on the structure of formulas. The
left-to-right implication is immediate by Theorem 17. J

6 The case of uncountably many labels

Our proofs of the logical characterizations for simulation and bisimulation rely on the
assumption that the set of formulas (and, equivalently, the set of transition labels) is
countable. In this section we investigate the necessity of this assumption. We first observe
that indeed if there are uncountably many labels, then the logical characterization fails in
general. However, we show that if the transition structure is continuous, then the logical
characterization holds again, without any assumption on the set of labels.

N. Fijalkow, B. Klin, and P. Panangaden 105:9

p q

0 1x

⊤

x

Figure 2 The two states p and q do not simulate each other, but they satisfy the same formulas
of L∨∧.

6.1 A counterexample
In the classical logical characterization of (bi)similarity for nondeterministic labelled transition
systems [10], one can restrict to a logic with finite conjunction and disjunction only if the
systems in question satisfy a finite branching property called image finiteness: each state
can have only finitely many successors for any given transition label. Since [6, 7] it has been
known that this restriction does not apply to probabilistic systems, where a finitary logic is
enough to characterize bisimilarity on systems with arbitrary (probabilistic) branching.

On the other hand, in the classical nondeterministic setting, once image finiteness is
ensured, the size of the set of transition labels matters very little. Even if infinitely many,
or even uncountably many labels are permitted, a finitary logic (with a correspondingly
large set of modal operators) is enough to characterize (bi)similarity for nondeterministic
transition systems labelled with them.

We now show that this is not the case for labelled Markov processes with continuous
state spaces. Specifically, we show an example where the set of labels is uncountable and
the logical characterization fails, even though the space of states is a particularly simple,
compact Polish space.

Denote X = {p, q,>} ∪ [0, 1]. We equip X with the smallest σ-algebra that makes all
Borel sets of [0, 1] as well as the singletons {p} , {q} and {>} measurable. Denote by µ the
Lebesgue2 probability measure on [0, 1].

Consider a set of actions A = [0, 1]. Define functions τa : X × Σ→ [0, 1] for each a ∈ A
as follows:

τa(p, C) = µ(C ∩ [0, 1
2])

τa(q, C) = µ(C ∩ [1
2 , 1])

τa(x,>) =
{

1 if x = a

0 otherwise

The following proposition easily implies that logical characterizations both for bisimulation
and for simulation fail for this labelled Markov process.

I Proposition 19. Neither p nor q simulates the other, but they satisfy the same formulas
of L∨∧.

2 We mean the usual measure on [0, 1] which assigns to intervals their length. However this is usually
extended to the Lebesgue σ-algebra, i.e., the one obtained by completing the Borel σ-algebra with
respect to this measure. We are just using this measure on the Borel sets.

ICALP 2017

105:10 Expressiveness of Probabilistic Modal Logics

Proof. We prove that neither p nor q simulates the other. First, for any x, y in [0, 1], if
x 6= y then neither of these simulates the other. Indeed, from x, the action a = x leads to >
with probability 1 and leads nowhere from y. It follows that every subset of [0, 1] is .-closed;
in particular this applies to [0, 1

2] and [1
2 , 1]. This implies that neither p nor q simulates

the other, because τa(p, [0, 1
2]) = 1 and τa(q, [0, 1

2]) = 0, and vice-versa τa(p, [1
2 , 1]) = 0 and

τa(q, [1
2 , 1]) = 1.

To see that p and q satisfy the same formulas, we observe that for every finite subset
B ⊆ A, p and q do simulate each other (indeed, they are even bisimilar) in the system
restricted to labels from B. The claim easily follows from this, since every formula of L∨∧
uses finitely many labels.

So for a finite B ⊆ A, define a relation R on X to be the least equivalence relation such
that pRq and xRy for each x, y ∈ [0, 1] \ B. We claim that R is a bisimulation on the system
restricted to labels with B. The only nontrivial case is the pair pRq: every R-closed set
C ⊆ [0, 1] is either finite or co-finite, from which it easily follows that τa(p, C) = τa(q, C). J

Intuitively, the core of the problem here is the highly non-continuous nature of transitions
from [0, 1], allowing one to observe specific states from that uncountable space. Indeed, as
we show in the following section, the problem disappears and the logical characterizations
hold if we assume that the transition function τa(·, C) is continuous for each a and C.

6.2 Logical characterizations for continuous transition functions
Given a labelled Markov process (X,Σ, τ) with labels from a set A, we denote by (X,Σ, τ|B)
the same system restricted to labels from B ⊆ A.

I Theorem 20. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such
that for all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, there exists a countable set B
such that the bisimilarity relation ≈ on (X,Σ, τ|B) coincides with that on (X,Σ, τ).

Proof. We will use the fact that, under the above assumptions, X2 is also a Polish space for
the product topology, hence it satisfies the hereditary Lindelöf property: any open cover of a
subset of X2 has a countable subcover.

By definition, the bisimilarity relation ≈ on (X,Σ, τ) is the largest bisimulation. It is
standard to define it as the greatest fixpoint of a certain operator on binary relations on
X. For us it will be convenient to speak in terms of complements, and we consider the
complement of ≈ as the least fixpoint of the operator:

Φ(R) =
{

(x, y) ∈ X2 ∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \R)-closed, s.t. τa(x,C) 6= τa(y, C)
}

Thanks to Tarski’s fixed point theorem, this is obtained by defining a sequence (Wα)α of
subsets of X2 indexed by ordinals α: for α + 1 a successor ordinal and β a limit ordinal,
define:

W0 = ∅
Wα+1 =

{
(x, y) ∈ X2

∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \Wα)-closed, s.t. τa(x,C) 6= τa(y, C)
}

Wβ =
⋃
α<βWα.

The complement of ≈ on (X,Σ, τ) is the union of all Wα for all ordinals α. More specifically,
(Wα)α form an increasing sequence that reaches a fixpoint at some ordinal γ not larger than
the cardinality of P(X2).

N. Fijalkow, B. Klin, and P. Panangaden 105:11

Note that all Wα are open sets in X2. This is proved by ordinal induction: for a successor
ordinal, Wα+1 is a union of sets of the form{

(x, y) ∈ X2 | τa(x,C) 6= τa(y, C)
}

for some a and C. Such a set is open, since it is the inverse image of the (open) inequality
relation on [0, 1] along the continuous function τa(·, C).

For each ordinal α we construct a countable subset Bα ⊆ A such that Wα calculated on
(X,Σ, τ|Bα

) coincides with Wα calculated on (X,Σ, τ).
For sucessor ordinals, rewrite the definition of Wα+1 as:

Wα+1 =
⋃
a∈A

{
(x, y) ∈ X2 | ∃C ∈ Σ (X2 \Wα)-closed, s.t. τa(x,C) 6= τa(y, C)

}
.

This is a union of open sets. Since X2 is hereditary Lindelöf, one can extract a countable
subcover of this union, indexed by some set B ⊆ A. It is then enough to take Bα+1 = Bα ∪B.

For limit ordinals, extract a countable subcover of the union Wβ =
⋃
α<βWα and take

Bβ to be the union of the Bα’s defined for α’s from that subcover.
Now the countable set Bγ , where γ is the ordinal for which Wγ reaches the least fixpoint

of Φ, satisfies the desired property. J

The same result holds for simulation:

I Theorem 21. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such
that for all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, there exists a countable set B
such that the similarity preorder . on (X,Σ, τ|B) coincides with that on (X,Σ, τ).

Proof. Completely analogous to the proof of Theorem 20, but with the operator

Φ(R) =
{

(x, y) ∈ X2 ∣∣ ∃a ∈ A,∃C ∈ Σ (X2 \R)-closed, s.t. τa(x,C) > τa(y, C)
}

instead. In particular the fact that each Wα is open, still holds. J

The following immediately follows from Theorems 20 and 21 in the light of Corollaries 14
and 18.

I Corollary 22. For any labelled Markov process (X,Σ, τ) where (X,Σ) is Polish and such
that for all a ∈ A, C ∈ Σ, the function τa(·, C) is continuous, for any x, y ∈ X,

x ≡∧ y if and only if x ≈ y,
x ≤∨∧ y if and only if x . y.

7 Conclusions

The results of this paper suggest that we have arrived at a deeper understanding of the
interplay of modal logic and probabilistic transition structure. Variations of the logic can also
be used for logical characterization of bisimulation, for example, with the modal construct
and just disjunction instead of just conjunction, as studied in [2]. The arguments are
minor variations of the proofs given in Section 3sec:bisim. The earlier proof of logical
characterization of simulation [8] emerged as a by-product of the theory of approximation;
the proof of the present paper is direct. It is particularly pleasing that the two logical
characterization proofs have the same general shape and also resemble the overall strategy of
the Hennessy-Milner proof.

ICALP 2017

105:12 Expressiveness of Probabilistic Modal Logics

The game characterization, though elementary, is both pleasing and intriguing. As
suggested earlier, there might be interesting links to metrics and the number of moves
it takes for Spoiler to win a game. The connection between metrics and bisimulation is
well understood but it is possible that via the game one might gain a more quantitative
understanding of the numerical significance of the metric.

Acknowledgments. We are very much indebted to Roman Pol, who showed us the proof of
Theorem 16 which had eluded us for a long time.

We would like to thank the Simons Institute for hosting the program Logical Structures
in Computation during the Fall of 2016 where we were able to work together in a congenial
atmosphere. We are grateful to Martin Otto and Thomas Colcombet for stimulating
conversations in Berkeley.

References
1 W. Arveson. An Invitation to C∗-Algebra. Springer-Verlag, 1976.
2 M. Bernardo and M. Miculan. Disjunctive probabilistic modal logic is enough for bisimil-

arity on reactive probabilistic systems. In ICTCS, volume 1720, pages 203–220, 2016.
3 P. Billingsley. Probability and Measure. Wiley-Interscience, 1995.
4 R. Blute, J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled Markov

processes. In LICS, 1997.
5 J. Desharnais. Labelled Markov Processes. PhD thesis, McGill University, 1999.
6 J. Desharnais, A. Edalat, and P. Panangaden. A logical characterization of bisimulation

for labelled Markov processes. In LICS, pages 478–489, 1998.
7 J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov processes.

Information and Computation, 179(2):163–193, 2002.
8 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating labeled

Markov processes. Information and Computation, 184(1):160–200, 2003.
9 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. A metric for labelled Markov

processes. Theoretical Computer Science, 318(3):323–354, June 2004.
10 M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In ICALP,

volume 85, pages 299–309, 1980.
11 A. S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in Mathem-

atics. Springer-Verlag, 1995.
12 K. G. Larsen and A. Skou. Bisimulation through probablistic testing. Information and

Computation, 94:1–28, 1991.
13 P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
14 J. van Benthem. Modal correspondence theory. PhD thesis, University of Amsterdam, 1976.

Emptiness of Zero Automata Is Decidable∗†

Mikołaj Bojańczyk1, Hugo Gimbert2, and Edon Kelmendi2

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
bojan@mimuw.edu.pl

2 LaBRI, Université de Bordeaux, CNRS, Bordeaux, France
hugo.gimbert@labri.fr

3 LaBRI, Université de Bordeaux, CNRS, Bordeaux, France
edon.kelmendi@labri.fr

Abstract
Zero automata are a probabilistic extension of parity automata on infinite trees. The satisfiability
of a certain probabilistic variant of mso, called tmso + zero, reduces to the emptiness problem
for zero automata. We introduce a variant of zero automata called nonzero automata. We prove
that for every zero automaton there is an equivalent nonzero automaton of quadratic size and
the emptiness problem of nonzero automata is decidable, with complexity co-np. These results
imply that tmso + zero has decidable satisfiability.

1998 ACM Subject Classification F.4.3 Formal Languages, F.4.1 Mathematical Logic

Keywords and phrases tree automata, probabilistic automata, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.106

1 Introduction

In this paper, we prove that emptiness is decidable for two classes of automata, namely zero
and nonzero automata. Zero automata were introduced as a tool for recognizing models of a
probabilistic extension of MSO on infinite trees [1]. Nonzero automata, introduced in this
paper, are equivalent to zero automata, but have simpler semantics.

Both zero and nonzero automata are probabilistic extensions of parity automata on infinite
trees. Here we focus on the case of binary trees. The automaton performs a random walk on
the infinite binary input tree: when the automaton is in a state q on a node labelled with a,
it selects non-deterministically a transition (q, a, r0, r1) and moves with equal probability 1

2
either to the left node in state r0 or to the right node in state r1.

The set of branches of the infinite binary tree is equipped with the uniform probability
measure, which is used to define the acceptance condition. There are two variants of the
acceptance condition, one for zero automata and one for nonzero automata

A nonzero automaton is equipped with a total order ≤ on its set of states Q and three
accepting subsets of states F∀, F1 and F>0. A run is accepting if:
(a) on every branch the limsup state (i.e. the maximal state seen infinitely often) is in F∀;
(b) and with probability 1 the limsup state is in F1;
(c) and every time the run visits a state in F>0 there is a nonzero probability that all

subsequent states are in F>0.

∗ Full version with proof is [2], http://arxiv.org/abs/1702.06858.
† The research of M. Bojańczyk is supported by the ERC grant LIPA under the Horizon 2020 framework.

H. Gimbert and E. Kelmendi are supported by the French ANR project “Stoch-MC” and “LaBEX CPU”
of Université de Bordeaux.

EA
T

C
S

© Mikołaj Bojańczyk, Hugo Gimbert, and Edon Kelmendi;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 106; pp. 106:1–106:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.106
http://arxiv.org/abs/1702.06858
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

106:2 Emptiness of Zero Automata Is Decidable

Condition (a) is the classical parity condition for tree automata and condition (b) is equivalent
to the qualitative condition from [5]. Condition (c) seems to be new. Conditions (a) and (b)
are used to define the acceptance condition of zero automata as well, the difference between
zero and nonzero automata lies in condition (c).

The paper [1] introduced a variant of mso on infinite trees with a probabilistic quantifier,
called tmso+zero, inspired by probabilistic mso from [9]. In the case where zero is the unary
predicate which checks whether a set of branches has probability 0, the contribution of [1] was
a proof that for every formula of this logic one can compute a zero automaton which accepts
the same trees. The logic is powerful enough to formulate properties like “every node in the
tree has a descendant node labelled with b and the set of branches with infinitely many b has
probability 0”. As argued in [1], the motivation for this logic is twofold. First, it extends
various probabilistic logics known in the literature, e.g. qualitative probabilistic ctl* [8], or
qualitative probabilistic ctl* extended with ω-regular path properties [3]. Second, the logic,
although less general than mso, represents a robust class of languages of infinite trees that
goes beyond classical mso, and thus falls under the scope of the programme of searching for
decidable extensions of mso.

The emptiness problem for zero automata was not solved in [1], thus leaving open the
logic’s decidability. A step toward an emptiness algorithm was made in [10], where it was
shown that for subzero automata – the special case of zero automata where only conditions
(a) and (b) are used – one can decide if the recognized language contains a regular tree. In
this paper we prove that zero and nonzero automata have decidable emptiness, and therefore
also the logic from [1] has decidable satisfiability.

The main results of this paper are:
(i) For every zero automaton there is an equivalent nonzero automaton of quadratic size.
(ii) A nonzero automaton with F∀ = Q is nonempty if and only if its language contains a

regular tree of size |Q|. This is decidable in np.
(iii) The emptiness problem of nonzero automata is in co-np.

To prove (iii) we provide a reduction of the emptiness problem to the computation of the
winner of a parity game called the jumping game. For that we rely on (ii): the states of the
jumping game are regular runs of a nonzero automaton where F∀ = Q. According to (i) the
emptiness problem for zero automata is in co-np as well.

These results were recently improved: the emptiness problem is actually in np∩co-np,
and even in ptime if F∀ = Q, see [2].

The plan of the paper is as follows. In Section 2 we introduce zero and nonzero automata
and state our main result (iii) (Theorem 3). In Section 3 we show (i) (Lemma 5). In Section 4
we focus on the special case where Q = F∀ and show (ii) (Theorem 10). In Section 5 we
introduce jumping games and combine the previous results to provide a proof of (iii).

2 Zero and nonzero automata

This section introduces trees and nonzero and zero automata.

Trees, branches and subtrees. The automata of this paper describe properties of infinite
binary labelled trees. A node in a tree is a sequence in {0, 1}∗. A tree over an alphabet Σ is a
function t : {0, 1}∗ → Σ. We use standard terminology for trees: node, root, left child, right
child, leaf, ancestor and descendant. A branch is a sequence in {0, 1}ω, viewed as an infinite
sequence of left or right turns. A branch visits a node if the node is a prefix of the branch.

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:3

A subtree is a non-empty and ancestor-closed set of nodes. A subtree is leaf-free if each
of its nodes has at least one child in the subtree. A branch of a subtree is a branch which
visits only nodes of the subtree.

Probability measure over branches. We use the coin-flipping measure on {0, 1}ω: each bit
is chosen independently at random, with 0 and 1 having equal probability, and every Borel
subset of {0, 1}ω is measurable. The probability of a subtree is the probability of the set
of branches of the subtree. The inner regularity of the coin-flipping measure (see e.g. [7,
Theorem 17.10]) implies:

I Lemma 1. The probability of a measurable set E is the supremum of the probabilities of
the subtrees whose every branch belongs to E.

Nonzero automata. Intuitively, a nonzero automaton is a nondeterministic parity tree
automaton which has the extra ability to check whether the set of branches satisfying the
parity condition has zero or nonzero probability.

I Definition 2. The syntax of a nonzero automaton is a tuple

Q︸︷︷︸
states

Σ︸︷︷︸
input alphabet

∆ ⊆ Q× Σ×Q2︸ ︷︷ ︸
transitions

,

with all components finite, together with a total order ≤ on Q and three subsets

F∀, F1, F>0 ⊆ Q .

A run of the automaton on an input tree t : {0, 1}∗ → Σ is an infinite binary tree
r : {0, 1}∗ → Q whose root is labelled by the maximal state of Q, also called the initial
state and which is consistent with the transition relation in the usual sense, i.e. ∀v ∈
{0, 1}∗, (r(v), t(v), r(v0), r(v1)) ∈ ∆. Define the limsup of a branch of the run to be the
maximal state that appears infinitely often on the branch.

The run is accepting if it is surely, almost-surely and nonzero accepting:
surely accepting: every branch has limsup in F∀; and
almost-surely accepting: the set of branches with limsup in F1 has probability 1; and
nonzero accepting: for every node v with state in F>0, the set of branches which visit v
and visit only F>0-labelled nodes below v has nonzero probability.

The emptiness problem. The emptiness problem asks whether an automaton has an
accepting run. Our main result:

I Theorem 3. Emptiness of a nonzero automaton is decidable in co-np.

Proof. This is a corollary of a series of intermediary results. In section 4 we focus on the
special case where F∀ = Q (Theorem 10). In section 5 we reduce the emptiness problem for
nonzero automata to the computation of the winner in a parity game called the jumping
game (Lemma 17) and give an np algorithm to compute the winner of the jumping game
(Lemma 18). J

ICALP 2017

106:4 Emptiness of Zero Automata Is Decidable

Zero automata. Nonzero automata are a variant of zero automata introduced in [1]. A
zero automaton differs slightly from a nonzero automaton in that it uses a notion of “seed
state” for the nonzero acceptance condition. On top of F∀, F1 and F>0 there is a subset
Qseed ⊆ Q. A run is accepting if it is surely, almost-surely and zero accepting:

zero accepting: for every node v with state q ∈ Qseed, with nonzero probability the run
visits node v, then below v visits only states ≤ q and moreover has limsup in F>0.

In the next section, we show that every zero automaton can be transformed in an
equivalent nonzero automaton of quadratic size (Lemma 5). Combined with Theorem 3,

I Corollary 4. The emptiness problem of zero automata is decidable in co-np.

According to [1], this implies that tmso + zero has decidable satisfiability when zero is the
unary predicate checking that a set of branches has probability 0.

An example: the dense but not very dense language. A tree over alphabet {a, b} is dense
but not very dense if:
1. every node has a descendant with label a; and
2. there is zero probability that a branch visit infinitely many nodes with letter a.
This language is non-empty, contains no regular tree and is recognized by a nonzero automaton.
This automaton has three states, totally ordered as follows:

s︸︷︷︸
searching for a

< n︸︷︷︸
not searching for a

< f︸︷︷︸
just found a

.

The automaton begins in state f in the root. When the automaton reads a node with label
b, then it sends s to some child and n to the other child, regardless of its current state.
Choosing which child gets s and which child gets n is the only source of nondeterminism in
this automaton. When the automaton sees letter a, it sends f to both children regardless of
its current state. The acceptance condition is:

F∀ = {n, f} F1 = {n} F>0 = ∅ .

3 From zero to nonzero automata

In this section we show that nonzero automata are as expressive as zero automata.

I Lemma 5. For every zero automaton one can compute a nonzero automaton of quadratic
size which accepts the same trees.

The rest of the section is dedicated to the proof of Lemma 5, which is a direct corollary
of Lemma 7 and Lemma 8 below.

Without loss of generality, we assume that in every zero automaton F>0 ⊆ F1 ⊆ F∀.
Changing F1 for F1 ∩ F∀ and F>0 for F>0 ∩ F1 does not modify the set of accepting runs of
a zero automaton, since all branches should have limsup in F∀ and if the limsup is equal
with nonzero probability to some q ∈ F>0 then necessarily q ∈ F1. By contrast, for nonzero
automata there is no obvious reason for the same remark to hold.

We make use of an intermediary acceptance condition. Let r be a run. We say that a
path from a node v to a node w is seed-consistent if whenever the path visits a seed state s,
subsequent states are ≤ s.

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:5

Strong zero acceptance condition: for every node v labelled by a seed state, there is a
seed-consistent path from v to a strict descendant w of v such that the state r(w) of w is
in F>0 and there is a nonzero probability that the run

visits node w and visits only states ≤ r(w) below w,
has limsup r(w),
in case r(w) 6∈ Qseed, visits no seed state below w,
in case r(w) ∈ Qseed, visits no seed state other than r(w) below w.

Actually, the strong zero and zero acceptance conditions coincide (proof in appendix):

I Lemma 6. A run is zero accepting if and only if it is strongly zero accepting.

Construction of the nonzero automaton. Intuitively, every zero automaton can be simu-
lated by a nonzero automaton which guesses on the fly a run of the zero automaton and checks
simultaneously that the guessed run is strongly zero accepting. Whenever the automaton
visits a node v with a seed state then it enters in the next step a path-finding state and
guesses a seed-consistent path to a node w which is a witness of the strong zero condition.
Once on the node w the automaton enters a subtree-guessing state and starts guessing a
leaf-free subtree of the run, whose nodes are labelled by states ≤ r(w), whose branches have
limsup r(w) and which has nonzero probability.

There are some verifications to do in order to certify that the guessed run is strongly zero
accepting. The surely accepting condition is used to prevent the automaton from staying
forever in the path-finding mode and also to check that every branch of the subtree has
limsup r(w). The nonzero condition is used to check that the subtree has nonzero probability.
To perform these verifications, the nonzero automaton stores some data in its control state.
In path-finding mode the automaton records the smallest seed state seen so far in order to
check on-the-fly that the path from v to w is seed-consistent. In subtree-guessing mode the
automaton keeps track of the state r(w).

The set of states of this automaton is denoted R, every state in R has as a first component
a control state Q of the zero automaton. Precisely, R is the union of three sets:

normal states: Q,
path-finding states: {(q, s) | q ∈ Q, s ∈ Qseed, q ≤ s},
subtree-guessing states: {(q, f, ∗) | q ∈ Q, f ∈ F>0, q ≤ f, (q 6∈ Qseed ∨ q = f)}.

We equip R with any order ≺ such that
the projection on the first component Π1 : (R,≺)→ (Q,<) is monotonic,
(q, s) ≺ q for every q ∈ Q and s ∈ Qseed with q ≤ s.

The zero, almost-surely and surely accepting conditions are defined respectively as:

G>0 = the set of subtree-guessing states,
G1 = F1 ∪ {(f, f, ∗) | f ∈ F>0},
G∀ = F∀ ∪ {(f, f, ∗) | f ∈ F>0} .

The transitions of the automaton can be informally described as follows. The nonzero
automaton guesses on the fly a run ρ : {0, 1}∗ → Q of the zero automaton by storing the value
of ρ(v) as the first component of its own control state on the node v. The nonzero automaton
stays in the set of normal states as long as the run does not enter a seed state. On a node
v labelled by s ∈ Qseed, the nonzero automaton starts looking for a path to a descendant
node w that satisfies the strong zero condition. For that in the next step the automaton
enters either a path-finding or a subtree-guessing state. While in a path-finding state, the

ICALP 2017

106:6 Emptiness of Zero Automata Is Decidable

automaton guesses on the fly a seed-consistent path. Whenever the run is in a nonzero state
f ∈ F>0 the nonzero automaton can enter the subtree-guessing state (f, f, ∗), or not. While
in subtree-guessing mode the second component is constant, and the automaton control state
is of type (q, f, ∗) with q ≤ f and q 6∈ Qseed unless q = f ∈ Qseed. From a subtree-guessing
state the automaton may switch back any time to a normal state.

Formally, for every transition q → r0, r1 of the zero automaton, there is a transition

q′ → r′0, r
′
1

in the nonzero automaton if the first component of q′ is q and

r′0 =

r0 whenever q′ is not path-finding

(r0, r0, ∗) whenever
{
q ∈ Qseed, q

′ = q and r0 ∈ F>0 and r0 ≤ q
or q′ = (q, s) and r0 ∈ F>0 and r0 ≤ s,

(r0, f, ∗) whenever q′ = (q, f, ∗) and r0 ≤ f and (r0 6∈ Qseed ∨ r0 = f).

The possible values of r′1 are symmetric. There are also left path-finding transitions: for
every seed states s, s′ ∈ Qseed such that q ≤ s and r0 ≤ s there are transitions

q′ → (r0, s
′), r1 where q′ =

{
q or (q, q) if q = s

(q, s) otherwise
and s′ =

{
s if r0 6∈ Qseed

r0 if r0 ∈ Qseed.

There may also be a symmetric right path-finding transition (q, s) → r0, (r1, s
′) when the

symmetric conditions hold.
The next two lemmas relate the accepting runs of the zero and the nonzero automata,

their proofs can be found in the appendix.

I Lemma 7. Let d : {0, 1}∗ → R be an accepting run of the nonzero automaton. Then its
projection r = Π1(d) on the first component is an accepting run of the zero automaton.

I Lemma 8. If the zero automaton has an accepting run r : {0, 1}∗ → Q then the nonzero
automaton has an accepting run d : {0, 1}∗ → R such that r = Π1(d).

4 Emptiness of F∀-trivial automata is in NP

A run of a nonzero automaton needs to satisfy simultaneously three conditions, which
correspond to the accepting sets F∀, F1, F>0. For a subset

I ⊆ {F∀, F1, F>0}

define I-automata to be the special case of nonzero automata where only the acceptance
conditions corresponding to I need to be satisfied. These are indeed special cases: ignoring
F>0 can be achieved by making it empty, ignoring F1 can be achieved by making it equal to
F∀, and ignoring F∀ can be achieved by making it equal to all states Q.

Generalizing parity automata, with standard and qualitative semantics. A {F∀}-automaton
is a parity automaton. Thus solving emptiness for nonzero automata is at least as hard as
emptiness for parity automata on trees, which is polynomial time equivalent to solving parity
games, in np ∩co-np [12] or in quasi-polynomial time [4].

A {F1}-automaton is the same as a parity automaton with qualitative semantics as
introduced in [5]. Emptiness for such automata can be solved in polynomial time using
standard linear programming algorithms for Markov decision processes.

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:7

Subzero automata. A {F1, F∀}-automaton is the same as a subzero automaton as considered
in [10]. In [10], it was shown how to decide if a subzero automaton accepts some regular tree.
Since some subzero automata are nonempty but accept no regular trees, see e.g. the example
in [1], the result from [10] does not solve non-emptiness for subzero automata.

F∀-trivial automata. In a {F1, F>0}-automaton, the surely accepting condition is trivial,
i.e. F∀ = Q. We call such automata F∀-trivial. The acceptance of a run of a F∀-trivial
automaton depends only on the probability measure on Qω induced by the run, individual
branches do not matter.

I Definition 9 (Positional run). A run is positional if whenever the states of two nodes
coincide then the states of their left children coincide and the states of their right children
coincide.

I Theorem 10. If a F∀-trivial automaton has an accepting run, then it has a positional
accepting run. Emptiness of F∀-trivial automata is in co-np.

This result was recently improved in [2]: the complexity is actually ptime. The proof of this
theorem relies on the notion of acceptance witnesses.

I Definition 11 (Transition graph and acceptance witness). Let D be a set of transitions.
The transition graph of D, denoted GD, is the directed graph whose vertices are all states

appearing in one of the transitions in D, denoted QD, and whose edges are induced by the
transitions in D: for every (q, a, l, r) ∈ D both (q, l) and (q, r) are edges of GD.

The set D is an acceptance witness if it satisfies the four following conditions:
(i) QD contains the initial state of the automaton and GD has no dead-end,
(ii) the maximum of every bottom strongly connected component (BSCC) of GD is in F1,
(iii) every BSCC of GD is either contained in F>0 or does not intersect F>0,
(iv) from every state in F>0 ∩QD there is a path in F>0 ∩QD to a BSCC contained in F>0.

I Lemma 12. If a F∀-trivial automaton has an acceptance witness, it has a positional
accepting run.

Proof. The proof is by induction on ND = |D| − |QD|. Since GD has no dead-end, every
state in QD is the source of a transition in D thus ND ≥ 0.

If ND = 0 then for every state q ∈ QD there is a unique transition δq = (q, aq, lq, rq). Let
ρ be the positional run whose root has the initial state and every node with vertex q ∈ QD

has children lq and rq, which is well-defined according to property (i). We show that ρ is an
accepting run. The graph GD can be seen as a Markov chain, with probability either 1 or 1

2
on every edge, depending on the out-degree. The probability measure on Qω

D produced by
the random walk on ρ coincide with the probability measure on Qω

D produced by this finite
Markov chain: indeed both measures coincide on finite cylinders q0 · · · qnQ

ω
D. Basic theory

of finite homogenous Markov chain implies that almost-surely every branch of the run ends
up in one of the BSCCs of GD and visits all its states infinitely often. Thus property (ii)
ensures that the run ρ is almost-surely accepting. Properties (iii) and (iv) guarantee that
the run is moreover nonzero-accepting.

Assume now that ND > 0. We show that there is a strictly smaller acceptance witness
D′ (D. Let q ∈ QD which is the source of several transitions in D, then D′ is obtained by
removing from D all these transitions except one. To choose which transition δ to keep, pick
some shortest path q = q0 . . . qn in GD of length ≥ 1 which leads to a maximal state of one
of the BSCCs of GD. Moreover if q ∈ F>0 we require the whole path to stay in F>0. By

ICALP 2017

106:8 Emptiness of Zero Automata Is Decidable

definition of GD there is at least one transition in D whose origin is q and one of the two
successors is q1. To get D′ we delete all other transitions with source q from D.

Clearly property (i) is preserved by this operation. To address properties (ii)–(iv), we
show that every BSCC B′ of GD′ is either a BSCC of GD or contained in the BSCC B of
GD whose maximum is qn, in which case maxB = maxB′ = qn. There are two cases. If B′
does not contain qn then it does not contain q either (because q = q0 . . . qn is still a path in
GD′). Since the only difference between GD and GD′ are the outgoing transitions from q

then B′ is actually a BSCC of GD. If B′ contains qn then B′ ⊆ B (because there are less
edges in GD′ than in GD) and since qn = maxB then maxB = maxB′.

As a consequence property (ii) and (iii) are preserved. And property (iv) is preserved as
well: in case q 6∈ F>0 then there is nothing to prove and in case q ∈ F>0 then q = q0 . . . qn is
still a path in GD′ , with all vertices in F>0. Moreover the set of vertices from which qn is
accessible is the same in GD and GD′ thus qn is in a BSCC of GD′ . J

A strong version of the converse implication of Lemma 12 holds:

I Lemma 13. If a F∀-trivial automaton has an accepting run, it has an acceptance witness.

Proof. We fix an accepting run ρ on some input tree t. To extract an acceptance witness
from ρ, we make use of the notion of end-component introduced in [6].

IDefinition 14 (End-component). The transition of a node v is d(v) = (ρ(v), t(v), ρ(v0), ρ(v1)).
For every branch b, we denote ∆∞(b) the set of transitions labelling infinitely many nodes
of the branch. For every subset D ⊆ ∆ we denote BD the set of branches b such that
∆∞(b) = D. A set of transitions D ⊆ ∆ is an end-component of the run if BD has nonzero
probability.

Call a branch b even if for every transition δ = (q, a, l, r) ∈ ∆∞(b), not only the state q
but also the states l and ρ appear infinitely often on the branch in the run ρ. Almost-surely
every branch is even, because each time a branch visits a node with transition δ it proceeds
left or right with equal probability 1

2 . As a consequence,

I Lemma 15. Let D be an end-component of the run. Then the transition graph of D has
no dead-end, is strongly connected and its maximal state is in F1.

Proof. Denote GD the transition graph of D, with states QD. Since D is an end-component
then BD has non-zero probability, and since almost every branch is even then BD contains at
least one even branch b. The set of states appearing infinitely often on b is exactly QD. By
removing a prefix long enough of b so that only states in QD occur on the remaining suffix
then one obtains a path in GD which visits every state in QD infinitely often. Thus GD

has no dead-end and is strongly connected. Moreover every even branch in BD has limsup
maxQD and since the run is almost-surely accepting then maxQD ∈ F1. J

Let D be the collection of all end-components of the run ρ. We define two subsets of
D, denoted respectively D0 and D1, which collect the end-components whose states are
respectively included in F>0 and disjoint from F>0. Let D0 ⊆ ∆ (resp. D1 ⊆ ∆) be the
union of all end-components in D0 (resp. in D1). These transitions are easy to reach:

I Lemma 16. Every node v has a descendant w whose transition d(w) belongs to D0 ∪D1.
Moreover if the state of v is in F>0 then w can be chosen such that the path v to w is labelled
by F>0 and the transition d(w) is in D0.

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:9

Proof. Let v be a node and Sv the set of branches which visit v and, in case v is labelled
by F>0, visit only F>0-labelled nodes below v. Since the run is accepting then Sv has
positive probability. By definition of end-components, almost-every branch is in

⋃
D∈D BD.

Thus there exists an end-component D such that BD ∩ Sv has positive probability. As a
consequence, v has a descendant w whose transition is in D. Since almost-every branch is
even and BD ∩Sv has positive probability then there is at least one branch in BD ∩Sv which
visits infinitely often all states appearing in QD. In case v is labelled by F>0, this implies
that QD ⊆ F>0 thus D ∈ D0, and the proof of the second statement is complete. In case v
has no descendant labelled by F>0 this implies that QD ∩ F>0 = ∅ thus D ∈ D1, and the
first statement holds in this case. In the remaining case, v has a descendant v′ labelled with
F>0, which itself has a descendant w whose transition belongs to some D ∈ D0, thus the
first statement holds for v. J

We terminate the proof of Lemma 13. Let G0 (resp. G1) the transition graph of D0 (resp.
D1) and denote Q0 (resp. Q1) the set of states of G0 (resp. G1).

Let D be the set of all transitions appearing in the run. According to Lemma 16, in the
transition graph GD, Q0 ∪ Q1 is accessible from every state q ∈ QD and moreover Q0 is
accessible from every state q ∈ QD ∩ F>0 following a path in QD ∩ F>0.

We say that an edge (q, r) of GD is progressive if q 6∈ Q0 ∪Q1 and either (q ∈ F>0 and
r ∈ F>0 and (q, r) decrements the distance to Q0 in GD) or (q 6∈ F>0 and (q, r) decrements
the distance to Q0 ∪Q1 in GD). Every state in QD \ (Q0 ∪Q1) is the source of at least one
progressive edge.

We denote D+ the union of D0 and D1 plus all the transitions δ = (q, a, r0, r1) ∈ D such
that either (q, r0) or (q, r1) is progressive. Then D+ has all four properties of Lemma 12.
Denote G+ the transition graph associated to D+. Property (i) holds because every state in
QD, including the initial state, is either in Q0 ∪Q1 or is the source of a progressive edge.

Remark that the BSCCs of G+ are exactly the BSCCs of G0 and G1. Since both G0 and
G1 are unions of strongly connected graphs, they are equal to the union of their BSCCs.
The BSCCs of G0 and G1 are still BSCCs in G+ because no edges are added inside them
(progressive edges have their source outside G0 and G1). Following the progressive edges
leads to G0 or G1 from every state in G+, thus there are no other BSCCs in G+.

This implies property (ii) because, according to Lemma 15, both graphs G0 and G1 are
the union of strongly connected graphs whose maximal states are in F1. This also implies
property (iii) since Q0 ⊆ F>0 and Q1 ∩ F>0 = ∅. Property (iv) is obvious for states in Q0
because Q0 is a union of BSCCs included in F>0. Property (iv) holds as well for states in
(QD ∩F>0)\Q0, the path to Q0 is obtained following the progressive edges in F>0×F>0. J

Proof of Theorem 10. According to Lemma 13, the existence of an accepting run implies
the existence of an acceptance witness and according to Lemma 12 this implies the existence
of a positional accepting run. Guessing a subset of transitions and checking it is an acceptance
witness can be done in non-deterministic polynomial time. J

5 Emptiness of nonzero automata is in co-NP

In this section we show how to decide the emptiness of nonzero automata. The main
ingredient are jumping games.

Call a run {F1, F>0}-accepting if it satisfies the almost-surely and the nonzero acceptance
condition, but it does not necessarily satisfy the surely accepting condition, and the condition
on the initial state is dropped as well.

ICALP 2017

106:10 Emptiness of Zero Automata Is Decidable

ρ accepting
m1

q1

m2

q2

m3

lim sup ∈ F∀

q0

ρq0

dq0

P ≥ 1
2

lim sup ∈ F1

q1
q2

q3

dq0

dq1

dq3

dq2

lim sup ∈ F∀

Figure 1 The left picture illustrates how an accepting run is turned into a winning strategy for
Automaton in the jumping game, the two other pictures illustrate the converse transformation.

The jumping game. For a run ρ, define its profile to be the set of state pairs (q,m) such
that some non-root node in ρ has state q and m is the maximal state of its strict ancestors.

The jumping game is a parity game played by two players, Automaton and Pathfinder.
Positions of Automaton are states of the automaton and positions of Pathfinder are profiles
of {F1, F>0}-accepting runs, not necessarily positional. The game is an edge-labelled parity
game, i.e. the priorities are written on the edges. The edges originating in Automaton
positions are of the form

q
q→ Π such that Π is the profile of some {F1, F>0}-accepting run with root state q.

The edges originating in Pathfinder positions are of the form

Π m→ q such that (q,m) ∈ Π.

We say that Automaton wins the jumping game if he has a winning strategy from the position
which is the initial state of the automaton. If the play ever reaches a dead-end, i.e. a state
which is not the root of any {F1, F>0}-accepting run, then the game is over and Automaton
loses. Otherwise Automaton wins iff the limsup of the priorities is in F∀.

Lemmas 17 and 18 below establish that non-emptiness of a nonzero automaton is equivalent
to Automaton winning the jumping game, and this can be decided in np.

I Lemma 17. The automaton is nonempty if and only if Automaton wins the jumping game.

Sketch of Proof. The proof transforms an accepting run ρ of the nonzero automaton into a
winning strategy σ of Automaton, and back, this is illustrated by Fig. 1.

When the nonzero automaton has an accepting run ρ, Automaton can win the jumping
game as follows. For a start, Automaton plays the profile Π0 of ρ. Then Pathfinder chooses
some pair (q1,m1) ∈ Π0, by definition of profiles this corresponds to some non-root node v1
of ρ labelled by q1 and m1 is the maximal state of the ancestors of v1. At each step n > 0,
Pathfinder chooses some pair (qn,mn) ∈ Πn corresponding to some node vn+1 whose vn is
a strict ancestor, and Automaton plays the profile Πn of the subtree ρn of ρ rooted in vn.
Since the run ρ is accepting then a fortiori the run ρn is {F1, F>0}-accepting. Quite clearly,
this is a winning strategy for Automaton.

Conversely, we use a positional winning strategy of Automaton (whose existence is well-
known [12]) to build an accepting run of the nonzero automaton. Denote W the set of states

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:11

winning for Automaton. With every state q in W we associate the profile Πq chosen by the
positional winning strategy of Automaton and a {F1, F>0}-accepting run ρq with profile Πq.

We show the existence of a leaf-free subtree dq of ρq such that:
(a) the set of branches of dq has probability ≥ 1

2 ,
(b) every branch of dq has limsup in F1,
(c) for every node v of dq with state in F>0, the set of branches of dq which visit v and visit

only F>0-labelled nodes below v has nonzero probability.
Since ρq is almost-surely accepting, then according to Lemma 1, there is a subtree dq of

ρq whose set of branches has probability ≥ 1
2 and all of them have limsup in F1 (while in the

run ρq there may be a non-empty set of branches with limsup in F∀ \ F1, with probability
zero). Since we are only interested in branches of dq, we can assume that dq is leaf-free. This
guarantees properties a) and b) but not c), however using Lemma 1 again, we can extend dq

to d′q such that property c) holds as well.
These partial runs (d′q)q∈W can be combined in order to get a graph whose unravelling,

starting from the initial state, is an accepting run of the automaton. Each time a branch
enters a subtree d′q, there is probability ≥ 1

2 to stay in dq forever. Thus almost every branch
of the unravelling eventually stays in one of the subtrees (d′q)q∈W , thus has limsup in F1 ⊆ F∀
according to property b). As a consequence the unravelling is almost-surely accepting. Still,
with probability 0, some branches switch infinitely often from a subtree to another. These
branches correspond to an infinite play consistent with σ and are F∀-accepting. J

I Lemma 18. Given a nonzero automaton, whether Automaton wins the jumping game is
decidable in np .

The game is not constructed explicitly, which would require exponential time, but strategies
of Automaton can be represented in a compact way, which is enough to get the np upper
bound. This result was recently improved: the winner can be decided in np∩co-np, see [2].

Sketch of Proof. By positional determinacy of parity games, it suffices to find a positional
strategy of player Automaton, which maps states to profiles of {F1, F>0}-accepting runs. It
is equivalent and easier to find an acceptance witness. This is a pair (W,σ) where W is a
subset of Q containing the initial state of the automaton, and σ : W → 2W×W satisfies:
α) For every sequence (q0,m0)(q1,m1) . . . in (W ×W)ω, if q0 is the initial state of the

automaton and ∀n, (qn+1,mn+1) ∈ σ(qn) then lim supn mn ∈ F∀.
β) ∀q ∈W , σ(q) contains the profile of a {F1, F>0}-accepting run with initial state q.
Finding a witness can be done in NP. Condition α) is checked in linear time. Given Π ⊆ Q×Q,
one can use Theorem 10 to check condition Condition β) in np, by storing in the state space
of the automaton the maximal state of the ancestors of the curent node. J

Example: the everywhere positive language. A tree t on the alphabet {a, b} is everywhere
positive if for every node v,
1. there is positive probability to see only the letter t(v) below v,
2. there is positive probability to see finitely many times the letter t(v) below v.

This language is non-empty and contains no regular tree. The language of everywhere
positive trees with root state a is recognized by a nonzero automaton with six states

{sb < sa < nb < na < fb < fa} .

On a node labelled by letter a, the automaton can perform a transition from any of the
three states {sb, nb, fa}, meaning intuitively “searching for b”, “not searching for b” and “just

ICALP 2017

106:12 Emptiness of Zero Automata Is Decidable

found a”. From these states the automaton can choose any pair of successor states which
intersects {sb, fb}. Transitions on letter b are symmetrical. The acceptance condition is:

F∀ = {na, nb, fa, fb} F1 = F∀ F>0 = {na, sa, nb, sb} .

Among the simplest moves of Automaton in the jumping game are the two moves
nb → {(nb, nb)(sb, nb)} and sb → {(nb, nb)(sb, nb)}, which correspond to the profiles of some
{F1, F>0}-accepting runs on the tree whose all nodes have letter a, and everywhere in the
tree the automaton applies the same two transitions nb →b (nb, sb) and sb →b (nb, sb). In
those runs, the automaton always looks for a letter b in the right direction (state sb), and
does not look for b in the left direction (state nb). Since the tree has no b at all then the
quest for a letter b is hopeless, and on all branches of the run that ultimately always turn
right (i.e. branches in {0, 1}∗1ω), the automaton ultimately stays in state sb and the branch
has limsup sb, which is neither in F∀ nor in F1. But such branches happen with probability
zero: almost-every branch performs infinitely many turns left and right, thus has limsup nb.
As a consequence such a run is almost-surely accepting: Such a run is nonzero-accepting as
well because every node labelled by F>0 has all its descendants labelled by F>0.

Yet legal, these two moves are not good options for Automaton in the jumping game
because then Pathfinder can generate the play

sb
sb→ {(nb, nb)(sb, nb)} nb→ sb

sb→ {(nb, nb)(sb, nb)} sb→ sb
sb→ . . .

which has limsup nb = max{sb, nb} and is losing for Automaton since nb 6∈ F∀.
Actually, Automaton can win with the moves

sa/na → {(fa, fa), (nb, fa), (sb, fa), (na, na), (sa, na)}
fa → {(nb, fa), (sb, fa)}

and their symmetric counterparts from states {sb, nb, fb}. In the jumping game, this forces
Pathfinder to take only edges labelled by one of the states {fa, na, fb, nb}. These states
dominate the states {sa, sb} thus the limsup of the corresponding plays is in F∀ and Automaton
wins.

6 Conclusion

We have shown that the emptiness problem for zero and nonzero automata is decidable and
belongs to co-NP. As a consequence, the satisfiability for the logic mso+zero from [1] is
decidable (in non-elementary time), when zero is the unary predicate that checks a set of
branches has probability 0.

As shown by Stockmeyer, the satisfiability problem for first-order logic on finite words
cannot be solved in elementary time [11]. Therefore any translation from a logic stronger
than first-order logic on finite words (such as tmso+zero on infinite trees) to an automaton
model with elementary emptiness (such as nonzero automata) is necessarily non-elementary.
This does not make the relatively low np complexity of nonzero automata any less interesting.
One can imagine other logics than tmso+zero, either less expressive or maybe even equally
expressive but less succinct, which will have a relatively low complexity by virtue of a
translation into nonzero automata. One natural direction is the study of temporal logics.

Our results were recently improved [2]: the emptiness of nonzero automata actually
belongs to np∩co-np, and is even in ptime for F∀-trivial automata.

Acknowledgments. We thank Henryk Michalewski and Matteo Mio for helpful discussions.

M. Bojańczyk, H. Gimbert, and E. Kelmendi 106:13

References
1 Mikolaj Bojanczyk. Thin MSO with a Probabilistic Path Quantifier. In Ioannis Chatzigian-

nakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 96:1–96:13. Schloss Dag-
stuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.96.

2 Mikołaj Bojańczyk, Hugo Gimbert, and Edon Kelmendi. Emptiness of zero automata is
decidable. Technical report, CNRS, 2017. URL: http://arxiv.org/abs/1702.06858.

3 Tomás Brázdil, Vojtech Forejt, and Antonín Kucera. Controller synthesis and verification
for mdps with qualitative branching time objectives. In ICALP 2008., pages 148–159, 2008.

4 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding par-
ity games in quasipolynomial time. Technical report, CDMTCS, October 2016.
URL: https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/
index.php?download&paper_file=631.

5 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014. doi:10.1145/2629336.

6 L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
december 1997.

7 A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer-
Verlag, 1995.

8 Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and
Control, 53(3):165–1983, 1982.

9 Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic.
In LFCS 2016, Deerfield Beach, FL, USA, January 4-7, 2016. Proceedings, pages 267–282,
2016. doi:10.1007/978-3-319-27683-0_19.

10 Henryk Michalewski, Matteo Mio, and Mikołaj Bojańczyk. On the regular emptiness prob-
lem of subzero automata. CoRR, abs/1608.03319, 2016. URL: http://arxiv.org/abs/
1608.03319.

11 Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, MIT, 1974.

12 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to auto-
mata on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

ICALP 2017

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.96
http://arxiv.org/abs/1702.06858
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=631
https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=631
http://dx.doi.org/10.1145/2629336
http://dx.doi.org/10.1007/978-3-319-27683-0_19
http://arxiv.org/abs/1608.03319
http://arxiv.org/abs/1608.03319
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

Characterizing Definability in Decidable Fixpoint
Logics∗

Michael Benedikt1, Pierre Bourhis2, and Michael Vanden Boom3

1 Department of Computer Science, University of Oxford, Oxford, UK
2 CNRS CRIStAL UMR 9189, INRIA Lille, Lille, FR
3 Department of Computer Science, University of Oxford, Oxford, UK

Abstract
We look at characterizing which formulas are expressible in rich decidable logics such as guarded
fixpoint logic, unary negation fixpoint logic, and guarded negation fixpoint logic. We consider
semantic characterizations of definability, as well as effective characterizations. Our algorithms
revolve around a finer analysis of the tree-model property and a refinement of the method of
moving back-and-forth between relational logics and logics over trees.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Guarded logics, bisimulation, definability, automata

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.107

1 Introduction

A major line of research in computational logic has focused on obtaining extremely expressive
decidable logics. The guarded fragment (GF) [1], the unary negation fragment (UNF) [23],
and the guarded negation fragment (GNF) [3] are rich decidable fragments of first-order logic.
Each of these has extensions with a fixpoint operator that retain decidability: GFP [18],
UNFP [23], and GNFP [3] respectively. In each case the argument relies on “moving to trees”.
This involves showing that the logic possesses the tree-like model property: whenever there
is a satisfying model for a formula, it can be taken to be of tree-width that can be effectively
computed from the formula. Such models can be coded by trees, thus reducing satisfiability
of the logic to satisfiability of a corresponding formula over trees, which can be decided using
automata-theoretic techniques. This method has been applied for decades (e.g. [25, 16]).

A question is how to recognize formulas in these logics, and more generally how to
distinguish the properties of the formulas in one logic from another. Clearly if we start with
a formula in an undecidable logic, such as first-order logic or least fixed point logic (LFP),
we have no possibility for effectively recognizing any non-trivial property. But we could still
hope for an insightful semantic characterization of the subset that falls within the decidable
logic. One well-known example of this is van Benthem’s theorem [24] characterizing modal
logic within first-order logic – a first-order sentence is equivalent to a modal logic sentence
exactly when it is bisimulation-invariant. For fixpoint logics, an analogous characterization
is the Janin-Walukiewicz theorem [20], stating that the modal mu-calculus (Lµ) captures
the bisimulation-invariant fragment of monadic second-order logic (MSO). If we start in
one decidable logic and look to characterize another decidable logic, we could hope for a

∗ Benedikt and Vanden Boom were funded by the EPSRC grants PDQ (EP/M005852/1), ED3

(EP/N014359/1), and DBOnto (EP/L012138/1). Bourhis was funded by the DeLTA project (ANR-16-
CE40-0007).

EA
T

C
S

© Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 107; pp. 107:1–107:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.107
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

107:2 Characterizing Definability in Decidable Fixpoint Logics

characterization that is effective. For example, Otto [22] showed that if we start with a
formula of Lµ, we can determine whether it can be expressed in modal logic.

In this work we will investigate both semantic and effective characterizations. We will
begin with GFP. Grädel, Hirsch, and Otto [16] have already provided a characterization of
GFP-definability within a very rich logic extending MSO called guarded second-order logic
(GSO). The characterization is exactly analogous to the van Benthem and Janin-Walukiewicz
results mentioned above: GFP captures the “guarded bisimulation-invariant” fragment of
GSO. The characterization makes use of a refinement of the method used for decidability of
these logics, which moves back-and-forth between relational structures and trees: (1) define a
forward mapping taking a formula φ0 in the larger logic (e.g. GSO invariant under guarded
bisimulation) over relational structures to a formula φ′0 over trees that describes codes of
structures satisfying φ0; (2) define a backward mapping based on the invariance going back
to some φ1 in the restricted logic (e.g. GFP). The method is shown in Figure 1a.

Our first main theorem is an effective version of the above result: if we start with a
formula in certain richer decidable fixpoint logics, such as GNFP, we can decide whether the
formula is in GFP. At the same time we provide a refinement of [16] which accounts for two
signatures, the one allowed for arbitrary relations and the one allowed for “guard relations”
that play a key role in the syntax of all guarded logics. We extend this result to deciding
membership in the “k-width fragment”, GNFPk; roughly speaking this consists of formulas
built up from guarded components and positive existential formulas with at most k variables.
We provide a semantic characterization of this fragment within GSO, as the fragment closed
under the corresponding notion of bisimulation (essentially, the GNk-bisimulation of [3]).
As with GFP, we show that the characterization can be made effective, provided that one
starts with a formula in certain larger decidable logics. The proof also gives an effective
characterization for the k-width fragment of UNFP.

As in the method for invariance and decidability above, we apply a forward mapping to
move from a formula φ0 in a larger logic L0 on relational structures to a formula φ′0 on tree
encodings. But then we can apply a different backward mapping, tuned towards the smaller
logic L1 and the special properties of its tree-like models. The backward mapping of a tree
property φ′0 is always a formula φ1 in the smaller logic L1 (e.g. GFP). But it is no longer
guaranteed to be “correct” unconditionally – i.e. to always characterize structures whose
codes satisfy φ′0. Still, we show that if the original formula φ0 is definable in the smaller
logic L1, then the backward mapping applied to the forward mapping gives such a definition.
Since we can check equivalence of two sentences in these logics effectively, this property
suffices to get decidability of definability. The revised method is shown schematically in
Figure 1b.

The technique above has a few inefficiencies; first, the general forward mapping passes
through MSO and has non-elementary complexity. Secondly, the technique implicitly moves
between relational structures and trees twice: once to construct φ0, and a second time to
check that φ0 is equivalent to φ1, which in turn requires first forming a formula φ′1 over trees
via a forward mapping and then checking its equivalence with φ′0. We show that in some
cases we can optimize this, allowing us to get tight bounds on the equivalence problem.

We show that our results “restrict” to fragments of these guarded logics, including
their first-order fragments. In particular, our results give effective characterizations of GF
definability when the input is in FO. They can be thus seen as a generalization of well-known
effective characterizations of the conjunctive existential formulas in GF, the acyclic queries.
We show that we can apply our techniques to the problem of transforming conjunctive
formulas to a well-known efficiently-evaluable form (acyclic formulas) relative to GF theories.
These results complement previous results on query evaluation with constraints from [6, 13].

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:3

Relational
structures

Coded
structures

φ0 ∈ L0 φ′
0 ∈ Lµ

φ1 ∈ L1

(1)

(2)

(a) Back-and-forth for Semantic Characteriz-
ation.

Relational
structures

Coded
structures

φ0 ∈ L0 φ′
0 ∈ Lµ

φ1 ∈ L1

(1)

(2)

Test φ0 ↔ φ1

(b) Back-and-forth for Effective Characteriz-
ation.

Figure 1

This refined back-and-forth method can be tuned in a number of ways, allowing us to
control the signature as well as the sublogic. We show this can be adapted to give an
approximation of the formula φ0 within the logic L1, which is a kind of uniform interpolant.

2 Preliminaries

We work with finite relational signatures σ. We use x,y, . . . (respectively, X,Y , . . .) to
denote vectors of first-order (respectively, second-order) variables. For a formula φ, we write
φ(x) to indicate that the free first-order variables in φ are among x. If we want to emphasize
that there are also free second-order variables X, we write φ(x,X). We often use α to
denote atomic formulas, and if we write α(x) then we assume that the free variables in α are
precisely x. The width of φ, denoted width(φ), is the maximum number of free variables in
any subformula of φ, and the width of a signature σ is the maximum arity of its relations.

The Guarded Negation Fragment of FO [3] (denoted GNF) is built up inductively according
to the grammar φ ::= Rx | ∃x.φ | φ∨φ | φ∧φ | α(x)∧¬φ(x) where R is either a relation symbol
or the equality relation, and α is an atomic formula or equality such that free(α) ⊇ free(φ).
Such an α is a guard. If we restrict α to be an equality, then each negated formula can be
rewritten to use at most one free variable; this is the Unary Negation Fragment, UNF [23].
GNF is also related to the Guarded Fragment [1] (GF), typically defined via the grammar
φ ::= Rx | ∃x.α(xy) ∧ φ(xy) | φ ∨ φ | φ ∧ φ | ¬φ(x) where R is either a relation symbol or
the equality relation, and α is an atomic formula or equality that uses all of the free variables
of φ. Here it is the quantification that is guarded, rather than negation. GNF subsumes GF
sentences and UNF formulas.

The fixpoint extensions of these logics (denoted GNFP, UNFP, and GFP) extend the base
logic with formulas [lfpX,x .α(x) ∧ φ(x, X,Y)](x) where (i) α(x) is an atomic formula or
equality guarding x, (ii) X only appears positively in φ, (iii) second-order variables like X
cannot be used as guards. Some alternative (but equi-expressive) ways to define the fixpoint
extension are discussed in [3]; in all of the definitions, the important feature is that tuples in
the fixpoint are guarded by an atom in the original signature. In UNFP, there is an additional
requirement that only unary or 0-ary predicates can be defined using the fixpoint operators.
GNFP subsumes both GFP sentences and UNFP formulas. These logics are all contained in
LFP, the fixpoint extension of FO, so the semantics are inherited from there.

It is often helpful to consider the formulas in a normal form. Strict normal form GNFP

ICALP 2017

107:4 Characterizing Definability in Decidable Fixpoint Logics

formulas can be generated using the following grammar:

φ ::=
∨
i ∃xi.

∧
j ψij

ψ ::= Rx | X x | α(x) ∧ φ(x) | α(x) ∧ ¬φ(x) | [lfpX,x .α(x) ∧ φ(x, X,Y)](x)

where α is an atomic formula or equality statement such that free(α) = free(φ); we call such
an α a strict guard. Every GNFP-formula can be converted into this form in a canonical way
with an exponential blow-up in size. We denote by GNFPk the set of GNFP-formulas that
are of width k when they are brought into this normal form. For convenience in proofs, we
are using a slightly different normal form than previous papers on these logics.

These guarded fixpoint logics are expressive: the µ-calculus is contained in each of these
fixpoint logics, and every positive existential formula is expressible in UNFP and GNFP (and
even UNF and GNF). Nevertheless, these logics are decidable and have nice model theoretic
properties. In particular satisfiability and finite satisfiability is 2-ExpTime-complete for
GNF and GNFP [5]. The same holds for UNFP and GFP [23, 18]. GNFP (and hence UNFP
and GFP) has the tree-like model property [5]: if φ is satisfiable, then φ is satisfiable
over structures of bounded tree-width. In fact satisfiable GNFPk formulas have satisfying
structures of tree-width k − 1. GNF (and hence UNF and GF) has the finite-model property
[5]: if φ is satisfiable, then φ is satisfiable in a finite structure. This does not hold for the
fixpoint extensions. In this paper we will be concerned with equivalence over all structures.

In this work we will be interested in varying the signatures considered, and in distinguishing
more finely which relations can be used in guards. If we want to emphasize the relational
signature σ being used, then we will write, e.g., GNFP[σ]. For σg ⊆ σ, we let GNFP[σ, σg]
denote the logic built up as in GNFP but allowing only relations R ∈ σ at the atomic step
and only guards α using equality or relations R ∈ σg. We define GFP[σ, σg] similarly. Note
that UNFP[σ] is equivalent to GNFP[σ, ∅], since if the only guards are equality guards, then
the formula can be rewritten to use only unary negation and monadic fixpoints.

Guarded second-order logic over a signature σ (denoted GSO[σ]) is a fragment of second-
order logic in which second-order quantification is interpreted only over guarded relations,
i.e. over relations where every tuple in the relation is guarded by some predicate from σ. We
refer the interested reader to [16] for more background and some equivalent definitions of
this logic. The logics UNFP, GNFP, and GFP can all be translated into GSO.

A special kind of signature is a transition system signature Σ consisting of a finite set of
unary predicates (corresponding to a set of propositions) and binary predicates (corresponding
to a set of actions). A structure for such a signature is a transition system. Trees allowing
both edge-labels and node-labels have a natural interpretation as transition systems. We will
be interested in two logics over transition system signatures. One is monadic second-order
logic (denoted MSO) – where second-order quantification is only over unary relations. MSO
is contained in GSO, because unary relations are trivially guarded. While MSO and GSO can
be interpreted over arbitrary signatures, there are logics like modal logic that have syntax
specific to transition system signatures. Another is the modal µ-calculus (denoted Lµ), an
extension of modal logic with fixpoints. Given a transition system signature Σ, formulas
φ ∈ Lµ[Σ] can be generated using the grammar φ ::= P | X | φ∧ φ | ¬φ | 〈ρ〉φ | µX.φ where
P is a unary relation in Σ and ρ is a binary relation in Σ. The formulas µX.φ are required
to use the variable X only positively in φ, and the semantics define a least-fixpoint operation
based on φ. It is easy to see that Lµ can be translated into MSO.

It is well-known that σ-structures of tree-width k−1 can be encoded by labelled trees over
an alphabet that depends only on the signature of the structure and k, which we denote Σcode

σ,k .
Our encoding scheme will make use of trees with both node and edge labels, i.e. trees over a

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:5

transition system signature Σcode
σ,k . Roughly speaking, a node label is a set of unary relations

(like Ri1,...,in) from Σcode
σ,k that encodes the set of atomic formulas (like R(ai1 , . . . , ain)) that

hold of the elements represented at that node, and an edge label ρ is a binary relation from
Σcode
σ,k that indicates the relationship between the names of encoded elements in neighboring

nodes. This scheme differs slightly from the one used in [16]. The exact coding conventions
are not important for understanding the ideas in the rest of the paper. Given some Σcode

σ,k -tree
T , we say T is consistent if it satisfies certain natural conditions that ensure that the tree
actually corresponds to a code of some tree decomposition of a σ-structure. A consistent
Σcode
σ,k -tree T can be decoded to an actual σ-structure, denoted D(T).

Bisimulation games and unravellings. The logic Lµ over transition system signatures lies
within MSO. Similarly the guarded logics GFP, UNFP, and GNFP all lie within GSO and
apply to arbitrary-arity signatures. It is easy to see that these containments are proper. In
each case, what distinguishes the smaller logic from the larger is invariance under certain
equivalences called bisimulations, each of which is defined by a certain player having a
winning strategy in a two-player infinite game played between players Spoiler and Duplicator.

For Lµ, the appropriate game is the classical bisimulation game between transition systems
A and B. It is straightforward to check that Lµ[Σ]-formulas are Σ-bisimulation invariant,
i.e. they cannot distinguish between Σ-bisimilar transition systems. We will make use of a
stronger result of Janin and Walukiewicz [20] that the µ-calculus is the bisimulation-invariant
fragment of MSO (we state it here for trees because of how we use this later): A class of trees
is definable in Lµ[Σ] iff it is definable in MSO[Σ] and closed under Σ-bisimulation within the
class of all Σ-trees. Moreover, the translation between these logics is effective.

We now describe a generalization of these games between structures A and B over a
signature σ with arbitrary arity relations, parameterized by some subsignature σ′ of the
structures. Each position in the game is a partial σ′ homomorphism h from A to B, or vice
versa. The active structure in position h is the structure containing the domain of h. The
game starts from the empty partial map from A to B. In each round of the game, Spoiler
chooses between one of the following moves:

Extend: Spoiler chooses some set X of elements in the active structure such that X ⊇
dom(h), and Duplicator must then choose h′ extending h (i.e. such that h(c) = h′(c) for
all c ∈ dom(h)) such that h′ is a partial σ′ homomorphism; Duplicator loses if this is not
possible. Otherwise, the game proceeds from the position h′.
Switch: Spoiler chooses to switch active structure. If h is not a partial σ′ isomorphism,
then Duplicator loses. Otherwise, the game proceeds from the position h−1.
Collapse: Spoiler selects some X ⊆ dom(h) and the game continues from position h �X .

Duplicator wins if she can continue to play indefinitely.
We will consider several variants of this game. These were essentially known already

in the literature (see, e.g., [16, 17, 3]), sometimes with different names or minor technical
differences in the definitions. For k ∈ N and σg ⊆ σ′:
1. k-width guarded negation bisimulation game: The GNk[σ′, σg]-game is the version of

the game where the domain of every position h is of size at most k, and Spoiler can only
make a switch move at h if dom(h) is strictly σg-guarded in the active structure.

2. block k-width guarded negation bisimulation game: The BGNk[σ′, σg]-game is like the
GNk[σ′, σg]-game, but additionally Spoiler is required to alternate between extend/switch
moves and moves where he collapses to a strictly σg-guarded set. We call it the “block”
game since Spoiler must select all of the new extension elements in a single block, rather
than as a series of small extensions. The key property is that the game alternates

ICALP 2017

107:6 Characterizing Definability in Decidable Fixpoint Logics

between positions with a strictly σg-guarded domain, and positions of size at most k.
The restriction mimics the alternation between formulas of width at most k and strictly
σg-guarded formulas within normalized GNFPk formulas.

3. guarded bisimulation game: The G[σ′, σg]-game is the version of the game where the
domain of every position must be strictly σg-guarded in the active structure. Note that
in such a game, every position h satisfies |dom(h)| ≤ width(σg).

We say A and B are GNk[σ′, σg]-bisimilar if Duplicator has a winning strategy in the
GNk[σ′, σg]-game starting from the empty position. We say a sentence φ is GNk[σ′, σg]-
invariant if for any pair of GNk[σ′, σg]-bisimilar σ′-structures, A |= φ iff B |= φ. A logic
L is GNk[σ′, σg]-invariant if every sentence in L is GNk[σ′, σg]-invariant. When the guard
signature is the entire signature, we will write, e.g., GNk[σ′] instead of GNk[σ′, σ′].

It is known that the bisimulation games characterize certain fragments of FO: GF[σ′] is
the G[σ′]-invariant fragment of FO[σ′] [1] and GNFk[σ′] can be characterized as either the
BGNk[σ′]-invariant or the GNk[σ′]-invariant fragment of FO[σ′] (this follows from work in [3]
and [7]). Likewise, for fixpoint logics and fragments of GSO, GFP[σ′] is the G[σ′]-invariant
fragment of GSO[σ′] [16], while UNFPk[σ′] is the BGNk[σ′, ∅]-invariant fragment of GSO[σ′]
(this follows from [9]). The survey in [17] also describes some of these invariance results.

In this paper, we will prove a corresponding characterization for GNFPk[σ′] in terms
of BGNk[σ′]-invariance: GNFPk[σ′] is the BGNk[σ′]-invariant fragment of GSO[σ′] (see The-
orem 16). Note that for fixpoint logics, GNk[σ′]-invariance is strictly weaker than BGNk[σ′]-
invariance, and applies to other decidable logics (e.g. [7]).

Unravellings. Given a σ-structure A and k ∈ N and σg ⊆ σ′ ⊆ σ, we would like to construct
a structure that is GNk[σ′, σg]-bisimilar to A but has a tree-decomposition of bounded
tree-width. A standard construction achieves this, called the GNk[σ′, σg]-unravelling of A.
Let Πk be the set of finite sequences of the form Y0Y1 . . . Ym such that Y0 = ∅ and each Yi is
a set of elements from A of size at most k. Each such sequence can be seen as the projection
to A of a play in the GNk[σ′, σg]-bisimulation game between A and some other structure.
For Y a set of elements from A, let ATA,σ′(Y) be the set of atoms that hold of the elements
in Y : {R(a1, . . . , al) : R ∈ σ′, {a1, . . . , al} ⊆ Y , A |= R(a1, . . . , al)}. Now define a Σcode

σ′,k -tree
UGNk[σ′,σg](A) where each node corresponds to a sequence in Πk, and the sequences are
arranged in prefix order. Roughly speaking, the node label of every v = Y0 . . . Ym−1Ym
is an encoding of ATA,σ′(Ym), and the edge label between its parent u and v indicates
the relationship between the shared elements Ym−1 ∩ Ym encoded in u and v. We define
D(UGNk[σ′,σg](A)) to be the GNk[σ′, σg]-unravelling of A. By restricting the set Πk to reflect
the possible moves in the games, we can define unravellings based on the other bisimulation
games in a similar fashion. We summarize the two unravellings that will be most relevant:
1. block k-width guarded negation unravelling: The BGNk[σ′, σg]-unravelling is denoted

D(UBGNk[σ′,σg](A)). Its encoding UBGNk[σ′,σg](A) is obtained by considering only se-
quences Y0 . . . Ym ∈ Πk such that for all even i, Yi−1 ⊇ Yi and Yi ⊆ Yi+1 and Yi is strictly
σg-guarded in A. The tree UBGNk[σ′,σg](A) is consistent and is called a σg-guarded-
interface tree since it alternates between interface nodes with strictly σg-guarded domains
– corresponding to collapse moves in the game – and bag nodes with domain of size at
most k that are not necessarily σg-guarded.

2. guarded unravelling: The G[σ′, σg]-unravelling is denoted D(UG[σ′,σg](A)) and its encod-
ing UG[σ′,σg](A) is obtained by considering only sequences Y0 . . . Ym ∈ Πk such that for
all i, Yi is strictly σg-guarded in A. The tree UG[σ′,σg](A) is consistent and is called a
σg-guarded tree since the domain of every node in the tree is strictly σg-guarded.

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:7

All of these unravellings are bisimilar to A, with respect to the appropriate notion of
bisimilarity. Because these unravellings have tree decompositions of some bounded tree-width,
this proposition implies that these guarded logics have tree-like models. The structural
differences in the tree decompositions will be exploited for our definability decision procedures.

3 Decidability via back-and-forth and equivalence

We now give the main components of our approach, and explain how they fit together.
The first component is a forward mapping, translating an input GSO formula φ0 to an

MSO formula φ′0 over tree-codes, holding on the codes that correspond to tree-like models
of φ0. We will be interested only in formulas that are invariant under a form of guarded
bisimulation or guarded negation bisimulation, so we assume the input is a GNl-invariant
formula, for some l ≥ width(σ). For such formulas, we can actually define a forward mapping
that produces a µ-calculus formula.

I Lemma 1 (Fwd, adapted from [16]). Given a GNl[σ]-invariant sentence φ ∈ GSO[σ] and
given some k ≥ width(σ), we can construct φµ ∈ Lµ[Σcode

σ,max{k,l}] such that for all consistent
Σcode
σ,max{k,l}-trees T , T |= φµ iff D(T) |= φ.

The second component will depend on our target sublogic L1. It requires a mapping
(not necessarily effective) taking a σ-structure B to a tree structure UL1(B) such that
D(UL1(B)) agrees with B on all L1 sentences. Informally, UL1(B) will be the encoding of
some unravelling of B appropriate for L1, perhaps with additional properties. A backward
mapping for L1 takes sentences φ′0 over tree codes (with some given k and σ) to a sentence
φ1 ∈ L1 such that: for all σ-structures B, B |= φ1 iff UL1(B) |= φ′0.

The formula φ1 will depend on simplifying the formula φ′0 based on the fact that one is
working on an unravelling. For L1 = GFP[σ′, σg] over subsignatures σ′, σg of the original
signature σ, UL1(B) will be a guarded unravelling; the results of [16] can easily be refined
to give the formula component in GFP[σ′, σg]. For GNFPk, providing both the appropriate
unravelling and the formula in the backward mappings will require more work.

The L1 definability problem for logic L asks: given some input sentence φ ∈ L, is there
some ψ ∈ L1 such that φ and ψ are logically equivalent? The forward and backward method
of Figure 1b gives us a generic approach to this problem. The algorithm consists of applying
the forward mapping to get φ′0, applying the backward mapping to φ′0 based on L1 to get φ1,
and then checking if φ1 is equivalent to φ0. We claim φ0 is L1 definable iff φ0 and φ1 are
equivalent. If φ0 and φ1 are logically equivalent then φ0 is clearly L1 definable using φ1. In
the other direction, suppose that φ0 is L1-definable. Fix B, and let UL1(B) be given by the
backward mapping. Then

B |= φ0 ⇔ D(UL1(B)) |= φ0 since D(UL1(B)) agrees with B on L1 sentences
⇔ UL1(B) |= φ′0 by Lemma Fwd⇔ B |= φ1 by Backward Mapping for L1.

Hence, φ0 and φ1 are logically equivalent, as required. Thus, we get the following general
decidability result:

I Proposition 2. Let L1 be a subset of GNl[σ]-invariant GSO[σ] such that we have an
effective backward mapping for L1. Then the L1 definability problem is decidable for GNl[σ]-
invariant GSO[σ].

Above, we mean that there is an algorithm that decides L1 definability for any input
GSO[σ] sentence that is GNl[σ]-invariant, with the output being arbitrary otherwise. The

ICALP 2017

107:8 Characterizing Definability in Decidable Fixpoint Logics

approach above gives a definability test in the usual sense for inputs in GNFP[σ], since these
are all GNl[σ]-invariant for some l. In particular we will see that we can test whether a
GNFPl[σ] sentence is in GFP[σ′] or in GNFPk[σ′]. But there are larger GNl-invariant logics
(e.g. [7]), and the algorithm immediately applies to these as well.

4 Identifying GFP definable sentences

For GFP, we can instantiate the high-level algorithm by giving a backward mapping.

I Lemma 3 (GFP-Bwd, adapted from [16]). Given φµ ∈ Lµ[Σcode
σ,m] and σg ⊆ σ′ ⊆ σ, φµ can be

translated into ψ ∈ GFP[σ′, σg] such that for all σ-structures B, B |= ψ iff UG[σ′,σg](B) |= φµ.

Plugging this into our high-level algorithm, with UG[σ′,σg](B) as UL1(B), we get decidab-
ility of the GFP-definability problem:

I Theorem 4. The GFP[σ′, σg] definability problem is decidable for GNk[σ]-invariant GSO[σ]
where k ≥ width(σ) and σg ⊆ σ′ ⊆ σ.

There are two sources of inefficiency in the high-level algorithm. First, the forward
mapping is non-elementary since we pass through MSO on the way to a µ-calculus formula.
Second, testing equivalence of the original sentence with the sentence produced by the forward
and backward mappings implicitly requires a second forward mapping in order to reduce the
problem to regular language equivalence on trees.

For the special case of input in GNFP, we can use an optimized procedure that avoids
these inefficiencies and allows us to obtain an optimal complexity bound.

I Theorem 5. The GFP[σ′, σg] definability problem is 2-ExpTime-complete for input in
GNFP[σ].

The main idea behind our optimized procedure is to directly use automata throughout
the process. First, for input φ in GNFP it is known from [9] how to give a forward mapping
that directly produces a tree automaton Aφ (with exponentially-many states) that accepts a
consistent tree T iff D(T) |= φ – exactly the consistent trees that satisfy φµ. This direct
construction avoids passing through MSO, and can be done in 2-ExpTime. We can then
construct an automaton A′φ from Aφ that accepts a tree T iff UG[σ′,σg](D(T)); we call this the
G[σ′, σg]-view automaton, since it mimics the view of T running on the guarded unravelling
of D(T). This can be seen as an automaton that represents the composition of the backward
mapping with the forward mapping. With these constructions in place, we have the following
improved algorithm to test definability of φ in GFP: construct Aφ from φ, construct A′φ from
Aφ, and test equivalence of Aφ and A′φ over consistent trees. Note that with this improved
procedure it is not necessary to actually construct the backward mapping, or to pass forward
to trees for a second time in order to test equivalence. Overall, the procedure can be shown
to run in 2-ExpTime. A reduction from GFP-satisfiability testing, which is known to be
2-ExpTime-hard, yields the lower bound.

Our results give us a corollary on definability in fragments of FO when the input is in FO:

I Corollary 6. The GF[σ′, σg] definability problem is decidable for GNl[σ]-invariant FO[σ]
where k, l ≥ width(σ) and σg ⊆ σ′ ⊆ σ.

Note that in this work we are characterizing sublogics within fragments of fixpoint logics
and within fragments of first-order logic. We do not deal with identifying first-order definable
formulas within a fixpoint logic, as in [10, 8].

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:9

We also can get a version of the definability result for a restriction of fixpoint logic. One
well-studied restriction is called alternation-freeness (see, e.g., [14, 2]). We say a sentence
φ in GFP is alternation-free if it does not contain subformulas ψ1 := [lfpY,y .χ1](y) and
ψ2 := [gfpZ,z .χ2](z) such that Y occurs in χ2 and ψ2 is a subformula of ψ1, or Z occurs in
χ1 and ψ1 is a subformula of ψ2 (recall that a greatest fixpoint can be defined in terms of
least fixpoints and negations as [gfpZ,z .χ2](z) ≡ ¬[lfpZ,z .¬χ2[¬Z/Z]](z)). Alternation-free
fragments of GNFP and Lµ are defined by restricting the nesting of fixpoints in a similar
way. It is desirable to know if a sentence is in this alternation-free fragment of GFP since
this fragment has better computational properties: for instance, model checking for this
alternation-free fragment can be done in linear time. This was shown in [14]. A language
called DATALOG-LITE – a variant of DATALOG that has some restricted forms of negation
and universal quantification – was also introduced, and shown to exactly characterize this
alternation-free GFP [14]. A corollary of the definability result in this section, is that it is
possible to decide definability in alternation-free GFP when the input is in alternation-free
GNFP, using the same decision procedure as before. Roughly speaking, this comes from
observing that if the input is in alternation-free GNFP, then the forward mapping produces
alternation-free Lµ, and the backward mapping produces alternation-free GFP.

I Corollary 7. The alternation-free GFP[σ′] (equivalently, DATALOG-LITE[σ′]) definability
problem is decidable in 2-ExpTime for input in alternation-free GNFP[σ].

We can also apply our theorem to answer some questions about conjunctive queries (CQs):
formulas built up from relational atoms via ∧ and ∃. When the input φ to our definability
algorithm is a CQ, φ can be written as a GF sentence exactly when it is acyclic: roughly
speaking, this means it can be built up from guarded existential quantification (see [15]).
Transforming a query to an acyclic one could be quite relevant in practice, since acyclic queries
can be evaluated in linear time [26]. There are well-known methods for deciding whether
a CQ φ is acyclic, and recently these have been extended to the problem of determining
whether φ is acyclic for all structures satisfying a set of constraints (e.g., Guarded TGDs
[6] or Functional Dependencies [13]). Using Corollary 6 above along with an equivalence
between guardedness and acyclicity that follows from [4], we can get an analogous result for
arbitrary constraints in the guarded fragment:

I Corollary 8. Given a set of GF sentences Σ and a CQ sentence Q, we can decide whether
there is a union of acyclic CQs Q′ equivalent to Q for all structures satisfying Σ. The problem
is 2-ExpTime-complete.

Note that if Σ consists of universal Horn constraints (“TGDs”), then a CQ Q is equivalent
to union of CQs Q′ relative to Σ implies that it is equivalent to one of the disjuncts of
Q′. Thus the result above implies decidability of acyclicity relative to universal horn GF
sentences, one of the main results of [6].

5 Identifying GNFPk and UNFPk sentences

We now turn to extending the prior results to GNFP and UNFP. In order to make use of
the back-and-forth approach described in the previous section, we must be able to restrict
to structures of some bounded tree-width. For GFP this tree-width depends only on the
signature σ′, so this width-restriction was implicit in the GFP[σ′, σg]-definability problems.
However, for GNFP and UNFP this bound on the tree-width depends on the width of the
formula, so for definability questions, we must state this width explicitly. Hence, in this
section, we consider definability questions related to GNFPk and UNFPk.

ICALP 2017

107:10 Characterizing Definability in Decidable Fixpoint Logics

We apply the high-level algorithm of Proposition 2, using the forward mapping of Lemma 1.
The unravelling and backward mapping for GNFPk is more technically challenging than the
corresponding construction for GFP.

We first need an appropriate notion of unravelling. We use a variant of the block k-width
guarded negation unravelling discussed in Section 2, but we will need to assume we have a
certain repetition of facts. This idea of modifying a classical unravelling to include extra
copies of certain pieces of the structure has been used before (e.g. the ω-expansions in [21],
and “shrewd” unravellings for UNFPk in [9]). We will need a new, subtler property for
GNFPk, which we call “plumpness”.

In order to define the property that this special unravelling has, we need to define how we
can modify copies of certain parts of the structure in a way that still leads to a GNk-bisimilar
structure. Let τ and τ ′ be sets of σ′-facts over some elements A. Let I, J ⊆ A. We say τ
and τ ′ agree on J if for all σ′-atoms R(a1, . . . , al) with {a1, . . . , al} ⊆ J , R(a1, . . . , al) ∈ τ
iff R(a1, . . . , al) ∈ τ ′. We say τ ′ is an (σg, I)-safe restriction of τ if (i) τ ′ ⊆ τ ; (ii) τ ′ agrees
with τ on I; (iii) τ ′ agrees with τ on every J ⊆ A that is σg-guarded in τ ′. Note that τ itself
is considered a trivial (σg, I)-safe restriction of τ . Here is another example:

I Example 9. Consider signatures σ′ = {U,R, T} and σg = {R}, where U is a unary
relation, R is a binary relation, and T is a ternary relation. Consider I = {1, 2} and τ =
{U(1), U(3), R(1, 2), R(2, 3), R(3, 1), T (3, 2, 2)} . Then the possible (σg, I)-safe restrictions
of τ are τ itself and

τ ′1 =

U(1), U(3)

R(1, 2), R(2, 3)
T (3, 2, 2)

 τ ′2 =

U(1), U(3)

R(1, 2), R(3, 1)
T (3, 2, 2)

 τ ′4 =

U(1), U(3)
R(1, 2)
T (3, 2, 2)

τ ′3 =

{
U(1), U(3)

R(1, 2), R(3, 1)

}
τ ′5 =

{
U(1), U(3)
R(1, 2)

}
.

Note that we cannot drop facts over unary relations (since these are always trivially guarded),
and we can never drop facts over I. Further, the σg-facts that we keep restrict what other
facts we can drop, since for any σg-guarded set that remains we must preserve facts over that
set. By a (σg, I)-safe restriction of a node in a tree decomposition, we mean a (σg, I)-safe
restriction of the atoms represented by the node. We will be interested in trees with the
property that for every bag node w, all safe restrictions of w are realized by siblings of w.
Formally a Σcode

σ′,k -tree has the σg-plumpness property if for all interface nodes v: if w is a
ρ0-child of v over names J with I = rng(ρ0) and τ is the encoded set of σ′-atoms that hold
at w, then for any (σg, I)-safe restriction τ ′ of τ , there is a ρ0-child w′ of v such that (i) τ ′ is
the encoded set of σ′-atoms that hold at w′; (ii) for each ρ-child u′ of w′, there is a ρ-child
u of w such that the subtrees rooted at u and u′ are bisimilar; and (iii) for each ρ-child u
of w such that dom(ρ) is strictly σg-guarded in τ ′, there is a ρ-child u′ of w′ such that the
subtrees rooted at u′ and u are bisimilar.

I Example 10. Let T be a plump tree. Suppose there is an interface node v in T with label
encoding τ0 = {U(1), R(1, 2)}, and there is a ρ0-child w of v such that the label of w is the
encoding of τ = {U(1), U(3), R(1, 2), R(2, 3), R(3, 1), T (3, 2, 2)} from Example 9, and ρ0 is
the identity function with domain {1, 2}. Then by plumpness there must also be ρ0-children
w1, . . . , w5 of v with labels encoding τ ′1, . . . , τ ′5 from Example 9.

The following proposition shows that one can obtain unravellings that are plump:

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:11

I Proposition 11. Let B be a σ-structure, k ∈ N, and σg ⊆ σ′ ⊆ σ. There is a consistent,
plump, σg-guarded-interface tree Uplump

BGNk[σ′,σg](B) such that B is BGNk[σ′, σg]-bisimilar to
D(Uplump

BGNk[σ′,σg](B)). We call D(Uplump
BGNk[σ′,σg](B)) the plump unravelling of B.

Returning to the components required for the application of Proposition 2, we see that
Proposition 11 says that B is BGNk[σ′, σg]-bisimilar to D(Uplump

BGNk[σ′,σg](B)) as required for
an application of Proposition 2. Plumpness will come into play in the backward mapping:

I Lemma 12 (GNFPk-Bwd). Given φµ ∈ Lµ[Σcode
σ,m], relational signatures σg and σ′ with

σg ⊆ σ′ ⊆ σ, and k ≤ m, we can construct ψ ∈ GNFPk[σ′, σg] such that for all σ-structures
B, B |= ψ iff Uplump

BGNk[σ′,σg](B) |= φµ.

There is a naïve backward mapping of the µ-calculus into LFP, by structural induction.
The problem is that the formula produced by the translation fails to be in GNFPk for two
reasons. First, the inductive step for negation in the naïve algorithm simply applies negation
to the recursively-produced formula. Clearly this can produce unguarded negation. Similarly,
the recursive step for fixpoints may use unguarded fixpoints.

For example, the original µ-calculus formula can include subformulas of the form
〈ρ〉ExactLabel(τ) where τ is a set of unary relations from Σcode

σ′,k , and ExactLabel(τ)
asserts P for all P ∈ τ and ¬P for all unary relations P not in τ . This would be problematic
for a straightforward backward mapping, since the backward translation of some ¬Ri1,...,in
would be converted into an unguarded negation ¬R(xi1 , . . . , xin). On the other hand the
formula 〈ρ〉GNLabel(τ) where GNLabel(τ) asserts P for all P ∈ τ but only asserts ¬P for
unary relations P that are not in τ but whose indices are σg-guarded by some P ′ ∈ τ would
be unproblematic, since this could be translated to a formula with σg-guarded negation.
The key observation is that from an interface node in a plump tree, these two formulas are
equivalent: if T , v |= 〈ρ〉GNLabel(τ) at any interface node v, then plumpness ensures that
if there is some ρ-child w′ of v with label τ ′ satisfying GNLabel(τ), then there is a ρ-child w
of v with label τ satisfying ExactLabel(τ) – it can be checked that τ is a (σg, rng(ρ))-safe
restriction of τ ′. Thus the proof of Lemma GNFPk-Bwd relies on first simplifying Lµ-formulas
so that problematic subformulas like ExactLabel(τ) are eliminated, with the correctness
of this simplification holding only over plump trees. After this simplification, an inductive
backward mapping can be applied.

Using the above lemma and Proposition 2, we obtain the following analog of Theorem 4.

I Theorem 13. The GNFPk[σ′, σg] definability problem is decidable for GNl[σ]-invariant
GSO[σ] and k, l ≥ width(σ).

Since UNFPk[σ′] is just GNFPk[σ′, ∅], we obtain the following corollary:

I Corollary 14. The UNFPk[σ′] definability problem is decidable for GNl[σ]-invariant GSO[σ]
and k, l ≥ width(σ).

We get corollaries for fragments of FO, analogous to Corollary 6:

I Corollary 15. The GNFk[σ′, σg] and UNFk[σ′] definability problems are decidable for
GNl[σ]-invariant FO[σ] and k, l ≥ width(σ).

We can also apply the backward and forward mappings to get a semantic characterization
for GNFPk, analogous to the Janin-Walukiewicz theorem. The following extends a result
of [3] characterizing GNFk formulas as the BGNk-invariant fragment of FO.

I Theorem 16. GNFPk[σ′, σg] is the BGNk[σ′, σg]-invariant fragment of GSO[σ′].

ICALP 2017

107:12 Characterizing Definability in Decidable Fixpoint Logics

The proof is similar to the characterizations of Janin-Walukiewicz and [16], and can also
be seen as a variant of Proposition 2, where we use BGNk[σ′, σg]-invariance rather than
equivalence to a GNFPk[σ′, σg] sentence in justifying that the input formula is equivalent to
the result of the composition of backward and forward mappings.

Interpolation. The forward and backward mappings utilized for the definability questions
can also be used to prove that GFP and GNFPk have a form of interpolation.

Let φL and φR be sentences over signatures σL and σR such that φL |= φR (φL entails φR).
An interpolant for such a validity is a formula θ for which φL |= θ and θ |= φR, and θ mentions
only relations appearing in both φL and φR. We say a logic L has Craig interpolation if
for all φL, φR ∈ L with φL |= φR, there is an interpolant θ ∈ L for it. We say a logic L has
the stronger uniform interpolation property if one can obtain θ from φL and a signature
σ′, and θ can serve as an interpolant for any φR entailed by φL and such that the common
signature of φR and φL is contained in σ′. A uniform interpolant can be thought of as the
best over-approximation of φL over σ′.

Uniform interpolation holds for Lµ [11] and UNFPk [9]. Unfortunately, GFP[σ] and
GNFPk[σ] both fail to have uniform interpolation and Craig interpolation (this follows from
[19, 9]). However, if we disallow subsignature restrictions that change the guard signature,
then we regain interpolation. This “preservation of guard” variant was investigated first by
Hoogland, Marx, and Otto in the context of Craig interpolation [19]. The uniform variant
was introduced by D’Agostino and Lenzi [12], who called it uniform modal interpolation.
Formally, we say a guarded logic L[σ, σg] with guard signature σg ⊆ σ has uniform modal
interpolation if for any φL ∈ L[σ, σg] and any subsignature σ′ ⊆ σ containing σg, there exists
a formula θ ∈ L[σ′, σg] such that φL entails θ and for any σ′′ containing σg with σ′′ ∩ σ ⊆ σ′
and any φR ∈ L[σ′′, σg] entailed by φL, θ entails φR. It was shown in [12] that GF has
uniform modal interpolation. We strengthen this to GFP and GNFPk.

I Theorem 17. For σ a relational signature, σg ⊆ σ, k ∈ N: GFP[σ, σg] and GNFPk[σ, σg]
sentences have uniform modal interpolation, and the interpolants can be found effectively.

We sketch the argument for GFP[σ, σg]. Consider φL ∈ GFP[σ, σg] of width k and
subsignature σ′ ⊆ σ containing σg. We apply Lemma Fwd to get a formula φµL ∈ Lµ[Σcode

σ,k]
that captures codes of tree-like models of φL. We want to go backward now, to get a formula
over the subsignature σ′. We saw that the backward mapping for GFP[σ′, σg] (Lemma 3)
can do this: it can start with a µ-calculus formula over Σcode

σ,k , and produce a formula in
GFP[σ′, σg]. As discussed earlier, the formula produced by this backward mapping has a
nice property related to definability: it is equivalent to φL exactly when φL is definable
in GFP[σ′, σg]. In general, however, we do not expect φL to be equivalent to a formula
over the subsignature – for uniform interpolation we just want to approximate the formula
over this subsignature. The backward mapping of φµL does not always do this. Hence, it is
necessary to add one additional step before taking the backward mapping: we apply uniform
interpolation for the µ-calculus [11], obtaining θµ ∈ Σcode

σ′,k which is entailed by φµL and entails
each Lµ[Σcode

σ′,k]-formula implied by φµL. Finally, we apply Lemma GFP[σ′, σg]-Bwd to θµ to
get θ ∈ GFP[σ′, σg]. We can check that θ ∈ GNFPk[σ′, σg] is the required uniform modal
interpolant for φL over subsignature σ′.

Theorem 17 also implies that UNFPk has the traditional uniform interpolation property:
since the guard signature is empty for UNFPk, uniform modal interpolation and uniform
interpolation coincide. This was shown already in [9].

M. Benedikt, P. Bourhis, and M. Vanden Boom 107:13

6 Conclusions

In this paper we have taken a first look at effective characterizations of definability in
expressive logics. We did not allow constants in the formulas in this paper, but we believe
that similar effective characterization results hold for guarded fixpoint logics with constants.
We leave open the question of definability in GNFP without any width restriction. For this
the natural way to proceed is to bound the width of a defining sentence based in terms of
the input. We also note that our results on fixpoint logics hold only when equivalence is
considered over all structures, leaving open the corresponding questions over finite structures.

Acknowledgements. We thank the referees for many improvements.

References
1 Hajnal Andréka, Johan van Benthem, and István Németi. Modal languages and bounded

fragments of predicate logic. J. Phil. Logic, 27:217–274, 1998.
2 Andre Arnold and Damin Niwinski. Rudiments of mu-calculus. Elsevier, 2001.
3 Vince Bárány, Balder Ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3), 2015.

doi:10.1145/2701414.
4 Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. In LMCS,

volume 10, 2014. doi:10.2168/LMCS-10(2:3)2014.
5 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. In ICALP, 2011.

doi:10.1007/978-3-642-22012-8_28.
6 Pablo Barceló, Georg Gottlob, and Andreas Pieris. Semantic acyclicity under constraints.

In PODS, 2016. doi:10.1145/2902251.2902302.
7 Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A step up in expressiveness

of decidable fixpoint logics. In LICS, 2016. doi:10.1145/2933575.2933592.
8 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The

complexity of boundedness for guarded logics. In LICS, 2015. doi:10.1109/LICS.2015.36.
9 Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpolation with decid-

able fixpoint logics. In LICS, 2015. doi:10.1109/LICS.2015.43.
10 Achim Blumensath, Martin Otto, and MarkWeyer. Decidability results for the boundedness

problem. Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:
2)2014.

11 Giovanna D’Agostino and Marco Hollenberg. Logical Questions Concerning The mu-
Calculus: Interpolation, Lyndon and Los-Tarski. The Journal of Symbolic Logic, 65(1):310–
332, 2000. doi:10.2307/2586539.

12 Giovanna D’Agostino and Giacomo Lenzi. Bisimulation quantifiers and uniform inter-
polation for guarded first order logic. Theor. Comput. Sci., 563:75–85, 2015. doi:
10.1016/j.tcs.2014.08.015.

13 Diego Figueira. Semantically acyclic conjunctive queries under functional dependencies. In
LICS, 2016. doi:10.1145/2933575.2933580.

14 Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE: a deductive query language
with linear time model checking. ACM Trans. Comput. Log., 3(1):42–79, 2002. doi:10.
1145/504077.504079.

15 Georg Gottlob, Nicola Leone, and Francesco Scarcello. Robbers, marshals, and guards:
game theoretic and logical characterizations of hypertree width. J. Comput. Syst. Sci.,
66(4):775–808, 2003. doi:10.1016/S0022-0000(03)00030-8.

16 Erich Grädel, Colin Hirsch, and Martin Otto. Back and forth between guarded and modal
logics. ACM TOCL, 3(3):418–463, 2002. doi:10.1145/507382.507388.

ICALP 2017

http://dx.doi.org/10.1145/2701414
http://dx.doi.org/10.2168/LMCS-10(2:3)2014
http://dx.doi.org/10.1007/978-3-642-22012-8_28
http://dx.doi.org/10.1145/2902251.2902302
http://dx.doi.org/10.1145/2933575.2933592
http://dx.doi.org/10.1109/LICS.2015.36
http://dx.doi.org/10.1109/LICS.2015.43
http://dx.doi.org/10.2168/LMCS-10(3:2)2014
http://dx.doi.org/10.2168/LMCS-10(3:2)2014
http://dx.doi.org/10.2307/2586539
http://dx.doi.org/10.1016/j.tcs.2014.08.015
http://dx.doi.org/10.1016/j.tcs.2014.08.015
http://dx.doi.org/10.1145/2933575.2933580
http://dx.doi.org/10.1145/504077.504079
http://dx.doi.org/10.1145/504077.504079
http://dx.doi.org/10.1016/S0022-0000(03)00030-8
http://dx.doi.org/10.1145/507382.507388

107:14 Characterizing Definability in Decidable Fixpoint Logics

17 Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In Johan van
Benthem on Logic and Information Dynamics, pages 3–31. Springer, 2014. doi:10.1007/
978-3-319-06025-5_1.

18 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In LICS, 1999. doi:
10.1109/LICS.1999.782585.

19 Eva Hoogland, Maarten Marx, and Martin Otto. Beth definability for the guarded fragment.
In LPAR, 1999. doi:10.1007/3-540-48242-3_17.

20 David Janin and Igor Walukiewicz. Automata for the modal mu-calculus and related results.
In MFCS, 1995. doi:10.1007/3-540-60246-1_160.

21 David Janin and Igor Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In CONCUR, 1996. doi:10.1007/
3-540-61604-7_60.

22 Martin Otto. Eliminating recursion in the µ-calculus. In STACS, 1999. doi:10.1007/
3-540-49116-3_50.

23 Balder ten Cate and Luc Segoufin. Unary negation. In STACS, 2011. doi:10.4230/LIPIcs.
STACS.2011.344.

24 J. F.A.K. van Benthem. Modal Logic and Classical Logic. Humanities Pr, 1983.
25 Moshe Y. Vardi. “Why is Modal Logic so Robustly Decidable”. In Descriptive Complexity

and Finite Models, pages 149–184, 1997.
26 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, 1981.

http://dx.doi.org/10.1007/978-3-319-06025-5_1
http://dx.doi.org/10.1007/978-3-319-06025-5_1
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1007/3-540-48242-3_17
http://dx.doi.org/10.1007/3-540-60246-1_160
http://dx.doi.org/10.1007/3-540-61604-7_60
http://dx.doi.org/10.1007/3-540-61604-7_60
http://dx.doi.org/10.1007/3-540-49116-3_50
http://dx.doi.org/10.1007/3-540-49116-3_50
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.344
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.344

Conservative Extensions in Guarded and
Two-Variable Fragments∗†

Jean Christoph Jung1, Carsten Lutz1, Mauricio Martel1,
Thomas Schneider1, and Frank Wolter2

1 University of Bremen, Bremen, Germany
jeanjung@informatik.uni-bremen.de

2 University of Bremen, Bremen, Germany
clu@informatik.uni-bremen.de

3 University of Bremen, Bremen, Germany
martel@informatik.uni-bremen.de

4 University of Bremen, Bremen, Germany
ts@informatik.uni-bremen.de

5 University of Liverpool, Liverpool, UK
wolter@liverpool.ac.uk

Abstract
We investigate the decidability and computational complexity of (deductive) conservative exten-
sions in fragments of first-order logic (FO), with a focus on the two-variable fragment FO2 and
the guarded fragment GF. We prove that conservative extensions are undecidable in any FO
fragment that contains FO2 or GF (even the three-variable fragment thereof), and that they are
decidable and 2ExpTime-complete in the intersection GF2 of FO2 and GF.

1998 ACM Subject Classification F.4.1 [Mathematical Logic] Computational Logic

Keywords and phrases Conservative Extensions, Decidable Fragments of First-Order Logic,
Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.108

1 Introduction

Conservative extensions are a fundamental notion in logic. In mathematical logic, they
provide an important tool for relating logical theories, such as theories of arithmetic and
theories that emerge in set theory [35, 31]. In computer science, they come up in diverse areas
such as software specification [12], higher order theorem proving [15], and ontologies [24].
In these applications, it would be very useful to decide, given two sentences ϕ1 and ϕ2,
whether ϕ1 ∧ ϕ2 is a conservative extension of ϕ1. As expected, this problem is undecidable
in first-order logic (FO). In contrast, it has been observed in recent years that conservative
extensions are decidable in many modal and description logics [13, 26, 27, 7]. This observation
is particularly interesting from the viewpoint of ontologies, where conservative extensions
have many natural applications including modularity and reuse, refinement, versioning, and
forgetting [9, 24].

Regarding decidability, conservative extensions thus seem to behave similarly to the
classical satisfiability problem, which is also undecidable in FO while it is decidable for modal

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10115.
† Funded by DFG grant LU 1417/2.

EA
T

C
S

© Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Thomas Schneider,
and Frank Wolter;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 108; pp. 108:1–108:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.108
https://arxiv.org/abs/1705.10115
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108:2 Conservative Extensions in Guarded and Two-Variable Fragments

and description logics. In the case of satisfiability, the aim to understand the deeper reasons
for this discrepancy and to push the limits of decidability to more expressive fragments of FO
has sparked a long line of research that identified prominent decidable FO fragments such as
the two-variable fragment FO2 [34, 29], its extension with counting quantifiers C2 [19], the
guarded fragment GF [1], and the guarded negation fragment GNF [4], see also [6, 16, 33, 23]
and references therein. These fragments have sometimes been used as a replacement for the
modal and description logics that they generalize, and in particular the guarded fragment
has been proposed as an ontology language [3]. Motivated by this situation, the aim of the
current paper is to study the following two questions:
1. Are conservative extensions decidable in relevant fragments of FO such as FO2, C2, GF,

and GNF?
2. What are the deeper reasons for decidability of conservative extensions in modal and

description logics and how far can the limits of decidability be pushed?
To be more precise, we concentrate on deductive conservative extensions, that is, ϕ1 ∧ ϕ2
is a conservative extension of ϕ1 if for every sentence ψ formulated in the signature of
ϕ1, ϕ1 ∧ ϕ2 |= ψ implies ϕ1 |= ψ. There is also a model-theoretic notion of conservative
extension which says that ϕ1 ∧ ϕ2 is a conservative extension of ϕ1 if every model of ϕ1 can
be extended to a model of ϕ2 by interpreting the additional symbols in ϕ2. Model-theoretic
conservative extensions imply deductive conservative extensions, but the converse fails unless
one works with a very expressive logic such as second-order logic [24]. In fact, model-theoretic
conservative extensions are undecidable even for some very inexpressive description logics
that include neither negation nor disjunction [25]. Deductive conservative extensions, as
studied in this paper, are closely related to other important notions in logic, such as uniform
interpolation [30, 36, 5]. For example, in logics that enjoy Craig interpolation, a decision
procedure for conservative extensions can also be used to decide whether a given sentence ϕ2
is a uniform interpolant of a given sentence ϕ1 regarding the symbols used in ϕ2.

Instead of concentrating only on conservative extensions, we also consider two related
reasoning problems that we call Σ-entailment and Σ-inseparability, where Σ denotes a
signature. The definitions are as follows: a sentence ϕ1 Σ-entails a sentence ϕ2 if for every
sentence ψ formulated in Σ, ϕ2 |= ψ implies ϕ1 |= ψ. This can be viewed as a more relaxed
notion of conservative extension where it is not required that one sentence actually extends
the other as in the conjunction ϕ1 ∧ ϕ2 used in the definition of conservative extensions.
Two sentences ϕ1, ϕ2 are Σ-inseparable if they Σ-entail each other. We generally prove lower
bounds for conservative extensions and upper bounds for Σ-entailment, in this way obtaining
the same decidability and complexity results for all three problems.

Our first main result is that conservative extensions are undecidable in FO2 and (the
three-variable fragment of) GF, and in fact in all fragments of FO that contain at least
one of the two; note that the latter is not immediate because the separating sentence ψ
in the definition of conservative extensions ranges over all sentences from the considered
fragment, giving greater separating power when we move to a larger fragment. The proofs
are by reductions from the halting problem for two-register machines and a tiling problem,
respectively. We note that undecidability of conservative extensions also implies that there is
no extension of the logic in question in which consequence is decidable and that has effective
uniform interpolation (in the sense that uniform interpolants exist and are computable). We
then show as our second main result that, in the two-variable guarded fragment GF2, Σ-
entailment is decidable in 2ExpTime. Regarding the satisfiability problem, GF2 behaves fairly
similarly to modal and description logics. It is thus suprising that deciding Σ-entailment (and
conservative extensions) in GF2 turns out to be much more challenging than in most modal

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:3

and description logics. There, the main approach to proving decidability of Σ-entailment is
to first establish a suitable model-theoretic characterization based on bisimulations which is
then used as a foundation for a decision procedure based on tree automata [27, 7]. In GF2,
an analogous characterization in terms of appropriate guarded bisimulation fails. Instead,
one has to demand the existence of k-bounded (guarded) bisimulations, for all k, and while
tree automata can easily handle bisimulations, it is not clear how they can deal with such an
infinite family of bounded bisimulations. We solve this problem by a very careful analysis of
the situation and by providing another characterization that can be viewed as being ‘half
way’ between a model-theoretic characterization and an automata-encoding of Σ-entailment.

We also observe that a 2ExpTime lower bound from [13] for conservative extensions
in description logics can be adapted to GF2, and consequently our upper bound is tight.
It is known that GF2 enjoys Craig interpolation and thus our results are also relevant to
deciding uniform interpolants and to a stronger version of conservative extensions in which
the separating sentence ψ can also use ‘helper symbols’ that occur neither in ϕ1 nor in ϕ2.

2 Preliminaries

We introduce the fragments of classical first-order logic (FO) that are relevant for this
paper. We generally admit equality and disallow function symbols and constants. With FO2,
we denote the two-variable fragment of FO, obtained by fixing two variables x and y and
disallowing the use of other variables [34, 29]. In FO2 and fragments thereof, we generally
admit only predicates of arity one and two, which is without loss of generality [17]. In the
guarded fragment of FO, denoted GF, quantification is restricted to the pattern

∀y(α(x,y)→ ϕ(x,y)) ∃y(α(x,y) ∧ ϕ(x,y))

where ϕ(x,y) is a GF formula with free variables among x,y and α(x,y) is an atomic
formula Rxy or an equality x = y that in either case contains all variables in x,y [1, 16]. The
formula α is called the guard of the quantifier. The k-variable fragment of GF, defined in the
expected way, is denoted GF k. Apart from the logics introduced so far, in informal contexts
we shall also mention several related description logics. Exact definitions are omitted, we
refer the reader to [2].

A signature Σ is a finite set of predicates. We use GF(Σ) to denote the set of all GF-
sentences that use only predicates from Σ (and possibly equality), and likewise for GF2(Σ)
and other fragments. We use sig(ϕ) to denote the set of predicates that occur in the FO
formula ϕ. Note that we consider equality to be a logical symbol, rather than a predicate,
and it is thus never part of a signature. We write ϕ1 |= ϕ2 if ϕ2 is a logical consequence
of ϕ1. The next definition introduces the central notions studied in this paper.

I Definition 1. Let F be a fragment of FO, ϕ1, ϕ2 F -sentences and Σ a signature. Then
1. ϕ1 Σ-entails ϕ2, written ϕ1 |=Σ ϕ2, if for all F (Σ)-sentences ψ, ϕ2 |= ψ implies ϕ1 |= ψ;
2. ϕ1 and ϕ2 are Σ-inseparable if ϕ1 Σ-entails ϕ2 and vice versa;
3. ϕ1 ∧ ϕ2 is a conservative extension of ϕ1 if ϕ1 sig(ϕ1)-entails ϕ1 ∧ ϕ2.
Note that Σ-entailment could equivalently be defined as follows when F is closed under nega-
tion: ϕ1 Σ-entails ϕ2 if for all F (Σ)-sentences ψ, satisfiability of ϕ1 ∧ ψ implies satisfiability
of ϕ2 ∧ ψ. If ϕ1 does not Σ-entail ϕ2, there is thus an F (Σ)-sentence ψ such that ϕ1 ∧ ψ is
satisfiable while ϕ2 ∧ψ is not. We refer to such ψ as a witness sentence for non-Σ-entailment.

I Example 2. (1) Σ-entailment is a weakening of logical consequence, that is, ϕ1 |= ϕ2
implies ϕ1 |=Σ ϕ2 for any Σ. The converse is true when sig(ϕ2) ⊆ Σ.

ICALP 2017

108:4 Conservative Extensions in Guarded and Two-Variable Fragments

(2) Consider the GF2 sentences ϕ1 = ∀x∃yRxy and ϕ2 = ∀x(∃y(Rxy ∧Ay) ∧ ∃y(Rxy ∧
¬Ay)) and let Σ = {R}. Then ψ = ∀xy(Rxy → x = y) is a witness for ϕ1 6|=Σ ϕ2. If ϕ1
is replaced by ϕ′1 = ∀x∃y(Rxy ∧ x 6= y) we obtain ϕ′1 |=Σ ϕ2 since GF2 cannot count the
number of R-successors.

It is important to note that different fragments F of FO give rise to different notions
of Σ-entailment, Σ-inseparability and conservative extensions. For example, if ϕ1 and ϕ2
belong to GF2, then they also belong to GF and to FO2, but it might make a difference
whether witness sentences range over all GF2-sentences, over all GF-sentences, or over all
FO2-sentences. If we want to emphasize the fragment F in which witness sentences are
formulated, we speak of F (Σ)-entailment instead of Σ-entailment and write ϕ1 |=F (Σ) ϕ2,
and likewise for F (Σ)-inseparability and F -conservative extensions.

I Example 3. Let ϕ′1, ϕ2, and Σ = {R} be from Example 2 (2). Then ϕ′1 GF2(Σ)-entails ϕ2
but ϕ′1 does not FO(Σ)-entail ϕ2; a witness is given by ∀xy1y2((Rxy1 ∧Rxy2)→ y1 = y2).

Note that conservative extensions and Σ-inseparability reduce in polynomial time to Σ-
entailment (with two calls to Σ-entailment required in the case of Σ-inseparability). Moreover,
conservative extensions reduce in polynomial time to Σ-inseparability. We thus state our
upper bounds in terms of Σ-entailment and lower bounds in terms of conservative extensions.

There is a natural variation of each of the three notions in Definition 1 obtained by
allowing to use additional ‘helper predicates’ in witness sentences. For a fragment F of FO,
F -sentences ϕ1, ϕ2, and a signature Σ, we say that ϕ1 strongly Σ-entails ϕ2 if ϕ1 Σ′-entails ϕ2
for any Σ′ with Σ′ ∩ sig(ϕ2) ⊆ Σ. Strong Σ-inseparability and strong conservative extensions
are defined accordingly. Strong Σ-entailment implies Σ-entailment, but the converse may fail.

I Example 4. GF(Σ)-entailment does not imply strong GF(Σ)-entailment. Let ϕ1 state
that the binary predicate R is irreflexive and symmetric and let ϕ2 be the conjunction
of ϕ1 and ∀x(Ax → ∀y(Rxy → ¬Ay)) ∧ ∀x(¬Ax → ∀y(Rxy → Ay)). Thus, an {R}-
structure satisfying ϕ1 can be extended to a model of ϕ2 if it contains no R-cycles of odd
length. Now observe that any satisfiable GF({R}) sentence is satisfiable in a forest {R}-
structure (see Section 4 for a precise definition). Hence, if a GF({R})-sentence is satisfiable
in an irreflexive and symmetric structure then it is satisfiable in a structure without odd
cycles and so ϕ1 GF({R})-entails ϕ2. In contrast, for the fresh ternary predicate Q and
ψ = ∃x1x2x3(Qx1x2x3 ∧Rx1x2 ∧Rx2x3 ∧Rx3x1) we have ϕ2 |= ¬ψ but ϕ1 6|= ¬ψ and so ψ
witnesses that ϕ1 does not GF({R,Q})-entail ϕ2.

The example above is inspired by proofs that GF does not enjoy Craig interpolation [21, 11].
This is not accidental, as we explain next. Recall that a fragment F of FO has Craig
interpolation if for all F -sentences ψ1, ψ2 with ψ1 |= ψ2 there exists an F -sentence ψ (called
an F -interpolant for ψ1, ψ2) such that ψ1 |= ψ |= ψ2 and sig(ψ) ⊆ sig(ψ1) ∩ sig(ψ2). F

has uniform interpolation if one can always choose an F -interpolant that does not depend
on ψ2, but only on ψ1 and sig(ψ1) ∩ sig(ψ2). Thus, given ψ1, ψ and Σ with ψ1 |= ψ and
sig(ψ) ⊆ Σ, then ψ is a uniform F (Σ)-interpolant of ψ1 iff ψ strongly F (Σ)-entails ψ1.
Both Craig interpolation and uniform interpolation have been investigated extensively, for
example for intuitionistic logic [30], modal logics [36, 10, 28], guarded fragments [11], and
description logics [27]. The following observation summarizes the connection between (strong)
Σ-entailment and interpolation.

I Theorem 5. Let F be a fragment of FO that enjoys Craig interpolation. Then F (Σ)-
entailment implies strong F (Σ)-entailment. In particular, if ϕ2 |= ϕ1 and sig(ϕ1) ⊆ Σ, then
ϕ1 is a uniform F (Σ)-interpolant of ϕ2 iff ϕ1 F (Σ)-entails ϕ2.

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:5

Proof. Assume ϕ1 does not strongly F (Σ)-entail ϕ2. Then there is an F -sentence ψ with
sig(ψ) ∩ sig(ϕ2) ⊆ Σ such that ϕ2 |= ψ and ϕ1 ∧ ¬ψ is satisfiable. Let χ be an interpolant
for ϕ2 and ψ in F . Then ¬χ witnesses that ϕ1 does not F (Σ)-entail ϕ2. J

The uniform interpolant recognition problem for F is the problem to decide whether a
sentence ψ is a uniform F (Σ)-interpolant of a sentence ψ′. It follows from Theorem 5 that in
any fragment F of FO that enjoys Craig interpolation, this problem reduces in polynomial
time to Σ-inseparability in F and that, conversely, conservative extension in F reduces in
polynomial time to the uniform interpolant recognition problem in F . Neither GF nor FO2

nor description logics with role inclusions enjoy Craig interpolation [21, 8, 24], but GF2 does
[21]. Thus, our decidability and complexity results for Σ-entailment in GF2 also apply to
strong Σ-entailment and the uniform interpolant recognition problem.

3 Undecidability

We prove that conservative extensions are undecidable in GF3 and in FO2, and consequently
so are Σ-entailment and Σ-inseparability (as well as strong Σ-entailment and the uniform
interpolant recognition problem). These results hold already without equality and in fact
apply to all fragments of FO that contain at least one of GF3 and FO2 such as the guarded
negation fragment [4] and the two-variable fragment with counting quantifiers [19].

We start with the case of GF3, using a reduction from the halting problem of two-
register machines. A (deterministic) two-register machine (2RM) is a pair M = (Q,P) with
Q = q0, . . . , q` a set of states and P = I0, . . . , I`−1 a sequence of instructions. By definition,
q0 is the initial state, and q` the halting state. For all i < `,

either Ii = +(p, qj) is an incrementation instruction with p ∈ {0, 1} a register and qj the
subsequent state;
or Ii = −(p, qj , qk) is a decrementation instruction with p ∈ {0, 1} a register, qj the
subsequent state if register p contains 0, and qk the subsequent state otherwise.

A configuration of M is a triple (q,m, n), with q the current state and m,n ∈ N the register
contents. We write (qi, n1, n2)⇒M (qj ,m1,m2) if one of the following holds:

Ii = +(p, qj), mp = np + 1, and m1−p = n1−p;
Ii = −(p, qj , qk), np = mp = 0, and m1−p = n1−p;
Ii = −(p, qk, qj), np > 0, mp = np − 1, and m1−p = n1−p.

The computation of M on input (n,m) ∈ N2 is the unique longest configuration sequence
(p0, n0,m0)⇒M (p1, n1,m1)⇒M · · · such that p0 = q0, n0 = n, and m0 = m. The halting
problem for 2RMs is to decide, given a 2RM M , whether its computation on input (0, 0) is
finite (which implies that its last state is q`).

We show how to convert a given 2RM M into GF3-sentences ϕ1 and ϕ2 such that M
halts on input (0, 0) iff ϕ1 ∧ ϕ2 is not a conservative extension of ϕ1. Let M = (Q,P)
with Q = q0, . . . , q` and P = I0, . . . , I`−1. We assume w.l.o.g. that ` ≥ 1 and that if
Ii = −(p, qj , qk), then qj 6= qk. In ϕ1, we use the following set Σ of predicates:

a binary predicate N connecting a configuration to its successor configuration;
binary predicates R1 and R2 that represent the register contents via the length of paths;
unary predicates q0, . . . , q` representing the states of M ;
a unary predicate S denoting points where a computation starts.

ICALP 2017

108:6 Conservative Extensions in Guarded and Two-Variable Fragments

We define ϕ1 to be the conjunction of several GF2-sentences. First, we say that there is a
point where the computation starts:1

∃xSx ∧ ∀x(Sx→ (q0x ∧ ¬∃y R0xy ∧ ¬∃y R1xy))

And second, we add that whenever M is not in the final state, there is a next configuration.
For 0 ≤ i < `:

∀x(qix→ ∃y(Nxy ∧ qjy)) if Ii = +(p, qj)
∀x((qix ∧ ¬∃yRpxy)→ ∃y(Nxy ∧ qjy)) if Ii = −(p, qj , qk)
∀x((qix ∧ ∃yRpxy)→ ∃y(Nxy ∧ qky)) if Ii = −(p, qj , qk)

The second sentence ϕ2 is constructed so as to express that either M does not halt or the
representation of the computation of M contains a defect, using the following additional
predicates:

a unary predicate P used to represent that M does not halt;
binary predicates D+

p , D
−
p , D

=
p used to describe defects in incrementing, decrementing,

and keeping register p ∈ {0, 1};
ternary predicates H+

1 , H
+
2 , H

−
1 , H

−
2 , H

=
1 , H

=
2 used as guards for existential quantifiers.

In fact, ϕ2 is the disjunction of two sentences. The first sentence says that the computation
does not terminate:

∃x (Sx ∧ Px) ∧ ∀x (Px→ ∃y (Nxy ∧ Py))

while the second says that registers are not updated properly:

∃x∃y
(
Nxy ∧

(∨
Ii=+(p,qj)

(qix ∧ qjy ∧ (D+
p xy ∨D=

1−pxy))

∨
∨

Ii=−(p,qj ,qk)

(qix ∧ qky ∧ (D−p xy ∨D=
1−pxy))

∨
∨

Ii=−(p,qj ,qk)

(qix ∧ qjy ∧ (D=
p xy ∨D=

1−pxy))
))

∧∀x∀y (D+
p xy → (¬∃z Rpyz ∨ (¬∃z Rpxz ∧ ∃z (Rpyz ∧ ∃xRpzx))

∨∃z(H+
1 xyz ∧Rpxz ∧ ∃x(H+

2 xzy ∧Rpyx ∧D+
p zx)).

In this second sentence, additional conjuncts that implement the desired behaviour of D=
p

and D−p are also needed; they are constructed analogously to the last three lines above (but
using guards H−j and H=

j), details are omitted. The following is proved in the appendix of
the full version of this paper.

I Lemma 6.
1. If M halts, then ϕ1 ∧ ϕ2 is not a GF 2-conservative extension of ϕ1.
2. If there exists a Σ-structure that satisfies ϕ1 and cannot be extended to a model of ϕ2 (by

interpreting the predicates in sig(ϕ2) \ sig(ϕ1)), then M halts.

In the proof of Point 1, the sentence that witnesses non-conservativity describes a halting
computation of M , up to global GF2(Σ)-bisimulations. This can be done using only two
variables. The following result is an immediate consequence of Lemma 6.

1 The formulas that are not syntactically guarded can easily be rewritten into such formulas.

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:7

I Theorem 7. In any fragment of FO that extends the three-variable guarded fragment
GF 3, the following problems are undecidable: conservative extensions, Σ-inseparability,
Σ-entailment, and strong Σ-entailment.

Since Point 1 of Lemma 6 ensures GF2-witnesses, Theorem 7 can actually be strengthened
to say that GF2-conservative extensions of GF3-sentences are undecidable.

Our result for FO2 is proved by a reduction of a tiling problem that asks for the tiling
of a rectangle (of any size) such that the borders are tiled with certain distinguished tiles.
Because of space limitations, we defer details to the appendix of the full version and state
only the obtained result.

I Theorem 8. In any fragment of FO that extends FO2, the following problems are undecid-
able: conservative extensions, Σ-inseparability, Σ-entailment, and strong Σ-entailment.

It is interesting to note that the proof of Theorem 8 also shows that FO2-conservative
extensions of ALC-TBoxes are undecidable while it follows from our results below that
GF2-conservative extensions of ALC-TBoxes are decidable.

4 Characterizations

The undecidability results established in the previous section show that neither the restric-
tion to two variables nor guardedness alone are sufficient for decidability of conservative
extensions and related problems. In the remainder of the paper, we show that adopting
both restrictions simultaneously results in decidability of Σ-entailment (and thus also of
conservative extensions and of inseparability). We proceed by first establishing a suitable
model-theoretic characterization and then use it as the foundation for a decision procedure
based on tree automata. We in fact establish two versions of the characterization, the second
one building on the first one.

We start with some preliminaries. An atomic 1-type for Σ is a maximal satisfiable set τ
of atomic GF2(Σ)-formulas and their negations that use the variable x, only. We use atΣA(a)
to denote the atomic 1-type for Σ realized by the element a in the structure A. An atomic
2-type for Σ is a maximal satisfiable set τ of atomic GF2(Σ)-formulas and their negations
that use the variables x and y, only, and contains ¬(x = y). We say that τ is guarded if it
contains an atom of the form Rxy or Ryx, R a predicate symbol. We use atΣA(a, b) to denote
the atomic 2-type for Σ realized by the elements a, b in the structure A. A relation ∼ ⊆ A×B
is a GF2(Σ)-bisimulation between A and B if the following conditions hold whenever a ∼ b:
1. atΣA(a) = atΣB(b);
2. for every a′ 6= a such that atΣA(a, a′) is guarded, there is a b′ 6= b such that atΣA(a, a′) =

atΣB(b, b′) and a′ ∼ b′ (forth condition);
3. for every b′ 6= b such that atΣB(b, b′) is guarded, there is an a′ 6= a such that atΣA(a, a′) =

atΣB(b, b′) and a′ ∼ b′ (back condition).
We write (A, a) ∼Σ (B, b) and say that (A, a) and (B, b) are GF 2(Σ)-bisimilar if there is a
GF2(Σ)-bisimulation ∼ between A and B with a ∼ b. If the domain and range of ∼ coincide
with A and B, respectively, then ∼ is called a global GF 2(Σ)-bisimulation.

We next introduce a bounded version of bisimulations. For k ≥ 0, we write (A, a) ∼kΣ (B, b)
and say that (A, a) and (B, b) are k-GF 2(Σ)-bisimilar if there is a ∼ ⊆ A×B such that the
first condition for bisimulations holds and the back and forth conditions can be iterated up
to k times starting from a and b; a formal definition is in the appendix of the full version. It
is straightforward to show the following link between k-GF2-bisimilarity and GF2-sentences
of guarded quantifier depth k (defined in the obvious way).

ICALP 2017

108:8 Conservative Extensions in Guarded and Two-Variable Fragments

I Lemma 9. Let A and B be structures, Σ a signature, and k ≥ 0. Then the following
conditions are equivalent:
1. for all a ∈ A there exists b ∈ B with (A, a) ∼kΣ (B, b) and vice versa;
2. A and B satisfy the same GF 2(Σ)-sentences of guarded quantifier depth at most k.
The corresponding lemma for GF2(Σ)-sentences of unbounded guarded quantifier depth and
GF2(Σ)-bisimulations holds if A and B satisfy certain saturation conditions (for example, if
A and B are ω-saturated). It can then be proved that an FO-sentence ϕ is equivalent to a
GF2 sentence iff its models are preserved under global GF2(sig(ϕ))-bisimulations [18, 14].
In modal and description logic, global Σ-bisimulations can often be used to characterize
Σ-entailment in the following natural way [27]: ϕ1 Σ-entails ϕ2 iff every for every (tree)
model A of ϕ1, there exists a (tree) model B of ϕ2 that is globally Σ-bisimilar to A. Such a
characterization enables decision procedures based on tree automata, but does not hold for
GF2.

I Example 10. Let ϕ1 = ∀x∃yRxy and let ϕ2 = ϕ1 ∧ ∃xBx ∧ ∀x(Bx → ∃y(Ryx ∧ By)).
Let A be the model of ϕ1 that consists of an infinite R-path with an initial element. Then
there is no model of ϕ2 that is globally GF2({R})-bisimilar to A since any such model has
to contain an infinite R-path with no initial element. Yet, ϕ2 is a conservative extension of
ϕ1 which can be proved using Theorem 11 below.

We give our first characterization theorem that uses unbounded bisimulations in one
direction and bounded bisimulations in the other.

I Theorem 11. Let ϕ1, ϕ2 be GF2-sentences and Σ a signature. Then ϕ1 |=Σ ϕ2 iff for
every model A of ϕ1 of finite outdegree, there is a model B of ϕ2 such that
1. for every a ∈ A there is a b ∈ B such that (A, a) ∼Σ (B, b)
2. for every b ∈ B and every k ≥ 0, there is an a ∈ A such that (A, a) ∼kΣ (B, b).

The direction (⇐) follows from Lemma 9 and (⇒) can be proved using compactness and
ω-saturated structures. Because of the use of k-bounded bisimulations (for unbounded k), it
is not clear how to use Theorem 11 to find a decision procedure based on tree automata. In
the following, we formulate a more ‘operational’ but also more technical characterization
that no longer mentions bounded bisimulations. It additionally refers to forest models A of
ϕ1 (of finite outdegree) instead of unrestricted models, but we remark that Theorem 11 also
remains true under this modification.

A structure A is a forest if its Gaifman graph is a forest. Thus, a forest admits cycles
of length one and two, but not of any higher length. A (Σ-)tree in a forest structure A is a
maximal (Σ)-connected substructure of A. When working with forest structures A, we will
typically view them as directed forests rather than as undirected ones. This can be done by
choosing a root for each tree in the Gaifman graph of A, thus giving rise to notions such
as successor, descendant, etc. Which node is chosen as the root will always be irrelevant.
Note that the direction of binary relations does not need to reflect the successor relation.
When speaking of a path in a forest structure A, we mean a path in the directed sense; when
speaking of a subtree, we mean a tree that is obtained by choosing a root a and restricting
the structure to a and its descendants. We say that A is regular if it has only finitely many
subtrees, up to isomorphism.

To see how we can get rid of bounded bisimulations, reconsider Theorem 11. The
characterization is still correct if we pull out the quantification over k in Point 2 so that the
theorem reads ‘...iff for every model A of ϕ1 of finite outdegree and every k ≥ 0, there is...’. In
fact, this modified version of Theorem 11 is even closer to the definition of Σ-entailment. It

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:9

also suggests that we add a marking A⊥ ⊆ A of elements in A, representing ‘break-off points’
for bisimulations, and then replace k-bisimulations with bisimulations that stop whenever
they have encountered the second marked element on the same path—in this way, the distance
between marked elements (roughly) corresponds to the bound k in k-bisimulations. However,
we would need a marking A⊥, for any k ≥ 0, such that there are infinitely many markers
on any infinite path and the distance between any two markers in a tree is at least k. It is
easy to see that such a marking may not exist, for example when k = 3 and A is the infinite
full binary tree. We solve this problem as follows. First, we only demand that the distance
between any two markers on the same path is at least k. And second, we use the markers
only when following bisimulations upwards in a tree while downwards, we use unbounded
bisimulations. This does not compromise correctness of the characterization.

We next introduce a version of bisimulations that implement the ideas just explained. Let
A and B be forest models, Σ a signature, and A⊥ ⊆ A. Two relations ∼A⊥,0Σ ,∼A⊥,1Σ ⊆ A×B
form an A⊥-delimited GF 2(Σ)-bisimulation between A and B if the following conditions are
satisfied:
1. if (A, a) ∼A⊥,0Σ (B, b), then atΣA(a) = atΣB(b) and

a. for every a′ 6= a with atΣA(a, a′) guarded, there is a b′ 6= b such that (A, a′) ∼A⊥,iΣ (B, b′)
where i = 1 if a′ is the predecessor of a and a′ ∈ A⊥, and i = 0 otherwise;

b. for every b′ 6= b with atΣB(b, b′) guarded, there is an a′ 6= a such that (A, a′) ∼A⊥,iΣ (B, b′)
where i = 1 if a′ is the predecessor of a and a′ ∈ A⊥, and i = 0 otherwise;

2. if (A, a) ∼A⊥,1Σ (B, b) and the predecessor of a in A is not in A⊥, then atΣA(a) = atΣB(b)
and
a. for every a′ 6= a with atΣA(a, a′) guarded, there is a b′ 6= b such that (A, a′) ∼A⊥,iΣ (B, b′)

where i = 0 if a is the predecessor of a′ and a ∈ A⊥, and i = 1 otherwise;
b. for every b′ 6= b with atΣB(b, b′) guarded, there is an a′ 6= a such that (A, a′) ∼A⊥,iΣ (B, b′)

where i = 0 if a is the predecessor of a′ and a ∈ A⊥, and i = 1 otherwise.

Then (A, a) and (B, b) are A⊥-delimited GF 2(Σ)-bisimilar, in symbols (A, a) ∼A⊥Σ (B, b),
if there exists an A⊥-delimited GF2(Σ)-bisimulation ∼A⊥,0Σ ,∼A⊥,1Σ between A and B such
that (A, a) ∼A⊥,0Σ (B, b).

Let ϕ be a GF2-sentence. We use cl(ϕ) to denote the set of all subformulas of ϕ closed
under single negation and renaming of free variables (using only the available variables x
and y). A 1-type for ϕ is a subset t ⊆ cl(ϕ) that contains only formulas of the form ψ(x)
and such that ϕ ∧ ∃x

∧
t(x) is satisfiable. For a model A of ϕ and a ∈ A, we use tpA(a)

to denote the 1-type {ψ(x) ∈ cl(ϕ) | A |= ψ(a)}, assuming that ϕ is understood from the
context. We say that the 1-type t is realized in A if there is an a ∈ A with tpA(a) = t. We
are now ready to formulate our final characterizations.

I Theorem 12. Let ϕ1, ϕ2 be GF 2-sentences and Σ a signature. Then ϕ1 |=Σ ϕ2 iff for
every regular forest model A of ϕ1 that has finite outdegree and for every set A⊥ ⊆ A with
A⊥ ∩ ρ infinite for any infinite Σ-path ρ in A, there is a model B of ϕ2 such that
1. for every a ∈ A, there is a b ∈ B such that (A, a) ∼Σ (B, b);
2. for every 1-type t for ϕ2 that is realized in B, there are a ∈ A and b ∈ B such that

tpB(b) = t and (A, a) ∼A⊥Σ (B, b).

Regularity and finite outdegree are used in the proof of Theorem 12 given in the appendix of
the full version, but it follows from the automata constructions below that the theorem is
still correct when these qualifications are dropped.

ICALP 2017

108:10 Conservative Extensions in Guarded and Two-Variable Fragments

5 Decidability and Complexity

We show that Σ-entailment in GF2 is decidable and 2ExpTime-complete, and thus so are
conservative extensions and Σ-inseparability. The upper bound is based on Theorem 12 and
uses alternating parity automata on infinite trees. Since Theorem 12 does not provide us with
an obvious upper bound on the outdegree of the involved tree models, we use alternating tree
automata which can deal with trees of any finite outdegree, similar to the ones introduced
by Wilke [37], but with the capability to move both downwards and upwards in the tree.

A tree is a non-empty (and potentially infinite) set of words T ⊆ (N \ 0)∗ closed under
prefixes. We generally assume that trees are finitely branching, that is, for every w ∈ T ,
the set {i | w · i ∈ T} is finite. For any w ∈ (N \ 0)∗, as a convention we set w · 0 := w. If
w = n0n1 · · ·nk, we additionally set w · −1 := n0 · · ·nk−1. For an alphabet Θ, a Θ-labeled
tree is a pair (T, L) with T a tree and L : T → Θ a node labeling function.

A two-way alternating tree automata (2ATA) is a tuple A = (Q,Θ, q0, δ,Ω) where Q is a
finite set of states, Θ is the input alphabet, q0 ∈ Q is the initial state, δ is a transition function
as specified below, and Ω : Q → N is a priority function, which assigns a priority to each
state. The transition function maps a state q and some input letter θ ∈ Θ to a transition
condition δ(q, θ) which is a positive Boolean formula over the truth constants true and false
and transitions of the form q, 〈−〉q, [−]q, ♦q, �q where q ∈ Q. The automaton runs on
Θ-labeled trees. Informally, the transition q expresses that a copy of the automaton is sent
to the current node in state q, 〈−〉q means that a copy is sent in state q to the predecessor
node, which is then required to exist, [−]q means the same except that the predecessor node
is not required to exist, ♦q means that a copy is sent in state q to some successor, and �q
that a copy is sent in state q to all successors. The semantics is defined in terms of runs
in the usual way, we refer to the appendix of the full version for details. We use L(A) to
denote the set of all Θ-labeled trees accepted by A. It is standard to verify that 2ATAs are
closed under complementation and intersection. We show in the appendix that the emptiness
problem for 2ATAs can be solved in time exponential in the number of states.

We aim to show that given two GF2-sentences ϕ1 and ϕ2 and a signature Σ, one can
construct a 2ATA A such that L(A) = ∅ iff ϕ1 |=GF2(Σ) ϕ2. The number of states of the
2ATA A is polynomial in the size of ϕ1 and exponential in the size of ϕ2, which yields the
desired 2ExpTime upper bounds.

Let ϕ1, ϕ2, and Σ be given. Since the logics we are concerned with have Craig interpolation,
we can assume w.l.o.g. that Σ ⊆ sig(ϕ1). With Θ, we denote the set of all pairs (τ,M) where
τ is an atomic 2-type for sig(ϕ1) and M ∈ {0, 1}. For p = (τ,M) ∈ Θ, we use p1 to denote
τ and p2 to denote M . A Θ-labeled tree (T, L) represents a forest structure A(T,L) with
universe A(T,L) = T and where w ∈ AA(T,L) if A(y) ∈ L(w) and (w,w′) ∈ RA(T,L) if one of
the following conditions is satisfied: (1) w = w′ and Ryy ∈ L(w)1; (2) w′ is a successor of w
and Rxy ∈ L(w′)1; (3) w is a successor of w′ and Ryx ∈ L(w)1. Thus, the atoms in a node
label that involve only the variable y describe the current node, the atoms that involve both
variables x and y describe the connection between the predecessor and the current node,
and the atoms that involve only the variable x are ignored. The M -components of node
labels are used to represent a set of markers A⊥ = {w ∈ A(T,L) | L(w)2 = 1}. It is easy to
see that, conversely, for every tree structure A over Σ, there is a Θ-labeled tree (T, L) such
that A(T,L) = A.

To obtain the desired 2ATA A, we construct three 2ATAs A1,A2,A3 and then define
A so that it accepts L(A1) ∩ L(A2) ∩ L(A3). The 2ATA A3 only makes sure that the
set A⊥ ⊆ A(T,L) is such that for any infinite Σ-path ρ, A⊥ ∩ ρ is infinite (as required by

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:11

Theorem 12), we omit details. We construct A1 so that it accepts a Θ-labeled tree (T, L)
iff A(T,L) is a model of ϕ1. The details of the construction, which is fairly standard, can
be found in the appendix. The number of states of A1 is polynomial in the size of ϕ1 and
independent of ϕ2. The most interesting automaton is A2.

I Lemma 13. There is a 2ATA A2 that accepts a Θ-labeled tree (T, L) iff there is a model B
of ϕ2 s.t. Conditions 1 and 2 from Theorem 12 are satisfied when A is replaced with A(T,L).

The general idea of the construction of A2 is to check the existence of the desired model
B of ϕ2 by verifying that there is a set of 1-types for ϕ2 from which B can be assembled,
represented via the states that occur in a successful run. Before we can give details, we
introduce some preliminaries.

A 0-type s for ϕ2 is a maximal set of sentences ψ() ∈ cl(ϕ2) such that ϕ2 ∧ s is satisfiable.
A 2-type λ for ϕ2 is a maximal set of formulas ψ(x, y) ∈ cl(ϕ2) that contains ¬(x = y) and
such that ϕ2 ∧ ∃xy λ(x, y) is satisfiable. If a 2-type λ contains the atom Rxy or Ryx for at
least one binary predicate R, then it is guarded. If additionally R ∈ Σ, then it is Σ-guarded.
Note that each 1-type contains a (unique) 0-type and each 2-type contains two (unique)
1-types. Formally, we use λx to denote the 1-type obtained by restricting the 2-type λ to the
formulas that do not use the variable y, and likewise for λy and the variable x. We use TPn
to denote the set of n-types for ϕ2, n ∈ {0, 1, 2}. For t ∈ TP1 and a λ ∈ TP2, we say that λ
is compatible with t and write t ≈ λ if the sentence ϕ2 ∧ ∃xy(t(x) ∧ λ(x, y)) is satisfiable; for
t ∈ TP1 and T ⊆ TP2 a set of guarded 2-types, we say that T is a neighborhood for t and
write t ≈ T if the sentence

ϕ2 ∧ ∃x
(
t(x) ∧

∧
λ∈T

∃y λ(x, y) ∧ ∀y
∨

R∈sig(ϕ2)

((Rxy ∨Ryx)→
∨
λ∈T

λ(x, y))
)

is satisfiable. Note that each of the mentioned sentences is formulated in GF2 and at most
single exponential in size (in the size of ϕ1 and ϕ2), thus satisfiability can be decided in
2ExpTime.

To build the automaton A2 from Lemma 13, set A2 = (Q2,Θ, q0, δ2,Ω2) where Q2 is

{q0, q⊥} ∪ TP0 ∪ {t, t?, t↑, t↓, t&, ti, ti↑, ti↓ | t ∈ TP1, i ∈ {0, 1}}∪
{λ, λ↑, λi, λi↑ | λ ∈ TP2, i ∈ {0, 1}},

Ω2 assigns two to all states except for those of the form t?, to which it assigns one.
The automaton begins by choosing the 0-type s realized in the forest model B of ϕ2

whose existence it aims to verify. For every ∃xϕ(x) ∈ s, it then chooses a 1-type t in which
ϕ(x) is realized in B and sends off a copy of itself to find a node where t is realized. To
satisfy Condition 1 of Theorem 12, at each node it further chooses a 1-type that is compatible
with s, to be realized at that node. This is implemented by the following transitions:

δ2(q0, σ) =
∨

s∈TP0

(
s ∧

∧
∃xϕ(x)∈s

∨
t∈TP1|

s∪{ϕ(x)}⊆t

t?
)

δ2(s, σ) = �s ∧
∨

t∈TP1,s⊆t

t

δ2(t?, σ) = 〈−1〉t? ∨ ♦t? ∨ t0

where s ranges over TP0. When a state of the form t is assigned to a node w, this is an
obligation to prove that there is a GF2(Σ)-bisimulation between the element w in A(T,L) and

ICALP 2017

108:12 Conservative Extensions in Guarded and Two-Variable Fragments

an element b of type t in B. A state of the form t0 represents the obligation to verify that
there is an A⊥-delimited GF2(Σ)-bisimulation between w and an element of type t in B. We
first verify that the former obligations are satisfied. This requires to follow all successors of
w and to guess types of successors of b to be mapped there, satisfying the back condition of
bisimulations. We also need to guess successors of b in B (represented as a neighborhood for
t) to satisfy the existential demands of t and then select successors of a to which they are
mapped, satisfying the “back” condition of bisimulations. Whenever we decide to realize a
1-type t in B that does not participate in the bisimulation currently being verified, we also
send another copy of the automaton in state t? to guess an a ∈ A(T,L) that we can use to
satisfy Condition 2 from Theorem 12:

δ2(t, (τ,M)) = t↑ ∧�t↓ ∧
∨

T |t≈T

∧
λ∈T

(♦λ ∨ λ↑) if τy =Σ t

δ2(t, (τ,M)) = false if τy 6=Σ t

δ2(t↓, (τ,M)) = true if τ is not Σ-guarded
δ2(t↓, (τ,M)) =

∨
λ|t≈λ∧τ=Σλ

λy if τ is Σ-guarded

δ2(t↑, (τ,M)) = true if τ is not Σ-guarded
δ2(t↑, (τ,M)) =

∨
λ|t≈λ∧τ=Σλ−

[−1]λy if τ is Σ-guarded

δ2(λ, (τ,M)) = λy if λ is Σ-guarded and τ =Σ λ

δ2(λ, (τ,M)) = false if λ is Σ-guarded and τ 6=Σ λ

δ2(λ, (τ,M)) = λ?
y if λ is not Σ-guarded

δ2(λ↑, (τ,M)) = 〈−1〉λy if λ is Σ-guarded and τ =Σ λ−

δ2(λ↑, (τ,M)) = false if λ is Σ-guarded and τ 6=Σ λ−

δ2(λ↑, (τ,M)) = λ?
y if λ is not Σ-guarded

where τy =Σ t means that the atoms in τ that mention only y are identical to the Σ-relational
atoms in t (up to renaming x to y), τ =Σ λ means that the restriction of λ to Σ-atoms is
exactly τ , and λ− is obtained from λ by swapping x and y. We need further transitions
to satisfy the obligations represented by states of the form t0, which involves checking
A⊥-delimited bisimulations. Details are given in the appendix where also the correctness of
the construction is proved.

I Theorem 14. In GF 2, Σ-entailment and conservative extensions can be decided in time
22p(|ϕ2|·log |ϕ1|) , for some polynomial p. Moreover, Σ-inseparability is in 2ExpTime.

Note that the time bound for conservative extensions given in Theorem 14 is double expo-
nential only in the size of ϕ2 (that is, the extension). In ontology engineering applications,
ϕ2 will often be small compared with ϕ1.

A matching lower bound is proved using a reduction of the word problem of exponentially
space-bounded alternating Turing machines, see the appendix for details. The construction
is inspired by the proof from [13] that conservative extensions in the description logic ALC
are 2ExpTime-hard, but the lower bound does not transfer directly since we are interested
here in witness sentences that are formulated in GF2 rather than in ALC.

I Theorem 15. In any fragment of FO that contains GF 2, the problems Σ-entailment,
Σ-inseparability, conservative extensions, and strong Σ-entailment are 2ExpTime-hard.

J. C. Jung, C. Lutz, M. Martel, T. Schneider, and F. Wolter 108:13

6 Conclusion

We have shown that conservative extensions are undecidable in (extensions of) GF and
FO2, and that they are decidable and 2ExpTime-complete in GF2. It thus appears that
decidability of conservative extensions is linked even more closely to the tree model property
than decidability of the satisfiability problem: apart from cycles of length at most two, GF2

enjoys a ‘true’ tree model property while GF only enjoys a bounded treewidth model property
and FO2 has a rather complex regular model property that is typically not even made explicit.
As future work, it would be interesting to investigate whether conservative extensions remain
decidable when guarded counting quantifiers, transitive relations, equivalence relations, or
fixed points are added, see e.g. [32, 22, 20]. It would also be interesting to investigate a finite
model version of conservative extensions.

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. J. Philosophical Logic, 27(3):217–274, 1998.
2 Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applic-
ations. Cambridge University Press, 2003. (2nd edition, 2007).

3 Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. Logical
Methods in Computer Science, 10(2), 2014.

4 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 62(3):22:1–
22:26, 2015.

5 Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Interpolation with decid-
able fixpoint logics. In Proc. of LICS, pages 378–389. IEEE Computer Society, 2015.

6 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspect-
ives in Mathematical Logic. Springer, 1997.

7 Elena Botoeva, Boris Konev, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. Inseparability and conservative extensions of description logic ontologies:
A survey. In Proc. of Reasoning Web, volume 9885 of LNCS, pages 27–89. Springer, 2016.

8 Stephen D. Comer. Classes without the amalgamation property. Pacific Journal of Math-
ematics, 28:309–318, 1969.

9 Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Modular reuse
of ontologies: Theory and practice. Journal of Artificial Intelligence Research (JAIR),
31:273–318, 2008.

10 Giovanna D’Agostino and Marco Hollenberg. Logical questions concerning the µ-calculus:
Interpolation, Lyndon and ł oś-Tarski. J. Symb. Log., 65(1):310–332, 2000.

11 Giovanna D’Agostino and Giacomo Lenzi. Bisimulation quantifiers and uniform interpola-
tion for guarded first order logic. Theor. Comput. Sci., 563:75–85, 2015.

12 Răzvan Diaconescu, Joseph A. Goguen, and Petros Stefaneas. Logical support for modular-
isation. In Gerard Huet and Gordon Plotkin, editors, Logical Environments, pages 83–130,
1993.

13 Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my ontology? A case for
conservative extensions in description logic. In Proc. of KR, pages 187–197. AAAI Press,
2006.

14 Valentin Goranko and Martin Otto. Model theory of modal logic. In Patrick Blackburn,
Johan van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, pages 249–330.
Elsevier, 2006.

ICALP 2017

108:14 Conservative Extensions in Guarded and Two-Variable Fragments

15 Michael J. C. Gordon and Thomas F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press, 1993.

16 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
17 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for

two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
18 Erich Grädel and Martin Otto. The freedoms of (guarded) bisimulation. In Alexandru

Baltag and Sonja Smets, editors, Johan van Benthem on Logic and Information Dynamics,
pages 3–31. Springer, 2014.

19 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In Proc. of LICS, pages 306–317. IEEE Computer Society, 1997.

20 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Proc. of LICS, pages
45–54. IEEE Computer Society, 1999.

21 Eva Hoogland and Maarten Marx. Interpolation and definability in guarded fragments.
Studia Logica, 70(3):373–409, 2002.

22 Emanuel Kieronski. On the complexity of the two-variable guarded fragment with transitive
guards. Inf. Comput., 204(11):1663–1703, 2006.

23 Emanuel Kieronski, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-
variable first-order logic with equivalence closure. SIAM J. Comput., 43(3):1012–1063,
2014.

24 Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Formal properties of modu-
larisation. In Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors,
Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization,
volume 5445 of LNCS, pages 25–66. Springer, 2009.

25 Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Model-theoretic inseparability
and modularity of description logic ontologies. Artificial Intelligence, 203:66–103, 2013.

26 Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in expressive
description logics. In IJCAI, pages 453–458, 2007.

27 Carsten Lutz and Frank Wolter. Foundations for uniform interpolation and forgetting in
expressive description logics. In Proc. of IJCAI, pages 989–995. IJCAI/AAAI, 2011.

28 Johannes Marti, Fatemeh Seifan, and Yde Venema. Uniform interpolation for coalgebraic
fixpoint logic. In CALCO, volume 35 of LIPIcs, pages 238–252. Schloss Dagstuhl, 2015.

29 Michael Mortimer. On languages with two variables. Math. Log. Q., 21(1):135–140, 1975.
30 Andrew M. Pitts. On an interpretation of second-order quantification in first-order intu-

itionistic propositional logic. J. of Symbolic Logic, 57, 1992.
31 Stephen Pollard. Philosophical Introduction to Set Theory. University of Notre Dame Press,

1990.
32 Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting

quantifiers. J. Log. Comput., 17(1):133–155, 2007.
33 Ian Pratt-Hartmann. Data-complexity of the two-variable fragment with counting quanti-

fiers. Inf. Comput., 207(8):867–888, 2009.
34 Dana Scott. A decision method for validity of sentences in two variables. Journal of

Symbolic Logic, 27:1962, 1962.
35 Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press,

2009.
36 Albert Visser. Uniform interpolation and layered bisimulation. In Gödel’96 (Brno, 1996),

volume 6 of Lecture Notes in Logic, pages 139–164. Springer, 1996.
37 Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bulletin

of the Belgian Mathematical Society, 8(2), 2001.

Models and Termination of Proof Reduction in
the λΠ-Calculus Modulo Theory
Gilles Dowek

Inria and École normale supérieure de Paris-Saclay, Cachan Cedex, France
gilles.dowek@ens-paris-saclay.fr

Abstract
We define a notion of model for the λΠ-calculus modulo theory and prove a soundness theorem.
We then define a notion of super-consistency and prove that proof reduction terminates in the
λΠ-calculus modulo any super-consistent theory. We prove this way the termination of proof
reduction in several theories including Simple type theory and the Calculus of constructions.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases model, proof reduction, Simple type theory, Calculus of constructions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.109

1 Introduction

1.1 Models and termination
In Predicate logic, a model is defined by a domain M, a set B of truth values, and an
interpretation function, parametrized by a valuation φ, mapping each term t to an element
JtKφ ofM, and each proposition A to an element JAKφ of B.

Predicate logic can be extended to Deduction modulo theory [11, 12], where a congruence
on propositions defining a computational equality, also known as definitional equality in
Constructive type theory [17], is added. Proofs of a proposition A are then considered to also
be proofs of any proposition congruent to A. In Deduction modulo theory, like in Predicate
logic, a model is defined by a domain M, a set B of truth values, and an interpretation
function.

Usually, the set B is the two-element set {0, 1}, but the notion of model can be extended
to a notion of many-valued model, where B is an arbitrary Boolean algebra, a Heyting
algebra, a pre-Boolean algebra [5], or a pre-Heyting algebra [9]. Boolean algebras permit to
introduce intermediate truth values for propositions that are neither provable nor disprovable,
Heyting algebras to construct models of constructive logic, and pre-Boolean and pre-Heyting
algebras, where the order relation ≤ is replaced by a pre-order relation, to distinguish a
notion of weak equivalence: JAKφ ≤ JBKφ and JBKφ ≤ JAKφ, for all φ, from a notion of strong
equivalence: JAKφ = JBKφ, for all φ. In Deduction modulo theory, the first corresponds to
the provability of A⇔ B and the second to the congruence.

In a model valued in a Boolean algebra, a Heyting algebra, a pre-Boolean algebra, or
a pre-Heyting algebra, a proposition A is said to be valid when it is weakly equivalent to
the proposition >, that is when, for all φ, JAKφ ≥ >̃, and this condition can be rephrased as
JAKφ = >̃ in Boolean and Heyting algebras. A congruence ≡ defined on propositions is said
to be valid when, for all A and B such that A ≡ B, A and B are strongly equivalent, that is,
for all φ, JAKφ = JBKφ. Note that the relation ≤ is used in the definition of the validity of a
proposition, but not in the definition of the validity of a congruence.

EA
T

C
S

© Gilles Dowek;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 109; pp. 109:1–109:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.109
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

109:2 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Proof reduction terminates in Deduction modulo a theory defined by a set of axioms T
and a congruence ≡, when this theory has a model valued in the pre-Heyting algebra of
reducibility candidates [12]. As a consequence, proof reduction terminates if the theory is
super-consistent, that is if, for all pre-Heyting algebras B, it has a model valued in B [9].
This theorem permits to completely separate the semantic and the syntactic aspects that are
often mixed in the usual proofs of termination of proof reduction. The semantic aspect is in
the proof of super-consistency of the considered theory and the syntactic in the universal
proof that super-consistency implies termination of proof reduction.

For the termination of proof reduction, the congruence matters, but the axioms do not.
Thus, the pre-order relation ≤ does not matter in the algebra of reducibility candidates and
it is possible to define it as the trivial pre-order relation such that C ≤ C ′, for all C and C ′.
Such a pre-Heyting algebra is said to be trivial. As the pre-order is trivial, all the conditions
defining pre-Heyting algebras, such as a ∧̃ b ≤ a, a ∧̃ b ≤ b... are always satisfied in a trivial
pre-Heyting algebra, and a trivial pre-Heyting algebra is just a set equipped with arbitrary
operations ∧̃, ⇒̃... Thus, in order to prove that proof reduction terminates in Deduction
modulo a theory defined by a set of axioms T and a congruence ≡, it is sufficient to prove
that for all trivial pre-Heyting algebras B, the theory has a model valued in B.

1.2 The λΠ-calculus modulo theory
In Predicate logic and in Deduction modulo theory, terms, propositions, and proofs belong
to three distinct languages. But, it is more thrifty to consider a single language, such as
the λΠ-calculus modulo theory [8], which is implemented in the Dedukti system [1], or
Martin-Löf’s Logical Framework [21], and express terms, propositions, and proofs, in this
language. For instance, in Predicate logic, 0 is a term, P (0) ⇒ P (0) is a proposition and
λα : P (0) α is a proof of this proposition. In the λΠ-calculus modulo theory, all these
expressions are terms of the calculus. Only their types differ: 0 has type nat, P (0)⇒ P (0)
has type Type and λα : P (0) α has type P (0)⇒ P (0).

Like the λΠ-calculus, the λΠ-calculus modulo theory is a λ-calculus with dependent
types, but, like in Deduction modulo theory, its conversion rule is extended to an arbitrary
congruence, typically defined with a confluent and terminating rewrite system. This idea
of extending the conversion rule beyond β-reduction is already present in Martin-Löf type
theory. It is used, in various ways, in different systems [20, 6, 13, 3].

1.3 From pre-Heyting algebras to Π-algebras
The first goal of this paper is to extend the notion of pre-Heyting algebra to a notion of
Π-algebra, adapted to the λΠ-calculus modulo theory.

In Predicate logic and in Deduction modulo theory, the propositions are built from atomic
propositions with the connectors and quantifiers >, ⊥, ∧, ∨, ⇒, ∀, and ∃. Accordingly, the
operations of a pre-Heyting algebra are >̃, ⊥̃, ∧̃, ∨̃, ⇒̃, ∀̃, and ∃̃. In the λΠ-calculus and in
the λΠ-calculus modulo theory, the only connector is Π. Thus, a Π-algebra mainly has an
operation Π̃. As expected, its properties are a mixture of the properties of the implication
and of the universal quantifier of the pre-Heyting algebras.

1.4 Layered models
The second goal of this paper is to extend the usual notion of model to the λΠ-calculus
modulo theory.

G. Dowek 109:3

Extending the notion of model to many-sorted predicate logic requires to consider not
just one domain M, but a family of domains Ms indexed by the sorts. For instance, in
a model of Simple type theory, the family of domains is indexed by simple types. In the
λΠ-calculus modulo theory, the sorts also are just terms of the calculus. Thus, we shall
define a model of the λΠ-calculus modulo theory by a family of domains (Mt)t indexed by
the terms of the calculus and a function J.K mapping each term t of type A and valuation φ
to an element JtKφ ofMA.

The functionsM and J.K are similar, in the sense that both their domains is the set of
terms of the calculus. The goal of the model construction is to define the function J.K and
the functionM can be seen as a tool helping to define this function. For instance, if f is a
constant of type A→ A, where A is a term of type Type, and we have the rule f(x) −→ x,
we want to define the interpretation JfK as the identity function over some set, but to state
which, we must first define the functionM that maps the term A to a setMA, and then
define JfK as the identity function over the setMA.

In Predicate logic and in Deduction modulo theory, terms may be typed with sorts, but
the sorts themselves have no type. In the λΠ-calculus modulo theory, in contrast, terms
have types that have types... This explains that, in some cases, constructing the function
M itself requires to define first another function N , that is used as a tool helping to define
this function. This can be iterated to a several layer model, where the function J.K is defined
with the help of a functionM, that is defined with the help of a function N , that is defined
with the help... The number of layers depends on the model. Such layered constructions are
common in proofs of termination of proof reduction [14, 18, 4], for instance for Pure Type
Systems where sorts are stacked: Type0 : Type1 : Type2 : Type3.

Note that, in this definition of the notion of model, when a term t has type A, we do
not require JtKφ to be an element of JAKφ, but ofMA. This is consistent with the notion of
model of many-sorted predicate logic, where we require JtKφ to be an element ofMs and
where JsKφ is often not even defined.

Valuations must be handled with care in such layered models. In a three layer model, for
instance, the definition of Nt is absolute, the definition ofMt is relative to a valuation ψ,
mapping each variable of type A to an element of NA, and the definition of JtK is relative to
a valuation ψ and to a valuation φ mapping each variable of type A to an element ofMA,ψ.

1.5 Super-consistency and proof reduction

The third goal of this paper is to use this notion of Π-algebra to define a notion of super-
consistency and to prove that proof reduction, that is β-reduction, terminates in the λΠ-
calculus modulo any super-consistent theory.

We prove this way the termination of proof reduction in several theories expressed
in the λΠ-calculus modulo theory, including Simple type theory [11] and the Calculus of
constructions [8]. Together with confluence, this termination of proof reduction is a property
required to define these theories in the system Dedukti [1].

In Section 2, we recall the definition of the λΠ-calculus modulo theory and give three
examples of theories expressed in this framework. In Section 3, we introduce the notion of
Π-algebra and that of model for the λΠ-calculus modulo theory and we prove a soundness
theorem. In Section 4, we define the notion of super-consistency and prove that the three
theories introduced in Section 2 are super-consistent. In Section 5, we prove that proof
reduction terminates in the λΠ-calculus modulo any super-consistent theory.

ICALP 2017

109:4 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Empty[] well-formed
Γ ` A : Type x 6∈ Γ Declaration (for object variables)Γ, x : A well-formed
Γ ` A : Kind x 6∈ Γ Declaration (for type family variables)Γ, x : A well-formed
Γ well-formed SortΓ ` Type : Kind
Γ well-formed

x : A ∈ Γ VariableΓ ` x : A
Γ ` A : Type Γ, x : A ` B : Type Product (for types)Γ ` Πx : A B : Type
Γ ` A : Type Γ, x : A ` B : Kind Product (for kinds)Γ ` Πx : A B : Kind

Γ ` A : Type Γ, x : A ` B : Type Γ, x : A ` t : B Abstraction (for objects)Γ ` λx : A t : Πx : A B
Γ ` A : Type Γ, x : A ` B : Kind Γ, x : A ` t : B Abstraction (for type families)Γ ` λx : A t : Πx : A B

Γ ` t : Πx : A B Γ ` u : A ApplicationΓ ` (t u) : (u/x)B
Γ ` A : Type Γ ` B : Type Γ ` t : A A ≡β B Conversion (for types)Γ ` t : B
Γ ` A : Kind Γ ` B : Kind Γ ` t : A A ≡β B Conversion (for kinds)Γ ` t : B

Figure 1 The λΠ-calculus.

2 The λΠ-calculus modulo theory

2.1 The λΠ-calculus

The syntax of the λΠ-calculus is

t = x | Type | Kind | Πx : t t | λx : t t | t t

and the typing rules are given in Figure 1.
As usual, we write A→ B for Πx : A B when x does not occur in B. The α-equivalence

relation is defined as usual and terms are identified modulo α-equivalence. The relation β –
one step β-reduction at the root – is defined as usual. If r is a relation on terms, we write
−→1

r for the congruence closure of r, −→+
r for the transitive closure of −→1

r, −→∗r for its
reflexive-transitive closure, and ≡r for its reflexive-symmetric-transitive closure.

If Σ, Γ, and ∆ are contexts, a substitution θ, binding the variables of Γ, is said to have
type Γ ∆ in Σ if for all x : A in Γ, we have Σ,∆ ` θx : θA. In this case, if Σ,Γ ` t : B,
then Σ,∆ ` θt : θB.

Types are preserved by β-reduction. The β-reduction relation is confluent and strongly
terminating. And each term has a unique type modulo β-equivalence [16].

A term t, well-typed in some context Γ, is a kind if its type in this context is Kind.
For instance, Type and nat → Type are kinds. It is a type family if its type is a kind. In
particular, it is a type if its type is Type. For instance, nat, array, and (array 0) are type
families, among which nat and (array 0) are types. It is an object if its type is a type. For
instance, 0 and [0] are objects.

G. Dowek 109:5

ι : Type

o : Type

⇒ : o→ o→ o

∀A : (A→ o)→ o

ε : o→ Type

(ε (⇒ x y)) −→ (ε x)→ (ε y)
(ε (∀A x)) −→ Πz : A (ε (x z))

with a finite number of quantifiers ∀A

Figure 2 Simple type theory.

2.2 The λΠ-calculus modulo theory
I Definition 1 (Rewrite rule). A rewrite rule is a triple l −→Γ r where Γ is a context and l
and r are β-normal terms. Such a rule is well-typed in the context Σ if, in the λΠ-calculus,
the context Σ,Γ is well-formed and there exists a term A such that the terms l and r both
have type A in this context.

If Σ is a context, l −→Γ r is a rewrite rule well-typed in Σ and θ is a substitution of
type Γ ∆ in Σ, then the terms θl and θr both have type θA in the context Σ,∆. The
relation R – one step R-reduction at the root – is defined by: t R u is there exists a rewrite
rule l −→Γ r and a substitution θ such that t = θl and u = θr. The relation βR – one step
βR-reduction at the root – is the union of β and R.

I Definition 2 (Theory). A theory is a pair formed with a context Σ, well-formed in the
λΠ-calculus, and a set of rewrite rules R, well-typed in Σ in the λΠ-calculus.

The variables declared in Σ are called constants. They replace the sorts, the function
symbols, the predicate symbols, and the axioms of a theory in Predicate logic.

IDefinition 3 (The λΠ-calculus modulo theory). The λΠ-calculus modulo Σ,R is the extension
of the λΠ-calculus obtained modifying the Declaration rules to replace the condition x 6∈ Γ
with x 6∈ Σ,Γ, the Variable rules to replace the condition x : A ∈ Γ by x : A ∈ Σ,Γ, and
the Conversion rules to replace the condition A ≡β B with A ≡βR B.

In this paper, we assume that the relation −→1
βR is confluent and has the subject reduction

property. Confluence and subject reduction are indeed needed to build models and prove
termination of proof reduction. This is consistent with the methodology proposed in [2]: first
prove confluence and subject reduction, then termination.

2.3 Examples of theories
Simple type theory can be expressed in Deduction modulo theory [10]. The main idea in this
presentation is to distinguish terms of type o from propositions. If t is a term of type o, the
corresponding proposition is written ε(t). The term t is a propositional content or a code
of the proposition ε(t). This way, it is not possible to quantify over propositions, but it is
possible to quantify over codes of propositions: there is no proposition ∀X (X ⇒ X), but
there is a proposition ∀x (ε(x)⇒ ε(x)), respecting the syntax of Predicate logic, where the
predicate symbol ε is applied to the variable x to form a proposition. In this presentation,

ICALP 2017

109:6 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

type : Type

ι : type

o : type

arrow : type→ type→ type

η : type→ Type

⇒ : (η o)→ (η o)→ (η o)
∀ : Πa : type (((η a)→ (η o))→ (η o))
ε : (η o)→ Type

(η (arrow x y)) −→ (η x)→ (η y)
(ε (⇒ x y)) −→ (ε x)→ (ε y)

(ε (∀ x y)) −→ Πz : (η x) (ε (y z))

Figure 3 Simple type theory with a parametric quantifier.

each simple type is a sort and, for each simple type A, there is a quantifier ∀A. Thus, the
language contains an infinite number of sorts and an infinite number of constants.

This presentation can be adapted to the λΠ-calculus modulo theory. To avoid declaring
an infinite number of constants for simple types, we can just declare two constants ι and o of
type Type and use the product of the λΠ-calculus modulo theory to represent the simple
types ι → ι, ι → ι → ι, ι → o... We should declare an infinite number of quantifiers ∀A,
indexed by simple types, but this can be avoided as, in each specific proof, only a finite
number of such quantifiers occur. This leads to the theory presented in Figure 2.

Another possibility is to add the type A as an extra argument of the quantifier ∀. To
do so, we need to introduce a type type for codes of simple types, two constants ι and
o, of type type, and not Type, a constant arrow of type type → type → type, and a
decoding function η of type type→ Type. This way, the quantifier ∀ can be given the type
Πa : type (((η a)→ (η o))→ (η o)). This leads to the theory presented in Figure 3.

The Calculus of constructions [7] can also be expressed in the λΠ-calculus modulo theory
[8] as the theory presented in Figure 4.

3 Algebras and Models

3.1 Π-algebras
The notion of Π-algebra is an adaptation of that of pre-Heyting algebra to the λΠ-calculus.

I Definition 4 (Π-algebra). A Π-algebra is formed with
a set B,
a pre-order relation ≤ on B,
an element >̃ of B,
a function ∧̃ from B × B to B,
a subset A of P+(B), the set of non-empty subsets of B,
a function Π̃ from B ×A to B,

such that
>̃ is a maximal element for ≤, that is for all a in B, a ≤ >̃,
a ∧̃ b is a greatest lower bound of {a, b} for ≤, that is a ∧̃ b ≤ a, a ∧̃ b ≤ b, and for all c,
if c ≤ a and c ≤ b, then c ≤ a ∧̃ b,
a ≤ Π̃(b, S) if and only if for all c in S, a ∧̃ b ≤ c.

A Π-algebra is full if A = P+(B), that is if Π̃ is total on B × P+(B).

G. Dowek 109:7

type : Type

o : type

η : type→ Type

ε : (η o)→ Type

Π̇KK : Πx : type (((η x)→ type)→ type)
Π̇TT : Πx : (η o) (((ε x)→ (η o))→ (η o))
Π̇KT : Πx : type (((η x)→ (η o))→ (η o))
Π̇TK : Πx : (η o) (((ε x)→ type)→ type)

(η (Π̇KK x y)) −→ Πz : (η x) (η (y z))
(ε (Π̇TT x y)) −→ Πz : (ε x) (ε (y z))
(ε (Π̇KT x y)) −→ Πz : (η x) (ε (y z))
(η (Π̇TK x y)) −→ Πz : (ε x) (η (y z))

Figure 4 The Calculus of constructions.

Note that is the relation ≤ is a pre-order, and not necessarily an order, greatest lower
bounds are not necessarily unique, when they exist.

Note also that, from the operation Π̃, we can define an exponentiation operation b →̃ c =
Π̃(b, {c}) that verifies the usual properties of exponentiation: a ≤ b →̃ c if and only if
a ∧̃ b ≤ c. When the set S has a greatest lower bound

∧̃
S, the operation mapping b and S

to b →̃
∧̃
S verifies the same properties as Π̃: a ≤ b →̃

∧̃
S if and only if a ∧̃ b ≤

∧̃
S if and

only if for all c in S, a ∧̃ b ≤ c. But this decomposition is possible only when all sets of A
have greatest lower bounds.

I Example 5. The algebra 〈{0, 1}, 1, ∧̃,P+({0, 1}), Π̃〉, where ∧̃ and Π̃ are defined by the
tables below, is a Π-algebra. Note that, dropping the middle column of the table of Π̃, we
get the table of implication and, dropping the first line, that of the universal quantifier.

∧̃ 0 1
0 0 0
1 0 1

Π̃ {0} {0, 1} {1}
0 1 1 1
1 0 0 1

3.2 Models valued in a Π-algebra B
I Definition 6 (Model). A model is a family of interpretation functions D1, ...,Dn such that
for all i, Di is a function mapping each term t of type B in some context Γ, function φ1
mapping each variable x : A of Γ to an element of D1

A, ..., and function φi−1 mapping each
variable x : A of Γ to an element of Di−1

A,φ1,...,φn−2
, to some Dit,φ1,...,φi−1

in Di−1
B,φ1,...,φi−2

, and
for all t, u, φ1, ..., φn−1

Dn(u/x)t,φ1,...,φn−1
= Dn

t,(φ1,x=D1
u),...,(φn−1,x=Dn−1

u,φ1,...,φn−2
)

For the last function Dn, we write JtKφ1,...,φn−1 instead of Dnt,φ1,...,φn−1
.

In the examples presented in this paper, we use the cases n = 2 and n = 3 only. The
general definition then specializes as follows.

ICALP 2017

109:8 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

I Example 7. When n = 2, a model is given by two functionsM and J.K such that
M is a function mapping each term t of type B in Γ to someMt,
J.K is a function mapping each term t of type B in Γ and function φ mapping each variable
x : A of Γ to an element ofMA, to some JtKφ inMB , such that for all t, u and φ

J(u/x)tKφ = JtKφ,x=JuKφ .

This generalizes of the usual definition of model for many-sorted predicate logic.
Note that if f is a constant of type A→ A→ A, we can define the function f̂ mapping a

and b inMA to J(f x y)Kx=a,y=b. Using the property J(u/x)tKφ = JtKφ,x=JuKφ , we then get
J(f t u)Kφ = f̂(JtKφ, JuKφ), which is the usual definition of an interpretation.

Note also that the first interpretation functionM does not depend on any valuation, so
it must be very rudimentary. For instance in Definition 15 below, for all objects and most
types, we haveMt = {e}. Only the types o, o→ o... are interpreted in a non trivial way.
Nevertheless, it is sufficient to support the definition of the function J.K.

I Example 8. When n = 3, a model is given by three functions N ,M, and J.K such that
N is a function mapping each term t of type B in Γ to some Nt,
M is a function mapping each term t of type B in Γ and function ψ mapping each
variable x : A of Γ to an element of NA, to someMt,ψ in NB ,
J.K is a function mapping each term t of type B in Γ, function ψ mapping each variable
x : A of Γ to an element of NA, and function φ mapping each variable x : A of Γ to an
element ofMA,ψ, to some JtKψ,φ inMB,ψ, such that for all t, u, ψ, and φ

J(u/x)tKψ,φ = JtK(ψ,x=Mu,ψ),(φ,x=JuKψ,φ) .

I Definition 9 (Model valued in a Π-algebra B). Let B = 〈B, >̃, ∧̃,A, Π̃〉 be a Π-algebra. A
model is valued in B if
Dn−1
Kind,φ1,...,φn−2

= Dn−1
Type,φ1,...,φn−2

= B,
JKindKφ1,...,φn−1 = JTypeKφ1,...,φn−1 = >̃,
JΠx : C DKφ1,...,φn−1 = Π̃(JCKφ1,...,φn−1 , {JDK(φ1,x=c1),...,(φn−1,x=cn−1) | c1 ∈ D1

C , ..., cn−1 ∈
Dn−1
C,φ1,...,φn−2

}).

We often write φ for a sequence φ1, ..., φn and, if c = c1, ..., cn, we write φ, x = c for the
sequence (φ1, x = c1), ..., (φn, x = cn).

I Definition 10 (Validity). A model M valued in some Π-algebra B is model of a theory
Σ,R, or the theory is valid in the model, if

for all constants c : A in Σ, we have JAK ≥ >̃,
and for all A and B well-typed in a context Γ, such that A ≡βR B, we have for all i, for
all φ, Di

A,φ
= Di

B,φ
.

I Theorem 11 (Soundness). Let M be a model, valued in some Π-algebra B, of a theory
Σ,R. Then, for all judgments x1 : A1, ..., xp : Ap ` t : B derivable in Σ,R, and for all φ, we
have

JA1Kφ ∧̃ ... ∧̃ JApKφ ≤ JBKφ .

I Corollary 12 (Consistency).
LetM be a model, valued in some Π-algebra B, of a theory Σ,R. Then, for all judgments
` t : B derivable in Σ,R, we have JBKφ ≥ >̃.

G. Dowek 109:9

LetM be a model, valued in the two-element Π-algebra of Example 5, of a theory Σ,R.
Then, for all judgments ` t : B, derivable in this theory, we have JBKφ = 1.
Let Σ,R be a theory that has a model, valued in the two-element Π-algebra of Example 5.
Then, there is no term t such that the judgment P : Type ` t : P is derivable in Σ,Γ.

4 Super-consistency

4.1 Super-consistency
We now want to define a notion of notion of super-consistency: a theory is super-consistent
if for every Π-algebra, there exists a model of this theory valued in this algebra.

Unfortunately, this constraint is sometimes too strong, as it does not allow to define
interpretations as fixed points, for instance if we have a rule P −→ ((P ⇒ Q)⇒ Q), we want
to define the interpretation of P as the fixed point of the function mapping b to (b ⇒̃ a) ⇒̃ a,
where a is the interpretation of Q, but this function does not have a fixed point in all
Π-algebras. Thus, we weaken this constraint, requiring the existence of model for complete
Π-algebras only. Defining this notion of completeness requires to introduce an order relation
v, that need not be related to the pre-order ≤.

I Definition 13 (Ordered, complete Π-algebra). A Π-algebra is ordered if it is equipped with
an order relation v such that the operation Π̃ is left anti-monotonic and right monotonic
with respect to v, that is

if a v b, then for all S, Π̃(b, S) v Π̃(a, S),
if S v T , then for all a, Π̃(a, S) v Π̃(a, T),

where the relation v is extended to sets of elements of B in a trivial way: S v T if for all a
in S, there exists a b in T such that a v b.

It is complete if every subset of B has a least upper bound for the relation v.

I Definition 14 (Super-consistency). A theory Σ,R, is super-consistent if, for every full,
ordered and complete Π-algebra B, there exists a modelM, valued in B, of Σ,R.

We now prove that the three theories presented in Section 2.3 are super-consistent.

4.2 Simple type theory
Let B = 〈B, >̃, ∧̃,P+(B), Π̃〉 be a full Π-algebra. We construct a model of Simple type theory,
valued in B, in two steps. The first is the construction of the interpretation function M
and the second the construction of the interpretation function J.K. The key idea in this
construction is to takeMo = B, to interpret ε as the identity over B, and ⇒ like → in order
to validate the rewrite rule

ε (⇒ x y) −→ (ε x)→ (ε y) .

Let S and T be two sets, we write F(S, T) for the set of functions from S to T . Let {e} be
an arbitrary one-element set such that e is not in B.

I Definition 15 (A model of Simple type theory).
MKind =MType = B,
MΠx:C D = F(MC ,MD), except ifMD = {e}, in which caseMΠx:C D = {e},
Mι =M⇒ =M∀A =Mε = {e},
Mo = B,

ICALP 2017

109:10 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

Mx = {e},
Mλx:C t =Mt,
M(t u) =Mt.

JKindKφ = JTypeKφ = >̃,
JΠx : C DKφ = Π̃(JCKφ, {JDKφ,x=c | c ∈MC}),
JιKφ = >̃,
JoKφ = >̃,
J⇒Kφ is the function mapping a and b in B to Π̃(a, {b}),
J∀CKφ is the function mapping f in F(MC ,B) to Π̃(JCKφ, {(f c) | c ∈MC}),
JεKφ is the identity on B,
JxKφ = φx,
Jλx : C tKφ is the function mapping c in MC to JtKφ,x=c, except if for all c in MC ,
JtKφ,x=c = e in which case Jλx : C tKφ = e,
J(t u)Kφ = JtKφ JuKφ, except if JtKφ = e, in which case J(t u)Kφ = e.

We prove that if Γ ` t : B, and φ is a function mapping variables x : A of Γ to elements of
MA, then JtKφ ∈MB . That for all t, u and φ, J(u/x)tKφ = JtKφ,x=JuKφ . And that if t ≡βR u

thenMt =Mu and JtKφ = JuKφ. We thus get the following theorem.

I Theorem 16. Simple type theory is super-consistent.

4.3 Simple type theory with a parametric quantifier
In a model of Simple type theory with a parametric quantifier, like in the previous section,
we want to takeMo = B. But, unlike in the previous section, we do not have o : Type, but
o : type : Type. So o is now an object.

In the previous section, we tookMt = {e} for all objects. This permitted to defineM(t u)
andMλx:C t asMt and validate β-reduction trivially. But this is not possible anymore in
Simple type theory with a parametric quantifier, whereMo is B andMarrow(o,o) is F(B,B).
So, we cannot defineMλx:type x to beMx, but we need to define it as a function. To help
to construct this function, we need to construct first another interpretation function (Nt)t
and parametrize the definition ofMt itself by a function ψ mapping variables of type A to
elements of NA. Thus the model is a three layer model.

Like in the previous section, we want to defineMΠx:C D,ψ, as the set of functions from
MC,ψ toMD,ψ′ . But to define this setMD,ψ′ , we need to extend the function ψ, mapping x
to an element of NC . To have such an element of NC , we need to defineMΠx:C D,ψ as the set
of functions mapping 〈c′, c〉 in NC ×MC,ψ to an element ofMD,(ψ,x=c′). As a consequence,
if φ is a function mapping x of type A to some element ofMA, we need to define J(t u)Kφ
not as JtKφ JuKφ but as JtKφ 〈Mu,ψ, JuKφ〉. As a consequence J.K must be parametrized by
both ψ and φ.

Let B = 〈B, >̃, ∧̃,P+(B), Π̃〉 be a full Π-algebra.
Let {e} be an arbitrary one-element set. Let U be a set containing B and {e}, and closed

by function space and Cartesian product, that is such that if S and T are in U then so are
S × T and F(S, T). Such a set can be constructed, with the replacement scheme, as follows

U0 = {B, {e}},
Un+1 = Un ∪ {S × T | S, T ∈ Un} ∪ {F(S, T) | S, T ∈ Un},

U =
⋃
n

Un.

G. Dowek 109:11

Then, let V be the smallest set containing {e}, B, and U , and closed by Cartesian product
and dependent function space, that is, if S is in V and T is a family of elements of V indexed
by S, then the set of functions mapping an element s of S to an element of Ts is an element
of V . As noted in [19], the construction of the set V , unlike that of U , requires an inaccessible
cardinal. Note that U is both an element and a subset of V.

I Definition 17 (A model of Simple type theory with a parametric quantifier).
NType = NKind = V,
NΠx:C D is the set F(NC ,ND), except if ND = {e}, in which case NΠx:C D = {e},
Ntype = U ,
Nι = No = Narrow = N⇒ = N∀ = Nη = Nε = {e},
Nx = {e},
Nλx:C t = Nt,
N(t u) = Nt.

MKind,ψ =MType,ψ = B,
MΠx:C D,ψ,φ is the set of functions f mapping 〈c′, c〉 in NC ×MC,ψ to an element of
MD,(ψ,x=c′), except if for all c′ in NC ,MD,(ψ,x=c′) = {e}, in which caseMΠx:C D,ψ =
{e},
Mtype,ψ = B,
Mη,ψ is the function of F(U ,V) mapping S to S,
Mε,ψ is the function of F({e},V), mapping e to {e},
Mι,ψ = {e},
Mo,ψ = B,
Marrow,ψ is the function mapping S and T in U to the set F({e} × S, T), except if
T = {e} in which case it maps S and T to {e},
M⇒,ψ =M∀,ψ = e,
Mx,ψ = ψx,
Mλx:C t,ψ is the function mapping c in NC to Mt,(ψ,x=c), except if for all c in NC ,
Mt,(ψ,x=c) = e, in which caseMλx:C t,ψ = e,
M(t u),ψ =Mt,ψ Mu,ψ, except ifMt,ψ = e in which caseM(t u),ψ = e.

JKindKψ,φ = JTypeKψ,φ = >̃,
JΠx : C DKψ,φ = Π̃(JCKψ,φ, {JDK(ψ,x=c′),(φ,x=c) | c′ ∈ NC , c ∈MC,ψ}),
JtypeKψ,φ = >̃,
JιKψ,φ = >̃,
JoKψ,φ = >̃,
JarrowKψ,φ is the function from U × B and U × B to B mapping 〈S, a〉 and 〈T, b〉 to
Π̃(a, {b}),
J⇒Kψ,φ is the function {e} × B and {e} × B to B mapping 〈e, a〉 and 〈e, b〉 to Π̃(a, {b}),
J∀Kψ,φ is the function mapping 〈S, a〉 in U × B, and 〈e, g〉 in {e} × F({e} × S,B) to
Π̃(a, {(g 〈e, s〉) | s ∈ S}),
JηKψ,φ is the function from U × B to B, mapping 〈S, a〉 to a,
JεKψ,φ is the function from {e} × B to B, mapping 〈e, a〉 to a,
JxKψ,φ = φx,
Jλx : C tKψ,φ is the function mapping 〈c′, c〉 in NC ×MC,ψ to JtK(ψ,x=c′),(φ,x=c), except
if for all 〈c′, c〉 in NC ×MC,ψ, JtK(ψ,x=c′),(φ,x=c) = e, in which case Jλx : C tKψ,φ = e,
J(t u)Kψ,φ = JtKψ,φ 〈Mu,ψ, JuKψ,φ〉, except if JtKψ,φ = e, in which case J(t u)Kψ,φ = e.

ICALP 2017

109:12 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

We prove that if Γ ` t : B and ψ is a function mapping the variables x : A of Γ to
elements of NA, thenMt,ψ ∈ NB . That if Γ ` t : B, ψ is a function mapping variables x : A
of Γ to elements of NA, and φ is a function mapping variables x : A of Γ to elements of
MA,ψ, then JtKψ,φ ∈ MB,ψ and J(u/x)tKψ,φ = JtKψ,x=Mu,ψφ,x=JuKψ,φ . And that if t ≡βR u

then Nt = Nu,Mt,ψ =Mu,ψ, and JtKψ,φ = JuKψ,φ. We thus get the following theorem.

I Theorem 18. Simple type theory with a parametric quantifier is super-consistent.

Note that the set V, thus an inaccessible cardinal, are not really needed to prove the
super-consistency of Simple type theory with a parametric quantifier if we can adapt the
notion of model in such a way that the family N is defined for type families only. The
systematic development of this notion of partial interpretation is left for future work.

A similar proof for the Calculus of constructions is given in the long version of the paper.

5 Termination of proof reduction

We finally prove that proof reduction terminates in the λΠ-calculus modulo any super-
consistent theory.

In Deduction modulo theory, we can define a congruence with non terminating rewrite
rules, without affecting the termination of proof reduction. For instance, the rewrite rule
c −→ c does not terminate, but the congruence it defines is the identity and proofs modulo
this congruence are just proofs in pure Predicate logic. Thus, proof reduction in Deduction
modulo this congruence terminates. So, in the λΠ-calculus modulo this congruence, the
β-reduction terminates, but the βR-reduction does not, as the R-reduction alone does not
terminate. Here, we restrict to prove the termination of β-reduction, not βR-reduction. In
some cases, like for the three theories presented above, the termination of the βR-reduction
is a simple corollary of the termination of the β-reduction. In some others, it is not.

The main notion used in this proof is that of reducibility candidate introduced by Girard
[15]. Our inductive definition, however, follows that of Parigot [22].

I Definition 19 (Candidates). The set >̃ is defined as the set of strongly terminating terms.
Let C be a set of terms and S be a set of sets of terms. The set Π̃(C, S) is defined as the

set of strongly terminating terms t such that if t −→∗β λx : A t′ then for all t′′ in C, and for
all D in S, (t′′/x)t′ ∈ D.

Candidates are inductively defined by the three rules
the set >̃ of all strongly terminating terms is a candidate,
if C is a candidate and S is a set of candidates, then Π̃(C, S) is a candidate,
if S is a non empty set of candidates, then

⋂
S is a candidate.

We write C for the set of candidates. The algebra 〈C,≤, >̃, ∧̃,P+(C), Π̃〉, where ≤ is the
trivial relation such that C ≤ C ′ always, and ∧̃ is any function from C × C to C, for instance
the constant function equal to >̃, is a full Π-algebra. It is ordered by the subset relation and
complete for this order. If C is a candidate, then all the elements of C strongly terminate.

Consider a super-consistent theory Σ,R. We want to prove that β-reduction terminates
in the λΠ-calculus modulo this theory.

As usual, we want to associate a candidate JAK to each term A in such a way that if t
is a term of type A, then t ∈ JAK. In the λΠ-calculus modulo theory, the main difficulty is
to assign a candidates to terms in such a way that if A ≡ B then JAK = JBK. For instance,
if we have the rule P −→ P ⇒ P that permits to type all lambda-terms, including non
terminating ones, we should associate, to the term P , a candidate C such that C = C ⇒̃ C,

G. Dowek 109:13

but there is no such candidate. For super-consistent theories, in contrast, such an assignment
exists, as the theory has a modelM valued in the Π-algebra 〈C,≤, >̃, ∧̃,P+(C), Π̃〉. In this
model, if t is a term of type B in some context Γ, then JBKφ is a candidate.

We then prove that if Γ is a context, φ = φ1, ..., φn is be a sequence of valuations, σ is a
substitution mapping every x : A of Γ to an element of JAKφ and t is a term of type B in Γ,
then σt ∈ JBKφ. We thus get the following theorem.

I Theorem 20. In a super-consistent theory Σ,≡, all well-typed terms strongly terminate.

Acknowledgements. The author wants to thank Frédéric Blanqui for very helpful remarks
on a previous version of this paper.

References
1 A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, C. Dubois, F. Gilbert,

P. Halmagrand, O. Hermant, and R. Saillard. Dedukti: a logical framework based on
the lambda-Pi-calculus modulo theory. http://www.lsv.ens-cachan.fr/˜dowek/Publi/
expressing.pdf, 2016.

2 A. Assaf, G. Dowek, J.-P. Jouannaud, and J. Liu. Untyped confluence in dependent type
theories. Submitted to publication, 2017.

3 A. Bauer, G. Gilbert, P. Haselwarter, M. Pretnar, and Ch. A. Stone. Design and imple-
mentation of the andromeda proof assistant. Types, 2016.

4 F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Struc-
tures in Computer Science, 15(1):37–92, 2005.

5 A. Brunel, O. Hermant, and C. Houtmann. Orthogonality and boolean algebras for deduc-
tion modulo. In L. Ong, editor, Typed Lambda Calculus and Applications, volume 6690 of
Lecture Notes in Computer Science, pages 76–90. Springer-Verlag, 2011.

6 H. Cirstea, L. Liquori, and B. Wack. Rewriting calculus with fixpoints: Untyped and first-
order systems. In Types, volume 3085 of Lectures Notes in Computer Science. Springer-
Verlag, 2003.

7 T. Coquand and G. Huet. The calculus of constructions. Information and Computation,
pages 95–120, 1988.

8 D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In S. Ronchi Della Rocca, editor, Typed lambda calculi and applications, volume
4583 of Lecture Notes in Computer Science, pages 102–117. Springer-Verlag, 2007.

9 G. Dowek. Truth values algebras and proof normalization. In Th. Altenkirch and
C. McBride, editors, Types for proofs and programs, volume 4502 of Lecture Notes in Com-
puter Science, pages 110–124. Springer-Verlag, 2007.

10 G. Dowek, Th. Hardin, and C. Kirchner. Hol-lambda-sigma: an intentional first-order
expression of higher-order logic. Mathematical Structures in Computer Science, 11:1–25,
2001.

11 G. Dowek, Th. Hardin, and C. Kirchner. Theorem proving modulo. Journal of Automated
Reasoning, 31:33–72, 2003.

12 G. Dowek and B. Werner. Proof normalization modulo. The Journal of Symbolic Logic,
68(4):1289–1316, 2003.

13 S. Foster and G. Struth. Integrating an automated theorem prover into agda. In M. Bobaru,
K. Havelund, G.J. Holzmann, and R. Joshi, editors, NASA Formal Methods, volume 6617
of Lecture Notes in Computer Science. Springer-Verlag, 2011.

14 H. Geuvers. A short and flexible proof of strong normalization for the calculus of construc-
tions. In P. Dybjer, , B. Nordström, and J. Smith, editors, Types for Proofs and Programs,
volume 996 of Lecture Notes in Computer Science, pages 14–38. Springer-Verlag, 1995.

ICALP 2017

109:14 Models and Termination of Proof Reduction in the λΠ-Calculus Modulo Theory

15 J.Y. Girard. Interprétation Fonctionnelle et Élimination des Coupures dans l’Arithmétique
d’Ordre Supérieur. PhD thesis, Université de Paris VII, 1972.

16 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
ACM, 40(1):143–184, 1993.

17 P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
18 P.-A. Melliès and B. Werner. A generic normalisation proof for pure type systems. In

E. Giménez and Ch. Paulin-Mohring, editors, Types for Proofs and Programs, volume 1512
of Lecture Notes in Computer Science, pages 254–276. Springer-Verlag, 1998.

19 A. Miquel and B. Werner. The not so simple proof-irrelevant model of CC. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and Programs, pages 240–258. Springer-Verlag,
2003.

20 Q.H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof assist-
ants. Journal of Automated Reasoning, 29(309), 2002.

21 B. Nordström, K. Petersson, and J.M. Smith. Martin-löf’s type theory. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, pages 1–37.
Clarendon Press, 2000.

22 M. Parigot. Proofs of strong normalization for second order classical natural deduction. In
Logic in Computer Science, pages 39–46, 1993.

Proof Complexity Meets Algebra∗

Albert Atserias1 and Joanna Ochremiak2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
atserias@cs.upc.edu

2 Université Paris Diderot – Paris 7, Paris, France
joanna.ochremiak@gmail.com

Abstract
We analyse how the standard reductions between constraint satisfaction problems affect their
proof complexity. We show that, for the most studied propositional and semi-algebraic proof
systems, the classical constructions of pp-interpretability, homomorphic equivalence and addition
of constants to a core preserve the proof complexity of the CSP. As a result, for those proof
systems, the classes of constraint languages for which small unsatisfiability certificates exist can
be characterised algebraically. We illustrate our results by a gap theorem saying that a constraint
language either has resolution refutations of bounded width, or does not have bounded-depth
Frege refutations of subexponential size. The former holds exactly for the widely studied class
of constraint languages of bounded width. This class is also known to coincide with the class of
languages with Sums-of-Squares refutations of sublinear degree, a fact for which we provide an
alternative proof. We hence ask for the existence of a natural proof system with good behaviour
with respect to reductions and simultaneously small size refutations beyond bounded width. We
give an example of such a proof system by showing that bounded-degree Lovász-Schrijver satisfies
both requirements.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint Satisfaction Problem, Proof Complexity, Reductions, Gap
Theorems

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.110

1 Introduction

The notion of efficient reduction is at the heart of all subareas of computational complexity.
However, in some subareas such as proof complexity, even though the concept exists, it is
much less developed. The study of the lengths of proofs has developed mostly by studying
combinatorial statements, each somewhat in isolation. There is little theory, for instance,
explaining why the best studied families of propositional tautologies are encodings of the
pigeonhole principle or those derived from systems of linear equations over the 2-element
field. Whether there is any connection between the two is an even less explored mystery.

Luckily this fact is subject to revision, especially if proof complexity exports its methods
to the study of problems beyond universal combinatorial statements. Consider the NP-hard
optimization problem called MAX-CUT. The objective is to find a partition of the vertices

∗ Both authors partially funded by European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreement ERC-2014-CoG 648276 (AUTAR).
First author partially funded by MINECO through TIN2013-48031-C4-1-P (TASSAT2). Part of this
work was done while the authors were in residence at the Simons Institute for the Theory of Computing.

EA
T

C
S

© Albert Atserias and Joanna Ochremiak;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 110; pp. 110:1–110:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.110
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

110:2 Proof Complexity Meets Algebra

of a given graph which maximizes the number of edges that cross the partition. The best
efficient approximation algorithm known for this problem relies on certifying a bound on the
optimum of its semidefinite programming relaxation. Once the certificate for the relaxation
is in place, a rounding procedure gives an approximate integral solution: at worst 87% of the
optimum in this case [12].

In the example of the previous paragraph, the problem that is subject to proof complexity
analysis is that of certifying a bound on the optimum of an arbitrary MAX-CUT instance.
The celebrated Unique Games Conjecture (UGC) can be understood as a successful approach
to explaining why current algorithms and proof complexity analyses stop being successful
where they do, and reductions play an important role there [26]. One of the interesting open
problems in this area is whether the analysis of the Sums-of-Squares semidefinite programming
hierarchy of proof systems (SOS) could be used to improve over the 87% approximation ratio
for MAX-CUT. Any improvement on this would improve the approximation status of all
problems that reduce to it, and refute the UGC [16]. For the constraint satisfaction problem,
in which all constraints must be satisfied, the analogue question was resolved very recently
also by exploiting the theory of reducibility: in that arena, low-degree SOS unsatisfiability
proofs exist only for problems of bounded width [11, 25].

The goal of this paper is to develop the standard theory of reductions between constraint
satisfaction problems in a way that it applies to many of the proof systems from the literature,
including but not limited to SOS. Doing this requires a good amount of tedious work, but at
the same time has some surprises to offer that we discuss next.

Consider a constraint language B given by a finite domain of values, and relations over
that domain. The instances of the constraint satisfaction problem (CSP) over B are given
by a set of variables and a set of constraints, each of which binds some tuple of the variables
to take values in one of the relations of B. The literature on CSPs has focussed on three
different types of conditions that, if met by two constraint languages, give a reduction from
the CSP of one language to the CSP of the other. These conditions are a) pp-interpretability,
b) homomorphic equivalence, and c) addition of constants to the core (see [9, 5]). What
makes these three types of reductions important is that they correspond to classical algebraic
constructions at the level of the algebras of polymorphisms of the constraint languages. Indeed,
pp-interpretations correspond to taking homomorphic images, subalgebras and powers. The
other two types of reductions put together ensure that the algebra of the constraint language
is idempotent. Thus, for any fixed algorithm, heuristic, or method M for deciding the
satisfiability of CSPs, if the class of constraint languages that are solvable byM is closed
under these notions of reducibility, then this class admits a purely algebraic characterization
in terms of identities.

Our first result is that, for most proof systems P in the literature, each of these methods
of reduction preserves the proof complexity of the problem with respect to proofs in P .
Technically, what this means is that if B is obtained from B′ by a finite number of con-
structions a), b) and c), then, for an appropriate fixed encoding scheme of the statement
that an instance is unsatisfiable, efficient proofs of unsatisfiability in P for instances of B′
translate into efficient proofs of unsatisfiability in P for instances of B. The propositional
proof systems for which we prove this include DNF-resolution with terms of bounded size,
bounded-depth Frege, and Frege. The semi-algebraic proof systems for which we prove
it include Sherali-Adams, Lasserre/SOS, and Lovász-Schrijver of bounded and unbounded
degree.

Our second main result is an application: we obtain unconditional gap theorems for the
proof complexity of CSPs. Building on the bounded-width theorem for CSPs [4, 8], the

A. Atserias and J. Ochremiak 110:3

known correspondance between local consistency algorithms, existential pebble games and
bounded width resolution [17, 2], the lower bounds for propositional and semi-algebraic proof
systems [1, 19, 6, 7, 13, 10], and a modest amount of additional work to fill in the gaps, we
prove the following strong gap theorem:

I Theorem 1. Let B be a finite constraint language. Then exactly one of the following
holds:
1. B has resolution refutations of bounded width and hence polynomial size,
2. B has neither Frege refutations of bounded depth and subexponential size, nor Lasser-

re/SOS refutations of sublinear degree.

Moreover, case 1. in Theorem 1 happens precisely if B has bounded width. As noted
earlier, the collapse of Lasserre/SOS to bounded width was already known; here we give a
different proof. As an immediate corollary we get that resolution is also captured by algebra,
despite the fact that our methods fall short to prove that it is closed under reductions.

I Corollary 2. Let B be a finite constraint language. Then B has resolution refutations of
subexponential size if and only if B has resolution refutations of polynomial size, if and only
if B has resolution refutations of bounded width.

Our third main result is about proof systems that operate with polynomial inequalities
beyond Lasserre/SOS. Theorem 1 raises a question of identifying a proof system that can
surpass bounded width. In other words: is there a natural proof system for which the class of
languages that have efficient unsatisfiability proofs is closed under the standard reducibility
methods for CSPs, and that at the same time has efficient unsatisfiability proofs beyond
bounded width? By the bounded-width theorem for CSPs, one way, and indeed the only
way, of surpassing bounded width is by having efficient proofs of unsatisfiability for systems
of linear equations over some finite Abelian group. In view of the limitations of certain
semi-algebraic proof systems that are imposed by Theorem 1, it is perhaps a surprise that,
as we show, bounded degree Lovász-Schrijver (LS) is such a proof system.

I Theorem 3. Unsatisfiable systems of linear equations over the 2-element group have LS
refutations of bounded degree and polynomial size.

Proving this amounts to showing that Gaussian elimination over Z2 can be simulated
by reasoning with low-degree polynomial inequalities over R. The proof of this counter-
intuitive fact relies on earlier work in proof complexity for reasoning about gaps of the type
(−∞, c] ∪ [c+ 1,+∞), for c ∈ Z, through quadratic polynomial inequalities [15].

We want to close by pointing out that another proof system that can efficiently solve
CSPs of bounded width, and that at the same time goes beyond bounded width, is the proof
system that operates with ordered binary decision diagrams from [3]. Although it looks
unlikely that our methods could be used for this proof system, whether it is closed under the
standard CSP reducibilities is something that was not checked, neither in [3], nor here.

2 Preliminaries

2.1 Propositional logic and proofs
A literal is a variable X or the negation of a variable X. We think of ∧ and ∨ as commutative,
associative and idempotent. Negation is allowed only on literals, so formulas are in negation
normal form. If A is a formula, we define its complement A by exchanging ∨ and ∧ and
negating literals. The size of a formula A is the number of symbols in it.

ICALP 2017

110:4 Proof Complexity Meets Algebra

We work with a Tait-style proof system for propositional logic that we call Frege. Its
rules are axiom, cut, introduction of conjunction, and weakening:

A ∨A
C ∨A D ∨A

C ∨D
C ∨A D ∨B
C ∨D ∨ (A ∧B)

C

C ∨A
. (1)

In these rules, C and D could be the empty formula 0 or its complement 1, and A is a
formula. A Frege proof of A from a set of formulas H is a sequence of formulas ending with
A each of which is either in H, or follows from previous formulas in the sequence by one of
the inference rules. The proof is called a refutation of H if the last formula is the empty
formula 0. As a proof system, Frege is sound and implicationally complete. If C is a class of
formulas, a C-Frege proof is one that has all its formulas in the class C. The size of a proof is
the sum of the sizes of the formulas in it.

A k-term is a conjunction of at most k literals and a k-clause is a disjunction of at most k
literals. A k-DNF is a disjunction of k-terms and a k-CNF is a conjunction of k-clauses. We
define the classes of Σt,k- and Πt,k-formulas inductively. For t = 1, these are just the classes
of k-DNF and k-CNF formulas, respectively. For t ≥ 2, a formula is Σt,k if it is a disjunction
of Πt−1,k-formulas, and it is Πt,k if it is a conjunction of Σt−1,k-formulas. We write Σt and
Πt for Σt,1 and Πt,1, respectively. The t and the k in Σt,k and Πt,k are called the depth and
the bottom fan-in, respectively.

Observe that Σ1-Frege is essentially resolution, and Σ1,k-Frege is the system R(k) intro-
duced by Krajicek [18], also known as Res(k), k-DNF resolution, and k-DNF Frege. This
proof system is important for us because it is the weakest for which we can prove closure
under reductions. It is a sound and implicationally complete proof system for proving k-DNFs
from k-DNFs. A resolution proof has width k if all clauses in it are k-clauses.

In this paper, we use the expression Frege proof of depth d and bottom fan-in k to mean
a Σd,k-Frege proof. Bounded-depth Frege means Σd-Frege for some d. This coincides with
other definitions in the literature. Again, Frege of depth d and bottom fan-in k, as a proof
system, is sound and implicationally complete for proving Σd,k-formulas from Σd,k-formulas.

2.2 Polynomials and algebraic proofs
Let X1, . . . , Xn be n algebraic commuting variables ranging over R. We define proof systems
for inequalities P ≥ 0, where P is a polynomial in R[X1, . . . , Xn]. We think of equations
P = 0 as two inequalities P ≥ 0 and −P ≥ 0. For our purposes it will suffice to have the
variables range over {0, 1}. Accordingly, we introduce twin variables X̄1, . . . , X̄n with the
meaning that X̄i = 1−Xi for i = 1, . . . , n.

In all proof systems, the following axioms will be imposed on these variables:

X2
i −Xi = 0 X̄2

i − X̄i = 0 Xi + X̄i − 1 = 0, (2)
Xi ≥ 0 X̄i ≥ 0 1−Xi ≥ 0 1− X̄i ≥ 0 1 ≥ 0. (3)

Observe that XiX̄i = 0 follows from these axioms: multiply Xi + X̄i − 1 = 0 by Xi and use
X2

i −Xi = 0. This sort of reasoning is captured by the proof systems we are about to define.
Let P and Q denote polynomials. In addition to the axioms in (2), we consider rules of

inference for deriving polynomial inequalities: from P ≥ 0 and Q ≥ 0, derive P +Q ≥ 0, and
from P ≥ 0 and Q ≥ 0 derive PQ ≥ 0. Also we allow square inequalities for free: P 2 ≥ 0.
These are called addition, multiplication and positivity of squares.

If H denotes a system of polynomial inequalities P1 ≥ 0, . . . , Pr ≥ 0, a semi-algebraic
proof of P ≥ 0 from H is a sequence of polynomial inequalities ending with P ≥ 0 each of

A. Atserias and J. Ochremiak 110:5

which is either in H, or is an axiom inequality from (2) and (3), or follows from previous
inequalities in the sequence by one of the inference rules. The semi-algebraic proof is called a
refutation of H if the last inequality is −1 ≥ 0. As a proof system for inequalities evaluated
over {0, 1}, this is sound and implicationally complete (we note, however, that without some
restrictions on the domain of evaluation, completeness is not true).

The main complexity measures for semi-algebraic proofs are size and degree. Polynomials
are typically represented as explicit sums of monomials, or as algebraic formulas or circuits.
Using formulas or circuits as representations requires some additional technicalities that we
want to avoid (see [22, 14]). For all our examples below, we use the representation of an
explicit sum of monomials; its size includes the sizes of the coefficients.

The proofs in the Lovász-Schrijver (LS) proof system are semi-algebraic proofs for which
the following restrictions apply: 1) the polynomial Q in the multiplication rule is either a
positive real or a variable, and 2) the positivity-of-squares is not allowed. When it is allowed,
the system is called Positive Semidefinite Lovász-Schrijver and is denoted LS+. Originally
the Lovász-Schrijver proof system was defined to manipulate quadratic polynomials only
(see [21, 23]). We follow [15] and consider the extension to arbitrary degree. For LS- and
LS+-proofs, an important complexity measure originally studied by Lovász and Schrijver is
its rank, which is the maximum nesting depth of multiplication by a variable in the proof.
Note that, due to possible cancellations, the degree of an LS-proof could in principle be much
smaller than its rank.

We define two additional proof systems called Sherali-Adams (SA) and Lasserre/Sums-of-
Squares (SOS). One way to do that is by thinking of them as subsystems LS and LS+ proof
systems, respectively, with the additional restriction that all applications of the multiplication
rule must precede all applications of the addition rule. Due to the structural restriction
in which multiplications precede additions, we can think of a proof of P ≥ 0 from H as a
polynomial identity of the form

r∑
i=1

ci · Pi ·
∏
j∈Ji

Xj

∏
k∈Ki

X̄k = P, (4)

where c1, . . . , cr are non-negative real numbers, and P1, . . . , Pr are polynomials such that
either the inequality Pi ≥ 0 is in the set of hypothesis H, or they are axiom polynomials
from (2) and (3), or they are squares of polynomials, when these are allowed. Note that the
size of an SA or SOS proof thought of as a semi-algebraic proof is polynomially related to
the sum of the sizes of the non-zero ci’s in (4).

We close this section by noting the relationships between LS and SA proofs on one hand,
and LS+ and SOS proofs on the other. Clearly, each SA proof of degree d is also an LS
proof of degree d. The converse is certainly not true, but what is true is that every LS proof
of degree d and rank k can be converted into an SA proof of degree d+ k, where the rank
is the complexity measure for LS proofs that we defined earlier. The same relationships
hold between LS+ and SOS: every SOS-proof of degree d is an LS+ of degree d, and every
LS+ proof of degree d and rank k can be converted into an SOS-proof of degree d+ k. The
conversions go by swapping the order in which the addition and the multiplication rules are
applied in LS proofs, when they appear in the wrong order. See [20] for a related discussion.

2.3 Constraint satisfaction problem
There are many equivalent definitions of the constraint satisfaction problem. Here we use
the definition in terms of homomorphisms. Below we introduce the necessary terminology.

ICALP 2017

110:6 Proof Complexity Meets Algebra

A relational vocabulary L is a set of symbols, each symbol has an associated arity. A
structure B over L is a set B, called a domain together with a set of relations over B. For
each R ∈ L or arity r, there is a relation R(B) ⊆ Br sometimes called an interpretation of
R in B. We say that a relational structure is finite if its domain is finite and it has finitely
many non-empty relations. For two structures B and B′ over the same vocabulary L, a
homomorphism from B to B′ is a function h : B → B′, which preserves all the relations, that
is, if (b1, . . . , br) ∈ R(B), then (h(b1), . . . , h(br)) ∈ R(B′), for each R ∈ L.

For a fixed L-structure B over a relational vocabulary L, the constraint satisfaction
problem of B, denoted CSP(B), is the following computational problem: given a finite
L-structure A, decide whether there exists a homomorphism from A to B. In the context
of CSP the structure B is often called a constraint language. We usually assume that the
constraint language B is finite.

To reason about propositional proof systems for CSP we use the following fixed encoding.
By CNF(A,B) we denote the CNF formula which has clauses
1.
∨

b∈B X(a, b) for each a ∈ A,
2. X(a, b0) ∨X(a, b1) for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,
3. X(a1, b1) ∨ · · · ∨ X(ar, br) for each natural number r, each R ∈ L of arity r, each

(a1, . . . , ar) ∈ R(A), and each (b1, . . . , br) ∈ Br \R(B).
It is not difficult to see that the formula CNF(A,B) is satisfiable if and only if there is a
homomorphism from A to B.

To reason about semi-algebraic proof systems in the context of CSP we use the following
fixed encoding. By INEQ(A,B) we denote the system of linear inequalities defined as follows:
1.
∑

b∈B X(a, b)− 1 ≥ 0 for each a ∈ A,
2. X̄(a, b0) + X̄(a, b1)− 1 ≥ 0 for each a ∈ A and (b0, b1) ∈ B2 with b0 6= b1,
3.
∑r

i=1 X̄(a, bi)−1 ≥ 0 for each natural number r, each R ∈ L of arity r, each (a1, . . . , ar) ∈
R(A), and each (b1, . . . , br) ∈ Br \R(B).

It is easy to see that the above system of linear inequalities has a solution satisfying the
axioms from (2) and (3) if and only if there is a homomorphism from A to B.

The existential k-pebble game is played on two relational structures A and B over the
same vocabulary by two players called Spoiler and Duplicator. The players are given two
corresponding sets of pebbles {a1, . . . , ak} and {b1, . . . , bk}. In each round Spoiler picks one
of the k pebbles a1, . . . , ak, say ai, and puts it on an element of the structure A. Duplicator
responds by picking the corresponding pebble bi and placing it on some element of the
structure B. For simplicity, in any given configuration of the game let us identify a pebble
with the element of the structure that it is placed on. Spoiler wins if at any point during the
game the partial function f : A→ B defined by f(ai) = bi, for each pebbled element ai of A,
is either not well defined or is not a partial homomorphism. Otherwise, the Duplicator wins.

A finite relational structure B has width k if, for every finite structure A of the same
vocabulary as B, if there is no homomorphism from A to B, then Spoiler wins the existential
k-pebble game on A and B. The structure B has bounded width if it has width k for some k.
Structures of bounded width are exactly those structures for which CSP(B) can be solved by
a local consistency algorithm [17].

3 Closure under reductions

There are three types of reductions often considered in the context of CSPs: a) pp-
interpretability b) homomorphic equivalence c) addition of constants to a core.

A. Atserias and J. Ochremiak 110:7

Let B and B′ be finite relational structures over finite vocabularies L and L′. The structure
B′ is pp-definable in B if is has the same domain and for every relation symbol T ∈ L′ the
relation T (B′) is definable in B by a pp-formula, i.e., a first order formula using only symbols
from L, conjunction, equality, and existential quantification. Formally, for every relation
symbol T ∈ L′ there exists a pp-formula φT (x1, . . . , xr), where r is the arity of T , such that
T (B′) = {(b1, . . . , br) ∈ Br : B |= φT (x1/b1, . . . , xr/br)}.

Pp-interpretability is a generalization of pp-definability which allows for changing the
domain of a CSP language. Given two relational structures B and B′, we say that B′ is
pp-interpretable in B if there exist a positive integer n and a surjective partial function
f : Bn → B′ such that the preimages of all relations in B′ (including the equality relation)
and the domain of f are pp-definable in B. One of the fundamental results of the algebraic
approach to the constraint satisfaction problem is that, whenever B′ is pp-interpretable in B,
the CSP of the language B′ is not harder than the CSP of the language B [9].

Structures B and B′ over a vocabulary L are homomorphically equivalent if there exist
homomorphisms from B to B′ and from B′ to B. Obviously, if L-structures B and B′ are
homomorphically equivalent, then any L-structure A maps homomorphically to B if and only
if it maps homomorphically to B′. So the CSP problems over both languages are the same.

Homomorphic equivalence allows us to focus on studying constraint satisfaction problems
of well-behaved structures which in this context turn out to be those exhibiting little symmetry.
A finite relational structure is called a core if all its endomorphisms are surjective. It is
known that every relational structure has a homomorphically equivalent substructure that is
a core. Core structures can be extended by one-element unary relations which we refer to as
constants, without increasing the complexity of the language [9].

It has been shown recently [5] that any class of constraint languages that is closed under
the constructions a), b) and c) has an algebraic characterization in terms of identities of
height 1. Here we show that DNF Frege, bounded-depth Frege, Frege, Sherali-Adams,
Sums-of-Squares and Lovász-Schrijver proof systems behave well with respect to those three
types of reductions.

Let us fix relational structures B and B′ such that B′ is obtained from B by a finite
sequence of constructions a), b) and c). There is a known polynomial-time computable
transformation that maps instances A′ of CSP(B′) to instances A of CSP(B) such that A
is satisfiable if and only if A′ is satisfiable, and the size of A is linear in the size of A′. We
prove that this transformation satisfies the following:

I Theorem 4. For any positive integers t, k and s, and any instance A′, if there is a
Frege refutation of CNF(A,B) of depth t, bottom fan-in k, and size s, then there is a Frege
refutation of CNF(A′,B′) of depth t, bottom fan-in polynomial in k, and size polynomial in
the size of A′ and s.

I Theorem 5. For any positive integers k and s, and any instance A′, if there is a Sherali-
Adams, Sums-of-Squares or Lovász-Schrijver refutation of INEQ(A,B) of degree k and size s,
then there is, respectively, a Sherali-Adams, Sums-of-Squares or Lovász-Schrijver refutation
of INEQ(A′,B′) of degree linear in k and size polynomial in the size of A′ and s.

We point out that Theorem 5 in the case of the Sherali-Adams and Sums-of-Squares
proof systems can be extracted from [24] and [25]. We include it here to illustrate the broad
applicability of the systematic proof-complexity approach.

The main idea in proving the above theorems for all the proof systems under consideration
is the same. The refutation for an instance A of CSP(B) is transformed into a refutation
for an instance A′ of CSP(B′) by substituting the variables of CNF(A,B) or INEQ(A,B) by

ICALP 2017

110:8 Proof Complexity Meets Algebra

DNFs with bounded terms and a bounded number of terms or by polynomials with bounded
degree, a bounded number of monomials and coefficients from a fixed, finite set, respectively.
The additional condition we need to ensure in order to control the growth of the size and
depth/degree of the refutations is that each formula from CNF(A,B) and every polynomial
inequality from INEQ(A,B) after applying the substitution is a logical consequence of a
bounded number of formulas/inequalities from CNF(A′,B′) or INEQ(A′,B′), respectively.

4 Upper bound

We say that a finite relational structure B has resolution refutations of bounded width if
there is a positive integer k such that, for every finite structure A over the same vocabulary,
if there is no homomorphism from A to B, then CNF(A,B) has a resolution refutation of
width k. The goal of this section is to prove the following:

I Theorem 6. Let B be a finite relational structure. The following are equivalent:
1. B has bounded width,
2. B has resolution refutations of bounded width.

In preparation for the proof we revisit the characterization of resolution width in terms
of existential pebble games from [2].

Let L = {R0, . . . , Rq} be a finite relational vocabulary consisting of q + 1 symbols of
arity q. Let Sq be an L-structure with two-element domain {0, 1}, where each relation Ri(Sq)
encodes the set of valuations that satisfy a q-clause with i negated variables. More precisely,
for 0 ≤ i ≤ q, let Ri(Sq) = {0, 1}q \ {(x1, . . . , xq)} where (x1, . . . , xq) ∈ {0, 1}q is the vector
defined by xj = 0 for j > i and xj = 1, otherwise. Now for every q-CNF F , we define an
L-structure AF . Its domain is the set of variables in F , and Ri(AF) is the set of all tuples
(X1, . . . , Xq) such that the clause X1 ∨ . . . ∨Xi ∨Xi+1 ∨ . . . ∨Xq belongs to F . We allow
the variables in the clauses to repeat, so the definition covers clauses with less than q literals.
Observe that partial homomorphisms from AF to Sq correspond to partial truth assignments
to the variables of F that do not falsify any clause from F . Hence, for every q-CNF F , it
holds that F is satisfiable if and only if there is a homomorphism from AF to Sq.

I Theorem 7 ([2]). Let k and q be positive integers such that k ≥ q and let F be q-CNF.
Then F has a resolution refutation of width k if and only if Spoiler wins the existential
(k + 1)-pebble game on AF and Sq.

We use the above theorem to establish a similar correspondence between existential
pebble games on structures A and B and bounded width resolution refutations of CNF(A,B).

I Lemma 8. Let A and B be relational structures over the same vocabulary of maximum
arity r, let q = |B|, and let k be an integer such that k ≥ q and k ≥ r. Then:
1. if Spoiler wins the existential (k + 2)-pebble game on A and B, then CNF(A,B) has a

resolution refutation of width k + q,
2. if Duplicator wins the existential (k + 2)-pebble game on A and B, then CNF(A,B) does

not have a resolution refutation of width k + 1.

Proof of Theorem 6. For the implication 1 to 2, assume that B has bounded width, say l.
Let k = max{q, r, l}, where q = |B| and r is the maximum arity of the vocabulary of B. Let
A be a structure over the same vocabulary and assume that there is no homomorphism from
A to B. Then Spoiler wins the existential l-pebble game on A and B, and hence also the
existential (k + 2)-pebble game on A and B, since k + 2 ≥ l. The hypotheses of Lemma 8

A. Atserias and J. Ochremiak 110:9

hold, so by part 1 CNF(A,B) has a resolution refutation of width k + q. This shows that B
has resolution refutations of width k + q, and hence resolution refutations of bounded width.

For the implication 2 to 1, assume that B has resolution refutations of width l. Again let
k = max{q, r, l}. Let A be a structure over the same vocabulary as B and assume that there
is no homomorphism from A to B. Then CNF(A,B) has a resolution refutation of width l,
and hence of width k + 1 since k + 1 ≥ l. The hypotheses of Lemma 8 hold, so by part 2 in
that lemma, Spoiler wins the existential (k+ 2)-pebble game on A and B. This shows that B
has width k + 2, and hence bounded width. J

5 Lower bounds

Let d(n) and s(n) be functions. We say that a finite relational structure B has Frege refutations
of depth d(n) and size s(n) if, for every finite structure A over the same vocabulary, if there
is no homomorphism from A to B, then CNF(A,B) has a Frege refutation of depth d(|A|)
and size s(|A|). We say that B has Frege refutations of bounded depth and subexponential
size if there exist d(n) = O(1) and s(n) = 2no(1) such that B has Frege refutations of depth
d(n) and size s(n).

Similarly, we say that a finite relational structure B has Sums-of-Squares refutations
of degree d(n) if, for every finite structure A over the same vocabulary, if there is no
homomorphism from A to B, then INEQ(A,B) has a Sums-of-Squares refutation of degree
d(|A|). We say that B has Sums-of-Squares refutations of sublinear degree if there exists
d(n) = o(n) such that B has Sums-of-Squares refutations of degree d(n). We prove:

I Theorem 9. Let B be a finite relational structure. The following are equivalent:
1. B has bounded width,
2. B has Frege refutations of bounded depth and subexponential size,
3. B has Sums-of-Squares refutations of sublinear degree.

The equivalence of 1 and 3 is known [11, 25]. Here we provide an alternative proof. The
implication 1 to 2 follows from Theorem 6: every resolution refutation is a Frege refutation
of depth one, and if the refutation has bounded width, then it has polynomial size and
hence subexponential size. The implication 1 to 3 follows from Theorem 6 via the fact
that bounded-degree SA simulates bounded-width resolution: bounded-width resolution is
simulated by bounded-degree SA, which implies Sums-of-Squares refutations of a constant,
and hence sublinear, degree.

For both implications 2 to 1 and 3 to 1 we use an algebraic characterization of unbounded
width. We begin with some definitions.

Let G = (G,+, 0) be a finite Abelian group. For each g ∈ G and every (z1, . . . , zk) ∈ Zk,
we define a relation R(g,z1,...,zk) = {(g1, . . . , gk) ∈ Gk : z1g1 + . . . + zkgk = g}, where zigi

is a shortcut for the sum of |zi| copies of sign(zi)gi. Let ∼ be the equivalence relation
on the set G × Zk that identifies tuples defining the same relation. Since there are only
finitely many k-ary relations on the finite set G, the equivalence relation ∼ has finitely many
equivalence classes. Let L(G, k) be the relational vocabulary that for every equivalence class
[(g, z1, . . . , zk)] has one k-ary relation symbol E[(g,z1,...,zk)], and let B(G, k) be the L(G, k)-
structure that has domain G and where each relation symbol E[(g,z1,...,zk)] is interpreted as
R(g,z1,...,zk). The CSP of B(G, k) is called kLIN(G). Instances of kLIN(G) are systems of
linear equations over the group G with k variables per equation.

I Theorem 10 ([4, 8]). Let B be a finite relational structure. The following are equival-
ent:

ICALP 2017

110:10 Proof Complexity Meets Algebra

1. B does not have bounded width,
2. there exists a non-trivial finite Abelian group G such that B(G, 3) is pp-interpretable in

B+, where B+ is the expansion of the core of B with all constants.

Thus, in view of Theorems 4 and 5, in order to prove that 2 implies 1, and that 3 implies
1 in Theorem 9, it suffices to prove lower bounds for 3LIN(G), for every non-trivial finite
Abelian group G.

For bounded-depth Frege we appeal to the lower bound for the pigeonhole principle [1, 6,
19]. To use that we need to be able to encode the pigeonhole principle as an unsatisfiable
system of equations over an arbitrary Abelian group G. In [7], such a reduction was obtained
for the so-called Tseitin formulas, that encode a certain system of linear equations over Z2
that is derived from an expander graph. Here we adapt the formulas to encode systems of
linear equations over arbitrary finite Abelian groups and then show that the reduction in [7]
can be adapted to our formulas. For Sums-of-Squares, unlike for bounded-depth Frege, we
do not need to adapt an existing lower bound proof from the literature for Z2 to all finite
Abelian groups because this was already done. The lower bound that we need to complete
the proof of Theorem 9 is the following.

I Theorem 11 ([10]). For every non-trivial finite Abelian group G there exists a positive δ
such that for every sufficiently large integer n there is an n-variable unsatisfiable instance A
of 3LIN(G) such that every SOS refutation of INEQ(A,B(G, 3)) has degree at least δn.

The exact statement from [10] is Theorem G.8 from Appendix G, which differs from the
version above. However, the original one implies the variant that we need.

6 Upper bounds in Lovász-Schrijver

In this section we show that all unsatisfiable instances of 3LIN(Z2) have LS refutation
of degree 6 and size polynomial in the number of variables. Indeed, the argument to get
polynomial-size upper bound in constant degree works equally well for 3LIN(Zp), when p is
prime, with some inessential complications. We focus on Z2 for simplicity.

6.1 Initial remarks on the encoding
We identify the elements of the two-element field Z2 with {0, 1}. Let E be an instance of
kLIN(Z2) with n variables. In the encoding INEQ(E,B(Z2, k)) of E as a system of linear
inequalities, there are four variables X(a, 0), X(a, 1), X̄(a, 0), X̄(a, 1) for each variable a in E.
Note, however, that they are restricted to satisfy X(a, 0) = X̄(a, 1) and X̄(a, 0) = X(a, 1) by
the inequality X(a, 0) +X(a, 1)− 1 ≥ 0 from INEQ and the default equations in (2), which
in this case read X(a, 0)2 −X(a, 0) = X(a, 1)2 −X(a, 1) = 0 and X(a, 0) + X̄(a, 0)− 1 =
X(a, 1) + X̄(a, 1) − 1 = 0. Consequently, in the following we will ignore the variables of
the type X(a, 0) and their twins and keep only the variables X(a, 1) and X̄(a, 1). In order
to simplify the notation even further, we will assume that the variables of E are called
X1, . . . , Xn, and that those of INEQ are called X1, . . . , Xn and X̄1, . . . , X̄n.

We interpret the variables X1, . . . , Xn as ranging over Z2 or Q depending on the context.
Let E be an equation of E, say E : a1X1 + · · ·+anXn = b, where a1, . . . , an ∈ Z2 and b ∈ Z2.
Without loss of generality we can assume that there are exactly k many ai’s that are 1. In
INEQ, the encoding of this equation is given by the following inequalities:∑

i∈T

X̄i +
∑

i∈I\T

Xi − 1 ≥ 0 for all T ⊆ I such that |T | ≡ 1− b mod 2,

A. Atserias and J. Ochremiak 110:11

where I = {i ∈ [n] : ai 6= 0}. Note that |I| = k. We write S(E) to denote this set of
inequalities; it has exactly 2k−1 many inequalities, and all of them are satisfied in Q by a
{0, 1}-assignment if and only if the equation E is satisfied in Z2 by the same assignment. Let
S(E) be the union of all S(E) as E ranges over the equations in E. Observe that, except for
the small detail that only half of the variables are used, INEQ is basically the same as S(E).

6.2 Some technical lemmas
For every linear form L(X1, . . . , Xn) =

∑n
i=1 aiXi with rational coefficients a1, . . . , an and

every integer c, let Dc(L) = (L− c)(L− c+ 1), which is a quadratic polynomial. In words,
the inequality Dc(L) ≥ 0 states that L does not fall in the open interval (c − 1, c). Such
statements have short proofs of low degree:

I Lemma 12 ([15]). For every integer c and for every linear form L(X1, . . . , Xn) =∑n
i=1 aiXi with integer coefficients a1, . . . , an, there is a LS proof of the inequality Dc(L) ≥ 0

(from nothing) of degree 3 and size polynomial in max{|ai| : i = 1, . . . , n}, |c| and n.

In the following, for I ⊆ [n] and T ⊆ I, let M I
T (X1, . . . , Xn) :=

∏
i∈T Xi

∏
i∈I\T X̄. As

usual, M I
∅ (X1, . . . , Xn) = 1. Such polynomials are called extended monomials.

I Lemma 13. For every I ⊆ [n], there is an LS proof of
∑

T⊆I M
I
T − 1 = 0 (from nothing)

of degree |I| and size polynomial in 2|I|, and for every T ⊆ I ⊆ [n], there is an LS proof of(∑
i∈I Xi − |T |

)
M I

T = 0 (from nothing) of degree |I|+ 1 and size polynomial in |I|.

6.3 Simulating Gaussian elimination
Now we prove the main result of this section.

I Theorem 14. Let E be an instance of 3LIN(Z2) with n variables and m equations. If E is
unsatisfiable, then S(E) has an LS refutation of degree 6 and size polynomial in n and m.

Proof. Write E in matrix form AX = b, where X is a column vector of n variables, A is a
matrix in Zm×n

2 , and b is a vector in Zm
2 . Let aj,1, . . . , aj,n be the j-th row of A, so the j-th

equation of E is Ej : aj,1X1 + · · ·+ aj,nXn = bj . Assume E is unsatisfiable over Z2. Then
b cannot be expressed as a Z2-linear combination of the columns of A, so the Z2-rank of
the matrix [A | b] exceeds the Z2-rank of A. Since the rank of A is at most n, this means
that there exists a subset of at most n rows J such that, with arithmetic in Z2, we have∑

j∈J aj,i = 0 for every i ∈ [n], and at the same time
∑

j∈J bj = 1. In order to simplify the
notation, we assume without loss of generality that J = {1, . . . , |J |}.

For every k ∈ {0, . . . , |J |}, define the linear form

Lk(X1, . . . , Xn) := 1
2

 k∑
j=1

n∑
i=1

aj,iXi +
|J|∑

j=k+1
bj

 .

In this definition of Lk, the coefficients aj,i and bj are interpreted as rationals. We provide
proofs of Dc(Lk) ≥ 0 for every c ∈ Rk := {0, . . . , (k + 1)n} by reverse induction on
k ∈ {0, . . . , |J |}.

The base case k = |J | is a special case of Lemma 12. To see why note that the condition∑
j∈J aj,i = 0 over Z2 means that, if arithmetic were done in Q, then

∑
j∈J aj,i is an even

natural number. But then all the coefficients of

L|J|(X1, . . . , Xn) = 1
2

|J|∑
j=1

n∑
i=1

aj,iXi =
n∑

i=1

1
2

|J|∑
j=1

aj,i

Xi

are integers. Hence Lemma 12 applies.

ICALP 2017

110:12 Proof Complexity Meets Algebra

Suppose now that 0 ≤ k ≤ |J | − 1 and that we have a proof of Dd(Lk+1) ≥ 0 available
for every d ∈ Rk+1. Fix c ∈ Rk; our immediate goal is to give a proof of Dc(Lk) ≥ 0. As k is
fixed, write L in place of Lk+1, and let the (k+1)-st equation Ek+1 be written as

∑
i∈I Xi = b,

where I = {i ∈ [n] : ak+1,i = 1}. Note that L = Lk + `/2 where ` := −b +
∑

i∈I Xi. Fix
T ⊆ I such that |T | ≡ b mod 2, and let d = c+ (t− b)/2 where t = |T |. Note that d ∈ Rk+1
as c ∈ Rk and 0 ≤ t ≤ n and 0 ≤ b ≤ 1 are such that t− b is even. Multiplying Dd(L) ≥ 0
by the extended monomial M I

T we get (L− d)(L− d+ 1)M I
T ≥ 0. Replacing L = Lk + `/2

in the factor (L− d) and recalling d = c+ (t− b)/2, this inequality can be written as

(Lk − c)(L− d+ 1)M I
T + (L− d+ 1) 1

2A ≥ 0, (5)

where A := (`+b−t)M I
T . By the second part of Lemma 13 we have a proof of A = 0, and hence

of (L−d+1)A/2 = 0. Composing with (5) we get a proof of (Lk− c)(L−d+1)M I
T ≥ 0. The

same argument applied to the factor (L−d+1) of this inequality gives (Lk−c)(Lk−c+1)M I
T ≥

0. This is precisely Dc(Lk)M I
T ≥ 0. Adding up over all T ⊆ I with |T | ≡ b mod 2 we get

Dc(Lk)
∑
T⊆I
|T |≡b

M I
T ≥ 0. (6)

Now note that for each T ⊆ I such that |T | ≡ 1− b mod 2, the inequality −M I
T ≥ 0 is

the multiplicative encoding of one of the inequalities in S(E). Thus, it is not difficult to
show that it has an SA derivation from this inequality of size polynomial in |I| and degree
|I|+ 1. Therefore, we get proofs of −M I

T ≥ 0, and hence of M I
T = 0, for every T ⊆ I such

that |T | ≡ 1− b mod 2. But then also of Dc(Lk)M I
T = 0 for every such T . Adding up and

composing with (6) we get

Dc(Lk)
∑
T⊆I

M I
T ≥ 0. (7)

From Lemma 13 we get 1−
∑

T⊆I M
I
T = 0, and hence Dc(Lk)−Dc(Lk)

∑
T⊆I M

I
T ≥ 0, from

which Dc(Lk) ≥ 0 follows from addition with (7).
At this point we proved Dc(L0) ≥ 0 for every c ∈ R0 = {0, . . . , n}. Recall now that∑|J|

j=1 bj is odd, say 2q+1, and at most n. In particular q+1 belongs to R0 and L0 = q+1/2.
Thus we have a proof of Dq+1(L0) ≥ 0 where Dq+1(L0) = −(1/2)(1/2) = −1/4. Multiplying
by 4 we get the contradiction −1 ≥ 0. J

7 Conclusions and Open Questions

Theorems 4 and 5 imply that for the proof systems under consideration the class of constraint
languages admitting efficient refutations can be characterised algebraically. For most of
those proof systems such a characterisation follows from the fact that efficient proofs of
unsatisfiability exist exactly for languages of bounded width. However, by Theorem 14
the class of constraint languages admitting efficient refutations in Lovász-Schrijver, and
consequently also the class of constraint languages admitting efficient Frege refutations,
exceed bounded width. At the same time both of those classes are shown to admit algebraic
characterisations. Providing such characterisations is a natural open problem that arises
from our work.

A related direction that is also suggested by our work is whether the proof complexity of
approximating MAX CSPs is also preserved by reductions. On the one hand, it is known
that pp-definability preserves almost satisfiability; i.e., if B′ is pp-definable in B, then if A′ is

A. Atserias and J. Ochremiak 110:13

an instance of MAX CSP(B′) that is almost satisfiable, then its standard transformation
into an instance A of MAX CSP(B) is also almost satisfiable. The question we raise is the
following: For which proof systems is it also the case that if there are efficient proofs that
A is far from satisfiable then there also are efficient proofs that A′ is far from satisfiable?
Depending on how the terms “almost satisfiable” and “far from satisfiable” are quantified,
a positive answer for such questions could lead to an algebraic approach to the theory of
approximability of MAX CSPs and the UGC.

References
1 M. Ajtai. The complexity of the pigeonhole principle. In 29th Annual IEEE Symposium

on Foundations of Computer Science, pages 346–355, 1988.
2 A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. J.

Comput. Syst. Sci., 74(3):323–334, May 2008. A preliminary version appeared in CCC
2003. doi:10.1016/j.jcss.2007.06.025.

3 A. Atserias, Ph. G. Kolaitis, and M. Vardi. Constraint propagation as a proof system.
In 10th International Conference on Principles and Practice of Constraint Programming,
volume 3258 of Lecture Notes in Computer Science, pages 77–91. Springer-Verlag, 2004.

4 L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61(1):3:1–3:19, January 2014. doi:10.1145/2556646.

5 L. Barto, J. Opršal, and M. Pinsker. The wonderland of reflections. CoRR, abs/1510.04521,
2015. URL: http://arxiv.org/abs/1510.04521.

6 P. Beame, R. Impagliazzo, J. Krajícek, T. Pitassi, P. Pudlák, and A. Woods. Exponential
lower bounds for the pigeonhole principle. In 24th Annual ACM Symposium on the Theory
of Computing, pages 200–220, 1992.

7 E. Ben-Sasson. Hard examples for bounded depth frege. In 34th Annual ACM Symposium
on the Theory of Computing, pages 563–572, 2002.

8 A. Bulatov. Bounded relational width. Manuscript, 2009.
9 A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using

finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
10 Siu On Chan. Approximation resistance from pairwise-independent subgroups. J. ACM,

63(3):27:1–27:32, August 2016. doi:10.1145/2873054.
11 A. Dawar and P. Wang. Lasserre lower bounds and definability of semidefinite programming.

CoRR, abs/1602.05409, 2016. URL: http://arxiv.org/abs/1602.05409.
12 M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,
November 1995. doi:10.1145/227683.227684.

13 D. Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1–2):613–622, 2001.

14 D. Grigoriev and E.A. Hirsch. Algebraic proof systems over formulas. Theoretical Computer
Science, 303(1):83 – 102, 2003.

15 D. Grigoriev, E.A. Hirsch, and D.V. Pasechnik. Complexity of semi-algebraic proofs. Mo-
scow Mathematical Journal, 4(2):647–679, 2002.

16 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357, 2007.

17 Ph.G. Kolaitis and M.Y. Vardi. A game-theoretic approach to constraint satisfaction. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, pages 175–181. AAAI Press,
2000. URL: http://dl.acm.org/citation.cfm?id=647288.721266.

ICALP 2017

http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1145/2556646
http://arxiv.org/abs/1510.04521
http://dx.doi.org/10.1145/2873054
http://arxiv.org/abs/1602.05409
http://dx.doi.org/10.1145/227683.227684
http://dl.acm.org/citation.cfm?id=647288.721266

110:14 Proof Complexity Meets Algebra

18 J. Krajícek. On the weak pigeonhole principle. Fundamenta Mathematicæ, 170(1–3):123–
140, 2001.

19 J. Krajícek, P. Pudlák, and A. Woods. Exponential lower bound to the size of bounded
depth Frege proofs of the pigeon hole principle. Random Structures and Algorithms, 7(1):15–
39, 1995.

20 M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations
for 0-1 programming. Mathematics of Operations Research, 28:470–496, 2001.

21 L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM Journal on Optimization, 1(2):166–190, 1991.

22 T. Pitassi. Algebraic propositional proof systems. In N. Immerman and Ph. G. Kolaitis,
editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 68–96. American Mathematical
Society, 1997.

23 P. Pudlák. On the complexity of the propositional calculus. In Sets and Proofs, Invited
Papers from Logic Colloquium ’97, pages 197–218. Cambridge University Press, 1999.

24 J. Thapper and S. Živný. Sherali-adams relaxations for valued csps. In Automata, Lan-
guages, and Programming - 42nd International Colloquium, ICALP 2015, pages 1058–1069,
2015.

25 J. Thapper and S. Živný. The limits of SDP relaxations for general-valued csps. CoRR,
abs/1612.01147, 2016. URL: http://arxiv.org/abs/1612.01147.

26 M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In 41st Annual ACM
Symposium on Theory of Computing (STOC), pages 303–312, 2009.

http://arxiv.org/abs/1612.01147

A Circuit-Based Approach to Efficient
Enumeration∗†

Antoine Amarilli1, Pierre Bourhis2, Louis Jachiet3, and
Stefan Mengel4

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
antoine.amarilli@telecom-paristech.fr

2 CRIStAL, CNRS UMR 9189 & Inria Lille, Lille, France
pierre.bourhis@univ-lille1.fr

3 Université Grenoble Alpes, Grenoble, France
louis.jachiet@inria.fr

4 CNRS, CRIL UMR 8188, Lens, France
mengel@cril.fr

Abstract
We study the problem of enumerating the satisfying valuations of a circuit while bounding the
delay, i.e., the time needed to compute each successive valuation. We focus on the class of
structured d-DNNF circuits originally introduced in knowledge compilation, a sub-area of artificial
intelligence. We propose an algorithm for these circuits that enumerates valuations with linear
preprocessing and delay linear in the Hamming weight of each valuation. Moreover, valuations
of constant Hamming weight can be enumerated with linear preprocessing and constant delay.

Our results yield a framework for efficient enumeration that applies to all problems whose
solutions can be compiled to structured d-DNNFs. In particular, we use it to recapture classical
results in database theory, for factorized database representations and for MSO evaluation. This
gives an independent proof of constant-delay enumeration for MSO formulae with first-order free
variables on bounded-treewidth structures.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases circuits, constant-delay, enumeration, d-DNNFs, MSO

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.111

1 Introduction

When a computational problem has many solutions, computing all of them at once can take
too much time. Enumeration algorithms are an answer to this challenge, and have been
studied in many contexts (see overview in [36]). They generally consist of two phases. First,
in a preprocessing phase, the input is read and indexed. Second, in an enumeration phase
that uses the preprocessing result, the solutions are computed one after the other. The goal
is to limit the amount of time between each pair of successive solutions, which is called delay.

We focus on a well-studied class of efficient enumeration algorithms with very strict
requirements: the preprocessing must be linear in the input size, and the delay between

∗ For the full version with proofs, see [3], https://arxiv.org/abs/1702.05589.
† This work was partly funded by the French ANR Aggreg project, by the CPER Nord-Pas de

Calais/FEDER DATA Advanced data science and technologies 2015-2020, by the PEPS JCJC INS2I
2017 CODA, and by the Télécom ParisTech Research Chair on Big Data and Market Insights.

EA
T

C
S

© Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 111; pp. 111:1–111:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.111
https://arxiv.org/abs/1702.05589
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

111:2 A Circuit-Based Approach to Efficient Enumeration

d-DNNF

v-tree

augmented
d-DNNF
(Def. 3.6)

normal
d-DNNF
(Def. 4.2)

normal
d-DNNF

+OR-index

compressed
traces

(Def. 6.1)

satisfying
valuations

Prp.
3.9

Prp.
4.3

Thm.
5.4

Prp.
6.3

Prp.
6.5

Linear-time preprocessing phase (Sec. 3–5) Enumeration phase (Sec. 6)

Figure 1 Overview of the proof of Theorem 2.1.

successive solutions must be constant. Such algorithms have been studied in particular for
database applications, to enumerate query answers (see [19, 6, 20, 7, 8, 25, 24] and the recent
survey [33]), or to enumerate the tuples of factorized database representations [29].

One shortcoming of these existing enumeration algorithms is that they are typically
shown by building a custom index structure tailored to the problem, and designing ad hoc
preprocessing and enumeration algorithms. This makes it hard to generalize them to
other problems, or to implement them efficiently. In our opinion, it would be far better if
enumeration for multiple problems could be done via one generic representation of the results
to enumerate, reusing general algorithms for the preprocessing and enumeration phases.

This paper accordingly proposes a new framework for constant-delay enumeration algo-
rithms, inspired by the field of knowledge compilation in artificial intelligence. Knowledge
compilation studies how the solutions to computational problems can be compiled to generic
representations, in particular classes of Boolean circuits, on which reasoning tasks can then
be solved using general-purpose algorithms. In this paper, we show how this knowledge
compilation approach can be implemented for constant-delay enumeration, by compiling to a
prominent class of circuits from knowledge compilation called deterministic decomposable
negation normal form (in short, d-DNNF) [17]. These circuits generalize several forms of
branching programs such as OBDDs [18] and were recently shown to be more expressive
than Boolean circuits of bounded treewidth [13]. Further, there are many efficient algorithms
to compute d-DNNF representations of small width CNF formulae for a wide range of
width notions [12], and even software implementations to compute such representations for
given Boolean functions [30, 14]. d-DNNFs are also intimately related to state-of-the-art
propositional model counters based on exhaustive DPLL [21], to syntactically multi-linear
arithmetic circuits [32], and to probabilistic query evaluation in database theory [22].

Our main technical contribution is an efficient algorithm to enumerate the satisfying
valuations of a d-DNNF under a standard structuredness assumption, namely, assuming that
a so-called v-tree is given [31]: this assumption holds in all works cited above. Our first main
result (Theorem 2.1) shows that we can enumerate the satisfying valuations of such a circuit
with linear preprocessing and delay linear in the Hamming weight of each valuation. Further,
our second main result (Theorem 2.2) shows that, if we impose a constant bound on the
Hamming weight, we can enumerate the valuations with constant delay. In these results we
express valuations succinctly as the set of the variables that they set to true.

To show our results, we consider d-DNNFs under a semantics with implicit negation:
variables that are not tested must be set to zero. We call this semantics zero-suppressed, like
zero-suppressed OBDDs [37]. Our preprocessing rewrites such d-DNNFs to a normal form
(Section 4) and pre-computes a multitree reachability index on them (Section 5), allowing
us to enumerate efficiently the traces of the circuit and the desired valuations (Section 6).
To enumerate for d-DNNFs in standard semantics, we show how to rewrite them to zero-
suppressed semantics, using the structuredness assumption and a new notion of range gates
to make the process efficient (Section 3). The overall proof (see Figure 1) is very modular.

Our second contribution is to illustrate how our circuit-based framework and enumeration
results can be useful in database theory. As a proof of concept, we present two known results

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:3

that we can extend, or recapture with an independent proof. First, we re-prove with our
framework that the answers to MSO queries on trees and bounded-treewidth structures can
be enumerated with linear preprocessing and delay linear in each assignment, i.e., constant-
delay if the free variables are first-order. This was previously shown by Bagan [6] with a
custom construction, by Kazana and Segoufin [25] using a powerful result of Colcombet [15],
and by Courcelle [16] in a more general setting (but with O(n logn) preprocessing) using
AND/OR-DAGs (that share some similarities with DNNFs). Our proof follows our proposed
approach: we compute a circuit representation of the output following the provenance
constructions in [4], and simply apply our enumeration result to this circuit. Second, we show
how d-DNNFs generalize the deterministic factorized representations of relational instances
studied in database theory [29]. We can thus enumerate with linear preprocessing and
constant delay for arbitrary deterministic d-representations, which extends the result of [29].

The paper is structured as follows. Section 2 gives the main definitions and results.
We then describe the preprocessing phase of our algorithm: we reduce the input circuit
to zero-suppressed semantics in Section 3, rewrite it to a normal form in Section 4, and
compute the multitree index in Section 5. We then describe the enumeration algorithm in
Section 6. We present our two applications in Section 7 and conclude in Section 8. Due to
space restrictions, many details and the proofs are found in the complete version [3].

2 Preliminaries and Problem Statement

Circuits. A circuit C = (G,W, g0, µ) is a directed acyclic graph (G,W) whose vertices G
are called gates, whose edges W are called wires, which has an output gate g0 ∈ G, and where
each gate g ∈ G has a type µ(g) among ∧ (AND-gate), ∨ (OR-gate), ¬ (NOT-gate), or var
(variable). We represent the circuit with adjacency lists that indicate, for each gate g ∈ G,
the gates having a wire to g (called the inputs of g), and the gates of which g is an input; the
number of such gates is called respectively the fan-in and fan-out of g. The size |C| of this
representation is then |G|+ |W |. We require that variables have fan-in zero, that NOT-gates
have fan-in one, and we will always work on negation normal form (NNF) circuits where the
input of NOT-gates is always a variable. A circuit without NOT-gates is called monotone.

We write Cvar for the set of variables of C. A valuation of Cvar is a function ν : Cvar →
{0, 1}. A circuit defines a Boolean function on Cvar, i.e., a function φ that maps each
valuation ν of Cvar to {0, 1}. The image of ν by φ is defined by substituting each gate in Cvar
by its value in ν, evaluating the circuit using the standard semantics of Boolean operations,
and returning the value of the output gate g0. Note that AND-gates (resp., OR-gates) with
no inputs always evaluate to 1 (resp., to 0) in this process. We call a gate unsatisfiable if it
evaluates to 0 under all valuations (and satisfiable otherwise); we call it 0-valid if it evaluates
to 1 under the valuation which sets all variable gates to 0. We say that ν satisfies C if φ
maps ν to 1 (i.e., g0 evaluates to 1 under ν), and call ν a satisfying valuation.

For enumeration, we represent a valuation ν of C as the set Sν of variables of Cvar that it
sets to 1, i.e., {g ∈ Cvar | ν(g) = 1}. We call Sν an assignment, and a satisfying assignment
if ν is a satisfying valuation. The Hamming weight |ν| of ν is the cardinality of Sν . Unlike
valuations, assignments of constant Hamming weight are of constant size, no matter the size
of Cvar. We write {} for the empty assignment, and write ∅ for an empty set of assignments.

The main class of circuits that we will study are d-DNNFs [17], of which we now recall
the definition. We say that an AND-gate g of a circuit C is decomposable if there is no pair
g1 6= g2 of input gates to g such that some variable g′ ∈ Cvar has a directed path both to g1
and to g2: intuitively, a decomposable AND-gate is a conjunction of inputs on disjoint sets of

ICALP 2017

111:4 A Circuit-Based Approach to Efficient Enumeration

variables. We say that an OR-gate g of C is deterministic if there is no pair g1 6= g2 of input
gates of g and valuation ν of C such that g1 and g2 both evaluate to 1 under ν: intuitively, a
deterministic OR-gate is a disjunction of mutually exclusive inputs. A circuit C is a d-DNNF
if all its AND-gates are decomposable, and all its OR-gates are deterministic.

We further study the subclass of d-DNNFs called structured d-DNNFs, i.e., those having
a v-tree [31]. A v-tree on a set S of variables is a rooted unranked ordered tree T whose
set of leaves is exactly S. We write <T for the order on T in which the nodes are visited
in a pre-order traversal. For a circuit C, we say that a v-tree T on the set Cvar is a v-tree
of C if there is a mapping λ from the gates of C to the nodes of T such that: (i) λ maps the
variables of C to themselves; (ii) for each wire (g, g′) of C, the node λ(g) is a descendant
of λ(g′) in T ; and (iii) for each AND-gate g of C with inputs g1, . . . , gn (in this order), the
nodes λ(g1), . . . , λ(gn) are descendants of λ(g), none of them is a descendant of another, and
we have λ(g1) <T · · · <T λ(gn). Note that having a v-tree implies (by iii) that all AND-gates
are decomposable. A structured d-DNNF is a d-DNNF C given with a v-tree T of C.

Enumeration. As usual for efficient enumeration algorithms [33], we work in the RAM
model with uniform cost measure (see, e.g., [2]), where pointers, numbers, labels for vertices
and edges, etc., have constant size; thus an assignment has size linear in its Hamming weight.

An enumeration algorithm with linear-time preprocessing computes a set of results S(I)
from an input instance I. It consists of two parts. First, the preprocessing phase takes as
input an instance I and produces in linear time an indexed instance I ′ and an initial state.
Second, the enumeration phase repeatedly calls an algorithm A. Each call to A takes as input
the indexed instance I ′ and the current state, and returns a result and a new state: a special
state value indicates that the enumeration is over so A should not be called again. The
results produced by the calls to A must be exactly the elements of S(I), with no duplicates.

We say that the enumeration algorithm has linear delay if the time to produce each new
output element E is linear in the size of E (and independent of the input instance I). In
particular, when the output elements have constant size, each element must be produced
with constant delay, which we call constant-delay enumeration. The memory usage of an
enumeration algorithm is the maximum number of memory cells used during the enumeration
phase (not counting the indexed instance I ′, which resides in read-only memory), expressed
as a function of the input instance size |I| and of the size |O| of the largest output (as in [6]).
Note that constant delay does not imply a bound on memory usage, because the state can
become large even if we only add a constant quantity of information at each step.

Main results. Our main theorem on circuit enumeration is the following:

I Theorem 2.1. Given a structured d-DNNF C with a v-tree T , we can enumerate its
satisfying assignments with linear-time preprocessing, linear delay, and memory usage
O(|O| · log |C|), where |O| is the Hamming weight of the largest assignment.

If we fix a maximal Hamming weight k ∈ N, we can show constant-delay enumeration:

I Theorem 2.2. For any k ∈ N, given a structured d-DNNF C with a v-tree T , we can
enumerate its satisfying assignments of Hamming weight ≤ k with preprocessing in time
O(|T |+ k2 · |C|), delay in O(k), and memory in O(k · log |C|), i.e., linear-time preprocessing
and constant delay for fixed k.

In both results, remember that |C| is the number of gates and wires of C. We prove our
two results in Sections 3–6: the first three sections present the three steps of the linear-time

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:5

preprocessing algorithm, and the last one presents the enumeration algorithm. We then use
the results for database applications in Section 7, in particular re-proving constant-delay
enumeration for MSO queries with free first-order variables on bounded-treewidth structures.

The memory bound in our results is not constant and depends logarithmically on the
input. While we think that this is reasonable, we also show constant-memory enumeration
for some restricted circuit classes: the details are deferred to [3] for lack of space.

3 Reducing to Zero-Suppressed Semantics

We start our linear preprocessing by rewriting the input circuit to an alternative zero-
suppressed semantics where negation is coded implicitly. For this rewriting, we will use the
structuredness assumption on the circuit, in a weaker form called having a compatible order :
this is the first thing that we present. We will also extend slightly our circuit formalism, to
concisely represent sets of inputs with range gates that use this order: we present this second.
Last, we present the alternative semantics, and give our translation result (Proposition 3.9).

Compatible orders. Our structuredness requirement is to have a compatible order :

I Definition 3.1. An order for a circuit C is a total order < on Cvar. For two variables
g1, g2 ∈ Cvar, the interval [g1, g2] consists of the variables g which are between g1 and g2
for <, i.e., g1 ≤ g ≤ g2 or g2 ≤ g ≤ g1. The interval of a gate g is then [min(g),max(g)],
where min(g) denotes the smallest gate according to < that has a directed path to g, and
max(g) is defined analogously. In particular, the interval of any g ∈ Cvar is [g, g] = {g}.

We say that the order < is compatible with C if, for every AND-gate g with inputs
g1, . . . , gn (in this order), for all 1 ≤ i < j ≤ n, we have max(gi) < min(gj); in particular,
the intervals of g1, . . . , gn are pairwise disjoint.

Note that, if a circuit C has compatible order <, every AND-gate g is decomposable: if
some g′ ∈ Cvar had a directed path to two inputs of g then their intervals would intersect.

Observe further that, given a structured d-DNNF C with a v-tree T , we can easily
compute a compatible order < for C in linear time in T . Indeed, let < be the restriction
to Cvar of the order <T on T given by pre-order traversal. Considering any suitable mapping λ
from C to T , for any gate g, we know that min(g) is no less than the first leaf of T in <
reachable from λ(g), and that max(g) is no greater than the last leaf reachable from λ(g).
The intervals of the inputs g1, . . . , gn to an AND-gate are then pairwise disjoint, because
they are included in the sets of reachable leaves from the nodes λ(g1), . . . , λ(gn) in the v-tree,
and none of these nodes is a descendant of another, so they cannot share any descendant
leaf. Hence, if we know a v-tree T for C then we know an order < for C.

Augmented circuits. We use compatible orders to define circuits with a new type of gates:

I Definition 3.2. For k ∈ N, we define a k-augmented circuit C as a circuit with a compatible
order < and with k additional types of gates, called range gates: there are the = i-range gates
for 0 ≤ i < k, and the ≥k-range gates. These gates must have exactly two inputs, which
must be variables of C (they are not necessarily different, so we allow multi-edges in circuits
for this purpose). We talk of augmented circuits when the value of k does not matter.

When evaluating a k-augmented circuit under a valuation ν, each = i-range gate g (resp.,
≥k-range gate g) with inputs g1 and g2 evaluates to 1 if there are exactly i gates (resp., at
least k gates) in [g1, g2] set to 1 by ν; note that g may be unsatisfiable if |[g1, g2]| is too small.

ICALP 2017

111:6 A Circuit-Based Approach to Efficient Enumeration

Range gates are related to the threshold gates studied in circuit complexity (see e.g. [11]),
but we only apply them directly to variables. We can of course emulate range gates with
standard gates, e.g., ≥0-gates always evaluate to 1, and a ≥1-range gate on g1 and g2 can
be expressed as an OR-gate g having the interval [g1, g2] as its set of inputs. However, the
point of range gates is that we can now write this in constant space, thanks to <. This will
be important to rewrite circuits in linear time to our alternative semantics.

Zero-suppressed semantics. We are now ready to introduce our alternative semantics for
augmented circuits. We will do so only on monotone augmented circuits, i.e., without
NOT-gates, because negation will be coded implicitly. We use the notion of traces:

I Definition 3.3. An upward tree T of a monotone augmented circuit C = (G,W, µ, g0) is a
subgraph (G′,W ′) of C, with G′ ⊆ G and W ′ ⊆W , which is a rooted tree up to reversing
the direction of the wires. For all (g′, g) ∈ W ′, we call g′ ∈ G′ a child of g ∈ G′ in T , and
call g the parent of g′ in T ; note that g′ is an input of g in C. A gate g ∈ G′ in T is an
internal gate of T if it has a child in T , and a leaf otherwise. T is a partial trace if its internal
gates are AND-gates and OR-gates and if its gates satisfy the following:

for every AND-gate g in T , all its inputs in C are children of g in T ;
for every OR-gate g in T , exactly one of its inputs in C is a child of g in T .

Note that T cannot contain OR-gates with no inputs, and that its leaves consist of range
gates, variable gates, and AND-gates with no inputs. We call T a trace of C if its root is g0.

We define traces as trees, not general DAGs, because we cannot reach the same gate
in a trace by two different paths (remember that AND-gates in augmented circuits are
decomposable). We can see each trace (G′,W ′) of C = (G,W, µ, g0) as an augmented circuit
(G′,W ′, µ, g0), up to adding to range gates in the trace their inputs in C, and we then have:

I Observation 3.4. A valuation ν of a monotone augmented circuit C satisfies C if and
only if ν satisfies a trace of C.

Observe that we can check if a valuation ν of C satisfies a trace T simply by looking at
the value of ν on the leaves of T ; the definition of ν outside the intervals of the leaves does
not matter. We will change this point to define zero-suppressed semantics, where ν can only
satisfy T if it maps to 0 all the other variables. We then call ν a minimal valuation of T :

I Definition 3.5. Let C be a monotone augmented circuit, ν be a valuation of C, and T be
a trace or partial trace of C. We call ν a minimal valuation of T if:

For every variable g in T , we have ν(g) = 1;
For every ./i-range gate g in T with inputs g1 and g2 in C (where ./ ∈ {=,≥} and i ∈ N),
the number n of variables in [g1, g2] that are set to 1 by ν satisfies the constraint n ./ i;
All other variables of Cvar are set to 0 by ν.

Note that this implies that ν satisfies T . We call ν a minimal valuation for a gate g of C
(resp., for C) if it is a minimal valuation of a partial trace rooted at g (resp., at the output g0).

Note that C may have two minimal valuations ν1 and ν2 whose assignments S1 and S2 are
such that S1 (S2 (see, e.g., Example 3.7 below). Minimality only imposes that, relatively to
a trace T , the valuation sets to 0 all variables that are not tested in T . Minimal valuations
allow us to define the zero-suppressed semantics of a monotone augmented circuit C: the
satisfying valuations of C in this semantics are those that are minimal for some trace.

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:7

I Definition 3.6. A monotone augmented circuit C in zero-suppressed semantics captures the
(generally non-monotone) Boolean function Φ mapping a valuation ν to 1 iff ν is a minimal
valuation for C. We call S(C) the set of satisfying assignments of C in this semantics.

We call C a d-DNNF in zero-suppressed semantics if it satisfies the analogue of determin-
ism: there is no OR-gate g with two inputs g1 6= g2 and valuation ν of C that is a minimal
valuation for both g1 and g2. (Decomposability again follows from the compatible order.)

I Example 3.7. Consider the monotone circuit C whose output gate is an OR-gate with
three inputs: x, y, and an AND-gate of y and z. The circuit C captures x ∨ y in standard
semantics, and it is not a d-DNNF. C has three traces, having one minimal valuation each.
In the zero-suppressed semantics, we have S(C) = {{x}, {y}, {y, z}}, and C captures the
Boolean function (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ y). Further, C is a d-DNNF in that semantics.

Zero-suppressed semantics makes enumeration easier, because it expresses negation
implicitly in a very concise way. The name is inspired by zero-suppressed OBDDs [37,
Chapter 8]: variables that are not tested when following a trace are implicitly set to 0. We
can equivalently define the assignments S(C) of C inductively as follows:

I Lemma 3.8. Let C be a monotone augmented circuit. Let us define inductively a set of
assignments S(g) for each gate g in the following way:

for all g ∈ Cvar, we set S(g) := {g};
for all ./i-range gates g with inputs g1 and g2, we set S(g) := {t ⊆ [g1, g2] | |t| ./ i};
for all OR-gates g with inputs g1, . . . , gn, we set S(g) :=

⋃
1≤i≤n S(gi) (with S(g) = ∅ if

g has no inputs);
for all AND-gates g with inputs g1, . . . , gn, we set S(g) := {S1 ∪ · · · ∪ Sn | (S1, . . . , Sn) ∈∏

1≤i≤n S(gi)} (with S(g) = {{}} if g has no inputs); observe that the unions are always
disjoint because C has a compatible order.

Then, for any gate g, the set S(g) contains exactly the assignments that describe a minimal
valuation for g. In particular, for g0 the output gate of C, the set S(g0) is exactly S(C).

We can now state our main reduction result for this section: we can rewrite any d-DNNF
to an equivalent d-DNNF in zero-suppressed semantics, by introducing ≥0-range gates to
write explicitly that the variables not tested in a trace are unconstrained:

I Proposition 3.9. Given a d-DNNF circuit C and a compatible order <, we can compute
in linear time a monotone 0-augmented circuit C∗ having < as a compatible order, such
that C∗ is a d-DNNF in zero-suppressed semantics and such that S(C∗) is exactly the set of
satisfying assignments of C.

4 Reducing to Normal Form Circuits

In this section, given Proposition 3.9, we work on a monotone 0-augmented d-DNNF circuit C
in zero-suppressed semantics, with a compatible order < to define the semantics of range gates.
We present our next two preprocessing steps for the enumeration of the assignments S(C)
of C: restricting our attention to valuations of the right Hamming weight (for Theorem 2.2
only), and bringing C to a normal form that makes enumeration easier.

Homogenization. Our input augmented circuit C in zero-suppressed semantics may have
satisfying assignments of arbitrary Hamming weight. When proving Theorem 2.1, this is
intended, and the construction that we are about to describe is not necessary. However, when
proving Theorem 2.2 about enumerating valuations of constant weight, we need to restrict

ICALP 2017

111:8 A Circuit-Based Approach to Efficient Enumeration

our attention to such valuations, to ensure constant delay. We do so using the following
homogenization result, adapted from the technique of Strassen [34]:

I Proposition 4.1. Given k ∈ N and a monotone augmented d-DNNF circuit C in zero-
suppressed semantics with compatible order <, we can construct in time O(k2 ·|C|) a monotone
augmented d-DNNF circuit C ′ in zero-suppressed semantics with compatible order < such
that S(C ′) = {t ∈ S(C) | |t| ≤ k}.

Proof Sketch. We create k+2 copies of each gate g, with each copy capturing the assignments
of a specific weight from 0 to k inclusive (or, for the k + 2-th copy, the assignments with
weight > k). In particular, for ≥0-gates g, for 0 ≤ i ≤ k, we use an = i-gate for the copy of g
capturing weight i. We then re-wire the circuit so that weights are correctly preserved. J

Note that this is the only place where our preprocessing depends on k: in particular, for
constant k, the construction is linear-time. This result allows us to assume in the sequel
that the set of assignments of the circuit in zero-suppressed semantics contains precisely the
valuations that we are interested in, i.e., those that have suitable Hamming weight.

Normal form. Now that we have focused on the interesting valuations of our circuit C, we
can bring it to our desired normal form:

I Definition 4.2. A normal circuit C is a monotone augmented circuit such that:
C is arity-two, i.e., each gate has fan-in at most two.
C is ∅-pruned, i.e., no gate g is unsatisfiable (i.e., each gate has some minimal valuation).
C is {}-pruned, i.e., no gate g is 0-valid (i.e., the valuation that sets all variables to 0 is
not a minimal valuation for any gate).
C is collapsed, i.e., it has no AND-gate with fan-in 1.
C is discriminative, i.e., for every OR-gate g with an input that is not an OR-gate (we
call g an exit), g has fan-in 1, fan-out 1, and the one gate with g as input is an OR-gate.

C is a normal d-DNNF if it is additionally a d-DNNF in the zero-suppressed semantics.

The pruned requirements slightly weaken the expressiveness of normal circuits C, because
they forbid that S(C) = ∅ or {} ∈ S(C), which are easy to handle separately. We then have:

I Proposition 4.3. Given a monotone augmented d-DNNF circuit C in zero-suppressed
semantics with compatible order < and with S(C) 6= ∅ and S(C) 6= {{}}, we can build in
O(|C|) a normal d-DNNF C ′, with < as a compatible order, such that S(C ′) = S(C)\{{}}.

Proof Sketch. We reuse the construction of Proposition 4.1 with k = 1 to split the gates so
that they are not 0-valid, eliminate bottom-up the unsatisfiable gates, make C arity-two in a
straightforward way, collapse all AND-gates with fan-in 1, and make C discriminative by
inserting new OR-gates (i.e., the exits) on all wires from non-OR-gates to OR-gates. J

This result allows us to assume in the sequel that we are working with normal d-DNNFs.

5 Indexing OR-Components

This section presents the last step of our preprocessing. Remember that we now work with
a normal d-DNNF, and we want to enumerate its set of assignments. Intuitively, this last
preprocessing will help us to enumerate the choices that can be made at OR-gates. Formally,
we will work on the OR-components of our circuit:

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:9

I Definition 5.1. The OR-component K of an OR-gate g in a normal circuit C is the set of
OR-gates that can be reached from g by going only through OR-gates, following wires in
either direction. We abuse notation and also see K as a DAG, whose vertices are the gates
of K, and whose edges are the wires between them.

Recall from Definition 4.2 that, as C is discriminative, all gates of an OR-component K
with no inputs in K must be exits; we call them the exits of K. For a gate g in K, the exits
of g are the gates of K that have a directed path to g in K; intuitively, they are the “possible
choices” for a partial trace rooted at g. Our goal is to preprocess each OR-component of C
to be able to enumerate efficiently the exits of all OR-gates of C. This enumeration task is
tricky, however: exploring K naively when enumerating would take time dependent of C,
but materializing a reachability index would take quadratic preprocessing time. Thus, we
design an efficient indexing scheme, using the fact that OR-components are multitrees:

I Definition 5.2. A DAG G is a multitree if it has no pair n 6= n′ of vertices such that there
are two different directed paths from n to n′. In particular, forests are multitrees, and so are
polytrees (DAGs with no undirected cycles).

I Lemma 5.3. For any normal d-DNNF C, each OR-component of C is a multitree.

We can then prepare the enumeration of exits of gates in OR-components, by designing
an efficient and generic indexing scheme on multitrees (see [3]). We deduce:

I Theorem 5.4. Given a normal d-DNNF C, we can compute in O(|C|) a structure called
OR-index allowing us to do the following: given an OR-gate g of C, enumerate the exits of g
in its OR-component K, with constant delay and memory usage O(log |K|).

6 Enumerating Assignments

We have described in the previous sections our linear-time preprocessing on the input circuit:
this produces a normal d-DNNF C together with an OR-index, and we wish to enumerate
its assignments S(C) in zero-suppressed semantics. In this section, we show that we can
enumerate the elements of S(C), producing each assignment t with delay O(|t|).

To prove this, we will go back to our definition of zero-suppressed semantics in Section 3,
namely, the minimal valuations of the traces of C (recall Definition 3.3). We will proceed in
two steps. First, we use our preprocessing and the OR-index to show an efficient enumeration
scheme for the traces of C, in a compact representation called compressed traces. Second, we
show how to enumerate efficiently the minimal valuations of a compressed trace.

Compressed traces. We cannot enumerate traces directly because they can be arbitrarily
large (e.g., contain long paths of OR-gates) even for assignments of small weight. We
accordingly define compressed traces as a variant of traces that collapse such paths:

I Definition 6.1. An OR-path of a monotone augmented circuit C = (G,W, µ, g0) is a path
from g ∈ G to g′ ∈ G where all intermediate gates are OR-gates; in particular if (g, g′) ∈W
then there is an OR-path from g to g′. A compressed upward tree of C is a pair (G′,W ′)
where G′ ⊆ G and where W ′ ⊆ G′×G′ is such that for each (g, g′) ∈W ′ there is an OR-path
from g to g′: we require that T is a rooted tree up to reversing the direction of the edges. T
is a compressed partial trace if its internal gates are AND-gates and OR-gates such that:

for every AND-gate g in T , all its inputs in C are children of g in T ;
for every exit g in T (it is an OR-gate), its one input in C is a child of g in T ;
for every non-exit OR-gate g in T , exactly one of its exits g′ in C is a child of g in T .

ICALP 2017

111:10 A Circuit-Based Approach to Efficient Enumeration

We write |T | := |G′|. We call T a compressed trace of C if its root is g0. The minimal
valuations of a compressed trace are defined like for non-compressed traces (Definition 3.5).

The use of compressed traces is that their size is linear in that of their minimal valuations:

I Lemma 6.2. For any compressed trace T of a normal circuit C and minimal valuation ν
for T and C, we have |T | ≤ 6 · |ν|.

From a trace T in a normal d-DNNF C, we can clearly define a compressed trace T ′ with
the same leaves, as follows. Whenever T contains an OR-gate g whose parent gate g′ in T is
not an OR-gate (or when g is the root of T), as g cannot be an exit, we know that there is a
OR-path in T from g to an exit g′′ of g in its OR-component. We “compress” this OR-path
in T ′ as an edge from g to g′′. Conversely, given a compressed trace T ′, we can fill it to a
trace T with the same leaves, by replacing each edge from g to g′ by a witnessing OR-path;
there is only one way to do so because OR-components are multitrees (Lemma 5.3). Hence,
there is a bijection between traces and compressed traces that preserves the set of leaves. As
the minimal valuations of traces and compressed traces are defined in the same way from
this set, we can simply enumerate compressed traces instead of traces. We can then show:

I Proposition 6.3. Given a normal d-DNNF C with its OR-index, we can enumerate its
compressed traces, with the delay to produce each compressed trace T being in O(|T |).

In particular, if all compressed traces have constant size, then the delay is constant.

Proof Sketch. At each AND-gate, we enumerate the lexicographic product of the partial
traces of its two children; at each OR-gate, we enumerate its exits using the OR-index. J

Enumerating valuations of a compressed trace. We now show how, given a compressed
trace T , we can enumerate its minimal valuations (recall Definition 3.5). Restricting our
attention to the leaves of T , we can rephrase our problem in the following way:

I Definition 6.4. The assignment enumeration problem for a total order < on gates Cvar is
as follows: given pairwise disjoint intervals [g−1 , g

+
1], . . . , [g−n , g+

n], and cardinality constraints
./1 ii, . . . , ./n in, where 0 < ij ≤

∣∣[g−j , g+
j]
∣∣ and ./j ∈ {=,≥}, enumerate the values of the

products t1× · · · × tn for all the assignments of the tj ⊆ [g−j , g
+
j] such that |tj | ./j ij for all j.

Indeed, remember that, as C is {}-pruned, the leaves of T consist of variables and range
gates, and their intervals are pairwise disjoint thanks to decomposability. A ./ i-gate with
inputs g−, g+ codes the interval [g−, g+] with cardinality constraint ./ i, and a variable g
simply codes [g, g] with constraint = 1. Further, thanks to {}-pruning, we know that no
range gate is labeled with = 0 or ≥ 0, and thanks to ∅-pruning, we know that no range gate
is labeled with an infeasible cardinality constraint. We claim:

I Proposition 6.5. We can enumerate the solutions to the assignment enumeration problem
for < on Cvar, with each solution t being produced with delay linear in its size |t|.

Again, this is constant-delay when all solutions have size bounded by a constant.

Proof Sketch. We enumerate the possible assignments of weights to intervals with constant-
delay, to reduce to the case where all cardinality constraints are equalities. We then enumerate
the assignments in lexicographic order, using an existing scheme [26, Section 7.2.1.3]. J

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:11

We have concluded the proof of Theorem 2.1 (see Figure 1) and 2.2. Given our input
d-DNNF C and v-tree T rewritten to a compatible order, we rewrite C to an equivalent
normal d-DNNF and compute the OR-index. We then enumerate compressed traces, and the
valuations for each trace. The proof of Theorem 2.2 is the same except that we additionally
use Proposition 4.1 before Proposition 4.3 to restrict to valuations of Hamming weight ≤ k.

7 Applications

We now present two applications of our main results. Our first application recaptures the
well-known enumeration results for MSO queries on trees [6, 23]. The second application
describes links to factorized databases and strengthens the enumeration result of [29].

MSO enumeration. Recall that the class of monadic second-order formulae (MSO) consists
of first-order logical formulae extended with quantification over sets, see e.g. [27]. The
enumeration problem for a fixed MSO formula φ(X1, . . . , Xk) with free second-order variables,
given a structure I, is to enumerate the answers of φ on I, i.e., the k-tuples (B1, . . . , Bk)
of subsets of the domain of I such that I satisfies φ(B1, . . . , Bk). We measure the data
complexity of this task, i.e., its complexity in the input structure, with the query being fixed.

It was shown by Bagan [6] that MSO query enumeration on trees and bounded treewidth
structures can be performed with linear-time preprocessing and delay linear in each MSO
assignment; in particular, if the free variables of the formula are first-order, then the delay is
constant. This latter result was later re-proven by Kazana and Segoufin [25]. We show how
to recapture this theorem from our main results. From the results of Courcelle and standard
techniques (see, e.g., [23], Theorem 6.3.1 and Section 6.3.2), we restrict to binary trees.

I Definition 7.1. Let Γ be a finite alphabet. A Γ-tree T is a rooted unordered binary tree
where each node n ∈ T carries a label in Γ. We abuse notation and identify T to its node set.
MSO formulae on Γ-trees are written on the signature consisting of one binary predicate for
the edge relation and unary predicates for each label of Γ.

Let φ(X1, . . . , Xk) be an MSO formula on Γ-trees, and let T be a Γ-tree. We will show
our enumeration result by building a structured circuit capturing the assignments of φ on T :

I Definition 7.2. A singleton on X1, . . . , Xk and T is an expression of the form 〈Xi : n〉
with n ∈ T . An assignment on X1, . . . , Xk and T is a set S of singletons: it defines a k-tuple
(BS1 , . . . , BSk) of subsets of T by setting BSi := {n ∈ T | 〈Xi : n〉 ∈ S} for each i. The
assignments of φ on T are the assignments S such that T satisfies φ(BS1 , . . . , BSk).

We will enumerate assignments instead of answers: this makes no difference because we
can always rewrite each assignment in linear time to the corresponding answer. We now
state the key result: we can efficiently build circuits (with singletons as variable gates) that
capture the assignments to MSO queries. (While these circuits are not augmented circuits,
they are decomposable, so the definition of zero-suppressed semantics clearly extends.)

I Theorem 7.3. For any fixed MSO formula φ(X1, . . . , Xk) on Γ-trees, given a Γ-tree T , we
can build in time O(|T |) a monotone d-DNNF circuit C in zero-suppressed semantics whose
set S(C) of assignments (as in Definition 3.6) is exactly the set of assignments of φ on T .

Proof Sketch. We simplify φ to have a single free variable and limit to assignments on leaves
as in [6], and rewrite φ to a deterministic tree automaton A using the result of Thatcher and
Wright [35], in time independent of T (though the runtime is generally nonelementary in φ).

ICALP 2017

111:12 A Circuit-Based Approach to Efficient Enumeration

We then compute our circuit as a variant of the provenance circuits in our earlier work [4],
observing that it is a d-DNNF thanks to the determinism of the automaton as in [5]. This
second step is in O(|A| · |T |), so linear in T . A self-contained proof is given in [3]. J

Note that the resulting circuit is already in zero-suppressed semantics, and has no range
gates. By continuing as in the proof of Theorem 2.1 (for free second-order variables) or
of Theorem 2.2 (for free first-order variables), we deduce the MSO enumeration results
of [6, 25]. Note that, once we have computed the tree automaton for the query and the
circuit representation, our proof of the enumeration result is completely query-agnostic: we
simply apply our enumeration construction on the circuit. Our proof also does not depend
on the factorization forest decomposition theorem of [15] used by [25]; it consists only of the
simple circuit manipulation and indexing that we presented in Sections 4–6. Note that the
delay is in O(k · |T |), with no large hidden constants, and O(k) for first-order variables.

A limitation of our approach is that our memory usage bound includes a logarithmic
factor in T , whereas [6, 25] show constant-memory enumeration. However, we can show
that the circuit computed in Theorem 7.3 satisfies an upwards-determinism condition that
allow us to replace the indexing scheme of Theorem 5.4 (our memory bottleneck) by a more
efficient index. We can thus reprove the constant-memory enumeration of [6, 25]: see [3].

Factorized representations. Our second application is the factorized representations of [29],
a concise way to represent database relations [1] by “factoring out” common parts. The atomic
factorized relations are the empty relation ∅, the relation 〈〉 containing only the empty tuple,
and singletons 〈A : a〉 where A is an attribute and a is an element. Larger relations are built
using the relational union and Cartesian product operators on sub-relations with compatible
schemas. For example, 〈A1 : a1〉 × (〈A2 : a2〉 ∪ 〈A2 : a′2〉) is a factorized representation of the
relation on attributes A1, A2 containing the tuples (a1, a2) and (a1, a

′
2). A d-representation

is a factorized representation given as a DAG, to reuse common sub-expressions. We show
that d-representations can be seen as circuits in zero-suppressed semantics:

I Lemma 7.4. For any d-representation D, let C be the monotone circuit obtained by
replacing × and ∪ by AND and OR, replacing ∅ and 〈〉 by AND-gates and OR-gates with no
inputs, and keeping singletons as variables. Then all AND-gates of C are decomposable, and
S(C) (defined as in Section 3) is exactly the database relation represented by D.

Hence, our results in Theorem 2.2 can be rephrased in terms of factorized representations:

I Theorem 7.5. The tuples of a deterministic d-representation D over a schema S can be
enumerated with linear-time preprocessing, delay O(|S|), and memory O(|S| log |D|).

Note that the existing enumeration result on factorized representations (Theorem 4.11
of [29]) achieves a constant memory bound, unlike ours, but it applies only to deterministic
d-representations that are normal (Definition 4.6 of [29]), which we do not assume. Normal
d-representations are intuitively pruned and collapsed circuits where no OR-gate is an input
to an OR-gate: this assumption avoids the need, e.g., for the constructions of Section 5.

8 Conclusion

We have shown how to enumerate satisfying valuations for the structured d-DNNF circuits
used in AI, with linear preprocessing and delay linear in each valuation (so constant delay
for constant Hamming weight). We applied this to factorized databases, and to MSO query

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:13

enumeration [6, 23]. Beyond this, however, our method implies efficient enumeration for all
knowledge compilation problems that compile to structured d-DNNFs (see Introduction).

A natural question is to extend our constructions for other tasks, e.g., computing the i-th
valuation [6, 9]; managing updates [28]; or enumerating in order of weight, or in lexicographic
order: this latter problem is open for MSO [33, Section 6.1] but results are known for
factorized representations following an f-tree [10]. Another direction is to strengthen our
results to constant-memory enumeration on all d-DNNFs, or generalize them to other classes.
We also plan to study practical implementations, because our construction only performs
simple and modular transformations on input circuits, with no hidden large constants.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-

Wesley, 1995. URL: http://webdam.inria.fr/Alice/pdfs/all.pdf.
2 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.
3 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based

approach to efficient enumeration, 2017. URL: https://arxiv.org/abs/1702.05589,
arXiv:1702.05589.

4 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance circuits for trees and
treelike instances. In ICALP, 2015. URL: https://arxiv.org/abs/1511.08723.

5 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike in-
stances: Limits and extensions. In PODS, 2016. URL: https://arxiv.org/abs/1604.
02761.

6 Guillaume Bagan. MSO queries on tree decomposable structures are computable with
linear delay. In CSL, 2006.

7 Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient
enumeration for conjunctive queries over X-underbar structures. In CSL, 2010. URL:
https://hal.inria.fr/hal-00489955.

8 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, 2007. URL: http://www.logique.jussieu.fr/
~durand/webperso/papers/BDGlongversion.pdf.

9 Guillaume Bagan, Arnaud Durand, Etienne Grandjean, and Frédéric Olive. Computing the
jth solution of a first-order query. ITA, 42(1), 2008. URL: https://hal-univ-diderot.
archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf.

10 Nurzhan Bakibayev, Tomáš Kočiskỳ, Dan Olteanu, and Jakub Závodnỳ. Aggregation and
ordering in factorised databases. PVLDB, 2013. URL: https://www.cs.ox.ac.uk/dan.
olteanu/papers/bkoz-vldb13-with-response.pdf.

11 David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. JCSS, 41(3), 1990. URL: http://www.sciencedirect.com/science/article/pii/
002200009090022D.

12 Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. On compiling CNFs
into structured deterministic DNNFs. In SAT, 2015. URL: http://www.dcs.bbk.ac.uk/
~florent/publi/cnf-to-ddnnf-upper-bound.pdf.

13 Simone Bova and Stefan Szeider. Circuit treewidth, sentential decision, and query compi-
lation. In PODS, 2017. URL: https://arxiv.org/abs/1701.04626.

14 Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision diagrams.
In AAAI, 2013. URL: http://reasoning.cs.ucla.edu/fetch.php?id=128&type=pdf.

15 Thomas Colcombet. A combinatorial theorem for trees. In ICALP, 2007. URL: https:
//www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf.

ICALP 2017

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://arxiv.org/abs/1702.05589
http://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1511.08723
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://hal.inria.fr/hal-00489955
http://www.logique.jussieu.fr/~durand/webperso/papers/BDGlongversion.pdf
http://www.logique.jussieu.fr/~durand/webperso/papers/BDGlongversion.pdf
https://hal-univ-diderot.archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf
https://hal-univ-diderot.archives-ouvertes.fr/file/index/docid/221730/filename/bdgo.pdf
https://www.cs.ox.ac.uk/dan.olteanu/papers/bkoz-vldb13-with-response.pdf
https://www.cs.ox.ac.uk/dan.olteanu/papers/bkoz-vldb13-with-response.pdf
http://www.sciencedirect.com/science/article/pii/002200009090022D
http://www.sciencedirect.com/science/article/pii/002200009090022D
http://www.dcs.bbk.ac.uk/~florent/publi/cnf-to-ddnnf-upper-bound.pdf
http://www.dcs.bbk.ac.uk/~florent/publi/cnf-to-ddnnf-upper-bound.pdf
https://arxiv.org/abs/1701.04626
http://reasoning.cs.ucla.edu/fetch.php?id=128&type=pdf
https://www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf
https://www.irif.fr/~colcombe/Publications/ICALP07-colcombet.pdf

111:14 A Circuit-Based Approach to Efficient Enumeration

16 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete
Applied Mathematics, 157(12), 2009. URL: https://www.labri.fr/perso/courcell/
Textes/LinDelayEnum.pdf.

17 Adnan Darwiche. On the tractable counting of theory models and its application to truth
maintenance and belief revision. J. Applied Non-Classical Logics, 11(1-2), 2001. doi:
10.3166/jancl.11.11-34.

18 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. JAIR, 17, 2002. URL:
https://www.jair.org/media/989/live-989-2063-jair.pdf.

19 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded
degree are computable with constant delay. TOCL, 8(4), 2007. URL: https://arxiv.
org/abs/cs/0507020.

20 Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating answers to first-
order queries over databases of low degree. In PODS, 2014. URL: https://hal.inria.
fr/hal-01070898/en.

21 Jinbo Huang and Adnan Darwiche. DPLL with a trace: From SAT to knowledge compila-
tion. In IJCAI, 2005. URL: https://ijcai.org/Proceedings/05/Papers/0876.pdf.

22 Abhay Kumar Jha and Dan Suciu. Knowledge compilation meets database theory: Com-
piling queries to decision diagrams. TCS, 52(3), 2013.

23 Wojciech Kazana. Query evaluation with constant delay. PhD thesis, École normale
supérieure de Cachan, 2013. URL: https://tel.archives-ouvertes.fr/tel-00919786/
document.

24 Wojciech Kazana and Luc Segoufin. Enumeration of first-order queries on classes of struc-
tures with bounded expansion. In PODS. ACM, 2013. URL: https://hal.inria.fr/
hal-00908779/en.

25 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on
trees. TOCL, 14(4), 2013. URL: https://hal.archives-ouvertes.fr/docs/00/90/70/
85/PDF/cdlin-survey.pdf.

26 Donald E. Knuth. The Art of Computer Programming. Volume 4A: Combinatorial Algo-
rithms, Part 1. Addison-Wesley, 2005.

27 Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
28 Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers under

updates. In CSL-LICS, 2014. URL: http://www.theoinf.uni-bayreuth.de/download/
lics14-preprint.pdf.

29 Dan Olteanu and Jakub Závodnỳ. Size bounds for factorised representations of query results.
TODS, 40(1), 2015. URL: http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.
pdf.

30 Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams.
In IJCAI, 2015. URL: http://reasoning.cs.ucla.edu/fetch.php?id=157&type=pdf.

31 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on struc-
tured decomposability. In AAAI, 2008. URL: http://aaai.org/Papers/AAAI/2008/
AAAI08-082.pdf.

32 Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. Comput., 38(4), 2008. doi:10.1137/070707932.

33 Luc Segoufin. A glimpse on constant delay enumeration (invited talk). In STACS, 2014.
doi:10.4230/LIPIcs.STACS.2014.13.

34 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Math-
ematik, 264, 1973. URL: https://eudml.org/doc/151394.

35 James W. Thatcher and Jesse B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Math. Systems Theory, 2(1), 1968.

https://www.labri.fr/perso/courcell/Textes/LinDelayEnum.pdf
https://www.labri.fr/perso/courcell/Textes/LinDelayEnum.pdf
http://dx.doi.org/10.3166/jancl.11.11-34
http://dx.doi.org/10.3166/jancl.11.11-34
https://www.jair.org/media/989/live-989-2063-jair.pdf
https://arxiv.org/abs/cs/0507020
https://arxiv.org/abs/cs/0507020
https://hal.inria.fr/hal-01070898/en
https://hal.inria.fr/hal-01070898/en
https://ijcai.org/Proceedings/05/Papers/0876.pdf
https://tel.archives-ouvertes.fr/tel-00919786/document
https://tel.archives-ouvertes.fr/tel-00919786/document
https://hal.inria.fr/hal-00908779/en
https://hal.inria.fr/hal-00908779/en
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
http://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
http://reasoning.cs.ucla.edu/fetch.php?id=157&type=pdf
http://aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
http://aaai.org/Papers/AAAI/2008/AAAI08-082.pdf
http://dx.doi.org/10.1137/070707932
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.13
https://eudml.org/doc/151394

A. Amarilli, P. Bourhis, L. Jachiet, and S. Mengel 111:15

36 Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
URL: https://arxiv.org/abs/1605.05102.

37 Ingo Wegener. Branching programs and binary decision diagrams. SIAM, 2000.

ICALP 2017

https://arxiv.org/abs/1605.05102

Automata-Based Stream Processing
Rajeev Alur1, Konstantinos Mamouras2, and Caleb Stanford3

1 Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA
alur@cis.upenn.edu

2 Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA
mamouras@cis.upenn.edu

3 Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA
castan@cis.upenn.edu

Abstract
We propose an automata-theoretic framework for modularly expressing computations on streams
of data. With weighted automata as a starting point, we identify three key features that are
useful for an automaton model for stream processing: expressing the regular decomposition of
streams whose data items are elements of a complex type (e.g., tuple of values), allowing the hi-
erarchical nesting of several different kinds of aggregations, and specifying modularly the parallel
execution and combination of various subcomputations. The combination of these features leads
to subtle efficiency considerations that concern the interaction between nondeterminism, hierar-
chical nesting, and parallelism. We identify a syntactic restriction where the nondeterminism is
unambiguous and parallel subcomputations synchronize their outputs. For automata satisfying
these restrictions, we show that there is a space- and time-efficient streaming evaluation algo-
rithm. We also prove that when these restrictions are relaxed, the evaluation problem becomes
inherently computationally expensive.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases weighted automata, Quantitative Regular Expressions, stream processing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.112

1 Introduction

Finite-state automata have been used very successfully to solve the problem of pattern
matching in strings [1]. For simple patterns that are given as regular expressions, there
have been proposed several pattern-matching algorithms based on Nondeterministic Finite
Automata (NFAs) [31] or Deterministic Finite Automata (DFAs) [7] with strong efficiency
guarantees. A particularly desirable feature of such automata-based algorithms is that they
process the input text in one pass, i.e. by reading each letter of the input text consecutively
from left to right, thus adhering to the so-called streaming model of computation [28].

Pattern-matching is one basic computational problem that arises in the context of data
stream processing [14], i.e. the processing of data that arrives in real time at a high rate (e.g.,
for analyzing stock market data and web click-streams, or for monitoring sensor measurements
and network traffic). To process data streams, the core computational problem that typically
needs to be solved is the aggregation of parts of the stream into numerical values. For
example, calculating the average price of a stock, monitoring the amount of network traffic
an IP address has generated so far, or maintaining for a sensor the minimum and maximum

EA
T

C
S

© Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 112; pp. 112:1–112:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.112
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

112:2 Automata-Based Stream Processing

measurements it has recorded over the last 10 minutes. Given the usefulness of automata for
finding patterns in streams of symbols, the question arises whether similar automata-based
techniques can be employed for computing quantitative summaries of data streams.

We are thus led to consider weighted automata [19], which extend classical nondeterminis-
tic automata by annotating transitions with weights and can be used for the computation of
simple quantitative properties on finite or infinite strings of symbols [10]. Weighted automata
have found applications in speech and language processing [26], and they are also used for
modeling systems and verifying quantitative properties of these systems [12]. However, the
computational problems that are relevant for quantitative verification are analysis questions
such as universality and equivalence. These questions are decidable only when the weights
and the operations used on them are very simple [24, 2], so the studied models are usually
equipped with a very limited set of primitive operations that are insufficient for expressing
realistic streaming computations.

Since weighted automata are not expressive enough for typical streaming computations,
our goal is to extend them for this purpose while maintaining the efficiency of their evaluation.
First, we notice that the elements of data streams are typically not symbols from a finite
alphabet but rather structured objects such as tuples of values. It is therefore necessary
to work in the symbolic setting [33, 34]: the input elements belong to a potentially infinite
alphabet D, and we consider a collection of primitive predicates on D for describing subclasses
of elements using Boolean formulas over the primitive predicates. Additionally, realistic
computations often involve the parsing of an input stream and aggregation of subcomputations;
for example, we may want to subsample a sequence of sensor measurements by averaging them
in groups of three consecutive measurements, and then compute the maximum measurement
of every minute. Naturally describing such calculations requires that we allow hierarchical
nesting of operations. In general, the required subcomputations may be disjoint from one
another, and need to be executed in parallel. For example, suppose the automaton A1
describes a long-term average (e.g., over the last month) of a sensor measurement, A2
calculates a short-term average (e.g., over the last minute), and op is the “absolute difference”
binary operation. Then, the construct op(A1,A2) describes the parallel execution of A1 and
A2 and the combination of their results using the op operation. Thus, the overall computation
outputs the distance between the short-term and long-term average. This construct for
parallelism facilitates the modular description of computations.

Our contribution. Putting these desired features together in a model that supports nonde-
terministic parsing, hierarchical nesting of quantitative operations and modular parallelism
is challenging. The core computational problem is the incremental evaluation of automata
on unbounded data streams, and the goal is to provide an algorithm with strong space-
and time-efficiency guarantees. We will establish formally that the naive combination of
the desired features makes efficient evaluation impossible. Moreover, we will show that by
restricting to unambiguous nondeterminism [9] and by constraining the parallel execution
of op(A1, . . . ,Ak) so that the automata Ai synchronize their outputs, we can achieve very
efficient evaluation. More specifically, our main results are the following:
1. The evaluation problem for automata that allow ambiguous nondeterminism and nesting

of quantitative operations requires space that is linear in the size of the input stream.
2. The evaluation problem for automata with unambiguous nondeterminism and unsynchro-

nized parallel execution requires space that is exponential in the size of the automaton.
3. For automata that are unambiguous and allow only synchronized parallel execution, the

evaluation problem requires space and time-per-element that is quadratic in the size of
the automaton and independent of the size of the stream.

R. Alur, K. Mamouras, and C. Stanford 112:3

Related work. The features of our Streaming Automata (SAs) were inspired by the Quanti-
tative Regular Expressions (QREs) of [5], which have constructs for parallelism and nesting of
sequential aggregators. QREs were extended in [25] with streaming relational operations [22],
and an efficient implementation was given for processing realistic workloads (Yahoo streaming
benchmark [13] and NEXMark benchmark [32]). However, the evaluation algorithm of [5] and
the implementation of [25] were not based on automata-theoretic techniques. A simplified
version of the QREs of [5] without parameters allows a straightforward translation into our
SAs that is very similar to the translation of unambiguous regexes into unambiguous NFAs.
This translation is desirable not only because it gives rise to a cleaner evaluation algorithm,
but also because it opens the door for systematic query optimization using automata-theoretic
techniques, which could be explored in future research.

The model of Cost Register Automata (CRAs) was proposed in [4] and was shown in
[5] to be expressively equivalent to QREs. However, CRAs cannot be used for the efficient
evaluation of QREs, because the translation of QREs into CRAs incurs a doubly exponential
blowup. The model of Streaming Automata that is proposed here is an appropriate setting
for the efficient evaluation of QREs.

A two-level variant of weighted automata for infinite strings has recently been proposed
[11] that can express long-run quantitative properties of a stream, for example, the average
response time of a system. By restricting both the nesting depth (to 1) and the allowed
aggregation operations, the model of [11] is shown to have decidable emptiness and universality
problems. With the goal of modeling realistic streaming computations, we focus on arbitrary
nesting and a general set of operations. We are therefore concerned primarily with evaluation
complexity rather than decidability of these problems.

Symbolic automata and transducers [33, 34, 15, 16] have been introduced for matching
and transforming strings over large or infinite alphabets. Our work builds on symbolic
automata but instead addresses the problem of quantitative aggregation.

There is also related work on data words and data/register automata and their associated
logics [23, 29, 18, 8]. These models operate on words over an infinite alphabet, which is
typically of the form Σ× N, where Σ is a finite set of tags. They allow the comparison of
infinite values using only the equality predicate. In contrast, our SAs do not allow binary
predicates on stream elements, but instead allow a rich set of operations on the values.

More broadly, there is a vast line of research on efficient algorithms for the streaming
model of computation. See the survey [28] and some illustrative works [27, 20, 3, 17, 6]
that have been influential. The algorithms studied in this line of research are designed for
specific problems (for example, finding the number of distinct elements in a stream) and
typically use approximation and randomization. Our considerations here are orthogonal, and
complementary, to the literature on streaming algorithms. We study the hierarchical nesting
of several different kinds of aggregations, and we study the computational resources that are
needed for parsing the stream and combining all intermediate results.

2 Streaming Automata

Symbolic input. Figure 1 shows two symbolic weighted automata over different inputs.
M1 implements MaxBlockSum: on an input stream of natural numbers separated into
(possibly empty) blocks by the separator 0, it returns the maximum sum of a block. As we
may viewM1 as a weighted automaton over the semiring (N ∪ {−∞},max,+), it does not
yet introduce anything new to our model except the symbolic input. All transitions use
the formal variable x to denote the current input data item, a natural number; the syntax

ICALP 2017

112:4 Automata-Based Stream Processing

M1 computing MaxBlockSum
input data type N, weights N, output N
fold + : N× N→ N, collect max : N× N→ N

q0 q1 q2
0

0

(x = 0) 7→ 0 (x = 0) 7→ 0

x 7→ 0 (x > 0) 7→ x x 7→ 0

M2 computing MaxSuffixSum
input data type Z, weights Z, output Z
fold + : Z× Z→ Z, collect max : Z× Z→ Z

q0 q1
0 ε 7→ 0

x 7→ 0 x 7→ x

Figure 1 Weighted automata with symbolic input.

M3 computing MaxBlockSum
input data type N, weights N, output N
fold max : N× N→ N

q0 q1
0 S

(x = 0) 7→ 0

(x = 0) 7→ 0

S computing Sum
input data type N, weights N, output N
fold + : N× N→ N

q0 q1
0 (x > 0) 7→ x

(x > 0) 7→ x

Figure 2 A streaming automaton employing hierarchy.

ϕ(x) 7→ α(x) means that if x matches predicate ϕ, then the transition can be taken, and has
weight α(x). We write simply x 7→ α(x) if ϕ is True, i.e. if any x is allowed. A transition
labeled with ε 7→ r matches the empty string and has weight r.
M1 starts at q0 for some time, mapping each input x to weight 0 (effectively ignoring it).

Then, it nondeterministically picks a block by transitioning to q1 on input the separator x = 0.
(q1 is also a start state, which corresponds to the first block, before any 0 has occurred.) At
q1, all inputs matching the predicate x > 0 are assigned weight x. Finally, on input x = 0,
the end of the block, it transitions to q2, where future x are again assigned weight 0. M1
adds up (folds) all the assigned weights to obtain the total weight of the path, which is by
construction the sum of the particular block chosen. The output of the automaton is the
maximum weight (collect) over all paths.
M2 implements MaxSuffixSum: on an input stream of integers, it returns the maximum

sum of a suffix of those integers. The input data type is now Z rather than N. M2 (likeM1)
starts at q0 and assigns inputs x to weight 0 for some time. Then, it nondeterministically
guesses the start of the suffix by switching to q1, where each future input x is assigned weight
x. The fold operation is again +, so that the weight of the path is the sum of that particular
suffix. The collect operation returns the max over all paths, i.e. over all suffixes.

Hierarchy. The nondeterminism ofM2 is very natural: exactly where the best suffix starts
cannot be known ahead of time, so we choose it nondeterministically. In contrast, since the
input toM1 is parsable into a sequence of blocks, using nondeterminism to choose a block
seems artificial. Instead, we would like to deterministically parse the stream into blocks,
then call a subroutine (sum) on each block. Figure 2 shows how to do this in our model.
First, the weighted automaton S is built to compute the sum of a nonempty input stream by
straightforwardly folding with +. M3 parses the stream into blocks separated by 0 and calls
S as a subautomaton on each block, where the weight of that transition is the return value
of S. All the block sums returned by S are now weights along a single path, and they are
folded with the operation max.

R. Alur, K. Mamouras, and C. Stanford 112:5

M4 computing LastBlockAverage
input data type N, weights Q, output Q
fold + : Q×Q→ Q

q0 q1 q2
0

0
(x = 0) 7→ 0 div(S, C)

x 7→ 0

C computing Count
input data type N, weights N, output N
fold + : N× N→ N

q0 q1
0 (x > 0) 7→ 1

(x > 0) 7→ 1

Figure 3 A streaming automaton employing parallelism.

The example of MaxBlockSum is a typical case where the two operations of a nonde-
terministic weighted automaton (fold ⊗ and collect ⊕) can be replaced by a hierarchy of two
streaming automata, each of which is unambiguous: there is at most one accepting path on
any given input string. The fold operation ofM1 (+) becomes the fold operation of S, and
the collect operation ofM1 (max) becomes the fold operation ofM3. Unambiguity implies
that the collect operations inM3 and S are never used, and need not be specified.

Parallelism. After parsing a stream into blocks, multiple computations may be required on
each block. For this purpose, in our model a transition may be labeled not just with a single
subautomaton (as inM3), but with a call op(A1, . . . ,Am) where each Ai is a subautomaton.
In a simple example, the stream is separated by 0 into blocks, and we want to report the
average of the last block. Figure 3 gives an automatonM4 implementing this. On every 0
characterM4 may nondeterministically guess that we are now going to the last block, and
move from q0 to q1. It subsequently makes an invocation div(S, C) to two subautomata. S
(from Figure 2) returns the sum of the elements in the block if there is at least one, and C
returns the count if there is at least one. div : N×N→ Q then divides the two results to get
average. The parallelism arises because the stream is read into both S and C in parallel.

LikeM3,M4 is unambiguous, with at most one accepting path on each input. M4 also
satisfies parallel-consistency: in the call to div(S, C), S and C were defined on the same
input strings. Our definition of a streaming automaton requires both unambiguity and
parallel-consistency; the necessity of these restrictions is justified by Section 4.

Formal definition

The general definition is parameterized by a signature (D,O, D,P), where D is a collection
of (possibly infinite) types, and O is a collection of operations D1 ×D2 × · · · ×Dk → Dk+1
with each Di a type in D. We write O[D1×D2× · · · ×Dk → Dk+1] for the set of operations
in O which are functions of the specific indicated function type. D ∈ D is a specific set
for the input stream, and P is a set of predicates, which are identified with subsets of D.
We require that P is closed under Boolean operations, and that satisfiability for ϕ ∈ P is
decidable as in [34]. From this point, we assume the fixed signature (D,O, D,P).

The class of nondeterministic streaming automata is defined hierarchically as NSA :=⋃∞
k=0 NSAk. For k ≥ 0, an element of NSAk is a tuple (Q,X, Y,∆, I, F,⊗,⊕), semantically

representing a partial function from D∗ to Y . Q is a finite set of states, X ∈ D is the weight
type, Y ∈ D is the output type, and ∆ is a set of transitions. Each transition goes from a
state q ∈ Q to a state q′ ∈ Q, and has a label, which is one of three kinds: (i) A satisfiable
predicate ϕ ∈ P and a weight assignment α ∈ O[D → X]. (ii) An epsilon (ε) and a weight
x ∈ X. (iii) A call to op(A1,A2, . . . ,Am), where op ∈ O[Y1 × Y2 × · · · × Ym → X] and each
Ai ∈ NSAk−1, such that the output type of Ai is Yi. The weight of the transition in this
case will be op applied to the outputs of the Ai.

ICALP 2017

112:6 Automata-Based Stream Processing

I : Q ⇀ Y is the initialization function, a partial function assigning an initial value to the
computation. Its domain is the set of initial states, denoted QI ⊆ Q. Conversely, F : Q ⇀ X

is the final function; it allows for slightly more flexibility than in our examples by appending
a final weight to accepting paths. Its domain is the set of final states or accepting states,
denoted QF ⊆ Q. The fold operation ⊗ ∈ O[Y ×X → Y] folds together the weights along a
path, and the collect operation ⊕ ∈ O[Y ×Y → Y] combines the results of all accepting paths
to arrive at a final output value. The operation ⊕ must be commutative and associative,
and ⊗ must be left-distributive over ⊕.

The class NSA0, in which there are no transitions of kind (iii), consists of symbolic
weighted automata. A subautomaton of A is an automaton Ai ∈ NSAk−1 appearing in a
transition of kind (iii) in A. The size of A is the sum of the number of states |Q|, the number
of transitions |∆|, and the sizes of all the subautomata, counted with multiplicity. Effectively,
an automaton must be written down once for every time it is used.

As in the examples, the automaton A is semantically interpreted as a function JAK :
L(A) → Y , where L(A) ⊆ D∗ is the regular language of A. L(A) and JAK are defined
recursively by also defining L(τ) and JτK for each transition τ of the automaton. (i) For a
transition τ labeled with predicate ϕ ⊆ D and weight assignment α : D → X, L(τ) = {d ∈
D | ϕ(d)}, and JτK(d) = α(d). (ii) For an epsilon transition τ with weight x ∈ X, L(τ) = {ε}
and JτK(ε) = x. (iii) Finally, for a transition τ labeled with op(A1, . . . ,Am), the language
L(τ) = L(A1)∩ · · · ∩L(Am), and for any string s ∈ L(τ), JτK(s) = op(JA1K(s), . . . , JAmK(s)).

For an automaton A ∈ NSAk, a path on input s ∈ D∗ consists of a sequence of states
q0, q1, q2, . . . , qn ∈ Q, a sequence of strings s1, s2, . . . , sn ∈ D∗, and a sequence of transitions
τ1, τ2, . . . , τn ∈ ∆, such that q0 ∈ QI , s = s1s2 . . . sn, and for each i, τi is a transition from
qi−1 to qi such that si ∈ L(τi). A path is accepting if qn ∈ QF . The language L(A) is the set of
strings s for which there exists an accepting path on input s. The weight of an accepting path
is, with left-to-right evaluation order, I(q0)⊗ Jτ1K(s1)⊗ Jτ2K(s2)⊗· · ·⊗ JτnK(sn)⊗F (qn) ∈ Y .

An implicit ε-transition is a transition τ with ε ∈ L(τ). A is well-formed if it has no
implicit ε-transition cycles, and all of its subautomata are well-formed. Finally, the evaluation
of A on input s ∈ L(A) is given by JAK(s) := y1 ⊕ · · · ⊕ yN ∈ Y , where y1, . . . , yN are the
weights of all (finitely many) distinct accepting paths on input s. As ⊕ is commutative and
associative, this is well-defined.

Streaming automata. We recursively say that an NSA A is unambiguous if there is at
most one accepting path on every input string, and each subautomaton of A is unambiguous.
An NSA A is called parallel-consistent if, at every transition of kind (iii) labeled with
op(A1,A2, . . . ,Am), L(A1) = L(A2) = · · · = L(Am), and every subautomaton is parallel-
consistent. A streaming automaton (SA) is an NSA A that is unambiguous and parallel-
consistent. The collect operation ⊕ of an SA may be left off, as it is never invoked. We
additionally assume that every SA is trim: every state has an accepting path which goes
through it, and all subautomata are trim.

Checking if an NSA is an SA. Both of the two restrictions (unambiguity and parallel-
consistency) can be checked efficiently. The main idea is to assign to each subautomaton A
an underlying NFA NFA(A), such that L(A) = L(NFA(A)), from the bottom up. Given an
NSA A, the algorithm recursively verifies that A is unambiguous and parallel-consistent, and
also returns the NFA NFA(A) such that L(A) = L(NFA(A)). Assume this has been done for
all subautomata of A. Checking parallel-consistency of a transition labeled op(A1, . . . ,Am)
is then the equivalence problem for the unambiguous NFAs NFA(A1), . . . ,NFA(Am); ex-

R. Alur, K. Mamouras, and C. Stanford 112:7

actly this problem is solved in polynomial time by a nontrivial algorithm of [30]. Once
parallel-consistency is established, we form NFA(A) by replacing each transition labeled with
op(A1, . . . ,Am) with ε-transitions to and from a copy of NFA(A1). Crucially, we assume
parallel-consistency in only using A1. This guarantees that the NFA is linear in the size of A,
and avoids the alternative of constructing an NFA for L(A1)∩ · · ·∩L(Am). The construction
preserves accepting paths, so L(A) = L(NFA(A)), and if one is unambiguous, both are.
Finally, checking that NFA(A) is unambiguous is a reachability check in NFA(A)×NFA(A).

The necessary operations for the algorithm to work lift to the symbolic setting given the
decidability restrictions on the predicates. See e.g. Corollary 1 of [34].

3 Evaluation Algorithm

In this section we present a space- and time-efficient evaluation algorithm for streaming
automata, i.e. NSAs that are unambiguous and parallel-consistent. We will show that for
such automata the space footprint of the evaluation algorithm and the time required to
process each element are independent of the size of the stream and quadratic in the size of
the automaton. As we will see in Section 4, both these syntactic restrictions on automata
are necessary for the efficiency guarantees that we present.

Given an SA A and a sequence w of data items, the computation of JAK(w) amounts to
discovering a global hierarchical path for w that may span several levels of subautomata
and performing incrementally the aggregations that are prescribed by the top level and all
subautomata. The crucial challenge is that the unambiguous nondeterminism of A requires
the exploration of all possible paths in parallel. It is not obvious how this can be accomplished
using a small amount of space, and indeed Theorem 5 in the next section shows that this
is impossible in the presence of ambiguous nondeterminism. For plain NFAs or weighted
automata, ambiguous nondeterminism is not an issue, because when two tokens end up at
the same state during evaluation they can be merged. For streaming automata, however,
such merging is not possible. The main insight is that unambiguity guarantees that no two
tokens will ever end up at the same state, even at the lowest level of the automaton. As the
evaluation algorithm explores each tentative path, it maintains a stack of values for that
path, which holds the partial aggregates for the subpaths that have been discovered so far.
We can think of these stacks as “execution tokens” that are updated whenever a simple
transition occurs (upon consumption of a data item), and which are passed to subautomata
as a way to implement the recursive definition of global accepting paths.

Before presenting the technical details, let us give a very high-level description of the
evaluation algorithm and its correctness proof. First, we will introduce the notion of a
configuration, which describes the assignment of stack tokens to the active states of the
automaton. This is a generalization of configurations for NFAs, which only indicate the
active states. We will define a semantics for configurations, which summarizes the accepting
paths from active states as well as the computations that are performed along these paths.
Then, the correctness proof of the algorithm can be reduced to establishing a simple semantic
property for configurations: if C is the current configuration and C ′ is the configuration
that the evaluation algorithm computes from C after consuming the data item d, then
JC ′K(w) = JCK(dw) for every possible suffix w. The presence of several nested levels of
subautomata presents a major challenge for proving this property, since a subautomaton
potentially has to compute simultaneously on several subsequences of the stream seen so far
(we call these subsequences “parallel input threads”).

ICALP 2017

112:8 Automata-Based Stream Processing

input data type Z
weights N, output N
fold + : N× N→ N

q0 q1
0 0(x = 0) 7→ 0

x 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

start/next configuration input threads
[9] q0 : [9, 0] {[9] ε}

q1 : [9, 0]
2 q0 : [9, 0] {[9] 2}

q1 : [9, 2]
−1 q0 : [9, 0] {[9] 2 −1}

q1 : [9, 2]
3 q0 : [9, 0] {[9] 2 −1 3}

q1 : [9, 5]
0 q0 : [9, 0] {[9] 2 −1 3 0}

q1 : [9, 0]
6 q0 : [9, 0] {[9] 2 −1 3 0 6}

q1 : [9, 6]

Figure 4 Example evaluation of an SA on one input thread.

I Example 1. The automaton of Figure 4 computes on a stream of integers and outputs
the sum of all strictly positive numbers that have occurred after the last occurrence of a 0
(or from the start if no 0 has occurred yet). We start the execution by supplying a context
stack, which holds the partial aggregations of upper levels (if there are any), and then we
supply the sequence of data items. The context stack [9] of this example is initialized by
pushing the aggregate 0 onto it, and then every time an element is consumed the aggregate
at the top of the stack is appropriately updated.

I Example 2. The automaton of Figure 5 computes on a stream of integers and outputs
the sum of all strictly positive numbers that have occurred as long as there are exactly two
occurrences of a 0. We can compute on several parallel input threads by supplying a new
context stack every time we want to spawn a new thread of execution. Figure 5 shows an
example execution with three different input threads. By starting a new input thread after
the occurrence of a 0 we guarantee that there is at most one stack token on each state.

Epsilon transitions can be eliminated in a bottom-up fashion with a variant of the standard
ε-elimination construction for weighted automata [19]. We consider in this section automata
that are free of both explicit and implicit ε-transitions, and we assume w.l.o.g. that every
invocation op(A1, . . . ,Ak) has its own call state p, from which no other transition emanates.

Suppose that V is the type of all values. Let St be the type of all finite stacks of values,
and [] be the empty stack. We consider the total operation push : St × V → St, and the
partial operations pop : St ⇀ St and top : St ⇀ V . The operations pop and top are undefined
on the empty stack. We write s.push(x) to denote the application of push on the stack s
and the value x. Similarly, we write s.pop and s.top for the other operations. For example,
we have [].push(x).push(y) = [x].push(y) = [x, y] and [x, y].pop.top = [x].top = x. We write
St[X1, . . . , Xn−1, Xn] for the type of stacks of size n whose top element is of type Xn, the
next-to-top element is of type Xn−1 and so on. We call all types of this form bounded
stack types. If T = St[X1, . . . , Xn] then we write T@[Xn+1, . . . , Xn+m] to denote the type
St[X1, . . . , Xn, Xn+1, . . . , Xn+m]. We also abbreviate T@[Xn+1] by T@Xn+1.

The rank of an SA A is the smallest k such that A ∈ NSAk, or in other words the
nesting depth of the automaton. We define the notion of a configuration for an automaton by
induction on its rank. For an automaton A = (Q,X, Y,∆, I, F,⊗) of rank 0 and a bounded
stack type T , an (A, T)-configuration is a partial map C : Q ⇀ T@Y ; we denote the domain
dom(C). Intuitively, the configuration describes the placement of stack tokens on some of
the states of A. For an automaton A = (Q,X, Y,∆, I, F,⊗) of rank strictly greater than 0,
an (A, T)-configuration C is a vector consisting of a partial function C0 : Q ⇀ T@Y and a

R. Alur, K. Mamouras, and C. Stanford 112:9

input data type Z
weights N, output N
fold + : N× N→ N

q0

q1

q2

0

(x = 0) 7→ 0

(x = 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

(x > 0) 7→ x

(x < 0) 7→ 0

start/next configuration input threads
[90] q0 : [90, 0] {[90] ε}

3 q0 : [90, 3] {[90] 3}
−2 q0 : [90, 3] {[90] 3 −2}

0 q1 : [90, 3] {[90] 3 −2 0}
[70] q0 : [70, 0] {[90] 3 −2 0,

q1 : [90, 3] [70] ε}
2 q0 : [70, 2] {[90] 3 −2 0 2,

q1 : [90, 5] [70] 2}
−1 q0 : [70, 2] {[90] 3 −2 0 2 −1,

q1 : [90, 5] [70] 2 −1}
6 q0 : [70, 8] {[90] 3 −2 0 2 −1 6,

q1 : [90, 11] [70] 2 −1 6}
0 q1 : [70, 8] {[90] 3 −2 0 2 −1 6 0,

q2 : [90, 11] [70] 2 −1 6 0}
[30] q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0,

q1 : [70, 8] [70] 2 −1 6 0,
q2 : [90, 11] [30] ε}

−4 q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0 −4,
q1 : [70, 8] [70] 2 −1 6 0 −4,
q2 : [90, 11] [30] −4}

−5 q0 : [30, 0] {[90] 3 −2 0 2 −1 6 0 −4 −5,
q1 : [70, 8] [70] 2 −1 6 0 −4 −5,
q2 : [90, 11] [30] −4 −5}

4 q0 : [30, 4] {[90] 3 −2 0 2 −1 6 0 −4 −5 4,
q1 : [70, 12] [70] 2 −1 6 0 −4 −5 4,
q2 : [90, 15] [30] −4 −5 4}

Figure 5 Example evaluation of an SA on several input threads.

subconfiguration for every subautomaton occurrence. More specifically, for every transition
(p, opi(Ai1,Ai2, . . . ,Ain), q) of A, the configuration C specifies an (Ai1, T@Y)-configuration
Ci1 and a (Aij ,St[])-configuration Cij for j = 2, . . . , n. That is, the configuration describes
the placement of stack tokens on the top-level states and specifies subconfigurations for the
subautomata occurrences. We write Cfg〈A, T 〉 for the set of all (A, T)-configurations.

For an automaton A = (Q,X, Y,∆, I, F,⊗) and an (A, T)-configuration C, we will
define simultaneously C-paths, unambiguity of C, and the denotation JCK : D∗ ⇀ T@Y by
induction on the rank of A. A C-path is a path starting from the configuration C.

Automaton A of rank 0 : A C-path (labeled with d1d2 . . . dn ∈ D∗) is a sequence of
the following form: q0 →φ1/σ1

d1/x1
q1 →φ2/σ2

d2/x2
· · · →φn/σn

dn/xn
qn, such that q0 ∈ dom(C) and

(qi−1, φi, σi, qi) ∈ ∆ with φi(di) = true and xi = σi(di) for every i = 1, . . . , n. A C-path
is said to be accepting if it ends with an accepting state. The weight of an accepting
C-path is defined to be the value fold(y,⊗, x1x2 . . . xnxn+1) where y = C(q0).top and
xn+1 = F (qn). The configuration C is unambiguous if for every label w ∈ D∗ there is at
most one accepting C-path labeled with w. For an unambiguous configuration C, the
denotation JCK : D∗ ⇀ T@Y is defined as follows: if there is an accepting C-path π

labeled with w starting with the state q, then JCK w = s.pop.push(y) where s = C(q) is
the initial stack and y is the weight of π.
Automaton A of rank greater than 0 : A top-level C-path is a sequence of top-level
transitions that can be of the following two forms:

p→φ/σ
d/x q where (p, φ, σ, q) ∈ ∆ with φ(d) = true and x = σ(d)

p→op(A1,...,An)
w/x q where w 6= ε and (p, op(A1, . . . ,An), q) ∈ ∆ with

x = op(JA1K w, . . . , JAnK w)

that starts with a state in the domain of C0. Now, a cross-level C-path is a sequence of

ICALP 2017

112:10 Automata-Based Stream Processing

top-level transitions with an additional prefix called a cross-level transition:

→op(Ai1,...,Ain)
w/t qwhere w 6= ε and (p, op(Ai1, . . . ,Ain), q) ∈ ∆ for some state p

s1 = JCi1K(w) : T@[Y, Z1] and sj = JCijK(w) : [Zj] for j = 2, . . . , n
t = s1.pop.pop.push(s1.pop.top⊗ op(z1, . . . , zn)) where zj = sj .top

Such a prefix summarizes a path in the lower levels, and its annotation w/t specifies both
a label w 6= ε and a stack t : T@Y for continuing at the top level. The label of a path is
the concatenation from left to right of the strings over D that annotate the transitions.
The weight of a top-level C-path is defined as in the 0-rank case, and the weight of a
cross-level C-path is similar but the initial stack is specified by the first (cross-level)
transition. The configuration C is unambiguous if it satisfies the following two conditions:
1. For every label w ∈ D∗ there is at most one accepting C-path (top-level or cross-level)

labeled with w.
2. For every transition (p, op(Ai1, . . . ,Ain), q), the denotations JCi1K, . . . , JCinK have

equal domains.
For an unambiguous configuration C, the denotation JCK : D∗ ⇀ T@Y is defined as
follows: if there is an accepting C-path π (top-level or cross-level) labeled with w, then
JCK w = s.pop.push(y) where s is the initial stack (specified by C0 for top-level C-paths,
and by the initial transition for the cross-level C-paths) and y is the weight of π.

For an SA A = (Q,X, Y,∆, I, F,⊗) and a bounded stack type T , we define the denotation
〈〈A〉〉T : T → (D∗ ⇀ T@Y) as 〈〈A〉〉T s w = s.push(JAK w).

Figure 6 describes the evaluation algorithm for the base case of a streaming automaton of
rank 0. Observe that the algorithm specifies a procedure next(d) for consuming the element
d, and a procedure start(s) for starting a new input thread given the context stack s. This
generalization of being able to start several parallel input threads is necessary when the
automaton is nested beneath other upper-level automata.

Figure 7 describes the evaluation algorithm for the case of a streaming automaton of rank
strictly greater than 0. The interface is the same as for the base case: there are procedures
start(s) and next(d). The main difference is that the algorithm in this case has to deal
with the invocation transitions: every time a token is at a call state the corresponding
subautomata are restarted, and every time the subautomata have output the corresponding
return state is updated with the output stack.

I Lemma 3. Let A = (Q,X, Y,∆, I, F,⊗) be an SA and T be a bounded stack type. Then:
1. Let C be an unambiguous (A, T)-configuration and s a stack of type T so that JCK and
〈〈A〉〉T (s) are disjoint. Then, the configuration start(C, s), as described operationally in
Figure 6 and Figure 7, is unambiguous and satisfies Jstart(C, s)K = JCK t 〈〈A〉〉T (s).
Notation: If f and g are partial functions with disjoint domains, the partial function
f t g has domain dom(f) ∪ dom(g) and agrees with both f and g.

2. Let C be an unambiguous (A, T)-configuration and d ∈ D. Then, the configuration
next(C, d), as described operationally in Figure 6 and Figure 7, is unambiguous and
satisfies Jnext(C, d)K w = JCK dw for all sequences w ∈ D∗.

Lemma 3 establishes the main semantic property for configurations that is needed for
proving the correctness of the evaluation algorithm.

I Theorem 4. The streaming algorithm of Figure 6 and Figure 7 solves the evaluation
problem for streaming automata. The space footprint of the algorithm and the processing
time per element are independent of the length of the stream and quadratic in the size of the
automaton (assuming that the data types require unit space and the operations unit time).

R. Alur, K. Mamouras, and C. Stanford 112:11

Streaming automaton A = (Q,X, Y,∆, I, F,⊗) of rank 0 & bounded stack type T .
state: unambiguous (A, T)-configuration C : Cfg〈A, T 〉, that is, C : Q ⇀ T@Y

initialize(Cfg〈A, T 〉 this) :
this.C := ⊥ // empty configuration

T@Y output(Cfg〈A, T 〉 this) :
foreach q ∈ QF do // iterate over final states

if (this.C(q) is defined) then return this.C(q)
return nil

start(Cfg〈A, T 〉 this, T s) : // precondition: Jthis.CK and 〈〈A〉〉T (s) are disjoint
foreach q ∈ QI do // place token on each initial state

// this.C(q) must be undefined
this.C(q) := s.push(I(q))

next(Cfg〈A, T 〉 this, D d) :
Map〈Q,T@Y 〉Cnext := ⊥
foreach transition (p, φ, σ, q) in ∆ do

if φ(d) = true then
T@Y s := this.C(p) // current stack
Y y := s.top⊗ σ(d) // new value
Cnext(q) := s.pop.push(y) // new stack

this.C := Cnext

Figure 6 General evaluation algorithm for an SA of rank 0.

The guarantees of Theorem 4 apply unconditionally to the case of constant-size types
and operations (e.g., integers and floating-point numbers specified by machine architectures).
In the case of infinite data types, one may need to account for the additional complexity
of computing on their unbounded values to obtain a more precise analysis. In any case,
however, Theorem 4 can be understood as saying that the computational overhead of parsing
the input stream and combining the intermediate results is not significant.

4 Lower Bounds

The efficient evaluation algorithm of the previous section depends crucially on the unambiguity
and parallel-consistency of the automata. In fact, both these syntactic restrictions are essential
for efficient evaluation. More specifically, ambiguous nondeterminism can make the streaming
space complexity of evaluation linear in the size of stream. Moreover, the absence of parallel-
consistency allows the encoding of unambiguous regular expressions with intersection. The
streaming matching problem for such expressions requires space that is exponential in the
size of the expression. These lower bounds highlight the difficulty of efficiently evaluating
quantitative automata that allow for the interaction between nondeterminism and parallelism.

Consider a stream of natural numbers and the problem MinAvgSuffix for the stream-
ing computation of the function f(x1x2 . . . xn) = minni=1 average(xi, xi+1, . . . , xn), where
x1x2 . . . xn is the stream seen so far. An NSA similar to M2 of Figure 1 may be constructed
which computes from each suffix a pair (sum, count), and that is nested inside an automaton
dividing the components of the pair to obtain the average. Since this automaton computes
MinAvgSuffix, the following theorem asserts a lower bound for the evaluation problem of
NSAs with two-level nesting but without parallelism.

ICALP 2017

112:12 Automata-Based Stream Processing

Streaming automaton A = (Q,X, Y,∆, I, F,⊗) of rank > 0 & bounded stack type T .
state: unambiguous (A, T)-configuration C : Cfg〈A, T 〉
initialize(Cfg〈A, T 〉 this) :

this.C0 := ⊥ // no top-level tokens
foreach occurrence Aij in ∆ do initialize(this.Cij)

T@Y output(Cfg〈A, T 〉 this) :
foreach q ∈ QF do // iterate over final states

if (this.C0(q) is defined) then return this.C0(q)
return nil

start(Cfg〈A, T 〉 this, T s) : // precondition: Jthis.CK and 〈〈A〉〉T (s) are disjoint
Map〈Q,T@Y 〉 Cnew

0 := ⊥
foreach q ∈ QI do Cnew

0 (q) := s.push(I(q)) // place token on each initial state
foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // restart subautomata

if (Cnew
0 (p) 6= nil) then // check if there is token on invocation state
start(this.Ci1, C

new
0 (p)); start(this.Cij , []) for all j = 2, . . . , n

Cnew
0 (p) := nil

this.C0 := this.C0 t Cnew
0

next(Cfg〈A, T 〉 this, D d) :
Map〈Q,T@Y 〉Cnext

0 := ⊥
foreach transition (p, φ, σ, q) in ∆ do

if φ(d) = true then
T@Y s := this.C(p) // current stack
Y y := s.top⊗ σ(d) // new value
Cnext

0 (q) := s.pop.push(y) // new stack
foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // propagate d to subautomata, collect outputs

next(this.Cij , d) for all j = 1, 2, . . . , n
T@[Y,Z1] s1 := output(this.Ci1)
if (s1 6= nil) then

z1 := s1.top; s′
1 := s1.pop; y := s′

1.top
zj := output(this.Cij).top for all j = 2, . . . , n
Cnext

0 (q) := s′
1.pop.push(y ⊗ op(z1, z2, . . . , zn))

foreach transition (p, op(Ai1, . . . ,Ain), q) in ∆ do // restart subautomata
if (Cnext

0 (p) 6= nil) then // check if there is token on invocation state
start(this.Ci1, C

next
0 (p)); start(this.Cij , []) for j = 2, . . . , n

Cnext
0 (p) := nil

this.C0 := Cnext
0

Figure 7 General evaluation algorithm for an SA of rank strictly greater than 0.

I Theorem 5. Any streaming algorithm for MinAvgSuffix requires Ω(n) bits of memory,
where n is the size of the stream seen so far.

The following theorem states that the parallel-consistency requirement is essential for
evaluation that is quadratic in the size of the automaton. The idea is based on [21].

I Theorem 6. The evaluation problem for unambiguous streaming automata without the
parallel-consistency restriction requires space exponential in the size of the automaton.

5 Conclusion

We have considered symbolic weighted automata extended with two crucial features for
expressing streaming computations: hierarchical nesting of several aggregators, and parallel
execution. The following table summarizes the space complexity of the evaluation problem,
where m is the size of the automaton and n the length of the data stream:

R. Alur, K. Mamouras, and C. Stanford 112:13

no nesting nesting without
parallelism consistent parallelism general parallelism

unambiguous
nondeterminism O(m) O(m2) O(m2) [Thm 4] O(exp(m)) [Thm 6]

general
nondeterminism O(m) Ω(n) [Thm 5] Ω(n) Ω(n)

In nesting without parallelism, a transition may call a single subautomaton. General paral-
lelism allows transitions with the construct op(A1, . . . ,Am), which matches only those strings
accepted by every Ai. Consistent parallelism restricts this to require L(A1) = · · · = L(Am).
These complexities assume that the types of the signature require unit space, and that the
operations and predicates require unit time.

References
1 Alfred V. Aho. Algorithms for finding patterns in strings. In Jan van Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, chap-
ter 5, pages 255–300. MIT Press/Elsevier, 1990.

2 Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted au-
tomata? In Tevfik Bultan and Pao-Ann Hsiung, editors, Proceedings of the 9th Inter-
national Symposium on Automated Technology for Verification and Analysis (ATVA ’11),
pages 482–491. Springer Berlin Heidelberg, 2011.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

4 Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions and cost register automata. In Proceedings of the 28th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’13), pages 13–22, 2013.

5 Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quan-
titative properties of data streams. In Proceedings of the 25th European Symposium on
Programming (ESOP ’16), pages 15–40, 2016.

6 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS ’04), pages 286–296, 2004.

7 Gerard Berry and Ravi Sethi. From regular expressions to deterministic automata. Theo-
retical Computer Science, 48:117–126, 1986.

8 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL),
12(4):27:1–27:26, 2011.

9 Ronald Book, Shimon Even, Sheila Greibach, and Gene Ott. Ambiguity in graphs and
expressions. IEEE Transactions on Computers, C-20(2):149–153, 1971.

10 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic (TOCL), 11(4):23, 2010.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested weighted automata.
In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS ’15), pages 725–737, 2015.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative monitor au-
tomata. In Xavier Rival, editor, Proceedings of the 23rd International Symposium on Static
Analysis (SAS ’16), pages 23–38. Springer Berlin Heidelberg, 2016.

13 S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu, K. Nus-
baum, K. Patil, B. J. Peng, and P. Poulosky. Benchmarking streaming computation engines:
Storm, Flink and Spark Streaming. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1789–1792, 2016.

ICALP 2017

112:14 Automata-Based Stream Processing

14 Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data
stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):15:1–15:62,
2012.

15 Loris D’Antoni and Margus Veanes. Equivalence of extended symbolic finite transducers.
In Proceedings of the 25th International Conference on Computer Aided Verification (CAV
’13), pages 624–639, 2013.

16 Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14), pages 541–553, 2014.

17 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

18 Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata.
ACM Transactions on Computational Logic (TOCL), 10(3):16:1–16:30, 2009.

19 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer, 2009.

20 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

21 Martin Fürer. The complexity of the inequivalence problem for regular expressions with
intersection. In Proceedings of the 7th International Colloquium on Automata, Languages
and Programming (ICALP ’80), pages 234–245, 1980.

22 Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom,
Hari Balakrishnan, Uǧur Çetintemel, Mitch Cherniack, Richard Tibbetts, and Stan Zdonik.
Towards a streaming SQL standard. Proceedings of the VLDB Endowment, 1(2):1379–1390,
2008.

23 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

24 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation, 4(3):405–425,
1994.

25 Konstantinos Mamouras, Mukund Raghothaman, Rajeev Alur, Zachary G. Ives, and San-
jeev Khanna. Streamqre: modular specification and efficient evaluation of quantitative
queries over streaming data. In Albert Cohen and Martin T. Vechev, editors, Proceed-
ings of the 38th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 693–708. ACM, 2017.
doi:10.1145/3062341.3062369.

26 Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

27 J. Ian Munro and Michael S. Paterson. Selection and sorting with limited storage. Theo-
retical Computer Science, 12(3):315–323, 1980.

28 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Foun-
dations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

29 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings
over infinite alphabets. ACM Transactions on Computational Logic (TOCL), 5(3):403–435,
2004.

30 Richard Edwin Stearns and Harry B. Hunt III. On the equivalence and containment prob-
lems for unambiguous regular expressions, regular grammars and finite automata. SIAM
Journal on Computing, 14(3):598–611, 1985.

31 Ken Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):419–422, 1968.

http://dx.doi.org/10.1145/3062341.3062369

R. Alur, K. Mamouras, and C. Stanford 112:15

32 Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. NEXMark: A bench-
mark for queries over data streams. Available at http://datalab.cs.pdx.edu/niagara/
NEXMark/, 2002.

33 Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression
explorer. In Proceedings of the 3rd International Conference on Software Testing, Verifica-
tion and Validation (ICST ’10), pages 498–507. IEEE, 2010.

34 Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjorner.
Symbolic finite state transducers: Algorithms and applications. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’12), pages 137–150, 2012.

ICALP 2017

http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/

On Reversible Transducers∗†

Luc Dartois1, Paulin Fournier2, Ismaël Jecker3, and Nathan Lhote4

1 Université Libre de Bruxelles, Brussels, Belgium
ldartois@ulb.ac.be

2 Université de Bordeaux, LaBRI, Bordeaux, France
paulin.fournier@labri.fr

3 Université Libre de Bruxelles, Brussels, Belgium
ijecker@ulb.ac.be

4 Université Libre de Bruxelles, Brussels, Belgium; and
Université de Bordeaux, LaBRI, Bordeaux, France
nlhote@labri.fr

Abstract
Deterministic two-way transducers define the robust class of regular functions which is, among
other good properties, closed under composition. However, the best known algorithms for com-
posing two-way transducers cause a double exponential blow-up in the size of the inputs. In this
paper, we introduce a class of transducers for which the composition has polynomial complexity.
It is the class of reversible transducers, for which the computation steps can be reversed determin-
istically. While in the one-way setting this class is not very expressive, we prove that any two-way
transducer can be made reversible through a single exponential blow-up. As a consequence, we
prove that the composition of two-way transducers can be done with a single exponential blow-up
in the number of states.

A uniformization of a relation is a function with the same domain and which is included in the
original relation. Our main result actually states that we can uniformize any non-deterministic
two-way transducer by a reversible transducer with a single exponential blow-up, improving the
known result by de Souza which has a quadruple exponential complexity. As a side result, our
construction also gives a quadratic transformation from copyless streaming string transducers to
two-way transducers, improving the exponential previous bound.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Transducers, reversibility, two-way, uniformization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.113

1 Introduction

Automata and transducers. Automata theory is a prominent domain of theoretical com-
puter science, initiated in the 60s [4] and still very active nowadays. Many extensions of
finite automata have been studied such as automata over more complex structures (infinite
words, trees, etc) or transducers which can be seen as automata with an additional write-only
output tape and which will be the focus of our study in the remainder of this article.

Transducers have been studied for almost as long as automata [1] and important results
have been obtained, however the theory of transducers is not as advanced as automata theory.

∗ The full version of this article can be found at [5], http://arxiv.org/abs/1702.07157.
† This work was partially supported by the French ANR project ExStream (ANR-13-JS02-0010), the ARC

project Transform (Fédération Wallonie Bruxelles) and the FNRS PDR project Flare. I. Jecker is an
F.R.S.-FNRS Aspirant fellow.

EA
T

C
S

© Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 113; pp. 113:1–113:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.113
http://arxiv.org/abs/1702.07157
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

113:2 On Reversible Transducers

b

a

a, b a, b

a

b

Figure 1 The language A˚aA˚ can be recognized by a deterministic (left) or codeterministic
(right) automaton, but not by a reversible one.

One of the reasons for this is that many descriptions which are equivalent for automata
become different in expressiveness in the case of transducers. For instance, deterministic
and non-deterministic automata recognize the same class of languages, the regular languages.
However this is not the case for transducers since in particular a deterministic transducer
must realize a function while a non-deterministic one may realize a relation. Similarly, by
allowing the reading head to move left and right, one gets a two-way model of automata and
it is known that two-way automata are as expressive as one-way automata [12]. However
two-way transducers can model relations and functions that are unobtainable in the one-way
case, such as the function mirror which reverses its input. Recently, two-way transducers
were also proven to be equivalent to the one-way deterministic model of streaming string
transducers [2], which can be thought of as transducers with write-only registers.

Reversible transducers. A transition system is called reversible when for every input, the
directed graph of configurations is composed of nodes of in-degree and out-degree at most
one. This property is stronger than the more studied notion of determinism since it allows
to navigate back and forth between the steps of a computation. In this article, we study the
class of transducers that are simultaneously deterministic and codeterministic, i.e. reversible.
The main motivation for the definition of this class is its good properties with respect
to composition. When we consider one-way transducers, runs only go forward and thus
determinism gives good properties for composition: the next step of a run is computed in
constant time. However, when considering composition of two-way transducers, the second
machine can move to the left, which corresponds to rewinding the run of the first machine.
Then the stronger property of reversibility allows for this back and forth navigation over
runs of transducers, and we recover the property of reaching the next (or previous here) step
of a computation in a constant time. This leads to the recovery of the polynomial state
complexity of composition which exists for deterministic one-way transducers.

Let us now discuss the expressiveness of reversible transducers. Regarding automata in the
one-way case, it is well-known that any regular language can be recognized by a deterministic
one-way automaton and symmetrically by a codeterministic one-way automaton, since the
mirror of a regular language is still regular. However, the class of one-way reversible automata
is very restrictive (see Figure 1 for an example or [11] for a study of its expressive power,
where they are called bideterministic). It turns out however, that if we allow bidirectionality
then any regular language can be recognized by a reversible automaton. In fact, a two-way
reversible automaton can be constructed from either a one-way or two-way automaton using
only a linear number of states (see [9] and [10], respectively). We prove, as a consequence
of our main theorem, that reversible transducers are as expressive as functional two-way
transducers, and exactly capture the class of regular functions. As stated earlier, regular
functions are also characterized by streaming string transducers (SST). As a byproduct, we
also give a quadratic construction from copyless SST to reversible transducers, improving
results from [3, 6].

L. Dartois, P. Fournier, I. Jecker, and N. Lhote 113:3

Synthesis problem and uniformization of transducers. In the bigger picture of verification,
two-way transducers can be used to model transformations of programs or non-reactive
systems. If we consider the synthesis problem, where the specification is given as a relation of
admissible input-output pairs, an implementation is then given as a function, with the same
domain, relating a unique output to a given input. The uniformization problem asks if given
a relation, we can extract a function that has the same domain, and is included in the relation.
We argue that the synthesis problem can be instantiated in the setting of transformations as
the problem of uniformization of a non-deterministic two-way transducer by a functional
transducer. Our main result states that we can uniformize any non-deterministic two-way
transducer by a reversible transducer with a single exponential blow-up.

Related work. As stated earlier, reversible one-way automata were already considered
in [11]. Two-way reversible automata were shown to capture the regular languages in [9] by
a construction from a one-way deterministic automaton to a two-way reversible automaton
with a linear blow-up. This construction was extended to two-way automata in [10], still with
a linear complexity. However, these constructions for automata cannot be simply extended
to transducers because more information is needed in order to produce the outputs at the
right moment. To the best of our knowledge, reversible transducers have not been studied
yet, however, since we introduce reversible transducers as a tool for the composition of
transducers, our work can be linked with the construction of Hopcroft and Ullman that
gives the composition of a one-way transducer and a two-way transducer, while preserving
determinism. Our construction strictly improves theirs, since ours produces, with a polynomial
complexity instead of an exponential one, a reversible transducer that can in turn be easily
composed.

A procedure for the uniformization of a two-way non-deterministic transducer by a
deterministic one has been known since [7]. The complexity of this procedure is quadruply
exponential, while our construction is done in a single one, and produces a reversible
transducer.

Organization of the paper. Preliminary definitions are given in the next Section. In
Section 3, we present our main results on composability and expressiveness of reversible
transducers. Section 4 is devoted to the main technical construction of the paper. Connections
with streaming string transducers are discussed in Section 5 while further works are considered
in Section 6.

2 Automata and transducers

Given a finite alphabet A, we denote by A˚ the set of finite words over A, and by ε the
empty word. We will denote by A$% the alphabet AZt$,%u, where the new symbols $ and
% are called the left and right endmarkers. A language over A is a subset L of A˚. Given
two finite alphabets A and B, a transduction from A to B is a relation R Ď A˚ ˆB˚.

Automata. A two-way finite state automaton (2FA) is a tuple A “ pA,Q, qI , qF ,∆q, where
A is a finite alphabet; Q is a finite set of states partitioned into the set of forward states
Q` and the set of backward states Q´; qI P Q

` is the initial state; qF P Q` is the final
state; ∆ Ď QˆA$% ˆQ is the state transition relation. By convention, qI and qF are the
only forward states verifying pqI ,$, qq P ∆ and pq,%, qF q P ∆ for some q P Q. However, for
any backward state p´ P Q´, ∆ might contain transitions pp´,$, qq and pq,%, p´q, for some

ICALP 2017

113:4 On Reversible Transducers

q P Q. Note that, in our figures, we do not represent explicitly the initial and final states,
and rather use arrows labeled with the endmarkers to indicate the corresponding transitions.
A configuration u.p.u1 of A is composed of two words u, u1 P A˚$% and a state p P Q. The
configuration u.p.u1 admits a set of successor configurations, defined as follows. If p P Q`, the
input head currently reads the first letter of the suffix u1 “ a1v1. The successor of u.p.u1 after
a transition pp, a1, qq P ∆ is either ua1.q.v1 if q P Q`, or u.q.u1 if q P Q´. Conversely, if p P Q´,
the input head currently reads the last letter of the prefix u “ va. The successor of u.p.u1
after pp, a1, qq P ∆ is u.q.u1 if q P Q`, or v.q.au1 if q P Q´. For every word u P A˚$%, a run of
A on u is a sequence of successive configurations % “ u0.q0.u

1
0, . . . , um.qm.u

1
m such that for

every 0 ď i ď m, uiu
1
i “ u. The run % is called initial if it starts in configuration qI .u, final

if it ends in configuration u.qF , accepting if it is both initial and final, and end-to-end if it
starts and ends on the boundaries of u. More precisely, it is called left-to-right if q0, qm P Q`

and u0 “ u1m “ ε; right-to-left if q0, qm P Q´ and u10 “ um “ ε; left-to-left if q0 P Q
`,

qm P Q´ and u0 “ um “ ε; right-to-right if q0 P Q
´, qm P Q` and u10 “ u1m “ ε. Abusing

notations, we also denote by ∆ the extension of the state transition relation to a subset of
QˆA˚$% ˆQ composed of the triples pp, u, qq such that there exists an end-to-end run on u
between p and q. For every triple pp, u, qq P ∆, we say that q is a u-successor of p and that p
is a u-predecessor of q. The language LA recognized by A is the set of words u P A˚ such
that $ u % admits an accepting run, i.e., pqI ,$ u %, qF q P ∆. The automaton A is called

a one-way finite state automaton (1FA) if the set Q´ is empty;
deterministic if for all pp, aq P QˆA$%, there is at most one q P Q verifying pp, a, qq P ∆;
codeterministic if for all pq, aq P QˆA$%, there is at most one p P Q verifying pp, a, qq P ∆;
reversible if it is both deterministic and codeterministic.
weakly branching if for all a P A there is at most one state p P Q and one pair of distinct
states q1, q2 P Q such that pp, a, q1q P ∆ and pp, a, q2q P ∆.

An automaton with several initial and final states can be simulated by using non-determinism
while reading the endmarker $ and non-codeterminism while reading the endmarker %, hence
requiring a single initial state and a single final state does not restrict the expressiveness of
our model. Let us remark that unlike in the case of most two-way machines, a reversible
two-way automaton always halts on any input. Indeed, codeterminism insures that it is
never the case that two transitions head to the same configuration. Hence, the unique run
(due to determinism) cannot loop since no configuration can be visited twice, and the first
configuration starts from the left of the initial endmarker, which is a configuration that
cannot be reached later on in the run.

Transducers. A two-way finite state transducer (2FT) is a tuple T “ pA,B,Q, qI , qF ,∆, µq,
where B is a finite alphabet; AT “ pA,Q, qI , qF ,∆q is a 2FA, called the underlying automaton
of T ; and µ : ∆ Ñ B˚ is the output function. A run of T is a run of its underlying automaton,
and the language LT recognized by T is the language LAT P A

˚ recognized by its underlying
automaton. Given a run % of T , we set µp%q P B˚ as the concatenation of the images by µ of
the transitions of T occurring along %. Note that in the deterministic (or codeterministic)
case we are able to extend µ to end-to-end runs since in this case we can unambiguously
associate an end-to-end run to a unique sequence of transitions pp, u, qq. The transduction
RT Ď A˚ ˆB˚ defined by T is the set of pairs pu, vq such that u P LT and µp%q “ v for an
accepting run % of AT on $ u %. Two transducers are called equivalent if they define the same
transduction. A transducer T is respectively called one-way (1FT), deterministic, weakly
branching, codeterministic or reversible, if its underlying automaton has the corresponding
property.

L. Dartois, P. Fournier, I. Jecker, and N. Lhote 113:5

0 1 2
$ %a a

b

b a, b

(a) A deterministic 1FA A1

0` 1` 1„́

1´ 1„̀

0„́ 2`
$ %a

ba

b

a a

b a

$

b a, b

(b) A reversible 2FA A2

Figure 2 Two automata recognizing the language Laa “ A˚aaA˚.

Examples. Let us consider the language Laa Ď ta, bu
˚ composed of the words that contain

two a symbols in a row. This language is recognized by the deterministic one-way automaton
A1, represented in Figure 2a, and by the reversible two-way automaton A2, represented
in Figure 2b. However, it is not recognizable by a one-way reversible automaton. Let us
analyze the behavior of A2 to see how moving back and forth through the input allows it
to recognize Laa in a reversible manner. First, A2 uses an intermediate step to go from 1`
back to 0` when reading a b, to avoid creating non-codeterminism. Second, once A2 reads
two consecutive a symbols, it does not go directly in the final state looping on every input,
since this would generate non-codeterminism. Instead, A2 goes in an inverse copy of the first
three states, where it rewind its run until the left endmarker. It is then free to go in the
looping accepting state.

3 Results on reversible transducers

In this section, we present the main results of our paper. In Subsection 3.1, we show the
polynomial composition of reversible transducers. In the following, we give expressiveness
results of the class of reversible transducers, relying on this composition procedure as well as
the construction presented in Section 4.

3.1 Composition of reversible transducers
The nicest feature of reversible transducers has to be the low complexity (and simplicity)
of their composition. Indeed the composition of two such transducers is polynomial in the
number of states of the inputs, and the construction is itself quite simple. This is due to the
fact that the difficult part in the composition of transducers is to be able to navigate the run
easily. In the one-way case, the composition is easy since runs can only move forward. In the
two-way case, one needs to advance in the run, but also rewind it. Since the former is made
easy by the determinism, and the latter is symmetrically handled by the codeterministim,
composition of reversible transducers is straightforward. Let us also remark that only the
first transducer has to be reversible in order to obtain a polynomial complexity. However the
reversible nature of the obtained transducer depends on the input transducers being both
reversible.

I Theorem 1. Let T1 be a reversible two-way transducers and T2 be two-way transducer with
n1 and n2 states respectively, such that T1 can be composed with T2. Then one can construct
a two-way transducer T3 with n1 ¨ n2 states realizing RT2 ˝RT1 .
Furthermore, if T2 is reversible, deterministic or codeterministic, then so is T3.

Proof. Let T1 “ pA,B,Q, qI , qF ,∆, µq and T2 “ pB,C, P, pI , pF ,Γ, νq. We define T3 “

pA,C,Qˆ P, pqI , pIq, pqF , pF q,Θ, ξq. The idea is that at each step, T3 simulates a transition

ICALP 2017

113:6 On Reversible Transducers

δ P ∆, plus the behavior of T2 over the production µpδq P B˚ of this transition. To be
precise, the transducer T3 also detects when it simulates an initial or final configuration of
T1 (i.e. upon reading an endmarker in the initial or final state), and accordingly adds the
corresponding endmarker to the production before simulating T2. The partition of the set of
states of T3 depends on the combination of the signs of both components. If T2 is moving to
the right, we use the determinism of T1, we update the first component of the current state
according to the unique transition δ originating from it, and we simulate T2 entering µpδq
from the left. To do so, T3 needs to have access to the same letter of the input tape as T1.
Thus, we have pQ` ˆ P`q Ď pQˆ P q` and pQ´ ˆ P`q Ď pQˆ P q´. If T2 is moving to the
left, then we use the codeterminism of T1 to rewind the corresponding run, we update the
first component of the current state according to the unique transition δ arriving in it, and
we simulate T2 entering µpδq from the right. To do so, T3 needs to have access to the letter on
the other side of the input head (with respect to T1). Thus, we have pQ´ ˆP´q Ď pQˆP q`
and pQ` ˆ P´q Ď pQˆ P q´.

We now define the transition function Θ and the production function ξ. Let pq, a, q1q P ∆
be a transition of T1 such that % “ pp, v, p1q is an end-to-end run of T2, where v denotes the
word µpq, a, q1q P B˚.

If % is a left-to-right run of T2, then ppq, pq, a, pq1, p1qq belongs to Θ and produces νpp, v, p1q.
If % is a left-to-left run of T2, then ppq, pq, a, pq, p1qq belongs to Θ and produces νpp, v, p1q.
If % is a right-to-right run of T2, then ppq1, pq, a, pq1, p1qq belongs to Θ and produces
νpp, v, p1q.
If % is a right-to-left run of T2, then ppq1, pq, a, pq, p1qq belongs to Θ and produces νpp, v, p1q.

The behavior of the transducer T3 is completely determined by the combined behaviors
of transducers T1 and T2. When T3 simulates a transition of T1, it also simulates the
corresponding end-to-end run of T2 over the production of this transition. If the direction
of both simulations is the same, then T3 moves forward. Otherwise, it moves backward.
The transducer stops when it reaches a final state in both T1 over the input, and T2 over
the simulated run over partial productions of the run of T1 over the input. Then the final
output of T3 is the concatenation of the outputs of the partial runs of T2 it simulates, which
corresponds to the output of T1. Hence, the transducer T3 realizes the composition T2 ˝ T1.
The possible determinism (resp. codeterminism) of T3 is a direct consequence of the one of T1
and T2. Indeed, a witness of non-determinism (resp. non codeterminism) of T3 can be traced
back to a witness run of either T1 or T2 that is not deterministic (resp.codeterministic). J

3.2 One-way transducers

In the next subsections, we give some procedures to construct a reversible transducer from
either a one-way or a two-way transducer. The main ingredient of the proofs is the technical
construction from Lemma 6 (presented in Section 4) which constructs a reversible transducer
from a weakly branching codeterministic one-way transducer. The proofs of this section share
the same structure: in order to build a reversible transducer that defines a function F , we
express F as a composition of transductions definable by reversible transducers, and we
conclude by using Theorem 1. The detailed constructions are presented in the full version of
this article. Building on Lemma 6, we show that codeterministic one-way transducers can be
expressed as the composition of weakly branching codeterministic ones.

I Theorem 2. Given a codeterministic 1FT with n states, one can effectively construct an
equivalent reversible 2FT with 4n2 states.

L. Dartois, P. Fournier, I. Jecker, and N. Lhote 113:7

Proof. Let T be a codeterministic 1FT with n states. The function RT can be expressed as
the composition RT 1 ˝RM , where M and T 1 are defined as follows.

Transducer M is a reversible 1FT with a single state that multiplies all the letters of the
input word by n while marking them with a state of T ;
Transducer T 1 is a weakly branching and codeterministic one-way transducer that has the
same set of states as T . On input RMpuq, T 1 mimics the behavior of T on u, while using
the fact that the input word is larger to desynchronize the non-deterministic branchings
that were occurring simultaneously in T . Intuitively, a transition of T can only be taken
by T 1 at the copy of the letter corresponding to the target state of the transition.

By Lemma 6, T 1 can be made into a reversible 2FT T 2 with 4n2 states. Therefore, since both
T 2 and M are reversible, we can conclude using Theorem 1, finally obtaining a reversible
2FT with 4n2 states equivalent to T . J

Using composition again, the statement can be extended to deterministic one-way trans-
ducers.

I Theorem 3. Given a deterministic 1FT with n states, one can effectively construct an
equivalent reversible 2FT with 36n2 states.

Proof. Let T be a deterministic 1FT with n states. Then sT , the transducer obtained by
reversing all transitions of T , is codeterministic. The function RT can be expressed as the
composition RMB

˝R
sT ˝RMA

, whereMA andMB realize the mirror functions over the input
and output alphabet of T respectively. Both of them are realized by a 3 states reversible
transducer. Then by Theorem 2, we can construct sT 1 which has 4n2 states, is reversible
and realizes the same function as sT . By Theorem 1, we can compose the three transducers,
finally obtaining a reversible transducer equivalent to T with 9 ¨ 4n2 states. J

3.3 Two-way transducers
We now prove our main result, which states that any two-way transducer can be uniformized
by a reversible two-way transducer. Let us recall that uniformization by a deterministic
transducer was done in [7]. We use similar ideas for the uniformization. The key difference
is that we rely on the construction of Section 4 while in [7], the main construction is the
tree-trimming construction of Hopcroft-Ullman from [8].

I Theorem 4. Given a 2FT T with n states, one can effectively construct a reversible 2FT
T 1 whose number of states is exponential in n, and verifying LAT 1 “ LAT and RT 1 Ď RT .

Proof. Let T “ pA,B,Q, qI , qF ,∆, µq be a 2FT with n states. We define a function uni-
formizing RT as the composition RT 1 ˝ RU ˝ RDr

, where Dr, U and T are defined as
follows.

The right-oracle Dr is a codeterministic one-way transducer with 2n2
`n states that

enriches each letter of the input word u P A˚$% with information concerning the behavior
of T on the corresponding suffix, represented by the set of pairs that admit a left-to-left
run, and the set of states from which T can reach the final state.
The uniformizer U is a deterministic one-way transducer with n! states. On input
u1 “ RDr puq, U uses the information provided by Dr to pick a run %u of T on input u,
and enriches each letter ai of the input word with the sequence of transitions occurring
in the run %u that correspond to the letter ai.
Finally, the reversible transducer T 1 has the same set of states as T , and follows the
instructions left by U to solve the non-determinism and the non-codeterminism.

ICALP 2017

113:8 On Reversible Transducers

As a consequence of Theorem 2 and Theorem 3, there exist two reversible 2FT Dr
1 and U 1

whose number of states are exponential in n, and that verify RD1r “ RDr
and RU 1 “ RU .

Therefore, since Dr
1, U 1 and T 1 are reversible, by Theorem 1 there exists a reversible transducer

T 2 whose number of states is exponential in n, and that satisfies RT 2 “ RT 1 ˝RU 1 ˝RDr
1 “

RT . J

The following result is a direct corollary of Theorem 4, applied to deterministic two-way
transducers.

I Corollary 5. Reversible two-way transducers are as expressive as deterministic two-way
transducers.

4 The tree-outline construction

In this section lies the heart of our result. We show that any weakly branching and code-
terministic transducer can be made reversible. These hypotheses allow us to simplify our
proof, and still obtain a more general result, as a corollary.

I Lemma 6. Let T be a codeterministic and weakly branching 1FT with m states. Then one
can effectively construct a reversible 2FT T 1 with 4m2 states that is equivalent to T .

Proof. The construction presented in this proof is illustrated on an example in Figure 3. Let
T “ pA,Q, qI , qF ,∆, µq be a codeterministic 1FT, and let ă be a total order over Q. As an
example, take the codeterministic 1FT T presented in figure 3a.

Let T 1 “ pA,F , fI , fF ,∆1, µ1q be a 2FT defined as follows:
On input u P LT , T 1 explores depth first the run-tree Tu composed of the initial runs of

T on the word $ u % (illustrated in Figure 3b). More precisely it explores the “sheath” of
the run-tree (see Figure 3c for a graphical representation). To do this, the states of T 1 are
composed of two states of T with a marker. The first state represents the upper part of the
sheath, while the second state represents the lower part. Moreover the marker is used to
denote whether we are above the branch (q) or below the branch (q).

Initially we start with the state pqI , qIq and go forward according to the transitions of T .
While moving forward whenever a branching state q is reached, if the state is marked q it
moves to the maximal successor of q (in order to stay above the branch) and symmetrically
if the state is marked q it moves to the minimal successor of q (in order to stay below the
branch). Whenever one of the branches reaches a dead end we continue the sheath exploration
by switching the marker (i.e. changing from above the branch to below or vice-versa) and
start moving backward accordingly to the transitions of T . While moving backward, if
the successor of a branching state q is reached, while we were inside the fork, e.g. in state
qmax (where qmax is the maximal successor of q), we continue the exploration of the sheath
by going in the state qmin and we start moving forward again. Whenever the upper and
lower explorations of the sheath coincide, i.e. in states of the form pq, qq (represented in red
in Figure 3d), it means we are on a prefix of the accepting run, we can thus produce the
corresponding output.

Formally T 1 “ pA,F , fI , fF ,∆1, µ1q is defined as follows:
F “ F`YF´ where F` “ QˆQYQˆQ and F´ “ pQˆQYQˆQqztpp, pq, pp, pq | p P Qu
fI “ pqI , qIq

fF “ pqF , qF q

We define the transition relation ∆1 by differentiating several types of behavior, depending
on whether we are going forward, or backward, whether the upper component or the

L. Dartois, P. Fournier, I. Jecker, and N. Lhote 113:9

2 1 0
$

$

%b a, b

a a

(a) A codeterministic transducer T

qI

2

1

0

1 0 qF

2 1

(b) The run-tree of T on $ ab %

qI

2

1

0

1 0 qF

2 1

(c) Graphical representation of the run of T 1

$ a b %

I

F

2 1 2 0

2 0

2 1 1 0

1 02 1

2 0

2 02 1

1 1 1 0

1 0

1 1 0 0

(d) The run of T 1

Figure 3 Illustrations of the proof concepts of Lemma 6. For the sake of clarity, the outputs of
T are omitted.

lower component is involved, and whether it is above or below its branch. Let p and q
be two states in Q, and a P A be a letter.
If p has no a-successor, then:
(fua)

`

pp, qq, a, pp, qq
˘

P ∆1, and
(fuw)

`

pp, qq, a, pp, qq
˘

P ∆1.
If p has an a-successor, but not q, then:
(flw)

`

pp, qq, a, pp, qq
˘

P ∆1, and
(fla)

`

pp, qq, a, pp, qq
˘

P ∆1.
Otherwise, p and q admit an a-successor. We denote pmax (resp. pmin) the maximal (resp.
minimal) a-successor of p (resp. q) with respect to ă. Then:
If pmin ‰ pmax, then:
(buw)

`

ppmax, qq, a, ppmin, qq
˘

P ∆1, and
(bua)

`

ppmin, qq, a, ppmax, qq
˘

P ∆1.
If qmin ‰ qmax, then:
(bla)

`

pp, qminq, a, pp, qmaxq
˘

P ∆1
(blw)

`

pp, qmaxq, a, pp, qminq
˘

P ∆1

(fualw)
`

pp, qq, a, ppmax, qminq
˘

P ∆1,
(fuwla)

`

pp, qq, a, ppmin, qmaxq
˘

P ∆1,
(bulw) pppmin, qminq, a, pp, qqq P ∆1, and
(bula)

`

ppmax, qmaxq, a, pp, qq
˘

P ∆1.

We define µ1 as the function such that for every pp, a, qq P ∆:
if q “ pmin “ pmax then µ1

`

pp, pq, a, pq, qq
˘

“ µpp, a, qq

if q “ pmin ‰ pmax then µ1
`

ppmax, qq, a, pq, qq
˘

“ µpp, a, qq

if q “ pmax ‰ pmin then µ1
`

pq, pminq, a, pq, qq
˘

“ µpp, a, qq

and µ1ptq “ ε for every t P ∆1 which is not of one of theses forms.

ICALP 2017

113:10 On Reversible Transducers

One can see, by a case study that T 1 is deterministic. Indeed, the fact that T is weakly
branching implies that the rules (buw) and (bua) are mutually exclusive with the rules
(bla) and (blw). Moreover these four rules are mutually exclusive with the rules (bulw)
and (bula) by construction. And since T is codeterministic, the predecessor is unique.
Finally, the rules (fua), (fuw), (flw), (fla), (fualw), and (fuwla) are mutually exclusive
by construction, since the conditions on the number of a-successors are incompatible.

A similar case study gives that T 1 is codeterministic. Hence T 1 is reversible.
A detailed proof of the equivalence between T and T 1 can be found in the full version of

the article, and we give a quick intuition of the proof. It relies on two main arguments. The
first one is that at any point if the transducer T 1 follows two different runs, then it will come
back to the same position, where the state that leads to the shortest run has been switched.
Following this, we then prove that upon any branching, T 1 comes back to the same position
but since the shortest run has been switched, it is able to solve the non-determinism, take
the transition of the accepting run and produce the correct output. J

5 Streaming string transducers

Streaming string transducers, which were introduced in [2], are one-way deterministic
automata with additional write-only registers. Partial outputs are stored in the registers via
register updates, and at the end of a run an output is produced using these registers. Thus
an SST realizes a function over words, and it is known that they are as expressive as 2FT [2].
Direct transformations from SST to 2FT were already considered in [3, 6]. However, these
constructions were exponential in the number of states (and linear in the number of registers).
Using Theorem 3, we are able to get a construction which is quadratic in the number of
states (and also linear in the number of registers). Before explaining the construction, let us
formally define the SST.

Substitutions. Given a finite alphabet A and a finite set X of variables. Let SX ,A denote
the set of functions σ : X Ñ pX YAq˚. The elements of SX ,A are called substitutions. Any
substitution σ can be extended to range over both variables and letters of the output alphabet
σ̂ : pX Y Aq˚ Ñ pX Y Aq˚ by setting σ̂paq “ a for every a P A˚ and σ̂puvq “ σ̂puqσ̂pvq for
u, v P pX YAq˚. This allows us to easily compose substitutions from SX ,A by defining σ2 ˝σ1
as the usual function composition σ̂2 ˝ σ1. We denote by IdX the identity element of SX ,A,
which maps every variable to itself, and by σε the substitution mapping every variable to ε.

A substitution σ is called copyless if for every X P X , each variable Y P X appears at
most once in σpXq, and for every Y P X there exists at most one X P X such that Y appears
in σpXq.

Streaming string transducers. A streaming string transducer (SSTfor short) is a tuple
Z “ pA,B,Q, qI , qF ,∆,X , O, τq, where B is the output alphabet, AZ “ pA,Q, qI , qF ,∆q is
a one-way deterministic automaton, called the underlying automaton of Z; X is a finite
set of variables; O P X is the final variable; τ : ∆ Ñ SX ,B is the output function. A run
of Z is a run of its underlying automaton, and the language LZ recognized by Z is the
language LAZ P A

˚ recognized by its underlying automaton. Given a run % of Z on u, we
set τp%q P SX ,B as the composition of the images by τ of the transitions of Z occuring along
%. The transduction RZ Ď A˚ ˆ B˚ defined by Z is the function mapping any word u of
LAZ to pσε ˝ τp%qqpOq, where % is the single accepting run of AZ on $ u %. The SST Z is
called copyless, if for every run % of Z the substitution τp%q is copyless.

L. Dartois, P. Fournier, I. Jecker, and N. Lhote 113:11

I Theorem 7. Given a copyless SST with n states and m variables, one can effectively
construct an equivalent reversible 2FT with 8m ¨ n2 states.

Proof. We write Z as the composition of a one-way deterministic transducer D1 and a
reversible one T . The first transducer has the same underlying automaton as Z, the
difference being that it outputs the substitution of Z instead of applying it. Then T is a
transducer that navigates the substitutions to produce the output word of Z. This can be done
in a reversible fashion thanks to the property of copylessness of Z. Note that the transducer
T was already defined in [6], Section 4. Formally, let Z “ pA,B,Q, qI , qF ,∆,X , O, τq be
a copyless SST with n states and m variables, and let SZ Ă SA,X be the range of τ . We
express RZ as the composition of RD1 : LAZ Ñ S˚Z and RT2 : S˚Z Ñ B˚, defined as follows.

D1 is a deterministic 1FT obtained by stripping Z of its SST structure, i.e., D1 “

pA,SZ , Q, qI , qF ,∆, τq. It maps each word of LAZ to the corresponding sequence of
substitutions.
T “ pSZ , B, P, init, fin,Γ, νq where P` “ X o Z tinit, finu, P´ “ X i. States labeled by
i (resp. o) are in (resp. out) states and appear when we start (resp. finish) producing a
variable. We define Γ and ν as follows:
pinit, σ, initq P Γ;
pinit,$, Oiq P Γ;
pOo,%, finq P Γ;
pXi, σ, Y iq P Γ and νppXi, σ, Y iqq “ v if σpXq “ vY... with v P B˚;
pXi, σ,Xoq P Γ and νppXi, σ,Xoqq “ v if σpXq “ v;
pXo, σ, Y iq P Γ and νppXo, σ, Y iqq “ v if there exists a variable Z where σpZq “
...XvY..;
pXo, σ, Y oq P Γ and νppXo, σ, Y oqq “ v if σpY q “ ...Xv.

Due to copylessness, for any σ and any variable X, there is at most one variable Y such
that X appears in σpY q. Plus, as the variables are ordered by their appearance in σpY q,
the transducer T is reversible. It starts by reaching the end of the word, then starts
producing the variable O. By following the substitution tree of O, it then produces
exactly the image of the input by Z.

By Theorem 3, there exists a reversible 2FT D11 with 4n2 states satisfying RD11 “ RD1 .
Finally, since both D11 and T are reversible, by Theorem 1 there exists a reversible transducer
T 1 with 8m ¨ n2 states such that RT 1 “ RT ˝RD11 “ RZ . J

6 Conclusion

We argue that reversible transducers can be seen as a canonical representation of regular
transductions. We believe that the polynomial complexity of composition of reversible trans-
ducers is a good tool for the verification of cascades of transformations of non-reactive systems.
While preserving the expressive power of functional transducers, reversible transducers allow
for easier manipulations, the best example being their polynomial composition. Thanks
to the tree-outline construction that we presented, one can uniformize a non-determinsitic
two-way transducer by a reversible one with a single exponential blow-up. This improves
the known constructions that were used up to now, however it is still open whether this
blow-up can be avoided. In [10] the authors extended the result of [9] and showed that
deterministic two-way automata can be made reversible with a linear blow-up. We conjecture
that our approach can also be extended to the two-way case and that deterministic two-way
transducers can be made reversible using only a polynomial number of states.

ICALP 2017

113:12 On Reversible Transducers

We have shown that applying this construction allows for a quadratic transformation
from copyless streaming string transducers to reversible two-way transducers. The converse
does not hold, since even on languages deterministic two-way automata are known to be
exponentially more succint than deterministic one-way automata. Beyond this, we do not
reject the possibility that if one were to embed some recognition power into the variables of
a SST, it may be possible to have a polynomial transformation from reversible automata to
copyless SST.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. A general theory of translation.

Mathematical Systems Theory, 3(3):193–221, 1969.
2 Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2010, December 15-18, 2010, Chennai, India, pages 1–12, 2010.

3 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 65–74, 2012.

4 Julius R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math., 6:66–92, 1960.

5 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
CoRR, abs/1702.07157, 2017. URL: http://arxiv.org/abs/1702.07157.

6 Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic string transducers. In
Developments in Language Theory – 20th International Conference, DLT 2016, Montréal,
Canada, July 25-28, 2016, Proceedings, pages 125–137, 2016.

7 Rodrigo de Souza. Uniformisation of two-way transducers. In Language and Automata
Theory and Applications – 7th International Conference, LATA 2013, Bilbao, Spain, April
2-5, 2013. Proceedings, pages 547–558, 2013.

8 John E. Hopcroft and Jeffrey D. Ullman. An approach to a unified theory of automata. In
8th Annual Symposium on Switching and Automata Theory, Austin, Texas, USA, October
18-20, 1967, pages 140–147, 1967.

9 Attila Kondacs and John Watrous. On the power of quantum finite state automata. In
38th Annual Symposium on Foundations of Computer Science, FOCS’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 66–75, 1997.

10 Michal Kunc and Alexander Okhotin. Reversibility of computations in graph-walking auto-
mata. In Mathematical Foundations of Computer Science 2013 – 38th International Sym-
posium, MFCS 2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 595–
606, 2013.

11 Jean-Eric Pin. On reversible automata. In LATIN’92, 1st Latin American Symposium on
Theoretical Informatics, São Paulo, Brazil, April 6-10, 1992, Proceedings, pages 401–416,
1992.

12 John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959.

http://arxiv.org/abs/1702.07157

Which Classes of Origin Graphs Are Generated by
Transducers?∗

Mikołaj Bojańczyk1, Laure Daviaud2, Bruno Guillon3, and
Vincent Penelle4

1 University of Warsaw, Warsaw, Poland
mbojanczyk@mimuw.edu.pl

2 University of Warsaw, Warsaw, Poland
ldaviaud@mimuw.edu.pl

3 University of Warsaw, Warsaw, Poland
guillonb@mimuw.edu.pl

4 University of Warsaw, Warsaw, Poland
penelle@mimuw.edu.pl

Abstract
We study various models of transducers equipped with origin information. We consider the
semantics of these models as particular graphs, called origin graphs, and we characterise the
families of such graphs recognised by streaming string transducers.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Streaming String Transducers, Origin Semantics, String-to-String Trans-
ductions, MSO Definability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.114

1 Introduction

This paper is about string-to-string transductions with origin semantics. A string-to-string
transduction is a binary relation between strings over fixed input and output alphabets.
Examples include the squaring transduction w 7→ ww or the subword transduction, which is
the set of pairs (u, v) such that v is a subword of u. Note that squaring is a function, while
subword is a relation; both types will be studied. The origin semantics of a transduction
(technically speaking, of a device computing it) consists not only of pairs (u, v) of input and
output words, but also gives an origin mapping that specifies which positions of the input
word were used to produce which positions of the output word. For example, suppose that
we model the squaring transduction by a two-way automaton which does two consecutive
left-to-right passes over the input word and copies the input word in each one. In this case,
the origin semantics over a particular input word can be visualised as follows:

input word

output word

origin mapping

baa

ba a baa

∗ This paper is part of lipa, a project funded by the European Research Council (erc) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 683080).

EA
T

C
S

© Mikołaj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 114; pp. 114:1–114:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.114
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

114:2 Which Classes of Origin Graphs Are Generated by Transducers?

An object as in the above picture is called an origin graph, and we define an origin string-
to-string transduction to be a set of origin graphs. Origin semantics is more fine-grained
semantics than the usual semantics of transductions in the sense that even if two devices
compute the same transduction, they might not have the same origin semantics. Origin
semantics were introduced in [5], where it was shown that existing models of transducers,
such as two-way transducers (also called two-way automata with outputs, e.g. [11]), mso
string-to-string transductions [9], or streaming string transducers [1, 3] can be equipped with
origin semantics so that they generate not sets of pairs of words, but sets of origin graphs
(the name origin graph is new in this paper). Furthermore, existing results on equivalence
between models remain true when the origin semantics are used [5]. We aim to study sets of
origin graphs that are origin semantics of transducers. There are two parts.

In the first part, we study decision problems that involve mso properties of origin graphs.
The main result (not very hard) is that when given an mso formula on origin graphs, and an
origin string-to-string transduction realised by a nondeterministic streaming string transducer,
one can decide if the formula is true in some origin graph from the transduction. This result
gives a generic framework for deciding questions like: is the origin mapping order preserving?
The result is proved by using techniques from the theory of mso transductions [9].

In the second part, we study the structural properties of those classes of origin graphs that
can be obtained by taking the origin semantics of some streaming string transducer (or any
of the other equivalent models). Our goal is to describe them in a machine independent way.
The principal result, Theorem 10, gives the following characterisation: a set of origin graphs
is the origin semantics of some nondeterministic streaming string transducer if and only if it
has three properties: (1) it is mso-definable as a set of coloured graphs; (2) it has bounded
degree; and (3) it has bounded crossing, which means intuitively that the origin mapping does
not oscillate too much. The idea to give a machine independent characterisation of origin
semantics was already present in Theorem 1 from [5]. We believe however that origin graphs
are a more intuitive and visual notion than the factorised words used in [5]. Furthemore,
modelling the origin as a relational structure (the input word, the output word, and the
origin information) makes it possible to use mso logic, or to make the connection with
structural notions such as clique width or tree width. Hence, this paper can be seen as a
natural complement to the results form [5], or possibly a clearer picture. Furthermore, we
study more general models than [5], in particular we allow nondeterminism and ε-transitions.

Important related work is the paper [10], which proposes to use logic to describe properties
of origin graphs (they use the name productions). In [10], the authors ask about the
decidability of checking if a transducer, seen as a set of origin graphs, satisfies a specification
given in some logic. This is the direct inspiration for our results in Section 3, in particular
our Theorem 6 which says that it is decidable if a given mso formula is true in some origin
graph generated by a given transducer. In [10], the logic used to express properties of origin
graphs is a strict fragment of mso, called LT , a type of two-variable logic. Therefore, our
Theorem 6 is stronger than the model-checking result mentioned in [10, Section VI]. The
reason why [10] uses a logic weaker than mso is that they want to answer different questions
than model-checking a given transducer; in particular the logic LT is shown to have decidable
satisfiability when evaluated on the class of all origin graphs, contrary to mso.

2 Origin semantics

Define a string-to-string transduction with input alphabet Σ and output alphabet Γ to be a
relation R ⊆ Σ∗ × Γ∗. A transduction is functional when it is a partial function.

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:3

I Example 1 (Running example). Define the squaring functional transduction to be the
function {a, b}∗ → {a, b}∗ defined by w 7→ ww.

2.1 Transductions recognised by streaming string transducers
The main topic of this paper is the class of string-to-string transductions recognised by
streaming string transducers [1]. Another equivalent presentation of this class is mso string-
to-string transductions, or a suitably defined nondeterministic version of two-way automata
with output. We will mainly use the definition in terms of streaming string transducers, so
we begin by defining that model.

Streaming string transducers. A streaming string transducer is a device which is used to
transform (possibly non-deterministically) a word over an input alphabet into a word over
an output alphabet. Because of nondeterminism, one input might produce several outputs,
possibly zero. The output is prepared by using registers. Before describing the device itself,
let us explain how registers are used. Let Γ be an output alphabet and let R be a set of
register names. Define a register valuation to be a function R → Γ∗ and a register update
to be a function R → (Γ ∪ R)∗. A register update is viewed as a function from register
valuations to register valuations in the following sense: if v is a register valuation and u is a
register update, then applying u to v yields a register valuation which stores in register r
the value u(r) with each register name replaced by its contents under v. For example if R
has only one register, and u is a register update defined by r 7→ ara, then applying u to a
register valuation simply adds the letter a to both the beginning and end of the word stored
in the unique register r. A register update u is called copyless if for every register name r
there is at most one register name s such that r appears in u(s), and furthermore r appears
at most once in u(s).

I Definition 2 (Streaming string transducer). The syntax1 of a streaming string transducer
with input alphabet Σ and output alphabet Γ consists of:

a nondeterministic automaton B with input alphabet Σ, called the underlying automaton;
a finite set of register names R with a distinguished output register ro ∈ R;
a labelling of transitions in B by copyless register updates.

I Example 3 (Running example). The squaring function is recognised by a functional
streaming string transducer which has two registers 1,2, with the output register being 1.
The following picture shows this underlying automaton and its labelling by register updates.

input letter
register update

a 1a
2a

1
2

1
2

1
2

1
2

a
1a2a
ε

b
1b2b
ε

b
1b
2b

p q

1 Our syntax for streaming string transducers is different than the one used in [1], but it is routine to
show that the expressive power is the same, as long as we allow nondeterminism.

ICALP 2017

114:4 Which Classes of Origin Graphs Are Generated by Transducers?

The automaton uses nondeterminism to guess the last position so that the two registers are
concatenated, however every nonempty input word admits exactly one run.

The semantics of a streaming string transducer is defined as follows. Suppose that ρ is
a run of the underlying automaton B, i.e., a sequence of transitions. Consider the empty
register valuation which maps all registers to the empty word, and then apply all the register
updates that label the transitions in ρ, beginning with the first transition and ending with
the last transition. The output of ρ is defined to be the word over the output alphabet
contained in the output register in the valuation described this way. Finally, the semantics of
a streaming string transducer is defined to be the string-to-string transduction which consists
of pairs (v, w) such that v is a word over the input alphabet and w is the output of some
accepting run over the input word.

I Example 4 (Running example). Here is a picture of a run of the transducer from Example 3:

b baa

register update when reading the third letter

register valuation a�er reading the third letter

1 1a
2 2a

1 1a
2 2a

1 1b
2 2b

1
2

1
2

1
2

1
2

1
2

1
2

1b2b
ε

qpp p p

ε
ε

a
a

aa
aa

aab
aab

ε
aabbaabb

A streaming string transducer is called unambiguous if the automaton B admits at most
one accepting run on every input word2. For an unambiguous streaming string transducer,
its semantics is a partial function Σ∗ → Γ∗. The transducer in Example 3 is unambiguous.

2.2 Origin semantics and origin graphs
We now turn to the origin semantics of transducers. The idea is to give not just the output
word, but also say which input positions were used to produce which output positions. The
formalisation we use in this paper is origin graphs. Let fix an input alphabet Σ and an
output alphabet Γ. For w ∈ Σ∗ and v ∈ Γ∗, an origin graph with input w and output v is
defined to be a relational structure of the following form:

the universe is the disjoint union of positions in w and positions in v;
there are two binary predicates for the successor relations in w and v;
there is a binary predicate, called the origin mapping, which is a total function from
output positions to input positions;
for each a ∈ Σ ∪ Γ there is a unary predicate which identifies positions with label a.

2 One could also consider a streaming string transducer where the underlying automaton is deterministic.
In this case, we would need to slightly modify the semantics, by adding a final function which performs a
register update after reading the last input letter (e.g. concatenating the two registers as in the running
example). After adding such final function, the deterministic model would have the same expressive
power as the unambiguous variant used in this paper, see [1].

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:5

Note that the vocabulary of the relational structure depends on the choice of input and
output alphabets; therefore a more formal definition would require talking about origin
graphs over (Σ,Γ) where Σ is the input alphabet and Γ is the output alphabet. An origin
graph can also be viewed as a directed graph, with vertices coloured by letters of the input
and output alphabets, and edges coloured by three possible colours: successor edge in the
input word, successor edge in the output word, and origin edge. Not every directed graph
coloured this way is an origin graph; in an origin graph the input successors form a path, the
output successors form a path on the remaining vertices, and the origin edges give a total
function from the second path to the first one.

I Definition 5. An origin string-to-string transduction (origin transduction for short) consists
of an input alphabet, an output alphabet, and a set of origin graphs over these alphabets.

Note that an origin transduction might contain origin graphs which differ only on the
origin mapping. Here is an example picture, for the (not necessarily connected) subword
relation equipped with the natural origin semantics:

baa

ba

baa

ba

An origin transduction is called functional if every input word appears in at most one
origin graph. An example of a functional origin transduction is the squaring in our running
example, when equipped with the natural origin information. A non-example is the subword
relation.

Let us define the origin semantics of a streaming string transducer. When reading an
input position x, the transducer executes a register update. Such a register update creates
some new letters which are added to registers, and also moves the contents between registers.
We assume that the origin of these created letters is the input position x, and remains this
way even if the position is moved to different registers in subsequent transitions. Using this
description, we can associate an origin graph to each run of the transducer. We say that an
origin transduction is the origin semantics of (or to use an alternative name, recognised by)
a streaming string transducer if it is the set of origin graphs corresponding to its successful
runs. Note that, when the automaton is nondeterministic, different successful runs over the
same input word and producing the same output word might generate different origin graphs.

3 MSO on origin graphs

In this section, we discuss properties of origin graphs that can be defined in monadic second-
order logic mso. This is the logic which extends first-order logic by allowing quantification
over sets of elements in the universe (but not sets of pairs, nor sets of sets, etc.). For a
definition of the syntax and semantics of mso, see [9].

MSO on origin graphs. An origin graph is a special case of a relational structure. If the
input and output alphabets are Σ and Γ, then the vocabulary of the relational structure
consists of three binary relations (input edge, output edge, origin edge) as well as one unary
predicate for each letter in Σ ∪ Γ. We use the name origin vocabulary of (Σ,Γ) for this
vocabulary. An mso formula over this vocabulary defines a set of origin graphs, namely those

ICALP 2017

114:6 Which Classes of Origin Graphs Are Generated by Transducers?

origin graphs where it is true. Note that the structures over the origin vocabulary which are
origin graphs are a set definable in mso, essentially because one can axiomatise in mso (but
not, e.g. in first-order logic) that a directed graph is a single finite directed path. Therefore
when talking about mso-definable sets of origin graphs, it makes no difference whether or
not we require the mso formula to check if a structure is actually an origin graph.

The following result shows that satisfiability of mso over origin graphs produced by a
given streaming string transducer is decidable.

I Theorem 6. The following problem is decidable:
Input: A nondeterministic streaming string transducer A and an mso formula ϕ over the

origin vocabulary corresponding to A;
Question: Is ϕ true in some origin graph in the origin semantics of A?

Proof Sketch. To prove this result it is convenient to use mso transductions in the sense of
Courcelle and Engelfriet, see [9]. We first convert A into a nondeterministic mso transduction,
which can be done while preserving origin semantics [5]3. Given an mso representation of A,
we can easily get an mso transduction which inputs a word over the input alphabet, and
outputs (non-deterministically) an origin graph that corresponds to some possible output of
A. Consider the following language

L = {w ∈ Σ∗ : ϕ is true in an origin graph produced by A on w}

By the Backward Translation Theorem (e.g. [9], p.66) the language L is definable in mso, as
the inverse image of an mso-definable property under an mso transduction. Therefore, L is
regular, since mso defines only regular word languages. J

I Example 7. An origin graph is called order preserving if the origin mapping gives a
non-decreasing function from output positions to input positions. The set of order preserving
origin graphs is clearly definable in mso. Theorem 3 in [5] says that if an origin transduction
has only order preserving origin graphs and is recognised by a streaming string transducer,
then it is already recognised by a nondeterministic one-way transducer. Therefore Theorem 6
gives an algorithm for deciding if a streaming string transducer is equivalent, in terms of
origin semantics, to a one-way nondeterministic transducer (such decidability, and even a
polynomial time algorithm, although with inputs represented in a different way, was already
given in [5]).

I Example 8 (Running example). Consider the squaring transduction. Every origin graph
in this transduction satisfies the following property, which can be formalised in mso: the
output positions can be partitioned into two connected blocks, such that the origin mapping
is order preserving when restricted to each of the blocks. For functional origin transductions,
this property corresponds to being recognised by a deterministic two-way transducer which
does two left-to-right passes on the input.

A corollary of the proof of Theorem 6 is that when the transducer A is fixed, then there
is a linear time algorithm (which simply runs a finite automaton) for checking if a given
input word can produce an origin graph satisfying ϕ.

I Proposition 9. If an origin transduction is recognised by a streaming string transducer,
then it is definable in mso as a set of origin graphs.

3 In [5] the conversion is done in the deterministic case, but it can be easily extended to the nondeterministic
case.

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:7

Note that the converse of the above proposition is false, even assuming that there is a
bound on the number output positions which can originate in the same input position, see
Examples 13 and 15. The issue is that it is more difficult to produce an origin graph (using
the origin semantics of an mso transduction) than it is to check if a given origin graph is
correct.

4 Which sets of origin graphs are recognised by SSTs?

Which sets of origin graphs are recognised by streaming string transducers (equivalently,
mso transductions)?

What about functional streaming string transducers? The main goal of this paper is to
give machine independent characterisations of such sets. This is Theorem 10 below, which
says that a set of origin graphs is recognised by a streaming string transducer if and only if
it is mso-definable, has bounded origin (i.e., each input position is the origin of a bounded
number of output positions), and it has bounded crossing, as explained below.

An output position j in the graph is said to cross an input position i if the position j has
origin at most i and the successor of j either does not exist (i.e. j is the last output position)
or has origin greater than i. Intuitively, to go from the origin of position j to the origin
position j + 1 on the input word, a reading head needs to cross position i. Here is a picture:

baa

ba

baa

ba baa

input position i input position i

output position which crosses i output position which crosses i

baa

ba

input position i

output position which crosses i

I Theorem 10. Let G be an origin transduction, i.e., an input alphabet, an output alphabet,
and a set of origin graphs over these alphabets. Then G is recognised by a streaming string
transducer with k registers if and only if it satisfies all of the following conditions:
bounded origin: there is some m ∈ N such that in every origin graph from G, every input

position is the origin of at most m output positions;
k-crossing: in every origin graph from G, every input position is crossed by at most k output

positions;
mso-definable: there is an mso formula which is true in exactly the origin graphs from G.

The theorem allows one to decide if a given SST can be implemented with fewer registers
preserving origin semantics. This does not help with the resource minimisation problem from
[4], because in [4] origin information can be be changed in the minimisation process.

The proof of the theorem is sketched in the next section. A corollary of the theorem is
that an origin transduction is recognised by a streaming string transducer if and only if it
has bounded origin, is mso definable, and has bounded crossing (i.e., k-crossing for some k).
The following three examples show how the three conditions in Theorem 10 are minimal,
i.e., none of the conditions is implied by the remaining ones.

I Example 11 (MSO definable). Consider the identity origin transduction with its domain
restricted to some non-regular subset of inputs, e.g. words of prime length. This origin
transduction satisfies all conditions in Theorem 10 except for mso definability.

ICALP 2017

114:8 Which Classes of Origin Graphs Are Generated by Transducers?

I Example 12 (Bounded origin). Consider an origin transduction (with one letter in both
the input and output alphabets) which is only defined on inputs with one letter and then
copies the unique output letter an arbitrary number of times (therefore every output position
originates in the unique input position). This origin transduction satisfies all conditions in
Theorem 10 except for bounded origin. Streaming string transducers with ε-transitions, as
discussed in Section 5, will be able to recognise this example.

I Example 13 (Bounded crossing). Consider the following origin transduction, which is
functional. The input and output alphabets have only one letter each. The domain is words
of odd length. A word of length 2n+ 1 is mapped to a word of same length, but the origins
are shuffled so that the origins of odd numbered positions are the same position, while
the origins for even numbered positions are reversed. More precisely, if the positions are
0, . . . , 2n then the origin of an odd numbered position 2i+ 1 is 2i+ 1, while the origin of an
even numbered position 2i is 2n− 2i. Here is the picture of an origin graph in this origin
transduction:

1 2 3 4 5 6 7 80

1 6 3 4 5 2 7 08

We claim that this origin transduction has unbounded crossing, but satisfies the remaining
conditions in Theorem 10. To show unbounded crossing, observe that if the length of the
input word is 2n+ 1, then the middle input position n is crossed by all even numbered output
positions greater than n. Clearly every origin graph in the transduction has bounded origin,
because each input position is the origin of exactly one output position. For mso definability,
we observe that an origin graph belongs to the transduction if and only if it satisfies all the
following conditions which are definable in mso (in fact, first-order logic):
1. the origin of the first output position is the last input position;
2. the origin of the second output position is the second input position;
3. if j > 1 is an odd output position with origin i, then the origin of j − 2 is i− 2;
4. if j > 1 is an even output position with origin i, then the origin of j − 2 is i+ 2.

Tree width. In Theorem 10, we use bounded crossing as one of the conditions. Another
candidate for a structural property on origin graphs is that they have bounded tree width
(see e.g. [9] for a definition). The following result shows that bounded tree width (and even
bounded path width, which corresponds to the width of path decompositions, i.e., the special
case of tree decompositions where the tree is a path) is a necessary condition for being
recognised by a streaming string transducer. Indeed, we show that any origin transduction
which is bounded crossing has bounded path width. Moreover, we can express the crossing
boundedness property in terms of a particular path decomposition of bounded width.

I Proposition 14. Every bounded crossing origin transduction has bounded path width.

We now show that bounded path width is not a sufficient condition, in the sense that
the bottom-up implication of Theorem 10 would fail if we would replace bounded crossing
by bounded path width. One example is the origin transduction from Example 13, which
can be shown to have bounded path width. Here is another example, which also shows that
bounded crossing and recognisability by streaming string transducers are both notions that
are not closed under reversing origin edges.

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:9

I Example 15. Consider a variant of the squaring function, which is defined only on words
of even length, and maps a word w to uv where u (resp. v) is the subword consisting of the
odd-numbered (resp. even-numbered) positions of w. This transduction is easily seen to be
recognised by a (deterministic) streaming string transducer, and hence the underlying set
G of origin graphs has bounded tree width by Proposition 14. Define G′ to be the set of
origin graphs which are obtained from G by reversing the origin edges. Here is a picture of
an origin graph in G′:

baa b ba

aa a bbb

Since the origin mapping is bijective, G′ is also a set of origin graphs. It has bounded origin
(bounded by 1). By Theorem 10 and Proposition 14, G is mso definable and has bounded
path width. Path width and mso definability are not changed by reversing arrows, and
therefore G′ has bounded origin, bounded path width and is also mso-definable. Nevertheless,
G′ is not the origin semantics of any streaming string transducer. Indeed, if A would be a
streaming string transducer recognising G′, then the pre-image under A of the regular set
(aa+ bb)∗ would be the non-regular set of words of the form ww over the alphabet {a, b},
contradicting the fact that regular word languages are preserved under taking pre-images of
streaming string transducers (essentially the Backwards Translation Theorem from [9]).

Recognisability. In Theorem 10, the conditions used are bounded origin, bounded crossing
and mso definability. While bounded origin and bounded crossing are purely combinatorial
properties of graphs, mso definability has a more syntactic character. A less syntactic
alternative to mso definability would be to use recognisability in the sense of Definition 4.29
in [8]. Intuitively speaking, a class of relational structures is called recognisable if it has
finite index for a certain naturally defined equivalence relation à la Myhill Nerode. In [6] it
is shown that if a class of relational structures has bounded tree width, then recognisability
is the same as thing as definability in mso. Therefore, in the statement of Theorem 10 we
could replace mso definability by recognisability, and the theorem would still be true.

The functional case. Theorem 10 gives a characterisation of origin transductions recognised
by streaming string transducers. Recall that a streaming string transducer was called
unambiguous if its underlying automaton had at most one successful run for each input word.
Such transducers are equivalent to the deterministic model in [3], also when using origin
semantics [5]. They can only recognise functional origin transductions. As it turns out, this is
the only restriction, i.e., if an origin transduction is functional and recognised by a (possibly
ambiguous) streaming string transducer, then it is recognised by an unambiguous one.
Furthermore, in the functional case the condition on bounded origin becomes superfluous.

I Theorem 16. Let G be an origin transduction. Then G is recognised by an unambiguous
streaming string transducer with k registers if and only if it is functional, k-crossing and
mso-definable.

Unambiguous streaming string transducers can moreover be simulated by deterministic ones
(in the sense of Alur and Černý [1]) but at the cost of adding registers [2].

ICALP 2017

114:10 Which Classes of Origin Graphs Are Generated by Transducers?

5 Sketch of the proof

To prove Theorems 10 and 16, we first characterise the origin graphs which can be generated
by streaming string transducers with ε-transitions. A streaming string transducer with
ε-transitions is the generalisation of the model described in Definition 2, where ε-transitions
are allowed in the underlying automaton. The origin mapping is defined so that if an output
position is created (i.e., added to some register) by an ε-transition, then its origin is the most
recently read input letter. To make this well defined, we make the syntactic restriction that
no ε-transitions can be used when in an initial state, and therefore the first transition in
each run must consume an input letter.

I Example 17. Consider the set of origin graphs where the input word has only one letter,
and hence this letter is the origin of all output positions, and the output word is anbn for
some n ∈ N. To recognise this string transduction, we use two registers. After reading the
unique input position, the automaton enters a loop of ε-transitions. Each one appends a
to one register, and b to the other. At the end, the transducer does an ε-transition to the
accepting state which concatenates both registers.

The above example shows that when ε-transitions are allowed, the origin semantics of a
streaming string transducer needs no longer to be mso-definable. Theorem 18 below shows
that if we additionally assume that a set of origin graphs is mso-definable, then being the
semantics of a streaming string transducer with ε-transitions is equivalent to having bounded
crossing. The theorem is the main step in our proof of Theorems 10 and 16.

I Theorem 18. Let G be an origin transduction which is mso-definable. Then, G is recognised
by a k-register streaming string transducer with ε-transitions if and only if G is k-crossing.

We sketch the proof here. The left-to-right implication is straightforward, and does not need
the assumption on mso definability. Below we discuss the converse implication. The idea
is that if an origin graph has bounded crossing, then it can be constructed by applying a
sequence of elementary operations to the empty graph. Intermediate objects produced by
these elementary operations are going to be like origin graphs, except that the output word
might be in several pieces, corresponding intuitively to the register contents. Define a k-block
origin graph to be the extension of origin graphs where there are exactly k output words,
which are called blocks, some of which may be empty, as in the following picture for k = 3:

input word

output word 1 output word 3output word 2
(empty)

origin mapping

aa

a a aa

To transform k-block origin graphs, we use the following toolkit of operations, which corres-
ponds intuitively to the registers in a streaming string transducer.
Input. This operation takes one parameter, a letter a of the input alphabet. The result of
the operation is that a new position with letter a is added to the end of the input word;

Output. This operation takes three parameters: a target block i ∈ {1, . . . , k}, a content c
which is either a letter of the output alphabet or a number j ∈ {1, . . . , k} different than i,

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:11

and a side s ∈ {left,right}. The result of the operation is that the content (i.e., either an
output letter of or the contents of register c, depending on the type of c) is concatenated
to the left/right (depending on the side s) of the target block i. If the content is a letter,
then its origin is set to be the last input position (if there is no input position and the
content is a letter, then the operation fails).

We write Ωk for the above set of operations (assuming that the alphabets are implicit
from the context), which is finite. Define k-folding to be the function from (Ωk)∗ to k-block
origin graphs which maps a sequence of operations to the k-block origin graph obtained
by successively applying the sequence of operations starting from the empty k-block origin
graph. Note that k-folding is partial, because the output operation can fail.

I Lemma 19. The k-folding operation is (a) surjective; and (b) an mso interpretation.

Proof of Theorem 18. We only show the right-to-left implication. Suppose then that G is
an origin transduction which is mso definable and is k-crossing. Define G′ to be the set of
k-block origin graphs such that: (i) the i-th output word is empty for i 6= 1; and (ii) if only
the input and 1-st output word are kept, the resulting origin graph belongs to G. If G is mso
definable, then so is G′. Let L ⊆ (Ωk)∗ be those sequences of operations whose k-folding is in
G′. By Lemma 19 (b) and the Backwards Translation Theorem [9], L is definable in mso. By
Lemma 19 (a), G′ is equal to the image of L under k-folding. By Büchi-Elgot-Trakhtenbrot’s
Theorem [7], L is recognised by a finite automaton. We transform this finite automaton into
a k-register nondeterministic streaming string transducer with ε-transitions by translating
any letter σ of Ωk into:

a transition reading an input symbol without updating the registers, if σ is of type input;
an ε-transition with an appropriate register operation if σ is of type output. J

To complete the proof of Theorem 10, we finally show that if the origin semantics of an
εNSST has bounded origin then ε-transitions can be eliminated.

6 Classes of origin transductions and perspectives

Our main contribution is a characterisation of the origin semantics of streaming string
transducers (deterministic; nondeterministic; with ε-transitions providing mso-definability),
using properties of the origin graphs such as functionality, origin boundedness, crossing
boundedness and mso-definability. The origin transductions recognised by these transducers
form a hierarchy depicted in red in the figure below, where DSST (resp. NSST, εNSST) de-
notes the family of origin transductions recognised by a deterministic (resp. nondeterministic,
nondeterministic with ε-transitions) streaming string transducer.

The figure also includes two-way transducers, which define an orthogonal hierarchy,
depicted in blue. We consider deterministic and nondeterministic variants as well as those
with common guess. A two-way transducer (deterministic or not) is equipped with a common
guess if, before starting the computation, a finite colouring of the input positions is performed,
and this colouring is the same each time the head revisits a position. This strictly increases
the expressivity, e.g. the relation {(u, vv) | v is a subword of u} is recognised by a two-way
transducer with common guess but not without. The origin semantics of a two-way transducer
is defined in a natural way, i.e., an output letter originates in the input position which was
scanned by the input head when the letter has been produced. In the figure, the classes
of origin transductions recognised by two-way automata are denoted respectively by 2DT,
2NT, and 2NT with common guess.

ICALP 2017

114:12 Which Classes of Origin Graphs Are Generated by Transducers?

The class of functions recognised by deterministic two-way transducers (resp. with
common guess) is known to be the same as the one recognised by deterministic streaming
string transducers [11, 1] (resp. nondeterministic streaming string transducers [3]), even
when considering the origin semantics [5].

Finally, we denote by MSOT the family of origin transductions recognised by a non-
deterministic mso-transduction. It is equal to NSST [3, 11]. The transductions recognised
by deterministic mso-transductions are the same as for DSST [1], this remains true with
origin semantics [5].

We can prove that all the mso-definable (resp. bounded origin) origin transductions in
εNSST are recognised by a nondeterministic two-way transducer with common guess (resp.,
are in NSST). Moreover, all the transductions that have bounded origin and which are
recognised by a nondeterministic two-way transducer with common-guess, are recognised by a
streaming string tranducer (and have therefore bounded crossing). All the other intersections
are nonempty and can be populated with some origin transductions (with their natural origin
information) as depicted in the figure.

2NT with comm
on guess

εN
SST

2NT

NSST=M
SO

T

bo
un

de
d

or
igi

n

functiona l

DSST= 2DT
bounded crossing

MSO

References

1 Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In FSTTCS,
pages 1–12, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 Rajeev Alur and Loris D’Antoni. Streaming tree transducers. In International Colloquium
on Automata, Languages, and Programming, pages 42–53. Springer, 2012. URL: http:
//link.springer.com/chapter/10.1007/978-3-642-31585-5_8.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://link.springer.com/chapter/10.1007/978-3-642-31585-5_8
http://link.springer.com/chapter/10.1007/978-3-642-31585-5_8

M. Bojańczyk, L. Daviaud, B. Guillon, and V. Penelle 114:13

3 Rajeev Alur and Jyotirmoy V. Deshmukh. Nondeterministic streaming string transducers.
In International Colloquium on Automata, Languages, and Programming, pages 1–20.
Springer, 2011. URL: http://link.springer.com/10.1007%2F978-3-642-22012-8_1.

4 Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. Minimizing re-
sources of sweeping and streaming string transducers. In Proceedings of the 43rd Inter-
national Colloquium on Automata, Languages and Programming (ICALP), Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2016.

5 Mikołaj Bojańczyk. Transducers with origin information. In Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II, pages 26–37, 2014. doi:10.1007/978-3-662-43951-7_3.

6 Mikołaj Bojańczyk and Michal Pilipczuk. Definability equals recognizability for graphs of
bounded treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS’16, New York, NY, USA, July 5-8, 2016, pages 407–416, 2016.
doi:10.1145/2933575.2934508.

7 J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960. doi:10.1002/
malq.19600060105.

8 Bruno Courcelle. The monadic second-order logic of graphs V: on closing the gap between
definability and recognizability. Theor. Comput. Sci., 80(2):153–202, 1991. doi:10.1016/
0304-3975(91)90387-H.

9 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
– A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site_locale=fr_FR.

10 Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Decidable logics for transductions and
data words. CoRR, abs/1701.03670, 2017. URL: http://arxiv.org/abs/1701.03670.

11 Joost Engelfriet and Hendrik Jan Hoogeboom. Mso definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Log., 2(2):216–254, 2001. doi:
10.1145/371316.371512.

ICALP 2017

http://link.springer.com/10.1007%2F978-3-642-22012-8_1
http://dx.doi.org/10.1007/978-3-662-43951-7_3
http://dx.doi.org/10.1145/2933575.2934508
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://arxiv.org/abs/1701.03670
http://dx.doi.org/10.1145/371316.371512
http://dx.doi.org/10.1145/371316.371512

Continuity and Rational Functions∗

Michaël Cadilhac1, Olivier Carton2, and Charles Paperman3

1 WSI, Universität Tübingen, Tübingen, Germany
Michael@Cadilhac.name

2 IRIF, Université Paris Diderot, Paris, France
Olivier.Carton@irif.fr

3 WSI, Universität Tübingen, Tübingen, Germany
Charles.Paperman@gmail.com

Abstract
A word-to-word function is continuous for a class of languages V if its inverse maps V_languages
to V. This notion provides a basis for an algebraic study of transducers, and was integral to the
characterization of the sequential transducers computable in some circuit complexity classes.

Here, we report on the decidability of continuity for functional transducers and some stan-
dard classes of regular languages. Previous algebraic studies of transducers have focused on the
structure of the underlying input automaton, disregarding the output. We propose a comparison
of the two algebraic approaches through two questions: When are the automaton structure and
the continuity properties related, and when does continuity propagate to superclasses?

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Transducers, rational functions, language varieties, continuity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.115

1 Introduction

The algebraic theory of regular languages is tightly interwoven with fundamental questions
about the computing power of Boolean circuits and logics. The most famous of these braids
revolves around A, the class of aperiodic or counter-free languages. Not only is it expressed
using the logic FO[<], but it can be seen as the basic building block of AC0, the class of
languages recognized by circuit families of polynomial size and constant depth, this class
being in turn expressed by the logic FO[arb] (see [18] for a lovely account). This pervasive
interaction naturally prompts to lift this study to the functional level, hence to rational
functions. This was started in [4], where it was shown that a subsequential (i.e., input-
deterministic) transducer computes an AC0 function iff it preserves the regular languages of
AC0 by inverse image. Buoyed by this clean, semantic characterization, we wish to further
investigate this latter property for different classes: say that a function f : A∗ → B∗ is
V_continuous, for a class of languages V, if for every language L ⊆ B∗ of V, the language
f−1(L) is also a language of V . Our main focus will be on deciding V_continuity for rational
functions; before listing our main results, we emphasize two additional motivations.

First, there has been some historical progression towards this goal. Noting, in [9], that
inverse rational functions provide a uniform and compelling view of a wealth of natural
operations on regular languages, Pin and Sakarovitch initiated in [10] a study of regular-
continuous functions. It was already known at the time, by a result of Choffrut (see [3,

∗ The first and third authors are partly funded by the DFG Emmy Noether program (KR 4042/2); the
second author is funded by the DeLTA project (ANR-16-CE40-0007).

EA
T

C
S

© Michaël Cadilhac, Olivier Carton, and Charles Paperman;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 115; pp. 115:1–115:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.115
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

115:2 Continuity and Rational Functions

Theorem 2.7]), that regular-continuity together with some uniform continuity property
characterize functions computed by subsequential transducers. This characterization was
instrumental in the study of Reutenauer and Schützenberger [15], who already noticed the
peculiar link between uniform continuity for some distances on words and continuity for
certain classes of languages. This link was tightened by Pin and Silva [11] who formalized this
topological approach and generalized it to rational relations. More recently [12], the same
authors made precise the link unveiled by Reutenauer and Schützenberger, and developed a
fascinating and robust framework in which language continuity has a topological interpretation
(see the beginning of Section 3, as we build upon this theory). Pin and Silva [13] notably
proposed thereafter a study of functions that propagate continuity for a class to subclasses.

Second, the interweaving between languages, circuits, and logic that was alluded to
previously can in fact be formally stated (see again [18, 19]). As a central property towards
this formalization is the correspondence between “cascade products” of automata, stacking
of circuits, and nesting of formulas, respectively. Strikingly, these operations can all be seen
as inverse rational functions [19]. These operations being intrinsic in the construction of
complex objects, decompositions are often naturally used to specify languages, circuits, and
formulas (see, e.g., [17, Section 5.5]). We remark that a sufficient condition for the result
of the composition to be in some given class (of languages, circuits, or logic formulas), is
that each rational function be continuous for that class. Hence deciding continuity allows to
give a sufficient condition for this membership question without computing the result of the
composition, which is subject to combinatorial blowup.

Here, we report on three questions, the first two relating continuity to the main other
algebraic approach to transducers, while allowing a more gentle introduction to the evaluation
of profinite words by transducers:

When is the transducer structure (i.e., its so-called transition monoid) impacting its
continuity? The results of Reutenauer and Schützenberger [15] can indeed be seen as
the starting point of two distinct algebraic theories for rational functions; on the one
hand, the study of continuity, and on the other the study of the transition monoid of the
transducer (by disregarding the output). This latter endeavor was carried by [5].
What is the impact of variety inclusion on the inclusion of the related classes of continuous
rational functions? When the focus is solely on the structure of the transducer, there is a
natural propagation to superclasses; when is it the case for continuity?
When is V_continuity decidable for rational functions? We show decidability for the
varieties J ,R,L,DA,A, COM,AB,Gsol, and G; these constitute our main results.

2 Preliminaries

We assume some familiarity with the theory of automata and transducers, and concepts
related to metric spaces (see, e.g., [3, 8] for presentations pertaining to our topic). Apart from
these prerequisites, for which the notation is first settled, the presentation is self-contained.

We will use A and B for alphabets, and A∗ for words over A, with 1 the empty word.
For each word u, there is a smallest v, called the primitive root of u, such that u = vc for
some c; if c = 1, then u is itself primitive. We write |u| for the length of a word u ∈ A∗ and
alph(u) for the set of letters that appear in u. For a word u ∈ A∗ and a language L ⊆ A∗,
we write u−1L for {v | u · v ∈ L}, and symmetrically for Lu−1, these two operations being
called the left and right quotients of L by u, respectively. We naturally extend concatenation
and quotients to relations, in a component-wise fashion, e.g., for R ⊆ A∗ × A∗ and a pair
ρ ∈ A∗×A∗, we may use ρ−1R and Rρ−1. We write Lc for the complement of L. A variety is

M. Cadilhac, O. Carton, and C. Paperman 115:3

a mapping V which associates with each alphabet A a set V(A∗) of regular languages closed
under the Boolean operations and quotient, and such that for any morphism h : A∗ → B∗

and any L ∈ V(B∗), it holds that h−1(L) ∈ V(A∗). Reg is the variety that maps every
alphabet A to the set Reg(A∗) of regular languages over A. Given two languages K,L ⊆ A∗,
we say that they are V_separable if there is a S ∈ V(A∗) such that K ⊆ S and L ∩ S = ∅.

Transducers. A transducer τ is a 9-tuple (Q,A,B, δ, I, F, λ, µ, ρ) where (Q,A, δ, I, F) forms
an automaton (i.e., Q is a state set, A an input alphabet, δ ⊆ Q× A×Q a transition set,
I ⊆ Q a set of initial states, and F ⊆ Q a set of final states), and additionally, B is an output
alphabet and λ : I → B∗, µ : δ → B∗, ρ : F → B∗ are the output functions. We write τq,q′

for τ with I := {q} and F := {q′}, adjusting λ and ρ to output 1 if they were undefined on
these states. Similarly, τq,• is τ with I := {q} and F unchanged, and symmetrically for τ•,q.
For q ∈ Q and u ∈ A∗, we write q.u for the set of states reached from q by reading u. We
assume that all the transducers and automata under study have no useless state, that is,
that all states appear in some accepting path.

With w ∈ A∗, let t_1t_2 · · · t_|w| ∈ δ∗ be an accepting path for w, starting in a state
q ∈ I and ending in some q′ ∈ F . The output of this path is λ(q)µ(t_1)µ(t_2) · · ·µ(t_n)ρ(q′),
and we write τ(w) for the set of outputs of such paths. We use τ for both the transducer and its
associated partial function from A∗ to subsets of B∗. Relations of the form {(u, v) | v ∈ τ(u)}
are called rational relations.

The transducer τ is unambiguous if there is at most one accepting path for each word.
In that case τq,q′ is also an unambiguous transducer for any states q, q′. When τ is unam-
biguous, it realizes a word-to-word function: the set of functions computed by unambiguous
transducers is the set of rational functions. Further restricting, if the underlying automaton
is deterministic, we say that τ is subsequential. If τ is a finite union of subsequential rational
functions of disjoint domains, we say that τ is plurisubsequential.

Word distances, profinite words. For a variety V of regular languages, we define a distance
between words for which, intuitively, two words are close if it is hard to separate them
with V languages. Define d_V(u, v), for words u, v ∈ A∗, to be 2−r where r is the size of
the smallest automaton that recognizes a language of V(A∗) that separates {u} from {v};
if no such language exists, then d_V(u, v) = 0. It can be shown that this distance is a
pseudo-ultrametric [8, Section VII.2]; we make only implicit and innocuous use of this fact.

We simply write d for d_Reg. The complete metric space that is the completion of (A∗, d)
is denoted Â∗ and is called the free profinite monoid, its elements being the profinite words,
and the concatenation being naturally extended. By definition, if (u_n)_n > 0 is a Cauchy
sequence, it should hold that for any regular language L, there is a N such that either all
u_n with n > N belong to L, or none does. For any x ∈ A∗, define the profinite word
xω = lim xn!, and more generally, xω−c = lim xn!−c. That (xn!)_n > 0 is a Cauchy sequence
is a starting point of the profinite theory [8, Proposition VI.2.10]; it is also easily checked
that xc×ω = lim xc×n! is equal to xω for any integer c ≥ 1. Given a language L ⊆ A∗, we
write L ⊆ Â∗ for its closure, and we note that if L is regular, Lc = Lc and for L′ regular,
L ∪ L′ = L ∪ L′, and similarly for intersection (see [8, Theorem VI.3.15]).

Equations. For u, v ∈ Â∗, a language L ⊆ A∗ satisfies the (profinite) equation u = v if for
any words s, t ∈ A∗, [s · u · t ∈ L⇔ s · v · t ∈ L]. Similarly, a class of languages satisfies an
equation if all the languages of the class satisfy it. For a variety V, we write u = _Vv, and

ICALP 2017

115:4 Continuity and Rational Functions

say that u is equal to v in V , if V(A∗) satisfies u = v. For a partial function f , f(u) = _Vf(v)
means that either both f(u) and f(v) are undefined, or they are both defined and equal in V .

Given a set E of equations over Â∗, the class of languages defined by E is the class
of languages over A∗ that satisfy all the equations of E. Reiterman’s theorem shows in
particular that for any variety V and any alphabet A, V(A∗) is defined by a set of equations
(the precise form of which being studied in [6]).

More on varieties. Borrowing from Almeida and Costa [2], we say that a variety V is
supercancellative when for any alphabet A, any u, v ∈ Â∗ and x, y ∈ A, if u · x = _Vv · y
or x · u = _Vy · v, then u = _Vv and x = y. This implies in particular that for any word
w ∈ A∗, both w · A∗ and A∗ · w are in V(A∗). We further say that a variety V separates
words if for any s, t ∈ A∗, {s} and {t} are V_separable.

Our main applications revolve around some classical varieties, that we define over any
possible alphabet A as follows, where x, y range over all of A∗, and a, b over A:

J , def. by (xy)ω · x = y · (xy)ω = (xy)ω

R, def. by (xy)ω · x = (xy)ω

L, def. by y · (xy)ω = (xy)ω

DA, def. by xω ·z ·xω = xω for all z ∈ alph(x)∗

A, def. by xω+1 = xω

COM, def. by ab = ba

AB, def. by ab = ba and aω = 1
Gnil, the languages rec. by nilpotent groups
Gsol, the languages rec. by solvable groups
G, the languages rec. by groups

The varieties included in A are called aperiodic varieties and those in G are called group
varieties. Precise definitions, in particular for the group varieties, can be found in [18, 14];
we simply note that in group varieties, xω equals 1 for all x ∈ A∗. All these varieties except
for AB and COM separate words, and only DA and A are supercancellative. They verify:

J = R∩ L
R(

(L (

(

(DA A
AB = G ∩ COM (Gnil (Gsol (G

COM(

On transducers and profinite words. For a profinite word u and a state q of an unambiguous
transducer τ , the set q.u is well-defined; indeed, with u = lim u_n, the set q.u_n is eventually
constant, as otherwise for some state q′, the domain of τq,q′ would be a regular language that
separates infinitely many u_n’s.

A transducer τ : A∗ → B∗ is a V_transducer,1 for a variety V , if for some set of equations E
defining V(A∗), for all (u = v) ∈ E and all states q of τ , it holds that q.u = q.v. A rational
function is V_realizable if it is realizable by a V_transducer.

Continuity. For a variety V , a function f : A∗ → B∗ is V_continuous2 iff for any L ∈ V(B∗),
f−1(L) ∈ V(A∗). We mostly restrict our attention to rational functions, and their being

1 The usual definition of V_transducer is based on the so-called transition monoid of τ , see, e.g., [15]; the
definition here is easily seen to be equivalent by [1, Lemma 3.2] and [4, Lemma 1].

2 A note on terminology: There has been some fluctuation on the use of the term “continuous” in the
literature, mostly when a possible incompatibility arises with topology. In [13], the authors use the
term “preserving” in the more general context of functions from monoids to monoids. In our study, we
focus on word to word functions, in which the natural topological context provides a solid basis for the
use of “continuous,” as used in [11, 4].

M. Cadilhac, O. Carton, and C. Paperman 115:5

computed by transducers implies that they are countably many. We note that much more
Reg_continuous functions exist, in particular uncomputable ones:

I Proposition 1. There are uncountably many Reg_continuous functions.

3 Continuity: The profinite approach

We build upon the work of Pin and Silva [11] and develop tools specialized to rational functions.
In Section 3.1, we present a lemma asserting the equivalence between V_continuity and the
“preservation” of the defining equations for V. In the sections thereafter, we specialize this
approach to rational functions. As noted in [11], it often occurs that results about rational
functions can be readily applied to the larger class of Reg_continuous functions; here, this is
in particular the case for the Preservation Lemma of Section 3.1.

Our main appeal to a classical notion of continuity is given by the:

I Theorem 2 ([12, Theorem 4.1]). Let f : A∗ → B∗. It holds that f is V_continuous iff f is
uniformly continuous for the distance d_V.

Consequently, if f is Reg_continuous then it has a unique extension to the free profinite
monoids, written f̂ : Â∗ → B̂∗. The salient property of this mapping is that it is continuous
in the topological sense (see, e.g., [8]). For our specific needs, we simply mention that it
implies that for any regular language L, we have that f̂−1(L) is closed (that is, it is the
closure of some set).

3.1 The Preservation Lemma: Continuity is preserving equations
The Preservation Lemma gives us a key characterization in our study: it ties together
continuity and some notion of preservation of equations. This can be seen as a generalization
to functions of equation satisfaction for languages. We will need the following technical
lemma that extends [8, Proposition VI.3.17] from morphisms to arbitrary Reg_continuous
functions; interestingly, this relies on a quite different proof.

I Lemma 3. Let f : A∗ → B∗ be a Reg_continuous function and L a regular language. It
holds that f̂−1(L) = f−1(L).

I Lemma 4 (Preservation Lemma). Let f : A∗ → B∗ be a Reg_continuous function and E a
set of equations that defines V(A∗). The function f is V_continuous iff for all (u = v) ∈ E
and words s, t ∈ A∗, f̂(s · u · t) = _V f̂(s · v · t).

Proof. (Only if) Suppose f is V_continuous. Let u, v ∈ Â∗ such that u = _Vv, and
s, t ∈ A∗. Since by V_continuity f−1(B∗) ∈ V(A∗), either both s · u · t and s · v · t belong to
the closure of this language, or they both do not. The latter case readily yields the result,
hence suppose we are in the former case.

By definition, u = lim u_n and v = lim v_n for some Cauchy sequences of words
(u_n)_n > 0 and (v_n)_n > 0. Since s · u · t = _Vs · v · t, the hypothesis yields that
d_V(s · u_n · t, s · v_n · t) tends to 0. By Theorem 2, f is uniformly continuous for d_V,
hence d_V(f(s · u_n · t), f(s · v_n · t)) also tends to 0 (note that both f(s · u_n · t) and
f(s · v_n · t) are defined for all n big enough). This shows that f̂(s · u · t) = _V f̂(s · v · t).

(If) Suppose that f preserves the equations of E as in the statement. Let L ∈ V(B∗),
we wish to verify that L′ = f−1(L) ∈ V(A∗), or equivalently by definition, that L′ satisfies
all the equations of E. Let (u = v) ∈ E be one such equation, and s, t ∈ A∗; we must show
that s · u · t ∈ L′ ⇔ s · v · t ∈ L′.

ICALP 2017

115:6 Continuity and Rational Functions

Suppose s ·u · t ∈ L′. Since f is Reg_continuous, it holds that f̂(s ·u · t) ∈ L (observe that
f̂(s · u · t) is indeed defined). By hypothesis, f̂(s · u · t) = _V f̂(s · v · t); now since L ∈ V(B∗),
it must hold that f̂(s · v · t) ∈ L. Taking the inverse image of f̂ on both sides, it thus holds
that s · v · t ∈ f̂−1(L), and Lemma 3 then shows that s · v · t ∈ L′. As the argument works
both ways, this shows that s · u · t ∈ L′ ⇔ s · v · t ∈ L′, concluding the proof. J

Continuity can be seen as preserving membership to V (by inverse image); this is where
the nomenclature “V_preserving function” of [13] stems from. Strikingly, this could also be
worded as preserving nonmembership to V:

I Proposition 5. A Reg_continuous total 3 function f : A∗ → B∗ is V_continuous iff for
all L ⊆ A∗ that do not belong to V(A∗), f(L) and f(Lc) are not V_separable.

3.2 The profinite extension of rational functions
The Preservation Lemma already hints at our intention to see transducers as computing
functions from and to the free profinite monoids. Naturally, if τ is a rational function, its
being Reg_continuous allows us to do so (by Theorem 2). For u = lim u_n a profinite word,
we will write τ(u) for τ̂(u), i.e., the limit lim τ(u_n), which exists by continuity. In this
section, we develop a slightly more combinatorial approach to this evaluation, and address
two classes of profinite words: those expressed as s · u · t for s, t words and u a profinite word,
and those expressed as xω for x a word.

Recall that for a transducer state q and a profinite word u, q.u is well-defined. As a
consequence, if s and t are words and τ is unambiguous, then there is at most one initial
state q_0, one q ∈ q_0.s and one q′ ∈ q.u such that q′.t is final, and these states exist iff
τ(s · u · f) is defined. Thus:

I Lemma 6. Let τ be an unambiguous transducer from A∗ to B∗, s, t ∈ A∗ and u ∈ Â∗.
Suppose τ(s · u · f) is defined, and let q_0, q, q′ be the unique states such that q_0 is initial,
q ∈ q_0.s, q′ ∈ q.u, and q′.t is final. The following holds: τ(s·u·t) = τ•,q(s)·τq,q′(u)·τq′,•(t) .

I Lemma 7. Let τ be an unambiguous transducer from A∗ to B∗ and x ∈ A∗. If τ(xω) is
defined, then there are words s, y, t ∈ B∗ such that: τ(xω) = s · yω−1 · t.

These constitute our main ways to effectively evaluate the image of profinite words
through transducers. Their use being quite ubiquitous in our study, we will rarely refer to
these lemmata nominally.

3.3 The Syncing Lemma: Preservation Lemma applied to transducers
We apply the Preservation Lemma on transducers and deduce a slightly more combinatorial
characterization of transducers describing continuous functions. This does not provide an
immediate decidable criterion, but our decidability results will often rely on it. The goal of
the forthcoming lemma is to decouple, when evaluating s · u · t (with the notations of the
Preservation Lemma), the behavior of the u part and that of the s, t part. This latter part
will be tested against an equalizer set:

3 In all the varieties we are interested in, one can easily modify any partial function into a total function
while preserving its continuity properties.

M. Cadilhac, O. Carton, and C. Paperman 115:7

I Definition 8 (Equalizer set). Let u, v ∈ Â∗. The equalizer set of u and v in V is:

Equ_V(u, v) = {(s, s′, t, t′) ∈ (A∗)4 | s · u · t = _Vs′ · v · t′} .

I Remark. The complexity of equalizer sets can be surprisingly high. For instance, letting V
be the class of languages defined by {x2 = x3 | x ∈ A∗}, there is a profinite word u for which
Equ_V(u, u) is undecidable. On the other hand, equalizer sets quickly become less complex
for common varieties; for instance, Lemma 12 will provide a simple form for the equalizer
sets of aperiodic supercancellative varieties.

I Definition 9 (Input synchronization). Let R,S ⊆ A∗×B∗. The input synchronization of R
and S is defined as the relation over B∗ ×B∗ obtained by synchronizing the first component
of R and S: R ./ S = {(u, v) | (∃s)[(s, u) ∈ R ∧ (s, v) ∈ S]}

(
= S ◦R−1).

Naturally, the input synchronization of two rational functions is a rational relation.

I Lemma 10 (Syncing Lemma). Let τ be an unambiguous transducer from A∗ to B∗ and E
a set of equations that defines V(A∗). The function τ is V_continuous iff:
1. τ−1(B∗) ∈ V(A∗), and
2. For any (u = v) ∈ E, any states p, q, any p′ ∈ p.u, and any q′ ∈ q.v, and letting

u′ = τp,p′(u) and v′ = τq,q′(v): (τ•,p ./ τ•,q)× (τp′,• ./ τq′,•) ⊆ Equ_V(u′, v′).

3.4 A profinite toolbox for the aperiodic setting
In this section, we provide a few lemmata pertaining to our study of aperiodic continuity.
We show that the equalizer sets of aperiodic supercancellative varieties are well-behaved.
Intuitively, the larger the varieties are, the more their nonempty equalizer sets will be similar
to the identity. For instance, if s ·xω = _Axω, for words s and x, it should hold that s and x
have the same primitive root. We first note the following easy fact that will only be used in
this section; it is reminiscent of the notion of equidivisibility, studied in the profinite context
by Almeida and Costa [2].

I Lemma 11. Let u, v be profinite words over an alphabet A and V be a supercancellative
variety. Suppose that there are s, t ∈ A∗ such that u · t = _Vs · v, then there is a w ∈ Â∗ such
that u = _Vs ·w and v = _Vw · t. If moreover u = v and V is aperiodic, then u = _Vs · u · t.

I Lemma 12. Let u, v be profinite words over an alphabet A and V be an aperiodic supercan-
cellative variety. Suppose Equ_V(u, v) is nonempty. There are words x, y ∈ A∗ and two pairs
ρ_1, ρ_2 ∈ (A∗)2 such that: Equ_V(u, v) =

(
Id ·
(
(x∗, x∗)ρ_1−1))×((ρ_2−1(y∗, y∗)

)
· Id
)
.

I Lemma 13. Let x, y be words. For every aperiodic supercancellative variety V, it holds
that Equ_V(xω, yω) = Equ_A(xω, yω).
I Remark. For two aperiodic supercancellative varieties V andW , we could further show that
if both Equ_V(u, v) and Equ_W(u, v) are nonempty, then they are equal, for any profinite
words u, v. It may however happen that one equalizer set is empty while the other is not;
for instance, with u = (ab)ω and v = (ab)ω · a · (ab)ω, the equalizer set of u and v in DA is
nonempty, while it is empty in A.

4 Intermezzos

We present a few facts of independent interest on continuous rational functions. Through
this, we develop a few examples, showing in particular how the Preservation and Syncing

ICALP 2017

115:8 Continuity and Rational Functions

Lemmata can be used to show (non)continuity. In a first part, we study when the structure
of the transducer is relevant to continuity, and in a second, when the (non)inclusion of variety
relates to (non)inclusion of the class of continuous rational functions.

4.1 Transducer structure and continuity
As noted by Reutenauer and Schützenberger [15, p. 231], there exist numerous natural
varieties V for which any V_realizable rational function is V_continuous. Indeed:

I Proposition 14. Let V be a variety of languages closed under inverse V_realizable rational
function. Any V_realizable rational function is V_continuous. This holds in particular for
the varieties A,Gsol, and G.

I Proposition 15. For V ∈ {J ,L,R,DA,AB,Gnil, COM}, there are V_realizable rational
functions that are not V_continuous.

The converse concern, that is, whether all V_continuous rational functions are
V_realizable, was mentioned by Reutenauer and Schützenberger [15] for V = A.

I Proposition 16. For V ∈ {J ,L,R,DA,A,AB, COM}, there are V_continuous rational
functions that are not V_realizable.

Proof. (The aperiodic cases) Let A = {a}, a unary alphabet. Consider the transducer τ
that removes every second a: its minimal transducer not being a A_transducer, it is not
A_realizable (this is a property of subsequential transducers [15]). However, all the unary
languages of V are either finite or co-finite, and hence for any L ∈ V(A∗), τ−1(L) is either
finite or co-finite, hence belongs to V(A∗).

(The AB and COM cases) Over A = {a, b}, define τ to map words w in aA∗ to (ab)|w|,
and words w in bA∗ to (ba)|w|. Clearly, a and b cannot act commutatively on the transducer.
Now τ(ab) = _COMτ(ba), and moreover τ(xω) = _AB(ab)ω = _AB1 = τ(1), hence τ is
continuous for both AB and COM by the Preservation Lemma. J

We delay the positive answers to that question, namely for Gnil,Gsol,G, to Corollary 27
as they constitute our main lever towards the decidability of continuity for these classes.

4.2 Variety inclusion and inclusion of classes of continuous functions
In this section, we study the consequence of variety (non)inclusion on the inclusion of the
related classes of continuous rational functions. This is reminiscent of the notion of heredity
studied by [12], where a function is V_hereditarily continuous if it is W_continuous for each
subvariety W of V. Variety noninclusion provides the simplest study case here:

I Proposition 17. Let V and W be two varieties. If V 6⊆ W then there are V_continuous
rational functions that are not W_continuous.

The remainder of this section focuses on a dual statement:
If V (W, are all V_continuous rational functions W_continuous?

We first focus on group varieties. Naturally, if 1. V_continuous rational functions
are V_realizable and 2. W_realizable rational functions are W_continuous, this holds.
Appealing to the forthcoming Corollary 27 for point 1 and Proposition 14 for point 2, we
then get:

M. Cadilhac, O. Carton, and C. Paperman 115:9

I Proposition 18. For V,W ∈ {Gnil,Gsol,G} with V (W, all V_continuous rational
functions are W_continuous. This however fails for V = AB and for any W ∈ {Gnil,Gsol,G}.

Proof. It remains to show the case V = AB. This is in fact the same example as in the
proof of Proposition 16, to wit, over A = {a, b}, the rational function τ that maps w ∈ aA∗
to (ab)|w|, and words w ∈ bA∗ to (ba)|w|. Indeed, we saw that this function is continuous
for AB, but it holds that τ(a) = ab on the one hand, and τ(bωa) = (ba)ωba = _Wba, but
ab 6= _Wba. The Preservation Lemma then shows that τ is not continuous for W. J

I Proposition 19. All AB_continuous rational functions are COM_continuous.

We now turn to aperiodic varieties. For lesser expressive varieties, the property fails:

I Proposition 20. For V ∈ {J ,L,R} and W ∈ {L,R,DA,A} with V (W, there are
V_continuous rational functions that are not W_continuous.

I Proposition 21. Any DA_continuous rational function is A_continuous.

Proof. First note that both DA and A satisfy the hypotheses of Lemma 12. Consider a
DA_continuous rational function τ : A∗ → B∗. By the Syncing Lemma, to show that it
is A_continuous, it is enough to show that 1. τ−1(B∗) ∈ A(A∗), and 2. That some input
synchronizations of τ , based on equations of the form xω = _Axω+1, belong to an equalizer
set of the form (by Lemma 7):

Equ_A(α ·yω ·β, α′ ·zω ·β′) = {(s, s′, t, t′) | (s ·α, s′ ·α′, β · t, β′ · t′) ∈ Equ_A(yω, zω)} .

Applying the Syncing Lemma on τ for the variety DA, we get that point 1 is true, since
τ−1(B∗) ∈ DA(A∗). Similarly, point 2 is true since xω = xω+1 is an equation of DA, and
Lemma 13 implies that the equalizer set of the equation above is the same in DA and A. J

I Proposition 22. There are nonrational functions that are continuous for both DA and Reg
but are not A_continuous.

5 Deciding continuity for transducers

5.1 Deciding continuity for group varieties
Reutenauer and Schützenberger showed in [15] that a rational function is G_continuous iff it
is G_realizable. Since this is proven effectively, it leads to the decidability of G_continuity.
In Proposition 14, we saw that the right-to-left statement also holds for Gsol; we now
show that the left-to-right statement holds for all group varieties V that contain Gnil. As
in [15], but with sensibly different techniques, we show that V_continuous transducers
are plurisubsequential. The Syncing Lemma will then imply that such transducers are
V_transducers. Both properties rely on the following normal form:

I Lemma 23. Let τ be a transducer. An equivalent transducer τ ′ can be constructed by
adjoining some codeterministic automaton to τ so that for any states p, q of τ ′:[

(∃x, y)
[
∅ 6= (τ ′p,• ./ τ

′
q,•) ⊆ (x, y) · Id

]]
⇒ p = q .

Alternatively, the “dual” property can be ensured, adjoining a deterministic automaton to τ ,
so that for any states p, q of τ ′:[

(∃x, y)
[
∅ 6= (τ ′•,p ./ τ ′•,q) ⊆ Id · (x, y)

]]
⇒ p = q .

ICALP 2017

115:10 Continuity and Rational Functions

I Lemma 24. Let V be a variety of group languages that contains Gnil. For any V_continuous
unambiguous transducer τ , the transducer obtained by applying the dual of Lemma 23, then
applying its first part, is a plurisubsequential V_transducer.

Proof. Write τ ′ for the result of the dual part of Lemma 23 on τ , and τ ′′ for the result of
the first part of Lemma 23 on τ ′. For these transducers, call a triple a states (p, q, q′) a fork
on a if from p, the transducer can go to q and q′ reading one a, and there is a path from q to
p reading only a’s. Dually, a triple (q, q′, p) is a reverse fork on a if the transducer can go
from q and q′ to p reading one a, and there is a path from p to q that reads only a. In both
cases, the fork is proper if q 6= q′. We rely on two facts:

I Fact 25. There are no proper forks or reverse forks in τ ′′.

I Fact 26. For any state p of τ ′′ and any letter a, it holds that p ∈ p.aω.

Consider a state p in τ ′′ and a letter a. As p ∈ p.aω by Fact 26, there is a cycle of a’s on
p. Call q the first state of that cycle. Next, let q′ be such that (p, a, q′) is a transition of τ ′′.
Clearly, (p, q, q′) forms a fork, hence by Fact 25, q = q′. Thus τ ′′ is plurisubsequential.

It remains to show that τ ′′ is a V_transducer. To do so, consider an equation u = _Vv,
a state q of τ ′′, and let p = q.u and p′ = q.v. We show that p = p′, concluding the proof. We
rely on the Syncing Lemma, since τ ′′ is V_continuous; it ensures in particular that:

(τ ′′•,q ./ τ ′′•,q)× (τ ′′p,• ./ τ
′′
p′,•) ⊆ Equ_V(u′, v′) with u′ = τ ′′q,p(u), v′ = τ ′′q,p′(v) . (1)

Let (s, s, t_1, t_2) be in the left-hand side. It holds that s · u′ · t_1 = _Vs · v′ · t_2, thus
u′ · t_1 = _Vv′ · t_2 (here and in the following, we derive equivalent equations by appealing
to the fact that the free group is embedded, in a precise sense, in V [16, § 6.1.9]). Now
consider another tuple (s′, s′, t_1′, t_2′) again in the left-hand side of Equation (1). It also
holds that u′ · t_1′ = _Vv′ · t_2′, hence we obtain that t_1 · t_2−1 = _Vt_1′ · t_2′−1. This
is in turn equal in V to some α · β−1 such that α and β are words that do not share the same
last letter. This shows that t_1 = α · t and t_2 = β · t for some word t, and similarly for
t_1′ and t_2′. More generally: (τ ′′p,• ./ τ

′′
p′,•) ⊆ (α, β) · Id, and the normal form of Lemma 23

thus shows that p = p′. J

I Corollary 27. For V ∈ {Gnil,Gsol,G}, any V_continuous rational function is V_realizable.

I Theorem 28. Let V be a variety of group languages that includes Gnil and that is closed un-
der inverse V_realizable rational functions. It is decidable, given an unambiguous transducer,
whether it realizes a V_continuous function. This holds in particular for Gsol and G.

5.2 Deciding continuity for aperiodic varieties
We saw in Section 4.1 that the approach of the previous section cannot work: there is no
correspondence between continuity and realizability for aperiodic varieties. Herein, we use
the Syncing Lemma to decide continuity in two main steps. First, note that all of our
aperiodic varieties are defined by an infinite number of equations for each alphabet. The
Syncing Lemma would thus have us check an infinite number of conditions; our first step is to
reduce this to a finite number, which we stress through the forthcoming notion of “pertaining
triplet” of states. Second, we have to show that the inclusion of the second point of the
Syncing Lemma can effectively be checked. This will be done by simplifying this condition,
and showing a decidability property on rational relations.

M. Cadilhac, O. Carton, and C. Paperman 115:11

I Definition 29. A triplet of states (p, q, q′) is pertaining if there are words s, u, t and an
integer n such that:

I

p

q q′

F

s | ·

s | ·

t | ·

t | ·

u | β′

un−1 | β′′

un | β

where · means “any word.” Further, a pertaining triplet is empty if, in the above picture,
β = β′β′′ = 1 and full if both words are nonempty; it is degenerate if only one of β or β′β′′
is empty.

It is called “pertaining” as the second point of the Syncing Lemma elaborates on properties
of such a triplet, in particular, since uω = uω+1 is an equation of A. The following
characterization of A_continuity is then made without appeal to equations or profinite words:

I Lemma 30. A transducer τ : A∗ → B∗ is A_continuous iff all of the following hold:
1. τ−1(B∗) ∈ A(A∗);
2. For all full pertaining triplets (p, q, q′), there exist x, y ∈ B∗ and ρ_1, ρ_2 ∈ (B∗)2 such

that τ•,p ./ τ•,q ⊆ Id ·
(
(x∗, x∗)ρ_1−1) and τp,• ./ τq′,• ⊆

(
ρ_2−1(y∗, y∗)

)
· Id;

3. For all empty pertaining triplets (p, q, q′) it holds that (τ•,p ./ τ•,q) · (τp,• ./ τq′,•) ⊆ Id;
4. No pertaining triplet is degenerate.

I Example 31. We show that the transducer of Proposition 16 is A_continuous. Let τ be:

p q

a | a

a | 1

First, the function is total, hence the first point of Lemma 30 is verified. Second, there
are no empty nor degenerate pertaining triplets, hence the third and fourth points are
verified. Now the full pertaining triplets are (p, p, p), (p, p, q), (q, q, q), and (q, q, p). We
check that the pertaining triplet (p, p, q) verifies the second condition of Lemma 30, the
other cases being similar or clear. The first half of the condition is immediate. Now
τp,• ./ τq,• = {(abn+1/2c, abn/2c) | n ≥ 0} which verifies the condition.

We now show that the property of Lemma 30 is indeed decidable:

I Proposition 32. It is decidable, given a rational relation R ⊆ A∗ ×A∗, whether there is a
word x ∈ A∗ and a pair ρ ∈ (A∗)2, such that R ⊆ Id ·

(
(x∗, x∗)ρ−1).

I Remark. In general, the problem of deciding, given a rational relation R and a recognizable
relation K, whether R ⊆ Id ·K, is undecidable. Indeed, testing R ∩ Id = ∅ is undecidable [3],
and equivalent to testing:

R ⊆ Id ·
(
(A+ × {1}) ∪ ({1} ×A+) ∪

⋃
_a 6= b ∈ A(a ·A∗ × b ·A∗)

)
,

the right-hand side being of the form Id ·K.

ICALP 2017

115:12 Continuity and Rational Functions

I Theorem 33. It is decidable, given an unambiguous transducer, whether it realizes an
A_continuous function.

The same approach, with carefully tweaked conditions, yields:

I Theorem 34. For V = J ,R,L,DA, it is decidable, given an unambiguous transducer,
whether it realizes a V_continuous function.

5.3 Deciding COM- and AB-continuity
The case of COM and AB is comparatively much simpler, in particular because these varieties
are defined using a finite number of equations for each alphabet. However, the argument
relies on different ideas:

I Theorem 35. For V = COM,AB, it is decidable, given an unambiguous transducer, whether
it realizes a V_continuous function.

Proof. We apply the Syncing Lemma. Its first point is clearly decidable. We reduce its
second point to decidable properties about semilinear sets (see, e.g., [7]). We also rely on the
notion of Parikh image, that is, the mapping Pkh : A∗ → NA such that Pkh(w) maps a ∈ A
to the number of a’s in the word w.

Since every AB_continuous function is COM_continuous (Proposition 19), the conditions
to test for AB_continuity are included in those for COM_continuity—this can also be seen as
a consequence of the fact that if u, v are words, Equ_AB(u, v) = Equ_COM(u, v).

Let τ : A∗ → B∗ be a given transducer. Consider an equation ab = ba and four states
p, p′, q, q′ of τ . Write u = τp,p′(ab) and v = τq,q′(ba). We ought to check, by the Syncing
Lemma, the inclusion in Equ_COM(u, v) = {(s, s′, t, t′) | s ·u · t = _COMs′ · v · t′} of some input
synchronization. Now this set is the set of (s, s′, t, t′) such that Pkh(s · u · t) = Pkh(s′ · v · t′),
and is thus defined by a simple semilinear property. The input synchronizations themselves,
e.g., τ•,p ./ τ•,q, are rational relations, and their component-wise Parikh image is thus a
semilinear set. Since the inclusion of semilinear sets is decidable, the inclusion of the second
point of the Syncing Lemma is also decidable.

For AB, we should additionally check the equations aω = 1. The reasoning is similar.
Consider three states (p, p′, q), and write x · uω−1 · y for τp,p′(aω). By commutativity and
the fact that uω−1 acts as an inverse of u in the equations holding in AB, we have that
(s, s′, t, t′) ∈ Equ_AB(x · uω−1 · y, 1) iff s · t = _ABs′ · u · t′. This again reduces the inclusion
of the second point of the Syncing Lemma to a decidable semilinear property. J

6 Discussion

We presented a study of continuity in functional transducers, on the one hand focused on
general statements (Section 3), on the other hand on continuity for classical varieties. The
heart of this contribution resides in decidability properties (Section 5), although we also
addressed natural and related questions in a systematic way (Section 4). We single out two
main research directions.

First, there is a sharp contrast between the genericity of the Preservation and Syncing
Lemma and the technicality of the actual proofs of decidability of continuity. To which extent
can these be unified and generalized? We know of two immediate extensions: 1. the generic
results of Section 3 readily apply to Boolean algebras of languages closed under quotient,
a relaxation of the conditions imposed on varieties, and 2. the varieties G_p of languages
recognized by p-groups can also be shown to verify Proposition 14 and Lemma 24, hence

M. Cadilhac, O. Carton, and C. Paperman 115:13

Gp_continuity is decidable for transducers. Beyond these two points, we do not know how to
show decidability for Gnil (which is the join of the Gp), and the surprising complexity of the
equalizer sets for some Burnside varieties (e.g., the one defined by x2 = x3, see the Remark
on page 7) leads us to conjecture that continuity may be undecidable in that case, hence
that no unified way to show the decidability of continuity exists.

Second, the notion of continuity may be extended to more general settings. For instance,
departing from regular languages, it can be noted that every recursive function is continuous
for the class of recursive languages. Another natural generalization consists in studying
(V,W)_continuity, that is, the property for a function to map W_languages to V_languages
by inverse image. This would provide more flexibility for a sufficient condition for cascades
of languages (or stackings of circuits, or nestings of formulas) to be in a given variety.

Acknowledgment. We are deeply indebted to Jorge Almeida (in particular for the Re-
mark on page 7), Luc Dartois, Bruno Guillon (in particular for the Remark on page 11),
Ismaël Jecker, and Jean-Éric Pin for their insightful comments and kind help.

References

1 Jorge Almeida. Some algorithmic problems for pseudovarieties. Publ. Math. Debrecen,
54(1):531–552, 1999.

2 Jorge Almeida and Alfredo Costa. Equidivisible pseudovarieties of semigroups. Publica-
tiones Mathematicae Debrecen, 90(3-4), 2017.

3 Jean Berstel. Transductions and Context-Free Languages, volume 38 of Leitfäden der ange-
wandten Mathematik und Mechanik LAMM. Teubner, 1979.

4 Michaël Cadilhac, Andreas Krebs, Michael Ludwig, and Charles Paperman. A circuit
complexity approach to transductions. In MFCS, pages 141–153, 2015. doi:10.1007/
978-3-662-48057-1_11.

5 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. First-order definability of rational
transductions: An algebraic approach. In LICS, pages 387–396. ACM, 2016. doi:10.1145/
2933575.2934520.

6 Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. Duality and equational theory of regular
languages. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson,
Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part II – Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pages
246–257. Springer, 2008. doi:10.1007/978-3-540-70583-3_21.

7 Seymour Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill,
Inc., New York, NY, USA, 1966.

8 Jean-Éric Pin. Mathematical foundations of automata theory, 2016.
9 Jean-Éric Pin and Jacques Sakarovitch. Some operations and transductions that preserve

rationality. In Theoretical Computer Science, pages 277–288. Springer, 1982. doi:10.1007/
BFb0036488.

10 Jean-Éric Pin and Jacques Sakarovitch. Une application de la representation matricielle
des transductions. Theoretical Computer Science, 35:271–293, 1985. doi:10.1016/
0304-3975(85)90019-2.

11 Jean-Éric Pin and Pedro V. Silva. A topological approach to transductions. Theoretical
Computer Science, 340(2):443–456, 2005. doi:10.1016/j.tcs.2005.03.029.

ICALP 2017

http://dx.doi.org/10.1007/978-3-662-48057-1_11
http://dx.doi.org/10.1007/978-3-662-48057-1_11
http://dx.doi.org/10.1145/2933575.2934520
http://dx.doi.org/10.1145/2933575.2934520
http://dx.doi.org/10.1007/978-3-540-70583-3_21
http://dx.doi.org/10.1007/BFb0036488
http://dx.doi.org/10.1007/BFb0036488
http://dx.doi.org/10.1016/0304-3975(85)90019-2
http://dx.doi.org/10.1016/0304-3975(85)90019-2
http://dx.doi.org/10.1016/j.tcs.2005.03.029

115:14 Continuity and Rational Functions

12 Jean-Éric Pin and Pedro V. Silva. On profinite uniform structures defined by varieties
of finite monoids. Int. J. of Algebra and Computation, 21(01n02):295–314, 2011. doi:
10.1142/S0218196711006170.

13 Jean-Éric Pin and Pedro V. Silva. On uniformly continuous functions for some profinite
topologies. Theoretical Computer Science, 658, Part A:246–262, 2017. Formal Languages
and Automata: Models, Methods and Application In honour of the 70th birthday of Antonio
Restivo. doi:10.1016/j.tcs.2016.06.013.

14 Jean-Éric Pin and Pascal Weil. Profinite semigroups, Mal’cev products and identities.
Journal of Algebra, 182(3):604–626, 1996.

15 Christophe Reutenaeur and Marcel-Paul Schützenberger. Variétés et fonctions rationnelles.
Theoretical Computer Science, 145(1–2):229–240, July 1995. doi:10.1016/0304-3975(94)
00180-Q.

16 Derek J. S. Robinson. A Course in the Theory of Groups. Springer, 2 edition, 1995.
17 Klaus Schneider. Verification of Reactive Systems: Formal Methods and Algorithms.

SpringerVerlag, 2004.
18 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,

Boston, 1994. doi:10.1007/978-1-4612-0289-9.
19 Pascal Tesson and Denis Thérien. Logic meets algebra: the case of regular languages.

Logical Methods in Computer Science, 3(1), 2007.

http://dx.doi.org/10.1142/S0218196711006170
http://dx.doi.org/10.1142/S0218196711006170
http://dx.doi.org/10.1016/j.tcs.2016.06.013
http://dx.doi.org/10.1016/0304-3975(94)00180-Q
http://dx.doi.org/10.1016/0304-3975(94)00180-Q
http://dx.doi.org/10.1007/978-1-4612-0289-9

A Universal Ordinary Differential Equation∗

Olivier Bournez†1 and Amaury Pouly2

1 Ecole Polytechnique, LIX, Palaiseau Cedex, France
bournez@lix.polytechnique.fr

2 MPI-SWS, Saarbrücken, Germany
pamaury@mpi-sws.org

Abstract
An astonishing fact was established by Lee A. Rubel (1981): there exists a fixed non-trivial fourth-
order polynomial differential algebraic equation (DAE) such that for any positive continuous
function ϕ on the reals, and for any positive continuous function ε(t), it has a C∞ solution with
|y(t) − ϕ(t)| < ε(t) for all t. Lee A. Rubel provided an explicit example of such a polynomial
DAE. Other examples of universal DAE have later been proposed by other authors.

However, while these results may seem very surprising, their proofs are quite simple and are
frustrating for a computability theorist, or for people interested in modeling systems in experi-
mental sciences. First, the involved notions of universality is far from usual notions of universality
in computability theory because the proofs heavily rely on the fact that constructed DAE does
not have unique solutions for a given initial data. Indeed, in general a DAE may not have a
unique solution, given some initials conditions. But Rubel’s DAE never has a unique solution,
even with a countable number of conditions of the form y(ki)(ai) = bi. This is very different from
usual notions of universality where one would expect that there is clear unambiguous notion of
evolution for a given initial data, for example as in computability theory. Second, the proofs usu-
ally rely on solutions that are piecewise defined. Hence they cannot be analytic, while analycity
is often a key expected property in experimental sciences. Third, the proofs of these results can
be interpreted more as the fact that (fourth-order) polynomial algebraic differential equations is
a too loose a model compared to classical ordinary differential equations. In particular, one may
challenge whether the result is really a universality result.

The question whether one can require the solution that approximates ϕ to be the unique
solution for a given initial data is a well known open problem [Rubel 1981, page 2], [Boshernitzan
1986, Conjecture 6.2]. In this article, we solve it and show that Rubel’s statement holds for
polynomial ordinary differential equations (ODEs), and since polynomial ODEs have a unique
solution given an initial data, this positively answers Rubel’s open problem. More precisely, we
show that there exists a fixed polynomial ODE such that for any ϕ and ε(t) there exists some
initial condition that yields a solution that is ε-close to ϕ at all times.

The proof uses ordinary differential equation programming. We believe it sheds some light
on computability theory for continuous-time models of computations. It also demonstrates that
ordinary differential equations are indeed universal in the sense of Rubel and hence suffer from
the same problem as DAEs for modelization: a single equation is capable of modelling any
phenomenon with arbitrary precision, meaning that trying to fit a model based on polynomial
DAEs or ODEs is too general (if it has a sufficient dimension).

1998 ACM Subject Classification G.1.7 Ordinary Differential Equations F.1.1 Models of Com-
putation. F.1.3 Complexity Measures and Classes

∗ Full version at https://arxiv.org/abs/1702.08328.
† Olivier Bournez was partially supported by ANR PROJECT RACAF.

EA
T

C
S

© Olivier Bournez and Amaury Pouly;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 116; pp. 116:1–116:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1702.08328
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

116:2 A Universal Ordinary Differential Equation

t

t

Figure 1 On left, graphical representation of function g. On right, two S-modules glued together.

Keywords and phrases Ordinary Differential Equations, Universal Differential Equations, Ana-
log Models of Computation, Continuous-Time Models of Computation, Computability, Compu-
tational Analysis, Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.116

1 Introduction

A very astonishing result was established by Lee A. Rubel in 1981 [19]. There exists a
universal fourth-order algebraic differential equation in the following sense.

I Theorem 1 ([19]). There exists a non-trivial fourth-order implicit differential algebraic
equation

P (y′, y′′, y′′′, y′′′′) = 0 (1)

where P is a polynomial in four variables with integer coefficients, such that for any continuous
function ϕ on (−∞,∞) and for any positive continuous function ε(t) on (−∞,∞), there
exists a C∞ solution y such that

|y(t)− ϕ(t)| < ε(t)

for all t ∈ (−∞,∞).

Even more surprising is the fact that Rubel provided an explicit example of such a
polynomial P that is particularly simple:

3y′4y′′
y′′′′

2 −4y′4y′′′2y′′′′ + 6y′3y′′2y′′′y′′′′ + 24y′2y′′4y′′′′
−12y′3y′′y′′′3 − 29y′2y′′3y′′′2 + 12y′′7 = 0

(2)

While this result looks very surprising at first sight, Rubel’s proofs turns out to use basic
arguments, and can be explained as follows. It uses the following classical trick to build C∞
piecewise functions: let g(t) = e−1/(1−t2) for −1 < t < 1, and g(t) = 0 otherwise. It is not
hard to see that function g is C∞ and Figure 1 shows that g looks like a “bump”. Since it
satisfies g′(t)

g(t) = − 2t
(1−t2)2 , then g′(t)(1− t2)2 + g(t)2t = 0 and f(t) =

∫ t
0 g(u)du satisfies the

polynomial differential algebraic equation f ′′(1− t2)2 + f ′(t)2t = 0. Since this equation is
homogeneous, it also holds for af + b for any a and b. The idea is then to obtain a fourth
order DAE that is satisfied by every function y(t) = γf(αt+ β) + δ, for all α, β, γ, δ. After
some computations, Rubel obtained the universal differential equation (2).

Functions of the type y(t) = γf(αt + β) + δ generate what Rubel calls S-modules: a
function that values A at a, B at b, is constant on [a, a + δ], monotone on [a + δ, b − δ],

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.116

O. Bournez and A. Pouly 116:3

constant on [b− δ, b], by an appropriate choice of α, β, γ, δ. Summing S-modules corresponds
to gluing then together, as is depicted in Figure 1. Note that finite, as well as infinite sums1
of S-modules still satisfy the equation (2) and thus any piecewise affine function (and hence
any continuous function) can be approximated by an appropriate sum of S-modules. This
concludes Rubel’s proof of universality.

As one can see, the proof turns out to be frustrating because the equation essentially
allows any behavior. This may be interpreted as merely stating that differential algebraic
equations is simply too lose a model. Clearly, a key point is that this differential equation
does not have a unique solution for any given initial condition: this is the core principle used
to glue a finite or infinite number of S-modules and to approximate any continuous function.
Rubel was aware of this issue and left open the following question in [19, page 2].

“It is open whether we can require in our theorem that the solution that approximates
ϕ to be the unique solution for its initial data.”

Similarly, the following is conjectured in [4, Conjecture 6.2].

“Conjecture. There exists a non-trivial differential algebraic equation such that any
real continuous function on R can be uniformly approximated on all of R by its
real-analytic solutions”

The purpose of this paper is to provide a positive answer to both questions. We prove
that a fixed polynomial ordinary differential equations (ODE) is universal in above Rubel’s
sense. At a high level, our proofs are based on ordinary differential equation programming.
This programming is inspired by constructions from our previous paper [7]. Here, we mostly
use this programming technology to achieve a very different goal and to provide positive
answers to these above open problems.

We also believe they open some lights on computability theory for continuous-time models
of computations. In particular, it follows that concepts similar to Kolmogorov complexity
can probably be expressed naturally by measuring the complexity of the initial data of a
(universal-) polynomial ordinary differential equations for a given function. We leave this
direction for future work.

1.1 Related work and discussions
First, let us mention that Rubel’s universal differential equation has been extended in several
papers. In particular, Duffin proved in [12] that implicit universal differential equations with
simpler expressions exists, such as n2y

′′′′
y′

2 + 3n(1− n)y′′′
y

′′
y′ + (2n2 − 3n+ 1)y′′ 3

= 0 for
any n > 3. The idea of [12] is basically to replace the C∞ function g of [19] by some piecewise
polynomial of fixed degree, that is to say by splines. Duffin also proves that considering
trigonometric polynomials for function g(x) leads to the universal differential equation
ny

′′′′
y′

2 + (2 − 3n)y′′′
y

′′
y′ + 2(n − 1)y′′3 = 0. This is done at the price of approximating

function ϕ respectively by splines or trigonometric splines solutions which are Cn (and n
can be taken arbitrary big) but not C∞ as in [19]. Article [8] proposes another universal
differential equation whose construction is based on Jacobian elliptic functions. Notice that
[8] is also correcting some statements of [12].

1 With some convergence or disjoint domain conditions.

ICALP 2017

116:4 A Universal Ordinary Differential Equation

All the results mentioned so far are concerned with approximations of continuous functions
over the whole real line. Approximating functions over a compact domain seems to be a
different (and somewhat easier for our concerns) problem, since basically by compactness,
one just needs to approximate the function locally on a finite number of intervals. A 1986
reference survey discussing both approximation over the real line and over compacts is [4].
Recently, over compact domains, the existence of universal ordinary differential equation
C∞ of order 3 has been established in [11]: it is shown that for any a < b, there exists a
third order C∞ differential equation y′′′ = F (y, y′, y′′) whose solutions are dense in C0([a, b]).
Notice that this is not obtained by explicitly stating such an order 3 universal ordinary
differential, and that this is a weaker notion of universality as solutions are only assumed to
be arbitrary close over a compact domain and not all the real line. Order 3 is argued to be a
lower bound for Lipschitzian universal ODEs [11].

Rubel’s result has sometimes been considered to be related to be the equivalent, for
analog computers, of the universal Turing machines. This includes Rubel’s paper motivation
given in [19, page 1]. We now discuss and challenge this statement.

Indeed, differential algebraic equations are known to be related to the General Purpose
Analog Computer (GPAC) of Claude Shannon [20], proposed as a model of the Differential
Analysers [9], a mechanical programmable machine, on which he worked as an operator.
Notice that the original relations stated by Shannon in [20] between differential algebraic
equations and GPACs have some flaws, that have been corrected later by [18] and [13]. Using
the better defined model of GPAC of [13], it can be shown that functions generated by GPAC
exactly correspond to polynomial ordinary differential equations. Some recent results have
established that this model, and hence polynomial ordinary differential equations can be
related to classical computability [5] and complexity theory [7].

However, we do not really follow the statement that Rubel’s result is the equivalent,
for analog computers, of the universal Turing machines. In particular, Rubel’s notion of
universality is completely different from the ones in computability theory. For a given initial
data, a (deterministic) Turing machine has only one possible evolution. On the other hand,
Rubel’s equation does not dictate any evolution but rather some conditions that any evolution
has to satisfy. In other words, Rubel’s equation can be interpreted as the equivalent of an
invariant of the dynamics of (Turing) machines, rather than a universal machine in the sense
of classical computability.

Notice that while several results have established that (polynomial) ODEs are able to
simulate the evolution of Turing machines (see e.g. [5, 15, 7]), the existence of a universal
ordinary differential equation does not follow from them. To understand the difference, let us
restate the main result of [15], of which [7] is a more advanced version for polynomial-time
computable functions.

I Theorem 2. A function f : [a, b] → R is computable (in the framework of Computable
Analysis) if and only if there exists some polynomials p : Rn+1 → Rn, p0 : R → R with
computable coefficients and α1, . . . , αn−1 computable reals such that for all x ∈ [a, b], the
solution y : [a, b]→ Rn to the Cauchy problem

y(0) = (α1, . . . , αn−1, p0(x)), y′ = p(y)

satisfies that for all t > 0 that

|f(x)− y1(t)| 6 y2(t) and lim
t→∞

y2(t) = 0.

Since there exists a universal Turing machine, there exists a “universal” polynomial ODE
for computable functions. But there are major differences between Theorem 2 and the result

O. Bournez and A. Pouly 116:5

of this paper (Theorem 3). Even if we have a strong link between the Turing machines’s
configuration and the evolution of the differential equation, this is not enough to guarantee
what the trajectory of the system will be at all times. Indeed, Theorem 2 only guarantees
that y1(t)→ f(x) asymptotically. On the other hand, Theorem 3 guarantees the value of
y1(t) at all times. Notice that our universality result also applies to functions that are not
computable (in which case the initial condition is computable from the function but still not
computable).

We would like to mention some implications for experimental sciences that are related to
the classical use of ODEs in such contexts. Of course, we know that this part is less formal
from a mathematical point of view, but we believe this discussion has some importance:
A key property in experimental sciences, in particular physics is analyticity. Recall that a
function is analytic if its is equal to its Taylor expansion in any point. It has sometimes been
observed that “natural” functions coming from Nature are analytic, even if this cannot be a
formal statement, but more an observation. We obtain a fixed universal polynomial ODEs,
so in particular all its solution must be analytic2, and it follows that universality holds even
with analytic functions. All previous constructions mostly worked by gluing together C∞ or
Cn functions, and as it is well known “gluing” of analytic functions is impossible. We believe
this is an important difference with previous works.

As we said, Rubel’s proof can be seen as an indication that (fourth-order) polynomial
implicit DAE is too loose model compared to classical ODEs, allowing in particular to glue
solutions together to get new solutions. As observed in many articles citing Rubel’s paper,
this class appears so general that from an experimental point of view, it makes littles sense to
try to fit a differential model because a single equation can model everything with arbitrary
precision. Our result implies the same for polynomial ODEs since, for the same reason, a
single equation of sufficient dimension can model everything.

Notice that our constructions have at the end some similarities with Voronin’s theorem.
This theorem states that Riemann’s ζ function is such that for any analytic function f(z)
that is non-vanishing on a domain U homeomorphic to a closed disk, and any ε > 0, one
can find some real value t such that for all z ∈ U , |ζ(z + it) − f(z)| < ε. Notice that ζ
function is a well-known function known not to be solution of any polynomial DAE (and
consequently polynomial ODE), and hence there is no clear connexion to our constructions
based on ODEs. We invite to read the post [17] in “Gödel’s Lost Letter and P=NP” blog for
discussions about potential implications of this surprising result to computability theory.

1.2 Formal statements
I Theorem 3 (Universal PIVP). There exists a fixed polynomial vector p in d variables
such that for any functions f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α ∈ Rd such that
there exists a unique solution y : R→ Rd to y(0) = α, y′ = p(y). Furthermore, this solution
satisfies that |y1(t)− f(t)| 6 ε(t) for all t ∈ R, and it is analytic.

It is well-known that polynomial ODEs can be transformed into DAEs that have the
same analytic solutions, see [10] for example. The following then follows for DAEs.

I Theorem 4 (Universal DAE). There exists a fixed polynomial p in d+ 1 variables such that
for any functions f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α0, . . . , αd−1 ∈ R such that

2 Which is not the case for polynomial DAEs.

ICALP 2017

116:6 A Universal Ordinary Differential Equation

there exists a unique analytic solution y : R→ R to y(0) = α0, y
′(0) = α1, . . . , y

(d−1)(0) =
αd−1, p(y, y′, . . . , yd) = 0. Furthermore, this solution satisfies that |y(t)− f(t)| 6 ε(t) for all
t ∈ R.

I Remark. Notice that both theorems apply even when f is not computable. In this case, the
initial condition(s) α exist but are not computable. We believe that α is always computable
from f and ε, that is the mapping (f, ε) 7→ α is computable in the framework of Computable
Analysis, with an adequate representation of f, ε and α.
I Remark. Notice that we do not provide explicitly in this paper the considered polynomial
ODE, nor its dimension d. But it can be derived by following the constructions. We currently
estimate d to be more than three hundred following the precise constructions of this paper
(but also to be very far from the optimal). We did not try to minimize d in the current
paper, as we think our results are sufficiently hard to be followed in this paper for not beeing
complicated by considerations about optimizations of dimensions.
I Remark. Both theorems are stated for total functions f and ε over R. It trivially applies
to any continuous partial function that can be extended to a continuous function over R. In
particular, it applies to any functions over [a, b]. It is not hard to see that it also applies to
functions over (a, b) by rescaling R into (a, b) using the cotangent:

z(t) = y
(
− cot

(
t−a
b−aπ

))
satisfies z′(t) = φ′(t)p(z(t)), φ′(t) = π

b−a (1 + φ(t)2).

More complex domains such as [a, b) and (a, b] (with a possibly infinite) can also be obtain
in a similar fashion.

2 Overview of the proof

A first a priori difficulty is that if one considers a fixed polynomial ODE y′ = p(y), one could
think that the growth of its solutions is constrained by p and thus cannot be arbitrary. This
would then prevent us from building a universal ODE simply because it could not grow fast
enough. This fact is related to Emil Borel’s conjecture in [3] (see also [16]) that a solution,
defined over R, to a system with n variables has growth bounded by roughly en(x), the n−th
iterate of exp. The conjecture is proved for n = 1 [3], but has been proven to be false for
n = 2 in [21] and [2]. Bank [1] then adapted the previous counter-examples to provide a DAE
whose non-unique increasing real-analytic solutions at infinity do not have any majorant. See
the discussions (and Conjecture 6.1) in [4] for discussions about the growth of solutions of
DAEs, and their relations to functions en(x).

Thus, the first important part of this paper is to refine Bank’s counter-example to build
fastgen, a fast-growing function that satisfies even stronger properties. The second major
ingredient is to be able to approximate a function with arbitrary precision everywhere.
Since this is a difficult task, we use fastgen to our advantage to show that it is enough to
approximate functions that are bounded and change slowly (think 1-Lipschitz, although the
exact condition is more involved). That is to say, to deal with the case where there is no
problem about the growth and rate of change of functions in some way. This is the purpose
of the function pwcgen which can build arbitrary almost piecewise constant functions as long
as they are bounded and change slowly.

It should be noted that the entire paper, we construct generable functions (in several
variables) (see Section 3.1). For most of the constructions, we only use basic facts like the
fact that generable functions are stable under arithmetic, composition and ODE solving. We
know that generable functions satisfy polynomial partial equations and use this fact only at

O. Bournez and A. Pouly 116:7

the very end to show that the generable approximation that we have built, in fact, translates
to a polynomial ordinary differential equation.

The rest of the paper is organized as follows. In Section 3, we recall some concepts and
results from other articles. The main purpose of this section is to present Theorem 10. This
theorem is the analog equivalent of doing an assignment in a periodic manner. Section 4
is devoted to fastgen, the fast-growing function. In Section 5, we show how to generate a
sequence of dyadic rationals. In Section 6, we show how to generate a sequence of bits. In
Section 7, we show how to leverage the two previous sections to generate arbitrary almost
piecewise constant functions. Section 8 is then devoted to the proof of our main theorem.

3 Concepts and results from other articles

3.1 Generable functions
The following concept can be attributed to [20]: a function f : R→ R is said to be a PIVP
(Polynomial Initial Value Problem) function if there exists a system of the form y′ = p(y),
where p is a (vector of) polynomial, with f(t) = y1(t) for all t, where y1 denotes first
component of the vector y defined in Rd. We need in our proof to extend this concept to
talk about multivariable functions. In [6], we introduced the following class, which can be
seen as extensions of [14].

I Definition 5 (Generable function). Let d, e ∈ N, I be an open and connected subset of
Rd and f : I → Re. We say that f is generable if and only if there exists an integer n > e,
a n × d matrix p consisting of polynomials with coefficients in R , x0 ∈ Rd, y0 ∈ Rn and
y : I → Rn satisfying for all x ∈ I:

y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a polynomial differential equation3,
f(x) = (y1(x), . . . , ye(x)) I the components of f are components of y.

This class strictly generalizes functions generated by polynomial ODEs. Indeed, in the
special case of d = 1 (the domain of the function has dimension 1), the above definition is
equivalent to saying that y′ = p(y) for some polynomial p. The interested reader can read
more about this in [6].

For the purpose of this paper, the reader only needs to know that the class of generable
functions enjoys many stability properties that make it easy to create new functions from
basic operations. Informally, one can add, subtract, multiply, divide and compose them at
will, the only requirement is that the domain of definition must always be connected. In
particular, the class of generable functions contains some common mathematical functions:

(multivariate) polynomials,
trigonometric functions: sin, cos, tan, etc,
exponential and logarithm: exp, ln,
hyperbolic trigonometric functions: sinh, cosh, tanh.

Two famous examples of functions that are not in this class are the ζ and Γ, we refer the
reader to [6] and [14] for more information.

A nontrivial fact is that generable functions are always analytic. This property is well-
known in the one-dimensional case but is less obvious in higher dimensions, see [6] for more
details. Moreover, generable functions satisfy the following crucial properties.

3 Jy denotes the Jacobian matrix of y.

ICALP 2017

116:8 A Universal Ordinary Differential Equation

I Lemma 6 (Closure properties of generable functions). Let f :⊆ Rd → Rn and g :⊆ Re → Rm
be generable functions. Then f + g, f − g, fg, fg and f ◦ g are generable4.

I Lemma 7 (Generable functions are closed under ODE). Let d ∈ N, J ⊆ R an interval,
f :⊆ Rd → Rd generable, t0 ∈ J and y0 ∈ dom f . Assume there exists y : J → dom f

satisfying

y(t0) = y0 y′(t) = f(y(t))

for all t ∈ J , then y is generable (and unique).

In fact, generable functions satisfy the stronger (albeit more obscure) theorem

I Theorem 8 (Generable functions are closed under ODE). Let d, n ∈ N, Ω ⊆ Rd, t0 ∈ R,
(Jα)α∈Ω a family of open intervals containing t0 and G : Ω→ Rn, F :⊆ Rd → Rd generable.
Assume that X = {(α, t) : α ∈ Ω, t ∈ Jα} is an open connected set and that there exists
f : X → domF satisfying

f(α, t0) = G(α) ∂f
∂t (α, t) = F (f(α, t))

for all α ∈ Ω and t ∈ Jα. Then f is generable (and unique).

3.2 Helper functions and constructions
We mentioned earlier that a number of common mathematical functions are generable.
However, for our purpose, we will need less common functions that one can consider to be
programming gadgets. One such operation is rounding (computing the nearest integer). Note
that, by construction, generable functions are analytic and in particular must be continuous.
It is thus clear that we cannot build a perfect rounding function and in particular we have to
compromise on two aspects:

we cannot round numbers arbitrarily close to n+ 1
2 for n ∈ Z: thus the function takes a

parameter λ to control the size of the “zone” around n+ 1
2 where the function does not

round properly,
we cannot round without error: thus the function takes a parameters µ that controls how
good the approximation must be.

I Lemma 9 (Round, [6]). There exists a generable function round such that for any n ∈ Z,
x ∈ R, λ > 2 and µ > 0:

if x ∈
[
n− 1

2 , n+ 1
2
]
then | round(x, µ, λ)− n| 6 1

2 ,
if x ∈

[
n− 1

2 + 1
λ , n+ 1

2 −
1
λ

]
then | round(x, µ, λ)− n| 6 e−µ.

The other very useful operation is the analog equivalent of a discrete assignment, done in
a periodic manner. More precisely, we consider a particular class of ODEs

y′(t) = pereach(t, φ(t), y(t), g(t))

adapted from the constructions of [7].
This equation alternates between two behaviors, for all n ∈ N.
During Jn = [n, n + 1

2], it performs y(t) → g where mint∈Jn
g(t) 6 g 6 maxt∈Jn

g(t).
So in particular, if g(t) is almost constant over this time interval, then it is essentially
y(t)→ g. Then φ controls how good the convergence is: the error is of the order of e−φ.

4 With the obvious dimensional condition associated with each operation.

O. Bournez and A. Pouly 116:9

During J ′n = [n+ 1
2 , n+ 1], the systems tries to keep y constant, ie y′ ≈ 0. More precisely,

the system enforces that |y′(t)| 6 e−φ(t).

I Theorem 10 (Periodic reach). There exists a generable function pereach : R2
>0 × R2 → R

such that for any I = [n, n+ 1] with n ∈ N, y0 ∈ R, φ, ψ ∈ C0(I,R>0) and g ∈ C0(I,R), the
unique solution to

y(n) = y0, y′(t) = ψ(t) pereach(t, φ(t), y(t), g(t))

exists over I.
If there exists ḡ ∈ R and η ∈ R>0 such that |g(t) − ḡ| 6 η for all t ∈ [n, n + 1

2], then
|y(t)− ḡ| 6 η+ exp

(
−
∫ t
n
ψ(u)φ(u)du

)
whenever

∫ t
n
ψ(u)φ(u)du > 1 for all t ∈ [n, n+ 1

2],
and |y(t)− ḡ| 6 max(η, |y(n)− ḡ|) for all t ∈ [n, n+ 1

2] without condition.
For all t ∈ [n+ 1

2 , n], |y(t)− y(n+ 1
2)| 6

∫ t
n+ 1

2
ψ(u) exp (−φ(u)) du.

In particular, the first item implies that y(t) > minu∈[n,t] g(t)− exp
(
−
∫ t
n
φ(u)du

)
whenever∫ t

n
φ(u)du > 1 for all t ∈ [n, n+ 1

2], and y(t) > min
(
y(n),minu∈[n,t] g(t)

)
.

4 Generating fast growing functions

Our construction crucially relies on our ability to build functions of arbitrary growth. At
the end of this section, we obtain a function fastgen with a straightforward specification:
for any infinite sequence a0, a1, . . . of positive numbers, we can find a suitable α ∈ R such
that fastgen(α, n) > an for all n ∈ N. Furthermore, we can ensure that fastgen(α, ·) is
increasing. Notice, and this is the key point, that the definition of fastgen is independent of
the sequence a: a single generable function (and thus differential system) can have arbitrary
growth by simply tweaking its initial value.

Our construction builds on the following lemma proved by [1], based on an example
of [2]. The proof essentially relies on the function 1

2−cos(x)−cos(αx) which is generable and
well-defined for all positive x if α is irrational. By carefully chosing α, we can make cos(x)
and cos(αx) simultaneously arbitrary close to 1.

I Lemma 11 ([1]). There exists a positive nondecreasing generable function g and an absolute
constant c > 0 such that for any increasing sequence a ∈ NN with an > 2 for all n, there exists
α ∈ R such that g(α, ·) is defined over [1,∞) and for any n ∈ N and t > 2πbn, g(α, t) > can
where bn =

∏n−1
k=0 ak.

Essentially, this lemma proves that there exists a function g such that for any n ∈ N,
g(α, a0a1 · · · an−1) > an. Note that this is not quite what we are aiming for: the function g is
indeed > an but at times a0a1 · · · an−1 instead of n. Since a0a1 · · · an−1 is a very big number,
we need to “accelerate” g so that it reaches this values faster. This is a chicken-and-egg
problem because to accelerate g, we need to build a fast growing function. We now try to
explain how to solve this problem. Consider the following sequence:

x0 = a0, xn+1 = xng(xn).

Then observe that

x1 = x0g(x0) = a0g(a0) > a0a1, x2 = x1g(x1) > a0a1g(a0a1) > a0a1a2, . . .

It is not hard to see that xn > a0a1 · · · an > an. We then use our generable gadget of
Section 3.2 to simulate this discrete sequence with a differential equation. Intuitively, we

ICALP 2017

116:10 A Universal Ordinary Differential Equation

t

d0

a0

d1

a1

d2

a2

d3

a3

Figure 2 Graph of dygen for d0 = 2−1, d1 = 2−3 + 2−1, d2 = 2−5 + 2−2 and d3 = 2−4 (other
values ignored) assuming that δ = 9. We get that a0 = 0, a1 = 10, a2 = 22, a3 = 36.

build a differential equation such that the solution y satisfies y(n) ≈ xn. More precisely,
we use two variables y and z such that over [n, n+ 1/2], z′ ≈ 0 and y(t)→ zg(z) and over
[n+1/2, n+1], y′ ≈ 0 and z(t)→ y. Then if y(n) ≈ z(n) ≈ xn then y(n+1) ≈ z(n+1) ≈ xn+1.

I Theorem 12. There exists Γ ⊆ R and a positive generable function fastgen : Γ×R>0 → R
such that for any x ∈ RN

>0, there exists α ∈ Γ such that for any n ∈ N and t ∈ R>0,

fastgen(α, t) > xn if t > n.

Furthermore, fastgen(α, ·) is nondecreasing.

5 Generating a sequence of dyadic rationals

A major part of the proof requires to build a function to approximate arbitrary numbers
over intervals [n, n+ 1]. Ideally we would like to build a function that gives x0 over [0, 1], x1
over [1, 2], etc. Before we get there, we solve a somewhat simpler problem by making a few
assumptions:

we only try to approximate dyadic numbers, i.e. numbers of the form m2−p, and
furthermore we only approximate with error 2−p−3,
if a dyadic number has size p, meaning that it can be written as m2−p but not m′2−p+1

then it will take a time interval of p units to approximate: [k, k + p] instead of [k, k + 1],
the function will only approximate the dyadics over intervals [k, k + 1

2] and not [k, k + 1].
This processus is illustrated in Figure 2: given a sequence d0, d1, . . . of dyadics, there is
a corresponding sequence a0, a1, . . . of times such that the function approximate dk over
[ak, ak + 1

2] within error 2−pk where pk is the size of dk. The theorem contains an explicit
formula for ak that depends on some absolute constant δ.

Let Dp = {m2−p : m ∈ {0, 1, . . . , 2p − 1}} and D =
⋃
n∈N Dp denote the set of dyadic

rationals in [0, 1). For any q ∈ D, we define its size by L(q) = min {p ∈ N : q ∈ Dp}.

I Theorem 13. There exists δ ∈ N>0, Γ ⊆ R2 and a generable function dygen : Γ×R>0 → R
such that for any dyadic sequence q ∈ DN, there exists (α, β) ∈ Γ such that for any n ∈ N,

|dygen(α, β, t)− qn| 6 2−L(qn)−3 for any t ∈ [an, an + 1
2]

where an =
∑n−1
k=0(L(qk) + δ). Furthermore, | dygen(α, β, t)| 6 1 for all α, β and t.

O. Bournez and A. Pouly 116:11

6 Generating a sequences of bits

We saw in the previous section how to generate a dyadic generator. Unfortunately, we saw
that it generates dyadic dn at times an, whereas we would like to get dn at time n for our
approximation. Our approach is to build a signal generator that will be high exactly at times
an. Each the signal will be high, the system will copy the value of the dyadic generator to a
variable and wait until the next signal. Since the signal is binary, we only need to generate a
sequence of bits. Note that this theorem has a different flavour from the dyadic generator: it
generates a more restrictive set of values (bits) but does so much better because we have
better control of the timing and we can approximate the bits with arbitrary precision.

I Remark. Although it is possible to define bitgen using dygen, it does not, in fact, gives a
shorter proof but definitely gives a more complicated function.

I Theorem 14. There exists Γ ⊆ R and a generable function bitgen : Γ × R2
>0 → R such

that for any bit sequence b ∈ {0, 1}N, there exists αb ∈ Γ such that for any µ ∈ R>0, n ∈ N
and t ∈ [n, n+ 1

2],

|bitgen(αb, µ, t)− bn| 6 e−µ.

Furthermore, | bitgen(α, µ, t)| 6 1 for all α, µ and t.

7 Generating an almost piecewise constant function

We have already explained the main intuition of this section in previous sections. Using the
dyadic generator and the bit generator as a signal, we can construct a system that “samples”
the dyadic at the right time and then holds this value still until the next dyadic. In essence,
we just described an almost piecewise constant function. This function still has a limitation:
its rate of change is small so it can only approximate slowly changing functions.

I Theorem 15. There exists an absolute constant δ ∈ N, p ∈ N, Γ ⊆ Rp and a generable
function pwcgen : Γ× R>0 → R such that for any dyadic sequence q ∈ DN then there exists
α ∈ Γ such that for any n ∈ N,

|pwcgen(α, t)− qn| 6 2−L(qn) for any t ∈ [an + 1
2 , an+1]

and5

pwcgen(α, t) ∈
[
pwcgen(α, an),pwcgen(α, an + 1

2)
]

for any t ∈ [an, an + 1
2]

where an =
∑n−1
k=0(δ + L(qk)).

8 Proof of the main theorem

The proof works in several steps. First we show that using an almost constant function, we
can approximate functions that are bounded and change very slowly. We then relax all these
constraints until we get to the general case. In the following, we only consider total functions
over R. See Remark on page 6 for more details.

5 With the convention that [a, b] = [min(a, b),max(a, b)].

ICALP 2017

116:12 A Universal Ordinary Differential Equation

I Definition 16 (Universality). Let I ⊆ R and C ⊆ C0(I) × C0(I,R>0). We say that the
universality property holds for C if there exists d ∈ N and a generable function u such that
for any (f, ε) ∈ C, there exists α ∈ Rd such that

|u(α, t)− f(t)| 6 ε(t) for any t ∈ dom(f).

I Lemma 17. There exists a constant c > 0 such that the universality property holds for all
(f, ε) on R>0 such that for all t ∈ R>0:

ε is decreasing and − log2 ε(t) 6 c′ + t for some constant c′,
f(t) ∈ [0, 1],
|f(t)− f(t′)| 6 cε(t+ 1) for all t′ ∈ [t, t+ 1].

Proof Sketch. This is essentially a application of pwcgen with a small twist. Indeed the
bound on f guarantees that dyadic rationals are enough. The bound on the rate of change of
f guarantees that a single dyadic can provide an approximation for a long enough time. And
the bound on ε guarantees that we do not need too many digits for the approximations. J

I Lemma 18. The universality property holds for all (f, ε) on R>0 such that f and ε are
differentiable, ε is decreasing and f(t) ∈ [0, 1] for all t ∈ R>0.

Proof Sketch. Consider F = f ◦ h−1 and E = ε ◦ h−1 where h is a fast-growing function
like fastgen. Then the faster h grows, the slower E and F change and thus we can apply
Lemma 17 to (F,E). We recover an approximation of f from the approximation of F . J

I Lemma 19. The universality property holds for all (f, ε) on R>0 such that f is differentiable
and ε is decreasing.

Proof Sketch. Consider F = 1
2 + f

h and ε = f
h where h is a fast-growing function like

fastgen. By taking h big enough, we can ensure that F (t) ∈ [0, 1] and apply Lemma 18 to
(F,E). We then recover an approximation of f from the approximation of F . J

I Lemma 20. The universality property holds for all continuous (f, ε) on R>0.

Proof Sketch. Observe that the set of differential functions is dense in the set of continuous
functions and apply Lemma 19. J

I Lemma 21. The universality property holds for all continuous (f, ε) on R.

Proof Sketch. Let f+ be the approximating of f over R>0, using Lemma 20. Then we
extend and modify f+ to R in such a way that the approximation is still good over R>0 but
the function almost vanishes over (−∞, 0]. We then do the same to t 7→ f(−t)− f+(−t) and
sum the two functions. J

We can now show the main theorem.

Proof of Theorem 3. Lemma 21 gives a generable function u. There exists α such that

|u(α, t)− f(t)| 6 ε(t).

And since u is generable, t 7→ u(α, t) satisfies a PIVP. J

O. Bournez and A. Pouly 116:13

References
1 Steven B. Bank. Some results on analytic and meromorphic solutions of algebraic dif-

ferential equations. Advances in Mathematics, 15(1):41 – 62, 1975. doi:10.1016/
0001-8708(75)90124-3.

2 N.M. Basu, S.N. Bose, and T. Vijayaraghavan. A simple example for a theorem of
vijayaraghavan. Journal of the London Mathematical Society, s1-12(4):250–252, 1937.
doi:10.1112/jlms/s1-12.48.250.

3 Emile Borel. Mémoire sur les séries divergentes. Annales Scientifiques de l’Ecole Normale
Supérieure, 16:9–136, 1899.

4 Michael Boshernitzan. Universal formulae and universal differential equations. Annals of
mathematics, 124(2):273–291, 1986.

5 Olivier Bournez, Manuel L. Campagnolo, Daniel S. Graça, and Emmanuel Hainry. Polyno-
mial differential equations compute all real computable functions on computable compact
intervals. Journal of Complexity, 23(3):317–335, June 2007. doi:10.1016/j.jco.2006.12.
005.

6 Olivier Bournez, Daniel S. Graça, and Amaury Pouly. On the functions generated by the
general purpose analog computer. CoRR, abs/1602.00546, 2016. URL: http://arxiv.org/
abs/1602.00546.

7 Olivier Bournez, Daniel S. Graça, and Amaury Pouly. Polynomial Time corresponds
to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length. The
General Purpose Analog Computer and Computable Analysis are two efficiently equi-
valent models of computations. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 109:1–109:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.ICALP.2016.109.

8 Keith Briggs. Another universal differential equation. arXiv preprint math/0211142, 2002.
9 V. Bush. The differential analyzer. A new machine for solving differential equations. J.

Franklin Inst., 212:447–488, 1931.
10 D.C. Carothers, G. E. Parker, J. S. Sochacki, and P.G. Warne. Some properties of solutions

to polynomial systems of differential equations. Electron. J. Diff. Eqns., 2005(40), April
2005.

11 Etienne Couturier and Nicolas Jacquet. Construction of a universal ordinary differential
equation c∞ of order 3. arXiv preprint arXiv:1610.09148, 2016.

12 Richard J. Duffin. Rubel’s universal differential equation. Proceedings of the National
Academy of Sciences, 78(8):4661–4662, 1981.

13 Daniel S. Graça and José Félix Costa. Analog computers and recursive functions over the
reals. Journal of Complexity, 19(5):644–664, 2003.

14 D. S. Graça, J. Buescu, and M.L. Campagnolo. Computational bounds on polynomial
differential equations. Appl. Math. Comput., 215(4):1375–1385, 2009.

15 D. S. Graça, M. L. Campagnolo, and J. Buescu. Computability with polynomial differential
equations. Adv. Appl. Math., 40(3):330–349, 2008.

16 G.H. Hardy. Some results concerning the behaviour at infinity of a real and continuous
solution of an algebraic differential equation of the first order. Proceedings of the London
Mathematical Society, 2(1):451–468, 1912.

17 R. J. Lipton and K.W. Regan. The amazing zeta code. Post on Blog
“Gödel’s Lost Letter and P=NP”, https://rjlipton.wordpress.com/2012/12/04/
the-amazing-zeta-code/, December 4, 2012.

18 M.B. Pour-El. Abstract computability and its relations to the general purpose analog
computer. Trans. Amer. Math. Soc., 199:1–28, 1974.

ICALP 2017

http://dx.doi.org/10.1016/0001-8708(75)90124-3
http://dx.doi.org/10.1016/0001-8708(75)90124-3
http://dx.doi.org/10.1112/jlms/s1-12.48.250
http://dx.doi.org/10.1016/j.jco.2006.12.005
http://dx.doi.org/10.1016/j.jco.2006.12.005
http://arxiv.org/abs/1602.00546
http://arxiv.org/abs/1602.00546
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.109
https://rjlipton.wordpress.com/2012/12/04/the-amazing-zeta-code/
https://rjlipton.wordpress.com/2012/12/04/the-amazing-zeta-code/

116:14 A Universal Ordinary Differential Equation

19 L.A. Rubel. A universal differential equation. Bulletin of the American Mathematical
Society, 4(3):345–349, May 1981.

20 C.E. Shannon. Mathematical theory of the differential analyser. Journal of Mathematics
and Physics MIT, 20:337–354, 1941.

21 T. Vijayaraghavan. Sur la croissance des fonctions définies par les équations différentielles.
CR Acad. Sci. Paris, 194:827–829, 1932.

Regular Separability of Parikh Automata
Lorenzo Clemente∗1, Wojciech Czerwiński†2, Sławomir Lasota‡3,
and Charles Paperman4

1 University of Warsaw, Warsaw, Poland
l.clemente@mimuw.edu.pl

2 University of Warsaw, Warsaw, Poland
wczerwin@mimuw.edu.pl

3 University of Warsaw, Poland
sl@mimuw.edu.pl

4 University of Tübingen, Tübingen, Germany
charles.paperman@gmail.com

Abstract
We investigate a subclass of languages recognized by vector addition systems, namely languages
of nondeterministic Parikh automata. While the regularity problem (is the language of a given
automaton regular?) is undecidable for this model, we surprisingly show decidability of the reg-
ular separability problem: given two Parikh automata, is there a regular language that contains
one of them and is disjoint from the other? We supplement this result by proving undecidability
of the same problem already for languages of visibly one counter automata.

1998 ACM Subject Classification D.2.2 [Design Tools and Techniques] Petri Nets, F.1.1 [Theory
of Computation] Models of Computation, F.2.2 [Nonnumerical Algorithms and Problems] Com-
putations on Discrete Structures, F.3.1 [Specifying and Verifying and Reasoning about Programs]
Mechanical verification

Keywords and phrases Regular separability problem, Parikh automata, integer vector addition
systems, visible one counter automata, decidability, undecidability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.117

1 Introduction

We investigate separability problems for languages of finite words. We say that a language U
is separated from a language V by S if U ⊆ S and V ∩ S = ∅. In the sequel we also often say
that U and V are separated by S. For two families of languages F and G, the F separability
problem for G asks for two given languages U, V ∈ G whether U is separated from V by some
language from F . The same notion of separability makes clearly sense if F and G are classes
of sets of vectors instead of classes of languages. In this paper, we consider the case where F
are regular languages and G languages recognized by Parikh automata, and the case where
F are the unary sets and G the semilinear sets.

Motivation. Separability is a classical problem in theoretical computer science. It was
investigated most extensively in the area of formal languages, for G being the family of all
regular word languages. Since regular languages are effectively closed under complement, the

∗ Partially supported by the Polish National Science Centre grant 2016/21/B/ST6/01505.
† Partially supported by the Polish National Science Centre grant 2016/21/D/ST6/01376.
‡ Partially supported by the Polish National Science Centre grant 2016/21/B/ST6/01505.

EA
T

C
S

© Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and Charles Paperman;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 117; pp. 117:1–117:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.117
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

117:2 Regular Separability of Parikh Automata

F separability problem is a generalization of the F characterization problem, which asks
whether a given language belongs to F . Indeed, L ∈ F if and only if L is separated from its
complement by some language from F . Separability problems for regular languages attracted
recently a lot of attention, which resulted in establishing the decidability of F separability
for various families F such as the piecewise testable languages [7, 15] (recently generalized to
finite ranked trees [9]), the locally and locally threshold testable languages [14], the languages
definable in first order logic [17], and the languages of certain higher levels of the first order
hierarchy [16], among others.

Separability of nonregular languages attracted little attention till now. The reasons for
this may be twofold. First, for regular languages one can use standard algebraic tools, like
syntactic monoids, and indeed most of the results have been obtained with the help of such
techniques. Second, some strong intractability results have been known already since 70’s,
when Szymanski and Williams proved that regular separability of context-free languages
is undecidable [18]. Later Hunt [10] generalized this result for every class F closed under
finite boolean combinations and containing all languages of the form wΣ∗ for w ∈ Σ∗. This
is a very weak condition, so it seemed that nothing nontrivial can be done outside regular
languages with respect to separability problems. Furthermore, Szymanski and Williams’s
negative result has recently been strengthened by considering two incomparable subclasses
of pushdown automata. First, Kopczyński has shown that regular separability is undecidable
for languages of visibly pushdown automata [13], and then Czerwiński and Lasota have
shown that the same problem is undecidable for one counter automata [6].

On the positive side, piecewise testable separability has been shown decidable for context-
free languages, languages of vector addition systems (VAS languages), and some other classes
of languages [8]. Another surprising result has been recently obtained by Czerwiński and
Lasota [6] who show that regular separability is decidable (and PSPACE-complete) for
languages recognized by one counter nets (i.e., one counter automata without zero test).
Notice that in all these examples regularity (resp. piecewise testability) is undecidable, but
regular (resp. piecewise testable) separability is decidable, and until recently there were not
many results of this kind.

Finally, in [5] we have shown decidability of unary separability of reachability sets of vector
addition systems (VASes). By unary sets we mean Parikh images of commutative regular
languages, and thus the latter problem is equivalent to commutative regular separability of
(commutative closures of) VAS languages. The decidability status of the regular separability
problem for the whole class of VAS languages remains open.

Our contribution. This paper is a continuation of the line of research trying to understand
the regular separability problem for language classes beyond regular languages. We report a
further progress towards solving the open problem mentioned above by providing a positive
decidability result and a new negative undecidability result: As our first (positive) result,
we show decidability of the regular separability problem for the subclass of VAS languages
where we allow negative counter values during a run. This class of languages is also
known as languages of integer VASSes, and it admits many different characterizations; for
instance, it coincides with languages of one-way reversal-bounded counter machines [11],
Parikh automata [12] (cf. also [2, Proposition 11]), which in turn are equivalent to the very
similar model of constrained automata [3]. In this paper, we present our results in terms of
constrained automata, but given the similarity with Parikh automata (and in light of their
equivalence), we overload the name Parikh automata for both models.

Notice that PA languages are not closed under complement, and thus our decidability
result about regular separability does not imply decidability of the regularity problem (is

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:3

Regularity

Regular separability
DCFL

PA

visibly-OCL

unambiguous-PA

Figure 1 The regularity and the regular separability problems.

the language of a given Parikh automaton regular?). Moreover, the regularity problem for
PA languages is actually undecidable [2]1, which makes our decidability result one of few
instances where regularity is undecidable but regular separability is decidable; cf. Fig 1.

Parikh automata are finite nondeterministic automata where accepting runs are further
restricted to satisfy a semilinear condition on the multiset of transitions appearing in the run.
Our decidability result is actually stated in the more general setting of C-Parikh automata,
where C ⊆

⋃
d∈N P(Nd) is a class of sets of vectors used as an acceptance condition. We

prove that the regular separability problem for languages of C-Parikh automata effectively
reduces to the unary separability problem for the class C itself, provided that C is effectively
closed under inverse images of affine functions. Two prototypical classes C satisfying the
latter closure condition are semilinear sets and VAS reachability sets. Moreover, unary
separability of semilinear sets is known to be decidable [4], and as recalled before the same
result has recently been extended to VAS reachability sets [5]. As a consequence of our
reduction, we deduce decidability of regular separability of C-Parikh automata languages
where the acceptance condition C can be instantiated to either the semilinear sets, or the
VAS reachability sets.

We complement our decidability result by a new negative undecidability result subsum-
ing simultaneously Kopczyński’s undecidability for visibly pushdown languages [13] and
Czerwiński and Lasota’s undecidability of one counter languages [6]: We show that regular
separability is undecidable for (deterministic2) visibly one counter languages. Inside the proof
we use the result from [6], but actually in order to only reprove [13] it would be sufficient to
use the old work by Szymanski and Williams [18].

2 Preliminaries

Vectors. A set S ⊆ Nd is linear if there exist a base b ∈ Nd and periods p1, . . . , pk ∈ Nd
s.t. S = {b+ n1p1 + . . .+ nkpk | n1, . . . , nk ∈ N}, and it is semilinear if it is a finite union of
linear sets. For a vector v ∈ Nd and i ∈ {1, . . . , d}, let v[i] denote its i-th coordinate. For
n ∈ N, we say that two vectors x, y ∈ Nd are n-unary equivalent, written x ≡n y, if for every
coordinate i ∈ {1, . . . , d} it holds x[i] ≡ y[i] mod n and moreover x[i] ≤ n ⇐⇒ y[i] ≤ n. A

1 Later shown decidable for unambiguous PA [3].
2 Determinism here is irrelevant because this class can be determinized.

ICALP 2017

117:4 Regular Separability of Parikh Automata

set S ⊆ Nd is unary if for some n, S is a union of equivalence classes of ≡n. Intuitively, to
decide membership in a unary set S it is enough to count on every coordinate exactly up to
some threshold n, and modulo n for values larger than n. Unary sets are semilinear.

Let Σ = {a1, . . . , ak} be a totally ordered alphabet. For a word w ∈ Σ∗ and a letter
ai ∈ Σ, by #ai

(w) we denote the number of letters ai in w. The Parikh image of a word
w ∈ Σ∗ is the vector Π(w) = (#a1(w), . . . ,#ak

(w)) ∈ Nk. The Parikh image of a language
L ⊆ Σ∗ is Π(L) = {Π(w) | w ∈ L}, the set of Parikh images of all words belonging to L.

Parikh automata. A nondeterministic finite automaton with ε-transitions (ε-NFA) A =
(Q, I, F, T) over a finite alphabet Σ consists of a finite set of states Q, two distinguished
subsets of initial and final states I, F ⊆ Q, and a set of transitions T ⊆ Q× Σε ×Q, where
Σε = Σ ∪ {ε}. A nondeterministic Parikh automaton3 is a pair (A, S) consisting of an
ε-NFA A and a semilinear set S ⊆ Nd, where d = |T | is the number of transitions of A.
Notice that we allow ε-transitions in the definition of Parikh automata. A run of a Parikh
automaton over a word w = a1 . . . an ∈ Σ∗ is a sequence of transitions ρ = t1 . . . tn ∈ T ∗,
where ti = (qi−1, ai, qi), starting in an initial state q0. A run ρ is accepting if its ending state
qn is final and Π(ρ) ∈ S (we assume here that the set of transitions T is totally ordered).
The language of a Parikh automaton, denoted L(A, S), contains all words w admitting an
accepting run; it is thus a subset of the language L(A) of the underlying ε-NFA.

One can generalize Parikh automata by using some other family of vector sets in the
place of semilinear sets. For a class C ⊆

⋃
d∈N P(Nd) of vector sets, a C-Parikh automaton is

a pair (A, S), where A is an ε-NFA and S ∈ C. The language L(A, S) is defined as above.
A C-Parikh automaton (A, S) is deterministic if the underlying automaton A is so; here,

we assume that a deterministic automaton does not have ε-transitions. The languages
of (non)deterministic C-Parikh automata are shortly called (non)deterministic C-Parikh
languages below.

3 Main results

We call a function f : Nk → N` affine if it is of the form f(v) = Mv + u for an integer
non-negative matrix M of dimension `× k and a vector u ∈ N`. In a special case when u = 0
we call the function f linear. A class of vector sets C ⊆

⋃
d∈N P(Nd) is called robust if it

fulfills the following two conditions:
C is effectively closed under inverse images of affine functions,
the unary separability problem is decidable for C.

Our first main result is decidability of the regular separability problem for C-Parikh automata.

I Theorem 1. The regular separability problem is decidable for C-Parikh automata, for every
robust class C of vector sets.

The proof of Theorem 1 is split into two parts. In Section 4 we provide a reduction of the
regular separability problem for nondeterministic C-Parikh automata to the same problem
for deterministic ones; this step is crucial for understanding how the regular separability
problem differs from the regularity problem, which does not admit a similar reduction. Then
in Section 5 we reduce the regular separability problem for deterministic C-Parikh automata
to the unary separability problem for vector sets in C.

3 This is the same as constrained automata from [3].

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:5

In Section 6 we consider two instantiations of the class C. First, taking C to be the
semilinear sets we derive decidability for (ordinary) Parikh automata. Second, we consider
the class CSEC-VAS of sections of reachability sets of VASes (detailed definitions are deferred
to Section 6), which allows us to obtain decidability for CSEC-VAS-Parikh automata. Note that
the latter model properly extends Parikh automata.

Before proceeding with the rest of the proof for our decidability result, we present a
generic reduction of the regular separability problem from which we can immediately derive
a new undecidability result, which is our second main contribution.

3.1 A generic reduction
We observe that regular separability of homomorphic images of a class of languages G reduces
to regular separability for G itself (cf. Lemma 2 below). Since nondeterministic Parikh
automata are the homomorphic image of deterministic ones, we reduce regular separability
for the nondeterministic class to the deterministic one (shown in Sec. 4); together with the
decidability result for the deterministic class presented in Sec. 5, this proves Theorem 1.

Our reduction can also be used to derive undecidability results. Since context-free
languages are the homomorphic image of (deterministic) visibly pushdown languages (cf. [1,
Theorem 5.2]), and since regular separability is undecidable for the former class [18], we
concisely reprove the recent LICS’16 result by Kopczyński [13] about undecidability of regular
separability of visibly pushdown languages. Moreover, this result can be further strengthened
to (deterministic) visibly one counter languages using the same observation and the recent
result by Czerwiński and Lasota [6] about undecidability of regular separability for one
counter automata (cf. Sec. 3.2).

We now present our generic reduction. Given two alphabets Σ and Γ, a homomorphism is
a function h : Σ→ Γ∗ which extends homomorphically to a function from Σ∗ to Γ∗, and thus
to languages. For G a class of languages and H a class of homomorphisms, let H(G) be the
class of languages obtained by applying some homomorphism from H to some language in G.

I Lemma 2. If G and H(G) are effectively closed under inverse images of homomorphisms
from H, then the regular separability problem in H(G) reduces to the same problem in G.

In statements of this form, “effective” means that for given finite computational model
representing L ∈ G and h ∈ H, one can effectively find a representation with a finite
computational model for h−1(L) ∈ G, and similarly for H(G). The reduction above is a
consequence of the following fundamental relationship between separators and (inverse)
images of functions. (We do not exploit the further structure of homomorphisms here.)

I Lemma 3. Let L ⊆ Σ∗,K ⊆ Γ∗ be two languages, and let h : Σ∗ → Γ∗ be a function.
1. If R separates h(L) and K, then h−1(R) separates L and h−1(K).
2. If R separates L and h−1(K), then h(R) separates h(L) and K.

Proof. The proof is elementary and it is given for completeness. For the first point, L ⊆
h−1(R) follows from the inclusion h(L) ⊆ R since L ⊆ h−1(h(L)), and the disjointness of
h−1(R) and h−1(K) follows from disjointness of R and K. For the second point, the inclusion
h(L) ⊆ h(R) follows by the inclusion L ⊆ R, and the disjointness of h(R) and K follows
from the disjointness of R and h−1(K). J

Since regular languages are closed under images and inverse images of homomorphisms, we
immediately obtain the following corollary.

ICALP 2017

117:6 Regular Separability of Parikh Automata

I Corollary 4. Let h be a homomorphism. Languages h(L),K are regular separable if, and
only if, L, h−1(K) are so.

Since regular languages are closed under complement, the regular separability problem is
in fact symmetric. Combining this observation with the corollary above, we can now prove
correctness of our generic reduction.

Proof of Lemma 2. Let h(L),K be two languages in H(G). By Corollary 4, regular separ-
ability for h(L),K is the same as for L, h−1(K). Since H(G) is closed under inverse images
by assumption, h−1(K) equals the image g(K1) of language K1 in G for some g from H. We
have thus reduced to regular separability for L, g(K1), where now both L and K1 are in G.
Since regular languages are closed under complement, regular separability for L, g(K1) is
the same for g(K1), L. Applying once more Corollary 4, the latter statement is equivalent
to regular separability for K1, g

−1(L). Since G closed under inverse images by assumption,
g−1(L) is itself in G. Since every step was effective, this concludes the proof. J

3.2 A new undecidability result
A one counter automaton is a finite-state device manipulating a single natural counter, which
can be incremented, decremented, and tested for zero; it is visible if the input symbol uniquely
determines which counter operation will be performed. Therefore, languages recognized by
visible one counter automata are a strict subclass of visibly pushdown languages [1]. It was
recently proved that regular separability for one counter automata is undecidable [6], which
is incomparable with undecidability for visibly pushdown languages [13].

As a consequence of Lemma 2 we obtain undecidability of regular separability for visible
one counter automata, which is our second main result, strengthening both [6] and [13].

I Theorem 5. Regular separability of languages recognised by (deterministic) visible one
counter automata is undecidable.

Let G be the class of languages recognized by visible one counter automata, and let
H be the class of letter-to-letter (non-erasing) homomorphisms, i.e., functions of the form
h : Σ→ Γ. In order to apply Lemma 2, it suffices to show that languages recognized by one
counter automata are the effective homomorphic image of those recognized by the visible
subclass, and that both classes are effectively closed under inverse images of letter-to-letter
homomorphisms. We begin with the second result.

I Lemma 6. One counter languages and visibly one counter languages are effectively closed
under inverse images of letter-to-letter homomorphisms.

Proof. Given one counter automaton A over Σ and a letter-to-letter homomorphism h : Γ→
Σ, one computes an automaton B over Γ of the same kind s.t. L(B) = h−1(L(A)) as follows.
The automaton B is obtained by replacing a transition reading a ∈ Σ in A by corresponding
transitions reading b ∈ Γ performing the same counter operation, for every b ∈ h−1(a). Is
it easy to check that L(B) = h−1(L(A)), as required. Moreover, if A was visible, since the
counter operation is preserved, B will be visible too. J

Proof of Theorem 5. It remains to show that one counter languages are the effective ho-
momorphic image of visible one counter languages. This is easy to show. Let L ⊆ Σ∗ be
a one counter language. Each symbol a ∈ Σ is split into three symbols ainc, adec, a=0?. The
corresponding homomorphism h just forgets the new annotation, i.e., h(ainc) = h(adec) =
h(a=0?) = a; notice that h is letter-to-letter and non-erasing. Counter operations for the

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:7

new automaton are made visible by replacing an increment operation over a by the same
operation over ainc, and similarly for decrements and tests. Clearly, we obtain a visible one
counter automaton recognizing a language M s.t. L = h(M). Thus, by Lemma 2, Lemma 6,
and the undecidability of regular separability of one counter languages [6, Theorem 2], we
obtain that regular separability for visibly one counter languages is undecidable. J

4 From nondeterministic to deterministic PA

The aim of this section is to prove the following lemma:

I Lemma 7. If C is effectively closed under inverse images of linear mappings, then the
regular separability problem of nondeterministic C-Parikh automata effectively reduces to the
same problem for deterministic ones.

As a consequence of Lemma 7, we can focus on separability of deterministic PA languages
in the rest of the paper. Let G be the class of deterministic C-Parikh automata languages,
and let H be the class of letter-to-letter erasing homomorphism, i.e., functions of the form
h : Σ→ (Γ ∪ {ε}) extended homomorphically to Σ∗ → Γ∗. The proof of the lemma follows
immediately from Lemma 2 once we prove that nondeterministic languages are the effective
images of deterministic ones (cf. Lemma 8), and that both classes are closed under inverse
images (cf. Lemma 9). In the rest of the section, we assume that the class C is closed under
inverse images of linear mappings, which is the case for a robust class C (cf. Sec. 3).

I Lemma 8. Every nondeterministic C-Parikh language is the effective image of a letter-to-
letter erasing homomorphism of a deterministic C-Parikh language.

Proof. Fix a nondeterministic C-Parikh automaton (A, S) over the alphabet Σ, and let
T be the set of transitions of A. Consider the letter-to-letter erasing homomorphism
h : T → (Σ ∪ {ε}) that maps a transition (p, a, q) to a. Let (B, S) be the deterministic
C-Parikh automaton over the alphabet T which is obtained from A by relabelling every
transition of t = (p, a, q) ∈ T of A as a (unique) transition (p, t, q) of B. Notice that the
acceptance condition of B is the same as that for A, since we only relabelled transitions. One
easily verifies that L(A, S) = h(L(B, S)), as required. J

I Lemma 9. Deterministic and nondeterministic C-Parikh languages are effectively closed
under inverse images of letter-to-letter erasing homomorphisms.

Proof. Given a deterministic C-Parikh automaton (A, S) over Σ and a letter-to-letter erasing
homomorphism h : Γ→ (Σ ∪ {ε}), one computes a deterministic C-Parikh automaton (B, T)
s.t. L(B, T) = h−1(L(A, S)) as follows. The automaton B is obtained by replacing every
transition (p, a, q) in A by transitions (p, b, q), one for every b ∈ h−1(a). Moreover, each
state p in the automaton B has a self-loop (p, b, p) for every b ∈ h−1(ε). The constraint
T ∈ C is the inverse image of S under the linear function obtained by counting a transition
(p, b, q) as a transition (p, h(b), q) if h(b) 6= ε, and by counting (p, b, q) as zero (i.e., ignoring it)
otherwise. Finally, the constraint T , and hence also the automaton (B, T) can be computed.
Is it easy to check that L(B, T) = h−1(L(A, S)), as required. Moreover, if A is deterministic,
and h is a function, then the resulting automaton B is also deterministic. J

5 Regular separability reduces to unary separability

In this section we reduce regular separability of deterministic C-Parikh languages to unary
separability of vector sets in C.

ICALP 2017

117:8 Regular Separability of Parikh Automata

I Lemma 10. Let C be a class of vectors effectively closed under inverse images of affine
mappings. The regular separability problem for deterministic C-Parikh automata reduces to
the unary separability problem for vector sets in C.

The rest of this section is devoted to the proof of the lemma. Let L1, L2 ⊆ Σ∗ be languages of
deterministic C-Parikh automata (A1, S1) and (A2, S2), respectively. There are three steps:
1. As the first step, we show that w.l.o.g. we may assume A1 = A2.
2. In the second step, we partition Σ∗ into finitely many regular languages K1, . . . ,Km

and we reduce regular separability of L1 and L2 to regular separability of L1 ∩ Ki and
L2 ∩ Ki for every i ∈ {1, . . . ,m}. These subproblems turn out to be easier than the
general one, due to the additional structural information encoded in the languages Ki’s.

3. In the last step, we reduce regular separability of L1 ∩ Ki and L2 ∩ Ki to unary
separability of vector sets in C.

Step 1: Unifying the underlying automaton. As the input languages are subsets of regular
languages recognised by their underlying finite automata, L1 = L(A1, S1) ⊆ L(A1) and
L2 = L(A2, S2) ⊆ L(A2), it is enough to consider separability of L1 and L2 inside the
intersection of L(A1) and L(A2):

I Proposition 1. The languages L1 and L2 are regular separable if, and only if, the languages
L1 ∩ L(A2) and L2 ∩ L(A1) are so.

Proof. The “only if” direction is trivial as every language separating L1 and L2 separates
L1 ∩ L(A2) and L2 ∩ L(A1) as well. For the opposite direction, we observe that if a regular
language S separates L1 ∩ L(A2) and L2 ∩ L(A1), then S′ = (S ∩ L(A1)) ∪ L(A2) is a
regular language separating L1 and L2. J

Let A be the product automaton of A1 and A2, and thus L(A) = L(A1) ∩ L(A2). It is
deterministic since both A1 and A2 are so. We claim that one can compute sets U1, U2 ∈ C
such that L1 ∩ L(A2) = L(A, U1) and L2 ∩ L(A1) = L(A, U2). The set T of transitions
of A is a subset of the product T1 × T2 of transitions of A1 and A2, and thus there are
obvious projections functions π1 : T → T1 and π2 : T → T2. If we enumerate the transition
sets, say T1 = {t11, . . . , tm1 }, T2 = {t12, . . . , tn2}, and T = {t1, . . . , t`} with ` ≤ m · n, we obtain
π1 : {1, . . . , `} → {1, . . . ,m} and π2 : {1, . . . , `} → {1, . . . , n}. We use these projections to
define two linear (and in particular, affine) functions ψ1 : N` → Nm and ψ2 : N` → Nn
which instead of counting transitions in T , count the corresponding transitions in T1 or in
T2, respectively; formally,

ψ1(v)[j] =
∑

i:π1(i)=j

v[i] ψ2(v)[j] =
∑

i:π2(i)=j

v[i].

Finally, we set U1 := ψ−1
1 (S1) and U2 := ψ−1

2 (S2). Intuitively, U1 and U2 are as S1 and S2,
except that instead of single transitions of A1 or A2 they are seeing pairs of transitions,
and simply ignore one of them. Since C is closed under inverse images of affine mappings
by assumption, U1, U2 ∈ C. For the rest of the proof we may thus assume that the input
automata are (A, U1) and (A, U2).

Step 2: Regular partitioning using skeletons. We finitely partition Σ∗ s.t. words belonging
to the same partition behave similarly with respect to automaton A. We use the notion of
skeleton of a run, defined already in [3], where it was used to solve the regularity problem

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:9

of unambiguous Parikh automata. The idea is to traverse a run from left to right while
removing (and counting) simple cycles visiting states that have already appeared.

A simple cycle is a sequence of transitions c = t1 . . . tn ∈ T ∗, where ti = (qi−1, ai, qi),
starting and ending in the same state q0 = qn where q1, . . . , qn are pairwise distinct. Two
simple cycles c, d are equivalent if one is a cyclic permutation of the other. Let [c] denote the
equivalence class of c, and let [c1], . . . , [cm] be a fixed enumeration of all such equivalence
classes. (Since a simple cycle cannot visit the same state twice, except the initial state,
it has length at most n, and thus the number of simple cycles, and also of equivalence
classes thereof, is m ≤ dn, where d is the number of transitions of the automaton.) The
skeleton is an inductively defined function from runs to pairs consisting of a run and a
vector v ∈ Nm. In the base case, skel(ε) = (ε, 0). For the induction step, suppose that
skel(t1 . . . tk−1) = (u1 . . . u`, v) is already defined, and let q be the ending state of the
new transition tk. If q does not appear in the run u1 . . . u`, then we put skel(t1 . . . tk) =
(u1 . . . u`tk, v). Otherwise, let uh, for h < `, be the last transition that ends in state q, and
consider the cycle c = uh+1 . . . u`tk ∈ [cj] (for some 1 ≤ j ≤ m). We have two cases to
consider. If all states visited by this cycle appeared before in u1 . . . uh, then we call this
cycle absorbed and we remove it by putting skel(t1 . . . tk) = (u1 . . . uh, v + ej), where ej
is the vector which is 1 in coordinate j, and 0 everywhere else. Otherwise, we just put
skel(t1 . . . tk) = (u1 . . . u`tk, v).

We remove only simple cycles visiting states that have already appeared before in order
to have the following useful property.

I Proposition 2. If skel(ρ) = (ρ̂, v), then ρ and ρ̂ visit the same set of states.

By abusing nomenclature, we call a run ρ a skeleton if skel(ρ) = (ρ, v), for some v ∈ Nm.
It is easy to see that the length of a skeleton is at most n2, where n is the number of states
in the automaton A. (Assume towards a contradiction that the length of the skeleton is
longer than n2. By the pigeonhole principle, some state is thus visited more than n times,
so there are at least n cycles in between two consecutive occurrences of this state in the
skeleton. Therefore it is impossible that each loop contains some new state not present in
all the previous loops, and thus one of these loops should be removed during the process of
creating the skeleton, a contradiction.) Consequently, if d is the total number of transitions
of A, then there are at most dn2 skeletons. Let ρ1, . . . , ρh be all the skeletons, with h ≤ dn2 .
We define Ki to be the set of all words w having an accepting run ρ in automaton A with
skel(ρ) = ρi. Since A is deterministic we know that Ki ∩ Kj = ∅ for i 6= j. Therefore
K1, . . . ,Kh and Kh+1 = Σ∗ \ (

⋃
1≤i≤hKi) form a partition of Σ∗. All languages Ki are

necessarily regular, since the skeleton can be computed by a finite automaton. The following
lemma can be seen as a generalization of Proposition 1 and it is immediate to prove.

I Lemma 11. Let Σ∗ be partitioned into regular languages K1, . . . ,Kk. Two languages
L1, L2 ⊆ Σ∗ are regular separable if, and only if, L1 ∩ Ki and L2 ∩ Ki are regular separable
for every i ∈ {1, . . . , k}.

It remains to decide regular separability for the languages L(A, U1) ∩ Ki and L(A, U2) ∩ Ki.
In the following, fix a skeleton ρ and the set of words K with skeleton ρ. Since we have fixed
a skeleton, we assume w.l.o.g. that the acceptance conditions U1, U2 are included in Π(K).

Step 3: Reduction to unary separability for C. Let the set of transitions of the automaton
be T = {t1, . . . , td} (thus ρ ∈ T ∗), and let µ : Nm → Nd be the following affine function that

ICALP 2017

117:10 Regular Separability of Parikh Automata

transforms counting cycles into counting transitions:

µ(x1, . . . , xm) = Π(ρ) +
∑

1≤j≤m
Π([cj]) · xj .

Since Π(c) = Π(d) for c, d ∈ [cj], Π([cj]) is well-defined. Notice that µ is affine, and not
linear, since we must take into account the initial cost of the skeleton Π(ρ). Let V1 = µ−1(U1)
and V2 = µ−1(U2) be the corresponding sets counting cycles instead of transitions. Since
we assumed U1, U2 ⊆ Π(K), every vector v ∈ V1 is realizable by an accepting run ρ̂

s.t. skel(ρ̂) = (ρ, v). Since C is closed under the inverse image of affine mappings, V1, V2 ∈ C.

I Lemma 12. The following two conditions are equivalent:
1. The two languages L(A, U1) ∩ K,L(A, U2) ∩ K ⊆ Σ∗ are regular separable.
2. The two sets of vectors V1, V2 ⊆ Nm are unary separable.

Proof. For the implication 1)⇒ 2), suppose R is a regular language separating L(A, U1) ∩ K
and L(A, U2) ∩ K. For two words x, y ∈ Σ∗, define x ≡R y if x ∈ R ⇐⇒ y ∈ R. Fix ω ∈ N
such that for all words x, y, z ∈ Σ∗,

xyωz ≡R xy2ωz. (1)

It is easy to see that for every regular language R such ω exists. The simplest way of showing
this is to consider the syntactic monoid M of R and to let ω be its idempotent power, i.e., a
number such that mω = (mω)2 for every m ∈M .

Recall n-unary equivalence: u ≡n v if u[i] ≡ v[i] mod n and moreover u[i] ≤ n ⇐⇒
v[i] ≤ n for every coordinate 1 ≤ i ≤ m. It is enough to show that for all v1 ∈ V1, v2 ∈ V2
it holds v1 6≡ω v2. Indeed, if this is the case, the unary set S = {v ∈ Nm | ∃v1∈V1v ≡ω v1}
separates V1 and V2.

Suppose, towards a contradiction, that there are some v1 ∈ V1, v2 ∈ V2 such that
v1 ≡ω v2. There are runs ρ1, ρ2 s.t. skel(ρ1) = (ρ, v1) and skel(ρ2) = (ρ, v2). We
extend the equivalence ≡R on runs by saying that ρ1 ≡R ρ2 if their two labellings are
≡R-equivalent. Since the labelling of ρ1 is in L(A, U1) ∩ K, and similarly for ρ2, if ρ1 ≡R
ρ2, then we derive a contradiction since R was supposed to separate L(A, U1) ∩ K and
L(A, U2) ∩ K. While in general ρ1 ≡R ρ2 does not hold, we can construct two canonical
runs ρ̂1 and ρ̂2 s.t. (1) skel(ρ̂1) = (ρ, v1) (thus the labelling of ρ̂1 is also in L(A, U1) ∩ K),
(2) skel(ρ̂2) = (ρ, v2) (similarly), and (3) ρ̂1 ≡R ρ̂2 (thus bringing the contradiction). We
show the construction for ρ̂1; the one for ρ̂2 is similar. By Proposition 2, states visited by
the run ρ1 are among those visited by the skeleton ρ, and in particular every absorbed cycle
(i.e., v1[j] 6= 0) also has this property. While in general a simple cycle d ∈ [cj] starting (and
ending) at some state q cannot be reintroduced in the skeleton ρ at any position labelled by
q (because not all states in d need to have appeared before this position), there always is a
position ij in the skeleton labelled by some state qj and a simple cycle ĉj ∈ [cj] starting (and
ending) at qj s.t. all states in ĉj have appeared already before position ij in the skeleton.
Assume w.l.o.g. that i1 ≤ · · · ≤ im. It is possible to split the skeleton ρ as α0 · · ·αm s.t., for
every 0 ≤ j ≤ m, αj ∈ T ∗ is a sequence of transitions, and the prefix α0 · · ·αj−1 has length
ij (thus ends in qj). Then, define ρ̂1 and similarly ρ̂2 as

ρ̂1 := α0ĉ
v1[1]
1 α1 · · ·αm−1ĉ

v1[m]
m αm and ρ̂2 := α0ĉ

v2[1]
1 α1 · · ·αm−1ĉ

v2[m]
m αm.

(This is well-defined since v1 ≡ω v2 implies v1[j] 6= 0 iff v2[j] 6= 0.) Properties (1) and (2)
above are guaranteed by construction. For Property (3), since v1 ≡ω v2, by repetitive use of
Equation (1) we have ρ̂1 ≡R ρ̂2. This concludes the proof of the first implication.

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:11

For proving the implication (2)⇒ (1), suppose that a unary set S separates V1 and V2.
We claim that the language R = L(A, µ(S)) ∩ K is regular and separates L(A, U1) ∩ K and
L(A, U2) ∩ K. We first verify that R separates these two languages. Clearly, U1 ⊆ µ(V1) ⊆
µ(S), so L(A, U1) ∩ K ⊆ L(A, µ(S)) ∩ K = R. The disjointness of L(A, U2) ∩ K and R is
shown by contradiction. Suppose that there is a word w ∈ K belonging both to L(A, µ(S))
and to L(A, U2), let ρ be the run of A over w and let v = Π(ρ). We have v ∈ µ(S) ∩ U2,
which implies v = µ(s) for some s ∈ S ∩ µ−1(U2) = S ∩ V2. In consequence S ∩ V2 is
nonempty, thus contradicting the assumption that S separates V1 and V2.

In order to prove that R is regular it suffices to prove that L(A, µ(S)) is regular. The finite
nondeterministic automaton recognizing this language simulates a run ρ = ti1 . . . ti` of A, and
accepts when Π(ρ) ∈ µ(S). Since S is unary, the automaton can evaluate this condition using
finite memory. For every cycle cj , the automaton stores a vector xj < Π(cj), and a number
nj up to the unary equivalence ≡n, with the following meaning: the vector Π(ci) has been
already executed nj times, and xi is the current “remainder”. Additionally, the automaton
stores a vector x ≤ Π(ρ) which is counting those transitions on the skeleton which have not
been counted as cycles. At every input letter the automaton guesses nondeterministically one
of cycles ci or the skeleton and updates xj , nj and x accordingly. The automaton accepts
when x = Π(ρi), xj = 0 for all j, and (n1, . . . , nm) ∈ S. J

6 Applications

We derive two corollaries of Theorem 1. By a projection we mean a function πk,I : Nk → N|I|,
for I ⊆ {1 . . . k}, that drops coordinates not in I. We start with a simple but useful lemma:

I Lemma 13. If a class C ⊆
⋃
d∈N P(Nd) contains all semilinear sets and is effectively closed

under intersections, projections, and inverse images of projections, then it is effectively closed
under inverse images of affine maps.

Proof. Let S be a set in C and f : Nk → N` be an affine map defined by f(u) = Mu+ v for
M = (mi,j) a matrix of dimension `× k and v a vector of dimension `. Let ej ∈ Nk be the
vector s.t. ej [j] = 1 and 0 otherwise, and let mj = (m1,j ,m2,j , . . . ,m`,j) be the (transpose
of) the j-th column of M . First remark that the set E1 = {(x, f(x)) | x ∈ Nk} ⊆ Nk+` is
linear with base (0k, v) and periods {p1, . . . , pk}, where pj = (ej ,mj) ∈ Nk+`. Thus, E1 ∈ C.
Therefore the set E2 = E1 ∩ π−1

k+`,I(S) is also in C, for I = {k + 1, . . . , k + `}. Finally, we
conclude since πk+`,J(E2) = f−1(S) with J = {1, . . . , k}. J

I Corollary 14. Regular separability is decidable for nondeterministic Parikh automata.

Proof. In order to apply Theorem 1 for C being semilinear sets, we need to know that the
class of semilinear sets is robust. First, Lemma 13 yields effective closure under inverse
images of affine maps, as semilinear sets are effectively closed under boolean combinations,
images, and inverse images of projections. Second, decidability of the unary separability
problem for semilinear sets is a corollary of the main result in [4]. This theorem states that
separability of rational relations in Σ∗ × Nm by recognizable relations is decidable. If we
ignore the Σ∗ component we get the same result for rational and recognizable relations in
Nm, which are exactly semilinear sets and unary sets, respectively. J

For the second corollary we have to introduce vector addition systems and sections thereof.
A d-dimensional vector addition system (VAS) is a pair V = (s, T), where s ∈ Nd is a source
configuration and T ⊆fin Zd is a finite set of transitions. A run is a sequence

(v0, t0, v1), (v1, t1, v2), . . . , (vn−1, tn−1, vn) ∈ Nd × T × Nd

ICALP 2017

117:12 Regular Separability of Parikh Automata

such that for all i ∈ {0, . . . , n− 1} we have vi + ti = vi+1 and v0 = s. The target of this run
is the configuration vn. The reachability set of a VAS V is the set of targets of all its runs.

In order to ensure robustness, we slightly enlarge the family of VAS reachability sets to
sections thereof. The intuition about a section is that we fix values on a subset of coordinates
in vectors, and collect all the values that can occur on the other coordinates. For a subset
I ⊆ {1, . . . , d}, the projection πd,I extends element-wise to sets of vectors S ⊆ Nd, denoted
πd,I(S). For a vector u ∈ Nd−|I|, the section of S w.r.t. I and u is the set

πd,I({v ∈ S | πd,{1,...,d}\I(v) = u}) ⊆ N|I| .

We denote by CSEC-VAS the family of all sections of VAS reachability sets.

I Corollary 15. t Regular separability is decidable for nondet. CSEC-VAS-Parikh automata.

Proof. We apply Theorem 1 for C = CSEC-VAS; we thus need to show that class CSEC-VAS is
robust. Decidability of unary separability of sets from CSEC-VAS is shown in Theorem 9 in [5].
Effective closure of C under inverse images of affine functions will follow by Lemma 13 once
we prove all its assumptions. First, CSEC-VAS contains all semilinear sets. Effective closure
under intersections is shown in Proposition 7 in [5]. Effective closure under inverse images of
projections is easy: extend the VAS with additional coordinates, and allow it to arbitrarily
increase these coordinates. Finally, to see that CSEC-VAS is effectively closed under projections
consider a section S ⊆ Nd of the reachability set of a VAS V , and a subset of coordinates
I ⊆ {1, . . . , d}. We construct a VAS V ′ which is like V , but additionally allows to decrease
every coordinate from {1, . . . , d} \ I. The projection πd,I(S) of S onto I is a section of the
reachability set of V ′ defined similarly as S, but with an additional requirement that all
coordinates from {1, . . . , d} \ I have value 0. J

7 Conclusions

We have shown that the regular separability problem for C-Parikh automata is decidable, for
every class C of acceptance conditions satisfying mild assumptions. In particular, we have
shown decidability for C being either the semilinear sets or sections of VAS reachability sets.
We have complemented our positive result by proving undecidability for visibly one counter
languages, which sharpens two existing undecidability results.

The complexity of our algorithm depends on two factors: the complexity of unary
separability for C, and the complexity of computing inverse images of sets in C under affine
mappings. The first factor is the dominant one here, since computing inverse images can
be shown to be in PTIME for both semilinear sets and sections of VAS reachability sets
(cf. [5]). Under this assumption, it can be seen that our reduction from nondeterministic
to deterministic automata in Sec. 4 is also PTIME. Moreover, when reducing to unary
separability in Sec. 5, since there are at most exponentially many skeletons and simple
cycles, we obtain exponentially many unary separability instances, each of exponential size.
Therefore, all together our reduction can be performed in exponential space.

On the other hand, the complexity of unary separability for semilinear sets and VAS
sections is much higher. For semilinear sets, no upper bounds have been published for this
problem, but an analysis of the algorithm of [4] yields an elementary bound4. For VAS
sections, one can easily see that unary separability is at least as hard as the VAS reachability
problem [5], which is hard for exponential space and not known to be primitive recursive.

4 The problem becomes PTIME for the subclass of diagonal linear sets, in which case unary separability
becomes the same as modular separability, and the latter problem is PTIME [4].

L. Clemente, W. Czerwiński, S. Lasota, and C. Paperman 117:13

References
1 Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–

16:43, May 2009. doi:10.1145/1516512.1516518.
2 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. On the Expressiveness of Parikh

Automata and Related Models. In Proc. of NCMA’11, pages 103–119, 2011.
3 Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata.

Int. J. Found. Comput. Sci., 24(7):1099–1116, 2013. doi:10.1142/S0129054113400339.
4 Christian Choffrut and Serge Grigorieff. Separability of rational relations in A∗ × Nm by

recognizable relations is decidable. Inf. Process. Lett., 99(1):27–32, 2006.
5 Lorenzo Clemente, Wojciech Czerwinski, Slawomir Lasota, and Charles Paperman. Separ-

ability of Reachability Sets of Vector Addition Systems. In Proc. of STACS’17, volume 66
of LIPICs, pages 24:1–24:14, 2017. doi:10.4230/LIPIcs.STACS.2017.24.

6 Wojciech Czerwinski and Slawomir Lasota. Regular separability of one counter automata.
In Proc. of LICS’17, 2017. To appear.

7 Wojciech Czerwiński, Wim Martens, and Tomás Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proc. of ICALP’13, pages 150–161, 2013.

8 Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, and Marc Zeitoun. A note on
decidable separability by piecewise testable languages. In Proc. of FCT’15, pages 173–185,
2015.

9 Jean Goubault-Larrecq and Sylvain Schmitz. Deciding piecewise testable separability for
regular tree languages. In Proc. of ICALP’16, pages 97:1–97:15, 2016. doi:10.4230/
LIPIcs.ICALP.2016.97.

10 Harry B. Hunt III. On the decidability of grammar problems. J. ACM, 29(2):429–447,
1982.

11 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978.

12 Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Proc.
of ICALP’03, pages 681–696, 2003. doi:10.1007/3-540-45061-0_54.

13 Eryk Kopczynski. Invisible pushdown languages. In Proc. of LICS’16, pages 867–872, 2016.
doi:10.1145/2933575.2933579.

14 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
locally testable and locally threshold testable languages. In Proc. of FSTTCS’13, pages
363–375, 2013.

15 Thomas Place, Lorijn van Rooijen, and Marc Zeitoun. Separating regular languages by
piecewise testable and unambiguous languages. In Proc. of MFCS’13, pages 729–740, 2013.

16 Thomas Place and Marc Zeitoun. Going higher in the first-order quantifier alternation
hierarchy on words. In Proc. of ICALP’14, pages 342–353, 2014.

17 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016.

18 Thomas G. Szymanski and John H. Williams. Noncanonical extensions of bottom-up pars-
ing techniques. SIAM Journal on Computing, 5(2):231–250, 1976.

ICALP 2017

http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.24
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.1007/3-540-45061-0_54
http://dx.doi.org/10.1145/2933575.2933579

An Efficient Algorithm to Decide Periodicity of
b-Recognisable Sets Using MSDF Convention∗

Bernard Boigelot1, Isabelle Mainz2, Victor Marsault†3, and
Michel Rigo4

1 Montefiore Institute & Department of Mathematics, Université de Liège,
Liège, Belgium
bernard.boigelot@ulg.ac.be

2 Montefiore Institute & Department of Mathematics, Université de Liège,
Liège, Belgium
isabelle.mainz@ulg.ac.be

3 Montefiore Institute & Department of Mathematics, Université de Liège,
Liège, Belgium
victor.marsault@ulg.ac.be

4 Montefiore Institute & Department of Mathematics, Université de Liège,
Liège, Belgium
m.rigo@ulg.ac.be

Abstract
Given an integer base b > 1, a set of integers is represented in base b by a language over {0, 1, ...,
b− 1}. The set is said to be b-recognisable if its representation is a regular language. It is known
that eventually periodic sets are b-recognisable in every base b, and Cobham’s theorem implies
the converse: no other set is b-recognisable in every base b.

We are interested in deciding whether a b-recognisable set of integers (given as a finite auto-
maton) is eventually periodic. Honkala showed that this problem is decidable in 1986 and recent
developments give efficient decision algorithms. However, they only work when the integers are
written with the least significant digit first.

In this work, we consider the natural order of digits (Most Significant Digit First) and give a
quasi-linear algorithm to solve the problem in this case.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases integer-base systems, automata, recognisable sets, periodic sets

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.118

1 Introduction

Let b > 1 be an integer base. We let JbK = {0, 1, . . . , b− 1} denote the canonical alphabet of
base-b digits. If u = u` · · ·u0 belongs to JbK∗, we let u denote the value of u in base b, i.e.,
u =

∑`
i=0 ui b

i. Note that the leftmost digit is the most significant one. We let 〈n〉 denote
the (shortest) base-b representation of n. We set 〈0〉 to be the empty word ε. If reference to
the base b is needed, we write 〈n〉b. Thus 〈n〉 is the unique word u over JbK not starting with

∗ An extended version of this paper is available in arXiv:1702.03715 [8], https://arxiv.org/abs/1702.
03715.

† Corresponding author. Supported by a Marie Skłodowska-Curie fellowship, co-funded by the European
Union and the University of Liège, Belgium.

EA
T

C
S

© Bernard Boigelot, Isabelle Mainz, Victor Marsault, and Michel Rigo;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 118; pp. 118:1–118:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.118
https://arxiv.org/abs/1702.03715
https://arxiv.org/abs/1702.03715
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

118:2 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

0 and such that u = n. Moreover, for every u ∈ JbK∗ such that u = n, there exists i ≥ 0
such that u = 0i〈n〉.

1.1 Our contribution
In this paper, we develop an algorithm to decide whether a given deterministic automaton A
over the alphabet JbK accepts, by value, an (eventually) periodic set of integers. More
precisely, the question is to decide whether there exist integers p ≥ 1 and N ≥ 0 such that,
for all words u ∈ JbK∗, if u ≥ N , then u is accepted by A if and only if 〈u + p〉 is accepted
as well. Acceptance by value means that words sharing the same value are either all accepted
or all rejected. Stated otherwise, a word u is accepted by A if and if only if 0u is accepted.
In the literature, one also finds the term “saturated language”. The main result of this paper
is the following.

I Theorem 1. Given an integer base b > 1 and a n-state deterministic automaton A over
the alphabet JbK, it is decidable in O(bn logn) time whether or not A accepts, by value, some
eventually periodic set of integers.

Due to space constraints, this paper deals with the purely periodic case only. The general
case is treated similarly [8].

Theorem 1 relies on a characterisation of the minimal automata accepting by value
purely periodic sets. This characterisation is given Section 4. It relies on the notion of
ultimately-equivalent states which is previously introduced in Section 2.2. In Section 3, we
study the structure of the naive automaton accepting an arbitrary purely periodic sets, and
its minimisation.

We stress the fact that the input automaton A reads words most significant digit first
(MSDF). This is an important difference with other results discussed in the literature. For
instance, an efficient algorithm to solve this decision problem is provided for automata
reading least significant digit first (LSDF) [15, 16]. One can therefore think that it is enough
to take the reversal of A and thus consider entries LSDF. Nevertheless, the reversal of
A has first to be determinised. This potentially leads to an exponential blow-up in the
number of states and thus to an inefficient procedure. For instance, this event occurs for
the language Ln = 0∗ 1 (0 + 1)n 1 (0 + 1 + ε)n and its mirror Kn: the number of states in
the minimal automaton accepting Ln (resp. Kn) grows linearly (resp. exponentially) with n.
Evaluating Ln as MSDF encodings or Kn as LSDF encodings yields the same finite (thus
eventually periodic) set of integers.

1.2 Motivations and related results
We say that a set X ⊆ N is b-recognisable if 〈X〉b is accepted by some finite automaton. One
reason why eventually periodic sets of integers play a special role comes from the celebrated
theorem of Cobham about the dependence to the base of b-recognisability.

I Theorem (Cobham, [12]). Let b, c > 1 be two multiplicatively independent integers. A set
X of integers is such that the languages 〈X〉b and 〈X〉c are both accepted by finite automata
if and only if X is eventually periodic.

In combinatorics on words, when studying morphic words (for details and definitions,
for instance, see [2, 5]), Cobham’s theorem can be reformulated as follows. Let b, c > 1
be two multiplicatively independent integers. An infinite word x is both b-automatic and
c-automatic if and only if x is of the form uvω where u, v are finite words. Indeed, a set

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:3

of integers is b-recognisable if and only if its characteristic sequence is b-automatic. The
decision problem considered in our Theorem 1 is well known to be decidable.

I Theorem (Honkala, [14]). It is decidable whether or not a given b-automatic word is
eventually periodic.

Complexity issues are however not considered at all in Honkala’s paper. The decidability
of our problem of interest can also be obtained using a first-order logic characterisation
of b-recognisable sets given by Büchi’s theorem, and the fact that Presburger arithmetic
is decidable [10, 1]. These independent approaches all lead to decision procedures with
exponential complexity.

Using LSDF convention, efficient decision procedures are known. First, Leroux obtained
a quadratic decision procedure [15] for eventually-periodic b-recognisable sets of integers,
that relies on intricate geometrical constructions. (Leroux’s result is indeed stated in a
multi-dimensional setting, i.e., the problem is to decide whether or not a b-recognisable
subset of Nd is semi-linear.) Still using LSDF convention, the third author and Sakarovitch
designed a quasilinear algorithm [16]. The general idea is similar to the one we use here:
finding characteristic properties that are preserved by minimisation. However, the criterion
used in the present work is mostly unrelated to [16] and yields a very different decision
algorithm.

1.3 Generalisation to real numbers
Real numbers can be encoded in a base b > 1 by extending positional encoding to infinite
words: A word encoding a real is composed of a finite prefix corresponding to an integer
part, followed by a single occurrence of a distinguished symbol acting as a separator, and
an infinite suffix representing a fractional part. Infinite-word automata are then able to
recognise sets of reals. It has been established that weak deterministic automata, a restricted
class of infinite-word automata, are sufficiently expressive for recognising all sets definable in
mixed integer and real first-order additive arithmetic [7].

The properties of sets of real numbers that can be recognised by weak deterministic
automata in all bases b > 1 have been investigated [6]. Such sets generalise to the real
domain the notion of eventual periodicity; they precisely correspond to finite combinations of
eventually periodic sets of integers, and intervals of [0, 1]. Checking whether an automaton
recognises such a set can be done by first splitting this automaton into finite-state machines
operating on the integer and fractional parts of encodings. The former are then checked in
the same way as for MSDF integer encodings, and the latter by verifying that they obey the
structure documented in [6].

1.4 Generalisation to other numeration systems
Automatic words form a particular class of morphic words. Similarly, integer-base systems
are special cases of more general numeration systems such as those built on a linear recurrent
sequence. One can define a numeration system as a one-to-one map s from N to a language
L over a finite alphabet. The integer n is mapped to its representation s(n) within the
considered system. Hence, it is natural to ask, for given a numeration system s and a subset
M of L accepted by a finite automaton A, whether or not the s-recognisable set s−1(M) ⊆ N
is eventually periodic.

On the one hand, Honkala’s result is extended as follows. It is decidable whether or not a
given morphic word is eventually periodic [13, 17]. On the other hand, Büchi’s theorem can

ICALP 2017

118:4 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

be extended to linear numeration systems whose characteristic polynomial is the minimal
polynomial of a Pisot number. See, for details, [9]. In that setting, several decision problems
in combinatorics on words, including the ultimate periodicity problem, are decidable [11].
Using Honkala’s techniques, the decision problem considered in our Theorem 1 is generalised
to a large class of numeration systems in [4]. In particular, there are systems in this class for
which the logical setting may not be applied. For all these decidability results presented in a
wider context, no efficient procedure is known.

2 Preliminaries

In this paper, we only consider deterministic accessible finite automata with an input alphabet
of the form JbK. We use the acceptance-by-value convention. Thus, we may assume that
the initial state bears a loop with label 0. In particular, this will always be the case after
minimisation. Let A be an automaton. Its set of states (resp. its initial state, its set of
final states) is denoted by QA (resp. iA, FA). If the considered automaton is clear from the
context, (s · u) is the state s′ such that s u−−→ s′. The language accepted by A is denoted by
L(A). In this section, we recap basic results about automata.

2.1 Automaton morphisms and pseudo-morphisms
I Definition 2. Given two (accessible) automata A andM over JbK, an automaton morphism
A →M is a function φ : QA → QM that satisfies:

φ(iA) = iM (1)
∀s ∈ QA, ∀a ∈ JbK (s · a) exists in A ⇐⇒ (φ(s) · a) exists inM (2)

∀s, s′ ∈ QA, ∀a ∈ JbK s
a−−→ s′ in A =⇒ φ(s) a−−→ φ(s′) inM (3)

FA = φ−1(FM) (4)

I Definition 3. If a function φ satisfies (1), (2) and (3) but not necessarily (4), then we say
that we have an automaton pseudo-morphism.

I Definition 4. Two states s, s′ of an automaton A are Nerode-equivalent if, for every
word u, (s · u) exists and is final if and only if (s′ · u) exists and is final.

We recall the following classical result. See, for instance, [18].

I Theorem 5 (Myhill–Nerode). Let A be a complete automaton. Among all the complete
automata accepting L(A), up to isomorphism, there exists a unique one with a minimal
number of states, called the minimisation of A. Moreover, ifM denotes the minimisation
of A, then there exists an automaton morphism φ : A → M (called the minimisation
morphism) such that

∀s, s′ ∈ A φ(s) = φ(s′) ⇐⇒ s and s′ are Nerode-equivalent. (5)

If A is an automaton and u is a word, we write (A · u) as a shorthand for (iA · u), i.e.,
the state reached by the run of u in A.

I Lemma 6. Let A and M be two complete (and accessible) automata. There exists a
pseudo-morphism A →M if and only if every pair of words u, u′ such that (M·u) 6= (M·u′)
also satisfies (A · u) 6= (A · u′).

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:5

Proof. Forward direction. Since a pseudo-morphism φ respects transitions and the initial
state, it follows that, for every word u, (M·u) = φ(A·u). The statement follows immediately.

Backward direction. For every state s, we choose a word us such that (A · us) = s (such
a word exists because A is accessible). We define a function φ : QA → QM as follows. For
every state s ∈ QA, φ(s) = (M · us). Let us show that φ is an automaton pseudo-morphism.

Let s be a state of A and let u be a word such that (A · u) = s. Since (A · u) = (A · us),
the hypothesis implies (M· u) = (M· us). The definition of φ is therefore independent of
the choice of the words us.

In particular, φ(iA) = (M · uiA) = (M · ε) = iM hence φ satisfies (1). Moreover, since
both A andM are complete, and since φ is a total function, φ also satisfies (2). Let t a−−→ t′

be a transition of A. By definition φ(t) = (M · ut) and since the definition of φ does not
depend on the choice of the words us, we may assume that ut′ = uta. It then follows that

φ(t′) = (M · (uta)) = ((M · ut) · a) = φ(t) · a .

In other words, φ(t) a−−→ φ(t′) is a transition ofM. J

2.2 Ultimately-equivalent states

Our decision procedure involves the determination of ultimately-equivalent states defined as
follows.

I Definition 7. Let A be an automaton over JbK. Let m ≥ 1 be an integer. Two states s, s′
of A are m-ultimately-equivalent if

∀u ∈ JbK∗ |u| ≥ m =⇒ (s · u) = (s′ · u) .

Two states are ultimately-equivalent if they are m-ultimately-equivalent for some m ≥ 1.

I Remark. Note that ultimate-equivalence is indeed an equivalence relation: if s and s′

are m-ultimately-equivalent while s′ and s′′ are m′-ultimately-equivalent, then s and s′′ are
max(m,m′)-ultimately-equivalent.

Given an automaton A over JbK, the computation of this relation is easy. Let us build a
directed graph G = (V,E) as follows. The vertex-set is V = QA ×QA and the edge set is:

∀(s, t), (s′, t′) ∈ V, s 6= t

(s, t)→ (s′, t′) in G ⇐⇒ ∃a ∈ JbK such that A features
{

s
a−−→ s′

t
a−−→ t′

. (6)

In particular, vertices of the form (s, s) never qualify for the above condition and thus have
no outgoing edges. Observe that two distinct states s, t of A are ultimately-equivalent if and
only if (s, t) may not reach in G a strongly connected component.

Computing the strongly connected components of a graph is done in linear time (e.g.,
with Tarjan’s algorithm [19]). Hence, the set of the pairs of states of A that are ultimately-
equivalent may be computed in time O(bn2). This complexity can be improved as follows.

I Proposition 8 (Béal, Crochemore, [3]). Let A be an automaton over JbK and n the number
of states in A. The ultimate-equivalence classes of A may be computed in time O(bn logn).

ICALP 2017

118:6 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

Proof Sketch. We take verbatim the algorithm in [3]. One starts from the trivial partition
and iteratively merges states. Each step of the algorithm consists in merging two states that
are 1-ultimately-equivalent. The purpose of Béal and Crochemore was to show that starting
with a so-called AFT automaton A, the result is the minimisation of A. Starting with any
automaton A, the resulting automaton is not necessarily minimal. However, one can observe
that its states are precisely the ultimate-equivalence classes of A. J

As a direct consequence of the definition of an automaton morphism, ultimate-equivalence
commutes with automaton morphisms.

I Lemma 9. Let A andM be two automata such that there is an automaton morphism φ :
A →M. Let s and s′ be two states of A that are ultimately-equivalent (w.r.t. A), then φ(s)
and φ(s′) are also ultimately-equivalent (w.r.t.M).

3 Purely periodic b-recognisable sets

The content of this section is the following. Section 3.1 gives the definition and main
properties of the “naive” automaton A(p,R) accepting the purely periodic set R+ pN. Then,
in Section 3.2 we study the relationship between ultimate equivalence and Nerode equivalence
in A(p,R). In Section 3.3, we show how to extract relevant information on the period p from
the minimisation of A(p,R).

I Notation 10. Let p > 0 and b > 1 be two integers. Throughout this section, the quantit-
ies k, d, j, ψ are fixed as follows.

Let k, d be the unique integers such that p = k d where k is the greatest divisor of p
coprime with b. In particular, the prime factors occurring in the prime decomposition of
d all appear in the prime decomposition of b. Moreover, (k, d) = 1.
Since (k, b) = 1, the order of b in Z/kZ is well defined and denoted by ψ, i.e., bψ ≡ 1 [k].
Let j be the least integer such that d is a divisor of bj.

Let s < k and t < d be two integers. Let 〈s, t〉 denote the integer of Z/pZ congruent to s
modulo k and t modulo d. This integer is unique by the Chinese remainder theorem. Note
that if n is an integer less than p, then n = 〈n%k, n%d〉 where n%k denote the remainder of
the division of n by k.

3.1 The automaton A(p,R) and its minimisation
I Definition 11. A subset P of integers is purely periodic, if there exist p ≥ 1 and a subset
R ⊆ {0, . . . , p− 1} such that P = R+ pN.

For instance, {0, 1}+ 4N is purely periodic but {4, 5}+ 4N is not. Let p ≥ 1 be an integer
and R be a subset of {0, . . . , p − 1}. We say that the parameter (p,R) is proper, if p is
the smallest period of the purely periodic set R + pN. For instance, (4, {0, 1}) is proper
but (4, {0, 2}) is not because {0, 2}+ 4N = {0}+ 2N.

The following definition is ubiquitous when dealing with periodic sets of integers. It is an
easy exercise to show that this automaton accepts base-b representations of integers whose
remainder modulo p belongs to R.

I Definition 12. We let A(p,R) denote the automaton A(p,R) = 〈JbK,Z/pZ, δ, 0, R〉 where δ
is defined as

∀n ∈ Z/pZ, ∀a ∈ JbK n
a−−→ nb+ a .

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:7

0 1 2

(a) A(3,?)

0

2

1

3

(b) A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

(c) A(12,{5,7})

Figure 1 The automaton A(12,{5,7}), as the product automaton of A(4,?) by A(3,?).

When we are only interested in the transitions of the automaton A(p,R), it is sometimes
convenient to leave the set of final states unspecified. In that case, we write A(p,?) for the
automaton where the final/non-final status of the states is not set.

I Example 13. Figure 1c shows A(12,{5, 7}) in base 2. Transitions with label 1 (resp. 0) are
represented with bold (resp. thin) edges.

As can be seen, for instance, in Figure 2, the automaton A(p,R) is not necessarily minimal.

I Lemma 14. For every word u ∈ JbK∗, (A(p,R) · u) = (u%p) = 〈u%k, u%d〉.

Proof. This follows directly from the definition of the transition function of A(p,?). J

I Property 15. The automaton A(p,R) is strongly connected.

Proof. Let n,m be two states. The state n is of the form 〈i, i′〉. Let u be a word satisfying

u ≡ 〈k − i, 0〉[p] , |u| ≥ j and |u| ≡ 0[ψ] .

The last two conditions are easily satisfied by adding a suitable number of leading zeroes.
Reading u from n leads to the initial state 0. Obviously, reading 〈m〉 from 0 leads to m. J

The next lemma states that the automaton A(p,?) is the product automaton A(k,?) ×A(d,?).
This easily follows from the Chinese remainder theorem and Lemma 14.

I Lemma 16. For all integers s, s′ ∈ Z/kZ, t, t′ ∈ Z/dZ and every word u ∈ JbK∗,

〈s, t〉 u−−→ 〈s′, t′〉 in A(p,?) ⇐⇒

{
s

u−−→ s′ in A(k,?)
t

u−−→ t′ in A(d,?)

ICALP 2017

118:8 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

The fact that k is coprime with b implies the following result.

I Lemma 17. With the definition introduced in Notation 10, the automaton A(k,?) is a group
automaton: each letter induces a permutation on the set of states.

Proof. Since k is coprime with b, the function f0 : Z/kZ → Z/kZ defined by s 7→ sb is
a permutation of Z/kZ. Hence, so is the function fa defined by s 7→ (sb + a), for every
letter a ∈ JbK. The action of a in A(k,?) is exactly fa, a permutation of the states. J

3.2 Nerode-equivalence and ultimate-equivalence in A(p,R)

Within the setting of Example 13 where rows (resp. columns) of the product automaton
A(p,R) ≈ A(d,?) ×A(k,?) correspond to the equivalence classes modulo d (resp. modulo k),
the forthcoming Proposition 19 shows that Nerode-equivalent states in A(p,R) must belong
to the same column. See, for instance, Figure 2. Then, we show that all states belonging to
the same column are ultimately-equivalent.

I Lemma 18. If (p,R) is proper, then for all distinct integers i and i′, 0 ≤ i, i′ < k, the
states id and i′d are not Nerode-equivalent.

Proof. Since (p,R) is proper and id 6= i′d, there exists an integer m such that (id+m) ∈
R+ pN and (i′d+m) /∈ R+ pN.

We let u denote a word such that u = m and |u| ≡ 0[ψ] (in other words, u is the
word 〈m〉 padded with an appropriate number of 0’s); it thus holds that b|u| ≡ 1 [k]. Reading
the word u respectively from the states id and i′d leads to the states:

id · u = idb|u| +m and i′d · u = i′db|u| +m .

The integer (idb|u| + m) is congruent to (id + m) modulo k (since b|u| ≡ 1 [k]) as well as
modulo d (since both are obviously congruent to m) hence modulo p. The same reasoning
also applies to the second state, finally yielding:

id · u = id+m and i′d · u = i′d+m .

The first state belongs to R and is thus final while the second does not belong to R and
thus is not final. The word u is then a witness of the fact that id and i′d are not Nerode-
equivalent. J

I Proposition 19. Let (p,R) be proper. If i and i′ are Nerode-equivalent states, then they
are congruent modulo k.

Proof. Proof by contrapositive. Let i and i′ be two states that are not congruent modulo k.
By definition of j, see Notation 10, the states (i · 0j) and (i′ · 0j) are both congruent to 0
modulo d. However the operation i 7→ ib is a permutation of Z/kZ, hence (i · 0j) and (i′ · 0j)
are not congruent modulo k. It follows that (i · 0j) = ld and (i′ · 0j) = l′d for some
distinct l, l′ ∈ Z/kZ. Lemma 18 then yields that these states are not Nerode-equivalent,
hence that i and i′ are not either. J

I Lemma 20. Let s and s′ be two states of A(p,R). With the definition introduced in
Notation 10, if s ≡ s′[k], then s and s′ are j-ultimately-equivalent.

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:9

0 4 8

6 10 2

9 1 5

3 7 11

0 4 8

6 10 2

9 1 5

3 7 11

(a) Nerode-equivalence classes
of A(12,{5, 7})

0 4 8

9 5

7 11

0 4 8

9 5

7 11

(b) Pseudo-morphism equivalence
classes in the minimisation of A(12,{5, 7})

Figure 2 Minimisation morphism of A(12,{5, 7}) and pseudo-morphism of its minimisation.

Proof. Let u be any word of length j. Since s and s′ are congruent modulo k, there
exists i ∈ Z/kZ and l, l′ ∈ Z/dZ such that s = 〈i, l〉 and s′ = 〈i, l′〉. Then, from Lemma 16
and using the fact that lbj ≡ 0 [d], we get

(s · u) = 〈ibj + u , lbj + u 〉 = 〈ibj + u , u 〉 .

Similarly (s′ · u) = 〈ibj + u , u 〉 = (s · u). J

3.3 Circuits labelled by the digit 0
A circuit in which every arc is labelled by the digit 0 is called for short a 0-circuit. For
instance, the automaton A(12,{5,7}) depicted in Figure 1 has two such circuits: 0 0−−→ 0 and
4 0−−→ 8 0−−→ 4. We will see that the number of states belonging to 0-circuits has a special
meaning.

I Lemma 21. A state of A(p,R) is a multiple of d if and only if it belongs to a 0-circuit.

Proof. Forward direction. It is enough to show that every state of the form id, for i ∈ Z/kZ,
has a predecessor by 0 of the form i′d, i′ ∈ Z/kZ. Simple arithmetic yields that (b−1i)d is
suitable, where b−1 is the inverse of b in Z/kZ.

Backward direction. Proof by contrapositive. Let s be a state which is not a multiple
of d. The state (s · 0j) is a multiple of d. Therefore, for every integer i ≥ j, the state (s · 0i)
is a multiple of d, hence is not equal to s. Since A(p,R) is deterministic, (s · 0i) cannot be
equal to s for i < j either. J

The next proposition follows from Lemmas 21 and 18. Recall that k is the largest integer
coprime with b such that p = k d and d ≥ 1 (see Notation 10).

I Proposition 22. If (p,R) is proper, the minimisation of A(p,R) possesses exactly k states
that belong to 0-circuits.

ICALP 2017

118:10 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

4 Characterisation of automata accepting purely periodic sets

The next result will allow us to decide whether a deterministic automaton A over JbK, given
as input, is such that L(A) is a purely periodic set of integers, i.e., whether or not it is of
the form R+ pN for some R and p. We say that an equivalence relation ∼1 is a refinement
of another equivalence relation ∼2 if for every x and y, x ∼1 y =⇒ x ∼2 y.

I Theorem 23. Let b > 1 be a base and A a minimal automaton over JbK. Let ` be the
number of states in A that belong to 0-circuits. The automaton A accepts by value a purely
periodic set of integers if and only if the following conditions are fulfilled.
(a) There exists a pseudo-morphism φ : A → A(`,?).
(b) The equivalence relation induced by φ is a refinement of the ultimate-equivalence relation.
(c) The initial state of A bears a self-loop labelled by the digit 0

Proof of forward direction. Since the automaton A is minimal and accepts by value, the
initial state of A necessarily bears a loop labelled by the digit 0; in other words, item (3)
holds.

More precisely, since A accepts by value a purely periodic set of integers, there exists
a smallest period p and a remainder-set R ⊆ {0, . . . , p− 1} such that L(A) = 0∗〈R + pN〉.
Note that (p,R) is proper by choice of p. We make use of Notation 10. In particular, k is
the greatest divisor of p that is coprime with b.

Since A is minimal, it is isomorphic to the minimisation of any automaton accepting L(A),
in particular, to the minimisation of A(p,R). It then follows from Proposition 22 that ` = k.

To prove that there exists a pseudo-morphism φ : A → A(k,?), we will apply Lemma 6.
Let u,u′ be two words such that (A(k,?) ·u) 6= (A(k,?) ·u′). Let us show that (A ·u) 6= (A ·u′).
Since (A(k,?) · u) 6= (A(k,?) · u′), we have that u 6≡ u′ [k]. Due to Lemma 14, (A(p,R) · u)
and (A(p,R) · u′) are not congruent modulo k. It then follows from Proposition 19 that the
states (A(p,R) · u) and (A(p,R) · u′) are not Nerode-equivalent, which implies that (A · u) 6=
(A · u′) because A is the minimisation of A(p,R).

Let s and s′ be two states of A such that φ(s) = φ(s′). We have to show that s and s′ are
ultimately-equivalent. Let u and u′ be two words such (A · u) = s and (A · u′) = s′. Since φ
is a pseudo-morphism, we get that

(A(k,?) · u) = φ(s) = φ(s′) = (A(k,?) · u′)

and so u ≡ u′ [k]. Applying Lemma 14 yields that the states (A(p,R) · u) and (A(p,R) · u′)
are congruent modulo k, and by Lemma 20, these states are ultimately-equivalent. Since
A is the minimisation of A(p,R), we have an automaton morphism A(p,R) → A. Finally,
since ultimate-equivalence commutes with automaton morphism (Lemma 9), (A · u) = s

and (A · u′) = s′ are ultimately-equivalent. J

Proof of backward direction. By assumption, for all i ∈ Z/`Z, the states in φ−1(i) are
ultimately-equivalent. For every integer i ∈ Z/`Z, we let mi denote the least integer such
that, for all s, s′ in φ−1(i), (s · u) = (s′ · u) whenever |u| ≥ mi. Let m = max{mi | i ∈ Z/`Z}.

Let u, u′ be two words with respective values that are congruent modulo `bm. Note that,
in particular, u and u′ are thus congruent modulo bm. Let us show that u and u′ reach the
same state in A.

Since A bears a self-loop labelled by 0 on the initial state, the word 0mu is such
that 0mu = u and A · 0mu = A · u. We may thus assume that u and u′ are longer than m.

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:11

There exist factorisations u = vw and u′ = v′w′ such that the lengths of w and w′ are both
equal to m. Since u and u′ are congruent modulo bm, w and w′ are equal: u = vw, u′ = v′w.

Assume without loss of generality that u ≥ u′ . Hence u − u′ = (v − v′)bm is congruent
to 0 modulo `bm. We deduce that v and v′ are congruent modulo `. By Lemma 14, the
respective runs of v and v′ in A(`,?) reach the same state: (A(`,?) · v) = (A(`,?) · v′). From
assumption (1), we get φ(A·v) = φ(A·v′). In other words, the states (A·v) and (A·v′) are φ-
equivalent. Hence, by assumption (2), they aremi-ultimately-equivalent. Since |w| = m ≥ mi

(by choice of m), we get that (A · v · w) = (A · v′ · w): the run in A of the words u = vw

and u′ = v′w indeed reach the same state.

We have just shown that words whose values are congruent modulo `bm have runs in A
reaching the same states, hence either all are accepted by A or none of them are. The run of
a word u is then accepted by A if and only if 〈u%(`bm)〉 is. Finally, a word u is accepted
by A if and only if u%(`bm) belongs to the set R ⊆ {0, . . . , `bm − 1}, defined by

R = { i ∈ Z/`bmZ | (A · 〈i〉) is final } . J

I Remark 24. In the proof of the forward direction, it was stated that ` = k (where k is
the greatest divisor of the period which is coprime with the base). It is also the case in the
backward direction. Indeed, the automaton A is shown to accept a purely periodic set of
integers. Let (p,R) denotes the proper parameter of this set (it is not necessarily the one
given in the proof). Since A is minimal, it is a quotient of A(p,R). It then follows from
Proposition 22 that, `, the number of states belonging to 0-circuits, is equal to k, the greatest
divisor of the period which is coprime with the base.

4.1 Complexity and algorithmic issues
Theorem 23 yields an algorithm to decide whether a given deterministic automaton A accepts
by value a purely periodic set of integers:
0. if necessary, minimise A and make it complete;
1. count the number ` of states of A that belong to 0-circuits;
2. build the automaton A(`,?);
3. construct, if it exists, the pseudo morphism φ : A → A(`,?);
4. check whether, for all x ∈ Z/`Z, the states of φ−1(x) are ultimately-equivalent.

Let us denote by n the number of states of A. Step (0) can be carried out in O(bn logn)
time. Steps (1) and (2) can obviously be performed in O(bn) time. A morphism between
deterministic automata, if it exists, can be computed by a single traversal of the bigger
automaton; the same algorithm also works for pseudo-morphisms: Step (3) also runs in O(bn)
time. The ultimate-equivalence classes of A can be computed in time O(bn logn) from
Proposition 8, hence so is the execution of Step (4).

I Corollary 25. Let b > 1 be a base and A be a n-state deterministic automaton over JbK. It
is decidable in O(bn logn) time whether A accepts by value a purely periodic set of integers.

I Remark 26. Remark 24 gives a very fast rejection test. Indeed, before Step (2) we may
check whether the integer ` (computed by Step (1)) is coprime with b. If it is not the case, A
may be rejected already.

I Example 27. We start with the minimal automaton A depicted in Figure 3. Step (1) is
shown in Figure 4: A has five states belonging 0-circuits and thus, ` = 5. Step (2) then
consists in constructing A(5,?), shown in 5. There is a pseudo-morphism A → A(5,?), whose

ICALP 2017

118:12 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

Figure 3 An automaton A. Figure 4 The 0-circuits have 5 states in total.

0

1

3

2

4

Figure 5 The automaton A(5,?). Figure 6 Equivalence classes of the relation
induced by the pseudo-morphism A → A(5,?).

equivalence classes are represented in Figure 6. Finally, one could check that Step (4) holds:
all states belonging to the same class are 3-ultimately-equivalent. Hence A accepts an
eventually periodic set of period 23 × 5. It is indeed the minimisation of A(40,{0,3}).

5 Generalisation to eventually periodic sets

Let us now consider the eventually periodic sets of integers that are not purely periodic (see
Definition 11). We say that such sets are impurely periodic and Theorem 28 below gives a
characterisation of the minimal automata that accept them.

B. Boigelot, I. Mainz, V. Marsault, and M. Rigo 118:13

I Theorem 28. Let b > 1 be a base and let A be a minimal automaton over JbK. We
write (` + 1) for the number of states in A that belong to 0-circuits. The automaton A
accepts by value an impurely periodic set of integers if and only if the following conditions
are met.
(a) There exists a pseudo-morphism φ : A → A(`,?).
(b) The initial state excluded, the equivalence relation induced by φ is a refinement of the

ultimate-equivalence relation.
(c) The initial state bears a self-loop labelled by the digit 0 and features no other incoming

transitions.

Due to space constraints we do not detail the proof of Theorem 28. Although it is not
immediate, it is much similar to the proof of Theorem 23 and may be found in arXiv [8].

As stated by the next corollary, Theorem 28 gives an algorithm to decide whether an
automaton accepts an impurely periodic set of integers. It is the same as the one from
Section 4.1 with the following modification and addition:
0 to 3. same tests as in Section 4.1.
4. check whether, for every x ∈ Z/`Z, the non-initial states of φ−1(x) are ultimately-

equivalent;
5. check whether the initial state has no incoming transition.

I Corollary 29. Let b be a base and A be a n-state deterministic automaton over JbK. It is
decidable in O(bn logn) time whether A accepts by value an impurely periodic set of integers.

Since an eventually periodic set is either purely or impurely periodic, Theorem 1 is a
direct consequence of Corollaries 25 and 29.

References
1 Jean-Paul Allouche, Narad Rampersad, and Jeffrey Shallit. Periodicity, repetitions, and

orbits of an automatic sequence. Theoret. Comput. Sci, 410:2795–2803, 2009.
2 Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences: Theory, Applications, Gen-

eralizations. Cambridge University Press, 2003.
3 Marie-Pierre Béal and Maxime Crochemore. Minimizing local automata. In M. Fossorier

G. Caire, editor, IEEE Int. Symp. on Information Theory, pages 1376–1380, 2007.
4 Jason Bell, Emilie Charlier, Aviezri S. Fraenkel, and Michel Rigo. A decision problem for

ultimately periodic sets in nonstandard numeration systems. IJAC, 19(6):809–839, 2009.
5 Valérie Berthé and Michel Rigo, editors. Combinatorics, Automata and Number Theory.

Number 135 in Encyclopedia Math. Appl. Cambridge University Press, 2010.
6 Bernard Boigelot and Julien Brusten. A generalization of Cobham’s theorem to automata

over real numbers. Theor. Comput. Sci., 410(18):1694–1703, 2009.
7 Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper. An effective decision procedure

for linear arithmetic over the integers and reals. ACM Trans. Comput. Log., 6(3):614–633,
2005.

8 Bernard Boigelot, Isabelle Mainz, Victor Marsault, and Michel Rigo. An efficient al-
gorithm to decide periodicity of b-recognisable sets using MSDF convention, 2017. Preprint
arXiv:1702.03715.

9 V. Bruyère and G. Hansel. Recognizable sets of numbers in nonstandard bases. In R. Baeza-
Yates, E. Goles, and P.V. Poblete, editors, LATIN’95: Theoretical Informatics, volume 911
of Lect. Notes Comput. Sci., pages 167–179. Springer, 1995.

ICALP 2017

https://arxiv.org/abs/1702.03715

118:14 An Efficient Algorithm to Decide Periodicity of b-Recognisable Sets with MSDF

10 V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-recognizable sets of
integers. Bull. Belg. Math. Soc., 1:191–238, 1994. Corrigendum, Bull. Belg. Math. Soc. 1
(1994), 577.

11 Emilie Charlier, Narad Rampersad, and Jeffrey Shallit. Enumeration and decidable prop-
erties of automatic sequences. Int. J. Found. Comput. Sci., 23(5):1035–1066, 2012.

12 Alan Cobham. On the base-dependence of sets of numbers recognizable by finite automata.
Mathematical Systems Theory, 3(2):186–192, 1969. doi:10.1007/BF01746527.

13 Fabien Durand. Decidability of the HD0L ultimate periodicity problem. RAIRO – Theor.
Inf. and Applic., 47(2):201–214, 2013.

14 Juha Honkala. A decision method for the recognizability of sets defined by number systems.
ITA, 20(4):395–403, 1986.

15 Jérôme Leroux. A polynomial time Presburger criterion and synthesis for number decision
diagrams. In LICS 2005, pages 147–156. IEEE Comp. Soc. Press, 2005.

16 Victor Marsault and Jacques Sakarovitch. Ultimate Periodicity of b-Recognisable Sets: A
Quasilinear Procedure. In DLT 2013, number 7907 in Lect. Notes Comput. Sci., pages
362–373. Springer, 2013.

17 Ivan Mitrofanov. A proof for the decidability of HD0L ultimate periodicity (in Russian).
Preprint arXiv:1110.4780, 2011.

18 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
19 Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146–160, 1972.

http://dx.doi.org/10.1007/BF01746527

Polynomial-Space Completeness of Reachability
for Succinct Branching VASS in Dimension One∗

Diego Figueira1, Ranko Lazić2, Jérôme Leroux3, Filip Mazowiecki4,
and Grégoire Sutre5

1 LaBRI, CNRS, Bordeaux, France
diego.figueira@labri.fr

2 DIMAP, University of Warwick, Warwick, UK
R.S.Lazic@warwick.ac.uk

3 LaBRI, CNRS, Bordeaux, France
jerome.leroux@labri.fr

4 DIMAP, University of Warwick, Warwick, UK
f.mazowiecki@warwick.ac.uk

5 LaBRI, CNRS, Bordeaux, France
gregoire.sutre@labri.fr

Abstract
Whether the reachability problem for branching vector addition systems, or equivalently the prov-
ability problem for multiplicative exponential linear logic, is decidable has been a long-standing
open question. The one-dimensional case is a generalisation of the extensively studied one-counter
nets, and it was recently established polynomial-time complete provided counter updates are given
in unary. Our main contribution is to determine the complexity when the encoding is binary:
polynomial-space complete.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases branching vector addition systems, reachability problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.119

1 Introduction

Background. Vector addition systems, also known as Petri nets (cf., e.g., Reisig’s
book [21]), are one of the longest established, most extensively studied, and most widely
applied models of concurrent computing systems. Their branching generalisation has at-
tracted considerable attention in recent years from the research community on logic in
computer science. In addition to the simplicity and elegance of the model, this popularity is
due to remarkably close connections with computational linguistics [20, 22], cryptographic
protocols [25], linear logic [8, 16], semi-structured databases [13, 1], recursively parallel
programs [5], game semantics [7], and timed pushdown systems [6].

A central decision problem for branching vector addition systems is reachability: whether
a computation tree exists that has the given root and leaves. Similarly to the simpler setting
of Petri nets, this problem has turned out to be very challenging. However, in contrast to
Petri nets where the challenge is determining the complexity of reachability below a currently
best cubic-Ackermann bound [17], even decidability is still open for the branching vector
addition systems reachability problem. For reasons indicated above, the latter question was

∗ Partially supported by EPSRC grant EP/M011801/1 and Royal Society grant IE150122.

EA
T

C
S

© Diego Figueira, Ranko Lazić, Jérôme Leroux, Filip Mazowiecki, and Grégoire Sutre;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 119; pp. 119:1–119:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.119
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

119:2 Reachability for Succinct 1BVASS

Table 1 Complexity of reachability for one-dimensional vector addition systems with states,
depending on the presence of branching and the encoding of counter updates.

unary binary
1VASS NL-complete [24, 15] NP-complete [11]

1BVASS P-complete [10] PSpace-complete

recently highlighted by Bojańczyk as one of a handful of most interesting open problems in
computer science logic [4].1

The decidability of the branching reachability problem is in fact open already in two
dimensions. However, in one dimension, i.e. when there is only one counter, Göller et al. [10]
established decidability, and more precisely polynomial-time completeness provided the
numbers that specify the counter updates in the system are given in unary. The precise
complexity with the encoding in binary remained undetermined.

From another point of view, our investigation builds on the voluminous literature on
decision problems for one-counter automata, a ubiquitous class obtained by either dropping
one counter from Minsky (two-counter) machines or restricting pushdown automata to one
stack symbol. In particular, the complexity of the reachability problem for one-counter systems
is known: NL-completeness with the updates given in unary is a classical result [24, 15], and
NP-completeness for succinct systems is due to Haase et al. [11] (cf. the latter paper for
further references on the subject).

Contributions. Our main result is the closure of the complexity gap for the reachability
problem on succinct one-dimensional branching vector addition systems with states (1BVASS),
which was between NP hardness inherited from 1VASS [11] and ExpTime membership that
follows from the P membership for unary 1BVASS [10].2 We show that the problem is in
fact PSpace-complete, which fills the little Table 1.

The fact that the complexities for 1BVASS correspond exactly to ‘adding alternation’ to
the complexities for 1VASS makes them easy to remember. However, it is quite misleading in
terms of proofs, at least as far as we can see. The branchings in computations of BVASS are
not alternations: counter valuations at child nodes are summed, not compared for equality.3
Already in the unary case, the proof of P-completeness for 1BVASS [10] is considerably more
involved than of NL-completeness for 1VASS [24, 15]. In our proof of PSpace-completeness
for binary 1BVASS, there are several substantial new insights in comparison to both unary
1BVASS and binary 1VASS [11]:

we introduce a novel notion of implicit reachability witnesses, show that such a witness
of at most an exponential size always exists, and hence argue that it can be guessed and
checked in polynomial space;
for the exponential bound on the size of witnesses, a polynomial bound on their counter
valuations as for unary 1BVASS [10] is not sufficient because trees with exponentially
long branches may be doubly exponentially large;

1 Although decidability has been stated in a published journal article [2], we believe that claim has not
been accepted by the community due to lack of proof, cf. [23, Footnote 4].

2 We remark that we write ‘with states’ because stateless (B)VAS are sometimes considered in higher
dimensions since states can be encoded at the expense of three additional counters; and that 1VASS, i.e.
one-counter nets, are as hard as one-counter systems in this context since the ability to zero-test the
counter does not make reachability significantly more complex.

3 Reachability for alternating VASS is actually undecidable, for relatively trivial reasons [19].

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:3

one of the techniques we employ for establishing the exponential bound involves a novel
rewriting strategy, which may be of wider interest since it transforms fragments of
computation trees to a normal form that features principal branches, whereas the lack of
such a structure has hitherto been an obstacle to generalising Kosaraju’s approach [14, 17]
to BVASS;
in contrast to the other three hardness results summarised in Table 1, our lower bound
proof is highly intricate, resting on a system of encodings and checks through which
alternation can be simulated by additive branching up to a linear depth.

Organisation. After the next section in which we define the systems we consider and observe
some of their basic properties, the two sections that follow contain the PSpace-membership
proof. In the penultimate section, we present the PSpace-hardness construction, and then
finish with some concluding remarks.

2 Preliminaries

1BVASS. A one-dimensional branching vector addition system with states (1BVASS for
short) is a triple B = (Q,∆, I) where Q is a non-empty finite set of states, ∆ is a non-empty
finite subset of Q × Q × Z × Q, and I ⊆ Q is a finite set of initial states. An element
δ = (qL, qR, z, q) in ∆ is called a transition, and the integer z is called the displacement of the
transition. In the sequel, the maximal absolute displacement is denoted byM . A configuration
is a pair in Q×N, and a configuration in I × {0} is called an initial configuration. Since the
displacements are given in binary, we define the size of B as |B| = |Q|+ |∆| log2(M + 1).

Trees. We write u � v if u is a prefix of v and u ≺ v if u is a strict prefix. A tree is a
non-empty finite prefix-closed subset T of {L,R}∗ satisfying the property that tL ∈ T if,
and only if, tR ∈ T for every t ∈ T . Elements of T are called nodes. Its root is the empty
word ε. An ancestor s of a node t is a prefix of t. In that case t is called a descendant of s.
By writing strict descendants and ancestors we exclude s = t. A child of a node t is a node
tL or tR in T . A node is called a leaf if it has no child, and it is said internal otherwise.
The sibling of a node t 6= ε in the tree T is the node obtained by swapping the last letter.
The height of a node t is |t|. The size of a tree T is its cardinality |T |. The height of T is
the maximal height of any of its nodes. The subtree of T rooted at a node t in T is the tree
t−1T = {t′ ∈ {L,R}∗ | tt′ ∈ T}. The truncation of T at a node t is the tree T\t{L,R}+.
Notice that t becomes a leaf of that truncated tree.

Runs and Reachability. We consider labeled trees T where each node t is labeled by a
state qt ∈ Q and a value nt ∈ N defining a configuration (qt, nt). A run ρ is a labeled tree
such that for every internal node t, there exists an integer z such that (qtL, qtR, z, qt) is a
transition in ∆ and such that nt = ntL + ntR + z. The notions of height, size, subtree (called
subrun in that context), and truncation are extended from trees to runs as one would expect.
Notice that the labels are ignored in the size of a run.

A run is said to be complete if every leaf is labeled by an initial configuration. We write
partial run, instead of run, when we want to emphasize that the run could be not complete.
A configuration is said to be reachable if it is the root configuration of a complete run. We
are mostly interested in the reachability problem: given a 1BVASS B and a configuration
(q, n) decide whether (q, n) is reachable. The size of the input is |B|+ log2(n+ 1).

ICALP 2017

119:4 Reachability for Succinct 1BVASS

I Example 1. Fix numbers n, b such that 0 ≤ b ≤ 2n. We define the 1BVASS B = (Q,∆, I),
where Q = {q1 . . . qn} ∪ {qI , qF } and I = {qI}. There are three types of transitions:

(qI , qI , 0, q1), (qI , qI , 1, q1); (qi, qi, 0, qi+1) for all i < n; (qn, qn,−b, qF).

The first two transitions initialize q1 with 0 or 1; the next n transitions build a full binary
tree below each state qi; and the last transition decreases the value of the counter by b.
Consider the reachability problem of (qF , 0). The complete runs with (qF , 0) in the root
are full binary trees of height n+ 1 such that the number of nodes with state q1 is 2n and
exactly b of them have value 1.

Contexts and Concatenation. A context π = (ρ, t) is a run ρ equipped with a distinguished
leaf t called the source of π. The label of t is called the source configuration of π. Such a
context is also called a context from the source configuration up to the root configuration of
ρ. Given a node t in a run ρ and an ancestor s of t, i.e. such that t = su for some word u,
we define the context between (s, t) as the subrun rooted at s of the truncation at t of ρ,
equipped with u as the source node. An ancestor of the source t is called a main node of π.
The set of main nodes of π is called the main branch. A dangling node in π is a node that is
a sibling of a main node. A dangling configuration is a configuration of such a node.

The concatenation πρ of a context π with a run ρ is defined if the source configuration
(p,m) of π and the root configuration (q, n) of ρ satisfy p = q and if the natural numbers
labeling the main nodes of π are larger than or equal to m−n. Then πρ is defined by adding
to the main nodes of π the integer n−m, and replacing the leaf node t of that context with
ρ. Notice that πρ is a run. Contexts can be concatenated a similar way. The concatenation
ππ′ of a context π = (ρ, t) with a context π′ = (ρ′, t′) is defined if πρ′ is defined. In that case
ππ′ is the context (πρ′, tt′).

Cycles and Minimal Nodes. A context from (p,m) up to (q, n) is called a cycle if the
source is distinct from the root node and p = q. The cycle is said to be simple if on the
main branch only the source and the root have the same states. A main node v is said to be
minimal in a cycle if its value is minimal on the main branch, i.e., nv ≤ nv′ for any other
main node v′. We write d-cycle do emphasize the growth of the cycle, where d = n−m. The
cycle is said to be increasing if d > 0, zero if d = 0, and decreasing if d < 0.

Let π be a d-cycle, and let p be the state of its source node. Let ρ = ρ1πρ2 be a context
or a run. By removing π from ρ we obtain ρ′ = ρ1ρ2 (provided there is no drop below 0).
Similarly, let ρ = ρ1ρ2 be a context or a run such that the source of ρ1 has state label p. By
inserting π into v we obtain ρ1πρ2 (provided that there is no drop below 0). Notice that it
is always safe to remove decreasing cycles and to add increasing cycles.

3 d-Coverability

A key role in our polynomial-space algorithm for the reachability problem is played by a
more relaxed notion of ‘coverability modulo d’: instead of reaching a value x exactly, it is
allowed to reach any value which is at least x, provided the difference with x is a multiple of
d. More formally, a configuration (q, n) is said to be d-coverable where d > 0 is a natural
number if there exists a reachable configuration (q, x) with x ∈ n+ N.d. A d-coverability run
of a configuration (q, n) is a complete run rooted by a configuration (q, x) with x ∈ n+ N.d.
Note that a similar notion of d-reachability was used to show P-completeness for reachability
of unary 1BVASS [10].

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:5

This section culminates by establishing that every d-coverable configuration (q, n) admits
a ‘small’ d-coverability run, namely of size bounded by (n+ 5).(d2|B|)6. We present most of
the proof, which is an orchestration of pigeonhole arguments and safe collapses, as a sequence
of lemmas. Let us start with a simple observation about divisibility of subset sums.

I Lemma 2. Let z1, . . . , zd be a non-empty sequence of integers. There exists a non-empty
finite set J ⊆ {1, . . . , d} such that d divides

∑
j∈J zj.

I Lemma 3. Let (q, n) be a configuration and let ρ be a d-coverability run of (q, n) of
minimal size. If the size of ρ is larger than |Q|.2|Q|.d2 then ρ contains an increasing cycle.

Proof. Let ρ be a d-coverability run of (q, n). Suppose: (1) the height of ρ is smaller than
|Q|.d; and (2) for every height ` ≥ 1 the number of nodes in ρ of height ` is smaller than
2|Q|.d. Then it follows that the number of nodes of ρ is bounded by 1 (the root) plus |Q|.d
times 2|Q|.d− 1 (the remaining nodes). Hence the size is bounded by |Q|.2|Q|.d2. It remains
to show that if (1) or (2) does not hold then ρ is not minimal or contains an increasing cycle.

In the first case (1) assume that the height of ρ is at least |Q|.d. In that case, there
exists a node t such that |t| = |Q|.d. The nodes on the branch from the root to t are the
prefixes of t. It follows that the number of nodes on that branch is equal to |Q|.d+ 1. Notice
that if every state of Q occurs at most d times on that branch, then the number of nodes of
that branch is bounded by |Q|.d and we get a contradiction. It follows that some state q
occurs at least d + 1 times as a label of a node in that branch. If ρ does not contain any
increasing cycle, then all repetitions induce zero or decreasing cycles. Lemma 2 shows that
by removing at most d such cycles in that branch we get another d-coverability run of (q, n),
smaller than ρ.

In the second case (2) assume that there exists a level ` ≥ 1 such that the number of
nodes in ρ of height ` is at least 2|Q|.d. It follows that ` ≥ |Q|. Notice that these nodes
have ancestors in level `− |Q|. Since the number of elements in level ` that have the same
ancestors in level ` − |Q| is bounded by 2|Q|, it follows that the level ` − |Q| contains at
least d distinct nodes t1, . . . , td such that, for some words u1, . . . , ud of length |Q|, we have
tiui ∈ ρ for every 1 ≤ i ≤ d. The pigeon-hole principle shows that we can extract a cycle
in the context between (ti, tiui) for every i. If ρ contains no increasing cycles, then these
cycles are zero or decreasing. Lemma 2 shows that by removing at most d such cycles we get
another d-coverability run of (q, n), smaller than ρ. J

Small d-coverability runs are obtained thanks to the class of witnesses of d-coverability
defined as follows. A witness of d-coverability of a configuration (q, n) is a partial run ψ with
the root labeled (q, x), where x ∈ n+ N.d. Every leaf labeled by a configuration (p,m) that
is not initial is equipped with a complete run with root label (p, y) with y ≡ m mod d and
containing an increasing cycle. A node of ψ is said to be modular when it is an ancestor
of such a leaf. We show in the sequel that the existence of d-coverability runs implies the
existence of small witnesses of d-coverability. Moreover we provide a way to forge small
d-coverability runs from small witnesses of d-coverability.

I Lemma 4. Every d-coverable configuration (q, n) has a witness ψ such that:
the subruns of ψ rooted at non-modular nodes have size at most |Q|.2|Q|.d2, and
the complete runs attached to modular leaves have size at most 2|Q|.2|Q|.d2 + 1.

Proof Sketch. We truncate a minimal d-coverability run, bottom-up, at the first increasing
cycles. The bounds follow from Lemma 3. J

ICALP 2017

119:6 Reachability for Succinct 1BVASS

To reduce the number of modular nodes, we introduce an operation on d-coverability
witnesses that collapses cycles between modular nodes, as follows. Given a modular leaf `
and two ancestors u, v satisfying u ≺ v � ` such that qu = qv, we transform the witness as
follows. First, we introduce the minimal k ≥ 0 such that r = kd− nu + nv is non-negative.
Second, we relabel the branch from the root to the leaf ` by adding r on nodes s such that
ε � s � u and by adding kd on nodes s such that v � s � `. It is readily seen that the new
labels of u and v are equal. Third, we remove the cycle between u and v by collapsing4 the
nodes u ≺ v. Notice that after this transformation we get a witness of d-coverability for
(q, n+ r) where (q, n) was the root label of the original witness of d-coverability. We obtain
the following lemma whose proof is along the same lines as that of Lemma 3.

I Lemma 5. Let (q, n) be a configuration. By iteratively collapsing cycles, every witness
of d-coverability of (q, n) can be simplified into a witness with at most |Q|.2|Q|.d2 modular
nodes and where the height of each modular node is smaller than |Q|.d.

I Lemma 6. We may relabel modular nodes of any witness of d-coverability of (q, n) in such
a way that n` < n+ d+ |Q|.d.M for every modular leaf `.

I Theorem 7. Every d-coverable configuration (q, n) admits a d-coverability run of size at
most (n+ 5).(d2|B|)6.

Proof. By applying Lemmas 4, 5, and 6 in succession, we get a witness of d-coverability
for (q, n) satisfying the bounds in these lemmas. Assume first that the root node of that
witness is not a modular node. In that case the witness of d-coverability of (q, n) is in fact a
d-coverability run of (q, n) and by Lemma 4 the size of this run is bounded by |Q|.2|Q|.d2.

Now, suppose that the root node of the witness is a modular node. Let µ be the number
of all modular nodes, and ζ the number of all non-modular nodes. By Lemma 5 we get
µ ≤ |Q|.2|Q|.d2. We bound ζ as follows. A non-modular node t is called a side node if it is
the sibling of a modular node. Observe that non-modular nodes are descendant of side nodes
and by Lemma 4 subruns rooted in side nodes have sizes bounded by |Q|.2|Q|.d2. Since the
number of side nodes is bounded by µ, we derive that ζ ≤ µ.|Q|.2|Q|.d2.

To build a d-coverability run from the witness we iterate the following process for each
modular leaf ` in the witness. As a first step, we transform the attached complete run ρ` of `
in such a way its root label (q`, x) satisfies x ∈ n` +Nd. Recall that ρ` contains an increasing
cycle π. The above-mentioned transformation simply amounts to iterating this cycle d.n`
times. By Lemma 4 the size of ρ` is bounded by 2.|Q|.2|Q|.d2 + 1, which also bounds the size
of π. The size of the resulting complete run ρ′` is bounded by 2.|Q|.2|Q|.d2 + 1 (the size of ρ`)
plus d.n`.2.|Q|.2|Q|.d2 (the result of iterating the increasing cycle). It follows that the size of
ρ`′ is bounded by 2.(d.n` + 1).|Q|.2|Q|.d2 + 1. By Lemma 6 we have n` < n+ d+ |Q|.d.M ,
so we get that the size of ρ`′ is bounded by 2(n+ 3).M.|Q|2.2|Q|.d4 + 1.

Let (q`,m`) be the configuration of the root of ρ′`. Observe that m` ∈ n` + Nd. In the
second step we add m` − n` to each node on the branch from ` to the root of the witness.
After this step, the new label of ` is equal to the root label of ρ′`. As a third step, we simply
replace the leaf ` by the complete run ρ′`.

We obtain a d-coverability run ρ for (q, n) of size µ+ ζ, plus the sum of the sizes of the
complete runs ρ′` for each modular leaf `. This is bounded by

µ+ µ.|Q|.2|Q|.d2 + µ.(2(n+ 3).M.|Q|2.2|Q|.d4 + 1) ≤ (2n+ 9).M.|Q|3.4|Q|.d6.

Since M.2|Q| ≤ 2|B|, we get that the size of ρ is at most (n+ 5).(d2|B|)6. J

4 Collapsing two nodes u ≺ v consists in replacing the labeled subtree rooted in u by the labeled subtree
rooted in v.

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:7

4 Reachability

This section is devoted to the proof of the following theorem.

I Theorem 8. The reachability problem for 1BVASS is in PSpace.

The complexity is w.r.t. the sizes of the input 1BVASS and root configuration, both
encoded in binary. Our proof relies on the following small witness property.

I Lemma 9. If c is a reachable configuration with a value bounded by 2|B| in a given 1BVASS
B then there exists a complete run of size at most 260|B|3 with root configuration c.

Indeed, Lemma 9 implies Theorem 8. First, notice that for configurations with value
bigger than 2|B| it suffices to solve the problem for value 0 with an auxiliary step in the
given BVASS. More precisely, if we ask for reachability of (q, n) we can add two states r, r′
such that r is initial, a new transition (q, r,−n, r′), and change the question to reachability
of (r′, 0). To verify if a configuration c with a value bounded by 2|B| is reachable, we guess a
complete run for c in nondeterministic polynomial space. Since it is impossible to maintain,
in polynomial space, all nodes of the run in the memory, we only maintain the ancestors of
the currently processed node whose other child was not processed yet. For every processed
node v if it is an initial configuration then we go back to the closest ancestor a whose other
child was not verified and proceed with that child. In this case we remove the ancestor a
from the memory. Otherwise, we guess nondeterministically two children of v such that their
triple satisfies some transition in ∆ and continue with one of the children. The procedure
nondeterministically guesses to proceed with the child whose subtree contains at most half
of the leaves in the complete run. It remains to observe that the procedure does not need
to remember more than 60|B|3 ancestors, otherwise the complete run would require more
than 260|B|3 nodes. Notice that it is possible that a node has an exponential number of
ancestors, but the procedure does not need to remember them all. The rest of this section is
devoted to prove Lemma 9.

Small complete runs are forged from the so-called witnesses of reachability. Formally, the
class of witnesses of reachability is defined inductively as follows. A witness of reachability
w of a configuration c is a partial run with root labeled by c and such that every leaf
labeled by (p,m) that is not an initial configuration is a reachable configuration equipped
with an implicit decreasing simple cycle up to the configuration (p, 0). Implicit means that
only the main branch and the dangling nodes of the decreasing cycle are given explicitly.
Each dangling configuration is equipped with a witness of reachability. Notice that every
configuration admitting a witness is reachable since the leaves of the top most partial run of
that witness are labeled by reachable configurations. The depth of a witness of reachability
is defined as follows. The depth of a complete run is zero, and the depth of a witness of
reachability that is not a complete run is one plus the maximal depth of the witnesses of
reachability defining the dangling configurations of the decreasing cycles. The depth of a
witness of reachability w is denoted by depth(w). Figure 1 shows an example witness of
reachability, suggesting how we turn it into a complete run. To bound the sizes of complete
runs obtained from reachability witnesses we introduce the value maxsize(w) denoting the
size of the biggest partial runs occurring in a witness of reachability w. The following lemma
shows that maxsize(w) provides a simple way to bound values occurring in w.

I Lemma 10. For every witness of reachability w of a configuration with a value bounded by
2|B|, the root values of the partial runs used by w are bounded by 2|B|. Moreover, any value
occuring in w is bounded by 22|B|.maxsize(w).

ICALP 2017

119:8 Reachability for Succinct 1BVASS

Figure 1 A witness whose topmost partial run has two leaves that are not initial. Decreasing
cycles are attached, and the dangling configurations are provided with their subwitnesses.

Proof. The maximal root values can be bounded by observing that, except for the top most
partial run of w, partial runs provide root configurations that are dangling configurations of
simple decreasing cycles. It follows that these values cannot exceed |Q|.M ≤ 2|B|. We bound
the other values as follows. Observe that the total sum of displacements plus the leave values
of a partial run is equal to its root value. It follows that every value of w is bounded by
2|B| + maxsize(w).M ≤ 22|B|.maxsize(w). J

I Lemma 11. Let w be a witness of reachability of a configuration (q, n) satisfying n ≤ 2|B|
in a 1BVASS B. There exists a complete run ρw with root label (q, n) and size bounded by
(210|B|.maxsize(w))2(depth(w)+1).

Proof. We associate to s, ` ∈ N the set Cs,` of configurations (q, n) such that n ≤ 2|B| and
such that there exists a witness of reachability w of (q, n) such that maxsize(w) ≤ s and
depth(w) ≤ `. We also define f(s, `) = maxc∈Cs,`

(|ρc|), where |ρc| is the minimal size of a
complete run rooted at c. Such a run always exist since c is reachable. Notice that f(s, 0) ≤ s
since a witness of reachability of depth 0 is a complete run.

We provide a bound for f(s, `+1) using f(s, `). Consider a configuration c ∈ Cs,`+1. There
exists a witness of reachability of c with depth bounded by `+1 such that maxsize(w) ≤ s. Let
ρ be the top most partial run of w. Suppose there is a leaf labeled by a non-initial configuration
(p,m) that is provided with an implicit simple decreasing cycle up to (p, 0). Let us denote
by −d the effect of that cycle. As the cycle is simple, it follows that d ≤ |Q|.M ≤ 2|B|.
The dangling configurations c1, . . . , ck of that cycle are given by witnesses of reachability
w1, . . . , wk such that depth(wj) ≤ ` and maxsize(wj) ≤ s. It follows that c1, . . . , ck ∈ C`,s.
By induction, the dangling configurations c1, . . . , ck can be replaced by complete runs of size
bounded by f(s, `). Since the cycle is simple, k ≤ |Q|. After these replacements we obtain an
(explicit) simple cycle π of size at most |Q|+ |Q|.f(s, `). Moreover, since (p,m) is reachable, it
is d-coverable. Theorem 7 shows that there exists a d-coverability run for (p,m) of size at most
(m+ 5).(d.2|B|)6. Lemma 10 shows that m ≤ 22|B|.maxsize(w). Since 5 ≤ 23|B|.maxsize(w)
we get m+ 5 ≤ 24|B|.maxsize(w). We derive that there is a d-coverability run ρ of (p,m) of
size bounded by λ = 216|B|.maxsize(w) ≤ 216|B|.s.

There exists k ∈ N such that (p,m + k.d) is the root configuration of ρ. In order to
obtain a complete run with root configuration (p,m), we just have to consider πkρ. Notice
that we can never reach a value below zero since π is a decreasing cycle up to (p, 0). As
m+k.d ≤ λ.M , it follows that k ≤ λ.M . We have proved that there exists a complete run with
root configuration (p,m) and of size bounded by λ.M.(|Q|+ |Q|f(s, `)) + λ ≤ 219|B|.s.f(s, `).
Finally, by replacing every non-terminal leaf by a complete run as performed previously, we
get a complete run with root configuration c and size bounded by 219|B|.s2.f(s, `). We have
proved that f(s, `+ 1) is bounded by that value. An immediate induction shows that

f(s, `) ≤ (219|B|.s2)`.f(s, 0) ≤ (219|B|.s2)`.s ≤ (210|B|.s)2(`+1). J

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:9

By Lemma 11, to prove Lemma 9 it suffices to find a witness w such that maxsize(w)
is bounded exponentially and depth(w) is bounded polynomially in the size of the given
1BVASS. Before we prove that we introduce some notation and two auxiliary lemmas.

Before the next lemma we introduce an operation that intuitively moves increasing cycles
from left branches to right branches. By applying that operation as many times as possible,
we obtain a so-called saturated partial run. Formally, a partial run ρ is said to be reducible
in a node s if there exists an increasing cycle π between (sL, t) for some node t � sL, and a
minimal node v in π such that qv is the state of some descendant of sR. A partial run that
is not reducible is said to be saturated.

I Lemma 12. For every partial run ρ there exists a saturated partial run ρ′ with the same
root configuration, the same number of nodes, and the same mutiset of leaf configurations.

Proof. Assume that a partial run ρ is reducible on a node s. Let us denote by π an increasing
d-cycle between (sL, t) in ρ for some node t � sL and a minimal node v in π such that
qv = qv′ for some v′, a descendant of sR. Let π = π1π2 be such that π1 is the fragment of π
with the source node v. We define π′ = π2π

′
1, where π′1 is obtained from π1 by decreasing all

values on the main branch by nv. Since v is minimal, notice that π′ is an increasing d-cycle
from (qv, 0) up to (qv, d) such that the multiset of configurations of nodes not on the main
branch in π and π′ are equal. By removing from ρ the increasing cycle π, and inserting
the increasing cycle π′ into v′, we get a partial run ρ′ such that the root configuration, the
number of nodes, and the mutiset of leaf configurations remain the same as in ρ. Notice that
by removing π we decrease the value of s by d, but by inserting π′ its value is increased by d,
therefore, these operations do not cause a drop below 0. Since this transformation can be
performed only a finite number of times, at some point, we get a saturated run satisfying the
lemma. J

I Lemma 13. The number of nodes of a saturated run with root labeled (q, n) with n ≤ 2|B|
that does not contain any decreasing or zero cycles is bounded by 25|B|2 .

To prove Lemma 9 we will decompose partial runs that contain a decreasing cycle. Since
such cycles are not necessarily simple, we provide the following lemma.

I Lemma 14. For every decreasing cycle π there exists a state p that labels a main node of
π and a simple decreasing cycle π′ up to (p, 0) such that the set of dangling configurations of
π′ is included in the set of dangling configurations of π.

Proof of Lemma 9. We consider a reachable configuration c with a value bounded by 2|B|.
Obviously c admits a witness of reachability because every complete run is a witness. By
Lemma 11 we need to find a witness w of c such that maxsize(w), depth(w) have proper
bounds. To do so, we associate to every witness w the sequence of natural numbers
s(w) = (sj)j≥1, where sj is the number of partial runs of size j in w, called the rank
of w. These sequences are ordered colexicographically by the total order v defined by
(sj)j≥1 v (s′j)j≥1 if the two sequences are equal or there exists j ≥ 1 such that sj < s′j and
si = s′i for every i > j. Notice that sequences s(w) have finite support, i.e., {j | sj 6= 0} is
finite. When restricted to sequences with finite support the order v is well-founded, i.e.,
there are no infinite decreasing sequences. We consider for the remainder of the proof a
reachability witness w with a minimal rank (for v).

Suppose w has depth ` > |Q|. Then there exists a sequence π1 . . . π` of implicit decreasing
simple cycles such that πi+1 is a cycle equipped to the partial run of a dangling node in πi.
Then there exist i < j such that πi and πj have the same state in the root. We replace πi with

ICALP 2017

119:10 Reachability for Succinct 1BVASS

πj . In particular we remove all cycles πi . . . πj−1 and all partial runs that were associated to
them. The resulting witness has a smaller rank which contradicts our minimality assumption
on w.

Now, suppose that w contains partial runs of size bigger than 25|B|2 . Let σ be a partial
run having the maximal size and such that its depth is maximal (with respect to others
of the same size). Notice that all partial runs of larger depth are smaller than σ. Using
Lemma 12 we turn σ into a saturated run without changing the multiset of configurations
of the leaves. Lemma 10 shows that the run σ has root value at most 2|B| and thus by
Lemma 13 there exists a decreasing or a zero cycle π in σ. If π is a zero cycle then we
just remove it obtaining a smaller rank which contradicts our minimality assumption on
w. Otherwise, π is a decreasing cycle. By Lemma 14 there exists a state p that labels a
main node u of π and a simple decreasing cycle π′ up to (p, 0) such that the set of dangling
configurations of π′ is included in the set of dangling configurations of π. Since π is a cycle,
we can assume w.l.o.g. that u is distinct from the source of π. Let v be the original node
of u in σ. By assuption on u, notice that v is an internal node of σ. We define σ′ as the
partial run truncated at v and equip it with the simple decreasing cycle π′. Since v is an
internal node, σ′ is smaller from σ. The configurations of dangling nodes in π′ are also
configurations of dangling nodes in π, which come from σ. We use the partial subruns of σ
as partial runs for dangling nodes in π′. These subruns come with implicit simple decreasing
cycles and additional partial runs of smaller depth. Notice that, possibly, we have introduced
double copies of partial runs of smaller depth. Let us show that the resulting witness w′
has a smaller rank which will contradict our minimality assumption on w. Recall that all
partial runs of bigger depth are smaller than σ. Since we have decreased the size of σ, and
all introduced partial runs are of smaller size than σ it follows that s(w′) @ s(w).

We have proved that depth(w) ≤ |Q| and maxsize(w) ≤ 25|B|2 . From Lemma 11, we get
a complete run rooted by (q, n) with size bounded by 260|B|3 . J

5 Hardness

We prove that the reachability problem for 1BVASS is PSpace-hard. Intuitively, one would
like to encode runs of an alternating PTime Turing machine: the tape configuration is
maintained as the binary representation of the counter value, and alternation is represented
by the branching structure of the run. At first sight, binary rules of BVASS are not compatible
with any sort of alternation: the value ` of a node may come from two arbitrary values `1, `2
from children with the sole restriction that ` = `1 + `2. It thus seems pointless to pretend
to replicate information encoded in ` into both `1 and `2. However, we show that one can
enforce —in a highly restricted setting— that transitions behave in a regular way, where
` = 2 · `1 = 2 · `2. Using this, child nodes can recover information from the parent node: the
i-th bit of the child has a 1 iff the i+ 1-th bit of the parent has a 1. In this way information
can be ‘copied’ into different branches, and we can benefit from some form of alternation.

I Theorem 15. The reachability problem for 1BVASS is PSpace-hard.

Proof Idea. The proof goes by reduction from the PSpace-complete problem of validity for
Quantified Boolean Formulas. Given a QBF sentence, such as

ϕ = ∀P1 ∃P2 ∀P3 (P1 ∨ ¬P2 ∨ P3) ∧ (¬P1 ∨ P2),

we define a polynomial size 1BVASS B, in such a way that the configuration (q1, 0) is
reachable if, and only if, ϕ is valid. Transitions in B enforce that any complete run for (q1, 0)
encodes a ‘certificate’ of the validity of ϕ. In particular, this certificate contains

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:11

nondeterministic choices for the valuation of existentially quantified variables such as P2;
one branch for each of the exponentially-many valuations for universally quantified
variables, such as P1 and P3;
for each branch encoding a valuation, a sub-branch for each disjunctive clause, certifying
that the clause is true under that valuation.

Levels. For this reduction, it is natural to think of runs as proceeding top-down instead
of bottom-up as done hitherto. That is, we start with a configuration (q1, 0) at the root,
and we build valuations going downward until eventually finding an initial configuration
on every branch. From this perspective, transitions of B ‘increment’ a value c > 0 before
‘splitting’ the value into children with states q′, q′′ with a transition of the form (q′, q′′,−c, q).
The behaviour of B ensure that any complete run for (q1, 0) can be divided into ‘levels’, so
that the i-th level of the tree contains encodings for the choices of valuations for the first i
variables of ϕ. For the purpose of this sketch, the level i is the set of all nodes of height 2 · i
in the run (e.g., in the run of Figure 2, nodes at level i are those labelled qi+1).

Valuation encoding. Variable valuations are encoded in the counter value by exploiting
its compact binary representation, which throughout the run remains always a bitstring of
quadratic length in the size of the sentence ϕ. The counter value bitstring can be split into
equal length segments, one for each variable, so that the i-th segment is a 2m substring
encoding the valuation of the i-th variable of ϕ, where m is the number of universally
quantified variables plus the log2 of the number of conjuncts of ϕ —in our running example,
m = 3. The encoding of a valuation for a variable will evolve along the run, for example
the encoding for P1 being true at nodes at different levels may differ. This is because
branchings change the counter value and thus its binary representation. For a node at level
j, the encoding for a true (>) valuation of a variable Pi with i ≤ j is through a bitstring
0u(j)−1102m−u(j) at the i-th segment, where u(j) is the number of universally quantified
variables Pi with i ≤ j in the input sentence —in our example, u = {(1, 1), (2, 1), (3, 2)}.
Similarly, the way to encode a false (⊥) valuation is through the bitstring 0m+u(j)−110m−u(j).
For ϕ as above, where m = 3, the valuation {(P1,>), (P2,⊥), (P3,⊥)} at level 3 (i.e., j = 3,
u(j) = 2) is represented by the bitstring z = (010|000)(000|010)(000|010) (parentheses and
pipes are only to improve readability). Let us call the ‘(i, j)-bit’ the j-th most significant bit
of the i-th most significant segment in the bitstring, and let ci,j ∈ N be the number whose
sole (i, j)-bit is 1 in its binary representation (e.g., for z as above, z = c1,2 + c2,5 + c3,5).

As discussed before, for this reduction to work we need that already defined valuation are
somehow ‘replicated’ in all the subtrees, that is, when a configuration branches, information
on the valuations is preserved in both children configurations and remains uncorrupted. For
this, we enforce that, for every internal node t inside a complete run for (q1, 0) of B, either:
1. t has a right child with the initial configuration (qI , 0), or, otherwise,
2. both children of t have the same value, that is, nt = 2 · ntL = 2 · ntR.
Assuming such a property (as verified by the run of Fig. 2), information can be ‘spread’
along branches of a run: at any node t of type (2) the i-th least significant bit of nt is 1 iff
the (i − 1)-th least significant bit of ntL and ntR are 1. We use transitions of type (1) to
generate a new valuation for the i-th variable, and transitions of type (2) to split the current
valuation into two branches. For example, a configuration containing a true segment with
bitstring 0i−1102m−i is split into two children whose segment value is now 0i102m−i−1, which
still codes a true value for the next level i+ 1. The choice of m is such that it corresponds

ICALP 2017

119:12 Reachability for Succinct 1BVASS

q1, (000|000)(000|000)(000|000)

q>1 , (000|000)(000|000)(000|000) q?1 , (000|000)(000|000)(000|000)

q2, (100|000)(000|000)(000|000) q2, (000|100)(000|000)(000|000)

q>2 , (100|000)(000|000)(000|000) q?2 , (000|100)(000|000)(000|000)

q3, (100|000)(100|000)(000|000)

q>3 , (010|000)(010|000)(000|000) q?3 , (010|000)(010|000)(000|000) q>3 , (000|010)(000|010)(000|000)

q4, (010|000)(010|000)(010|000) q4, (010|000)(010|000)(000|010) q4, (000|010)(000|010)(010|000)

q3, (000|100)(000|100)(000|000)

sP1_¬P2_P3
, (001|000)(001|000)(001|000)

r1
P1

, (001|000)(001|000)(001|000)

r2
P1

, (000|000)(001|000)(001|000)

r3
P1

, (000|000)(000|000)(001|000)

r4
P1

, (000|000)(000|000)(000|000)

qI , 0

. . .

. . .

s¬P1_P2
, (000|001)(000|001)(001|000). . .

s¬P1_P2
, (001|000)(001|000)(001|000)

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

qI , 0

. . .
Figure 2 Clipping of a complete run for (q1, 0). Values are represented by 3 segments of 6 bits.

to the maximum number of transitions of type (2) in any root-to-leaf branch of the run. In
other words, m is the maximum distance that a 1-bit can ‘travel’ along the run.

Here we only show how to build B for our running example ϕ. We use the state space
Q = {qj , q>i , q⊥i , sψ, r

j
A, qI | 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, ψ : clause, A : atom}. For each universally

quantified variable Pi (i.e., for i = 1, 3) we include a transition (q>i , q⊥i , 0, qi), which splits the
run into a subtree where Pi is true (q>i) and another where it is false (q⊥i). On the other hand,
for each existentially quantified variable Pi (i.e., for i = 2), we include non-deterministic
transitions (q>i , qI , 0, qi) and (q⊥i , qI , 0, qi), which choose one valuation for Pi. Each state q>i
and q⊥i has a transition incrementing the corresponding bit in the encoding: (qi+1, qI ,−c, q>i)
for c having its (i, u(i))-bit in 1, and 0’s elsewhere; and (qi+1, qI ,−c̄, q⊥i) for c̄ having its
(i,m+ u(i))-bit in 1, and 0’s elsewhere. Finally, B checks for the satisfaction of both clauses
by splitting the computation through the transition (sP1∨¬P2∨P3 , s¬P1∨P2 , 0, q4). For each
clause, B chooses the atom which will witness its satisfaction, with transitions (r1

A, qI , 0, sψ)
for every disjunctive clause ψ of ϕ and atom A of ψ (e.g., for ψ = ¬P1 ∨ P2 and A = ¬P1).
Finally, the job of r1

A is to decrement the (i,m)-bit for verifying that Pi holds true, or the
(i, 2m)-bit otherwise. However, this choice between the (i,m)- and the (i, 2m)-bit must be
consistent with the choice of the atom A (e.g., if A = ¬P2 then we must verify that P2 is
false and thus we shouldn’t allow the decrement of the (i,m)-bit). Concretely, we include a
transition (ri+1

A , qI , ci,m, r
i
A) if and only if A is not ¬Pi; and we include (ri+1

A , qI , ci,2m, r
i
A)

iff A is not Pi. Finally, the initial states I is defined as all states r4
A for an atom A, as well

as qI .
Figure 2 contains a depiction of a complete run witnessing the validity of ϕ. J

6 Conclusion

An interesting next question is the complexity of the reachability problem for two-dimensional
BVASS, which we conjecture decidable. One approach to establishing decidability could be
by generalising the classical algorithm of Hopcroft and Pansiot for two-dimensional VASS [12].
To determine the precise complexity, investigating branching extensions of the flatness notion
(cf. [18, 3]) and the cutting technique (cf. [9]) seem like promising directions.

References
1 Sergio Abriola, Diego Figueira, and Santiago Figueira. Logics of repeating values on data

trees and branching counter systems. In FoSSACS, volume 10203 of LNCS. Springer, 2017,
to appear.

D. Figueira, R. Lazić, J. Leroux, F. Mazowiecki, and G. Sutre 119:13

2 Katalin Bimbó. The decidability of the intensional fragment of classical linear logic. Theor.
Comput. Sci., 597:1–17, 2015. doi:10.1016/j.tcs.2015.06.019.

3 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie.
Reachability in two-dimensional vector addition systems with states is PSPACE-complete.
In LICS, pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14.

4 Mikołaj Bojańczyk. Automata column. SIGLOG News, 1(2):3–12, 2014. doi:10.1145/
2677161.2677163.

5 Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. ACM
Trans. Program. Lang. Syst., 35(3):10:1–10:49, 2013. doi:10.1145/2518188.

6 Lorenzo Clemente, Sławomir Lasota, Ranko Lazić, and Filip Mazowiecki. Timed pushdown
automata and branching vector addition systems. Submitted, 2017.

7 Conrad Cotton-Barratt, Andrzej S. Murawski, and C.-H. Luke Ong. ML and extended
BVASS. In ESOP, 2017. To appear.

8 Philippe de Groote, Bruno Guillaume, and Sylvain Salvati. Vector addition tree automata.
In LICS, pages 64–73. IEEE Computer Society, 2004. doi:10.1109/LICS.2004.1319601.

9 Matthias Englert, Ranko Lazić, and Patrick Totzke. Reachability in two-dimensional unary
vector addition systems with states is NL-complete. In LICS, pages 477–484. ACM, 2016.
doi:10.1145/2933575.2933577.

10 Stefan Göller, Christoph Haase, Ranko Lazić, and Patrick Totzke. A polynomial-time
algorithm for reachability in branching VASS in dimension one. In ICALP, volume 55 of
LIPIcs, pages 105:1–105:13. Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.ICALP.2016.
105.

11 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In CONCUR, volume 5710 of LNCS, pages
369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

12 John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/
0304-3975(79)90041-0.

13 Florent Jacquemard, Luc Segoufin, and Jerémie Dimino. FO2(<, +1, ~) on data trees, data
tree automata and branching vector addition systems. Log. Meth. Comput. Sci., 12(2), 2016.
doi:10.2168/LMCS-12(2:3)2016.

14 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary ver-
sion). In STOC, pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

15 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for AC-like equa-
tional theories with homomorphisms. Research Report LSV-04-16, ENS de Cachan, 2004.

16 Ranko Lazić and Sylvain Schmitz. Nonelementary complexities for branching VASS, MELL,
and extensions. ACM Trans. Comput. Log., 16(3):20:1–20:30, 2015. doi:10.1145/2733375.

17 Jérôme Leroux and Sylvain Schmitz. Ideal decompositions for vector addition systems
(invited talk). In STACS, volume 47 of LIPIcs, pages 1:1–1:13. Schloss Dagstuhl, 2016.
doi:10.4230/LIPIcs.STACS.2016.1.

18 Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems
with states. In CONCUR, volume 3170 of LNCS, pages 402–416. Springer, 2004. doi:
10.1007/978-3-540-28644-8_26.

19 Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan Shankar. Decision
problems for propositional linear logic. Ann. Pure Appl. Logic, 56(1-3):239–311, 1992.
doi:10.1016/0168-0072(92)90075-B.

20 Owen Rambow. Multiset-valued linear index grammars: Imposing dominance constraints
on derivations. In ACL, pages 263–270. Morgan Kaufmann Publishers / ACL, 1994. URL:
http://aclweb.org/anthology/P/P94/P94-1036.pdf.

ICALP 2017

http://dx.doi.org/10.1016/j.tcs.2015.06.019
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1145/2677161.2677163
http://dx.doi.org/10.1145/2677161.2677163
http://dx.doi.org/10.1145/2518188
http://dx.doi.org/10.1109/LICS.2004.1319601
http://dx.doi.org/10.1145/2933575.2933577
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.105
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.105
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.2168/LMCS-12(2:3)2016
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.1
http://dx.doi.org/10.1007/978-3-540-28644-8_26
http://dx.doi.org/10.1007/978-3-540-28644-8_26
http://dx.doi.org/10.1016/0168-0072(92)90075-B
http://aclweb.org/anthology/P/P94/P94-1036.pdf

119:14 Reachability for Succinct 1BVASS

21 Wolfgang Reisig. Understanding Petri Nets – Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013. doi:10.1007/978-3-642-33278-4.

22 Sylvain Schmitz. On the computational complexity of dominance links in grammatical
formalisms. In ACL, pages 514–524. The Association for Computer Linguistics, 2010. URL:
http://www.aclweb.org/anthology/P10-1053.

23 Sylvain Schmitz. The complexity of reachability in vector addition systems. SIGLOG News,
3(1):4–21, 2016. doi:10.1145/2893582.2893585.

24 Leslie G. Valiant and Mike Paterson. Deterministic one-counter automata. J. Comput.
Syst. Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

25 Kumar Neeraj Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching
extension of VASS. Discr. Math. & Theor. Comput. Sci., 7(1):217–230, 2005. URL:
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html.

http://dx.doi.org/10.1007/978-3-642-33278-4
http://www.aclweb.org/anthology/P10-1053
http://dx.doi.org/10.1145/2893582.2893585
http://dx.doi.org/10.1016/S0022-0000(75)80005-5
http://www.dmtcs.org/volumes/abstracts/dm070113.abs.html

Satisfiability and Model Checking for the Logic of
Sub-Intervals under the Homogeneity
Assumption∗†

Laura Bozzelli1, Alberto Molinari2, Angelo Montanari3,
Adriano Peron4, and Pietro Sala5

1 University of Napoli “Federico II”, Napoli, Italy
lr.bozzelli@gmail.com

2 University of Udine, Udine, Italy
molinari.alberto@gmail.com

3 University of Udine, Udine, Italy
angelo.montanari@uniud.it

4 University of Napoli “Federico II”, Napoli, Italy
adrperon@unina.it

5 University of Verona, Verona, Italy
pietro.sala@univr.it

Abstract
In this paper, we investigate the finite satisfiability and model checking problems for the logic
D of the sub-interval relation under the homogeneity assumption, that constrains a proposition
letter to hold over an interval if and only if it holds over all its points. First, we prove that the
satisfiability problem for D, over finite linear orders, is PSPACE-complete; then, we show that
its model checking problem, over finite Kripke structures, is PSPACE-complete as well.

1998 ACM Subject Classification F.4.1 Mathematical Logic, D.2.4 Software/Program Verifica-
tion

Keywords and phrases Interval Temporal Logic, Satisfiability, Model Checking, Decidability,
Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.120

1 Introduction

For a long time, interval temporal logic (ITL) was considered as an attractive, but impractical,
alternative to standard point-based ones. On the one hand, as pointed out, among others,
by Kamp and Reyle [9], “truth, as it pertains to language in the way we use it, relates
sentences not to instants but to temporal intervals”, and thus ITL is a natural choice for
a specification/representation language; on the other hand, the high undecidability of the
satisfiability problem for the most well-known ITLs, such as Halpern and Shoham’s HS [7]
and Venema’s CDT [18], prevented an extensive use of them (in fact, some very restricted
variants of them have been successfully applied in formal verification and AI over the years).

∗ Full version available at http://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/4.
2017/ [3].

† The work by Alberto Molinari, Angelo Montanari, and Pietro Sala has been supported by the GNCS
project Logic and Automata for Interval Model Checking.

EA
T

C
S

© Laura Bozzelli, Alberto Molinari, Angelo Montanari, Adriano Peron, and Pietro Sala;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 120; pp. 120:1–120:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.120
http://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/4.2017/
http://www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/4.2017/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

120:2 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

The recent discovery of a significant number of expressive enough and computationally
well-behaved ITLs changed the landscape a lot [6, 13]. Among them, the logic AA of
temporal neighborhood [5] and the logic D of (temporal) sub-intervals [4] have a central
position. In this paper, we focus on the latter one. D features one modality only, which
corresponds to the Allen relation during [1]. Since any sub-interval can be defined as an
initial sub-interval of an ending one, or, equivalently, as an ending sub-interval of an initial
one, it is a (proper) fragment of the logic BE of Allen’s relations started-by and finished-by.
From a computational point of view, D is a real character: its satisfiability problem is
PSPACE-complete over the class of dense linear orders [4, 16] (the problem is undecidable
for BE [10]), it becomes undecidable when the logic is interpreted over the classes of finite
and discrete linear orders [11], and it is still unknown over the class of all linear orders. As for
its expressiveness, unlike AA– which is expressively complete with respect to the two-variable
fragment of first-order logic for binary relational structures over various linearly-ordered
domains [5, 15] – three variables are needed to encode D in first-order logic (the two-variable
property is a sufficient condition for decidability, but it is not a necessary one).

In this paper, we show that the decidability of the satisfiability problem for D over the
class of finite linear orders can be recovered under the homogeneity assumption (such an
assumption constrains a proposition letter to hold over an interval if and only if it holds
over all its points). We first prove that the problem belongs to PSPACE by exploiting a
suitable contraction method. In addition, we prove that the proposed satisfiability checking
algorithm can be turned into a PSPACE model checking procedure for D formulas over
finite Kripke structures (under the homogeneity assumption); PSPACE-hardness of both
problems follows via a reduction from the language universality problem of nondeterministic
finite-state automata. PSPACE-completeness of D model checking strongly contrasts with
the case of BE, for which only a nonelementary model checking procedure is known [12] and
an EXPSPACE-hardness result has been given [2].

The rest of the paper is organized as follows. In Section 2, we provide some background
knowledge. Then, in Section 3, we prove the PSPACE membership of the satisfiability
problem for D over finite linear orders (under the homogeneity assumption). Finally, in
Section 4, we show that the model checking problem for D over finite Kripke structures
(again, under the homogeneity assumption) is in PSPACE as well.

All the proofs – here omitted because of lack of space – can be found in [3].

2 The logic D of the sub-interval relation

Let S = 〈S,<〉 be a linear order. An interval over S is an ordered pair [x, y], where x ≤ y. We
denote the set of all intervals over S by I(S). We consider three possible sub-interval relations:
(i) the reflexive sub-interval relation (denoted as v), defined by [x, y] v [x′, y′] iff x′ ≤ x

and y ≤ y′, (ii) the proper (or irreflexive) sub-interval relation (denoted as @), defined by
[x, y] @ [x′, y′] iff [x, y] v [x′, y′] and [x, y] 6= [x′, y′], and (iii) the strict sub-interval relation
(denoted as @·), defined by [x, y]@· [x′, y′] iff x′ < x and y < y′.

The three modal logics Dv, D@, and D@· feature the same language, consisting of a set
AP of proposition letters/variables, the logical connectives ¬ and ∨, and the modal operator
〈D〉. Formally, formulae are defined by the grammar: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈D〉ϕ, with
p ∈ AP . The other connectives, as well as the logical constants > (true) and ⊥ (false), are
defined as usual; moreover, the dual universal modal operator [D]ϕ is defined as ¬〈D〉¬ϕ.
The length of a formula ϕ, denoted as |ϕ|, is the number of sub-formulas of ϕ.

The semantics of D@· , D@, and Dv only differ in the interpretation of the 〈D〉 operator.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:3

For the sake of brevity, we use ◦ ∈ {@· ,@,v} as a shorthand for any of the three sub-interval
relations. The semantics of a sub-interval logic D◦ is defined in terms of interval models
M = 〈I(S), ◦,V〉. The valuation function V : AP 7→ 2I(S) assigns to every proposition variable
p the set of intervals V(p) over which p holds. The satisfiability relation |= is defined as:

for every proposition letter p ∈ AP , M, [x, y] |= p iff [x, y] ∈ V(p);
M, [x, y] |= ¬ψ iff M, [x, y] 6|= ψ (i.e., it is not true that M, [x, y] |= ψ);
M, [x, y] |= ψ1 ∨ ψ2 iff M, [x, y] |= ψ1 or M, [x, y] |= ψ2;
M, [x, y] |=〈D〉ψ iff there is an interval [x′, y′] ∈ I(S) s.t. [x′, y′]◦[x, y] and M, [x′, y′] |=ψ.

A D◦-formula is D◦-satisfiable if it holds over some interval of an interval model and it is
D◦-valid if it holds over every interval of every interval model.

In this paper, we restrict our attention to the finite satisfiability problem, that is,
satisfiability over the class of finite linear orders. The problem has been shown to be
undecidable for D@ and D@· [11] and decidable for Dv [14]. In the following, we show that
decidability can be recovered for D@ and D@· by restricting to the class of homogeneous
interval models. We fully work out the case of D@ (for the sake of simplicity, we will write D
for D@), and then we briefly explain how to adapt the proofs to D@· .

I Definition 1. A model M = 〈I(S), ◦,V〉 is homogeneous if, for every interval [x, y] ∈ I(S)
and every p ∈ AP , it holds that [x, y] ∈ V(p) iff [x′, x′] ∈ V(p) for every x ≤ x′ ≤ y.

Hereafter, we will refer to the logic D interpreted over homogeneous models as D|Hom.

2.1 A spatial representation of interval models
We now introduce some basic definitions and notation which will be extensively used in the
following. Given a D-formula ϕ, we define the closure of ϕ, denoted by CL(ϕ), as the set of
all sub-formulas ψ of ϕ and of their negations ¬ψ (we identify ¬¬ψ with ψ).

I Definition 2. Given a D-formula ϕ, a ϕ-atom A is a subset of CL(ϕ) such that: (i) for
every ψ ∈ CL(ϕ), ψ ∈ A iff ¬ψ 6∈ A, and (ii) for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A iff
ψ1 ∈ A or ψ2 ∈ A.

The idea underlying atoms is to enforce a “local” (or Boolean) form of consistency among
the formulas it contains, that is, a ϕ-atom A is a maximal, locally consistent subset of CL(ϕ).
As an example, ¬(ψ1 ∨ ψ2) ∈ A iff ¬ψ1 ∈ A and ¬ψ2 ∈ A. However, note that the definition
does not set any constraint on 〈D〉ψ formulas, hence the word “local”. We denote the set of
all ϕ-atoms as Aϕ; its cardinality is clearly bounded by 2|ϕ| (by point (i) of Definition 2).
Atoms are connected by the following binary relation Dϕ.

I Definition 3. Let Dϕ be a binary relation over Aϕ such that, for each pair of atoms
A,A′ ∈ Aϕ, A Dϕ A

′ holds iff both ψ ∈ A′ and [D]ψ ∈ A′ for each formula [D]ψ ∈ A.

Let A be a ϕ-atom. We denote by ReqD(A) the set {ψ ∈ CL(ϕ) : 〈D〉ψ ∈ A} of “temporal
requests” of A. In particular, if ψ /∈ ReqD(A), then [D]¬ψ ∈ A (by the definition of ϕ-atom).
Moreover, we denote by REQϕ the set of all arguments of 〈D〉-formulas in CL(ϕ), namely,
REQϕ = {ψ : 〈D〉ψ ∈ CL(ϕ)}. Finally, we denote by ObsD(A) the set {ψ ∈ A : ψ ∈ REQϕ}
of observables of A. It is easy to prove by induction the next proposition, stating that, once
the proposition letters of A and its temporal requests have been fixed, A gets unambiguously
determined.

I Proposition 4. For any D-formula ϕ, given a set R ⊆ REQϕ and a set P ⊆ CL(ϕ) ∩ AP ,
there exists a unique ϕ-atom A that satisfies ReqD(A) = R and A ∩ AP = P .

ICALP 2017

120:4 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

(x0, y0)
(x3, y3)

(x1, y1)

(x2, y2)
[x0, y0]

[x3, y3]

[x1, y1]
[x2, y2]

Figure 1 Correspondence between intervals and points of the compass structure.

We now provide a natural interpretation of D over grid-like structures, called compass
structures, by exploiting the existence of a natural bijection between intervals [x, y] and
points (x, y), with x ≤ y, of an S × S grid, where S = 〈S,<〉 is a finite linear order. Such an
interpretation was originally proposed by Venema in [17], and it can also be given for HS
and all its (other) fragments.

As an example, Figure 1 shows four intervals [x0, y0], . . . , [x3, y3], respectively represented
by the points in the grid (x0, y0), . . . , (x3, y3), such that: (i) [x0, y0], [x1, y1], [x2, y2] @ [x3, y3],
(ii) [x1, y1]@· [x3, y3], and (iii) [x0, y0], [x2, y2] 6@· [x3, y3]. The red region highlighted in Figure 1
contains all and only the points (x, y) such that [x, y] @ [x3, y3]. Allen interval relation
contains can thus be represented as a spatial relation between pairs of points. In the following,
we make use of @ also for relating points, i.e., given two points (x, y), (x′, y′) of the grid,
(x′, y′) @ (x, y) iff (x′, y′) 6= (x, y) and x ≤ x′ ≤ y′ ≤ y. Compass structures, repeatedly
exploited to establish the following complexity results, can be formally defined as follows.

I Definition 5. Given a finite linear order S = 〈S,<〉 and a D-formula ϕ, a compass ϕ-
structure is a pair G = (PS,L), where PS is the set of points of the form (x, y), with x, y ∈ S
and x ≤ y, and L is a function that maps any point (x, y) ∈ PS to a ϕ-atom L(x, y) in
such a way that for all pairs of points (x, y) 6= (x′, y′) ∈ PS , if x ≤ x′ ≤ y′ ≤ y, then
L(x, y) Dϕ L(x′, y′) (temporal consistency).

Due to temporal consistency, the following important property holds in compass structures.

I Lemma 6. Given a compass ϕ-structure G=(PS,L), for all pairs of points (x′, y′),(x, y)∈PS,
if (x′, y′)@(x, y), then ReqD(L(x′, y′))⊆ReqD(L(x, y)) and ObsD(L(x′, y′))⊆ReqD(L(x, y)).

Fulfilling compass structures are defined as follows.

I Definition 7. A compass ϕ-structure G = (PS,L) is said to be fulfilling if, for every point
(x, y) ∈ PS and each formula ψ ∈ ReqD(L(x, y)), there exists a point (x′, y′) @ (x, y) in PS
such that ψ ∈ L(x′, y′).

Note that if G is fulfilling, then ReqD(L(x, x)) = ∅ for all points “on the diagonal” (x, x) ∈ PS.
We say that a compass ϕ-structure G = (PS,L) features a formula ψ if there exists a

point (x, y) ∈ PS such that ψ ∈ L(x, y). The following result holds.

I Proposition 8. A D-formula ϕ is satisfiable iff there is a fulfilling compass ϕ-structure
that features it.

In a fulfilling compass ϕ-structure G = (PS,L), where S = {0, . . . , t}, w.l.o.g., we will
sometimes assume ϕ to be satisfied by the maximal interval [0, t], that is, ϕ ∈ L(0, t).

The notion of homogeneous models directly transfers to compass structures.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:5

I Definition 9. A compass ϕ-structure G = (PS,L) is homogeneous if, for every point
(x, y) ∈ PS and each p ∈ AP , we have that p ∈ L(x, y) iff p ∈ L(x′, x′) for all x ≤ x′ ≤ y.

Proposition 8 can be tailored to homogeneous compass structures as follows.

I Proposition 10. A D|Hom-formula ϕ is satisfiable iff there is a fulfilling homogeneous
compass ϕ-structure that features it.

3 Satisfiability of D|Hom over finite linear orders

In this section, we devise a satisfiability checking procedure for D|Hom-formulas over finite
linear orders, which will also allow us to easily derive a model checking algorithm for D|Hom
over finite Kripke structures. To start with, we show that there is a ternary relation between
ϕ-atoms, that we denote by Dϕ , such that if it holds among all atoms in consecutive
positions of a compass ϕ-structure, then the structure is fulfilling. Hence, we may say that
Dϕ is the rule for labeling fulfilling compasses. Next, we introduce an equivalence relation
∼ between rows of a compass ϕ-structure. Since it has finite index – exponentially bounded
by |ϕ| – and it preserves fulfillment of compasses, it is intuitively possible to “contract” the
structures when we can find two related rows. Moreover, any contraction done according
to ∼ keeps the same atoms (only the number of their occurrences may vary), and thus if
a compass features ϕ before the contraction, then ϕ is still featured after it. This fact is
exploited to build a satisfiability algorithm for D|Hom-formulas which makes use of polynomial
working space only, because (i) it only needs to keep track of two rows of a compass at a
time, (ii) all rows satisfy some nice properties that make it possible to succinctly encode
them, and (iii) compass contractions are implicitly performed by means of a reachability
check in a suitable graph, whose nodes are the equivalence classes of ∼.

Let us now introduce the aforementioned ternary relation Dϕ among atoms.

I Definition 11. Given three ϕ-atoms A1, A2 and A3, we say that A3 is Dϕ-generated
by A1, A2 (written A1A2 Dϕ A3) if: (i) A3 ∩ AP = A1 ∩ A2 ∩ AP and (ii) ReqD(A3) =
ReqD(A1) ∪ReqD(A2) ∪ ObsD(A1) ∪ ObsD(A2).

It is immediate to check that A1A2 Dϕ A3 iff A2A1 Dϕ A3, that is, the order of the
first two components in the ternary relation is irrelevant. The next result, following from
Proposition 4, proves that Dϕ expresses a functional dependency on ϕ-atoms.

I Lemma 12. Given two ϕ-atoms A1, A2 ∈ Aϕ, there exists exactly one ϕ-atom A3 ∈ Aϕ
such that A1A2 Dϕ A3.

Definition 11 and Lemma 12 can be exploited to label a homogeneous compass ϕ-structure
G, namely, to determine the ϕ-atoms labeling all the points (x, y) of G, starting from the
ones on the diagonal. The idea is the following: if two ϕ-atoms A1 and A2 label respectively
the greatest proper prefix [x, y − 1], that is, the point (x, y − 1), and the greatest proper
suffix [x + 1, y], that is, (x + 1, y), of the same interval [x, y], then the atom A3 labeling
[x, y] is unique, and it is precisely the one satisfying A1A2 Dϕ A3 (see Figure 2). The next
lemma proves that this is the general rule for labeling fulfilling homogeneous compasses.

I Lemma 13. Let G = (PS,L). G is a fulfilling homogeneous compass ϕ-structure iff,
for every pair x, y ∈ S, we have: (i) L(x, y − 1)L(x + 1, y) Dϕ L(x, y) if x < y, and
(ii) ReqD(L(x, y)) = ∅ if x = y.

ICALP 2017

120:6 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

(x, y) (x+1, y)

(x, y−1)

x x+1

y

y−1 rowy−1

rowy

Figure 2 Rule for labeling homogeneous fulfilling compass ϕ-structures.

Now we introduce the concept of ϕ-row, which can be viewed as the ordered sequence of
(the occurrences of) atoms labelling a row of a compass ϕ-structure. Given an atom A ∈ Aϕ,
we call it reflexive if A Dϕ A, irreflexive otherwise.

I Definition 14. A ϕ-row is a finite sequence of ϕ-atoms row = Am0
0 · · ·Amn

n , where Am
stands for m repetitions of A, such that for each 0 ≤ i ≤ n, we have that mi > 0 – if
mi > 1, then Ai is reflexive – and for each 0 ≤ j < i, it holds that Ai Dϕ Aj , Ai 6= Aj , and
(Aj ∩ AP) ⊇ (Ai ∩ AP). Moreover, ReqD(A0) = ∅.

The length of a ϕ-row row = Am0
0 · · ·Amn

n is defined as |row| =
∑

0≤i≤nmi, and for
each 0 ≤ j < |row|, the j-th element, denoted by row[j], is the j-th symbol in the word
Am0

0 · · ·Amn
n , e.g., row[0] = A0, row[m0] = A1, We denote by Rowsϕ the set of all

possible ϕ-rows. This set may be infinite.
The number of distinct atoms in any ϕ-row is bounded. Since for each 0 ≤ i ≤ n

and each 0 ≤ j < i, Ai Dϕ Aj , it holds that ReqD(Aj) ⊆ ReqD(Ai). Therefore, two
monotonic sequences for every ϕ-row can be considered, one increasing, i.e., ∅ = ReqD(A0) ⊆
ReqD(A1) ⊆ . . . ⊆ ReqD(An), and one decreasing, i.e., (A0 ∩ AP) ⊇ (A1 ∩ AP) ⊇ . . . ⊇
(An ∩AP). The number of distinct elements is bounded by |ϕ| in the former sequence and by
|ϕ|+ 1 in the latter (as |REQϕ | ≤ |ϕ| − 1 and |AP | ≤ |ϕ|–w.l.o.g., we can consider only the
letters actually occurring in ϕ). Since, as already shown (Proposition 4), a set of requests
and a set of proposition letters uniquely determine a ϕ-atom, any ϕ-row may feature at most
2|ϕ| distinct atoms, i.e., n < 2|ϕ|.

Given a homogeneous compass ϕ-structure G = (PS,L), for every y ∈ S, we define rowy
as the word of ϕ-atoms rowy = L(y, y) · · · L(0, y), i.e., the sequence of atoms labeling points
of G with the same y-coordinate, starting from the one on the diagonal inwards (see Figure 2).

I Lemma 15. Let G = (PS,L) be a fulfilling homogeneous compass ϕ-structure. For every
y ∈ S, rowy is a ϕ-row.

We now define the successor relation between pairs of ϕ-rows, denoted as rowϕ , which
is basically a component-wise application of Dϕ over the elements of two ϕ-rows (remember
that atoms on rows are collected from right to left).

I Definition 16. Given two ϕ-rows row and row′, we say that row′ is a successor of row, or
row rowϕ row′, if |row′| = |row|+1, and for all 0 ≤ i < |row|, row[i]row′[i] Dϕ row′[i+1].

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:7

row1 Ai . . . ↑k . . . Ai

B′B′′. . .B′′′. . .B′′′

=

row2

mi

starti positions

rank(Ai) ≥ rank(B′) > rank(B′′) > . . . > rank(B′′′)

B′ = row2[starti + 1]

Figure 3 A graphical account of the proof of Lemma 18.

The next lemma states that consecutive rows in homogeneous fulfilling compass ϕ-
structures respect the successor relation.

I Lemma 17. Let G = (PS,L), with ReqD(L(x, x)) = ∅ for all (x, x) ∈ PS. G is a fulfilling
homogeneous compass ϕ-structure iff, for each 0 ≤ y < |S| − 1, rowy rowϕ rowy+1.

Given an atom A ∈ Aϕ, we define the rank of A, written rank(A), as |REQϕ |−|ReqD(A)|.
Clearly, rank(A) < |ϕ|. Whenever A Dϕ A′, for some A′ ∈ Aϕ, ReqD(A′) ⊆ ReqD(A),
and hence rank(A) ≤ rank(A′) and |ReqD(A) \ ReqD(A′)| ≤ rank(A′). We can see the
rank of an atom as the “number of degrees of freedom” that it gives to the atoms that
stay “above it”. In particular, by definition, for every ϕ-row row = Am0

0 · · ·Amn
n , we have

rank(A0) ≥ . . . ≥ rank(An). The next result uses the notion of rank to provide an insight
on how consecutive ϕ-rows are connected (see Figure 3).

I Lemma 18. Let row1, row2 be two ϕ-rows, with row1 =Am0
0 · · ·Amn

n and row1 rowϕ row2.
For each 0 ≤ i ≤ n, let starti =

∑
0≤j<imj. If mi > rank(Ai), then there exists starti <

k ≤ starti +mi such that: (i) row2[k] is reflexive; (ii) rank(row2[j]) > rank(row2[j + 1])
for each starti < j < k; (iii) row2[j] = row2[j + 1] for each k ≤ j < starti +mi; (iv) if m′
is the exponent of the atom row2[k], then m′ > rank(row2[k]).

Proof. If mi = 1, by hypothesis we have rank(Ai) = 0. Hence, rank(row2[starti + 1]) = 0,
because row1 rowϕ row2, and thus row2[starti + 1] is (trivially) reflexive. All claims hold
by choosing k = starti + 1.

Let us then assume mi > 1. First, we prove that for each starti < j ≤ starti + mi,
if row2[j] is reflexive, then for each j ≤ j′ ≤ starti + mi, row2[j′] = row2[j]. If j =
starti + mi there is nothing to prove. Thus, let us consider j < starti + mi. Since
we are assuming that row2[j] is reflexive, then ObsD(row2[j]) ⊆ ReqD(row2[j]). Since
row1 rowϕ row2, we have that ReqD(Ai),ObsD(Ai) ⊆ ReqD(row2[j]), and ReqD(row2[j +
1]) = ReqD(row2[j]) ∪ ObsD(row2[j]) ∪ReqD(Ai) ∪ ObsD(Ai) = ReqD(row2[j]). Moreover,
again from row1 rowϕ row2, we have that row2[j] ∩ AP = row2[j − 1] ∩ Ai ∩ AP and
row2[j + 1] ∩ AP = row2[j] ∩ Ai ∩ AP = row2[j − 1] ∩ Ai ∩ AP . Thus, row2[j + 1] =
row2[j], because the two atoms feature exactly the same requests and proposition letters
(Proposition 4). Then, since Ai row2[j] Dϕ row2[j + 1], by iterating the reasoning and
exploiting Lemma 12 we can conclude that row2[j] = row2[j′] for each j ≤ j′ ≤ starti +mi.

Now, it can be easily shown that if we have two atoms A and A′ such that A Dϕ A
′ and

A′ is irreflexive, then rank(A) < rank(A′), and we have just proved that we cannot interleave
reflexive atoms with irreflexive ones “above” the Ai’s (all irreflexive atoms must “come before”
reflexive ones in the part of row2 “above” the Ai’s). Thus, in the worst possible case, the atoms
row2[starti + 1], . . . , row2[starti + rank(Ai)] may be irreflexive (as rank(row2[starti + 1]) >
. . . > rank(row2[starti + rank(Ai)]) and rank(Ai) ≥ rank(row2[starti + 1])). Note that
these irreflexive atoms may be the “first” rank(Ai) atoms above the Ai’s only, and not the

ICALP 2017

120:8 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

“first” rank(Ai) + 1, since any atom with rank equal to 0 is reflexive. We conclude that
row2[starti+rank(Ai)+1] must be reflexive. Thus, we can choose k = starti+rank(Ai)+1.
Since by hypothesis mi ≥ rank(Ai) + 1, we get that starti < k ≤ starti +mi.

As for the last claim, we have that rank(row2[k]) ≤ rank(row2[starti + 1]) − (k −
starti − 1) ≤ rank(Ai) − (k − starti − 1). Then, the exponent m′ of row2[k] is such that
m′ ≥ mi − (rank(Ai) − rank(row2[k])), that is, at least mi − (rank(Ai) − rank(row2[k]))
atoms labelled by row2[k] occur in the block starti+1, . . . , starti+mi of row2 (see Figure 3).
Since by hypothesis mi > rank(Ai), then mi − rank(Ai) > 0 and rank(row2[k]) < m′. J

Now we introduce an equivalence relation ∼ over Rowsϕ which is the key ingredient of
the proofs showing that both satisfiability and MC for D|Hom-formulas are decidable.

I Definition 19. Given two ϕ-rows row1 = Am0
0 · · ·Amn

n and row2 = Âm̂0
0 · · · Âm̂n̂

n̂ , we say
that they are equivalent, written row1 ∼ row2, if (i) n = n̂, and (ii) for each 0 ≤ i ≤ n,
Ai = Âi, and mi = m̂i or both mi and m̂i are (strictly) greater than rank(Ai).

Note that if two rows feature the same set of atoms, the lower the rank of an atom Ai, the
lower the number of occurrences of Ai both the rows have to feature in order to belong to the
same equivalence class. As an example, let row1 and row2 be two rows with row1 = Am0

0 Am1
1 ,

row2 = Am0
0 Am1

1 , rank(A0) = 4, and rank(A1) = 3. If m1 = 4 and m1 = 5 they are both
greater than rank(A1), and hence they do not violate the condition for row1 ∼ row2. On
the other hand, if m0 = 4 and m0 = 5, we have that m0 is less than or equal to rank(A0).
Thus, in this case, row1 6∼ row2 due to the indexes of A0. This happens because rank(A0)
is greater than rank(A1). Two cases in which row1 ∼ row2 are m0 = m0 and m0,m0 ≥ 5.

The relation ∼ has finite index, which is roughly bounded by the number of all the
possible ϕ-rows row = Am0

0 · · ·Amn
n , with exponents mi ranging from 1 to |ϕ|. Since (i) the

number of possible atoms is 2|ϕ|, (ii) the number of distinct atoms in any ϕ-row is at most
2|ϕ|, and (iii) the number of possible functions f : {1, . . . , `} → {1, . . . , |ϕ|} is |ϕ|`, we have
that the number of distinct equivalence classes of ∼ is bounded by

2|ϕ|∑
j=1

(2|ϕ|)j · |ϕ|j ≤ 23|ϕ|2 ,

which is exponential in the length of the input formula ϕ. We denote the set of the equivalence
classes of ∼ over all the possible ϕ-rows by Rows∼ϕ .

Now we extend the relation rowϕ to equivalence classes of ∼ in the following way.

I Definition 20. Given two ϕ-row classes [row1]∼ and [row2]∼, we say that [row2]∼ is
a successor of [row1]∼, written [row1]∼ rowϕ [row2]∼, if there exist row′1 ∈ [row1]∼ and
row′2 ∈ [row2]∼ such that row′1 rowϕ row′2.

The following result proves that if some row′1 ∈ [row1]∼ has a successor in [row2]∼, then
every ϕ-row of [row1]∼ has a successor in [row2]∼.

I Lemma 21. Given two ϕ-row classes [row1]∼ and [row2]∼ such that [row1]∼ rowϕ [row2]∼,
for every row ∈ [row1]∼ there exists row′ ∈ [row2]∼ such that row rowϕ row′.

The proof, omitted for space reasons, begins by considering two ϕ-rows, row and row,
such that row ∈ [row1]∼, row ∈ [row2]∼, and row rowϕ row (such a pair always exists
by Definition 20). Then, we consider another ϕ-row, row′ 6= row in [row1]∼, and we show
(constructively) how to build row′ ∈ [row2]∼ such that row′ rowϕ row′. This is sufficient to

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:9

Input: a D|Hom-formula ϕ

1. Put M ← 23|ϕ|2
, step← 0 and row ← A for some atom A ∈ Aϕ with ReqD(A) = ∅.

2. If there exists 0 ≤ i < |row| such that ϕ ∈ row[i], return satisfiable.
3. If step = M − 1, return unsatisfiable.
4. Non-deterministically generate a ϕ-row row′ and check that row rowϕ row′.
5. Put step← step+ 1 and row ← row′.
6. Go back to 2.

Figure 4 Non-deterministic procedure deciding the satisfiability of a D|Hom-formula ϕ.

prove the claim: row′ is built by making use of the facts that row′ ∼ row and row rowϕ row,
and of the properties stated by Lemma 18.

The following result arranges the equivalence classes Rows∼ϕ in a graph Gϕ∼.

I Definition 22. Let ϕ be a D|Hom-formula. The ϕ ∼graph of ϕ is the graph Gϕ∼ =
(Rows∼ϕ , rowϕ).

The next theorem reduces the problem of satisfiability checking for a D|Hom-formula ϕ
over finite linear orders (equivalent, by Proposition 10, to deciding if there is a homogeneous
fulfilling compass ϕ-structure that features ϕ) to a reachability problem in the ϕ∼graph,
allowing us to determine the computational complexity of the former problem.

I Theorem 23. Given a D|Hom-formula ϕ, there exists a homogeneous fulfilling compass
ϕ-structure G = (PS,L) that features ϕ iff there exists a path in Gϕ∼ = (Rows∼ϕ , rowϕ)
from some class [row]∼ ∈ Rows∼ϕ to some class [row′]∼ ∈ Rows∼ϕ such that (1) there exists
row1 ∈ [row]∼ with |row1| = 1, and (2) there exist row2 ∈ [row′]∼ and 0 ≤ i < |row2| such
that ϕ ∈ row2[i].

Proof. Preliminarily we observe that, in (1), if |row1| = 1, then {row1} = [row]∼; moreover,
in (2), if for row2 ∈ [row′]∼ and 0 ≤ i < |row2| we have that ϕ ∈ row2[i], then for any
row′2 ∈ [row′]∼, there is 0 ≤ i′ < |row′2| such that ϕ ∈ row′2[i′].

(⇒) Let us consider a homogeneous fulfilling compass ϕ-structure G = (PS,L) that
features ϕ. By Lemmata 15 and 17, L(0, 0) rowϕ row1 rowϕ · · · rowϕ rowmax(S). Thus
there exist two indexes 0 ≤ j ≤ max(S) and 0 ≤ i < |rowj | for which ϕ ∈ rowj [i]. By
Definition 20, we get that [L(0, 0)]∼ rowϕ [row1]∼ rowϕ · · · rowϕ [rowj]∼ is a path in
Gϕ∼; it is immediate to check that it fulfils requirements (1) and (2).

(⇐) Let us assume there exists a path [row0]∼ rowϕ · · · rowϕ [rowm]∼ in Gϕ∼ =
(Rows∼ϕ , rowϕ) for which |row0| = 1 and there exists i such that ϕ ∈ rowm[i]. By applying
repeatedly Lemma 21 we get that there exists a sequence row′0 rowϕ · · · rowϕ row′m of
ϕ-rows where row′0 = row0, for every 0 ≤ j ≤ m, row′j ∈ [rowj]∼, and there exists i′ such
that ϕ ∈ row′m[i′]. We observe that, by Definition 16, |row′j | = |row′j−1|+ 1 for 1 ≤ j ≤ m
and, since |row′0| = 1, we have |row′j | = j + 1. Let us now define G = (PS,L) where
S = {0, . . . ,m} and L(x, y) = row′y[y − x] for every 0 ≤ x ≤ y ≤ m. By Lemma 17, G is a
fulfilling homogeneous compass ϕ-structure. Finally, since ϕ ∈ row′m[i′], G features ϕ. J

The size of Gϕ∼ = (Rows∼ϕ , rowϕ) is bounded by |Rows∼ϕ |2, which is exponential in
|ϕ|. However, it is possible to (non-deterministically) perform a reachability in Gϕ∼ by using
space logarithmic in |Rows∼ϕ |2. The non-deterministic procedure of Figure 4 exploits this
fact in order to decide the satisfiability of a D|Hom-formula ϕ, by using only a working space

ICALP 2017

120:10 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

polynomial in |ϕ|: it searches for a suitable path in Gϕ∼, [row0]∼ rowϕ · · · rowϕ [rowm]∼,
where row0 = A for A ∈ Aϕ withReqD(A) = ∅, m < M , and ϕ ∈ rowm[i] for 0 ≤ i < |rowm|.
At the j-th iteration of line 4., rowj is non-deterministically generated, and it is checked
whether rowj−1 rowϕ rowj . The procedure terminates after at most M iterations, where
M is the maximum possible length of a simple path in Gϕ∼.

The working space used by the procedure is polynomial: M and step (which ranges in
[0,M−1]) can be encoded in binary with dlog2Me+1 = O(|ϕ|2) bits. At each step, we need to
keep track of two ϕ-rows at a time, the current one, row, and its successor, row′: each ϕ-row
can be represented as a sequence of at most 2|ϕ| (distinct) atoms, each one with an exponent
that, by construction, cannot exceed M . Moreover, each ϕ-atom A can be represented using
exactly |ϕ| bits (for each ψ ∈ CL(ϕ), we set a bit to 1 if ψ ∈ A, and to 0 if ¬ψ ∈ A). Hence a
ϕ-row can be encoded using 2|ϕ| · (|ϕ|+ dlog2Me+ 1) = O(|ϕ|3) bits. Finally, the condition
row rowϕ row′ can be checked by O(|ϕ|2) bits of space once we have guessed row′. This
analysis entails the following result (we recall that NPSPACE = PSPACE).

I Theorem 24. The satisfiability problem for D|Hom-formulas over finite linear orders is in
PSPACE.

We now outline which are the modifications to the previous concepts needed for proving the
decidability of satisfiability for D|Hom with the strict relation @· , in place of @. It is sufficient
to replace the definitions of Dϕ , ϕ-row and rowϕ with the following ones. For the sake
of simplicity, we introduce a dummy atom �, for which we assume ReqD(�) = ObsD(�) = ∅.

I Definition 25. Given A1, A3, A4 ∈ Aϕ and A2 ∈ Aϕ ∪ {�}, we say that A4 is Dϕ @· -
generated by A1, A2, A3, written A1, A2, A3 Dϕ@· A4 iff (i) A4 ∩ AP = A1 ∩A3 ∩ AP and
(ii) ReqD(A4) = ReqD(A1) ∪ReqD(A3) ∪ ObsD(A2).

The idea of this definition is that, if an interval [x, y], with x < y, is labeled by A4, and
the three subintervals [x, y − 1], [x+ 1, y − 1], and [x+ 1, y] by A1, A2, A3, resp., we want
A1, A2, A3 Dϕ@· A4. In particular, if x = y − 1, then A2 = � (because [x+ 1, y − 1] is not
a valid interval). Note that only [x+ 1, y− 1]@· [x, y], hence we want ObsD(A2) ⊆ ReqD(A4);
moreover, since the requests of A1 and A3 are fulfilled by a strict subinterval of [x, y], it must
be ReqD(A1) ⊆ ReqD(A4) and ReqD(A3) ⊆ ReqD(A4).

I Definition 26. A ϕ-@· -row is a finite sequence of ϕ-atoms row = Am0
0 · · ·Amn

n such that for
every 0 ≤ i ≤ n we have mi > 0, and for every 0 ≤ j < i, ReqD(Aj) ⊆ ReqD(Ai), Ai 6= Aj ,
and (Aj ∩ AP) ⊇ (Ai ∩ AP). Moreover ReqD(A0) = ∅.

I Definition 27. Given two ϕ-rows row and row′, we say that row′ is a successor of
row, denoted as row rowϕ@· row′, if |row′| = |row| + 1, and for every 0 ≤ i < |row|,
row[i]row[i− 1]row′[i] Dϕ@· row′[i+ 1], where we assume row[i− 1] = � if i = 0.

We conclude the section by stating the PSPACE-completeness of satisfiability for D|Hom
over finite linear orders (under both the strict and the proper semantic variants). The
hardness proof can be found in [3].

I Theorem 28. The satisfiability problem for D|Hom-formulas over finite linear orders is
PSPACE-complete.

4 Model checking for D|Hom over Kripke structures

In this section we focus our attention on the model checking (MC) problem for D|Hom, namely,
the problem of checking whether some behavioural properties, expressed as D|Hom-formulas,

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:11

s0
p

s1
q

Figure 5 Kripke structure K2.

are satisfied by a model of a given system. The typical models are Kripke structures, which
will now be introduced along with the semantic definition of D|Hom over them.

I Definition 29. A finite Kripke structure is a tuple K = (AP ,W,E, µ, s0), where AP is a
finite set of proposition letters, W is a finite set of states, E ⊆W ×W is a left-total relation
between states, µ : W → 2AP is a total labelling function, and s0 ∈W is the initial state.

For all s ∈W , µ(s) is the set of proposition letters that hold on s, while E is the transition
relation that describes the evolution of the system over time.

Figure 5 depicts the finite Kripke structure K2 = ({p, q}, {s0, s1}, E, µ, s0), with E =
{(s0,s0),(s0,s1),(s1,s0),(s1,s1)}, µ(s0) = {p}, and µ(s1) = {q}. The initial state s0 is
identified by a double circle.

I Definition 30. A trace ρ of a finite Kripke structure K = (AP ,W,E, µ, s0) is a finite
sequence of states s1 · · · sn, with n ≥ 1, such that (si, si+1) ∈ E for i = 1, . . . , n− 1.

For any trace ρ = s1 · · · sn, we define: (i) |ρ| = n, and for 0 ≤ i ≤ |ρ| − 1, ρ(i) = si+1;
(ii) ρ(i, j) = si+1 · · · sj+1, for 0 ≤ i ≤ j ≤ |ρ| − 1, is the subtrace of ρ bounded by i and j.
Finally, if the first state of ρ is s0 (the initial state of K), ρ is called an initial trace.

I Definition 31. The interval model Mρ = 〈I(S), ◦,V〉 induced by a trace ρ of a finite Kripke
structure K = (AP ,W,E, µ, s0) is the homogeneous interval model such that:
(i) S = {0, . . . , |ρ| − 1}, and (ii) for all x ∈ S and p ∈ AP : [x, x] ∈ V(p) iff p ∈ µ(ρ(x)).

I Definition 32. Let K be a finite Kripke structure and ψ be a D|Hom-formula. We say that
a trace ρ(i, j) of K satisfies ψ, denoted as K , ρ(i, j) |= ψ, iff Mρ, [i, j] |= ψ. Moreover, we say
that K models ψ, written K |= ψ, iff for all initial traces ρ′ of K , it holds that K , ρ′ |= ψ.
The MC problem for D|Hom over finite Kripke structures is the problem of deciding if K |= ψ.

Note that p ∈ AP holds over ρ = s1 · · · sn iff it holds over all the states s1, . . . , sn of ρ
(homogeneity assumption). Since the number of initial traces of K is infinite, MC for
D|Hom over Kripke structures is not trivially decidable. We now describe how, with a slight
modification of the previous satisfiability procedure, it is possible to derive a MC algorithm
for D|Hom-formulas ϕ over finite Kripke structures K . The idea is to consider some finite
linear orders – not all the possible ones, unlike the case of satisfiability – precisely those
corresponding to (some) initial traces of K , checking whether ¬ϕ holds over them: in such a
case we have found a counterexample, and we can conclude that K 6|= ϕ. To ensure this kind
of “satisfiability driven by the traces of K ”, we make a product between K and the previous
graph Gϕ∼, getting what we call a “(ϕ∼K)-graph”. In the following, we will also exploit the
notion of “compass structure induced by a trace ρ of K ”, which is a fulfilling homogeneous
compass ϕ-structure built from ρ and completely determined by it.

Given a finite Kripke structure K = (AP ,W,E, µ, s0) and a D|Hom-formula ϕ, we consider
the (ϕ∼K)-graph Gϕ∼K , which is basically the product of K and Gϕ∼ = (Rows∼ϕ , rowϕ),
formally defined as: Gϕ∼K = (Γ,Ξ), where:

Γ is the maximal subset of W ×Rows∼ϕ s.t.: if (s, [row]∼) ∈ Γ then µ(s) = row[0] ∩ AP ;(
(s1, [row1]∼), (s2, [row2]∼)

)
∈ Ξ iff (i)

(
(s1, [row1]∼), (s2, [row2]∼)

)
∈ Γ2, (ii) (s1, s2) ∈

E, and (iii) [row1]∼ rowϕ [row2]∼.

ICALP 2017

120:12 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

Input: a Kripke structure K = (AP ,W,E, µ, s0), a D|Hom-formula ϕ

1. Put M ← |W | · 23|ϕ|2
, step ← 0 and (s, row) ← (s0, A) for some atom A ∈ Aϕ with

ReqD(A) = ∅ and A ∩ AP = µ(s0).
2. If ϕ 6∈ row[|row| − 1], return yes.
3. If step = M − 1, return no.
4. Non-deterministically choose s′ such that (s, s′) ∈ E.
5. Non-det. generate a ϕ-row row′ and check that row′[0]∩ AP = µ(s′) and row rowϕ row′.
6. Put step← step+ 1 and (s, row)← (s′, row′).
7. Go back to 2.

Figure 6 Non-deterministic procedure deciding the existence of initial traces ρ such that K , ρ 6|= ϕ.

Note that the definition of Γ is well-given, since for all row′ ∈ [row]∼, row′[0] = row[0]. The
size of Gϕ∼K is bounded by (|W | · |Rows∼ϕ |)2.

Given a generic trace ρ of K , we define the compass ϕ-structure induced by ρ as the
fulfilling homogeneous compass ϕ-structure G(K ,ρ) = (PS,L), where S = {0, . . . , |ρ| − 1}, and
for 0 ≤ x < |ρ|, L(x, x) ∩ AP = µ(ρ(x)) and ReqD(L(x, x)) = ∅. Note that, given ρ, G(K ,ρ)
always exists and is unique: all ϕ-atoms L(x, x) “on the diagonal” are determined by the
labeling of ρ(x) (and by the absence of requests). Moreover, by Lemma 17, all the other
atoms L(x, y), for 0 ≤ x < y < |ρ|, are determined by the rowϕ relation between ϕ-rows.

The following property can easily be proved by induction.

I Proposition 33. Given a Kripke structure K , a trace ρ of K , and a D|Hom-formula ϕ, for
all 0 ≤ x ≤ y < |ρ| and for all subformulas ψ of ϕ: K , ρ(x, y) |= ψ iff ψ ∈ L(x, y) in G(K ,ρ).

We can now introduce Theorem 34, that can be regarded as a version of Theorem 23 for MC.

I Theorem 34. Given a Kripke structure K = (AP ,W,E, µ, s0) and a D|Hom-formula ϕ,
there exists an initial trace ρ of K such that K , ρ |= ϕ iff there exists a path in Gϕ∼K = (Γ,Ξ)
from some node (s0, [row]∼) ∈ Γ to some node (s, [row′]∼) ∈ Γ such that: (1) there is
row1 ∈ [row]∼ with |row1| = 1, and (2) there is row2 ∈ [row′]∼ with ϕ ∈ row2[|row2| − 1].

Now, analogously to the case of satisfiability, we can perform a reachability in Gϕ∼K ,
exploiting the previous theorem to decide whether there is an initial trace ρ of K such that
K , ρ |= ¬ϕ, for a D|Hom-formula ϕ (i.e., the complementary problem of MC K |= ϕ). The
non-deterministic procedure of Figure 6 searches for a suitable path in Gϕ∼K , (s0, [row0]∼) Ξ→
· · · Ξ→ (sm, [rowm]∼), where row0 = A ∈ Aϕ with ReqD(A) = ∅, A ∩ AP = µ(s0), m < M ,
and ¬ϕ ∈ rowm[|rowm| − 1] (i.e., ϕ 6∈ rowm[|rowm| − 1]). At the j-th iteration of lines
4./5., (sj−1, sj) ∈ E is selected, and rowj is non-deterministically generated checking that
rowj [0] ∩ AP = µ(sj) and rowj−1 rowϕ rowj .

Basically, the same observations about the working space of the procedure in Figure 4 can
be done also for this algorithm, except for the space used to encode in binary M ≤ |W | ·23|ϕ|2

and step, ranging in [0,M − 1], which is O(log |W |+ |ϕ|2) bits. Moreover we need to store
two states, s and s′ of K , that need O(log |W |) bits to be represented.

I Theorem 35. The MC problem for D|Hom-formulas over finite Kripke structures is
PSPACE-complete. Moreover, for constant-length formulas, it is NLOGSPACE-complete.

Proof. Membership is immediate by the previous space analysis, and the fact that the com-
plexity classes NPSPACE = PSPACE and NLOGSPACE are closed under complement.

L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala 120:13

As for the PSPACE-hardness, we make a reduction from the PSPACE-complete
problem of universality of the language of an NFA [8]. The full proof can be found in [3].
For the NLOGSPACE-hardness, there exists a trivial reduction from the problem of
(non-)reachability of two nodes in a directed graph. J

Finally, it is possible to adapt the procedure also for strict D|Hom (by exploiting Defini-
tions 25–27).

5 Conclusions

In this paper, we have shown that both satisfiability and model checking for the logic D
of sub-intervals – over finite linear orders and finite Kripke structures, respectively – are
PSPACE-complete, under the homogeneity assumption. We are investigating the possibility
of generalizing the given procedures to cope with the logic BE: nothing is known about its
satisfiability, while a large gap separates known upper and lower bounds for model checking.

Acknowledgements. We sincerely thank an anonymous reviewer for his/her thorough
review and valuable comments, which significantly contributed to improving the quality of
the publication – in particular for spotting a problem with the hardness proof of satisfiability
in the submitted paper, and suggesting a possible solution.

References
1 J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,

26(11):832–843, 1983. doi:10.1145/182.358434.
2 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval temporal lo-

gic model checking: The border between good and bad HS fragments. In Proceed-
ings of the 8th International Joint Conference (IJCAR), pages 389–405, 2016. doi:
10.1007/978-3-319-40229-1_27.

3 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Satisfiability and model
checking for the logic of sub-intervals under the homogeneity assumption. Technical report,
University of Udine, Italy, 2017. URL: www.dimi.uniud.it/la-ricerca/pubblicazioni/
preprints/4.2017/.

4 D. Bresolin, V. Goranko, A. Montanari, and P. Sala. Tableaux for logics of subinterval
structures over dense orderings. Journal of Logic and Computation, 20(1):133–166, 2010.
doi:10.1093/logcom/exn063.

5 D. Bresolin, V. Goranko, A. Montanari, and G. Sciavicco. Propositional interval neighbor-
hood logics: Expressiveness, decidability, and undecidable extensions. Annals of Pure and
Applied Logic, 161(3):289–304, 2009. doi:10.1016/j.apal.2009.07.003.

6 D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco. Interval temporal logics:
a journey. Bulletin of the EATCS, 105:73–99, 2011. URL: http://albcom.lsi.upc.edu/
ojs/index.php/beatcs/article/view/98.

7 J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. Journal of
the ACM, 38:279–292, 1991. doi:10.1145/115234.115351.

8 M. Holzer and M. Kutrib. Descriptional and computational complexity of finite automata
– a survey. Information and Computation, 209(3):456–470, 2011. doi:10.1016/j.ic.2010.
11.013.

9 H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Model-theoretic Semantics
of Natural Language, Formal Logic and Discourse Representation Theory, Volume 42 of
Studies in Linguistics and Philosophy. Springer, 1993.

ICALP 2017

http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1007/978-3-319-40229-1_27
http://dx.doi.org/10.1007/978-3-319-40229-1_27
www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/4.2017/
www.dimi.uniud.it/la-ricerca/pubblicazioni/preprints/4.2017/
http://dx.doi.org/10.1093/logcom/exn063
http://dx.doi.org/10.1016/j.apal.2009.07.003
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/ 98
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/ 98
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1016/j.ic.2010.11.013
http://dx.doi.org/10.1016/j.ic.2010.11.013

120:14 Satisfiability and Model Checking for the Logic of Sub-Intervals under Homogeneity

10 K. Lodaya. Sharpening the undecidability of interval temporal logic. In Proceedings of the
6th Asian Computing Science Conference (ASIAN), pages 290–298, 2000. doi:10.1007/
3-540-44464-5_21.

11 J. Marcinkowski and J. Michaliszyn. The undecidability of the logic of subintervals. Fun-
damenta Informaticae, 131(2):217–240, 2014. doi:10.3233/FI-2014-1011.

12 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval
properties of computations. Acta Informatica, 53(6-8):587–619, 2016. doi:10.1007/
s00236-015-0250-1.

13 A. Montanari. Interval temporal logics model checking. In Proceedings of the 23rd Inter-
national Symposium on Temporal Representation and Reasoning, (TIME), page 2, 2016.
doi:10.1109/TIME.2016.32.

14 A. Montanari, I. Pratt-Hartmann, and P. Sala. Decidability of the logics of the reflexive
sub-interval and super-interval relations over finite linear orders. In Proceedings of the 17th
International Symposium on Temporal Representation and Reasoning (TIME), pages 27–34,
2010. doi:10.1109/TIME.2010.18.

15 M. Otto. Two variable first-order logic over ordered domains. Journal of Symbolic Logic,
66(2):685–702, 2001. doi:10.2307/2695037.

16 I. Shapirovsky. On PSPACE-decidability in transitive modal logic. In Proceedings of the
5th conference on Advances in Modal logic (AiML), pages 269–287, 2004. URL: http:
//www.aiml.net/volumes/volume5/Shapirovsky.ps.

17 Y. Venema. Expressiveness and completeness of an interval tense logic. Notre Dame Journal
of Formal Logic, 31(4):529–547, 1990. doi:10.1305/ndjfl/1093635589.

18 Y. Venema. A modal logic for chopping intervals. Journal of Logic and Computation,
1(4):453–476, 1991. doi:10.1093/logcom/1.4.453.

http://dx.doi.org/10.1007/3-540-44464-5_21
http://dx.doi.org/10.1007/3-540-44464-5_21
http://dx.doi.org/10.3233/FI-2014-1011
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1007/s00236-015-0250-1
http://dx.doi.org/10.1109/TIME.2016.32
http://dx.doi.org/10.1109/TIME.2010.18
http://dx.doi.org/10.2307/2695037
http://www.aiml.net/volumes/volume5/Shapirovsky.ps
http://www.aiml.net/volumes/volume5/Shapirovsky.ps
http://dx.doi.org/10.1305/ndjfl/1093635589
http://dx.doi.org/10.1093/logcom/1.4.453

Threshold Constraints with Guarantees for Parity
Objectives in Markov Decision Processes∗†

Raphaël Berthon1, Mickael Randour2, and Jean-François Raskin3

1 ENS Rennes, Rennes, France
raphael.berthon@ens-rennes.fr

2 Computer Science Department, ULB – Université libre de Bruxelles, Brussels,
Belgium
mickael.randour@gmail.com

3 Computer Science Department, ULB – Université libre de Bruxelles, Brussels,
Belgium
jraskin@ulb.ac.be

Abstract
The beyond worst-case synthesis problem was introduced recently by Bruyère et al. [10]: it aims
at building system controllers that provide strict worst-case performance guarantees against an
antagonistic environment while ensuring higher expected performance against a stochastic model
of the environment. Our work extends the framework of [10] and follow-up papers, which focused
on quantitative objectives, by addressing the case of ω-regular conditions encoded as parity
objectives, a natural way to represent functional requirements of systems.

We build strategies that satisfy a main parity objective on all plays, while ensuring a secondary
one with sufficient probability. This setting raises new challenges in comparison to quantitative
objectives, as one cannot easily mix different strategies without endangering the functional prop-
erties of the system. We establish that, for all variants of this problem, deciding the existence
of a strategy lies in NP ∩ coNP, the same complexity class as classical parity games. Hence, our
framework provides additional modeling power while staying in the same complexity class.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Markov decision processes, parity objectives, beyond worst-case synthesis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.121

1 Introduction

Beyond worst-case synthesis. Two-player zero-sum games [18, 21] and Markov decision
processes (MDPs) [17, 4] are popular frameworks for decision making in adversarial and
uncertain environments respectively. In the former, a system controller (player 1) and its
environment (player 2) compete antagonistically, and synthesis aims at strategies that ensure
a specified behavior against all possible strategies of the environment. In the latter, the
system is faced with a given stochastic model of its environment, and the focus is on satisfying
a given level of expected performance, or a specified behavior with a sufficient probability.

The beyond worst-case synthesis framework [10] unites both views: we look for strategies
that provide both strict worst-case guarantees and a good level of performance against the

∗ Full version is available on arXiv [5], http://arxiv.org/abs/1702.05472.
† Work partially supported by the ERC Starting grant 279499 (inVEST) and the ARC project “Non-Zero

Sum Game Graphs: Applications to Reactive Synthesis and Beyond” (Fédération Wallonie-Bruxelles).
J.-F. Raskin is Professeur Francqui de Recherche, M. Randour is an F.R.S.-FNRS postdoctoral researcher.

EA
T

C
S

© Raphaël Berthon, Mickael Randour, and Jean-François Raskin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 121; pp. 121:1–121:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.121
http://arxiv.org/abs/1702.05472
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

121:2 Threshold Constraints with Guarantees for Parity Objectives in MDPs

1, 0

1, 0

2, 0

2, 1

a

b

c
d

Figure 1 An MDP where player 1 can ensure p1 surely and p2 almost-surely.

stochastic model. Such requirements are natural in practical situations (e.g., see [9, 23] for
applications to the shortest path problem). The original paper [10] dealt with mean-payoff
and shortest path objectives. Follow-up work include, e.g., multi-dimensional extensions [14],
optimization of the expected mean-payoff under hard Boolean constraints [1] or under energy
constraints [7], or integration of beyond worst-case concepts in the tool Uppaal [15].

Parity objectives. We study the beyond worst-case problem for ω-regular conditions
encoded as parity objectives. Parity games have been under close scrutiny for a long time
due to their importance (e.g., they subsume modal µ-calculus model checking [16]) and their
intriguing complexity: they belong to the class of problems in NP ∩ coNP [19] and despite
many efforts (see [11] for pointers), whether they belong to P is still an open question.

In the aforementioned papers dealing with beyond worst-case problems, the focus was
on quantitative objectives (e.g., mean-payoff). While it is usually the case that qualitative
objectives, such as parity, are easier to deal with than quantitative ones, this is not true
in the setting considered in this paper. Indeed, in the context of quantitative objectives, it
is conceivable to alternate between two strategies along a play, such that one – efficient –
strategy balances the performance loss due to playing the other – less efficient – strategy
for a limited stretch of play infinitely often. In the context of qualitative objectives, this is
no more possible in general, as one strategy may induce behaviors (such as invalidating the
parity condition infinitely often) that can never be counteracted by the other one. Hence, in
comparison, we need to define more elaborate analysis techniques to detect when satisfying
both the worst-case and the probabilistic constraints with a single strategy is actually possible.

Example. Consider the MDP of Figure 1. Circle states are owned by player 1 (system)
and square states are owned by player 2 (environment). In the stochastic model of the
environment, square states are probabilistic, and, when not specified, we consider the uniform
distribution over their successors. Each state is labelled with a name and two integers x, y
representing priorities defined by two functions, p1 and p2. An infinite path in the graph is
winning for player 1 and parity objective pi, i ∈ {1, 2}, if the maximal priority seen infinitely
often along the path for function pi is even. We claim that player 1 has a strategy λ to
ensure that (i) all plays consistent with λ satisfy p1 (i.e., p1 is surely satisfied) and (ii) the
probability measure induced by λ on this MDP ensures that p2 is satisfied with probability
one (i.e., almost-surely).

One such λ is as follows. It plays an infinite sequence of rounds of ni steps, i ∈ N. In
round i, in state a, the strategy chooses b for ni steps, such that the probability to reach c
during round i is larger than 1 − 2−i (this is possible as at each step c is reached from b

with probability 1
2). If during round i, c is not reached (which can happen with a small

probability) then λ goes to d once. Then the next round i+1 is started. This infinite-memory
strategy ensures both (i) and (ii). Indeed, it can be shown that the probability that λ plays d
infinitely often is zero. Also, during each round, the maximal priority for p1 is guaranteed to
be even because if c is not visited, d is systematically played.

R. Berthon, M. Randour, and J.-F. Raskin 121:3

Finally, we can prove that player 1 needs infinite memory to ensure p1 surely and p2
almost-surely, and also, that this is the best that player 1 can do here: he has no strategy to
enforce surely both p1 and p2 at the same time.

Outline and contributions. We consider MDPs with two parity objectives (i.e., using
different priority functions). We study the problem of deciding the existence of a strategy
that ensures the first parity objective surely (i.e., on all plays) while yielding a probability
at least equal to (resp. greater than) a given rational threshold to satisfy the second parity
objective. In Section 2, we formally define the framework and recall important results from
the literature. In Section 3, as an intermediate step, we solve the problem of ensuring the
first parity objective surely while visiting a target set of states with sufficient probability:
this tool will help us several times later. We prove that the corresponding decision problem
is in NP ∩ coNP and at least as hard as parity games, and that finite-memory strategies
are sufficient. In Section 4, we solve the problem for the two parity objectives, where the
second one must hold almost-surely (i.e., with probability one). Our main tools are the novel
notion of ultra-good end-components, as well as the reachability problem solved in Section 3.
We generalize our approach to arbitrary probability thresholds in Section 5, in which we
introduce the notion of very-good end-components. In both the almost-sure and the arbitrary
threshold cases, we prove that the decision problem belongs to NP ∩ coNP and is at least as
hard as parity games. In contrast to the reachability case, we prove that infinite memory is
in general necessary. Full proofs are presented in the extended version of this paper [5].

Additional related work. The beyond worst-case synthesis framework illustrates the use-
fulness of non-zero-sum games for reactive synthesis [8, 22]. Other types of multi-objective
specifications in stochastic models have been considered: e.g., percentile queries generalize
the classical threshold probability problem to several dimensions [24]. In [3], Baier et al.
study the quantitative analysis of MDPs under weak and strong fairness constraints. They
provide algorithms for computing the probability for ω-regular properties in worst and best-
case scenarios, when considering strategies that in addition satisfy weak or strong fairness
constraints almost-surely. In contrast, we are able to consider similar objectives but for
strategies that satisfy weak or strong fairness constraints surely, i.e., with certainty and not
only with probability one. In [1], Almagor et al. consider the optimization of the expected
mean-payoff under hard Boolean constraints in weighted MDPs. Our concept of ultra-good
end-component builds upon their notion of super-good one. A reduction to mean-payoff
parity games [12] is part of the identification process of both types of end-components.

2 Preliminaries

Directed graphs. A directed graph is a pair G = (S,E) with S a set of vertices, called
states, and E ⊆ S × S a set of directed edges. We focus here on finite graphs (i.e., |S| <∞).
Given a state s ∈ S, we denote by Succ(s) = {s′ ∈ S | (s, s′) ∈ E} the set of successors of s
by edges in E. We assume that graphs are non-blocking, i.e., for all s ∈ S, Succ(s) 6= ∅.

A play in G from an initial state s ∈ S is an infinite sequence of states π = s0s1s2 . . .

such that s0 = s and (si, si+1) ∈ E for all i ≥ 0. The prefix up to the (n + 1)-th state of
π is the finite sequence π(0, n) = s0s1 . . . sn. We resp. denote the first and last states of a
prefix ρ = s0s1 . . . sn by First(ρ) = s0 and Last(ρ) = sn. For a play π, we naturally extend
the notation to First(π). Finally, for i ∈ N, π(i) = si, and for j > i, π(i, j) = si . . . sj . The
set of plays of G is Plays(G) and the set of prefixes is Pref(G). For a set of plays Π, we

ICALP 2017

121:4 Threshold Constraints with Guarantees for Parity Objectives in MDPs

denote by Pref(Π) the set of prefixes of these plays. Given two prefixes ρ = s0 . . . sm and
ρ′ = s′0 . . . s

′
n in Pref(G), we denote their concatenation as ρ · ρ′ = s0 . . . sms

′
0 . . . s

′
n. This is

not necessarily a valid prefix of G. The same holds for a prefix concatenated with a play.

Probability distributions. Given a countable set A, a (rational) probability distribution on
A is a function p : A → [0, 1] ∩ Q such that

∑
a∈A p(a) = 1. We write D(A) the set of

probability distributions on A. The support of p ∈ D(A) is Supp(p) = {a ∈ A | p(a) > 0}.

Markov decision processes. An MDP is a tupleM = (G,S1, S2, δ) where (i) G = (S,E)
is a directed graph; (ii) (S1, S2) is a partition of S into states of player 1 (denoted by P1
and representing the system) and states of player 2 (denoted by P2 and representing the
stochastic environment); (iii) δ : S2 → D(S) is the transition function that, given a stochastic
state s ∈ S2, defines the probability distribution δ(s) over the successors of s, such that
for all s ∈ S2, Supp(δ(s)) = Succ(s). An MDP where for all s ∈ S1, |Succ(s)| = 1 is a
fully-stochastic process called a Markov chain (MC). A prefix ρ ∈ Pref(M) belongs to Pi,
i ∈ {1, 2}, if Last(ρ) ∈ Si. The set of prefixes that belong to Pi is denoted by Prefi(M).

Strategies. A strategy for P1 is a function λ : Pref1(M) → D(S), such that for all ρ ∈
Pref1(M), we have Supp(λ(ρ)) ⊆ Succ(Last(ρ)). The set of all strategies inM is denoted
by Λ. Pure strategies have their support equal to a singleton for all prefixes. We mention
that a strategy is randomized to stress on the need for randomness in general.

A strategy λ for P1 can be encoded by a stochastic state machine with outputs, called
stochastic Moore machine, M. A strategy λ is finite-memory if M is finite, and memoryless if
it has only one state. That is, it does not depend on the history but only on the current
state of the MDP: in this case, we have that λ : S1 → D(S). Finally, if the same strategy
can be used regardless of the initial state, we say that a uniform strategy exists.

A play π is consistent with a strategy λ if for all n ≥ 0 such that π(n) ∈ S1, we have that
π(n+1) ∈ Supp(λ(π(0, n)). It is defined similarly for prefixes. We write OutM(λ) ⊆ Plays(G)
the set of plays consistent with λ. We use OutMs (λ) when fixing an initial state s.

Markov chain induced by a strategy. An MDPM = (G = (S,E), S1, S2, δ) and a strategy
λ for P1 determine an MC C = (G′, δ′). Given s ∈ S an initial state and A ⊆ Plays(G) a
measurable set, we denote by PλM,s[A] the probability of event A whenM is executed with
initial state s and strategy λ.

Objectives. Given an MDPM = (G,S1, S1, δ), an objective is a set of plays A ⊆ Plays(G).
We consider two classical objectives from the literature. Both define measurable events.
To define them, we introduce the following notation: given a play π ∈ Plays(G), let
inf(π) = {s ∈ S | ∀ i ≥ 0, ∃ j ≥ i, π(j) = s} be the set of states seen infinitely often along π.

Reachability. Given a target T ⊆ S, this objective asks for plays that visit T : Reach(T) =
{π ∈ Plays(G) | ∃n ≥ 0, π(n) ∈ T}. We later use the LTL notation ♦T for event Reach(T).

Parity. Let p : S → {1, 2, . . . , d} be a priority function that maps each state to an
integer priority, where d ≤ |S| + 1 (w.l.o.g.). The parity objective asks that, among the
priorities seen infinitely often, the maximal one be even: Parity(p) = {π ∈ Plays(G) |
maxs∈inf(π) p(s) is even}. We later simply use p to denote the event Parity(p).

End-components and sub-MDPs. LetM = (G = (S,E), S1, S2, δ) be an MDP. An end-
component (EC) ofM is a set C ⊆ S such that (i) ∀ s ∈ C∩S2, Succ(s) ⊆ C and ∀ s ∈ C∩S1,

R. Berthon, M. Randour, and J.-F. Raskin 121:5

Succ(s) ∩ C 6= ∅; and (ii) C is strongly connected, i.e., for any two states s, s′ ∈ C, there
exists a path from s to s′ that stays in C. It is well-known that inside an EC C, P1 can force
the visit of any state s ∈ C with probability 1 (that is, when P2 is seen as stochastic and
obeys the strategy δ), see e.g., [4]. The union of two ECs with non-empty intersection is an
EC. An EC C is thus maximal if, for every EC C ′, C ′ ⊆ C ∨ C ′ ∩ C = ∅.

Given an EC C ⊆ S of M, we write M�C the sub-MDP defined by M�C = (G′ =
(C,E ∩C ×C), S′1 = S1 ∩C, S′2 = S2 ∩C, δ′), where δ′ : S′2 → D(C) is the restriction of δ to
the domain C. Note thatM�C is a well-defined MDP: it has no deadlock since C is strongly
connected and in all stochastic states s, Supp(δ′(s)) ⊆ C (as C was an EC inM).

Technical lemma. We recall a classical result about MDPs that will be useful later on.

I Lemma 1 (Optimal reachability [4]). Given an MDP M = (G = (S,E), S1, S2, δ) and
a target set T ⊆ S, we can compute for each state s ∈ S the maximal probability v∗s =
supλ∈Λ PλM,s[♦T] to reach T , in polynomial time. There is an optimal uniform pure mem-
oryless strategy λ∗ that enforces v∗s from all s ∈ S. Now, fix s ∈ S and c ∈ Q such that
c < v∗s . Then there exists k ∈ N such that by playing λ∗ from s for k steps, we reach T with
probability larger than c.

Events and probabilistic operators. Consider an MDPM = (G = (S,E), S1, S2, δ). Recall
that we have defined two types of measurable events (specific subsets of Plays(G)) with
respective notations ♦T for T ⊆ S (reachability), and p for p : S → {1, . . . , d} a priority
function (parity). We define three operators to reason about the probabilities of these events:
S, P∼c, and AS. Given an event A and a state s, they are used as follows:
A is sure from s, denoted s |= S(A), if there exists a strategy λ of P1 such that
OutMs (λ) ⊆ A. Here probabilities are ignored and we consider P2 as antagonistic.
A holds with probability at least equal to (resp. greater than) c ∈ Q from s, denoted
s |= P≥c(A) (resp. s |= P>c(A)) if there exists λ such that PλM,s[A] ≥ c (resp. > c).
A is almost-sure from s, denoted s |= AS(A), if there exists λ such that PλM,s[A] = 1.

For any operator O, we say that such a λ is a witness strategy for s |= O(A) and we write
s, λ |= O(A) to denote it. We will also consider combinations of the type s |= O1(A1)∧ O2(A2)
for two operators and events: in this case, we require that the same strategy be a witness for
both conjuncts, i.e., that there exists λ such that s, λ |= O1(A1) and s, λ |= O2(A2). Finally,
we will sometimes use different MDPs, in which case we add the considered MDPM as a
subscript on |=, e.g., s |=M O(A). We drop this subscript when the context is clear.

Beyond worst-case problems. Let M = (G = (S,E), S1, S2, δ) be an MDP, s ∈ S be
an initial state, and p1, p2 be two priority functions. We provide algorithms to decide
the existence of a witness strategy — and synthesize it — for the following formulae:
(i) s |= S(p1) ∧ AS(p2), and (ii) s |= S(p1) ∧ P∼c(p2) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

3 Reachability under parity constraints

We study two variants, given s ∈ S, T ⊆ S, and p : S → {1, . . . d}: (i) s |= S(p) ∧ AS(♦T),
and (ii) s |= S(p) ∧ P∼c(♦T) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

Almost-sure reachability. This case can be solved by reduction to a slight variant studied
in [2, Lemma 3] (extended version of [1]). The approach of [2, Lemma 3] relies on a reduction

ICALP 2017

121:6 Threshold Constraints with Guarantees for Parity Objectives in MDPs

to a Büchi-parity game: sufficiency of finite memory follows from this reduction. The lower
complexity bound is trivial: it suffices to fix T = S to obtain a classical parity game [19].

I Theorem 2. Given an MDP M = (G = (S,E), S1, S2, δ), a state s0 ∈ S, a priority
function p : S → {1, . . . , d}, and a target set of states T ⊆ S, it can be decided in NP∩ coNP
if s0 |= S(p) ∧ AS(♦T). If the answer is Yes, then there exists a finite-memory witness
strategy. This decision problem is at least as hard as solving parity games.

Reachability with threshold probability. We first study strategies that maximize the prob-
ability of reaching a target T ⊆ S in an MDP M. By Lemma 1, we have an optimal
uniform pure memoryless strategy λ∗ that enforces v∗s from all s ∈ S. We define the set
E¬opt = {(s, s′) ∈ E | s ∈ S1 ∧ v∗s > v∗s′} that contains all edges that are non-optimal choices
for P1 in the sense that they result in a strict decrease of the probability to reach T . We show
that playing, for a finite number of steps, edges that are optimal (i.e., in Eopt = E \E¬opt),
and then switching to an optimal strategy, like λ∗, produces an optimal strategy too.

I Lemma 3. Let λ∗ be an optimal uniform pure memoryless strategy inM to reach T , from
all states in S. If λ is a strategy that plays only edges in Eopt for m steps, for m ∈ N, and
then switches to λ∗, then λ is also optimal to reach T from all states in S.

We now turn to the problem s0 |= S(p) ∧ P∼c(♦T) and establish the following result.

I Theorem 4. Given an MDP M = (G = (S,E), S1, S2, δ), a state s0 ∈ S, a priority
function p : S → {1, . . . , d}, a target set of states T ⊆ S, and a probability threshold
c ∈ [0, 1) ∩Q, it can be decided in NP ∩ coNP if s0 |= S(p) ∧ P∼c(♦T) for ∼∈ {>,≥}. If the
answer is Yes, then there exists a finite-memory witness strategy. This decision problem is
at least as hard as solving parity games.

Proof Sketch. First, we restrictM to the ⊆-maximal sub-MDPMw in which P1 can ensure
S(p1) from all states, by solving a classical parity game, which is in NP ∩ coNP [19]. Indeed,
if s0 6|= S(p), the answer is No. InMw, P1 has a uniform pure memoryless strategy λp that
ensures S(p) from every state.

The case > c is the easier. First, we compute the maximal probability v∗s0
to reach T and

an optimal strategy λ∗, in polynomial time (Lemma 1). If v∗s0
≤ c, then the answer is clearly

No. Otherwise, we claim it is Yes. We construct a witness strategy λ for s0 |= S(p)∧P>c(♦T)
from λ∗ and λp as follows. Starting in s0, the strategy λ plays as λ∗ for k steps where k is
taken as in Lemma 1: the probability to reach T after k steps is strictly greater than c, which
implies that s0, λ |= P>c(♦T). Then, λ switches to λp. Since parity is prefix-independent, we
have that s0, λ |= S(p), and we are done. Our procedure lies in PNP∩coNP = NP ∩ coNP [6],
and λ is finite-memory since λ∗ and λp are memoryless and k is finite.

We now turn to case ≥ c. We compute v∗s0
in polynomial time. If v∗s0

> c, then we answer
Yes as we apply the same reasoning as in the previous case. If v∗s0

< c, then we trivially
answer No. The more involved case is v∗s0

= c. We must verify that probability c is still
achievable if, in addition, it is required to enforce S(p). To answer this, we modifyMw and
we reduce our problem to the almost-sure case of Theorem 2. Intuitively, we construct the
MDP M′ as follows. (i) We enrich states with one bit that records if T has been visited.
(ii) While T has not been visited, we suppress all edges controlled by P1 that are not optimal
for reachability, i.e., all edges in E¬opt. (iii) While T has not been visited, we delete all states
that cannot reach T and normalize the probability of the edges that survive this deletion.

We prove that s′0 |=M′ S(p) ∧ AS(♦T ′) ⇐⇒ s0 |=Mw S(p) ∧ P≥c(♦T) holds, where s′0
is the initial state in M′ and T ′ the translation of T . The crux is the restriction to Eopt

R. Berthon, M. Randour, and J.-F. Raskin 121:7

1, 01, 02, 0 4, 1 3, 1

a b c d e

Figure 2 This MDP is a UGEC: going to d satisfies (1U), whereas going to b satisfies (2U).

before visiting T : P1 must be able to ensure S(p1) while using only edges that are optimal
for reachability if T cannot be forced surely. As the almost-sure problem is in NP ∩ coNP by
Theorem 2, andM′ is polynomially larger thanMw (and thusM), we obtain the claimed
complexity using PNP∩coNP = NP∩ coNP [6]. Our reduction implies that the witness strategy
can be finite-memory. Again, this problem generalizes parity games by taking T = S. J

4 Almost-sure parity under parity constraints

Overview and key lemma. We consider an MDP M = (G = (S,E), S1, S1, δ) with two
priority functions p1 and p2. We look at the problem s |= S(p1) ∧ AS(p2). The cornerstone of
our approach is the notion of ultra-good end-component.

I Definition 5. An end-component C ofM is ultra-good (UGEC) if in the sub-MDPM�C ,
the following two properties hold:

(1U) ∀ s ∈ C, s |=M�C
S(p1) ∧ AS(♦Cmax

even(p1)), where

Cmax
even(pi) =

{
s ∈ C | (pi(s) is even) ∧ (∀ s′ ∈ C, pi(s′) is odd =⇒ pi(s′) < pi(s))

}
contains the states with even priorities that are larger than any odd priority in C (this
set can be empty for arbitrary ECs but needs to be non-empty for UGECs);
(2U) ∀ s ∈ C, s |=M�C

AS(p1) ∧ AS(p2), or equivalently, s |=M�C
AS(p1 ∩ p2).

We introduce the following notations: UGEC(M) is the set of all UGECs of M, and
U = ∪U∈UGEC(M)U is the set of states that belong to a UGEC inM.

Intuitively, within a UGEC, P1 has a strategy to almost-surely visit Cmax
even(p1) while

guaranteeing S(p1), and he also has a (generally different) strategy that almost-surely ensures
both parity objectives. Figure 2 gives an example of UGEC. This notion strengthens the
concept of super-good EC from [1]: essentially, the super-good ECs are exactly the ECs
satisfying (1U). Thus, every UGEC is a super-good EC, but the converse is false.

The central lemma underpinning our approach is the following.

I Lemma 6. The following equivalence holds:

s0 |= S(p1) ∧ AS(♦U) ⇐⇒ s0 |= S(p1) ∧ AS(p2).

Essentially, this lemma permits to reduce the problem under study to the one treated in
Theorem 2, provided that we are able to compute U , the set of states appearing in a UGEC.
The rest of this section is dedicated to the proof of this lemma and its consequences.

Left-to-right implication (sufficient condition). We first study witness strategies for con-
ditions (1U) and (2U) of Definition 5. For (1U), it was shown in the proof of [2, Lemma 3]
(extended version of [1]) that deciding if the condition holds is in NP∩coNP and that uniform
finite-memory witness strategies exist. For (2U), we establish the following lemma.

ICALP 2017

121:8 Threshold Constraints with Guarantees for Parity Objectives in MDPs

I Lemma 7. Let C be an EC ofM. The following assertions hold.
1. It can be decided in polynomial time if condition (2U) holds.
2. If it holds, then there exists a (uniform randomized) memoryless witness strategy λ2,C

and a sub-EC D ⊆ C such that Dmax
even(p1) 6= ∅, Dmax

even(p2) 6= ∅, and for all s ∈ C, we have
that Pλ2,C

M�C ,s

[
{π ∈ OutM�C (λ2,C) | inf(π) = D}

]
= 1.

3. Furthermore, λ2,C satisfies the following property: ∀ s ∈ C, ∀ ε > 0, ∃n ∈ N such that
Pλ2,C

M�C ,s

[{
π ∈ OutM�C (λ2,C) | ∃ i, 0 ≤ i ≤ n, π(i) ∈ Dmax

even(p1)
}]
≥ 1− ε.

Proof Sketch. For Point 2, we resort on a classical result on almost-sure reachability of ECs
and almost-sure satisfaction of both parity objectives. For Point 3, we use Lemma 1 and
Point 2. For Point 1, we show that (i) the existence of a sub-ECD such thatDmax

even(p1) 6= ∅ and
Dmax

even(p2) 6= ∅ is not only necessary but also sufficient to satisfy condition (2U), and (ii) the
existence of such a set can be decided in polynomial time. For (i), it suffices to build a
uniform randomized memoryless strategy λ that reaches the sub-EC D almost-surely and
then plays uniformly at random in it forever: λ will be a witness for s |=M�C

AS(p1)∧ AS(p2),
so condition (2U) holds in C. For (ii), we first check if Cmax

even(p1) 6= ∅ and Cmax
even(p2) 6= ∅.

If this holds, then D = C and the answer is Yes (it takes linear time obviously). If it
does not hold, then we compute the sets Cmax

odd (pi) =
{
s ∈ C | (pi(s) is odd) ∧ (∀ s′ ∈

C, pi(s′) is even =⇒ pi(s′) < pi(s))
}
and we iterate this procedure in the sub-EC C ′ ⊂ C

defined as C ′ = C \ Attr2
(
Cmax

odd (p1) ∪ Cmax
odd (p2)

)
, where Attr2 is the classical attractor for

P2. A suitable D exists if and only if this procedure stops before C ′ = ∅. In addition, this
procedure takes at most |C| iterations (as we remove at least one state at each step) and
each iteration takes linear time. J

We will now prove that inside any UGEC, there is a strategy for S(p1) ∧ AS(p2). From
now on, let C be a UGEC ofM, λ1,C be a uniform finite-memory witness strategy for (1U)
in Definition 5, and λ2,C be a uniform randomized memoryless one for (2U), additionally
satisfying the properties of Lemma 7. We build a strategy λC based on λ1,C and λ2,C .

I Definition 8. Let C ∈ UGEC(M). Let (ni)i∈N be a sequence of naturals ni such that
Pλ2,C

M�C ,s

[{
π ∈ OutM�C (λ2,C) | ∃ i, 0 ≤ i ≤ ni, π(i) ∈ Dmax

even(p1)
}]
≥ 1− 2−i, whose existence

is guaranteed by Lemma 7. We build strategy λC as follows, starting with i = 0.
(a) Play λ2,C for ni steps. Then i = i+ 1 and go to (b).
(b) If Dmax

even(p1) was visited in phase a), then go to (a).
Else, play λ1,C until Cmax

even(p1) is reached and then go to (a).

Observe that λC requires infinite memory. In the next lemma, we prove that λC is a
proper witness for S(p1) ∧ AS(p2) in the UGEC C.

I Lemma 9. Let C ∈ UGEC(M). For all s ∈ C, it holds that s, λC |= S(p1) ∧ AS(p2).

Proof Sketch. First consider s, λC |= S(p1). Fix any π ∈ OutM�C
s (λC): we will show that

maxs′∈inf(π) p1(s′) is even. Three cases are possible: (i) λC switches infinitely often between
λ1,C and λ2,C , (ii) it eventually plays λ1,C forever, and (iii) it eventually plays λ2,C forever.
In case (i), Cmax

even(p1) is visited infinitely often. Since any state in this set has an even priority
higher than any odd priority in C, we are good. In case (ii), we know that s, λ1,C |= S(p1).
By prefix-independence, we are also good. In case (iii), Dmax

even(p1) is visited infinitely often,
and, eventually, play π never leaves the sub-EC D. Hence, we are good here too and we
conclude that s, λC |= S(p1).

To show that s, λC |= AS(p2), we prove that λC almost-surely ends up in playing only
λ2,C (which ensures AS(p2)). The crux here is the choice of durations ni for the strategy: we

R. Berthon, M. Randour, and J.-F. Raskin 121:9

can show that the probability to never play λ1,C again after round i tends to one when i
tends to infinity. This entails the needed result. J

We can now prove the left-to-right implication of Lemma 6. For this, assume that for
s0 ∈ S, we have that λU is a witness for s0 |= S(p1) ∧ AS(♦U), where we recall that U
represents the union of all UGECs of the MDP M. Note that such a strategy can be
finite-memory w.l.o.g. as proved in Theorem 2. We build a global strategy λ as follows.

I Definition 10. Based on strategies λU and λC for all C ∈ UGEC(M), we build the global
strategy λ as follows.
(a) Play λU until a UGEC C is reached, then go to (b).
(b) Play λC forever.

This strategy requires infinite memory because of the strategies λC . We prove that λ is a
witness for s0 |= S(p1) ∧ AS(p2).

I Lemma 11. It holds that s0, λ |= S(p1) ∧ AS(p2).

Right-to-left implication (necessary condition). We now turn to the converse implication
of Lemma 6, i.e., that s0 |= S(p1) ∧ AS(p2) implies s0 |= S(p1) ∧ AS(♦U). We start by an
intermediate lemma regarding witness strategies: it establishes that all states reachable via
such a strategy also satisfy the property.

I Lemma 12. For every state s ∈ S, every strategy λ such that s, λ |= S(p1) ∧ AS(p2), and
every prefix ρ ∈ Pref(OutMs (λ)), we have that Last(ρ) |= S(p1) ∧ AS(p2).

The next lemma establishes that at least one UGEC must exist inM.

I Lemma 13. The following holds: s0 |= S(p1) ∧ AS(p2) =⇒ UGEC(M) 6= ∅.

Proof Sketch. Given Π ⊆ Plays(G), we define States(Π) = {s ∈ S | ∃π ∈ Π, ∃n ∈
N, π(n) = s}. We then study the set

S =
{
R ⊆ S | ∃ s ∈ S, ∃λ ∈ Λ, (s, λ |= S(p1) ∧ AS(p2)) ∧ (R = States(OutMs (λ)))

}
.

Intuitively, it contains any subset of S that captures all states reachable by some witness
strategy λ, from some state s ∈ S. First note that s0 |= S(p1) ∧ AS(p2) implies that S is
non-empty, as for a witness strategy λ, R = States(OutMs0

(λ)) ∈ S, by definition.
We then show that all minimal elements of S for set inclusion ⊆ are UGECs, which suffices

to establish our lemma. The most important ingredients to prove that any R ∈ min⊆(S) is
a UGEC are the following. First the existence, for any s ∈ R, of a strategy λR such that
s, λR |=M�R

S(p1) ∧ AS(p2) (i.e., λR satisfies the property without leaving R), which follows
from Lemma 12 and the minimality of R in S. Second, proving that Rmax

even(p1) is dense in
the subtree induced by OutMs (λR), that is, that for every prefix ρ, the subtree defined by λR
from ρ reaches a state of Rmax

even(p1), and that this holds in all subsequent subtrees. From this
density argument, we can derive a witness strategy for condition (1U) in Definition 5. J

Collecting in Umin = ∪R∈min⊆(S)R all states that belong to minimal sets R of S, we
finally prove the implication.

I Lemma 14. The following holds: s0 |= S(p1) ∧ AS(p2) =⇒ s0 |= S(p1) ∧ AS(♦Umin).

ICALP 2017

121:10 Threshold Constraints with Guarantees for Parity Objectives in MDPs

Algorithm. Lemma 11 and Lemma 14 prove the correctness of the reduction presented in
Lemma 6. It is the cornerstone of our algorithm.

I Theorem 15. Given an MDPM = (G = (S,E), S1, S2, δ), a state s0 ∈ S, and two priority
functions pi : S → {1, . . . , d}, i ∈ {1, 2}, it can be decided in NP∩coNP if s0 |= S(p1)∧AS(p2).
If the answer is Yes, then there exists an infinite-memory witness strategy, and infinite
memory is in general necessary. This decision problem is at least as hard as solving parity
games.

Proof. The algorithm can be sketched as follows:
1. Compute the set max⊆(SGEC(M)) of maximal super-good ECs, using [1]. Those are

the maximal ECs satisfying condition (1U) in Definition 5. There are only polynomially
many of them, and their computation is in NP ∩ coNP.

2. For each of them, check if (2U) holds using Lemma 7, in polynomial time. If an EC
does not satisfy (2U), then it is also the case of all its sub-ECs (as seen in the proof of
Lemma 7). Hence, we have that U = {C ∈ max⊆(SGEC(M)) | C satisfies (2U)}.

3. Decide if s0 |= S(p1) ∧ AS(♦U) using Theorem 2. This is in NP ∩ coNP. If it holds, then
answer Yes, otherwise answer No.

Its correctness was established in Lemma 6. It belongs to PNP∩coNP = NP∩ coNP [6], and
it trivially generalizes classical parity games (e.g., by taking p2 : s 7→ 0 for all s ∈ S).

Finally, let us discuss strategies. A witness strategy λ plays as follows: (i) it plays as the
finite-memory strategy witness for s0 |= S(p1)∧ AS(♦U) given by Theorem 2 until a UGEC C

is reached, (ii) then it switches to the infinite-memory strategy λC described in Definition 8.
It is clear that such a strategy is a witness for s0 |= S(p1) ∧ AS(p2), as expected.

Infinite memory is required in general, as shown in the UGEC C in Figure 2: there exists
no finite-memory witness strategy in C. Indeed, assume P1 is restricted to a finite-memory
strategy λ. To be able to ensure p1 on the play in which P2 always goes to c from b, P1 must
visit d infinitely often, and because of the finite memory of λ, he must do it after a bounded
number of steps along which a is not visited: say n steps. Hence, the probability to do it will
be bounded from below by a strictly positive constant, here 2−n

2 (the probability that P2
chooses c for n

2 times in a row), all along a consistent play. Therefore, P1 will almost-surely
visit d infinitely often, and p2 will actually be satisfied with probability zero. J

5 Parity with threshold probability under parity constraints

We now turn to the problem s0 |= S(p1) ∧ P∼c(p2) for ∼∈ {>,≥} and c ∈ Q ∩ [0, 1).

Very-good end-components. In addition to UGECs, we need the new notion of very-good
end-component.

I Definition 16. An end-component C of M is very-good (VGEC) if the following two
properties hold:

(1V) ∀ s ∈ C, s |=M S(p1);
(2V) ∀ s ∈ C, s |=M�C

AS(p1) ∧ AS(p2), or equivalently, s |=M�C
AS(p1 ∩ p2).

We introduce the following notations: VGEC(M) is the set of all VGECs of M, and
V = ∪V ∈VGEC(M)V is the set of states that belong to a VGEC inM.

Note that in condition (1V), P1 is allowed to leave C to ensure S(p1): this is in contrast
to condition (1U) for UGECs, in Definition 5. On the contrary, condition (2V) is exactly
the same as (2U). From these definitions, it is trivial to see that any UGEC is also a VGEC,

R. Berthon, M. Randour, and J.-F. Raskin 121:11

1, 1

1, 1

2, 2

0, 1

a

b

c
d

Figure 3 The EC {a, b, c} is very-good but not ultra-good, as P1 has to leave it to ensure S(p1).

but the converse is false. Consider Figure 3: {a, b, c} is a VGEC. The strategy ensuring (2V)
from a is to go to b, and the strategy ensuring (1V) from a is to go to d. As we will prove in
Lemma 18 and as in all VGECs, P1 can ensure a |= S(p1) ∧ P>1−ε(p2) for any ε > 0. Still,
{a, b, c} is not a UGEC: no strategy ensures S(p1) onM�{a,b,c}, as P2 can enforce the play
(ab)ω that has odd maximal priority. This illustrates why the notion of UGEC is too strong
when reasoning about threshold probability, hence why we need to introduce VGECs.

Available strategies in VGECs. As for UGECs, we will use witness strategies for (1V)
and (2V). Deciding if (1V) holds is solving a classical parity game, in NP ∩ coNP [19].
Uniform pure memoryless witness strategies exist: let λ1 be such a witness. For simplicity of
presentation, we assume in the following that all states ofM satisfy (1V), as otherwise they
will trivially not satisfy the properties we consider (as S(p1) will not be ensured). For (2V),
we established in Lemma 7 that deciding if it holds is in polynomial time and that uniform
randomized memoryless witness strategies exist: let λ2,C be one of them.

Reaching VGECs. We prove a strong relationship between the measure of paths that satisfy
p1 and p2, and the measure of paths that reach VGECs, under any strategy.

I Lemma 17. For all s ∈ S, and all λ ∈ Λ, the following holds: PλM,s[♦V] ≥ PλM,s[p1 ∩ p2].

Limit-sure satisfaction in VGECs. For each state in a VGEC, we claim that the parity
objective p2 can be satisfied with probability arbitrarily close to one, while ensuring p1 surely.

I Lemma 18. Let C ∈ VGEC(M). For all s ∈ C and ε ∈ (0, 1], the following property
holds: s |= S(p1) ∧ P>1−ε(p2).

Proof Sketch. As for UGECs, we build a witness strategy based on two simpler ones: λ1
and λ2,C . However, our strategy here depends on ε. The rough idea is as follows: the witness
strategy λε will play λ2,C for longer and longer rounds, and switch to λ1 forever if Dmax

even(p1)
is not visited along one of those rounds. Using Lemma 7 cleverly, we can define the sequence
of round lengths in such a way that the probability to play as λ2,C forever exceeds 1 − ε,
yielding the result. J

The strict threshold case. We reduce the problem to a reachability problem toward V.
The first lemma gives a sufficient condition under which the property is satisfied. Its proof
tells us how to construct witness strategies.

I Lemma 19. The following holds: s0 |= S(p1) ∧ P>c(♦V) =⇒ s0 |= S(p1) ∧ P>c(p2).

Proof Sketch. We build a witness strategy λ based on (i) λ♦V , a strategy that ensures to
reach V with probability q > c from s0, (ii) λ1, and (iii) λε,C from Lemma 18 for a well-chosen
ε > 0 and every VGEC C. The idea is to first play λ♦V long enough so that a VGEC C

is reached with probability close to q and, if such a C is reached, to switch to λε,C for ε

ICALP 2017

121:12 Threshold Constraints with Guarantees for Parity Objectives in MDPs

sufficiently small so that the total probability to satisfy p2 is higher than c. If no VGEC is
reached, λ switches to λ1, hence ensuring S(p1). J

This second lemma gives a necessary condition. Its proof uses Lemma 17.

I Lemma 20. The following holds: s0 |= S(p1) ∧ P>c(p2) =⇒ s0 |= S(p1) ∧ P>c(♦V).

The non-strict threshold case. As we solved the strict case, the only interesting remaining
case is when P1, while surely forcing p1, can force p2 with probability c, but no more.
The main tool here is UGECs. The first lemma gives a sufficient condition. Its proof is
constructive. Recall that U = ∪U∈UGEC(M)U .

I Lemma 21. The following holds: s0 |= S(p1) ∧ P≥c(♦U) =⇒ s0 |= S(p1) ∧ P≥c(p2).

Proof Sketch. We define a witness strategy based on (i) λ♦U , a witness for s0 |= S(p1) ∧
P≥c(♦U), and (ii) strategies λC for every UGEC C: it suffices to play λ♦U as long as no
UGEC C is reached and to switch to λC when reached, if ever. J

The next lemma gives a necessary condition, keeping in mind that we consider the case
where P1 cannot ensure probability strictly larger than c.

I Lemma 22. The following holds: (s0 |= S(p1) ∧ P≥c(p2)) ∧ (s0 6|= S(p1) ∧ P>c(p2)) =⇒
s0 |= S(p1) ∧ P≥c(♦U).

Algorithm. Based on the reductions shown above, we can now establish an algorithm and
complexity results for the threshold problem.

I Theorem 23. Given an MDPM = (G = (S,E), S1, S2, δ), a state s0 ∈ S, and two priority
functions pi : S → {1, . . . , d}, i ∈ {1, 2}, it can be decided in NP∩coNP if s0 |= S(p1)∧P∼c(p2)
for ∼∈ {>,≥} and c ∈ Q∩ [0, 1). If the answer is Yes, then there exists an infinite-memory
witness strategy, and infinite memory is in general necessary. This decision problem is at
least as hard as solving parity games.

Proof. The algorithm can be sketched as follows:
1. Remove fromM all states where S(p1) does not hold, as well as their attractor for P2:

if s0 is removed, then answer No. LetM′ be the remaining MDP. This operation is in
NP ∩ coNP as it consists in solving a classical parity game [19].

2. Compute the set V representing the union of VGECs in M′. This can be done in
polynomial time by computing the maximal ECs ofM′ and applying Lemma 7 to check
condition (2V) for each of them (condition (1V) holds thanks to the previous step).

3. Decide if s0 |= S(p1) ∧ P>c(♦V) using Theorem 4. This is in NP ∩ coNP. If it holds, then
answer Yes. If it does not hold and ∼ is >, then answer No, otherwise, i.e., if ∼ is ≥,
continue with the next step.

4. Use the sub-algorithm described in Theorem 15 to compute the set U representing the
union of UGECs inM′. This is in NP ∩ coNP.

5. Decide if s0 |= S(p1) ∧ P≥c(♦U) using Theorem 4. This is in NP ∩ coNP. If it holds,
answer Yes, otherwise answer No.

The correctness of this algorithm follows from Lemma 19, Lemma 20, Lemma 21, and
Lemma 22. It belongs to PNP∩coNP = NP ∩ coNP [6], and it trivially generalizes classical
parity games (e.g., by taking p2 : s 7→ 0 for all s ∈ S).

R. Berthon, M. Randour, and J.-F. Raskin 121:13

Finally, let us discuss strategies. Witness strategies for the case > (resp. ≥) were described
in Lemma 19 (resp. Lemma 21). In both cases, infinite memory is in general required, because
it is in general necessary to play optimally in both VGECs and UGECs. For UGECs, see
Theorem 15 for an example. For VGECs, consider the VGEC {a, b, c} in the MDP of Figure 3.
We claim that for every finite-memory strategy λ ensuring S(p1), the probability to ensure p2
is zero, hence there is no finite-memory witness for a |= S(p1)∧ P>1−ε(p2). As argued for the
UGEC case, in order to ensure p1 on the play in which P2 always goes to a from b, P1 must
go to d at some point, and because of the finite memory of λ, he must do it after a bounded
number of steps along which c is not visited: say n steps. Again, the probability to do it will
be bounded from below by a strictly positive constant, here 2−n

2 (the probability that P2
chooses a for n

2 times in a row), all along a consistent play. Therefore, P1 will almost-surely
go to d, and p2 will actually be satisfied with probability zero. J

6 Conclusion

We further extended the beyond worst-case synthesis framework by studying the case of two
parity objectives and proved NP ∩ coNP membership for all considered variants.

Our algorithms can easily be generalized to more than two parity objectives as long as we
consider only the S and AS operators. Indeed, we have that for any MDPM, any state s in
M, and any number of priority functions p1, . . . pn, it holds that s |=

∧
i S(pi)

∧
j AS(pj) ⇐⇒

s |= S
(∧

i pi
)
∧AS

(∧
j pj
)
, and it is easy to reduce the latter problem to s′ |= S(p′)∧AS(p′′) on

a (larger) MDPM′, using classical techniques (e.g., any conjunction of parity objectives can
be expressed as a Muller condition [13], that in turn can be transformed into a single parity
condition on a larger graph [20]). Extending this generalization to the operator P∼c is more
challenging and would require to mix our techniques to methods for percentile queries [24]:
an interesting direction for future work.

Another question is the limits of finite-memory strategies. We saw that in general,
infinite memory is needed. We would like to investigate under which additional conditions
finite-memory strategies suffice, and to develop corresponding algorithms.

References
1 Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost under

hard boolean constraints, with applications to quantitative synthesis. In Josée Desharnais
and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory,
CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages
9:1–9:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
CONCUR.2016.9.

2 Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost under hard
boolean constraints, with applications to quantitative synthesis. CoRR, abs/1604.07064,
2016. URL: http://arxiv.org/abs/1604.07064.

3 Christel Baier, Marcus Größer, and Frank Ciesinski. Quantitative analysis under fairness
constraints. In Zhiming Liu and Anders P. Ravn, editors, Automated Technology for Veri-
fication and Analysis, 7th International Symposium, ATVA 2009, Macao, China, October
14-16, 2009. Proceedings, volume 5799 of Lecture Notes in Computer Science, pages 135–
150. Springer, 2009. doi:10.1007/978-3-642-04761-9_12.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
5 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold constraints with

guarantees for parity objectives in Markov decision processes. CoRR, abs/1702.05472, 2017.
URL: http://arxiv.org/abs/1702.05472.

ICALP 2017

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://arxiv.org/abs/1604.07064
http://dx.doi.org/10.1007/978-3-642-04761-9_12
http://arxiv.org/abs/1702.05472

121:14 Threshold Constraints with Guarantees for Parity Objectives in MDPs

6 Gilles Brassard. A note on the complexity of cryptography (corresp.). IEEE Transactions
on Information Theory, 25(2):232–233, 1979.

7 Tomás Brázdil, Antonín Kucera, and Petr Novotný. Optimizing the expected mean payoff
in energy Markov decision processes. In Cyrille Artho, Axel Legay, and Doron Peled, editors,
Automated Technology for Verification and Analysis - 14th International Symposium, ATVA
2016, Chiba, Japan, October 17-20, 2016, Proceedings, volume 9938 of Lecture Notes in
Computer Science, pages 32–49, 2016. doi:10.1007/978-3-319-46520-3_3.

8 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Ran-
dour, Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games
for reactive synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and
Bianca Truthe, editors, Language and Automata Theory and Applications - 10th Inter-
national Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceed-
ings, volume 9618 of Lecture Notes in Computer Science, pages 3–23. Springer, 2016.
doi:10.1007/978-3-319-30000-9_1.

9 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Ex-
pectations or guarantees? I want it all! A crossroad between games and MDPs. In Fabio
Mogavero, Aniello Murano, and Moshe Y. Vardi, editors, Proceedings 2nd International
Workshop on Strategic Reasoning, SR 2014, Grenoble, France, April 5-6, 2014, volume 146
of EPTCS, pages 1–8, 2014. doi:10.4204/EPTCS.146.1.

10 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In
Ernst W. Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical
Aspects of Computer Science, STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of
LIPIcs, pages 199–213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. doi:
10.4230/LIPIcs.STACS.2014.199.

11 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 Septem-
ber 2016, volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June
2005, Chicago, IL, USA, Proceedings, pages 178–187. IEEE Computer Society, 2005. doi:
10.1109/LICS.2005.26.

13 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity games.
In Helmut Seidl, editor, Foundations of Software Science and Computational Structures,
10th International Conference, FOSSACS 2007, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April
1, 2007, Proceedings, volume 4423 of Lecture Notes in Computer Science, pages 153–167.
Springer, 2007. doi:10.1007/978-3-540-71389-0_12.

14 Lorenzo Clemente and Jean-François Raskin. Multidimensional beyond worst-case and
almost-sure problems for mean-payoff objectives. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 257–268.
IEEE Computer Society, 2015. doi:10.1109/LICS.2015.33.

15 Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime,
Mathias Grund Sørensen, and Jakob Haahr Taankvist. On time with minimal expected
cost! In Franck Cassez and Jean-François Raskin, editors, Automated Technology for
Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW,
Australia, November 3-7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer
Science, pages 129–145. Springer, 2014. doi:10.1007/978-3-319-11936-6_10.

http://dx.doi.org/10.1007/978-3-319-46520-3_3
http://dx.doi.org/10.1007/978-3-319-30000-9_1
http://dx.doi.org/10.4204/EPTCS.146.1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.199
http://dx.doi.org/10.4204/EPTCS.226.10
http://dx.doi.org/10.1109/LICS.2005.26
http://dx.doi.org/10.1109/LICS.2005.26
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1109/LICS.2015.33
http://dx.doi.org/10.1007/978-3-319-11936-6_10

R. Berthon, M. Randour, and J.-F. Raskin 121:15

16 E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-checking for frag-
ments of µ-calculus. In Costas Courcoubetis, editor, Computer Aided Verification, 5th
International Conference, CAV’93, Elounda, Greece, June 28 - July 1, 1993, Proceed-
ings, volume 697 of Lecture Notes in Computer Science, pages 385–396. Springer, 1993.
doi:10.1007/3-540-56922-7_32.

17 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1997.
18 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

19 Marcin Jurdzinski. Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

20 Christof Löding. Optimal bounds for transformations of omega-automata. In C. Pandu
Rangan, Venkatesh Raman, and Ramaswamy Ramanujam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, 19th Conference, Chennai, India, De-
cember 13-15, 1999, Proceedings, volume 1738 of Lecture Notes in Computer Science, pages
97–109. Springer, 1999. doi:10.1007/3-540-46691-6_8.

21 Mickael Randour. Automated synthesis of reliable and efficient systems through game
theory: A case study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII,
pages 731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

22 Mickael Randour. Reconciling rationality and stochasticity: Rich behavioral models in
two-player games. CoRR, abs/1603.05072, 2016. GAMES 2016, the 5th World Congress of
the Game Theory Society, Maastricht, Netherlands. URL: http://arxiv.org/abs/1603.
05072.

23 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Variations on the stochas-
tic shortest path problem. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen,
editors, Verification, Model Checking, and Abstract Interpretation - 16th International
Conference, VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, volume
8931 of Lecture Notes in Computer Science, pages 1–18. Springer, 2015. doi:10.1007/
978-3-662-46081-8_1.

24 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional Markov decision processes. Formal Methods in System Design, 50(2):207–248,
2017. doi:10.1007/s10703-016-0262-7.

ICALP 2017

http://dx.doi.org/10.1007/3-540-56922-7_32
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1007/3-540-46691-6_8
http://dx.doi.org/10.1007/978-3-319-00395-5_90
http://arxiv.org/abs/1603.05072
http://arxiv.org/abs/1603.05072
http://dx.doi.org/10.1007/978-3-662-46081-8_1
http://dx.doi.org/10.1007/978-3-662-46081-8_1
http://dx.doi.org/10.1007/s10703-016-0262-7

Synchronizability of Communicating Finite State
Machines is not Decidable∗

Alain Finkel1 and Etienne Lozes2

1 LSV, ENS Cachan, CNRS, Cachan, France
finkel@lsv.fr

2 LSV, ENS Cachan, CNRS, Cachan, France
lozes@lsv.fr

Abstract
A system of communicating finite state machines is synchronizable [1, 4] if its send trace semantics,
i.e. the set of sequences of sendings it can perform, is the same when its communications are
FIFO asynchronous and when they are just rendez-vous synchronizations. This property was
claimed to be decidable in several conference and journal papers [1, 4, 3, 2] for either mailboxes
(∗-1) or peer-to-peer (1-1) communications, thanks to a form of small model property. In this
paper, we show that this small model property does not hold neither for mailbox communications,
nor for peer-to-peer communications, therefore the decidability of synchronizability becomes an
open question. We close this question for peer-to-peer communications, and we show that syn-
chronizability is actually undecidable. We show that synchronizability is decidable if the topology
of communications is an oriented ring. We also show that, in this case, synchronizability implies
the absence of unspecified receptions and orphan messages, and the channel-recognizability of
the reachability set.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases verification, distributed system, asynchronous communications, choreo-
graphies

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.122

1 Introduction

Asynchronous distributed systems are error prone not only because they are difficult to
program, but also because they are difficult to execute in a reproducible way. The slack
of communications, measured by the number of messages that can be buffered in a same
communication channel, is not always under the control of the programmer, and even when
it is, it may be delicate to choose the right size of the communication buffers.

Slack elasticity of a distributed system with asynchronous communications is the property
that the “observable behaviour” of the system is the same whatever the slack of commu-
nications is. There are actually as many notions of slack elasticity as there are notions of
observable behaviours (and of distributed systems). Slack elasticity has been studied in various
contexts: for hardware design [16], with the goal of ensuring that some code transformations
are semantic-preserving, for parallel programming in MPI [18, 19], for ensuring the absence
of deadlocks and other bugs, or more recently for web services and choreographies [1, 4, 2],
for verifying various properties, among which choreography realizability [3].

∗ This is a proceedings version. The full version is [11], https://arxiv.org/abs/1702.07213.

EA
T

C
S

© Alain Finkel and Etienne Lozes;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 122; pp. 122:1–122:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.122
https://arxiv.org/abs/1702.07213
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

122:2 Synchronizability of Communicating Finite State Machines is not Decidable

This paper focuses on synchronizability [1], a special form of slack elasticity that was
defined by Basu and Bultan for analyzing choreographies. Synchronizability is the slack
elasticity of the send trace semantics of the system: a system of communicating finite state
machines is synchronizable if any asynchronous trace can be mimicked by a synchronous
one that contains the same send actions in the same order. Synchronizability was claimed
decidable first for mailbox communications [4], where each peer stores all incoming messages in
a unique mailbox in a FIFO fashion. Later, the decidability claim was extended to peer-to-peer
communications [2], where there is a FIFO queue for every pair of peers. Synchronizability
seemed to contrast with many other properties of systems of communicating finite state
machines (including deadlock-freedom, absence of orphan messages, boundedness, etc) that
are undecidable for systems of just two machines [6]. The proof relied on the claim that
synchronizability would be the same as 1-synchronizability, which states that any 1-bounded
trace can be mimicked by a synchronous trace.

In this paper, we show that the two claims are actually false: 1-synchronizability does not
imply synchronizability, and at least for peer-to-peer communications, synchronizability is
undecidable. We also show that the two claims hold, however, if we restrict to systems where
the communication topology is an oriented, unidirectional ring, in particular the topology of a
system with two peers only. While proving that 1-synchronizability implies synchronizability
for ring topologies we also show that 1-synchronizability implies the absence of unspecified
receptions and orphan messages, and that the reachability set is channel-recognizable.

Outline. The paper focuses on the peer-to-peer communication model. Section 2 introduces
all notions of communicating finite state machines and synchronizability. In Section 3, we show
that synchronizability is undecidable. Section 4 shows the decidability of synchronizability
on ring topologies. Section 5 concludes with discussions and open problems about other
communication models, in particular the mailbox communication model that was the first
and the most studied model in previous works on synchronizability. Due to space constraints,
several proofs are omitted and can be found in a companion long version [11].

Related Work. The analysis of systems of communicating finite state machines has always
been a very active topic of research. Systems with channel-recognizable (aka QDD [5]
representable) reachability sets are known to enjoy a decidable reachability problem [17].
Heussner et al developed a CEGAR approach based on regular model-checking [13]. Classific-
ations of communication topologies according to the decidability of the reachability problems
are known for FIFO, FIFO+lossy, and FIFO+bag communications [8, 9]. In [15, 14], the
bounded context-switch reachability problem for communicating machines extended with
local stacks modeling recursive function calls is shown decidable under various assumptions.
Session types dialects have been introduced for systems of communicating finite state ma-
chines [10], and were shown to enforce various desirable properties. Existentially-bounded
systems are systems of communicating finite state machines that were studied in a language-
theoretic perspective: in [12], in particular, correspondences have been established among
message sequence charts languages defined on the one hand by (universally/existentially
bounded) systems of communicating machines and on the other hand by monadic second
order logic over partial orders and automata Whether a system of communicating machines
is existentially bounded, respectively existentially k-bounded for a fixed k, is undecidable
in the general case, but it is unknown whether it remains undecidable for systems that are
non-blocking.

A. Finkel and E. Lozes 122:3

2 Preliminaries

Messages and topologies. A message set M is a tuple 〈ΣM , p, src, dst〉 where ΣM is a finite
set of letters (more often called messages), p ≥ 1 and src, dst are functions that associate
to every letter a ∈ Σ naturals src(a) 6= dst(a) ∈ {1, . . . , p}. We often write ai→j for a
message a such that src(a) = i and dst(a) = j; we often identify M and ΣM and write for
instance M = {ai1→j1

1 , ai2→j2
2 , . . . } instead of ΣM = . . . , or w ∈ M∗ instead of w ∈ Σ∗M .

The communication topology associated to M is the graph GM with vertices {1, . . . , p} and
with an edge from i to j if there is a message a ∈ ΣM such that src(a) = i and dst(a) = j.
GM is an oriented ring if the set of edges of GM is {(i, j) | i+ 1 = j mod p}.

Traces. An action λ over M is either a send action !a or a receive action ?a, with a ∈ ΣM .
The peer peer(λ) of action λ is defined as peer(!a) = src(a) and peer(?a) = dst(a). We write
Acti,M for the set of actions of peer i and ActM for the set of all actions over M . A M -trace τ
is a finite (possibly empty) sequence of actions. We write Act∗M for the set of M -traces, ε for
the emptyM -trace, and τ1 ·τ2 for the concatenation of twoM -traces. We sometimes write !?a
for !a · ?a. A M -trace τ is a prefix of υ, τ ≤pref υ if there is θ such that υ = τ · θ. The prefix
closure ↓ S of a set of M -traces S is the set {τ ∈ Act∗M | there is υ ∈ S such that τ ≤pref υ}.
For a M -trace τ and peer ids i, j ∈ {1, . . . , p} we write

send(τ) (resp. recv(τ)) for the sequence of messages sent (resp. received) during τ , i.e.
send(!a) = a, send(?a) = ε, and send(τ1 · τ2) = send(τ1) · send(τ2) (resp. recv(!a) = ε,
recv(?a) = a, and recv(τ1 · τ2) = recv(τ1) · recv(τ2)).
onPeeri(τ) for the M -trace of actions λ in τ such that peer(λ) = i.
onChanneli→j(τ) for the M -trace of actions λ in τ such that λ ∈ {!a, ?a} for some a ∈M
with src(a) = i and dst(a) = j.
bufferi→j(τ) for the word w ∈ M∗, if it exists, such that send(onChanneli→j(τ)) =
recv(onChanneli→j(τ)) · w.

A M -trace τ is FIFO (resp. a k-bounded FIFO, for k ≥ 1) if for all i, j ∈ {1, . . . , p}, for all
prefixes τ ′ of τ , bufferi→j(τ ′) is defined (resp. defined and of length at most k). A M -trace
is synchronous if it is of the form !?a1 · !?a2 · · · !?ak for some k ≥ 0 and a1, . . . , ak ∈M . In
particular, a synchronous M -trace is a 1-bounded FIFO M -trace (but the converse is false).
A M -trace τ is stable if bufferi→j(τ) = ε for all i 6= j ∈ {1, . . . , p}.

Two M -traces τ, υ are causal-equivalent τ causal∼ υ if
1. τ, υ are FIFO, and
2. for all i ∈ {1, . . . , p}, onPeeri(τ) = onPeeri(υ).
The relation causal∼ is a congruence with respect to concatenation. Intuitively, τ causal∼ υ if τ is
obtained from υ by iteratively commuting adjacent actions that are not from the same peer
and do not form a “matching send/receive pair”.

Peers, systems, configurations. A system (of communicating machines) over a message
set M is a tuple S = 〈P1, . . . ,Pp〉 where for all i ∈ {1, . . . , p}, the peer Pi is a finite state
automaton 〈Qi, q0,i,∆i〉 over the alphabet Act

,i,M and with (implicitly) Qi as the set of
accepting states. We write L(Pi) for the set of M -traces that label a path in Pi starting at
the initial state q0,i.

Let the system S be fixed. A configuration γ of S is a tuple (q1, . . . , qp, w1,2, . . . , wp−1,p)
where qi is a state of Pi and for all i 6= j, wi,j ∈ M∗ is the content of channel i → j. A
configuration is stable if wi,j = ε for all i, j ∈ {1, . . . , p} with i 6= j.

ICALP 2017

122:4 Synchronizability of Communicating Finite State Machines is not Decidable

q0,1 q1,1 q2,1 q3,1P1
!a1→2 !a1→2 !b1→3

q0,2

q1,2 q2,2 q3,2

q4,2 q5,2P2

?a1→2

?a1→2 ?c3→2

?c3→2 !d2→1
q0,3 q1,3 q2,3P3

?b1→3 !c3→2

Figure 1 System of Example 1 and Theorem 3.

Let γ = (q1, . . . , qp, w1,2, . . . , wp−1,p), γ′ = (q′1, . . . , q′p, w′1,2, . . . , w′p−1,p) and m ∈M with
src(m) = i and dst(m) = j. We write γ !m−−→S γ′ (resp. γ

?m−−→S γ′) if (qi, !m, q′i) ∈ ∆i (resp.
(qj , ?m, q′j) ∈ ∆j), w′i,j = wi,j ·m (resp. wi,j = m ·w′i,j) and for all k, ` with k 6= i (resp. with
k 6= j), qk = q′k and w′k,` = wk,` (resp. w′`,k = w`,k). If τ = λ1 · λ2 · · ·λn, we write τ−→S for
λ1−→S

λ2−→S . . .
λn−−→S . We often write τ−→ instead of τ−→S when S is clear from the context. The

initial configuration of S is the stable configuration γ0 = (q0,1, . . . , q0,p, ε, . . . , ε). A M -trace
τ is a trace of system S if there is γ such that γ0

τ−→ γ. Equivalently, τ is a trace of S if
1. it is a FIFO trace, and
2. for all i ∈ {1, . . . , p}, onPeeri(τ) ∈ L(Pi).
For k ≥ 1, we write Tracesk(S) for the set of k-bounded traces of S, Traces0(S) for the set of
synchronous traces of S, and Tracesω(S) for

⋃
k≥0 Tracesk(S).

I Example 1. Consider the message set M = {a1→2, b1→3, c3→2, d2→1} and the system
S = 〈P1,P2,P3〉 where P1,P2,P3 are as depicted in Fig. 1. Then

L(P1) = ↓ {!a1→2 · !a1→2 · !b1→3}
L(P2) = ↓ {?a1→2 · ?a1→2 · ?c3→2 , ?c3→2 · !d2→1}
L(P3) = ↓ {?b1→3 · !c3→2}.

An example of a stable trace is !a1→2 · !a1→2 · !?b1→3 · !c3→2 · ?a1→2 · ?a1→2 · ?c3→2. Let
τ =!a1→2 · !a1→2 · !?b1→3 · !?c3→2 · !d2→1. Then τ ∈ Traces2(S) is a 2-bounded trace of the
system S, and γ0

τ−→ (q3,1, q5,2, q2,3, a
1→2a1→2, ε, d2→1, ε, ε, ε).

Two traces τ1, τ2 are S-equivalent, τ1
S∼ τ2, if τ1, τ2 ∈ Tracesω(S) and there is γ such

that γ0
τi−→ γ for both i = 1, 2. It follows from the definition of causal∼ that if τ1

causal∼ τ2 and
τ1, τ2 ∈ Tracesω(S), then τ1

S∼ τ2.

Synchronizability. Following [4], we define the observable behaviour of a system as its set
of send traces enriched with their final configurations when they are stable. Formally, for
any k ≥ 0, we write Jk(S) and Ik(S) for the sets

Jk(S) = {send(τ) | τ ∈ Tracesk(S)}
Ik(S) = Jk(S) ∪ {(send(τ), γ) | γ0

τ−→ γ, γ stable, τ ∈ Tracesk(S)}.

Synchronizability is then defined as the slack elasticity of these observable behaviours.

I Definition 2 (Synchronizability [1, 4]). A system S is synchronizable if I0(S) = Iω(S). S
is called language synchronizable if J0(S) = Jω(S).

For convenience, we also introduce a notion of k-synchronizability: for k ≥ 1, a system S
is k-synchronizable if I0(S) = Ik(S), and language k-synchronizable if J0(S) = Jk(S). A
system is therefore (language) synchronizable if and only if it is (language) k-synchronizable
for all k ≥ 1.

A. Finkel and E. Lozes 122:5

I Theorem 3. There is a system S that is 1-synchronizable, but not synchronizable.

Proof. Consider again the system S of Example 1. Let γijk := (qi,1, qj,2, qk,3, ε, . . . , ε). Then

J0(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2}
J1(S) = J0(S)
J2(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2 · d2→1}
Ik(S) = Jk(S) ∪ Stab for all k ≥ 0

where Stab = {(ε, γ0), (a1→2, γ101), (a1→2 ·a1→2, γ202), (a1→2 ·a1→2 ·b1→3, γ312), (a1→2 ·a1→2 ·
b1→3 · c3→2, γ323)}. J

This example contradicts Theorem 4 in [2], which stated that J0(S) = J1(S) implies
J0(S) = Jω(S). This also shows that the decidability of synchronizability for peer-to-peer
communications is open despite the claim in [2]. The next section closes this question.

I Remark. In Section 5, we give a counter-example that addresses communications with
mailboxes, i.e. the first communication model considered in all works about synchronizability,
and we list several other published theorems that our counter-example contradicts.

3 Undecidability of Synchronizability

In this section, we show the undecidability of synchronizability for systems with at least
three peers. The key idea is to reduce a decision problem on a FIFO automaton A, i.e.
an automaton that can both enqueue and dequeue messages in a unique channel, to the
synchronizability of a system SA. The reduction is quite delicate, because synchronizability
constrains a lot the way SA can be defined (a hint for that being that SA must involve three
peers). It is also delicate to reduce from a classical decision problem on FIFO automata
like e.g. the reachability of a control state, and we first establish the undecidability of a
well-suited decision problem on FIFO automata, roughly the reception of a message m with
some extra constraints. We can then construct a system S ′′A,m such that the synchronizability
of S ′′A,m is equivalent to the non-reception of the special message m in A.

A FIFO automaton is a finite state automaton A = 〈Q,ActΣ,∆, q0〉 over an alphabet
of the form ActΣ for some finite set of letters Σ with all states being accepting states. A
FIFO automaton can be thought as a system with only one peer, with the difference that,
according to our definition of systems, a peer can only send messages to peers different from
itself, whereas a FIFO automaton enqueues and dequeues letters in a unique FIFO queue,
and thus, in a sense, “communicates with itself”. All notions we introduced for systems
are obviously extended to FIFO automata. In particular, a configuration of A is a tuple
γ = (q, w) ∈ Q × Σ∗, it is stable if w = ε, and the transition relation γ

τ−→ γ′ is defined
exactly the same way as for systems. For technical reasons, we consider two mild restrictions
on FIFO automata:
(R1) for all γ0

τ−→ (q, w), either τ = ε or w 6= ε (in other words, all reachable configurations
are unstable, except the initial one);

(R2) for all (q0, λ, q) ∈ ∆, λ =!a for some a ∈ Σ (in other words, there is no receive action
labeling a transition from the initial state).

I Lemma 4. The following decision problem is undecidable.
Input A FIFO automaton A that satisfies (R1) and (R2), and a message m.
Question Is there a M -trace τ such that τ · ?m ∈ Tracesω(A)?

ICALP 2017

122:6 Synchronizability of Communicating Finite State Machines is not Decidable

Proof. This kind of result is often considered folklore, but it seems it could be informative
to detail a possible construction. We reduce from the existence of a finite tiling given a set
of tiles and a pair of initial and final tiles. Intuitively, we construct a FIFO automaton that
outputs the first row of the tiling, storing it into the queue, and then for all next row i+ 1,
the automaton outputs the row tile after tile, popping a tile of row i in the queue in between
so as to check that each tile of row i+ 1 vertically coincides with the corresponding tile of row
i. Consider a tuple T = 〈T, t0, tF , H, V 〉 where T is a finite set of tiles t0, tF ∈ T are initial
and final tiles, and H,V ⊆ T ×T are horizontal and vertical compatibility relations. Without
loss of generality, we assume that there is a “padding tile” � such that (t,�) ∈ H ∩ V for all
t ∈ T . For a natural n ≥ 1, a n-tiling is a function f : N× {1, . . . , n} → T such that
1. f(0, 0) = t0,
2. there are (iF , jF) ∈ N× {1, . . . , n} such that f(iF , jF) = tF ,
3. (f(i, j), f(i, j + 1)) ∈ H for all (i, j) ∈ N× {1, . . . , n− 1}, and
4. (f(i, j), f(i+ 1, j)) ∈ V for all (i, j) ∈ N× {1, . . . , n}.
The problem of deciding, given a tuple T = 〈T, t0, tF , H, V 〉, whether there is some n ≥ 1 for
which there exists a n-tiling, is undecidable.1 Let T = 〈T, t0, tF , H, V 〉 be fixed. We define
the FIFO automaton AT = 〈Q,Σ,∆, q0〉 with Q = {qt,0, q↓=t, q←=t, q←=t,↓=t′ | t ∈ T, t′ ∈
T ∪ {$}} ∪ {q0, q1}, Σ = T ∪ {$}, and ∆ ⊆ Q× ActΣ ×Q, with

∆ = {(q0, !t0, qt0,0)} ∪ {(qt,0, !t′, qt′,0) | (t, t′) ∈ H} ∪ {(qt,0, !$, q1) | t ∈ T}
∪ {(q1, ?t, q↓=t) | t ∈ T)} ∪ {(q↓=t, !t′, q←=t′) | (t, t′) ∈ V }
∪ {(q←=t, ?t′, q←=t,↓=t′) | t ∈ T, t′ ∈ T ∪ {$}}
∪ {(q←=t,↓=t′ , !t′′, q←=t′′) | (t, t′′) ∈ H and (t′, t′′) ∈ V }
∪ {(q←=t,↓=$, !$, q1) | t ∈ T}

Therefore, any execution of AT is of the form

!t1,1 · !t1,2 · · ·!t1,n · !$ · ?t1,1 · !t2,1 · ?t1,2 · !t2,2 · · ·!t2,n · ?$ · !$ · ?t2,1 · !t3,1 · · ·

where t1,1 = t0, (ti,j , ti+1,j) ∈ V and (ti,j , ti,j+1) ∈ H. The following two are thus equivalent:
1. there is n ≥ 1 such that T admits a n-tiling
2. there is a trace τ ∈ Tracesω(A) that contains ?tF . J

Let us now fix a FIFO automaton A = 〈QA,ActΣ,∆A, q0〉 that satisfies (R1) and (R2).
Let M = M1 ∪M2 ∪M3 be such that all messages of Σ can be exchanged among all peers in
all directions but 2→ 1, i.e.

M1 = {a1→2, a1→3, a3→1 | a ∈ Σ}
M2 = {a3→2, a1→2, a2→3 | a ∈ Σ}
M3 = {a1→3, a3→1, a3→2, a2→3 | a ∈ Σ}

P1 P2

P3

Intuitively, we want P1 to mimick A’s decisions and the channel 1→ 2 to mimick A’s queue
as follows. When A would enqueue a letter a , peer 1 sends a1→2 to peer 2, and when A
would dequeue a letter a, peer 1 sends to peer 2 via peer 3 the order to dequeue a, and
waits for the acknowledgement that the order has been correcly executed. Formally, let
P1 = 〈Q1, q0,1,∆1〉 be defined by Q1 = QA] {qδ | δ ∈ ∆A} and ∆1 = {(q, !a1→2, q′) |

1 Note that, due to the presence of the padding tile, this problem is equivalent to the problem of the
existence of a finite rectangular tiling that contains t0 at the beginning of the first row and tF anywhere
in the rectangle, which in turn is equivalent to the termination of a Turing machine.

A. Finkel and E. Lozes 122:7

A

!a !m

?a, ?m
P1

!a1→2 !m1→2

!a1→3?a3→1

!m1→3?m3→1

P2
?a3→2

?a3→2 ?a1→2

!a2→3

?m3→2

?m3→2
?m1→2

!m2→3

P3 ?a1→3 !a3→2

?a2→3!a3→1

?m1→3!m3→2

?m2→3 !m3→1

P ′2
?a1→2, ?m1→2 ?a1→2, ?m1→2

?a3→2

?a1→2, ?m1→2

!a2→3

?a3→2

Figure 2 The FIFO automaton A of Example 5 and its associated systems SA = 〈P1,P2,P3〉

and S ′A,m = 〈P1,P ′2,P3〉. The sink state q⊥ and the transitions q
?m3→2

−−−−−→ q⊥ are omitted in the
representation of P ′2.

(q, !a, q′) ∈ ∆A} ∪ {(q, !a1→3, qδ), (qδ, ?a3→1, q′) | δ = (q, ?a, q′) ∈ ∆A}. The roles of peers
2 and 3 is then rather simple: peer 3 propagates all messages it receives, and peer 2
executes all orders it receives and sends back an acknowledgement when this is done. Let
P2 = 〈Q2, q0,2,∆2〉 and P3 = 〈Q3, q0,3,∆3〉 be defined as we just informally described, with
a slight complication about the initial state of P2 (this is motivated by technical reasons that
will become clear soon).

Q2={q0,2, q1,2} ∪ {qa,1, qa,2 | a ∈ Σ} Q3= {q0,3} ∪ {qa,1, qa,2, qa,3 | a ∈ Σ}
∆2= {(q0,2, ?a3→2, qa,1), (q1,2, ?a3→2, qa,1), (qa,1, ?a1→2, qa,2), (qa,2, !a2→3, q1,2) | a ∈ Σ}
∆3= {(q0,3, ?a1→3, qa,1), (qa,1, !a3→2, qa,2), (qa,2, ?a2→3, qa,3), (qa,3, !a3→1, q0,3) | a ∈ Σ}

I Example 5. Consider Σ = {a,m} and the FIFO automaton A = 〈{q0, q1},ActΣ,∆, q0〉
with transition relation ∆A = {(q0, !a, q0), (q0, !m, q1), (q1, ?a, q0), (q1, ?m, q0)}. Then A and
the peers P1,P2,P3 are depicted in Fig. 2.

Let SA = 〈P1,P2,P3〉. There is a tight correspondence between the k-bounded traces of
A, for k ≥ 1, and the k-bounded traces of SA: every trace τ ∈ Tracesk(A) induces the trace
h(τ) ∈ Tracesk(SA) where h : Act∗Σ → ActM is the homomorphism from the traces of A to
the traces of SA defined by h(!a) =!a1→2 and h(?a) =!?a1→3 · !?a3→2 · ?a1→2 · !?a2→3 · !?a3→1.
The converse is not true: there are traces of SA that are not prefixes of a trace h(τ) for some
τ ∈ Tracesk(A). This happens when P1 sends an order to dequeue a1→3 that correspond
to a transition ?a that A cannot execute. In that case, the system blocks when P2 has to
execute the order.

I Lemma 6. For all k ≥ 0, Tracesk(SA) =↓ {h(τ) | τ ∈ Tracesk(A)}∪ ↓ {h(τ) · !?a1→3 ·
!?a3→2 | τ ∈ Tracesk(A), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

Since A satisfies (R1), all stable configurations that are reachable in SA are reachable by
a synchronous trace, and since it satisfies (R2), the only reachable stable configuration is
the initial configuration. Moreover, J0(SA) = {ε} and Jk(SA) 6= {ε} for k ≥ 1 (provided A
sends at least one message). As a consequence, SA is not synchronizable.

Let us fix now a special message m ∈ Σ. We would like to turn SA into a system that is
synchronizable, except for the send traces that contain m2→3. Note that, by Lemma 6, SA

ICALP 2017

122:8 Synchronizability of Communicating Finite State Machines is not Decidable

has a send trace that contains m2→3 if and only if there are traces of A that contain ?m.
Roughly, we need to introduce new behaviours for the peer 2 that will “flood” the system
with many synchronous traces. Let S ′A,m = 〈P1,P ′2,P3〉 be the system SA in which the peer
P2 is replaced with the peer P ′2 = 〈Q′2, q0,2,∆′2〉 defined as follows.

Q′2 = {q0,2, q
′
0,2} ∪ {q′a,1 | a ∈ Σ, a 6= m, } ∪ {q⊥}

∆′2 = {(q0,2, ?a1→2, q′0,2), (q, ?a1→2, q) | a ∈ Σ, q 6= q0,2}
∪ {(q0,2, ?a3→2, q′a,1), (q′0,2, ?a3→2, q′a,1), (q′a,1, !a2→3, q′0,2), | a ∈ Σ, a 6= m}
∪ {(q, ?m3→2, q⊥) | q ∈ Q′2}

I Example 7. For Σ = {a,m}, and A as in Example 5, P ′2 is depicted in Fig. 2 (omitting
the transitions to the sink state q⊥).

Intuitively, P ′2 can always receive any message from peer P1. Like P2, it can also receive
orders to dequeue from peer P3, but instead of executing the order before sending an
acknowledgement, it ignores the order as follows. If P ′2 receives the order to dequeue a
message a1→2 6= m1→2, P ′2 acknowledges P3 but does not dequeue in the 1 → 2 queue. If
the order was to dequeue m, P ′2 blocks in the sink state q⊥. The system S ′A = 〈P1,P ′2,P3〉
contains many synchronous traces: any M -trace τ ∈ L(P1) labeling a path in automaton P1
can be lifted to a synchronous trace τ ′ ∈ Traces0(SA,m) provided !m1→3 does not occur in τ .
However, if P1 takes a !m1→3 transition, it gets blocked for ever waiting for m3→1. Therefore,
if !a1→3 occurs in a synchronous trace τ of S ′A,m, it must be in the last four actions, and this
trace leads to a deadlock configuration in which both 1 and 3 wait for an acknowledgement
and 2 is in the sink state.

Let Lm(A) be the set of traces τ recognized by A as a finite state automaton (over the
alphabet ActΣ) such that either ?m does not occur in τ , or it occurs only once and it is the
last action of τ . For instance, with A as in Example 5, Lm(A) =↓

(
!a∗ · !m · ?a

)∗ · !a∗ · !m · ?m.
Let h′ : Act∗Σ → Act∗M be the morphism defined by h′(!a) =!?a1→2 for all a ∈ Σ, h′(?a) =
!?a1→3 · !?a3→2 · !?a2→3 · !?a3→1 for all a 6= m, and h′(?m) =!?m1→3 · !?m3→2.

I Lemma 8. Traces0(S ′A,m) =↓ {h′(τ) | τ ∈ Lm(A)}.

Let us now consider an arbitrary trace τ ∈ Tracesω(S ′A,m). Let h′′ : Act∗M → Act∗M be
such that h′′(!a1→2) =!?a1→2, h′′(?a1→2) = ε, and h′′(λ) = λ otherwise. Then h′′(τ) ∈
Traces0(S ′A,m) and τ

S∼ h′′(τ) for S = S ′A,m. Indeed, τ and h′′(τ) are the same up to
insertions and deletions of receive actions ?a1→2, and every state of P ′2 (except the initial
one) has a self loop ?a1→2. Therefore,

I Lemma 9. S ′A,m is synchronizable.

Let us now consider the system S ′′A,m = 〈P1,P2 ∪ P ′2,P3〉, where P2 ∪ P ′2 = 〈Q2 ∪
Q′2, q02,∆2 ∪ ∆′′2〉 is obtained by merging the initial state q0,2 of P2 and P ′2. Note that
Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m), because q0,2 has no incoming edge in P2 ∪ P ′2.

I Lemma 10. Let k ≥ 1. The following two are equivalent:
1. there is τ such that τ · ?m ∈ Tracesk(A);
2. Ik(S ′′A,m) 6= I0(S ′′A,m).

Proof. Let k ≥ 1 be fixed.
(1) =⇒ (2) Let τ be such that τ · ?m ∈ Tracesk(A). By Lemma 6, there is υ ∈ Ik(SA) such

that m2→3 occurs in υ (take υ = send(h(τ · ?m))). By Lemma 6, υ 6∈ I0(SA) = ∅, and by
Lemma 8, υ 6∈ I0(S ′A,m). Therefore υ ∈ Ik(S ′′A,m) \ I0(S ′′A,m).

A. Finkel and E. Lozes 122:9

(2) =⇒ (1) By contraposite. Let Tracesk(A\?m) = {τ ∈ Tracesk(A) |?m does not oc-
cur in τ}, and let us assume ¬(1), i.e. Tracesk(A\?m) = Tracesk(A). Let us show
that Ik(S ′′A,m) = I0(S ′′A,m). From the assumption ¬(1) and Lemma 6, it holds that
Tracesk(SA) =

↓ {h(τ) | τ ∈ Tracesk(A\?m)}
∪ ↓ {h(τ) · !?a1→3 · !?a3→2 | τ ∈ Tracesk(A\?m), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

By send(h(τ)) = send(h′(τ)) and Tracesk(A\?m) ⊆ Lm(A), we get that

Ik(SA) ⊆ ↓ {send(h′(τ)) | τ ∈ Lm(A)}

and therefore, by Lemma 8, Ik(SA) ⊆ I0(S ′A,m). Since Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m)
and since by Lemma 9 Ik(S ′A,m) = I0(S ′A,m), we get that Ik(S ′′A,m) ⊆ I0(S ′′Am), and thus
Ik(S ′′A,m) = I0(S ′′Am). J

I Theorem 11. Synchronizability (resp. language synchronizability) is undecidable.

Proof. Let a FIFO automaton A satisfying (R1) and (R2) and a message m be fixed. By
Lemma 10, S ′′A,m is non synchronizable iff there is a trace τ such that τ · ?m ∈ Tracesω(A).
By Lemma 4, this is an undecidable problem. J

4 The case of oriented rings

In the previous section we established the undecidability of synchronizability for systems
with (at least) three peers. In this section, we show that this result is tight, in the sense that
synchronizability is decidable if GM is an oriented ring, in particular if the system involves
two peers only. This relies on the fact that 1-synchronizability implies synchronizability for
such systems. This property is highly non-trivial, and below we only sketch the main steps
of the proof, identifying when the hypothesis on the ring topology becomes necessary.

The starting point is a confluence property on arbitrary 1-synchronizable systems.

I Lemma 12. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a, b ∈M be such
that
1. τ · !a ∈ Traces1(S),
2. τ · !b ∈ Traces1(S), and
3. src(a) 6= src(b).
If υ1, υ2 are any two of the six different shuffles of !a · ?a with !b · ?b, then τ · υ1 ∈ Tracesω(S),
τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

causal∼

!a !b

!b
?a

!a
?b

!b ?a ?b !a

?b ?a

I Remark. This lemma should not be misunderstood as a consequence of causal equivalence.
Observe indeed that the square on top of the diagram is the only square that commutes
for causal equivalence. The three other squares only commute with respect to S∼, and they
commute for causal∼ only if some extra assumptions on a and b are made. For instance, the left
square does commute for causal∼ if and only if dst(a) 6= src(b).

ICALP 2017

122:10 Synchronizability of Communicating Finite State Machines is not Decidable

Lemma 12 then generalizes to arbitrary sequences of send actions with rather technical
arguments.

I Lemma 13. Let S be a 1-synchronizable system. Let a1, . . . , an, b1, . . . bm ∈ M and
τ ∈ Traces0(S) be such that
1. τ · !a1 · · · !an ∈ Tracesn(S),
2. τ · !b1 · · · !bm ∈ Tracesm(S), and
3. src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Then for any two different shuffles υ1, υ2 of !?a1 · !?a2 · · · !?an with !?b1 · !?b2 · · · !?bm, it holds
that τ · υ1 ∈ Tracesω(S) , τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

For the rest of the proof, the hypothesis on the communication topology being an oriented
ring becomes necessary. We follow the rough idea in [4], also used for half-duplex systems [7],
and show a trace normalization property.

I Definition 14 (Normalized trace). A M -trace τ is normalized if there is a synchronous
M -trace τ0, n ≥ 0, and messages a1, . . . , an such that τ = τ0 · !a1 · · · !an.

I Lemma 15 (Trace Normalization). Assume M is such that the communication topology
GM is an oriented ring. Let S = 〈P1, . . . ,Pp〉 be a 1-synchronizable M-system. For all
τ ∈ Tracesω(S), there is a normalized trace norm(τ) ∈ Tracesω(S) such that τ S∼ norm(τ).

τ

!m1 · · · !mk

τ0

Proof. By induction on τ . Let τ = τ ′ · λ, be fixed. Let us assume by induction hypothesis
that there is a normalized trace norm(τ ′) ∈ Tracesω(S) such that τ ′ S∼ norm(τ ′). Let us
reason by case analysis on the last action λ of τ . The easy case is when λ is a send action:
then, norm(τ ′) · λ is a normalized trace, and norm(τ ′) · λ S∼ τ ′ · λ by right congruence of
S∼. The difficult case is when λ is ?a for some a ∈ M . Let i = src(a), j = dst(a), i.e.
i+ 1 = j mod p. By the definitions of a normal trace and causal∼ , there are τ ′0 ∈ Traces0(S),
a1, . . . , an, b1, . . . , bm ∈M such that

norm(τ ′) causal∼ τ ′0 · !a1 · · · !an · !b1 · · · !bm

with src(ak) = i for all k ∈ {1, . . . , n} and src(bk) 6= i for all k ∈ {1, . . . ,m}. Since GM is an
oriented ring, dst(a1) = j, therefore a1 = a (because by hypothesis j may receive a in the
configuration that norm(τ ′) leads to). Let norm(τ) = τ ′0 · !a · ?a · !b1 · · ·!bm · !a2 · · · !an and let
us show that norm(τ) ∈ Tracesω(S) and τ S∼ norm(τ).

Since norm(τ ′) ∈ Tracesω(S), we have in particular that τ ′0 · !a ∈ Traces1(S) and τ ′0 ·
!b1 · · ·!bn ∈ Tracesω(S). Consider the two traces

υ1 = τ ′0 · !a · ?a · !b1 · · ·!bn · ?b1 · · ·?bn
υ2 = τ ′0 · !a · !b1 · · ·!bn · ?a · ?b1 · · ·?bn.

By Lemma 13, υ1, υ2 ∈ Tracesω(S) and both lead to the same configuration, and in particular
to the same control state q for peer j. The actions ?b1, ?b2, . . .?bn are not executed by peer
j (because src(m) 6= i implies dst(m) 6= j on an oriented ring), so the two traces

υ′1 = τ ′0 · !a · ?a · !b1 · · ·!bn
υ′2 = τ ′0 · !a · !b1 · · ·!bn · ?a

A. Finkel and E. Lozes 122:11

lead to two configurations γ′1, γ′2 with the same control state q for peer j as in the configuration
reached after υ1 or υ2. On the other hand, for all k 6= j, onPeerk(υ′1) = onPeerk(υ′2), therefore
υ′1
S∼ υ′2. Since τ ′0 ·!a·!a2 · · ·!an ∈ Tracesn(S), and onPeeri(τ ′0 ·!a) = onPeeri(υ′1) = onPeeri(υ′2),

the two traces

υ′′1 = τ ′0 · !a · ?a · !b1 · · ·!bn · !a2 · · ·!an
υ′′2 = τ ′0 · !a · !b1 · · ·!bn · ?a · !a2 · · ·!an

belong to Tracesω(S) and υ′′1
S∼ υ′′2 . Consider first υ′′1 : this is norm(τ) as defined above,

therefore norm(τ) ∈ Tracesω(S), and norm(τ) S∼ υ′′2 . Consider now υ′′2 . By definition,
υ′′2

causal∼ norm(τ ′) · ?a. By hypothesis, norm(τ ′) S∼ τ ′, therefore norm(τ ′) · ?a causal∼ τ . To sum
up, norm(τ) S∼ υ′′2

causal∼ norm(τ ′) · ?a S∼ τ , therefore norm(τ) S∼ τ . J

As a consequence of Lemma 15, 1-synchronizability implies several interesting properties
on the reachability set.

I Definition 16 (Channel-recognizable reachability set [17, 7]). Let S = 〈P1, . . . ,Pp〉 with
Pi = 〈Qi,∆i, q0,i〉. The (coding of the) reachability set of S is the language Reach(S) over the
alphabet (M ∪

⋃p
i=1Qi)∗ defined as {q1 · · · qp · w1 · · ·wp | γ0

τ−→ (q1, . . . , qp, w1, . . . , wp), τ ∈
Tracesω(S)}. Reach(S) is channel-recognizable (or QDD representable [5]) if it is a recognizable
(and rational) language.

I Theorem 17. Let M be a message set such that GM is an oriented ring, and let S be a
M -system that is 1-synchronizable. Then
1. the reachability set of S is channel recognizable,
2. for all τ ∈ Tracesω(S), for all γ0

τ−→ γ, there is a stable configuration γ′, n ≥ 0 and
m1, . . .mn ∈M such that γ ?m1···?mn−−−−−−−→ γ′.

In particular, S neither has orphan messages nor unspecified receptions [7].

Proof. 1. Let S be the set of stable configurations γ such that γ0
τ−→ γ for some τ ∈

Traces0(S); S is finite and effective. By Lemma 15, Reach(S) =
⋃
{Reach!(γ) | γ ∈

S}, where Reach!(γ) = {q1 · · · qp · w1 · · ·wp | γ
!a1···!an−−−−−→ (q1, . . . , qp, w1, . . . , wp), n ≥

0, a1, . . . an ∈M} is an effective rational language.
2. Assume γ0

τ−→ γ. By Lemma 15, γ0
τ0·!m1···!mr−−−−−−−−→ γ for some τ0 ∈ Traces0(S). Then

τ0 · !m1 · · · !mr
causal∼ τ0 · τ1 where τ1 :=!a1 · · · !an · b1 · · · bm for some a1, . . . , an, b1, bm

such that src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. By Lemma 13,
τ0 ·τ1 ·τ1 ∈ Tracesω(S) (where τ1 =?a1 · · · ?an ·?b1 · · · ?bm), and therefore γ0

τ0·τ1−−−→ γ
τ1−→ γ′

for some stable configuration γ′.
J

I Theorem 18. Let M be a message set such that GM is an oriented ring. For any M -system
S, S is 1- synchronizable if and only if it is synchronizable.

τ

?m1 · · · ?mk

synch(τ)

In order to prove Theorem 18, we prove by induction on the length of τ that τ ·
?m1 · · · ?mk

S∼ synch(τ) for some messages m1, . . . ,mk, where synch(τ) denotes the unique
synchronous M -trace such that send(synch(τ)) = send(τ).

ICALP 2017

122:12 Synchronizability of Communicating Finite State Machines is not Decidable

I Theorem 19. Let M be a message set such that GM is an oriented ring. The problem of
deciding whether a given M -system is synchronizable is decidable.

5 Extensions

We considered the notions of synchronizability and language synchronizability introduced
by Basu and Bultan [2] and we showed that both are not decidable for systems with peer-
to-peer FIFO communications, called (1-1) type systems in [2]. In the same work, Basu
and Bultan considered the question of the decidability of language synchronizability for
other communication models. All the results we presented so far do not have any immediate
consequences on their claims for these communication models. Therefore, we briefly discuss
now what we can say about the decidability of language synchronizability for the other
communication models that have been considered.

Non FIFO communications. In [2], language synchronizability is studied for systems where
peers communicate through bags instead of queues, thus allowing to reorder messages.
Language synchronizability is decidable for bag communications: Tracesbagω (S) is the trace
language of a Petri net, T0(S) = {τ ∈ Act∗M | send(τ) ∈ J bag0 (S)} is an effective regular
language, S is language synchronizable iff Tracesbagω (S) ⊆ T0(S), and whether the trace
language of a Petri is included in a given regular language reduces to the coverability problem.
Lossy communications where not considered in [2], but the same kind of argument would also
hold for lossy communications. However, our Example 1 is a counter-example for Lemma 3
in [2], i.e. the notion of language 1-synchronizability for bag communications defined in [2]
does not imply language synchronizability. The question whether (language) synchronizability
can be decided more efficiently than by reduction to the coverability problem for Petri nets
is open.

Non peer-to-peer communications. The other communication models considered in [2]
keep the FIFO queue model, but differ in the way queues are distributed among peers. The
∗-1 (mailbox) model assumes a queue per receiver. This model is the first model that was
considered for (language) synchronizability [1, 4]. Our Example 1 is not easy to adapt for
this communication model. We therefore design a completely different counter-example.

I Example 20. Consider the system of communicating machines depicted in Fig. 3. Assume
that the machines communicate via mailboxes, like in [1, 4], i.e. all messages that are sent to
peer i wait in a same FIFO queue Qi, and let J ∗−1

k (S) denote the k-bounded send traces of S
within this model of communications. Then J ∗−1

0 (S) = J ∗−1
1 (S) 6= J ∗−1

2 (S), as depicted in
Figure 3. Therefore S is language 1-synchronizable but not language synchronizable, which
contradicts Theorem 1 in [1], Theorem 2 in [3], and Theorem 2 in [2]. It can be noticed that
it does not contradict Theorem 1 in [4], but it contradicts the Lemma 1 of the same paper,
which is used to prove Theorem 1.

Many problems are therefore left for future work: the (un)decidability of synchroniz-
ability for the mailbox semantics, the largest class of communication topologies for which
1-synchronizability implies synchronizability (either for the peer-to-peer semantics or for the
mailbox one), the study of language synchronizability, etc. Our intention in this work was
limited to the identification of some of these problems, and maybe to explain why the errors
in [1, 4, 2] were missed by so many reviewers.

A. Finkel and E. Lozes 122:13

P1
!a1→2 !a1→2 !b1→3

P2
?a1→2

?a1→2

!c2→3

!c2→3

?a1→2

?d3→2
!c2→3

?a1→2 ?a1→2 ?d3→2 !e2→1

P3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

J ∗−1
0 (S) = ↓ { aabcd,

aacb,

acab,

caab}
= J ∗−1

1 (S)

J ∗−1
2 (S) = J ∗−1

0 (S) ∪ {aabcde}

Figure 3 Language 1-synchronizability does not imply language synchronizability for 1-∗ (mailbox)
communications à la [1, 4].

Acknowledgement. We would like to thank the anonymous reviewers of our paper for
relevant suggestions of improvements, and for an accurate reading of our proofs.

References
1 Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Procs.

of WWW 2011, pages 795–804, 2011. doi:10.1145/1963405.1963516.
2 Samik Basu and Tevfik Bultan. On deciding synchronizability for asynchronously commu-

nicating systems. Theor. Comput. Sci., 656:60–75, 2016. doi:10.1016/j.tcs.2016.09.
023.

3 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. In
Procs. of POPL’12, pages 191–202, 2012. doi:10.1145/2103656.2103680.

4 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification of
asynchronously communicating systems. In Procs. of VMCAI 2012, 2012. doi:10.1007/
978-3-642-27940-9_5.

5 Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols
with infinite state spaces using qdds. Formal Methods in System Design, 14(3):237–255,
1999. doi:10.1023/A:1008719024240.

6 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, April 1983. doi:10.1145/322374.322380.

7 Gerald Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Inf. Comput., 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

8 Pierre Chambart and Philippe Schnoebelen. Mixing lossy and perfect fifo channels. In
Procs. of CONCUR 2008, pages 340–355, 2008. doi:10.1007/978-3-540-85361-9_28.

9 Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable topologies for com-
municating automata with FIFO and bag channels. In Procs. of CONCUR 2014, pages
281–296, 2014. doi:10.1007/978-3-662-44584-6_20.

10 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet commu-
nicating automata. In Procs. of ESOP 2012, pages 194–213, 2012. doi:10.1007/
978-3-642-28869-2_10.

11 Alain Finkel and Etienne Lozes. Synchronizability of communicating finite state machines is
not decidable. Technical report, arXiv, 2017. URL: https://arxiv.org/abs/1702.07213.

12 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–
956, 2006. doi:10.1016/j.ic.2006.01.005.

13 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre. Mcscm: A general framework
for the verification of communicating machines. In Procs. of TACAS 2012, pages 478–484,
2012. doi:10.1007/978-3-642-28756-5_34.

ICALP 2017

http://dx.doi.org/10.1145/1963405.1963516
http://dx.doi.org/10.1016/j.tcs.2016.09.023
http://dx.doi.org/10.1016/j.tcs.2016.09.023
http://dx.doi.org/10.1145/2103656.2103680
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1023/A:1008719024240
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1007/978-3-540-85361-9_28
http://dx.doi.org/10.1007/978-3-662-44584-6_20
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
https://arxiv.org/abs/1702.07213
http://dx.doi.org/10.1016/j.ic.2006.01.005
http://dx.doi.org/10.1007/978-3-642-28756-5_34

122:14 Synchronizability of Communicating Finite State Machines is not Decidable

14 Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability
analysis of communicating pushdown systems. Logical Methods in Computer Science, 8(3),
2012. doi:10.2168/LMCS-8(3:23)2012.

15 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. Context-bounded
analysis of concurrent queue systems. In Procs. of TACAS 2008, pages 299–314, 2008.
doi:10.1007/978-3-540-78800-3_21.

16 Rajit Manohar and Alain J. Martin. Slack elasticity in concurrent computing. In Procs. of
Math. of Prog. Construction (MPC’98), pages 272–285, 1998. doi:10.1007/BFb0054295.

17 Jan Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In Proc. of Protocol Specification, Testing, and Verification, VII, 1987.

18 Stephen F. Siegel. Efficient verification of halting properties for MPI programs with
wildcard receives. In Procs. of VMCAI 2005, pages 413–429, 2005. doi:10.1007/
978-3-540-30579-8_27.

19 Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby. Precise
dynamic analysis for slack elasticity: Adding buffering without adding bugs. In Procs. of
EuroMPI 2010, pages 152–159, 2010. doi:10.1007/978-3-642-15646-5_16.

http://dx.doi.org/10.2168/LMCS-8(3:23)2012
http://dx.doi.org/10.1007/978-3-540-78800-3_21
http://dx.doi.org/10.1007/BFb0054295
http://dx.doi.org/10.1007/978-3-540-30579-8_27
http://dx.doi.org/10.1007/978-3-540-30579-8_27
http://dx.doi.org/10.1007/978-3-642-15646-5_16

Admissibility in Concurrent Games∗†

Nicolas Basset1, Gilles Geeraerts2, Jean-François Raskin3, and
Ocan Sankur4

1 Université libre de Bruxelles, Brussels, Belgium
nicolas.basset@ulb.ac.be

2 Université libre de Bruxelles, Brussels, Belgium
gilles.geeraerts@ulb.ac.be

3 Université libre de Bruxelles, Brussels, Belgium
jraskin@ulb.ac.be

4 CNRS, IRISA, Rennes, France
ocan.sankur@irisa.fr

Abstract
In this paper, we study the notion of admissibility for randomised strategies in concurrent games.
Intuitively, an admissible strategy is one where the player plays ‘as well as possible’, because
there is no other strategy that dominates it, i.e., that wins (almost surely) against a superset of
adversarial strategies. We prove that admissible strategies always exist in concurrent games, and
we characterise them precisely. Then, when the objectives of the players are ω-regular, we show
how to perform assume-admissible synthesis, i.e., how to compute admissible strategies that win
(almost surely) under the hypothesis that the other players play admissible strategies only.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.3.1 Specifying and
Verifying and Reasoning about Programs, I.2.2 Program Synthesis

Keywords and phrases Multi-player games, admissibility, concurrent games, randomized
strategies

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.123

1 Introduction

In a concurrent n-player game played on a graph, all n players independently and simultan-
eously choose moves at each round of the game, and those n choices determine the next state
of the game [14]. Concurrent games generalise turn-based games and it is well-known that,
while deterministic strategies are sufficient in the turn-based case, randomised strategies
are necessary for winning with probability one even for reachability objectives. Intuitively,
randomisation is necessary because, in concurrent games, in each round, players choose their
moves simultaneously. Randomisation makes it possible to choose a good move with some
probability without the knowledge of the moves that the other players are simultaneously
choosing. As a consequence, there are two classical semantics that are considered to analyse
these games qualitatively: winning with certainty (sure semantics in the terminology of [14]),
and winning with probability one (almost sure semantics in the terminology of [14]). We
consider both semantics here.

∗ An extended version of this article is available in [4], http://arxiv.org/abs/1702.06439.
† This work was partially supported by the ERC Starting grant 279499 (inVEST), the ARC project «

Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond » (Fédération Wallonie-
Bruxelles), J.-F. Raskin is Professeur Francqui de Recherche.

EA
T

C
S

© Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 123; pp. 123:1–123:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.123
http://arxiv.org/abs/1702. 06439
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

123:2 Admissibility in Concurrent Games

s0 s1 s2 Trg
(b, b′) (d, d′)

(a,−), (−, a′) (c,−), (−, c′) (f, g′), (g, f ′)

(f, f ′), (g, g′)

(−,−)

Figure 1 A concurrent game where Player 1 and 2 want to reach Trg and s2 respectively.

SCO

LA

Adm.

(a) Concurrent games.

LA
Adm.

=
SCO

(b) Turn-based games.

SCO

Adm.
=

LA

(c) Safety games.

Figure 2 The relationships between the classes of Admissible, LA, and SCO strategies for three
families of games. All the inclusions are strict.

Previous papers on concurrent games are mostly concerned with two-player zero-sum
games, i.e. two players that have fully antagonistic objectives. In this paper, we consider the
more general setting of n-player non zero-sum concurrent games in which each player has
its own objective. The notion of winning strategy is not sufficient to study non zero-sum
games and other solution concepts have been proposed. One such concept is the notion of
admissible strategy [1].

For a player with objective Φ, a strategy σ is said to be dominated by a strategy σ′ if σ′
does as well as σ with respect to Φ against all the strategies of the other players and strictly
better for some of them. A strategy σ is admissible for a player if it is not dominated by any
other of his strategies. Clearly, playing a strategy which is not admissible is sub-optimal and
a rational player should only play admissible strategies. While recent works have studied the
notion of admissibility for n-player non zero-sum game graphs [5, 15, 10, 8, 7], they are all
concerned with the special case of turn-based games and this work is the first to consider the
more general concurrent games.

Throughout the paper, we consider the running example in Figure 1. This is a concurrent
game played by two players. Player 1’s objective is to reach Trg, while Player 2 wants to
reach s2. Edges are labelled by pairs of moves of both players which activate that transition
(where − means ‘any move’). It is easy to see that no player can enforce its objective with
or without randomisation, so, there is no winning strategy in this game for either player.
This is because moving from s0 to s1 and from s1 to s2 requires the cooperation of both
players. Moreover, the transitions from s2 behave as in the classical ‘matching pennies’ game:
player 1 must chose between f and g; player 2 between f ′ and g′; and the target is reached
only when the choices ‘match’. So, randomisation is needed to make sure Trg is reached
with probability one, from s2. In the paper, we will describe the dominated and admissible
strategies of this game.

Technical contributions. First, we study the notion of admissible strategies for both the
sure and almost sure semantics of concurrent games. We show in Theorem 8 that in both
semantics admissible strategies always exist. The situation is thus similar to the turn-based
case [5, 10]. Nevertheless, the techniques used in this simpler case do not generalise easily to
the concurrent case and we need substantially more involved technical tools here. To obtain

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:3

our universal existence result, we introduce two weaker solution concepts: locally admissible
moves and strongly cooperative optimal strategies. While cooperative optimal strategies were
already introduced in [7] and shown equivalent to admissible strategies in the turn based
setting, they are strictly weaker than admissible strategies in the concurrent setting (both
for the sure and the almost sure semantics), and they need to be combined with the notion
of locally admissible moves to fully characterise admissible strategies. In the special case of
safety objectives, we can show that admissible strategies are exactly those that always play
locally admissible moves. This situation is depicted in Figure 2.

Second, we build on our characterisation of admissible strategies based on the notions of
locally admissible moves and strongly cooperative optimal strategies to obtain algorithms
to solve the assume admissible synthesis problem for concurrent games. In the assume
admissible synthesis problem, we ask whether a given player has an admissible strategy
that is winning against all admissible strategies of the other players. So this rule relaxes
the classical synthesis rule by asking for a strategy that is winning against the admissible
strategies of the other players only and not against all of them. This is reasonable as in a
multi-player game, each player has his own objective which is generally not the complement
of the objectives of the other players. The assume-admissible rule makes the hypothesis that
players are rational, hence they play admissible strategies and it is sufficient to win against
those strategies. Our algorithm is applicable to all ω-regular objectives and it is based on
a reduction to a zero-sum two-player game in the sure semantics. While this reduction
shares intuitions with the reduction that we proposed in [8] to solve the same problem in the
turn-based case, our reduction here is based on games with imperfect information [18]. In
contrast, in the turn-based case, games of perfect information are sufficient. The correctness
and completeness of our reduction are proved in Theorem 11.

Related works. Concurrent two player zero-sum games are studied in [14] and [11]. We
rely on the algorithms defined in [11] to compute states from which players have almost
surely winning strategies. States where players have (deterministic) winning strategies can
be computed by a reduction to more classical turn-based game graphs [2]. Nash equilibria
have been studied in concurrent games [6], but without randomised strategies. None of those
papers consider the notion of admissibility.

We use the notion of admissibility to obtain synthesis algorithms for systems composed of
several sub-systems starting from non zero-sum specifications. Other approaches have been
proposed based the notion of Nash equilibria (which suffer from the well-known limitation
of non-credible threats): assume-guarantee synthesis [12] and rational synthesis [16, 17].
Those works assume the simpler setting of turn-based games and so they do not deal with
randomised strategies.

Finally, in [13], Damm and Finkbeiner use the notion of dominant strategy to provide a
compositional semi-algorithm for the (undecidable) distributed synthesis problem. However,
the notion of dominant strategy is strictly stronger than the notion of admissible strategies,
and dominant strategies are not guaranteed to exist, unlike admissible ones.

2 Preliminaries

Concurrent games played on graphs. Let P = {1, 2, . . . n} be a set of players. A concurrent
game played on a finite graph by the players in P is a tuple G = (S,Σ, sinit, (Σp)p∈P , δ)
where,
(i) S is a finite set of states; and sinit ∈ S the initial state;
(ii) Σ is a finite set of actions;

ICALP 2017

123:4 Admissibility in Concurrent Games

(iii) For all p ∈ P , Σp : S → 2Σ \ {∅} is an action assignment that assigns, to all states s ∈ S,
the set of actions available to player p from state s.

(iv) δ : S × Σ× . . .× Σ→ S is the transition function.
We write Σ(s) = Σ1(s) × . . . × Σn(s) for all s ∈ S. It is often convenient to consider a
player p separately and see the set of all other players P \ {p} as a single player denoted
−p. Hence, the set of actions of −p in state s is: Σ−p(s) =def

∏
q∈P\{p}Σq(s). We assume

that Σi(s) ∩ Σj(s) = ∅ for all s ∈ S and i 6= j. We denote by Succ(s, a) = {δ(s, a, b) | b ∈
Σ−p(s)} the set of possible successors of the state s ∈ S when player p performs action
a ∈ Σp(s). A particular case of concurrent games are the turn-based games. A game
G = (S,Σ, sinit, (Σp)p∈P , δ) is turn-based iff for all states s ∈ S, there is a unique player p s.t.
the successors of s depend only on p’s choice of action, i.e., Succ(s, a) contains exactly one
state for all a ∈ Σp(s).

A history is a finite path h = s1s2 . . . sk ∈ S∗ s.t.
(i) k ∈ N;
(ii) s1 = sinit; and
(iii) for every 2 ≤ i ≤ k, there exists (a1, . . . , an) ∈ Σ|P | with si = δ(si−1, a1, . . . , an).
The length |h| of a history h = s1s2 . . . sk is its number of states k; for every 1 ≤ i ≤ k, we
denote by hi the state si and by h≤i the history s1s2 . . . si. We denote by last(h) the last
state of h, that is, last(h) = h|h|. A run is defined similarly as a history except that its
length is infinite. For a run ρ = s1s2 . . . ∈ Sω and i ∈ N, we also write ρ≤i = s1s2 . . . si and
ρi = si. Let Hist(G) (resp. Runs(G)) denote the set of histories (resp. runs) of G. The game
is played from the initial state sinit for an infinite number of rounds, producing a run. At each
round i ≥ 0, with current state si, all players p select simultaneously an action aip ∈ Σp(si),
and the state δ(si, ai1, . . . , ain) is appended to the current history. The selection of the action
by a player is done according to strategies defined below.

Randomised moves and strategies. Given a finite set A, a probability distribution on A
is a function α : A→ [0, 1] such that

∑
a∈A α(a) = 1; and we let Supp(α) = {a | α(a) > 0}

be the support of α. We denote by α(B) =
∑
a∈B α(a) the probability of a given set B

according to α. The set of probability distributions on A is denoted by D(A). A randomised
move of player p in state s is a probability distribution on Σp(s), that is, an element of
D(Σp(s)). A randomised move that assigns probability 1 to an action and 0 to the others
is called a Dirac move. We will henceforth denote randomised moves as sums of actions
weighted by their respective probabilities. For instance 0.5f + 0.5g denotes the randomised
move that assigns probability 0.5 to f and g (and 0 to all other actions). In particular, we
denote by b a Dirac move that assigns probability 1 to action b.

Given a state s and a tuple β = (βp)p∈P ∈
∏
p∈P D(Σp(s)) of randomised moves from s,

one per player, we let δr(s,β) ∈ D(S) be the probability distribution on states s.t. for
all s′ ∈ S: δr(s,β)(s′) =

∑
a|δ(s,a)=s′ β(a), where β(a1, . . . , an) =

∏n
i=1 βi(ai). Intuitively,

δr(s,β)(s′) is the probability to reach s′ from s when the players play according to β.
A strategy for player p is a function σ from histories to randomised moves (of player p)

such that, for all h ∈ Hist(G): σ(h) ∈ D(Σp(last(h))). A strategy is called Dirac at history
h, if σ(h) is a Dirac move; it is called Dirac if it is Dirac at all histories. We denote by Γp(G)
the set of player-p strategies in the game, and by Γdet

p (G) the set of player-p strategies that
only use Dirac moves (those strategies are also called deterministic); we might omit G if it
is clear from context. A strategy profile σ for a subset A ⊆ P of players is a tuple (σp)p∈A
with σp ∈ Γp for all p ∈ A. When the set of players A is omitted, we assume A = P . Let
σ = (σp)p∈P be a strategy profile. Then, for all players p, we let σ−p denote the restriction

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:5

of σ to P \ {p} (hence, σ−p can be regarded as a strategy of player −p that returns, for all
histories h, a randomised move from

∏
p∈P\{p}D(Σp(s)) ⊆ D(Σ−p(last(h)))). We sometimes

denote σ by the pair (σp,σ−p). Given a history h, we let (σp)p∈A(h) = (σp(h))p∈A.
Let h be a history and let ρ be a history or a run. Then, we write h ⊆pref ρ iff h is a prefix

of ρ, i.e., ρ≤|h| = h. Given two strategies σ, σ′ ∈ Γp, and a history h, we let σ〈h← σ′〉 be the
strategy that follows σ and shifts to σ′ as soon as h has been played (i.e. σ〈h← σ′〉 is s.t. for
all histories h′: σ〈h← σ′〉(h′) = σ′(h′) if h ⊆pref h

′; and σ〈h← σ′〉(h′) = σ(h′) otherwise).

Probability measure and outcome of a profile. Given a history h, we let Cyl(h) = {ρ |
h ⊆pref ρ} be the cylinder of h. To each strategy profile σ, we associate a probability measure
Pσ on certain sets of runs. First, for a history h, we define Pσ(Cyl(h)) inductively on the
length of h: Pσ(Cyl(sinit)) = 1, and Pσ(Cyl(h′s′)) = Pσ(Cyl(h′)) · δr(last(h′),σ(h′))(s′)when
|h| > 1 and h = h′s′. Based on this definition, we can extend the definition of Pσ to any
Borel set of runs on cylinders. In particular, the function Pσ is well-defined for all ω-regular
sets of runs, that we will consider in this paper [19]. We extend the Hist notation and let
Hist(σ) be the set of histories h such that Pσ(Cyl(h)) > 0. Given a profile σ we denote
by Outcome(σ) the set of runs ρ s.t. all prefixes h of ρ belong to Hist(σ). In particular,
Pσ(Outcome(σ)) = 1. Note that when σ is composed of Dirac strategies then Outcome(σ)
is a singleton. The outcome (set of histories) of a strategy σ ∈ Γp, denoted by Outcome(σ)
(Hist(σ)), is the union of outcomes (set of histories, respectively) of profile σ s.t. σp = σ.

Winning conditions. To determine the gain of all players in the game G, we define winning
conditions that can be interpreted with two kinds of semantics denoted by the symbols
S for the sure semantics or and A for the almost sure semantics. A winning condition
Φ is a subset of Runs(G) called winning runs. From now on, we assume that concurrent
games are equipped with a function Φ, called the winning condition, and mapping all
players p ∈ P to a winning condition Φ(p). A profile σ is A-winning for Φ(p) if Pσ(Φ) = 1
which we write G,σ |=A Φ(p). A profile σ is S-winning for Φ(p) if Outcome(G,σ) ⊆ Φ(p)
which we write G,σ |=S Φ(p). Note that when σ is Dirac, the two semantics coincide:
G,σ |=S Φ(p) iff G,σ |=A Φ(p). The profile σ is A-winning from h if h ∈ Hist(G,σ) and
Pσ(Φ(p) | Cyl(h)) = Pσ(Φ(p)∩Cyl(h))/Pσ(Cyl(h)) = 1 which we denote G,σ |=A

h Φ(p). The
profile σ is S-winning from h if {ρ ∈ Outcome(G,σ) | h ⊆pref ρ} ⊆ Φ(p), which we denote
G,σ |=S

h Φ(p). We often omit G in notations when clear from the context. Most of our
definitions and results hold for both semantics and we often state them using the symbol
? ∈ {S, A} as in the following definition. Given a semantics ? ∈ {S, A}, a strategy σ for
player p (from a history h) is called ?-winning for player p if for every τ ∈ Γ−p, the profile
(σ, τ) is ?-winning for player p (from h). Note that a strategy σ for player p is S-winning iff
Outcome(σ) ⊆ Φ(p). We often describe winning conditions using standard linear temporal
operators � and ♦; e.g. �♦S means the set of runs that visit infinitely often S. See [3] for a
formal definition.

A winning condition Φ(p) is prefix-independent if for all s1s2 . . . ∈ Φ(p), and all i ≥ 1:
sisi+1 . . . ∈ Φ(p). When Φ(p) contains all runs that do not visit some designated set
Badp ⊆ S of states, we say that Φ(p) is a safety condition. A safety game is a game whose
winning condition Φ is such that Φ(p) is a safety condition for all players p. Without loss of
generality, we assume that safety games are so-called simple safety games: a safety game
(S,Σ, sinit, (Σp)p∈P , δ) is simple iff for all players p, for all s ∈ S: s ∈ Badp implies that no
s′ 6∈ Badp is reachable from s. That is, once the safety condition is violated, then it remains
violated forever at all future histories.

ICALP 2017

123:6 Admissibility in Concurrent Games

I Example 1. Let us consider three player-1 strategies in Figure 1.
(i) σ1 is any strategy that plays a in s0;
(ii) σ2 is any strategy that plays b in s0, d in s1 and f in s2; and
(iii) σ3 is any strategy that plays b in s0, d in s1, and 0.5f + 0.5g in s2.
Clearly, σ1 never allows one to reach Trg while some runs respecting σ2 and σ3 do (remember
that there is no ?-winning strategy in this game). We will see later that the best choice of
player 1 (among σ2, σ3) depends on the semantics we consider. In the almost-sure semantics,
σ3 is ‘better’ for player 1, because σ3 is an A-winning strategy from all histories ending in s2,
while σ2 is not. On the other hand, in the sure semantics, playing σ2 is ’better’ for player
1 than σ3. Indeed, for all player-2 strategies τ , either Outcome(σ3, τ) contains only runs
that do not reach s2 (hence, do not reach Trg either), or Outcome(σ3, τ) contains at least a
run that reaches s2, but, in this case, it also contains a run of the form hsω2 that does not
reach Trg (because, intuitively, player 1 plays both f and g from s2). So, σ3 is not S-winning
against any τ , while σ2 wins at least against a player 2 strategy that plays b′ in s0, d′ in s1
and f ′ in s2. We formalise these intuitions in the next section.

3 Admissibility

In this section, we define the central notion of the paper: admissibility [5, 9]. Intuitively, a
strategy is admissible when it plays ‘as well as possible’. Hence the definition of admissible
strategies is based on a notion of domination between strategies: a strategy σ′ dominates
another strategy σ when σ′ wins every time σ does. Obviously, players have no interest in
playing dominated strategies, hence admissible strategies are those that are not dominated.
Apart from these (classical) definitions, we characterise admissible strategies as those that
satisfy two weaker notions: they must be both strongly cooperative optimal and play only
locally-admissible moves. Finally, we discuss important characteristics of admissible strategies
that will enable us to perform assume-admissible synthesis (see Section 4).

In this section, we fix a game G, a player p, and, following our previous conventions, we
denote by Γ−p the set {σ−p | σ ∈ Γ}.

Admissible strategies. We first recall the classical notion of admissible strategy [5, 1]. Given
two strategies σ, σ′ ∈ Γp, we say that σ is ?-weakly dominated by σ′, denoted σ 4? σ′, if
for all τ ∈ Γ−p: (σ, τ) |=? Φ(p) implies (σ′, τ) |=? Φ(p). This indeed captures the idea
than σ′ is not worse that σ, because it wins (for p) every time σ does. Note that 4? is not
anti-symmetric, hence we write σ ≈? σ′ when σ and σ′ are equivalent, i.e. σ 4? σ′ and
σ′ 4? σ. In other words σ ≈? σ′ iff for every τ ∈ Γ−p, (σ, τ) |=? Φ(p) ⇔ (σ′, τ) |=? Φ(p).
When σ 4? σ′ but σ′ 64? σ we say that σ is ?-dominated by σ′, and we write σ ≺? σ′.
Observe that σ ≺? σ′ holds if and only if σ 4? σ′ and there exists at least one τ ∈ Γ−p, such
that (σ, τ) 6|=? Φ(p) and (σ′, τ) |=? Φ(p). That is, σ′ is now strictly better than σ. Then, a
strategy σ is ?-admissible iff there is no strategy σ′ s.t. σ ≺? σ′, i.e., σ is ?-admissible iff it
is not ?-dominated.

I Example 2. Let us continue our running example, by formalising the intuitions we have
sketched in Example 1. Since σ1 does not allow to reach the target, while some runs
respecting σ2 and σ3 do, we have: σ1 ≺? σ2 and σ1 ≺? σ3. Moreover, σ2 ≺A σ3 because σ3 is
A-winning from any history that ends in s2 while σ2 is not because it does not A-win against
a player 2 strategy that would always play g′ in s2 (and both strategies behave the same way
in s0 and s1). On the other hand, σ3 ≺S σ2 since we saw in Example 1 that every profile
containing σ3 is not S-winning while some profiles containing σ2 are. We will see later that
σ3 is A-admissible and σ2 is S-admissible.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:7

Values of histories. Before we discuss strongly cooperative optimal and locally admissible
strategies, we associate values to histories. Let h be a history, and σ be a strategy of player p.
Then, the value of h w.r.t. σ for semantics ? ∈ {S, A} is defined as follows. χ?σ(h) = 1 if σ
is ?-winning from h; χ?σ(h) = 0 if there are τ ∈ Γ−p and τ ′ ∈ Γ−p s.t. (σ, τ) |=?

h Φ(p), and
(σ, τ ′) 6|=?

h Φ(p); and −1 otherwise.
Value χ?σ(h) = 1 corresponds to the case where σ is ?-winning for player p from h (thus,

against all possible strategies in Γ−p). When χ?σ(h) = 0, σ is not ?-winning from h (because
of τ ′ in the definition), but the other players can still help p to reach his objective (by playing
some τ s.t. (σ, τ) |=?

h Φ(p), which exists by definition). Last, χ?σ(h) = −1 when there is no
hope for p to ?-win, even with the collaboration of the other players. In this case, there is
no τ s.t. (σ, τ) |=?

h Φ(p). Hence, having χ?σ(h) = −1 is stronger than saying that σ is not
winning—when σ is not winning, we could have χ?σ(h) = 0 as well.

We define the value of a history h for player p as the best value he can achieve with his
different strategies: χ?p(h) = maxσ∈Γp χ

?
σ(h). Last, for v ∈ {−1, 0, 1}, let Val?p,v be the set of

histories h s.t. χ?p(h) = v.

Strongly cooperative optimal strategies. We are now ready to define strongly cooperative
optimal (SCO) strategies. Recall that, in the classical setting of turn-based games, admissible
strategies are exactly the SCO strategies [9]. We will see that this condition is still necessary
but not sufficient in the concurrent setting.

A strategy σ of Player p is ?-SCO at h iff χ?σ(h) = χ?p(h); and σ is ?-SCO iff it is ?-SCO
at all h ∈ Hist(σ). Intuitively, when σ is a ?-SCO strategy of Player p, the following should
hold:
(i) if p has a ?-winning strategy from h (i.e. χ?p(h) = 1), then, σ should be ?-winning (i.e.

χ?σ(h) = 1); and
(ii) otherwise if p has no ?-winning strategy from h but still has the opportunity to ?-win

with the help of other players (hence χ?p(h) = 0), then, σ should enable the other players
to help p fulfil his objective (i.e. χ?σ(h) = 0).

Observe that when χ?p(h) = −1, no continuation of h is ?-winning for p, so χ?σ(h) = −1 for
all strategies σ.

I Example 3. Consider again the example in Figure 1. For the almost-sure semantics, we
have ValA

p,1 =
{
h | last(h) ∈ {s2,Trg}

}
, and ValA

p,0 =
{
h | last(h) ∈ {s0, s1}

}
. For the sure

semantics, we have: ValS
1,1 = {h | last(h) = Trg}, and ValS

1,0 = {h | last(h) 6= Trg}. Consider
again the three strategies σ1, σ2 and σ3 from Example 1. We see that σ2 is S-SCO but it is
not A-SCO because, for all profiles h ending in s2: χA

σ2
(h) = 0 while h ∈ ValA

1,1. On the other
hand, σ3 is A-SCO; but it is not S-SCO. Indeed, one can check that, for all strategies τ ∈ Γ2:
if Outcome(σ3, τ) contains a run reaching Trg, then it also contains a run that cycles in s2.
So, for all such strategies τ , Outcome(σ3, τ) 6|=S Φ(1), hence χS

σ3
(h) = −1 for all histories that

end in s2; while χS
p(h) = 0 since χS

σ′(h) = 0 for all Dirac strategies σ′.
Next, let us build a strategy σ′3 that is A-dominated by σ3 (hence, not A-admissible), but

A-SCO. We let σ′3 play as σ3 except that σ′3 plays c the first time s1 is visited (hence ensuring
that the self-loop on s1 will be taken after the first visit to s1). Now, σ′3 is A-dominated by
σ3, because
(i) σ3 A-wins every time σ′3 does; but
(ii) σ′3 does not A-win against the player 2 strategy τ that plays d′ only when s1 is visited

for the first time, while σ3 A-wins against τ .
However, σ′3 is SCO because playing c keeps the value of the history equal to 0 = χA

1(h)
(intuitively, playing c once does not prevent the other players from helping in the future).

ICALP 2017

123:8 Admissibility in Concurrent Games

As similar example can be built in the S semantics. Thus, there are ?-SCO strategies
which are not admissible, so, being ?-SCO is not a sufficient criterion for admissibility.

Locally admissible moves and strategies. Let us now discuss another criterion for admiss-
ibility, which is more local in the sense that it is based on a domination between moves
available to each player after a given history. Let h be a history, and let α and α′ be two ran-
domised moves in D(Σp). We say that α is ?-weakly dominated at h by α′ (denoted α 6?h α′)
iff for all σ ∈ Γp such that h ∈ Hist(σ) and σ(h) = α, there exists σ′ ∈ Γp s.t. h ∈ Hist(σ′),
σ′(h) = α′ and σ 4? σ′. Observe that the relation 6?h is not anti-symmetric. We let '?h be
the equivalence relation s.t. α '?h β iff α 6?h β and β 6?h α. When α 6?h α′ but α′ 66?h α
we say that α is ?-dominated at h by α′ and denote this by α <?h α′. When a randomised
move α is not ?-dominated at h, we say that α is ?-locally-admissible (?-LA) at h. This
allows us to define a more local notion of dominated strategy: a strategy σ of player p is
?-locally-admissible (?-LA) if σ(h) is a ?-LA move at h, for all histories h.

I Example 4. Consider the Dirac move f and the non-Dirac move 0.5f + 0.5g played from
s2 in the example in Figure 1. One can check that 0.5f + 0.5g <S

s2
f . Indeed, consider a

strategy σ s.t. σ(h) = 0.5f + 0.5g for some h with last(h) = s2. Then, playing σ(h) from h

will never allow Player 1 to reach Trg surely at the next step, whatever Player 2 plays; while
playing, for instance, f (Dirac move) ensures player 1 to reach Trg surely at the next step,
against a Player-2 strategy that plays f ′. Thus, σ2 is S-LA but σ3 is not.

On the other hand, after every randomised move played in state s2, the updated state
is s2 or s3 from which A-winning strategies exist, thus f 'A

h g 'A
h λf + (1 − λ)g for all

λ ∈ [0, 1] and all histories h s.t. last(h) = s2 (so, in particular, λf + (1 − λ)g 6A
h f and

λf + (1 − λ)g 6A
h g). It follows that both σ2 and σ3 are A-LA. However, in the long run,

player 1 needs to play λf + (1− λ)g, with λ ∈ (0, 1), infinitely often in order to A-win. In
fact, σ3 is A-winning from s2 while σ2 is not. Thus, there are ?-LA strategies which are
not admissible, so being ?-LA is not a sufficient criterion for ?-admissibility.

We close this section by several lemmata that allow us to better characterise the notion
of LA strategies. First, we observe that, while randomisation might be necessary for winning
in certain concurrent games (for example, in Figure 1, no Dirac move allows player 1 to reach
Trg surely from s2, while playing repeatedly f and g with equal probability ensures to reach
Trg with probability 1) randomisation is useless when a player wants to play only locally
admissible moves. This is shown by the next Lemma (point (1)), saying that, if a randomised
move α plays some action a with some positive probability, then α is weakly dominated by
the Dirac move a. However, this does not immediately allow us to characterise admissible
moves: some Dirac moves could be dominated (hence non-admissible), and some non-Dirac
moves could be admissible too. Points (2) and (3) elucidate this: among Dirac moves, the
non-dominated ones are admissible, and a non-Dirac move is admissible iff all the Dirac
moves that occur in its support are admissible and equivalent to each other.

I Lemma 5. For all histories h and all randomised moves α:
(i) For all a ∈ Supp(α): α 6?h a;
(ii) Dirac moves that are not ?-dominated at h by another Dirac move are ?-LA;
(iii) A move α is ?-LA at h iff, for all a ∈ Supp(α):

1. a is ?-LA at h; and
2. a '?h b for all b ∈ Supp(α).

I Example 6. As we have seen in Example 4, 0.5f + 0.5g <S
s2
f . Note that a strategy σ′ s.t.

σ′(h) = 0.5f + 0.5g for all h with last(h) = s2 has value χS
σ′(h) = −1, while χS

1(h) = 0.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:9

This example seems to suggest that the local dominance of two moves coincide with the
natural order on the values of histories that are obtained when playing those moves (in other
words x <?h y would hold iff the value of the history obtained by playing x is smaller than or
equal to the value obtained by playing y). This is not true for histories of value 0: we have
seen that a and b are 6?h-incomparable, yet playing a or b from s0 yields a history with value
0 in all cases (even when s1 is reached). The next Lemma gives a precise characterisation of
the dominance relation between Dirac moves in terms of values:

I Lemma 7. For all players p, histories h with last(h) = s and Dirac moves a, b ∈ Σp(s):
a 6?h b if, and only if the following conditions hold for every c ∈ Σ−p(s) where we write
s(a,c) = δ(s, (a, c)) and s(b,c) = δ(s, (b, c)):
(i) χ?p(hs(a,c)) ≤ χ?p(hs(b,c));
(ii) if χ?p(hs(a,c)) = χ?p(hs(b,c)) = 0 then s(a,c) = s(b,c).

Characterisation and existence of admissible strategies. Equipped with our previous
results, we can now establish the main results of this section. First, we show that ?-
admissible strategies are exactly those that are both ?-LA and ?-SCO (Theorem 8(i)). Then,
we show that admissible strategies always exist in concurrent games (Theorem 8(ii)).

I Theorem 8 (Characterisation and existence of admissible strategies). The following holds
for all strategies σ in a concurrent game with semantics ? ∈ {S, A}:
(i) σ is ?-admissible iff σ is ?-LA and ?-SCO; in the special case of simple safety objectives,

if σ is ?-LA then σ is ?-admissible.
(ii) there is a ?-admissible strategy σ′ such that σ 4? σ′.
In particular, point (2) implies that admissible strategies always exist in concurrent games.

I Example 9. We consider again the example in Figure 1, and consider strategies σ2 and σ3
as defined in Example 1. Remember that these two strategies do their best to reach s2, and
that, from s2, σ2 plays deterministically f , while σ3 plays f and g with equal probabilities.
From Example 3, we know that σ2 is S-SCO but not A-SCO; while σ3 is A-SCO but not
S-SCO. Indeed, we have already argued in Example 2 that σ2 is not A-admissible, and that
σ3 is not S-admissible. However, from Example 4, we know that σ2 is S-LA and that σ3 is
A-LA. So, by Theorem 8, σ2 is S-admissible and σ3 is A-admissible as expected.

Finally, we close the section by a finer characterisation of ?-admissible strategies. We
show that:
(i) in the sure semantics, there is always an S-admissible strategy that plays Dirac moves

only; and
(ii) in the almost-sure semantics, there is always an A-admissible strategy that plays Dirac

moves only in histories of values 0 or −1.
The difference between the two semantics should not be surprising, as we know already that
randomisation is sometimes needed to win (i.e., from histories of value 1) in the almost sure
semantics:

I Proposition 10. For all player-p strategies σ in a concurrent game:
(i) If σ is S-admissible then there exists a Dirac strategy σ′ such that σ 'S σ′.
(ii) If σ is A-admissible then there exists a strategy σ′ that plays only Dirac moves in histories

of value ≤ 0 such that σ 'A σ′.

ICALP 2017

123:10 Admissibility in Concurrent Games

4 Assume admissible synthesis

In this section we discuss an assume-admissible synthesis framework for concurrent games.
With classical synthesis, one tries to compute winning strategies for all players, i.e., strategies
that always win against all possible strategies of the other players. Unfortunately, it might
be the case that such unconditionally winning strategies do not exist, as in our example.
As explained in the introduction, the assume-admissible synthesis rule relaxes the classical
synthesis rule: instead of searching for strategies that win unconditionally, the new rule
requires winning against the admissible strategies of the other players. So, a strategy may
satisfy the new rule while not winning unconditionally. We claim that winning against
admissible strategies is well enough assuming that the players are rational; if we assume that
players only play strategies that are good for achieving their objectives, i.e. admissible ones.

The general idea of the assume-admissible synthesis algorithm is to reduce the problem
(in a concurrent n-player game) to the synthesis of a winning strategy in a 2-player zero-
sum concurrent game of imperfect information, in the S-semantics (even when the original
assume-admissible problem is in the A-semantics), where the objective of player 1 is given by
an LTL formula. Such games are solvable using techniques presented in [11].

More precisely, from a concurrent game G in the semantics ? ∈ {S, A} and player p, we
build a game G?p with the above characteristics, which is used to decide the assume-admissible
synthesis rule. If such a solution exists, our algorithm constructs a witness strategy. For
example, the game G?1 corresponding to the game in Figure 1 is given in Figure 3. The main
ingredients for this construction are the following.

(i) In G?p , the protagonist is player p, and the second player is −p.
(ii) Although randomisation is needed to win in such games in general, we interpret G?p

in the S-semantics only. In fact, we have seen that for the protagonist, Dirac moves
suffice in states of value 0; so the only states where he might need randomisation are
those of value 1 (randomisation does not matter if the value is −1 since the objective is
lost anyway). Hence we define winning condition to be Φ(p) ∨ ♦Val?p,1 enabling us to
consider only histories of values 0 in G?p ; and thus hiding the parts of the game where
randomisation might be needed. We also prove that we can restrict to Dirac strategies
for −p when it comes to admissible strategies.

(iii) In order to restrict the strategies to admissible ones, we only allow ?-LA moves in G?p .
These moves can be computed by solving classical 2-player games ([2]) using Lemma 7.
For example, in Figure 3, moves c and c′ are removed since they are not A-LA.

(iv) Last, since ?-admissible strategies are those that are both ?-LA and ?-SCO (see The-
orem 8), we also need to ensure that the players play ?-SCO. This is more involved than
?-LA, as the ?-SCO criterion is not local, and requires information about the sequence
of actual moves that have been played, which cannot be deduced, in a concurrent game,
from the sequence of visited states. So, we store, in the states of G?p , the moves that
have been played by all the players to reach the state. For example, in Figure 3, the
state labelled by s1, (b, b′) means that G has reached s1, and that the last actions played
by the players were b and b′ respectively. However, players’ strategies must not depend
on this extra information since they do not have access to this information in G either.
We thus interpret G?p as a game of imperfect information where all the states labelled
by the same state of G are in the same observation class. We can then encode that the
players must play ?-SCO strategies in the new objective of the games, which will be
given as an LTL formula, as we describe below.

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:11

To ensure we can effectively solve subproblems mentioned above, we consider ω-regular
objectives. We also restrict ourselves to prefix-independent winning conditions to simplify
the presentation. In the case of ω-regular objectives, prefix-independence is not a restrictive
hypothesis (we can always compute the product of the game graph with a deterministic parity
automaton that accepts the ω-regular objective and consider a parity winning condition).
The values of the histories depend thus only on their last states, i.e. for all pairs of histories
h1 and h2: last(h1) = last(h2) implies that χ?p(h1) = χ?p(h2). We denote by χ?p(s) the value
χ?p(h) of all histories h s.t. last(h) = s. Last, we assume that a player cannot play the same
action from two different states, i.e. ∀s1 6= s2, Σs1(p) ∩ Σs2(p) = ∅. Thus, we say that move
a is ?-LA when a is ?-LA from all histories ending in the unique state where a is available.

The game G?p . Let us now describe precisely the construction of G?p . Given an n-player
concurrent game G = (S,Σ, sinit, (Σp)p∈P , δ) with winning condition Φ considered under
semantics ? ∈ {S, A}, and given a player p, we define the two-player zero-sum concurrent
game G?p = (S,Σ, sinit, (Σp,Σ−p), δ) where:
(i) S = S × Σn ∪ {sinit};
(ii) Σ is the set of Dirac ?-LA moves in Σ;
(iii) sinit = sinit is the initial state;
(iv) Σp is such that Σp(s) is the set of Dirac ?-LA moves of p in s, for all s ∈ S;
(v) Σ−p is s.t. for all s ∈ S: Σ−p(s) is the set of moves a of −p in s s.t. for all q 6= p, aq is

a Dirac ?-LA move;
(vi) δ updates the state according to δ, remembering the last actions played: δ(sinit, b) =

(δ(sinit, b), b) and δ((s,a), b) = (δ(s, b), b) for all s ∈ S.
Note that the game G?p depends on whether ? = A or ? = S because the two semantics yield
different sets of LA-moves. However, we interpret G?p in the sure semantics, so both players
can play Dirac strategies only in G?p .

Let us now explain how we obtain an imperfect information game by defining an observa-
tion function o. Note that histories in G?p are of the form: h = sinit(s1,a1)(s2,a2) · · · (sn,an).
Then, let o : S → S be the mapping that, intuitively, projects moves away from states.
For example, in Figure 3, states with observation s0 are in the dashed rectangle. That
is: o(s,a) = s for all states s, and o(sinit) = sinit. We extend o to histories recursively:
o(sinit) = sinit and o(h(sn,an)) = o(h)sn. To make G?p a game of imperfect information, we
request that, in G?p , players play only strategies σ s.t. σ(h1) = σ(h2) whenever o(h1) = o(h2).

We relate the strategies in the original game G with the strategies in G?p , which we need
to extract admissible strategies in G from the winning strategies in G?p and thus perform
assume-admissible synthesis. First, given a player-p strategy σ in G (i.e., σ ∈ Γp(G)), we say
that a strategy σ ∈ Γdet

p (G?p) is a realisation of σ iff:
(i) σ is Dirac; and
(ii) σ(h) ∈ Supp(σ(h))) for all h.
Note that every ?-LA strategy σ ∈ Γi(G) admits realisations σ in Γi(G?p). Second, given a
player-p Dirac strategy σ in G?p (i.e., σ ∈ Γdet

p (G?p)) we say that σ̂ ∈ Γp(G) is an extension of
σ iff, for all h ∈ Hist(G?p , σ): σ̂(o(h)) = σ(h).

The assume-admissible synthesis technique. As explained above, the assume-admissible
rule boils down to computing a winning strategy σ for player-p in G?p w.r.t. the winning
condition ΦG?

p
, and extracting, from σ, the required admissible strategy in G.

ICALP 2017

123:12 Admissibility in Concurrent Games

We will now formally define ΦG?
p
. Let p be a player (in G); and let us denote by st(a) the

(unique) state from which a is available, for all actions a. We define AfterHelpMove?p as

AfterHelpMove?p = {(s,a) ∈ S | ∃s′ ∈ Succ(st(ap), ap) : χ?p(s′) ≥ 0 ∧ s′ 6= s ∧ χ?p(s) = 0}.

That is, when (s,a) ∈ AfterHelpMove?p, in G, player p has played ap from st(ap) and,
due to player −p’s choice, G has reached s. However, with another choice of player −p,
the game could have moved to a different state s′ from which −p can help p to win as
χ?p(s′) ≥ 0. Intuitively, in runs that visit states of value 0 infinitely often, states from
AfterHelpMove?p should be visited infinitely often for player p to play SCO, i.e. such runs
might not be winning, but this cannot be blamed on player p who has sought repeatedly
the collaboration of the other players to enforce his objective. Observe further that the
definition of this predicate requires the labelling of the states (by actions) we have introduced
in G?p . For example, in Figure 3, AfterHelpMoveA

2 =
{(
s0, (a, b′)

)
,
(
s1, (b, b′)

)}
. We let

Φ?
0(p) = ♦¬Val?p,0 ∨ Φ(p) ∨ �♦AfterHelpMove?p and Φ?

1(p) =
(
♦Val?p,1

)
→ Φ(p). Let us

define ΦG?
p

=
(∧

q 6=p Φ?0(q) ∧ Φ?1(q)
)
→
(
Φ(p) ∨ ♦Val?p,1

)
.

I Theorem 11 (Assume-admissible synthesis). Player p has a ?-admissible strategy σ that is
?-winning against all player −p ?-admissible strategies in G iff Player p has an S-winning
strategy in G?p for the objective ΦG?

p
. Such a ?-admissible strategy σ can be effectively computed

(from any player p S-winning strategy in G?p).

Let us explain how we build a strategy in G with the desired properties, from any player p
strategy enforcing ΦG?

p
in G?p . Remember that G?p ensures that the players play ?-LA moves

only. We will use ΦG?
p
to make sure that, when SCO strategies are played by −p (relying

on the extra information we have encoded in the states), then p reaches a state of value 1.
First, consider Φ?

0(q) for q 6= p. Runs that satisfy this formula are either those that visit
states of value 0 only finitely often (♦¬Val?q,0); or those that stay in states of value 0, in
which case they must be either winning (Φ(q)) or visit infinitely often states where Player
q could have been helped by the other players (�♦AfterHelpMove?q). This is a necessary
condition on runs visiting only value 0 states for the strategy to be SCO. Next, observe that
Φ?1(q) states that if a history of value 1 is entered then Player q must win. This allows us to
understand the left part of the implication in ΦG?

p
: the implication can be read as ‘if all other

players play a ?-admissible strategy, then either p should win (Φ(p)) or a state of value 1 for
player p should eventually be visited (♦Val?p,1)’. Then a strategy σ̂ (in G) that wins against
admissible strategies can be extracted from a winning strategy σ (in G?p) in a straightforward
way, except when σ enforces to reach a state of value 1 (♦Val?p,1 in ΦG?

p
). In this case, σ

cannot follow σ, but must rather switch to a winning strategy, which:
(i) is guaranteed to exist since the state that has been reached has value 1; and
(ii) can be computed using classical techniques [11].
The strategy σ̂ is not necessarily admissible but by Theorem 8 (1), there is an admissible
strategy σ with σ̂ 4? σ. By weak domination, σ wins against more profiles than σ̂, in
particular, against the profiles of admissible strategies of the other players.

I Example 12. In our running example, observe that ¬ValA
2,0 = ValA

2,1 = {Win} since
there is no state of value −1 in G. Hence, Φ(2) = ♦Win = ♦ValA

2,1 = ♦¬ValA
2,0. Finally,

AfterHelpMoveA
2 =

{(
s0, (a, b′)

)
,
(
s1, (b, b′)

)}
, so, after simplification: ΦGA

1
=
[
♦Win ∨

�♦
(
(s0, (a, b′)) ∨ (s1, (b, b′))

)]
→ ♦Win. Thus, to win in GA

1 (under the sure semantics),
player 1 must ensure to reach Win as long as player 2 visits the set of bold states in Figure 3
infinitely often. A winning strategy σ in GA

1 consists in (eventually) always playing b from

N. Basset, G. Geeraerts, J.F. Raskin, and O. Sankur 123:13

s0 s0, (a, b′)

s0, (a, a′)

s0, (b, a′)

(a, b′)

(b, a′)

(a, a′)

(a, b′)

(a, a′)

(a, b′)

(b, a′)

(b, a′)

(a, a′)

(b, a′)

(a, a′)

(a, b′)

s1, (b, b′) Win
(b, b′) (d, d′)

All states s s.t. o(s) = s0

Figure 3 The game GA
1 obtained from the game in Figure 1. Bold states

(
s0, (a, b′)

)
and(

s1, (b, b′)
)
are the states of AfterHelpMoveA

2. There is a (b, b′)-labelled transition from all states in
the dashed rectangle to

(
s1, (b, b′)

)
.

all states in the dashed rectangle; and d from
(
s1, (b, b′)

)
. Observe that this strategy is

compatible with o. From σ, we can extract an admissible player 1 strategy in G: always play
b in s0; always play d in s1; and play a winning strategy from s2 (which is of value 1), for
instance: always play 0.5f + 0.5g from s2 like σ3 does.

We conclude by two remarks on simple safety games and on the choice of our semantics.
First, note that assume-admissible synthesis is simpler in simple safety games, since the
admissible strategies are exactly the ?-LA strategies in this case (see Theorem 8). So, one
can build Gp from G by pruning the actions which are not ?-LA (the labelling by actions is
not necessary anymore), and look for a player p winning strategy. Second, in the semantics of
concurrent games considered in this paper, players see, at each step, the transition taken but
not the actual moves of the other player even once they are played. An alternative semantics
could be that the players discover simultaneously the moves of other players after each step,
as in the Rock-Paper-Scissors game. The former semantics is more general than the latter
since moves played at the preceding round can always be encoded in the current state (as
we did in the construction of G?p). Our results remain meaningful in this simpler case (in
particular the characterisation of admissible strategies), but assume-admissible synthesis can
be performed by reducing to games with perfect information.

References
1 Brandenburger Adam, Friedenberg Amanda, H Jerome, et al. Admissibility in games.

Econometrica, 2008.
2 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, 2002. doi:10.1145/585265.585270.
3 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.
4 Nicolas Basset, Gilles Geeraerts, Jean-François Raskin, and Ocan Sankur. Admissibility

in concurrent games. CoRR, abs/1702.06439, 2017. URL: http://arxiv.org/abs/1702.
06439.

5 Dietmar Berwanger. Admissibility in infinite games. In STACS 2007, 24th Annual Sym-
posium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24,
2007, Proceedings, number 4393 in Lecture Notes in Computer Science, pages 188–199.
Springer, 2007. doi:10.1007/978-3-540-70918-3_17.

6 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Nash equilibria
in concurrent games with Büchi objectives. In Proceedings of the 31st Conference on Found-

ICALP 2017

http://dx.doi.org/10.1145/585265.585270
http://arxiv.org/abs/1702.06439
http://arxiv.org/abs/1702.06439
http://dx.doi.org/10.1007/978-3-540-70918-3_17

123:14 Admissibility in Concurrent Games

ations of Software Technology and Theoretical Computer Science (FSTTCS’11), volume 13
of Leibniz International Proceedings in Informatics, pages 375–386, Mumbai, India, dec
2011. Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSTTCS.2011.375.

7 Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, and Ocan Sankur. Ad-
missibility in Quantitative Graph Games. In Akash Lal, S. Akshay, Saket Saurabh, and
Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of Software Techno-
logy and Theoretical Computer Science (FSTTCS 2016), volume 65 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 42:1–42:14, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2016.42.

8 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
In Luca Aceto and David de Frutos-Escrig, editors, CONCUR, volume 42 of LIPIcs, pages
100–113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.
CONCUR.2015.100.

9 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Inf., 54(1):41–83, 2017. doi:10.1007/s00236-016-0273-2.

10 Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas. The complexity of ad-
missibility in omega-regular games. In CSL-LICS ’14, 2014. ACM, 2014. doi:10.1145/
2603088.2603143.

11 Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Qualitative concurrent
parity games. ACM Trans. Comput. Log., 12(4):28:1–28:51, 2011. doi:10.1145/1970398.
1970404.

12 Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In Tools
and Algorithms for the Construction and Analysis of Systems, 13th International Confer-
ence, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume
4424 of Lecture Notes in Computer Science, pages 261–275. Springer, 2007.

13 Werner Damm and Bernd Finkbeiner. Automatic compositional synthesis of distributed
systems. In FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-
16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 179–193.
Springer, 2014.

14 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability
games. Theor. Comput. Sci., 386(3):188–217, 2007. doi:10.1016/j.tcs.2007.07.008.

15 Marco Faella. Admissible strategies in infinite games over graphs. In MFCS 2009, volume
5734 of Lecture Notes in Computer Science, pages 307–318. Springer, 2009.

16 Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Tools and Al-
gorithms for the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of
Lecture Notes in Computer Science, pages 190–204. Springer, 2010.

17 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environ-
ments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014, Prague, Czech
Republic, December 18-19, 2014, Revised Selected Papers, pages 219–235. Springer, 2014.

18 Jean-François Raskin, Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Algorithms for omega-regular games with imperfect information. Logical Methods in Com-
puter Science, 3(3), 2007. doi:10.2168/LMCS-3(3:4)2007.

19 Moshe Y Vardi. Automatic verification of probabilistic concurrent finite state programs.
In Foundations of Computer Science, 1985., 26th Annual Symposium on, pages 327–338.
IEEE, 1985.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.375
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.42
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://dx.doi.org/10.1007/s00236-016-0273-2
http://dx.doi.org/10.1145/2603088.2603143
http://dx.doi.org/10.1145/2603088.2603143
http://dx.doi.org/10.1145/1970398.1970404
http://dx.doi.org/10.1145/1970398.1970404
http://dx.doi.org/10.1016/j.tcs.2007.07.008
http://dx.doi.org/10.2168/LMCS-3(3:4)2007

Improved Algorithms for Computing the Cycle of
Minimum Cost-to-Time Ratio in Directed
Graphs∗†

Karl Bringmann1, Thomas Dueholm Hansen2, and
Sebastian Krinninger3

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

2 Aarhus University, Aarhus, Denmark
tdh@cs.au.dk

3 University of Vienna, Faculty of Computer Science, Vienna, Austria
sebastian.krinninger@univie.ac.at

Abstract
We study the problem of finding the cycle of minimum cost-to-time ratio in a directed graph
with n nodes and m edges. This problem has a long history in combinatorial optimization
and has recently seen interesting applications in the context of quantitative verification. We
focus on strongly polynomial algorithms to cover the use-case where the weights are relatively
large compared to the size of the graph. Our main result is an algorithm with running time
Õ(m3/4n3/2), which gives the first improvement over Megiddo’s Õ(n3) algorithm [JACM’83] for
sparse graphs.1 We further demonstrate how to obtain both an algorithm with running time
n3/2Ω(

√
logn) on general graphs and an algorithm with running time Õ(n) on constant treewidth

graphs. To obtain our main result, we develop a parallel algorithm for negative cycle detection
and single-source shortest paths that might be of independent interest.

1998 ACM Subject Classification F.2.2 Computations on discrete structures, G.2.2 Graph al-
gorithms

Keywords and phrases quantitative verification and synthesis, parametric search, shortest paths,
negative cycle detection

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.124

1 Introduction

We revisit the problem of computing the cycle of minimum cost-to-time ratio (short: minimum
ratio cycle) of a directed graph in which every edge has a cost and a transit time. The
problem has a long history in combinatorial optimization and has recently become relevant
to the computer-aided verification community in the context of quantitative verification
and synthesis of reactive systems [11, 13, 24, 7, 10, 6, 14]. The shift from quantitative
to qualitative properties is motivated by the necessity of taking into account the resource

∗ Full version of this paper available at https://arxiv.org/abs/1704.08122.
† The work of K. Bringmann was partially done while visiting Aarhus University. T.D. Hansen was

supported by the Carlsberg Foundation, grant no. CF14-0617. The work of S. Krinninger was partially
done while visiting Aarhus University and while at Max Planck Institute for Informatics.

1 We use the notation Õ(·) to hide factors that are polylogarithmic in n.

EA
T

C
S

© Karl Bringmann, Thomas Dueholm Hansen, and Sebastian Krinninger;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 124; pp. 124:1–124:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.124
https://arxiv.org/abs/1704.08122
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

124:2 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

consumption of systems (such as embedded systems) and not just their correctness. For
algorithmic purposes, these systems are usually modeled as directed graphs where vertices
correspond to states of the system and edges correspond to transitions between states.
Weights on the edges model the resource consumption of transitions. In our case, we allow
two types of resources (called cost and transit time) and are interested in optimizing the
ratio between the two quantities. By giving improved algorithms for finding the minimum
ratio cycle we contribute to the algorithmic progress that is needed to make the ideas of
quantitative verification and synthesis applicable.

From a purely theoretic point of view, the minimum ratio problem is an interesting
generalization of the minimum mean cycle problem.2 A natural question is whether the
running time for the more general problem can match the running time of computing the
minimum cycle mean (modulo lower order terms). In terms of weakly polynomial algorithms,
the answer to this question is yes, since a binary search over all possible values reduces
the problem to negative cycle detection. In terms of strongly polynomial algorithms, with
running time independent of the encoding size of the edge weights, the fastest algorithm for
the minimum ratio cycle problem is due to Megiddo [42] and runs in time Õ(n3), whereas
the minimum mean cycle can be computed in O(mn) time with Karp’s algorithm [38]. This
has left an undesirable gap in the case of sparse graphs for more than three decades.

Our results. We improve upon this situation by giving a strongly polynomial time algorithm
for computing the minimum ratio cycle in time O(m3/4n3/2 log2 n) (Theorem 21 in Section 4).
We obtain this result by designing a suitable parallel negative cycle detection algorithm and
combining it with Megiddo’s parametric search technique [42]. We first present a slightly
simpler randomized version of our algorithm with one-sided error and the same running time
(Theorem 18 in Section 3).

As a side result, we develop a new parallel algorithm for negative cycle detection and
single-source shortest paths (SSSP) that we use as a subroutine in the minimum ratio
cycle algorithm. This new algorithm has work Õ(mn + n3h−3) and depth O(h) for any
logn ≤ h ≤ n. Our algorithm uses techniques from the parallel transitive closure algorithm
of Ullman and Yannakakis [52] (in particular as reviewed in [39]) and our contribution lies
in extending these techniques to directed graphs with positive and negative edge weights.
In particular, we partially answer an open question by Shi and Spencer [50] who previously
gave similar trade-offs for single-source shortest paths in undirected graphs with positive
edge weights. We further demonstrate how the parametric search technique can be applied
to obtain minimum ratio cycle algorithms with running time Õ(n) on constant treewidth
graphs (Corollary 24 in Section 5). Our algorithms do not use fast matrix multiplication.
We finally show that if fast matrix multiplication is allowed then slight further improvements
are possible, specifically we present an n3/2Ω(

√
logn) time algorithm on general graphs (see

full version of this paper).

Prior Work. The minimum ratio problem was introduced to combinatorial optimization
in the 1960s by Dantzig, Blattner, and Rao [22] and Lawler [40]. The existing algorithms
can be classified according to their running time bounds as follows: strongly polynomial
algorithms, weakly polynomial algorithms, and pseudopolynomial algorithms. In terms of
strongly polynomial algorithms for finding the minimum ratio cycle we are aware of the
following two results:

2 In the minimum cycle mean problem we assume the transit time of each edge is 1.

K. Bringmann, T.D. Hansen, and S. Krinninger 124:3

O(n3 logn+mn log2 n) time using Megiddo’s second algorithm [42] together with Cole’s
technique to reduce a factor of log logn [21],
O(mn2) time using Burn’s primal-dual algorithm [9].

For the class of weakly polynomial algorithms, the best algorithm is to follow Lawler’s binary
search approach [40, 41], which solves the problem by performing O(log (nW)) calls to a
negative cycle detection algorithm. Here W = O(CT) if the costs are given as integers from
1 to C and the transit times are given as integers from 1 to T . Using an idea for efficient
search of rationals [47], a somewhat more refined analysis by Chatterjee et al. [14] reveals
that it suffices to call the negative cycle detection algorithm O(log(|a · b|)) times when the
value of the minimum ratio cycle is a

b . Since the initial publication of Lawler’s idea, the
state of the art in negative cycle detection algorithms has become more diverse. Each of the
following five algorithms gives the best known running time for some range of parameters
(and the running times have to be multiplied by the factor log (nW) or log(|a · b|) to obtain
an algorithm for the minimum ratio problem):

O(mn) time using a variant of the Bellman-Ford algorithm [26, 3, 45],
n3/2Ω(

√
logn) time using a recent all-pairs shortest paths (APSP) algorithm by Williams

[53, 12],
Õ(nωW) time using fast matrix multiplication [48, 54], where 2 ≤ ω < 2.3728639 is the
matrix multiplication coefficient [29],
O(m

√
n logW) time using Goldberg’s scaling algorithm [31],

Õ(m10/7 logW) time using the interior point method based algorithm of Cohen et al. [20]
The third group of minimum ratio cycle algorithms has a pseudopolynomial running time
bound. After some initial progress [34, 30, 35], the state of the art is an algorithm by Hartmann
and Orlin [33] that has a running time of O(mnT).3 Other algorithmic approaches, without
claiming any running time bounds superior to those reported above, were given by Fox [27],
v. Golitschek [32], and Dasdan, Irani, and Gupta [23].

Recently, the minimum ratio problem has been studied specifically for the special case of
constant treewidth graphs by Chatterjee, Ibsen-Jensen, and Pavlogiannis [14]. The state of
the art for negative cycle detection on constant treewidth graphs is an algorithm by Chaudhuri
and Zaroliagis with running time O(n) [17], which by Lawler’s binary search approach implies
an algorithm for the minimum ratio problem with running time O(n log (nW)). Chatterjee
et al. [14] report a running time of O(n log(|a · b|)) based on the more refined binary search
mentioned above and additionally give an algorithm that uses O(logn) space (and hence
polynomial time).

As a subroutine in our minimum ratio cycle algorithm, we use a new parallel algorithm
for negative cycle detection and single-source shortest paths. The parallel SSSP problem
has received considerable attention in the literature [50, 39, 18, 8, 49, 19, 43, 44, 5], but we
are not aware of any parallel SSSP algorithm that works in the presence of negative edge
weights (and thus solves the negative cycle detection problem). To the best of our knowledge,
the only strongly polynomial bounds reported in the literature are as follows: For weighted,
directed graphs with non-negative edge weights, Broda, Träff, and Zaroliagis [8] give an
implementation of Dijkstra’s algorithm with O(m logn) work and O(n) depth. For weighted,
undirected graphs with positive edge weights, Shi and Spencer [49] gave (1) an algorithm
with O(n3t−2 logn log (nt−1) +m logn) work and O(t logn) depth and (2) an algorithm with
O((n3t−3 +mnt−1) logn) work and O(t logn) depth, for any logn ≤ t ≤ n.

3 Note that the more fine-grained analysis of Hartmann and Orlin actually gives a running time of
O(m(

∑
u∈V

maxe=(u,v) t(e))).

ICALP 2017

124:4 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

2 Preliminaries

In the following, we review some of the tools that we use in designing our algorithm.

2.1 Parametric Search

We first explain the parametric search technique as outlined in [1]. Assume we are given
a property P of real numbers that is monotone in the following way: if P(λ) holds, then
also P(λ′) holds for all λ′ < λ. Our goal is to find λ∗, the maximum λ such that P(λ) holds.
In this paper for example, we will associate with each λ a weighted graph Gλ and P is the
property that Gλ has no negative cycle. Assume further that we are given an algorithm A
for deciding, for a given λ, whether P(λ) holds. If λ were known to only assume integer or
rational values, we could solve this problem by performing binary search with O(logW) calls
to the decision algorithm, where W is the number of possible values for λ. However, this
solution has the drawback of not yielding a strongly polynomial algorithm.

In parametric search we run the decision algorithm ‘generically’ at the maximum λ∗. As
the algorithm does not know λ∗, we need to take care of its control flow ourselves and any
time the algorithm performs a comparison we have to ‘manually’ evaluate the comparison
on behalf of the algorithm. If each comparison takes the form of testing the sign of an
associated low-degree polynomial p(λ), this can be done as follows. We first determine all
roots of p(λ) and check if P(λ′) holds for each such root λ′ using another instance of the
decision algorithm A. This gives us an interval between successive roots containing λ∗ and
we can thus resolve the comparison. With every comparison we make, the interval containing
λ∗ shrinks and at the end of this process we can output a single candidate. If the decision
algorithm A has a running time of T , then the overall algorithm for computing λ∗ has a
running time of O(T 2).

A more sophisticated use of the technique is possible, if in addition to a sequential
decision algorithm As we have an efficient parallel decision algorithm Ap. The parallel
algorithm performs its computations simultaneously on Pp processors. The number of
parallel computation steps until the last processor is finished is called the depth Dp of the
algorithm, and the number of operations performed by all processors in total is called the
work Wp of the algorithm.4 For parametric search, we actually only need parallelism w.r.t.
comparisons involving the input values. We denote by the comparison depth of Ap the
number of parallel comparisons (involving input values) until the last processor is finished.

We proceed similar to before: We run Ap ‘generically’ at the maximum λ∗ and (con-
ceptually) distribute the work among Pp processors. Now in each parallel step, we might
have to resolve up to Pp comparisons. We first determine all roots of the polynomials
associated to these comparisons. We then perform a binary search among these roots to
determine the interval of successive roots containing λ∗ and repeat this process of resolving
comparisons at every parallel step to eventually find out the value of λ∗. If the sequential
decision algorithm As has a running time of Ts and the parallel decision algorithm runs on
Pp processors in Dp parallel steps, then the overall algorithm for computing λ∗ has a running
time of O(PpDp +DpTs logPp). Formally, the guarantees of the technique we just described
can be summarized as follows.

4 To be precise, we use an abstract model of parallel computation as formalized in [28] to avoid distraction
by details such as read or write collisions typical to PRAM models.

K. Bringmann, T.D. Hansen, and S. Krinninger 124:5

I Theorem 1 ([1, 42]). Let P be a property of real numbers such that if P(λ) holds, then also
P(λ′) holds for all λ′ < λ and let Ap and As be algorithms deciding for a given λ whether
P(λ) holds such that

the control flow of Ap is only governed by comparisons that test the sign of an associated
polynomial in λ of constant degree,
Ap is a parallel algorithm with work Wp and comparison depth Dp, and
As is a sequential algorithm with running time Ts.

Then there is a (sequential) algorithm for finding the maximum value λ such that P(λ) holds
with running time O(Wp +DpTs logWp).

Note that Ap and As need not necessarily be different algorithms. In most cases however,
the fastest sequential algorithm might be the better choice for minimizing running time.

2.2 Characterization of Minimum Ratio Cycle
We consider a directed graph G = (V,E, c, t), in which every edge e = (u, v) has a cost c(e)
and a transit time t(e). We want to find the cycle C that minimizes the cost-to-time ratio∑
e∈C c(e)/

∑
e∈C t(e).

For any real λ define the graph Gλ = (V,E,wλ) as the modification of G with weight
wλ(e) = c(e)− λt(e) for every edge e ∈ E. The following structural lemma is the foundation
of many algorithmic approaches towards the problem.

I Lemma 2 ([22, 41]). Let λ∗ be the value of the minimum ratio cycle of G.
For λ > λ∗, the value of the minimum weight cycle in Gλ is < 0.
The value of the the minimum weight cycle in Gλ∗ is 0. Each minimum weight cycle in
Gλ∗ is a minimum ratio cycle in G and vice versa.
For λ < λ∗, the value of the minimum weight cycle in Gλ is > 0.

The obvious algorithmic idea now is to find the right value of λ with a suitable search
strategy and reduce the problem to a series of negative cycle detection instances.

2.3 Characterization of Negative Cycle
I Definition 3. A potential function p : V → R assigns a value to each vertex of a weighted
directed graph G = (V,E,w). We call a potential function p valid if for every edge e =
(u, v) ∈ E, the condition p(u) + w(e) ≥ p(v) holds.

The following two lemmas outline an approach for negative cycle detection.

I Lemma 4 ([25]). A weighted directed graph contains a negative cycle if and only if it has
no valid potential function.

I Lemma 5 ([37]). Let G = (V,E,w) be a weighted directed graph and let G′ = (V ′, E′, w′)
be the supergraph of G consisting of the vertices V ′ = V ∪ {s′} (i.e. with an additional super-
source s′), the edges E′ = E ∪ {s′} × V and the weight function w′ given by w′(s′, v) = 0 for
every vertex v ∈ V and w′(u, v) = w(u, v) for all pairs of vertices u, v ∈ V . If G does not
contain a negative cycle, then the potential function p defined by p(v) = dG′(s′, v) for every
vertex v ∈ V is valid for G.

Thus, an obvious strategy for negative cycle detection is to design a single-source shortest
paths algorithm that is correct whenever the graph contains no negative cycle. If the graph
contains no negative cycle, then the distances computed by the algorithm can be verified to

ICALP 2017

124:6 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

be a valid potential. If the graph does contain a negative cycle, then the distances computed
by the algorithm will not be a valid potential (because a valid potential does not exist) and
we can verify that the potential is not valid.

2.4 Computing Shortest Paths in Parallel
In our algorithm we use two building blocks for computing shortest paths in the presence of
negative edge weights in parallel. The first such building block was also used by Megiddo [42].

I Observation 6. By repeated squaring of the min-plus matrix product, all-pairs shortest
paths in a directed graph with real edge weights can be computed using work O(n3 logn) and
depth O(logn).

The second building block is a subroutine for computing the following restricted version
of shortest paths.

I Definition 7. The shortest h-hop path from a vertex s to a vertex t is the path of minimum
weight among all paths from s to t with at most h edges.

Note that a shortest h-hop path from s to t does not exist, if all paths from s to t use
more than h edges. Furthermore, if there is a shortest path from s to t with at most h edges,
then the h-hop shortest path from s to t is a shortest path as well. Shortest h-hop paths
can be computed by running h iterations of the Bellman-Ford algorithm [26, 3, 45].5 Similar
to shortest paths, shortest h-hop paths need not be unique. We can enforce uniqueness
by putting some arbitrary but fixed order on the vertices of the graph and sorting paths
according to the induced lexicographic order on the sequence of vertices of the paths. Note
that the Bellman-Ford algorithm can easily be adapted to optimizing lexicographically as its
second objective.

I Observation 8. By performing h iterations of the Bellman-Ford algorithm, the lexicograph-
ically smallest shortest h-hop path from a designated source vertex s to each other vertex in
a directed graph with real edge weights can be computed using work O(mh) and depth O(h).

We denote by π(s, t) the lexicographically smallest shortest path from s to t and by πh(s, t)
the lexicographically smallest shortest h-hop path from s to t. We denote by V (πh(s, t)) and
E(πh(s, t)) the set of nodes and edges of πh(s, t), respectively.

2.5 Approximate Hitting Sets
I Definition 9. Given a collection of sets S ⊆ 2U over a universe U , a hitting set is a set
T ⊆ H that has non-empty intersection with every set of S (i.e., S ∩ T 6= ∅ for every S ∈ S).

Computing a hitting set of minimum size is an NP-hard problem. For our purpose
however, rough approximations are good enough. The first method to get a sufficiently small
hitting set uses a simple randomized sampling idea and was introduced to the design of graph
algorithms by Ullman and Yannakakis [52]. We use the following formulation.

I Lemma 10. Let c ≥ 1, let U be a set of size s and let S = {S1, S2, . . . , Sk} be a collection of
sets over the universe U of size at least q. Let T be a subset of U that was obtained by choosing

5 The first explicit use of the Bellman-Ford algorithm to compute shortest h-hop paths that we are aware
of is in Thorup’s dynamic APSP algorithm [51].

K. Bringmann, T.D. Hansen, and S. Krinninger 124:7

each element of U independently with probability p = min(x/q, 1) where x = c ln (ks) + 1.
Then, with high probability (whp), i.e., probability at least 1−1/sc, the following two properties
hold:
1. For every 1 ≤ i ≤ k, the set Si contains an element of T , i.e., Si ∩ T 6= ∅.
2. |T | ≤ 3xs/q = O(cs log (ks)/q).

The second method is to use a heuristic to compute an approximately minimum hitting set.
In the sequential model, a simple greedy algorithm computes anO(logn)-approximation [36, 2].
We use the following formulation.

I Lemma 11. Let U be a set of size s and let S = {S1, S2, . . . , Sk} be a collection of sets
over the universe U of size at least q. Consider the simple greedy algorithm that picks an
element u in U that is contained in the largest number of sets in S and then removes all sets
containing u from S, repeating this step until S = ∅. Then the set T of elements picked by
this algorithm satisfies:
1. For every 1 ≤ i ≤ k, the set Si contains an element of T , i.e., Si ∩ T 6= ∅.
2. |T | ≤ O(s log (k)/q).

Proof. We follow the standard proof of the approximation ratio O(logn) for the greedy set
cover heuristic. The first statement is immediate, since we only remove sets when they are
hit by the picked element. Since each of the k sets contains at least q elements, on average
each element in U is contained in at least kq/s sets. Thus, the element u picked by the
greedy algorithm is contained in at least kq/s sets. The remaining number of sets is thus
at most k − kq/s = k(1− q/s). Note that the remaining sets still have size at least q, since
they do not contain the picked element u. Inductively, we thus obtain that after i iterations
the number of remaining sets is at most k(1− q/s)i, so after O(log(k) · s/q) iterations the
number of remaining sets is less than 1 and the process stops. J

The above greedy algorithm is however inherently sequential and thus researchers have
studied more sophisticated algorithms for the parallel model. The state of the art in terms
of deterministic algorithms is an algorithm by Berger et al. [4]6.

I Theorem 12 ([4]). Let S = {S1, S2, . . . , Sk} be a collection of sets over the universe
U , let n = |U | and m =

∑
1≤i≤k |Si|. For 0 < ε < 1, there is an algorithm with work

O((m+ n)ε−6 log4 n logm log6 (nm)) and depth O(ε−6 log4 n logm log6 (nm)) that produces
a hitting set of S of size at most (1 + ε)(1 + ln ∆) ·OPT , where ∆ is the maximum number
of occurrences of any element of U in S and OPT is the size of a minimum hitting set.

3 Randomized Algorithm for General Graphs

3.1 A Parallel SSSP Algorithm

In the following we design a parallel SSSP algorithm that can be used to check for negative
cycles. Formally, we will in this subsection prove the following statement.

6 Berger et al. actually give an approximation algorithm for the following slightly more general problem:
Given a hypergraph H = (V,E) and a cost function c : V → R on the vertices, find a minimum cost
subset R ⊆ V that covers H, i.e., an R that minimizes c(R) =

∑
v∈R

c(v) subject to the constraint
e ∩R 6= ∅ for all e ∈ E.

ICALP 2017

124:8 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

I Theorem 13. There is an algorithm that, given a weighted directed graph G = (V, E, w)
containing no negative cycles, computes the shortest paths from a designated source vertex s
to all other vertices spending O(mn logn+ n3h−3 log4 n) work with O(h+ logn) depth for
any 1 ≤ h ≤ n. The algorithm is correct with high probability and all its comparisons are
performed on sums of edge weights on both sides.

The algorithm proceeds in the following steps:
1. Let C ⊆ V be a set containing each vertex v independently with probability p =

min(3ch−1 lnn, 1) for a sufficiently large constant c.
2. If |C| > 9cnh−1 lnn, then terminate.
3. For every vertex x ∈ C ∪ {s} and every vertex v ∈ V , compute the shortest h-hop path

from x to v in G and its weight dhG(x, v).
4. Construct the graph H = (C ∪{s}, (C ∪{s})2, wH) whose set of vertices is C ∪{s}, whose

set of edges is (C ∪ {s})2 and for every pair of vertices x, y ∈ C ∪ {s} the weight of the
edge (x, y) is wH(x, y) = dhG(x, y).

5. For every vertex x ∈ C, compute the shortest path from s to x in H and its weight
dH(s, x).

6. For every vertex t ∈ V , set δ(t) = minx∈C∪{s}(dH(s, x) + dhG(x, t)).

3.1.1 Correctness
In order to prove the correctness of the algorithm, we first observe that as a direct consequence
of Lemma 10 the randomly selected vertices in C with high probability hit all lexicographically
smallest shortest bh/2c-hop paths of the graph.

I Observation 14. Consider the collection of sets

S = {V (πbh/2c(u, v)) | u, v ∈ V with dbh/2cG (u, v) <∞ and |E(πbh/2c(u, v))| = bh/2c}

containing the vertices of the lexicographically smallest shortest bh/2c-hop paths with exactly
bh/2c edges between all pairs of vertices. Then, with high probability, C is a hitting set of S
of size at most 9cnh−1 lnn.

I Lemma 15. If G contains no negative cycle, then δ(t) = dG(s, t) for every vertex t ∈ V
with high probability.

Proof. First note that the algorithm incorrectly terminates in Step 2 only with small
probability. We now need to show that, for every vertex t ∈ V , δ(t) := minx∈C∪{s}(dH(s, x)+
dhG(x, t)) = dG(s, t). First observe that every edge in H corresponds to a path in G (of
the same weight). Thus, the value δ(t) corresponds to some path in G from s to t (of the
same weight) which implies that dG(s, t) ≤ δ(t) (as no path can have weight less than the
distance).

Now let π(s, t) be the lexicographically smallest shortest path from s to t in G. Subdivide
π into consecutive subpaths π1, . . . , πk such that πi for 1 ≤ i ≤ k− 1 has exactly bh/2c edges,
and πk has at most bh/2c edges. Note that if π itself has at most bh/2c edges, then k = 1.
Since every subpath of a lexicographically smallest shortest path is also a lexicographically
smallest shortest path, the paths π1, . . . , πk are lexicographically smallest shortest paths as
well. As the subpaths π1, . . . , πk−1 consist of exactly bh/2c edges, each of them is contained
in the collection of sets S of Observation 14. Therefore, each subpath πi, for 1 ≤ i ≤ k − 1,
contains a vertex xi ∈ C with high probability.

K. Bringmann, T.D. Hansen, and S. Krinninger 124:9

Set x0 = s and xk = t, and observe that for every 0 ≤ i ≤ k − 1, the subpath of
π(s, t) from xi to xi+1 is a shortest path from xi to xi+1 with at most h edges and thus
dhG(xi, xi+1) = dG(xi, xi+1). We now get the following chain of inequalities:

dG(s, t) =
∑

0≤i≤k−1
dG(xi, xi+1) =

∑
0≤i≤k−1

dhG(xi, xi+1)

=
(∑

0≤i≤k−2
wH(xi, xi+1)

)
+ dhG(xk−1, t)

≥ dH(x0, xk−1) + dhG(xk−1, t)
= dH(s, xk−1) + dhG(xk−1, t)
≥ min
x∈C∪{s}

(dH(s, x) + dhG(x, t)) = δ(t) . J

Note that we have formally argued only that the algorithm correctly computes the
distances from s. It can easily be checked that the shortest paths can be obtained by
replacing the edges of H with their corresponding paths in G.

3.1.2 Running Time
I Lemma 16. The algorithm above can be implemented with O(mn logn+n3h−3 log4 n) and
O(h+ logn) depth such that all its comparisons are performed on sums of edge weights on
both sides.

Proof. Clearly, in Steps 1–2, the algorithm spends O(m+ n) work with O(1) depth. Step 3
can be carried out by running h iterations of Bellman-Ford for every vertex x ∈ C in parallel
(see Lemma 8), thus spending O(|C| ·mh) work with O(h) depth. Step 4 can be carried out by
spending O(|C|2) work with O(1) depth. Step 5 can be carried out by running the min-plus
matrix multiplication based APSP algorithm (see Lemma 6), thus spending O(|C|3 logn)
work with O(logn) depth. The naive implementation of Step 6 spends O(n|C|) work with
O(|C|) depth. Using a bottom-up ‘tournament’ approach where in each round we pair up
all values and let the maximum value of each pair proceed to the next round, this can be
improved to work O(n|C|) and depth O(logn).

It follows that by carrying out the steps of the algorithm sequentially as explained above,
the overall work is O(|C| ·mh+ |C|3 logn) and the depth is O(h+ logn). As the algorithm
ensures that |C| ≤ 9cnh−1 lnn for some constant c, the work is O(mn logn+ n3h−3 log4 n)
and the depth is O(h+ logn). J

3.1.3 Extension to Negative Cycle Detection
To check whether a weighted graph G = (V,E,w) contains a negative cycle, we first construct
the graph G′ (with an additional super-source s′) as defined in Lemma 5. We then run the
SSSP algorithm of Theorem 13 from s′ in G′ and set p(v) = dG′(s′, t) for every vertex t ∈ V .
We then check whether the function p defined in this way is a valid potential function for G
testing for every edge e = (u, v) (in parallel) whether p(u) + w(u, v) ≥ p(v). If this is the
case, then we output that G contains no negative cycle, otherwise we output that G contains
a negative cycle.

I Corollary 17. There is a randomized algorithm that checks whether a given weighted directed
graph contains a negative cycle with O(mn logn+n3h−3 log4 n) work and O(h+ logn) depth
for any 1 ≤ h ≤ n. The algorithm is correct with high probability and all its comparisons are
performed on sums of edge weights on both sides.

ICALP 2017

124:10 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

Proof. Constructing the graph G′ and checking whether p is a valid potential can both be
carried out with O(m+ n) work and O(1) depth. Thus, the overall work and depth bounds
are asymptotically equal to the SSSP algorithm of Theorem 13.

If G contains no negative cycle, then the SSSP algorithm correctly computes the distances
from s′ in G′. Thus, the potential p is valid by Lemma 5 and our algorithm correctly outputs
that there is no negative cycle. If G contains a negative cycle, then it does not have any
valid potential by Lemma 4. Thus, the potential p defined by the algorithm cannot be valid
and the algorithm outputs correctly that G contains a negative cycle. J

3.2 Finding the Minimum Ratio Cycle
Using the negative cycle detection algorithm as a subroutine, we obtain an algorithm for
computing a minimum ratio cycle in time Õ(n3/2m3/4).

I Theorem 18. There is a randomized one-sided-error Monte Carlo algorithm for computing
a minimum ratio cycle with running time O(n3/2m3/4 log2 n).

Proof. By Lemma 2 we can compute the value of the minimum ratio cycle by finding
the largest value of λ such that Gλ contains no negative-weight cycle. We want to apply
Theorem 1 to find this maximum λ∗ by parametric search. As the sequential negative cycle
detection algorithm As we use Orlin’s minimum weight cycle algorithm [46] with running
time T (n,m) = O(mn). The parallel negative cycle detection algorithm Ap of Corollary 17
has work W (n,m) = O(mn logn+ n3h−3 log4 n) and depth D(n,m) = O(h+ logn), for any
choice of 1 ≤ h ≤ n. Any comparison the latter algorithm performs is comparing sums of
edge weights of the graph. Since in Gλ edge weights are linear functions in λ, the control
flow only depends on testing the sign of degree-1 polynomials in λ. Thus, Theorem 1 is
applicable7 and we arrive at a sequential algorithm for finding the value of the minimum
ratio cycle with running time O(mn logn(h+ logn) + n3h−3 log4 n). Finally, to output the
minimum ratio cycle and not just its value, we run Orlin’s algorithm for finding the minimum
weight cycle in Gλ∗ , which takes time O(mn). By setting h = n1/2m−1/4 logn the overall
running time becomes O(n3/2m3/4 log2 n). J

4 Deterministic Algorithm for General Graphs

We now present a deterministic variant of our minimum ratio cycle algorithm, with the same
running time as the randomized algorithm up to logarithmic factors.

4.1 Deterministic SSSP and Negative Cycle Detection
We can derandomize our SSSP algorithm by combining a preprocessing step with the parallel
hitting set approximation algorithm of [4]. Formally, we will prove the following statement.

I Theorem 19. There is a deterministic algorithm that, given a weighted directed graph
containing no negative cycles, computes the shortest paths from a designated source vertex s to
all other vertices spending O(mn log2 n+n3h−3 log7 n+n2h log11 n) work with O(h+log11 n)
depth for any 1 ≤ h ≤ n.

7 Formally, Theorem 1 only applies to deterministic algorithms. However, only step 1 of our parallel
algorithm is randomized, but this step does not depend on λ. All remaining steps are deterministic.
We can thus first perform steps 1 and 2, and invoke Theorem 1 only on the remaining algorithm. The
output guarantee then holds with high probability.

K. Bringmann, T.D. Hansen, and S. Krinninger 124:11

From this, using Lemmas 4 and 5 analogously to the proof of Corollary 17, we get the
following corollary for negative cycle detection.

I Corollary 20. There is a deterministic algorithm that checks whether a given weighted
directed graph contains a negative cycle with O(mn log2 n+ n3h−3 log7 n+ n2h log11 n) work
and O(h+ log11 n) depth for any 1 ≤ h ≤ n.

Our deterministic SSSP algorithm does the following:
1. For all pairs of vertices u, v ∈ V , compute the shortest bh/2c-hop path πbh/2c(u, v) from

u to v in G.8
2. Compute an O(logn)-approximate set cover C of the system of sets

S = {V (πbh/2c(u, v)) | u, v ∈ V with dbh/2cG (u, v) <∞ and |E(πbh/2c(u, v))| = bh/2c}.
3. Proceed with steps 3 to 6 of the algorithm in Section 3.1.

4.1.1 Correctness
Correctness is immediate: In the previous proof of Lemma 15 we relied on the fact that C is
a hitting set of S. In the above algorithm, this property is guaranteed directly.

4.1.2 Running Time
Step 1 can be carried out by running h iterations of the Bellman-Ford algorithm for every
vertex v ∈ V . By Lemma 8 this uses O(mnh) work and O(h) depth. We carry out Step 2 by
running the algorithm of Theorem 12 to compute an O(logn)-approximate hitting set of S
with work O(n2h log11 n) and depth O(log11 n). Lemma 10 gives a randomized process that
computes a hitting set of S of expected size O(nh−1 logn). By the probabilistic method, this
implies that there exists a hitting set of size O(nh−1 logn). We can therefore use the algorithm
of Theorem 12 to compute a hitting set S of size O(nh−1 log2 n). The work is O(n2h log11 n)
and the depth is O(log11 n). Carrying out the remaining steps with a hitting set C of size
O(nh−1 log2 n) uses work O(mh|C|+ |C|3 logn) = O(mn log2 n+ n3h−3 log7 n) and depth
O(h + logn). Thus, our overall SSSP algorithm has work O(mn log2 n + n3h−3 log7 n +
n2h log11 n) and depth O(h+ log11 n).

4.2 Minimum Ratio Cycle
We again obtain a minimum ratio cycle algorithm by applying parametric search (Theorem 1).
We obtain the same running time bound as for the randomized algorithm.

I Theorem 21. There is a deterministic algorithm for computing a minimum ratio cycle
with running time O(n3/2m3/4 log2 n).

Proof sketch. The proof is analogous to the proof of Theorem 18, with the only exception that
we use the deterministic parallel negative cycle detection algorithm of Corollary 20. However,
we do not necessarily need to run the algorithm of Theorem 12 to compute an approximate
hitting set. Instead we can also run the greedy set cover heuristic (Lemma 11) for this
purpose. The reason is that at this stage, the greedy heuristic does not need to perform any
comparisons involving the edge weights of the input graph, which are the only operations that
are costly in the parametric search technique. This means that finding an approximate hitting

8 Note that in case there are multiple shortest bh/2c-hop paths from u to v, any tie-breaking is fine for
the algorithm and its analysis.

ICALP 2017

124:12 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

set C of size O(nh−1 logn) can be implemented with O(
∑
S∈S |S|) = O(n2h) work and O(1)

comparison depth. Thus, we use a parallel negative cycle detection algorithm Ap which has
work W (n,m) = O(mh|C|+ |C|3 logn+n2h) = O(mn logn+n3h−3 log4 n+n2h) and depth
D(n,m) = O(h+ logn), for any choice of 1 ≤ h ≤ n. We thus obtain a sequential minimum
ratio cycle algorithm with running time O(mn logn+n3h−3 log4 n+n2h+mn logn(h+logn)),
for any choice of 1 ≤ h ≤ n. Note that the summands mn logn and n2h are both dominated
by the last summand mn logn(h + logn). Setting h = n1/2m−1/4 logn to optimize the
remaining summands, the running time becomes O(n3/2m3/4 log2 n). J

5 Near-Linear Time Algorithm for Constant Treewidth Graphs

In the following we demonstrate how to obtain a nearly-linear time algorithm (in the strongly
polynomial sense) for graphs of constant treewidth. We can use the following results of
Chaudhuri and Zaroliagis [17] who studied the shortest paths problem in graphs of constant
treewidth.9

I Theorem 22 ([17]). There is a deterministic algorithm that, given a weighted directed
graph containing no negative cycles, computes a data structure that after O(n) preprocessing
time can answer, for any pair of vertices, distance queries in time O(α(n)), where α(·) is
the inverse Ackermann function. It can also report a corresponding shortest path in time
O(`α(n)), where ` is the number of edges of the reported path.

I Theorem 23 ([16]). There is a deterministic negative cycle algorithm for weighted directed
graphs of constant treewidth with O(n) work and O(log2 n) depth.

We now apply the reduction of Theorem 1 to the algorithm of Theorem 23 to find λ∗, the
value of the minimum ratio cycle, in time O(n log3 n) (using Ts(n) = Wp(n) = O(n), and
Dp(n) = O(log2 n)). We then use the algorithm of Theorem 22 to find a minimum weight
cycle in Gλ∗ in time O(nα(n)): Each edge e = (u, v) together with the shortest path from v

to u (if it exists) defines a cycle and we need to find the one of minimum weight by asking
the corresponding distance queries. For the edge e = (u, v) defining the minimum weight
cycle we query for the corresponding shortest path from v to u. This takes time O(n) as a
graph of constant treewidth has O(n) edges. We thus arrive at the following guarantees of
the overall algorithm.

I Corollary 24. There is a deterministic algorithm that computes the minimum ratio cycle
in a directed graph of constant treewidth in time O(n log3 n).

6 Conclusion

We have presented a faster strongly polynomial algorithm for finding a cycle of minimum
cost-to-time ratio, a problem which has a long history in combinatorial optimization and
recently became relevant in the context of quantitative verification. Our approach combines
parametric search with new parallelizable single-source shortest path algorithms and also
yields small improvements for graphs of constant treewidth and in the dense regime. The
main open problem is to push the running time down to Õ(mn), nearly matching the strongly
polynomial upper bound for the less general problem of finding a minimum mean cycle.

9 The first result of Chaudhuri and Zaroliagis [17] has recently been complemented with a space-time
trade-off by Chatterjee, Ibsen-Jensen, and Pavlogiannis [15] at the cost of polynomial preprocessing
time that is too large for our purposes.

K. Bringmann, T.D. Hansen, and S. Krinninger 124:13

References
1 Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of parametric searching

in geometric optimization. Journal of Algorithms, 17(3):292–318, 1994. Announced at
SODA’92. doi:10.1006/jagm.1994.1038.

2 Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. Structure preserving reduc-
tions among convex optimization problems. Journal of Computer and System Sciences,
21(1):136–153, 1980. Announced at ICALP’77. doi:10.1016/0022-0000(80)90046-X.

3 Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

4 Bonnie Berger, John Rompel, and Peter W. Shor. Efficient NC algorithms for set cover
with applications to learning and geometry. Journal of Computer and System Sciences,
49(3):454–477, 1994. Announced at FOCS’89. doi:10.1016/S0022-0000(05)80068-6.

5 Guy E. Blelloch, Yan Gu, Yihan Sun, and Kanat Tangwongsan. Parallel shortest paths us-
ing radius stepping. In Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 443–454, 2016. doi:10.1145/2935764.2935765.

6 Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, Georg
Hofferek, Barbara Jobstmann, Bettina Könighofer, and Robert Könighofer. Synthesizing
robust systems. Acta Informatica, 51(3-4):193–220, 2014. Announced at FMCAD’09. doi:
10.1007/s00236-013-0191-5.

7 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobst-
mann. Better quality in synthesis through quantitative objectives. In International
Conference on Computer-Aided Verification (CAV), pages 140–156, 2009. doi:10.1007/
978-3-642-02658-4_14.

8 Gerth Stølting Brodal, Jesper Larsson Träff, and Christos D. Zaroliagis. A parallel prior-
ity queue with constant time operations. Journal of Parallel and Distributed Computing,
49(1):4–21, 1998. Announced at IPPS’97. doi:10.1006/jpdc.1998.1425.

9 Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991. Published as technical report CS-TR-91-01.

10 Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and
Rohit Singh. Quantitative synthesis for concurrent programs. In International Con-
ference on Computer-Aided Verification (CAV), pages 243–259, 2011. doi:10.1007/
978-3-642-22110-1_20.

11 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga. Re-
source interfaces. In International Conference on Embedded Software (EMSOFT), pages
117–133, 2003. doi:10.1007/978-3-540-45212-6_9.

12 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and
more: Quickly derandomizing Razborov-Smolensky. In Symposium on Discrete Algorithms
(SODA), pages 1246–1255, 2016. doi:10.1137/1.9781611974331.ch87.

13 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Transactions on Computational Logic, 11(4):23:1–23:38, 2010. Announced at CSL’08.
doi:10.1145/1805950.1805953.

14 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Faster algo-
rithms for quantitative verification in constant treewidth graphs. In International Con-
ference on Computer-Aided Verification (CAV), pages 140–157, 2015. doi:10.1007/
978-3-319-21690-4_9.

15 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Optimal reach-
ability and a space-time tradeoff for distance queries in constant-treewidth graphs. In
European Symposium on Algorithms (ESA), pages 28:1–28:17, 2016. doi:10.4230/LIPIcs.
ESA.2016.28.

ICALP 2017

http://dx.doi.org/10.1006/jagm.1994.1038
http://dx.doi.org/10.1016/0022-0000(80)90046-X
http://dx.doi.org/10.1016/S0022-0000(05)80068-6
http://dx.doi.org/10.1145/2935764.2935765
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/s00236-013-0191-5
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1006/jpdc.1998.1425
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-540-45212-6_9
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1145/1805950.1805953
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.28

124:14 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

16 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest paths in digraphs of small treewdith.
Part II: optimal parallel algorithms. Theoretical Computer Science, 203(2):205–223, 1998.
Announced at ESA’95. doi:10.1016/S0304-3975(98)00021-8.

17 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest paths in digraphs of small treewidth.
Part I: sequential algorithms. Algorithmica, 27(3):212–226, 2000. Announced at ICALP’95.
doi:10.1007/s004530010016.

18 Edith Cohen. Using selective path-doubling for parallel shortest-path computations. Jour-
nal of Algorithms, 22(1):30–56, 1997. Announced at ISTCS’93. doi:10.1006/jagm.1996.
0813.

19 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. Journal of the ACM, 47(1):132–166, 2000. Announced at STOC’94. doi:
10.1145/331605.331610.

20 Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight
shortest paths and unit capacity minimum cost flow in Õ(m10/7 logW) time. In Symposium
on Discrete Algorithms (SODA), pages 752–771, 2017. doi:10.1137/1.9781611974782.48.

21 Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal
of the ACM, 34(1):200–208, 1987. Announced at FOCS’84. doi:10.1145/7531.7537.

22 G.B. Dantzig, W. Blattner, and M.R. Rao. Finding a cycle in a graph with minimum cost
to time ratio with application to a ship routing problem. In P. Rosenstiehl, editor, Theory
of Graphs, pages 77–84. Dunod, Paris and Gordon and Breach, New York, 1967.

23 Ali Dasdan, Sandy Irani, and Rajesh K. Gupta. Efficient algorithms for optimum cycle
mean and optimum cost to time ratio problems. In Design Automation Conference (DAC),
pages 37–42, 1999. doi:10.1145/309847.309862.

24 Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
Springer, 2009. doi:10.1007/978-3-642-01492-5.

25 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19(2):248–264, 1972. doi:10.1145/321694.
321699.

26 L. R. Ford. Network flow theory. Technical Report P-923, The RAND Corporation, 1956.
27 Bennett Fox. Finding minimal cost-time ratio circuits. Operations Research, 17(3):546–551,

1969.
28 Stephan Friedrichs and Christoph Lenzen. Parallel metric tree embedding based on an

algebraic view on moore-bellman-ford. In Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 455–466, 2016. doi:10.1145/2935764.2935777.

29 François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 296–303, 2014. doi:
10.1145/2608628.2608664.

30 Sabih H. Gerez, Sonia M. Heemstra de Groot, and Otto E. Herrmann. A polynomial
time algorithm for the computation of the iteration-period bound in recursive data flow
graphs. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applica-
tions, 39(1):49–52, 1992. doi:10.1109/81.109243.

31 Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM
Journal on Computing, 24(3):494–504, 1995. Announced at SODA’93. doi:10.1137/
S0097539792231179.

32 Manfred v. Golitschek. Optimal cycles in doubly weighted graphs and approximation of
bivariate functions by univariate ones. Numerische Mathematik, 39(1):65–84, 1982.

33 Mark Hartmann and James B. Orlin. Finding minimum cost to time ratio cycles with small
integral transit times. Networks, 23(6):567–574, 1993. doi:10.1002/net.3230230607.

http://dx.doi.org/10.1016/S0304-3975(98)00021-8
http://dx.doi.org/10.1007/s004530010016
http://dx.doi.org/10.1006/jagm.1996.0813
http://dx.doi.org/10.1006/jagm.1996.0813
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1137/1.9781611974782.48
http://dx.doi.org/10.1145/7531.7537
http://dx.doi.org/10.1145/309847.309862
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1145/2935764.2935777
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1109/81.109243
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1002/net.3230230607

K. Bringmann, T.D. Hansen, and S. Krinninger 124:15

34 Alexander T. Ishii, Charles E. Leiserson, and Marios C. Papaefthymiou. An algorithm for
the tramp steamer problem based on mean-weight cycles. Technical Report MIT/LCS/TM-
457, Massachusetts Institute of Technology, 1991.

35 Kazuhito Ito and Keshab K. Parhi. Determining the minimum iteration period of an
algorithm. VLSI Signal Processing, 11(3):229–244, 1995. doi:10.1007/BF02107055.

36 David S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9(3):256–278, 1974. Announced at STOC’73. doi:10.
1016/S0022-0000(74)80044-9.

37 Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of
the ACM, 24(1):1–13, 1977. doi:10.1145/321992.321993.

38 Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23(3):309–311, 1978. doi:10.1016/0012-365X(78)90011-0.

39 Philip N. Klein and Sairam Subramanian. A randomized parallel algorithm for single-
source shortest paths. Journal of Algorithms, 25(2):205–220, 1997. Announced at STOC’92.
doi:10.1006/jagm.1997.0888.

40 Eugene L. Lawler. Optimal cycles in doubly weighted linear graphs. In P. Rosenstiehl,
editor, Theory of Graphs, pages 209–214. Dunod, Paris and Gordon and Breach, New York,
1967.

41 Eugene L. Lawler. Combinatorial Optimization: Network and Matroids. Holt, Rinehart
and Winston, New York, 1976.

42 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial al-
gorithms. Journal of the ACM, 30(4):852–865, 1983. Announced at FOCS’81. doi:
10.1145/2157.322410.

43 Ulrich Meyer and Peter Sanders. ∆-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114–152, 2003. Announced at ESA’98. doi:10.1016/
S0196-6774(03)00076-2.

44 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algo-
rithms for spanners and hopsets. In Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 192–201, 2015. doi:10.1145/2755573.2755574.

45 E. F. Moore. The shortest path through a maze. In International Symposium on the Theory
of Switching, pages 285–292, 1959. doi:10.1137/1.9781611974331.ch87.

46 James B. Orlin. An O(nm) time algorithm for finding the min length directed cycle in a
weighted graph. In Symposium on Discrete Algorithms (SODA), pages 1866–1879, 2017.
doi:10.1137/1.9781611974782.122.

47 Christos H. Papadimitriou. Efficient search for rationals. Information Processing Letters,
8(1):1–4, 1979. doi:10.1016/0020-0190(79)90079-6.

48 Piotr Sankowski. Shortest paths in matrix multiplication time. In European Symposium
on Algorithms (ESA), pages 770–778, 2005. doi:10.1007/11561071_68.

49 Hanmao Shi and Thomas H. Spencer. Time-work tradeoffs of the single-source shortest
paths problem. Journal of Algorithms, 30(1):19–32, 1999. doi:10.1006/jagm.1998.0968.

50 Thomas H. Spencer. Time-work tradeoffs for parallel algorithms. Journal of the ACM,
44(5):742–778, 1997. Announced at SODA’91 and SPAA’91. doi:10.1145/265910.265923.

51 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Symposium on Theory of Computing (STOC), pages 112–119, 2005. doi:10.1145/1060590.
1060607.

52 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure
algorithms. SIAM Journal on Computing, 20(1):100–125, 1991. Announced at SPAA’90.
doi:10.1137/0220006.

53 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on
Theory of Computing (STOC), pages 664–673, 2014. doi:10.1145/2591796.2591811.

ICALP 2017

http://dx.doi.org/10.1007/BF02107055
http://dx.doi.org/10.1016/S0022-0000(74)80044-9
http://dx.doi.org/10.1016/S0022-0000(74)80044-9
http://dx.doi.org/10.1145/321992.321993
http://dx.doi.org/10.1016/0012-365X(78)90011-0
http://dx.doi.org/10.1006/jagm.1997.0888
http://dx.doi.org/10.1145/2157.322410
http://dx.doi.org/10.1145/2157.322410
http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/10.1145/2755573.2755574
http://dx.doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974782.122
http://dx.doi.org/10.1016/0020-0190(79)90079-6
http://dx.doi.org/10.1007/11561071_68
http://dx.doi.org/10.1006/jagm.1998.0968
http://dx.doi.org/10.1145/265910.265923
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1145/2591796.2591811

124:16 Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio

54 Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast
matrix multiplication. In Symposium on Foundations of Computer Science (FOCS), pages
389–396, 2005. doi:10.1109/SFCS.2005.20.

http://dx.doi.org/10.1109/SFCS.2005.20

Simple Greedy Algorithms for Fundamental
Multidimensional Graph Problems∗

Vittorio Bilò1, Ioannis Caragiannis2, Angelo Fanelli3,
Michele Flammini4, and Gianpiero Monaco5

1 Department of Mathematics and Physics “Ennio De Giorgi”, University of
Salento, Salento, Italy
vittorio.bilo@unisalento.it

2 CTI “Diophantus” & Department of Computer Engineering and Informatics,
University of Patras, Patras, Greece
caragian@ceid.upatras.gr

3 CNRS (UMR-6211), Caen, France
angelo.fanelli@unicaen.fr

4 Gran Sasso Science Institute & DISIM, University of L’Aquila, L’Aquila, Italy
michele.flammini@univaq.it

5 DISIM, University of L’Aquila, L’Aquila, Italy
gianpiero.monaco@univaq.it

Abstract
We revisit fundamental problems in undirected and directed graphs, such as the problems of
computing spanning trees, shortest paths, steiner trees, and spanning arborescences of minimum
cost. We assume that there are d different cost functions associated with the edges of the input
graph and seek for solutions to the resulting multidimensional graph problems so that the p-
norm of the different costs of the solution is minimized. We present combinatorial algorithms
that achieve very good approximations for this objective. The main advantage of our algorithms
is their simplicity: they are as simple as classical combinatorial graph algorithms of Dijkstra and
Kruskal, or the greedy algorithm for matroids.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on Discrete Structures, G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases multidimensional graph problems, matroids, shortest paths, Steiner trees,
arborescences

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.125

1 Introduction

We study generalizations of some very well-known combinatorial optimization problems, such
as the problem of computing a minimum spanning tree in a graph. In its classical version, we
are given an undirected graph with edge costs and the objective is to compute a spanning tree
of minimum cost on the graph. We revisit fundamental problems of this kind by assuming
that there are d different cost functions associated with the edges of the input graph. Then,
a spanning tree has d different cost values, one for each cost function. Our objective is to
compute a spanning tree that minimizes a specific aggregate value of these costs.

∗ This work was partially supported by the project ANR-14-CE24-0007-01 “CoCoRICo-CoDec”.

EA
T

C
S

© Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, Michele Flammini, and
Gianpiero Monaco;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 125; pp. 125:1–125:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

125:2 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

At first glance, this is the type of multi-objective (or multi-criteria) optimization problems
that arise in many diverse disciplines, including engineering, economics and business, health-
care, and more. Here, our motivation stems from the recently emerging trend of participatory
budgeting [1]. According to it, optimization problems related to the use of budget for building
public facilities are solved taking into account the view the citizens have for the input. In
the example above, each of the d different cost functions can be thought of as provided by a
single individual. Consistent to this, we will assume that the parameter d is large.

We use the general term minimum multidimensional resource selection (MMRS) to refer
to the class of problems that we study. In addition to parameter d, an instance of such a
problem consists of a set R of resources, a d-dimensional cost vector cr for each resource
r ∈ R, the set of feasible solutions F (subsets of resources) and an additional parameter p ≥ 1.
The objective of MMRS is to select a feasible solution S so that the quantity ‖

∑
r∈S cr‖p

is minimized. Note that the sum inside the norm is d-dimensional and its entries represent
the cost of S with respect to the d cost functions. Then, the p-norm is used for aggregating
these entries into a single value.

Even though the problem has not been considered before in the general version we
just defined it, efficient solutions to some of its variants follow by recent advances on
randomized rounding of fractional solutions for linear program relaxations. In contrast to
such sophisticated techniques, we insist on deterministic algorithms that are extremely simple.
More concretely, we consider the following problems:

We warm up with MMRS in matroids, in which the feasible solutions that form set F
are the bases of a matroid defined over the resources. A typical subproblem is when the
resources are the edges of a graph and the feasible solutions correspond to spanning trees
of the graph. For MMRS on matroids, we present a variation of the greedy algorithm on
matroids (e.g., see [18]) and show that it yields O(min{p, log d})-approximate solutions.
Shortest multidimensional path (SMP). Again, the resources correspond to edges of a
graph and the feasible solutions are subsets of edges that connect two designated nodes.
An approximation guarantee of O(min{p, log d}) is obtained by a Dijkstra-like algorithm.
Minimum multidimensional steiner tree (MMST). Unlike the spanning tree version men-
tioned above, in MMST the feasible solutions are not matroid bases. Furthermore, the
classical trick in the single dimensional case (see, e.g., [19]) of approximating the minimum
steiner tree by a minimum spanning tree does not carry over when we have different
costs (the cost functions do not necessarily form a metric). Still, we have a Kruskal-like
algorithm that uses our shortest multidimensional path algorithm as subroutine and
achieves (asymptotically) the same approximation guarantee.
Minimum multidimensional arborescence (MMA). Here, the resources are the edges
of a directed graph and the feasible solutions are spanning trees, directed away from
a designated root node. We present another simple algorithm that uses our shortest
multidimensional path algorithm as a subroutine and prove it to be O(min{p, log d}·logn)-
approximate, where n is the graph size.

We complement these results with an inapproximability statement. For p = ∞, none of
the above problems admit a polynomial-time constant approximation algorithm, under
standard complexity assumptions. Here we exploit a gap-preserving reduction from the
vector scheduling problem which has been proved to be inpproximable in [7].

Our analysis is inspired by the literature on online scheduling and in particular from
[2, 5] where the objective is to minimize the p-norm of machine loads. En route, we exploit a
nice structural property that is satisfied by feasible solutions of the problems that we study,
and implies that greedy solutions for them are efficient.

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:3

Related work. The field of multi-objective optimization has traditionally considered similar
problems to ours, with approximation algorithms playing a major role. It seems though that
the questions considered there are mostly related to approximating the Pareto-curve (i.e.,
the set of solutions which are not dominated by any other). For instance, Diakonikolas et
al. [11] (see also the references therein) study the problem of computing a minimum set of
solutions that approximates within a specified accuracy, ε > 0, the Pareto curve of bi-objective
optimization problems, containing many important widely studied problems such as shortest
paths, spanning tree, matching, etc. We notice that these questions are fundamentally
different than the ones we study here. Also, they turn out to be computationally meaningful
only on instances in which d is a small constant (since otherwise the problem becomes
notoriously hard due to fact that the Pareto-curve becomes huge [16]). Instead, we are
interested in many different cost functions.

Chekuri et al. [8] (see also [9]) study the problem of solving (or, better, approximating
the optimal solution of) minimax integer programs subject to a matroid constraint; this is
essentially what we call MMRS on matroids with a value of infinity for parameter p. Chekuri
et al. [8] present a O(log d/ log log d)-approximation algorithm for this problem that exploits
sophisticated randomized rounding techniques. We remark that our bound is slightly higher
than theirs but the advantage of our result is in the simplicity of the algorithm. A special
case is covered in [4], where the computation of a spanning tree minimizing the maximum
number of times its edges cross a given set of cuts is considered.

Other investigations related to our setting are the multi-budgeted optimization problems.
There are d different cost functions defined over the set of resources. In addition, there
are d budget values that constrain each of the d costs of a solution. The objective is to
compute a feasible solution whose budget violation factor is as small as possible across all
cost dimensions. These problems have been tackled using sophisticated approaches such
as Lagrangian relaxations combined with various technical properties of the underlying
combinatorial structure, and linear programming together with iterative rounding techniques.
Such approaches were used to develop PTASes for spanning trees [14, 17], shortest paths
[13, 15], and matchings and matroid intersection [3] with d = 2. Grandoni et al. [12] consider
d-budgeted versions of classical problems. They show PTASes for spanning trees, matroid
bases, and bipartite matchings. Moreover they get a deterministic approximation scheme for
d-budgeted matchings in general graphs. We emphasize that the authors of [12] use linear
programming formulations and iterative rounding techniques that work for constant values
of d only. Finally, Chekuri et al. [10] give a randomized PTAS for matroid intersection and
matchings with any fixed number of budget constraints.

Roadmap. We begin with some necessary mathematical background in Section 2. Our
main lemma is presented in Section 3. Then, Sections 4-7 are devoted to the each of the four
problems mentioned above. We conclude with our inapproximability result in Section 8.

2 Mathematical Background

We summarize definitions and simple properties of p-norms and matroids. For an integer
d ≥ 1, define [d] = {1, 2, . . . , d} and 0d as the vector (0, . . . , 0)T ∈ Rd. We denote by
R = R≥1 ∪ {∞} the set of reals that are higher than 1, extended with the value ∞.

We later exploit the following two properties of the function f(x) = xt for every t ≥ 1.

I Lemma 1. For every x, y, h ≥ 0 with y ≥ x and t ≥ 1, (x+ h)t − xt ≤ (y + h)t − yt.

ICALP 2017

125:4 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

I Lemma 2. Given x ≥ 0, t ≥ 1, and n non-negative real values h1, . . . , hn,

∑
i∈[n]

(
(x+ hi)t − xt

)
≤

x+
∑
i∈[n]

hi

t

− xt.

The first property comes by observing that (x+ h)t − xt has non-negative derivative with
respect to x when t ≥ 1, while the second one is due to convexity of the monomial xt (see [6]
for a proof).

For a vector x = (x1, . . . , xd) ∈ Rd and p ∈ R, the value ‖x‖p =
(∑

i∈[d] x
p
i

)1/p
is called

the p-norm of x. We recall two fundamental properties possessed by p-norms.
I Property 3. For every x ∈ Rd and p, p′ ∈ R such that p′ ≤ p, ‖x‖p ≤ ‖x‖p′ .
I Property 4 (Minkowsi’s Inequality). For every x,y ∈ Rd and p ∈ R, ‖x+y‖p ≤ ‖x‖p+‖y‖p.

The next lemma shows how to use the logarithmic norm to approximate all other p-norms;
its proof follows easily by the definitions.

I Lemma 5. For every x ∈ Rd and p ∈ R, ‖x‖ln d ≤ e‖x‖p.

A matroid is a pair M = (R,X) such that R is a finite set, called the ground set, and X
is a family of subsets of R with the following properties:
1. ∅ ∈ X ,
2. if X ∈ X and Y ⊂ X, then Y ∈ X (hereditary property),
3. if X,Y ∈ X and |X| > |Y |, then there exists x ∈ X \ Y such that Y ∪ {x} ∈ X

(independent set exchange property).
A basis for matroid M is a set B ∈ X such that B ∪ {x} /∈ X for every x ∈ R \ B. The
independent set exchange property implies that all bases of M have the same cardinality
which is called the rank of M and is denoted by r(M).

For every two bases B1, B2 ∈ X , denote by G(B1∆B2) the bipartite graph (V,E) such that
V = (B1\B2)∪(B2\B1) and E = {{e1, e2} : e1 ∈ B1\B2, e2 ∈ B2\B1, B1\{e1}∪{e2} ∈ X}.
We shall make extensive use of the following fundamental result (see [18]).
I Proposition 6. There exists a perfect matching in the graph G(B1∆B2).

Given an undirected graph G = (V,E), let X be the family of all subsets of E which do not
contain cycles. The pair M = (E,X) is a matroid and is called the graphic matroid defined
over G. The set of bases for M is the set of all spanning trees for G, so that r(M) = |V | − 1.

3 Problem Statement and the PAID Property

The minimum multidimensional resource selection (MMRS) problem is a collection of instances
of the form I = (R, d, (cr)r∈R,F , p), where R is a set of resources such that each resource
r ∈ R has an associated d-dimensional cost vector cr ∈ Rd+, F ⊆ 2R \ ∅ is a set of feasible
solutions, and p ∈ R. For a subset of resources S ⊆ R, define its multidimensional load as
`(S) =

∑
r∈S cr and denote by `i(S) its ith element. An optimal solution for I is any solution

belonging to argminS∈F
{
‖`(S)‖p

}
, that is, any feasible solution minimizing the p-norm of its

multidimensional load. Denote by OPT(I) = ‖`(S∗)‖p, where S∗ ∈ argminS∈F
{
‖`(S)‖p

}
,

the p-norm of the multidimensional load of an optimal solution for I.
We shall denote by MMRS(p) the natural restriction of the MMRS obtained by fixing the

value of p. When referring to an instance I ∈ MMRS(p), we remove the value of p from the
description of I and simply write I = (R, d, (cr)r∈R,F).

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:5

Given a set X and an integer k ≥ 1, a partial k-decomposition of X is an ordered family
of k sets (X1, . . . , Xk) such that

⋃
i∈[k] Xi ⊆ X. A β-intersecting partial k-decomposition of

X is a partial k-decomposition of X (X1, . . . , Xk) such that |{i ∈ [k] : x ∈ Xi}| ≤ β for every
x ∈ X, that is, no element of X occurs in more than β components of the decomposition. A
k-decomposition of X is a partial k-decomposition of X (X1, . . . , Xk) such that

⋃
i∈[k] Xi = X.

A k-partition of X is a 1-intersecting k-decomposition of X.

I Definition 7. Fix an instance I ∈ MMRS(p). A feasible solution S for I has the pairwise
β-intersecting decomposition property (henceforth, β-PAID property) if there exist a k-
decomposition of S (S1, . . . , Sk) and a β-intersecting partial k-decomposition of an optimal
solution S∗ for I (S∗1 , . . . , S∗k) such that, for every i ∈ [k],

‖`(S≤i)‖p ≤ ‖`(S≤i−1) + `(S∗i)‖p , (1)

where S≤i =
⋃
j∈[i] Sj and S≤0 = ∅.

The importance of the PAID property is captured by the following result.

I Lemma 8. Fix an instance I ∈ MMRS(p). If a feasible solution S for I possesses the
β-PAID property, then ‖`(S)‖p ≤ βp

ln 2 OPT(I).

Proof. We get

(
‖`(S)‖p

)p
=
∑
j∈[d]

`j(S)p =
∑
i∈[k]

∑
j∈[d]

`j(S≤i)p −
∑
j∈[d]

`j(S≤i−1)p

≤
∑
i∈[k]

∑
j∈[d]

(
`j(S≤i−1) + `j(S∗i)

)p
−
∑
j∈[d]

`j(S≤i−1)p

=
∑
j∈[d]

∑
i∈[k]

((
`j(S≤i−1) + `j(S∗i)

)p
− `j(S≤i−1)p

)

≤
∑
j∈[d]

∑
i∈[k]

((
`j(S) + `j(S∗i)

)p
− `j(S)p

)

≤
∑
j∈[d]

`j(S) +
∑
i∈[k]

`j(S∗i)

p

− `j(S)p

≤
∑
j∈[d]

((
`j(S) + β`j(S∗)

)p
− `j(S)p

)
=
∑
j∈[d]

(
`j(S) + β`j(S∗)

)p
−
∑
j∈[d]

`j(S)p

≤
(
‖`(S)‖p + β‖`(S∗)‖p

)p
−
(
‖`(S)‖p

)p
.

The first inequality follows by raising both sides of inequality (1) to p. The second and third
inequalities follow from Lemmas 1 and 2, respectively. The fourth inequality holds since
(S∗1 , . . . , S∗k) is a β-intersecting partial k-decomposition of S∗. The fifth inequality follows by
Minkowski’s inequality (by raising both of its sides to p).

By rearranging, we obtain
(
21/p − 1

)
‖`(S)‖p ≤ β‖`(S∗)‖p, which implies

‖`(S)‖p ≤
β‖`(S∗)‖p
21/p − 1

= β‖`(S∗)‖p
eln 2/p − 1

≤ βp

ln 2‖`(S∗)‖p,

ICALP 2017

125:6 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

Algorithm 1 (M,d, (cr)r∈R, p)
1: S0 ← ∅
2: i← 0
3: while S≤i is not a basis for M do
4: i← i+ 1
5: Ci ← {x ∈ R : S≤i−1 ∪ {x} ∈ X}
6: Si ← argminx∈Ci

‖`(S≤i−1 ∪ {x})‖p
7: end while
8: S ← S≤i
9: return S

where the last inequality comes from the fact that ex ≥ x+ 1 for every x ≥ 0. Since S∗ is an
optimal solution for I, the claim follows. J

By exploiting Lemma 5, we get the following approximability result; the proof is omitted
due to lack of space.

I Lemma 9. Let S be an α-approximate solution to an instance I = (R, d, (cr)r∈R,F) ∈
MMRS(ln d). Then, S is an O(α)-approximate solution to the instance I =
(R, d, (cr)r∈R,F) ∈ MMRS(p) with p ≥ ln d.

By putting all together, we get the following general approximation theorem.

I Theorem 10. Let A be an algorithm which, for every instance I ∈ MMRS, computes a
feasible solution for I possessing the β-PAID property. Then, A approximates MMRS within
a factor of O(β ·min{p, log d}).

Proof. Fix an instance I = (R, d, (cr)r∈R,F , p) ∈ MMRS. We can use algorithm A to
obtain a feasible solution S for I possessing the β-PAID property. By Lemma 8, S is an
O(pβ)-approximate solution for I. Moreover, we can use algorithm A to obtain a feasible
solution S for the instance I ′ = (R, d, (cr)r∈R,F , ln d) possessing the β-PAID property. By
Lemma 8, S is an O(β log d)-approximate solution for I ′ so that, by Lemma 9, S is also an
O(β log d)-approximate solution for I. J

4 MMRS on Matroids

As a warmup application of our technique, we first consider instances (R, d, (cr)r∈R,F , p) ∈
MMRS such that F is the set of bases of a matroid M = (R,X). We propose a simple greedy
algorithm (Algorithm 1) to approximate MMRS in this case.

The following lemma characterizes the approximation guarantee achieved by Algorithm 1.

I Lemma 11. Fix an instance I = (R, d, (cr)r∈R,F , p) ∈ MMRS such that F is the set of
bases of a matroid M = (R,X). Algorithm 1 returns a feasible solution for I possessing the
1-PAID property.

Proof. The fact that Algorithm 1 terminates by returning a feasible solution S ∈ F (i.e., a
basis for M) follows from the classical analysis of the greedy algorithm for matroids. Set
k = r(M) and let S∗ be an optimal solution to I. Define R(S, S∗) = S∩S∗ and consider graph
G(S∆S∗). By Proposition 6, there exists a bijective function f : S \R(S, S∗)→ S∗ \R(S, S∗).

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:7

Note that Algorithm 1 implicitly defines a k-partition (S1, . . . , Sk) of S. Now define the
k-partition (S∗1 , . . . , S∗k) of S∗ such that, for every i ∈ [k],

S∗i =
{
Si if Si ∈ R(S, S∗),
f(Si) if Si /∈ R(S, S∗).

Fix an index i ∈ [k]. We claim that, at the ith iteration of the while-loop of Algorithm 1,
S≤i−1 ∪ {S∗i } ∈ Ci. In fact, if this is not the case, it must be S≤i−1 ∪ {S∗i } /∈ X . However,
by the definition of f , we have that S \ {Si} ∪ {S∗i } ∈ X which, by the hereditary property
of matroids, implies that S≤i−1 ∪ {S∗i } ∈ X : a contradiction. Now, given that S∗i ∈ Ci, the
greedy choice performed at line 6 of Algorithm 1 implies that ‖`(S≤i)‖p ≤ ‖`(S≤i−1∪S∗i)‖p ≤
‖`(S≤i−1) + `(S∗i)‖p. J

By combining the above lemma with Theorem 10, we obtain the following result.

I Theorem 12. Algorithm 1 approximates MMRS on matroids within a factor of
O(min{p, log d}).

5 Shortest Multidimensional Path

Given a directed graph G = (V,E), in which every edge e ∈ E is associated with a d-
dimensional weight ce ∈ Rd+, a pair (s, t) ∈ V 2 of source-destination nodes, and value p ∈ R,
the shortest multidimensional path (SMP) problem is the restriction of MMRS to instances
with R = E and F = {S ⊆ E : S is an (s, t)-path in G}.

For our purposes, we shall need to solve instances of the SMP when dealing with other
MMRSs on graphs. For such a reason, we shall define an approximation algorithm for the
SMP which requires more general input parameters than the ones needed to solve the SMP.

Towards this end, consider the multidimensional generalization of Dijkstra’s algorithm,
denoted as Algorithm 2, defined in the following. It takes as input the graph G, the integer
d, the pair of nodes (s, t), the value p, and a set of edges E′ which may contain either edges
in E and edges not in E, and makes use of the data structures PATH and DISTANCE. Given
a node v ∈ V , PATH is an array such that PATH[v] contains a path connecting s to v, and
DISTANCE is an array such that DISTANCE[v] contains the value ‖`(PATH[v] ∪ E′)‖p.

The following lemma characterizes the approximation guarantee achieved by Algorithm 2.

I Lemma 13. Fix an instance I = (G, d, s, t, p) ∈ SMP. Then, Algorithm 2, executed with
parameters G, d, s, t, p and ∅, returns a feasible solution for I possessing the 1-PAID property.

Proof. The fact that, when executed with parameters G, d, s, t, p and ∅, Algorithm 2
terminates by returning a set of edges S = PATH[t] inducing an (s, t)-path in G follows from
the classical analysis of Dijkstra’s algorithm. Hence, we only need to show that S possesses
the 1-PAID property.

Let S∗ be an optimal solution to I. For a node v and a path P , let predP (v) be the
predecessor of node v along P . A node v is a merging node for S and S∗ if (i) v ∈ {s, t} or
(ii) v occurs along both S and S∗ and predS(v) 6= predS∗(v). Denote by M(S, S∗) = (s =
v0, v1, . . . , vj = t) the sequence of merging nodes for S and S∗ numbered according to the
order in which they occur along S. A node vi ∈M(S, S∗) is redundant if vi occurs along S∗
before some other merging node vj with j < i. Denote by M(S, S∗) = (s = v0, v1, . . . , vk = t)
the sequence of nodes obtained from M(S, S∗) by removing all the redundant ones (see
Figure 1 for an illustrating example).

ICALP 2017

125:8 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

Algorithm 2 (G, d, s, t, p, E′)
1: for each v ∈ V do
2: PATH[v]← ∅
3: DISTANCE[v]← +∞
4: end for
5: DISTANCE[s]← ‖`(E′)‖p
6: Q← V

7: while Q is not empty do
8: v ← argminu∈Q{DISTANCE[u]}
9: for each (v, u) ∈ E do

10: if DISTANCE[u] > ‖`(PATH[v] ∪ (v, u) ∪ E′)‖p then
11: PATH[u]← PATH[v] ∪ (v, u)
12: DISTANCE[u]← ‖`(PATH[v] ∪ (v, u) ∪ E′)‖p
13: end if
14: end for
15: Q← Q \ {v}
16: end while
17: return PATH[t]

s t

a

b

c

d

Figure 1 The definition of non-redundant merging nodes used in the proof of Lemma 13. The
solid lines represent the (s, t)-path S returned by Algorithm 2, while the dashed ones represent
the optimal solution S∗ (solid and dashed lines are drawn adjacently when some set of edges are
shared by S and S∗). We have M(S, S∗) = {s, a, b, c, d, t} and M(S, S∗) = {s, a, b, d, t} since node c

is redundant.

Let (S1, . . . , Sk) and (S∗1 , . . . , S∗k) be the k-partitions of S and S∗, respectively, such that,
for every i ∈ [k], Si (resp., S∗i) is the set of edges connecting vi−1 to vi in S (resp., S∗).

The well-known semantics of Dijkstra’s algorithm guarantees that, for every i ∈ [k], the
set of edges Si satisfies the inequality

DISTANCE[vi] ≤ ‖`(PATH[vi−1] ∪ S∗i)‖p,

where, by construction, DISTANCE[vi] = ‖`(S≤i)‖p and

‖`(PATH[vi−1] ∪ S∗i)‖p = ‖`(S≤i−1 ∪ S∗i)‖p ≤ ‖`(S≤i−1) + `(S∗i)‖p .

Hence, the claim follows. J

By combining Lemma 13 with Theorem 10, we obtain the following result.

I Theorem 14. Algorithm 2 approximates SMP within a factor of O(min{p, log d}).

We conclude this section by showing a fundamental lemma that will allow us to use
Algorithm 2 as a subroutine of approximation algorithms for other MMRSs defined on graphs.

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:9

I Lemma 15. Given an instance I ∈ MMRS, let (S1, . . . , Sk) be a k-decomposition of a
feasible solution S for I and (S∗1 , . . . , S∗k) be a β-intersecting partial k-decomposition of an
optimal solution S∗ for I. If, for every i ∈ [k], there exists an instance Ii = (Gi, d, si, ti, p) ∈
SMP such that Si is an (si, ti)-path in Gi computed by using Algorithm 2 executed with
parameters Gi, d, si, ti, p and S≤i−1, and S∗i is an (si, ti)-path in Gi, then S possesses the
β-PAID property.

Proof. The proof is a direct extension of the proof of Lemma 13. In fact, it suffices to
exploit the decomposition technique used therein within the decompositions (S1, . . . , Sk)
and (S∗1 , . . . , S∗k). Toward this end, denoting by (Si,1, . . . , Si,hi

) and (S∗i,1, . . . , S∗i,hi
) the

hi-partitions of Si and S∗i , respectively, that are obtained as in the proof of Lemma 13 and
setting m =

∑
∈[k] hi, we have that

(S1,1, . . . , S1,h1 , . . . , Sk,1, . . . , Sk,hk
) = (T1, . . . , Tm)

is an m-decomposition of S and that

(S∗1,1, . . . , S∗1,h1
, . . . , S∗k,1, . . . , S

∗
k,hk

) = (T ∗1 , . . . , T ∗m)

is a β-intersecting partial m-decomposition of S∗. By the same arguments used in the proof
of Lemma 13, we obtain that ‖`(T≤i)‖p ≤ ‖`(T≤i−1 ∪ T ∗i)‖p ≤ ‖`(T≤i−1) + `(T ∗i)‖p for each
i ∈ [m], thus proving the claim. J

6 Minimum Multidimensional Steiner Tree

Given an undirected graph G = (V,E), in which every edge e ∈ E is associated with a
d-dimensional weight ce ∈ Rd+, a set of r + 1 required nodes N = {v1, . . . , vr+1} ⊆ V , and a
value p ∈ R, the minimum multidimensional Steiner tree (MMST) problem is the restriction
of MMRS to instances with R = E and such that F is the set of all trees in G whose set of
nodes contains N .

We propose Algorithm 3, a Kruskal-like algorithm which takes as input the graph G,
the integer d, the set of required nodes N and the value p, and uses Algorithm 2 and the
functions set, merge and prune as subroutines. Given a required node v and an h-partition
P = {P1, P2, . . . , Ph} of N , function set returns the set Pi ∈ P such that v ∈ Pi; given a
partition P = {P1, P2, . . . , Ph} of N and two sets Pi, Pj ∈ P , function merge returns the
partition of N obtained from P by merging Pi and Pj ; finally, given a set of edges S, function
prune returns a maximal set of edges S′ ⊆ S not inducing cycles in G.

The following lemma characterizes the approximation guarantee achieved by Algorithm 3.

I Lemma 16. Fix an instance I = (G, d,N, p) ∈ MMST. Then, Algorithm 3 returns a
feasible solution for I possessing the 2-PAID property.

Proof. By the well-known semantics of Kruskal’s algorithm, we have that the while-loop
at lines 4-12 of Algorithm 3 is executed exactly r times so that S = (S1, . . . , Sr) induces a
subgraph of G spanning N and S = prune(S) is a Steiner tree spanning N . This implies
that the set of edges S returned by Algorithm 3 is a feasible solution for I. We shall prove
that S possesses the 2-PAID property which, given that S ⊂ S, implies the claim.

Let S∗ be an optimal solution to I. Our proof is based on the following idea: for every
i ∈ [r], we associate a path g(i) ∈ S∗ to path π(si, ti) = Si such that every edge in S∗

appears at most twice along all sets of paths {g(1), . . . , g(r)}. We shall prove that, using
this function, we obtain an r-decomposition of S and a 2-intersecting r-decomposition of

ICALP 2017

125:10 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

Algorithm 3 (G, d,N, p)
1: S0 ← ∅
2: i← 1
3: Pi ← {{v1}, . . . , {vr+1}}
4: while Pi 6= N do
5: for each (s, t) ∈ N2 : set(s, Pi) 6= set(t, Pi) do
6: π(s, t)← Algorithm 2(G, d, s, t, p, S≤i−1)
7: end for
8: (si, ti)← argmin(s,t)∈N2:set(s,Pi)6=set(t,Pi){‖`(S≤i−1 ∪ π(s, t))‖p}
9: Si ← π(si, ti)

10: Pi+1 ← merge(Pi, set(Pi, si), set(Pi, ti))
11: i← i+ 1
12: end while
13: return prune(S≤i−1)

S∗, meeting the conditions required in order to apply Lemma 15; the claim will then follow
directly.

Towards this end, given two required nodes u, v ∈ N , let Σuv = {π1
uv, . . . , π

puv
uv } denote

the set of all (u, v)-paths in G. Define G̃ = (N, Ẽ) as the multi-graph such that there are
puv edges {ẽ1

uv, . . . , ẽ
puv
uv } between every pair of nodes u, v ∈ N , with c

ẽi
uv

= `(πiuv) for every
i ∈ [puv]; so, there is a cost-preserving bijection between edges in G̃ and paths in G. Given a
path π in G, denote by ẽ(π) its correspondent edge in G̃ and, vice-versa, given an edge ẽ of
G̃, denote by ρ(ẽ) its correspondent path in G.

We observe the following facts:
1. S induces a spanning tree T (S) for G̃ defined as T (S) = {ẽ(π(si, ti)) ∈ Ẽ : i ∈ [r]}.
2. S∗ induces a spanning tree T (S∗) for G̃ defined as follows: let (v1, . . . , vr+1) be the

ordered sequence of the r + 1 nodes in N listed according to the order in which appear
along a Depth First Search of S∗ starting from an arbitrary required node v1 ∈ N , then
T (S∗) = {ẽ(π∗i) : i ∈ [r]}, where π∗i is the (vi, vi+1)-path in S∗. It is well-known that
every edge in S∗ occurs at most twice in the set of paths {ẽ(π∗1), . . . , ẽ(π∗r)}.

3. Since both T (S) and T (S∗) are bases of the graphic matroid defined over G̃, by applying
Proposition 6, there exists a bijection f : T (S) \ T (S∗)→ T (S∗) \ T (S).

Let us define a function g : [r]→ S∗ such that, for every i ∈ [r],

g(i) =
{
π(si, ti) if ẽ(π(si, ti)) ∈ T (S∗),
ρ(f(ẽ(π(si, ti)))) if ẽ(π(si, ti)) /∈ T (S∗).

For every i ∈ [r], set S∗i = g(i). We have that (S1, . . . , Sr) is an r-decomposition of S and
(S∗1 , . . . , S∗r) is a 2-intersecting r-decomposition of S∗. Our aim now is to apply Lemma 15.

Towards this end, fix an index i ∈ [r] and denote by s∗i and t∗i the two endpoints of path
g(i). We observe that it must be set(s∗i , Pi) 6= set(t∗i , Pi). Indeed, if this is not the case, then
(T (S) \ ẽ(π(si, ti)) ∪ ẽ(g(i)) cannot be a basis of the graphic matroid defined over G̃.

At the ith iteration of the while-loop at lines 4-12 of Algorithm 3, Pi represents the
set of connected components of G induced by the set of edges S≤i−1. Define Gi as the
multi-graph obtained from G by contracting the connected components containing set(si, Pi)
and set(s∗i , Pi) into a super-node si and the connected components containing set(ti, Pi) and
set(t∗i , Pi) into a super node ti. Let Gi be the graph obtained from Gi by splitting every

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:11

multi-edge e = {ui, uj} of weight ce into two edges {ui, uij} and {uij , uj} of weights ce and
0d, respectively.

If set(si, Pi) = set(s∗i , Pi) and set(ti, Pi) = set(t∗i , Pi), we have that (Gi, si, ti, p) is
an instance of the SMP meeting the conditions of Lemma 15, by which, we obtain the
claim. If set(si, Pi) = set(s∗i , Pi) and set(ti, Pi) = set(t∗i , Pi) does not hold, since G is an
undirected graph, we may assume without loss of generality that set(s∗i , Pi) 6= set(ti, Pi) and
set(si, Pi) 6= set(t∗i , Pi) (in fact, if one of the two inequalities does not hold, we can exchange
the role of s∗i and t∗i and have both of them satisfied).

Now observe that there is a cost-preserving bijection b between the set of paths connecting
any node in set(si, Pi) ∪ set(s∗i , Pi) to any node in set(ti, Pi) ∪ set(t∗i , Pi) in G and the set
of (si, ti)-paths in Gi. Moreover, by the assumption set(si, Pi) 6= set(t∗i , Pi), it follows that
path b(Si) is an (si, ti)-path in Gi; similarly, by the assumption set(s∗i , Pi) 6= set(ti, Pi), it
follows that path b(gi) is an (si, ti)-path in Gi.

Thus, in order to apply Lemma 15 and obtain the claim, we need to prove that there
are suitable tie breaking rules for which b(Si) is the output of Algorithm 2 when executed
with parameters Gi, d, si, ti, p and S≤i−1 on the instance (Gi, d, si, ti, p) ∈ SMP. Assume,
by way of contradiction, that for any possible tie breaking rule, Algorithm 2 never returns
an (si, ti)-path πi such that πi = b(Si). This implies that there exists an (si, ti)-path π∗i
such that ‖`(S≤i−1 ∪ π∗i)‖p < ‖`(S≤i−1 ∪ πi)‖p by which we obtain ‖`(S≤i−1 ∪ b−1(π∗i))‖p <
‖`(S≤i−1 ∪ b−1(πi))‖p, where b−1(π∗i) is some (s, t)-path in G with set(s, Pi) 6= set(t, Pi).
This contradicts Si = argmin(s,t)∈N2:set(s,Pi) 6=set(t,Pi){‖`(S≤i−1 ∪ π(s, t))‖p}. J

By combining Lemma 16 with Theorem 10, we obtain the following result.

I Theorem 17. Algorithm 3 approximates MMST within a factor of O(min{p, log d}).

7 Minimum Multidimensional Arborescence

Given a directed connected graph G = (V,E), with |V | = n, in which every edge e ∈ E
is associated with a d-dimensional weight ce ∈ Rd+, a node s ∈ V and a value p ∈ R, the
minimum multidimensional arborescence (MMA) problem is the restriction of MMRS to
instances with R = E and such that F is the set of all the directed trees in G rooted at s.
Recall that a directed tree T ⊂ E rooted at s is a set of n − 1 edges such that, for every
t ∈ V , there exists a directed (s, t)-path in T .

A rooted weakly connected component of G is a subgraph H = (V ′, E′) of G possessing
at least one root, that is, a node from which it is possible to reach any other node in V ′
by following a direct path in E′. Call the representative node of a rooted weakly connected
component any of its roots. When the set of roots of a rooted weakly connected component
H contains s, the representative node of H is always assumed to be s.

We propose Algorithm 4 which, starting from the set of rooted weakly connected com-
ponents of G obtained by considering all nodes in V as singletons, repeatedly merges rooted
weakly connected components of G until an arborescence rooted at s is obtained. Given a
set of edges S, function repr first computes the set C of weakly connected components of G
induced by S, and then computes a representative for every element of C. Observe that, by
our assumption, s ∈ repr(C) for every set of rooted weakly connected components C. Given
a set of edges S and a node u, function nodes computes the set of nodes belonging to the
weakly connected component containing u. Finally, given a set of edges S, function prune
returns a maximal subset of S not inducing cycles in G.

The following lemma characterizes the approximation guarantee achieved by Algorithm 4.
Its proof is omitted due to lack of space.

ICALP 2017

125:12 Simple Greedy Algorithms for Fundamental Multidimensional Graph Problems

Algorithm 4 (G, d, s, p)
1: S0 ← ∅
2: C1 ← V

3: i← 1
4: while Ci 6= {s} do
5: Si ← Si−1
6: for each u ∈ Ci \ {s} do
7: for each v ∈ V \ nodes(u, Si−1) do
8: π(v, u)← Algorithm 2(G, d, v, u, p, Si)
9: end for

10: δ(u)← argminv∈V \nodes(u,Si−1){‖`(Si ∪ π(v, u))‖p}
11: Si ← Si ∪ π(δ(u), u)
12: end for
13: Ci+1 ← repr(Si)
14: i← i+ 1
15: end while
16: return prune(Si−1)

I Lemma 18. Fix an instance I = (G, d, s, p) ∈ MMA. Then, Algorithm 4 returns a feasible
solution for I possessing the O(logn)-PAID property.

By combining Lemma 18 with Theorem 10, we obtain the following result.

I Theorem 19. Algorithm 4 approximates MMA within a factor of O(logn ·min{p, log d}).

8 An Inapproximability Result

We conclude by complementing our positive algorithmic results with the following hardness
statement.

I Theorem 20. For every constant κ ≥ 1, the problems MMRS(∞) on matroids, SMP(∞),
MMST(∞), and MMA(∞) cannot be approximated up to a factor κ unless NP=ZPP.

Proof. Our proof defines a simple approximation-preserving reduction from the Vector
Scheduling Problem VSP. An instance of the VSP is defined by n tasks to be scheduled on m
identical machines. Every task i has a d-dimensional load vector ci ∈ Rd+ and the objective
is to minimize the load over all machines and all dimensions. Chekuri and Kanna [7] showed
that, for every constant κ ∈ R, this problem cannot be approximated up to a factor κ unless
NP=ZPP.

Given an instance of the VSP, we define an undirected multi-graph G = (V,E) with n+ 1
nodes and mn edges defined as follows: V = {v0, v1, . . . , vn}, and for every i ∈ [n− 1] there
are m edges e1

i , . . . , e
m
i ∈ E connecting nodes vi−1 and vi such that, for every j ∈ [m], edge

eji has a (dm)-dimensional cost

c(eji) = (0d, . . . ,0d︸ ︷︷ ︸
j−1 times

, ci,0d, . . . ,0d︸ ︷︷ ︸
m−j times

).

Observe that every schedule of the n tasks to the m machines corresponds to a (v0, vn)-
path in G and viceversa. Moreover, the objective value of the two solutions is exactly the
same. Since G can be easily translated into a graph G′ by splitting every multi-edge into
two edges of the same total cost, we have that the hardness result for the VSP extends also

V. Bilò, I. Caragiannis, A. Fanelli, M. Flammini, and G. Monaco 125:13

to SMP(∞). Given that every spanning tree for G′ is a (v0, vn)-path in G′, the hardness
result extends to MMRS(∞) on matroids and to MMST(∞) when the set of required nodes
contains both v0 and vn. Finally, by directing every edge in E from vi−1 to vi, we obtain
the same hardness result for MMA(∞). J

References
1 https://www.participatorybudgeting.org/
2 B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balan-

cing in the Lp norm. In Proceedings of the 36th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 383–391, 1995.

3 A. Berger, V. Bonifaci, F. Grandoni, G. Schäfer. Budgeted matching and budgeted matroid
intersection via the gasoline puzzle. Mathematical Programming, 128(1-2): 355–372, 2011.

4 V. Bilò, V. Goyal, R. Ravi, and M. Singh. On the crossing spanning tree problem. In Pro-
ceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial
Problems (APPROX), LNCS 3122, pages 51–60, 2004.

5 I. Caragiannis. Better bounds for online load balancing on unrelated machines. In Proceed-
ings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
972–982, 2008.

6 I. Caragiannis. Efficient coordination mechanisms for unrelated machine scheduling. Al-
gorithmica, 66(3): 512–540, 2013.

7 C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM Journal on
Computing, 33(4): 837–851, 2004.

8 C. Chekuri, J. Vondrák and R. Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 575–584, 2010.

9 C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding for matroid
polytopes and applications. arXiv: 0909.4348, 2009.

10 C. Chekuri, J. Vondrák, and R. Zenklusen. Multi-budgeted matchings and matroid intersec-
tion via dependent rounding. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1080–1097, 2011.

11 I. Diakonikolas, M. Yannakakis. Small approximate Pareto sets for biobjective shortest
paths and other problems. SIAM Journal on Computing, 39(4): 1340-1371, 2009.

12 F. Grandoni, R. Ravi, M. Singh, and R. Zanklusen. New approaches to multi-objective
optimization. Mathematical Programming, 146(1): 525–554, 2014.

13 R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operation Research, 17(1): 36–42, 1992.

14 R. Hassin, Asaf Levin. An efficient polynomial time approximation scheme for the con-
strained minimum spanning tree problem using matroid intersection. SIAM Journal on
Computing, 33(2): 261–268, 2004.

15 D. Lorenz, D. Raz. A simple efficient approximation scheme for the restricted shortest paths
problem. Operations Research Letters, 28: 213–219, 2001.

16 C.H. Papadimitriou, M. Yannakakis. On the approximability of trade-offs and optimal
access of web sources. In Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 86–92, 2000.

17 R. Ravi, M. Goemans. The constrained minimum spanning tree problem. In Proceedings of
the 5th Scandinavian Workshop on Algorithm Theory (SWAT), pages 66–75, 1996.

18 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Volume B, Matroids,
Trees, Stable Sets. Springer, 2003.

19 V.V. Vazirani. Approximation Algorithms. Springer, 2001.

ICALP 2017

https://www.participatorybudgeting.org/

Stochastic k-Server: How Should Uber Work?∗†

Sina Dehghani1, Soheil Ehsani2, Mohammad Hajiaghayi3,
Vahid Liaghat4, and Saeed Seddighin5

1 University of Maryland, College Park, MD, USA
dehghani@cs.umd.edu

2 University of Maryland, College Park, MD, USA
ehsani@cs.umd.edu

3 University of Maryland, College Park, MD, USA
hajiagha@cs.umd.edu

4 Facebook, Menlo Park, CA, USA
vliaghat@gmail.com

5 University of Maryland, College Park, MD, USA
saeedrez@cs.umd.edu

Abstract
In this paper we study a stochastic variant of the celebrated k-server problem. In the k-server
problem, we are required to minimize the total movement of k servers that are serving an on-
line sequence of t requests in a metric. In the stochastic setting we are given t independent
distributions 〈P1, P2, . . . , Pt〉 in advance, and at every time step i a request is drawn from Pi.

Designing the optimal online algorithm in such setting is NP-hard, therefore the emphasis of
our work is on designing an approximately optimal online algorithm. We first show a structural
characterization for a certain class of non-adaptive online algorithms. We prove that in general
metrics, the best of such algorithms has a cost of no worse than three times that of the optimal
online algorithm. Next, we present an integer program that finds the optimal algorithm of
this class for any arbitrary metric. Finally by rounding the solution of the linear relaxation
of this program, we present an online algorithm for the stochastic k-server problem with an
approximation factor of 3 in the line and circle metrics and factor of O(logn) in a general metric
of size n. In this way, we achieve an approximation factor that is independent of k, the number
of servers.

Moreover, we define the Uber problem, motivated by extraordinary growth of online network
transportation services. In the Uber problem, each demand consists of two points -a source and
a destination- in the metric. Serving a demand is to move a server to its source and then to
its destination. The objective is again minimizing the total movement of the k given servers.
We show that given an α-approximation algorithm for the k-server problem, we can obtain an
(α + 2)-approximation algorithm for the Uber problem. Motivated by the fact that demands
are usually highly correlated with the time (e.g. what day of the week or what time of the day
the demand has arrived), we study the stochastic Uber problem. Using our results for stochastic
k-server we can obtain a 5-approximation algorithm for the stochastic Uber problem in line and
circle metrics, and a O(logn)-approximation algorithm for general metrics.

Furthermore, we extend our results to the correlated setting where the probability of a request
arriving at a certain point depends not only on the time step but also on the previously arrived
requests.

1998 ACM Subject Classification Computer science education

∗ A full version of the paper is available at https://arxiv.org/abs/1705.05755.
† Supported in part by NSF CAREER award CCF-1053605, NSF BIGDATA grant IIS-1546108, NSF
AF:Medium grant CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-12-1-0423, and another
DARPA SIMPLEX grant.

EA
T

C
S

© Sina Dehghani, Soheil Ehsani, Mohammadtaghi Hajiaghayi, Vahid Liaghat, and
Saeed Seddighin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 126; pp. 126:1–126:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://arxiv.org/abs/1705.05755
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

126:2 Stochastic k-Server

Keywords and phrases k-server, stochastic, competitive ratio, online algorithm, Uber

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.126

1 Introduction

The k-server problem is one of the most fundamental problems in online computation that
has been extensively studied in the past decades. In the k-server problem we have k mobile
servers on a metric space M. We receive an online sequence of t requests where the ith
request is a point ri ∈M. Upon the arrival of ri, we need to move a server to ri, at a cost
equal to the distance from the current position of the server to ri. The goal is to minimize
the total cost of serving all requests.

Manasse, McGeoch, and Sleator [31] introduced the k-server problem as a natural
generalization of several online problems, and a building block for other problems such as the
metrical task systems. They considered the adversarial model, in which the online algorithm
has no knowledge of the future requests. Following the proposition of Sleator and Tarjan [34],
they evaluate the performance of an online algorithm using competitive analysis. In this
model, an online algorithm ALG is compared to an offline optimum algorithm OPT which
is aware of the entire input in advance. For a sequence of requests ρ, let |ALG(ρ)| and
|OPT(ρ)| denote the total cost of ALG and OPT for serving ρ. An algorithm is c-competitive
if for every ρ, |ALG(ρ)| ≤ c |OPT(ρ)|+ c0 where c0 is independent of ρ.

Manasse et al. [31] showed a lower bound of k for the competitive ratio of any deterministic
algorithm in any metric space with at least k + 1 points. The celebrated k-server conjecture
states that this bound is tight for general metrics. For several years the known upper bounds
were all exponential in k, until a major breakthrough was achieved by Koutsoupias and
Papadimitriou [29], who showed that the so-called work function algorithm is (2k − 1)-
competitive. Proving the tight competitive ratio has been the “holy grail” of the field in the
past two decades. This challenge has led to the study of the problem in special spaces such
as the uniform metric (also known as the paging problem), line, circle, and trees metrics (see
[15, 16] and references therein). We also refer the reader to Section 1.3 for a short survey of
randomized algorithms, particularly the recent result of Bansal, Buchbinder, Madry, and
Naor [7] which achieves the competitive ratio of O(log3 n log2 k) for discrete metrics that
comprise n points.

The line metric (or Euclidean 1-dimensional metric space) is of particular interest for
developing new ideas. Chrobak, Karloof, Payne, and Vishwnathan [15] were the first to settle
the conjecture in the line by designing an elegant k-competitive algorithm. Chrobak and
Larmore [16] generalized this approach to tree metrics. Later, Bartal and Koutsoupias [10]
proved that the work function algorithm is also k-competitive in line. Focusing on the special
case of k = 2 in line, Bartal et al. [9] show that, using randomized algorithms, one can break
the barrier of lower bound k by giving a 1.98-competitive algorithm for the case where we
only have two servers.

Despite the strong lower bounds for the k-server problem, there are heuristics algorithms
that are constant competitive in practice. For example, for the paging problem- the special
case of uniform metric- the least recently used (LRU) strategy is shown to be experimentally
constant competitive (see Section 1.3). In this paper we present an algorithm an run it on
real world data to measure its empirical performance. In particular we use the distribution
of car accidents obtained from road safety data. Our experiments illustrate our algorithm is
performing even better in practice. See the full version of the paper for more details.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.126

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:3

The idea of comparing the performance of an online algorithm (with zero-knowledge
of the future) to the request-aware offline optimum has led to crisp and clean solutions.
However, that is not without its downsides. The results in the online model are often very
pessimistic leading to theoretical guarantees that are hardly comparable to experimental
results. Indeed, one way to tighten this gap is to use stochastic information about the input
data as we describe in this paper.

We should also point out that the competitive analysis is not the only possible or
necessarily the most suitable approach for this problem. Since the distributions from which
the input is generated are known, one can use dynamic programming (or enumeration of
future events) to derive the optimal movement of servers. Unfortunately, finding such an
optimal online solution using the distributions is an NP-hard problem 1, thus the dynamic
programming or any other approach takes exponential time. This raises the question that
how well one can perform in comparison to the best online solution. In the rest of the paper
we formally define the model and address this question.

A natural and well-motivated generalization of k-server is to assume the demands are
two points instead of just one, consisting of a source and a destination. To serve a demand
we need to move a server to the source and then move it to the destination. We call this
problem the Uber problem. One can see, the Uber problem is the same as k-server when the
sources and the destinations are the same. We also show that, given an α-approximation
algorithm for the k-server problem, we can obtain a (α+ 2)-approximation algorithm for the
Uber problem. Thus our results for k-server also apply to the Uber problem.

1.1 The Stochastic Model

In this paper, we study the stochastic k-server problem where the input is not chosen
adversarially, but consists of draws from given probability distributions. This problem has
lots of applications such as network transportations and equipment replacement in data
centers. The current mega data centers contain hundreds of thousands of servers and switches
with limited life-span. For example servers usually retire after at most three years. The
only efficient way to scale up the maintenance in data centers is by automation, and robots
are designed to handle maintenance tasks such as repairs or manual operations on servers.
The replacement process can be modeled as requests that should be satisfied by robots, and
robots can be modeled as servers. This problem also has applications in physical networks.
As an example, suppose we model a shopping service (e.g. Google Express) as a k-server
problem in which we receive an online sequence of shopping requests for different stores. We
have k shopping cars (i.e., servers) that can serve the requests by traveling to the stores. It
is quiet natural to assume that on a certain time of the week/day, the requests arrive from a
distribution that can be discovered by analyzing the history. For example, an Uber request
is more likely to be from suburb to midtown in the morning, and from midtown to suburb at
night. We formalize this stochastic information as follows.

For every i ∈ [1 · · · t], a discrete probability distribution Pi is given in advance from which
request ri will be drawn at time step i. The distributions are chosen by the adversary and
are assumed to be independent but not necessarily identical. This model is inspired by the

1 Reduction from k-median to Stochastic k-server: to find the k median of set S of vertices, one can
construct an instance of stochastic k-server with t = 1 and P1(v) = 1/|S| for every v ∈ S. The best
initialization of the servers gives the optimum solution to k-median of S.

ICALP 2017

126:4 Stochastic k-Server

well-studied model of prophet inequalities 2 [30, 25]. As mentioned before, the case of line
metric has proven to be a very interesting restricted case for studying the k-server problem.
In this paper, we focus mainly on the class of line metric though our results carry over to
circle metric and general metrics as well.

In the adversarial model, the competitive ratio seems to be the only well-defined notion
for analyzing the performance of online algorithms. However, in the presence of stochastic
information, one can derive a much better benchmark that allows us to make fine-grained
distinctions between the online algorithms. We recall that in the offline setting, for a class of
algorithms C, the natural notion to measure the performance of an algorithm ALG ∈ C is
the approximation ratio defined as the worse case ratio of |ALG| to |OPT(C)| where OPT(C)
is the optimal algorithm in the class. In this paper, we also measure the performance of
an online algorithm by its approximation ratio– compared to the optimal online solution.
We note that given distributions P1, . . . , Pt, one can iteratively compute the optimal online
solution by solving the following exponential-size dynamic program: for every i ∈ [0 · · · t]
and every possible placement A of k servers (called a configuration) on the metric, let τ(i, A)
denote the minimum expected cost of an online algorithm for serving the first i requests and
then moving the servers to configuration A. Note that τ(i, A) can inductively be computed
via the following recursive formula

τ(i, A) = min
B

τ(i− 1, B) + Eri∼Pi [min. distance from B to A subject to serving ri] ,

where τ(0, A) is initially zero for every A.

1.2 Our Results 3

Our first main result is designing a constant approximation algorithm in the line metric when
the distributions for different time steps are not necessarily identical.

I Theorem 1. There exists a 3-approximation online algorithm for the stochastic k-server
problem in the line metric. The running time is polynomial in k and the sum of the sizes of
the supports of input distributions. The same guarantee holds for the circle metric.

For the general metric, we present an algorithm with a logarithmic approximation
guarantee.

I Theorem 2. There exists a O(logn)-approximation online algorithm for the stochastic
k-server problem in a general metric of size n.

We prove the theorems using two important structural results. The first key ingredient
is a general reduction from class of online algorithms to a restricted class of non-adaptive
algorithms while losing only a constant factor in the approximation ratio. Recall that a
configuration is a placement of k-servers on the metric. We say an algorithm ALG is non-
adaptive if it follows the following procedure: ALG pre-computes a sequence of configurations
A0, A1, . . . , At. We start by placing the k-servers on A0. Upon the arrival of ri, (i) we move
the servers to configuration Ai; next (ii) we move the closest server s to ri; and finally (iii)
we return s to its original position in Ai. We first prove the following structural result.

2 In the prophet inequality setting, given (not necessarily identical) distributions P1, . . . , Pt, an online
sequence of values x1, . . . , xn where xi is drawn from Pi, an onlooker has to choose one item from the
succession of the values, where xi is revealed at step i. The onlooker can choose a value only at the
time of arrival. The goal is to maximize the chosen value.

3 In the interest of space, we have omitted some of the proofs. We refer the reader to the full version of
the paper in order to see all of the proofs.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:5

I Theorem 3. For the stochastic k-server problem in the general metric, the optimal non-
adaptive online algorithm is within 3-approximation of the optimal online algorithm.

Using the aforementioned reduction, we focus on designing the optimal non-adaptive
algorithm. We begin by formulating the problem as an integer program. The second
ingredient is to use the relaxation of this program to formalize a natural fractional variant of
the problem. In this variant, a configuration is a fractional assignment of server mass to the
points of the metric such that the total mass is k. To serve a request at point ri, we need to
move some of the mass to have at least one amount of server mass on ri. The cost of moving
the server mass is naturally defined as the integral of the movement of infinitesimal pieces
of the server mass. By solving the linear relaxation of the integer program, we achieve the
optimal fractional non-adaptive algorithm. We finally prove Theorems 1 and 2 by leveraging
the following rounding techniques. The rounding method in line has been also observed
by Türkoglu [35]. We provide the proof for the case of line in Section 5 for the sake of
completeness. The rounding method for general metrics is via the well-known embedding of
a metric into a distribution of well-separated trees while losing a logarithmic factor in the
distortion. Bansal et al. [7] use a natural rounding method similar to that of Blum, Burch,
and Kalai [12] to show that any fractional k-server movement on well-separated trees can be
rounded to an integral counterpart by losing only a constant factor.

I Theorem 4 (first proven in [35]). Let ALGf denote a fractional k-server algorithm in the
line, or circle. One can use ALGf to derive a randomized integral algorithm ALG such that
for every request sequence σ, E [|ALG(σ)|] = |ALGf (σ)|. The expectation is over the internal
randomness of ALG. Furthermore, in the stochastic model ALG can be derandomized.

I Theorem 5 (proven in [7]). Let ALGf denote a fractional k-server algorithm in any metric.
One can use ALGf to derive a randomized integral algorithm ALG such that for every request
sequence σ, E [|ALG(σ)|] ≤ O(logn) |ALGf (σ)|.

We also show that having an α-approximation algorithm for k-server, we can obtain a
(α+ 2)-approximation for the Uber problem, using a simple reduction.

I Theorem 6. Let ALG denote an α-approximation algorithm for k-server. One can use
ALG to derive a (α+ 2)-approximation algorithm for the Uber problem.

Proof. Consider an instance of the Uber problem IU . Let si and ti denote the i-th source and
destination, respectively. We generate an instance of the k-server problem Ik by removing
every ti from IU . In other words the demands are si’s. We use ALG to provide a solution
for IU as follows. For satisfying the i-th demand, we use ALG to move a server to si. Then
using the shortest path from si to ti, we move that server to ti and then return it back to si.
Let OPTU and OPTk denote the cost of the optimal solutions for IU and Ik, respectively.
Let d(si, ti) denote the distance of ti from si in the metric. Let C denote the total movement
of the servers. We have,

OPTU ≥ OPTk .

OPTU ≥
∑
i

d(si, ti).

C ≤ αOPTk +2
∑
i

d(si, ti) ≤ (α+ 2) OPTU . J

ICALP 2017

126:6 Stochastic k-Server

1.3 Further Related Work

The randomized algorithms often perform much better in the online paradigm. For the
k-server problem, a lower bound of Ω(log k) is shown by [28] for the competitive ratio of
randomized algorithms in most common metrics. Despite the exponential gap, compared to
the lower bound of deterministic algorithms, very little is known about the competitiveness
of randomized algorithms. In fact, the only known algorithms with competitive ratios below
k, work either in the uniform metric (also known as the paging problem [21, 32, 2, 8]), a
metric comprising k + 1 points [23], and two servers on the line [9]. Two decades after the
introduction of the k-server problem, a major breakthrough was achieved by Bansal et al.
[7] in discrete metrics with sub-exponential size. IfM comprise n points, their randomized
algorithm achieves a competitive ratio of O(log3 n log2 k).

The case of uniform metric has been extensively studied under various stochastic models
motivated by the applications in computer caching. Koutsoupias and Papadimitriou [29]
consider two refinements of the competitive analysis for server problems. First, they consider
the diffuse adversary model. In this model, at every step i the adversary chooses a distribution
Di over the uniform metric of the paging problem. Then the ith request is drawn from Di

which needs to be served. The distribution Di is not known to the online algorithm and
it may depend on the previous requests. However, in their paper, they consider the case
wherein it is guaranteed that for every point p, Di(p) ≤ ε for a small enough ε; i.e., the
next request is not predictable with absolute certainty for the adversary. The results of
Koutsoupias and Papadimitriou and later Young [36] shows that the optimum competitive
ratio in this setting is close to 1 + Θ(kε).

The second refinement introduced in [29] restricts the optimal solution to having lookahead
at most `. Hence, one can define a comparative ratio which indicates the worst-case ratio of
the cost of the best online solution to the best solution with lookahead `. They show that for
the k-server problem, and more generally the metrical task system problem, there are online
algorithms that admit a comparative ratio of 2`+ 1; for some instances this ratio is tight.

Various other models of restricting the adversary (access graph model [14, 26, 22], fault
rate model [27, 6, 19], etc) have also been considered for the paging problem (see [33, 11] and
references therein for a further survey of these results). Unfortunately, many of the stochastic
settings considered for the paging problem do not seem to have a natural generalization
beyond the uniform metric setting. For example, in the diffuse adversary model, most of
the studied distributions do not weaken the adversary in the general metric. In this paper,
we look for polynomial-time approximation algorithms in the class of online algorithms that
have access to the distributions.

We would like to mention that various online problems have been previously considered
under prophet inequality model or i.i.d. model (where all distributions are identical). The
maximum matching problem, scheduling, and online network design has been extensively
studied in these models(see e.g. [4, 3, 5, 17, 1, 18]). In the graph connectivity problems,
Garg, Gupta, Leonardi,and Sankowski [24] consider the online variants of Steiner tree and
several related problems under the i.i.d. stochastic model. In the adversarial model, there
exists an Ω(logn) lower bound on the competitive ratio of any online algorithm, where n is
the number of demands. However, Garg et al. show that under the i.i.d. assumption, these
problems admit online algorithms with constant or O(log logn) competitive ratios. We refer
the reader to the excellent book by Borodin and El-Yaniv [13] for further study of online
problems.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:7

2 Preliminaries

In this section we formally define the stochastic k-server problem. The classical k-server
problem is defined on a metricM which consists of points that could be infinitely many. For
every two points x and y in metricM, let d(x, y) denote the distance of x from y which is a
symmetric function and satisfies the triangle inequality. More precisely for every three points
x, y, and z we have

d(x, x) = 0 (1)
d(x, y) = d(y, x) (2)
d(x, y) + d(y, z) ≥ d(x, z). (3)

In the k-server problem the goal is to place k servers on k points of the metric, and move
these servers to satisfy the requests. We refer to every placement of the servers on the metric
points by a configuration. Let ρ = 〈r1, r2, . . . , rt〉 be a sequence of requests, the goal of the
k-server problem is to find configurations 〈A0, A1, A2, . . . , At〉 such that for every i there
exists a server on point ri in configuration Ai. We say such a list of configurations is valid for
the given list of requests. A valid sequence of configurations is optimal if

∑
d(Ai−1, Ai) is

minimized where d(X,Y) stands for the minimum cost of moving servers from configuration
X to configuration Y . An optimal sequence 〈A0, A1, . . . , At〉 of configurations is called an
optimal offline solution of OFKS(M, ρ) when ρ is known in advance. We refer to the optimal
cost of such movements with |OFKS(M, ρ)| =

∑
d(Ai−1, Ai).

We also define the notion of fractional configuration as an assignment of the metric points
to non-negative real numbers. More precisely, each number specifies a mass of fractional
server on a point. Every fractional solution adheres to the following condition: The total
sum of the values assigned to all points is exactly equal to k. Analogously, a fractional
configuration serves a request ri if there is a mass of size at least 1 of server assigned to point
ri. An offline fractional solution of the k-server problem for a given sequence of requests ρ is
defined as a sequence of fractional configurations 〈A0, A1, . . . , At〉 such that Ai serves ri.

In the online k-server problem, however, we are not given the whole sequence of requests
in the beginning, but we will be informed of every request once its realization is drawn. An
algorithm A is an online algorithm for the k-server problem if it reports a configuration A0
as an initial configuration and upon realization of every request ri it returns a configuration
Ai such that 〈A0, A1, . . . , Ai〉 is valid for 〈r1, r2, . . . , ri〉. If A is deterministic, it generates
a unique sequence of configurations for every sequence of requests. Let A(M, ρ) be the
sequence that A generates for requests in ρ and |A(M, ρ)| denote its cost.

In the online stochastic k-server problem, in addition to metric M, we are also given
t independent probability distributions 〈P1, P2, . . . , Pt〉 which show the probability that
every request ri is realized on a point of the metric at each time. An algorithm A is an
online algorithm for such a setting, if it generates a configuration for every request ri not
solely based on 〈r1, r2, . . . , ri〉 and 〈A0, A1, . . . , Ai−1〉 but also with respect to the probability
distributions. Similarly, we define the cost of an online algorithm A for a given sequence of
requests ρ with |A(M, ρ, 〈P1, P2, . . . , Pt〉)|. We define the expected cost of an algorithm A
on metricM and with probability distributions 〈P1, P2, . . . , Pt〉 by

|A(M, 〈P1, P2, . . . , Pt〉)| = E∀i,ri∼Pi
|A(M, ρ, 〈P1, P2, . . . , Pt〉)|.

For every metric M and probability distributions 〈P1, P2, . . . , Pt〉 we refer to the online
algorithm with the minimum expected cost by OPTM,〈P1,P2,...,Pt〉.

ICALP 2017

126:8 Stochastic k-Server

An alternative way to represent a solution of the k-server problem is as a vector of
configurations 〈B0, B1, . . . , Bt〉 such that Bi does not necessarily serve request ri. The cost
of such solution is equal to

∑
d(Bi−1, Bi) +

∑
2d(Bi, ri) where d(Bi, ri) is the minimum

distance of a server in configuration Bi to request ri. The additional cost of 2d(Bi, ri) can be
thought of as moving a server from Bi to serve ri and returning it back to its original position.
Thus, every such representation of a solution can be transformed to the other representation.
Similarly, d(Bi, ri) for a fractional configuration Bi is the minimum cost which is incurred
by placing a mass 1 of server at point ri. We use letter B for the configurations of such
solutions throughout the paper.

In this paper the emphasis is on the stochastic k-server problem on the line metric. We
define the line metric L as a metric of points from −∞ to +∞ such that the distance of two
points x and y is always equal to |x−y|. Moreover, we show that deterministic algorithms are
as powerful as randomized algorithms in this setting, therefore we only focus on deterministic
algorithms in this paper. Thus, from here on, we omit the term deterministic and every time
we use the word algorithm we mean a deterministic algorithm unless otherwise is explicitly
mentioned.

3 Structural Characterization

Recall that an online algorithm A has to fulfill the task of reporting a configuration Ai upon
arrival of request ri based on 〈A0, A1, . . . , Ai−1〉, 〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉. We
say an algorithm B is request oblivious, if it reports configuration Bi regardless of request ri.
As such, B generates configurations 〈B0, B1, . . . , Bt〉 for a sequence of requests 〈r1, r2, . . . , rt〉
and the cost of such configuration is

∑
d(Bi−1, Bi) +

∑
2d(Bi, ri). More precisely, no

matter what request ri is, B will generate the same configuration for a given list of past
configurations 〈B0, B1, . . . , Bi−1〉, a given sequence of past requests 〈r1, r2, . . . , ri−1〉, and
the sequence of probability distributions 〈P1, P2, . . . , Pt〉. In the following we show that every
online algorithm A can turn into a request oblivious algorithm BA that has a cost of at most
|3A(M, ρ, 〈P1, P2, . . . , Pt〉)| for a given sequence of requests ρ.

I Lemma 7. Let A be an online algorithm for the stochastic k-server problem. For any
metricM, there exists a request oblivious algorithm BA such that

|BA(M, 〈P1, P2, . . . , Pt〉)| ≤ 3|A(M, 〈P1, P2, . . . , Pt〉)|.

An immediate corollary of Lemma 7 is that the optimal request oblivious algorithm has
a cost of at most |3 OPTM,〈P1,P2,...,Pt〉(M, 〈P1, P2, . . . , Pt〉)|. Therefore, if we only focus on
the request oblivious algorithms, we only lose a factor of 3 in comparison to the optimal
online algorithm. The following lemma states a key structural lemma for an optimal request
oblivious algorithm.

I Lemma 8. For every request oblivious algorithm B, there exists a randomized request
oblivious algorithm B′ with the same expected cost which is not only oblivious to the last
request, but also oblivious to all requests that have come prior to this.

Proof. For any given request oblivious online algorithm B, we construct an online algorithm
B′ which is oblivious to all of the requests as follows: For an input 〈B1, B2, . . . , Bi−1〉 of
configurations and probability distributions 〈P1, P2, . . . , Pt〉, draw a sequence of requests
〈r1, r2, . . . , ri〉 from 〈P1, P2, . . . , Pt〉 conditioned on the constraint that B would generate
configurations 〈B1, B2, . . . , Bi−1〉 for requests 〈r1, r2, . . . , ri−1〉. Now, report the output of B
for inputs 〈B1, B2, . . . , Bi−1〉, 〈r1, r2, . . . , ri〉, and 〈P1, P2, . . . , Pt〉.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:9

We define the cost of step i of algorithm B′ as d(Bi−1, Bi) + 2d(Bi, ri). Due to the
construction of algorithm B′, the expected cost of this algorithm at every step i for a
random sequence of requests is equal to the expected cost of algorithm B for a random
sequence of requests drawn from 〈P1, P2, . . . , Pt〉. Therefore, the expected cost of both
algorithms for a random sequence of requests are equal and thus |B(M, 〈P1, P2, . . . , Pt〉)| =
|B′(M, 〈P1, P2, . . . , Pt〉)|. J

Lemma 8 states that there always exists an optimal randomized request oblivious online
algorithm that returns the configurations regardless of the requests. We call such an algorithm
non-adaptive. Since a non-adaptive algorithm is indifferent to the sequence of the requests,
we can assume it always generates a sequence of configurations just based on the distributions.
For an optimal of such algorithms, all such sequence of configurations should be optimal
as well. Therefore, there always exists an optimal non-adaptive online algorithm which is
deterministic. By Lemma 7 not only do we know the optimal request oblivious algorithm is
at most 3-approximation, but also the same holds for the optimal non-adaptive algorithm.

I Theorem 9. There exists a sequence of configurations 〈B0, B1, . . . , Bt〉 such that an online
algorithm which starts with B0 and always returns configuration Bi upon arrival of request ri
has an opproximation factor of at most 3.

4 Fractional Solutions

In this section we provide a fractional online algorithm for the k-server problem that can
be implemented in polynomial time. Note that by Theorem 9 we know that there exist
configurations 〈B1,B2, . . . ,Bt〉 such that the expected cost of a non-adaptive algorithm that
always returns these configurations is at most 3 times the cost of an optimal online algorithm.
Therefore, we write an integer program to find such configurations with the least expected
cost. Next, we provide a relaxed LP of the integer program and show that every feasible
solution of such LP corresponds to a fractional online algorithm for the stochastic k-server
problem. Hence, solving such a linear program, that can be done in polynomial time, gives
us a fractional online algorithm for the problem.

4.1 Linear Program
Recall that given t independent distributions 〈P1, . . . , Pt〉 for online stochastic k-server, an
adaptive algorithm can be represented by t+ 1 configurations 〈B0, . . . , Bt〉. Upon the arrival
of each request ri, we move the servers from configuration Bi−1 to Bi and then one server
serves ri and goes back to its position in Bi. The objective is to find the configurations such
that the cost of moving to new configurations in addition to the expected cost of serving the
requests is minimized. Therefore the problem can formulated in an offline manner. First we
provide an integer program in order to find a vector of configurations with the least cost.

The decision variables of the program represent the configurations, the movement of
servers from one configuration to another, and the way that each possible request is served.
In particular, at each time step τ :

For each node v there is a variable bτ,v ∈ N denoting the number of servers on node v.
For each pair of nodes u and v, there is a movement variable fτ,u,v ∈ N denoting the
number of servers going from u to v for the next round.
For each node v and possible request node r, there is a variable xτ,v,r ∈ {0, 1} denoting
whether r is served by v or not.

ICALP 2017

126:10 Stochastic k-Server

In the following integer program, the first set of constraints ensures the number of
servers on nodes at each time is updated correctly according to the movement variables.
The second set of constraints ensures that each possible request is served by at least
one server. The third set of constraints ensures that no possible request is served by an
empty node. By the definition, the cost of a sequence of configurations 〈B0, . . . , Bt〉 is∑t
i=1 d(Bi−1, Bi) + 2

∑t
i=1 d(Bi, ri). Thus the objective is to minimize the expression∑

τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r),

where Pr(z ∼ Pτ = r) denotes the probability that r is requested at time τ .

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.

∀τ, v, r xτ,v,r ∈ {0, 1}.
∀τ, u, v fτ,u,v ∈ N.
∀τ, v bτ,v ∈ N.

Now we consider the following relaxation of the above integer program.

min.
∑
τ

∑
u,v

fτ,u,vd(u, v) + 2
∑
τ

∑
v

∑
r

xτ,v,r Pr(z ∼ Pτ = r)d(v, r)

∀τ, v bτ+1,v = bτ,v +
∑
u

fτ,u,v −
∑
u

fτ,v,u.

∀τ, u, v
∑
v

xτ,v,r ≥ 1.

∀τ, v, r xτ,v,r ≤ bτ,v.

∀τ
∑
v

bτ,v ≤ k.

5 Reduction from Integral k-server to Fractional k-server

In this section we show how we can obtain an integral algorithm for the stochastic k-server
problem from a fractional algorithm. We first show that every fractional algorithm for the
line metric can be modified to an integral algorithm with the same cost. Next, we study the
problem on HST metrics; we give a rounding method that produces an integral algorithm
from a fractional algorithm while losing a constant factor. Finally, we leverage the previously
known embedding techniques to show every metric can be embedded into HST’s with a
distortion of at most O(logn). This will lead to a rounding method for obtaining an integral
algorithm from every fractional algorithm on general metrics while losing a factor of at most
O(logn). Combining this with the 3 approximation fractional algorithm that we provide

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:11

in Section 4, we achieve an O(logn) approximation algorithm for the stochastic k-server
problem on general graphs.

5.1 Integrals Are as Strong as Fractionals On the Line
In this section we show every fractional algorithm on the line metric can be derandomized
to an integral solution with the same expected cost. The rounding method is as follows:
For every fractional configuration A, we provide an integral configuration I(A) such that
(i) the distance of two configurations A1 and A2 is equal to the expected distance of two
configurations I(A1) and I(A2). (ii) for every point x in the metric that A has a server mass
of size at least 1 on x, there exists a server on point x in I(A).

Let for every point x in the metric, A(v) denote the amount of server mass on node v of
the line. For every fractional configuration B, we define a mass function fA : (0, k]→ V as
follows. fA(x) = vj if and only if j is the minimum integer such that

∑j−1
i=1 A(i) < x and∑j

i=1 A(i) ≥ x. Intuitively, if one gathers the server mass by sweeping the line from left to
right, fA(x) is the first position on which we have gathered x amount of server mass. The
rounding algorithm is as follows:

Pick a random real number r in the interval [0, 1).
I(A) contains k servers on positions fA(r), fA(r + 1), fA(r + 2), . . . , fA(r + k − 1).

Note that the rounding method uses the same r for all of the configurations. More precisely,
we draw r from [0, 1) at first and use this number to construct the integral configurations
from fractional configurations. The following two lemmas show that both of the properties
hold for the rounding algorithm we proposed.

I Lemma 10. Let A be a fractional configuration and x be a point such that A(x) ≥ 1. Then
I(A) has a server on x.

Proof. Due to the construction of our rounding method, for every two consecutive servers a
and b in I(A), the total mass of servers after a and before b in the fractional solution is less
than 1. Therefore, I(A) should put a server on point x, otherwise the total mass of servers in
the fractional solution between the first server before x and the first server after x would be
at least 1. J

The next lemma shows that the rounding preserves the distances between the configura-
tions in expectation.

I Lemma 11. Let A1 and A2 be two fractional configurations and |A1−A2| be their distance.
The following holds for the distances of the configurations

E| I(A1)− I(A2)| = |A1 −A2|.

Proof. The key point behind the proof of this lemma is that the distance of two fractional
configurations A1 and A2 can be formulated as follows

|A1 −A2| =
∫ 1

0
| Iω(A1)− Iω(A2)|dω

where Iω(A) stands for an integral configurations which places the servers on points fA(ω),
fA(ω + 1), fA(ω + 2), . . ., fA(ω + k − 1). Since at the beginning of the rounding method
we draw r uniformly at random, the expected distance of the two rounded configurations is
exactly equal to∫ 1

0
| Iω(A1)− Iω(A2)|dω

which is equal to the distance of A1 from A2. J

ICALP 2017

126:12 Stochastic k-Server

I Theorem 12. For any given fractional online algorithm A for the k-server problem on
the line metric, there exists an online integral solution for the same problem with the same
expected cost.

5.2 Reduction for General Graphs
An HST is a undirected rooted tree in which every leaf represents a point in the metric and
the distance of a pair of points in the metric is equal to the distance of the corresponding
leaves in the tree. In an HST, weights of the edges are uniquely determined by the depth
of the vertices they connect. More precisely, in a σ-HST the weight of an edges between a
vertex v and its children is equal to σh−dv where h stands for the height of the tree and dv
denotes the depth of vertex v.

Since HSTs are very well structured, designing algorithms on HSTs is relatively easier
in comparison to a more complex metric. Therefore, a classic method for alleviating the
complexity of the problems is to first embed the metrics into HSTs with a low distortion and
then solve the problems on these trees.

Perhaps the most important property of the HSTs is the following:

I Observation 1. For every pair of leaves u, v ∈ T of an HST, the distance of u and v is
uniquely determined by the depth of their deepest common ancestor.

Note that, the higher the depth of the common ancestor is, the lower the distance of the
leaves will be. Therefore, the closest leaves to a leaf v are the ones that share the most
common ancestors with v. Bansal et al. propose a method for rounding every fractional
solution of the k-server problem to an integral solution losing at most a constant factor [7].

I Theorem 13 ([7]). Let T be a σ-HST with n leaves, σ > 5, and let A = 〈A0, A1, A2, . . . , At〉
be a sequence of fractional configurations. There is an online procedure that maintains a
sequence of randomized k-server configurations S = 〈S0, S1, S2, . . . , St〉 satisfying the following
two properties:

At any time i, the state Si is consistent with the fractional state Ai.
If the fractional state changes from xi−1 to xi at time i, incurring a movement cost of
ci, then the state Si−1 can be modified to a state Si while incurring a cost of O(ci) in
expectation.

Embedding general metrics into trees and in particular HSTs has been the subject of
many studies. The seminal work of Fakcharoenphol et al. [20] has shown that any metric
can be randomly embedded to σ-HSTs with distortion O(σ logn

logσ).

I Theorem 14 ([20]). There exists a probabilistic method to embed an arbitrary metricM
into σ-HSTs with distortion σ logn

logσ .

Therefore, to round a fractional solution on a general metric, we first embed it into 6-HSTs
with a distortion of at most O(logn) and then round the solution while losing only a constant
factor. This will give us an integral algorithm that has an expected cost of at most O(logn)
times the optimal.

I Theorem 15. For any given fractional online algorithm A for the k-server problem on an
arbitrary metric, there exists an online integral solution for the same problem having a cost
of no worse that O(logn) times the cost of A in expectation.

Acknowledgment. We would like to thank Shi Li for having helpful discussions.

S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, and S. Seddighin 126:13

References
1 Melika Abolhasani, Soheil Ehsani, Hosein Esfandiari, MohammadTaghi Hajiaghayi, Robert

Kleinberg, and Brendan Lucier. Beating 1 − 1/e for ordered prophets. arXiv preprint
arXiv:1704.05836, 2017.

2 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized
paging algorithms. Theoretical Computer Science, 234(1):203–218, 2000.

3 Saeed Alaei, Mohammad T Hajiaghayi, Vahid Liaghat, Dan Pei, and Barna Saha. Adcell:
Ad allocation in cellular networks. In Algorithms–ESA 2011, pages 311–322. Springer, 2011.

4 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. Online prophet-inequality
matching with applications to ad allocation. In Proceedings of the 13th ACM Conference
on Electronic Commerce, pages 18–35. ACM, 2012.

5 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The online stochastic gen-
eralized assignment problem. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 11–25. Springer, 2013.

6 Susanne Albers, Lene M Favrholdt, and Oliver Giel. On paging with locality of reference.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
258–267. ACM, 2002.

7 Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 267–276. IEEE Computer Society, 2011. doi:10.1109/
FOCS.2011.63.

8 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A primal-dual randomized algorithm
for weighted paging. Journal of the ACM (JACM), 59(4):19, 2012.

9 Yair Bartal, Marek Chrobak, and Lawrence L Larmore. A randomized algorithm for two
servers on the line. Information and Computation, 158(1):53–69, 2000.

10 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theoretical computer science, 324(2):337–345, 2004.

11 Luca Becchetti. Modeling locality: A probabilistic analysis of lru and fwf. In Algorithms–
ESA 2004, pages 98–109. Springer, 2004.

12 Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In Foundations of
Computer Science, 1999. 40th Annual Symposium on, 1999.

13 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge
university press, 2005.

14 Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive
paging with locality of reference. Journal of Computer and System Sciences, 50(2):244–
258, 1995.

15 Marek Chrobak, H Karloff, T Payne, and S Vishwnathan. New ressults on server problems.
SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

16 Marek Chrobak and Lawrence L Larmore. An optimal on-line algorithm for k servers on
trees. SIAM Journal on Computing, 20(1):144–148, 1991.

17 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Online survivable network design and prophets. 2015.

18 Sina Dehghani, Ian A Kash, and Peter Key. Online stochastic scheduling and pricing the
clouds. 2017.

19 Peter J Denning. The working set model for program behavior. Communications of the
ACM, 26(1):43–48, 1983.

20 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, pages 448–455. ACM, 2003.

ICALP 2017

http://dx.doi.org/10.1109/FOCS.2011.63
http://dx.doi.org/10.1109/FOCS.2011.63

126:14 Stochastic k-Server

21 Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E
Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

22 Amos Fiat and Manor Mendel. Truly online paging with locality of reference. In Founda-
tions of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 326–335.
IEEE, 1997.

23 Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003.

24 Naveen Garg, Anupam Gupta, Stefano Leonardi, and Piotr Sankowski. Stochastic analyses
for online combinatorial optimization problems. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 942–951. Society for Industrial and
Applied Mathematics, 2008.

25 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated on-
line mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

26 Sandy Irani, Anna R Karlin, and Steven Phillips. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3):477–497, 1996.

27 Anna R Karlin, Steven J Phillips, and Prabhakar Raghavan. Markov paging. SIAM Journal
on Computing, 30(3):906–922, 2000.

28 Howard Karloff, Yuval Rabani, and Yiftach Ravid. Lower bounds for randomized k-server
and motion-planning algorithms. SIAM Journal on Computing, 23(2):293–312, 1994.

29 Elias Koutsoupias and Christos H Papadimitriou. On the k-server conjecture. Journal of
the ACM (JACM), 42(5):971–983, 1995.

30 Ulrich Krengel, Louis Sucheston, et al. Semiamarts and finite values. Bull. Amer. Math.
Soc, 83(4), 1977.

31 Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. Competitive algorithms for
server problems. Journal of Algorithms, 11(2):208–230, 1990.

32 Lyle A McGeoch and Daniel D Sleator. A strongly competitive randomized paging al-
gorithm. Algorithmica, 6(1-6):816–825, 1991.

33 Konstantinos Panagiotou and Alexander Souza. On adequate performance measures for
paging. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing,
pages 487–496. ACM, 2006.

34 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

35 Duru Türkoglu. The k-server problem and fractional analysis, 2005. Master’s Thesis, The
University of Chicago. URL: http://people.cs.uchicago.edu/~duru/papers/masters.
pdf.

36 Neal E Young. Bounding the diffuse adversary. In SODA, volume 98, pages 420–425, 1998.

http://people.cs.uchicago.edu/~duru/papers/masters.pdf
http://people.cs.uchicago.edu/~duru/papers/masters.pdf

Multiple Source Dual Fault Tolerant BFS Trees∗

Manoj Gupta1 and Shahbaz Khan†2

1 IIT Gandhinagar, Gandhinagar, India
gmanoj@iitgn.ac.in

2 Department of CSE, IIT Kanpur, Kanpur, India
shahbazk@cse.iitk.ac.in

Abstract
Let G = (V,E) be a graph with n vertices and m edges, with a designated set of σ sources S ⊆ V .
The fault tolerant subgraph for any graph problem maintains a sparse subgraph H = (V,E′) of G
with E′ ⊆ E, such that for any set F of k failures, the solution for the graph problem on G \ F
is maintained in its subgraph H \ F . We address the problem of maintaining a fault tolerant
subgraph for computing Breath First Search tree (BFS) of the graph from a single source s ∈ V
(referred as k FT-BFS) or multiple sources S ⊆ V (referred as k FT-MBFS). We simply refer to
them as FT-BFS (or FT-MBFS) for k = 1, and dual FT-BFS (or dual FT-MBFS) for k = 2.

The problem of k FT-BFS was first studied by Parter and Peleg [ESA13]. They designed
an algorithm to compute FT-BFS subgraph of size O(n3/2). Further, they showed how their
algorithm can be easily extended to FT-MBFS requiring O(σ1/2n3/2) space. They also presented
matching lower bounds for these results. The result was later extended to solve dual FT-BFS by
Parter [PODC15] requiring O(n5/3) space, again with matching lower bounds. However, their
result was limited to only edge failures in undirected graphs and involved very complex analysis.
Moreover, their solution doesn’t seems to be directly extendible for dual FT-MBFS problem.

We present a similar algorithm to solve dual FT-BFS problem with a much simpler analysis.
Moreover, our algorithm also works for vertex failures and directed graphs, and can be easily
extended to handle dual FT-MBFS problem, matching the lower bound of O(σ1/3n5/3) space
described by Parter [PODC15]. The key difference in our approach is a much simpler classification
of path interactions which formed the basis of the analysis by Parter [PODC15].

1998 ACM Subject Classification E.1 Graphs and Networks, G.2.2 Graph Algorithms, Network
problems, Trees, G.4 Algorithm Design and Analysis, F.2.2 Computations on Discrete Structures

Keywords and phrases BFS, fault-tolerant, graph, algorithms, data-structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.127

1 Introduction

Graph networks are extensively used to study real world applications ranging from communic-
ation networks as internet and telephony, to supply chain networks, road networks etc. Every
now and then, these networks are susceptible to failures of links and nodes, which drastically
affects the performance of these applications. Hence, most algorithms developed for these
applications are also studied in the fault tolerant model, which aims to provide solutions to
the corresponding problem that are resilient to such failures. Since such failures of nodes
or links in the network though unpredictable are rare and are often readily repaired, the
applications generally address the scenarios expecting the number of simultaneous faults to

∗ The full version of the paper can be found in [11].
† This research work was supported by Google India under the Google India PhD Fellowship Award.

EA
T

C
S

© Manoj Gupta and Shahbaz Khan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 127; pp. 127:1–127:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.127
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

127:2 Multi-Source Dual Fault Tolerant BFS

be much smaller than the size of the network. This aspect is often modeled by bounding such
failures using some parameter k (typically k << n), and studying fault tolerant structures
resilient to upto k failures.

Among the different approaches to develop fault tolerance in a structure, we use the
approach of computing a fault tolerant subgraph described as follows. For a given graph
G = (V,E), the fault tolerant subgraph for any graph problem maintains a sparse subgraph
H = (V,E′) of G having E′ ⊆ E, such that for any set of edge (or vertex) failures F ⊆ E

(or F ⊆ V), the solution for the graph problem on G′ = (V,E \ F) (or G′ = (V \ F,E))
is maintained in its subgraph H ′ = (V,E \ F) (or H ′ = (V \ F,E)). We shall henceforth
abuse the notation to denote the graphs after such a set of failures F as G \ F and H \ F
respectively. A standard motivation for this approach is a communication network where
each link corresponds to a communication channel [16], where the system designer is required
to purchase or lease the channels to be used by the application. Hence, the aim is to acquire
a minimal set of these channels (the subgraph H of G) for successfully performing the
application with resilience of upto k faults. Fault tolerant subgraphs are also developed
for other graph problems maintaining reachability [13, 2, 3], strong-connectivity [3] and
approximate shortest paths from a single source [12, 17, 5] and all sources [7, 9, 6, 14, 4].

Breadth First Search (BFS) is a fundamental technique for graph traversal. From any
given source s ∈ V , BFS produces a rooted spanning tree in O(m + n) time. For an
unweighted graph, the BFS tree from a source s is also the shortest path tree from s because
it preserves the shortest path from s to every vertex v ∈ V that is reachable from s. We are
thus interested to maintain fault tolerant subgraphs for computing BFS trees from a single
source (referred as k FT-BFS) and multiple sources k FT-MBFS described as follows.

I Definition 1 (k FT-BFS). Given a graph G = (V,E) with a designated source s ∈ V , build
a subgraph H = (V,E′) with E′ ⊆ E, such that after any set F of k failures in G, the BFS
tree from s in H \ F is a valid BFS tree from s in G \ F .

I Definition 2 (k FT-MBFS). Given a graph G = (V,E) with a designated set of sources
S ⊆ V , build a subgraph H = (V,E′) with E′ ⊆ E, such that after any set F of k failures in
G, for each s ∈ S the BFS tree from s in H \ F is a valid BFS tree from s in G \ F .

For convenience of notation, for k = 1 and k = 2 we refer to these problems as FT-BFS
(or FT-MBFS) and dual FT-BFS (or dual FT-MBFS). The problems of k FT-BFS (and k
FT-MBFS) were first studied by Parter and Peleg [16] for a single failure. They designed
an algorithm to compute FT-BFS requiring O(n3/2) space. Further, they showed their
result can be easily extended to FT-MBFS requiring O(σ1/2n3/2) space. Moreover, their
upper bounds were complemented by matching lower bounds for both their results. This
result was later extended to address dual FT-BFS by Parter [15] requiring O(n5/3) space.
However, the application of this result was limited to only edge failures in undirected graphs.
Though the analysis of their result was significantly complex, it paved a way for developing
the theory studying the interaction of replacement paths after a single edge failure, their
classification and corresponding properties. Further, they also generalized the lower bound
for k FT-MBFS to Ω(σ

1
k+1n2− 1

k+1) which matches their solution for dual FT-BFS. They also
stated extensions of their result to dual FT-MBFS (or k FT-BFS) as an open problem.

The difference in complexity of dual FT-BFS over FT-BFS also reinforces the idea that
extending such results from one failure to two failures (and beyond) requires a significantly
more advanced analysis. As described by Parter [15], for the problem of maintaining shortest
paths "a sharp qualitative and quantitative difference" has been widely noted while handling
a single failure and multiple failures. For the problem of maintaining fault tolerant distance

M. Gupta and S. Khan 127:3

oracles, despite a simple and elegant algorithm for a single edge failure [8], the solution for
two edge failures [10] is significantly complex. In fact, the authors [10] themselves mention
that extending their approach beyond 2 edge failure would be infeasible due to numerous
case analysis involved, requiring a fundamentally different approach. This key difference
is also visible when we compare other problems, as bi-connectivity with tri-connectivity,
single fault tolerant reachability [13, 2] with dual fault tolerant reachability [3], etc. Hence,
simplifying the analysis of dual FT-BFS (and hence dual FT-MBFS) structures seem to be
an essential building block for further developments of the problem for multiple failures.

1.1 Our Contributions
We design optimal algorithms for constructing dual FT-BFS and dual FT-MBFS structures.
In principle, the core algorithm of our construction for dual FT-BFS is same as the one given
by Parter [15], with a much simpler and more powerful analysis. As a result, our algorithm
also works for vertex failures and directed graphs. Also, our dual FT-BFS structure can also
be easily extended to handle dual FT-MBFS (as in case of FT-BFS [16]), which matches the
lower bound described by Parter [15]. Thus, we optimally solve two open problems (dual
FT-BFS for directed graphs and dual FT-MBFS for any graphs) as follows.

I Theorem 3 (Optimal dual FT-BFS). Given any graph G = (V,E) having n vertices and m
edges, with a designated source s ∈ V , there is a polynomial time constructable dual FT-BFS
subgraph H having O(n5/3) edges.

I Theorem 4 (Optimal dual FT-MBFS). Given any graph G = (V,E) having n vertices and
m edges, with a designated set of σ sources S ⊆ V , there is a polynomial time constructable
dual FT-MBFS subgraph H having O(σ1/3n5/3) edges.

Our analysis is performed using simple techniques based on counting arguments. We
classify a set of shortest paths as standard paths and prove the properties of disjointness
and convergence for a designated suffix of such paths. The extension to directed graphs
additionally uses the notion of segmentable paths (similar notion of regions was used in [15])
for every set of converging shortest paths, and establishes several interesting properties for
them. These properties and analysis techniques might be of independent interest in the
theory of shortest paths.

1.2 Related Work
As described earlier BFS is strongly related to shortest paths. Demetrescu et al. [8] showed
that there exist weighted directed graphs, for which a fault tolerant subgraph requires Θ(m)
edges for maintaining shortest paths even from a single source after a vertex failure. Hence,
they designed a data-structure of size Õ(n2) 1 that reports all pairs shortest distances after
a vertex failure in O(1) time. Duan and Pettie [10] extended this result to two failures
requiring nearly same (upto poly logn factors) size and reporting time.

Other related problems include fault tolerant DFS and fault tolerant reachability. Baswana
et al. [1] presented a Õ(m) sized fault tolerant data structure that reports the DFS tree of
an undirected graph after k faults in Õ(nk) time. For single source reachability, Baswana
et al. [3] presented an algorithm for computing fault tolerant reachability subgraphs for k
faults using O(2kn) edges. This result was also shown to be optimal upto constant factors.

1 Õ(·) notation hides poly-log(n) factors

ICALP 2017

127:4 Multi-Source Dual Fault Tolerant BFS

s

v

a

c

d

D0(P1)

×e1

×

D1(P)

e2

Figure 1 Showing P0 (in black), D0(P1) (in blue) and D1(P) (in green). Here P1 = P0[s, a] ∪
D0(P1) ∪ P0[c, v] and P = P0[s, a] ∪D0(P1)[a, d] ∪D1(P).

1.3 Outline of the paper
We now present a brief outline of our paper. In Section 2, we present the basic notations
that shall be used throughout the paper, which shall be followed by a brief overview of our
approach and analysis in Section 3. In Section 4, we shall first begin with the description of
our algorithm for dual FT-BFS and the properties of the shortest paths found using it, which
shall be followed by the formal analysis. We then present our algorithm for dual FT-MBFS
and its analysis, drawing similarities with solution of dual FT-BFS. Finally, we present the
concluding remarks for our paper in Section 6. Due to page constraints some proofs have
been omitted and deferred to the full paper [11]. For the sake of simplicity, we only describe
our algorithm and analysis for edge failures. However, the same analysis can also be used to
handle vertex failures.

2 Preliminaries

Given a graph G = (V,E) with n vertices and m edges with a set of designated source s ∈ S.
The following notations shall be used throughout the paper.

P,P: A path is denoted by P , where Source(P) and Dest(P) represents the source and
destination of path P . In most parts of the paper, Source(P) = s and Dest(P) = v. A
set of paths is denoted by P. Generally, we assume a path from s to v starts from the
top (s) and ends at bottom (v). For two paths P ′, P ′′, we say P ′ leaves earlier/higher
(or later/lower) than P ′′ from P , if P ′ leaves P closer to s (or closer to v) than P ′′.
F(P): For the shortest path P from Source(P) to Dest(P) after a set of edge failures, this
set of failed edges is denoted by F(P) = {e1, e2, . . . , ek} (say), where ei denotes the ith
edge in the sequence. Similarly for some path P ′, e′i denotes the ith edge in the sequence.
Pi: If F(P) = {e1, e2, . . . , ek}, then Pi is the shortest path avoiding the first i edge of
F(P), i.e., F(Pi) = {e1, e2, . . . , ei}, where 0 ≤ i < k. Again, for most parts of the paper,
P0 denotes the shortest path from s to v in G.
Di(P): If |F(P)| = k, the detour path of P from Pi, Di(P) = P \ {∪ij=0Pj} 2, where
1 ≤ i < k − 1. For dual case, D0(P) is the detour of P from P0, D1(P) is the detour of
P from P1, and D0(P1) is the detour of P1 from P0 (See Figure 1).
LastE(P) : The last edge of a path P .
P [x, y]: The sub-path of P starting from x to y, where x, y ∈ P .

2 This construction may give a set of disjoint subpaths of P instead of a single subpath. However, in
most cases this path will be a single subpath, else we assume Di(P) to be the last such subpath on P .

M. Gupta and S. Khan 127:5

We define the property of convergence of a set of paths P as follows. The paths in P are
said to be converging if on intersection of any two paths P, P ′ ∈ P, both P and P ′ merge
and do not diverge till the end of the paths.

3 Overview

For analyzing the size of dual FT-BFS subgraph, i.e., the number of edges in shortest paths
from the source s to each vertex v ∈ V after any two failures, it suffices to count only the
last edge of every such path P , for each v ∈ V [16, 15]. The novelty of our approach is
the classification of such paths based on interaction of corresponding P1 and P0, whereas
Parter [15] studied the different interactions of P1 and P ′1, for two such paths P and P ′.

We primarily use the disjointness of a designated suffix of such a path P (referred as
LastLeg(P)) with counting arguments to bound the number of such paths. To achieve this, we
classify some of these paths as standard paths based on the interactions of corresponding P1 and
P0. The number of non-standard paths can be easily bound using simple counting arguments.
The set of standard paths exhibit several interesting properties including convergence of
corresponding paths D0(P1). We further classify the standard paths into long standard
paths and short standard paths, each bounded separately using relatively harder techniques.
For sake of easier presentation we first bound the number of short standard paths only
for undirected graphs, with extension to directed graphs requiring an additional notion of
segmentable paths. The only difference in the analysis of dual FT-MBFS is the definition of
standard paths and dealing with interaction of P1 with P ′0 corresponding to other sources.

4 Dual FT-BFS

We shall now describe our algorithm to compute sparse dual FT-BFS subgraph H from a
source s ∈ V . For every vertex v ∈ V , our algorithm computes the shortest paths from s to
v avoiding upto two failures and adds the last edge of each such path to the adjacency list of
vertex v. Note that repeating the procedure for each vertex on such a path adds the entire
path to H [16, 15].

Our algorithm starts by adding the shortest path between s and v, i.e., P0. It then
processes single edge failures on P0. We then find the replacement path P for all two edge
failures {e1, e2} such that e1 ∈ P0 and e2 ∈ P1. Further, in case e2 ∈ P0 ∩ P1 then e1 is
higher than e2 on P0.

However, we want to process all the failures in some particular order. This ordering plays
a crucial role in the analysis. To this end, we define this ordering π as follows. The first
failure in π is F = ∅, which adds P0. The ordering π then contains single edge failures of
type F = {e} (where e ∈ P0), ordered by their decreasing distance from s on P0. Finally, we
order the remaining failures as follows: for any two failures F = {e1, e2} and F ′ = {e′1, e′2}
(with corresponding replacement paths P and P ′), F ≺π F ′ if either (1) e1 is farther than e′1
from s on P0, or (2) e1 = e′1 and e2 is farther than e′2 from s on P1 (note that P1 = P ′1 in
this case). If F ≺π F ′, F is said to be lower than F ′ in π.

For any failure of F = {e1, · · · , ek}, we define the preferred shortest path avoiding F .
Our preferred shortest path will be a path of shortest length avoiding F . However, there can
be multiple such paths of same length. We use following rules to choose a unique preferred
path.

ICALP 2017

127:6 Multi-Source Dual Fault Tolerant BFS

Procedure Dual-FT-BFS(s, v, π): Augments the dual FT-BFS subgraph H, such that
for BFS tree of G rooted at s after any two edge failures in G, the incoming edges to v
are preserved in H.

1 foreach Failure F , where 0 ≤ |F | ≤ 2, ordered from lower to higher in π do
2 P ← Preferred path from s to v in G avoiding F ;
3 if LastE(P) /∈ H then
4 Assign P for failure of F ;
5 Add LastE(P) to H;
6 end
7 end

I Definition 5. Path P is preferred for failure of {e1, · · · , ek} where each ei ∈ Pi−1, if
1. For each i, P leaves Pi−1 before ei exactly once.
2. For any other P ′ also avoiding {e1, · · · , ei}, we have either (i) |P | < |P ′|, (ii) |P | = |P ′|,

and for some 0 ≤ i ≤ k, both P and P ′ leaves each of P0, ..., Pi−1 at the same vertex, but
P leaves Pi earlier than P ′, (iii) P is lexicographically smaller 3 than P ′.

Intuitively, out of all the shortest paths avoiding F (say for |F | = 2), the preferred path
leaves the path P0 and/or P1 as early as possible. In order to avoid the preferred path leaving
P0 (or P1) multiple times just to achieve an earlier point of divergence from P0 (or P1), the
first condition is imposed. The last condition in (2) is just to break ties between two paths
that are of same length and leave P0 and P1 at the same vertex.

Finally, in order to add the preferred shortest path P avoiding a failure F , our algorithm
simply adds LastE(P) to H, which suffices to add the entire path as described earlier.
Moreover, we also assign the corresponding P to the failure F if it was the first failure
to add this edge in H. As a result, if P and P ′ are two preferred paths avoiding F and
F ′ respectively where LastE(P) = LastE(P ′), then if F ≺π F ′, only the path P shall be
assigned to F . Refer to Procedure Dual-FT-BFS for the pseudocode of our algorithm.

In order to calculate the size of H, it is sufficient to analyze the number of different last
edges added on each v ∈ V in H. Let the set of all paths from s to v avoiding failures F ⊆ E
(where |F | ≤ 2) be Pv. We thus define the paths that will be counted for establishing the
space bound as follows.

I Definition 6. The path P ∈ Pv is called contributing if while processing F(P), LastE(P) /∈
H, i.e., P adds a new edge adjacent to v in H.

In order to count the number of contributing paths to a vertex v, we only need to consider its
interactions with other contributing paths in Pv. This is because, if any other path P ∈ Px
passes through v using some new edge, so does the corresponding P ′ ∈ Pv with F(P) = F(P ′).
Thus, to analyze the size of H, it suffices to look at last edges of the contributing paths in
Pv for each vertex v separately.

3 Let P and P ′ first diverge from each other to x ∈ P and x′ ∈ P ′ respectively, i.e., P [s, x] \ {x} =
P ′[s, x′] \ {x′}. If the index of x is lower than that of x′ then P is said to be lexicographically smaller
than P ′.

M. Gupta and S. Khan 127:7

s

v

vl

D0(P1)

×e1

Pa

s

v

vl

D0(P1)

×e1

s

v

vl

D0(P1)
×e1

Pb

s

v

vl
D0(P1) ×e1

Pc

Figure 2 Classification of contributing paths: Pa: Non-Standard Paths, Pb : Long Standard
Paths and Pc : Short Standard Paths.

4.1 Properties of contributing paths

Parter [15] presented a simple proof bounding the number of contributing paths avoiding
multiple failures on P0 to O(

√
n) for each vertex v (an alternate proof using counting

arguments is presented in the full paper [11]). Hence, excluding these paths, every contributing
path satisfies the following properties (see full paper [11] for proofs).

I Lemma 7. Excluding O(
√
n) paths, each contributing path P from s to v avoiding {e1, e2}

satisfies following properties
P1 : e1 ∈ P0 and e2 ∈ D0(P1).
P2 : Except at v, D0(P) does not intersect with P0 and D1(P) does not intersect with P1,

after diverging from P0 and P1 respectively.
P3 : For any path P ′ which avoids {e1, e2}, P is the preferred path over P ′.
P4 : If P also avoids some failure F ′ where F ′ ≺π F , then there exist another path P ′ which

is the preferred path for F ′ over P , where P ′ does not avoid F .

4.2 Space Analysis

As described earlier, in order to bound the size of dual FT-BFS subgraph to O(n5/3), it
suffices to bound the number of contributing paths from s to each vertex v ∈ V avoiding two
edge failures to O(n2/3). Further, using P1 we are only concerned with a contributing path
P if e1 ∈ P0 and e2 ∈ D0(P1).

We first divide the path P0 into two parts as follows. Let vl ∈ P0 be the vertex such that
|P0[vl, v]| = n1/3. We define Phigh = P0[s, vl] and Plow = P0[vl, v]. If |P0| < n1/3, we assume
vl = s where Phigh = φ. We shall now define the standard paths as follows.

I Definition 8 (Standard Paths). A contributing path P is called a standard path if (a) e1 ∈
Phigh, and (b) D0(P1) merges with P0 on Plow, i.e., Dest(D0(P1)) ∈ Plow.

We can thus classify the contributing paths into following three types (see Figure 2):
Pa: Non-standard paths.
Pb: Long standard paths, i.e., standard paths with |D0(P1)| ≥ n2/3.
Pc: Short standard paths, i.e., standard paths with |D0(P1)| < n2/3.

Clearly, the sets Pa,Pb and Pc are mutually disjoint and collectively exhaustive. Further,
we define a set P1x (for x = a, b and c), where for each P ∈Px, we add the corresponding
P1 to P1x. In addition, we identify the disjoint suffix of a path P as follows (see Figure 3).

ICALP 2017

127:8 Multi-Source Dual Fault Tolerant BFS

s

v

a

c

D0(P1)

xe1

xe′1
x
e2

D0(P ′
1)

v∗

LastLeg(P)

Figure 3 P avoids {e1, e2}. Its detour D1(P) (shown in blue) last intersects LastPath(P) = P ′1.
P diverges from P ′1 at v∗, i.e., LastLeg(P) = P [v∗, v] (shown in brown).

I Definition 9. For each P ∈Px, for x = a, b or c, we define the following
1. LastPath(P) : The path in P1x that intersects last with P . If P diverges from P0 and

does not intersect any path in P1x, we set LastPath(P) = P0.
2. LastLeg(P) : The part of P after diverging from LastPath(P), i.e., P [v∗, v], where v∗ is

the last vertex of P on P ∩ LastPath(P).

The suffix LastLeg(P) of a contributing path P satisfies the following properties (see full
paper [11] for proofs).

I Lemma 10. For every set Px (for x = a, b or c), we have the following.
(a) For any P, P ′ ∈ Px, LastLeg(P) and LastLeg(P ′) are disjoint (except at v), i.e.,

LastLeg(P) ∩ LastLeg(P ′) = {v}. Further, each P, P ′ starts from a distinct vertex
on P1x.

(b) Number of paths P ∈Px with |LastLeg(P)| > n1/3 or LastPath(P) = P0, is O(n2/3).

Remark: Lemma 102 claims that LastLeg(P) is disjoint from other LastLeg(P ′), where
P ∈ Px and P ′ ∈ Px′ only when x = x′. However, in case x 6= x′ they can intersect and
our proof does not require their disjointness.

Equipped with these properties we can easily analyze the number of non-standard paths
(Pa) and standard paths (Pb and Pc) in the following sections.

4.2.1 Analyzing non-standard paths Pa

Using Lemma 102, we know that the number of P ∈ Pa with |LastLeg(P)| > n1/3 or
LastPath(P) = P0 is O(n2/3). We now focus on the case when |LastLeg(P)| ≤ n1/3 and
LastPath(P) ∈P1a. For any path P , let v∗ = Source(LastLeg(P)). Since LastLeg(P) is a de-
tour from LastPath(P)[v∗, v] avoiding the entire P0 (using P2), we have |LastPath(P)[v∗, v]| ≤
|LastLeg(P)| ≤ n1/3. By definition, a contributing path P is non-standard if either
(a) e1 ∈ Plow, or (b) D0(P1) merges with P0 on Phigh, i.e., Dest(D0(P1)) ∈ Phigh. Hence,
for every P , LastPath(P) would correspond to one of the two cases (a) or (b). Case
(b) is clearly not be applicable here because |LastPath(P)[v∗, v]| ≥ |Plow| = n1/3 (since
Dest(LastPath(P)) ∈ Phigh). For case (a), on each LastPath(P) ∈ P1a, v∗ can be one of
n1/3 vertices of LastPath(P) closest to v. Further, since e1 ∈ Plow, there are only n1/3 such
paths in P1a because each such path corresponds to failure of unique edge in Plow. Thus,

M. Gupta and S. Khan 127:9

there are only n1/3 × n1/3 = n2/3 different vertices v∗ limiting the number of P ∈Pa with
|LastLeg(P)| ≤ n1/3 to O(n2/3) (using Lemma 101).

Properties of standard paths (Pb or Pc)
We shall now prove two important properties of standard paths (see full paper [11] for proofs).
The first result states that if D0(P1) and D0(P ′1) intersect, where P, P ′ ∈P1b ∪P1c, then
they cannot diverge. The second result states that the length of paths in Pb ∪Pc are
different. A similar result was proved by Parter[15].

I Lemma 11. For the set of contributing standard paths, we have the following proper-
ties.
(a) The set of paths {D0(P1)|P1 ∈P1b ∪P1c}, is converging.
(b) (Parter [15]) For any two paths P, P ′ ∈Pb ∪Pc, |P | 6= |P ′|.

4.2.2 Analyzing long standard paths Pb

We first prove a generic technique to bound the number of contributing paths P if the set of
corresponding paths P1 is converging and each P1 sufficiently long.

I Theorem 12. Given a set P of converging paths satisfying Lemma 101, where for each
P1 ∈ P we have |P1| ≥ α2 (where α ≥ 1), the number of contributing paths P having P1 ∈ P
is O(n/α).

Proof. Recall the definition of LastPath(P), here we shall define LastPath(P) (and hence
LastLeg(P)) corresponding to paths in P (rather than P1x in Definition 9). Using Lemma 101,
if |LastLeg(P)| ≥ α, then P can be associated with α unique vertices of LastLeg(P). This
limits the total number of such paths to O(n/α). Hence, we assume that LastLeg(P)) ≤ α.

For each path P1 ∈ P, let vl = Dest(P1). Similarly, for each such P , let the last
intersection vertex of LastLeg(P) and LastPath(P) be v∗. Using Lemma 101, we know that
for each such contributing path P , its corresponding LastLeg(P) starts from a distinct vertex
of P. Since LastLeg(P) is a detour from LastPath(P)[v∗, vl] avoiding the entire P1 (using
P2), we have |LastLeg(P)| ≥ |LastPath(P)[v∗, vl]|. Since |LastLeg(P)| ≤ α, v∗ can be one of
α vertices of LastPath(P) closest to vl.

We shall associate each such vertex v∗ on LastPath(P) ∈ P uniquely with α vertices
of LastPath(P), for all LastPath(P) ∈ P, as follows. Let the vertices of some LastPath(P)
be v1, ..., vk where v1 is the closest vertex to vl. For each vi, i = 1, ..., α, we associate the
vertices v(i−1)α, ..., viα. Since |LastPath(P)| ≥ α2 (by definition of P) and i ∈ [1, α] such an
association can be made. Now, in order to prove that such an association is unique, i.e., a
vertex x is not associated with two different vertices v∗1 , v∗2 of P, we exploit the convergence
of P as follows. Clearly if x ∈ P1 for a unique path P1 ∈ P, there is a unique v∗1 ∈ P
to which it is associated. However, if x ∈ P1 and x ∈ P ′1 for any two paths P1, P

′
1 ∈ P,

then P1 and P ′1 will not diverge after intersection (by convergence of P). This implies
P1[x, vl] = P ′1[x, v′l]. Thus, the corresponding v∗1 ∈ P1 and v∗2 ∈ P ′1 would also be same as by
definition v∗1 ∈ P1[x, vl]. Hence, for every P emerging from v∗ with |LastPath(P)[v∗, vl]| ≤ α,
the corresponding v∗ can be uniquely associated with at least α vertices of P. This limits
the total number of such paths to O(n/α) proving the theorem. J

Using Lemma 111 and by definition of long standard paths Pb, Theorem 12 is applicable for
the set D0(P1) for P1 ∈P1b and α = n1/3 limiting the number of paths in Pb to O(n2/3).

ICALP 2017

127:10 Multi-Source Dual Fault Tolerant BFS

s

v

x

y′

D0(P1)

×e1

×e′1

×e2

D0(P ′
1)

y

LastLeg(P)

Figure 4 Let P ′1 be LastPath(P). Then the path P0[s, x] ∪ P1[x, y′] ∪ P ′1[y′, y] ∪ LastLeg(P) is a
valid path avoiding {e1, e2}.

4.2.3 Analyzing short standard paths Pc

To highlight the simplicity of our approach, we only analyze the paths in Pc for undirected
graphs here. For extension of this proof to handle directed graphs we use the theory of
segmentable paths (refer to full paper [11] for details).

Using Lemma 102, we know that the number of P ∈ Pc with |LastLeg(P)| > n1/3 or
LastPath(P) = P0 is O(n2/3). We now focus on the case when |LastLeg(P)| ≤ n1/3 and
LastPath(P) ∈ P1c. Any such contributing path P can be divided into two parts (see
Figure 4), (a) P [s, y], where y = Source(LastLeg(P)), and (b) P [y, v] = LastLeg(P). We will
now find an alternate path for P [s, y], which will help us in bounding its length. Since P
is a contributing path, it diverges from LastPath(P) which requires either e1 or e2 to be
on LastPath(P)[y, v]. By definition of standard paths, we have D0(LastPath(P)) terminates
on P0 only on Plow, whereas e1 /∈ Plow ensuring that e1 /∈ LastPath(P). Thus, e2 ∈
LastPath(P)[y, v] and hence it intersects with P1 as e2 ∈ P1. Using Lemma 111, we can thus
say that LastPath(P) and P1 merge at some vertex say y′, where e2 ∈ LastPath(P)[y′, v] =
P1[y′, v] (see Figure 4). We have an alternate path for P [s, y] avoiding F(P) formed by
P1[s, y′] ∪ LastPath(P)[y′, y]. Let x = Source(D0(P1)). Since P [s, v] is the shortest path
avoiding F(P) we have

|P | = |P [s, y]|+ |P [y, v]|
= |P1[s, y]|+ |P [y, v]|
≤ |P1[s, y′]|+ |LastPath(P)[y′, y]|) + |LastLeg(P)[y, v]|
= (|P1[s, x]|+ |P1[x, y′]|) + |LastPath(P)[y′, y]|+ |LastLeg(P)[y, v]|
≤ |P0|+ |D0(P1)|+ |D0(LastPath(P))|+ |LastLeg(P)|

≤ |P0|+ n2/3 + n2/3 + n1/3 (by definition of Pc)

Now, using Lemma 112, we know that for any P, P ′ ∈Pc we have |P | 6= |P ′|. We thus
arrange the paths in Pc (except the ones in Lemma 102) in the increasing order of sizes,
where ith such path has the length ≥ |P0|+ i (as all paths at least as long as P0). Since for
any such P ∈Pc we also have |P | ≤ |P0|+ 3n2/3 (described above), clearly the number of
paths in Pc are O(n2/3) (for i upto 3n2/3).

M. Gupta and S. Khan 127:11

Procedure Dual-FT-MBFS(S,v,π): Augments the dual FT-MBFS subgraph H, such
that for BFS tree of G rooted at each s ∈ S after any two edge failures in G, the
incoming edges to v are preserved in H.

1 foreach s ∈ S do Dual-FT-BFS(s,v,πs(0)) ;
2 foreach s ∈ S do Dual-FT-BFS(s,v,πs(1)) ;
3 foreach s ∈ S do Dual-FT-BFS(s,v,πs(2)) ;

s1s2

v

x

D0(P1)

D̃0(P1)

D1(P)

×e1×e2

y

z

D̃0(P1)

Figure 5 Shortest path avoiding {e1, e2} is P . D1(P) last intersects P̃0(P1) = P0(s2, v). P1

diverges from P̃0(P1) at y, i.e., D̃0(P1) = P1[y, z] (shown in blue). P also diverges from P̃0(P) at y,
i.e., D̃0(P) = P [y, v].

This completes the proof of our dual FT-BFS result in Theorem 3.

5 Extension to dual FT-MBFS

In this section we shall extend our analysis of the previous section to handle σ sources using
total O(σ1/3n5/3) space. We follow the approach similar to the case for single source. Let S
be the set of sources, where |S| = σ. Given a source s, let πs ⊆ π denote the ordering of
edge failure of size upto 2. Let πs(0), πs(1) and πs(2) be the subset of πs of size 0, 1 and 2
respectively. Our algorithm for finding dual FT-MBFS mimics the single source case.

The first for loop in the above procedure finds shortest path from each source to v. We
shall refer to the set of the shortest paths from each source to v for different s ∈ S as P0.
We then move on to find the shortest path from each source to v avoiding one edge failure
and two failures respectively.

In the previous section, for each contributing path P (that avoids ≥ 1 failure), we saw
that it necessarily diverges from P0. Since we have multiple paths in P0, we define some
new notations (see Figure 5).

I Definition 13 (Modified P0 and D0(P)).
1. For any path P (or its corresponding P1), we define P̃0(P) (or P̃0(P1)) to be the last

path from P0 which intersects with P (or P1), say at vertex y, such that at least one of
e1 or e2 is present in P̃0(P)[y, v] (or e1 ∈ P̃0(P1)[y, v]).

2. For any path P (or P1), we define D̃0(P) = P [v∗, v] (or D̃0(P1) = P1[v∗0 , v]), where v∗ is
the last vertex of P (or P1) on P ∩ P̃0(P) (or P1 ∩ P̃0(P1)).

Note that in the single source case, both P and P1 diverge from the same path P0.
However, in multiple source that path P̃0(P) and P̃0(P1) may differ. This is one of the

ICALP 2017

127:12 Multi-Source Dual Fault Tolerant BFS

major changes from the single source case. In fact, the reader will see that all our lemmas in
Section 4 extend here with P0 changed to P̃0(P) and D0(P) changed to D̃0(P). However,
for completeness we have re-proven all lemmas.

5.1 Properties of Contributing paths
We now describe important properties of paths in P0 and contributing paths as follows (see
full paper [11] for proofs).

I Lemma 14. The set of paths P0 is converging.

The number of contributing paths avoiding failures in P0 can easily bounded to O(
√
σn)

for each v (see full paper [11] for details). Excluding these paths, every contributing path
satisfies the following properties.

I Lemma 15. Excluding O(
√
σn) paths, for any contributing path P from s to v avoiding

{e1, e2}, the following properties holds true
P1 : e1 ∈ P0 and e2 ∈ D0(P1).
P2 : D̃0(P) does not intersect with any path in P0. Also, if D̃0(P) diverges from P1 it does

not intersect it again.

5.2 Space Analysis
As described earlier, in order to bound the size of dual FT-MBFS subgraph to O(σ1/3n5/3),
it suffices to bound the number of contributing paths from s ∈ S to each vertex v ∈ V

avoiding two edge failures to O(σ1/3n2/3). Further, using P1 we are only concerned with a
contributing path P if e1 ∈ P0 and e2 ∈ D0(P1). For the sake of highlighting similarity with
single source case, we shall use nσ = n/σ throughout the section.

We first divide the paths in P0 into two parts as follows. For each s ∈ S, let P0(s, v) be
the shortest path from s to v. Let vls be the vertex such that |P0(s, v)[vls, v]| = n

1/3
σ . We

define Plow = {P0(s, v)[vls, v] |s ∈ S} and Phigh = {P0(s, v)[s, vls] |s ∈ S}. This definition
naturally extends the Plow and Phigh defined in the single source case.

With this modified Plow and Phigh, we use the same definition of standard paths and hence
Pa and P1a. However, the distinction of long standard paths (Pb) from short standard paths
(Pc) would now be done by using D̃0(P1) instead of D0(P1). Hence, the long standard paths
would be the standard paths with |D̃0(P1)| ≥ n2/3

σ . Finally, the definition of LastPath(P) and
LastLeg(P) does not change, except in case LastPath(P) = φ, we use LastPath(P) = P̃0(P)
instead of LastPath(P) = P0 (recall Definition 9). Moreover, the properties of LastLeg(P)
also remain same except for Lemma 102 which is modified as follows.
I Lemma 10. For every set Px (for x = a, b or c), we have the following.
b∗. Number of paths P ∈Px with |LastLeg(P)| > n

1
3
σ or LastPath(P) = P̃0(P), is O(σ 1

3n
2
3).

Now, using the properties described in Lemma 10 (see full paper [11] for proof), we can
analyze the number of non-standard paths (Pa) using the same counting arguments as in
case of single source, bounding the number of such paths to O(σ1/3n2/3) (see full paper [11]
for details). Hence, we only focus on analyzing the standard paths (Pb and Pc) as follows.

Properties of standard paths (Pb and Pc)
Recall the properties of standard paths described in Lemma 11. For multiple sources,
Lemma 111 does not hold, because for two paths P and P ′, their corresponding paths D0(P1)

M. Gupta and S. Khan 127:13

and D0(P ′1) can diverge after intersection, if they start from different sources say s1, s2 (for
s1 = s2, Lemma 111 applies). For example (see Figure 5), P1 avoids e1 on P0[s1, v]. Also,
D0(P1) passes through P0[s2, v]. Let P ′1 be a path avoiding e′1 on P0[s2, v] ∩ P1, such that
D0(P ′1) intersect D0(P1) before D0(P1) enters P0[s2, v]. Hence, D0(P ′1) has to diverge from
D0(P1) as D0(P1) passes through e′1 after the intersection.

This is the primary reason for defining modified detour D̃0(P1), for which a lemma
equivalent to Lemma 111 holds. Thus, the analysis of standard paths for multiple sources,
uses D̃0(P1) instead of D0(P1) satisfying the following properties.

I Lemma 16. For the set of contributing standard paths, we have the following proper-
ties.
(a) The set of paths {D̃0(P1)|P1 ∈P1b ∪P1c}, is converging.
(b) The number of paths P ∈ Pb ∪Pc, which Source(LastLeg(P)) /∈ D̃0(P ′

1) for some
P

′

1 ∈P1b ∪P1c are O(σ1/3n2/3).

Using Lemma 162, we only have to bound the number of standard paths whose LastLeg(P)
originates from some D̃0(P ′

1). Using Lemma 10b∗and by definition of long standard paths
Pb, Theorem 12 is applicable for the set D̃0(P1) for P1 ∈ P1b and α = n

1/3
σ , bounding

number of such paths in Pb to O(σ1/3n2/3). This leaves only the number of short standard
paths that originate from some D̃0(P ′

1) described in the following section.

5.2.1 Analyzing short standard paths Pc

Again, we only analyze the paths in Pc for undirected graphs here (see full paper [11] for
directed graphs). Using Lemma 10b∗and Lemma 162, we know that the number of P ∈Pc

with |LastLeg(P)| > n
1/3
σ or LastPath(P) = P̃0(P) or Source(LastLeg(P)) /∈ D̃0(P ′

1) (for
some P ′1 ∈P1c) is O(σ1/3n2/3). We thus focus on the case when |LastLeg(P)| ≤ n

1/3
σ and

LastPath(P) ∈ P1c with Source(LastLeg(P)) ∈ D̃0(LastPath(P)). Any such path can be
divided into three parts (not necessarily non-empty) including (a) P [s, x] = P1[s, x], where
x = Source(D̃0(P1)), (b) P [x, y] where y = Source(LastLeg(P)) and (c) P [y, v] = LastLeg(P).

We find alternate paths for P [s, x] and P [x, y], which will help us in bounding their
respective lengths (see Figure 6). By definition P̃0(P1) intersects with P0 and passes through
e1. Further, using Lemma 14 we know that P0 and P̃0(P1) will merge after the intersection
at some point, say x′, where e1 ∈ P̃0(P1)[x′, v] = P0[x′, v]. Hence, we have an alternate path
for P1[s, x] avoiding e1 and e2 (since e2 /∈P0 by P2) formed by P0[s, x′]∪ P̃0(P1)[x′, x]. Now,
bounding P [x, y] is exactly same as in the case of single source, using D̃0(P1) instead of
D0(P1), bounding P [x, y] to 2n2/3

σ as shown in Figure 6 (see full paper [11] for an exhaustive
proof). Since P [s, v] is the shortest path avoiding F(P) we have

|P | = |P0[s, x]|+ |P1[x, y]|+ |P [y, v]| (by definition of x and y)

≤ (|P0[s, x′]|+ |P̃0(P1)[x′, x]|) + 2n2/3
σ + n1/3

σ (Similar to dual FT-BFS)

≤ |P0[s, v]|+ |P̃0(P1)[x, v]|+ 2n2/3
σ + n1/3

σ

≤ |P0[s, v]|+ |D̃0(P1)[x, v]|+ 2n2/3
σ + n1/3

σ

(D̃0(P1) is a detour from P̃0(P1), hence |D̃0(P1)[x, v]| > |P̃0(P1)[x, v]|)

≤ |P0[s, v]|+ n2/3
σ + 2n2/3

σ + n1/3
σ (by definition of Pc)

Now, for any s ∈ S, let Pc(s) be the set of all contributing paths in Pc that start from
s. Using Lemma 112 (that holds for P ∈Pc(s)), we know that for any P, P ′ ∈Pc(s) we
have |P | 6= |P ′|. We thus arrange the paths in Pc(s) (except the ones in Lemma 10b∗and

ICALP 2017

127:14 Multi-Source Dual Fault Tolerant BFS

ss2s3

v

x

y

y′

x′

LastLeg(P)

D̃0(P ′
1)

D0(P1)

D̃0(P1)

×e1

×
e′1

×
e2

Figure 6 Let P̃0(P1) = P0(s2, v), LastPath(P) = P ′1 and P̃0(P ′1) = P0(s3, v). Then the path
P0[s, x′] ∪ P̃0(P1)[x′, x] ∪ D̃0(P1)[x, y′] ∪ D̃0(P ′1)[y′, y] ∪ LastLeg(P) is a valid path avoiding {e1, e2}.

Lemma 162) in the increasing order of sizes, where ith such path has the length ≥ |P0(s, v)|+i
(as all paths at least as long as P0(s, v)). Since for any such P ∈ Pc(s) we also have
|P | ≤ |P0[s, v]|+ 4n2/3 (described above), clearly the number of paths in Pc(s) are O(n2/3

σ)
(for i upto 4n2/3). Hence, overall the number of paths in Pc considering all sources s ∈ S
are O(σ ∗ n2/3

σ) = O(σ1/3n2/3).
This completes the proof of Theorem 4.

6 Conclusion

In this paper, we simplified the analysis in [15] for dual FT-BFS problem and extended it
to dual FT-MBFS problem. Unfortunately, extending our result to k FT-MBFS (or even
k FT-BFS) problem requires a lot of case analysis. Ideally, one would wish to design a
simple data structure to handle multiple failures using some new insight with little or no
case analysis. A natural step would be to completely understand these simple cases and
derive significant inferences from them to develop new techniques. The simplicity of FT-BFS
structure [16] enables a clear understanding of the basic technique used for its construction
and analysis. Our work aims to be a significant step to achieve the same for dual FT-BFS
by simplifying the result of [15] and generalizing it similar to [16].

References
1 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dy-

namic DFS in Undirected Graphs: breaking the O(m) barrier. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 730–739, 2016.

2 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant reachability for
directed graphs. In Distributed Computing - 29th International Symposium, DISC 2015,
Tokyo, Japan, October 7-9, 2015, Proceedings, pages 528–543, 2015.

3 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault tolerant subgraph for
single source reachability: generic and optimal. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 509–518, 2016.

M. Gupta and S. Khan 127:15

4 Davide Bilò, Fabrizio Grandoni, Luciano Gualà, Stefano Leucci, and Guido Proietti. Im-
proved purely additive fault-tolerant spanners. In Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 167–178,
2015.

5 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-edge-fault-
tolerant approximate shortest-path trees. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, Orléans, France, pages 18:1–18:14,
2016.

6 Gilad Braunschvig, Shiri Chechik, David Peleg, and Adam Sealfon. Fault tolerant additive
and (µ, α)-spanners. Theor. Comput. Sci., 580:94–100, 2015.

7 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. Fault Tolerant Spanners
for General Graphs. SIAM J. Comput., 39(7):3403–3423, 2010. doi:10.1137/090758039.

8 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008.

9 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 169–178, 2011. doi:10.1145/
1993806.1993830.

10 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Proceedings of
the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New
York, NY, USA, January 4-6, 2009, pages 506–515, 2009.

11 Manoj Gupta and Shahbaz Khan. Multiple Source Dual Fault Tolerant BFS Trees. CoRR,
abs/1704.06907, 2017.

12 Neelesh Khanna and Surender Baswana. Approximate shortest paths avoiding a failed ver-
tex: Optimal size data structures for unweighted graphs. In 27th International Symposium
on Theoretical Aspects of Computer Science, STACS 2010, March 4-6, 2010, Nancy, France,
pages 513–524, 2010.

13 Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141, 1979.

14 Merav Parter. Vertex Fault Tolerant Additive Spanners. In Distributed Computing - 28th
International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings,
pages 167–181, 2014.

15 Merav Parter. Dual failure resilient BFS structure. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San Sebastián,
Spain, July 21 - 23, 2015, pages 481–490, 2015.

16 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms - ESA
2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013.
Proceedings, pages 779–790, 2013.

17 Merav Parter and David Peleg. Fault tolerant approximate BFS structures. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 1073–1092, 2014.

ICALP 2017

http://dx.doi.org/10.1137/090758039
http://dx.doi.org/10.1145/1993806.1993830
http://dx.doi.org/10.1145/1993806.1993830

Near-Optimal Induced Universal Graphs for
Bounded Degree Graphs
Mikkel Abrahamsen∗1, Stephen Alstrup†2, Jacob Holm3,
Mathias Bæk Tejs Knudsen∗‡4, and Morten Stöckel§5

1 University of Copenhagen, Copenhagen, Denmark
miab@di.ku.dk

2 University of Copenhagen, Copenhagen, Denmark
s.alstrup@di.ku.dk

3 University of Copenhagen, Copenhagen, Denmark
jaho@di.ku.dk

4 University of Copenhagen, Copenhagen, Denmark
mathias@tejs.dk

5 University of Copenhagen, Copenhagen, Denmark
morten.stockel@gmail.com

Abstract
A graph U is an induced universal graph for a family F of graphs if every graph in F is a
vertex-induced subgraph of U .

We give upper and lower bounds for the size of induced universal graphs for the family of
graphs with n vertices of maximum degree D. Our new bounds improve several previous results
except for the special cases where D is either near-constant or almost n/2. For constant even
D Butler [Graphs and Combinatorics 2009] has shown O

(
nD/2

)
and recently Alon and Nenadov

[SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave
a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric
and Functional Analysis, to appear] proved the existence of an induced universal graph with
(1 + o(1)) · 2(n−1)/2 vertices, leading to a smaller constant than in the previously best known
bound of 16 · 2n/2 by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015].

In this paper we give the following lower and upper bound of(
bn/2c
bD/2c

)
· n−O(1) and

(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
,

respectively, where the upper bound is the main contribution. The proof that it is an induced
universal graph relies on a randomized argument. We also give a deterministic upper bound of
O
(

nk

(k−1)!

)
. These upper bounds are the best known when D ≤ n/2 − Ω̃(n3/4) and either D is

even and D = ω(1) or D is odd and D = ω
(

logn
log logn

)
. In this range we improve asymptotically

on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud
and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017],
and Alon [Geometric and Functional Analysis, to appear].

1998 ACM Subject Classification E.1 Data Structures, 2.2 Graph Theory

∗ Research partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Inde-
pendent Research under the Sapere Aude research career programme.

† Research partly supported by the FNU project AlgoDisc, Villum Fonden, and the innovationsfonden
project DABAI.

‡ Research partly supported by the FNU project AlgoDisc.
§ Research partly supported by Villum Fonden and the innovationsfonden project DABAI.

EA
T

C
S

© Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk Tejs Knudsen, and
Morten Stöckel;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 128; pp. 128:1–128:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

128:2 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

Keywords and phrases Adjacency labeling schemes, Bounded degree graphs, Induced universal
graphs, Distributed computing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.128

1 Introduction

A graph G = (V,E) is said to be an induced universal graph for a family F of graphs if it
contains each graph in F as a vertex-induced subgraph. A graph H = (V ′, E′) is contained
in G as a vertex-induced subgraph if V ′ ⊆ V and E′ = {vw | v, w ∈ V ′ ∧ vw ∈ E}. Induced
universal graphs have been studied since the 1960s [45, 49], and bounds on the sizes of
induced universal graphs have been given for many families of graphs, including general,
bipartite [11], and bounded arboricity graphs [10]. In Table 2 in Section 2.3 we give an
overview of the state of the art for various graph families along with the results in this paper.

1.1 Adjacency labeling schemes and induced universal graphs
An adjacency labeling scheme for a given family F of graphs assigns labels to the vertices
of each graph in F such that a decoder given the labels of two vertices from a graph, and
no other information, can determine whether or not the vertices are adjacent in the graph.
The labels are assumed to be bit strings, and the goal is to minimize the maximum label
size. A b-bit labeling scheme uses at most b bits per label. Information theoretical studies
of adjacency labeling schemes go back to the 1960s [16, 17], and efficient labeling schemes
were introduced in [35, 47]. The first labeling schemes for bounded degree graphs were given
in [17]. Let gv(F) be the smallest number of vertices in any induced universal graph for a
family of graphs F . In the families of graphs we study in this paper, a graph always has n
vertices, unless explicitly stated otherwise.

A labelling scheme for F is said to have unique labels if no two vertices in the same
graph from F are given the same label. We have the following connection between induced
universal graph sizes and label sizes.

I Theorem 1 ([35]). A family F of graphs has a b-bit adjacency labeling scheme with unique
labels iff gv(F) ≤ 2b.

1.2 Our results
The contribution of this paper are stronger bounds on the size of induced universal graphs
for bounded degree graphs. Our new bounds are the best known for a significant part of the
parameter space, specifically we improve on previous results unless D is either near-constant
or almost n/2. The best known results for the entire parameter range of induced universal
graphs for bounded degree D graphs are shown in Table 1. When the bounded degree D is
constant then Butler [18] along with Alon and Nenadov [8] gave optimal bounds. When D is
even and of size ω(1) and when D is odd and of size ω(logn/ log logn) our first new upper
bound is the best known as long as D = O((logn) log logn). Let GD be the family of graphs
with n vertices and maximum degree D. We show the following.

I Theorem 2. For the family GD of graphs with bounded degree D on n nodes

gv(GD) ≤ 8 · nk

(k − 1)! , where k = dD/2e .

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:3

Table 1 The state-of-the-art landscape for induced universal graph sizes. The first column
denotes in which range the corresponding bound is the best known.

Range of D Bound Reference
D even and D = O(1) O(n)D/2 [18]

D odd and D ∈
[
3, O

(log n
log log n

)]
O(D)D nD/2 [8]

D even and D ∈
[
ω(1), O

(
(log n)2 log log n

)]
O
(

nD/2

(D/2−1)!

)
Theorem 2

D odd and D ∈
[
ω
(log n

log log n

)
, O
(
(log n)2 log log n

)]
O
(

n(D+1)/2

((D−1)/2)!

)
Theorem 2

D ∈
[
ω
(
(log n)2 log log n

)
, n

2 − Ω
(
n3/4 log3/4 n

)] (bn/2c
bD/2c

)
2O
(√

D log D log(n/D)
)

Theorem 3
D ≥ n

2 −O
(
n3/4 log3/4 n

)
(1 + o(1))2(n−1)/2 [5]

Our second new upper bound is the smallest induced universal graph for the interval starting
where Theorem 2 ends and as long as D ≤ n

2 −O
(
n3/4 log3/4 n

)
. The previous best upper

bound for such large D was
(

n
dD/2e

)
nO(1) due to Adjiashvili and Rotbart [3]. The bound

presented in Theorem 3 is a randomized construction, which works for any D, and which
improves asymptotically on Adjiashvili and Rotbart [3] for D = ω(1). We show the following.

I Theorem 3. For the family GD of graphs with bounded degree D on n ≥ 2D nodes

gv(GD) ≤
(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
.

We note that our bound together with the lower bound from Corollary 8 shows that for
D = ω(1), gv(GD) =

(bn/2c
bD/2c

)1±o(1)
. In contrast when D ≤ n/2(1− Ω(1)) and D = Ω(n) the

bound
(

n
dD/2e

)
nO(1) due to Adjiashvili and Rotbart [3] is

(bn/2c
bD/2c

)1+Ω(1)
, so we give the first

near-optimal induced universal graph when D is superconstant.
From a labeling scheme perspective, the combination of Theorems 2 and 3 shows the

existence of an adjacency labeling scheme for GD of size

log
(
bn/2c
bD/2c

)
+O

(
min

{
D + logn,

√
D logD log(n/D)

})
.

This new labeling scheme improves upon previous in the same ranges as the improvements
for the induced universal graphs as shown in Table 1.

In Corollary 8 we show that the any adjacency labeling scheme for GD must have labels
of size at least log

(bn/2c|
bD/2c

)
−O(logn). Our new lower bounds differ from our upper bounds

by O
(
min

{
D + logn,

√
D logD log(n/D)

})
, which is at most O(

√
n logn).

2 Related results

2.1 Maximum degree D

Let k = dD/2e. To give an upper bound for any value of D Butler [18] showed the following
corollary, which follows from the classic decomposition theorem by Petersen (see [41]):

I Corollary 4 ([18]). Let G ∈ GD be a graph on n vertices with maximum degree D. Then G
can be decomposed into k edge disjoint subgraphs where the maximum degree of each subgraph
is at most 2.

To achieve an upper bound for gv(GD) this can be combined with:

ICALP 2017

128:4 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

I Theorem 5 ([20]). Let F and Q be two families of graphs and let G be an induced universal
graph for F . Suppose that every graph in the family Q can be edge-partitioned into ` parts,
each of which forms a graph in F . Then gv(Q) ≤ |V [G]|`.

Using Theorem 5, Butler [18] concluded that gv(GD) ≤ (6.5n)k. Similarly Esperet et
al. [29] achieved gv(GD) ≤ (2.5n+O(1))k, and most recently it was shown by Abrahamsen
et al. [2] that gv(GD) ≤ (2n− 1)k < 2knk due to an induced universal graph for G2 of size
2n− 1.

For constant maximum degree D, Butler [18] also showed gv(GD) = Ω(nD/2), hence when
D is even and constant, gv(GD) = Θ(nD/2) is the right answer up to constant factors due to
the above bounds.

2.2 Constant odd degree
A universal graph for a family of graphs F is a graph that contains each graph from F as a
subgraph (not necessarily vertex induced). It is a natural question how to construct universal
graphs with as few edges as possible.

A graph has arboricity k if the edges of the graph can be partitioned into at most k
forests. Graphs with maximum degree D have arboricity bounded by

⌊
D
2
⌋

+ 1 [19, 40].
When D is odd and constant, some improvement has been achieved on the above bounds

on gv(GD) by arguments involving universal graphs and graphs with bounded arboricity
[7, 29]. Let Ak denote a family of graphs with arboricity at most k.

I Theorem 6 ([20]). Let G be a universal graph for Ak and di the degree of vertex i in G.
Then gv(Ak) ≤

∑
i(di + 1)k.

Alon and Capalbo [6] described a universal graph with n vertices of maximum degree
c(D)n1−2/D log4/D n for the family GD, where D ≥ 3 and c(D) is a constant. Using this
bound in Theorem 6, Esperet et al. [29] noted that for odd D (and hence arboricity k =

⌈
D
2
⌉
),

we get gv(GD) ≤ c1(D)nk− 1
D log2+ 2

D n, for a constant c1(D).1 Using the slightly better
universal graphs from [7] the maximum degree is reduced to c(D)n1−2/D [4], giving gv(GD) ≤
c2(D)nk− 1

D , for a constant c2(D). Note that applying Theorem 6 along with universal
graph [7] as above, then for even values of D this would give gv(GD) ≤ c3(D)nD

2 +1− 2
D , for a

constant c3(D). Recently, Alon and Nenadov [8] showed an upper bound gv(GD) = O(nD/2),
coinciding with Butler’s lower bound up to constant factors for any constant D.

2.3 Other graph families
For the family of general, undirected graphs on n vertices, Alstrup et al. [11] gave an induced
universal graph with O(2n/2) vertices, which matches a lower bound by Moon [45]. More
recently Alon [5] showed a construction that is tight up to an additive lower order term. We
note that whereas the construction of [11] is presented as a labeling scheme, with efficient
encoding and constant decoding time. However, it is not obvious if the the induced universal
graph from [5] can be transformed into a labeling scheme without requiring that either the
encoder or decoder use exponential space or time.

1 In [29] a typo states that the maximum degree for the universal graph in [6] is c(D)n2−2/D log4/D n.
The theorem in [6] only states the total number of edges being c(D)n2−2/D log4/D n, however the
maximum degree is c(D)n1−2/D log4/D n [4].

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:5

Table 2 Induced-universal graphs for various families of graphs. “P” is results in this paper.
For the max degree results k = dD/2e. In the result for families of graphs with an excluded minor,
the O(1) term in the exponent depends on the fixed minor excluded.
∗ The upper bounds from [11] are labeling schemes with efficient encoding and constant decoding time,
but the upper bounds are larger by a constant factor. It is not obvious if the induced universal graph
from [5] can be transformed into a labeling scheme without requiring that either the encoder or decoder
use exponential space or time.

Graph family Lower bound Upper bound Lower/Upper

General ∗ 2
n−1

2 (1 + o(1)) · 2
n−1

2 [45]/[5, 11]
Tournaments ∗ 2

n−1
2 (1 + o(1)) · 2

n−1
2 [46]/[5, 11]

Bipartite ∗ (1− o(1)) · 2 n
4 (1 + o(1)) · 2 n

4 [42]/[5, 11]

A: Max degree D
(bn/2c
bD/2c

)
· n−O(1) O

(
nk

(k−1)!

)
P([39, 43, 44])/P

B: Max degree D
(bn/2c
bD/2c

)
· n−O(1) (bn/2c

bD/2c

)
· 2O(
√

D log D·log(n/D)) P([39, 43, 44])/P
C: Constant max degree D Ω(nD/2) O(nD/2) [18]/[8]

Max degree 2 11 bn/6c 2n− 1 [29]/[2]
Acyclic, max degree 2 b3/2nc b3/2nc [2]/[2]

Excluding a fixed minor Ω(n) n2(log n)O(1) [33]
Planar Ω(n) n2(log n)O(1) [33]

Planar, constant degree Ω(n) O(n2) [20]
Outerplanar Ω(n) n(log n)O(1) [33]

Outerplanar, constant degree Ω(n) O(n) [20]

Treewidth l n2Ω(l) n(log n
l
)O(l) [33]

Constant arboricity l Ω(nl) O(nl) [12]/[10]

It follows from [10, 12] that gv(Ak) = Θ(nk) for the family Ak of graphs with constant
arboricity k and n vertices. Using universal graphs constructed by Babai et al. [13], Bhatt
et al. [14], and Chung et al. [21, 22, 23, 24], Chung [20] obtained the best currently known
bounds for e.g. induced universal graphs for planar and outerplanar bounded degree graphs.

Labeling schemes are being widely used and well-studied in the theory community:
Chung [20] gave labels of size logn+O(log logn) for adjacency labeling in trees, which was
improved to logn+O(log∗ n) [12] and in [15, 20, 31, 32, 36] to logn+Θ(1) for various special
cases of trees. Finally it was improved to logn+ Θ(1) for general trees [10].

Using labeling schemes, it is possible to avoid costly access to large global tables and instead
only perform local and distributed computations. Such properties are used in applications
such as XML search engines [1], network routing and distributed algorithms [26, 27, 30, 51],
dynamic and parallel settings [25, 38], and various other applications [37, 48, 50].

A survey on induced universal graphs and adjacency labeling can be found in [11]. See [34]
for a survey on labeling schemes for various queries. We give an overview in Table 2 of
dominating existing and new results. In the table, “P” refer to a result in this paper and we
define k = dD/2e. The “A” and “B” case below represent two different constructions. The
upper bound in “B” is a randomized construction.

ICALP 2017

128:6 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

3 Preliminaries

Let [n] = {0, . . . , n− 1}, N0 = {0, 1, 2, . . .}, N = N1 = {1, 2, . . .}, and let logn refer to log2 n.
For a graph G, let V [G] be the set of vertices and E[G] be the set of edges of G, and let
|G| = |V [G]| be the number of vertices. We denote the maximum degree of graph G as ∆(G).
For i ∈ N, let Pi denote a path with i vertices, and for i > 2, let Ci denote a simple cycle
with i vertices. We let G2 denote the square of the unweighted graph G, i.e., there is an edge
between two nodes in G2 if they have at most distance two in G. For a boolean statement B
we will denote by [B] the value 1 if B is true and 0 otherwise.

Let G and U be two graphs and let λ : V [G]→ V [U] be an injective function. If λ has
the property that uv ∈ E[G] if and only if λ(u)λ(v) ∈ E[U], we say that λ is an embedding
function of G into U . G is an induced subgraph of U if there exists an embedding function of
G into U , and in that case, we say that G is embedded in U and that U embeds G. Let F be
a family of graphs. U is an induced universal graph for F if G is an induced subgraph of U
for each G ∈ F .

4 General D

In this section we present two upper bounds on gv(GD), the number of nodes in the smallest
induced universal graph for graphs on n nodes with bounded degree D. In Theorem 2 we
give a deterministic construction of an induced universal graph for GD that relies on the fact
that P 2

n is a sparse universal graph for G2.
In Theorem 3 we give a randomized labeling scheme for GD. For every graph in the

family GD we give a randomized assignment of labels to the nodes of the graph and show
that the labels are short with non-zero probability, thereby showing that there exist short
labels for every graph in GD. This in turn implies an upper bound on gv(GD). Combining the
two results shows the existence of an adjacency labeling scheme for GD of size log

(bn/2c|
bD/2c

)
+

O
(
min

{
D + logn,

√
D logD log(n/D)

})
.

In Section 4.2 we show to use the results by Liebenau and Wormald [39] to give lower
bounds on gv(GD). These lower bounds imply that any adjacency labeling scheme for GD
must have labels of size at least log

(bn/2c|
bD/2c

)
−O(logn), which means that the upper bounds

are tight up to an additive term of size O
(
min

{
D + logn,

√
D logD log(n/D)

})
, which is at

most O(
√
n logn).

4.1 Upper bounds on gv(GD)

We present the proof of our first upper bound stated in Theorem 2.

Proof. For a set S we let S≤` denote the set of all subsets of S of size ≤ `. We note that∣∣S≤`∣∣ ≤ 2 |S|
`

`! whenever S is finite.
Fix n,D, let k = dD/2e and let Hn = P 2

n be the square of the path of length n. Identify
the vertices of Hn with [n] in the obvious way. Then two nodes i, j in Hn are adjacent if
and only if they are different and |i− j| ≤ 2. We define the graph G to have vertex set
V [G] = [n]× [2]2 × [n]≤k−1. For a node u = (i, x, y, S) in G, we define id(u) = i. We also

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:7

define N ′(u) in the following way:

N ′(u) =

S x = y = 0

S ∪ {i+ 1} x = 1, y = 0
S ∪ {i+ 2} x = 0, y = 1

S ∪ {i+ 1, i+ 2} x = y = 1

.

There is an edge between u and v in G if id(u) ∈ N ′(v) or id(v) ∈ N ′(u). We proceed
to show that G is an induced universal graph for GD. Let H be a graph in GD. We will
show that H is an induced subgraph of G. By Corollary 4 we know that we can decompose
the edges of H into k edge disjoint subgraphs, H0, H1, . . . ,Hk−1, such that each Hi has
vertex set V [Hi] = V [H] and maximum degree at most 2. First we order the nodes of H as
u0, u1, . . . , un−1 such that all edges (ui, uj) in H0 satisfy |i− j| ≤ 2. This is possible since
H0 has maximum degree at most 2, and therefore consists of only paths and cycles. We let
xi (resp. yi) be 1 if there is an edge from ui to ui+1 (resp. ui+2) in H0. That is:

xi = [(ui, ui+1) ∈ E[H0]] , yi = [(ui, ui+2) ∈ E[H0]] .

We now orient the edges of each of the graphs H1, . . . ,Hk−1 such that the out degree of each
node is at most 1. This is possible since each of Hi has maximum degree at most 2. We let
Si be the set of all ui’s outgoing neighbours in the graphs H1, . . . ,Hk−1, and note that Si
contains at most k − 1 elements. We let λ : H → G be defined by λ(i) = (i, xi, yi, Si). It
is now straightforward to check that λ is an embedding function and therefore that H is
an induced subgraph of G. Since H was arbitrarily chosen this shows that G is an induced
universal graph of GD. The number of nodes in G is exactly 4n ·

∣∣[n]≤k−1
∣∣ which yields the

desired result. J

The intuition behind the randomized bound below is the following. Consider placing all
n vertices on a circle in a randomly chosen order and rename the vertices with indices [n]
following the order on the circle. Now, a vertex v ∈ [n] remembers its neighbours in the next
half of the circle, i.e., v stores all the adjacent vertices among {v + 1, . . . , v + dn/2e} (where
indices are taken modulu n). If two vertices u, v are adjacent, then clearly either u stores
the index of v or conversely, hence an adjacency query can be answered. See Figure 1. A
standard application of Chernoff bounds implies that vertex v with high probability stores at
most D/2 +O(

√
D logn) indices. However, this can be tightened by a Lovász Local Lemma

argument, since each random variable that denote which indices should be stored depend on
at most D2 other such random variables. This allows us to tigthen the number of stored
indices to D/2 +O(

√
D logD), and it follows that there exists an ordering of the points on

the circle where every vertex stores that many neighbours and the theorem follows.
We are ready to show Theorem 3.

Proof. Fix n,D and wlog assume that n is odd. For D ≤ logn the result follows from
Theorem 2 so assume that D ≥ logn. We assume that n and D are bounded from below by
a sufficiently large constant. Let G be a graph in GD, and wlog assume that V [G] = [n]. Let
t0, t1, . . . , tn−1 ∈ [n] be chosen independently and uniformly at random, and let id : [n]→ [n]
be a bijection that assigns an identifier to each node of G such that

(ti, i) ≺ (tj , j)⇒ id(i) < id(j),

for all values of i, j ∈ [n], where ≺ is the lexicographical ordering. We construct the
function id by sorting the values ti, and then choosing id to be a bijection such that

ICALP 2017

128:8 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

v1

u2
u1

v2

Figure 1 The intuition of the randomized upper bound. Pictured are adjacency relations stored
by v1 and v2 – an edge denotes adjecency and a directed edge (v, u) denotes v stores its relation to
u. Here v1 stores v2 but not u2 as u2 is on the wrong side of v1’s bisection, and v2 stores u1 and u2,
but not v1 as it is on the wrong side of v2’s bisection.

(tid(0), id(0)), . . . , (tid(n−1), id(n− 1)) is a non-decreasing sequence. We note that the values
ti determine id uniquely.

For each i ∈ [n] we let Si ⊆ [n] be the set that contains all neighbours j of i for which it
holds that:

(tj − ti) mod n ∈
{

0, 1, 2, . . . , n− 1
2

}
That is, we define Si by:

Si =
{
j ∈ [n] | {i, j} ∈ E[G], (tj − ti) mod n ∈

{
0, 1, 2, . . . , n− 1

2

}}
(1)

We say that the values ti are good if the following properties hold for all i ∈ [n]:

|Si| ≤
D

2 + C
√
D logD (2)

max
j∈Si

{(id(j)− id(i)) mod n} ≤ n

2 + max
{ n
D
,C
√
n logn

}
(3)

where C > 0 is a (sufficiently large) constant to be chosen later. Firstly, we will show that,
when choosing the ti’s randomly, they are good with non-zero probability. For i ∈ [n] let
Ai be the event that (2) does not hold for Si. Let A = {Ai | i ∈ [n]} and for each Ai ∈ A
let Γ(Ai) denote the set of all events Aj where j 6= i has distance at most two to i in G.
We note that since G has maximum degree at most D we have that |Γ(Ai)| ≤ D2. For each
i ∈ [n] the event Ai is independent of all events A \ ({Ai} ∪ Γ(Ai)) for the following reason.
The event Ai is determined exclusively by the values tj where j = i or j is a neighbour of i
in G. For each Aj such that Aj ∈ A \ ({Ai} ∪ Γ(Ai)) we have that j has distance at least
three to i, and Aj is determined by the values tj′ where j′ = j or j′ is a neighbour of j. No
such j′ can also be a neighbour of i since j has distance three to i and we conclude that Ai is
independent of the events A \ ({Ai} ∪ Γ(Ai)) for each i ∈ [n]. By a Chernoff bound we have
that Ai happens, i.e. (2) is false for Si, with probability at most e−Θ(C2 logD). Choosing C

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:9

sufficiently large this is smaller than 1
2D
−10. Let x(Ai) = D−10 for each i ∈ [n]. Then for

each i ∈ [n] we have:

x(Ai)
∏

Aj∈Γ(Ai)

(1− x(Aj)) ≥ D−10 (1−D−10)D2

= D−10e−Θ(D−10)·D2

>
1
2D
−10 ≥ P (Ai)

By the Lovász Local Lemma [28, 9] we conclude that the probability that none of Ai, i ∈ [n]
happen is bounded below by∏

i∈[n]

(1− x(Ai)) =
(
1−D−10)n = e−Θ(nD−10) .

That is, (2) holds for all Si with probability at least e−Θ(nD−10). For a any value of i ∈ [n]
the probability that (3) is false is at most min

{
e−Θ(nD−2), n−Ω(C2)

}
by a standard Chernoff

bound. And by a union bound over all choices of i ∈ [n] (3) holds for all values of i with
probability a least 1 − nmin

{
e−Θ(nD−2), n−Ω(C2)

}
. Therefore, the probability that the

chosen tis are good is at least

e−Θ(nD−10) +
(

1− nmin
{
e−Θ(nD−2), n−Ω(C2)

})
− 1 . (4)

We note that (4) is positive if and only if

e−Θ(nD−10) > nmin
{
e−Θ(nD−2), n−Ω(C2)

}
, (5)

and this can be verified, e.g. by considering the cases D ≤ n1/3 and D > n1/3. That is, the
values ti are good with non-zero probability.

Now fix a good choice of ti and the corresponding identifier function, id, and the sets
Si. We can now encode the values id(i) and the set Si using at most O(logn) + lg

(
n′

D′

)
bits

where n′ and D′ are defined by:

n′ =
⌊n

2 + max
{ n
D
,C
√
n logn

}⌋
, D′ =

⌊
D

2 + C
√
D logD

⌋
Let D′′ = min

{⌊
n′

2

⌋
, D′
}
. Then for any node i we can encode id(i) and the set

{(id(j)− id(i)) mod n | j ∈ Si} using at most O(logn) + log
(
n′

D′′

)
bits for the following

reason: Firstly, id(i) can clearly be stored using O(logn) bits. Secondly, the set of differences
{(id(j)− id(i)) mod n | j ∈ Si} contains at most D′ elements which are all contained in
{1, 2, . . . , n′}, and hence it can be stored using at most log

(
n
(
n′

D′′

))
bits. Given the labels

of two nodes i, j we can compute their ids, id(i) and id(j), and infer whether id(i) ∈ Sj or
id(j) ∈ Si, i.e. whether i and j are adjacent. Hence we have described a labeling scheme for
GD using at most O(logn) + log

(
n′

D′′

)
bits, and therefore

gv(GD) ≤
(
n′

D′′

)
nO(1) . (6)

We first note that:(
n′

D′′

)
≤
(

n′

bD/2c

)
·
(

n′

bD/2c

)D′′−bD/2c
≤
(

n′

bD/2c

)
· 2O
(√

D logD·log(n/D)
)
. (7)

ICALP 2017

128:10 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

Furthermore we also have:(
n′

bD/2c

)
≤
(
bn/2c
bD/2c

)
·
(

n′ − bD/2c
bn/2c − bD/2c

)bD/2c
=
(
bn/2c
bD/2c

)
·
(

1 + n′ − bn/2c
bn/2c − bD/2c

)bD/2c
. (8)

We have that bn/2c − bD/2c = Ω(n) since D ≤ n
2 and therefore we get:(

1 + n′ − bn/2c
bn/2c − bD/2c

)bD/2c
=
(

1 +O

(
n′ − bn/2c

n

))bD/2c
≤ eO

(
n′−bn/2c

n ·bD/2c
)
. (9)

By the definition of n′ we have that

n′ − bn/2c
n

bD/2c = max
{

1
D
,C

√
logn
n

}
· bD/2c = O

(√
D logD

)
. (10)

Combining (8), (9) and (10) we get that(
n′

bD/2c

)
≤ 2O

(√
D logD

)(bn/2c
bD/2c

)
. (11)

Combining (6) with (7) and (11) gives us the desired upper bound on gv(GD)

gv(GD) ≤
(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
.

J

4.2 Lower bounds on gv(GD)
In this section we show how to apply the bounds from [39] on the number of graphs of a
given degree sequence. For a graph G with nodes (u1, u2, . . . , un) the degree sequence of G
is (d1, d2, . . . , dn) where di is the degree of ui. Applying [39, Conjecture 1.1] on a degree
sequence (d, d, . . . , d) we obtain

I Corollary 7 ([39]). Let n, d be integers such that nd is even and 1 ≤ d ≤ n − 1. Let
µ = d

n−1 . The number of d-regular graphs on n nodes is

(1 + o(1))
√

2e1/4 (µµ(1− µ)1−µ)n(n−1)/2
(
n− 1
d

)n
.

We now show that the bound from Corollary 7 implies a lower bound on the size of the
induced universal graph for bounded degree graphs:

I Corollary 8. For the family GD of graphs with bounded degree D on n nodes

gv(GD) = Ω
(√

1√
D

(
n

D

))
. (12)

We remark that together with Stirling’s approximation, Corollary 8 implies that gv(GD) ≥(bn/2c
bD/2c

)
n−O(1).

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:11

Proof. It is clearly enough to prove (12) when D ≤
⌊
n
2
⌋
, since the right hand side is non-

increasing for D ≥
⌊
n
2
⌋
. Let N = 2

⌊
n
2
⌋
be the largest even integer not greater than n. So

we assume that 2D ≤ N .
Let X be the number of D-regular graphs on N nodes. By Corollary 7 we have that

X = Θ
((
µµ(1− µ)1−µ)N(N−1)/2

(
N − 1
D

)N)
, (13)

where µ = D
N−1 . By Stirling’s approximation we have that:(

N − 1
D

)
= Θ

(√
N − 1

(
N−1
e

)N−1

√
D
(
D
e

)D√
N − 1−D

(
D
e

)D
)

= Θ
(√

N − 1
D(N − 1−D)

(
µµ(1− µ)1−µ)−(N−1)

)

= Θ
(√

1
D

(
µµ(1− µ)1−µ)−(N−1)

)
.

Rearranging gives that:

(
µµ(1− µ)1−µ)(N−1)N/2 = Θ

(√
1
D

(
N − 1
D

)−1
)N/2

If we insert this into (13) we get that:

X = Θ
(√

1
D

(
N − 1
D

)−1
)N/2(

N − 1
D

)N
= Θ

(√
1√
D

(
N − 1
D

))N
.

Since 2D ≤ N we have that
(
N−1
D

)
= Θ

((
n
D

))
. Clearly X is smaller than GD, and therefore:

|GD|1/n = Ω
(√

1√
D

(
n

D

))
(14)

Let G be the induced universal graph for the family GD. Let V = [n]. Any graph H from
GD on the vertex set V is uniquely defined by the embedding function f of H in G. Since
there are no more than |V [G]|n ways to choose f we get that |V [G]|n ≥ |GD|. Inserting (14)
this shows (12) the following way,

gv(GD) = |V [G]| ≥ |GD|1/n = Ω
(√

1√
D

(
n

D

))
.

J

References
1 S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor queries.

In Proc. of the 12th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
547–556, 2001.

2 M. Abrahamsen, S. Alstrup, J. Holm, M. B. T. Knudsen, and M. Stöckel. Near-optimal
induced universal graphs for bounded degree graphs. CoRR, abs/1607.04911, 2016. URL:
http://arxiv.org/abs/1607.04911.

ICALP 2017

http://arxiv.org/abs/1607.04911

128:12 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

3 D. Adjiashvili and N. Rotbart. Labeling schemes for bounded degree graphs. In 41st
International Colloquium on Automata, Languages, and Programming (ICALP), pages 375–
386, 2014.

4 N. Alon. private communication, 2016.
5 N. Alon. Asymptotically optimal induced universal graphs, 2016. [Online; accessed 5-July-

2016]. URL: http://www.tau.ac.il/~nogaa/PDFS/induniv1.pdf.
6 N. Alon and M. Capalbo. Sparse universal graphs for bounded-degree graphs. Random

Structures & Algorithms, 31(2):123–133, 2007.
7 N. Alon and M. Capalbo. Optimal universal graphs with deterministic embedding. In Proc.

of the 19th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 373–378,
2008.

8 N. Alon and R. Nenadov. Optimal induced universal graphs for bounded-degree graphs. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1149–1157, 2017.
doi:10.1137/1.9781611974782.74.

9 N. Alon and J. H. Spencer. The probabilistic method. Wiley Publishing, 2000.
10 S. Alstrup, S. Dahlgaard, and M. B. T. Knudsen. Optimal induced universal graphs and

labeling schemes for trees. In Proc. 56th Annual Symp. on Foundations of Computer Science
(FOCS), 2015.

11 S. Alstrup, H. Kaplan, M. Thorup, and U. Zwick. Adjacency labeling schemes and induced-
universal graphs. In Proc. of the 47th Annual ACM Symp. on Theory of Computing (STOC),
pages 625–634, 2015.

12 S. Alstrup and T. Rauhe. Small induced-universal graphs and compact implicit graph
representations. In Proc. 43rd Annual Symp. on Foundations of Computer Science (FOCS),
pages 53–62, 2002.

13 L. Babai, F. R. K. Chung, P. Erdös R. L. Graham, and J. Spencer. On graphs which
contain all sparse graphs. Ann. discrete Math., 12:21–26, 1982.

14 S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Universal graphs for
bounded-degree trees and planar graphs. SIAM J. Discrete Math., 2(2):145–155, 1989.

15 N. Bonichon, C. Gavoille, and A. Labourel. Short labels by traversal and jumping. In
Structural Information and Communication Complexity, pages 143–156. Springer, 2006.
Include proof for binary trees and caterpillars.

16 M. A. Breuer. Coding the vertexes of a graph. IEEE Trans. on Information Theory,
IT–12:148–153, 1966.

17 M. A. Breuer and J. Folkman. An unexpected result on coding vertices of a graph. J. of
Mathemathical analysis and applications, 20:583–600, 1967.

18 S. Butler. Induced-universal graphs for graphs with bounded maximum degree. Graphs
and Combinatorics, 25(4):461–468, 2009. doi:10.1007/s00373-009-0860-x.

19 G. Chartrand, H. V. Kronk, and C. E. Wall. The point-arboricity of a graph. Israel J. of
Mathematics, 6(2):169–175, 1968. doi:10.1007/BF02760181.

20 F. R. K. Chung. Universal graphs and induced-universal graphs. J. of Graph Theory,
14(4):443–454, 1990.

21 F. R. K. Chung and R. L. Graham. On graphs which contain all small trees. J. of
combinatorial theory, Series B, 24(1):14–23, 1978.

22 F. R. K. Chung and R. L. Graham. On universal graphs. Ann. Acad. Sci., 319:136–140,
1979.

23 F. R. K. Chung and R. L. Graham. On universal graphs for spanning trees. J. London
Math. Soc., 27:203–211, 1983.

24 F. R. K. Chung, R. L. Graham, and N. Pippenger. On graphs which contain all small trees
ii. Colloquia Mathematica, pages 213–223, 1976.

http://www.tau.ac.il/~nogaa/PDFS/induniv1.pdf
http://dx.doi.org/10.1137/1.9781611974782.74
http://dx.doi.org/10.1007/s00373-009-0860-x
http://dx.doi.org/10.1007/BF02760181

M. Abrahamsen, S. Alstrup, J. Holm, M.B. T. Knudsen, and M. Stöckel 128:13

25 E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. SIAM J. Comput.,
39(5):2048–2074, 2010. doi:10.1137/070687633.

26 L. J. Cowen. Compact routing with minimum stretch. J. of Algorithms, 38:170–183, 2001.
See also SODA’91.

27 T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch factor. J.
of Algorithms, 46(2):97–114, 2003. doi:10.1016/S0196-6774(03)00002-6.

28 P. Erdos and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. Infinite and finite sets, 10(2):609–627, 1975.

29 L. Esperet, A. Labourel, and P. Ochem. On induced-universal graphs for the class of
bounded-degree graphs. Inf. Process. Lett., 108(5):255–260, 2008. doi:10.1016/j.ipl.
2008.04.020.

30 P. Fraigniaud and C. Gavoille. Routing in trees. In 28th International Colloquium on
Automata, Languages and Programming (ICALP), pages 757–772, 2001.

31 P. Fraigniaud and A. Korman. On randomized representations of graphs using short labels.
In Proc. of the 21st Annual Symp. on Parallelism in Algorithms and Architectures (SPAA),
pages 131–137, 2009. doi:10.1145/1583991.1584031.

32 P. Fraigniaud and A. Korman. Compact ancestry labeling schemes for XML trees. In Proc.
of the 21st annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 458–466,
2010.

33 C. Gavoille and A. Labourel. Shorter implicit representation for planar graphs and bounded
treewidth graphs. In Algorithms–ESA, pages 582–593. Springer, 2007.

34 C. Gavoille and D. Peleg. Compact and localized distributed data structures. Distributed
Computing, 16(2-3):111–120, 2003. doi:10.1007/s00446-002-0073-5.

35 S. Kannan, M. Naor, and S. Rudich. Implicit representation of graphs. SIAM J. Disc.
Math., 5(4):596–603, 1992. See also STOC’88.

36 H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes for ancestor queries.
In Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
954–963, 2002.

37 A. Korman. Labeling schemes for vertex connectivity. ACM Trans. Algorithms, 6(2):39:1–
39:10, 2010. doi:10.1145/1721837.1721855.

38 A. Korman and D. Peleg. Labeling schemes for weighted dynamic trees. Inf. Comput.,
205(12):1721–1740, 2007.

39 A. Liebenau and N. Wormald. Asymptotic enumeration of graphs by degree sequence, and
the degree sequence of a random graph. arXiv preprint arXiv:1702.08373, 2017.

40 L. Lovasz. On decomposition of graphs. Studia Sci. Math. Hungar, 1:237–238, 1966.
41 L. Lovász and M.D. Plummer. Matching Theory. AMS Chelsea Publishing Series. American

Mathematical Soc., 2009.
42 V. V. Lozin and G. Rudolf. Minimal universal bipartite graphs. Ars Comb., 84, 2007.
43 B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence of graphs

of high degree. European Journal of Combinatorics, 11(6):565–580, 1990.
44 B. D. McKay and N. C. Wormald. Asymptotic enumeration by degree sequence of graphs

with degreeso (n 1/2). Combinatorica, 11(4):369–382, 1991.
45 J. W. Moon. On minimal n-universal graphs. Proc. of the Glasgow Mathematical Associ-

ation, 7(1):32–33, 1965.
46 J. W. Moon. Topics on tournaments. Holt, Rinehart and Winston, 1968.
47 J. H. Müller. Local structure in graph classes. PhD thesis, Georgia Institute of Technology,

1988.
48 D. Peleg. Informative labeling schemes for graphs. In Proc. 25th Symp. on Mathematical

Foundations of Computer Science, pages 579–588, 2000.
49 R. Rado. Universal graphs and universal functions. Acta. Arith., 9:331–340, 1964.

ICALP 2017

http://dx.doi.org/10.1137/070687633
http://dx.doi.org/10.1016/S0196-6774(03)00002-6
http://dx.doi.org/10.1016/j.ipl.2008.04.020
http://dx.doi.org/10.1016/j.ipl.2008.04.020
http://dx.doi.org/10.1145/1583991.1584031
http://dx.doi.org/10.1007/s00446-002-0073-5
http://dx.doi.org/10.1145/1721837.1721855

128:14 Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

50 N. Santoro and R. Khatib. Labeling and implicit routing in networks. The computer J.,
28:5–8, 1985.

51 M. Thorup and U. Zwick. Approximate distance oracles. J. of the ACM, 52(1):1–24, 2005.
See also STOC’01.

Universal Framework for Wireless Scheduling
Problems∗†

Eyjólfur I. Ásgeirsson1, Magnús M. Halldórsson2, and
Tigran Tonoyan3

1 School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
eyjo@ru.is

2 ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik,
Iceland
mmh@ru.is

3 ICE-TCS, School of Computer Science, Reykjavik University,Reykjavik,
Iceland
tigran@ru.is

Abstract
An overarching issue in resource management of wireless networks is assessing their capacity: How
much communication can be achieved in a network, utilizing all the tools available: power control,
scheduling, routing, channel assignment and rate adjustment? We propose the first framework for
approximation algorithms in the physical model that addresses these questions in full, including
rate control. The approximations obtained are doubly logarithmic in the link length and rate
diversity. Where previous bounds are known, this gives an exponential improvement.

A key contribution is showing that the complex interference relationship of the physical model
can be simplified into a novel type of amenable conflict graphs, at a small cost. We also show
that the approximation obtained is provably the best possible for any conflict graph formulation.

1998 ACM Subject Classification C.2.1 Network Architecture and Design

Keywords and phrases Wireless, Scheduling, Physical Model, Approximation framework

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.129

1 Introduction

The effective use of wireless networks revolves around utilizing fully all available diversity.
This can include power control, scheduling, routing, channel assignment and transmission rate
control on the links, the latter being an issue of key interest for us. The long-studied topic of
network capacity deals with how much communication can be achieved in a network when its
resources are utilized to the fullest. This can be formalized in different ways, involving a range
of problems. The communication ability of packet networks is characterized by the capacity
region, i.e. the set of traffic rates that can be supported by any scheduling policy. In order
to achieve low delays and optimal throughput, the classic result of Tassiulas and Ephremides
[28] and followup work in the area (e.g. [25]) point out a core optimization problem that
lies at the heart of such questions – the maximum weight independent set of links (Mwisl)
problem: from a given set of communication links with associated weights/utilities, find an
independent (conflict-free, subject to the interference model) subset of maximum total weight.

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10104.
† This work was supported by grants 152679-05 and 174484-05 from the Icelandic Research Fund.

EA
T

C
S

© Eyjólfur I. Ásgeirsson, Magnús M. Halldórsson, and Tigran Tonoyan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 129; pp. 129:1–129:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.129
https://arxiv.org/abs/1705.10104
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

129:2 Universal Framework for Wireless Scheduling Problems

This reduction applies to very general settings involving single-hop and multi-hop, as well as
fixed and controlled transmission rate networks. Moreover, approximating Mwisl within any
factor implies achieving the corresponding fraction of the capacity region. This makes Mwisl
a central problem in the area. Unfortunately, solving this problem in its full generality is
notoriously hard, since it is well known that Mwisl is effectively inapproximable (under
standard complexity theory) e.g. in models described by general conflict relations or general
graphs. Moreover, in general, even approximating the capacity region in polynomial time
within a non-trivial bound, while keeping the delays in reasonable bounds, is hard under
standard assumptions [27].

We tackle this question in the physical model of communication. Towards this end, we
develop a general approximation framework that not only helps us to approximate Mwisl, but
can also be used for tackling various other scheduling problems, such as TDMA scheduling,
joint routing and scheduling and others. The problems handled can additionally involve path
or flow selection, multiple channels and radios, and packet scheduling. We obtain double-
logarithmic (in link and rate diversity) approximation for these problems, exponentially
improving the previously known logarithmic approximations, and, importantly, extending
them to incorporate different fixed rates and rate control. The crucial feature of the approach
(which makes it so general) is that it involves transforming the complex physical model into
an unweighted/undirected conflict graph and solving the problems simply on these graphs.
Perhaps surprisingly, we find that our schema attains the best possible performance of any
conflict graph representation. Numerical simulations show that the conflict graph framework
is a good approximation for the physical model on randomly placed network instances as well.
Our approach also finesses the task of selecting optimum power settings by using oblivious
power assignment, one that depends only on the properties of the link itself and not on other
links. The performance bounds are however in comparison with the optimum solution that
can use arbitrary power settings.

Technically, our approach generalizes our earlier framework [14]. Our extensions required
substantial changes throughout the whole body of arguments. That formulation works
only for uniform constant rates, and the generalization requires substantial new ideas. One
indicator of the challenges overcome is that we could prove that our doubly-logarithmic
approximation is best possible in the presence of different rates, while better approximations
are known to hold in the case of uniform rates [14].

We make some undemanding assumptions about the settings. We assume that the
networks are interference-constrained, in that interference rather than the ambient noise is
the determining factor of proper reception. This assumption is common and is particularly
natural in settings with rate control, since the impact of noise can always be made negligible
by avoiding the highest rates, losing only a small factor in performance. We also assume
that nodes are (arbitrarily) located in a doubling metric, which generalizes Euclidean space,
allowing the modeling of some of non-geometric effects seen in practice.

Our Results. Our results can be summarized as follows:
We establish a general framework for tackling wireless scheduling and related problems,
Our approximations hold for nearly all such problems, including variable rates settings,
We obtain exponential improvement over previously known approximations,
The approximations are obtained via simple conflict graphs, as opposed to the complicated
physical model, and by using oblivious power assignments,
We establish tight bounds indicating the limitations of our method.

Related work. Gupta and Kumar introduced the physical model of interference/communic-
ation with log-path fading in their influential paper [10], and it has remained the default in

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:3

analytic studies. Moscibroda and Wattenhofer [26] initiated worst-case analysis of scheduling
problems in networks of arbitrary topology, which is also the setting of interest in this paper.
There has been significant progress in understanding scheduling problems with fixed uniform
rates. NP-completeness results have been given for different variants [8, 21, 24]. Early work
on approximation algorithms involve (directly or indirectly) partitioning links into length
groups, which results in performance guarantees that are at least logarithmic in ∆, the link
length diversity: TDMA scheduling and uniform weights Mwisl [8, 5, 11], non-preemptive
scheduling [7], joint power control, scheduling and routing [4], and joint power control,
routing and throughput scheduling in multiple channels [2], to name a few. Constant-factor
approximations are known for uniform weight Mwisl (in restricted power regimes [12] and
(general) power control [22]). Standard approaches translate the constant-factor approxima-
tions for the uniform weight Mwisl into O(logn) approximations for TDMA scheduling and
general Mwisl. Many problems become easier, including Mwisl and TDMA scheduling, in
the regime of linear power assignments [6, 33, 13, 29]. Recently, a O(log∗∆)-approximation
algorithm was given for TDMA scheduling and Mwisl [14], by transforming the physical
model into a conflict graph. We build on this approach, and extend it into a general framework
that covers other problems and incorporates support for rate control.

Very few results are known for problems involving rate control. The constant-factor
approximation for Mwisl with uniform weights and arbitrary but fixed rates proposed by
Kesselheim [23] can be used to obtain O(logn)-approximations for TDMA scheduling and
Mwisl with rate control, where n is the number of links. Another recent work [9] handles
the TDMA scheduling problem (with fixed but different rates), obtaining an approximation
independent of the number of links n, but the ratio is polynomial in ∆. There have been
numerous algorithms that try to approximate or replace Mwisl in the context of packet
scheduling. Several examples include Longest-Queue-First Scheduling (LQF) [20], Maximal
Scheduling [34], Carrier Sense Multiple Access (CSMA) [19]. The approximations obtained
usually depend on some parameter of the conflict graph, such as the interference degree.
In the case of CSMA (and other similar protocols), it is known that the algorithms are
throughput-optimal, but in general they take exponential time to stabilize, or otherwise
require constant degree conflict graphs [18]. It is also well known that many scheduling
problems such as vertex coloring and Mwisl are easy to approximate in bounded inductive
independence graphs, such as geometric intersection graphs or protocol model. However,
fidelity to the cumulative nature of interference and the question of modeling rate control
are among the significant issues faced by such graph models.

Paper Organization. The fundamental ideas of our approximation framework are described
in Section 2. After introducing the model and definition in Section 3, we derive the core
technical part, the approximation of the physical model by the conflict graphs, in Section 4,
and the optimality of approximation. The framework is applied to obtain approximations for
fixed rate scheduling problems in Section 5 and for problems with rate control in Section 6
(the latter two can be read separately from Section 4). Due to space constraints, several
technical proofs are deferred to the full version of this paper.

2 Approximation Method

Before defining the details, let us describe the main idea behind the approximation technique.
In essence, we define a notion of approximation of an independence system1 IP = (L, EP) by

1 An independence system I over a set of vertices V is a pair I = (V, E), where E ⊆ 2V is a collection of
subsets of vertices that is closed under subsetting: if S ∈ E and S′ ⊂ S, then S′ ∈ E .

ICALP 2017

129:4 Universal Framework for Wireless Scheduling Problems

a graph G = (L,E) over the set L of links. The system IP corresponds to the cumulative
interference in the physical model, while G is a conflict graph describing pairwise conflicts
between links. We will refer to independent sets in IP as feasible sets, and to independent
sets in G as independent sets, to avoid confusion.

The approximation is described by several key properties.

Refinement (Feasibility of Independent Sets). Every independent set S in G must be
feasible, i.e. S ∈ EP . Thus, finding an independent set in G gives also a feasible set in IP .

Tightness (of refinement). There is a small number k such that every feasible set S ∈ IP
is a union of at most k independent sets in G. The smallest such k is called the tightness
of refinement. This property guarantees that even an optimal (for a problem in question)
feasible set can be covered with a few independent sets.

The two properties above establish a tight connection between the two models. That
allows us to take nearly every scheduling problem in the physical model and reduce it to the
corresponding problem in conflict graphs (in a way formalized in Section 5), by paying only
an approximation factor depending on the tightness k. However, in order for this scheme to
work, it should be easier to solve such problems in G, which leads to the third key property.

Computability. There are efficient (approximation) algorithms for scheduling-related prob-
lems such as vertex coloring and maximum weight independent set in G.

A graph G satisfying the properties above is said to be a refinement of IP . The main
effort in the following two sections is to define an appropriate conflict graph refinement for
the physical model and prove these key properties. We find such a family that approximates
the physical model with nearly constant tightness, i.e. double-logarithmic in length and rate
diversity and show that this is best possible for any conflict graph, up to constant factors.
This approximation allows us to bring to bear the large body of theory of graph algorithms,
greatly simplifying both the exposition and the analysis.

3 Model

In scheduling problems, the basic object of consideration is a set L of n communication links,
numbered from 1 to n, where each link i ∈ L represents a single-hop communication request
between two wireless nodes located in a metric space – a sender node si and receiver node ri.

We assume the nodes are located in a metric space with distance function d. We denote
dij = d(si, rj) and li = d(si, ri). The latter is called the length of link i. Let d(i, j) denote
the minimum distance between the nodes of links i and j.

The nodes have adjustable transmission power levels. A power assignment for the set L
is a function P : L→ R+. For each link i, P (i) defines the power level used by the sender
node si. In the physical model of communication, when using a power assignment P , a
transmission of a link i is successful if and only if

SIR(S, i) = P (i)/lαi∑
j∈S\{i} P (j)/dαji

≥ βi, (1)

where βi > 1 denotes the minimum signal to noise ratio required for link i, α ∈ (2, 6) is the
path loss exponent and S is the set of links transmitting concurrently with link i. Note that
we omit the noise term in the formula above, since we focus on interference limited networks.
This can be justified by the fact that one can simply slightly decrease the transmission rates

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:5

to make the effect of the noise negligible, then restore the rates by paying only constant
factors in approximation.

A set S of links is called P -feasible if the condition (1) holds for each link i ∈ S when
using power assignment P . We say S is feasible if there exists a power assignment P for
which S is P -feasible.

Effective Length. Let us denote li = β
1/α
i li and call it the effective length of link i. Let

∆(L) = maxi,j∈L{li/lj} denote the (effective) length diversity of instance L. We call a set S
of links equilength if for every two links i, j ∈ S, li ≤ 2lj , i.e., ∆(S) ≤ 2. Note that with the
introduction of effective length, the feasibility constraint (1) becomes: P (i)

lα
i
≥

∑
j∈S\{i}

P (j)
dα
ji

.
This looks like the same formula but with uniform rates β′i = 1. However, there is an essential
difference between the two: the quantities li are not related to the metric space in the same
way as lengths li, as li can be arbitrarily larger than li.

Metrics. The doubling dimension of a metric space is the infimum of all numbers δ > 0
such that for every ε, 0 < ε ≤ 1, every ball of radius r > 0 has at most Cε−δ points of mutual
distance at least εr where C ≥ 1 is an absolute constant. For example, the m-dimensional
Euclidean space has doubling dimension m [16]. We let m denote the doubling dimension of
the space containing the links. We will assume α > m, which is the standard assumption
α > 2 in the Euclidean plane.

4 Conflict Graph Approximation of Physical Model

In this section we present the O(log log ∆)-tight refinement of the physical model by conflict
graphs. The first part introduces our conflict graph Gf that generalizes the conflict graph
definition of [14] and extends it to general thresholds/rates. The three subsequent parts give
the proofs of the three key properties: refinement, tightness and computability. The last
part argues the asymptotic optimality of O(log log ∆)-tightness for any conflict graph, which
contrasts the O(log∗∆) bound known in the uniform thresholds setting.

I Theorem 1. There is an O(log log ∆)-tight refinement of the physical model by a conflict
graph family G(L).

Conflict Graphs. We define the conflict graph family as follows.

I Definition 2. Let f : R+ → R+ be a positive non-decreasing function. Links i, j are said to
be f-independent if dijdji > liljf (lmax/lmin) , where lmin = min{li, lj}, lmax = max{li, lj},
and otherwise f-adjacent. A set of links is f -independent (f -adjacent) if they are pairwise
f -independent (f -adjacent).

The conflict graph Gf (L) of a set L of links is the graph with vertex set L, where two
vertices are adjacent if and only if they are f -adjacent.

This definition extends the conflict graphs introduced in [14], where the independence criterion
was d(i, j)/lmin > f(lmax/lmin) (lmax, lmin are the length of the longer and shorter links,
resp.). When all threshold values βi are constant, the latter essentially follows from the
definition above by “canceling” lmax with the larger value of dij , dji (modulo constant factors).
In general, however, the effective lengths can be very different from the actual link lengths,
and feasibility requires more separation than given by graphs involving distances only. A
technical difficulty introduced by the new definition is that we have to keep track of two
distances dij and dji instead of the single distance d(i, j), but this appears to be necessary.

ICALP 2017

129:6 Universal Framework for Wireless Scheduling Problems

We will be particularly interested in sub-linear functions f(x) = O(x). A function f is
strongly sub-linear if for each constant c ≥ 1, there is a constant c′ such that cf(x)/x ≤ f(y)/y
for all x, y ≥ 1 with x ≥ c′y. Note that if f is strongly sub-linear then f(x) = o(x). For
example, the functions f(x) = xδ (δ < 1) and f(x) = log x are strongly sub-linear.

Refinement: Feasibility of Independent Sets. Our goal now is to find a function f such
that each independent set in Gf is feasible. It is clear that this can be achieved by letting f
grow sufficiently fast. But we should not let it grow too fast, so as to not affect tightness.
We also need to indicate which power assignment makes the independent sets in Gf feasible.
Our approach is to preselect a family of oblivious power assignments, that are local to each
link and do not depend on others, and then find an appropriate function f . Consider the
family of power assignments Pτ parameterized by τ ∈ (0, 1), where Pτ (i) ∼ lταi for each link
i. In order to obtain Pτ -feasibility, we take conflict graphs Gf with f(x) = γxδ for δ ∈ (0, 1)
and γ ≥ 1. Such graphs are denoted as Gδγ . We show that every independent set in Gδγ for
appropriate γ and δ is Pτ -feasible for some τ .

I Theorem 3. Let δ0 = α−m+1
2(α−m)+1 . If δ ∈ (δ0, 1) and the constant γ > 1 is large enough,

there is a value τ ∈ (0, 1) such that each independent set in Gδγ is Pτ -feasible.

The proof is an adaptation of the ideas used in the proof of [15, Cor. 6] to our definition
of conflict graphs and effective lengths. Given an independent set S in Gδγ and a link i, we
bound the interference of S on i by first splitting S into equilength subsets, bounding the
contribution of each subset separately, then combining the bounds into one. The core of the
proof is a careful application of a common packing argument in doubling metric spaces.

Tightness of Refinement. Now, let us bound the number of f -independent sets that are
necessary to cover a feasible set. We show that this number is O(f∗(∆(S))) for any feasible set
S, where f∗ is defined for every strongly sub-linear function, as follows. For each integer c ≥ 1,
the function f (c)(x) is defined inductively by: f (1)(x) = f(x) and f (c)(x) = f(f (c−1)(x)).
Let x0 = inf{x ≥ 1, f(x) < x}+ 1; such a point exists for every f(x) = o(x). The function
f∗(x), is defined by: f∗(x) = arg minc{f (c)(x) ≤ x0} for arguments x > x0, and f∗(x) = 1
for the rest. Note that for a function f(x) = γxδ with constants γ > 0 and δ ∈ (0, 1),
f∗(∆) = Θ(log log ∆), which is the tightness bound we are aiming for.

I Theorem 4. Consider a non-decreasing strongly sub-linear function f . Every feasible set
S can be split into O(f∗(∆(S))) subsets, each independent in Gf (S).

Let us fix a function f with properties as in the theorem. We establish the partition in
Thm. 4 in two steps. The first step is to show that feasible set S can be partitioned into
a constant number of independent sets in G0

ρ(S) for any constant ρ, i.e., subsets S′ such
that for every pair of links i, j ∈ S′, dijdji > ρlilj . Such subsets are called ρ-independent for
short. The second step is to show that for an appropriate constant ρ, each ρ-independent set
can be partitioned into at most O(f∗(∆)) of f -independent subsets.

The first step is easy. Each feasible set can be partitioned into at most 2ρα/2 subsets, each
of them feasible with updated thresholds {ρα/2βi}. This is a direct application of Corollary 2
of [3]. Let S′ be such a subset and let i, j ∈ S′. The feasibility constraint for i and j implies:

P (i)/lαi ≥ ρα/2βiP (j)/dαji and P (j)/lαj ≥ ρα/2βjP (i)/dαij .

By multiplying together the inequalities above, canceling P (i) and P (j) and raising to the
power of 1/α, we obtain: dijdji ≥ ρlilj , as required.

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:7

The proof of the second step requires the following lemmas, which constitute the most
significant technical difference from the proof of the corresponding theorem in [14], as they
encapsulate the technicalities of dealing with our definition of conflict graphs: It is not
sufficient to bound only one of the distances between links (such as d(i, j) in [14]); we need a
bound on the product of two distances.

I Lemma 5. Let i, j, k be such that li ≤ lj ≤ lk and i is f -adjacent with both j and k, where
f is a non-decreasing sublinear function. Then

djkdkj < 18lilkf(lk/li) + 13lj lk + 2lj
√

lilkf(lk/li) + lk

√
liljf(lj/li).

I Lemma 6. Let i be a link and ρ > 1. If E is a ρ-independent set of links where each j ∈ E
is f -adjacent with i and satisfies li ≤ lj ≤ cli for a constant c, then |E| = O(1).

Proof of Theorem 4. By the discussion above, it is sufficient to show that each ρ-independent
set S, for appropriate constant ρ > 1, can be partitioned into a small number of f -independent
sets. We choose ρ = 3cf + 31, where cf is such that f(x) ≤ cfx for all x ≥ 1 (recall that f is
sub-linear). Partitioning is done by the following inductive coloring procedure: 1. Consider
the links in a non-increasing order by effective length, 2. Assign each link the first natural
number that has not been assigned to an f -adjacent link yet. Clearly, such a procedure
defines a partitioning of S into f -independent subsets.

Fix a link i ∈ S. Let T denote the set of links in j ∈ S that have greater effective length
than i and are f -adjacent with i. In order to complete the proof, it is enough to show that
|T | = O(f∗(∆)), as |T | is an upper bound on the number assigned to link i.

Since f(x) is strongly sub-linear, there exists x0 = inf{x ≥ 1, f(x) < x} + 1. Let us
split T into two subsets A and B, where A contains the links j ∈ T such that lj ≤ x0li and
B = T \A. By Lemma 6, we have that |A| = O(1), so we concentrate on B.

Let j, k be arbitrary links in B such that lj ≤ lk. By applying Lemma 5 and using the
definition of cf , we obtain: djkdkj < 18lilkf(lk/li) + (3cf + 13)lj lk. Recall that j and k are
(ρ = 3cf + 31)-independent, so djkdkj > (3cf + 31)lj lk, which gives us lj/li < f(lk/li). Let
1, 2, . . . , t = |B| be an arrangement of the links in B in a non-decreasing order by effective
length and let λj = lj/li for j = 1, 2, . . . , t. We have just shown that

x0 ≤ λ1 < f(λ2) ≤ f(f(λ3)) ≤ · · · ≤ f (t−1)(λt),

namely, t− 1 ≤ f∗(λt) = O(f∗(∆)). Thus, |T | = |A|+ |B| = O(1) +O(f∗(∆)). J

Computability. Computability of our conflict graph construction is demonstrated through
the notion of inductive independence. An n-vertex graph G is k-inductive independent if
there is an ordering v1, v2, . . . , vn of vertices such that for each vi, the subgraph of G induced
by the set NG(vi) ∩ {vi, vi+1, . . . , vn} has no independent set larger than k, where NG(v)
denotes the neighborhood of vertex v. It is well known, e.g. [1, 35], that vertex coloring and
Mwisl problems are k-approximable in k-inductive independent graphs.

I Theorem 7. Let f be a non-decreasing strongly sub-linear function with f(x) ≥ 40 for all
x ≥ 1. For every set L, the graph Gf (L) is constant inductive independent.

The proof is somewhat similar to that of Thm. 4. The inductive independence ordering
non-decreasing order of links by length. With this in mind, the proof of Thm. 4 can be
applied, with the following core difference: while in Thm. 4 the goal was, for a link i, to bound
the number of ρ-independent links that have greater effective length and are f -adjacent
with i, here we need to bound the number of f -independent links that have greater effective
length and are f -adjacent with i.

ICALP 2017

129:8 Universal Framework for Wireless Scheduling Problems

Optimality of O(log log ∆)-tightness. Here we show that the obtained tightness is essen-
tially best possible, by demonstrating that every reasonable conflict graph formulation must
incur an O(log log ∆) factor. We depart from some basic assumptions on conflict graphs.
First, since the feasibility of a set of links is precisely determined by the values li and dij ,
we assume that in a conflict graph, the adjacency of two links i, j is a predicate of variables
li, lj , dij , dji. Another basic observation is that the feasibility formula is scale-free w.r.t. those
values; hence, we assume that so is a conflict graph formulation. This allows us to reduce
the number of variables in the adjacency predicate: lmax

lmin
,
dij
lmin

,
dji
lmin

, where lmin and lmax
are the smaller and larger values of li, lj , respectively. Our construction will consist of only
unit-length links (i.e. li = 1) of mutual distance at least 3. In this case, we can further
reduce the number of variables by noticing that in such instances, dij = Θ(dji) = Θ(d(i, j)).
Thus, the conflict relation is essentially determined by two variables: d(i,j)

lmin
and lmax

lmin
. By

separating the variables, the conflict predicate boils down to a relation d(i,j)
lmin

> f(lmaxlmin
) for a

function f . Note that this is similar to the conflict graph definition of [14], except that the
lengths are replaced with effective lengths.

Let us show that the refinement property requires that f(x) = Ω(
√
x) in such a graph.

Let us fix a function f : [1,∞) → [1,∞). Let i, j be unit-length links with βj = 1 and
βi = Xα > 1, where X is a parameter. Assume further that the links i, j are placed on the
plane so that d(i, j) = 3f(X) = 3f(li/lj), which means the links are f -independent. Thus,
i, j must form a feasible set: P (i)

lα
i

> P (j)
dα
ji

and P (j)
lα
j

> P (i)
dα
ij
. Multiplying these inequalities

together and canceling P (i) and P (j) out, gives: dijdji > lilj = X. This implies that we must
have d(i, j) = Θ(

√
dijdji) = Ω(

√
X), which in turn implies that f(X) = d(i, j)/3 = Ω(

√
X).

Now, a simple modification of the construction in [14, Thm. 9] gives a set S of unit-length
links arranged on the line and with appropriately chosen thresholds βi and distances d(i, j),
such that every two links are f -adjacent, but the whole set S is feasible. Such a construction
can be done with the number of links n = Ω(f∗(∆)), i.e. there is a feasible set of links that
cannot be split in less than Ω(f∗(∆)) f -independent subsets. Since f(x) = Ω(

√
x), we have

f∗(x) = Ω(log log x), which proves that the tightness must be at least Ω(log log ∆).

5 Approximating Fixed-Rate Scheduling

We detail now the more classical problems that can be handled with our framework, starting
with those involving fixed datarates. Intuitively, our framework can handle a problem if there
is a correspondence between solutions in the physical model instance and solutions in the
refinement graph. The refinement property ensures that the graph solutions map directly to
feasible solutions in the physical model — we need to ensure a (approximate) correspondence
in the other direction. We will argue that an optimal solution in the physical model has a
counterpart in the graph instance, whose quality decreases only by the tightness factor k.

General Approximation Framework. Common scheduling-related optimization problems
can be classified as covering or packing.

In covering problems, a feasible solution σ contains a (ordered) covering of the set L of
links with feasible sets π = 〈S1, S2, . . . , St〉 (i.e., ∪tSt = L), which we call time slots, and the
objective is to minimize a function fσ(π) of the covering, which may also depend on other
problem constraints.

In packing problems, a feasible solution σ contains a fixed number c of feasible sets
(packing), η = 〈S1, S2, . . . , Sc〉, not necessarily covering L, which we call channels, and the
objective is to maximize a function gσ(η) of the packing.

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:9

Given a refinement G and a cover π = 〈S1, S2, . . . , St〉 of L by feasible sets, we call another
cover π′ = 〈S1

1 , . . . S
h1
1 , S1

2 , . . . , S
1
t , . . . , S

ht
t 〉, a refinement of π if 〈S1

i , . . . S
hi
i 〉 is a cover of Si

by independent sets in G. Similarly, given a packing η = 〈S1, S2, . . . , Sc〉, a refinement of η is
another packing η′ = 〈S′1, S′2, . . . , S′c〉, where S′i ⊆ Si is an independent set in G.

Formally, a covering problem is refinable if for every k-tight refinement G and a solution
σ with cover π, there is a feasible solution σ′ containing a refinement π′ of π, and such
that fσ(π) ≥ fσ′ (π′)

k . A packing problem is refinable if for every k-tight refinement G and a
solution σ with a packing η = 〈S1, S2, . . . , Sc〉, there is a feasible solution σ′ containing a
refinement η′ of η, and such that gσ(η) ≤ k · gσ′(η′).

I Theorem 8. Let G be a k-tight refinement of the physical model. For every refinable
problem, a ρ-approximation algorithm in G gives k · ρ-approximation in the physical model.

Thus, in order to obtain an approximation for a specific problem, it is sufficient to show
that the problem is refinable: then the solution in a k-tight refinement gives a solution with
an additional approximation factor k. Refinability requires the objective function of the
problem to have certain linearity property. Examples of refinable covering problems include
the ones where the objective function is the number of time slots or the sum of completion
times (i.e. indices of time slots). Perhaps the simplest example of a refinable packing problem
is the maximal independent set of links problem, where the objective is the size of the feasible
set (i.e., there is only a single channel). Below, we apply the refinement framework to some
important scheduling problems, which leads to O(log log ∆)-approximation for all of them.

MWISL with Fixed Weights. Consider the Mwisl problem, where the weights ωi of links
are fixed positive numbers. It is easy to see that this is a refinable packing problem, as the
objective function – the sum of weights – is linear with respect to partition. Thus, since
there is a constant factor approximation to Mwisl in G(L) (by computability), it gives an
O(log log ∆)-approximation in the physical model (by Thm. 8).

Multi-Channel Selection. Given a natural number c – the number of channels – the goal
is to select a maximum number of links that can be partitioned into c feasible subsets (a
subset for each channel). Again, this is easily seen to be a refinable packing problem, as the
objective function – the total number of links across all channels, is linear w.r.t. partitioning.
A simple greedy algorithm gives constant factor approximation to multi-channel selection in
constant-inductive independent graphs, which translates to an O(log log ∆)-approximation
in the physical model.

TDMA Scheduling. The goal is to partition the set L of links into the minimum number
of feasible subsets. This is a covering problem, and the objective function is the number
of slots, which is linear w.r.t. partitioning. A simple first-fit style greedy algorithm gives
constant factor approximation to vertex coloring in constant inductive independent graphs,
which gives an O(log log ∆)-approximation to TDMA scheduling in the physical model.

Fractional Scheduling. This is a fractional variant of TDMA scheduling with an additional
constraint of link demands. A fractional schedule for a set L of links is a collection of feasible
sets with rational values S = {(Ik, tk) : k = 1, 2 . . . , q} ⊆ EP × R+, where EP is the set
of all feasible subsets of L. The sum

∑q
k=1 tk is the length of the schedule S. The link

capacity vector cS : L→ R+ associated with the schedule S is given by cS(i) =
∑

(I,t)∈S:I3i t.

ICALP 2017

129:10 Universal Framework for Wireless Scheduling Problems

Essentially, the link capacity shows how much scheduling time each link gets. Finally, a link
demand vector d : L→ R+ indicates how much scheduling time each link needs.

The fractional scheduling problem is a covering type problem, where given a demand
vector d, the goal is to compute a minimum length schedule that serves the demands d,
namely, for each link i ∈ L, cS(i) ≥ d(i). Since the cost function

∑q
k=1 tk is again linear

w.r.t. partitioning of a schedule, it is readily checked that the fractional scheduling problem
is also refinable. A simple greedy algorithm presented in [31] achieves constant factor
approximation for fractional scheduling in constant inductive independent graphs. This gives
an O(log log ∆)-approximation in the physical model.

Joint Routing and Scheduling. Consider an ordered set of p source-destination node pairs
(multihop communication requests) (ui, vi), i = 1, 2, . . . , p, with associated weights/utilities
ωi > 0, in a multihop network given by a directed graph G, where the edges of the graph are
the transmission links. Let Pi denote the set of directed (ui, vi) paths in G and let P = ∪iPi.
Then a path flow for the given set of requests is a set F = {(Pk, δk) : k = 1, 2, . . . } ⊆ P ×R+.
The link flow vector fF corresponding to path flow F , with fF (i) =

∑
(P,δ)∈F :P3i δ for each

link i, shows the flow along each link.
The multiflow routing and scheduling problem is a covering problem, where given source-

destination pairs with associated utilities, the goal is to find a path flow F together with a
fractional link schedule S of length 1, such that2 for each link i, the link flow is at most the
link capacity provided by the schedule, fF (i) ≤ cS(i), and the flow value

W =
p∑
i=1

ωi ·
∑

(Pk,δk)∈F,Pk∈Pi

δk

is maximized. Let us verify that this problem is also refinable. Consider a feasible solution in
(the physical model) that consists of a path flow F = {(Pk, δk) : k = 1, 2, . . . } and a schedule
S = {(Ik, tk) : k = 1, 2, . . . } of length

∑
k≥1 tk = 1, such that fF (i) ≤ cS(i). As observed

in the previous section, the schedule S can be refined into a schedule S ′ = {(Isk, tk)}k,s
in G(L), where S ′ serves the same demand vector as S does, and S ′ has length at most
K = O(log log ∆) times more than the length of S. Now we normalize the refined schedule
to have length 1. Then, the following modified path flow F ′ = {(Pk, δk/K) : k = 1, 2, . . . }
together with the new schedule will be feasible in G(L), as all link demands will be served.
Moreover, the value of F ′ is at most K times that of F . Hence, the problem is refinable.

Thus, applying the constant factor approximation algorithm of [32] for constant inductive
independent conflict graphs (the result holds with unit utilities) gives an O(log log ∆)-
approximation for multiflow routing and scheduling problem in the physical model. It should
also be noted that the fractional scheduling and routing and scheduling problems can be
reduced to the Mwisl problem using linear programming techniques (described e.g. in [17]),
as it was shown in [30]. We will further discuss this in Section 6.

Extensions to Multi-Channel Multi-Antenna Settings. All problems above may be natur-
ally generalized to the case when there are several channels (e.g. frequency bands) available
and moreover, wireless nodes are equipped with multiple antennas and can work in different
channels simultaneously. We denote the setting with multiple antennas/channels as MC-MA.

2 Essentially, the schedule here gives a probability distribution over the feasible sets of links.

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:11

It is easy to show that our refinement framework can be extended to MC-MA with very
little change. Assume that each node u is equipped with a(u) antennas numbered from 1
to a(u) and can use a set C(u) of channels. Consider a link i that corresponds to the pair
of nodes si and ri. There are a(si)a(ri)|C(si) ∩ C(ri)| virtual links corresponding to each
selection of an antenna of the sender node si, an antenna of receiver node ri and a channel
c ∈ C(si) ∩ C(ri) available to both nodes. Thus a virtual link is described by the tuple
(i, as, ar, c), where as (ar) denotes the antenna index at si (ri, respectively), and c denotes
the channel. We call link i the original of its virtual links. Note that the formulation above
can easily be generalized to the case where certain antennas don’t work in certain channels,
e.g., due to multi-path fading.

A set of (virtual) links S is feasible in MC-MA if and only if no two links in S share an
antenna (i.e., they do not use the same antenna of the same node), and for each channel
c, the set of originals of links in S using channel c is feasible in the physical model. Then,
an O(log log ∆)-tight refinement for the MC-MA physical model by a conflict graph can be
found by a simple extension of the existing refinement for the single channel case to the
virtual links. This implies, in particular, that all scheduling problems considered in the
previous sections can also be approximated in the MC-MA setting within an approximation
factor O(log log ∆), as the corresponding approximations for the conflict graph hold with
MC-MA [32].

6 Rate Control and Scheduling

The most important application of efficient approximation algorithms for scheduling problems
with different thresholds is the application to scheduling with rate control. This is achieved
first by obtaining a double-logarithmic approximation to Mwisl with rate control. This will
then lead to similar approximations for fractional scheduling and joint routing and scheduling
problems.

MWISL with Rate Control. By Shannon’s theorem, given a set S of links simultaneously
transmitting in the same channel, the transmission rate r(S, i) of a link i is a function of
SIR(S, i). Thus, we consider the Mwisl problem where each link i has an associated utility
function ui : R+ → R+, and the weight of link i is the value of ui at SIR(S, i) if link i
is selected in the set, and 0 otherwise. As before, the goal is, given the links with utility
functions, to find a subset S that maximizes the total weight

∑
i∈S u

i(r(S, i)). We assume
that ui(SIR(S, i)) = 0 if SIR(S, i) < 1.

An O(logn)-approximation for this variant of Mwisl has been obtained in [23]. We show
that this can be replaced with O(log log ∆′), where ∆′(L) = maxi,j∈L uimaxli

uj
min

lj
and uimin, uimax

are the minimum and maximum possible utility values for the given instance and link. This
is achieved by reducing the problem to Mwisl in an extended instance.

Let us fix a utility function u. First, assume that the possible set of weights for each
link is a discrete set umin = u1 < u2 < · · · < ut = umax. Then, we can replace each link i
with t copies i1, i2, · · · , it with different thresholds and fixed weights, where ωik = uk and
βik = min{x : uik(x) ≥ uk} if βik ≥ 1 and ωik = 0 otherwise. Now, the problem becomes a
Mwisl problem for the modified instance L′ with link replicas and fixed weights. Observe that
no feasible set in L′ contains more than a single copy of the same link, as the copies occupy the
same geometric place, implying that each feasible set of the extended instance corresponds
to a feasible set of the original instance, with an obvious transformation. The effective
length diversity of the extended instance is ∆(L′) = ∆′(L). Thus, using the approximation

ICALP 2017

129:12 Universal Framework for Wireless Scheduling Problems

algorithm for the fixed rate Mwisl problem, we obtain an O(log log ∆′(L))-approximation
for Mwisl with rate control.

For the case when the number of possible utility values is too large or the set is continuous,
a standard trick can be applied. Let uimax, uimin be as before. The extended instance L′
is constructed by replacing each link i with O(log uimax/uimin) copies i1, i2, . . . of itself and
assigning each replica ik weight ωk = 2k−1 and threshold βk = min{x : 2k−1 ≤ ui(x) ≤ 2k}
if βk ≥ 1 and let ωk = 0 otherwise. It is easy to see that the optimum value of Mwisl with
fixed rates in L′ is again an O(log log ∆′(L))-approximation to Mwisl with rate control.

If the value log uimax/uimin is still too large, it may be inefficient to have O(log uimax/uimin)
copies for each link. It is another standard observation that only the last O(logn) copies of
each link really matter, as restricting to only those links degrades approximation by a factor
of at most 2.

Fractional Scheduling with Rate Control. In this formulation, we redefine a fractional
schedule to be a set S = {(Ik, tk) : k = 1, 2 . . . , q} ⊆ 2L × R+, namely, Ik are arbitrary
subsets, rather than independent ones. We redefine the link capacity vector ĉS to incorporate
the rates as follows:

ĉS(i) =
∑

(I,t)∈S:I3i

t · r(i, I). (2)

The fractional scheduling with rate control problem is to find a minimum length schedule S
that serves a given demand vector d, namely, such that for each link i ∈ L, ĉS(i) ≥ d(i).

The problem can be formulated as an exponential size linear program LP1, as follows.

min
∑
I⊆L

tI subject to
∑

I⊆L:I3i
tI · r(i, I) ≥ d(i) ∀i ∈ L

tI ≥ 0 ∀I ⊆ L

The dual program LP2 looks as follows:

max
∑
i∈L

d(i)yi subject to
∑
i∈I

yi · r(i, I) ≥ 1 ∀I ⊆ L

yi ≥ 0 ∀i ∈ L

As [17, Thm. 5.1] states, if there is an approximation algorithm that finds a set Î such
that

∑
i∈Î yir(i, Î) ≥ 1

a maxI⊆L
∑
i∈I yir(i, I), then there is an a-approximation algorithm

for LP1, where the former algorithm acts as an approximate separation oracle for LP1. But
this auxiliary problem is simply a special case of the Mwisl with rate control, which we can
approximate within a double-logarithmic factor. Thus, there is an approximation preserving
reduction from the fractional scheduling with rate control to Mwisl with rate control. By the
obtained approximation for Mwisl, we obtain an O(log log ∆′)-approximation for fractional
scheduling with rate control.

Routing, Scheduling and Rate Control. The rate-control variant of the routing and schedul-
ing problem is formulated in the same way as for the fixed rate setting, with the only modified
constraint being the capacity constraints, which, instead of the link capacity vector cS , now
use the modified variant ĉS that incorporates the link rates (see the definition in (2)).

This problem can also be reduced to Mwisl with rate control, using similar methods as
for the fractional scheduling problem. The reduction is nearly identical to the reduction of
fixed rate versions of these problems to Mwisl, presented in [30, Thm. 4.1].

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:13

Thus, we can conclude that there is an O(log log ∆′)-approximation algorithm for joint
routing, scheduling and rate control that uses Mwisl with rate control as a subroutine.

References
1 Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao. Opportunity

cost algorithms for combinatorial auctions. CoRR, cs.CE/0010031, 2000.
2 Mahmoud Al-Ayyoub and Himanshu Gupta. Joint routing, channel assignment, and

scheduling for throughput maximization in general interference models. IEEE Trans. Mob.
Comput., 9(4):553–565, 2010. doi:10.1109/TMC.2009.144.

3 Jørgen Bang-Jensen and Magnús M. Halldórsson. Vertex coloring edge-weighted digraphs.
Inf. Process. Lett., 115(10):791–796, 2015. doi:10.1016/j.ipl.2015.05.007.

4 Deepti Chafekar, V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and
Aravind Srinivasan. Cross-layer latency minimization in wireless networks with SINR con-
straints. In Proceedings of the 8th ACM Interational Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc 2007, Montreal, Quebec, Canada, September 9-14, 2007,
pages 110–119, 2007. doi:10.1145/1288107.1288123.

5 Michael Dinitz. Distributed algorithms for approximating wireless network capacity. In IN-
FOCOM 2010. 29th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19 March 2010, San
Diego, CA, USA, pages 1397–1405, 2010. doi:10.1109/INFCOM.2010.5461905.

6 Alexander Fanghänel, Thomas Kesselheim, and Berthold Vöcking. Improved algorithms
for latency minimization in wireless networks. Theor. Comput. Sci., 412(24):2657–2667,
2011. doi:10.1016/j.tcs.2010.05.004.

7 Liqun Fu, Soung Chang Liew, and Jianwei Huang. Power controlled scheduling with
consecutive transmission constraints: Complexity analysis and algorithm design. In IN-
FOCOM 2009. 28th IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 19-25 April 2009, Rio
de Janeiro, Brazil, pages 1530–1538, 2009. doi:10.1109/INFCOM.2009.5062070.

8 Olga Goussevskaia, Yvonne Anne Oswald, and Roger Wattenhofer. Complexity in geo-
metric SINR. In Proceedings of the 8th ACM Interational Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc 2007, Montreal, Quebec, Canada, September 9-14,
2007, pages 100–109, 2007. doi:10.1145/1288107.1288122.

9 Olga Goussevskaia, Luiz Filipe M. Vieira, and Marcos Augusto M. Vieira. Wireless schedul-
ing with multiple data rates: From physical interference to disk graphs. Computer Networks,
106:64–76, 2016. doi:10.1016/j.comnet.2016.06.016.

10 Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. Inform-
ation Theory, 46(2):388–404, 2000. doi:10.1109/18.825799.

11 Magnús M. Halldórsson. Wireless scheduling with power control. ACM Trans. Algorithms,
9(1):7:1–7:20, 2012. doi:10.1145/2390176.2390183.

12 Magnús M. Halldórsson and Pradipta Mitra. Wireless capacity with oblivious power in
general metrics. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1538–1548, 2011. doi:10.1137/1.9781611973082.119.

13 Magnús M. Halldórsson and Pradipta Mitra. Wireless capacity and admission control in
cognitive radio. In Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March
25-30, 2012, pages 855–863, 2012. doi:10.1109/INFCOM.2012.6195834.

14 Magnús M. Halldórsson and Tigran Tonoyan. How well can graphs represent wireless
interference? In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 635–644, 2015.
doi:10.1145/2746539.2746585.

ICALP 2017

http://dx.doi.org/10.1109/TMC.2009.144
http://dx.doi.org/10.1016/j.ipl.2015.05.007
http://dx.doi.org/10.1145/1288107.1288123
http://dx.doi.org/10.1109/INFCOM.2010.5461905
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1109/INFCOM.2009.5062070
http://dx.doi.org/10.1145/1288107.1288122
http://dx.doi.org/10.1016/j.comnet.2016.06.016
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1145/2390176.2390183
http://dx.doi.org/10.1137/1.9781611973082.119
http://dx.doi.org/10.1109/INFCOM.2012.6195834
http://dx.doi.org/10.1145/2746539.2746585

129:14 Universal Framework for Wireless Scheduling Problems

15 Magnús M. Halldórsson and Tigran Tonoyan. The price of local power control in wireless
scheduling. In 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India,
pages 529–542, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.529.

16 Juha Heinonen. Lectures on Analysis on Metric Spaces. Springer, 1. edition, 2000.
17 Klaus Jansen. Approximate strong separation with application in fractional graph coloring

and preemptive scheduling. Theor. Comput. Sci., 302(1-3):239–256, 2003. doi:10.1016/
S0304-3975(02)00829-0.

18 Libin Jiang, Mathieu Leconte, Jian Ni, R. Srikant, and Jean C. Walrand. Fast mixing
of parallel glauber dynamics and low-delay CSMA scheduling. IEEE Trans. Information
Theory, 58(10):6541–6555, 2012. doi:10.1109/TIT.2012.2204032.

19 Libin Jiang and Jean C. Walrand. A distributed CSMA algorithm for throughput and
utility maximization in wireless networks. IEEE/ACM Trans. Netw., 18(3):960–972, 2010.
doi:10.1109/TNET.2009.2035046.

20 Changhee Joo, Xiaojun Lin, and Ness B. Shroff. Understanding the capacity region of the
greedy maximal scheduling algorithm in multihop wireless networks. IEEE/ACM Trans.
Netw., 17(4):1132–1145, 2009. doi:10.1145/1618562.1618572.

21 Bastian Katz, Markus Völker, and Dorothea Wagner. Energy efficient scheduling with
power control for wireless networks. In 8th International Symposium on Modeling and
Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), May 31 - June 4,
2010, University of Avignon, Avignon, France, pages 160–169, 2010.

22 Thomas Kesselheim. A constant-factor approximation for wireless capacity maximization
with power control in the SINR model. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 1549–1559, 2011. doi:10.1137/1.9781611973082.120.

23 Thomas Kesselheim. Approximation algorithms for wireless link scheduling with flexible
data rates. In Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings, pages 659–670, 2012. doi:10.1007/
978-3-642-33090-2_57.

24 Henry Lin and Frans Schalekamp. On the complexity of the minimum latency scheduling
problem on the euclidean plane. CoRR, abs/1203.2725, 2012.

25 Xiaojun Lin and N. B. Shroff. Joint rate control and scheduling in multihop wireless
networks. In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat.
No.04CH37601), volume 2, pages 1484–1489 Vol.2, Dec 2004. doi:10.1109/CDC.2004.
1430253.

26 Thomas Moscibroda and Roger Wattenhofer. The complexity of connectivity in wireless
networks. In INFOCOM 2006. 25th IEEE International Conference on Computer Commu-
nications, Joint Conference of the IEEE Computer and Communications Societies, 23-29
April 2006, Barcelona, Catalunya, Spain, 2006. doi:10.1109/INFOCOM.2006.23.

27 Devavrat Shah, David N. C. Tse, and John N. Tsitsiklis. Hardness of low delay network
scheduling. IEEE Trans. Information Theory, 57(12):7810–7817, 2011. doi:10.1109/TIT.
2011.2168897.

28 L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transac-
tions on Automatic Control, 37(12):1936–1948, Dec 1992. doi:10.1109/9.182479.

29 Tigran Tonoyan. On some bounds on the optimum schedule length in the SINR model.
In Algorithms for Sensor Systems, 8th International Symposium on Algorithms for Sensor
Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, ALGOSENSORS
2012, Ljubljana, Slovenia, September 13-14, 2012. Revised Selected Papers, pages 120–131,
2012. doi:10.1007/978-3-642-36092-3_14.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.529
http://dx.doi.org/10.1016/S0304-3975(02)00829-0
http://dx.doi.org/10.1016/S0304-3975(02)00829-0
http://dx.doi.org/10.1109/TIT.2012.2204032
http://dx.doi.org/10.1109/TNET.2009.2035046
http://dx.doi.org/10.1145/1618562.1618572
http://dx.doi.org/10.1137/1.9781611973082.120
http://dx.doi.org/10.1007/978-3-642-33090-2_57
http://dx.doi.org/10.1007/978-3-642-33090-2_57
http://dx.doi.org/10.1109/CDC.2004.1430253
http://dx.doi.org/10.1109/CDC.2004.1430253
http://dx.doi.org/10.1109/INFOCOM.2006.23
http://dx.doi.org/10.1109/TIT.2011.2168897
http://dx.doi.org/10.1109/TIT.2011.2168897
http://dx.doi.org/10.1109/9.182479
http://dx.doi.org/10.1007/978-3-642-36092-3_14

E. I. Ásgeirsson, M.M. Halldórsson, and T. Tonoyan 129:15

30 Peng-Jun Wan. Multiflows in multihop wireless networks. In Proceedings of the 10th ACM
Interational Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc 2009, New
Orleans, LA, USA, May 18-21, 2009, pages 85–94, 2009. doi:10.1145/1530748.1530761.

31 Peng-Jun Wan, Xiaohua Jia, Guojun Dai, Hongwei Du, Zhiguo Wan, and Ophir Frieder.
Scalable algorithms for wireless link schedulings in multi-channel multi-radio wireless net-
works. In Proceedings of the IEEE INFOCOM 2013, Turin, Italy, April 14-19, 2013, pages
2121–2129, 2013. doi:10.1109/INFCOM.2013.6567014.

32 Peng-Jun Wan, Zhu Wang, Lei Wang, Zhiguo Wan, and Sai Ji. From least interference-
cost paths to maximum (concurrent) multiflow in MC-MR wireless networks. In 2014 IEEE
Conference on Computer Communications, INFOCOM 2014, Toronto, Canada, April 27 -
May 2, 2014, pages 334–342, 2014. doi:10.1109/INFOCOM.2014.6847955.

33 Lixin Wang, C. P. Abubucker, William F. Lawless, and Anthony J. Baker. A constant-
approximation for maximum weight independent set of links under the SINR model. In Sev-
enth International Conference on Mobile Ad-hoc and Sensor Networks, MSN 2011, Beijing,
China, December 16-18, 2011, pages 9–14, 2011. doi:10.1109/MSN.2011.1.

34 Xinzhou Wu, R. Srikant, and James R. Perkins. Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks. IEEE Trans. Mob. Comput., 6(6):595–605, 2007.
doi:10.1109/TMC.2007.1061.

35 Yuli Ye and Allan Borodin. Elimination graphs. ACM Trans. Algorithms, 8(2):14:1–14:23,
2012. doi:10.1145/2151171.2151177.

ICALP 2017

http://dx.doi.org/10.1145/1530748.1530761
http://dx.doi.org/10.1109/INFCOM.2013.6567014
http://dx.doi.org/10.1109/INFOCOM.2014.6847955
http://dx.doi.org/10.1109/MSN.2011.1
http://dx.doi.org/10.1109/TMC.2007.1061
http://dx.doi.org/10.1145/2151171.2151177

Streaming Communication Protocols∗†

Lucas Boczkowski1, Iordanis Kerenidis2, and Frédéric Magniez3

1 CNRS, IRIF, Univ Paris Diderot, Paris, France
lucas.boczkowski@irif.fr

2 CNRS, IRIF, Univ Paris Diderot, Paris, France
iordanis.kerenidis@irif.fr

3 CNRS, IRIF, Univ Paris Diderot, Paris, France
frederic.magniez@irif.fr

Abstract
We define the Streaming Communication model that combines the main aspects of communica-
tion complexity and streaming. Input arrives as a stream, spread between several agents across
a network. Each agent has a bounded memory, which can be updated upon receiving a new bit,
or a message from another agent. We provide tight tradeoffs between the necessary resources,
i.e. communication between agents and memory, for some of the canonical problems from commu-
nication complexity by proving a strong general lower bound technique. Second, we analyze the
Approximate Matching problem and show that the complexity of this problem (i.e. the achiev-
able approximation ratio) in the one-way variant of our model is strictly different both from the
streaming complexity and the one-way communication complexity thereof.

1998 ACM Subject Classification C.2.2 Network Protocols

Keywords and phrases Networks, Communication complexity, Streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.130

1 Introduction

In the last decade we have witnessed a big shift in the way data is produced and computation
is performed. First, we now have to deal with enormous amounts of data that we cannot
even store in memory (internet traffic, CERN experiments, space expeditions). Second,
computations do not happen in a single processor or machine, but with multi-core processors
and multiple machines in cloud architectures. All these real-world changes necessitate that
we revisit and extend our models and tools for studying the efficiency and hardness of
computational problems.

Imagine the following situation: some input is spread across a network. The agents
want to compute some function f which depends on everybody’s input.This is an archetypal
problem of Communication Complexity (CC) [29], which offers a way to estimate the number
of bits that need to be exchanged, under various settings, in order to achieve that goal. There
are many different CC models, depending whether the agents can speak directly between
them or through a referee, and whether they can use multiple rounds of communication or
just a single one. Communication complexity has found a variety of applications both in
networks and distributed computing but also in other areas of theoretical computer science,
including, circuit lower bounds, fomulae size, VLSI design, etc. All these communication

∗ Full version available at https://arxiv.org/abs/1609.07059.
† This work has been partially supported by the ERC project QCC and the French ANR Blanc project

RDAM.

EA
T

C
S

© Lucas Boczkowski, Iordanis Kerenidis, and Frédéric Magniez;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 130; pp. 130:1–130:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.130
https://arxiv.org/abs/1609.07059
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130:2 Streaming Communication Protocols

models however have a feature in common. They assume the agents are computationally
unbounded and that the input is delivered all at once.

In a distributed context as that of sensor networks, not only are there several computing
agents, the input might not even be given all at once. The streaming model [1] has been
defined precisely to capture the fact that the input of an agent is so big it cannot be stored
or read several times. Instead it comes bit by bit. Some function of the stream needs to be
computed, but the available space is not big enough to store the entire input. The streaming
model has been extensively studied in recent years with a plethora of interesting upper and
lower bounds on the necessary memory to solve specific streaming problems [27]. More
recently, the turnstile model has received a lot of attention. In this model, streams are made
of both insertions and deletions, and the function to be computed depends on the remaining
elements (and eventually their respective frequencies). Indeed, any streaming algorithm in
this model can be turned into an algorithm based solely on the updates of linear sketches [25].

1.1 The Streaming Communication model.

We would like to combine the two above mentioned models to include both that inputs
are distributed among different agents and also are coming as streams at each agent. Each
agent is given a bounded memory to store what she sees. We refer to this extension as the
Streaming Communication (SC) model. Even though communication arguments have often
been invoked in proving lower bounds for regular streaming models, as in the seminal work of
[1, 3], this model has not been rigorously defined previously, in spite of its theoretical appeal
and relevance for actual communication networks. More formally, in the SC model consider
two agents, Alice and Bob, want to compute some function f that depends on inputs (x, y)
that are respectively distributed to each agent, x to Alice and y to Bob. Both inputs arrive
as data streams and each agent has a bounded memory of a given size S. Agents may or may
not speak every time they receive a bit. They can also update their memory based on the
previous bit they read, the previous message they received and of course the actual content
of their memory.

Additionally to the memory size S of Alice and Bob, the other relevant parameters we
consider are the number R of communication rounds and the number T of bits in the full
transcript (the concatenation of all messages). In the one-way SC model, there is only a
single message from Alice to Bob at the end of the streams. Observe that we do not bound
the size of each message, since we show that those can always be assumed to be of at most
S + 1 bits (Proposition 5).

1.2 Related models

Before we present our results in the streaming communication model, we review some related
works in the communication and streaming models. As explained previously, our goal is to
provide rigorous tradeoffs between the two resources: memory storage and communication
between the players, in a model where inputs are coming as streams.

The most relevant work is [15, 16]. There, two parties receive two streams and at the
end of the streams each party sends their workspace to a referee which uses both workspaces
to compute some function of the union of the two streams. In this model, we can also
see elements both from streaming algorithms and communication complexity, albeit of the
restricted form of simultaneous message passing. Here we provide a more general framework
for communication and we look at a much wider variety of problems and protocols.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:3

One of the powerful and often used techniques in streaming algorithms is linear sketches,
which naturally provide very simple SC protocols even in the one-way setting, by just
combining the linear sketches at the end of the protocol. In fact, in the turnstile model, when
streams are made of sequences of insertions and deletions and the function to be computed
is a function of the remaining elements (and eventually their respective frequencies), any
streaming algorithm can be turned into an algorithm based solely on the updates of linear
sketches [25]. Hence, here we focus on other stream models, such as the one of insertion only,
which are more challenging in the context of SC protocols.

In the distributed streaming functional monitoring setup initially proposed by [11], k
servers receiving a stream have to allow a coordinator to continuously monitor a given
quantity (see also [10, 9, 13] for earlier works in the database community on the monitoring
topic). Several follow-up works studied this model (see e.g. [8, 26, 18, 12, 28]). These all focus
on communication and do not consider both resources, memory storage and communication
simultaneously. They can be viewed as extending [15, 16] with greater number of players.
The communication model however is still restricted to simultaneous messages to a referee.

Another line of work studies bounded-memory versions of communication [24, 5, 7].
Several models have been proposed that share the same structure. The input is given all
at once, but the players only have bounded space to store the conversation while further
restrictions can be placed on the algorithms used by the players, for example to be straight
line programs [24], or branching programs [5].

Last, [14] studies another model that deals with distributed parallel streaming platforms,
where now, the stream arrives in parallel and arbirtarily partitioned to a set of different
agents that communicate in order to solve the task.

1.3 Our results
As a first step, we restrict ourselves in this work to the 2-player case. Our first results,
detailed in Section 2.4, show connections between our new model and its two parent models,
Communication Complexity and Streaming. We show that the total transcript size T and
the product RS (number of rounds times memory size) are both lower bounded by the
communication complexity C(f) of the f we wish to compute, up to logarithmic factors
(Proposition 6). Those factors come from an inherent notion of clock in our SC model.

The comparison with streaming algorithms is more subtle. Since the i-th bit of Alice’s
input arrives at the same time as the i-th bit of Bob’s input, the correct comparison is with
a single streaming model where the stream is the one we get by interleaving Alice’s and
Bob’s stream. We denote by Sint(f) the memory required by a streaming algorithm for
computing a function f , when the two streams are interleaved in a single stream. We first
observe than interleaving streams instead of concatenating them can lead to an exponential
blow up (Theorem 8). Then we show that Sint(f) is a lower bound on twice the memory
size S of players (Proposition 9).

Then it is natural to ask if there is always a polynomial relation between, on one
hand, the parameters of a protocol in the SC model (S,R and T), and on the other hand,
the communication complexity C(f) (randomized or deterministic) of the function when
the input is all given in the beginning and the memory Sint(f) necessary in the single
stream model. We show that this is not true in general by providing an example for which
Sint(f) = C(f) = O(logn) but R · S = Ω(n), when S = Ω(logn) (Theorem 10). This
implies that the SC complexity of a function f may not be immediately derived neither by its
communication complexity nor by its streaming complexity. This is one of the main reasons
why our model is interesting and necessitates novel techniques for its study.

ICALP 2017

130:4 Streaming Communication Protocols

The first of our two main results is a general technique for proving tradeoffs between
memory and communication in our model. The smaller the memory, the more frequent
communication has to be. For instance, one expects that for functions whose communication
complexity is n, i.e. where all bits are necessary, players with a memory of size S have to
speak at least every S rounds (either deterministic or randomized), since if they remain silent
for more than S rounds, they start to lose information about their input. More precisely, any
function f that can be written as f(x, y) = G(g1(x1, y1), g2(x2, y2), . . . , gL(xL, yL)), where
G is a function satisfying some assumptions. Then, any randomized protocol computing
f must have R · S = Ω(

∑
`∈L C(g`)) (Theorem 13). We can apply our theorem to many

canonical communication functions, including IPn, DISJn or TRIBESn, and show that any
protocol satisfies R · S = Ω(n) (Theorem 14).

In Section 4, we study problems arising in the context of graph streaming. We work
in the insert only model, meaning that the graph is presented as a stream of its edges in
an arbitrary order. Indeed, as opposed to the turnstile model, where any algorithm can
be turned into a linear sketches based on [25], the situation is much more intriguing for
problems where linear sketches are not used. In particular, in the context of streaming
algorithms for graph problems, Approximate Matching has been extensively studied, and its
streaming complexity is still unknown. Given a stream of edges (in an arbitrary order) of an
n-vertex graph G and some space restriction, the goal is to output a collection of edges from
G forming a matching, as big as possible in G. The matching size estimation is a different
and somehow easier problem [21].

It is known that any streaming algorithm for Approximate Matching using Õ(n) memory
cannot achieve a ratio better than e

e−1 [20], whereas the best known algorithm is a simple
greedy algorithm which provides a 2-approximation. In the one-way CC model, without
memory constraints, it has been also showed that a 3

2 -approximation is the tight bound when
Alice’s message is restricted to Õ(n) bits [17]. Both these works use in a clever way the
so-called Ruzsa-Szemerédi graphs.

We study both the general SC model and its one-way variant. Our main bounds are
for the one-way variant, the weaker model combining the restrictions of both CC and
streaming models: we show a lower bound of e+1

e−1 ≈ 2.16 for the approximation factor unless
S = n1+Ω(1

log log n) (Corollary 17), which is strictly higher than both the single stream lower
bound of e

e−1 ≈ 1.58 with same space constraints and the one-way communication lower
bound of 1.5. We also provide a one-way SC protocol achieving an approximation ratio of
3 with the same space constraints (Theorem 16), thus leaving as an open question the
optimal approximation ratio. Moreover, we show that how often the players communicate
makes a big difference, namely we show how to implement the simple greedy algorithm when
Alice and Bob can communicate during the protocol that provides a ratio of 2, strictly better
than our lower bound for the one-way SC model.

Let us emphasize that all previous lower bounds, including the ones in the turnstile
models [2, 22], do not readily apply to the one-way SC model for the Approximate Matching
problem. However, our main lower bound in the one-way SC model uses as a black-box
the hard distributions of graph streams of [17, 20]. Therefore, further improvements in the
streaming context may lead to improvements in our model. Given a hard distribution µ of
graphs for the approximate matching for streaming algorithms, we show how to extend this
distribution to produce a hard distribution µ2 in our one-way SC model (Theorem 21).

L. Boczkowski, I. Kerenidis, and F. Magniez 130:5

2 The streaming communication model

We provide some background on communication complexity and streaming and then, we
define our model and describe some initial results.

2.1 Communication Complexity
We start by reviewing some results in the usual models of communication complexity (CC),
defined by Yao [29]. For more details about the communication complexity model, please
refer to [23]. In the communication complexity models, generically denoted by CC, players
aim at computing some function which depends on their disjoint inputs, by communicating.
Each player determines her message based on previous messages and her input. The goal is
to minimize the total length of the protocol transcript.

In the randomized case, we will allow the players to share public randomness. Allowing
for public randomness makes our lower bounds stronger, while the protocols we provide
will be deterministic. We will also consider the expected, rather than maximal, length of
transcripts and define the average randomized communication complexity of a function.

I Definition 1. For a given protocol Π, we denote by Π(x, y, r) the transcript with inputs
x, y and public randomness r. The worst case (resp. expected) communication complexity of
a function f with error ε is defined as Cε(f) = minΠ maxx,y maxr |Π(x, y, r)| and Cavgε (f) =
minΠ maxx,y Er(|Π(x, y, r)|), where the minimum is taken over protocols computing f with
error ε, and the expectation on the second line is with respect to the randomness r used in Π.

The following proposition relates the average and worst case randomized communication
complexities.

I Proposition 2 ([23]). For any ε, δ > 0, it holds that, δ · Cε+δ(f) ≤ Cavgε (f) ≤ Cε(f).

Some of the canonical functions studied in communication complexity are the equality
problem, denoted EQn where the players output 1 iff their inputs x, y ∈ {0, 1}n are equal,
the disjointness problem, denoted DISJn where the goal is to check whether the n-bit strings
interpreted as sets intersect or not, and the inner product problem IPn where the players
need to output the inner product of their inputs modulo 2.

The functions DISJn and IPn are “hard" functions for CC, in the sense that almost all
the input must be sent even when we allow for randomization, error and expected length.
The following two bounds, which we will need later, can be derived for example from [4],
where the notion of information cost is used.

I Theorem 3. Any protocol for DISJn or IPn with error 1/2 − ε has communication
complexity Ω(ε2n).

2.2 Streaming algorithms
In the streaming model, the input comes as a stream to an algorithm whose task is to
compute some function of the stream while using only a limited amount of memory and
making a single or a few passes through the input stream. See [27] for a general introduction
to the topic. If possible, the updates should also be fast. It was defined in the seminal
work of [1] where the authors provided upper and lower bounds for computing some stream
statistics. Since then, a plethora of results have appeared for computing statistics of the
stream, as well as for graph theoretic problems. For the graph problems, we will assume

ICALP 2017

130:6 Streaming Communication Protocols

that the graph is revealed to the algorithm as a stream, one edge at a time. In the more
recent turnstile model, streams are made of both insertions and deletions, and the goal is
to compute some function that depends only the remaining elements (and eventually their
respective frequencies). As we have said, any problem in the turnstile model can be solved
via linear sketches [25].

2.3 The new model of Streaming Communication protocols
We show how to extend the original model of communication complexity to account for
streaming inputs. In the Streaming Communication SC model we consider that the inputs
x, y are not given all at once to the two players Alice and Bob but rather come as a stream.
Moreover each player only has limited storage, S bits of memory. In the randomized case,
the players also have access to a shared random bit string r which may be infinite. They
may use as many coins as they like from these strings.

A protocol Π in the streaming communication model is specified by four functions
ΦA,ΦB ,ΨA,ΨB . Each time slot i is divided in two phases:
1. Each party receives a message from the other party (mB

i and mA
i resp.) and updates

their memory (that was in state σAi and σBi resp.) according to the function ΦA and ΦB
resp. This function also depends and the shared random string r, which is not restricted
in size.

2. Messages mA
i+1 and mB

i+1 are produced using the functions ΨA and ΨB resp., that depend
on the current memory states σAi+1 and σBi+1 resp., the newly read input bit, and the
randomness r. The messages might be empty and they could also be arbitrarily big in
principle, though we will see in Proposition 5 that their size can be assumed to be S + 1
without loss of generality.

σ
A/B
i+1 := ΦA/B(mB/A

i , σ
A/B
i , r) and mA/B

i+1 := ΨA/B(σA/Bi+1 , xi+1, r). Moreover, we assume
that the streams end with a special EOF symbol and that once the streams are finished, the
players only get one last round of communication, and then they have to output something.

I Definition 4 (SC protocols). An SC protocol Π uses S bits of memory, R rounds, and T
bits when
1. The memory size of each player is at most S bits;
2. The (expected) number of time slots where either mA

i 6= ∅ or mB
i 6= ∅ is at most R;

3. The (expected) size of all exchanged messages is at most T bits.
The expectation is over the randomness of the protocol and worst-case over the inputs. An
SC protocol is said to be one-way if there is a single message from Alice to Bob after the
streams have been received, and only Bob computes the function.

Note, that our model carries an implicit notion of time due to the players reading their
streams synchronously, and hence, the ability to send empty messages can be used to reduce
communication [19]. However the gain is only logarithmic in the number of available time
slots (see Section 2.4). We could have avoided such extra power, by defining a model where
agents know when they should speak or read a bit, based on the previous messages they
received and their memory content. Nevertheless, we opted for our model, as it is simpler to
state and the necessary resources do not change by more than a factor logarithmic in the
input size.

When we prove lower bounds or communication-memory tradeoffs, we do not consider
the complexity of ΦA/B . These functions could be of arbitrarily high complexity. To make
things simple, we assume they are the same functions for every round i ∈ [n], but they can

L. Boczkowski, I. Kerenidis, and F. Magniez 130:7

depend on n. This framework captures the streaming model as a special case, when the
output depends on the stream of Alice only.

2.4 Properties of the SC model
Several times in our proofs, we will consider an SC protocol and use it to solve problems in
the standard models of CC. It is convenient to have a bound on how big the messages mA/B

can be.
The length of the messages mA/B could be very big in the SC protocol, but we now show

that the SC protocol can be simulated replacing them by length S + 1 messages.

I Proposition 5. In the SC model, we may always assume that the size of the messages is
at most S + 1 bits, up to redefining the transition functions ΦA/B.

Proof. Consider a protocol Π with associated functions ΦA/B ,ΨA/B .
The players can exchange their S size memory and the last input symbol instead of the

actual messages. Hence, it is possible to redefine functions ΦA/B ,ΨA/B and directly assume
messages have length ≤ S + 1. The new equations with S + 1 bit messages would read
σ
A/B
i+1 := ΦA/B(ΨB/A(σB/Ai , yi, r), σA/Bi , r) and mA/B

i+1 := ΨA/B(σA/Bi+1 , xi+1, r). J

Any protocol in the SC model can be simulated with another protocol in the usual CC
model with a small overhead. Note that due to the implicit time in the SC model, we cannot
immediately conclude that the SC model is harder than the usual communication model.
Nevertheless, this time issue induces only an extra logarithmic factor.

I Proposition 6. We can simulate any protocol Π in the SC model with parameters S,R, T
with another protocol Π′ in the normal communication model such that its communication
cost C(Π′) is bounded as C(Π′) ≤ T (1 + 2 logn) and C(Π′) ≤ R(S + 2 logn+ 1).

We now compare the SC model to streaming algorithms, that is when there is a single
player and a single stream. There are various ways to combine streams x and y in a single
stream. Since xi is presented to Alice at the same time as yi to Bob, in a single player
model xi should be presented just before yi to the player. This explains why we consider the
interleaved streaming model.

I Definition 7. Let Sint(f) be the amount of memory required for a streaming algorithm to
compute f where the input stream is x, y interleaved, that is to say, x1, y1, x2, y2, . . . , xn, yn.

It turns out that interleaving streams instead of concatenating streams may affect the
memory requirement of the function for a standard streaming algorithm by an exponential
factor. A proof of the following result is provided in the full version of this paper.

I Theorem 8. There is a function f such that S int(f) = Ω(n), whereas there is a streaming
algorithm to compute f with memory O(logn) when streams are concatenated.

First let us observe that Sint(f) provides a lower bound in the SC model.

I Proposition 9. Let f be a function. Then, any protocol in the SC model for the function
f , where Alice and Bob use memories of size S, must have 2S ≥ Sint(f).

It is natural to ask if there is a polynomial relation bounding the parameters S,R, T of a
protocol in the SC model in terms of the streaming complexity Sint(f) and the communication
complexity C(f), at least when S = O(Sint(f)). This appears to not hold in general. The
following result is shown in the full version of the paper.

I Theorem 10. There exists a function f such that S int(f) = C(f) = O(logn) but any
protocol computing f in the SC model must have R · S = Ω(n). This holds for S = Ω(logn).

ICALP 2017

130:8 Streaming Communication Protocols

3 Communication primitives

We provide a general theorem that provides tight tradeoffs both in the deterministic and
randomized case for a variety of functions, including DISJn, IPn, TRIBESn.

3.1 A general lower bound
In this section we show a general result that gives a lower bound for a large class of functions.
We will obtain the lower bounds for the usual primitives DISJ, IP, TRIBES as a corollary.
We treat ε as a constant. The assumption we make is of a structural kind. Namely, as
explained in Definition 12 we assume the function to be computed can be written in a depth-2
fashion, as a composition of an outer function G with inner gadgets g`.

I Definition 11. We call a function G on L variables non trivial if the following holds. There
exists a word a ∈ {0, 1}L such that for all ` there exists a postfix b` ∈ {0, 1}L−`−1 such that
G(a≤`ub`) depends on the bit u. More formally G(a≤`0b`) 6= G(a≤`1b`).

This may look as a restrictive condition. In fact, most natural functions that depend on
every bit are "non trivial" in this sense. For the function

⊕
, a, b can be chosen arbitrarily.

The functions OR and AND are also non trivial. For instance for AND, a = b = 1L will do.
We borrow the next definition from [4] (extending it slightly).

I Definition 12 (Block-decomposable functions). Let I1, . . . , IL be an interval partition of
[n], which we refer to as blocks. For ` ∈ [L], let t` = |I`| be the length of I`. Given strings
x, y ∈ {0, 1}n, write x` (resp. y`) for the restriction of x (resp. y) to indices in block
I`. We say f : {0, 1}n × {0, 1}n → {0, 1} is G-decomposable with primitives (g`), where
G : {0, 1}L → {0, 1} and g` : {0, 1}t` × {0, 1}t` → {0, 1}, if for all inputs x, y we have
f(x, y) = G(g1(x1, y1), g2(x2, y2), . . . , gL(xL, yL)).

Assuming f is G-decomposable, our goal is to show lower bound the communication
needed to compute f in the SC model in terms of the communication complexity of each g`
and the available memory.

I Theorem 13. Assume the function f : {0, 1}n × {0, 1}n → {0, 1} is G-decomposable with
primitives (g`)`∈L, and that G is non-trivial. Let Cε+δ(g`) be the worst-case randomized
communication complexity of g` in the usual communication model. Then, any randomized
protocol computing f with error ε in the SC model with S bits of memory, R expected
communication rounds and T expected bits of total communication, must have

R ≥
∑
`≤L

δCε+δ(g`)− S
S + 2 log t` + 1 , T ≥

∑
`≤L

δCε+δ(g`)− S
1 + 2 log t`

.

We can get a similar bound in the deterministic case, where we use the deterministic commu-
nication complexity of the g`’s. Last, if G is

⊕
we may remove δ from the above bounds,

changing the complexities Cε+δ(g`) to Cavgε (g`).

3.2 Applications
Before proving Theorem 13, we give a few corollaries. Note that the upper bounds are
trivial. Remind the function TRIBES, which is an AND of Set Intersections is defined by
TRIBESn(x, y) := ANDi≤

√
n ◦ORj≤√n (xij

∧
yij).

L. Boczkowski, I. Kerenidis, and F. Magniez 130:9

I Theorem 14. Any randomized protocol in the SC model that computes the function
IPn, DISJn, or TRIBESn and uses S memory and R communication rounds must have
R · S = Ω(n).

Proof. We start with DISJn. We write DISJn(x, y) = AND
n/k
`=1

(
DISJ`(x`, y`)

)
, and use

the previous result with G = AND and g` = DISJk. It follows from Theorem 3 that
Rε+δ(DISJk) = Ω(k). We omit the dependency on ε and δ in the term Ω(), treating these
parameters as fixed constants. The number of rounds for any randomized protocol in the SC
model is at least

∑n
k

`=1
Ω(k)−S
S+2 log k . We get the result choosing k = Ω(S).

In the case of IPn, the function f = IPn is the composition of G =
⊕

over n
k coordinates

with g` = IP (for each ` ≤ n
k), over k coordinates. Theorem 3 gives Cavgε (g`) ≥ Ω(k).

Theorem 13 yields the bound, taking k = 10S. We omit the case of TRIBESn as it follows
from a similar argument. J

4 Approximate Matching in the Streaming Communication model

The main problem we consider is that of computing an approximate matching. The stream
corresponds to edges (in an arbitrary order) of a bipartite graph G = (P,Q,E) over vertex
set P,Q, and the algorithm has to output a collection of edges which forms a matching. All
edges in the output have to be in the original graph. In the vertex arrival setting, each vertex
from Q arrives together with all the edges it belongs to. Our goal is to understand what is
the best approximation ratio we can hope for, for a given memory (and message size).

We start by some notations. In a graph G = (P,Q,E), if U ⊆ P ∪Q and V ⊆ P ∪Q are
subsets of the vertices, we denote by E(U, V) ⊆ E the edges with endpoints in U and V . We
also denote by OPT (G) the maximum size of a matching in G.

Observe now that when communication can occur at any step, the greedy algorithm,
which is currently the best algorithm in the standard streaming model, can be implemented
easily by having Alice communicate to Bob every time she adds an edge to her matching.

I Proposition 15. The greedy algorithm, which achieves a 2-approximation, can be imple-
mented using n logn bits of communication and n rounds in the SC model.

Thus, we now focus on the one-way SC model, where the communication is restricted to
happen once the streams have been fully read. In this setting, we will get different lower and
upper bounds than in the streaming model. We start by a positive result.

I Theorem 16 (Greedy matchings). If Alice sends Bob a maximal matching of her graph,
then Bob can compute a 3-approximation. In particular a 3-approximation can be computed
in a deterministic one-way SC protocol using O(n logn) memory and message size.

Proof. Let G1, G2 be the respective graphs that Alice and Bob get, and let M1,M2 be their
respective computed maximal matchings. We show that there is a matching in M1 ∪M2 of
size at least |OPT (G)|/3.

The proof goes in two steps. Let ` be the size of V (M1 ∪M2). We prove first that there is
a matching of size ≥ `

3 in the graph M1 ∪M2, and then that the number of edges in OPT (G)
is at most `.

The first part is easy. Observe that M1 ∪M2 has maximal degree 2. Then there must be
a matching of size at least `/3 from Theorem 7 in [6].

For the second part, we construct an injection OPT (G) ↪→ V (M1 ∪ M2). Let e =
(u1, u2) ∈ OPT (G). Assume w.l.o.g. e ∈ G1. Then either u1 or u2 is matched in M1 (or
both), by maximality of M1. Map e to (one of) its matched endpoints in M1. J

ICALP 2017

130:10 Streaming Communication Protocols

P Q

sink

source

P0

Q0

W

W̄

Figure 1 The figure shows how the maxflow mincut theorem is used to argue about the size of a
matching in a bipartite graph G over vertex set P × Q drawn from a distribution µ. Only edges
from the cut are drawn. The source and sink are added for the sake of the argument, they are not
part of G.

Our lower bound is obtained using a black box reduction that we develop in the following
sections. It is a direct consequence of the combination of Theorem 21 and Theorem 19.

I Corollary 17 (A (e+ 1)/(e− 1) lower bound). Any protocol achieving a ratio of e+1
e−1 − η ≈

2.16−η, for some constant η, in the vertex arrival setting needs communication n1+Ω(1/ log logn)

where the hidden constant in the Ω(.) depends on η.

4.1 Hard distributions for streaming algorithms
Our notion of hard distribution is tailored to capture the distributions appearing in [17, 20].
They are distributions over streams of graphs, that is over graphs and edge orderings.

We will use the following definition for constructing families of hard distributions when
n→∞ and α, η are fixed. Therefore O() and o() notations have to be understood in that
context.

I Definition 18 (Hard distribution). A distribution µ over streams of bipartite graphs
G = (P,Q,E) is an (α, n,m(n), η)-hard distribution when P and Q are sets of size n and
the following holds
1. There is a cut W,W of vertices such that |W ∩Q|+ |W ∩ P | ≤ (1− α+ η)n.
2. There is a matching M of size (1− η)n in G that can be decomposed into M0 ∪M ′ such

that
(i) P0 := V (M0)∩ P and Q0 := V (M0)∩Q are of fixed size (in the support of µ) larger

than (α− η)n and smaller than αn; and
(ii) P0 ⊆W and Q0 ⊆W .

3. Every streaming algorithm Alg with o(m) bits of memory that outputs E∗ with E∗ ⊆ E
must satisfy |E∗ ∩ E((W ∩ P)× (W ∩Q))| = o(n) with probability 1− o(1).

In particular, a streaming algorithm with small memory can only maintain on hard dis-
tributions a small fraction of edges E((W ∩ P) × (W ∩ Q)) and therefore of M0. In
addition, observe that for every matching E∗ and cut (W,W) (see Figure 1) it holds that
|M | ≤ |W ∩Q|+ |W ∩ P |+ E((W ∩ P)× (W ∩Q)). Thus edges from E(W ∩ P ×W ∩Q)
are also crucial for obtaining a good matching.

The existence of hard distributions is ensured by [17, 20]. The hard distributions families
are not exactly presented as we present them here. The following Theorem follows from
results in [20] involving more parameters, for the purpose of the construction itself. We
disregard those since we use the existence of hard distribution families as a black box.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:11

sink

source

τ(P0)

σ(P0)

σ(Q0)

τ(Q0)

W

W̄

P

Q

Figure 2 The construction of µ2.

I Theorem 19 ([20]). For all η > 0 and n, there is a (1/e, n,m(n), η)-hard distribution
µ over graphs of n vertices with m(n) = n1+Ω(1

log log n), where the notation Ω(.) hides a
dependency on η.

Sketch of Proof. Specifically, point (1) of our definition follows from [20, Lemma 13], point
(2) follows from [20, Claim 12], and point (3) follows from [20, Lemma 14]. J

4.2 Lifting hard distributions to streaming communication protocols
Let µ be an (α, n,m, η)-hard distribution for streaming algorithms. We will show how to
extend it to a distribution µ2 for the two party version of the approximate matching problem.
At a high level, we give the players two copies of the same graph G randomly chosen according
to µ, but embedded into two different but overlapping subsets of vertices (see Figure 2). The
non-overlapping parts correspond to edges from E(W ∩ P ×W ∩Q) (see Definition 18), and
are therefore hard to maintain, but necessary to setup a large matching.

From now on, identify P with the set [n]. Set β := 1 + α. Our labelings are defined over
vertex set P ′ ×Q′ := [βn]× [βn], and are encoded by injections from [n] to [βn] (where for
simplicity βn is understood as an integer).

Given a hard distribution µ, we define a distribution µ2 as follows.

I Definition 20 (The distribution µ2). Let µ be a hard distribution, where P and Q are
identified with [n]. Then sampling a bipartite graph over vertex set P ′ ×Q′ = [βn]× [βn]
from µ2 is defined as follows

Sample G ∼ µ. Let (W,W) and P0, Q0 be the corresponding cut and sets from Defini-
tion 18.
Sample σ, τ uniformly at random such that σ(P0) ∪ τ(P0) = ∅ = σ(Q0) ∪ τ(Q0) are
disjoint, and σ, τ are equal on P \ P0. Such injections σ, τ are called G-compatible.

In addition, define Gσ := (σ(P), σ(Q), Eσ), where Eσ = {(σ(u), σ(v)) | (u, v) ∈ E}, and Gτ
similarly. Alice is given Gσ and Bob is given Gτ with the same order as under µ.

In this construction, observe that edges sent to Alice and Bob may overlap. In fact the
distribution can be tweaked to make edges disjoint using a simple gadget, while preserving
the same lower bound (see the full version of this paper). We can now state our main result
for the reduction.

I Theorem 21 (Generic reduction). If there exists an (α, n,m, η)-hard distribution for ap-
proximate matching, then any protocol in the one-way SC model whose approximation ratio
is 1−α

1+α −O(η) has to use Ω(m) memory.

ICALP 2017

130:12 Streaming Communication Protocols

Proof. Define a cut for the two player instance as W ′ := σ(W)∪ τ(P0), W ′ := σ(W)∪ τ(Q0).
It follows from the max-flow min-cut argument that any matching E∗ has size at most
|E∗| ≤ |W ′ ∩Q′|+ |W ′ ∩ P ′|+ |E∗ ∩ E(W ′ ∩ P ′ ×W ′ ∩Q′)|.

Moreover note that by construction |W ′ ∩ Q′| = |σ(W) ∩ Q′|. Indeed τ(P0) ∩ Q′ = ∅.
Then we can write |σ(W) ∩Q′| = |W ∩Q| and similarly for |W ′ ∩ P ′| (see also Figure 2). It
follows that

|W ′ ∩Q′|+ |W ′ ∩ P ′| = |W ∩Q|+ |W ∩ P | ≤ (1− α+ η)n.

The set of edges the protocol outputs is included in E∗A ∪E∗B by definition. Under the
high probability event that these sets only have an overlap of o(n) with the “important edges”
E(W ′ ∩P ×W ′ ∩Q) (see Lemma 22 below) then, if E∗ is the output matching by a protocol
using o(m) memory, then using Lemma 22 the matching E∗ ⊆ E∗A ∪ E∗B is of size at most
(1− α+ η)n+ o(n) ≤ (1− α+ 2η)n (for large enough n).

On the other hand, there is a matching between σ(P) and σ(Q) of size (1 − η)n and
a matching of size (α− η)n between τ(P0) and τ(Q0) (using Point (2) in the definition of
a hard distribution for approximate matching, Definition 18). We identified σ(P) t τ(P0)
with [βn] and hence under µ2 there is a matching of size (α− η)n+ (1− η)n = βn− 2ηn.
This shows that the approximation ratio of a protocol using o(m) memory is smaller than
βn−2ηn

(1−α+2η) = 1+α
1−α −O(η). J

I Lemma 22. Let Alg be a protocol for the two party case, i.e. a pair of algorithms for
Alice and Bob Alg = (AlgA,AlgB). Let E∗A (resp. E∗B) denote the edges AlgA (resp. AlgB)
outputs, assuming only o(m) memory is used. With probability 1− o(1) over the choice of
σ, τ,G, or alternatively with probability 1− o(1) under µ2, it holds that

|E∗A∩E(W ′∩P ′×W ′∩Q′)| = o(n), and similarly |E∗B∩E(W ′∩P ′×W ′∩Q′)| = o(n).

Proof. The proof consists in building from AlgA, and similarly AlgB , a streaming algorithm
for µ. Indeed, for inputs over vertices [n] distributed according to µ, simply pick a random σ

apply it to the input, and run AlgA on the graph Gσ. Then output E∗0 := σ−1(E∗A).
First observe that the distribution of σ and the distribution of G are independent.

Therefore, conditioned on G, the injection σ is uniform. It follows that µ2’s first marginal is
also the distribution of Gσ, where G ∼ µ and σ is uniform and independent.

Then, using Definition 18, with probability 1 − o(1) over the choice of σ and G ∼ µ,
we obtain that |E∗A ∩ E(W ′ ∩ P ′ ×W ′ ∩ Q′)| = |E∗0 ∩ E(W ∩ P ×W ∩ Q)| = o(n), which
concludes the proof. J

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings

in dynamic graph streams and the simultaneous communication model. In Proceedings of
the 27th ACM-SIAM Symposium on Discrete Algorithms, pages 1345–1364, 2016.

3 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-
plexity theory. In Proceedings of the 27th IEEE Foundations of Computer Science, pages
337–347, 1986.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:13

5 Paul Beame, Martin Tompa, and Peiyuan Yan. Communication-space tradeoffs for unres-
tricted protocols. In Proceedings of 31st Foundations of Computer Science, pages 420–428,
1990.

6 Therese C. Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and Stephen G.
Kobourov. Tight bounds on maximal and maximum matchings. Discrete Mathematics,
285(1-3):7–15, 2004.

7 Joshua E. Brody, Shiteng Chen, Periklis A. Papakonstantinou, Hao Song, and Xiaoming
Sun. Space-bounded communication complexity. In Proceedings of the 4th Innovations in
Theoretical Computer Science, pages 159–172, 2013.

8 Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continuous monitoring
of distributed data streams over a time-based sliding window. Algorithmica, 62(3):1088–
1111, 2011.

9 Graham Cormode and Minos N. Garofalakis. Sketching streams through the net: Distrib-
uted approximate query tracking. In International Conference on Very Large Data Bases,
pages 13–24, 2005.

10 Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi. Holistic
aggregates in a networked world: Distributed tracking of approximate quantiles. In Special
Interest Group on Management of Data, pages 25–36, 2005.

11 Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms,
pages 1076–1085, 2008.

12 Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Continuous sampling from
distributed streams. J. ACM, 59(2):10:1–10:25, 2012.

13 Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed,
continuous monitoring of duplicate-resilient aggregates on data streams. In Proceedings of
the 22nd International Conference on Data Engineering, page 57, 2006.

14 Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and Zoya Svitk-
ina. On the complexity of processing massive, unordered, distributed data. CoRR, ab-
s/cs/0611108, 2006.

15 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union
of data streams. In Proceedings of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pages 281–291, 2001.

16 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In Proceedings of the 14th ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 63–72, 2002.

17 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-
ing complexity of maximum bipartite matching. In Proceedings of the 23d ACM-SIAM
Symposium on Discrete Algorithms, pages 468–485, 2012.

18 Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed
count, frequencies, and ranks. In Proceedings of the 31st Symposium on Principles of
Database Systems, pages 295–306, 2012.

19 Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized
clocks. In Proceedings of the 25th IEEE Conference on Computational Complexity, pages
259–269, 2010.

20 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the 24th ACM-SIAM Symposium on Discrete Algorithms, pages 1679–1697, 2013.

21 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 734–751, 2014. doi:10.1137/1.9781611973402.55.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611973402.55

130:14 Streaming Communication Protocols

22 Christian Konrad. Maximum matching in turnstile streams. In Proceedings of 23rd
European Symposium on Algorithms, pages 840–852, 2015.

23 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, New York, NY, USA, 1997.

24 Tak Wah Lam, Prasoon Tiwari, and Martin Tompa. Trade-offs between communication
and space. Journal of Computer and System Sciences, 45(3):296–315, 1992.

25 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Proceedings of the 46th ACM Symposium on Theory of Computing,
pages 174–183, 2014.

26 Zhenming Liu, Bozidar Radunovic, and Milan Vojnovic. Continuous distributed counting
for non-monotonic streams. In Proceedings of the 31st ACM Symposium on Principles of
Database Systems, pages 307–318, 2012.

27 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 2(1):117–236, 2005.

28 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
Proceedings of the 44th ACM Symposium on Theory of Computing, pages 941–960, 2012.

29 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In
Proceedings of the 11th ACM Symposium on Theory of Computing, pages 209–213, 1979.

Testable Bounded Degree Graph Properties Are
Random Order Streamable
Morteza Monemizadeh∗1, S. Muthukrishnan2, Pan Peng†3, and
Christian Sohler‡4

1 Department of Computer Science, Goethe-Universität Frankfurt, Frankfurt,
Germany
monemi@ae.cs.uni-frankfurt.de

2 Rutgers University, Piscataway, NJ, USA
muthu@cs.rutgers.edu

3 University of Vienna, Faculty of Computer Science, Vienna, Austria
pan.peng@univie.ac.at

4 Department of Computer Science, TU Dortmund, Dortmund, Germany
christian.sohler@tu-dortmund.de

Abstract
We study which property testing and sublinear time algorithms can be transformed into graph
streaming algorithms for random order streams. Our main result is that for bounded degree
graphs, any property that is constant-query testable in the adjacency list model can be tested
with constant space in a single-pass in random order streams. Our result is obtained by estimating
the distribution of local neighborhoods of the vertices on a random order graph stream using
constant space.

We then show that our approach can also be applied to constant time approximation al-
gorithms for bounded degree graphs in the adjacency list model: As an example, we obtain a
constant-space single-pass random order streaming algorithms for approximating the size of a
maximum matching with additive error εn (n is the number of nodes).

Our result establishes for the first time that a large class of sublinear algorithms can be sim-
ulated in random order streams, while Ω(n) space is needed for many graph streaming problems
for adversarial orders.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Graph streaming algorithms, graph property testing, constant-time ap-
proximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.131

1 Introduction

Very large and complex networks abound. Some of the prominent examples are gene
regulatory networks, health/disease networks, and online social networks like Facebook,
Google+, Linkedin and Twitter. The interconnectivity of neurons in human brain, relations
in database systems, and chip designs are some further examples. Some of these networks can
be quite large and it may be hard to store them completely in the main memory and some

∗ Partially supported by DFG grants ME 2088/3-(1/2) and ME 2088/4-1.
† The research leading to these results has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.
‡ Supported by ERC Starting Grant 307696.

EA
T

C
S

© Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 131; pp. 131:1–131:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.131
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

131:2 Testable Bounded Degree Graph Properties Are Random Order Streamable

may be too large to be stored at all. However, these networks contain valuable information
that we want to reveal. For example, social networks can provide insights into the structure
of our society, and the structure in gene regulatory networks might yield insights into diseases.
Thus, we need algorithms that can analyze the structure of these networks quickly.

One way to approach this problem is to design graph streaming algorithms [16, 1]. A
graph streaming algorithm gets access to a stream of edges in some order and exactly or
approximately solves problems on the graph defined by the stream. The challenge is that a
graph streaming algorithm should use space sublinear in the size of the graph. We focus on
algorithms that make only one pass over the graph stream. It has been shown that many
natural graph problems require Ω(n) space in the adversarial order model where n is the
number of nodes in the graph and the edges can arrive in arbitrary order (see eg.,[8, 9]), and
thus most of previous work has focused on the semi-streaming model, in which the algorithms
are allowed to use O(n · poly logn) space. However, in many interesting applications, the
graphs are sparse and so they can be fully stored in the semi-streaming model making this
model useless in this setting. This raises the question whether there are at least some natural
conditions under which one can solve graph problems with space o(n), possibly even logO(1) n

or constant.
One such condition that recently received increasing attention is that the edges arrive

in random order, i.e. in the order of a uniformly random permutation of the edges (e.g.,
[5, 22, 19]). Uniformly random or near-uniformly random ordering is a natural assumption
and can arise in many contexts. Indeed, previous work has shown that some problems that
are hard for adversarial streams can be solved in the random order model. Konrad et al. [22]
gave single-pass semi-streaming algorithms for maximum matching for bipartite and general
graphs with approximation ratio strictly larger than 1/2 in the random order semi-streaming
model, while no such approximation algorithm is known in the adversary order model.
Kapralov et al. [19] gave a polylogarithmic approximation algorithm in polylogarithmic
space for estimating the size of maximum matching of an unweighted graph in one pass
over a random order stream. Assadi et al. [2] recently showed that in the adversarial order
and dynamic model where edges can be both inserted and deleted, any polylogarithmic
approximation algorithm of maximum matching size requires Ω̃(n) space. On the other hand,
Chakrabarti et al. [5] presented an Ω(n) space lower bound for any single pass algorithm for
graph connectivity in the random order streaming model, which is very close to the optimal
Ω(n logn) space lower bound in the adversarial order model [30]. In general, it is unclear
which graph problems can be solved in random order streams using much smaller space than
what is required for adversarially ordered streams.

An independent area of research is property testing, where with certain query access to
an object (eg., random vertices or neighbors of a vertex for graphs), there are algorithms
that can determine if the object satisfies a certain property, or is far from having such a
property [29, 11, 12]. The area of property testing has seen fundamental results, including
testing various general graph properties. For example, it has been shown that many interesting
properties (including connectivity, planarity, minor-freeness, hyperfiniteness) of bounded
degree graphs can be tested with a constant number of queries [12, 3, 25]. Another very
related area of research is called constant-time (or in general, sublinear-time) approximation
algorithms, where we are given query access to an object (for example a graph) and the
goal is to approximate the objective value of an optimal solution. For example, in bounded
degree graphs, one can approximate the cost of the optimal solution with constant query
complexity for some fundamental optimization problems (e.g., minimum spanning tree
weight [6], maximal matching size [26]; see also Section 1.3).

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:3

A fundamental question is if such results from property testing and constant-time
approximation algorithms will lead to better graph streaming algorithms. Huang and
Peng [17] recently considered the problem of estimating the minimum spanning tree weight
and property testing for general graphs in dynamic and adversarial order model. They showed
that a number of properties (e.g., connectivity, cycle-freeness) of general n-vertex graphs
can be tested with space complexity O(n1−ε) and one can (1 + ε)-approximate the weight of
minimum spanning tree with similar space guarantee. Furthermore, there exist Ω(n1−O(ε))
space lower bounds for these problems that hold even in the insertion-only model [17].

1.1 Overview of Results
In this paper we provide a general framework that transforms bounded-degree graph property
testing to very space-efficient random order streaming algorithms.

To formally state our main result, we first review some basic definitions of graph property
testing. A graph property is a property that is invariant under graph isomorphism. Let
G = (V,E) be a graph with maximum degree upper bounded by a constant d, and we
also call G a d-bounded graph. In the adjacency list model for (bounded-degree) graph
property testing, we are given query access to the adjacency list of the input d-bounded
graph G = (V,E). That is, for any vertex v ∈ V and index i ≤ d, one can query the ith
neighbor (if exists) of vertex v in constant time. Given a property Π, we are interested in
testing if a graph G satisfies Π or is ε-far from satisfying Π while making as few queries as
possible, where G is said to be ε-far from satisfying Π if one has to insert/delete more than
εdn edges to make it satisfy Π. We call a property constant-query testable if there exists a
testing algorithm (also called tester) for this property such that the number of performed
queries depends only on parameters ε, d and is independent of the size of the input graph.

Given a graph property Π, we are interested in approximately testing it in a single-pass
stream with a goal similar to the above. That is, the algorithm uses little space and with
high constant probability, it accepts the input graph G if it satisfies P and rejects G if it is
ε-far from satisfying P (see Section 4 for formal definitions). Our main result is as follows.

I Theorem 1. Any d-bounded graph property that is constant-query testable in the adjacency
list model can be tested in the uniformly random order streaming model with constant space.

To the best of our knowledge, this is the first non-trivial graph streaming algorithm with
constant space complexity (measured in the number of words, where a word is a space unit
large enough to encode an ID of any vertex in the graph.) By the constructions in [17],
there exist graph properties (e.g., connectivity and cycle-freeness) of d-bounded graphs such
that any single-pass streaming algorithm in the insertion-only and adversary order model
must use Ω(n1−O(ε)) space. In contrast to this lower bound, our main result implies that
d-bounded connectivity and cycle-freeness can be tested in constant space in the random
order stream model, since they are constant-query testable in the adjacency list model [12].

Our approach also works for simulating constant-time approximation algorithms as
graph streaming algorithms with constant space. For a minimization (resp., maximization)
optimization problem P and an instance I, we let OPT(I) denote the value of some optimal
solution of I. We call a value x an (α, β)-approximation for the problem P , if for any instance
I, it holds that OPT(I) ≤ x ≤ α · OPT(I) + β (resp., OPT(I)

α − β ≤ x ≤ OPT(I)). For
example, it is known that there exists a constant-query algorithm for (1, εn)-approximating
the maximal matching size of any n-vertex d-bounded graph [26]. That is, the number
of queries made by the algorithm is independent of n and only depends on ε, d. As an
application, we show:

ICALP 2017

131:4 Testable Bounded Degree Graph Properties Are Random Order Streamable

I Theorem 2. Let 0 < ε < 1 and d be constants. Then there exists an algorithm that uses
constant space in the random order model, and with probability 2/3, (1, εn)-approximates the
size of some maximal matching in d-bounded graphs.

We also remark that in a similar way, many other sublinear time algorithms for bounded
degree graphs can be simulated in random order streams. Finally, our results can actually
be extended to a model which requires weaker assumptions on the randomness of the order
of edges in the stream, but we describe our results for the uniformly random order model,
and leave the remaining details for later.

1.2 Technical Overview
The local neighborhood of depth k of a vertex v is the subgraph rooted at v and induced by
all vertices of distance at most k from v. We call such a rooted subgraph a k-disc. Suppose
that we are given a sufficiently large graph G whose maximum degree d is constant. This
means that for any constant k, a k-disc centered at an arbitrary vertex v in G has constant
size. Now assume that there exists an algorithm A that, independent of the labeling of the
vertices of G, accesses G by querying random vertices and exploring their k-discs. We observe
that any constant-query property tester (see for example [13, 7]) falls within the framework
of such an algorithm. If instead of the graph G we are given the distribution of k-discs of the
vertices of G, we can use this distribution to simulate the algorithm A and output with high
probability the same result as executing the algorithm A on G itself. Thus, the problem of
developing constant-query property testers in random order streams can be reduced to the
problem of designing streaming algorithms that approximate the distribution of k-discs in G.

The main technical contribution of this paper is an algorithm that given a random order
stream S of edges of an underlying d-bounded degree graph G, approximates the distribution
of k-discs of G up to an additive error of δ. We would like to mention that if the edges
arrive in adversarial order, any algorithm that approximates the distribution of k-discs of
G requires almost linear space [32, 17], hence the assumption of random order streams (or
something similar) is necessary to obtain our result.

Now in order to approximate the distribution of k-discs of the graph G we do the following.
We proceed by sampling vertices uniformly at random and then perform a BFS for each
sampled vertex using the arrival of edges along the stream S. Note that the new edges of
the stream S that do not connect to the currently explored vertices are discarded. Let us
call the k-disc that is observed by doing such a BFS from some vertex v to be ∆1. Due to
possibility of missing edges during the BFS, this subgraph may be different from the true
k-disc ∆2 rooted at v.

Fortunately, since the edges arrive in a uniformly random order, we can infer the condi-
tional probability Pr[∆1|∆2]. That is, given the true rooted subgraph ∆2, we can compute
the conditional probability of seeing a rooted subgraph ∆1 in a random order stream when
the true k-disc is ∆2.

We define the partial order on the set of k-discs given by ∆1 4 ∆2 whenever ∆1 is a root-
preserving isomorphic subgraph of ∆2. For every two k-discs ∆1 and ∆2 with ∆1 4 ∆2 we
compute the conditional probability Pr[∆1|∆2]. Using the set of all conditional probabilities
Pr[∆1|∆2] we can estimate or approximate the distribution of k-discs of the graph G whose
edges are revealed according to the stream S. In order to simplify the analysis of our
algorithm, we require a natural independence condition for non-intersecting k-discs. Finally,
we use the approximated distribution of k-discs to simulate the algorithm A by the machinary
that we explained above.

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:5

We remark that the idea of using a partial order to compute a distribution of k-discs
in bounded degree graphs has first been used in [7]. However, the setting in [7] was quite
different as it dealt with directed graphs where an edge can only be seen from one side (and
the sample sizes required in that paper were only slightly sublinear in n).

1.3 Other Related Work
Feigenbaum et al. [10] initiated the study of property testing in streaming model, and they
gave efficient testers for some properties of a sequence of data items (rather than graphs as
we consider here). Bury and Schwiegelshohn [4] gave a lower bound of n1−O(ε) on the space
complexity of any algorithm that (1 − ε)-approximates the size of maximum matching in
adversarial streams. Kapralov et al. [20] showed that in random streams, Ω̃(

√
n) space is

necessary to distinguish if a graph is bipartite or 1/2-far from being bipartite. Previous work
has extensively studied streaming graph algorithms in both the insertion-only and dynamic
models, see the recent survey [24].

In the framework of d-bounded graph property testing, it is now known that many
interesting properties are constant-query testable in the adjacency list model, including
k-edge connectivity, cycle-freeness, subgraph-freeness [12], k-vertex connectivity [33], minor-
freeness [15, 3], matroids related properties [18, 31], hyperfinite properties [25], subdivision-
freeness [21]. Constant-time approximation algorithms in d-bounded graphs are known to
exist for a number of fundamental optimization problems, including (1 + ε)-approximating
the weight of minimum spanning tree [6], (1, εn)-approximating the size of maximal/max-
imum matching [26, 34], (2, εn)-approximating the minimum vertex cover size [28, 23, 27],
(O(log d), εn)-approximating the minimum dominating set size [28, 26]. For d-bounded
minor-free graphs, there are constant-time (1, εn)-approximation algorithms for the size of
minimum vertex cover, minimum dominating set and maximum independent set [15].

2 Preliminaries

Let G = (V,E) be an n-vertex graph with maximum degree upper bounded by some constant
d, where we often identify V as [n] := {1, · · · , n}. We also call such a graph d-bounded
graph. In this paper, we will assume the algorithms have the knowledge of n, d. We assume
that G is represented as a sequence of edges, which we denote as Stream(G).

Graph k-discs. Let k ≥ 1. The k-disc around a vertex v is the subgraph rooted at vertex v
and induced by the vertices within distance at most k from v. Note that for an n-vertex graph,
there are exactly n k-discs. Let Hd,k = {∆1, · · · ,∆N} be the set of all k-disc isomorphism
types, where N = Nd,k is the number of all such types (and is thus a constant). In the
following, we will refer to a k-disc of some vertex v in the graph G as disck,G(v) and a k-disc
type as ∆. Note that for every vertex v, there exists a unique k-disc type ∆ ∈ Hd,k such
that disck,G(v) is isomorphic to ∆, denoted as disck,G(v) ∼= ∆. (Throughout the paper, we
call two rooted graphs H1, H2 isomorphic to each other if there is a root-preserving mapping
from the vertex set of H1 to the vertex set of H2.)

We further assume that all the elements in Hd,k are ordered according to the natural
partial order among k-disc types. More specifically, for any two k-disc types ∆i,∆j , we let
∆i < ∆j (or equivalently, ∆j 4 ∆i) denote that ∆j is root-preserving isomorphic to some
subgraph of ∆i. Then we order all the k-disc types ∆1, · · · ,∆N such that if ∆i < ∆j , then
i ≤ j. Let G(j) denote all the indices i, except j itself, such that ∆i < ∆j .

ICALP 2017

131:6 Testable Bounded Degree Graph Properties Are Random Order Streamable

Locally random order streams. Let ΣE denote the set of all permutations (or orderings)
over the edge set E. Note that each σ ∈ ΣE determines the order of edges arriving from
the stream. Let D = D(ΣE) denote a probability distribution over ΣE . In particular, we
let U = U(ΣE) denote the uniform distribution over ΣE . Given a stream σ of edges, we
define the observed k-disc of v from the stream, denoted as disck(v, σ), to be the subgraph
rooted at v and induced by all edges that are sequentially collected from the stream and
the endpoints of which are within distance at most k to v. This is formally defined in the
following algorithm Stream_k-disc.

Algorithm 1 The observed k-disc of v from the stream

1: procedure Stream_k-disc(Stream(G),k,v)
2: U ← {v}, `v = 0, F ← ∅
3: for (u,w)← next edge in the stream do
4: if exactly one of u,w, say u, is contained in U then
5: if `u ≤ k − 1 then
6: U ← U ∪ {w}, F ← F ∪ {(u,w)}
7: for x ∈ U do
8: `x ← the distance between x and v in the graph G′ = (U,F)
9: end for

10: end if
11: else if both u, v are contained in U then
12: F ← F ∪ {(u,w)}
13: for x ∈ U do
14: `x ← the distance between x and v in the graph G′ = (U,F)
15: end for
16: end if
17: end for
18: return disck(v, σ)← the subgraph rooted at v and induced by all edges in F
19: end procedure

Now we formally define a locally random distribution on the order of edges.

I Definition 3. Let d, k > 0. Let G = (V,E) be a d-bounded graph. Let D be a distribution
over all the orderings of edges in E. Let Λk = {λ(∆i|∆j) : 0 ≤ λ(∆i|∆j) ≤ 1,∆j < ∆i, 1 ≤
i, j ≤ N} be a set of real numbers in [0, 1]. We call D a locally random Λk-distribution over
G with respect to k-disc types, if for σ sampled from D, the following conditions are satisfied:
1. (Conditional probabilities) For any vertex v with k-disc isomorphic to ∆j , the probability

that its observed k-disc disck(v, σ) ∼= ∆i is λ(∆i|∆j), for any i such that ∆j < ∆i.
2. (Independence of disjoint k-discs) For any two disjoint k-discs disck,G(v) and disck,G(u),

their observed k-discs disck(v, σ) and disck(u, σ) are independent.

Note that the set Λk cannot be an arbitrary set, as there might be no distribution satisfying
the above condition. On the other hand, if there indeed exists a distribution satisfying the
condition with numbers in Λk, then we call the set Λk realizable. In the following, we call a
stream a locally random order stream if there exists a family of realizable sets Λ = {Λk}k≥1,
such that the edge order is sampled from some locally random Λk-distribution with respect
to k-disc types, for any integer k ≥ 1. We have the following lemma.

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:7

I Lemma 4. Let d ≥ 1. For any k ≥ 1, there exists n0 = n0(k, d), such that for n ≥ n0, any
d-bounded n-vertex graph G = (V,E), the uniform permutation U over E is a locally random
Λk-distribution over G with respect to k-disc types, for some realizable Λk := {λ(∆i|∆j) : 0 ≤
λ(∆i|∆j) ≤ 1,∆j < ∆i, 1 ≤ i, j ≤ N}. Furthermore, if we let κ := maxi,j:∆j<∆i

λ(∆i|∆j)
λ(∆i|∆i) ,

λmin := mini≤N λ(∆i|∆i), then κ ≤ 22dk+1 , λmin ≥ 1
(2dk+1)! .

Proof. Note that for any vertex v with disck,G(v) ∼= ∆j , the probability that the observed
k-disc of v is isomorphic to ∆i is exactly the fraction of orderings σ such that disck(v, σ) ∼= ∆i,
where ∆j < ∆i. We use such a fraction, which is a fixed real number, to define λ(∆i|∆j).
Observe that for an ordering σ sampled from U , it directly satisfies the second condition
Item 2 in Definition 3. Since there are at most 2dk+1 edges in any k-disc, the probability
of observing a full k-disc is at least 1

(2dk+1)! , that is, λmin ≥ 1
(2dk+1)! . Furthermore, since

the k-disc type ∆j might contain at most
(|E(∆j)|
|E(∆i)|

)
≤ 22dk+1 different subgraphs that are

isomorphic to ∆i, it holds that λ(∆i|∆j) ≤
∑
F :F subgraph of ∆j

F∼=∆i

λ(∆i|∆i) ≤ 22dk+1
λ(∆i|∆i)

for any i, j such that ∆j < ∆i. This completes the proof of the lemma. J

The above lemma shows that the uniformly random order stream is a special case of a
locally random order stream. Another natural class of locally random order stream is `-wise
independent permutation of edges for any ` = ωn(1) (i.e., any function that tends to infinity
as n goes to infinity) for n-vertex bounded degree graphs, but for our qualitative purposes
here, it suffices to consider uniformly random order streams.

3 Approximating the k-Disc Type Distribution

In this section, we show how to approximate the distribution of k-disc types of any d-bounded
graph in locally random order streams.

Recall that for any k, d, we let N = Nd,k be the constant denoting the number of all
possible k-disc isomorphism types. For any i ≤ N , let Vi be the set of vertices from V with
k-disc isomorphic to ∆i in the input graph G, that is, Vi := {v|v ∈ V,disck,G(v) ∼= ∆i}. Note
that fi = |Vi|

n is the fraction of vertices with k-disc isomorphic to ∆i.

I Lemma 5. Let G = (V,E) be a d-bounded graph presented in a locally random order
stream defined by a Λk-distribution D over G with respect to k-disc types, for some integer
k. Let κ := maxi,j:∆j<∆i

λ(∆i|∆j)
λ(∆i|∆i) , λmin := mini≤N λ(∆i|∆i). Then for any constant δ > 0,

there exists an algorithm that uses O(κ
2N ·d3k+2·33N+1

δ2λmin
) space, and with probability 2

3 , for any
i ≤ N , approximates the fraction fi of vertices with k-disc isomorphic to ∆i in G with
additive error δ.

Proof. Our algorithm is as follows. We first sample a constant number of vertices, which are
called centers. Then for each center v, we collect the observed k-disc of v from the stream.
Then we postprocess all the collected edges and use the corresponding empirical distribution
of k-disc types of all centers to estimate the distribution of k-disc types of the input graph.
The formal description is given in Algorithm 2.

Note that since there are s = 8κ2N ·d2k+1·33N+1

δ2λmin
vertices in A and only edges that belong

to the k-discs of these vertices will be collected by our algorithm, the space complexity of
the algorithm is O(sdk+1) = O(κ

2N ·d3k+2·33N+1

δ2λmin
), which is constant.

Now we show the correctness of the algorithm.

ICALP 2017

131:8 Testable Bounded Degree Graph Properties Are Random Order Streamable

Algorithm 2 Approximating the distribution of k-disc types

1: procedure k-disc_distribution(Stream(G),Λk,n, d, k, δ)
2: sample a set A of s := 8κ2N ·d2k+1·33N+1

δ2λmin
vertices uniformly at random

3: for each v ∈ A do
4: Hv ← Stream_k-disc(Stream(G),v,k) . to collect observed k-disc of v
5: end for
6: end procedure
7:
8: procedure Postprocessing
9: H ← the graph spanned by ∪v∈AHv

10: for i = 1 to N do
11: Yi ← |{v : v ∈ A, disck,H(v) ∼= ∆i}|/s
12: Xi ← (Yi −

∑
j∈G(i)Xj · λ(∆i|∆j)) · λ−1(∆i|∆i).

13: end for
14: return X1, · · · , XN

15: end procedure

We let A ∼ UV denote that A is the set of s vertices sampled uniformly at random from
V . For any i ≤ N , let Ai be the set of vertices from A with k-disc isomorphic to ∆i in the
input graph G, that is, Ai := {v|v ∈ A, disck,G(v) ∼= ∆i}. Note that EA∼UV

[|Ai|] = s · |Vi|
n .

Let βi = 3i−N−2, θi = (3κ)i−N−1. By Chernoff bound and our setting of s which satisfy
that s ≥ Ω(1

(δθi)2βi
), we have the following claim.

I Claim 6. For any i ≤ N , PrA∼UV
[| |Ai|

s −
|Vi|
n | ≤ δθi] ≥ 1− βi.

We assume for now that A is a fixed set with s vertices. We let σ ∼ D denote that the
edge ordering σ is sampled from D. For any v ∈ A, let Zv,i be the indicator random variable
of the event that the observed k-disc disck(v, σ) of v is isomorphic to ∆i for σ ∼ D. Note that
Prσ∼D[Zv,i = 1] = λ(∆i|∆j) if disck,G(v) ∼= ∆j . Let Y (σ)

i := |{v:v∈A,disck(v,σ)∼=∆i}|
s denote

the fraction of vertices in A with observed k-disc isomorphic to ∆i. By definition, it holds
that Y (σ)

i = 1
s

∑
v∈Aj

j∈G(i)∪{i}
Zv,i, and furthermore, Eσ∼D[Y (σ)

i] = 1
s

∑
j∈G(i)∪{i} |Aj | ·λ(∆i|∆j).

Let X(σ)
i = (Y (σ)

i −
∑
j∈G(i)X

(σ)
j · λ(∆i|∆j)) · λ−1(∆i|∆i).

We have the following claim.

I Claim 7. For any i ≤ N , it holds that Eσ∼D[X(σ)
i] = |Ai|

s .

Proof. We prove the claim by induction. For i = 1, it holds that Eσ∼D[X(σ)
1] = Eσ∼D[Y (σ)

1] ·
λ−1(∆1|∆1) = |A1|

s · λ(∆1|∆1) · λ−1(∆1|∆1) = |A1|
s . Assuming that the claim holds for i− 1,

and we prove it holds for i as well. By definition, we have that

Eσ∼D[X(σ)
i] = Eσ∼D[(Y (σ)

i −
∑
j∈G(i)

X
(σ)
j · λ(∆i|∆j)) · λ−1(∆i|∆i)]

=
(∑
j∈G(i)∪{i}

|Aj |
s
· λ(∆i|∆j)−

∑
j∈G(i)

Eσ∼D[X(σ)
j] · λ(∆i|∆j)

)
· λ−1(∆i|∆i)

=
(∑
j∈G(i)∪{i}

|Aj |
s
· λ(∆i|∆j)−

∑
j∈G(i)

|Aj |
s
· λ(∆i|∆j)

)
· λ−1(∆i|∆i) = |Ai|

s
,

where the second to last equation follows from the induction. J

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:9

We can now bound the variance of Y (σ)
i as shown in the following claim.

I Claim 8. For any i ≤ N , it holds that Varσ∼D[Y (σ)
i] ≤ 1

s2 · d2k+1∑
j∈G(i)∪{i} |Aj | ·

λ(∆i|∆j).

Proof. Recall that Y (σ)
i = 1

s

∑
v∈Aj

j∈G(i)∪{i}
Zv,i. Note that for each v ∈ A, by the independence

assumption on D, the random variable Zv,i can only correlate with the corresponding variables
for vertices that are within distance at most 2k from v. The number of such vertices is at
most 1 + d + d2 + · · · + d2k < d2k+1. Let dt(u, v) denote the distance between u, v in the
graph G. Then we have that

Eσ∼D[(
∑
v∈Aj

j∈G(i)∪{i}

Zv,i)2] = Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

∑
u∈Aj

j∈G(i)∪{i}

Zv,i · Zu,i]

= Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

(
∑
u∈Aj

j∈G(i)∪{i}
dtG(u,v)≤2k

Zv,i · Zu,i +
∑
u∈Aj

j∈G(i)∪{i}
dtG(u,v)>2k

Zv,i · Zu,i)]

≤ Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

∑
u∈Aj

j∈G(i)∪{i}
dtG(u,v)≤2k

Zv,i] +

 ∑
j∈G(i)∪{i}

[|Aj |] · λ(∆i|∆j)

2

≤ d2k+1Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

Zv,i] + (Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

Zv,i])2

= d2k+1 ·
∑

j∈G(i)∪{i}

|Aj | · λ(∆i|∆j) + (Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

Zv,i])2,

where the first inequality follows from the fact that Zu,i ≤ 1, and that for any two vertices
u, v with dt(u, v) > 2k, Zu,i, Zv,i are independent.

Then we have that

Varσ∼D[Y (σ)
i] = 1

s2 ·Varσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

Zv,i]

= 1
s2

Eσ∼D[(
∑
v∈Aj

j∈G(i)∪{i}

Zv,i)2]− (Eσ∼D[
∑
v∈Aj

j∈G(i)∪{i}

Zv,i])2

≤ 1
s2 · d

2k+1
∑

j∈G(i)∪{i}

|Aj | · λ(∆i|∆j). J

We next prove that each X(σ)
i is concentrated around its expectation with high probability.

I Claim 9. For any i ≤ N , it holds that Prσ∼D[|X(σ)
i − Eσ∼D[X(σ)

i]| ≤ θiδ] ≥ 1− βi.

Proof. We prove the claim by induction. For i = 1, it holds that

Pr
σ∼D

[|X(σ)
1 − Eσ∼D[X(σ)

1]| ≤ θ1δ] ≤ Pr
σ∼D

[|Y (σ)
1 − Eσ∼D[Y (σ)

1]| · λ−1(∆1|∆1) ≥ δθ1]

≤ Varσ∼D[Y (σ)
1]

(δθ1)2 · λ2(∆1|∆1) ≤
d2k+1|A1| · λ(∆1|∆1)
s2 · (δθ1)2 · λ2(∆1|∆1) ≤

d2k+1

s(δθ1)2 · λ(∆1|∆1) ≤ β1,

ICALP 2017

131:10 Testable Bounded Degree Graph Properties Are Random Order Streamable

where the last inequality follows from our choice of β1, θ1 and s which satisfy that s ≥
d2k+1

(δθ1)2β1·λ(∆1|∆1) . Now let us consider arbitrary i ≥ 2, assuming that the claim holds for any
j ≤ i− 1. First, with probability (over the randomness that σ ∼ D) at least 1−

∑i−1
j=1 βj =

1−
∑i−1
j=1 3j−N−2 ≥ 1− βi

2 , it holds that for all j ≤ i− 1, |X(σ)
j − Eσ∼D[X(σ)

j]| ≤ θjδ. This
further implies that with probability at least 1− βi

2 ,

|
∑
j∈G(i)

X
(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)
− Eσ∼D[(

∑
j∈G(i)

X
(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)
)]|

≤
∑
j∈G(i)

|X(σ)
j − Eσ∼D[X(σ)

j]| · λ(∆i|∆j)
λ(∆i|∆i)

≤
∑
j∈G(i)

δθj ·
λ(∆i|∆j)
λ(∆i|∆i)

≤ κ ·
∑
j∈G(i)

δθj ≤ κ ·
i−1∑
j=1

δ(3κ)j−N ≤ θiδ

2 .

Now note that

Pr
σ∼U

[|Y (σ)
i − E[Y (σ)

i]| · λ(∆i|∆i)−1 ≥ θiδ

2] ≤ 4 ·Varσ∼D[Y (σ)
i]

(δθi)2 · λ(∆i|∆i)2

≤
4 · d2k+1∑

j∈G(i)∪{i} |Aj | · λ(∆i|∆j)
s2 · (δθi)2 · λ(∆i|∆i)2 ≤ 4 · d2k+1 · κ

s · (δθi)2 · λ(∆i|∆i)
≤ βi

2 ,

where the last inequality follows from our choice of βi, θi and s which satisfy that s ≥
8κ·d2k+1

(δθi)2βi·λ(∆i|∆i)) .
Therefore, with probability (over σ ∼ D) at least 1− βi

2 −
βi

2 = 1− βi, it holds that

|X(σ)
i − Eσ∼D[X(σ)

i]|

=

∣∣∣∣∣Y
(σ)
i −

∑
j∈G(i)X

(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)
− Eσ∼D

[
Y

(σ)
i −

∑
j∈G(i)X

(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)

]∣∣∣∣∣
=

∣∣∣∣∣∣ (Y
(σ)
i − Eσ∼D[Y (σ)

i])
λ(∆i|∆i)

−

 ∑
j∈G(i)

X
(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)
− Eσ∼D[(

∑
j∈G(i)

X
(σ)
j · λ(∆i|∆j)

λ(∆i|∆i)
)]

∣∣∣∣∣∣
≤ δθi

2 + δθi
2 = δθi. J

Now with probability (over both A ∼ UV and σ ∼ D) at least 1− βi − βi, it holds that∣∣∣∣X(σ)
i − |Vi|

n

∣∣∣∣ ≤ ∣∣∣X(σ)
i − Eσ∼D[X(σ)

i]
∣∣∣+
∣∣∣∣Eσ∼D[X(σ)

i]− |Vi|
n

∣∣∣∣
=

∣∣∣X(σ)
i − Eσ∼D[X(σ)

i]
∣∣∣+
∣∣∣∣ |Ai|s − |Vi|n

∣∣∣∣ ≤ δθi + δθi = 2δθi.

Finally, with probability at least 1− 2
∑N
j=1 βj = 1− 2

∑N
j=1 3j−N−2 ≥ 1− 1

3 , it holds
that for all i ≤ N , |Xi − |Vi|

n | ≤ 2θiδ ≤ δ. This completes the proof of the lemma. J

4 Constant-Query Property Testing

In this section, we show how to transform constant-query property testers in the adjacency
list model to constant-space property testers in the random order stream model in a single
pass and prove our main result Theorem 1. (Our transformation also works in the locally

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:11

random order model as defined in Definition 3, but for simplicity, we only state our result in
the uniformly random order model.)

I Definition 10. Let Π = (Πn)n∈N be a property of d-bounded graphs, where Πn is a
property of graphs with n vertices. We say that Π is testable with query complexity q, if
for every ε, d and n, there exists an algorithm that performs q = q(n, ε, d) queries to the
adjacency list of the graph, and with probability at least 2/3, accepts any n-vertex d-bounded
graph G satisfying Π, and rejects any n-vertex d-bounded graph that is ε-far from satisfying
Π. If q = q(ε, d) is a function independent of n, then we call Π constant-query testable.

Similarly, we can define constant-space testable properties in graph streams.

I Definition 11. Let Π = (Πn)n∈N be a property of d-bounded graphs, where Πn is a
property of graphs with n vertices. We say that Π is testable with space complexity q, if for
every ε, d and n, there exists an algorithm that performs a single pass over an edge stream
of an n-vertex d-bounded graph G, uses q = q(n, ε, d) space, and with probability at least
2/3, accepts G if it satisfies Π, and rejects G if it is ε-far from satisfying Π. If q = q(ε, d) is
a function independent of n, then we call Π constant-space testable.

The proof of Theorem 1 is based on the following known fact: every constant-query
property tester can be simulated by some canonical tester which only samples a constant
number of vertices, and explores the k-discs of these vertices, and then makes deterministic
decisions based on the explored subgraph. This implies that it suffices to approximate the
distribution of k-disc types of the input graph to test the corresponding property. Formally,
we will use the following lemma relating the constant-time testable properties and their
k-disc distributions. For any graph G, let SG,k denote the subgraph spanned by the union of
k-discs rooted at k uniformly sampled vertices from G. The following lemma is implied by
Lemma 3.2 in [7] (which was built on [14] and [13]). (The result in [7] is stated for d-bounded
directed graphs, while it also holds in the undirected case.)

I Lemma 12. Let Π = (Πn)n∈N be any d-bounded graph property that is testable with
q = q(ε, d) query complexity in the adjacency list model. Then there exist integer n0, k = c · q
for some large universal constant c, and an infinite sequence of F = {Fn}n≥n0 such that for
any n ≥ n0, Fn is a set of digraphs, each being a union of k disjoint k-discs, and for any
n-vertex graph G,

if G satisfies Πn, then with probability at most 5
12 , SG,k is isomorphic to one of the

members in Fn.
if G is ε-far from satisfying Πn, then with probability at least 7

12 , SG,k is isomorphic to
one of the members in Fn.

Now we are ready to prove Theorem 1.

Proof Sketch of Theorem 1. The proof follows almost directly from the proof of Theorem
1.1 in [7]. We sketch the algorithm and its analysis, and refer to [7] for further details.

The algorithm is as follows. For any property Π = (Πn)n∈N that is testable with query
complexity q = q(ε, d) in the adjacency list model, we set k = c ·q as guaranteed in Lemma 12,
and set N = N(d, k), δ = 1

48(2kN)k . Let G be any n-vertex graph with n ≥ n1 := n1(d, k) that
is represented by a uniformly random order edge stream, where n1 is some sufficiently large
constant. (For graphs with n < n1 vertices, one can trivally test Πn with constant space.)
Let Λk be the set of probabilities as guaranteed in Lemma 4. We first invoke the algorithm
k-Disc_Distribution(Stream(G), Λk, n, d, k, δ) to get estimators X1, · · · , XN for the

ICALP 2017

131:12 Testable Bounded Degree Graph Properties Are Random Order Streamable

fraction f1, · · · , fN of vertices whose k-discs are isomorphic to ∆1, · · · ,∆N , respectively.
As guaranteed by Lemma 5, with probability at least 2/3, it holds that for any i ≤ N ,
|Xi − fi| ≤ δ. Conditioned on this event, we approximate the frequency of each subgraph F
in Fn as guaranteed in Lemma 12, where F = (Γ1, · · · ,Γk) is a multiset of k-discs. That is,

for each F = (Γ1, · · · ,Γk), we calculate its empirical frequency as estim(F) =
∏N

i=1 (Xi·n
xi

)
(n

k) ,
where xi is the number of copies among Γ1, · · · ,Γk that are of the same type as ∆i, for
1 ≤ i ≤ N . Finally, we accept the graph if and only if

∑
F∈Fn

estim(F) < 1
2 .

By Lemma 5 and our setting of δ, the space used by the algorithm is O(κ
2N ·d3k+2·33N+1

δ2λmin
) =

O(κ
2N ·d3k+2·33N+1·(2kN)2k

λmin
).

For the correctness of the algorithm, note that if Xi’s are good estimators for fi’s, then
the empirical probability estim(F) is close to the probability that SG,k, the subgraph spanned
by the union of k-discs rooted at k uniformly sampled vertices from G, spans a subgraph
that is isomorphic to F . This implies that the quantity

∑
F∈Fn

estim(F) is a good estimator
for the probability that SG,k is isomorphic to one of the members in F . Combining this with
Lemma 12, we can show that if G satisfies Πn, then

∑
F∈Fn

estim(F) < 1
2 and if G is ε-far

from satisfying the property Πn, then
∑
F∈Fn

estim(F) ≥ 1
2 . We omit details here. J

5 Constant-Time Approximation Algorithms

As we mentioned in the introduction, to simulate any constant-time algorithm that is
independent of the labeling of the vertices, and accesses the graph by sampling random
vertices and exploring neighborhoods (or k-discs for some k) of these vertices, it suffices to
have the distribution of k-disc types. Now we explain slightly more about this simulation
and sketch the proof of Theorem 2. In order to approximate the size of the solution of an
optimization problem (e.g., maximum matching, minimum vertex cover), it has been observed
by Parnas and Ron [28] that it suffices to have efficient oracle OS access to a solution S.
This is true since one can attain a good estimator for the size of S by sampling a constant
number of vertices, performing corresponding queries to the oracle OS and then returning
the fraction of vertices that belong to S based on the returned answers from OS . Nguyen
and Onak [26] implemented such an oracle via an elegant approach of locally simulating the
classical greedy algorithm. In particular, they showed the following result.

I Lemma 13 ([26]). There exist q = q(ε, d), an oracle OM to a maximal matching M ,
and an algorithm that queries OM about all the edges incident to a set of s = O(1/ε2)
randomly sampled vertices and with probability at least 2/3, returns an estimator that is
(1, εn)-approximation of the size of M , and each query to OM performs at most q queries to
the adjacency list of the graph.

A key observation is that the algorithm in Lemma 13 can be viewed as first sampling s
q-discs from the graph and then perform OM queries on each of these q-discs. It is easy to
see that with high probability 0.99, all these q-discs are disjoint. Furthermore, the answer of
the above oracle only depends on the structure of the corresponding neighborhood of the
starting vertex v and the random ordering of the edges belonging to this neighborhood. Now
we can approximate the size of a maximal matching in the random order streaming model as
follows: we first invoke Algorithm 2 to get an estimator for the distribution of q-discs. Then
we can simulate the oracle on this distribution.

Acknowledgments. We would like to thank G. Cormode, H. Jowhari for helpful discussions.

M. Monemizadeh, S. Muthukrishnan, P. Peng, and C. Sohler 131:13

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29. ACM, 1996.

2 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in
graph streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1723–1742. SIAM, 2017.

3 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. Advances in mathematics, 223(6):2200–2218, 2010.

4 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Algorithms-ESA 2015, pages 263–274. Springer, 2015.

5 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. In Proceedings of the fortieth annual ACM sym-
posium on Theory of computing, pages 641–650. ACM, 2008.

6 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

7 Artur Czumaj, Pan Peng, and Christian Sohler. Relating two property testing models
for bounded degree directed graphs. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, pages 1033–1045. ACM, 2016.

8 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207–
216, 2005.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727,
2008.

10 Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. Testing
and spot-checking of data streams. Algorithmica, 34(1):67–80, 2002.

11 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

12 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,
32:302–343, 2002.

13 Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Journal on Com-
puting, 40(2):534–566, 2011.

14 Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties.
Random Structures & Algorithms, 23(1):23–57, 2003.

15 Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof Onak. Local
graph partitions for approximation and testing. In Foundations of Computer Science, 2009.
FOCS’09. 50th Annual IEEE Symposium on, pages 22–31. IEEE, 2009.

16 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In External Memory Algorithms, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, May 20-22, 1998, pages 107–118, 1998.

17 Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o(n) space. In 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, pages 18:1–18:16, 2016.

18 Hiro Ito, Shin-Ichi Tanigawa, and Yuichi Yoshida. Constant-time algorithms for sparsity
matroids. In International Colloquium on Automata, Languages, and Programming, pages
498–509. Springer, 2012.

19 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 734–751. Society for Industrial and Applied Mathematics, 2014.

ICALP 2017

131:14 Testable Bounded Degree Graph Properties Are Random Order Streamable

20 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for ap-
proximating max-cut. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1263–1282. Society for Industrial and Applied Mathematics,
2015.

21 Ken-ichi Kawarabayashi and Yuichi Yoshida. Testing subdivision-freeness: property testing
meets structural graph theory. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 437–446. ACM, 2013.

22 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques, pages 231–242. Springer, 2012.

23 Sharon Marko and Dana Ron. Approximating the distance to properties in bounded-degree
and general sparse graphs. ACM Transactions on Algorithms (TALG), 5(2):22, 2009.

24 Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20,
2014.

25 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
Journal on Computing, 42(3):1095–1112, 2013.

26 Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual
IEEE Symposium on, pages 327–336. IEEE, 2008.

27 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1123–1131.
SIAM, 2012.

28 Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theoretical Computer Science, 381(1):183–196,
2007.

29 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applic-
ations to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

30 Xiaoming Sun and David P Woodruff. Tight bounds for graph problems in insertion
streams. In LIPIcs-Leibniz International Proceedings in Informatics, volume 40. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

31 Shin-Ichi Tanigawa and Yuichi Yoshida. Testing the supermodular-cut condition. Algorith-
mica, 71(4):1065–1075, 2015.

32 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals,
and other problems. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 11–25. SIAM, 2011.

33 Yuichi Yoshida and Hiro Ito. Property testing on k-vertex-connectivity of graphs. In
Automata, Languages and Programming, pages 539–550. Springer, 2008.

34 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approximation
algorithms for maximum matchings and other optimization problems. SIAM J. Comput.,
41(4):1074–1093, 2012.

Deterministic Graph Exploration with Advice
Barun Gorain1 and Andrzej Pelc∗2

1 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec, Canada
baruniitg123@gmail.com

2 Département d’informatique, Université du Québec en Outaouais, Gatineau,
Québec, Canada
pelc@uqo.ca

Abstract
We consider the task of graph exploration. An n-node graph has unlabeled nodes, and all ports
at any node of degree d are arbitrarily numbered 0, . . . , d − 1. A mobile agent has to visit all
nodes and stop. The exploration time is the number of edge traversals. We consider the problem
of how much knowledge the agent has to have a priori, in order to explore the graph in a given
time, using a deterministic algorithm. This a priori information (advice) is provided to the agent
by an oracle, in the form of a binary string, whose length is called the size of advice. We consider
two types of oracles. The instance oracle knows the entire instance of the exploration problem,
i.e., the port-numbered map of the graph and the starting node of the agent in this map. The
map oracle knows the port-numbered map of the graph but does not know the starting node of
the agent. What is the minimum size of advice that must be given to the agent by each of these
oracles, so that the agent explores the graph in a given time?

We first consider exploration in polynomial time, and determine the exact minimum size of
advice to achieve it. This size is log log logn−Θ(1), for both types of oracles.

When advice is large, there are two natural time thresholds: Θ(n2) for a map oracle, and
Θ(n) for an instance oracle, that can be achieved with sufficiently large advice. We show that,
with a map oracle, time Θ(n2) cannot be improved in general, regardless of the size of advice. We
also show that the smallest size of advice to achieve this time is larger than nδ, for any δ < 1/3.

For an instance oracle, advice of size O(n logn) is enough to achieve time O(n). We show
that, with any advice of size o(n logn), the time of exploration must be at least nε, for any ε < 2,
and with any advice of size O(n), the time must be Ω(n2).

We also investigate minimum advice sufficient for fast exploration of Hamiltonian graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases algorithm, graph, exploration, mobile agent, advice

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.132

1 Introduction

Exploration of networks by visiting all of their nodes is one of the basic tasks performed
by a mobile agent in networks. In applications, a software agent may need to collect data
placed at nodes of a network, or a mobile robot may need to collect samples of air or ground
in a contaminated mine whose corridors form links of a network, with corridor crossings
represented by nodes.

∗ Research supported in part by NSERC Discovery Grant 8136 – 2013 and by the Research Chair in
Distributed Computing of the Université du Québec en Outaouais.

EA
T

C
S

© Barun Gorain and Andrzej Pelc;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 132; pp. 132:1–132:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.132
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

132:2 Deterministic Graph Exploration with Advice

The network is modeled as a simple connected undirected graph G = (V,E) with n nodes,
called graph in the sequel. Nodes are unlabeled, and all ports at any node of degree d are
arbitrarily numbered 0, . . . , d− 1. The agent is initially situated at a starting node v of the
graph. When the agent located at a current node u gets to a neighbor w of u by taking port
i, it learns the port j by which it enters node w and it learns the degree of w. The agent
has to visit all nodes of the graph and stop. The agent is computationally unbounded and
cannot mark the visited nodes.

The time of the exploration is the number of edge traversals. We consider the problem
of how much knowledge the agent has to have a priori, in order to explore the graph in
a given time, using a deterministic algorithm. It is well-known that some information is
necessary, as witnessed even by the class of rings in which ports at all nodes are numbered
0,1 in clockwise order. Navigating in such a ring, the agent cannot learn its size. If there
existed an exploration algorithm not using any a priori knowledge, then it would have to
stop after some t steps in every ring, and hence would fail to explore a (t+ 2)-node ring.

Following the paradigm of algorithms with advice [1, 13, 17, 18, 21, 20, 22, 23, 24, 25, 26,
27, 29], this a priori information (advice), needed for exploration, is provided to the agent
by an oracle, in the form of a binary string, whose length is called the size of advice. We
consider two types of oracles. An instance oracle knows the entire instance of the exploration
problem, i.e., the port-numbered map of the graph and the starting node of the agent in
this map. A map oracle knows the port-numbered map of the graph but does not know the
starting node of the agent. Formally, a map oracle is a function f : G −→ S, where G is
the set of graphs and S is the set of finite binary strings. An instance oracle is a function
f : I −→ S, where I is the set of pairs (G, v), with G ∈ G and v being the starting node of
the agent in graph G. The advice s is an input to an exploration algorithm. We say that
exploration in time t with advice of size x given by an instance oracle is possible, if there
exists advice of length x depending on the instance (G, v), and an exploration algorithm
using this advice, which explores every graph in time t, starting from node v. Likewise, we
say that exploration in time t with advice of size x given by a map oracle is possible, if there
exists advice of length x depending on the graph G, and an exploration algorithm using
this advice, which explores every graph in time t, starting from any node. (Integers x and
t depend on the size of the graph.) Proving that such an exploration is possible consists
in showing an oracle of the appropriate type giving advice of size x, and an exploration
algorithm using this advice and working in time t, for any graph and any starting node.
Proving that such an exploration is impossible consists in showing that, for any oracle of the
appropriate type giving advice of size x, and for any exploration algorithm using it, there
exists a graph and a starting node for which this algorithm will exceed time t.

The central question studied in this paper is:
What is the minimum size of advice that has to be given to the agent by an instance

oracle (resp. by a map oracle) to permit the agent to explore any graph in a given time?
Our main contributions are negative results of two types:

impossibility results showing that the less powerful map oracle cannot help to achieve
the same exploration time as the more powerful instance oracle, regardless of the size of
advice;

lower bounds showing that the size of some natural advice leading to a simple exploration
in a given time cannot be improved significantly.

While in most cases our bounds on the size of advice are asymptotically tight, in one case
the remaining gap is cubic.

B. Gorain and A. Pelc 132:3

1.1 Our results
We first consider exploration in polynomial time, and determine the exact minimum size
of advice to achieve it. Indeed, we prove that some advice of size log log logn− c, for any
constant c, is sufficient to permit polynomial exploration of all n-node graphs, and that no
advice of size log log logn− φ(n), where φ is any function diverging to infinity, can help to
do this. Both these results hold both for the instance and for the map oracles.

On the other side of the spectrum, when advice is large, there are two natural time
thresholds: Θ(n2) for a map oracle, and Θ(n) for an instance oracle. This is because, in both
cases, these time benchmarks can be achieved with sufficiently large advice (advice of size
O(n logn) suffices). We show that, with a map oracle, time Θ(n2) cannot be improved in
general, regardless of the size of advice. What is then the smallest advice to achieve time
Θ(n2) with a map oracle? We show that this smallest size of advice is larger than nδ, for
any δ < 1/3.

For large advice, the situation changes significantly when we allow an instance oracle
instead of a map oracle. In this case, advice of size O(n logn) is enough to achieve time O(n).
Is such a large advice needed to achieve linear time? We answer this question affirmatively.
Indeed, we show more: with any advice of size o(n logn), the time of exploration must be at
least nε, for any ε < 2, and with any advice of size O(n), the time must be Ω(n2).

We finally look at Hamiltonian graphs, as for them it is possible to achieve the absolutely
optimal exploration time n− 1, when sufficiently large advice (of size O(n logn)) is given by
an instance oracle. We show that a map oracle cannot achieve this: regardless of the size of
advice, the time of exploration must be Ω(n2), for some Hamiltonian graphs. On the other
hand, even for an instance oracle, with advice of size o(n logn), optimal time n− 1 cannot
be achieved: indeed, we show that the time of exploration with such advice must sometimes
exceed the optimal time n− 1 by a summand nε, for any ε < 1.

Our results permit us to compare advice of different size and of different quality. The
size is defined formally, and for quality we may say that advice given by an instance oracle is
superior to advice given by a map oracle, because an instance oracle, seeing not only the
graph but also the starting node of the agent, can use the allowed bits of advice in a better
way. Looking from this perspective it turns out that both size and quality of advice provably
matter. The fact that quality of advice matters is proved by the following pair of results:
for a map oracle, time Θ(n2) cannot be beaten, regardless of the size of advice, while for
an instance oracle time O(n) can be achieved with O(n logn) bits of advice. The fact that
the size of advice matters (with the same quality) is proved by the following pair of results:
for an instance oracle, time O(n) can be achieved with O(n logn) bits of advice, but with
o(n logn) bits of advice time must be at least nε, for any ε < 2.

1.2 Related work
The problem of exploration and navigation of mobile agents in an unknown environment
has been extensively studied in the literature for many decades (cf. the survey [33]). The
explored environment has been modeled in two distinct ways: either as a geometric terrain
in the plane, e.g., an unknown terrain with convex obstacles [9], or a room with polygonal
[12] or rectangular [5] obstacles, or as we do in this paper, i.e., as a graph, assuming that
the agent may only move along its edges. The graph model can be further specified in two
different ways: either the graph is directed, in which case the agent can move only from
tail to head of a directed edge [2, 6, 7, 13], or the graph is undirected (as we assume) and
the agent can traverse edges in both directions [4, 8, 16, 30, 31]. The efficiency measure

ICALP 2017

132:4 Deterministic Graph Exploration with Advice

adopted in most papers dealing with exploration of graphs is the time (or cost) of completing
this task, measured by the number of edge traversals by the agent. Some authors [4, 8, 16]
impose further restrictions on the moves of the agent.

Another direction of research concerns exploration of anonymous graphs. In this case it
is impossible to explore arbitrary graphs and stop after exploration, if no marking of nodes
is allowed, and if nothing is known about the graph. Hence some authors [6, 7] allow pebbles
which the agent can drop on nodes to recognize already visited ones, and then remove them
and drop them in other places. A more restrictive scenario assumes a stationary token that
is fixed at the starting node of the agent [11, 32]. Exploring anonymous graphs without
the possibility of marking nodes (and thus possibly without stopping) is investigated, e.g.,
in [14, 19]. The authors concentrate attention not on the cost of exploration but on the
minimum amount of memory sufficient to carry out this task. In the absence of marking
nodes, in order to guarantee stopping after exploration, some knowledge about the graph is
required, e.g., an upper bound on its size [11, 34].

Providing nodes or agents with arbitrary kinds of information that can be used to perform
network tasks more efficiently has been previously proposed in [1, 13, 17, 18, 21, 20, 22,
23, 24, 25, 26, 27, 29] in contexts ranging from graph coloring to broadcasting and leader
election. This approach was referred to as algorithms with advice. The advice is given either
to nodes of the network or to mobile agents performing some network task. In the first case,
instead of advice, the term informative labeling schemes is sometimes used, if different nodes
can get different information.

Several authors studied the minimum size of advice required to solve network problems
in an efficient way. In [27], given a distributed representation of a solution for a problem, the
authors investigated the number of bits of communication needed to verify the legality of the
represented solution. In [21], the authors compared the minimum size of advice required to
solve two information dissemination problems using a linear number of messages. In [22], it
was shown that advice of constant size given to the nodes enables the distributed construction
of a minimum spanning tree in logarithmic time. In [15, 17], the advice paradigm was used
for online problems. In particular, in [15] the authors studied online graph exploration
with advice in labeled weighted graphs. In the case of [29], the issue was not efficiency but
feasibility: it was shown that Θ(n logn) is the minimum size of advice required to perform
monotone connected graph clearing. In [26], the authors studied radio networks for which
it is possible to perform centralized broadcasting in constant time. In [24], the authors
studied the problem of topology recognition with advice given to nodes. The topic of [28]
and [35] was the size of advice needed for fast leader election, resp. in anonymous trees and
in arbitrary anonymous graphs. Exploration with advice was previously studied only for
trees [20], and algorithm performance was measured using the competitive approach. In
the present paper, the performance measure of an algorithm is the order of magnitude of
exploration time, and hence the case of trees is trivial, as they can be explored in linear time
without any advice.

2 Exploration in polynomial time

As a warm-up, we first consider the following question: What is the minimum size of advice
permitting the agent to explore any graph in time polynomial in the size of the graph? In
this section we give the exact answer to this question, both for the instance oracle and for
the map oracle.

It is well-known that, if the agent knows an upper bound n′ on the number n of nodes of
the graph, then exploration in time polynomial in n′ is possible, starting from any node of the

B. Gorain and A. Pelc 132:5

graph. The first result implying this fact was proved in [3]. The exploration proposed there
works in time O(n′5 logn′), and is based on Universal Traversal Sequences (UTS). Later on,
an exploration algorithm working in time polynomial in n′ based on Universal Exploration
Sequences (UXS) was established in [34]. While the polynomial in the latter paper has much
higher degree, the solution from [34] can be carried out in logarithmic memory. Both UTS
and UXS permit to find a sequence of port numbers to be followed by the agent, regardless
of the topology of the graph and of its starting node. In the case of UTS, the sequence of
port numbers to be followed is the UTS itself, and in the case of UXS it is constructed term
by term, on the basis of the UXS and of the port number by which the agent entered the
current node. Regardless of which solution is used, we have the following proposition:

I Proposition 1 ([3, 34]). If the agent knows an upper bound n′ on the number n of nodes of
the graph, there exists an algorithm with input n′ that permits the agent starting at any node
of the graph to explore the graph and stop after P (n′) steps, where P is some polynomial.

The positive part of our result on minimum advice is formulated in the following lemma.
Its proof is based on Proposition 1. The advice given to the agent is some prefix of the binary
representation of the number blog lognc, on the basis of which the agent computes a rough
but sufficiently precise upper bound on the size of the graph which permits it to explore the
graph, in time polynomial in its size.

I Lemma 2. For any positive constant c, there exists an exploration algorithm using advice
of size blog log logn− cc, that works in time polynomial in n, for any n-node graph.

The next result shows that the upper bound from the previous lemma is tight. Indeed,
the following lower bound holds even for oriented rings, i.e., rings in which ports 0 and 1 are
in clockwise order at every node.

I Lemma 3. For any function φ : N → N such that φ(n) → ∞ as n → ∞, it is not
possible to explore an n-node oriented ring in polynomial time, using advice of size at most
log log logn− φ(n).

Notice that Lemmas 2 and 3 hold both for the instance oracle and for the map oracle.
The positive result from Lemma 2 holds even for the map oracle, as the advice concerns the
size of the graph and does not require knowing the starting node of the agent. The negative
result from Lemma 3 holds even for the instance oracle, as it is true even in oriented rings,
where knowledge of the starting node does not provide any insight, since all nodes look the
same. Hence Lemmas 2 and 3 imply the following theorem that gives a precise answer to the
question stated at the beginning of this section.

I Theorem 4. The minimum size of advice permitting the agent to explore any graph in
time polynomial in the size n of the graph is log log logn−Θ(1), both for the instance oracle
and for the map oracle.

3 Fast exploration

When advice given to the agent can be large, there are two natural time thresholds: Θ(n2)
for a map oracle, and Θ(n) for an instance oracle. This is because, in both cases, these time
benchmarks can be achieved with sufficiently large advice. Indeed, we have the following
proposition.

ICALP 2017

132:6 Deterministic Graph Exploration with Advice

I Proposition 5.
1. There exists an exploration algorithm, working in time O(n2) and using advice of size

O(n logn), provided by a map oracle, for n-node graphs.
2. There exists an exploration algorithm, working in time O(n) and using advice of size

O(n logn), provided by an instance oracle, for n-node graphs.

In the rest of this section we prove negative results indicating the quality of the natural
solution given in Proposition 5. For the map oracle, we show that quadratic exploration time
cannot be beaten, and we give a lower bound on the size of advice sufficient to guarantee
this time. For the instance oracle, we show that Proposition 5 gives optimal advice for linear
exploration time.

3.1 Map oracle
Our first result for the map oracle shows that, regardless of the size of advice, exploration
time Θ(n2) cannot be beaten, for some n-node graphs.

We will use the following construction from [10] of a family HX of graphs.
Let H be an m

2 -regular graph with m nodes, where m is even, e.g., the complete bipartite
graph. Let T be the set of edges of any spanning tree of H. Let S be the set of edges of H
outside T . Let s = |S| = m2

4 −m+ 1 and S = {e1, e2, · · · , es}.
For x ∈ {0, 1}s \ {0s}, the (2m)-node graph Hx is constructed from H by taking two

disjoint copies H ′ and H ′′ of H, and crossing some pairs of edges from one copy to the other.
For i = 1, · · · , s, if the i−th bit of x is 1, then the edge ei = (ui, vi) is deleted from both
copies of H and two copies of ei are crossed between the two copies of H. More precisely, let
{v1, · · · , vm} be the set of nodes of H and let v′i and v′′i be the nodes corresponding to vi, in
H ′ and H ′′, respectively. Let V ′ and V ′′ be the sets of nodes of H ′ and H ′′, respectively.
Define Hx = (V ′ ∪ V ′′, Ex), where Ex = {(v′i, v′j), (v′′i , v′′j) : (vi, vj) ∈ T} ∪ {(v′i, v′′j), (v′′i , v′j) :
ek = (vi, vj) ∈ S and xk = 1}. Let HX = {Hx : x ∈ {0, 1}s \ {0s}}.

According to the result from [10], for every node v ∈ H, there exists some sequence
x(v) ∈ {0, 1}s \ {0s} such that if an exploration of H performed according to some sequence
W of port numbers, starting from node v1, visits node v at most s times, then in one of
the copies H ′ or H ′′ in Hx(v) the node v′ or v′′ is not visited at all, if the same sequence W
is used to explore the graph Hx(v) starting from v′1. Intuitively, the result from [10] shows
a class of graphs with the property that if some node in one of these graphs is not visited
many times, then the exploration algorithm fails in some other graph of this class. There
is no control in which graph of the class this will happen. We use the graphs from [10] as
building blocks to prove a different kind of lower bound. Indeed, we construct a single graph
having the property that if some of its nodes are not visited many times, then exploration
must fail in this graph. This will prove a lower bound on exploration time for some graph,
even if the agent knows the entire graph.

Using the graphs Hx ∈ HX from [10] we construct the graph Ĝ as follows. For any
1 ≤ i ≤ m, let v′1(i) be the node corresponding to node v′1 from H ′ in the graph Hx(vi).
Connect the graphs Hx(vi), for 1 ≤ i ≤ m, and an oriented cycle C with nodes {y1, · · · , ym}
(port numbers 0,1 are in clockwise order at each node of the cycle), by adding edges (yi, v′1(i)),
for 1 ≤ i ≤ m. The port numbers corresponding to these edges are: 2 at yi and m

2 at v′1(i).
The cycle C is called the main cycle of Ĝ. See Fig. 1.

Let n = 2m2 +m be the number of nodes in Ĝ.
By the construction of Ĝ, any exploration algorithm with the agent starting from any

node of the main cycle, has the following obliviousness property. For any step i of the

B. Gorain and A. Pelc 132:7

0

1 0

0

0

0

1

1

1

1

2

Hx(v1)

Hx(v2)

Hx(v3)

Hx(vm)

H ′

H ′

H ′

H ′

H ′′

H ′′

H ′′

H ′′

y1

y2

y3

ym

H ′

H ′′

Hx(v4)

y4

v′1(1)

crossing edges

Main cycle

Figure 1 Construction of Ĝ.

algorithm, if the agent is at some node v in this step, and the algorithm prescribes taking
some port p at this node, then the port q through which the agent enters the adjacent node
w in the (i + 1)-th step, and the degree of the node w are predetermined (i.e., they are
independent of the starting node in the main cycle). Intuitively, the agent does not learn
anything during the algorithm execution. Therefore, every exploration algorithm with the
agent starting from any node of the main cycle can be uniquely coded by a sequence of port
numbers which the agent takes in consecutive steps of its exploration.

Let A be any exploration algorithm for Ĝ, and suppose that the agent starts from some
node of the main cycle. We use · for concatenation of sequences.

I Lemma 6. Let U be the sequence of port numbers corresponding to the movement of the
agent according to algorithm A, starting at some node of the main cycle C of Ĝ . Then
U = B′1 · (2) · B1 · (m2) · B′2 · (2) · B2 · (m2) · · ·B′p · (2) · Bp · (m2) · B′p+1, where each B′j is a
sequence of port numbers corresponding to the movement of the agent along C and each Bj is
a sequence of port numbers corresponding to the movement of the agent inside some Hx(vi).

Call an exploration algorithm of Ĝ non-repetitive, if the agent, starting from the main
cycle, enters each Hx(vi), for 1 ≤ i ≤ m, exactly once. By definition, the sequence of port
numbers corresponding to a non-repetitive algorithm can be written as D′1 · (2) ·D1 · (m2) ·
D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1, where each D′j is a sequence of port numbers
corresponding to the movement of the agent along C and each Dj is a sequence of port
numbers corresponding to the movement of the agent inside some Hx(vi). Notice that since
the algorithm is non-repetitive, the number of blocks Dj is exactly m.

The following lemma proves that in order to show a lower bound on the exploration time
in Ĝ, it is enough to consider only the class of non-repetitive algorithms.

I Lemma 7. If the agent starts from some node of the main cycle of Ĝ and executes any
exploration algorithm A of Ĝ, then there exists a non-repetitive algorithm A′ for this agent,
such that the exploration time of A′ is at most the exploration time of A.

The next lemma implies that the sequence U corresponding to a correct non-repetitive
exploration algorithm must be long.

ICALP 2017

132:8 Deterministic Graph Exploration with Advice

I Lemma 8. Let U = D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1
be the sequence of port numbers corresponding to a non-repetitive algorithm. If there exists
some Di such that the agent following Di in H starting from node v1 visits some node vj of
H at most s times, then there exists a starting node in the main cycle of Ĝ, such that the
agent starting at this node and following U does not visit all the nodes of Ĝ.

I Theorem 9. Any exploration algorithm using any advice given by a map oracle must take
time Ω(n2) on graph Ĝ, for some starting node in the main cycle, for arbitrarily large n.

Proof. By Lemma 7, it is enough to consider only non-repetitive algorithms. Let U =
D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′m · (2) ·Dm · (m2) ·D′m+1 be the sequence of port
numbers corresponding to such an algorithm. Then by Lemma 8, for each i, 1 ≤ i ≤ m, the
agent following Di in H starting from node v1 visits each node vj of H, for 1 ≤ j ≤ m, at
least s+ 1 times. Therefore the length of Di is at least (s+ 1)m. Hence, the length of U is
at least

∑m
i=1(s+ 1)m = (s+ 1)m2 = m2(m

2

4 −m+ 1). Since n = 2m2 +m, the length of U
is in Ω(n2). J

Theorem 9 shows that, for some n-node graph, no advice given by a map oracle can
help to explore this graph in time better than Θ(n2). It is then natural to ask what is the
minimum size of advice to achieve time Θ(n2) with a map oracle, for every n-node graph.
Our next result shows that any exploration algorithm using advice of size nδ for δ < 1

3 , must
take time ω(n2), on some n-node graph.

Fix a constant ε < 1
2 . Let H be an m

2 -regular graph with m nodes, where m is even. Let
{v1, · · · , vm} be the set of nodes of H. Consider a subset Z ⊂ {1, 2, · · · ,m} of size mε. Let
p = mε and n = 2mp+p. We construct an n-node graph ĜZ from H. The construction of ĜZ
is similar to the construction of Ĝ at the beginning of this section. Let Z = {z1, z2, · · · , zp}.
To construct ĜZ , connect the (previously described) graphs Hx(vzi), for 1 ≤ i ≤ p, and an
oriented cycle C ′ (called the main cycle) with nodes {y1, · · · , yp}, by adding edges (yi, v′1(zi)),
for 1 ≤ i ≤ p. The port numbers corresponding to these edges are: 2 at yi and m

2 at v′1(zi).
Note that the same obliviousness property applies to exploration algorithms in graphs ĜZ ,
when the agent starts from a node of the main cycle.

Let ĜZ be the set of all possible graphs ĜZ constructed from H. We have |ĜZ | =
(
m
p

)
.

I Theorem 10. For any ε < 1
2 , any exploration algorithm using advice of size o(n

ε
1+ε logn)

must take time ω(n2) on some graph of the class ĜZ and for some starting node in the main
cycle of this graph, for arbitrarily large n.

Proof. Since ε < 1
2 , there exists an integer c such that ε < c−1

2c−1 . We show that if the size
of the advice is at most 1

2cm
ε log(m1−ε) ≤ 1−ε

2c(1+ε) (n2)
ε

1+ε log n
2 , then there exists a graph in

ĜZ for which the time required for exploration is ω(n2). We have |ĜZ | =
(
m
mε

)
≥ (m1−ε)mε .

There are fewer than (m1−ε)m
ε

c different binary strings of length at most 1
2cm

ε log(m1−ε). By
the pigeonhole principle, there exists a family of graphs Ĝ ⊂ ĜZ of size at least (m1−ε)(c−1)mεc

such that all the graphs in Ĝ get the same advice.
Define F (Ĝ) =

⋃{
{vz1 , vz2 , · · · , vzp} : Z = {z1, z2, · · · , zp} and ĜZ ∈ Ĝ

}
. Intuitively,

F (Ĝ) is the subset of nodes of H, such that for each v ∈ F (Ĝ), there exists some graph in Ĝ
that contains Hx(v) as a subgraph.

B. Gorain and A. Pelc 132:9

Claim: |F (Ĝ)| ≥ |Ĝ|
1
p .

Proof. We prove the claim by contradiction. Suppose that |F (Ĝ)| < |Ĝ|
1
p . Each graph in Ĝ

has p different subgraphs Hx(v), where v ∈ |F (Ĝ)|. There are
(|F (Ĝ)|

p

)
different graphs in Ĝ

which is at most |F (Ĝ)|p < |Ĝ|. This contradiction proves the claim. J

Consider the exploration of some graph ĜZ ∈ Ĝ starting from the main cycle. Let
U = D′1 · (2) ·D1 · (m2) ·D′2 · (2) ·D2 · (m2) · · ·D′p · (2) ·Dm · (m2) ·D′p+1 be the sequence of port
numbers corresponding to a non-repetitive algorithm exploring ĜZ . Then for each i, 1 ≤ i ≤ p,
the agent following Di in H starting from node v1 must visit each node v ∈ F (Ĝ) at least
s+ 1 times. (Otherwise, there would exist a graph in Ĝ and a starting node in the main cycle,
for which one node would not be explored by U). Hence, for sufficiently large m, the length of
Di is at least (s+1)|F (Ĝ)| ≥ m2

5 m
(c−1)(1−ε)

c , because s ≥ m2

5 . Therefore, the length of U is at
least pm

2

5 m
(c−1)(1−ε)

c = 1
5m

εm2m
(c−1)(1−ε)

c = 1
5m

2+ε+ (c−1)(1−ε)
c = 1

5m
2+2ε+(c−1

c + 1−2c
c ε). Since

ε < c−1
2c−1 , we have (c−1

c + 1−2c
c ε) > 0. Therefore, the length of U is in ω((2m1+ε +mε)2) =

ω(n2), and hence exploration time is in ω(n2). J

Since ε < 1
2 implies ε

1+ε <
1
3 , Theorem 10 yields the following corollary.

I Corollary 11. For any δ < 1
3 , any exploration algorithm using advice of size o(nδ) must

take time ω(n2) on some n-node graph, for arbitrarily large n.

3.2 Instance oracle
For the instance oracle we show a general lower bound on the size of advice needed to achieve
a given exploration time. The main corollaries of this lower bound are:
• the size of advice Θ(n logn) from Proposition 5, sufficient to achieve linear exploration

time, cannot be beaten;
• for advice of linear size, exploration time must be quadratic.
To prove our lower bound we will use the following construction.
Let G be an n

4 -regular
n
2 -node graph, where n is divisible by 4. We can use, for example

the complete bipartite graph with n
2 nodes. Let m = n

2 . Let v1, v2, · · · , vm be the nodes
of G. Let x = (x1, x2, · · · , xm) be a sequence of m integers where 0 ≤ xi ≤ m

2 − 1, for
i = 1, · · · ,m. Let X be the set of all such sequences.

We construct an n-node graph Gx as follows. For each i = 1, · · · ,m, add a new node v′i
of degree 1 to G. Replace the port number xi at vi by port number m

2 . Add the edge (vi, v′i)
with the port number xi at vi. An example of the construction of Gx from G is shown in
Fig. 2. Let GX be the set of all possible graphs Gx constructed from G.

I Theorem 12. For any function φ : N −→ N, and for any exploration algorithm using
advice of size o(nφ(n)), this algorithm must take time Ω(n2

2φ(n)) on some n-node graph from
the family GX , for arbitrarily large integers n.

Proof. Let n be divisible by 4. We show that if the size of the advice is at most nφ(n)
4 −1, then

there exists an n-node graph in the family GX , for which the time required for exploration
is Ω(n2

2φ(n)). We have |GX | = |X| = (m2)m. There are fewer than 2
mφ(2m)

2 = (2φ(2m))m2
different binary strings of length at most 2mφ(2m)

4 − 1 = nφ(n)
4 − 1. By the pigeonhole

principle, there exists a family of graphs G ⊂ GX , of size at least (m2)m

(2φ(2m))
m
2
, such that all

the graphs in G get the same advice. Let Y = {x ∈ X : Gx ∈ G}. Let z = m
2φ(2m)+2 and let

ICALP 2017

132:10 Deterministic Graph Exploration with Advice

v1 v2

v3

v4v5

v6

0 1

0

1

0

1

01

0

1

0

1

2 2

2

22

2

(a) An example of G with six nodes

v1 v2

v3

v4v5

v6

0

0

1

0

1

1

0

1
2

2
2

2

v′1 v′2

v′3

v′4v′5

v′6

2
1

0

2

0

1

3

3

3

3

3

3

1
1

1

1

1

1

(b) Gx for the sequence x = (2, 1, 2, 0, 0, 1)

Figure 2 The construction of Gx from G.

J = {j : |{xj : x ∈ Y }| ≥ z}. Intuitively, J is the set of indices, for which the set of terms of
sequences x that produce graphs from G is large. Let p = |J |.

Claim: p > m
2 .

Proof. We prove the claim by contradiction. Suppose that p ≤ m
2 . Since p ≤ m

2 and
z < m

2 , we have (m2)p · zm−p ≤ (m2)m2 · zm2 . Note that for all i ∈ {1, 2, · · · ,m} \ J , we have
|{xi : x ∈ Y }| < z, and for j ∈ J , we have |{xj : x ∈ Y }| ≤ m

2 . Therefore, |G| < (m2)p · zm−p.
Hence, |G| < (m2)m2 (m

2φ(2m)+2)m2 = mm

2
m
2 (2φ(2m)+2)

m
2
< |G|, which is a contradiction. This proves

the claim. J

Consider any exploration algorithm for the class G. There exists a graph Gx ∈ G, such
that, at each node vj of Gx, for j ∈ J , the agent must take all the ports in {xj : x ∈ Y }.
Indeed, suppose that the agent does not take some port xj , where j ∈ J and x ∈ Y . Consider
the exploration of any graph Gx′ ∈ G, where x′j = xj . Since the agent can visit v′j only
coming from vj , using port x′j in Gx′ , the node v′j remains unexplored, as the port x′j at vj
is never used, which is a contradiction. Hence, the agent must visit at least m

2φ(2m)+2 ports at
each node vj for j ∈ J . Since |J | > m

2 , the time required for exploration is at least m2

2φ(2m)+3 ,
i.e., it is at least n2

2φ(n)+5 . J

If φ(n) = c where c is a constant, then Theorem 12 implies that any exploration algorithm
using advice of size at most cn

2 , must take time at least n2

2c+3 . This implies that, if the size of
advice is at most c′n, for any constant c′, then exploration time is Ω(n2). Hence we have the
following corollary.

I Corollary 13. Any exploration algorithm using advice of size O(n) must take time Ω(n2)
on some n-node graph, for arbitrarily large n.

For φ(n) ∈ o(logn), Theorem 12 implies an exploration time ω(n) which shows that the
upper bound on the size of advice from Proposition 5 is asymptotically tight for exploration
in linear time. The following corollary improves this statement significantly, showing that
exploration time is very sensitive to the size of advice at the threshold Θ(n logn) of the
latter.

B. Gorain and A. Pelc 132:11

I Corollary 14. Consider any constant ε < 2. Any exploration algorithm using advice of
size o(n logn) must take time Ω(nε), on some n-node graph, for arbitrarily large n.

Proof. If the size of advice is o(n logn), then it is nφ(n), where φ(n) = logn
f(n) , with f(n)→∞

as n → ∞. Theorem 12 implies that exploration time must be Ω
(

n2

2
logn
f(n)

)
= Ω

(
n2

n
1

f(n)

)
.

Since, for any constant δ > 0, we have n
1

f(n) ∈ O(nδ), the corollary holds. J

4 Exploration of Hamiltonian graphs

In this section we turn attention to Hamiltonian graphs. These graphs have a special feature
from the point of view of exploration: with sufficiently large advice of appropriate type, the
agent can explore a Hamiltonian graph without any loss of time, visiting each node exactly
once, i.e., in time n− 1, for n-node graphs. Indeed, an instance oracle can give as advice the
sequence of port numbers along a Hamiltonian cycle, from the starting node of the agent,
and then the agent takes the prescribed ports in n− 1 consecutive steps. Since it is enough
to give n− 1 port numbers, and the binary representation of each port number uses O(logn)
bits, advice of size O(n logn), given by an instance oracle, suffices.

We show that neither the quality nor the size of advice can be decreased to achieve the
goal of optimal exploration of Hamiltonian graphs. To prove the first statement, we show
a graph which is impossible to explore in time n− 1 when advice of any size is given by a
map oracle. Indeed, we construct an n-node Hamiltonian graph for which even knowing the
entire map of the graph (but not knowing its starting node) an agent must use time Ω(n2) to
explore it. To prove the second statement, we construct a class of n-node Hamiltonian graphs
for which advice of size o(n logn), even given by an instance oracle, is not enough to permit
exploration of graphs in this class in time n − 1. Indeed, we show more: any exploration
algorithm using such advice must exceed the optimal time n− 1 by a summand nε, for any
ε < 1, on some graph of this class.

In order to prove the first result, we construct a (3n)-node Hamiltonian graph G̃ from
the n-node graph Ĝ described in Section 3.1. First, we consider an m

2 -regular m-node
Hamiltonian graph H (for example, the complete bipartite graph). Let v1, v2, · · · , vm be the
nodes of H along a Hamiltonian cycle. The graph Ĝ is constructed from H as described
in Section 3.1, where the Hamiltonian path (v1, v2, · · · , vm) is taken as the spanning tree
T . We construct the Hamiltonian graph G̃ from the graph Ĝ as follows. Denote by d(v)
the degree of node v in Ĝ. For each node v in Ĝ, consider a cycle of three nodes v(1), v(2),
and v(3), in G̃, with port numbers 3d(v), 3d(v) + 1 in clockwise order at each of these three
nodes. For each edge (u, v) in Ĝ, such that the port numbers corresponding to this edge are
p at u and q at v, add, in G̃, the edges (u(i), v(j)), for 1 ≤ i, j ≤ 3, with the following port
numbers. The port numbers corresponding to edge (u(i), v(j)) are: p+ (j − 1)d(u) at u(i)
and q + (i− 1)d(v) at v(j), see Fig. 3.

I Lemma 15. The graph G̃ is Hamiltonian.

Let A be an exploration algorithm for G̃ starting from node yi(1), for some i ≤ m. We
describe the following algorithm A∗ on Ĝ, starting from node yi. Ignore all moves of A
taking port 3d(v) or 3d(v) + 1 at a node v(j), for 1 ≤ j ≤ 3, of G̃. Replace every move of A
taking port r = p+ (i− 1)d(v), at node v(j), for 1 ≤ j ≤ 3, in G̃, where 0 ≤ p ≤ d(v)− 1, by
a move taking port p in Ĝ.

Then the agent executing A∗ in Ĝ, starting from the main cycle, explores all the nodes.
The time used by A∗ in Ĝ does not exceed the time used by A in G̃. Since, by Theorem 9, any

ICALP 2017

132:12 Deterministic Graph Exploration with Advice

p q

u v

u(1)

u(2)

u(3)

v(1)

v(2)

v(3)

p q

p+ d(u)

p+ 2d(u)
3d(u)

3d(u) + 1

3d(u)

3d(u) + 1

3d(u)

3d(u) + 1

q

q

p

p

p+ d(u)

p+ d(u)

p+ 2d(u)

p+ 2d(u)

q + d(v)

q + 2d(v)

q + 2d(v)

q + 2d(v)

q + d(v)

q + d(v)

3d(v) + 1

3d(v) + 1

3d(v) + 1

3d(v)

3d(v)

3d(v)

Figure 3 The construction of G̃ from Ĝ.

exploration algorithm for Ĝ, starting from the main cycle, must take time Ω(n2), algorithm
A must take time Ω(n2) to explore G̃. Replacing 3n by n we have the following theorem.

I Theorem 16. Any exploration algorithm using any advice given by a map oracle must
take time Ω(n2) on some n-node Hamiltonian graph, for arbitrarily large n.

Our last result shows that advice of size o(n logn) causes significant increase of exploration
time for some Hamiltonian graphs, as compared to optimal time n− 1 achievable with advice
of size O(n logn), given by an instance oracle.

I Theorem 17. For any constant ε < 1, and for any exploration algorithm using advice of
size o(n logn), this algorithm must take time n+ nε, on some n-node Hamiltonian graph, for
arbitrarily large n.

5 Conclusion

Most of our lower bounds on the size of advice are either exactly or asymptotically tight. The
lower bound log log logn−Θ(1) on the size of advice sufficient to explore all n-node graphs
in polynomial time is exactly tight: with advice of any such size, polynomial exploration
is possible, and with advice of any smaller size it is not. For an instance oracle, the lower
bound Ω(n logn) on the size of advice sufficient to explore n-node graphs in O(n) time is
asymptotically tight, as we gave a linear time exploration algorithm using advice of size
O(n logn). An exception to this tightness is the lower bound on the size of advice given
by a map oracle, permitting exploration in time O(n2). While the natural upper bound is
O(n logn), our lower bound is only nδ for any δ < 1

3 . Hence the main remaining question is:
What is the smallest advice, given by a map oracle, permitting exploration of n-node

graphs in time O(n2)?

Acknowledgements. We are grateful to Adrian Kosowski for early discussions on the subject
of this paper and for drawing our attention to [10].

References
1 Serge Abiteboul, Stephen Alstrup, Haim Kaplan, Tova Milo, and Theis Rauhe. Compact

labeling scheme for ancestor queries. SIAM J. Comput., 35(6):1295–1309, 2006. doi:
10.1137/S0097539703437211.

2 Susanne Albers and Monika Rauch Henzinger. Exploring unknown environments. SIAM
J. Comput., 29(4):1164–1188, 2000. doi:10.1137/S009753979732428X.

http://dx.doi.org/10.1137/S0097539703437211
http://dx.doi.org/10.1137/S0097539703437211
http://dx.doi.org/10.1137/S009753979732428X

B. Gorain and A. Pelc 132:13

3 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31
October 1979, pages 218–223. IEEE Computer Society, 1979. doi:10.1109/SFCS.1979.34.

4 Baruch Awerbuch, Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal graph
exploration by a mobile robot. Inf. Comput., 152(2):155–172, 1999. doi:10.1006/inco.
1999.2795.

5 Eldad Bar-Eli, Piotr Berman, Amos Fiat, and Peiyuan Yan. Online navigation in a room.
J. Algorithms, 17(3):319–341, 1994. doi:10.1006/jagm.1994.1039.

6 Michael A. Bender, Antonio Fernández, Dana Ron, Amit Sahai, and Salil P. Vadhan. The
power of a pebble: Exploring and mapping directed graphs. Inf. Comput., 176(1):1–21,
2002. doi:10.1006/inco.2001.3081.

7 Michael A. Bender and Donna K. Slonim. The power of team exploration: Two robots can
learn unlabeled directed graphs. In 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 75–85. IEEE Computer
Society, 1994. doi:10.1109/SFCS.1994.365703.

8 Margrit Betke, Ronald L. Rivest, and Mona Singh. Piecemeal learning of an unknown
environment. Machine Learning, 18(2-3):231–254, 1995. doi:10.1007/BF00993411.

9 Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geomet-
ric terrain. SIAM J. Comput., 26(1):110–137, 1997. doi:10.1137/S0097539791194931.

10 Allan Borodin, Walter L. Ruzzo, and Martin Tompa. Lower bounds on the length of
universal traversal sequences. J. Comput. Syst. Sci., 45(2):180–203, 1992. doi:10.1016/
0022-0000(92)90046-L.

11 Jérémie Chalopin, Shantanu Das, and Adrian Kosowski. Constructing a map of an an-
onymous graph: Applications of universal sequences. In Chenyang Lu, Toshimitsu Mas-
uzawa, and Mohamed Mosbah, editors, Principles of Distributed Systems - 14th Inter-
national Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceed-
ings, volume 6490 of Lecture Notes in Computer Science, pages 119–134. Springer, 2010.
doi:10.1007/978-3-642-17653-1_10.

12 Xiaotie Deng, Tiko Kameda, and Christos H. Papadimitriou. How to learn an unknown
environment I: the rectilinear case. J. ACM, 45(2):215–245, 1998. doi:10.1145/274787.
274788.

13 Dariusz Dereniowski and Andrzej Pelc. Drawing maps with advice. J. Parallel Distrib.
Comput., 72(2):132–143, 2012. doi:10.1016/j.jpdc.2011.10.004.

14 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree exploration
with little memory. J. Algorithms, 51(1):38–63, 2004. doi:10.1016/j.jalgor.2003.10.
002.

15 Stefan Dobrev, Rastislav Královic, and Euripides Markou. Online graph exploration with
advice. In Guy Even and Magnús M. Halldórsson, editors, Structural Information and
Communication Complexity - 19th International Colloquium, SIROCCO 2012, Reykjavik,
Iceland, June 30-July 2, 2012, Revised Selected Papers, volume 7355 of Lecture Notes in
Computer Science, pages 267–278. Springer, 2012. doi:10.1007/978-3-642-31104-8_23.

16 Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal constrained
graph exploration. ACM Trans. Algorithms, 2(3):380–402, 2006. doi:10.1145/1159892.
1159897.

17 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011. doi:10.1016/j.tcs.2010.08.007.

18 Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. Distributed computing
with advice: information sensitivity of graph coloring. Distributed Computing, 21(6):395–
403, 2009. doi:10.1007/s00446-008-0076-y.

ICALP 2017

http://dx.doi.org/10.1109/SFCS.1979.34
http://dx.doi.org/10.1006/inco.1999.2795
http://dx.doi.org/10.1006/inco.1999.2795
http://dx.doi.org/10.1006/jagm.1994.1039
http://dx.doi.org/10.1006/inco.2001.3081
http://dx.doi.org/10.1109/SFCS.1994.365703
http://dx.doi.org/10.1007/BF00993411
http://dx.doi.org/10.1137/S0097539791194931
http://dx.doi.org/10.1016/0022-0000(92)90046-L
http://dx.doi.org/10.1016/0022-0000(92)90046-L
http://dx.doi.org/10.1007/978-3-642-17653-1_10
http://dx.doi.org/10.1145/274787.274788
http://dx.doi.org/10.1145/274787.274788
http://dx.doi.org/10.1016/j.jpdc.2011.10.004
http://dx.doi.org/10.1016/j.jalgor.2003.10.002
http://dx.doi.org/10.1016/j.jalgor.2003.10.002
http://dx.doi.org/10.1007/978-3-642-31104-8_23
http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1145/1159892.1159897
http://dx.doi.org/10.1016/j.tcs.2010.08.007
http://dx.doi.org/10.1007/s00446-008-0076-y

132:14 Deterministic Graph Exploration with Advice

19 Pierre Fraigniaud and David Ilcinkas. Digraphs exploration with little memory. In Volker
Diekert and Michel Habib, editors, STACS 2004, 21st Annual Symposium on Theoretical
Aspects of Computer Science, Montpellier, France, March 25-27, 2004, Proceedings, volume
2996 of Lecture Notes in Computer Science, pages 246–257. Springer, 2004. doi:10.1007/
978-3-540-24749-4_22.

20 Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Tree exploration with advice. Inf.
Comput., 206(11):1276–1287, 2008. doi:10.1016/j.ic.2008.07.005.

21 Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. Communication algorithms with
advice. J. Comput. Syst. Sci., 76(3-4):222–232, 2010. doi:10.1016/j.jcss.2009.07.002.

22 Pierre Fraigniaud, Amos Korman, and Emmanuelle Lebhar. Local MST computa-
tion with short advice. Theory Comput. Syst., 47(4):920–933, 2010. doi:10.1007/
s00224-010-9280-9.

23 Emanuele G. Fusco and Andrzej Pelc. Trade-offs between the size of advice and broadcast-
ing time in trees. Algorithmica, 60(4):719–734, 2011. doi:10.1007/s00453-009-9361-9.

24 Emanuele G. Fusco, Andrzej Pelc, and Rossella Petreschi. Topology recognition with advice.
Inf. Comput., 247:254–265, 2016. doi:10.1016/j.ic.2016.01.005.

25 Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance labeling in graphs.
J. Algorithms, 53(1):85–112, 2004. doi:10.1016/j.jalgor.2004.05.002.

26 David Ilcinkas, Dariusz R. Kowalski, and Andrzej Pelc. Fast radio broadcasting with advice.
Theor. Comput. Sci., 411(14-15):1544–1557, 2010. doi:10.1016/j.tcs.2010.01.004.

27 Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Com-
puting, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.

28 Robert Krauthgamer, editor. Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016.
SIAM, 2016. doi:10.1137/1.9781611974331.

29 Nicolas Nisse and David Soguet. Graph searching with advice. Theor. Comput. Sci.,
410(14):1307–1318, 2009. doi:10.1016/j.tcs.2008.08.020.

30 Petrisor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. J. Algorithms,
33(2):281–295, 1999. doi:10.1006/jagm.1999.1043.

31 Petrisor Panaite and Andrzej Pelc. Optimal broadcasting in faulty trees. J. Parallel Distrib.
Comput., 60(5):566–584, 2000. doi:10.1006/jpdc.2000.1625.

32 Andrzej Pelc and Anas Tiane. Efficient grid exploration with a stationary token. Int. J.
Found. Comput. Sci., 25(3):247–262, 2014. doi:10.1142/S0129054114500129.

33 Nageswara S. V. Rao, Srikumar Kareti, Weimin Shi, and S. Sitharama Iyengar. Robot
navigation in unknown terrains: Introductory survey of non-heuristic algorithms, Jul 1993.
doi:10.2172/10180101.

34 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, 2008.
doi:10.1145/1391289.1391291.

35 A. Pelc Y. Dieudonné. Impact of knowledge on election time in anonymous networks. In
Proc. 29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2017),
2017. doi:10.1007/978-3-642-17653-1_10.

http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1016/j.ic.2008.07.005
http://dx.doi.org/10.1016/j.jcss.2009.07.002
http://dx.doi.org/10.1007/s00224-010-9280-9
http://dx.doi.org/10.1007/s00224-010-9280-9
http://dx.doi.org/10.1007/s00453-009-9361-9
http://dx.doi.org/10.1016/j.ic.2016.01.005
http://dx.doi.org/10.1016/j.jalgor.2004.05.002
http://dx.doi.org/10.1016/j.tcs.2010.01.004
http://dx.doi.org/10.1007/s00446-010-0095-3
http://dx.doi.org/10.1137/1.9781611974331
http://dx.doi.org/10.1016/j.tcs.2008.08.020
http://dx.doi.org/10.1006/jagm.1999.1043
http://dx.doi.org/10.1006/jpdc.2000.1625
http://dx.doi.org/10.1142/S0129054114500129
http://dx.doi.org/10.2172/10180101
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1007/978-3-642-17653-1_10

Combinatorial Secretary Problems with Ordinal
Information∗†

Martin Hoefer1 and Bojana Kodric2

1 Institute of Computer Science, Goethe-University Frankfurt am Main,
Frankfurt, Germany
mhoefer@cs.uni-frankfurt.de

2 MPI for Informatics and Saarland University, Saarland Informatics Campus,
Saarbrücken, Germany
bojana@mpi-inf.mpg.de

Abstract
The secretary problem is a classic model for online decision making. Recently, combinatorial
extensions such as matroid or matching secretary problems have become an important tool to
study algorithmic problems in dynamic markets. Here the decision maker must know the numer-
ical value of each arriving element, which can be a demanding informational assumption. In this
paper, we initiate the study of combinatorial secretary problems with ordinal information, in
which the decision maker only needs to be aware of a preference order consistent with the values
of arrived elements. The goal is to design online algorithms with small competitive ratios.

For a variety of combinatorial problems, such as bipartite matching, general packing LPs,
and independent set with bounded local independence number, we design new algorithms that
obtain constant competitive ratios.

For the matroid secretary problem, we observe that many existing algorithms for special
matroid structures maintain their competitive ratios even in the ordinal model. In these cases,
the restriction to ordinal information does not represent any additional obstacle. Moreover, we
show that ordinal variants of the submodular matroid secretary problems can be solved using
algorithms for the linear versions by extending [18]. In contrast, we provide a lower bound of
Ω(
√
n/(logn)) for algorithms that are oblivious to the matroid structure, where n is the total

number of elements. This contrasts an upper bound of O(logn) in the cardinal model, and
it shows that the technique of thresholding is not sufficient for good algorithms in the ordinal
model.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Secretary Problem, Matroid Secretary, Ordinal Information, Online Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.133

1 Introduction

The secretary problem is a classic approach to model online decision making under uncertain
input. The interpretation is that a firm needs to hire a secretary. There are n candidates and
they arrive sequentially in random order for an interview. Following an interview, the firm
learns the value of the candidate, and it has to make an immediate decision about hiring him

∗ A full version is available at http://arxiv.org/abs/1702.01290.
† This work was supported by DFG Cluster of Excellence MMCI at Saarland University.

EA
T

C
S

© Martin Hoefer and Bojana Kodric;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 133; pp. 133:1–133:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.133
http://arxiv.org/abs/1702.01290
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

133:2 Combinatorial Secretary Problems with Ordinal Information

before seeing the next candidate(s). If the candidate is hired, the process is over. Otherwise,
a rejected candidate cannot be hired at a later point in time. The optimal algorithm is a
simple greedy rule that rejects all candidates in an initial learning phase. In the following
acceptance phase, it hires the first candidate that is the best among all the ones seen so far.
It manages to hire the best candidate with optimal probability 1/e. Notably, it only needs
to know if a candidate is the best seen so far, but no exact numerical values.

Since its introduction [15], the secretary problem has attracted a huge amount of research
interest. Recently, a variety of combinatorial extensions have been studied in the literature [7]
capturing a variety of fundamental online allocation problems in networks and markets,
such as network design [28], resource allocation [25], medium access in networks [22], or
competitive admission processes [12]. Prominently, in the matroid secretary problem [8], the
elements of a weighted matroid arrive in uniform random order (e.g., weighted edges of an
undirected graph G). The goal is to select a max-weight independent set of the matroid
(e.g., a max-weight forest of G). The popular matroid secretary conjecture claims that for
all matroids, there exists an algorithm with a constant competitive ratio, i.e., the expected
total weight of the solution computed by the algorithm is at least a constant fraction of the
total weight of the optimum solution. Despite much progress on special cases, the conjecture
remains open. Beyond matroids, online algorithms for a variety of combinatorial secretary
problems with downward-closed structure have recently been studied (e.g., matching [28, 25],
independent set [22], linear packing problems [26] or submodular versions [18]).

The best known algorithms for matroid or matching secretary problems rely heavily on
knowing the exact weight structure of elements. They either compute max-weight solutions
to guide the admission process or rely on advanced bucketing techniques to group elements
based on their weight. For a decision maker, in many applications it can be quite difficult
to determine an exact cardinal preference for each of the incoming candidates. In contrast,
in the original problem, the optimal algorithm only needs ordinal information about the
candidates. This property provides a much more robust guarantee, since the numerical values
can be arbitrary, as long as they are consistent with the preference order.

In this paper, we study algorithms for combinatorial secretary problems that rely only
on ordinal information. We assume that there is an unknown value for each element, but
our algorithms only have access to the total order of the elements arrived so far, which is
consistent with their values. We term this the ordinal model; as opposed to the cardinal
model, in which the algorithm learns the exact values. We show bounds on the competitive
ratio, i.e., we compare the quality of the computed solutions to the optima in terms of the
exact underlying but unknown numerical values. Consequently, competitive ratios for our
algorithms are robust guarantees against uncertainty in the input. Our approach follows a
recent line of research by studying the potential of algorithms with ordinal information to
approximate optima based on numerical values [4, 3, 1, 10].

1.1 Our Contribution
We first point out that many algorithms proposed in the literature continue to work in the
ordinal model. In particular, a wide variety of algorithms for variants of the matroid secretary
problem with constant competitive ratios continue to obtain their guarantees in the ordinal
model (see Table 1 for an overview). This shows that many results in the literature are much
stronger, since the algorithms require significantly less information. Notably, the algorithm
of [9] extends to the ordinal model and gives a ratio of O(log2 r) for general matroids, where
r is the rank of the matroid. In contrast, the improved algorithms with ratios of O(log r)
and O(log log r) [8, 30, 16] are not applicable in the ordinal model.

M. Hoefer and B. Kodric 133:3

For several combinatorial secretary problems we obtain new algorithms for the ordinal
model. For online bipartite matching we give an algorithm that is 2e-competitive. More
generally, it obtains a ratio of 3e when the value of the matching is a submodular set function
of the chosen edges. We also extend this result to online packing LPs with at most d non-zero
entries per variable. Here we obtain an O(d(B+1)/B)-competitive algorithm, where B is a
tightness parameter of the constraints. Another extension is matching in general graphs, for
which we give a 8.78-competitive algorithm.

We give an O(α2
1)-competitive algorithm for the online weighted independent set problem

in graphs, where α1 is the local independence number of the graph. For example, for the
prominent case of unit-disk graphs, α1 = 5 and we obtain a constant-competitive algorithm.

For matroids, we extend a result of [18] to the ordinal model: The reduction from
submodular to linear matroid secretary can be done with ordinal information for marginal
weights of the elements. More specifically, we show that whenever there is an algorithm that
solves the matroid secretary problem in the ordinal model on some matroid class and has
a competitive ratio of α, there is also an algorithm for the submodular matroid secretary
problem in the ordinal model on the same matroid class with a competitive ratio of O(α2).
The ratio can be shown to be better if the linear algorithm satisfies some further properties.

Lastly, we consider the importance of knowing the weights, ordering, and structure of
the domain. For algorithms that have complete ordinal information but cannot learn the
specific matroid structure, we show a lower bound of Ω(

√
n/(logn)), even for partition

matroids, where n is the number of elements in the ground set. This bound contrasts the
O(log2 r)-competitive algorithm and indicates that learning the matroid structure is crucial in
the ordinal model. Moreover, it contrasts the cardinal model, where thresholding algorithms
yield O(log r)-competitive algorithms without learning the matroid structure.

For structural reasons, we present our results in a slightly different order. We first discuss
the matroid results in Section 3. Then we proceed with matching and packing in Section 4
and independent set in Section 5. Due to spatial constraints, all missing proofs are deferred
to the full version [23].

2 Preliminaries and Related Work

In the typical problem we study, there is a set E of elements arriving sequentially in random
order. The algorithm knows n = |E| in advance. It must accept or reject an element before
seeing the next element(s). There is a set S ⊆ 2E of feasible solutions. S is downward-closed,
i.e., if S ∈ S, then S′ ∈ S for every S′ ⊆ S. The goal is to accept a feasible solution that
maximizes an objective function f . In the linear version, each element has a value or weight
we, and f(S) =

∑
e∈S we. In the submodular version, f is submodular and f(∅) = 0.

In the linear ordinal model, the algorithm only sees a strict total order over the elements
seen so far that is consistent with their weights (ties are broken arbitrarily). For the
submodular version, we interpret the value of an element as its marginal contribution to a
set of elements. In this case, our algorithm has access to an ordinal oracle O(S). For every
subset S of arrived elements, O(S) returns a total order of arrived elements consistent with
their marginal values f(e|S) = f(S ∪ {e})− f(S). We chose this particular model because it
elegantly aligns with the online setting. Both stronger and weaker definitions are possible
and these are interesting avenues for future work.

Given this information, we strive to design algorithms with small competitive ratio
f(S∗)/E[f(Salg)]. Here S∗ is an optimal feasible solution and Salg the solution returned by
the algorithm. Note that Salg is a random variable due to random-order arrival and possible
internal randomization of the algorithm.

ICALP 2017

133:4 Combinatorial Secretary Problems with Ordinal Information

Table 1 Existing algorithms for matroid secretary problems that provide the same guarantee in
the ordinal model.

Matroid general k-uniform graphic cographic transversal laminar regular

Ratio O(log2 r) 1 + O(
√

1/k), e 2e 3e 16 3
√

3e 9e

Reference [9] [15, 27, 6] [28] [31] [13] [24] [14]

In the matroid secretary problem, the pair M = (E,S) is a matroid. We summarize
in Table 1 some of the existing results for classes of the (linear) problem that transfer to
the ordinal model. The algorithms for all restricted matroid classes other than the graphic
matroid assume a-priori complete knowledge of the matroid – only weights are revealed
online. The algorithms do not use cardinal information, their decisions are based only on
ordinal information. As such, they translate directly to the ordinal model. Notably, the
algorithm from [9] solves even the general submodular matroid secretary problem in the
ordinal model.

2.1 Related Work
Our work is partly inspired by [4, 5], who study ordinal approximation algorithms for
classical optimization problems. They design constant-factor approximation algorithms for
matching and clustering problems with ordinal information and extend the results to truthful
mechanisms. Our approach here differs due to online arrival. Anshelevich et al. [3] examine
the quality of randomized social choice mechanisms when agents have metric preferences but
only ordinal information is available to the mechanism. Previously, [1, 10] studied ordinal
measures of efficiency in matchings, for instance the average rank of an agent’s partner.

The literature on the secretary problem is too broad to survey here. We only discuss
directly related work on online algorithms for combinatorial variants. In[29, 21], the authors
study hiring a single secretary when only a partial ordering of the candidates is available.
For multiple-choice secretary, where we can select any k candidates, there are algorithms
with ratios that are constant and asymptotically decreasing in k [27, 6]. More generally, the
matroid secretary problem has attracted a large amount of research interest [8, 11, 30, 16],
and the best-known algorithm in the cardinal model has ratio O(log log r). For results on
specific matroid classes, see the overview in Table 1. Extensions to the submodular version
are treated in [9, 18].

Another prominent domain is online bipartite matching, in which one side of the graph is
known in advance and the other arrives online in random order, each vertex revealing all
incident weighted edges when it arrives [28]. In this case, there is an optimal algorithm with
ratio e [25]. Moreover, our paper is related to Göbel et al. [22] who study secretary versions
of maximum independent set in graphs with bounded inductive independence number ρ.
They derive an O(ρ2)-competitive algorithm for unweighted and an O(ρ2 logn)-competitive
algorithm for weighted independent set.

In addition, algorithms have been proposed for further variants of the secretary problem,
e.g., the temp secretary problem (candidates hired for a fixed duration) [19], parallel sec-
retary (candidates interviewed in parallel) [17], or local secretary (several firms and limited
feedback) [12]. For these variants, some existing algorithms (e.g., for the temp secretary
problem in [19]) directly extend to the ordinal model. In general, however, the restriction to
ordinal information poses an interesting challenge for future work in these domains.

M. Hoefer and B. Kodric 133:5

Algorithm 1: Greedy [18]
Input : ground set E
Output : independent set I

1 Let I ← ∅ and E′ ← E.
2 while E′ 6= ∅ do
3 Let u← maxu′ f(u′|I) and E′ ← E′ \ {u};
4 if (I ∪ {u} independent inM) ∧ (f(u|I) ≥ 0) then add u to I;

Algorithm 2: Online(p) algorithm [18]
Input :n = |E|, size of the ground set
Output : independent set Q ∩N

1 Choose X from the binomial distribution B(n, 1/2).
2 Reject the first X elements of the input. Let L be the set of these elements.
3 Let M be the output of Greedy on the set L.
4 Let N ← ∅.
5 for each element u ∈ E \ L do
6 Let w(u)← 0.
7 if u accepted by Greedy applied to M ∪ {u} then
8 With probability p do the following:
9 Add u to N .

10 Let Mu ⊆M be the solution of Greedy immediately before it adds u to it.
11 w(u)← f(u|Mu).
12 Pass u to Linear with weight w(u).
13 return Q ∩N , where Q is the output of Linear.

3 Matroids

3.1 Submodular Matroids

We start our analysis by showing that – in addition to algorithms for special cases mentioned
above – a powerful technique for submodular matroid secretary problems [18] can be adjusted
to work even in the ordinal model. More formally, in this section we show that there is a
reduction from submodular matroid secretary problems with ordinal information (SMSPO)
to linear matroid secretary problems with ordinal information (MSPO). The reduction uses
Greedy (Algorithm 1) as a subroutine and interprets the marginal value when added to the
greedy solution as the value of an element. These values are then forwarded to whichever
algorithm (termed Linear) that solves the linear version of the problem. In the ordinal model,
we are unable to see the exact marginal values. Nevertheless, we manage to construct a
suitable ordering for the forwarded elements. Consequently, we can apply algorithm Linear
as a subroutine to obtain a good solution for the ordinal submodular problem.

LetM = (E,S) be the matroid, f the submodular function, and E the ground set of
elements. The marginal contribution of element u to set M is denoted by f(u|M) = f(M ∪
{u})− f(M). Since f can be non-monotone, Greedy in the cardinal model also checks if the
marginal value of the currently best element is positive. While we cannot explicitly make this
check in the ordinal model, note that f(u|M) ≥ 0 ⇐⇒ f(M ∪ {u}) ≥ f(M) = f(M ∪ {u′})

ICALP 2017

133:6 Combinatorial Secretary Problems with Ordinal Information

for every u′ ∈ M . Since the ordinal oracle includes the elements of M in the ordering of
marginal values, there is a way to check positivity even in the ordinal model. Therefore, our
results also apply to non-monotone functions f .

A potential problem with Algorithm 2 is that we must compare marginal contributions
of different elements w.r.t. different sets. We can resolve this issue by following the steps
of the Greedy subroutine that tries to add new elements to the greedy solution computed
on the sample. We use this information to construct a correct ordering over the marginal
contributions of elements that we forward to Linear.

I Lemma 1. Let us denote by su the step of Greedy in which the element u is accepted when
applied to M + u. Then su1 < su2 implies f(u1|Mu1) ≥ f(u2|Mu2).

Proof. First, note that Mu1 ⊂ Mu2 when s1 < s2. We denote by mu1 the element of
M that would be taken in step su1 if u1 would not be available. Then we know that
f(u1|Mu1) ≥ f(mu1 |Mu1). Furthermore, since s1 < s2, f(mu1 |Mu1) ≥ f(u2|Mu1). Lastly,
by using submodularity, we know that f(u2|Mu1) ≥ f(u2|Mu2). J

When su1 = su2 , then Mu1 = Mu2 so the oracle provides the order of marginal values.
Otherwise, the lemma yields the ordinal information. Thus, we can construct an ordering for
the elements that are forwarded to Linear that is consistent with their marginal values in the
cardinal model. Hence, the reduction can be applied in the ordinal model, since the algorithm
executes exactly the same as in the cardinal model, and all results from [18] continue to hold.
We mention only the main theorem. It implies constant ratios for all problems in Table 1 in
the submodular version.

I Theorem 2. Given an arbitrary algorithm Linear for MSPO that is α-competitive on a
matroid class, there is an algorithm for SMSPO with competitive ratio is at most 24α(3α+1) =
O(α2) on the same matroid class. For SMSPO with monotone f , it can be improved to
8α(α+ 1).

3.2 A Lower Bound
Another powerful technique in the cardinal model is thresholding, where we first sample a
constant fraction of the elements to learn their weights. Based on the largest weight observed,
we pick a threshold and accept subsequent elements greedily if they exceed the threshold.
This approach generalizes the classic algorithm [15] and provides logarithmic ratios for many
combinatorial domains [8, 28, 22, 12]. Intuitively, these algorithms learn the weights but not
the structure.

We show that this technique does not easily generalize to the ordinal model. The
algorithms with small ratios in the ordinal model rely heavily on the matroid structure.
Indeed, in the ordinal model we show a polynomial lower bound for algorithms in the matroid
secretary problem that learn the ordering but not the structure. Formally, we slightly simplify
the setting as follows. The algorithm receives the global ordering of all elements in advance.
It determines (possibly at random) a threshold position in the ordering. Then elements
arrive and are accepted greedily if ranked above the threshold. Note that the algorithm does
not use sampling, since in this case the only meaningful purpose of sampling is learning the
structure. We call this a structure-oblivious algorithm.

I Theorem 3. Every structure-oblivious randomized algorithm has a competitive ratio of at
least Ω(

√
n/(logn)).

M. Hoefer and B. Kodric 133:7

nn−k3k2kk . . .1

01

01 ...

1

Figure 1 Values for the family of instances described in the proof of Theorem 11, where the
position of the “valuable” ones is denoted by the thick segment.

...

...
...

...

. . .1
1
1

1

1

0
0

0

1

0
0

0

1

0
0

0

k

Figure 2 One instance from the family described in the proof of Theorem 11.

Proof. In the proof, we restrict our attention to instances with weights in {0, 1} (for a formal
justification, see the full version [23]). We give a distribution of such instances on which every
deterministic algorithm has a competitive ratio of Ω(

√
n/(logn)). Using Yao’s principle, this

shows the claimed result for randomized algorithms.
All instances in the distribution are based on a graphic matroid (in fact, a partition

matroid) of the following form. There is a simple path of 1 + k segments. The edges in each
segment have weight of 0 or 1. We call the edges with value 1 in the last k segments the
“valuable edges”. The total number of edges is the same in each instance and equals n+ 1.
All edges in the first segment have value 1 and there is exactly one edge of value 1 in all
other segments (that being the aforementioned valuable edges). In the first instance there
are in total k + 1 edges of value 1 (meaning that there is only one edge in the first segment).
In each of the following instances this number is increased by k (in the i-th instance there
are (i− 1) · k + 1 edges in the first segment) such that the last instance has only edges with
value 1 (there are n− k + 1 edges in the first segment). The zero edges are always equally
distributed on the last k path segments. The valuable edges are lower in the ordering than
any non-valuable edge with value 1 (see Figure 1). Each of the instances appears with equal
probability of kn (see Figure 2 for one example instance).

A deterministic algorithm picks a threshold at position i. The expected value of the
solution is

E[w(Salg)] ≤ 1 + k

n

i
k∑
`=1

k

`
≤ 1 + k2

n
log i

k
≤ k2

n
log n

k
+ 1 ,

where log denotes the natural logarithm and the expression results from observing that the
algorithm cannot obtain more than a value of 1 if its threshold i falls above the valuable
1’s. Otherwise it gets an additional fraction of k, depending on how close the threshold is
positioned to the valuable 1’s. For instance, if the threshold is set between 1 and k positions

ICALP 2017

133:8 Combinatorial Secretary Problems with Ordinal Information

below the valuable 1’s, the algorithm will in expectation select edges of total value of at
least 1 + k/2. This follows from the random arrival order of the edges and the fact that
the ratio of valuable to non-valuable edges that the algorithm is ready to accept is at least
1 : 2. Furthermore, we see that for this distribution of instances the optimal way to set
a deterministic threshold is at the lowest position. Using k =

√
n, a lower bound on the

competitive ratio is

k
k2

n log n
k + 1

= n

k log n
k + n

k

= Ω
(√

n

logn

)
. J

4 Matching and Packing

4.1 Bipartite Matching

In this section, we study online bipartite matching. The vertices on the right side of the
graph (denoted by R) are static and given in advance. The vertices on the left side (denoted
by L) arrive sequentially in a random order. Every edge e = (r, l) ∈ R×L has a non-negative
weight w(e) ≥ 0. In the cardinal model, each vertex of L reveals upon arrival the weights of
all incident edges. In the ordinal model, we are given a total and strict order of all edges that
have arrived so far, consistent with their weights1. Before seeing the next vertex of L, the
algorithm has to decide to which vertex r ∈ R (if any) it wants to match the current vertex
l. A match that is formed cannot be revoked. The goal is to maximize the total weight of
the matching.

The algorithm for the cardinal model in [25] achieves an optimal competitive ratio of
e. However, this algorithm heavily exploits cardinal information by repeatedly computing
max-weight matchings for the edges seen so far. For the ordinal model, our Algorithm 3
below obtains a competitive ratio of 2e. While similar in spirit, the main difference is that
we rely on a greedy matching algorithm, which is based solely on ordinal information. It
deteriorates the ratio only by a factor of 2.

Here we assume to have access to ordinal preferences over all the edges in the graph. Note
that the same approach works if the vertices provide correlated (ordinal) preference lists
consistent with the edge weights, for every vertex from R and every arrived vertex from L. In
this case, the greedy algorithm can still be implemented by iteratively matching and removing
a pair that mutually prefers each other the most, and it provides an approximation guarantee
of 2 for the max-weight matching (see, e.g., [2]). In contrast, if we receive only preference
lists for vertices on one side, there are simple examples that establish super-constant lower
bounds on the competitive ratio2.

I Lemma 4. Let the random variable Av denote the contribution of the vertex v ∈ L to the
output, i.e. weight assigned to v in M . Let w(M∗) denote the value of the maximum-weight
matching in G. For l ∈ {dne e, . . . , n},

E
[
Al
]
≥
dne e
l − 1 ·

w(M∗)
2n .

1 Ties are broken arbitrarily, but consistently over the arrival process.
2 Consider a bipartite graph with two nodes on each side (named A,B and 1,2). If we only know that

both A and B prefer 1 to 2, the ratio becomes at least 2 even in the offline case. Similar examples imply
that the (offline) ratio must grow in the size of the graph.

M. Hoefer and B. Kodric 133:9

Algorithm 3: Bipartite Matching
Input : vertex set R and cardinality n = |L|
Output :matching M

1 Let L′ be the first bne c vertices of L, and M ← ∅;
2 for each ` ∈ L \ L′ do
3 L′ ← L′ ∪ {`};
4 M (`) ← greedy matching on G[L′ ∪R];
5 Let e(`) ← (`, r) be the edge assigned to ` in M (`);
6 if M ∪ {e(`)} is a matching then add e(`) to M ;

Proof. We first show that e(`) has a significant expected weight. Then we bound the
probability of adding e(`) to M .

In step `, |L′| = ` and the algorithm computes a greedy matching M (`) on G[L′ ∪ R].
The current vertex ` can be seen as selected uniformly at random from L′, and L′ can
be seen as selected uniformly at random from L. Therefore, E[w(M (`))] ≥ `

n ·
w(M∗)

2 and
E[w(e(`))] ≥ w(M∗)

2n . Here we use that a greedy matching approximates the optimum by at
most a factor of 2 [2].

Edge e(`) can be added to M if r has not been matched already. The vertex r can be
matched only when it is inM (k) where dn/ee ≤ k ≤ l−1. The probability of r being matched
in step k is at most 1

k and the order of the vertices in steps 1, . . . , k − 1 is irrelevant for this
event.

Pr[r unmatched in step `] = Pr
[

`−1∧
k=dn/ee

r 6∈ e(k)

]
≥

`−1∏
k=dn/ee

k − 1
k

=
dne e − 1
`− 1

We now know that Pr[M∪e(`) is a matching] ≥ bn/ec`−1 . Using this and E[w(e(`))] ≥ w(M∗)
2n ,

the lemma follows. J

I Theorem 5. Algorithm 3 for bipartite matching is 2e-competitive.

Proof. The weight of matching M can be obtained by summing over random variables A`.

E[w(M)] = E

[
n∑
`=1

A`

]
≥

n∑
`=dn/ee

bn/ec
`− 1 ·

w(M∗)
2n = bn/ec2n

n−1∑
`=bn/ec

1
`
· w(M∗)

Since bn/ecn ≥ 1
e −

1
n and

∑n−1
`=bn/ec

1
l ≥ ln n

bn/ec ≥ 1, it follows that

E[w(M)] ≥
(

1
e
− 1
n

)
· w(M∗)

2 . J

We can use the same algorithm and the same analysis in the submodular version, where
greedy gives a 3-approximation [20]. It builds the matching by greedily adding an edge that
maximizes the marginal improvement of f , which is the information delivered by the ordinal
oracle. Hence, our algorithm is 3e-competitive for the submodular version.

ICALP 2017

133:10 Combinatorial Secretary Problems with Ordinal Information

Algorithm 4: Packing LP

Input : capacities b, total number of requests n, probability p = e(2d)1/B

1+e(2d)1/B

Output : assignment vector y

1 Let L′ be the first p · n requests, and y← 0;
2 for each j /∈ L′ do
3 L′ ← L′ ∪ {j};
4 x(L′) ← greedy assignment on the LP for L′;
5 yj ← x(L′)

j ;
6 if ¬(A(y) ≤ b) then yj ← 0;

4.2 Packing
Our results for bipartite matching can be extended to online packing LPs of the form max cτx
s.t. Ax ≤ b and 0 ≤ x ≤ 1, which model problems with m resources and n online requests
coming in random order. Each resource i ∈ [m] has a capacity bi that is known in advance,
together with the number of requests. Every online request comes with a set of options, where
each option has its profit and resource consumption. Once a request arrives, the coefficients
of its variables are revealed and the assignment to the variables has to be determined.

Formally, request j ∈ [n] corresponds to variables xj,1, . . . , xj,K that represent K options.
Each option k ∈ [K] contributes with profit cj,k ≥ 0 and has resource consumption ai,j,k ≥ 0
for resource i. Overall, at most one option can be selected, i.e., there is a constraint∑
k∈[K] xj,k ≤ 1,∀j ∈ [n]. The objective is to maximize total profit while respecting the

resource capacities. The offline problem is captured by the following linear program:

max
∑
j∈[n]

∑
k∈[K]

cj,kxj,k s.t.
∑
j∈[n]

∑
k∈[K]

ai,j,kxj,k ≤ bi i ∈ [m]

∑
k∈[K]

xj,k ≤ 1 j ∈ [n]

As a parameter, we denote by d the maximum number of non-zero entries in any column
of the constraint matrix A, for which by definition d ≤ m. We compare the solution to the
fractional optimum, which we denote by x∗. The competitive ratio will be expressed in terms
of d and the capacity ratio B = mini∈[m]

⌊
bi

maxj∈[n],k∈[K] ai,j,k

⌋
.

Kesselheim et al. [25] propose an algorithm that heavily exploits cardinal information –
it repeatedly solves an LP-relaxation and uses the solution as a probability distribution over
the options. Instead, our Algorithm 4 for the ordinal model is based on greedy assignments
in terms of profits cj,k. More specifically, the greedy assignment considers variables xj,k
in non-increasing order of cj,k. It sets a variable to 1 if this does not violate the capacity
constraints, and to 0 otherwise.

I Theorem 6. Algorithm 4 for online packing LPs is O(d(B+1)/B)-competitive.

4.3 Matching in General Graphs
Here we study the case when vertices of a general undirected graph arrive in random order.
In the beginning, we only know the number n of vertices. Each edge in the graph has a
non-negative weight w(e) ≥ 0. Each vertex reveals the incident edges to previously arrived

M. Hoefer and B. Kodric 133:11

Algorithm 5: General Matching
Input : vertex set V and cardinality n = |V |
Output :matching M

1 Let R be the first bn2 c vertices of V ;
2 Let L′ be the further b n2ec vertices of V , and M ← ∅;
3 for each ` ∈ V \ L′ do
4 L′ ← L′ ∪ {`};
5 M (`) ← greedy matching on G[L′ ∪R];
6 Let e(`) ← (`, r) be the edge assigned to ` in M (`);
7 if M ∪ {e(`)} is a matching then add e(`) to M ;

vertices and their weights (cardinal model), or we receive a total order over all edges among
arrived vertices that is consistent with the weights (ordinal model). An edge can be added to
the matching only in the round in which it is revealed. The goal is to construct a matching
with maximum weight.

We can tackle this problem by prolonging the sampling phase and dividing the vertices
into “left” and “right” vertices. Algorithm 5 first samples n/2 vertices. These are assigned
to be the set R, corresponding to the static side of the graph in bipartite matching. The
remaining vertices are assigned to be the set L. The algorithm then proceeds by sampling a
fraction of the vertices of L, forming a set L′. The remaining steps are exactly the same as
in Algorithm 3.

I Theorem 7. Algorithm 5 for matching in general graphs is 12e/(e+ 1)-competitive, where
12e/(e+ 1) < 8.78.

5 Independent Set and Local Independence

In this section, we study maximum independent set in graphs with bounded local independence
number. The set of elements are the vertices V of an underlying undirected graph G. Each
vertex has a weight wv ≥ 0. We denote by N(v) the set of direct neighbors of vertex v.
Vertices arrive sequentially in random order and reveal their position in the order of weights
of vertices seen so far. The goal is to construct an independent set of G with maximum
weight. The exact structure of G is unknown, but we know that G has a bounded local
independence number α1.

I Definition 8. An undirected graph G has local independence number α1 if for each node
v, the cardinality of every independent set in the neighborhood N(v) is at most α1.

We propose Algorithm 6, which is inspired by the Sample-and-Price algorithm for matching
in [28]. Note that Göbel et al. [22] construct a more general approach for graphs with bounded
inductive independence number ρ. However, they only obtain a ratio of O(ρ2 logn) for the
weighted version, where a competitive ratio of Ω(logn/ log2 logn) cannot be avoided, even
in instances with constant ρ. These algorithms rely on ρ-approximation algorithms for the
offline problem that crucially exploit cardinal information.

Similar to [28], we reformulate Algorithm 6 into an equivalent approach (Algorithm 7)
for the sake of analysis. Given the same arrival order, the same vertices are in the sample.
Algorithm 7 drops all vertices from S that have neighbors in S while Algorithm 6 keeps one
of them. Hence, E[w(SAlg6)] ≥ E[w(SSim)]. In what follows, we analyze the performance

ICALP 2017

133:12 Combinatorial Secretary Problems with Ordinal Information

Algorithm 6: Independent Set in Graphs with Bounded Local Independence Number
Input :n = |G|, p =

√
α1/(α1 + 1)

Output : independent set of vertices S

1 Set k ← Binom(n, p), S ← ∅;
2 Reject first k vertices of G, denote this set by G′;
3 Build a maximal independent set of vertices from G′ greedily, denote this set by M1;
4 for each v ∈ G \G′ do
5 w∗ ← max{w | N (v) ∩M1};
6 if (v > w∗) ∧ (S ∪ {v} independent set) then add v to S;

Algorithm 7: Simulate
Input :n = |G|, p =

√
α1/(α1 + 1)

Output : independent set of vertices S

1 Sort all vertices in G in non-increasing order of value;
2 Initialize M1,M2 ← ∅;
3 for each v ∈ G in sorted order do
4 if M1 ∪ {v} independent set then
5 flip a coin with probability p of heads;
6 if heads then M1 ←M1 ∪ {v}; else M2 ←M2 ∪ {v};

7 S ←M2;
8 for each w ∈ S do
9 if w has neighbors in S then remove w and all his neighbors from S;

of Simulate. The first lemma follows directly from the definition of the local independence
number.

I Lemma 9. E[w(M1)] ≥ p · w(S∗)
α1

, where α1 ≥ 1 is the local independence number of G.

I Lemma 10. E
[
|N (v) ∩M2|

∣∣ v ∈M2
]
≤ α1(1−p)

p .

Proof. Let us denote by X1
u and X2

u the indicator variables for the events u ∈ M1 and
u ∈M2 respectively. Then,

E
[
|N (v) ∩M2|

∣∣ v ∈M2
]

= E

[∑
u∈N (v)

X2
u

∣∣ v ∈M2

]
=

∑
u∈N (v)

E
[
X2
u

∣∣ v ∈M2
]

= 1− p
p

∑
u∈N (v)

E
[
X1
u

∣∣ v ∈M2
]
≤ 1− p

p
· α1 . J

I Theorem 11. Algorithm 7 for weighted independent set is O(α2
1)-competitive, where α1 is

the local independence number of the graph.

Proof. By using Markov’s inequality and Lemma 10,

Pr[|N (v) ∩M2| ≥ 1
∣∣ v ∈M2] ≤ α1 · (1− p)/p

and Pr[|N (v) ∩M2| < 1
∣∣ v ∈M2] > 1− (α1(1− p)/p) .

M. Hoefer and B. Kodric 133:13

Thus, we can conclude that

E[w(S)] ≥
(

1− α1 ·
1− p
p

)
· E[w(M2)] ≥

(
1− α1 ·

1− p
p

)
· 1− p
α1
· w(S∗) .

The ratio is optimized for p =
√

α1
α1+1 , which proves the theorem. J

As a prominent example, α1 = 5 in the popular class of unit-disk graphs. In such graphs,
our algorithm yields a constant competitive ratio for online independent set in the ordinal
model.

References
1 David Abraham, Robert Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular match-

ings. SIAM J. Comput., 37(4):1030–1045, 2007.
2 Elliot Anshelevich and Martin Hoefer. Contribution games in networks. Algorithmica,

63(1–2):51–90, 2012.
3 Elliot Anshelevich and John Postl. Randomized social choice functions under metric pref-

erences. In Proc. 25th Intl. Joint Conf. Artif. Intell. (IJCAI), pages 46–59, 2016.
4 Elliot Anshelevich and Shreyas Sekar. Blind, greedy, and random: Algorithms for matching

and clustering using only ordinal information. In Proc. 13th Conf. Artificial Intelligence
(AAAI), pages 390–396, 2016.

5 Elliot Anshelevich and Shreyas Sekar. Truthful mechanisms for matching and clustering in
an ordinal world. In Proc. 12th Conf. Web and Internet Economics (WINE), pages 265–278,
2016.

6 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack
secretary problem with applications. In Proc. 10th Workshop Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 16–28, 2007.

7 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online auctions
and generalized secretary problems. SIGecom Exchanges, 7(2), 2008.

8 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems,
and online mechanisms. In Proc. 18th Symp. Discrete Algorithms (SODA), pages 434–443,
2007.

9 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Morteza Zadimoghaddam.
Submodular secretary problem and extensions. ACM Trans. Algorithms, 9(4):32, 2013.

10 Deeparnab Chakrabarty and Chaitanya Swamy. Welfare maximization and truthfulness in
mechanism design with ordinal preferences. In Proc. 5th Symp. Innovations in Theoret.
Computer Science (ITCS), pages 105–120, 2014.

11 Sourav Chakraborty and Oded Lachish. Improved competitive ratio for the matroid secret-
ary problem. In Proc. 23rd Symp. Discrete Algorithms (SODA), pages 1702–1712, 2012.

12 Ning Chen, Martin Hoefer, Marvin Künnemann, Chengyu Lin, and Peihan Miao. Secret-
ary markets with local information. In Proc. 42nd Intl. Coll. Automata, Languages and
Programming (ICALP), volume 2, pages 552–563, 2015.

13 Nedialko Dimitrov and Greg Plaxton. Competitive weighted matching in transversal
matroids. Algorithmica, 62(1-2):333–348, 2012.

14 Michael Dinitz and Guy Kortsarz. Matroid secretary for regular and decomposable
matroids. SIAM J. Comput., 43(5):1807–1830, 2014.

15 Eugene Dynkin. The optimum choice of the instant for stopping a Markov process. In Sov.
Math. Dokl, volume 4, pages 627–629, 1963.

16 Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Proc. 26th Symp. Discrete Algorithms
(SODA), pages 1189–1201, 2015.

ICALP 2017

133:14 Combinatorial Secretary Problems with Ordinal Information

17 Moran Feldman and Moshe Tennenholtz. Interviewing secretaries in parallel. In Proc. 13th
Conf. Electronic Commerce (EC), pages 550–567, 2012.

18 Moran Feldman and Rico Zenklusen. The submodular secretary problem goes linear. In
Proc. 56th Symp. Foundations of Computer Science (FOCS), pages 486–505, 2015.

19 Amos Fiat, Ilia Gorelik, Haim Kaplan, and Slava Novgorodov. The temp secretary problem.
In Proc. 23rd European Symp. Algorithms (ESA), pages 631–642, 2015.

20 Marshall Fisher, George Nemhauser, and Laurence Wolsey. An analysis of approximations
for maximizing submodular set functions-II. In Polyhedral combinatorics, pages 73–87.
Springer, 1978.

21 Byrn Garrod and Robert Morris. The secretary problem on an unknown poset. Random
Struct. Algorithms, 43(4), 2013.

22 Oliver Göbel, Martin Hoefer, Thomas Kesselheim, Thomas Schleiden, and Berthold Vöck-
ing. Online independent set beyond the worst-case: Secretaries, prophets and periods. In
Proc. 41st Intl. Coll. Automata, Languages and Programming (ICALP), volume 2, pages
508–519, 2014.

23 Martin Hoefer and Bojana Kodric. Combinatorial secretary problems with ordinal inform-
ation. CoRR, abs/1702.01290, 2017. URL: http://arxiv.org/abs/1702.01290.

24 Patrick Jaillet, José Soto, and Rico Zenklusen. Advances on matroid secretary problems:
Free order model and laminar case. In Proc. 16th Intl. Conf. Integer Programming and
Combinatorial Optimization (IPCO), pages 254–265, 2013.

25 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal
online algorithm for weighted bipartite matching and extensions to combinatorial auctions.
In Proc. 21st European Symp. Algorithms (ESA), pages 589–600, 2013.

26 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal beats
dual on online packing LPs in the random-order model. In Proc. 46th Symp. Theory of
Computing (STOC), pages 303–312, 2014.

27 Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auc-
tions. In Proc. 16th Symp. Discrete Algorithms (SODA), pages 630–631, 2005.

28 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-
graphs. In Proc. 36th Intl. Coll. Automata, Languages and Programming (ICALP), pages
508–520, 2009.

29 Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. Hiring a secretary
from a poset. In Proc. 12th Conf. Economics and Computation (EC), 2011.

30 Oded Lachish. O(log log rank) competitive ratio for the matroid secretary problem. In
Proc. 55th Symp. Foundations of Computer Science (FOCS), pages 326–335, 2014.

31 José Soto. Matroid secretary problem in the random-assignment model. SIAM J. Comput.,
42(1):178–211, 2013.

http://arxiv.org/abs/1702.01290

Selling Complementary Goods: Dynamics,
Efficiency and Revenue∗

Moshe Babaioff1, Liad Blumrosen2, and Noam Nisan3

1 Microsoft Research, Herzlia, Israel
moshe@microsoft.com

2 School of Business Administration, The Hebrew University, Jerusalem, Israel
blumrosen@gmail.com

3 School of Engineering and Computer Science, The Hebrew University,
Jerusalem, Israel; and
Microsoft Research
noam@cs.huji.ac.il

Abstract
We consider a price competition between two sellers of perfect-complement goods. Each seller
posts a price for the good it sells, but the demand is determined according to the sum of prices.
This is a classic model by Cournot (1838), who showed that in this setting a monopoly that sells
both goods is better for the society than two competing sellers.

We show that non-trivial pure Nash equilibria always exist in this game. We also quantify
Cournot’s observation with respect to both the optimal welfare and the monopoly revenue. We
then prove a series of mostly negative results regarding the convergence of best response dynamics
to equilibria in such games.

1998 ACM Subject Classification J.4. Economics, G.2.2 Network Problems

Keywords and phrases Complements, Pricing, Networks, Game Theory, Price of Stability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.134

1 Introduction

In this paper we study a model of a pricing game between two firms that sell goods that are
perfect complements to each other. These goods are only demanded in bundles, at equal
quantities, and there is no demand for each good by itself. The two sellers simultaneously
choose prices p1, p2 and the demand at these prices is given by D(p1 + p2) where D is the
demand for the bundle of these two complementary goods. The revenue of seller i is thus
pi · D(p1 + p2), and as we assume zero production costs, this is taken as his utility.

This model was first studied in Cournot’s famous work [9]. In [9], Cournot studied two
seminal oligopoly models. The first, and the more famous, model is the well known Cournot
oligopoly model about sellers who compete through quantities. We study a second model that
was proposed by Cournot in the same work, regarding price competition between sellers of
perfect complements.1 Cournot considered a model of a duopoly selling perfect complements,
and he suggested zinc and copper as an example. In Cournot’s example, a manufacturer of
zinc may observe that some of her major customers produce brass (made of zinc and copper);

∗ The full version of this paper can be found in an arXiv paper under the same title, see https:
//arxiv.org/abs/1706.00219.

1 [25] showed that these two different models by Cournot actually share the same formal structure.

EA
T

C
S

© Moshe Babaioff, Liad Blumrosen, and Noam Nisan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 134; pp. 134:1–134:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.134
https://arxiv.org/abs/1706.00219
https://arxiv.org/abs/1706.00219
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

134:2 Selling Complementary Goods: Dynamics, Efficiency and Revenue

Therefore, zinc manufacturers indirectly compete with manufacturers of copper, as both
target the money of brass producers. Another classic example of a duopoly selling perfect
complements is by [12], who studied how owners of two consecutive segments of a canal
determine the tolls for shippers; Clearly, every shipper must purchase a permit from both
owners for being granted the right to cross the canal. Another, more contemporary, example
for perfect complements might be high-tech or pharmaceutical firms that must buy the rights
to use two registered patents to manufacture its product; The owners of the two patents
quote prices for the usage rights, and these patents can be viewed as perfect complements.

Cournot, in his 1838 book, proved a counterintuitive result saying that competition
among multiple sellers of complement goods lead to a worse social outcome than the result
reached by a monopoly that controls the two sellers. Moreover, both the profits of the firms
and the consumer surplus increase in the monopoly outcome. In the legal literature, this
phenomenon was termed “the tragedy of the anticommons" (see, [6, 17, 21]). In our work,
we will quantify the severity of this phenomenon.

Clearly, if the demand at a sufficiently high price is zero, then there are trivial equilibria
in which both sellers price prohibitively high, and nothing is sold. This raises the following
question: Do non-trivial equilibria, in which some pairs of items are sold, always exist? We
study this question as well as some natural follow-ups: What are the revenue and welfare
properties of such equilibria? What are the properties of equilibria that might arise as a result
of best-response dynamics?

For the sake of quantification, we study a discretized version of this game in which the
demand changes only finitely many times. The number of discrete steps in the demand
function, also viewed as the number of possible types of buyers, is denoted by n and is called
the number of demand levels.

Our first result proves the existence of non-trivial pure Nash equilibria.

I Theorem 1. For any demand function with n demand levels there exists at least one
non-trivial pure Nash equilibrium.

We prove the theorem using an artificial dynamics which starts from zero prices and continues
in steps. In each step, one seller best responds to the other seller’s price, and after each
seller best responds, the total price of both is symmetrized: both prices are replaced by
their average. We show that the total price is monotonically non-decreasing, and thus it
terminates after at most n steps in the non-trivial equilibrium of highest revenue and welfare.

In our model, it is easy to observe that there are multiple equilibria for some demand
functions. How different can the welfare and revenue of these equilibria be? A useful
parameter for bounding the difference, as well as bounding the inefficiency of equilibria, turns
out to be D, the ratio between the demand at price 0 and the demand at the highest price
vmax for which there is non-zero demand.

Consider the following example with two (n = 2) types of buyers: a single buyer that is
willing to pay “a lot”, 2, for the bundle of the two goods, and many, D− 1 >> 2, buyers that
are willing to pay “a little”, 1, each, for the bundle. A monopolist (that controls both sellers)
would have sold the bundle at the low price 1. At this price, all the D buyers decide to buy,
leading to revenue D and optimal social welfare of D+ 1. Equilibria here belong to two types:
the “bad” equilibria2 have high prices, p1 + p2 = 2, (which certainly is an equilibrium when,
say, p1 = p2 = 1) and achieve low revenue and low social welfare of 2. The “good” equilibria

2 It turns out that in our model there is no conflict between welfare and revenue in equilibria - the lower
the total price, the higher the welfare and the revenue in equilibria (see Proposition 6).

M. Babaioff, L. Blumrosen, and N. Nisan 134:3

have low prices, p1 + p2 = 1 (which is an equilibrium as long as p1, p2 ≥ 1/D), and achieve
optimal social welfare as well as the monopolist revenue, both values are at least D. Thus,
we see that the ratio of welfare (and revenue) between the “good” and “bad” equilibria can
be very high, as high as Ω(D). This can be viewed as a negative “Price of Anarchy” result.

We next focus on the best equilibria and present bounds on the “Price of Stability" of this
game; We show that the ratio between the optimal social welfare and the best equilibrium
revenue3 is bounded by O(

√
D), and that this is tight when D = n. When n is very small,

the ratio can only grow as 2n and not more. In particular, for constant n the ratio is a
constant, in contrast to the lower bound of Ω(D) on “Price of Anarchy” for n = 2, presented
above.

I Theorem 2. For any instance, the optimal welfare and the monopolist revenue are at most
O(min{2n,

√
D}) times the revenue of the best equilibrium. These bounds are tight.

We now turn to discuss how such markets converge to equilibria, and in case of multiple
equilibria, which of them will be reached? We consider best response dynamics in which
players start with some initial prices and repeatedly best-reply to each other. We study the
quality of equilibria reached by the dynamics, compared to the best equilibria.

Clearly, if the dynamics happen to start at an equilibrium, best replying will leave the
prices there, whether the equilibrium is good or bad. But what happens in general: which
equilibrium will they “converge” to when starting from “natural" starting points, if any,
and how long can that take? Zero prices (or other, very low prices) are probably the most
natural starting point. However, as can be seen by the example above, starting from zero
prices may result in the worst equilibrium.4 Another natural starting point is a situation
where the two sellers form a cartel and decide to post prices that sum to the monopoly
price. Indeed, in our example above, if the two sellers equally split the monopoly price, this
will be the best equilibrium. However, we know that cartel solutions are typically unstable,
and the participants will have incentives to deviate to other prices and thus start a price
updating process. We prove a negative result in this context, showing that starting from
any split of the monopoly price might result in bad equilibria. We also check what would
be the result of dynamics that start at random prices. Again, we prove a negative result
showing situations where dynamics starting from random prices almost surely converge to
bad equilibria. Finally, we show that convergence might take a long time, even with only two
demand levels. Following is a more formal description of these results about the best-response
dynamics:

I Theorem 3. The following statements hold:
There are instances with 3 demand levels for which a best-response dynamics starting
from any split of a monopoly price reaches the worst equilibrium that is factor Ω(

√
D)

worse than the best equilibrium in terms of both revenue and welfare.
For any ε > 0 and D > 2/ε there are instances with 2 demand levels for which a best-
response dynamics starting from uniform random prices in [0, vmax]2 reaches the worst
equilibrium with probability 1− ε, while the best equilibrium has welfare and revenue that
is factor ε ·D larger.

3 Note that this also shows the same bounds on the ratio between the optimal welfare and the welfare in
the best equilibrium, as well as the ratio between the monopolist revenue and the revenue in the best
equilibrium.

4 In this example, the best response to price of 0 is price of 1. Next, the first seller will move from price
of 0 to price of 1 as well, resulting in the worst equilibrium.

ICALP 2017

134:4 Selling Complementary Goods: Dynamics, Efficiency and Revenue

For any n ≥ 2 and ε > 0 there are instances with n demand levels for which a best-response
dynamics starting from uniform random prices in [0, vmax]2 almost surely (with probability
1) reaches the worst equilibrium, while the best equilibrium has welfare and revenue that
is factor Ω(2n) larger.
(Slow convergence.) For any K > 0 there is an instance with only 2 demand levels
(n = 2) and D < 2 for which a best-response dynamics continues for at least K steps
before converging to an equilibrium.

Thus, best-reply dynamics may take a very long time to converge, and then typically
end up at a very bad equilibrium. While for very simple (n = 2) markets we know that
convergence will always occur, we do not know whether convergence is assured for every
market.

Open Problem. Do best reply dynamics always converge to an equilibrium or may they
loop infinitely? We do not know the answer even for n = 3.

More related work. While this paper studies price competition between sellers of perfect
complements, the classic Bertrand competition [5] studied a similar situation between sellers
of perfect substitutes. Bertrand competition leads to an efficient outcome with zero profits
for the sellers. [4] studied Bertrand-like competition over a network of sellers. In another
paper [3], we studied a network of sellers of perfect complements, where we showed how
equilibrium properties depend on the graph structure, and we proved price-of-stability results
for lines, cycles, trees etc. Chawla and Roughgarden [8] studied the price of anarchy in
two-sided markets with consumers interested in buying flows in a graph from multiple sellers,
each selling limited bandwidth on a single edge. Their model is fundamentally different than
ours (e.g., they consider combinatorial demand by buyers, and sellers with limited capacities)
and their PoA results are with respect to unrestricted Nash Equilibrium, while we focus on
non-trivial ones (in our model the analysis of PoA is straightforward for unrestricted NE). A
similar model was also studied in [7].

[11] extended the complements model of Cournot to accommodate multiple brands of
compatible goods. [10] studied pricing strategies for complementary software products. The
paper by [14] directly studied the Cournot/Ellet model, but when buyers approach the sellers
(or the tollbooths on the canal) sequentially.

[15] discussed best-response dynamics in a Cournot Oligopoly model with linear demand
functions, and proved that they converge to equilibria. Another recent paper [19] studied how
no-regret strategies converge to Nash equilibria in Cournot and Bertrand oligopoly settings;
The main results in [19] are positive, showing how such strategies lead to a positive-payoff
outcomes in Bertrand competition, but they do not consider such a model with complement
items.

Best-response dynamics is a natural description of how decentralized markets converge to
equilibria, see, e.g., [13, 20], or to approximate equilibria, e.g., [2, 24]. The inefficiency of
equilibria in various settings has been extensively studied, see, [18, 22, 23, 1, 16].

We continue as follows: Section 2 defines our model and some basic equilibrium properties.
In Section 3 we prove the existence of non trivial equilibria. In Section 4 we study the results
of best-response dynamics. Finally, Section 5 compares the quality of the best equilibria to
the optimal outcomes.

M. Babaioff, L. Blumrosen, and N. Nisan 134:5

2 Model and Preliminaries

We consider two sellers, each selling a single, homogeneous, divisible good. The sellers have
zero manufacturing cost for the good they sell, and an unlimited supply is available from
each good. All the buyers in the economy are interested in bundles of these two goods, and
the goods are perfect complements for the buyers. That is, each buyer only demands a
bundle consists of two goods, in equal quantities5, and there is no demand for each good
separately. The demand for the bundle of the two goods is given by a demand function D(·),
where D(p) ∈ R+ is the quantity of each of the two goods which is demanded when the price
for one unit of the bundle of the two goods is p ∈ R+.

The sellers simultaneously offer prices for the goods they sell. Each seller offers a single
price, and cannot discriminate between buyers. If the two prices offered by the sellers are p
and q then p+ q is the total price and the demand in this market is D(p+ q). The revenue of
the seller that posts a price p is thus p ·D(p+q), the revenue of the second seller is q ·D(p+q)
and the total revenue of the two selling firms is denoted by R(p + q) = (p + q) · D(p + q).
The maximal revenue that a monopoly that owns the two sellers can achieve is supx x · D(x)
and we use p∗ to denote a monopolist price.6

Discrete Demand Levels. In this paper we consider discrete demand curves, where potential
buyers only have n ≥ 2 different values denoted by ~v, such that v1 > v2 > · · · > vn > 0.
The demand at each price vi is denoted by di = D(vi), and assuming a downward sloping
demand curve we get that ~d is increasing, that is, 0 < d1 < d2 < · · · < dn. For convenience,
we define v0 = ∞ and d0 = 0. The parameter n is central in our analysis and it denotes
the number of demand levels in the economy. Another parameter that we frequently use is
the total demand D, which is the ratio between the highest and lowest demand at non-zero
prices, that is D = dn/d1. In other words, D is the maximal demand dn measured in units
of the minimal non-zero demand d1 (Note that D > 1). The social welfare in the economy
is the total value generated for the consumers. The social welfare, given a total price x, is
SW (x) =

∑
i|x<vi

vi(di − di−1), and the optimal welfare is SW (0) =
∑n
i=1 vi(di − di−1).

Strategies and Equilibria. The sellers engage in a price competition. We say that p is a
best response to a price q of the other seller if p ∈ argmaxp′ p′ · D(p′ + q), and let the set
of all best responses to q be BR(q). We consider the pure Nash equilibria (NE) of this
full-information pricing game. A pure Nash equilibrium is a pair of prices such that each
price is a best response to the other price, that is, (p, q) such that p ∈ BR(q) and q ∈ BR(p).

It is easy to see that NE always exist in this game, but unfortunately some of them are
trivial and no item is sold, and thus their welfare is zero; For example, (∞,∞) is always an
equilibrium with zero welfare and revenue. We will therefore focus on a subset of NE that
are non-trivial, i.e., where some quantity is sold. It is not immediate to see that non-trivial
equilibria exist, and we will begin by proving (in Section 3) that such equilibria indeed always
exist. On the other hand, we will show that multiplicity of equilibria is a problem even for

5 This actually assumes that the ratio of demand of the two goods is fixed, as we can normalized the
units to assume that it is 1 for both.

6 Our paper considers demand functions for which the monopoly revenue is attained and a monopolist
price exists. When there is more than one price that maximizes the monopoly profit, our claims
regarding p∗ will hold for each one of these prices. When necessary, we will treat the different prices
separately.

ICALP 2017

134:6 Selling Complementary Goods: Dynamics, Efficiency and Revenue

this restricted set of equilibria, as there might be an extreme variance in their revenue and
efficiency.

2.1 Basic Equilibrium Properties
We now describe some basic structural properties of equilibria in the pricing game between
sellers of complement goods. We use these properties throughout the paper.

We start with a simple observation claiming that all best response dynamics lead to a
total price which is exactly one of the demand values. This holds as otherwise any seller can
slightly increase his price, selling the same quantity and increasing his revenue.

I Observation 4. Let x ≤ v1 be some price offered by one seller, and BR(x) be a best
response of the other seller to the price x. Then, it holds that x + BR(x) = vi for some
i ∈ {1, ..., n}. In particular, for every pure non-trivial NE (p, q), it holds that p+ q = vi for
some i.

Next, we prove a useful lemma claiming that the set of equilibria with a particular total
price is convex. Intuitively, the idea in the proof is that a seller with a higher offer cares
more about changes in the demand than a seller with a lower offer. Therefore, if the seller
with the higher offer decided not to deviate to an increased price, clearly the other seller
would not deviate as well. The proof of the lemma appears in the full version of the paper.

I Lemma 5. If (p, q) is a pure NE then (x, p + q − x) is also a pure NE for every x ∈
[min{p, q},max{p, q}]. In particular, ((p+ q)/2, (p+ q)/2) is also a pure NE.

We next observe that there is no conflict between welfare and revenue in equilibrium: an
equilibrium with the highest welfare also has the highest equilibrium revenue. This holds
since equilibria with lower total price obtain higher revenue and welfare. We can thus say
that any equilibrium with minimal total price is the “best" as it is as good as possible on
both dimensions: welfare and revenue. Similarly, any equilibrium with maximal total price is
the “worst".

I Proposition 6. Both welfare and revenue of equilibria are monotonically non-increasing
in the total price. Therefore, an equilibrium with the minimal total price has both the highest
welfare and the highest revenue, among all equilibria. Similarly, an equilibrium with the
maximal total price has both the lowest welfare as well as the lowest revenue, among all
equilibria.

Proof. Consider two equilibria, one with total price v and the other with total price w > v.
The claim that the welfare is non-increasing in the total price follows immediately from the
definition. We will show that for w > v it holds that R(v) ≥ R(w).

Lemma 5 shows that if there is an equilibrium with total price p then (p/2, p/2) is also
an equilibrium. As (v/2, v/2) is an equilibrium, it holds that deviating to w − v/2 is not
beneficial for a seller, and thus R(v)/2 ≥ (w − v/2)D(w) ≥ (w/2)D(w) = R(w)/2 and thus
R(v) ≥ R(w) as claimed. J

Finally, we give a variant of a classic result by Cournot [9], which shows, somewhat
counterintuitively, that a single monopolist that sells two complementary goods is better for
the society than two competing sellers for each selling one of the good.

I Proposition 7. The total price in any equilibrium is at least as high as the minimal
monopolist price p∗. Thus, the welfare and revenue achieved by the monopolist price p∗ are
at least as high as the welfare and revenue (resp.) of the best equilibria.

M. Babaioff, L. Blumrosen, and N. Nisan 134:7

Proof. Assume that there is an equilibrium with total price p < p∗. As p∗ is the minimal
monopolist price it holds that R(p) < R(p∗). Additionally, as there is an equilibrium with
total price p then by Lemma 5 the pair (p/2, p/2) is an equilibrium, where each seller has
revenue R(p)/2. As p < p∗ a seller might deviate to p∗ − p/2 > p∗/2 > 0, and since such
deviation is not beneficial, it holds that R(p)/2 ≥ (p∗ − p/2)D(p∗) > (p∗/2)D(p∗) = R(p∗)/2
and thus R(p) > R(p∗), a contradiction.

By Proposition 6, it follows that the welfare and revenue achieved by the minimal
monopolist price p∗ are no less than those in the best equilibrium. J

3 Existence of Non-Trivial Equilibria

In this section we show that non-trivial equilibria always exist. We first note that the
structural lemmas from the previous sections seem to get us almost there: We know from
Obs. 4 that the total price in equilibrium must equal one of the vi’s; We also know that if
p, q is an equilibrium, then (p+q

2 , p+q
2) is also an equilibrium. Therefore, if an equilibrium

exists, then (vi

2 ,
vi

2) must be an equilibrium for some i. However, these observations give a
simple way of finding an equilibrium if an equilibrium indeed exists, but they do not prove
existence on their own.

We give a constructive existence proof, by showing an algorithm based on an artificial
dynamics that always terminates in a non-trivial equilibrium. The algorithm is essentially a
sequence of best responses by the sellers, but with a twist: after every best-response step the
prices are averaged. We show that this dynamics always stops at a non-trivial equilibrium
and thus in particular, such equilibria exist. Moreover, when starting from prices of zero, the
dynamics terminates at the best equilibrium. We formalize these claims in Proposition 10
below, from which we can clearly derive the existence of non-trivial equilibrium claimed in
the next theorem as an immediate corollary.

I Theorem 8. For any instance (~v, ~d) there exists at least one non-trivial pure Nash equilib-
rium.

Before we formally define the dynamics, we prove a simple lemma showing that the total
price weakly increases as one seller best-responds to a higher price.

I Lemma 9 (Monotonicity Lemma). Let brx ∈ BR(x) be a best reply of a seller to a price x
and let bry ∈ BR(y) be a best reply of a seller to a price y. If x < y ≤ v1 then y+bry ≥ x+brx.

Proof. As x < y ≤ v1 by Observation 4, we know that there exists i such that x+ brx = vi
and j such that y + bry = vj . As the second seller is best responding at each price level,
D(vi)(vi − x) ≥ D(vj)(vj − x) and D(vi)(vi − y) ≤ D(vj)(vj − y). Together, we get that
(vj−x)/(vi−x) ≤ D(vi)/D(vj) ≤ (vj−y)/(vi−y). Now notice that the function (a−x)/(b−x)
is non-decreasing in x iff a ≥ b thus, since y > x, it follows that vj ≥ vi. J

We next formally define the price-updating dynamics that we call symmetrized best
response dynamics. It works similarly to the best response dynamics with one small difference:
at each step, before a seller acts, the price of both sellers is replaced by their average price.

More formally, we start from some profile of prices (x0, y0). We then symmetrize the
prices to (x0+y0

2 , x0+y0
2), and then we let the first seller best reply to get prices (x1, y1), where

x1 ∈ BR(x0+y0
2) and y1 = x0+y0

2 . In one case, when the utility of the seller is 0, we need to
break ties carefully: if 0 ∈ BR(x0+y0

2) then we assume that x1 = 0, that is, a seller with zero
utility prices at 0. We then symmetrize again to (x1+y1

2 , x1+y1
2), and then we let the second

ICALP 2017

134:8 Selling Complementary Goods: Dynamics, Efficiency and Revenue

seller best respond, symmetrize again, and continue similarly in an alternating order. The
dynamic stops if the price remains unchanged in some step.

It turns out that symmetrized best response dynamics quickly converges to a non-trivial
equilibrium. Moreover, we show that this dynamics is guaranteed to end up in the best
equilibria. Theorem 8 follows from the following proposition.

I Proposition 10. For any instance with n demand levels, the symmetrized best response
dynamics starting with prices (0, 0) reaches a non-trivial equilibrium in at most n steps, in
each of them the total price increases. Moreover, this equilibrium achieves the highest social
welfare and the highest revenue among all equilibria.

Proof. We first argue that for any starting point, the sum of players’ prices in the symmetrized
dynamics is either monotonically increasing or monotonically decreasing. To see that, let us
look at the symmetric price profiles of two consecutive steps: (x, x) and then (y, y) where
y = (x + brx)/2 for some brx ∈ BR(x) and then (z, z) where z = (y + bry)/2 for some
bry ∈ BR(y). If x = y, then (x, x) is an equilibrium and we are done. We first observe that if
y > x then z ≥ y. Indeed, our monotonicity lemma (Lemma 9) shows exactly that: if y > x

then for any brx ∈ BR(x) and bry ∈ BR(y) it holds that y + bry ≥ x + brx and therefore
z ≥ y. Similarly, if y < x then z ≤ y.

To prove convergence, note that until the step where the process terminates, the total
price must be either strictly increasing or strictly decreasing. Due to Observation 4, the total
price at each step must be equal to vi for some i. Since there are exactly n distinct values,
the process converges after at most n steps. Note that if we reach a price level of vn or v1
the process must stop (no seller will have a best response that crosses these values), and a
non-trivial equilibrium is reached.

Finally, we will show that a symmetrized dynamics starting at zero prices reaches an
equilibrium with maximal revenue and welfare over all equilibria. Using Proposition 6, it is
sufficient to show that such process reaches an equilibrium with minimum total price over all
possible equilibria. This follows from the following claim:

I Claim 11. The total price reached by a symmetrized best-response dynamics starting from
a total price level x is bounded from above by the total price reached by the same dynamics
starting from a total price of y > x,

Proof. It is enough to show that the prices reached after a single step from x are at most
those reached by a single step from y, since we can then repeat and show that this holds
after all future steps. For a single step this holds due to the monotonicity lemma (Lemma 9):
given some total price z, the new total price after a single step of symmetrizing the price and
best responding is f(z) = z/2 + brz/2 for some brz/2 ∈ BR(z/2), and since y > x it holds
that f(y) ≥ f(x) by Lemma 9. J

We complete the proof by showing how the proposition follows from the last claim. Let
p be the total price of the highest welfare equilibrium (lowest equilibrium price). We use
the claim on total price 0 and total price p > 0. The symmetrized best-response dynamics
starting at p stays fixed and the total price never changes, while the dynamics starting at 0
must strictly increase the total price at each step, and never go over p, and thus must end at
p after at most n steps. This concludes the proof of the proposition. J

M. Babaioff, L. Blumrosen, and N. Nisan 134:9

4 Best Response Dynamics

In the previous section we saw that non-trivial NE always exist in our price competition
model, and that the best equilibrium can be easily computed. We now turn to discuss
whether we can expect agents in these markets to reach such equilibria via natural adaptive
heuristics. We consider the process of repeated best responses. Such a process starts from
some profile of prices (p, q), then the first seller chooses a price which is a best response to q,
the second seller best responds to the price chosen by the first seller, and they continue in
alternating order. The process stops if no seller can improve his utility by changing his price.
As we aim for non-trivial equilibria, a seller that cannot gain a positive profit chooses the
best response of zero. A sequential best response process has simple and intuitive rules. The
main difference between different possible dynamics of this form is in their starting prices.
We will study the importance of the choice of starting prices.

Our results for best-response dynamics are negative: we show that starting from cartel
prices might result in bad equilibria. We then consider starting from random prices and show
that this might not help. Finally, we show that convergence time of the dynamics may be
very long, even with only two demand levels.

4.1 Quality of the Dynamics’ Outcomes
Probably the most natural starting prices to consider in best responses dynamics are (0, 0).
We start with a simple example that shows that such dynamics might result in an equilibrium
with very low welfare, even when another equilibrium with high welfare exists. The gap
between the quality of these equilibria is in the order of D (in the full version of the paper
(see Appendix B) we show that this is the largest possible gap between equilibria).

I Example 12. Consider a market with 2 demand levels, v1 = 2, v2 = 1, d1 = 1 and d2 = D.
Here, a best response dynamics starting from prices (0, 0) moves to (1, 0) and then ends in
equilibrium prices (1, 1). This NE has welfare of 2, while (1/2, 1/2) is an equilibrium with
welfare of D + 1 and revenue of D.

It follows that even with 2 demand levels, the total revenue in the highest revenue
equilibrium can be factor D/2 larger than both the welfare and revenue of the equilibrium
reached by best-response dynamics starting from prices (0, 0).

One might hope that starting the dynamics from a different set of prices will guarantee
convergence to a good equilibrium. Clearly, if the dynamics somehow starts from the prices
of the best equilibrium it will immediately stop, but our goal is exactly to study whether the
agents can adaptively reach such equilibria. One can consider two reasonable approaches
for studying the starting points of the dynamics: the first approach assumes that the sellers
initially agree to act as a cartel and price the bundle at the monopolist price, dividing the
monopoly profit among themselves. It is well known that such a cartel is not stable, and
sellers may have incentives to deviate to a different price; We would like to understand
where such dynamics will stop. The second approach considers starting from a random pair
of prices, and hoping that there will be a sufficient mass of starting points for which the
dynamics converges to a good equilibrium. We move to study the two approaches below.

4.1.1 Dynamics Starting at a Split of the Monopolist Price
We now study best-response dynamics that start from a cartelistic solution: the total price
at the starting stage is equal to the price a monopoly would have set had it owned the two

ICALP 2017

134:10 Selling Complementary Goods: Dynamics, Efficiency and Revenue

selling firms. In Example 12 we saw that splitting the monopolist price between the two
sellers results in the best equilibrium. One may hope that this will generalize and such
starting points ensure converging to good outcomes. In the full version we show that this is
indeed the case for two demand levels. However, we next show that even with three demand
levels, the welfare and revenue of the equilibrium reached by such best-response dynamics
can be much lower than the revenue of the best equilibria. This holds not only when the two
seller split the monopolist price evenly, but for any cartelistic split of this price. Proof can
be found in the full version of this paper.

I Proposition 13. For any large enough total demand D there is an instance with 3 demand
levels and monopolist price p∗ for which best response dynamics starting from any pair
(p∗ − q, q) for q ∈ [0, p∗], ends in an equilibrium of welfare and revenue of only 1, while there
exist another equilibrium of welfare and revenue at least

√
D/4.

We conclude that starting from both sellers (arbitrarily) splitting the monopolist price
does not ensure that the dynamics ends in a good equilibrium, even with only 3 demand
levels.

4.1.2 Dynamics Starting at Random Prices
We now consider a second approach for studying the role of starting prices in best-response
dynamics. We assume that the starting prices are determined at random, and ask what are
the chances that a sequence of best responses will reach a good equilibrium. Unfortunately
this approach fails as well. We next show that for any ε > 0, there is an instance with only
two demand levels for which the dynamics starting from a uniform random price vector in
[0, v1]2 has probability of at most ε of ending in an equilibrium with high welfare and revenue
(although such equilibrium exists).

I Proposition 14 (High probability of convergence to bad equilibria, n = 2). For any small
enough ε > 0 and total demand D such that εD > 2, there is an instance with two demand
levels (n = 2) that has an equilibrium of welfare and revenue of at least εD, but best-response
dynamics starting with uniform random pair of prices in [0, v1]2 ends in an equilibrium of
welfare and revenue of only 1 with probability at least 1− ε.

Proof. Consider the input with n = 2 demand levels satisfying v1 = 1 > v2 = ε and
d1 = 1 < d2 = D. A pair of prices (p, q) with p+ q = v2 results in welfare and total revenue
of εD, and if εD > 2, the pair (v2/2, v2/2) is indeed an equilibrium. On the other hand, for
small enough ε the pair of prices (1/2, 1/2) is also an equilibrium, and its welfare and revenue
are only 1. Finally, observe that unless the price that the first best response in dynamics
refers to is at most v2 = ε, the first best response results in an equilibrium with total price
of 1, and welfare and revenue of 1. The probability that the process stops after a single step
is therefore at least 1− ε, and the claim follows. J

We show that Proposition 14 is essentially tight.

I Proposition 15. For any instance with two demand levels for which the ratio of welfare of
the best and worst equilibrium is εD for some 1 > ε > 2/D, it holds that the probability of
the dynamics ending at the best equilibrium when starting from a uniform random pair of
prices in [0, v1]2 is at least ε− 2/D.

Proof. Normalize the welfare of the worse equilibrium to 1 (and thus the value is 1) and the
demand to 1. The best equilibrium is for demand D and value ε < 1, since the equilibria

M. Babaioff, L. Blumrosen, and N. Nisan 134:11

welfare ratio is εD. For any pair of prices (p, q) such that 1/D < q < ε − 1/D, the best
response to q is ε− q as it gives revenue larger than D · (1/D) = 1, while the maximal revenue
for a seller in the other equilibrium is 1. Given price ε− q < ε− 1/D, the best response is q
as it gives revenue larger than 1, while deviation will give revenue of at most 1. We conclude
that with probability at least ε− 2/D the dynamics stops after a single best response, at the
best equilibrium, as claimed. J

Proposition 14 only gives high probability of convergence to a low welfare equilibrium,
but this will not occur with certainty. We next show that one can construct instances in
which except of a measure zero set of starting prices, every dynamics will end up in an
equilibrium with very low welfare, although equilibrium with high welfare exists. Moreover,
we show that the welfare gap between the good and bad equilibria increases exponentially in
the number of demand levels n.

I Theorem 16 (Almost sure convergence to bad equilibria, large n). For any number of
demand levels n ≥ 2 and ε > 0 that is small enough, there exists an instance that has an
equilibrium with welfare 2 ·(2−ε)n−1−1 and revenue of (2−ε)n−1, but best response dynamics
starting with pair of prices chosen uniformly at random over [0, v1]2 almost surely ends in an
equilibrium of welfare and revenue of only 1.

To prove the theorem, we build an instance where the pair of prices (vi/2, vi/2) forms an
equilibrium for any i. In this instance, the total revenue from a total price vi is (2− ε)i−1.
In particular, (vn/2, vn/2) is an equilibrium that attains the monopolist revenue and the
optimal welfare of O((2− ε)n). However, best response dynamics starting by best responding
to any price which is not exactly vi/2 (for some i) terminates in an equilibrium with total
price of v1 = 1 and welfare of 1. Thus, the set of pairs from which the dynamics does not
end at welfare of 1 is finite and has measure 0, so the dynamics almost surely converges to
the worst equilibrium. The full proof is in the full version of the paper.

4.2 Time to Convergence

Up to this point we considered the quality of equilibria reached by best response dynamics.
In this section, we will show that not only that best response dynamics reach equilibria of
poor quality, it may also take them arbitrary long time to converge. Moreover, the long
convergence time is possible even with only 2 demand levels and total demand that is close
to 1.

Specifically, we will show that as the difference between the demand of adjacent values be-
comes smaller, the convergence time can increase. More formally, we letW = dn

minn
i=2{di−di−1}

be the ratio between the maximal demand and the minimal change in demand. Note that if
d1 = 1 and every di is an integer, then d1 = minni=2{di− di−1} and thus W = D; if demands
are not restricted to be integers, W might be much larger than D even in the case that
d1 = 1, for example if d1 = 1 and d2 = 1 + ε = D then W = 1/ε is large while D = 1 + ε ≈ 1.
We show a simple setting with only two demand levels and with D close to 1 in which the
dynamics takes time linear in W .

I Theorem 17 (Slow convergence). For any W , best response dynamics starting from zero
prices may require each seller to update his price W − 1 times to converge to an equilibrium.
Moreover, this holds even with 2 demand levels (n = 2) and with D = W

W−1 which is close to
1 when W is large.

ICALP 2017

134:12 Selling Complementary Goods: Dynamics, Efficiency and Revenue

Proof. We consider the following setting given some ε > 0 that is small enough: v1 = 1 and
d1 = 1, v2 = 1− ε and d2 = 1

1−2ε . In this case, W = d2/(d2 − d1) = 1
2ε . We will show that

for this instance best response dynamics starting at (0, 0) takes at least W − 1 = 1
2ε − 1 steps

to converge to an equilibrium.
Let pm, qm denote the price offered by the two sellers after m best-response steps for

each seller (pm is the offer of the seller who plays first). We will prove by induction that
pm = 1−mε and qm = mε whenever m+ 1 < 1

2ε .
We first handle the base case. With zero prices, the first seller can price at v1 = 1 and

get profit 1, or price at v2 = 1− ε and get profit (1− ε) · 1
1−2ε > 1. Thus, p1 = 1− ε. Now,

the best response of the other seller is clearly q1 = ε as pricing at total price of 1− ε gains
her 0 profit.

We next move to the induction step. Assume that the claim is true for some m, i.e.,
(pm, qm) = (1−mε,mε), and we prove it for m+ 1 (as long as m+ 1 < 1

2ε). If the second
seller prices at mε, the first seller will maximize profit by pricing either at 1− (m+ 1)ε or at
1−mε (recall that by Observation 4 after a seller is best responding, the price will be equal
to either v1 or v2).

The gain from the first price is (1− (m+ 1)ε) · 1
1−2ε and the gain from the latter price is

1−mε. Simple algebra shows that (1− (m+ 1)ε) · 1
1−2ε > 1−mε iff m < 1

2ε .
Now, assume that the first seller prices at 1− (m+ 1)ε, the second seller maximizes profit

by pricing either at (m+ 1)ε or at 1− ε− (1− (m+ 1)ε) = mε. The second seller chooses a
price of (m+ 1)ε if (m+ 1)ε > 1

1−2εmε. Simple algebra shows that this holds iff m+ 1 < 1
2ε .

This concludes the induction step and completes the proof. J

We observe that with two demand levels, convergence to equilibrium is guaranteed, and
the above linear bound is actually tight. Proof appears in the full version of the paper.

I Proposition 18. For any instance with 2 demand levels (n = 2), best response dynamics
starting from any price profile will stop in an equilibrium after each seller updates his price
at most W times.

5 The Quality of the Best Equilibrium

In this section, we study the price of stability in our game, that is, the ratio between the
quality of the best equilibrium and the optimal outcome (both for revenue and welfare). The
following theorem gives two upper bounds for the price of stability. One bound shows that
for every total demand D, the best equilibrium and the optimal outcome are at most factor
O(
√
D) away, for both welfare and revenue. The second bound is exponential in n, but it is

independent of D. This implies, in particular, that the price of stability in markets with a
small number of demand levels is small even for a very large D.

I Theorem 19. For any instance, the optimal welfare and the monopolist revenue are at
most O(min{2n,

√
D}) times the revenue of the best equilibrium.

As the bound holds for the revenue of the best equilibrium, it clearly also holds for the
welfare of that equilibrium. The proof of the theorem is in the full version of this paper.

The next theorem shows that the above price-of-stability bounds are tight. It describes
instances where the gap between the best equilibrium and the optimal outcome is asymptot-
ically at least 2n and

√
D, for both welfare and revenue. We prove the theorem in the full

version of the paper.

M. Babaioff, L. Blumrosen, and N. Nisan 134:13

I Theorem 20. For any number of demand levels n, there exists an instance for which the
optimal welfare and the monopolist revenue are at least factor Ω(2n) larger than the best
equilibrium welfare and revenue, respectively.

In addition, there exists an instance with integer demands for which the optimal welfare
and the monopolist revenue are at least factor Ω(

√
D) larger than the best equilibrium welfare

and revenue, respectively.

Acknowledgements. Noam Nisan was supported by ISF grant 1435/14 administered by
the Israeli Academy of Sciences and Israel-USA Bi-national Science Foundation (BSF) grant
2014389.

References

1 Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva Tardos, Tom Wexler, and
Tim Roughgarden. The price of stability for network design with fair cost allocation. SIAM
J. Comput., 38(4):1602–1623, 2008.

2 Baruch Awerbuch, Yossi Azar, Amir Epstein, Vahab S. Mirrokni, and Alexander Skopalik.
Fast convergence to nearly optimal solutions in potential games. In Proceedings 9th ACM
Conference on Electronic Commerce (EC08), pages 264–273, 2008.

3 Moshe Babaioff, Liad Blumrosen, and Noam Nisan. Network of complements. In The
43rd International Colloquium on Automata, Languages and Programming (ICALP 2016).,
2016.

4 Moshe Babaioff, Brendan Lucier, and Noam Nisan. Bertrand networks. In ACM Conference
on Electronic Commerce (ACM-EC), 2013.

5 Joseph Louis François Bertrand. theorie mathematique de la richesse sociale. Journal de
Savants, 67:499–508, 1883.

6 James M. Buchanan and Yong J. Yoon. Symmetric tragedies; commons and anticommons.
Journal of Law and Economics, 43(1):1–13, 2000.

7 Shuchi Chawla and Feng Niu. The price of anarchy in bertrand games. In Proceedings of
the 10th ACM Conference on Electronic Commerce, EC ’09, pages 305–314, 2009.

8 Shuchi Chawla and Tim Roughgarden. Bertrand competition in networks. In Burkhard
Monien and Ulf-Peter Schroeder, editors, Algorithmic Game Theory, First International
Symposium, SAGT 2008, Paderborn, Germany, April 30-May 2, 2008. Proceedings, volume
4997 of Lecture Notes in Computer Science, pages 70–82. Springer, 2008. doi:10.1007/
978-3-540-79309-0_8.

9 Antoine Augustin Cournot. Recherches sur les principes mathematiques de la theori des
Richesses. Paris : L. Hachette, 1838.

10 Nicholas Economides and Evangelos Katsamakas. Two-sided competition of proprietary vs.
open source technology platforms and the implications for the software industry. Manag-
ment Science, 52(7):1057–1071, 2006.

11 Nicholas Economides and Steven C. Salop. Competition and integration among comple-
ments, and network market structure. The Journal of Industrial Economics, 40(1):105–123,
1992.

12 C. Ellet. An essay on the laws of trade in reference to the works of internal improvement
in the United States. Reprints of economic classics. A.M. Kelley, 1839. URL: https:
//books.google.co.il/books?id=Fu4ZAAAAMAAJ.

13 Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure nash
equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 604–612, 2004.

ICALP 2017

http://dx.doi.org/10.1007/978-3-540-79309-0_8
http://dx.doi.org/10.1007/978-3-540-79309-0_8
https://books.google.co.il/books?id=Fu4ZAAAAMAAJ
https://books.google.co.il/books?id=Fu4ZAAAAMAAJ

134:14 Selling Complementary Goods: Dynamics, Efficiency and Revenue

14 Yossi Feinberg and Morton I. Kamien. Highway robbery: complementary monopoly and
the hold-up problem. International Journal of Industrial Organization, 19(10):1603 – 1621,
2001.

15 Amos Fiat, Elias Koutsoupias, Katrina Ligett, Yishay Mansour, and Svetlana Olonetsky.
Beyond myopic best response (in cournot competition). Games and Economic Behavior,
to appear., 2013.

16 Jason Hartline, Darrell Hoy, and Sam Taggart. Price of anarchy for auction revenue. In
Proceedings of the Fifteenth ACM Conference on Economics and Computation, EC ’14,
pages 693–710, 2014.

17 Michael A. Heller. The tragedy of the anticommons: Property in the transition from marx
to markets. Harvard Law Review, 111:621 – 688, 1998.

18 E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
Annual Symposium on Theoretical Aspects of Computer Science, pages 404–413, 1999.

19 Uri Nadav and Georgios Piliouras. No regret learning in oligopolies: Cournot vs. bertrand.
In Spyros C. Kontogiannis, Elias Koutsoupias, and Paul G. Spirakis, editors, Algorithmic
Game Theory - Third International Symposium, SAGT 2010, Athens, Greece, October 18-
20, 2010. Proceedings, volume 6386 of Lecture Notes in Computer Science, pages 300–311.
Springer, 2010. doi:10.1007/978-3-642-16170-4_26.

20 Noam Nisan, Michael Schapira, Gregory Valiant, and Aviv Zohar. Best-response mechan-
isms. In Innovations in Computer Science - ICS 2010, pages 155–165, 2011.

21 Francesco Parisi, Norbert Schulz, and Ben Depoorter. Duality in property: Commons and
anticommons. International Review of Law and Economics, 25(4):578 – 591, 2005.

22 T. Roughgarden and Eva Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236 – 259, 2002.

23 Tim Roughgarden. Intrinsic robustness of the price of anarchy. J. ACM, 62(5):32, 2015.
24 Alexander Skopalik and Berthold Vöcking. Inapproximability of pure nash equilibria. In

Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 355–364,
2008.

25 Hugo Sonnenschein. The dual of duopoly is complementary monopoly: or, two of cournot’s
theories are one. Journal of Political Economy, 76:316 – 318, 1968.

http://dx.doi.org/10.1007/978-3-642-16170-4_26

Saving Critical Nodes with Firefighters is FPT∗

Jayesh Choudhari1, Anirban Dasgupta2, Neeldhara Misra3, and
M. S. Ramanujan4

1 IIT Gandhinagar, Gandhinagar, India
choudhari.jayesh@iitgn.ac.in

2 IIT Gandhinagar, Gandhinagar, India
anirbandg@iitgn.ac.in

3 IIT Gandhinagar, Gandhinagar, India
neeldhara.m@iitgn.ac.in

4 TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

Abstract
We consider the problem of firefighting to save a critical subset of nodes. The firefighting game is
a turn-based game played on a graph, where the fire spreads to vertices in a breadth-first manner
from a source, and firefighters can be placed on yet unburnt vertices on alternate rounds to block
the fire. In this work, we consider the problem of saving a critical subset of nodes from catching
fire, given a total budget on the number of firefighters.

We show that the problem is para-NP-hard when parameterized by the size of the critical
set. We also show that it is fixed-parameter tractable on general graphs when parameterized by
the number of firefighters. We also demonstrate improved running times on trees and establish
that the problem is unlikely to admit a polynomial kernelization (even when restricted to trees).
Our work is the first to exploit the connection between the firefighting problem and the notions
of important separators and tight separator sequences.

Finally, we consider the spreading model of the firefighting game, a closely related problem,
and show that the problem of saving a critical set parameterized by the number of firefighters is
W[2]-hard, which contrasts our FPT result for the non-spreading model.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases firefighting, cuts, FPT, kernelization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.135

1 Introduction

The problem of Firefighting [17] formalizes the question of designing inoculation strategies
against a contagion that is spreading through a given network. The goal is to come up
with a strategy for placing firefighters on nodes in order to intercept the spread of fire.
More precisely, firefighting can be thought of as a turn-based game between two players,
traditionally the fire and the firefighter, played on a graph G with a source vertex s. The
game proceeds as follows.

At time step 0, fire breaks out at the vertex s. A vertex on fire is said to be burned.
At every odd time step i ∈ {1, 3, 5, . . .}, when it is the turn of the firefighter, a firefighter
is placed at a vertex v that is not already on fire. Such a vertex is permanently protected.
At every even time step j ∈ {2, 4, 6, . . .}, the fire spreads in the natural way: every vertex
adjacent to a vertex on fire is burned (unless it was protected).

∗ A full version of the paper is available at https://arxiv.org/abs/1705.10923.

EA
T

C
S

© Jayesh Choudhari, Anirban Dasgupta, Neeldhara Misra, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 135; pp. 135:1–135:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.135
https://arxiv.org/abs/1705.10923
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

135:2 Saving Critical Nodes with Firefighters is FPT

The game stops when the fire cannot spread any more. A vertex is said to be saved if
there is a protected vertex on every path from s to v. The natural algorithmic question
associated with this game is to find a strategy that optimizes some desirable criteria, for
instance, maximizing the number of saved vertices [4], minimizing the number of rounds,
the number of firefighters per round [6], or the number of burned vertices [13, 4], and so
on. These questions are well-studied in the literature, and while most variants are NP-hard,
approximation and parameterized algorithms have been proposed for various scenarios. See
the excellent survey [14] as well as references within for more details.

In this work, we consider the question of finding a strategy that saves a designated subset
of vertices, which we shall refer to as the critical set. We refer to this problem as Saving A
Critical Set (SACS) (we refer the reader to Section 2 for the formal definitions). This is
a natural objective in situations where the goal is to save specific locations as opposed to
saving some number of them. This version of the problem has been studied by [6, 18, 7] and
is known to be NP-hard even when restricted to trees.

Our aim of designing firefighting solutions in order to save a critical set is well-motivated.
In the context of studying networked systems for instance, it is often desirable to protect a
specific set of critical infrastructure against any vulnerabilities that are cascading through
the network (see [15] and [12] for an overview of survivable network analysis which aim to
design networked systems that survive in the face of failures by providing critical services).
Similarly, in the context of handling widely different risk factors that a contagion might have
for different sections of the population (e.g. risk-factors that the epidemic of avian flu have
for different subpopulations [5]), it is natural to ask for inoculation strategies to protect the
identified at-risk groups.

Our Contributions and Methodology. We initiate the study of Saving A Critical Set
from a parameterized perspective. We first show that the problem is para-NP-hard when
parameterized by the size of the critical set, by showing that Saving A Critical Set is
NP-complete even on instances where the size of the critical set is one. It is already clear
from known results that Saving A Critical Set is para-NP-hard also when parameterized
by treewidth. A third natural parameter is the number of firefighters deployed to save the
critical set. Our main result is that Saving A Critical Set is FPT when parameterized
by the number of firefighters, although it is not likely to have a polynomial kernel.

Our FPT algorithm is a recursive algorithm that uses the structure of tight separator
sequences. The notion of tight separator sequences was introduced in [19] and has several
applications [16, 20, 21] (some of which invoke modified definitions). A tight separator
sequence is, informally speaking, a sequence of minimal separators such that the reachability
set of Si is contained in the reachability set of Si+1. Note that any firefighting solution is a
s−C separator, where s is the source of the fire, and C is the critical subset of vertices. We
also obtain faster algorithms on trees by using important separators.

As is common with such approaches, we do not directly solve SACS, but an appropriately
generalized form, which encodes information about the behavior of some solution on the
“border” vertices, which in this case is the union of all the separators in the tight separator
sequence.

Related Work. The Firefighting problem has received much attention in recent years. It
has been studied in the parameterized complexity setting [4, 7, 10, 2] but mostly by using the
number of vertices burnt or saved as parameters. King et.al. [18] showed that for a tree of
degree at most 3, it is NP-hard to save a critical set with budget of one firefighter per round,

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:3

but is polynomial time when the fire starts from a vertex of degree at most 2. Chopin [7]
extended the hardness result of [18] to a per-round budget b ≥ 1 and to trees with maximum
degree b+ 2. Chalermsook et.al.[6] gave an approximation to the number of firefighters per
round when trying to protect a critical set.

Anshelevich et.al. [1] initiated the study of the spreading model, where the vaccination
also spreads through the network. In Section 4 we study this problem in the parameterized
setting.

2 Preliminaries

In this section, we introduce the notation and the terminology that we will need to describe
our algorithms. Most of our notation is standard. We use [k] to denote the set {1, 2, . . . , k},
and we use [k]O and [k]E , respectively, to denote the odd and even numbers in the set [k].

Graphs, Important Separators and Tight Separator Sequences. We introduce here the
most relevant definitions, and use standard notation pertaining to graph theory based
on [9, 11]. All our graphs will be simple and undirected unless mentioned otherwise. For
a graph G = (V,E) and a vertex v, we use N(v) and N [v] to refer to the open and closed
neighborhoods of v, respectively. The distance between vertices u, v of G is the length of a
shortest path from u to v in G; if no such path exists, the distance is defined to be ∞. A
graph G is said to be connected if there is a path in G from every vertex of G to every other
vertex of G. If U ⊆ V and G [U] is connected, then U itself is said to be connected in G. For
a subset S ⊆ V , we use the notation G \ S to refer to the graph induced by the vertex set
V \ S.

The following definitions about important separators and tight separator sequences will
be relevant to our main FPT algorithm. We first define the notion of the reachability set of
a subset X with respect to a subset S.

I Definition 1 (Reachable Sets). Let G = (V,E) be an undirected graph, let X ⊆ V and
S ⊆ V \X. We denote by RG(X,S) the set of vertices of G reachable from X in G \ S and
by NRG(X,S) the set of vertices of G not reachable from X in G \S. We drop the subscript
G if it is clear from the context.

We now turn to the notion of an X-Y separator and what it means for one separator to
cover another.

I Definition 2 (Covering by Separators). Let G = (V,E) be an undirected graph and let
X,Y ⊂ V be two disjoint vertex sets. A subset S ⊆ V \ (X ∪Y) is called an X−Y separator
in G if RG(X,S) ∩ Y = ∅, or in other words, there is no path from X to Y in the graph
G \ S. We denote by λG(X,Y) the size of the smallest X − Y separator in G. An X − Y
separator S1 is said to cover an X − Y separator S with respect to X if R(X,S1) ⊃ R(X,S).
If the set X is clear from the context, we just say that S1 covers S. An X − Y separator is
said to be inclusionwise minimal if none of its proper subsets is an X − Y separator.

If X = {x} is a singleton, then we abuse notation and refer to a x− Y separator rather
than a {x} − Y separator. A separator S1 dominates S if it covers S and is not larger than
S in size:

I Definition 3 (Dominating Separators [8]). Let G = (V,E) be an undirected graph and let
X,Y ⊂ V be two disjoint vertex sets. An X − Y separator S1 is said to dominate an X − Y
separator S with respect to X if |S1| ≤ |S| and S1 covers S with respect to X. If the set X
is clear from the context, we just say that S1 dominates S.

ICALP 2017

135:4 Saving Critical Nodes with Firefighters is FPT

We finally arrive at the notion of important separators, which are those that are not
dominated by any other separator.

I Definition 4 (Important Separators [8]). Let G = (V,E) be an undirected graph, X,Y ⊂ V
be disjoint vertex sets and S ⊆ V \ (X ∪ Y) be an X − Y separator in G. We say that S is
an important X − Y separator if it is inclusionwise minimal and there does not exist another
X − Y separator S1 such that S1 dominates S with respect to X.

It is useful to know that the number of important separators is bounded as an FPT
function of the size of the important separators.

I Lemma 5 ([8]). Let G = (V,E) be an undirected graph, X,Y ⊂ V be disjoint vertex sets
of G. For every k ≥ 0 there are at most 4k important X − Y separators of size at most k.
Furthermore, there is an algorithm that runs in time O(4kk(m+ n)) which enumerates all
such important X-Y separators, where n = |V | and m = |E|.

We are now ready to recall the notion of tight separator sequences introduced in [19].
However, the definition and structural lemmas regarding tight separator sequences used in
this paper are closer to that from [21]. Since there are minor modifications in the definition
as compared to the one in [21], we give the requisite proofs for the sake of completeness.

I Definition 6. Let X and Y be two subsets of V (G) and let k ∈ N. A tight (X,Y)-
reachability sequence of order k is an ordered collection H = {H0, H1, . . . ,Hq} of sets in V (G)
satisfying the following properties:

X ⊆ Hi ⊆ V (G) \N [Y] for any 0 ≤ i ≤ q;
X = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hq;
for every 0 ≤ i ≤ q, Hi is reachable from X in G[Hi] and every vertex in N(Hi) can
reach Y in G−Hi

(implying that N(Hi) is a minimal (X,Y)-separator in G);
|N(Hi)| ≤ k for every 1 ≤ i ≤ q;
N(Hi) ∩N(Hj) = ∅ for all 1 ≤ i, j ≤ q and i 6= j;
For any 0 ≤ i ≤ q − 1, there is no (X,Y)-separator S of size at most k where S ⊆
Hi+1 \N [Hi] or S ∩N [Hq] = ∅ or S ⊆ H1.

We let Si = N(Hi), for 1 ≤ i ≤ q, Sq+1 = Y , and S = {S0, S1, . . . , Sq, Sq+1}. We call S a
tight (X,Y)-separator sequence of order k.

I Lemma 7 (see for example [21]). There is an algorithm that, given an n-vertex m-
edge graph G, subsets X,Y ∈ V (G) and an integer k, runs in time O(kmn2) and either
correctly concludes that there is no (X,Y)-separator of size at most k in G or returns the
sets H0, H1, H2 \ H1, . . . ,Hq \ Hq−1 corresponding to a tight (X,Y)-reachability sequence
H = {H0, H1, . . . ,Hq} of order k.

Proof. The algorithm begins by checking whether there is an X-Y separator of size at most
k. If there is no such separator, then it simply outputs the same. Otherwise, it uses the
algorithm of Lemma 5 to compute an arbitrary important X-Y separator S of size at most k
such that there is no X-Y separator of size at most k that covers S.

Although the algorithm of Lemma 5 requires time O(4kk(m + n)) to enumerate all
important X-Y separators of size at most k, one important separator of the kind described
in the previous paragraph can in fact be computed in time O(kmn) by the same algorithm.

If there is noX-S separator of size at most k, we stop and return the set R(X,S) as the only
set in a tight (X,Y)-reachability sequence. Otherwise, we recursively compute a tight (X,S)-
reachability sequence P = {P0, . . . , Pr} of order k and define Q = {P0, . . . , Pr, R(X,S)}

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:5

as a tight (X,Y)-reachability sequence of order k. It is straightforward to see that all the
properties required of a tight (X,Y)-reachability sequence are satisfied. Finally, since the
time required in each step of the recursion is O(kmn) and the number of recursions is
bounded by n, the number of vertices, the claimed running time follows. J

Saving a Critical Set. We now turn to the definition of the firefighting problem. The game
proceeds as described earlier: we are given a graph G with a vertex s ∈ V (G). To begin
with, the fire breaks out at s and vertex s is burning. At each step t ≥ 1, first the firefighter
protects one vertex not yet on fire - this vertex remains permanently protected - and the fire
then spreads from burning vertices to all unprotected neighbors of these vertices. The process
stops when the fire cannot spread anymore. In the definitions that follow, we formally define
the notion of a firefighting strategy.

I Definition 8 (Firefighting Strategy). A k-step firefighting strategy is defined as a function
h : [2k]O → V (G). Such a strategy is said to be valid in G with respect to s if, for all
i ∈ [2k]O, when the fire breaks out in s and firefighters are placed according to h for all time
steps up to i− 2, the vertex h(i) is not burning at time step i, and the fire cannot spread
anymore after timestep 2k. If G and s are clear from the context, we simply say that h is a
valid strategy.

I Definition 9 (Saving C). For a vertex s and a subset C ⊆ V (G) \ {s}, a firefighting
strategy h is said to save C if h is a valid strategy and {h(i) | i ∈ [2k]O} is a {s}-C separator
in G, in other words, there is no path from s to any vertex in C if firefighters are placed
according to h.

We are now ready to define the parameterized problem that is the focus of this work.

Saving A Critical Set (SACS) Parameter: k
Input: An undirected n-vertex graph G, a vertex s, a subset C ⊆ V (G) \ {s}, and

an integer k.
Question: Is there a valid k-step strategy that saves C when a fire breaks out at s?

Parameterized Complexity. We follow standard terminology pertaining to parameterized
algorithms based on the monograph [9]. Here we define a known technique to prove kernel
lower bounds, called cross composition. Towards this, we first define polynomial equivalence
relations.

I Definition 10 (polynomial equivalence relation [3]). An equivalence relation R on Σ∗, where
Σ is a finite alphabet, is called a polynomial equivalence relation if the following holds: (1)
equivalence of any x, y ∈ Σ∗ can be checked in time polynomial in |x|+ |y|, and (2) any finite
set S ⊆ Σ∗ has at most (maxx∈S |x|)O(1) equivalence classes.

I Definition 11 (cross-composition [3]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ ×N be a parameterized
problem. We say that L cross-composes into Q if there is a polynomial equivalence relation R
and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equivalence
class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such

that: (i) (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t and (ii) k∗ is bounded by a polynomial in
(max1≤i≤t |xi|+ log t).

ICALP 2017

135:6 Saving Critical Nodes with Firefighters is FPT

The following theorem allows us to rule out the existence of a polynomial kernel for a
parameterized problem.

I Theorem 12 ([3]). If an NP-hard problem L ⊆ Σ∗ has a cross-composition into the
parameterized problem Q and Q has a polynomial kernel then NP ⊆ coNP/poly.

3 The Parameterized Complexity of Saving a Critical Set

In this section, we describe the FPT algorithm for Saving A Critical Set and our cross-
composition construction for trees. The starting point for our FPT algorithm is the fact that
every solution to an instance (G, s, C, k) of SACS is in fact a s-C separator of size at most
k. Although the number of such separators may be exponential in the size of the graph, it is
a well-known fact that the number of important separators is bounded by 4knO(1) [8]. For
several problems, one is able to prove that there exists a solution that is in fact an important
separator. In such a situation, an FPT algorithm is immediate by guessing the important
separator.

In the SACS problem, unfortunately, there are instances where none of the solutions
are important separators. However, this approach turns out to be feasible if we restrict our
attention to trees, leading to improved running times. This is described in greater detail in
Section 3.2. Further, in Section 3.3, we also show that we do not expect SACS to admit a
polynomial kernel under standard complexity-theoretic assumptions. We establish this by a
cross-composition from SACS itself, using the standard binary tree approach, similar to [2].

We describe our FPT algorithm for general graphs in Section 3.1. This is an elegant
recursive procedure that operates over tight separator sequences, exploiting the fact that a
solution can never be contained entirely in the region “between two consecutive separators”.
Although the natural choice of measure is the solution size, it turns out that the solution size
by itself cannot be guaranteed to drop in the recursive instances that we generate. Therefore,
we need to define an appropriate generalized instance, and work with a more delicate measure.
We now turn to a detailed description of our approach.

We note that the SACS problem is para-NP-complete when parameterized by the size of
the critical set, by showing that the problem is already NP-complete when the critical set
has only one vertex.

I Theorem 13 (?). SACS is NP-complete even when the critical set has one vertex.

3.1 The FPT Algorithm
Towards the FPT algorithm for SACS, we first define a generalized firefighting problem as
follows. In this problem, in addition to (G, s, C, k), we are also given the following:

P]Q ⊆ [2k]O, a set of available time steps,
Y ⊂ V (G), a subset of predetermined firefighter locations, and
a bijection γ : Q→ Y , a partial strategy for Q.

The goal here is to find a valid partial k-step firefighting strategy over (P ∪ Q) that
is consistent with γ on Q and saves C when the fire breaks out at s. We assume that no
firefighters are placed during the time steps [2k]O \ (P ∪Q). For completeness, we formally
define the notion of a valid partial firefighting strategy over a set.

I Definition 14 (Partial Firefighting Strategy). A partial k-step firefighting strategy on
X ⊆ [2k]O is defined as a function h : X → V (G). Such a strategy is said to be valid in G
with respect to s if, for all i ∈ X, when the fire breaks out in s and firefighters are placed

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:7

according to h for all time steps upto [i− 1]O ∩X, the vertex h(i) is not burning at time step
i. If G and s are clear from the context, we simply say that h is a valid strategy over X.

What it means for partial strategy to save C is also analogous to what it means for
a strategy to save C. The only difference here is that we save C despite not placing any
firefighters during the time steps j for j ∈ [2k]O \X.

I Definition 15 (Saving C with a Partial Strategy). For a vertex s and a subset C ⊆ V (G)\{s},
a partial firefighting strategy h over X is said to save C if h is a valid strategy and ∪i∈Xh(i)
is a s− C separator in G, in other words, there is no path involving only burning vertices
from s to any vertex in C if the fire starts at s and firefighters are placed according to h.

The intuition for considering this generalized problem is the following: when we recurse,
we break the instance G into two parts, say subgraphs G′ and H. An optimal strategy for G
employs some firefighters in H at some time steps X, and the remaining firefighters in G′ at
time steps [2k]O \X. When we recurse, we would therefore like to achieve two things:

Capture the interactions between G′ and H when we recursively solve H, so that a partial
solution that we obtain from the recursion aligns with the larger graph, and
Constrain the solution for the instanceH to only use time steps inX, “allowing” firefighters
to work in G′ for the remaining time steps.

The constrained time steps in our generalized problem cater to the second objective, and
the predetermined firefighter locations partially cater to the first. We now formally define
the generalized problem.

Saving A Critical Set With Restrictions (SACS-R) Parameter: k
Input: An undirected n-vertex graph G, vertices s and g, a subset C ⊆ V (G) \ {s},

a subset P] Q ⊆ [2k]O, Y ⊂ V (G) (such that |Y | = |Q|, 2k − 1 ∈ Q and
g ∈ Y), a bijeciton γ : Q→ Y such that γ(2k − 1) = g, and an integer k.

Question: Is there a valid partial k-step strategy over P ∪Q that is consistent with γ
on Q and that saves C when a fire breaks out at s?

We use p and q to denote |P | and |Q|, respectively. Note that we can solve an SACS
instance (G, s, C, k) by adding an isolated vertex g and solving the SACS-R instance
(G, s, C, 2k + 2, g, P,Q, Y, γ), where P = [2k]O, Q = {2k + 1}, Y = {g} and γ(2k + 1) = g.
Therefore, it suffices to describe an algorithm that solves SACS-R. The role of the vertex g
is mostly technical, and will be clear in due course.

We now describe our algorithm for solving an instance I := (G, s, C, k, g, P,Q, Y, γ) of
SACS-R. Throughout this discussion, for the convenience of analysis of Yes instances, let h
be an arbitrary but fixed valid partial firefighting strategy in G over P ∪Q, consistent with γ
on Q, that saves C. Our algorithm is recursive and works with pieces of the graph based on
a tight s− C-separator sequence of separators of size at most |P | in G \ Y . We describe the
algorithm in three parts: the pre-processing phase, the generation of the recursive instances,
and the merging of the recursively obtained solutions.

Phase 0 – Preprocessing. Observe that we have the following easy base cases:
If G \ Y has no s− C separators of size at most p, then the algorithm returns No.
If p = 0, then we have a Yes-instance if, and only if, s is separated from C in G \ Y and
h := γ is a valid partial firefighting strategy over Q. In this case, the algorithm outputs
Yes or No as appropriate.

ICALP 2017

135:8 Saving Critical Nodes with Firefighters is FPT

If p > 0 and s is already separated from C in G \ Y , then we return Yes, since any
arbitrary partial strategy over P ∪Q that is consistent with γ on Q is a witness solution.

If we have a non-trivial instance, then our algorithm proceeds as follows. To begin with,
we compute a tight s− C separator sequence of order p in G \ Y . Recalling the notation of
Definition 6 , we use S0, . . . , Sq+1 to denote the separators in this sequence, with S0 being
the set {s} and Sq+1 = C. We also use W0,W1, . . . ,Wq,Wq+1 to denote the reachability
regions between consecutive separators. More precisely, if H is the tight s− C reachability
sequence associated with S, then we have:

Wi := Hi \N [Hi−1] for 1 ≤ i ≤ q,

while Wq+1 is defined as G \ (N [Hq] ∪ C). We will also frequently employ the following
notation:

S =
q⋃

i=1
Si and W =

q+1⋃
i=1

Wi.

This is a slight abuse of notation since S is also used to denote the sequence S0, . . . , Sq+1,
but the meaning of S will typically be clear from the context.

We first observe that if q > k, the separator Sq can be used to define a valid partial
firefighting strategy. The intuition for this is the following: since every vertex in Sq is at a
distance of at least k from s, we may place firefighters on vertices in Sq in any order during
the available time steps. Since |Sq| ≤ p and Sq is a s− C separator, this is a valid solution.
Thus, we have shown the following:

I Lemma 16. If G admits a tight s−C separator sequence of order q in G \ Y where q > k,
then I is a Yes-instance.

Therefore, we return Yes if q > k and assume that q ≤ k whenever the algorithm proceeds
to the next phase.

This concludes the pre-processing stage.

Phase 1 – Recursion. Our first step here is to guess a partition of the set of available time
steps, P , into 2q + 1 parts, denoted by A0, . . . , Aq, Aq+1 and B1, . . . , Bq+1. The partition of
the time steps represents how a solution might distribute the timings of its firefighting strategy
among the sets in S and W. The set Ai denotes our guess of ∪v∈Si

h−1(v) and Bj denotes
our guess of ∪v∈Wjh

−1(v). Note that the number of such partitions is (2q + 1)p ≤ (2k + 1)k.
We define g0(k) := (2k + 1)k. We also use T1(P) to denote the partition A0, . . . , Aq and
T2(P) to denote B0, . . . , Bq+1.

We say that the partition (T1(P), T2(P)) is non-trivial if none of the Bi’s are such that
Bi = P . Our algorithm only considers non-trivial partitions – the reason this is sufficient
follows from the way tight separator sequences are designed, and this will be made more
explicit in due course.

Next, we would like to guess the behavior of a partial strategy over P restricted to S.
Informally, we do this by associating a signature with the strategy h, which is is a labeling of
the vertex set with labels corresponding to the status of a vertex in the firefighting game
when it is played out according to h. Every vertex is labeled as either a vertex that had a
firefighter placed on it, a burned vertex, or a saved vertex. The labels also carry information
about the earliest times at which the vertices attained these statuses. More formally, we
have the following definition.

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:9

I Definition 17. Let h be a valid k-step firefighting strategy (or a partial strategy over X).
The signature of h is defined as a labeling Lh of the vertex set with labels from the set:

L = ({f} ×X) ∪ ({b} × [2k]E) ∪ {p},

where:

Lh(v) =

(f, t) if h(t) = v,

(b, t) if t is the earliest time step at which v burns,
p if v is not reachable from s in G \ ({h(i) | i ∈ [2k]O})

We use array-style notation to refer to the components of L(v), for instance, if L(v) = (b, t),
then L(v)[0] = b and L(v)[1] = t. The algorithm begins by guessing the restriction of Lh on
S, that is, it loops over all possible labellings:

T : S → ({f} × P) ∪ ({b} × [2k]E) ∪ {p}.

The labeling T is called legitimate if, for any u 6= v, whenever T(u)[0] = T(v)[0] = f, we have
T(u)[1] 6= T(v)[1]. We say that a labeling T over S is compatible with T1(P) = (A0, . . . , Aq)
if we have:

for all 0 ≤ i ≤ r, if v ∈ Si and h(v)[0] = f, then h(v)[1] ∈ Ai.
for all 0 ≤ i ≤ r, if t ∈ Ai, there exists a vertex v ∈ Si such that h−1(f, t) = v.

The algorithm considers only legitimate labelings compatible with the current choice
of T1(P). By Lemma 16, we know that any tight s− C separator sequence considered by
the algorithm at this stage has at most k separators of size at most p each. Therefore,
we have that the number of labelings considered by the algorithm is bounded by g1(k) :=
(p+ k + 1)(kp) ≤ (3k)O(k2) ≤ kO(k2).

We are now ready to split the graph into q + 1 recursive instances. For 1 ≤ i ≤ q + 1,
let us define Gi = G[Si−1 ∪Wi ∪ Si ∪ Y]. Also, let Ti := T |V (Gi)∩S . Notice that when
using Gi’s in recursion, we need to ensure that the independently obtained solutions are
compatible with each other on the non-overlapping regions, and consistent on the common
parts. We force consistency by carrying forward the information in the signature of h using
appropriate gadgets, and the compatibility among the Wi’s is a result of the partitioning of
the time steps.

Fix a partition of the available time steps P into T1(P) and T2(P), a compatible labeling
T and 1 ≤ i ≤ q + 1. We will now define the SACS-R instance I〈i, T1(P), T2(P),Ti〉. Recall
that I = (G, s, C, k, g, P,Q, Y, γ). To begin with, we have the following:

Let Xi = Ai−1 ∪Ai and let Pi = Bi.
Let Qi := Xi ∪Q and Yi := Y ∪Xi. We define γi as follows:

γi(t) =
{
γ(t) if t ∈ Q,
v if t ∈ Xi and Ti(v) = (f, t)

Note that γi is well-defined because the labeling was legitimate and compatible with T1(P).
We define Hi to be the graph χ(Gi,Ti), which is described below.

To begin with, V (Hi) = V (Gi) ∪ {s?, t?}
Let v ∈ V (Gi) be such that Ti(v)[0] = b. Use ` to denote Ti(v)[1]/2. Now, we do the
following:

Add k + 1 internally vertex disjoint paths from s? to v of length `+ 1, in other words,
these paths have `− 1 internal vertices.
Add k + 1 internally vertex disjoint paths from v to g of length k − `− 1.

ICALP 2017

135:10 Saving Critical Nodes with Firefighters is FPT

Algorithm 1: Solve-SACS-R(I)
Input: An instance (G, s, C, k, g, P,Q, Y, γ), p := |P |
Result: Yes if I is a Yes-instance of SACS-R, and No otherwise.

1 if p = 0 and s and C are in different components of G \ Y then return Yes;
2 else return No;
3 if p > 0 and s and C are in different components of G \ Y then return Yes;
4 if there is no s− C separator of size at most p then return No;
5 Compute a tight s− C separator sequence S of order p.
6 if the number of separators in S is greater than k then return Yes;
7 else
8 for a non-trivial partition T1(P), T2(P) of P into 2q + 1 parts do
9 for a labeling T compatible with T1(P) do

10 if
∧q+1

i=1 (Solve-SACS-R(I〈i, T1(P), T2(P),Ti〉)) then return Yes;

11 return No

Let v ∈ V (Gi) be such that Ti(v) = p. Add an edge from v to t?.
We also make k+ 1 copies of the vertices t? and all vertices that are labeled either burned
or saved. This ensures that no firefighters are placed on these vertices.

For 1 ≤ i ≤ q+ 1, the instance I〈i, T1(P), T2(P),Ti〉 is now defined as (χ(Gi,Ti), s?, C =
{t?}, k, g, Pi, Qi, Yi, γi).

Phase 2 – Merging. Our final output is quite straightforward to describe once we have the
h[Ti, i]’s. Consider a fixed partition of the available time steps P into T1(P) and T2(P), and
a labeling T of S compatible with T1(P). If all of the (q+ 1) instances I〈i, T1(P), T2(P),Ti〉,
1 ≤ i ≤ q + 1 return Yes, then we also return Yes, and we return No otherwise. Indeed, in
the former case, let h[i, T1(P), T2(P),T] denote a valid partial firefighting strategy for the
instance I〈i, T1(P), T2(P),Ti〉. We will show that h?, described as follows, is a valid partial
firefighting strategy that saves C.

For the time steps in Q, we employ firefighters according to γ.
For the time steps in T1(P), we employ firefighters according to T. This is a well-defined
strategy since T is a compatible labeling.
For all remaining time steps, i.e, those in T2(P) = {B1, . . . , Bq+1}, we follow the strategy
given by h[i, T1(P), T2(P),T].

It is easily checked that the strategy described above agrees with h[i, T1(P), T2(P),T]
for all i. Also, the strategy is well-defined, since T1(P) and T2(P) form a partition of the
available time steps. Next, we will demonstrate that h? is indeed a valid strategy that saves
C, and also analyze the running time of the algorithm.

Due to lack of space, we refer the reader to the full version of this work for the analysis
of the algorithm.

3.2 A Faster Algorithm For Trees
In this section we consider the setting when the input graph G is a tree. WLOG, we consider
the vertex s to be the root of the tree. We first state an easy claim that shows that WLOG,
we can consider the critical set to be the leaves. The proof of the following lemma follows
from the fact that the firefighting solution has to be a s− C separator.

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:11

I Lemma 18. When the input graph G is a tree, if there exists a solution to SACS, there
exists a solution such that all firefighter locations are on nodes that are on some path from s

to C.

Given the above claim, our algorithm to construct a firefighting solution is the following–
exhaustively search all the important s− C separators that are of size k. For each vertex v
in a separator Y , we place firefighters on Y in the increasing order of distance from s and
check whether this is a valid solution. The following lemma claims that if there exists a
firefighting solution, the above algorithm will return one.

I Lemma 19 (?). Solving the SACS problem for input graphs that are trees takes time
O∗(4k).

3.3 No Polynomial Kernel, Even on Trees

Given that there is a FPT algorithm for SACS when restricted to trees, in this section
we show that SACS on trees has no polynomial kernel. As mentioned before, the proof
technique used here is on the similar lines of the proof showing no polynomial kernel for
SAVING ALL BUT k-VERTICES by Bazgan et. al.[2].

I Theorem 20 (?). SACS when restricted to trees does not admit polynomial kernel, unless
NP ⊆ coNP/poly.

4 The Spreading Model

The spreading model for firefighters was defined by Anshelevich et al. [1] as “Spreading
Vaccination Model”. In contrast to the firefighting game described in Section 1, in the
spreading model, the firefighters (vaccination) also spread at even time steps as similar to
that of the fire. That is, at any even time step if there is a firefighter at node vi, then the
firefighter extends (vaccination spreads) to all the neighbors of vi which are not already on
fire or are not already protected by a firefighter. Consider a node vi which is not already
protected or burning at time step 2j. If ui and wi are neighbors of vi, such that, ui was
already burning at time step 2j − 1 and wi was protected at time step 2j − 1, then at time
step 2j, vi is protected. That is, in the spreading model the firefighters dominate or win over
fire. For the spreading model, the firefighting game can be defined formally as follows:

At time step 0, fire breaks out at the vertex s. A vertex on fire is said to be burned.
At every odd time step i ∈ {1, 3, 5, . . .}, when it is the turn of the firefighter, a firefighter
is placed at a vertex v that is not already on fire. Such a vertex is permanently protected.
At every even time step j ∈ {2, 4, 6, . . .}, first the firefighter extends to every adjacent
vertex to a vertex protected by a firefighter (unless it was already protected or burned),
then the fire spreads to every vertex adjacent to a vertex on fire (unless it was already
protected or burned). Needless to say, the vertices protected at even time steps are also
permanently protected.

In the following theorem, we show that in spite of the spreading power that the firefighters
have, SACS is hard.

I Theorem 21 (?). In the spreading model, SACS is as hard as k-Dominating Set.

ICALP 2017

135:12 Saving Critical Nodes with Firefighters is FPT

5 Summary and Conclusions

In this work, we presented the first FPT algorithm, parameterized by the number of
firefighters, for a variant of the Firefighter problem where we are interested in protecting a
critical set. We also presented a faster algorithms on trees. In contrast, we also show that
in the spreading model protecting a critical set is W[2]-hard. Our algorithms exploit the
machinery of important separators and tight separator sequences. We believe that this opens
up an interesting approach for studying other variants of the Firefighter problem.

References

1 Elliot Anshelevich, Deeparnab Chakrabarty, Ameya Hate, and Chaitanya Swamy. Ap-
proximation algorithms for the firefighter problem: Cuts over time and submodularity. In
International Symposium on Algorithms and Computation, pages 974–983. Springer, 2009.

2 Cristina Bazgan, Morgan Chopin, Marek Cygan, Michael R Fellows, Fedor V Fomin, and
Erik Jan van Leeuwen. Parameterized complexity of firefighting. Journal of Computer and
System Sciences, 80(7):1285–1297, 2014.

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.

4 Leizhen Cai, Elad Verbin, and Lin Yang. Firefighting on trees:(1 − 1/e)–approximation,
fixed parameter tractability and a subexponential algorithm. In International Symposium
on Algorithms and Computation, pages 258–269. Springer, 2008.

5 Center for Disease Control. People at High Risk of Developing Flu–Related Complications.
https://www.cdc.gov/flu/about/disease/high_risk.htm, 2016.

6 Parinya Chalermsook and Julia Chuzhoy. Resource minimization for fire containment.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 1334–1349. Society for Industrial and Applied Mathematics, 2010.

7 Morgan Chopin. Optimization problems with propagation in graphs: Parameterized com-
plexity and approximation. PhD thesis, Université Paris Dauphine-Paris IX, 2013.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Marek Cygan, Fedor V Fomin, ukasz Kowalik, Daniel Lokshtanov, D ’aniel Marx, Marcin
Pilipczuk, Micha Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, Cham,
Cham, 2015.

10 Marek Cygan, Fedor V Fomin, and Erik Jan van Leeuwen. Parameterized Complexity of
Firefighting Revisited. In Parameterized and exact computation, pages 13–26. Springer,
Heidelberg, Berlin, Heidelberg, 2012.

11 Reinhard Diestel. Graph Theory. Springer Graduate Text GTM 173. Reinhard Diestel,
July 2012.

12 Robert J Ellison, David A Fisher, Richard C Linger, Howard F Lipson, and Thomas Long-
staff. Survivable network systems: An emerging discipline. Technical report, DTIC Docu-
ment, 1997.

13 S Finbow, B Hartnell, Q Li, and K Schmeisser. On minimizing the effects of fire or a
virus on a network. Journal of Combinatorial Mathematics and Combinatorial Computing,
33:311–322, 2000.

14 Stephen Finbow and Gary MacGillivray. The firefighter problem: a survey of results,
directions and questions. The Australasian Journal of Combinatorics, 43:57–77, 2009.

15 Howard Frank and I Frisch. Analysis and design of survivable networks. IEEE Transactions
on Communication Technology, 18(5):501–519, 1970.

https://www.cdc.gov/flu/about/disease/high_risk.htm

J. Choudhari, A. Dasgupta, N. Misra, and M. S. Ramanujan 135:13

16 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractab-
ility for constraint satisfaction and counting. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Janu-
ary 10-12, 2016, pages 1670–1681, 2016.

17 Bert Hartnell. Firefighter! an application of domination. In 25th Manitoba Conference on
Combinatorial Mathematics and Computing, 1995.

18 Andrew King and Gary MacGillivray. The firefighter problem for cubic graphs. Discrete
Mathematics, 310(3):614–621, 2010.

19 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut
with parity constraints. In Automata, Languages, and Programming - 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 750–
761, 2012.

20 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear time parameterized
algorithm for directed feedback vertex set. CoRR, abs/1609.04347, 2016.

21 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear time parameterized
algorithm for node unique label cover. CoRR, abs/1604.08764, 2016.

ICALP 2017

On the Transformation Capability of Feasible
Mechanisms for Programmable Matter∗†

Othon Michail1, George Skretas2, and Paul G. Spirakis3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
Othon.Michail@liverpool.ac.uk

2 Computer Engineering and Informatics Department, Patras University, Patras,
Greece
skretas@ceid.upatras.gr

3 Department of Computer Science, University of Liverpool, Liverpool, UK; and
Research Academic Computer Computer Technology Institute (CTI), Patras,
Greece; and
Computer Engineering and Informatics Department, Patras University, Patras,
Greece
P.Spirakis@liverpool.ac.uk

Abstract
In this work, we study theoretical models of programmable matter systems. The systems under
consideration consist of spherical modules, kept together by magnetic forces and able to perform
two minimal mechanical operations (or movements): rotate around a neighbor and slide over
a line. In terms of modeling, there are n nodes arranged in a 2-dimensional grid and forming
some initial shape. The goal is for the initial shape A to transform to some target shape B

by a sequence of movements. Most of the paper focuses on transformability questions, meaning
whether it is in principle feasible to transform a given shape to another. We first consider the
case in which only rotation is available to the nodes. Our main result is that deciding whether
two given shapes A and B can be transformed to each other is in P. We then insist on rotation
only and impose the restriction that the nodes must maintain global connectivity throughout the
transformation. We prove that the corresponding transformability question is in PSPACE and
study the problem of determining the minimum seeds that can make feasible otherwise infeasible
transformations. Next we allow both rotations and slidings and prove universality: any two
connected shapes A, B of the same number of nodes, can be transformed to each other without
breaking connectivity. The worst-case number of movements of the generic strategy is Θ(n2).
We improve this to O(n) parallel time, by a pipelining strategy, and prove optimality of both by
matching lower bounds. We next turn our attention to distributed transformations. The nodes
are now distributed processes able to perform communicate-compute-move rounds. We provide
distributed algorithms for a general type of transformation.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical Algorithms and Problems, I.2.9
Robotics

Keywords and phrases programmable matter, transformation, reconfigurable robotics, shape
formation, complexity, distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.136

∗ The full version of this paper (including all omitted details and a number of helpful illustrations) can be
found at: https://arxiv.org/abs/1703.04381.

† Supported in part by the School of EEE/CS of the University of Liverpool, NeST initiative.

EA
T

C
S

© Othon Michail, George Skretas, and Paul G. Spirakis;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 136; pp. 136:1–136:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.136
https://arxiv.org/abs/1703.04381
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

136:2 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

1 Introduction

Programmable matter refers to any type of matter that can algorithmically change its physical
properties. For a concrete example, imagine a material formed by a collection of spherical
nanomodules kept together by magnetic forces. Each module is capable of storing (in some
internal representation) and executing a simple program that handles communication with
nearby modules and that controls the module’s electromagnets, in a way that allows the
module to rotate or slide over neighboring modules. Such a material would be able to adjust
its shape in a programmable way. Other examples of physical properties of interest for real
applications would be connectivity, color [25, 5], and strength of the material.

There are already some first impressive outcomes towards the development of program-
mable materials (even though it is evident that there is much more work to be done in the
direction of real systems), such as programmed DNA molecules that self-assemble into desired
structures [28, 14] and large collectives of tiny identical robots that orchestrate resembling a
single multi-robot organism (e.g., the Kilobot system [30]). Other systems for programmable
matter include [21, 23]. Ambitious long-term applications of programmable materials include
molecular computers, collectives of nanorobots injected into the human circulatory system
for monitoring and treating diseases, or even self-reproducing and self-healing machines (see
also [27]).

Apart from the fact that systems work is still in its infancy, there is also an apparent lack
of unifying formalism and theoretical treatment. Still there are some first theoretical efforts
aiming at understanding the fundamental possibilities and limitations of this prospective.
The area of algorithmic self-assembly tries to understand how to program molecules (mainly
DNA strands) to manipulate themselves, grow into machines and at the same time control
their own growth [14]. The theoretical model guiding the study in algorithmic self-assembly
is the Abstract Tile Assembly Model (aTAM) [33, 29] and variations. Recently, a model,
called the nubot model, was proposed for studying the complexity of self-assembled structures
with active molecular components [34]. Another very recent model, called the Network
Constructors model, studied what stable networks can be constructed by a population of
finite-automata that interact randomly like molecules in a well-mixed solution and can
establish bonds with each other according to the rules of a common small protocol [26].
The development of Network Constructors was based on the Population Protocol model of
Angluin et al. [2], that does not include the capability of creating bonds and focuses more on
the computation of functions on inputs. A very interesting fact about population protocols
is that they are formally equivalent to chemical reaction networks (CRNs), “which model
chemistry in a well-mixed solution and are widely used to describe information processing
occurring in natural cellular regulatory networks” [15]. Also the recently proposed Amoebot
model, “offers a versatile framework to model self-organizing particles and facilitates rigorous
algorithmic research in the area of programmable matter” [10, 12, 11, 13]. Other related work
includes mobile and reconfigurable robotics [6, 24, 31, 20, 32, 8, 7, 4, 36, 1, 35], puzzles [9, 22],
and passive systems [2, 3, 26, 19, 33, 29].

It seems that the right way for theory to boost the development of more refined real
systems is to reveal the transformation capabilities of mechanisms and technologies that are
available now, rather than by exploring the unlimited variety of theoretical models that are not
expected to correspond to a real implementation in the near future. In this paper, we follow
such an approach, by studying the transformation capabilities of models for programmable
matter, which are based on minimal mechanical capabilities, easily implementable by existing
technology.

O. Michail, G. Skretas, and P. G. Spirakis 136:3

1.1 Our Approach

We study a minimal programmable matter system consisting of n cycle-shaped modules, with
each module (or node) occupying at any given time a cell of the 2-dimensional (abbreviated
“2D” throughout) grid (no two nodes can occupy the same cell at the same time). Therefore,
the composition of the programmable matter systems under consideration is discrete. Our
main question throughout is whether an initial arrangement of the material can transform
(either in principle, e.g., by an external authority, or by itself) to some other target arrange-
ment. In more technical terms, we are provided with an initial shape A and a target shape B

and we are asked whether A can be transformed to B via a sequence of valid transformation
steps. Usually, a step consists either of a valid movement of a single node (in the sequential
case) or of more than one nodes at the same time (in the parallel case). We consider two
quite primitive types of movement. The first one, called rotation, allows a node to rotate
90° around one of its neighbors either clockwise or counterclockwise and the second one,
called sliding, allows a node to slide by one position “over” two neighboring nodes. Both
movements succeed only if the whole direction of movement is free of obstacles (i.e., other
nodes blocking the way). More formal definitions are provided in Section 2. One part of the
paper focuses on the case in which only rotation is available to the nodes and the other part
studies the case in which both rotation and sliding are available. The latter case has been
studied to some extent in the past in the, so called, metamorphic systems [17, 18, 16], which
makes those studies the closest to our approach.

For rotation only, we introduce the notion of color-consistency and prove that if two
shapes are not color-consistent then they cannot be transformed to each other. On the other
hand, color-consistency does not guarantee transformability, as there is an infinite set of
pairs (A, B) such that A and B are color consistent but still they cannot be transformed
to each other. At this point, observe that if A can be transformed to B then the inverse
is also true, as all movements considered in this paper are reversible. We distinguish
two main types of transformations: those that are allowed to break the connectivity of
the shape during the transformation and those that are not; we call the corresponding
problems Rot-Transformability and RotC-Transformability, respectively. Our main
result regarding Rot-Transformability is that Rot-Transformability ∈ P. To prove
polynomial-time decidability, we prove that two connected shapes A and B of the same order
(i.e., having the same number of nodes) are transformable to each other iff both have at least
one movement available. Therefore, transformability reduces to checking the availability of a
movement in the initial and target shapes.

We next study RotC-Transformability, in which again the only available movement is
rotation, but now connectivity of the material has to be preserved throughout the transform-
ation. The property of preserving the connectivity is expected to be a crucial property for
programmable matter systems, as it allows the material to maintain coherence and strength,
to eliminate the need for wireless communication, and, finally, enables the development
of more effective power supply schemes, in which the modules can share resources or in
which the modules have no batteries but are instead constantly supplied with energy by
a centralized source (or by a supernode that is part of the material itself). Such benefits
can lead to simplified designs and potentially to reduced size of individual modules. We
first prove that RotC-Transformability ∈ PSPACE. The rest of our results here are
strongly based on the notion of a seed. This stems from the observation that a large set of
infeasible transformations become feasible by introducing to the initial shape an additional,
and usually quite small, seed; i.e., a small shape that is being attached to some point of the
initial shape. We investigate seeds that could serve as components capable of traveling the

ICALP 2017

136:4 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

perimeter of an arbitrary connected shape A. Such seed-shapes are very convenient as they
are capable of “simulating” the universal transformation techniques that are possible if we
have both rotation and sliding movements available (discussed in the sequel). To this end,
we prove that all seeds of size ≤ 4 cannot serve for this purpose, by proving that they cannot
even walk the perimeter of a simple line shape. On the other hand, we manage to show that
a 6-seed succeeds, and this provides a first indication, that there might be a large family
of shapes that can be transformed to each other with rotation only and without breaking
connectivity.

Next, we consider the case in which both rotation and sliding are available and insist
on connectivity preservation. We first provide a proof that this combination of simple
movements is universal w.r.t. transformations, as any pair of connected shapes A and B

of the same order can be transformed to each other without ever breaking the connectivity
throughout the transformation (a first proof of this fact had already appeared in [16]).
This generic transformation requires Θ(n2) sequential movements in the worst case. By a
potential-function argument we show that no transformation can improve on this worst-
case complexity for some specific pairs of shapes and this lower bound is independent of
connectivity preservation; it only depends on the inherent transformation-distance between
the shapes. To improve on this, either some sort of parallelism must be employed or more
powerful movement mechanisms, e.g., movements of whole sub-shapes in one step. We
investigate the former approach, and prove that there is a pipelining general transformation
strategy that improves the time to O(n) (parallel time). We also give a matching Ω(n) lower
bound. On the way, we also show that this parallel complexity is feasible even if the nodes are
labeled, meaning that individual nodes must end up in specific positions of the target-shape.

Finally, we assume that the nodes are distributed processes able to perform communicate-
compute-move rounds (where, again, both rotation and sliding movements are available) and
provide distributed algorithms for a general type of transformation.

Section 2 brings together all definitions and basic facts that are used throughout the
paper. In Section 3, we study programmable matter systems equipped only with rotation
movement. In Section 4, we insist on rotation only, but additionally require that the material
maintains connectivity throughout the transformation. In Section 5, we investigate the
combined effect of rotation and sliding movements. Finally, in Section 6 we conclude and
give further research directions that are opened by our work.

2 Preliminaries

The programmable matter systems considered in this paper operate on a 2D square grid,
with each position (or cell) being uniquely referred to by its y ≥ 0 and x ≥ 0 coordinates.
Such a system consists of a set V of n modules, called nodes throughout. Each node may
be viewed as a spherical module fitting inside a cell of the grid. At any given time, each
node u ∈ V occupies a cell o(u) = (oy(u), ox(u)) = (i, j) (where i corresponds to a row
and j to a column of the grid) and no two nodes may occupy the same cell. At any given
time t, the positioning of nodes on the grid defines an undirected neighboring relation
E(t) ⊂ V × V , where {u, v} ∈ E iff oy(u) = oy(v) and |ox(u)− ox(v)| = 1 or ox(u) = ox(v)
and |oy(u)− oy(v)| = 1, that is, if u and v are either horizontal or vertical neighbors on the
grid, respectively. A more informative way to define the system at a given time t, and thus
often more convenient, is as a mapping Pt : N≥0 × N≥0 → {0, 1} where Pt(i, j) = 1 iff cell
(i, j) is occupied by a node.

At any given time t, P−1
t (1) defines a shape. Such a shape is called connected if E(t)

defines a connected graph. A connected shape is called convex if for any two occupied cells,

O. Michail, G. Skretas, and P. G. Spirakis 136:5

the line that connects their centers does not pass through an empty cell. We call a shape
discrete-convex if for any two occupied cells, belonging either to the same row or the same
column, the line that connects their centers does not pass through an empty cell; i.e., in the
latter we exclude diagonal lines. We call a shape compact if it has no holes.

In general, shapes can transform to other shapes via a sequence of one or more movements
of individual nodes. Time consists of discrete steps (or rounds) and in every step, zero or
more movements may occur. In the sequential case, at most one movement may occur per
step, and in the parallel case any number of “valid” movements may occur in parallel. 1 We
consider two types of movements: (i) rotation and (ii) sliding. In both movements, a single
node moves relative to one or more neighboring nodes as we just explain.

A single rotation movement of a node u is a 90° rotation of u around one of its neighbors.
Let (i, j) be the current position of u and let its neighbor be v occupying the cell (i− 1, j)
(i.e., lying below u). Then u can rotate 90° clockwise (counterclockwise) around v iff the cells
(i, j +1) and (i−1, j +1) ((i, j−1) and (i−1, j−1), respectively) are both empty. By rotating
the whole system 90°, 180°, and 270°, all possible rotation movements are defined analogously.
A single sliding movement of a node u is a one-step horizontal or vertical movement “over” a
horizontal or vertical line of (neighboring) nodes of length 2. In particular, if (i, j) is the
current position of u, then u can slide rightwards to position (i, j + 1) iff (i, j + 1) is not
occupied and there exist nodes at positions (i− 1, j) and (i− 1, j + 1) or at positions (i + 1, j)
and (i + 1, j + 1), or both. Precisely the same definition holds for up, left, and down sliding
movements by rotating the whole system 90°, 180°, and 270° counterclockwise, respectively.

Let A and B be two shapes. We say that A transforms to B via a movement m (which
can be either a rotation or a sliding), denoted A

m→ B, if there is a node u in A such that if
u applies m, then the shape resulting after the movement is B (possibly after rotations and
translations of the resulting shape, depending on the application). We say that A transforms
in one step to B (or that B is reachable in one step from A), denoted A→ B, if A

m→ B for
some movement m. We say that A transforms to B (or that B is reachable from A) and write
A B, if there is a sequence of shapes A = C0, C1, . . . , Ct = B, such that Ci → Ci+1 for all
i, 0 ≤ i < t. We should mention that we do not always allow m to be any of the two possible
movements. In particular, in Sections 3 and 4 we only allow m to be a rotation, as we there
restrict attention to systems in which only rotation is available. We shall clearly explain
what movements are permitted in each part of the paper. Observe now that both rotation
and sliding are reversible movements, a fact that we extensively use in our results. Based on
this, it can be proved that the relation ‘ ’ is a partial equivalence relation. When the only
available movement is rotation, there are shapes in which no rotation can be performed. If
we introduce a null rotation, then every shape may transform to itself by applying the null
rotation, and ‘ ’ becomes an equivalence relation.

The following are the main transformation problems that are considered in this work:
Rot-Transformability. Given an initial shape A and a target shape B (usually both

connected), decide whether A can be transformed to B (usually, under translations and
rotations of the shapes) using only a sequence of rotation movements.

RotC-Transformability. Special case of Rot-Transformability, where A and B

are connected shapes and connectivity must be preserved throughout the transformation.
RS-Transformability. Variant of Rot-Transformability in which both rotation

and sliding movements are available.

1 By “valid”, we mean here subject to the constraint that their whole movement paths correspond to
pairwise disjoint sub-areas of the grid.

ICALP 2017

136:6 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

Minimum-Seed-Determination. Given an initial shape A and a target shape B determine
a minimum-size seed and an initial positioning of that seed relative to A that makes the
transformation from A to B feasible.

3 Rotation

In this section, the only permitted movement is 90° rotation around a neighbor. Our main
result in this section is that Rot-Transformability ∈ P.

Consider a black and red checkered coloring of the 2D grid. Any shape S may be viewed
as a colored shape consisting of b(S) blacks and r(S) reds. Call two shapes A and B color-
consistent if b(A) = b(B) and r(A) = r(B) and call them color-inconsistent otherwise. Call a
transformation from a shape A to a shape C color-preserving if A and C are color consistent.

I Observation 1. The rotation movement is color-preserving. Formally, A C (restricted
to rotation only) implies that A and C are color-consistent. In particular, every node beginning
from a black (red) position of the grid, will always be on black (red, respectively) positions
throughout a transformation.

Based on this property of the rotation movement, we may call each node black or red
throughout a transformation, based only on its initial coloring. Observation 1 gives a partial
way to determine that two shapes A and B cannot be transformed to each other by rotations.

I Proposition 2. If two shapes A and B are color-inconsistent, then it is impossible to
transform one to the other by rotations only.

I Proposition 3. There is a generic connected shape, called line-with-leaves, that has a
color-consistent version for any connected shape A.

Proof. Let red be the majority color of A and k be the number of black nodes of A. Consider
a bi-color line starting with a black node and ending to a black node, such that all k blacks
are exhausted. To do this, k − 1 reds are needed in order to alternate blacks and reds on the
line. Since A is connected, it can have at most 3k + 1 reds. By adding red leaf-nodes around
the blacks of the line, we can achieve the whole range of possible number of reds, from k to
3k + 1. J

Based on this, we now show that the inverse of Proposition 2 is not true, that is, it does
not hold that any two color-consistent shapes can be transformed to each other by rotations.

I Proposition 4. There is an infinite set of pairs (A, B) of connected shapes, such that A

and B are color-consistent but cannot be transformed to each other by rotations only.

Proof. For shape A, take a rhombus in which no node is able to rotate. By Proposition 3,
any such A has a color-consistent shape B from the family of line-with-leaves shapes, such
that B 6= A. We conclude that A and B are distinct color-consistent shapes which cannot be
transformed to each other, and there is an infinite number of such pairs, as the number of
black nodes of A can be made arbitrarily large. J

Propositions 2 and 4 give a partial characterization of pairs of shapes that cannot be
transformed to each other. Observe that the impossibilities proved so far, hold for all possible
transformations based on rotation only, including those that are allowed to break connectivity.

The next theorem states that the inclusion between RotC-Transformability and
Rot-Transformability is strict, that is, there are strictly more feasible transforma-
tions if we allow connectivity to break. We prove this by showing that there is a feasible

O. Michail, G. Skretas, and P. G. Spirakis 136:7

transformation, namely folding a spanning line in half, in Rot-Transformability\RotC-
Transformability.

I Theorem 5. RotC-Transformability ⊂ Rot-Transformability.

Aiming at a general transformation, we ask whether there is some minimal addition to a
shape that would allow it to transform. The solution turns out to be as small as a 2-line seed
(a bi-color pair, usually referred to as “2-line” or “2-seed”) lying initially somewhere “outside”
the boundaries of the shape. Based on the above assumptions, we prove that any pair of
color-consistent connected shapes A and B can be transformed to each other. The idea is
to exploit the fact that the 2-line can move freely in any direction and to use it in order to
extract from A another 2-line. In this way, a 4-line seed is formed, which can also move freely
in all directions. Then we use the 4-line as a transportation medium for carrying the nodes
of A, one at a time. We exploit these mobility mechanisms to transform A into a uniquely
defined shape from the line-with-leaves family of Proposition 3. But if any connected shape
A with an extra 2-line can be transformed to its color-consistent line-with-leaves version
with an extra 2-line, then this also holds inversely due to reversibility, and it follows that
any A can be transformed to any B by transforming A to its line-with-leaves version LA and
then inverting the transformation from B to LB = LA.

I Theorem 6. If connectivity can break and there is a 2-line seed provided “outside” the
initial shape, then any pair of color-consistent connected shapes A and B can be transformed
to each other by rotations only.

Proof. Without loss of generality (due to symmetry and the 2-line’s unrestricted mobility),
it suffices to assume that the seed is provided somewhere below the lowest row l occupied
by the shape A. We show how A can be transformed to LA with the help of the seed. We
define LA as follows: Let k be the cardinality of the minority color, let it be the black color.
As there are at least k reds, we can create a horizontal line of length 2k, i.e., u1, u2, . . . , u2k,
starting with a black (i.e., u1 is black), and alternating blacks and reds. In this way, the
blacks are exhausted. The remaining ≤ (3k + 1)− k = 2k + 1 reds are then added as leaves of
the black nodes, starting from the position to the left of u1 and continuing counterclockwise,
i.e., below u1, below u3, ..., below u2k−1, above u2k−1, above u2k−3, and so on. This gives
the same shape from the line-with-leaves family, for all color-consistent shapes (observe that
the leaf to the right of the line is always placed). LA shall be constructed on rows l − 5 to
l − 3 (not necessarily inclusive), with u1 on row l − 4 and a column j preferably between
those that contain A.

First, extract a 2-line from A, from row l, so that the 2-line seed becomes a 4-line seed.
To see that this is possible for every shape A of order at least 2, distinguish the following
two cases: (i) If the lowest row has a horizontal 2-line, then the 2-line can leave the shape
without any help and approach the 2-seed. (ii) If not, then take any node u of row l. As
A is connected and has at least two nodes, u must have a neighbor v above it. The only
possibility that the 2-line u,v is not free to leave A is when v has both a left and a right
neighbor, but this can be resolved with the help of the 2-line.

To transform A to LA, given the 4-line seed, do the following:
While blacks is still present in A:

If on the current lowest row occupied by A, there is a 2-line that can be extracted
alone and moved towards LA, then perform the shortest such movement that attaches
the 2-line to the right endpoint of LA’s line u1, u2,
If not, then do the following. Maintain a repository of nodes at the empty space below
row l − 7, initially empty. If, either in the lowest row of A or in the repository, there

ICALP 2017

136:8 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

is a node of opposite color than the current color of the right endpoint of LA’s line,
use the 4-line to transfer such a node and make it the new right endpoint of LA’s line.
Otherwise, use the 4-line to transfer a node of the lowest row of A to the repository.

Once black has been exhausted from A and the repository (i.e., when u2k−3 has been
placed; u2k−1 and u2k will only be placed in the end as they are part of the 4-line),
transfer a red to position u2k−2. If there are no more nodes left, run the termination
phase, otherwise transfer the remaining nodes (all red) with the 4-line, one after the other,
and attach them as leaves around the blacks of LA’s line, beginning from the position to
the left of u1 counterclockwise, as described above (skipping position u2k).
Termination phase: the line-with-leaves is ready, apart from positions u2k−1, u2k which
require a 2-line from the 4-line. If the position above u2k−1 is empty, then extract a
2-line from the 4-line and transfer it to the positions u2k−1, u2k. This completes the
transformation. If the position above u2k−1 is occupied by a node u2k+1, then place the
whole 4-line vertically with its lowest endpoint on u2k. Then rotate the top endpoint
counterclockwise, to move above u2k+1, then rotate u2k+1 clockwise around it to move to
its left, then rotate the node above u2k counterclockwise to move to u2k−1, and finally
restore u2k+1 to its original position. This completes the construction (the 2-line that
always remains can be transferred in the end to a predefined position).

J

The natural next question is to what extent the 2-line seed assumption can be dropped.
Clearly, by Proposition 4, this cannot be always possible. The following lemma gives a
sufficient and necessary condition for dropping the 2-line seed assumption.

I Lemma 7. A 2-seed can be extracted from a shape iff a single rotation move is available
on the shape.

I Theorem 8. Rot-Transformability ∈ P.

Proof. If the two connected input shapes of the same order are not already equal, then, by
Lemma 7 and Theorem 6, it suffices to check if both shapes have an available movement. If
yes, accept, otherwise, reject. These checks can be easily performed in polynomial time. J

4 Rotation and Connectivity Preservation

In this section, we restrict our attention to transformations that transform a connected shape
A to one of its color-consistent connected shapes B, without ever breaking the connectivity of
the shape on the way. As already mentioned in the introduction, connectivity preservation is
a very desirable property for programmable matter, as, among other positive implications, it
guarantees that communication between all nodes is maintained, it minimizes transformation
failures, requires less sophisticated actuation mechanisms, and increases the external forces
required to break the system apart.

We begin by proving that RotC-Transformability can be decided in deterministic
polynomial space.

I Theorem 9. RotC-Transformability ∈ PSPACE.

As already shown in Theorem 5, the connectivity-preservation constraint increases the class
of infeasible transformations. A convenient turnaround in such cases, is to introduce a suitable
seed that can assist the transformation. For example, we can circumvent the impossibility
of folding a line u1, u2, . . . , un in half, by adding a 3-line seed v1, v2, v3, horizontally aligned

O. Michail, G. Skretas, and P. G. Spirakis 136:9

over nodes u3, u4, u5 of the line. Interestingly, adding the seed over nodes u4, u5, u6 does not
work. Therefore, the problem that we face in such cases, is to find a minimum seed (could
be any connected small shape, not necessarily a line) and a placement of that seed, that
enables the otherwise infeasible transformation (Minimum-Seed-Determination problem). In
the rest of this section, we try to identify a minimum seed that can walk the perimeter of
any shape, hoping that it will be able to move nodes gradually to a predetermined position,
in order to transform the initial shape into a line-with-leaves (as in Theorem 6, but without
ever breaking connectivity this time). 2

I Theorem 10. If connectivity must be preserved: (i) Any (≤ 4)-seed cannot traverse the
perimeter of a line, (ii) a 6-seed can traverse the perimeter of any discrete-convex shape.

5 Rotation and Sliding

In this section, we study the combined effect of rotation and sliding movements. We begin by
proving that rotation and sliding together are transformation-universal, meaning that they
can transform any given shape to any other shape of the same size without ever breaking the
connectivity during the transformation.

I Theorem 11. Let A and B be any connected shapes, such that |A| = |B| = n. Then
A and B can be transformed to each other by rotations and slidings, without breaking the
connectivity during the transformation.

Proof. It suffices to show that any connected shape A can be transformed to a spanning line L

using only rotations and slidings and without breaking connectivity during the transformation.
If we show this, then A can be transformed to L and B can be transformed to L (as A

and B have the same order, therefore corresponding to the same spanning line L), and by
reversibility of these movements, A and B can be transformed to each other via L.

Pick the rightmost column of the grid containing at least one node of A, and consider
the lowest node of A in that column. Call that node u. Observe that all cells to the right of
u are empty. Let the cell of u be (i, j). The final constructed line will start at (i, j) and end
at (i, j + n− 1).

The transformation is partitioned into n− 1 phases. In each phase k, we pick a node from
the original shape and move it to position (i, j + k), that is, to the right of the right endpoint
of the line formed so far. In phase 1, position (i, j + 1) is a cell of the perimeter of A. So,
even if it happens that u is a node of degree 1, it can be proved that there must be another
such node v ∈ A that can walk the whole perimeter of A′ = A− {v}. As u 6= v, (i, j + 1) is
also part of the perimeter of A′, therefore, v can move to (i, j + 1) by rotations and slidings.
But A′ is connected, A′ ∪ {(i, j + 1)} is also connected, and also all intermediate shapes were
connected, because v moved on the perimeter and, therefore, it never disconnected from the
rest of the shape during its movement.

In general, the transformation preserves the following invariant. At the beginning of phase
k, 1 ≤ k ≤ n− 1, there is a connected shape S(k) (where S(1) = A) to the left of of column
j (j inclusive) and a line of length k − 1 starting from position (i, j + 1) and growing to the
right. Restricting attention to S(k), there is always a v 6= u that could (hypothetically) move
to position (i, j + 1) if it were not occupied. This implies that before the final movement that

2 Another way to view this, is as an attempt to simulate the universal transformations based on combined
rotation and sliding (presented in Section 5), in which single nodes are able to walk the perimeter of
the shape.

ICALP 2017

136:10 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

would place v on (i, j + 1), v must have been in (i + 1, j) or (i + 1, j + 1), if we assume that
v always walks in the clockwise direction. Observe now that from each of these positions v

can perform zero or more right slidings above the line in order to reach the position above
the right endpoint (i, j + k − 1) of the line. When this occurs, a final clockwise rotation
makes v the new right endpoint of the line. The only exception is when v is on (i + 1, j + 1)
and there is no line to the right of (i, j) (this implies the existence of a node on (i + 1, j),
otherwise connectivity of S(k) would have been violated). In this case, v just performs a
single downward sliding to become the right endpoint of the line. J

I Theorem 12. The transformation of Theorem 11 requires Θ(n2) movements in the worst
case.

Theorem 12 shows that the above generic strategy is slow in some cases, as is the case of
transforming a staircase shape into a spanning line. A staircase is defined as a shape of the
form (i, j), (i− 1, j), (i− 1, j + 1), (i− 2, j + 1), (i− 2, j + 2), (i− 3, j + 2), We shall now
show that there are pairs of shapes for which any strategy and not only this particular one,
may require a quadratic number of steps to transform one shape to the other.

I Definition 13. Define the potential of a shape A as its minimum “distance” from the line
L, where |A| = |L|. The distance is defined as follows: Consider any placement of L relative
to A and any pairing of the nodes of A to the nodes of the line. Then sum up the Manhattan
distances 3 between the nodes of each pair. The minimum sum between all possible relative
placements and all possible pairings is the distance between A and L and also A’s potential.

Observe that the potential of the line is 0 as it can be totally aligned on itself and the
sum of the distances is 0.

I Lemma 14. The potential of a staircase is Θ(n2).

Proof. We prove it for horizontal placement of the line, as the vertical case is symmetric.
Any such placement leaves either above or below it at least half of the nodes of the staircase
(maybe minus 1). W.l.o.g. let it be above it. Every two nodes, the height increases by 1,
therefore there are 2 nodes at distance 1, 2 at distance 2,. . ., 2 at distance n/4. Any matching
between these nodes and the nodes of the line gives for every pair a distance at least as large
as the vertical distance between the staircase’s node and the line, thus, the total distance is
at least 2 · 1 + 2 · 2 + ... + 2 · (n/4) = 2 · (1 + 2 + ... + n/4) = (n/4) · (n/4 + 1) = Θ(n2). We
conclude that the potential of the staircase is Θ(n2). J

I Theorem 15. Any transformation strategy based on rotations and slidings which performs
a single movement per step requires Θ(n2) steps to transform a staircase into a line.

Proof. To show that Ω(n2) movements are needed to transform the staircase into a line, it
suffices to observe that the difference in their potentials is that much and that one rotation
or one sliding can decrease the potential by at most 1. J

I Remark. The above lower bound is independent of connectivity preservation. It is just a
matter of the total distance based on single distance-one movements.

Finally, it is interesting to observe that such lower bounds can be computed in polynomial
time, because there is a polynomial-time algorithm for computing the distance between two
shapes.

3 The Manhattan distance between two points (i, j) and (i′, j′) is given by |i− i′|+ |j − j′|.

O. Michail, G. Skretas, and P. G. Spirakis 136:11

I Proposition 16. Let A and B be connected shapes. Then their distance d(A, B) can be
computed in polynomial time.

To give a faster transformation either pipelining must be used (allowing for more than one
movement in parallel) or more complex mechanisms that move sub-shapes consisting of many
nodes, in a single step. We follow the former approach, by allowing an unbounded number
of rotation and/or sliding movements to occur simultaneously in a single step (though, in
pairwise disjoint areas).

I Proposition 17. There is a pipelining strategy that transforms a staircase into a line in
O(n) parallel time.

Proof. Number the nodes of the staircase 1 through n starting from the top and following the
staircase’s connectivity until the bottom-right node is reached. These gives an odd-numbered
upper diagonal and an even-numbered lower diagonal. Node 1 moves as in Theorem 11. Any
even node w starts moving as long as its upper odd neighbor has reached the same level as
w (e.g., node 2 first moves after node 1 has arrived to the right of node 3). Any odd node
z > 1 starts moving as long as its even left neighbor has moved one level down (e.g., node 3
first moves after node 2 has arrived to the right of 5). After a node starts moving, it moves
in every step as in Theorem 11 (but now many nodes can move in parallel, implementing a
pipelining strategy). It can be immediately observed that any node i starts after at most 3
movements of node i− 1 (actually, only 2 movements for even i), so after, roughly, at most
3n steps, node n− 2 starts. Moreover, a node that starts, arrives at the right endpoint of
the line after at most n steps, which means that after at most 4n = O(n) steps, all nodes
have taken their final position in the line. J

Proposition 17 gives a hint that pipelining could be a general strategy to speed-up
transformations. We next show how to generalize this technique to any possible pair of
shapes.

I Theorem 18. Let A and B be any connected shapes, such that |A| = |B| = n. Then there
is a pipelining strategy that can transform A to B (and inversely) by rotations and slidings,
without breaking the connectivity during the transformation, in O(n) parallel time.

Proof. The transformation is a pipelined version of the sequential transformation of The-
orem 11. Now, instead of picking an arbitrary next candidate node of S(k) to walk the
perimeter of S(k) clockwise, we always pick the rightmost clockwise node vk ∈ S(k), that is,
the node that has to walk the shortest clockwise distance to arrive at the line being formed.
This implies that the subsequent candidate node vk+1 to walk is always “behind” vk in the
clockwise direction and is either already free to move or is enabled after vk’s departure.
Observe that after at most 3 clockwise movements, vk can no longer be blocking vk+1 on the
(possibly updated) perimeter. Moreover, the clockwise move of vk+1 only introduces a gap in
its original position, therefore it only affects the structure of the perimeter “behind” it. The
strategy is to start the walk of node vk+1 as soon as vk is no longer blocking its way. As in
Proposition 17, once a node starts, it moves in every step, and again any node arrives at the
end of the forming line after at most n movements. It follows that if the pipelined movement
of nodes cannot be blocked in any way, after 4n = O(n) steps all nodes must have arrived at
their final positions. Observe now that the only case in which pipelining could be blocked
is when a node is sliding through a (necessarily dead-end) “tunnel” of height 1. To avoid
this, the nodes shortcut the tunnel, by visiting only its first position (i, j) and then simply
skipping the whole walk inside it (that walk would just return them to position (i, j) after a
number of steps). J

ICALP 2017

136:12 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

We next show that even if A and B are labeled shapes, that is, their nodes are assigned
the indices 1, . . . , n (uniquely, i.e., without repetitions), we can still transform the labeled A

to the labeled B with only a linear increase in parallel time. We only consider transformations
in which the nodes never change indices in any way (e.g., cannot transfer them, or swap
them), so that each particular node of A must eventually occupy (physically) a particular
position of B (the one corresponding to its index).

I Corollary 19. The labeled version of the transformation of Theorem 18 can be performed
in O(n) parallel time.

An immediate observation is that a linear-time transformation does not seem satisfactory
for all pairs of shapes. To this end, take a square S and rotate its top-left corner u, one
position clockwise, to obtain an almost-square S′. Even though, a single counter-clockwise
rotation of u suffices to transform S′ to S, the transformation of Theorem 18 may go all the
way around and first transform S′ to a line and then transform the line to S. In this particular
example, the distance between S and S′, according to Definition 13, is 2, while the generic
transformation requires Θ(n) parallel time. So, it is plausible to ask if any transformation
between two shapes A and B can be performed in time that grows as a function of their
distance d(A, B). We show that this cannot always be the case, by presenting two shapes A

and B with d(A, B) = 2, such that A and B require Ω(n) parallel time to be transformed to
each other.

I Proposition 20. There are two shapes A and B with d(A, B) = 2, such that A and B

require Ω(n) parallel time to be transformed to each other.

In the full version, we also study the RS-Transformability problem in distributed
systems and give an algorithm that transforms a large family of shapes into a spanning line:

I Theorem 21. We provide an algorithm, called Compact Line, that can transform any
compact shape into a spanning line.

6 Conclusions and Further Research

There are many open problems related to the findings of the present work. First, a compromise
could be to allow some restricted degree of connectivity breaking. There are other meaningful
“good” properties that we would like to maintain throughout a transformation, like the
strength of the shape.

Transformation seems in general harder if we restrict the maximum area or dimensions
during its course. Also, restricting the boundaries gives models equivalent to several interesting
puzzles, like the famous 15-puzzle. Techniques developed in the context of puzzles could
prove valuable for analyzing and characterizing discrete programmable matter systems.

We intentionally restricted attention to very minimal actuation mechanisms. More
sophisticated mechanical operations would enable a larger set of transformations and possibly
also reduce the time complexity. Such an example is the ability of a node to become inserted
between two neighboring nodes.

There are also some promising specific technical questions: What is the exact complex-
ity of RotC-Transformability? What is the complexity of computing the optimum
transformation? Can it be satisfactorily approximated? Finally, regarding the distributed
transformations, there are various interesting variations of the model considered here, that
would make sense. One of them is to assume nodes that are oblivious w.r.t. their orientation.

O. Michail, G. Skretas, and P. G. Spirakis 136:13

References
1 Greg Aloupis, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Robin Flatland, John

Iacono, and Stefanie Wuhrer. Efficient reconfiguration of lattice-based modular robots.
Computational geometry, 46(8):917–928, 2013.

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. Distributed Computing,
18(4):235–253, March 2006.

3 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, November 2007.

4 Zack Butler, Keith Kotay, Daniela Rus, and Kohji Tomita. Generic decentralized control
for lattice-based self-reconfigurable robots. The International Journal of Robotics Research,
23(9):919–937, 2004.

5 Xuli Chen, Li Li, Xuemei Sun, Yanping Liu, Bin Luo, Changchun Wang, Yuping Bao,
Hong Xu, and Huisheng Peng. Magnetochromatic polydiacetylene by incorporation of
Fe3O4 nanoparticles. Angewandte Chemie International Edition, 50(24):5486–5489, 2011.

6 Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the
robots gathering problem. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1181–1196. Springer, 2003.

7 Alejandro Cornejo, Fabian Kuhn, Ruy Ley-Wild, and Nancy Lynch. Keeping mobile ro-
bot swarms connected. In Proceedings of the 23rd international conference on Distributed
computing, DISC’09, pages 496–511, Berlin, Heidelberg, 2009. Springer-Verlag.

8 Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita. Forming
sequences of geometric patterns with oblivious mobile robots. Distributed Computing,
28(2):131–145, April 2015.

9 Erik D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory.
In International Symposium on Mathematical Foundations of Computer Science, pages 18–
33. Springer, 2001.

10 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, AndréaW. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot–a new model for programmable
matter. In Proceedings of the 26th ACM symposium on Parallelism in algorithms and
architectures (SPAA), pages 220–222, 2014.

11 Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian
Scheideler, and Thim Strothmann. On the runtime of universal coating for programmable
matter. In International Conference on DNA-Based Computers, pages 148–164. Springer,
2016.

12 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nano-
scale Computing and Communication, page 21. ACM, 2015.

13 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures, pages 289–299.
ACM, 2016.

14 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55:78–88,
2012.

15 David Doty. Timing in chemical reaction networks. In Proc. of the 25th Annual ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 772–784, 2014.

16 Adrian Dumitrescu and János Pach. Pushing squares around. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 116–123. ACM, 2004.

ICALP 2017

136:14 On the Transformation Capability of Feasible Mechanisms for Programmable Matter

17 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast loco-
motion of metamorphic robotic systems. The International Journal of Robotics Research,
23(6):583–593, 2004.

18 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for meta-
morphic systems: Feasibility, decidability, and distributed reconfiguration. IEEE Transac-
tions on Robotics and Automation, 20(3):409–418, 2004.

19 Yuval Emek and Jara Uitto. Dynamic networks of finite state machines. In Interna-
tional Colloquium on Structural Information and Communication Complexity, pages 19–34.
Springer, 2016.

20 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by oblivi-
ous mobile robots. Synthesis lectures on distributed computing theory, 3(2):1–185, 2012.

21 Kyle Gilpin, Ara Knaian, and Daniela Rus. Robot pebbles: One centimeter modules for
programmable matter through self-disassembly. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 2485–2492. IEEE, 2010.

22 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles
and other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science, 343(1-2):72–96, 2005.

23 Ara N. Knaian, Kenneth C. Cheung, Maxim B. Lobovsky, Asa J. Oines, Peter Schmidt-
Neilsen, and Neil A. Gershenfeld. The milli-motein: A self-folding chain of programmable
matter with a one centimeter module pitch. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1447–1453. IEEE, 2012.

24 Evangelos Kranakis, Danny Krizanc, and Euripides Markou. The mobile agent rendezvous
problem in the ring. Synthesis Lectures on Distributed Computing Theory, 1(1):1–122, 2010.

25 Yunfeng Lu, Yi Yang, Alan Sellinger, Mengcheng Lu, Jinman Huang, Hongyou Fan, Raid
Haddad, Gabriel Lopez, Alan R. Burns, Darryl Y. Sasaki, John Shelnutt, and C. Jeffrey
Brinker. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nano-
composites. Nature, 410(6831):913–917, 2001.

26 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed
stable network construction. Distributed Computing, 29(3):207–237, 2016. doi:10.1007/
s00446-015-0257-4.

27 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Com-
munications of the ACM, 2017. Accepted: 6th April 2017, To appear.

28 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

29 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the 32nd annual ACM symposium on Theory of computing
(STOC), pages 459–468, 2000. doi:10.1145/335305.335358.

30 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

31 Masahiro Shibata, Toshiya Mega, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Uniform deployment of mobile agents in asynchronous rings. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, pages 415–424. ACM,
2016.

32 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation
of geometric patterns. SIAM J. Comput., 28(4):1347–1363, March 1999. doi:10.1137/
S009753979628292X.

33 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology, June 1998.

34 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In

http://dx.doi.org/10.1007/s00446-015-0257-4
http://dx.doi.org/10.1007/s00446-015-0257-4
http://dx.doi.org/10.1145/335305.335358
http://dx.doi.org/10.1137/S009753979628292X
http://dx.doi.org/10.1137/S009753979628292X

O. Michail, G. Skretas, and P. G. Spirakis 136:15

Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
353–354. ACM, 2013.

35 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Brief announcement: pattern
formation problem for synchronous mobile robots in the three dimensional euclidean space.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
447–449. ACM, 2016.

36 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S. Chirikjian. Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007.

ICALP 2017

Distributed Monitoring of Network Properties:
The Power of Hybrid Networks∗

Robert Gmyr1, Kristian Hinnenthal2, Christian Scheideler3, and
Christian Sohler4

1 Paderborn University, Paderborn, Germany
gmyr@mail.upb.de

2 Paderborn University, Paderborn, Germany
krijan@mail.upb.de

3 Paderborn University, Paderborn, Germany
scheideler@mail.upb.de

4 TU Dortmund, Dortmund, Germany
christian.sohler@tu-dortmund.de

Abstract
We initiate the study of network monitoring algorithms in a class of hybrid networks in which
the nodes are connected by an external network and an internal network (as a short form for
externally and internally controlled network). While the external network lies outside of the
control of the nodes (or in our case, the monitoring protocol running in them) and might be
exposed to continuous changes, the internal network is fully under the control of the nodes.
As an example, consider a group of users with mobile devices having access to the cell phone
infrastructure. While the network formed by the WiFi connections of the devices is an external
network (as its structure is not necessarily under the control of the monitoring protocol), the
connections between the devices via the cell phone infrastructure represent an internal network (as
it can be controlled by the monitoring protocol). Our goal is to continuously monitor properties
of the external network with the help of the internal network. We present scalable distributed
algorithms that efficiently monitor the number of edges, the average node degree, the clustering
coefficient, the bipartiteness, and the weight of a minimum spanning tree. Their performance
bounds demonstrate that monitoring the external network state with the help of an internal
network can be done much more efficiently than just using the external network, as is usually
done in the literature.

1998 ACM Subject Classification C.2.1 [Network Architecture and Design] Distributed net-
works, G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Network Monitoring, Hybrid Networks, Overlay Networks

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.137

1 Introduction

In this paper we propose a new model for the study of distributed algorithms for commu-
nication networks that is based on a class of hybrid networks that is becoming more and
more important. In this class of hybrid networks, the nodes are connected by an external

∗ This work was partially supported by the German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901) and within Project A2 of the Collaborative
Research Center “Providing Information by Resource-Constrained Analysis” (SFB 876).

EA
T

C
S

© Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 137; pp. 137:1–137:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

137:2 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

network and an internal network. While the external network is not under the control of
the nodes, the internal network is fully under their control. Such hybrid networks can be
found at a physical as well as logical level. Consider, for instance, the case that we have a
set of wireless devices with access to the cell phone infrastructure that are dispersed over a
limited area like a city center so that they can form a connected network using their WiFi
connections. The advantage of this type of network is that the devices would in principle
be able to exchange information without the use of the cell phone infrastructure, which
would save costs. However, this may come at the price of having large message delays and
even being unable to handle certain tasks as there might be network partitions from time
to time. Therefore, if it is possible to design protocols that only require a small amount of
message exchanges via the cell phone infrastructure in order to solve certain tasks much
faster and more reliably than via the WiFi network, users may find it acceptable to make
use of the cell phone infrastructure. Another example is an expedition or a rescue team that
is connected via satellite telephones, which nowadays can support both satellite as well as
wireless communication. In the logical world, one can envision a peer-to-peer network formed
by friendship links in a social network. Just communicating via these friendship links has
the advantage that all interactions are trusted. However, due to the irregular structure of
the social network it has the disadvantage that it might be hard to perform certain tasks
like network monitoring or finding anyone efficiently. Therefore, it might also be useful to
have a network of untrusted links on top of the social network in order to be able to quickly
approximate certain properties of it or to find shortest paths. A common theme in all of
these examples is having two communication modes that significantly differ concerning their
control and in which control comes with costs like financial cost, acceptance, reliability, or
integrity. There is already a large body of literature on network algorithms for the case of
static or dynamic networks whose topology is not under the control of the nodes. On the
other side, there also exists an abundance of network algorithms in which the topology is
fully under the control of the nodes, like in peer-to-peer systems. However, to the best of our
knowledge, nothing rigorous in the context of network monitoring has been shown yet for
combinations of these networks, so this paper initiates the rigorous study of this direction.

1.1 Model and Problem Statement
We consider networks with a static node set and a dynamic edge set. Time proceeds in
synchronous rounds and for each round i we are given a set of undirected edges Ei. The
external network in round i is represented by the undirected graph Gi = (V,Ei). We assume
that the degree of Gi is polylogarithmic for all i. An algorithm has no control over the
edges in Ei, however it can establish additional overlay edges to form an internal network or
overlay network: Each node u has a unique identifier id(u) which is a bit string of length
O(logn) where n = |V |. Let Di(u) be the set of identifiers stored by a node u in round i.
We define the set of overlay edges in round i as Di = {(u, v) | u ∈ V and v ∈ Di(u)}. A
node has immediate access to the identifiers of its neighbors in Gi and can store such an
identifier for future reference. In round i, a node u can send a distinct message to each node
v such that {u, v} ∈ Ei or (u, v) ∈ Di. A message sent in round i arrives at the beginning of
round i + 1. The local memory and computation of the nodes is unbounded. However, a
node can send and receive at most polylogarithmically many bits in each round.

We investigate monitoring problems. In these problems, a designated node s that we call
the monitor node or simply monitor has to continuously observe a property of the external
network like the number of edges or the weight of a minimum spanning tree. Formally, a
property p is a function from the set of undirected graphs into some set of property values.

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:3

Since the external network Gi is dynamic, the property value p(Gi) can change from round
to round. We say an algorithm monitors a property p with setup time i0 and delay δ if for all
rounds i ≥ i0 the monitor node outputs the property value p(Gi) by round i+ δ. We refer to
the first i0 rounds of the execution of a monitoring algorithm as the setup phase and refer to
the remaining rounds as the monitoring phase. Initially, the set of overlay edges D0 is empty.
An algorithm can use the setup phase to construct an initial internal network that supports
the computation of the property value. It can continue to adapt the internal network during
the monitoring phase. We assume the graph G0 to be connected. Beyond this, we make no
assumptions about the evolution of the edge set.

1.2 Related Work
In the networking community, the name “hybrid network” has been used in the context
of networks containing equipment from multiple vendors, consisting of different physical
networks or communication modes, or networks incorporating both peer-to-peer and client-
server approaches. These topics are not related to our work, so we do not consider them.

There is a large body of literature on overlay networks, especially in the context of
peer-to-peer systems. Whereas most of the proposed overlay networks do not worry about the
underlying network, there is also a number of proposals for so-called locality-aware overlays,
with prominent examples like Tapestry [37] and Pastry [34]. However, these constructions
are only concerned about adapting or optimizing the overlay to the underlying network and
do not aim at monitoring properties of the underlying network with the help of the overlay.

The dynamic external network assumed by our model is related to the dynamic graph
model introduced by Kuhn et al. [24], in which an adversary changes the edge set of a graph
in every round. Kuhn et al. [24] focus on solving the counting and the token dissemination
problem in that model, which has been further considered, for example, in [12, 15] (see
[5] for an overview). Abshoff and Meyer auf der Heide study how to perform continuous
aggregation in these networks [1]. However, like the other works in this area, they do not
consider establishing additional overlay edges. Another approach related to ours is the work
by Michail and Spirakis [28], which extends the population protocol model to a model in
which nodes can decide whether to keep connections proposed to them or not, but there is
no underlying network to monitor.

Some of our algorithms make use of techniques particularly known from the field of
parallel computation. For example, it is well-known how to use pointer jumping [18] in order
to perform rapid tree traversals in PRAMs (see e.g. [3, 19, 35]). Furthermore, there exists an
abundance of parallel algorithms computing MSTs in such models, the best of which achieve
a runtime of O(logn) (see [16] for an overview). The algorithm presented in Section 2 has
some similarities with [19]. However, we are not aware of any distributed implementation of
such an algorithm with runtime o(log2 n) that does not cause high node congestion. This is
also the problem with the various algorithms proposed for the congested clique model, which
has recently received a considerable amount of attention (e.g., [7, 11, 17, 25, 27]).

Our algorithms make extensive use of a subroutine for the construction of overlay networks
that we present in Section 2. This subroutine transforms a given graph into a rooted tree
of constant degree and depth O(logn). Angluin et al. [2] proposed a similar subroutine
that achieves the same result and that even works in an asynchronous setting. However,
the subroutine of Angluin et al. is randomized while our subroutine is deterministic. As a
consequence, all monitoring algorithms presented in this work are also fully deterministic.
Furthermore, our subroutine can be used for the efficient construction of a spanning tree of a
given graph, which cannot directly be achieved using the approach by Angluin et al.

ICALP 2017

137:4 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

Table 1 This table summarizes the results of this work. W is the maximum weight of an edge
in the graph. The algorithm for monitoring the exact weight of a minimum spanning tree requires
integral edge weights while the approximation algorithm has no such requirement. The latter
algorithm approximates the weight M up to an additive factor of ±εM .

Monitoring Problem Setup Time Delay Section

Number of Edges O(log2 n) O(log n/ log log n) 3
Average Node Degree O(log2 n) O(log n/ log log n) 3
Clustering Coefficient O(log2 n) O(log n/ log log n) 3
Bipartiteness 0 O(log2 n) 4
Exact MST Weight 0 O(W + log2 n) 5.1
Approximate MST Weight O(log2 n) O(log(W)/ε · log2(W/ε) + log n/ log log n) 5.2

In the algorithms presented in Section 3 the monitor continuously collects data from
the nodes of the network by performing aggregation. There is a huge amount of work on
aggregation in the context of sensor networks, but research in this area has focused on
monitoring environmental properties, the state of systems (like bridges or airplanes) or
facilities (like warehouses). Distributed aggregation has also been studied extensively for
conventional, static networks (see, e.g., [4, 22, 23] or [26] for a comprehensive overview), but
not for hybrid forms as considered in this paper.

One of the network properties considered in this work is the weight of a minimum spanning
tree (or MST), see Section 5. The problem of computing an MST in a distributed manner
is well studied, see for example [13, 14, 32, 33]. The problem of computing only the weight
of an MST instead of the MST itself has been studied in the area of sequential sublinear
algorithms. This line of research was initiated by Chazelle et al. [8] and continued in [6, 9, 10].
Our algorithms for monitoring the weight of an MST apply the ideas of Chazelle et al. [8] in
a distributed context and also incorporate some ideas from [10].

1.3 Our Contribution
We initiate the study of hybrid networks consisting of externally and internally controlled
edges and present deterministic algorithms for monitoring network properties in such networks.
Our results are summarized in Table 1. As a byproduct of the algorithms for monitoring the
weight of a minimum spanning tree, we also present algorithms for the distributed computation
of minimum spanning trees in hybrid networks. Since the delays trivially increase to Ω(n)
in the worst case when just using an external network, our results demonstrate that with
the help of hybrid networks monitoring can be done exponentially faster compared to just
having an external network.

2 Setup Phase

All monitoring algorithms presented in this work that rely on a dedicated setup phase use
a common algorithm for the construction of the initial overlay network. This algorithm
organizes the nodes into a tree T of polylogarithmic degree and depth O(logn/ log logn)
that is rooted at the monitor. In this section, we first present a more general algorithm that
we refer to as the Overlay Construction Algorithm. This algorithm shares some similarities
with an algorithm of Angluin et al. [2]. The algorithm is also frequently used as a subroutine
throughout the remainder of this work. Based on this algorithm, we describe how the desired

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:5

tree T can be constructed at the end of the section. For simplicity, we assume that every
node knows the total number of nodes n. The algorithms can be modified to remove this
assumption.

For a given bidirected connected graph G of polylogarithmic degree, the Overlay Construc-
tion Algorithm arranges the nodes of G into a tree of constant degree and depth O(logn).
On a high level, the algorithm works as follows. It operates on supernodes which are groups
of nodes that act in coordination. Let the identifier of a supernode be the highest identifier of
the nodes it contains. Define two supernodes u, v to be adjacent if there are nodes x, y that
are adjacent in G such that x is in u and y is in v. Initially, each node forms a supernode on
its own. The algorithm alternatingly executes a grouping step and a merging step. In the
grouping step, each supernode u determines the neighboring supernode v with the highest
identifier. If id(v) > id(u) then u sends a merge request to v. Consider the graph whose node
set is the set of all supernodes and that contains a directed edge (u, v) if u sent a merge
request to v. Since each supernode sends at most one merge request to a supernode of higher
identifier, this graph is a forest. During the merging step, each tree of this forest is merged
into a new supernode. Before we describe how this high-level algorithm can be implemented
by the nodes, we analyze the number of iterations of consecutive grouping and merging steps
until only a single supernode remains. The following lemma can be shown by observing that
each supernode merges with another supernode within at most 2 iterations.

I Lemma 1. After O(logn) iterations only a single supernode remains.

At the beginning of every grouping step, the following invariant holds: Each supernode is
internally organized in an overlay forming a tree of constant degree and depth O(logn) that
is rooted at the node with the highest identifier and each node knows the identifier of its
supernode. The nodes cooperatively simulate the behavior of their respective supernodes
during the grouping step as follows. Consider a supernode u and the corresponding internal
tree Tu. First, every node of u sends id(u) along every incident edge in the original graph G.
Thereby, every node learns the identifiers of its neighboring supernodes. Then, the nodes
of u use a convergecast along Tu to determine the identifier of the supernode v with the
highest identifier among the neighbors of u. This convergecast also collects the identifier
of the node x with the highest identifier in u that is adjacent to a node in v. Once this
convergecast is complete, the root of Tu knows both id(v) and id(x). If id(v) > id(u) then
the root of u sends a message to x. Upon receiving this message, x sends a merge request
to a neighboring node in v and sends a broadcast through Tu to establish itself as the new
root of Tu. The nodes in G wait with starting the merging step until O(logn) rounds have
passed to guarantee that the above operations are completed in all supernodes and all nodes
start the merging step at the same time.

At the beginning of every merging step, we have the following situation. Consider the
graph consisting of the internal trees of all supernodes together with all edges along which a
merge request has been sent. This graph is a forest and the trees of this forest form the new
supernodes resulting from the merging step. Therefore, the nodes of each new supernode v
are already arranged into a tree Tv. Furthermore, v contains exactly one former root node
that did not instruct a node to send a merge request. It is not hard to see that this node has
the highest identifier in v and therefore becomes the root of Tv. In its current state, Tv can
have up to polylogarithmic degree and linear depth. To restore the invariants required at
the beginning of a grouping step, we have to transform Tv into a tree of constant degree and
depth O(logn). Furthermore, we have to make sure that all nodes in v know the identifier
id(v) of the root of Tv.

ICALP 2017

137:6 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

First, we reorganize Tv into a child-sibling tree. For this, each inner node y arranges its
children into a path sorted by increasing identifier and only keeps the child with the lowest
identifier. Each former child of y changes its parent to be its predecessor on the path and
stores its successor as a sibling. In the resulting child-sibling tree, each node stores at most
three identifiers: a parent, a sibling, and a child. By interpreting the sibling of a node as a
second child, we get a binary tree. This transformation of Tv into a binary tree takes O(1)
rounds.

Based on this binary tree, we construct a ring of virtual nodes as follows. Consider the
depth-first traversal of the tree that visits the children of each node in order of increasing
identifier. A node occurs at most three times in this traversal. Let each node act as a distinct
virtual node for each such occurrence and let k ≤ 3n be the number of virtual nodes. A node
can locally determine the predecessor and successor of its virtual nodes according to the
traversal. Therefore, the nodes can connect their virtual nodes into a ring in O(1) rounds.

Next, we use pointer jumping to quickly add chords (i.e., shortcut edges) to the ring.
The virtual nodes execute the following protocol for blognc+ 1 ≥ blog kc − 1 rounds. Each
virtual node y learns two identifiers `t and rt in each round t of this protocol. Let `0 and
r0 be the predecessor and successor of y in the ring. In round t, y sends `t to rt and vice
versa. At the beginning of round t+ 1, y receives one identifier from `t and rt, respectively.
It sets `t+1 to the identifier received from `t and rt+1 to the identifier received from rt. It
then proceeds to the next round of the protocol. In every round of this protocol each virtual
node adds a new chord to the ring by introducing its latest neighbors to each other. The
distance between these neighbors w.r.t the ring doubles from round to round up to the point
where the distance exceeds the number of virtual nodes k. Based on this observation, it is
not hard to show that after the specified number of rounds, the diameter of the graph has
reduced to O(logn) while the degree has grown to O(logn). Once the protocol finished, the
root of v initiates a broadcast from one of its virtual nodes followed by a convergecast to
determine the number of virtual nodes k.

Finally, we use the chords to construct a binary tree of depth O(logn). For this, the
root of v initiates a broadcast by sending a message to its neighbors `t′ and rt′ where
t′ = blog kc − 1. A node that receives the broadcast after t steps forwards it to `t′ and rt′

where t′ = max{blog kc − t − 1, 0}. It is not hard to see that the binary tree constructed
by this broadcast has depth O(logn) and contains all nodes of the ring. At this point, the
nodes discard all overlay edges constructed so far and only keep the edges of the binary tree.
We then merge the virtual nodes back together such that each node adopts the edges of its
virtual nodes. This results in a graph of degree at most 6 and diameter O(logn). Note that
this graph is not necessarily a tree. To construct a tree that satisfies the invariants for the
grouping step, the root of v sends another broadcast through the resulting graph to construct
a breadth-first search tree that has constant degree and diameter O(logn). This broadcast
also informs all nodes in v about id(v). The operations described above take O(logn) rounds
overall. As before, all nodes in G wait for O(logn) rounds to pass so that they enter the
next grouping step at the same time.

Once only a single supernode u remains, which is the case if during a grouping step no
node reports the identifier of a neighboring supernode, Tu covers all nodes of G and has the
desired properties. Since the algorithm runs for O(logn) iterations and each iteration takes
O(logn) rounds, we have the following theorem.

I Theorem 2. Given any bidirected connected graph G of n nodes and polylogarithmic degree,
the Overlay Construction Algorithm constructs a constant degree tree of depth O(logn) that
contains all nodes of G and that is rooted at the node with the highest identifier. The algorithm
takes O(log2 n) rounds.

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:7

Theorem 2 directly implies the following corollary.

I Corollary 3. Consider a bidirected graph G of n nodes and polylogarithmic degree. For
each connected component C of G, the Overlay Construction Algorithm constructs a constant
degree tree of depth O(log |C|) that contains all nodes of C and that is rooted at the node
with the highest identifier in C. The algorithm takes O(log2 |C|) rounds in each component
and O(log2 n) rounds overall.

Finally, note that the algorithm only sends merge requests along edges of G. This gives rise
to the following observation.

I Observation 4. For a bidirected connected graph G, the edges along which the Overlay
Construction Algorithm sends the merge requests form a spanning tree of G.

So by letting the nodes locally mark the edges that carry a merge request, the algorithm can
be used for the distributed construction of a spanning tree of G in O(log2 n) time. While this
observation is not immediately relevant for the setup phase, it will be useful in later sections.

Based on the Overlay Construction Algorithm, it is easy to achieve the goal for the
setup phase of organizing the nodes into a tree T of polylogarithmic degree and depth
O(logn/ log logn) that is rooted at the monitor s. At the beginning of the setup phase, each
node stores the identifiers of its neighbors in the given graph G0 that represents the external
network. This effectively creates a bidirected overlay network that directly corresponds to
the undirected graph G0. Note that G0 is connected by assumption. Therefore, we can
use the Overlay Construction Algorithm to construct a tree of constant degree and depth
O(logn) that contains all nodes in the network. Once the algorithm terminates, s broadcasts
a message through the resulting tree to establish itself as the new root. This does not increase
the asymptotic depth of the tree. We then decrease the depth to O(logn/ log logn) as follows.
Each node x broadcasts its identifier down the tree up to a distance of dlog logne. Every
node that receives the broadcast of x establishes an edge to x. It is not hard to see that this
creates a graph of at most polylogarithmic degree and diameter O(logn/ log logn). Finally,
s sends a broadcast through this graph to create a breadth-first search tree that has the
desired properties. We have the following theorem.

I Theorem 5. A setup time of O(log2 n) rounds is sufficient to organize the nodes of the
network into a tree T of polylogarithmic degree and depth O(logn/ log logn).

Unless otherwise stated, we assume in the following sections that the setup phase is executed
as described above.

3 Three Simple Monitoring Problems

In order to introduce some basic concepts that underlie all monitoring algorithms presented
in this work, we first consider three simple monitoring problems. Specifically, we show how
to monitor the number of edges, the average node degree, and the clustering coefficient of
the network by performing aggregation on the tree T constructed during the setup phase.

Consider the problem of monitoring the number of edges. We first present an algorithm
that efficiently determines the number of edges in a graph G and then show how this algorithm
can be used to continuously monitor the number of edges. It is well known that the number
of edges in a graph is |E| = 1/2 ·

∑
u∈V deg(u) where deg(u) is the degree of a node u.

Therefore, we can compute |E| by aggregating the sum of all node degrees in the following
way. In the first round, each leaf node u in T sends deg(u) to its parent. Once an inner node

ICALP 2017

137:8 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

u has received a value xj from each of its children, it sends deg(u) +
∑

j xj to its parent.
After O(logn/ log logn) rounds, the monitor s has received a value from each of its children
and can use these values together with its own degree to compute |E| as described above.

To continuously monitor |Ei| for every i ≥ i0, the above algorithm is executed in a
pipelined fashion: In each round i ≥ i0 a new instance of the algorithm is started. The
instances run in parallel and do not interact with each other. At the beginning of a round i,
each node stores the identifiers of its neighbors in the graph Gi that represents the external
network to create a copy of the graph in form of an overlay network that the algorithm
can operate on. This copy is discarded once the corresponding instance of the algorithm
terminates. The messages sent by an instance of the algorithm are labeled with the round
number in which the instance was started so that received messages can be correctly assigned.
Note that the number of bits a node sends and receives per round in the given algorithm is
polylogarithmic. Since the delay of the algorithm is also polylogarithmic, the number of bits
a node sends and receives in the pipelined execution is polylogarithmic as well. We have the
following theorem.

I Theorem 6. The number of edges can be monitored with setup time O(log2 n) and delay
O(logn/ log logn).

In the remainder of this work, we only present algorithms that compute the value of a
network property for a single graph G and implicitly assume that the respective algorithm is
executed in a pipelined fashion to solve the monitoring problem under consideration.

Based on the ideas of the algorithm above, it is easy to solve a number of monitoring
problems that can be reduced to aggregation. For example, one can monitor the average node
degree by letting s multiply the result of the given algorithm with 2/n before outputting it.
This gives us the following corollary.

I Corollary 7. The average node degree can be monitored with setup time O(log2 n) and
delay O(logn/ log logn).

As a final example, we consider the clustering coefficient of a network [36]. Intuitively, the
clustering coefficient reflects the relative number of triangles in a graph G. It is particularly
relevant in the context of biological and social networks [29, 30, 31, 36]. Formally, the
clustering coefficient of a node u is defined as

C(u) = 2 · | {v, w ∈ N(u) | {v, w} ∈ E} |
deg(u) · (deg(u)− 1) ,

where N(u) is the set of neighbors of u. The clustering coefficient of a graph G is defined as
C(G) = 1/n·

∑
u∈V C(u). Each node u can compute C(u) in constant time by communicating

with its neighbors. Therefore, C(G) can be computed by aggregating the sum of all C(u)
along T and dividing the result by n at the monitor. We have the following theorem.

I Theorem 8. The clustering coefficient can be monitored with setup time O(log2 n) and
delay O(logn/ log logn).

4 Bipartiteness

In this section, we consider the problem of monitoring whether the network forms a bipartite
graph. Our algorithm is based on the following commonly known approach (see e.g. [20]).
Given a connected graph G, compute a rooted spanning tree of G and assign a color from
{0, 1} to each node that corresponds to the parity of its depth in the spanning tree. We say

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:9

an edge is valid if it connects nodes of different colors and invalid otherwise. G is bipartite if
and only if all edges are valid. It remains to show how this approach can be implemented
efficiently in our framework.

According to Observation 4, we can use the Overlay Construction Algorithm to mark
the edges of a spanning tree S in G. Define the monitor s to be the root of S. Each node
has to determine the parity of its depth in S to set its color. Since S might have linear
depth, a simple broadcast from s does not constitute an efficient solution to this problem.
Instead, we use pointer jumping along a depth-first traversal of S to determine the colors of
the nodes. We define the traversal of S as follows. The traversal starts at s and moves to
the neighbor of s in S with the lowest identifier. For a node u, let u0, . . . , udeg(u)−1 be the
neighbors of u in S arranged by increasing identifier. When the traversal reaches u from a
node ui, it continues on to node u(i+1) mod deg(u). The traversal finishes when it reaches s
from the neighbor of s in S with the highest identifier. Define the traversal distance d(u) to
be the number of steps required to reach u for the first time in this traversal. As we will
show in Lemma 9, the parity of d(u) equals the parity of the depth of u in S. For now, we
focus on computing d(u) efficiently for all nodes.

Each node u simulates one virtual node for each occurrence of u in the traversal, and
the nodes connect these virtual nodes into a ring. More specifically, each node u simulates
virtual nodes v0, . . . , vdeg(u)−1 such that vi is the successor of a virtual node of ui and the
predecessor of a virtual node of u(i+1) mod deg(u) in the ring. Note that the resulting ring
consists of 2(n−1) virtual nodes. We use pointer jumping to add chords to the ring following
the same protocol we used during the merging step of the Overlay Construction Algorithm.
We define `0 to be the successor of a virtual node and r0 to be the predecessor of a virtual
node. We execute the protocol for t = blog(2(n− 1))c rounds so that each node constructs
chords `i and ri for each 1 ≤ i ≤ t. Each chord `i (resp. ri) bridges a distance of exactly 2i

along the ring. The chords allow us to efficiently compute the values d(u) in the following
way. Let v∗ be the virtual node simulated by s that precedes a virtual node of the neighbor
of s with the lowest identifier. v∗ stores the value 0 and initiates a broadcast by sending a
message with value 2i along each chord `i for 0 ≤ i ≤ t. Consider a virtual node that receives
a broadcast message and that has not yet stored a value. Let x be the value associated
with the received message. The virtual node stores x and sends a message containing the
value x + 2i along each chord `i for 0 ≤ i ≤ t. It is not hard to see that this broadcast
reaches all virtual nodes within O(logn) rounds and the value stored at a virtual node v
after the broadcast finishes corresponds to the length of the path from v∗ to v along the
ring. Therefore, each node u can determine the value d(u) by taking the minimum of the
values stored at its virtual nodes. Once all nodes computed their traversal distance in this
way, each node u determines whether it is incident to an invalid edge by checking for each
neighbor w in G whether d(u) ≡ d(w) mod 2. Then, the nodes use a convergecast to inform
s whether there is an invalid edge. If so, s outputs that G is not bipartite. Otherwise, s
outputs that G is bipartite.

To establish the correctness of the algorithm, we show the following lemma.

I Lemma 9. For each node u, the parity of the depth of u equals the parity of d(u).

Proof. Note that the tree is traversed in a depth-first order. Therefore, the traversal takes
an even number of steps between any two visits of the same node. Let P be the shortest path
from s to u in S. The length of P equals the depth of u. The traversal follows P but takes a
detour whenever it explores a branch outside of P . By the argument above, each such detour
has even length. Therefore, the parity of the depth of u equals the parity of d(u). J

ICALP 2017

137:10 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

We can monitor bipartiteness for a disconnected graph by performing the above algorithm
on its connected components and aggregating the results on the tree T built in the setup
phase. Furthermore, we can reduce the setup time to 0 by delaying the first monitoring
phase until T is constructed, which does not asymptotically increase the total delay. This
implies the following theorem.

I Theorem 10. The bipartiteness of a graph can be monitored with setup time 0 and delay
O(log2 n).

5 Minimum Spanning Tree

We now turn to the problem of monitoring the weight of a minimum spanning tree (or MST).
We assume that the edge set changes from round to round but the external network always
stays connected. Additionally, we assume that each edge has a weight that can also change
every round. We present an algorithm that monitors the exact MST weight in Section 5.1
and an algorithm that monitors an approximation of the MST weight with a shorter delay
in Section 5.2. Both algorithms are based on a sequential approximation algorithm by
Chazelle et al. [8]. As a byproduct, we describe in Section 5.3 how the algorithms for
computing the MST weight can be adapted for the distributed computation of an actual
MST.

5.1 Exact MST Weight

The main idea behind the algorithm is to reduce the computation of the weight of an MST
in a graph G to counting the number of connected components in certain subgraphs of G.
This idea was first introduced by Chazelle et al. [8]. We assume that the edge weights are
taken from the set {1, 2, . . . ,W} for some given W ∈ N. Define the threshold graph G(`) to
be the subgraph of G consisting of all edges with weight at most `, and define c(`) to be the
number of connected components in G(`). The MST weight M can be computed from the
values c(`) as shown in the following lemma.

I Lemma 11 (Chazelle et al. [8]). In a graph with edge weights from {1, 2, . . . ,W}, the MST
weight is M = n−W +

∑W−1
i=1 c(i).

Based on Lemma 11, the monitor can compute the MST weight as follows. Consider the
threshold graph G(`) for some ` ∈ {1, 2, . . .W − 1}. According to Corollary 3, executing the
Overlay Construction Algorithm on G(`) creates an overlay network in which each connected
component of G(`) is spanned by a rooted tree of overlay edges. Each node knows whether it is
a root of one of these trees. Therefore, we can determine c(`) by counting the number of roots,
which can easily be achieved using aggregation along the tree T that results from the setup
phase. By iterating this process, the monitor learns the value c(`) for each ` ∈ {1, 2, . . .W−1}.
It can then use the equation given in Lemma 11 to compute the MST weight. Since T is only
used after the algorithm already ran for O(log2 n) rounds, we can construct T during the
monitoring phase and therefore skip the setup phase. Furthermore, we can reduce the delay
by computing up to log2 n different c(i)’s in parallel. This implies the following theorem.

I Theorem 12. For edge weights from {1, 2, . . . ,W}, the MST weight can be monitored with
setup time 0 and delay O(W + log2 n).

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:11

5.2 Approximate MST Weight
Next, we present an algorithm that monitors the MST weight with a significantly shorter
delay at the cost of a small approximation error. The algorithm is less restrictive in that it
allows the edge weights to be real numbers from the interval [1,W] for a given W ∈ R. It is
based on the same general idea as the algorithm from the previous section but additionally
incorporates ideas from the work of Czumaj and Sohler [10].

First, each node rounds up the edge weight of each incident edge to a power of (1 + ε) for
a fixed ε with 0 < ε ≤ 1. In the resulting graph G′, each edge weight is of the form (1 + ε)i

where 0 ≤ i ≤ log1+ε W . Let M ′ be the MST weight in G′. We have the following lemma,
which is analogous to Lemma 11 from the previous section.

I Lemma 13 (Czumaj and Sohler [10]). In a graph with edge weights of the form (1 + ε)i for
0 ≤ i ≤ log1+ε W , the MST weight is M ′ = n−W + ε ·

∑log1+ε W−1
i=0 (1 + ε)i · c((1+ε)i).

Based on Lemma 13, we can compute M ′ by determining the number of connected
components c((1+ε)i) in log1+ε W many threshold graphs. While this already implies an
improvement over the algorithm from the previous section, we can further reduce the delay
by ignoring large components in the threshold graphs.

Consider some threshold graph G((1+ε)i). We execute the Overlay Construction Algorithm
as in the previous section but we stop its execution after O(log2(2W/ε)) rounds. By
Corollary 3, the algorithm is guaranteed to finish its computation in each connected component
of size at most 2W/ε. In larger connected components, the algorithm may finish but is
not guaranteed to do so. It is easy to modify the algorithm such that all nodes of a
connected component know whether the algorithm finished its computation for that connected
component. This allows us to ignore root nodes in connected components for which the
algorithm did not finish. Thereby, the algorithm establishes a unique root node for each
connected component of size at most 2W/ε while in each larger connected component either
a unique root node is established or no root is established. Let ĉ((1+ε)i) be the number of root
nodes established in this way. The nodes determine the value of ĉ((1+ε)i) using aggregation
along the tree T constructed in the setup phase.

As in the previous section, the nodes iteratively execute this process for each i such that
0 ≤ i ≤ log1+ε W . After the Overlay Construction Algorithm finishes for an iteration, the
nodes start the aggregation for counting the number of roots. The nodes do not wait for this
aggregation to finish but rather execute it in parallel to the next iteration. Thereby, we slightly
interleave consecutive iterations which reduces the overall delay. After the monitor has learned
the values ĉ((1+ε)i), it computes and outputs M̂ = n−W + ε ·

∑log1+ε W−1
i=0 (1 + ε)i · ĉ((1+ε)i).

We have the following theorem.

I Theorem 14. For edge weights from [1,W], the MST weight M can be monitored up
to an additive term of ±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and delay
O
(

log W
ε · log2 (W

ε

)
+ log n

log log n

)
.

Proof. We first show the approximation factor. Rounding up the edge weights to a power
of (1 + ε) increases the MST weight by a factor of at most (1 + ε). Therefore, we have
M ≤M ′ ≤ (1+ε) ·M . When computing the values ĉ((1+ε)i) the algorithm potentially ignores
all connected components of size larger than 2W/ε. In each threshold graph there are at
most εn/(2W) such connected components. The algorithm cannot overestimate the number
of connected components. Therefore, we have c((1+ε)i)− εn/(2W) ≤ ĉ((1+ε)i) ≤ c((1+ε)i). For
the upper bound on the output M̂ of the algorithm, the equations above together with the
definitions ofM ′ and M̂ directly imply M̂ ≤M ′ ≤ (1+ε) ·M . For the lower bound on M̂ , we

ICALP 2017

137:12 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

have M̂ ≥ n−W+ε·
∑log1+ε W−1

i=0 (1+ε)i ·
(
c((1+ε)i) − εn

2W

)
= M ′− ε2n

2W ·
∑log1+ε W−1

i=0 (1+ε)i ≥
M ′ − ε

2 · n ≥ (1 − ε) ·M, where we assume n ≥ 2 so that n ≤ M + 1 ≤ 2M for the last
inequality.

We now turn to the delay of the algorithm. The algorithm iteratively computes the
values ĉ((1+ε)i) for log1+ε W = O(log(W)/ε) threshold graphs. In each of these iterations
the modified Overlay Construction Algorithm is executed for O(log2(W/ε)) rounds. After
the Overlay Construction Algorithm finishes in the last iteration, the nodes have to wait for
the final aggregation to complete. This takes an additional O(log / log logn) rounds. J

Finally, if W = nO(1) we can execute logW iterations of the algorithm in parallel which
gives us the following corollary.

I Corollary 15. For edge weights from [1,W] where W = nO(1), the MST weight M can be
monitored up to an additive term of ±εM for any 0 < ε ≤ 1 with setup time O(log2 n) and
delay O

(
1
ε · log2 (W

ε

)
+ log n

log log n

)
.

5.3 Distributed Computation of MSTs
Based on the ideas of the previous two sections, we can devise algorithms that mark the
edges of an MST instead of just computing the MST weight. While these algorithms do not
fit into the monitoring context, they represent natural extensions of the given algorithms
and demonstrate that the underlying ideas might be useful outside of network monitoring.

First, we run the Overlay Construction Algorithm on the graph G(1) and mark all edges
along which a merge request is sent. We then add the edges of weight 2 and run the Overlay
Construction Algorithm again to further merge the supernodes while still marking edges as
before. We keep adding edges of increasing weight in this way until we reach the threshold
graph G(W) in which only a single supernode remains. By Observation 4, the marked edges
form a spanning tree of G. Furthermore, at any given time the algorithm only adds edges of
minimal weight to the spanning tree. Therefore, the algorithm is essentially a distributed
implementation of Kruskal’s Algorithm [21] so that the spanning tree computed by the
algorithm is in fact an MST. We have the following theorem.

I Theorem 16. Consider a network that initially forms a bidirected connected graph G with
edge weights from {1, 2, . . . ,W} for some W ∈ N. There is an algorithm that marks the edges
of an MST in G in O(W log2 n) rounds.

Combining this approach with the ideas from Section 5.2 gives us the following theorem.

I Theorem 17. Consider a network that initially forms a bidirected connected graph G

with edge weights from [1,W] for some W ∈ R. Let M be the weight of an MST in G.
There is an algorithm that marks the edges of a spanning tree in G with weight M ′ such that
M ≤M ′ ≤ (1 + ε) ·M in O(1/ε · logW · log2 n) rounds.

6 Future Work

We were only able to present a small number of monitoring problems in hybrid networks in
this work. However, there is an abundance of classical problems in the literature that can be
newly investigated under this model. As we tried to demonstrate in Section 5.3, the idea of
using the ability to establish new edges to speed up computation can also be applied outside
of network monitoring. We would be very interested in seeing further applications of this
idea in other contexts.

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:13

References
1 Sebastian Abshoff and Friedhelm Meyer auf der Heide. Continuous aggregation in dynamic

ad-hoc networks. In Magnús M. Halldórsson, editor, Structural Information and Commu-
nication Complexity - 21st International Colloquium, SIROCCO 2014, Takayama, Japan,
July 23-25, 2014. Proceedings, volume 8576 of Lecture Notes in Computer Science, pages
194–209. Springer, 2014. doi:10.1007/978-3-319-09620-9_16.

2 Dana Angluin, James Aspnes, Jiang Chen, Yinghua Wu, and Yitong Yin. Fast construc-
tion of overlay networks. In Proceedings of the 17th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA’05, page 145, 2005. doi:10.1145/1073970.1073991.

3 Mikhail Atallah and Uzi Vishkin. Finding euler tours in parallel. Journal of Computer and
System Sciences, 29(3):330–337, 1984. doi:10.1016/0022-0000(84)90003-5.

4 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. John Wiley and Sons, Inc., 2nd edition, 2004.

5 John Augustine, Gopal Pandurangan, and Peter Robinson. Distributed algorithmic foun-
dations of dynamic networks. SIGACT News, 47(1):69–98, 2016. doi:10.1145/2902945.
2902959.

6 Petra Berenbrink, Bruce Krayenhoff, and Frederik Mallmann-Trenn. Estimating the num-
ber of connected components in sublinear time. Information Processing Letter, 114(11):639–
642, 2014. doi:10.1016/j.ipl.2014.05.008.

7 Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and
Jukka Suomela. Algebraic methods in the congested clique. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC’15, pages 143–152, 2015.
doi:10.1145/2767386.2767414.

8 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum
spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.

9 Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Ru-
binfeld, and Christian Sohler. Approximating the weight of the euclidean minimum
spanning tree in sublinear time. SIAM J. Comput., 35(1):91–109, 2005. doi:10.1137/
S0097539703435297.

10 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning
trees in sublinear time. SIAM J. Comput., 39(3):904–922, 2009. doi:10.1137/060672121.

11 Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 367–376, 2014. doi:10.1145/2611462.2611493.

12 Chinmoy Dutta, Gopal Pandurangan, Rajmohan Rajaraman, Zhifeng Sun, and Emanuele
Viola. On the complexity of information spreading in dynamic networks. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 717–736.
SIAM, 2013. doi:10.1137/1.9781611973105.52.

13 Michael Elkin. Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In Proceedings of the 36th ACM Symposium
on Theory of Computing, STOC’04, pages 331–340, 2004. doi:10.1145/1007352.1007407.

14 Michael Elkin. A faster distributed protocol for constructing a minimum spanning tree.
Journal of Computer and System Sciences, 72(8):1282–1308, 2006. doi:10.1016/j.jcss.
2006.07.002.

15 Bernhard Haeupler and David Karger. Faster information dissemination in dynamic net-
works via network coding. In Proceedings of the 30th Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC’11, pages 381–390, 2011. doi:10.1145/1993806.
1993885.

ICALP 2017

http://dx.doi.org/10.1007/978-3-319-09620-9_16
http://dx.doi.org/10.1145/1073970.1073991
http://dx.doi.org/10.1016/0022-0000(84)90003-5
http://dx.doi.org/10.1145/2902945.2902959
http://dx.doi.org/10.1145/2902945.2902959
http://dx.doi.org/10.1016/j.ipl.2014.05.008
http://dx.doi.org/10.1145/2767386.2767414
http://dx.doi.org/10.1137/S0097539703435297
http://dx.doi.org/10.1137/S0097539703435297
http://dx.doi.org/10.1137/060672121
http://dx.doi.org/10.1145/2611462.2611493
http://dx.doi.org/10.1137/1.9781611973105.52
http://dx.doi.org/10.1145/1007352.1007407
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1016/j.jcss.2006.07.002
http://dx.doi.org/10.1145/1993806.1993885
http://dx.doi.org/10.1145/1993806.1993885

137:14 Distributed Monitoring of Network Properties: The Power of Hybrid Networks

16 Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding
spanning forests. Journal of Algorithms, 39(1):1–46, 2001. doi:10.1006/jagm.2000.1146.

17 James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardeshmukh,
and Michele Scquizzato. Toward optimal bounds in the congested clique: Graph connec-
tivity and mst. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC’15, pages 91–100, 2015. doi:10.1145/2767386.2767434.

18 Joseph JaJa. An Introduction to Parallel Algorithms, volume 17. Addison Wesley, 1992.
19 Donald B. Johnson and Panagiotis Metaxas. A parallel algorithm for computing minimum

spanning trees. Journal of Algorithms, 19(3):383–401, 1995. doi:10.1006/jagm.1995.
1043.

20 Jon Kleinberg and Eva Tardos. Algorithm Design: Pearson New International Edition.
Pearson Education Limited, 2013.

21 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.
2307/2033241.

22 Fabian Kuhn, Thomas Locher, and Stefan Schmid. Distributed computation of the mode. In
Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, PODC’08,
pages 15–24, 2008. doi:10.1145/1400751.1400756.

23 Fabian Kuhn, Thomas Locher, and Roger Wattenhofer. Tight bounds for distributed se-
lection. In Proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA’07, pages 145–153, 2007. doi:10.1145/1248377.1248401.

24 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC’10,
pages 513–522, 2010. doi:10.1145/1806689.1806760.

25 Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In
Symposium on Principles of Distributed Computing, PODC’13, pages 42–50, 2013. doi:
10.1145/2484239.2501983.

26 Thomas Locher. Foundations of aggregation and synchronization in distributed systems.
PhD thesis, ETH Zürich, 2009. doi:10.3929/ethz-a-005799819.

27 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120–131,
2005. doi:10.1137/S0097539704441848.

28 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed sta-
ble network construction. In ACM Symposium on Principles of Distributed Computing,
PODC’14, pages 76–85, 2014. doi:10.1145/2611462.2611466.

29 Mark E. J. Newman. The structure of scientific collaboration networks. Proceedings of the
National Academy of Sciences, 98(2):404–409, 2001. doi:10.1073/pnas.98.2.404.

30 Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random graphs with
arbitrary degree distributions and their applications. Physical Review E, 64(2):26118, jul
2001. doi:10.1103/PhysRevE.64.026118.

31 Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph models of
social networks. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572,
2002. doi:10.1073/pnas.012582999.

32 Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. Fast distributed algorithms
for connectivity and mst in large graphs. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA’16, pages 429–438, 2016. doi:10.1145/
2935764.2935785.

33 David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity
of distributed mst construction. In 40th Annual Symposium on Foundations of Computer
Science, FOCS’99, pages 253–261, 1999. doi:10.1109/SFFCS.1999.814597.

http://dx.doi.org/10.1006/jagm.2000.1146
http://dx.doi.org/10.1145/2767386.2767434
http://dx.doi.org/10.1006/jagm.1995.1043
http://dx.doi.org/10.1006/jagm.1995.1043
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.1145/1400751.1400756
http://dx.doi.org/10.1145/1248377.1248401
http://dx.doi.org/10.1145/1806689.1806760
http://dx.doi.org/10.1145/2484239.2501983
http://dx.doi.org/10.1145/2484239.2501983
http://dx.doi.org/10.3929/ethz-a-005799819
http://dx.doi.org/10.1137/S0097539704441848
http://dx.doi.org/10.1145/2611462.2611466
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1073/pnas.012582999
http://dx.doi.org/10.1145/2935764.2935785
http://dx.doi.org/10.1145/2935764.2935785
http://dx.doi.org/10.1109/SFFCS.1999.814597

R. Gmyr, K. Hinnenthal, C. Scheideler, and C. Sohler 137:15

34 Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware 2001, IFIP/ACM
International Conference on Distributed Systems Platforms, pages 329–350, 2001. doi:
10.1007/3-540-45518-3_18.

35 Robert E. Tarjan and Uzi Vishkin. An efficient parallel biconnectivity algorithm. SIAM J.
Comput., 14(4):862–874, 1985. doi:10.1137/0214061.

36 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, 1998. doi:10.1038/30918.

37 Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John
Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment. IEEE Jour-
nal on Selected Areas in Communications, 22(1):41–53, 2004. doi:10.1109/JSAC.2003.
818784.

ICALP 2017

http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1137/0214061
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1109/JSAC.2003.818784
http://dx.doi.org/10.1109/JSAC.2003.818784

Randomized Rumor Spreading Revisited
Benjamin Doerr1 and Anatolii Kostrygin2

1 Laboratoire d’Informatique (LIX), École Polytechnique, Palaiseau, France
doerr@lix.polytechnique.fr

2 Laboratoire d’Informatique (LIX), École Polytechnique, Palaiseau, France
anatolii.kostrygin@gmail.com

Abstract
We develop a simple and generic method to analyze randomized rumor spreading processes in
fully connected networks. In contrast to all previous works, which heavily exploit the precise
definition of the process under investigation, we only need to understand the probability and
the covariance of the events that uninformed nodes become informed. This universality allows
us to easily analyze the classic push, pull, and push-pull protocols both in their pure version
and in several variations such as messages failing with constant probability or nodes calling a
random number of others each round. Some dynamic models can be analyzed as well, e.g., when
the network is a G(n, p) random graph sampled independently each round [Clementi et al. (ESA
2013)].

Despite this generality, our method determines the expected rumor spreading time precisely
apart from additive constants, which is more precise than almost all previous works. We also
prove tail bounds showing that a deviation from the expectation by more than an additive number
of r rounds occurs with probability at most exp(−Ω(r)).

We further use our method to discuss the common assumption that nodes can answer any
number of incoming calls. We observe that the restriction that only one call can be answered
leads to a significant increase of the runtime of the push-pull protocol. In particular, the double
logarithmic end phase of the process now takes logarithmic time. This also increases the mes-
sage complexity from the asymptotically optimal Θ(n log logn) [Karp, Shenker, Schindelhauer,
Vöcking (FOCS 2000)] to Θ(n logn). We propose a simple variation of the push-pull protocol
that reverts back to the double logarithmic end phase and thus to the Θ(n log logn) message
complexity.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Epidemic algorithm, rumor spreading, dynamic graph

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.138

1 Introduction

Randomized rumor spreading is one of the core primitives to disseminate information
in distributed networks. It builds on the paradigm that nodes call random neighbors
and exchange information with these contacts. This gives highly robust dissemination
algorithms belonging to the broader class of gossip-based algorithms that, due to their
epidemic nature, are surprisingly efficient and scalable. Randomized rumor spreading
has found numerous applications, among others, maintaining the consistency of replicated
databases [9], disseminating large amounts of data in a scalable manner [25], and organizing
any kind of communication in highly dynamic and unreliable networks like wireless sensor
networks and mobile ad-hoc networks [21]. Randomized rumor spreading processes are also

EA
T

C
S

© Benjamin Doerr and Anatolii Kostrygin;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 138; pp. 138:1–138:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.138
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

138:2 Randomized Rumor Spreading Revisited

used to model epidemic processes like viruses spreading over the internet [1], news spreading
in social networks [10], or opinions forming in social networks [24].

The importance of these processes not only has led to a huge body of experimental results,
but, starting with the influential works of Frieze and Grimmett [16] and Karp, Shenker,
Schindelhauer, and Vöcking [22] also to a large number of mathematical analyses of rumor
spreading algorithms giving runtime or robustness guarantees for existing algorithms and,
based on such findings, proposing new algorithms.

Roughly speaking, two types of results can be found in the literature, general bounds
trying to give a performance guarantee based only on certain graph parameters and analyses
for specific graphs or graph classes. In the domain of general bounds, there is the classic
maximum-degree-diameter bound of [13] and more recently, a number of works bounding the
rumor spreading time in terms of conductance or other expansion properties [26, 6, 18, 19],
which not only greatly helped our understanding of existing processes, but could also be
exploited to design new dissemination algorithms [2, 3, 4, 20]. The natural downside of
such general results is that they often do not give sharp bounds. It seems that among the
known graph parameters, none captures very well how suitable this network structure is for
randomized rumor spreading. Also, it has to be mentioned that these results mostly apply
to the push-pull protocol.

The other research direction followed in the past is to try to prove sharper bounds for
specific graph classes. This led, among others, to the results that the push-protocol spreads a
rumor in a complete graph in time log2 n+lnn±ω(1) with high probability 1−o(1) (whp.) [28]
(and in time log2−p n+ 1

p lnn±o(logn) when messages fail independently with probability p),
whereas the push-pull protocol does so in time log3 n+O(log logn) [22]. The push protocol
spreads rumors in hypercubes in time O(logn) whp. [13], determining the leading constant is
a major open problem. For Erdős-Rény random graphs with edge probability asymptotically
larger than the connectivity threshold, again a runtime of log2−p n+ 1

p lnn± o(logn) was
shown for the push protocol allowing transmission errors with rate p [14]. For preferential
attachment graphs, which are often used as model for real-world networks, it was proven
that the push-protocol needs Ω(nα) rounds, α > 0 some constant, whereas the push-pull
protocol takes time Θ(logn) and Θ((logn)/ log logn) when nodes avoid to call the same
neighbor twice in a row [5, 10]. Even faster rumor spreading times were shown on Chung-Lu
power-law random graphs [15].

One weakness of all these results on specific graphs is that they very much rely on the
particular properties of the protocol under investigation. Even in fully connected networks
(complete graphs), the existing analyses for the basic push protocol [16, 28, 12], the push
protocol in the presence of transmission failures [11], the push protocol with multiple
calls [27], and the push-pull protocol [22] all uses highly specific arguments that cannot be
used immediately for the other processes. This is despite the fact that the global behavior
of these processes is often very similar. For example, all processes mentioned have an
exponential expansion phase in which the number of informed node roughly grows by a
constant factor until a constant fraction of the nodes is informed. Clearly, this hinders a
faster development of the field. Note that the typical analysis of a rumor spreading protocol
in the papers cited above needs between six and eight pages of proofs.

1.1 Our Results
In this work, we make a big step forward towards overcoming this weakness. We propose
a general analysis method for all symmetric and memoryless rumor spreading processes in
complete networks. It allows to easily analyze all rumor spreading processes mentioned above

B. Doerr and A. Kostrygin 138:3

and many new ones. The key to this generality is showing that the rumor spreading times
for these protocols are determined by the probabilities pk of a new node becoming informed
in a round starting with k informed nodes together with a mild bound on the covariance on
the indicator random variables of the events that new nodes become informed. Consequently,
all other particularities of the protocol can safely be ignored.

Despite this generality, our method gives bounds for the expected rumor spreading time
that are tight apart from an additive constant number of rounds. Such tight bounds so far
have only been obtained once, namely for the basic push protocol [12].

Our method also gives tail bounds stating that deviations from the expectation by an
additive number of at least r of rounds occur with probability at most A′ exp(−α′r), where
A′, α′ > 0 are absolute constants. Such a precise tail bound was previously given only for
the push protocol in [12]. Note that our tail bounds imply the usual whp-statements, e.g.,
that overshooting the expectation by any ω(1) term happens with probability o(1) only, and
that a rumor spreading time of O(logn) can be obtained with probability 1 − n−c, c any
constant, by making the implicit constant in the time bound large enough.

We use our method to obtain the following particular results. We only state the expected
runtimes. In all cases, the above tail bounds are valid as well.

Classic protocols, robustness: We start by analyzing the three basic push, pull, and push-
pull protocols. In the push protocol, in each round each informed node calls a random node
and sends a copy of the rumor to it. In the pull protocol, in each round each uninformed
node calls a random node and tries to obtain the rumor from it. In the push-pull protocol,
all nodes contact a random node and in each such contact the informed nodes send rumor to
the communication partner.

For these three protocols, both in the fault-free setting and when assuming that calls fail
independently with probability 1− p, our method easily yields the expected rumor spreading
times given in Table 1. Note that all previous works apart from [12] did not state explicitly
a bound for the expected runtime. Note further that for half of the settings regarded in
Table 1 no previous result existed. In particular, we are the first to find that the double
logarithmic shrinking phase observed by Karp et al. [22] for the push-pull protocol disappears
when messages fail with constant probability p, and is instead replaced by an ordinary
shrinking regime with the number of uninformed nodes reducing by roughly a factor of
(1−p)e−p each round. This observation is not overly deep, but has the important consequence
that the message complexity of the push-pull protocol raises from the theoretically optimal
Θ(n log logn) value proven in [22] to an order of magnitude of Θ(n logn) in the presence
of a constant rate of transmission errors. Hence the significant superiority of the push-pull
protocol over the push protocol in the fault-free setting reduces to a constant-factor advantage
in the faulty setting.

Multiple calls: Panagiotou, Pourmiri, and Sauerwald [27] proposed a variation of the classic
protocols in which the number of calls (always to different nodes) each node performs when
active is a positive random variable R. They mostly assume that for each node, this random
number is sampled once at the beginning of the process. For the case that R has constant
expectation and variance, they show that the rumor spreading time of the push protocol is
log1+E[R] n+ 1

E[R] lnn± o(logn) with high probability and that the rumor spreading time of
the push-pull protocol is Ω(logn) with probability 1− ε, ε > 0. When R follows a power law
with exponent β = 3, the push-pull protocol takes Θ(logn

log logn) rounds, and when 2 < β < 3,
it takes Θ(log logn) rounds.

ICALP 2017

138:4 Randomized Rumor Spreading Revisited

Table 1 New and previous-best results for rumor spreading time T of the classic rumor spreading
protocols in complete graphs on n vertices. The first line of each table entry contains the result
that follows from the method proposed in this work, the second line states the best previous
result (if any). For all new bounds on the expected rumor spreading time, a tail bound of type
P[|T ≥ E[T]| ≥ r] ≤ A′ exp(−α′r) with A′, α′ > 0 suitable constants follows as well from this
work. In [12], such a bound was given for the rumor spreading time of the push protocol without
transmission failures.

no transmission failures calls fail indep. with prob. 1− p ∈ (0, 1)
push
protocol

E[T] = log2 n+ lnn±O(1)
blog2 nc+ lnn− 1.116 ≤ E[T] ≤
dlog2 ne+ lnn+ 2.765 + o(1) [12]

E[T] = log1+p n+ 1
p

lnn±O(1)
T = log1+p n+ 1

p
lnn± o(logn) whp. [11]

pull
protocol

E[T] = log2 n+ log2 lnn±O(1) E[T] = log1+p n+ 1
ln 1

1−p

lnn±O(1)

push-pull
protocol

E[T] = log3 n+ log2 lnn±O(1)
T = log3 n±O(log logn) whp. [22]

E[T] = log1+2p n+ 1
p+ln 1

1−p

lnn±O(1)

The model of [27] makes sense when assuming that nodes have generally different commu-
nication capacities. To model momentarily different capacities, e.g., caused by being occupied
with other communication tasks, we assume that the random variable is resampled for each
node in each round. We also allow R to take the value 0. Again for the case E[R] = Θ(1)
and Var[R] = O(1), we show that the expected rumor spreading time of the push protocol is
log1+E[R] n+ 1

E[R] lnn±O(1). The rumor spreading time of the push-pull protocol depends
critically on the smallest value ` which R takes with positive probability. If ` = 0, that is,
with constant probability nodes contact no other node, then there is no double exponential
shrinking and the expected rumor spreading time is log1+2E[R] n+ 1

E[R]−ln P[R=0] lnn±O(1).
If nodes surely perform at least one call, then we have a double exponential shrinking regime
and an expected rumor spreading time of log1+2E[R] n+ log1+` lnn±O(1).

Dynamic networks: We also show that our method is capable of analyzing dynamic networks
when the dynamic is memory-less. Clementi et al. [7] have shown that when the network in
each round is a newly sampled G(n, p) random graph, then for any constant c the rumor
spreading time of the push protocol is Θ(log(n)/min{p, 1/n}) with probability 1− n−c. We
sharpen this result for the most interesting regime that p = a/n, a a positive constant. For
this case, we show that the expected rumor spreading time is log2−e−a n+ 1

1−e−a ln(n)+O(1).
Our tail bound P[|T − E[T]| ≥ r] ≤ A′ exp(−α′r) for suitable constants A′, α > 0 implies
also the large deviation statement of [7] (where for Θ(logn) deviations in the lower tail the
trivial log2(n) lower bound holding with probability 1 should be used).

Answering single calls only: We finally use our method to discuss an aspect mostly ignored
by previous research. While in all protocols above (apart from the one of [27]) it is assumed
that each node can call at most one other node per round, it is tacitly assumed in the pull
and push-pull protocols that nodes can answer all incoming calls. For complete graphs on n
vertices, the classic balls-into-bins theory immediately gives that in a typical round there is
at least one node that receives Θ(logn

log logn) calls. So unlike for the outgoing traffic, nodes are
implicitly assumed to be able to handle very different amounts of incoming traffic in one
round.

The first to discuss this issue are Daum, Kuhn, and Maus [8] (also the SIROCCO 2016 best
paper). Among other results, they show that if only one incoming call can be answered and if
this choice is taken adversarially, then there are networks where a previously polylogarithmic

B. Doerr and A. Kostrygin 138:5

rumor spreading time of the pull protocol becomes Ω̃(
√
n). If the choice which incoming

call is answered is taken randomly, then things improve and the authors show that for any
network, the rumor spreading times of the pull and push-pull protocol increase by at most
a factor of O(∆(G)

δ(G) logn) compared to the variant in which all incoming calls are answered.
Subsequently, Ghaffari and Newport [17] showed that with the restriction to accept only
one incoming call, the general performance guarantees for the push-pull protocol in terms
of vertex expansion or conductance [18, 19] do not hold. Kiwi and Caro [23] showed that
solving the problem of multiple incoming calls via a FIFO queue can lead to extremely long
rumor spreading times.

With our generic method, we can easily analyze this aspect of rumor spreading on complete
graphs. While for the pull protocol only the growth phase mildly slows down, giving a total
expected rumor spreading time of E[T] = log2−1/e n + log2 lnn ± O(1), for the push-pull
protocol also the double logarithmic shrinking phase breaks down and we observe a total
runtime of E[T] = log3−2/e n+ 1

2 lnn±O(1) and, similarly as for the push-pull protocol with
transmission failures, an increase of the message complexity to Θ(n logn). The reason, as our
proof reveals, is that when a large number of nodes are informed, then their push calls have
little positive effect (as in the classic push-pull protocol), but they now also block other nodes’
pull calls from being accepted. This problem can be overcome by changing the protocol so
that informed nodes stop calling others when the rumor is log3−2/e n rounds old. The rumor
spreading time of this modified push-pull protocol is E[T] = log3−2/e n + log2 lnn ± O(1)
and, when halted at the right moment, this process takes Θ(n log logn) messages.

2 Outline of the Analysis Method

As just discussed, the main advantages of our approach are its universality and the very
tight bounds it proves. We now briefly sketch the main new ideas that lead to this progress.
Interestingly, they are rather simpler than the ones used in previous works.

2.1 Tight Bounds via a Target-Failure Calculus

We first describe how we obtain estimates for the rumor spreading time that are tight apart
from additive constants. Let us take as example the classic push protocol. It is easy to
compute that in a round starting with k informed nodes, the expected number of newly
informed nodes is E(k) = k − Θ(k2/n). Hence roughly speaking the number of informed
nodes doubles each round (which explains the log2 n part of the log2 n+ lnn±O(1) rumor
spreading time), but there is a growing gap to truly doubling caused by (i) calls reaching
already informed nodes and (ii) several calls reaching the same target. This weakening of
the doubling process was a main difficulty in all previous works.

The usual way to analyze this weakening doubling process is to partition the rumor
spreading process in phases and within each phase to uniformly estimate the progress. For
example, Pittel [28] considers 7 phases. He argues first that with high probability the number
if informed nodes doubles until n1 = o(

√
n) nodes are informed. Then, until n2 = n/ log2(n)

nodes are informed, with high probability in each round the number of informed nodes
increases by at least a factor of 2(1− 1

log2(n)). Consequently, this second phase lasts at most
log2(1− 1

log2(n)
)(n2/n1) rounds. While this type of argument gives good bounds for phases

bounded away from the middle regime with both Θ(n) nodes informed and uninformed, we
do not see how this “estimating a phase uniformly” argument can cross the middle regime
without losing a number ω(1) of rounds.

ICALP 2017

138:6 Randomized Rumor Spreading Revisited

For this reason, we proceed differently. To prove upper bounds on rumor spreading times,
for each number k of informed nodes, we formulate a pessimistic round target E0(k) that
is sufficiently below the expected number E(k) of newly informed nodes. Here “sufficiently
below” means that the probability q(k) to fail reaching this target number of informed nodes
is small, but not necessarily o(1) as in all previous analyses. Using a restart argument, we
observe that the random time needed to go from k informed nodes to at least E0(k) informed
nodes is stochastically dominated by 1 plus a geometric random variable with parameter
1− q(k), where all our geometric random variables count the number of failures until success
(this is one of the two definitions of geometric distributions that are in use). In particular,
the expected time to go from k to at least E0(k) informed nodes is at most 1 + q(k)

1−q(k) .
The second, again elementary, key argument is that when we define a sequence of

round targets by k0 := 1, k1 := E0(k0), k2 := E0(k1), . . . with suitably defined E0(·), then
the ki grow almost like 2i (in the example of the classic push protocol). More precisely,
there is a T = log2 n ± O(1) such that kT = Θ(n). Hence together with the previous
paragraph we obtain that the number of rounds to reach kT informed nodes is dominated
by T plus a sum of independent geometric random variables. This sum has expectation∑T−1
i=0

q(ki)
1−q(ki) = O(

∑T−1
i=0 q(ki)), so it suffices that the sum of the failure probabilities q(ki)

is a constant (unlike in previous works, where it needed to be o(1)). A closer look at this
sum also gives the desired tail bounds.

Similarly, to prove matching lower bounds, we define optimistic round targets E0(k) such
that a round starting with k informed nodes finds it unlikely to reach E0(k) informed nodes.
Since again we want to allow failure probabilities that are constant, we now have to be more
careful and also quantify the probability to overshoot E0(k) by larger quantities. This will
then allow to argue that when defining a sequence of round targets recursively as above, then
the expected number of targets overjumped (and thus the expected number of rounds saved
compared to the “one target per round” calculus), is only constant.

We remark that a target-failure argument similar to ours was used already in [12], there
however only to give an upper bound for the runtime of the push protocol in the regime from
ns, s a small constant, to Θ(n) informed nodes, that is, the later part of the exponential
growth regime of the push process, in which via Chernoff bounds very strong concentration
results could be exploited. Hence the novelty of this work with respect to the target-failure
argument is that this analysis method can be used (i) also from the very beginning of the
process on, where we have no strong concentration, (ii) also for the exponential and double
exponential shrinking regimes of rumor spreading processes, and (iii) also for lower bounds.

2.2 Uniform Treatment of Many Rumor Spreading Processes
As discussed earlier, the previous works regarding different rumor spreading processes on
complete graphs all had to use different arguments. The reason is that the processes, even
when looking similar from the outside, are intrinsically different when looking at the details.
As an example, let us consider the first few rounds of the push and the pull protocol. In
the push protocol, we just saw that while there are at most o(

√
n) nodes informed, then a

birthday paradox type argument gives that with high probability we have perfect doubling
in each round. For the pull process, in which each uninformed node calls a random node and
becomes informed when the latter was informed, we also easily compute that a round starting
with k informed nodes creates an expected number of (n − k) kn = k − k2

n newly informed
nodes. However, since these are binomially distributed, there is no hope for perfect doubling.
In fact, for the first constant number of rounds, we even have a constant probability that not
a single node becomes informed.

B. Doerr and A. Kostrygin 138:7

The only way to uniformly treat such different processes is by making the analysis
depend only on general parameters of the process as opposed to the precise definition. Our
second main contribution is distilling a few simple conditions that (i) subsume essentially all
symmetric and time-invariant rumor spreading processes on complete graphs and (ii) suffice
to prove rumor spreading times via the above described target-failure method. All this is
made possible by the observation that the target-failure method needs much less in terms of
failure probabilities than previous approaches, in particular, it can tolerate constant failure
probabilities. Consequently, instead of using Chernoff and Azuma bounds for independent or
negatively correlated random variables (which rely on the precise definition of the process),
it suffices to use Chebyshev’s inequality as concentration result.

Consequently, to apply our method we only need to (i) understand (with a certain
precision) the probability pk that an uninformed node becomes informed in a round starting
with k informed nodes; recall that we assumed symmetry, that is, this probability is the same
for all uninformed nodes, and (ii) we need to have a mild upper bound on the covariance of
the indicator random variables of the events that two nodes become informed.

The probabilities pk usually are easy to compute from the protocol definition. Also, we do
not know them precisely. For example, for the growth phase of the push protocol discussed
above, it suffices to know that there are constants a < 2 and a′ such that for all k < n/2 we
have k

n (1− a kn) ≤ pk ≤ k
n (1 + a′ kn). This (together with the covariance condition) is enough

to show that the rumor spreading process takes log2 n±O(1) rounds to inform n/2 nodes
or more. The constants a, a′ have no influence on the final result apart from the additive
constant number of rounds hidden in the O(1) term. The covariances are also often easy to
bound with sufficient precision, among others, because many in processes the events that
two uniformed nodes become informed are independent or negatively correlated.

In our general analysis method, we profit from the fact that seemingly all reasonable
rumor spreading processes in complete networks can be described via three regimes:

Exponential growth: Up to a constant fraction fn of informed nodes, pk = γn
k
n (1±O(kn)).

The number of informed nodes thus increases roughly by a factor of (1 + γn) in each round,
hence the expected time to reach fn informed nodes or more is log1+γn

n±O(1).

Exponential shrinking: From a certain constant fraction u = n − k = gn of uninformed
nodes on, the probability of remaining uninformed satisfies 1− pn−k = e−ρn ±O(un). This
leads to a shrinking of the number of uninformed nodes by essentially a factor of e−ρn per
round. Hence when starting with gn informed nodes, it takes another 1

ρn
lnn±O(1) rounds

in expectation until all are informed.

Double exponential shrinking: From a certain constant fraction u = n − k = gn of
uninformed nodes on, the probability of remaining uninformed satisfies 1−pn−k = Θ((un)`−1).
Now the expected time to go from gn uninformed nodes to no uninformed node is log` lnn±
O(1).

Due to their different nature, we cannot help treating these three regimes separately,
however all with the target-failure method. Hence the main differences between these regimes
lie in defining the pessimistic estimates for the targets, computing the failure probabilities,
and computing the number of intermediate targets until the goal is reached. All this only
needs computing expectations, using Chebyshev’s inequality, and a couple of elementary
estimates.

ICALP 2017

138:8 Randomized Rumor Spreading Revisited

3 Precise Statement of the Technical Results

In this work, we consider only homogeneous rumor spreading processes characterized as
follows. We always assume that we have n nodes. Each node can be either informed or
uninformed. We assume that the process starts with exactly one node being informed.
Uninformed nodes may become informed, but an informed node never becomes uninformed.
We consider a discrete time process, so the process can be partitioned into rounds. In each
round each uninformed node can become informed. Whenever a round starts with k nodes
being informed, then the probability for each uninformed node to become informed is some
number pk, which only depends on the number k of informed nodes at the beginning of the
round.

The main insight of this work is that for such homogeneous rumor spreading processes
we can mostly ignore the particular structure of the process and only work with the success
probabilities pk defined above and the covariance numbers ck defined as follows.

I Definition 1 (Covariance numbers). For a given homogeneous rumor spreading process
and k ∈ [1..n− 1] let ck be the smallest number such that whenever a round starts with k
informed nodes and for any two uninformed nodes x1, x2, the indicator random variables
X1, X2 for the events that these nodes become informed in this round satisfy

Cov[X1, X2] ≤ ck.

Upper bound for these covariances imply upper bounds on the variance of the number of
nodes newly informed in a round. If the latter is small, Chebyshev’s inequality yields that
the actual number of newly informed nodes deviates not a lot from its expectation (which is
determined by pk).

Our main interest is studying after how many round all nodes are informed.

I Definition 2 (Rumor spreading times). Consider a homogeneous rumor spreading process.
For all t = 0, 1, . . . denote by It the number of informed nodes at the end of the t-th round
(I0 := 1). Let k ≤ m ≤ n. By T (k,m) we denote the time it takes to increase the number of
informed nodes from k to m or more, that is,

T (k,m) = min{t− s|Is = k and It ≥ m}.

We call T (1, n) the rumor spreading time of the process.

As it turns out, almost all homogeneous rumor spreading processes can be analyzed via
three regimes.

3.1 Exponential Growth Regime
When not too many nodes are informed, in most rumor spreading processes we observe
roughly a constant-factor increase of the number of informed nodes in one round, however,
this increase becomes weaker with increasing number of informed nodes.

I Definition 3 (Exponential growth conditions). Let γn be bounded between two positive
constants. Let a, b, c ≥ 0 and 0 < f < 1. We say that a homogeneous rumor spreading
process satisfies the upper (respectively lower) exponential growth conditions in [1, fn[if for
any n ∈ N big enough the following properties are satisfied for any k < fn.
(i) pk ≥ γn kn ·

(
1− a kn −

b
lnn
)
(respectively pk ≤ γn kn ·

(
1 + a kn + b

lnn
)
).

(ii) ck ≤ c kn2 .
In the case of the upper exponential growth condition, we also require af < 1.

B. Doerr and A. Kostrygin 138:9

These growth conditions suffice to prove that in an expected time of at most (respectively
at least) log1+γn

n±O(1) rounds a linear number of nodes becomes informed. Consequently,
the decrease of the dissemination speed when more nodes are informed (quantified by the
term −a kn in the upper exponential growth condition), which was a main difficulty in previous
analyses, has only an O(1) influence on the rumor spreading time.

I Theorem 4. If a homogeneous rumor spreading process satisfies the upper (lower) expo-
nential growth conditions in [1, fn[, then there are constants A′, α′ > 0 such that

E[T (1, fn)] ≤
(≥)

log1+γn
n +

(−)
O(1),

P[T (1, fn) ≥
(≤)

log1+γn
n +

(−)
r] ≤ A′ exp(−α′r) for all r ∈ N.

When the lower exponential growth conditions are satisfied, then also there is an f ′ ∈]f, 1[
such that with probability 1 − O

(1
n

)
at most f ′n nodes are informed at the end of round

T (1, fn).

We note that the upper tail bound is tight apart from the implicit constants. This is
witnessed, for example, by the pull protocol, where rounds starting with only a constant
number of informed nodes have a constant probability of not informing any new node.

3.2 Exponential Shrinking Regime
In a sense dual to the previous regime, in many rumor spreading processes we observe that
the number of uninformed nodes shrinks by a constant factor once sufficiently many nodes
are informed. Again, the weaker shrinking at the beginning of this regime has only an O(1)
influence on the resulting rumor spreading times.

I Definition 5 (Exponential shrinking conditions). Let ρn be bounded between two positive
constants. Let 0 < g < 1, and a, c ∈ R≥0. We say that a homogeneous rumor spreading
process satisfies the upper (respectively lower) exponential shrinking conditions if for any
n ∈ N big enough, the following properties are satisfied for all u = n− k ≤ gn.
(i) 1− pk = 1− pn−u ≤ e−ρn + aun (respectively 1− pk = 1− pn−u ≥ e−ρn − aun).
(ii) ck = cn−u ≤ c

u .
For the upper exponential shrinking conditions, we also assume that e−ρn + ag < 1.

I Theorem 6. If a homogeneous rumor spreading process satisfies the upper (lower) expo-
nential shrinking conditions, then there are A′α′ > 0 such that

E[T (n− bgnc, n)] ≤
(≥)

1
ρn

lnn +
(−)

O(1),

P[T (n− bgnc, n) ≥
(≤)

1
ρn

lnn +
(−)

r] ≤ A′ exp(−α′r) for all r ∈ N.

Again, the upper tail bound is tight apart from the constants as shown by the last rounds
of the push protocol.

3.3 Double Exponential Shrinking Regime
Protocols using pull operations in the absence of transmission failures display a faster
reduction of the number if uninformed nodes.

ICALP 2017

138:10 Randomized Rumor Spreading Revisited

I Definition 7 (Double exponential shrinking conditions). Let g ∈]0, 1], ` > 1, and a, c ∈ R≥0
such that ag`−1 < 1. We say that a homogeneous rumor spreading process satisfies the
upper (respectively lower) double exponential shrinking conditions if for any n big enough the
following properties are satisfied for all u = n− k ∈ [1, gn].
(i) 1− pn−u ≤ a

(
u
n

)`−1 (respectively 1− pn−u ≥ a
(
u
n

)`−1).
(ii) cn−u ≤ c nu2 .

I Theorem 8. If a homogeneous rumor spreading process satisfies the upper (lower) double
exponential shrinking conditions, then there are A′, α′ > 0 and R (depending on α) such that

E[T (n− bgnc, n)] ≤
(≥)

log` lnn +
(−)

O(1),

P[T (n− bgnc, n) ≥ log` lnn+ r] ≤ O(n−α
′r+A′) for all r ∈ N,

(P[T (n− bgnc, n) ≤ log` lnn−R] ≤ O(n−1+2`α)).

The last rounds of the push-pull protocol show that the upper tail bound is tight apart
from the constants. The lower tail bound is clearly not best possible, but most likely good
enough for most purposes.

3.4 Connecting Regimes
While often these above described three regimes suffice to fully analyze a rumor spreading
process, occasionally it is necessary or convenient to separately regard a constant number of
rounds between the growth and the shrinking regime. This is achieved by the following two
lemmas.

I Lemma 9. Consider a homogeneous rumor spreading process. Let 0 < ` < m < n and
0 < p < 1. Suppose for any number ` ≤ k < m, we have pk ≥ p. Then

E[T (`,m)] ≤ n−`
n−m ·

1
p ,

P[T (`,m) > r] ≤ n−`
n−m · (1− p)

r for all r ∈ N.

I Lemma 10. Let f, p ∈]0, 1[and c > 0. Suppose that for any k < fn we have pk ≤ p and
ck ≤ c

n . Then there exists f ′ ∈]f, 1[such that with probability 1−O
(1
n

)
at the end of some

round the number of informed nodes will be between fn and f ′n.

4 Applying the Above Technical Results

In this section, we sketch how to use the above tools to obtain some of the results described
in Section 1.1. To ease the notation we always assume that nodes call random nodes,
that is, including themselves. The main observation is that computing the pk is usually
very elementary. For the covariance conditions, often we easily observe a negative or zero
covariance, but when this is not true, then things can become technical.

For the basic push, pull, and push-pull protocols, we easily observe that all covariances to
be regarded are negative or zero: Knowing that one uninformed node x1 becomes informed
in the current round has no influence on the pull call of another uninformed node x2. When
the protocol has push calls and x1 was informed via a push call, then this event makes it
slightly less likely that x2 becomes informed via a push call, simply because at least one
informed node is occupied with calling x1.

B. Doerr and A. Kostrygin 138:11

The success probabilities pk are easy to compute right from the protocol definition. When
k nodes are informed, then the probabilities that an uninformed node becomes informed are

pk =

1− (1− 1/n)k for the push protocol,
k/n for the pull protocol,
pk = 1− (1− 1/n)k n−kn for the push-pull protocol.

Using elementary estimates like 1− k/n ≤ (1− 1/n)k ≤ 1− k/n+ k2/2n2, we see that the
push and pull protocols satisfy the exponential growth conditions with γn = 1, whereas the
push-pull protocol does the same with γn = 2. The push protocol satisfies the exponential
shrinking conditions with ρn = 1. The pull and push-pull protocols satisfy the double
exponential shrinking conditions with ` = 2. All growth conditions are satisfied at least up
to k = n/2 informed nodes and all shrinking conditions are satisfied at least for u ≤ n/2
uninformed nodes, so we do not need the intermediate lemmas. This proves our results given
in Table 1 for the fault-free case.

Faulty communication: The same arguments (with different constants γn and ρn) suffice
to analyze these protocols when messages get lost independently with probability 1− p. The
only structural difference is that now for the pull and push-pull protocols uninformed nodes
remain uninformed with at least constant probability. For this reason, now all three protocols
have an exponential shrinking phase.

The push-pull protocol with the restriction that nodes answer only a single incoming call
randomly chosen among the incoming calls is an example where the exponential growth and
shrinking conditions are harder to prove. To compute the pk we assume that all n calls have
a random unique priority in [1..n] and that the call with lowest priority number is accepted.
For fixed priority, the probability of being accepted is easy to compute, and this leads to the
success probability of a pull call. For the probability to become informed via a push call, the
simple argument that the first incoming call is from an informed node with probability k/n
solves the problem. When showing the covariance conditions, we face the problem that it is
indeed not clear if we have negative or zero covariance. The event that some node becomes
informed increases the chance that this node received a push call. This push call cannot
interfere with another node’s pull call to an informed node. So it does have some positive
influence on the probability of another uninformed node to become informed. Fortunately,
for our covariance conditions allow some positive correlation. Because of this, very generally
speaking, we can ignore certain difficulties to handle situations when they occur rare enough.

Dynamic communication graphs: Being maybe the result where it is most surprising that
bounds sharp apart from additive constants can be obtained, we now regard in more detail
a problem regarded in [7]. There, the performance of push rumor spreading in a group
of n agents was investigated when the actual communication network is changing in each
round. As one such dynamic models, it was assumed that the communication graph in each
round is a newly sampled G(n, p) random graph, that is, there is an edge independently with
probability p between any two vertices. For the ease of presentation, we assume that the
edge probability equals p = a/n for some constant a > 0. This is clearly the most interesting
case. For such (and larger) p, a rumor spreading time of Θ(logn) was shown to hold with
inverse-polynomial failure probability. Recalling that for p = a/n the graph G(n, p) is not
connected and has vertex degrees ranging from 0 to Θ(log(n)/ log log(n)), this result is not
obvious. Also, observe that the actions of all nodes in one round take place in the same
random graph, so there are dependencies that have to be taken into account.

ICALP 2017

138:12 Randomized Rumor Spreading Revisited

I Theorem 11. Let T be the time the push protocol needs to inform n nodes when in
each round a newly sampled G(n, p), p = a/n, random graph represents the communication
network. Then

E[T] = log2−e−a n+ 1
1−e−a ln(n)±O(1)

and there are constants A′, α′ > 0 such that P[|T − E[T]| ≥ r] ≤ A′ exp(α′r) holds for all
r ∈ N.

Recall that a vertex is isolated with probability e−a + O(1/n). Clearly, an informed
vertex when isolated necessarily fails to inform another vertex in this round. The rumor
spreading time proven above is the same as the one for the case that the communication
network is always a complete graph, but calls fail independently with probability e−a. Hence
in a sense the changing topology (with low vertex degrees) is not harmful apart from the
effect that it creates isolated vertices with constant rate. We did not expect this.

To prove Theorem 11, we first observe that the covariance properties are fulfilled. By
symmetry, we can assume that in a round starting with k informed nodes, we first sample
the random graph and decide for each node which neighbor it potentially calls in this round,
and only then decide randomly which k nodes are informed and have these call the random
neighbor determined before. Conditioning on the outcome of random graph, neighbor choice,
and on that nodes x and y are not informed, in the remaining random experiment the events
“x becomes informed” and “y becomes informed” clearly are negatively correlated.

Estimating the probability pk for an uninformed node to become informed in a round
starting with k informed nodes, is slightly technical. Since it is unlikely that two neighbors
of an uninformed node x are connected by an edge, the main contribution to pk stems
from the case that the informed neighbors of x form an independent set. Conditioning on
this outcome of the edges in {x} ∪N(x), each informed neighbor of x has an independent
probability of roughly (1− e−a)/a of calling x, giving (again taking care of the dependencies)
a probability of roughly 1− pk ≈ (1− a

n
1−e−a

a)k for the event that no informed node calls
x. From this, we estimate k

n (1 − e−a)(1 − k+O(1)
2n (1 − e−a)) ≤ pk ≤ k

n (1 − e−a + O(1/n)),
showing that the exponential growth conditions are satisfied with γn = 1 − e−a. Similar
arguments, again taking some care for the dependencies that the random graph imposes on
the actions of informed neighbors, show that the upper exponential shrinking conditions are
satisfied for ρn = 1− e−a, whereas the lower exponential shrinking conditions are satisfied
with ρn = 1− e−a +O(log(n)2/n).

5 Summary, Outlook

In this work, we presented a general, easy-to-use method to analyze homogeneous rumor
spreading processes on complete networks (including memoryless dynamic settings). Such
processes are important in many applications, among others, due to the use of random peer
sampling services in many distributed systems. Such processes also correspond to the fully
mixed population model in mathematical epidemiology.

The two main strengths of our method are (i) that it builds only on estimates for the
probability and the covariance of the events that new nodes become informed—consequently,
many processes can be analyzed with identical arguments (as opposed to all previous works),
and (ii) that it determines the expected rumor spreading time precise apart from additive
constants (with tail bounds giving in most cases that deviations by an additive number
r of rounds occur with probability exp(−Ω(r)) only). The key to our results is distilling

B. Doerr and A. Kostrygin 138:13

growth and shrinking conditions which cover essentially all previously regarded homogeneous
processes and which imply the desired runtime bounds.

From a broader perspective, this work shows that the traditional approach to randomized
processes of splitting the analysis in several phases and then trying to understand each phase
with uniform arguments might not be the ideal way to capture the nature of processes with
a behavior changing continuously over time. While we demonstrated that the more careful
round-target approach is better suited for homogeneous rumor spreading processes, one can
speculate if similar ideas are profitable for other randomized algorithms or processes regarded
in computer science.

References

1 Noam Berger, Christian Borgs, Jennifer T. Chayes, and Amin Saberi. On the spread of vir-
uses on the internet. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 301–310. SIAM, 2005. doi:10.1145/1070432.1070475.

2 Keren Censor-Hillel, Bernhard Haeupler, Jonathan A. Kelner, and Petar Maymounkov.
Global computation in a poorly connected world: fast rumor spreading with no dependence
on conductance. In Proceedings of the 44th Symposium on Theory of Computing Conference
(STOC), pages 961–970, 2012. doi:10.1145/2213977.2214064.

3 Keren Censor-Hillel and Hadas Shachnai. Partial information spreading with application
to distributed maximum coverage. In Proceedings of the 29th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 161–170, 2010. doi:10.1145/1835698.
1835739.

4 Keren Censor-Hillel and Hadas Shachnai. Fast information spreading in graphs with large
weak conductance. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 440–448, 2011. doi:10.1137/1.9781611973082.35.

5 Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumor spreading in
social networks. In Proceedings of the 36th International Colloquium on Automata,
Languages and Programming (ICALP), pages 375–386. Springer, 2009. doi:10.1007/
978-3-642-02930-1_31.

6 Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Almost tight bounds for ru-
mour spreading with conductance. In Proceedings of the 42nd ACM Symposium on Theory
of Computing (STOC), pages 399–408. ACM, 2010. doi:10.1145/1806689.1806745.

7 Andrea E. F. Clementi, Pierluigi Crescenzi, Carola Doerr, Pierre Fraigniaud, Francesco
Pasquale, and Riccardo Silvestri. Rumor spreading in random evolving graphs. Random
Structures and Algorithms, 48:290–312, 2016. doi:10.1002/rsa.20586.

8 Sebastian Daum, Fabian Kuhn, and Yannic Maus. Rumor spreading with bounded in-
degree. CoRR, abs/1506.00828, 2015.

9 Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard E. Sturgis, Daniel C. Swinehart, and Douglas B. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 1–12. ACM, 1987. doi:10.1145/
41840.41841.

10 Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread rumors in
sublogarithmic time. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC), pages 21–30. ACM, 2011. doi:10.1145/1993636.1993640.

11 Benjamin Doerr, Anna Huber, and Ariel Levavi. Strong robustness of randomized rumor
spreading protocols. Discrete Applied Mathematics, 161:778–793, 2013. doi:10.1016/j.
dam.2012.10.014.

ICALP 2017

http://dx.doi.org/10.1145/1070432.1070475
http://dx.doi.org/10.1145/2213977.2214064
http://dx.doi.org/10.1145/1835698.1835739
http://dx.doi.org/10.1145/1835698.1835739
http://dx.doi.org/10.1137/1.9781611973082.35
http://dx.doi.org/10.1007/978-3-642-02930-1_31
http://dx.doi.org/10.1007/978-3-642-02930-1_31
http://dx.doi.org/10.1145/1806689.1806745
http://dx.doi.org/10.1002/rsa.20586
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/41840.41841
http://dx.doi.org/10.1145/1993636.1993640
http://dx.doi.org/10.1016/j.dam.2012.10.014
http://dx.doi.org/10.1016/j.dam.2012.10.014

138:14 Randomized Rumor Spreading Revisited

12 Benjamin Doerr and Marvin Künnemann. Tight analysis of randomized rumor spreading
in complete graphs. In Proceedings of the Eleventh Workshop on Analytic Algorithmics and
Combinatorics (ANALCO), pages 82–91. SIAM, 2014. doi:10.1137/1.9781611973204.8.

13 Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized broadcast
in networks. Random Structures and Algorithms, 1:447–460, 1990. doi:10.1002/rsa.
3240010406.

14 Nikolaos Fountoulakis, Anna Huber, and Konstantinos Panagiotou. Reliable broadcasting
in random networks and the effect of density. In Proceedings of the 29th International
Conference on Computer Communications (INFOCOM), pages 2552–2560. IEEE, 2010.
doi:10.1109/INFCOM.2010.5462084.

15 Nikolaos Fountoulakis, Konstantinos Panagiotou, and Thomas Sauerwald. Ultra-fast rumor
spreading in social networks. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1642–1660. SIAM, 2012.

16 Alan M. Frieze and Geoffrey R. Grimmett. The shortest-path problem for graphs
with random arc-lengths. Discrete Applied Mathematics, 10:57–77, 1985. doi:10.1016/
0166-218X(85)90059-9.

17 Mohsen Ghaffari and Calvin Newport. How to discreetly spread a rumor in a crowd. CoRR,
abs/1607.05697, 2016.

18 George Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance. In
28th International Symposium on Theoretical Aspects of Computer Science (STACS), pages
57–68. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2011. doi:10.4230/LIPIcs.
STACS.2011.57.

19 George Giakkoupis. Tight bounds for rumor spreading with vertex expansion. In Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 801–815. SIAM, 2014. doi:10.1137/1.9781611973402.59.

20 Bernhard Haeupler. Simple, fast and deterministic gossip and rumor spreading. In Proceed-
ings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 705–716, 2013. doi:10.1137/1.9781611973105.51.

21 Konrad Iwanicki and Maarten van Steen. Gossip-based self-management of a recursive
area hierarchy for large wireless sensornets. IEEE Transactions on Parallel and Distributed
Systems, 21:562–576, 2010. doi:10.1109/TPDS.2009.89.

22 Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Ran-
domized rumor spreading. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS), pages 565–574. IEEE, 2000.

23 Marcos A. Kiwi and Christopher Thraves Caro. FIFO queues are bad for rumor spreading.
IEEE Trans. Information Theory, 63:1159–1166, 2017. doi:10.1109/TIT.2016.2632153.

24 Jon M. Kleinberg. The convergence of social and technological networks. Communications
of the ACM, 51:66–72, 2008. doi:10.1145/1400214.1400232.

25 Miguel Matos, Valerio Schiavoni, Pascal Felber, Rui Oliveira, and Etienne Riviere. BRISA:
combining efficiency and reliability in epidemic data dissemination. In 26th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 983–994, 2012.
doi:10.1109/IPDPS.2012.92.

26 Damon Mosk-Aoyama and Devavrat Shah. Fast distributed algorithms for computing sep-
arable functions. IEEE Trans. Information Theory, 54:2997–3007, 2008. doi:10.1109/
TIT.2008.924648.

27 Konstantinos Panagiotou, Ali Pourmiri, and Thomas Sauerwald. Faster rumor spreading
with multiple calls. The Electronic Journal of Combinatorics, 22:P1.23, 2015.

28 Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics, 47:213–223,
1987.

http://dx.doi.org/10.1137/1.9781611973204.8
http://dx.doi.org/10.1002/rsa.3240010406
http://dx.doi.org/10.1002/rsa.3240010406
http://dx.doi.org/10.1109/INFCOM.2010.5462084
http://dx.doi.org/10.1016/0166-218X(85)90059-9
http://dx.doi.org/10.1016/0166-218X(85)90059-9
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.57
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.57
http://dx.doi.org/10.1137/1.9781611973402.59
http://dx.doi.org/10.1137/1.9781611973105.51
http://dx.doi.org/10.1109/TPDS.2009.89
http://dx.doi.org/10.1109/TIT.2016.2632153
http://dx.doi.org/10.1145/1400214.1400232
http://dx.doi.org/10.1109/IPDPS.2012.92
http://dx.doi.org/10.1109/TIT.2008.924648
http://dx.doi.org/10.1109/TIT.2008.924648

Randomized Load Balancing on Networks with
Stochastic Inputs∗†

Leran Cai1 and Thomas Sauerwald2

1 University of Cambridge, Cambridge, UK
lc647@cl.cam.ac.uk

2 University of Cambridge, Cambridge, UK
tms41@cl.cam.ac.uk

Abstract
Iterative load balancing algorithms for indivisible tokens have been studied intensively in the past,
e.g., [21, 18, 24]. Complementing previous worst-case analyses, we study an average-case scenario
where the load inputs are drawn from a fixed probability distribution. For cycles, tori, hypercubes
and expanders, we obtain almost matching upper and lower bounds on the discrepancy, the
difference between the maximum and the minimum load. Our bounds hold for a variety of
probability distributions including the uniform and binomial distribution but also distributions
with unbounded range such as the Poisson and geometric distribution. For graphs with slow
convergence like cycles and tori, our results demonstrate a substantial difference between the
convergence in the worst- and average-case. An important ingredient in our analysis is a new
upper bound on the t-step transition probability of a general Markov chain, which is derived by
invoking the evolving set process.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases random walks, randomized algorithms, parallel computing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.139

1 Introduction

In the last decade, large parallel networks became widely available for industrial and academic
users. An important prerequisite for their efficient usage is to balance their work efficiently.
Load balancing is known to have applications to scheduling [27], routing [9], numerical
computation such as solving partial differential equations [29, 28, 26], and finite element
computations [13]. In the standard abstract formulation of load balancing, processors are
represented by nodes of a graph, while links are represented by edges. The objective is to
balance the load by allowing nodes to exchange loads with their neighbors via the incident
edges. In this work we will study a decentralized and iterative load balancing protocol where
a processor knows only its current load and that of the neighboring processors. Based on
this, decides how much load should be sent (or received).

Load Balancing Models. A widely used approach is diffusion, e.g., the first-order-diffusion
scheme [9, 18], where the amount of load sent along each edge in each round is proportional
to the load difference between the incident nodes. In this work, we consider the alternative,
the so-called matching model, where in each round only the edges of a matching are used

∗ See [8] for a full version of this work, https://arxiv.org/abs/1703.08702.
† The second author was supported by the ERC Starting Grant “Dynamic March”.

EA
T

C
S

© Leran Cai and Thomas Sauerwald;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 139; pp. 139:1–139:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.139
https://arxiv.org/abs/1703.08702
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

139:2 Randomized Load Balancing on Networks with Stochastic Inputs

to average the load locally. In comparison to diffusion, the matching model reduces the
communication in the network and moreover tends to behave in a more “monotone” fashion
than diffusion, since it avoids concurrent load exchanges which may increase the maximum
load or decrease the minimum load in certain cases.

We measure the smoothness of the load distribution by the so-called discrepancy, which
is the difference between the maximum and minimum load among all nodes. In view of
more complex scenarios where jobs are eventually removed or new jobs are generated, the
discrepancy seems to be a more appropriate measure than the makespan, which only considers
the maximum load.

Many studies in load balancing assume that load is arbitrarily divisible. In this so-called
continuous case, load balancing corresponds to a Markov chain on the graph and one can
resort to a wide range of established techniques to analyze the convergence speed [6, 11, 18].
In particular, the spectral gap captures the time to reach a small discrepancy fairly accurately,
e.g., see [25, 21] for the diffusion and see [7, 17] for the matching model.

However, in many applications a processor’s load may consist of tasks which are not
further divisible. That is why the continuous case has been also referred to as “idealized
case” [21]. A natural way to model indivisible tasks is the unit-size token model where one
assumes a smallest load entity, the unit-size token, and load is always represented by a
multiple of this smallest entity. In the following, we will refer to the unit-size token model as
the discrete case.

Initiated by the work of [21], there has been a number of studies on load balancing in the
discrete case. Unlike the deterministic rounding in [21], [24] analyzed a randomized rounding
based strategy, meaning that an excess token will be distributed uniformly at random among
the two communicating nodes. The authors of [24] proved that with this strategy the time to
reach constant discrepancy in the discrete case is essentially the same as the corresponding
time in the continuous case. Their results hold both for the random matching model, where
in each round a new random matching is generated by a simple distributed protocol, and
the balancing circuit model (a.k.a. dimension exchange), where a fixed sequence of matching
is applied periodically. In this work, we will focus on the balancing circuit model, which is
particularly well suited for highly structured graphs such as cycles, tori or hypercubes.

Worst-Case vs. Average-Case Inputs. Previous work has almost always adopted the usual
worst-case framework for deriving bounds on the load discrepancy [21]. That means any
upper bound on the discrepancy holds for an arbitrary input, i.e., an arbitrary initial load
vector. While it is of course very natural and desirable to have such general bounds, the
downside is that for graphs with poor expansion like cycles or 2D-tori, the convergence is
rather slow, i.e., quadratic or linear in the number of nodes n. This serves as a motivation to
explore an average-case input. Specifically, we assume that the number of load items at each
node is sampled independently from a fixed distribution. Our main results demonstrate that
the convergence of the load vector is considerably quicker (measured by the load discrepancy),
especially on networks with slow convergence in the worst-case such as cycles and 2D-tori.

We point out that many related problems including scheduling on parallel machines or
load balancing in a dynamic setting (meaning that jobs are continuously added and processed)
have been studied under random inputs, e.g., [3, 12, 2]. To the best of our knowledge, only
very few works have studied this question in iterative load balancing. One exception is [22],
which investigated the performance of continuous load balancing on tori in the diffusion
model. In contrast to this work, however, only upper bounds are given and they hold for
the multiplicative ratio between maximum and minimum load, rather than the discrepancy.

Leran Cai and Thomas Sauerwald 139:3

Another related work is [4], which presents a distributed algorithm for community detection
that is based on averaging a random {−1, 1} initial load vector.

1.1 Notation and Background
We assume that G = (V,E) is an undirected, connected graph with n nodes labeled in
[0, n − 1]. Unless stated otherwise, all logarithms are to the base e. The notations P [E]
and E [X] denote the probability of an event E and the expectation of a random variable
X, respectively. For any n-dimensional vector x, disc(x) = maxi xi −mini xi denotes the
discrepancy. By 1

n we denote the vector with all values being 1
n .

Matching Model. In the matching model (sometimes also called dimension exchange model),
every two matched nodes in round t balance their load as evenly as possible. This can
be expressed by a symmetric n by n matching matrix M(t), where with slight abuse of
notation we use the same symbol for the matching and the corresponding matching matrix.
Formally, matrix M(t) is defined by M(t)

u,u = 1/2, M(t)
v,v = 1/2 and M(t)

u,v = M(t)
v,u = 1/2 if

{u, v} ∈M(t) ⊆ E, and M(t)
u,u = M(t)

v,v = 1, M(t)
u,v = 0 (u 6= v) if u, v are not matched.

Balancing Circuit. In the balancing circuit model, a specific sequence of matchings is applied
periodically. More precisely, let M(1), . . . ,M(d) be a sequence of d matching matrices, also
called period 1. Then in step t ≥ 1, we apply the matching matrix M(t) := M(((t−1) mod d)+1).
We define the round matrix by M :=

∏d
s=1 M(s). If M is symmetric, we define λ(M) to

be its second largest eigenvalue (in absolute value). Following [21], if M is not symmetric
(which is usually the case), we define λ(M) as the second largest eigenvalue of the symmetric
matrix M ·MT , where MT is the transpose of M. We always assume that λ(M) < 1, which
is guaranteed to hold if the matrix M is irreducible. Since M is doubly stochastic, all powers
of M are doubly stochastic. A natural choice for the d matching matrices is given by an edge
coloring of G. There are various efficient distributed edge coloring algorithms, e.g. [20, 19].

Balancing Circuit on Specific Topologies. For cycles, we will consider the natural “Odd-
Even” scheme meaning that for M(1), the matching consists of all edges {j, (j + 1) (mod n)}
for any odd j, while for M(2), the matching consists of all edges {j, (j + 1) (mod n)} for any
even j. More generally, for r-dimensional tori with vertex set [0, n1/r − 1]r, we will have
2 · r matchings in total, meaning that for every dimension 1 ≤ i ≤ r we have two matchings
along dimension i, similar to the definition of matchings for the cycle. For hypercubes, the
canonical choice is dimension exchange consisting of d = log2 n matching matrices M(i) by
M(i)

u,v = 1/2 if and only if the bit representation of u and v differ only in bit i.

Continuous Case vs. Discrete Case. In the continuous case, load is arbitrarily divisible.
Let ξ(0) ∈ Rn be the initial load represented as a row vector, and in every round two matched
nodes average their load perfectly. We consider the load vector ξ(t) after t rounds in the
balancing circuit model (that means, after the executions of t · d matchings in total). This
process corresponds to a linear system ξ(t) = ξ(t−1) M, which results in ξ(t) = ξ(0) Mt.

Let us now turn to the discrete case with indivisible, unit-size tokens. Let x(0) ∈ Nn be
the initial load vector with average load x :=

∑
w∈V x

(0)
w /n, and x(t) be the load vector at

the end of round t. In case the sum of tokens of the two paired nodes is odd, we employ the

1 Note that d may be different from the maximal degree (or degree) of the underlying graph.

ICALP 2017

139:4 Randomized Load Balancing on Networks with Stochastic Inputs

random orientation (or randomized rounding) [21, 24]. More precisely, if there are two nodes
u and v with load a and b being paired by matching M(t), then node u gets either

⌈
a+b

2
⌉
or⌊

a+b
2
⌋
tokens, with probability 1/2 each. The remaining tokens are assigned to node v.

The Average-Case Setting. We consider a setting where each entry of the initial load
vector x(0) is chosen from an exponentially concentrated probability distribution D with
expectation µ and variance σ2 (see Definition 1.1). Our main results in this paper hold for
all distributions satisfying the following definition.

I Definition 1.1. A distribution D over N ∪ {0} with expectation µ and variance σ2 is
exponentially concentrated if there is a constant κ > 0 so that for any X ∼ D, δ > 0,

P [|X − µ| ≥ δ · σ] ≤ exp (−κδ) .

In the following, we refer to average-case when the initial number of load items on each
vertex is drawn independently from a fixed exponentially concentrated distribution.

I Lemma 1.2. The uniform distribution, binomial distribution, geometric distribution and
Poisson distribution are all exponentially concentrated.

I Lemma 1.3. Let D be an exponentially concentrated distribution and let X ∼ D. Then,

P [|X − µ| ≤ 8/κ · σ logn] ≥ 1− n−3.

In particular, the initial discrepancy satisfies disc(x(0)) = O(σ · logn) with probability 1−n−2.

The advantage of Lemma 1.3 is that we can use a simple conditioning trick to work with
distributions that have a finite range and can therefore be analyzed by Hoeffding’s inequality.
Therefore in the analysis we may simply work with a bounded-range distribution D̃, which
is D under the condition that only values in the interval [µ− 8/κ · σ logn, µ+ 8/κ · σ logn]
occur.

1.2 Our results
Our first contribution is a general formula that allows us to express the load difference
between an arbitrary pair of nodes in round t.

I Theorem 1.4. Consider the balancing circuit model with an arbitrary round matrix M in
the average case. Then for any pair of nodes u, v and round t, it holds for any δ > 0 that

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ δ · 16
√

2/κ · σ · logn ·
∥∥Mt

.,u −Mt
.,v

∥∥
2 +

√
64 logn

]
≤ 2 · e−δ

2
+ 2n−3.

Furthermore, for any pair of vertices u, v, we have the following lower bound:

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ σ/(2√2 log2 σ) ·
∥∥Mt

.,u −Mt
.,v

∥∥
2 −

√
64 logn

]
≥ 1

16 .

I Remark. The lower bound above is useless if σ is small, say, at most a constant. However
for sufficiently large σ, the lower bound gives a useful result (see also Section 4 & 5).

The proof of the upper bound Theorem 1.4 is the easier direction, and it relies on a
previous result relating continuous and discrete load balancing from [24]. The lower bound
is technically more challenging and applies a generalized version of the central limit theorem.

Together, the upper and lower bound in the above result establish that the load deviation
between any two nodes u and v is essentially captured by

∥∥Mt
.,u −Mt

.,v

∥∥
2. However, in

Leran Cai and Thomas Sauerwald 139:5

some instances it might be desirable to have a more tangible estimate at the expense of
generality. To this end, we first observe that

∥∥Mt
.,u −Mt

.,v

∥∥2
2 ≤ 4 · maxk∈V

∥∥∥Mt
.,k − 1

n

∥∥∥2

2
(see Lemma 3.1). Hence we are left with the problem of bounding the t-step probability
vector Mt

.,k.
For reversible Markov chains, the last expression has been analyzed in several works. For

example, [15, Lemma 3.6] implies that for random walks on graphs, Pt
u,v = O(deg(v)/

√
t).

However, the Markov chain associated to M is not reversible in general. For irreversible
Markov chains, [14] used the so-called evolving set process to derive a similar bound.
Specifically, they proved in [14, Theorem 17.17] that if P denotes the transition matrix of a
lazy random walk (i.e., a random walk with loop probability at least 1/2) on a graph with
maximal degree ∆, π the stationary distribution of P, then for any vertex x ∈ V :∣∣Pt

x,x − πx
∣∣ ≤ √2∆5/2

√
t

.

Such estimates have been used in applications besides load balancing, including distributed
random walks and spanning tree enumeration [23, 15]. Here we generalize this result to Markov
chains with an arbitrary loop probability and to arbitrary t-step transition probabilities:

I Theorem 1.5. Let P be the transition matrix of an irreducible Markov chain and π its
stationary distribution. Then we have for all states x, y and step t,∣∣Pt

x,y − πy
∣∣ ≤ π

3/2
max

π
3/2
min
· 2
β1/2α

√
1− β + α

αt
,

where α := min
u 6=v

Pu,v > 0 and β := min
u

Pu,u > 0.

Applying this bound to a round matrix M formed of d = O(1) matchings we obtain∣∣Mt
u,v − 1/n

∣∣ = O(t−1/2). It should be noted that [24, Lemma 2.5] proved a weaker version
where the upper bound is only O(t−1/8) instead of O(t−1/2). As proven in Lemma 4.2, the
bound O(t−1/2) is asymptotically tight if we consider the balancing circuit model on cycles.

Combining the bound in Theorem 1.5 with the upper bound in Theorem 1.4 yields:

I Theorem 1.6. Consider the balancing circuit model with an arbitrary round matrix M
consisting of d = O(1) matchings in the average case. The discrepancy after t rounds is
O(t−1/4 · σ · (logn)3/2 +

√
logn) with probability 1−O(n−1).

Since the initial discrepancy in the average case is O(σ·logn) (see Lemma 1.3), Theorem 1.6
implies that in the average case, there is a significant decrease (roughly of order t−1/4) in
the discrepancy, regardless of the underlying topology. For round matrices M with small
second largest eigenvalue, the next result provides a significant improvement:

I Theorem 1.7. Consider the balancing circuit model with an arbitrary round matrix M
consisting of d matchings in the average case. We can derive that the discrepancy after t
rounds is O(λ(M)t/4 · σ · (logn)3/2 +

√
logn) with probability 1−O(n−1).

In Section 4, we derive bounds on the discrepancy for concrete topologies (see Table 1).
Finally, we discuss our results and compare them with the convergence of the discrepancy

in the worst-case in Section 5. On a high level, these results demonstrate that on all the
considered topologies, we have much faster convergence in the average-case than in the
worst-case. However, if we are only interested in the time to achieve a very small, say,
constant or poly-logarithmic discrepancy, then we reveal an interesting dichotomy: we have a
quicker convergence than in the worst-case iff the standard deviation σ is smaller than some
threshold depending on the topology. We observe the same phenomena in our experiments.

ICALP 2017

139:6 Randomized Load Balancing on Networks with Stochastic Inputs

Table 1 Discrepancy bounds (without logarithmic factors) for different topologies.

Graph disc(x(t))
Cycle t−1/4 · σ

r-dim. Torus t−r/4 · σ
Expander λt/4 · σ
Hypercube 2−t/2 · σ

2 Proof of the General Bound (Theorem 1.4)

2.1 Proof of Theorem 1.4 (Upper Bound)
We will use the following result from [24] that bounds the deviation between the continuous
and discrete load, assuming that we have ξ(0) = x(0).

I Theorem 2.1 ([24, Theorem 3.6(i)]). Consider the balancing circuit model with an arbitrary
round matrix M. Then for any round t ≥ 1 it holds that

P
[
max
w∈V

∣∣∣x(t)
w − ξ(t)

w

∣∣∣ ≤√16 · logn
]
≥ 1− 2n−3.

The basic proof idea is as follows. Since ξ(t)
u − ξ(t)

v =
∑
w∈V ξ

(0)
w · (Mt

w,u −Mt
w,v), it is

a weighted sum of n i.i.d. random variables and its expectation is 0. We then can apply
Hoeffding’s inequality to obtain the theorem.

2.2 Proof of Theorem 1.4 (Lower Bound)
The proof of the lower bound will use the following quantitative version of a central limit
type theorem for independent but non-identical random variables.

I Theorem 2.2 (Berry-Esseen [5, 10] for non-identical r.v.). Let X1, X2, ..., Xn be independently
distributed with E [Xi] = 0, E

[
X2
i

]
= Var(Xi) = σ2

i , and E
[
|Xi|3

]
= ρi <∞. If Fn(x) is the

distribution of X1+...+Xn√
σ2

1+σ2
2+...+σ2

n

and Φ(x) is the standard normal distribution, then

|Fn(x)− Φ(x)| ≤ C0ψ0,

where ψ0 =
(∑n

i=1 σ
2
i

)−3/2 ·
∑n
i=1 ρi and C0 > 0 is a constant.

With this concentration tool at hand, we are able to prove the lower bound in Theorem 1.4.
Unfortunately, it appears quite difficult to apply Theorem 2.2 directly to ξ(t)

u − ξ(t)
v , since we

need a good bound on the error term ψ0. To this end, we will first partition the vertex set V
into buckets with equal contribution to ξ(t)

u − ξ(t)
v . Then we will apply Theorem 2.2 to the

bucket with the largest variance.

Proof of Theorem 1.4 (Lower Bound). We first consider ξ(t)
u − ξ(t)

v :

dev := ξ(t)
u − ξ(t)

v =
∑
w∈V

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
,

which is a weighted sum of i.i.d. random variables with expectation µ and variance σ2.
As mentioned earlier, we have E [dev] =

∑
w∈V E

[
ξ

(0)
w

]
·
(
Mt

w,u −Mt
w,v

)
= 0 since M is a

doubly stochastic matrix. Of course, we could apply Theorem 2.2 directly to dev, but it

Leran Cai and Thomas Sauerwald 139:7

appears difficult to control the error term ψ0. Therefore we will first partition the above sum
into buckets where the weights of the random variables are roughly the same.

More precisely, we will partition V into 2 log2 σ buckets, where for each i we have
Vi :=

{
w ∈ V : |Mt

w,u −Mt
w,v| ∈ (2−i−1, 2−i]

}
for 1 ≤ i ≤ 2 log2 σ − 1, and V2 log2 σ :={

w ∈ V :
∣∣Mt

w,u −Mt
w,v

∣∣ ≤ 1
σ2

}
.

Further, let us consider the variance of dev, since Var(aX) = a2Var(X) and the inputs
are independent random variables:

σ2
dev =

∑
w∈V

(
Mt

w,u −Mt
w,v

)2
σ2.

Then by the pigeonhole principle there exists an index 1 ≤ i ≤ 2 log2 σ such that∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2
σ2 ≥ 1

2 log2 σ
· σ2

dev.

This is equivalent to

∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2 ≥ 1
2 log2 σ

·
∑
w∈V

(
Mt

w,u −Mt
w,v

)2
.

Firstly, if such index i is just 2 log2 σ, we can prove the lower bound easily. Now we can
derive that, for all w in Vi,∥∥Mt

.,u −Mt
.,v

∥∥2
2 ≤

∥∥Mt
.,u −Mt

.,v

∥∥
∞ ·
∥∥Mt

.,u −Mt
.,v

∥∥
1 ≤

1
σ2 · 2 = O(σ−2).

Then in Theorem 1.4
∥∥Mt

.,u −Mt
.,v

∥∥
2 is O(σ−1) and the lower bound holds trivially. There-

fore, we will assume in the remainder of the proof that i < 2 log2 σ.
We now decompose dev into dev = S + Sc, where

S :=
∑
w∈Vi

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
and Sc :=

∑
w 6∈Vi

ξ(0)
w ·

(
Mt

w,u −Mt
w,v

)
.

Let us first analyze S. We need to apply Theorem 2.2 to S. Before applying Theorem 2.2,
we scale the original distribution to ξ

′(0)
w = ξ

(0)
w − µ to make the expectation be 0. In

preparation for this, let us first upper bound ψ0. Using the definition of exponentially
concentrated distributions, it follows that for any constant k, the first k moments of ξ

′(0)
w are

all bounded from above by O(σk). Hence,

ψ0 =

∑
w∈Vi

E
[∣∣∣ξ′(0)

w ·
(
Mt

w,u −Mt
w,v

)∣∣∣3](∑
w∈Vi

E
[(
ξ

′(0)
w ·

(
Mt

w,u −Mt
w,v

))2
])3/2 ≤

O(σ3) ·
∑
w∈Vi

∣∣Mt
w,u −Mt

w,v

∣∣3
σ3
(∑

w∈Vi

(
Mt

w,u −Mt
w,v

)2
)3/2 .

Recalling that for any w ∈ Vi,
∣∣Mt

w,u −Mt
w,v

∣∣ ∈ (2−i−1, 2−i], we can simplify the above
expression as follows:

ψ0 = O

(
|Vi| · 2−3i

|Vi|3/2 · 2−3i

)
= O(|Vi|−1/2).

ICALP 2017

139:8 Randomized Load Balancing on Networks with Stochastic Inputs

In the following, we will assume that |Vi| ≥ C1, where C1 > 0 is a sufficiently large
constant to be specified later. Since Var(aX) = a2Var(X), we have

Fn(x) = P

∑w∈Vi
ξ

′(0)
w ·

(
Mt

w,u −Mt
w,v

)
σ
√∑

w∈Vi

(
Mt

w,u −Mt
w,v

)2
≤ x

= P

S − E [S] ≤ xσ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 .
Since |Vi| ≥ C1, there is a constant C2 = C2(C1, C0) > 0 such that C0 · ψ0 ≤ C2 and

P

S − E [S] ≥ xσ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ Φ(−x)− C0ψ0 ≥ Φ(−x)− C2.

Now let Φc(x) denote the complement of the standard normal distribution. By using [1,
Formula 7.1.13] and substitution we get:

1
√
π(x+

√
x2 + 2)ex2 < Φc(x) 6 1

√
π(x+

√
x2 + 4/π)ex2 .

Hence by Φ(−x) = Φc(x), choosing x = 1 and C1 sufficiently large,

P

S − E [S] ≥ σ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ 1
16 .

Similarly, we can derive that

P

E [S]− S ≥ σ
√∑
w∈Vi

(
Mt

w,u −Mt
w,v

)2

 ≥ 1
16 .

Hence, independent of what the value Sc is, there is still a probability of at least 1/16 so
that |S + Sc| ≥ σ/2 ·

√
1/(2 log2 σ) ·

√∑
w∈V

(
Mt

w,u −Mt
w,v

)2, which completes the proof
for the case |Vi| ≥ C1. The case |Vi| < C1 is similar and omitted here. The basic idea is not
to apply Berry-Esseen but simply use the fact that any exponentially distributed random
variable deviates from the expectation by Ω(σ) with constant probability. J

3 Proof of the Universal Bounds (Theorem 1.6, Theorem 1.7)

In the previous section we proved that the deviation between the loads of two nodes u and
v is essentially captured by

∥∥Mt
.,u −Mt

.,v

∥∥
2. However, in some cases it might be hard to

compute or estimate this quantity for arbitrary vertices u and v. Therefore we will establish
Theorem 1.6 which gives a more concrete estimate.

3.1 Proof of Theorem 1.6
The proof of Theorem 1.6 is fairly involved and we sketch the high level ideas. We first show
that

∥∥Mt
.,u −Mt

.,v

∥∥2
2 can be upper bounded in terms of the `2-distance to the stationary

distribution.

Leran Cai and Thomas Sauerwald 139:9

I Lemma 3.1. Consider the balancing circuit model with an arbitrary round matrix M.
Then for all u, v ∈ V , we have ‖Mt

.,u −Mt
.,v‖2

2 ≤ 4 ·maxk∈V ‖Mt
.,k − 1

n‖
2
2. Further, for any

u ∈ V we have maxv∈V ‖Mt
.,u −Mt

.,v‖2
2 ≥ ‖Mt

.,u − 1
n‖

2
2.

The next step and main ingredient of the proof of Theorem 1.6 is to establish that
‖Mt

.,k − 1
n‖∞ = O(1/

√
t). This result will be a direct application of a general bound on

the t-step probabilities of an arbitrary, possibly non-reversible Markov chain, as given in
Theorem 1.5 from page 5:

In this subsection we prove Theorem 1.6, assuming the correctness of Theorem 1.5 whose
proof is deferred to Section 3.2.

Proof of Theorem 1.6. By Theorem 1.4 and Lemma 3.1, we obtain

P
[∣∣∣x(t)

u − x(t)
v

∣∣∣ ≥ δ · 16
√

2/κ · σ · logn ·max
k∈V

∥∥∥∥Mt
.,k −

1
n

∥∥∥∥
2

+
√

64 logn
]
≤ 2e−δ

2
+ 2n−3.

Hence we can find a δ =
√

3 logn so that the latter probability gets smaller than 4n−3. Further,
by applying Theorem 1.5 with α = β = 2−d to P = M we conclude that ‖Mt

.,k − 1
n‖∞ =

O(t−1/2), since d = O(1). Using ‖.‖2
2 ≤ ‖.‖∞ · ‖.‖1, ‖Mt

.,k − 1
n‖

2
2 = O(t−1/2) and the union

bound, disc(x(t)) = O(t−1/4 · σ · (logn)3/2 +
√

logn) with probability at least 1− 4n−1. J

3.2 Proof of Theorem 1.5
This section is devoted to the proof of Theorem 1.5. Our proof is based on the evolving-set
process, which is a Markov chain based on any given irreducible, not necessarily reversible
Markov chain on Ω. For the definition of the evolving set process, we closely follow the
exposition in [14, Chapter 17].

Let P denote the transition matrix of an irreducible Markov chain and π its stationary
distribution. Pt is the t-step transition probability matrix. The edge measure Q is defined
by Qx,y := πxPx,y and Q(A,B) =

∑
x∈A,y∈B Qx,y.

I Definition 3.2. Given a transition matrix P, the evolving-set process is a Markov chain
on subsets of Ω defined as follows. Suppose the current state is S ⊂ Ω. Let U be a random
variable which is uniform on [0, 1]. The next state of the chain is the set

S̃ =
{
y ∈ Ω : Q(S, y)

πy
≥ U

}
.

This chain is not irreducible because ∅ and Ω are absorbing states. It follows that

P [y ∈ St+1 |St] = Q(St, y)
πy

since the probability that y ∈ St+1 is equal to the probability of the event that the chosen
value of U is less than Q(St,y)

πy
.

I Proposition 3.3 ([14, Proposition 17.19]). Let (Mt) be a non-negative martingale with
respect to (Yt), and define Th := min{t ≥ 0 : Mt = 0 or Mt ≥ h}. Assume that for any h ≥ 0

For t < Th, Var(Mt+1 |Y0, . . . , Yt) ≥ σ2, and
MTh

≤ Dh.
Let T := T1. If M0 is a constant, then P [T > t] ≤ 2M0

σ

√
D
t .

We now generalize [14, Lemma 17.14] to cover arbitrarily small loop probabilities.

ICALP 2017

139:10 Randomized Load Balancing on Networks with Stochastic Inputs

I Lemma 3.4. Let (Ut) be a sequence of independent random variables, each uniform on
[0, 1], such that St+1 is generated from St using Ut+1. Then with β := min

u
Pu,u > 0,

E [π(St+1) |Ut+1 ≤ β, St = S] ≥ π(S) +Q(S, Sc),

E [π(St+1) |Ut+1 > β, St = S] ≤ π(S)− βQ(S, Sc)
1− β .

The derivation of the next lemma closely follows the analysis in [14, Chapter 17].

I Lemma 3.5. For any two states x, y,
∣∣Pt

x,y − πy
∣∣ ≤ πy

πx
· P{x} [τ > t] .

Now we want to use Proposition 3.3 to bound P{x} [τ > t]. To apply it, we substitute
the following parameters: M0 is be π({x}), Yt is St, and T = T1 := min{t ≥ 0 : π(St) =
0 or π(St) ≥ 1}. Hence in our case, τ is the same as T (or T1) in the proposition. The
following two lemmas elaborate on the two preconditions (i) and (ii) of Proposition 3.3.

I Lemma 3.6. For any time t and S0 = {x}, VarSt(π(St+1)) ≥ βπ2
minα

2.

Finally, we derive an upper bound on the amount by which St can increase in one iteration.

I Lemma 3.7. For any time t and S0 = {x}, π(St+1) ≤
(

1−β
α + 1

)
πmax
πmin

· π(St).

The proof of Theorem 1.5 follows then by combining Proposition 3.3, Lemma 3.4, Lemma
3.5, Lemma 3.6 and Lemma 3.7.

3.3 Proof of Theorem 1.7
We now prove the following discrepancy bound that depends on the λ(M), as defined in
Section 1.1.

Proof of Theorem 1.7. By [24, Lemma 2.4], for any pair of vertices u, v ∈ V ,
∣∣Mt

u,v − 1
n

∣∣ ≤
λ(M)t/2. Hence by Lemma 3.1,

∥∥Mt
.,u −Mt

.,v

∥∥
2 = O(λ(M)t/4). The bound on the discrep-

ancy follows from Theorem 1.4 and the union bound over all vertices. J

4 Applications to Different Graph Topologies

Cycles. Recall that for the cycle, V = {0, . . . , n− 1} is the set of vertices, and the distance
between two vertices is dist(x, y) = min{y − x, x+ n− y} for any pair of vertices x < y.

The upper bound on the discrepancy follows directly from Theorem 1.6, and it only
remains to prove the lower bound. To this end, we will apply the lower bound in Theorem 1.4
and need to derive a lower bound on ‖Mt

.,u − 1
n‖

2
2. Intuitively, if we had a simple random

walk, we could immediately infer that this quantity is Ω(1/
√
t). Since after t steps, the

random walk is with probability ≈ 1/
√
t at any vertex with distance at most O(

√
t). To

prove that this also holds for the load balancing process, we first derive a concentration
inequality that upper bounds the probability for the random walk to reach a distant state:

I Lemma 4.1. Consider the standard balancing circuit model on the cycle with round matrix
M. Then for any u ∈ V and δ ∈ (0, n/2− 1), we have∑

v∈V : dist(u,v)≥δ

Mt
u,v ≤ 2 · exp

(
− (δ − 2)2

8t

)
.

With the help of Lemma 4.1, we can indeed verify our intuition:

Leran Cai and Thomas Sauerwald 139:11

I Lemma 4.2. Consider the standard balancing circuit model on the cycle with round matrix
M. Then for any vertex u ∈ V , ‖Mt

.,u − 1
n‖

2
2 = Ω(1/

√
t).

Lemma 4.2 also proves that the factor
√

1/t in the upper bound in Theorem 1.5 is the
best possible. The lower bound on the discrepancy now follows by combining Lemma 4.2
with Theorem 1.4 and Lemma 3.1 stating that for any vertex u ∈ V , there exists another
vertex v ∈ V such that ‖Mt

.,u −Mt
.,v‖2

2 ≥ ‖Mt
.,u − 1

n‖
2
2 = Ω(1/

√
t).

Tori. In this section we consider r-dimensional tori, where r ≥ 1 is any constant. For
the upper bound, note that the computation of Mt

.,. can be decomposed to independent
computations in the r dimensions, and each dimension has the same distribution as the cycle
on n1/r vertices. Specifically, if we denote by M̃ the round matrix of the standard balancing
circuit scheme on the cycle with n1/r vertices and M is the round matrix of the r-dimensional
torus with n vertices, then for any pair of vertices x = (x1, . . . , xr), v = (y1, . . . , yr) on the
torus we have Mt

x,y =
∏r
i=1 M̃t

xi,yi
. From Theorem 1.5, |M̃t

xi,yi
− 1

n1/r | = O(t−1/2), and
therefore, since r is a constant,

Mt
x,y ≤

r∏
i=1

(
1

n1/r +O(t−1/2)
)

= O(t−r/2 + n−1),

and thus
∥∥Mt

x,y − 1
n

∥∥2
2 = O(t−r/2) for any pair of vertices x, y. Hence by Lemma 3.1,∥∥Mt

.,u −Mt
.,v

∥∥2
2 = O(t−r/2). Plugging this bound into Theorem 1.4 yields that the load

difference between any pair of the nodes u and v at round t is at most O(t−r/4 · σ · log3/2 n+√
logn) with probability at least 1−4n−1. The bound on the discrepancy now simply follows

by the union bound.
We now turn to the lower bound on the discrepancy. With the same derivation as in

Lemma 4.2 we obtain the following result:

I Lemma 4.3. Consider the standard balancing circuit model on the r-dimensional torus
with round matrix M. Then for any vertex u ∈ V , ‖Mt

.,u − 1
n‖

2
2 = Ω(t−r/2).

The lower bound on the torus follows by combining Lemma 4.3 and Theorem 1.4.

Expanders. The upper bound O(λ(M)t/4 · σ · (logn)3/2 +
√

logn) for expanders follows
immediately from Theorem 1.7. For the lower bound, since the round matrix consists of d
matchings, it is easy to verify that whenever Mt

u,v > 0, we have Mt
u,v ≥ 2−d·t. Consequently,

for any vertex u ∈ V ,
∥∥Mt

.,u − 1
n

∥∥2
2 = Ω(2−d·t). Plugging this into Theorem 1.4 yields a

lower bound on the discrepancy which is Ω(2−d·t/2 · σ/
√

log σ).

Hypercubes. For the hypercube, there is a worst-case bound of log2 log2 n + O(1) [16,
Theorem 5.1 & 5.3] for any input after log2 n iterations of the dimension-exchange, i.e., after
one execution of the round matrix. Hence, we will only analyze the discrepancy after s
matchings, where 1 ≤ s < log2 n. By applying the same analysis as in Theorem 1.7, but now
with |

∏t
s=1 M(s)

u,v− 1
n | ≤ 2−t, we obtain that the discrepancy is O(2−t/2 ·σ ·(logn)3/2+

√
logn).

Applying Theorem 1.4, we obtain the lower bound Ω(2−t/2 · σ/
√

log σ).

5 Discussion and Empirical Results

We will now compare our average-case to a worst-case scenario on cycles, 2D-tori and
hypercubes. For the sake of concreteness, we always assume that the input is drawn from a

ICALP 2017

139:12 Randomized Load Balancing on Networks with Stochastic Inputs

uniform distribution Uni[0, 2K]. Our choice for the worst-case load vector will have (roughly)
the same number of tokens and initial discrepancy. However, the exact definition of the
vector will depend on the underlying topology.

Cycles and 2D-Tori For the worst-case setting on cycles, fix an arbitrary node u ∈ V and
let all nodes with distance at most n/4 initially have a load of 2K while all the other nodes
have load 0. This gives rise to a load vector with nK tokens and initial discrepancy 2K. For
2D-tori, fix an arbitrary node u ∈ V and assign a load of 2K to the n/2 nearest neighbors
and load 0 otherwise. This defines a load vector with nK tokens and initial discrepancy 2K.

The next result provides a lower bound on the discrepancy for cycles and 2D-tori in the
aforementioned worst-case setting. It essentially shows that for worst-case inputs, Ω(n2)
rounds and Ω(n) rounds are necessary for the cycle, 2D-tori, respectively, in order to reduce
the discrepancy by more than a constant factor. This stands in sharp contrast to Theorem 1.6,
proving a decay of the discrepancy by ≈ t−1/4, starting from the first round.

I Proposition 5.1. For the aforementioned worst-case setting on the cycle, it holds for
any round t > 0 that disc(x(t)) ≥ 1

8 ·K ·
(

1− exp
(
− n2

2048t

))
−
√

64 logn, with probability
at least 1 − n−1. Further, for 2D-tori, it holds for any round t > 0 that disc(x(t)) ≥
1
8 ·K ·

(
1− exp

(
− n

2048t
))
−
√

64 logn, with probability at least 1− n−1.

Hypercube. We will consider only log2 n rounds, since the discrepancy is log2 log2 n+O(1)
after log2 n rounds and O(1) after 2 log2 n rounds [16]. A natural corresponding worst-case
distribution is to have load 2K on all nodes whose log2 n-th bit is equal to 1 and 0 otherwise.
This way the discrepancy is only reduced in the final round log2 n.

Experiments. For each of the cycle, 2D-torus and hypercube, we consider two comparative
experiments with an average-case initial load vector and a worst-case initial load vector.

The first experiment considers a “lightly loaded case”, where the theoretical results
suggest that a small (i.e., constant or logarithmic) discrepancy is reached before the expected
worst-case load balancing time, which are ≈ n2 for cycles and ≈ n for 2D-tori. The second
experiment considers a “heavily loaded case”, where the theoretical results suggest that a
small discrepancy is not reached faster than in the worst-case.

For cycles and 2D-tori we choose for the lightly loaded case K =
√
n and for the heavily

loaded case K = n2. The experiments confirm the theoretical results in the sense that for
both choices of K, we have a much quicker convergence of the discrepancy than in the worst
case. However, the experiments also demonstrate that only in the lightly loaded case we
reach a small discrepancy quickly, whereas in the heavily loaded case there is no big difference
between worst-case and average-case if it comes to the time to reach a small discrepancy.

On the hypercube, our bounds on the discrepancy suggest a smaller K in comparison
to the experiments on cycles and 2D-tori. That is why we choose K = n1/4 in the lightly
loaded case and K = n in the heavily loaded case. With these adjustments of K in both
cases, the experimental results of the hypercube are inline with the ones for the cycle and
2D-tori. More details including the plots can be found in the full version [8].

Acknowledgements. We are grateful to the reviewers for their valuable comments. We are
also thankful to Robert Elsässer and Yuchen Yang for helpful discussions.

Leran Cai and Thomas Sauerwald 139:13

References

1 Milton Abramowitz, Irene A Stegun, et al. Handbook of mathematical functions. Applied
mathematics series, 55:62, 1966.

2 Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are lock-free concurrent algorithms
practically wait-free? J. ACM, 63(4):31:1–31:20, 2016.

3 Aris Anagnostopoulos, Adam Kirsch, and Eli Upfal. Load balancing in arbitrary network
topologies with stochastic adversarial input. SIAM J. Comput., 34(3):616–639, 2005.

4 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Find your place: Simple distributed algorithms for community detection. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’17), pages 940–959, 2017.

5 Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent
variates. Transactions of the American Mathematical Society, 49(1):122–136, 1941.

6 J. E. Boillat. Load balancing and poisson equation in a graph. Concurrency: Pract. Exper.,
2:289–313, 1990.

7 S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized Gossip Algorithms. IEEE
Transactions on Information Theory and IEEE/ACM Transactions on Networking, 52:2508–
2530, 2006.

8 Leran Cai and Thomas Sauerwald. Randomized load balancing on networks with stochastic
inputs, 2017. arXiv:1703.08702.

9 G. Cybenko. Load balancing for distributed memory multiprocessors. J. Parallel and
Distributed Comput., 7:279–301, 1989.

10 Carl-Gustaf Esseen. On the Liapounoff limit of error in the theory of probability. Almqvist
& Wiksell, 1942.

11 Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andréa W. Richa, Robert Endre Tarjan, and David Zuck-
erman. Tight analyses of two local load balancing algorithms. SIAM Journal on Computing,
29(1):29–64, 1999.

12 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In 40th
Annual Symposium on Foundations of Computer Science (FOCS), pages 579–586, 1999.

13 Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith, and Ted G. Byrom. The
Finite Element Methods for Engineers. Wiley, 2001.

14 David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing
times. American Mathematical Soc., 2009.

15 Russell Lyons. Asymptotic enumeration of spanning trees. Combinatorics, Probability &
Computing, 14(4):491–522, 2005.

16 Marios Mavronicolas and Thomas Sauerwald. The impact of randomization in smoothing
networks. Distributed Computing, 22(5-6):381–411, 2010.

17 S. Muthukrishnan and Bhaskar Ghosh. Dynamic load balancing by random matchings. J.
Comput. Syst. Sci., 53:357–370, 1996.

18 S. Muthukrishnan, Bhaskar Ghosh, and Martin H. Schultz. First- and second-order diffusive
methods for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31:331–354,
1998.

19 A. Panconesi and A. Srinivasan. Randomized distributed edge coloring via an extension of
the Chernoff-Hoeffding bounds. SIAM Journal on Computing, 26(2):350–368, 1997.

20 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In Proc. 24th Symp. Theory of Computing (STOC),
pages 581–592, 1992.

ICALP 2017

http://arxiv.org/abs/1703.08702

139:14 Randomized Load Balancing on Networks with Stochastic Inputs

21 Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divergence of Markov chains and the
analysis of iterative load balancing schemes. In Proc. 39th Symp. Foundations of Computer
Science (FOCS), pages 694–705, 1998.

22 Peter Sanders. Analysis of nearest neighbor load balancing algorithms for random loads.
Parallel Computing, 25(8):1013–1033, 1999.

23 Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Distrib-
uted random walks. J. ACM, 60(1):2:1–2:31, 2013. doi:10.1145/2432622.2432624.

24 Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In Proc. 53rd Symp. Foundations of Computer Science (FOCS), pages
341–350, 2012.

25 A.J. Sinclair and M.R. Jerrum. Approximate counting, uninform generation and rapidly
mixing markov chains. Information and Computation, 82(1):93–133, 1989.

26 Raghu Subramanian and Isaac D. Scherson. An analysis of diffusive load-balancing. In
Proc. 6th Symp. Parallelism in Algorithms and Architectures (SPAA), pages 220–225, 1994.

27 Sonesh Surana, Brighten Godfrey, Karthik Lakshminarayanan, Richard Karp, and Ion
Stoica. Load balancing in dynamic structured peer-to-peer systems. Performance Evalu-
ation, 63(3):217–240, 2006.

28 Roy D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency: Practice and Experience, 3(5):457–481, 1991.

29 Dongliang Zhanga, Changjun Jianga, and Shu Li. A fast adaptive load balancing method for
parallel particle-based simulations. Simulation Modelling Practice and Theory, 17(6):1032–
1042, 2009.

http://dx.doi.org/10.1145/2432622.2432624

Opinion Dynamics in Networks: Convergence,
Stability and Lack of Explosion∗†

Tung Mai1, Ioannis Panageas2, and Vijay V. Vazirani3

1 Georgia Institute of Technology, Atlanta, GA, USA
tung.mai@cc.gatech.edu

2 MIT, Cambridge, MA, USA; and
Singapore University of Technology and Design (SUTD), Singapore
ioannisp@mit.edu

3 Georgia Institute of Technology, Atlanta, GA, USA
vazirani@cc.gatech.edu

Abstract
Inspired by the work of Kempe et al. [Kempe, Kleinberg, Oren, Slivkins, EC 2013], we intro-
duce and analyze a model on opinion formation; the update rule of our dynamics is a simplified
version of that of [Kempe, Kleinberg, Oren, Slivkins, EC 2013]. We assume that the population
is partitioned into types whose interaction pattern is specified by a graph. Interaction leads
to population mass moving from types of smaller mass to those of bigger mass. We show that
starting uniformly at random over all population vectors on the simplex, our dynamics converges
point-wise with probability one to an independent set. This settles an open problem of [Kempe,
Kleinberg, Oren, Slivkins, EC 2013], as applicable to our dynamics. We believe that our tech-
niques can be used to settle the open problem for the Kempe et al. dynamics as well.

Next, we extend the model of Kempe et al. by introducing the notion of birth and death
of types, with the interaction graph evolving appropriately. Birth of types is determined by a
Bernoulli process and types die when their population mass is less than ε (a parameter). We
show that if the births are infrequent, then there are long periods of “stability” in which there is
no population mass that moves. Finally we show that even if births are frequent and “stability”
is not attained, the total number of types does not explode: it remains logarithmic in 1/ε.

1998 ACM Subject Classification G.1.5 [Numerical Analysis] Roots of Nonlinear Equations,
Convergence, G.2.2 [Discrete Mathematics] Graph Theory, Network Problems

Keywords and phrases Opinion Dynamics, Convergence, Jacobian, Center-stable Manifold

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.140

1 Introduction

The birth, growth and death of political parties, organizations, social communities and
product adoption groups (e.g., whether to use Windows, Mac OS or Linux) often follows
common patterns, leading to the belief that the dynamics underlying these processes has much
in common. Understanding this commonality is important for the purposes of predictability
and hence has been the subject of study in mathematical social science for many years [4,
7, 8, 14, 26]. In recent years, the growth of social communities on the Internet, and their
increasing economic and social value, has provided fresh impetus to this study [1, 2, 5, 17].

∗ The full version of this paper is available at https://arxiv.org/abs/1607.03881.
† Tung Mai and Vijay V. Vazirani would like to acknowledge NSF Grant CCF-1216019. Ioannis Panageas

would like to acknowledge a MIT-SUTD postdoctoral fellowship.

EA
T

C
S

© Tung Mai, Ioannis Panageas, and Vijay V. Vazirani;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 140; pp. 140:1–140:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.140
https://arxiv.org/abs/1607.03881
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

140:2 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

In this paper, we continue along these lines by building on a natural model proposed
by Kempe et al. [15]. Their model consists of an influence graph G on n vertices (types,
parties) into which the entire population mass is partitioned. Their main tenet is that
individuals in smaller parties tend to get influenced by those in bigger parties 1. Individuals
in the two vertices connected by an edge can interact with each other. These interactions
result in individuals moving from smaller to bigger in population vertices. Kempe et al.
characterize stable equilibria of this dynamics via the notion of Lyapunov stability, and
they show that under any stable equilibrium, the entire mass lies in an independent set, i.e.,
the population breaks into non-interacting islands. The message of this result is clear: a
population is (Lyapunov) stable, in the sense that the system does not change by much under
small perturbations, only if people of different opinions do not interact. They also showed
convergence to a fixed point, not necessarily an independent set, starting from any initial
population vector and influence graph. One of their main open problems was to determine
whether starting uniformly at random over all population vectors on the unit simplex, their
dynamics converge with probability one to an independent set.

We first settle this open problem in the affirmative for a modification of the dynamics,
which however is similar to that of Kempe et al. in spirit in that it moves mass from smaller
to bigger parties (the dynamics is defined below along with a justification). We believe that
the ideas behind our analysis can be used to settle the open problem for the dynamics of
Kempe et al. as well, via a more complicated spectral analysis of the Jacobian of the update
rule of the dynamics (see Section 3.2).

Whereas the model of Kempe et al. captures and studies the effects of migration of
individuals across types in a very satisfactory manner, it is quite limited in that it does not
include the birth and death of types. In this paper, we model birth and death of types. In
order to arrive at realistic definitions of these notions, we first conducted case studies of
political parties in several countries. We present below a case study on Greek politics, but
similar phenomena arise in India, Spain, Italy and Holland (see Wikipedia pages).

The Siriza party in Greece provides an excellent example of birth of a party (this
information is readily available in Wikipedia pages). This party was essentially in a dormant
state until the first 2012 elections in which it got 16.8% of the vote, mostly taken away from
the Pasok party, which dropped from 43.9% to 13.2% in the process (Wikipedia). In the
second election in 2012, Siriza increased its vote to 26.9% and Pasok dropped to 12.3%.
Finally, in 2015, Siriza increased to 36.3% and Pasok dropped further to 4.7%. Another party,
Potami, was formed in 2015 and got 6.1% of the vote, again mainly from Pasok. However, in
a major 2016 poll, it seems to have collapsed and is likely be absorbed by other parties. In
contrast, the KKE party in Greece, which had almost no interactions with the rest of the
parties (and was like a disconnected component), has remained between 4.5-8.5% of the vote
over the last 26 years.

Motivated by these examples, we have modeled birth and death of types in the following
manner. We model population as a continuum, as is standard in population dynamics, and
time is discrete. This is the same as arXiv Version 1 of [15], which is what we will refer to

1 Changes in the sizes of political parties and other organizations can occur for a multitude of possible
reasons, such as changes in economic conditions, immigration flows, wars and terrorism, and drastic
changes in technology (such as the introduction of the Internet, smart phones and social media).
Studying changes due to these multitude of reasons in a systematic quantitative manner is unrealistic.
For this reason, many authors in computer science and the social sciences have limited their work to
studying the effects of relative sizes of the groups, in itself a key factor, e.g. see [15] and references
therein. Following these works, our paper also takes a similar approach.

T. Mai, I. Panageas, and V. V. Vazirani 140:3

throughout this paper; the later versions study the continuous time analog. The birth of a
new type in our model is determined by a Bernoulli process, with parameter p. The newly
born type absorbs mass from all other types via a randomized process given by an arbitrary
distribution with finite support (see Section 2.2). After birth, the new type is connected to
an arbitrary, though non-empty, set of other types. Our model has a parameter ε, and when
the size of a type drops below ε, it simply dies, moving its mass equally among its neighbors.

Our rule for migration of mass, which is somewhat different from that of Kempe et al.
is motivated by the following considerations. For a type u, xu will denote the fraction of
population that is of type u. Assume that types u and v have an edge, i.e., their populations
interact. If so, we will assume that some individuals of the smaller type get influenced by
the larger one and move to the larger one. The question is what is a reasonable assumption
on the population mass that moves.

For arriving at the rule proposed in this paper, consider three situations. If xu = .02 and
xv = .25, i.e., the smaller type is very small, then clearly not many people will move. If
xu = .22 and xv = .25, i.e., the types are approximately of the same population size, then
again we expect not many people to move. Finally, if xu = .15 and xv = .25, i.e., both types
are reasonably big and their difference is also reasonably big, then we expect several people
to move from the smaller to the bigger type. From these considerations, we propose that the
amount of population mass moving from v to u, assuming xv < xu, is given by the rule

f (t)
v→u = x(t)

u x(t)
v · Fuv(x(t)

u − x(t)
v),

where Fuv(z) = Fvu(z) is a function that captures the level of influence between u, v. We
assume that Fuv : [−1, 1] → [−1, 1] is continuously differentiable, Fuv(0) = 0 (there is no
population flow between two neighboring types if they have the same fraction of population),
is increasing and finally it is odd, i.e., Fuv(−z) = −Fuv(z) (so that f (t)

v→u = −f (t)
u→v).

In this simplified setting we have made the assumption that the system is closed, i.e.,
that it does not get influence from outside factors (e.g., economical crisis, immigrations flows,
terrorism etc).

1.1 Our results and techniques
We first study our migration dynamics without birth and death and settle the open problem
of Kempe et al., as it applies to our dynamics.

We show that the dynamics converges set-wise to a fixed point, i.e., there is a set S
containing only fixed points such that the distance between the trajectory of the dynamics
and S goes to zero for all starting population vectors. To show this convergence result, we
use a simple potential function of the population mass namely, the `2

2 norm of the population
vector, and we show that this potential is strictly increasing at each time step (unless the
dynamics is at a fixed point). Moreover, the potential is bounded, hence the result follows.

Next, we strengthen this result by showing point-wise convergence as well. The latter
result is technically deeper and more difficult, since it means that every trajectory converges
to a specific fixed point p. We show point-wise convergence by constructing a local potential
function that is decreasing in a small neighborhood of the limit point p. The potential
function is always non-zero in that small neighborhood and is zero only at p.

Using the latter result and one of the most important theorems in dynamical systems,
the Center Stable Manifold Theorem, we prove that with probability one, under an initial
population vector picked uniformly at random from the unit simplex, our dynamics converges
point-wise to a fixed point p, where the active types w in p, i.e., w ∈ V (G) so that pw > 0,
form an independent set of G. This involves characterization of the linearly stable (see

ICALP 2017

140:4 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

Section 2.3 for definition) fixed points and proving that the update rule of the dynamics is
a local diffeomorphism2. This settles the open problem of Kempe et al., mentioned in the
Introduction, for our dynamics. This result is important because it allows us to perform a
long-term average case analysis of the behavior of our dynamics and make predictions.

Next, we introduce birth and death in our model. Clearly there will be no convergence in
this case since new parties are created all the time. Instead we define and study a notion
of “stability" which is different from the classical notions that appear in dynamical systems
(see Section 2.3 for the definition of the classical notion and Definition 12 for our notion). A
dynamics is (T, d)-stable if and only if ∀t : T ≤ t ≤ T + d, no population mass moves at
step t. We show that despite birth and death, there are arbitrarily long periods of “stability"
with high probability, for a sufficiently small p. Finally, we show that in the long run, with
high probability, for a sufficiently large p, the number of types in the population will be
O(log(1/ε)). This may seem counter-intuitive, since with a large p new types will be created
often; however, since new types absorb mass from old types, the old types die frequently. In
contrast, in the short term (from the definition of ε) we can have up to Θ(1/ε) types.

Let us give an interpretation of the results of the previous paragraph in terms of political
parties of certain countries (information obtained from Wikipedia). Countries do have
periods of political stability, e.g., during 1981-85, 2004-07, no new major (with more than
1% of the vote) parties were formed in Greece, moreover there was no substantial change
in the percentage of votes won by parties in successive elections. The parameter ε can be
interpreted as the fraction of people that can form a party that participates in elections. The
minimum size of a party arises for organizational and legal reasons, and is Θ(1/Q), where
Q is the population of the country and therefore ε is inversely related to population. The
message of the latter theorem is that the number of political parties grows at most as the
logarithm of the population of the country, i.e. O(logQ) 3. The following data supports
this fact. The population of Greece, Spain and India in 2015 was 1.1e7, 4.6e7 and 1.2e9,
respectively, and the number of parties that participated in the general elections was 20, 32
and 50, respectively.

1.2 Related work
As stated above, we build on the work of Kempe et al. [15]. They model their dynamics in a
similar way, i.e., there is a flow of population for every interacting pair of types u, v. The
flow goes from smaller to bigger types; in our case the mass is just the population of a type.
One very interesting common trait between the two dynamics is that the fixed points have
similar description: all types with positive mass belonging to the same connected component
C have the same mass. Stable fixed points also have the same properties in both dynamics,
namely they are independent sets. The update rules of the two dynamics are somewhat
different; our simpler dynamics helps us in proving stronger results.

One of the most studied models is the following: there is a graph G in which each vertex
denotes an individual having two possible opinions. At each time step, an individual is
chosen at random who next chooses his opinion according to the majority (best response)
opinion among his neighbors. This has been introduced by Galam[10] and appeared in
[22, 9], where they address the question: in which classes of graphs do individuals reach
consensus. The same dynamics, but with each agent choosing his opinion according to noisy

2 Continuously differentiable, the inverse exists and is also continuously differentiable (in some small
neighborhood of each point).

3 This is just an upper bound, countries like UK, US satisfy this rule too.

T. Mai, I. Panageas, and V. V. Vazirani 140:5

best response (the dynamics is a Markov chain) has been studied in [21, 16] and many other
papers referenced therein. They give bounds for the hitting time and expected time of the
consensus state (risk dominant) respectively.

Another well-known model for the dynamics of opinion formation in multi-agent systems
is Hegselmann-Krause [11]. Individuals are discrete entities and are modeled as points in
some opinion space (e.g., real line). At every time step, each individual moves to the mass
center of all the individuals within unit distance. Typical questions are related to the rate of
convergence (see [6] and references therein). Finally, another classic model is the voter model,
where there is a fixed graph G among the individuals, and at every time step, a random
individual selects a random neighbor and adopts his opinion [12]. For more information on
opinion formation dynamics of an individual using information learned from his neighbors,
see [13] for a survey (also see [29] for more information on opinion formation models).

Other works, including dynamical systems that show convergence to fixed points, are
[23, 19, 18, 24, 20, 27]. [27] focuses on quadratic dynamics and they show convergence in the
limit. On the other hand [3] shows that sampling from the distribution this dynamics induces
at a given time step is PSPACE-complete. In [23, 19], it is shown that replicator dynamics in
linear congestion and 2-player coordination games converges to pure Nash equilibria, and in
[18, 24] it is shown that gradient descent converges to local minima, avoiding saddle points
even in the case where the fixed points are uncountably many.

Organization: In Section 2 we describe our dynamics formally and give the necessary
definitions about dynamical systems. In Section 3 we show that our dynamics without
births/deaths converges with probability one to fixed points p so that the set of types with
positive population, i.e., active types, form an independent set of G. Finally, in Section 4 we
first show that there is no explosion in the number of types (i.e., the order never becomes
Θ(1/ε)) and also we perform stability analysis using our notion.

2 Preliminaries

Notation: We denote the probability simplex on a set of size n as ∆n. Vectors in Rn are
denoted in boldface and zj denotes the jth coordinate of a given vector z. Time indices are
denoted by superscripts. Thus, a time indexed vector z at time t is denoted as z(t). We
use the letters J, J to denote the Jacobian of a function and finally we use f t to denote the
composition of f by itself t times.

2.1 Migration dynamics
Let G = (V,E) be an undirected graph on n vertices (which we also call types), and let Nv
denote the set of neighbors of v in G. During the whole dynamical process, each vertex v has
a non-negative population mass representing the fraction of the population of type v. We
consider a discrete-time process and let x(t)

v denote the mass of v at time step t. It follows
that the condition∑

v∈V (G)

x(t)
v = 1,

must be maintained for all t, i.e., x(t) ∈ ∆n
4 for all t ∈ N.

4 Recall that ∆n denotes the unit simplex of dimension n + 1, where |V (G)| = n.

ICALP 2017

140:6 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

Additionally, we consider a dynamical migration rule where the population can move
along edges of G at each step. The movement at step t is determined by x(t). Specifically,
for uv ∈ E(G), the amount of mass moving from v to u at step t is given by

f (t)
v→u = x(t)

u x(t)
v Fuv(x(t)

u − x(t)
v).

For all uv ∈ E(G) we assume that Fuv : [−1, 1] → [−1, 1] is a continuously differentiable
function such that:
1. Fuv(0) = 0 (there is no population flow between two neighboring types if they have the

same fraction of population),
2. Fuv is increasing (the larger xu − xv, the more population moving from v to u),
3. Fuv is odd i.e., Fuv(−z) = −Fuv(z) (so that f (t)

v→u = −f (t)
u→v).

It can be easily derived from the assumptions that Fuv(z) ≥ Fuv(0) = 0 for z ≥ 0 and
F ′uv(−z) = F ′uv(z) for z ∈ [−1, 1], where F ′uv denotes the derivative of Fuv. Note that
f

(t)
v→u > 0 implies that population is moving from v to u, and f

(t)
v→u < 0 implies that

population is moving in the other direction. The update rule for the population of type u
can be written as

x(t+1)
u = x(t)

u +
∑
v∈Nu

f (t)
v→u (1)

= x(t)
u +

∑
v∈Nu

x(t)
u x(t)

v Fuv(x(t)
u − x(t)

v). (2)

We denote the update rule of the dynamics as g : ∆n → ∆n, i.e., we have that

x(t+1) = g(x(t)).

Therefore it holds that x(t) = gt(x(0)), where gt denotes the composition of g by itself t
times. It is easy to see g is well-defined for supz∈[−1,1] |Fuv(z)| ≤ 1 for all uv ∈ E(G), in the
sense that if x(t) ∈ ∆n then x(t+1) ∈ ∆n. This is true since for all u we get (using induction,
i.e., x(t) ∈ ∆n)

x(t+1)
u = x(t)

u +
∑
v∈Nu

x(t)
u x(t)

v Fuv(x(t)
u − x(t)

v)

≥ x(t)
u −

∑
v∈Nu

x(t)
u x(t)

v ≥ x(t)
u − x(t)

u (1− x(t)
u) ≥ 0,

moreover it holds

x(t+1)
u = x(t)

u +
∑
v∈Nu

x(t)
u x(t)

v Fuv(x(t)
u − x(t)

v)

≤ x(t)
u +

∑
v∈Nu

x(t)
u x(t)

v ≤ x(t)
u + x(t)

u (1− x(t)
u) ≤ x(t)

u + 1− x(t)
u = 1,

and also
∑
u x(t+1)

u =
∑
u x(t)

u = 1 (the other terms cancel out).

2.2 Birth and death of types
Political parties or social communities don’t tend to survive once their size becomes “small”
and hence there is a need to incorporate death of parties in our model. We will define a
global parameter ε in our model. When the population mass of a type v becomes smaller
than some fixed value ε, we consider it to be dead and move its mass arbitrarily to existing

T. Mai, I. Panageas, and V. V. Vazirani 140:7

types. Formally, if x(t)
v ≤ ε then x(t)

v ← 0 and x(t)
u ← x(t)

u + x(t)
v / |Nv| for all u ∈ Nv. Also,

vertex v is removed and edges are added arbitrarily on its neighbors to ensure connectivity
of the resulting graph.
I Remark. It is not hard to see that the maximum number of types is 1/ε (by definition).
We say that we have explosion in the number of types if they are of Θ(1/ε). In Theorem 16
we show that in the long run, the number of types is much smaller – it is O(log(1/ε)) with
high probability.

Every so often, new political opinions emerge and like-minded people move from the
existing parties to create a new party, which then follows the normal dynamics to either
survive or die out. To model birth of new types, at each time step, with probability p, we
create a new type v such that v takes a portion of mass from each existing type independently.
The amount of mass going to v from each u follows an arbitrary distribution in the range
[βmin, βmax] . Specifically, let Zu ∼ D where D is a distribution with support [βmin, βmax],
the amount of mass going from u to v is Zuxu. We connect v to the existing graph arbitrarily
such that it remains connected.

Additionally, we make a small change to the migration dynamics defined in Section 2.1
to make it more realistic. Our tenet is that population mass migrates from smaller to bigger
types because of influence. However, if the two types are of approximately the same size, the
difference is size is not discernible and hence migration should not happen. To incorporate
this, we introduce a new parameter δ > 0 and if |xu − xv| ≤ δ, we assume that no population
moves from u to v.

Finally, each step of the dynamics consists of there phases in the following order:
1. Migration: the dynamics follows the update rule from Section 2.1.
2. Birth: with probability p, a new type v is created and takes mass from the existing types.
3. Death: a type with mass smaller than ε dies out and move its mass to the existing types.

I Remark. For any different order of phases, all proofs in the paper still go through with
minimal changes.

2.3 Definitions and basics
A recurrence relation of the form z(t+1) = f(z(t)) is a discrete time dynamical system, with
update rule f : S → S (for our purposes, the set S is ∆n). The point p is called a fixed
point or equilibrium of f if f(p) = p. A fixed point p is called Lyapunov stable (or just
stable) if for every ε > 0, there exists a ζ = ζ(ε) > 0 such that for all z with ‖z − p‖ < ζ

we have that
∥∥fk(z)− p

∥∥ < ε for every k ≥ 0. We call a fixed point p linearly stable if, for
the Jacobian J(p) of f , it holds that its spectral radius is at most one. It is true that if a
fixed point p is stable then it is linearly stable but the converse does not hold in general
[25]. A sequence (f t(z(0)))t∈N is called a trajectory of the dynamics with z(0) as starting
point. A common technique to show that a dynamical system converges to a fixed point is
to construct a function P : ∆m → R such that P (f(z)) > P (z) unless z is a fixed point. We
call P a potential or Lyapunov function.

3 Convergence to independent sets almost surely

In this section we prove that the deterministic dynamics (assuming no death/birth of types,
namely the graph G remains fixed) converges point-wise to fixed points p where {v : pv > 0}
(set of active types) is an independent set of the graph G, with probability one assuming
that the starting point x(0) follows an atomless distribution with support in ∆n. To do that,

ICALP 2017

140:8 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

we show that for all starting points x(0), the dynamics converges point-wise to fixed points.
Moreover we prove that the update rule of the dynamics is a diffeomorphism and that the
linearly stable fixed points p of the dynamics satisfy the fact that the set of active types
in p is an independent set of G. Finally, our main claim of the section follows by using
Center-Stable Manifold theorem.

Structure of fixed points. The fixed points of the dynamics (1) are vectors p such that for
each uv ∈ E(G), at least one of the following conditions must hold:

1. pv = pu, 2. pv = 0, 3. pu = 0.

Therefore, for each fixed point p, the set of active types (types with non-zero population
mass) with respect to p must form a set of connected components such that all types in
each component have the same population mass. We first prove that the dynamics converges
point-wise to fixed points.

3.1 Point-wise convergence
Initially, we consider the function Φ(x) =

∑
v x2

v and state the following lemma on Φ.

I Lemma 1 (Lyapunov (potential) function). Let x be a point with xu > xv. Let y be
another point such that yv = xv − d, yu = xu + d for some 0 < d ≤ xv and yz = xz for all
z 6= u, v. Then Φ(x) < Φ(y).

If we think of x as a population vector, Lemma 1 implies that Φ(x) increases if population
is moving from a smaller type to a bigger type.

I Theorem 2 (Set-wise convergence). Φ(x(t)) is strictly increasing along every nontrivial
trajectory, i.e., Φ(xt+1) = Φ(g(x(t))) ≥ Φ(x(t)) with equality only when x(t) is a fixed point.
As a corollary, the dynamics converges to fixed points (set-wise convergence).

Using the above theorem (Theorem 2) along with the construction of a local Lyapunov
function, we can show the following theorem:

I Theorem 3 (Point-wise convergence). The dynamics converges point-wise to fixed points.

Proof Sketch of Theorems 2 and 3. We show Theorem 2 by first breaking the migration
step from x(t) to x(t+1) into multiple steps which involve migration between two types
only and using Lemma 1. Moreover, given a limit point p of a trajectory with initial
population vector x(0), we create a local Lyapunov function Ψ that depends on p, i.e.,
Ψ(x,p) =

∑
v:pv>0(pv − xv). Ψ is decreasing and nonnegative in a neighborhood of p, and

zero only at p. Since p is a limit point, there is a subsequence of times tk →∞ so that the
dynamics for these times converges to p, therefore the dynamics converges to p as t→∞,
with initial condition x(0). J

3.2 Diffeomorphism and stability analysis via Jacobian
In this section we compute the Jacobian J of g and then perform spectral analysis on J . The
Jacobian of g is the following:

∂gu
∂xu

= Ju,u = 1 +
∑
v∈Nu

xv [Fuv(xu − xv) + xuF ′uv(xu − xv)] ,

∂gu
∂xv

= Ju,v = xu [Fuv(xu − xv)− xvF ′uv(xu − xv)] if uv ∈ E(G) else 0.

T. Mai, I. Panageas, and V. V. Vazirani 140:9

I Lemma 4 (Local Diffeomorphism). The Jacobian is invertible on the subspace
∑
v xv = 1,

for supz∈[−1,1] |Fuv(z)| < 1
2 for each uv ∈ E(G). Moreover, g is a local diffeomorphism in a

neighborhood of ∆n.

I Lemma 5 (Linearly stable fixed point ⇒ independent set). Let p be a fixed point such that
there exists a connected component C of size greater than 1, and all types v ∈ C have the
same positive mass pv > 0. Then the Jacobian at p has an eigenvalue with absolute value
greater than one.

Proof Sketch of Lemmas 4 and 5. To prove Lemma 4, it suffices to show that the Jacobian
J(x) is invertible and then use the Inverse Function theorem. Invertibility comes from
the fact that J(x) is shown to be strictly diagonally dominant for |Fuv(z)| < 1

2 for each
uv ∈ E(G) and z ∈ [−1, 1]. Moreover, to show Lemma 5, we can show that if a fixed point
p does not induce an independent set, then the trace of the Jacobian of size l × l (after
removing columns and rows of non-active types) at p is greater than l. Since the trace of a
matrix is equal to the sum of its eigenvalues, the maximum eigenvalue in absolute value is
greater than one and the claim follows. J

I Remark. Lemmas 4 and 5 are the key Lemmas for the next subsection in which we prove
our first main result (Theorem 6 and Corollary 10). If one wants to prove such a result for
the model of Kempe et al., these are the two lemmas that need to be adapted to their setting.
Analyzing the Jacobian of the update rule of that model is very challenging since the update
rule is a rational function, compared to our model which is generic but the derivatives are
simpler to compute and analyze.

3.3 Center-stable manifold and average case analysis
In this section we prove our first main result, Corollary 10, which is a consequence of the
following theorem:

I Theorem 6. Assume that maxz∈[−1,1] |Fuv(z)| < 1/2 for all uv ∈ E(G). The set of points
x ∈ ∆n such that dynamics 1 starting at x converges to a fixed point p whose active types do
not form an independent set of G has measure zero.

To prove Theorem 6, we are going to use arguably one of the most important theorems
in dynamical systems, called Center Stable Manifold Theorem:

I Theorem 7 (Center-stable Manifold Theorem [28]). Let p be a fixed point for the Cr local
diffeomorphism f : U → Rm where U ⊂ Rm is an open neighborhood of p in Rm and r ≥ 1.
Let Es⊕Ec⊕Eu be the invariant splitting of Rm into generalized eigenspaces of the Jacobian
J(p) that correspond to eigenvalues of absolute value less than one, equal to one, and greater
than one. To the J(p) invariant subspace Es⊕Ec there is an associated local f invariant Cr
embedded disc W sc

loc tangent to the linear subspace at p and a ball B around p such that:

f(W sc
loc) ∩B ⊂W sc

loc. If fm(x) ∈ B for all m ≥ 0, then x ∈W sc
loc. (3)

Since an n-dimensional simplex ∆n in Rn has dimension n−1, we need to take a projection
of the domain space (

∑
v xv = 1) and accordingly redefine the map g. Let x be a point mass

in ∆n. Let u be a fixed type and define h : Rn → Rn−1 so that we exclude the variable xu
from x, i.e., h(x) = x−u. We substitute the variable xu with 1−

∑
v 6=u xv and let g′ be the

resulting update rule of the dynamics g′(x−u) = g(x). The following lemma gives a relation
between the eigenvalues of the Jacobians of functions g and g′.

ICALP 2017

140:10 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

I Lemma 8. Let J, J ′ be the Jacobian of g, g′ respectively. Let λ be an eigenvalue of J such
that λ does not correspond to left eigenvector (1, . . . , 1) (with eigenvalue 1). Then J ′ has also
λ as an eigenvalue.

Before we proceed with the proof sketch of Theorem 6 and Corollary 10, we state the
following which is a corollary of Lemmas 4, 5 and 8 and also uses classic properties for
determinants of matrices.

I Corollary 9. Let p be a fixed point whose active types do not form an independent set in
G. Then J ′ at h(p) has an eigenvalue with absolute value greater than one. Additionally,
the Jacobian J ′ of g′ is invertible in h(∆n) and as a result g′ is a local diffeomorphism in a
neighborhood of h(∆n).

I Corollary 10 (Convergence to independent sets). Suppose that maxz∈[−1,1] |Fuv(z)| < 1/2 for
all uv ∈ E(G). If the initial mass vector x(0) ∈ ∆n is chosen from an atomless distribution,
then the dynamics converges point-wise with probability 1 to a point p whose active types
form an independent set in G.

Proof Sketch of Theorem 6 and Corollary 10. The proof of Corollary 10 comes from The-
orem 3 and Theorem 6.

The main steps for the proof of Theorem 6 are as follows: Due to Center-Stable Manifold
theorem (we can use it since the update rule of the dynamics is a local diffeomorphism, by
Lemma 4 and Lemma 9) we have that the set of initial population vectors that stay trapped
in a small enough neighborhood of an unstable fixed point is a lower dimensional manifold,
hence a zero measure set. Any initial condition that converges point-wise to this unstable
fixed point must at some time t reach points in this set. All of these initial conditions can
thus be covered by a countable union of pre-images of the zero measure neighborhood implied
by the Center-Stable Manifold theorem. Because the update rule is a local diffeomorphism,
these pre-images must also be of zero measure and the countable union of zero measure sets
imply a zero measure region of attraction for each unstable equilibrium. The only remaining
hurdle is to cover the set of linearly unstable fixed points with a countable cover of the small
neighborhoods. Finally, by Lemma 5 any fixed point p whose active types do not form an
independent set of G is linearly unstable and the claim follows. J

Corollary 10 is illustrated in Figure 1 for the case of a 3-path and a triangle. As shown in
the figure, if the initial condition is chosen uniformly at random from a point in the simplex,
the dynamics converges to an independent set with probability one.

4 Stability and bound on the number of types

In this section we consider dynamical systems with migration, death and birth and prove two
probabilistic statements on stability and number of types. The following direct application
of Chernoff’s bound is used intensively to attain probabilistic guarantees.

I Lemma 11. In a period of t steps, there are at least tp/2 births with probability at least
1− e−tp/8 and there are at most 3tp/2 births with probability at least 1− e−tp/6.

4.1 Stability
We define the notion of stability and give a stability result for a dynamical system in-
volving migration, death and birth. For the rest of the paper, we denote by αmin =

T. Mai, I. Panageas, and V. V. Vazirani 140:11

(a) The region with “C” corresponds to the
initial population vectors so that the dynam-
ics converges to the fixed point where all the
population is of type C. The region “A+B”
corresponds to the initial population masses so
that the dynamics converges to a fixed point
where part of the population is of type A and
the rest of type B.

(b) Each region “A”, “B”, “C” corresponds to
the initial population vectors so that the dy-
namics converges to all the population being
of type A, B, C respectively. It is easy to see
that an initial vector (xA, xB , xC) converges to
the fixed point where all population is of type
arg maxi∈{A,B,C} xi. In case of ties, the limit
population is split equally among the tied types
(symmetry).

Figure 1 Migration dynamics phase portrait for path and triangle of 3 types A, B, C respectively
and for Fuv(z) = 0.25z for all uv ∈ E(G). The black points and the line correspond to the fixed
points. xA, xB correspond to the fractions of people that are of type A, B. We omit xC since
xC = 1− xA − xB .

minuv∈E(G),z∈[−1,1] F
′
uv(z) and αmax = maxuv∈E(G),z∈[−1,1] F

′
uv(z). αmin, αmax are non-

negative and finite since Fuv is continuously differentiable, increasing and [−1, 1] is a compact
set. It can be seen easily that for each uv ∈ E(G) and z ∈ [−1, 1],

αmin(z − 0) ≤ Fuv(z)− Fuv(0) ≤ αmax(z − 0).

Since Fuv(0) = 0, αminz ≤ Fuv(z) ≤ αmaxz.

I Definition 12 ((T, d)-Stable dynamics). A dynamics is (T, d)-stable if and only if ∀T ≤
t ≤ T + d, no population mass moves in the migration phase at step t.

We state the following two lemmas whose proofs come from the definition of Φ.

I Lemma 13. If the dynamics is not (t, 0)-stable, the migration phase at time t increases Φ
by at least 2αminεδ

3.

I Lemma 14. Each birth can decrease Φ by at most 2βmax.

With the two above lemmas, we can give a theorem on the “stability" of the dynamics:

I Theorem 15 (“Stable" for long enough). Assume αmin > 0. Let p < min
(
εδ3αmin
3βmax

, 2
3

)
and

t > 1
εδ3αmin−3pβmax

. With probability at least 1− e−tp/6, the dynamics is
(
T, 1

3p

)
-stable for

some T ≤ t.

ICALP 2017

140:12 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

Proof Sketch. Consider a period of t steps. Lemma 11 guarantees that there are at most
3tp/2 births in the period with the desired probability. In the migration phases of the period,
Φ can either increase if there is a migration or remain unchanged otherwise.

Assume that Φ increases in more than t/2 migration phases. Using Lemma 13 and
Lemma 14, we can bound the net increase of Φ in the period. Specifically, the net increase is
least t(αminεδ

3−3pβmax), which is greater than 1. Therefore, we have reached a contradiction.
It follows that Φ cannot increase in more than t/2 migration phases, and must remain

unchanged in at least t/2 migration phases. Since there are at most 3tp/2 births, there must
be no migration in a period of 1/(3p) consecutive steps. J

4.2 Bound on the number of types
In this section we investigate a behavior of the dynamics following a long period of time.
Specifically, we show that after a large number of steps, the number of types can not be too
high. Our goal is to prove the following theorem:

I Theorem 16 (Lack of explosion). Let αmax ≤ p/512 and t ≥ (16/p) log2(1/ε). The
dynamics at step t has at most 72 log(1/ε) types with probability at least 1− 3ε.

First we give the following lemma, which says that if the number of types is large enough,
then after a fixed period of time, it will decrease by a factor of roughly 2.

I Lemma 17. Let αmax ≤ p/512 and k be the number of types at step t0. If k ≥ 48 log(1/ε),
with probability at least 1− 2ε2, the number of types at step t0 + (16/p) log(1/ε) is at most
k/2 + 24 log(1/ε).

Proof Sketch of Theorem 16. Consider the last (16/p) log2(1/ε) steps of the dynamics. We
call a period of (16/p) log(1/ε) steps a decreasing period if it satisfies the condition in
Lemma 17, i.e, if the number of types k at the beginning of the period is at least 48 log(1/ε),
and the number of types at the end of the period is at most k/2 + 24 log(1/ε).

Construct a set P of periods of length (16/p) log(1/ε) as follows. Start with t′ = 0 and
repeat the following step until t′ = t. If t′ + (16/p) log(1/ε) ≤ t and the number of types at
t′ is at least 48 log(1/ε), let i be the period from t′ to t′ + (16/p) log(1/ε), and add i to P .
Update t′ ← t′ + (16/p) log(1/ε). Else update t′ ← t′ + 1.

Assume that all periods in P are decreasing periods. By Lemma 17, the probability
of such an outcome occurring is at least 1 − 2ε. With that assumption, if the number of
types ever becomes smaller than 48 log(1/ε) and reaches 48 log(1/ε) again, it will be at least
48 log(1/ε) after a period of (16/p) log(1/ε) steps unless there are less than (16/p) log(1/ε)
subsequent steps. In that case, by Lemma 11, the probability that in the remaining steps,
there are at most 24 log(1/ε) births is at least 1− ε. By union bound, the probability of both
outcomes occurring is at least 1− 3ε.

Moreover, since the number of types at the beginning is at most 1/ε, with the assumption,
it must become smaller than 48 log(1/ε) at some step of the dynamics. The theorem then
follows. J

References
1 A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social

networks. 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 7–15, 2008.

T. Mai, I. Panageas, and V. V. Vazirani 140:13

2 S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-based contagion from
homophily-driven diffusion in dynamic networks. Proceedings of the National Academy of
Sciences (PNAS), 2009.

3 S. Arora, Y. Rabani, and U. Vazirani. Simulating quadratic dynamical systems is pspace-
complete (preliminary version). Proceedings of the Twenty-sixth Annual ACM Symposium
on Theory of Computing (STOC), pages 459–467, 1994.

4 R. Axelrod. The dissemination of culture. Journal of Conflict Resolution, pages 203–226,
1997.

5 E. Bakshy, I. Rosenn, C. A. Marlow, and L. A. Adamic. The role of social networks
in information diffusion. 21st International World Wide Web Conference, pages 203–226,
2012.

6 A. Bhattacharyya and K. Shiragur. How friends and non-determinism affect opinion dy-
namics. In 54th IEEE Conference on Decision and Control (CDC), pages 6466–6471, 2015.

7 J. M. Cohen. Sources of peer group homogeneity. Sociology in Education, pages 227–241,
1977.

8 G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting
agents. Journal of Conflict Resolution, pages 87–98, 2000.

9 M. Feldman, N. Immorlica, B. Lucier, and S. M. Weinberg. Reaching consensus via non-
bayesian asynchronous learning in social networks. In APPROX/RANDOM, pages 192–208,
2014.

10 S. Galam. Sociophysics: a review of Galam models. International Journal of Modern
Physics C, 2008.

11 R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence: models, ana-
lysis and simulation. Journal of Artificial Societies and Social Simulation, 2002.

12 R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting infinite systems
and the voter model. Annals of Probability, 1975.

13 M. O. Jackson. Social and economic networks. Princeton University Press, 2008.
14 D. B. Kandel. Homophily, selection, and socialization in adolescent friendships. American

Journal of Sociology, pages 427–436, 1978.
15 D. Kempe, J. M. Kleinberg, S. Oren, and A. Slivkins. Selection and influence in cultural

dynamics. In ACM Conference on Electronic Commerce (EC), pages 585–586, 2013.
16 G. E. Kreindlera and H. P. Young. The spread of innovations in social networks. Proceedings

of the National Academy of Sciences (PNAS), 2014.
17 T. LaFond and J. Neville. Randomization tests for distinguishing social influence and

homophily effects. 19th International World Wide Web Conference, pages 601–610, 2010.
18 J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient descent only converges to

minimizers. Conference on Learning Theory (COLT), 2016.
19 R. Mehta, I. Panageas, and G. Piliouras. Natural selection as an inhibitor of genetic

diversity: Multiplicative weights updates algorithm and a conjecture of haploid genetics.
Innovations in Theoretical Computer Science (ITCS), 2015.

20 R. Mehta, I. Panageas, G. Piliouras, P. Tetali, and V. V. Vazirani. Mutation, sexual
reproduction and survival in dynamic environments. Innovations in Theoretical Computer
Science (ITCS), 2017.

21 A. Montanari and A. Saberi. The spread of innovations in social networks. Proceedings of
the National Academy of Sciences (PNAS), 2010.

22 E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of information
in social networks. In Autonomous Agents and Multi-Agent Systems (AAMAS), 2013.

23 I. Panageas and G. Piliouras. Average case performance of replicator dynamics in potential
games via computing regions of attraction. ACM Conference on Economics and Computa-
tion (EC), 2016.

ICALP 2017

140:14 Opinion Dynamics in Networks: Convergence, Stability and Lack of Explosion

24 I. Panageas and G. Piliouras. Gradient descent only converges to minimizers: Non-isolated
critical points and invariant regions. Innovations in Theoretical Computer Science (ITCS),
2017.

25 L. Perko. Differential Equations and Dynamical Systems. Springer, 3nd. edition, 1991.
26 K. Poole and H. Rosenthall. Patterns of congressional voting. American Journal of Political

Science, pages 228–278, 1978.
27 Y. Rabinovich, A. Sinclair, and A. Widgerson. Quadratic dynamical systems. Proc 23rd

IEEE Symp Foundations of Computer Science, pages 304–313, 1992.
28 M. Shub. Global Stability of Dynamical Systems. Springer-Verlag, 1987.
29 A. Sîrbu, V. Loreto, V. Domenico P. Servedio, and F. Tria. Opinion dynamics: models,

extensions and external effects. CoRR, abs/1605.06326, 2016.

Hardness of Computing and Approximating
Predicates and Functions with Leaderless
Population Protocols∗

Amanda Belleville1, David Doty2, and David Soloveichik3

1 Computer Science, University of California, Davis, CA, USA
acbelleville@ucdavis.edu

2 Computer Science, University of California, Davis, CA, USA
doty@ucdavis.edu

3 Electrical and Computer Engineering, University of Texas, Austin, TX, USA
david.soloveichik@utexas.edu

Abstract
Population protocols are a distributed computing model appropriate for describing massive num-
bers of agents with very limited computational power (finite automata in this paper), such as
sensor networks or programmable chemical reaction networks in synthetic biology. A population
protocol is said to require a leader if every valid initial configuration contains a single agent in a
special “leader” state that helps to coordinate the computation. Although the class of predicates
and functions computable with probability 1 (stable computation) is the same whether a leader
is required or not (semilinear functions and predicates), it is not known whether a leader is ne-
cessary for fast computation. Due to the large number of agents n (synthetic molecular systems
routinely have trillions of molecules), efficient population protocols are generally defined as those
computing in polylogarithmic in n (parallel) time. We consider population protocols that start
in leaderless initial configurations, and the computation is regarded finished when the population
protocol reaches a configuration from which a different output is no longer reachable.

In this setting we show that a wide class of functions and predicates computable by population
protocols are not efficiently computable (they require at least linear time), nor are some linear
functions even efficiently approximable. It requires at least linear time for a population protocol
even to approximate division by a constant or subtraction (or any linear function with a coefficient
outside of N), in the sense that for sufficiently small γ > 0, the output of a sublinear time protocol
can stabilize outside the interval f(m)(1± γ) on infinitely many inputs m. In a complementary
positive result, we show that with a sufficiently large value of γ, a population protocol can
approximate any linear f with nonnegative rational coefficients, within approximation factor γ,
in O(logn) time. We also show that it requires linear time to exactly compute a wide range of
semilinear functions (e.g., f(m) = m if m is even and 2m if m is odd) and predicates (e.g., parity,
equality).

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases population protocol, time lower bound, stable computation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.141

∗ The first two authors were supported by NSF grant 1619343 and the third author by NSF grant 1618895.

EA
T

C
S

© Amanda Belleville, David Doty, and David Soloveichik;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 141; pp. 141:1–141:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.141
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

141:2 Hardness of Computing with Leaderless Population Protocols

1 Introduction

Population protocols were introduced by Angluin, Aspnes, Diamadi, Fischer, and Peralta[3]
as a model of distributed computing in which the agents have very little computational power
and no control over their schedule of interaction with other agents. They can be thought
of as a special case of a model of concurrent processing introduced in the 1960s, known
alternately as vector addition systems[16], Petri nets[19], or commutative semi-Thue systems
(or, when all transitions are reversible, “commutative semigroups”)[9, 17]. As well as being
an appropriate model for electronic computing scenarios such as sensor networks, they are a
useful abstraction of “fast-mixing” physical systems such as animal populations[22], gene
regulatory networks[8], and chemical reactions.

The latter application is especially germane: several recent wet-lab experiments demon-
strate the systematic engineering of custom-designed chemical reactions [23, 12, 7, 20],
unfortunately in all cases having a cost that scales linearly with the number of unique chem-
ical species (states). (The cost can even be quadratic if certain error-tolerance mechanisms
are employed [21].) Thus, it is imperative in implementing a molecular computational system
to keep the number of distinct chemical species at a minimum. On the other hand, it is
common (and relatively cheap) for the total number of such molecules (agents) to number
in the trillions in a single test tube. It is thus important to understand the computational
power enabled by a large number of agents n, where each agent has only a constant number
of states (each agent is a finite state machine).

A population protocol is said to require a leader if every valid initial configuration
contains a single agent in a special “leader” state that helps to coordinate the computation.
Studying computation without a leader is important for understanding essentially distributed
systems where symmetry breaking is difficult. Further, in the chemical setting obtaining
single-molecule precision in the initial configuration is difficult. Thus, it would be highly
desirable if the population protocol did not require an exquisitely tuned initial configuration.

1.1 Introduction to the model
A population protocol is defined by a finite set Λ of states that each agent may have, together
with a transition function1 δ : Λ2 → Λ2. A configuration is a nonzero vector c ∈ NΛ

describing, for each s ∈ Λ, the count c(s) of how many agents are in state s. By convention
we denote the number of agents by n = ‖c‖ =

∑
s∈Λ c(s). Given states r1, r2, p1, p2 ∈ Λ, if

δ(r1, r2) = (p1, p2) (denoted r1, r2 → p1, p2), and if a pair of agents in respective states r1
and r2 interact, then their states become p1 and p2.2 The next pair of agents to interact
is chosen uniformly at random. The expected (parallel) time for any event to occur is the
expected number of interactions, divided by the number of agents n. This measure of time is
based on the natural parallel model where each agent participates in a constant number of
interactions in one unit of time; hence Θ(n) total interactions are expected per unit time [5].

The most well-studied population protocol task is computing Boolean-valued predicates.
It is known that a protocol stably decides a predicate φ : Nk → {0, 1} (meaning computes

1 Some work allows nondeterministic transitions, in which the transition function maps to subsets of
Λ × Λ. Our results are independent of whether transitions are nondeterministic, and we choose a
deterministic, symmetric transition function, rather than a more general relation δ ⊆ Λ4, merely for
notational convenience.

2 In the most generic model, there is no restriction on which agents are permitted to interact. If one
prefers to think of the agents as existing on nodes of a graph, then it is the complete graph Kn for a
population of n agents.

A.C. Belleville, D. Doty, and D. Soloveichik 141:3

the correct answer with probability 1; see Section 6 for a formal definition) if [3] and only
if [4] φ is semilinear.

Population protocols can also compute integer-valued functions f : Nk → N. Suppose
we start with m ≤ n/2 agents in “input” state x and the remaining agents in a “quiescent”
state q. Consider the protocol with a single transition rule x, q → y, y. Eventually exactly
2m agents are in the “output” state y, so this protocol computes the function f(m) = 2m.
Furthermore (letting #s = count of state s), if #q − 2m = Ω(n) initially (e.g., #q = 3m),
then it takes Θ(logn) expected time until #y = 2m. Similarly, the transition rule x, x→ y, q

computes the function f(m) = bm/2c, but exponentially slower, in expected time Θ(n). The
transitions x1, q → y, q and x2, y → q, q compute f(m1,m2) = m1−m2 (assuming m1 ≥ m2),
also in time Θ(n) if m1 = m2 +O(1).

Formally, we say a population protocol stably computes a function f : Nk → N if, for every
“valid” initial configuration i ∈ NΛ representing input m ∈ Nk (via counts i(x1), . . . , i(xk)
of “input” states Σ = {x1, . . . , xk} ⊆ Λ) with probability 1 the system reaches from i to o
such that o(y) = f(m) (y ∈ Λ is the “output” state) and o′(y) = o(y) for every o′ reachable
from o (i.e., o is stable). Defining what constitutes a “valid” initial configuration (i.e., what
non-input states can be present initially, and how many) is nontrivial. In this paper we focus
on population protocols without a leader—a state present in count 1, or small count—in
the initial configuration. Here, we equate “leaderless” with initial configurations in which no
positive state count is sublinear in the population size n.

It is known that a function f : Nk → N is stably computable by a population protocol if
and only if its graph {(m, f(m)) |m ∈ Nk} ⊂ Nk+1 is a semilinear set [4, 11]. This means
intuitively that it is piecewise affine, with each affine piece having rational slopes.

Despite the exact characterization of predicates and functions stably computable by
population protocols, we still lack a full understanding of which of the stably computable (i.e.,
semilinear) predicates and functions are computable quickly (say, in time polylogarithmic
in n) and which are only computable slowly (linear in n). For positive results, significantly
more is known about time to convergence [5] with a leader (time to reach a configuration
with the correct answer). In this paper we shed new light on time to stabilization without a
leader (time to reach a configuration from which the answer is guaranteed to remain correct).

1.2 Contributions
Definition of function computation and approximation. We formally define computation
and approximation of functions f : Nk → N for population protocols. This mode of
computation was discussed briefly in the first population protocols paper[3, Section 3.4],
which focused more on Boolean predicate computation, and it was defined formally in the
more general model of chemical reaction networks[11, 13]. Some subtle issues arise that are
unique to population protocols. We also formally define a notion of function approximation
with population protocols, which has its own issues.

Inapproximability of most linear functions with sublinear time and sublinear error. Recall
that the transition rule x, x → y, q computes f(m) = bm/2c in linear time. Consider the
transitions a, x→ b, y and b, x→ a, q, starting with #x = m, #a = γm for some 0 < γ < 1,
and #y = #q = 0 (so n = m+γm total agents). Then eventually #y ∈ {m/2, . . . ,m/2+γm}
and #x = 0 (stabilizing #y), after O(1

γ logn) expected time. (This is analyzed in more
detail in Section 5.) Thus, if we tolerate an error linear in n, then f can be approximated in
logarithmic time. However, Theorem 4.1 shows this error bound to be tight: any leaderless
population protocol that approximates f(m) = bm/2c, or any other linear function with a

ICALP 2017

141:4 Hardness of Computing with Leaderless Population Protocols

coefficient outside of N (such as b4m/3c or m1 −m2), requires at least linear time to achieve
sublinear error.

As a corollary, such functions cannot be stably computed in sublinear time (since
computing exactly is the same as approximating with zero error). Conversely, it is simple to
show that any linear function with all coefficients in N is stably computable in logarithmic
time (Observation 5.1). Thus we have a dichotomy theorem for the efficiency (with regard to
stabilization) of computing linear functions f by leaderless population protocols: if all of
f ’s coefficients are in N, then it is computable in logarithmic time, and otherwise it requires
linear time.

Approximability of nonnegative rational-coefficient linear functions with logarithmic time
and linear error. Theorem 4.1 says that no linear function with a coefficient outside of
N can be stably computed with sublinear time and sublinear error. In a complementary
positive result, Theorem 5.2, by relaxing the error to linear, and restricting the coefficients
to be nonnegative rationals (but not necessarily integers), we show how to approximate any
such linear function in logarithmic time. (It is open if m1 −m2 can be approximated with
linear error in logarithmic time.)

Uncomputability of many nonlinear functions in sublinear time. What about non-linear
functions? Theorem 3.1 states that sublinear time computation cannot go much beyond
linear functions with coefficients in N. We show any function computable in sublinear time is
eventually-N-linear, which we define to be linear with nonnegative integer coefficients on all
sufficiently large inputs. Examples of non-eventually-N-linear functions, that provably cannot
be computed in sublinear time, include f(m1,m2) = min(m1,m2) (computable slowly via
x1, x2 → y, q), and f(m) = m− 1 (computable slowly via x, x→ x, y).

The only remaining semilinear functions whose asymptotic time complexity remains
unknown are those “piecewise linear” functions that switch between pieces only near the
boundary of Nk; for example, f(m) = 0 if m ≤ 3 and f(m) = m otherwise.

Undecidability of many predicates in sublinear time. Every semilinear predicate φ : Nk →
{0, 1} is stably decidable in O(n) time [5]. Some, such as φ(m) = 1 iff m ≥ 1, are
stably decidable in O(logn) time by a leaderless protocol, in this case by the transition
x, q → x, x, where x “votes” for output 1 and q votes 0. A predicate is eventually constant if
φ(m0) = φ(m1) for all sufficiently large m0,m1. We show that if a leaderless population
protocol stably decides a predicate φ in sublinear time, then φ is eventually constant.
Examples of non-eventually constant predicates include parity (φ(m) = 1 iff m is odd),
majority (φ(m1,m2) = 1 iff m1 ≥ m2), and equality (φ(m1,m2) = 1 iff m1 = m2). It does
not include certain semilinear predicates, such as φ(m) = 1 iff m ≥ 1 (decidable in O(logn)
time) or φ(m) = 1 iff m ≥ 2 (decidable in O(n) time, and no faster protocol is known).

Note that there is a fundamental difficulty in extending the last two stated negative
results to functions and predicates that “do something different only near the boundary of
Nk”. This is because for inputs where one state is present in small count, the population
protocol could in principle use that input as a “leader state”—and no longer be leaderless.

It is possible that the non-eventually constant predicates and non-eventually-N-linear
functions, which cannot be computed in sublinear time in our setting, could be efficiently
computed in the following ways: (1) With an initial leader stabilizing to the correct answer in
sublinear time, (2) Without initial leaders but converging to the correct output in sublinear
time. (3) (With or without a leader) stabilizing to an output in sublinear time but allowing
a small probability of incorrect output.

A.C. Belleville, D. Doty, and D. Soloveichik 141:5

1.3 Related work
Positive results. Angluin, Aspnes, Diamadi, Fischer, and Peralta [3] showed that any
semilinear predicate can be decided in expected parallel time O(n logn), later improved
to O(n) by Angluin, Aspnes, and Eisenstat [5]. More strikingly, the latter paper showed
that if an initial leader is present (a state assigned to only a single agent in every valid
initial configuration), then there is a protocol for φ that converges to the correct answer in
expected time O(log5 n). However, this protocol’s expected time to stabilize is still provably
Ω(n). Chen, Doty, and Soloveichik [11] showed in the related model of chemical reaction
networks (borrowing techniques from the related predicate results [3, 4]) that any semilinear
function (integer-output f : Nk → N) can similarly be computed with expected convergence
time O(log5 n) if an initial leader is present, but again with much slower stabilization time
O(n logn). Doty and Hajiaghayi [13] showed that any semilinear function can be computed
by a chemical reaction network without a leader with expected convergence and stabilization
time O(n). Although the chemical reaction network model is more general, these results
hold for population protocols.

Since efficient computation seems to be helped by a leader, the computational task
of leader election has received significant recent attention. In particular, Alistarh and
Gelashvili [2] showed that in a variant of the model allowing the number of states λn to
grow with the population size n, a protocol with λn = O(log3 n) states can elect a leader
with high probability in O(log3 n) expected time. Alistarh, Aspnes, Eisenstat, Gelashvili,
and Rivest [1] later showed how to reduce the number of states to λn = O(log2 n), at the
cost of increasing the expected time to O(log5.3 n log logn).

Negative results. The first attempt to show the limitations of sublinear time population
protocols, using the more general model of chemical reaction networks, was made by Chen,
Cummings, Doty, and Soloveichik [10]. They studied a variant of the problem in which
negative results are easier to prove, an “adversarial worst-case” notion of sublinear time:
the protocol is required to be sublinear time not only from the initial configuration, but
also from any reachable configuration. They showed that the predicates computable in this
manner are precisely those whose output depends only on the presence or absence of states
(and not on their exact positive counts). Doty and Soloveichik [14] showed the first Ω(n)
lower bound on expected time from valid initial configurations, proving that any protocol
electing a leader with probability 1 takes Ω(n) time.

These techniques were recently improved by Alistarh, Aspnes, Eisenstat, Gelashvili, and
Rivest [1], who showed that even with up to λn = O(log logn) states, any protocol electing a
leader with probability 1 requires nearly linear time: Ω(n/polylog n). They used these tools
to prove time lower bounds for another important computational task: majority (detecting
whether state x1 or x2 is more numerous in the initial population, by stabilizing on a
configuration in which the state with the larger initial count occupies the whole population).

In contrast to these previous results on the specific tasks of leader election and majority,
we obtain time lower bounds for a broad class of functions and predicates, showing “most” of
those computable at all by population protocols, cannot be computed in sublinear time. Since
they all can be computed in linear time, this settles their asymptotic population protocol
time complexity.

Informally, one explanation for our result could be that some computation requires electing
“leaders” as part of the computation, and other computation does not. Since leader election
itself requires linear time as shown in [14], the computation that requires it is necessarily
inefficient. It is not clear, however, how to define the notion of a predicate or function

ICALP 2017

141:6 Hardness of Computing with Leaderless Population Protocols

computation requiring electing a leader somewhere in the computation, but recent work by
Michail and Spirakis helps to clarify the picture [18].

2 Preliminaries

If Λ is a finite set (in this paper, of states, which will be denoted as lowercase Roman
letters with an overbar such as s), we write NΛ to denote the set of functions c : Λ → N.
Equivalently, we view an element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each
coordinate “labeled” by an element of Λ. (By assuming some canonical ordering s1, . . . , sk
of Λ, we also interpret c ∈ NΛ as a vector c ∈ Nk.) Given s ∈ Λ and c ∈ NΛ, we refer to
c(s) as the count of s in c. Let ‖c‖ = ‖c‖1 =

∑
s∈Λ c(s). We write c ≤ c′ to denote that

c(s) ≤ c′(s) for all s ∈ Λ. Since we view vectors c ∈ NΛ equivalently as multisets of elements
from Λ, if c ≤ c′ we say c is a subset of c′. For α > 0, we say that c ∈ Nk is α-dense if, for
all i ∈ {1, . . . , k}, if c(i) > 0, then c(i) ≥ α‖c‖.

It is sometimes convenient to use multiset notation to denote vectors, e.g., {x, x, y}
and {2x, y} both denote the vector c defined by c(x) = 2, c(y) = 1, and c(s) = 0 for all
s 6∈ {x, y}. Given c, c′ ∈ NΛ, we define the vector component-wise operations of addition
c + c′, subtraction c− c′, and scalar multiplication mc for m ∈ N. For a set ∆ ⊂ Λ, we view
a vector c ∈ N∆ equivalently as a vector c ∈ NΛ by assuming c(s) = 0 for all s ∈ Λ \∆.
Write c � ∆ to denote the vector d ∈ N∆ such that c(s) = d(s) for all s ∈ ∆. In this paper,
the floor function b·c : R→ Z is defined to be the integer closest to 0 that is distance < 1
from the input, e.g., b−3.4c = −3 and b3.4c = 3.

We say a function f : Nk → N is eventually-N-affine if there are b, c1, . . . , ck ∈ N and
m0 ∈ N such that for all m ∈ Nk≥m0

, f(m) = b+
∑k
i=1 cim(i). We say a function f : Nk → N

is eventually-N-linear if it is eventually-N-affine with offset b = 0, i.e., if f(0) = 0. We say
the function is N-linear if it is eventually-N-linear with m0 = 0. Similarly, a function is
Q≥0-linear if there are c1, . . . , ck ∈ Q≥0 such that for all m ∈ Nk, f(m) =

∑k
i=1bcim(i)c.

2.1 Population Protocols
A population protocol is a pair P = (Λ, δ), where Λ is a finite set of states and δ : Λ2 → Λ2

is the (symmetric) transition function. A configuration of a population protocol is a vector
c ∈ NΛ, with the interpretation that c(s) agents are in state s ∈ Λ. If there is some “current”
configuration c understood from context, we write #s to denote c(s). By convention,
the value n ∈ Z≥1 represents the total number of agents ‖c‖. A transition is a 4-tuple
τ = (r1, r2, p1, p2) ∈ Λ4, written τ : r1, r2 → p1, p2, such that δ(r1, r2) = (p1, p2). If an agent
in state r1 interacts with an agent in state r2, then they change states to p1 and p2. This
paper typically defines a protocol by a list of transitions, with δ implicit. There is a null
transition δ(r1, r2) = (r1, r2) if a different output for δ(r1, r2) is not specified.

Given c ∈ NΛ and transition τ : r1, r2 → p1, p2, we say that τ is applicable to c if
c ≥ {r1, r2}, i.e., c contains 2 agents, one in state r1 and one in state r2. If τ is applicable
to c, then write τ(c) to denote the configuration c − {r1, r2} + {p1, p2} (i.e., that results
from applying τ to c); otherwise τ(c) is undefined. A finite or infinite sequence of transitions
(τi) is a transition sequence. Given a c0 ∈ NΛ and a transition sequence (τi), the induced
execution sequence (or path) is a finite or infinite sequence of configurations (c0, c1, . . .) such
that, for all i ≥ 1, ci = τi−1(ci−1). If a finite execution sequence, with associated transition
sequence q, starts with c and ends with c′, we write c =⇒q c′. We write c =⇒P c′ (or c =⇒ c′
when P is clear from context) if such a path exists (i.e., it is possible to reach from c to c′)
and we say that c′ is reachable from c. Let postP(c) = {c′ | c =⇒P c′} to denote the set of

A.C. Belleville, D. Doty, and D. Soloveichik 141:7

all configurations reachable from c, writing post(c) when P is clear from context. If it is
understood from context what is the initial configuration i, then say c is simply reachable if
i =⇒ c. If a transition τ : r1, r2 → p1, p2 has the property that for i ∈ {1, 2}, ri 6∈ {p1, p2},
or if (r1 = r2 and (ri 6= p1 or ri 6= p2)), then we say that τ consumes ri; i.e., applying τ
reduces the count of ri. We say τ produces pi if it increases the count of pi.

2.2 Time Complexity
The model used to analyze time complexity is a discrete-time Markov process, whose
states correspond to configurations of the population protocol. In any configuration the next
interaction is chosen by selecting a pair of agents uniformly at random and applying transition
function δ to determine the next configuration. Since a transition may be null, self-loops
are allowed. To measure time we count the expected total number of interactions (including
null), and divide by the number of agents n. (In the population protocols literature, this is
often called “parallel time”; i.e. n interactions among a population of n agents corresponds to
one unit of time). Let c ∈ NΛ and C ⊆ NΛ. Denote the probability that the protocol reaches
from c to some configuration c′ ∈ C by Pr[c =⇒C]. If Pr[c =⇒C] = 1, define the expected
time to reach from c to C, denoted T [c =⇒C], to be the expected number of interactions to
reach from c to some c′ ∈ C, divided by the number of agents n = ‖c‖. If Pr[c =⇒C] < 1
then T [c =⇒C] =∞.

3 Exact computation of nonlinear functions

In Section 4, we obtained a precise characterization of the linear functions stably computable
in sublinear time by population protocols and furthermore show that those not exactly
computable in sublinear time are not even approximable with sublinear error in sublinear
time. However, the class of functions stably computable (in any amount of time) by population
protocols is known to contain non-linear functions such as f(m1,m2) = max(m1,m2), or
f(m) = m if m is even and f(m) = 2m if m is odd. In fact a function is stably computable
by a population protocol if and only if its graph {(m, f(m)) | m ∈ Nk} is a semilinear
set [4, 11]. A set A ⊆ Nk is semilinear if and only if [15] it is expressible as a finite
number of unions, intersections, and complements of sets of one of the following two forms:
threshold sets of the form {x |

∑k
i=1 ai · x(i) < b} for some constants a1, . . . , ak, b ∈ Z or

mod sets of the form {x |
∑k
i=1 ai · x(i) ≡ b mod c} for some constants a1, . . . , ak, b, c ∈ N.

Say that a set P ⊆ Nk is a periodic coset if there exist b,p1, . . . ,pl ∈ Nk such that
P = {b + n1p1 + . . .+ nlpl | n1, . . . , nl ∈ N}. (These are typically called “linear” sets, but
we wish to avoid confusion with linear functions.) Equivalently, a set is semilinear if and
only if it is a finite union of periodic cosets. We say a function f : Nk → N is semilinear if its
graph {(m, f(m)) |m ∈ Nk} ⊂ Nk+1 is a semilinear set. A function f is stably computable
by a population protocol (given unbounded time) if and only if f is semilinear [11, 4].

Although our technique fails to completely characterize the efficient computability of
all semilinear functions, we show that a wide class of semilinear functions cannot be stably
computed in sublinear time: functions that are not eventually N-linear. The only exceptions,
for which we cannot prove linear time is required, yet neither is there known a counterexample
protocol stably computing the function in sublinear time, are functions whose “non-integral-
linearities are near the boundary of Nk”. For example, the function f(m) = 0 if m ≤ 3 and
f(m) = m otherwise is non-linear (although it is semilinear, so stably computable), but
restricted to the domain of inputs > 3, it is linear with positive integer coefficients. Thus it
is an example of a function whose “population protocol time complexity” is unknown.

ICALP 2017

141:8 Hardness of Computing with Leaderless Population Protocols

Corollary 4.2 and Observation 5.1 imply that a linear function is stably computable in
sublinear time by a population protocol if and only if it is N-linear. Theorem 3.1 generalizes
the forward direction (restricted to nonlinear functions) to eventually-N-linear functions.

We first give a formal definition of function computation by population protocols. A
function-computing population protocol is a tuple C = (Λ, δ,Σ, y, q), where (Λ, δ) is a popu-
lation protocol, Σ = {x1, . . . , xk} ⊂ Λ is the set of input states, y ∈ Λ is the output state,
and q ∈ Λ \ Σ is the quiescent state. We say that a configuration o ∈ NΛ is stable if, for all
o′ ∈ post(o), o(y) = o′(y), i.e., the count of y cannot change once o is reached.

Let f : Nk → N, i ∈ NΛ, and let m = i � Σ. We say that C stably computes f from i if,
for all c ∈ post(i), there exists a stable o ∈ post(c) such that o(y) = f(m), i.e., C stabilizes
to the correct output from the initial configuration i. However, for any input m ∈ Nk, there
are many initial configurations i ∈ NΛ representing it (i.e., such that i � Σ = m). We now
formalize what sort of initial configurations C is required to handle.

We say a function q0 : Nk → N is linearly bounded if there is a constant c ∈ N such
that, for all m ∈ Nk, q0(m) ≤ c‖m‖. We say that C stably computes f if there is a linearly
bounded function q0 : Nk → N such that, for any i ∈ NΛ, defining m = i � Σ, if i(q) ≥ q0(m)
and i(s) = 0 for all s ∈ Λ \ (Σ ∪ {q}), then C stably computes f from i. It is well-known[6]
that this is equivalent to requiring, under the randomized model in which the next interaction
is between a pair of agents picked uniformly at random, that the protocol stabilizes on the
correct output with probability 1. More formally, given f : Nk → N and m ∈ Nk, defining
SCf,m = {o ∈ NΛ | o is stable and o(y) = f(m)}, C stably computes f if and only if, for
all m, defining i with i � Σ = m as above with i(q) sufficiently large, Pr

[
i =⇒SCf,m

]
= 1.

It is also equivalent to requiring that every fair infinite execution leads to a correct stable
configuration, where an execution is fair if every configuration infinitely often reachable
appears infinitely often in the execution. We say that an initial configuration i so defined is
valid. Since all semilinear functions are linearly bounded [11], a linearly bounded q0 suffices
to ensure there are enough agents to represent the output of a semilinear function, even if
we choose i(q) = q0(i � Σ). If q0 were not linearly bounded, and thus a super-linear count
of state q is required, we would essentially need to do non-semilinear computation just to
initialize the population protocol.

Let f : Nk → N and t : N→ N. Given a function-computing population protocol C that
stably computes f , we say C stably computes f in expected time t if, for all valid initial
configurations i of C, letting m = i � Σ, T

[
i =⇒SCf,m

]
≤ t(n).

I Theorem 3.1. Let f : Nk → N, and let C be a function-computing population protocol that
stably computes f . If f is not eventually-N-linear then C takes expected time Ω(n).

Techniques developed in previous work for proving time lower bounds [14, 1] can certainly
generalize beyond leader election and majority, although it was not clear what precise
category of computation they cover. However, to extend the impossibility results to all not
eventually-N-linear functions, we needed to develop new tools.

Both in prior and current work, the high level intuition of the proof technique is as follows.
The overall argument is a proof by contradiction: if sublinear time computation is possible
then we find a nefarious execution sequence which stabilizes to an incorrect output. In more
detail, sublinear time computation requires avoiding “bottlenecks”—having to go through
a transition in which both states are present in small count (constant independent of the
number of agents n). Traversing even a single such transition requires linear time. Technical
lemmas show that bottleneck-free execution sequences from α-dense initial configurations
(i.e., initial configurations where every state that is present is present in at least αn count)

A.C. Belleville, D. Doty, and D. Soloveichik 141:9

are amenable to predictable “surgery” [14, 1]. At the high level, the surgery lemmas show
how states that are present in “low” count when the population protocol stabilizes, can
be manipulated (added or removed) such that only “high” count other states are affected.
Since it can also be shown that changing high count states in a stable configuration does
not affect its stability, this means that the population protocol cannot “notice” the surgery,
and remains stabilized to the previous output. For leader election, the surgery allows one to
remove an additional leader state (leaving us with no leaders). For majority computation [1],
the input in the minority must be present in low count (or absent) at the end. This allows
one to add enough of the minority input to turn it into the majority, while the protocol
continues to output the wrong answer.

However, applying the previously developed surgery lemmas to fool a more general
function computing population protocol is more difficult. The surgery to consume additional
input states affects the count of the output state, which could be present in “large count” at
the end. How do we know that the effect of the surgery on the output is not consistent with
the desired output of the function? In order to arrive at a contradiction we develop two new
techniques, both of which are necessary to cover all cases. The first involves showing that
the slope of the change in the count of the output state as a function of the input states
is inconsistent. The second involves exposing the semilinear structure of the graph of the
function being computed, and forcing it to enter the “wrong piece” (i.e., periodic coset).

4 Sublinear-time, sublinear-error approximation of linear functions
with negative or non-integer coefficients is impossible

A function-approximating population protocol is a tuple A = (Λ, δ,Σ, y, q, a), where
(Λ, δ,Σ, y, q) is a function-computing population protocol and a ∈ Λ \ (Σ ∪ {y, q}) is the
approximation state. Let ε, τ ∈ N; intuitively τ represents the “target” (or “true”) function
output, and ε represents the allowed approximation error. We say that a configuration
o ∈ NΛ is ε-τ -correct if |o(y)− τ | ≤ ε.

Let f : Nk → N, ε ∈ N, i ∈ NΛ, and let m = i � Σ. We say that A stably ε-approximates
f from i if, for all c ∈ post(i), there exists a o ∈ post(c) that is stable and ε-f(m)-correct,
i.e., from the initial configuration i, A gets the output to stabilize to a value at most ε from
the correct output. Let SAf,m,ε = {o ∈ NΛ | o is stable and ε-f(m)-correct }. Note that A
stably ε-approximates f from i if and only if Pr

[
i =⇒SAf,m,ε

]
= 1.

Let E : N→ N; the choice of E as a function instead of a constant reflects the idea that
the approximation error is allowed to depend on the initial count i(a) of the approximation
state a, i.e., E(i(a)) is the desired approximation error. We say that A stably E-approximates
f if there are a0 ∈ N and linearly bounded q0 : Nk+1 → N such that, for any i ∈ NΛ, defining
m = i � Σ, if i(a) ≥ a0, i(q) ≥ q0(m, i(a)), and i(s) = 0 for all s ∈ Λ \ (Σ ∪ {q, a}), then A
stably E(i(a))-approximates f from i.3 An initial configuration i so defined is valid.

As we consider leaderless population protocols, we need to make sure that a does not
act as a small count “leader”. Consistent with the rest of this paper, we reason about initial
configurations with i(a) ≥ αn for some α > 0 to ensure α-density.

Let f : Nk → N. In defining running time for function-approximating population
protocols, we express the expected time as a function of both the total number of agents

3 I.e., the initial count i(a) can influence the initial required count i(q), since adding more initial a may
imply that more quiescent agents are required as “fuel”. However, a0 is constant, not a function of m.

ICALP 2017

141:10 Hardness of Computing with Leaderless Population Protocols

n = ‖i‖ and the initial count i(a) of approximation states. Let E : N→ N and t : N2 → N.
Given a function-approximating population protocol A that E-approximates f , we say A
E-approximates f in expected time t if, for all valid initial configurations i of A, letting
m = i � Σ, T

[
i =⇒SAf,m,E(i(a))

]
≤ t(n, i(a)).

The following theorem states that given any linear function f and any population protocol
P, if f has a non-integer or negative coefficient, then P requires at least linear time to
approximate f with sublinear error. It states this by contrapositive: if the protocol takes
sublinear time, then the error E : N→ N must grow at least linearly with the initial count of
approximation state a. In particular, the initial configurations i (letting n = ‖i‖) on which
our argument maximizes the error have i(a) = Ω(n). Thus, the fact that E(a) ≥ γa implies
that on these i, the error is Ω(n).

I Theorem 4.1. Let f : Nk → N be a linear function that is not N-linear. Let E : N→ N. Let
A be a function-approximating population protocol that stably E-approximates f in expected
time t, where for some α > 0, t(n, αn) = o(n). Then there is a constant γ > 0 such that, for
infinitely many a ∈ N, E(a) ≥ γa.

A protocol stably computing f also stably E-approximates f for E(a) = 0, so we have:

I Corollary 4.2. Let f : Nk → N be a linear function f(m) =
∑k
i=1bcim(i)c, where ci 6∈ N

for some i ∈ {1, . . . , k}. Let C be a function-computing population protocol that stably
computes f . Then C takes expected time Ω(n).

This gives a complete classification of the asymptotic efficiency of computing linear
functions f(m) =

∑k
i=1bcim(i)c with population protocols. If ci ∈ N for all i ∈ {1, . . . , k},

then f is stably computable in logarithmic time by Observation 5.1. Otherwise, f requires
linear time to stably compute by Corollary 4.2.

5 Logarithmic-time, linear-error approximation of linear functions
with nonnegative rational coefficients is possible

It is easy to see that any N-linear function f can be stably computed in logarithmic time.
Recall that x, q → y, y stably computes f(m) = 2m in expected time O(logn). The extension
to larger coefficients and multiple inputs is routine:

I Observation 5.1. Let f : Nk → N be an N-linear function. There is a function-computing
population protocol that stably computes f in expected time O(logn).

We now describe how to stably approximate linear functions with nonnegative rational
coefficients, i.e., Q≥0-linear functions, with a linear approximation error, in logarithmic
time. (It is open to do this for negative coefficients, e.g., f(m1,m2) = m1 −m2). Recall the
following simple example of a population protocol that approximately divides by 2 (that
is, with probability 1 it outputs a value guaranteed to be a certain distance to the correct
output), with a linear approximation error, and is fast (O(logn) time) with initial counts
#x = m, #a = γm, and #q = #y = 0:

a, x→ b, y

b, x→ a, q

which stabilizes #y to somewhere in the interval {m/2,m/2 + 1, . . . ,m/2 + γm}.

A.C. Belleville, D. Doty, and D. Soloveichik 141:11

To see that the protocol is correct, note that the transition sequence can make #y closer
to one endpoint of the interval or the other depending on which transitions are chosen to
consume the last γm of x, but no matter what, the first transition executes at least as many
times as the second, but not more than γm times more.

If #a = 1 initially, the above protocol stably computes bm/2c (taking linear time just for
the last transition; and in total takes Θ(n logn) time, by a coupon collector argument).

To see that the protocol takes O(logn) time if #a = γm initially, note n = m+γm ≤ 2m.
Observe that #a + #b = γm in any reachable configuration. Thus the probability any
given interaction is one of the above two transitions is ≈ γm#x

n2 , so the expected number of
interactions until such a transition occurs is n2

γm#x . After m such transitions occur, all the
input x is gone and the protocol stabilizes, which by linearity of expectation takes expected
number of interactions

m∑
#x=1

n2

γm#x = n2

γm

m∑
#x=1

1
#x ≈

n2

γm
lnm ≤ n2

γn/2 lnn = 2n
γ

lnn,

i.e., expected parallel time 2
γ lnn. Thus this shows a tradeoff between accuracy and speed in

a single protocol, adjustable by the initial count of a. In this case, the approximation error
increases, and the expected time to stabilization decreases, with increasing initial #a.

More generally, we can prove the following. In particular, if a = Ω(n), then t(n, a) =
O(logn). Also, if a = o(n), then the approximation error is o(n), and if a = ω(logn), then
the expected time is o(n) also. This does not contradict Theorem 4.1 since setting a = o(n)
implies the initial configurations are not all α-dense for a fixed α > 0.

I Theorem 5.2. Let f : Nk → N be a Q≥0-linear function. Let E : N → N be the identity
function. Define t : N2 → N by t(n, a) = n

a logn. Then there is a function-approximating
population protocol A that E-approximates f in expected time O(t).

The basic analysis is similar to the example protocol above, and the extension to rational
coefficients other than 1

2 follows techniques used in similar papers on function computation
with chemical reaction networks [11, 13].

6 Predicate computation

In this section we show that a wide class of Boolean predicates cannot be stably computed
in sublinear time by population protocols (without a leader). Intuitively, this is the class
of predicates φ : Nk → {0, 1} such that for all m ∈ N, there are two inputs m0,m1 ∈ Nk≥m
such that φ(m0) 6= φ(m1). (See the definition of eventually constant below.)

Formally, a predicate-deciding population protocol is a tuple D = (Λ, δ,Σ,Υ1), where
(Λ, δ) is a population protocol, Σ ⊆ Λ is the set of input states, and Υ1 ⊆ Λ is the set
of 1-voters. By convention, we define Υ0 = Λ \ Υ1 to be the set of 0-voters. The output
Φ(c) of a configuration c ∈ NΛ is b ∈ {0, 1} if c(s) = 0 for all s ∈ Υ1−b (i.e., if the vote
is unanimously b); the output is undefined if voters of both types are present. We say
o ∈ NΛ is stable if Φ(o) is defined and for all o′ ∈ post(o), Φ(o′) = Φ(o). For all m ∈ Nk,
define initial configuration im ∈ NΛ by im � Σ = m and im � (Λ \ Σ) = 0. Call such
an initial configuration valid. For any valid initial configuration im ∈ NΛ and predicate
φ : Nk → {0, 1}, let Sim,φ = {o ∈ NΛ | im =⇒o,o is stable, and Φ(o) = φ(m)}. A population
protocol stably decides a predicate φ : Nk → {0, 1} if, for any valid initial configuration
im ∈ NΛ, Pr[im =⇒Sim,φ] = 1. This is equivalent to requiring that for all c ∈ post(im), there
is o ∈ post(c) such that o is stable and Φ(o) = φ(m).

ICALP 2017

141:12 Hardness of Computing with Leaderless Population Protocols

For example, the protocol defined by transitions

x1, x2 → q1, q2

x1, q2 → x1, q1

x2, q1 → x2, q2

q1, q2 → q1, q1

if Υ1 = {x1, q1} and Υ0 = {x2, q2}, decides whether m1 = i(x1) ≥ m2 = i(x2). The first
transition stops once the less numerous input state is gone. If x1 (resp. x2) is left over, then
the second (resp. third) transition converts qi states to its vote. If neither is left over (i.e., if
m1 = m2, requiring output 1), the fourth transition converts all q2 states to q1.

Let φ : Nk → {0, 1}, and for b ∈ {0, 1}, define φ−1(b) = {m ∈ Nk | φ(m) = b} to be
the set of inputs on which φ outputs b. We say φ is eventually constant if there is m0 ∈ N
such that φ is constant on Nk≥m0

= {m ∈ Nk | (∀i ∈ {1, . . . , k}) m(i) ≥ m0}, i.e., either
φ−1(0) ∩ Nk≥m0

= ∅ or φ−1(1) ∩ Nk≥m0
= ∅. In other words, although φ may have an infinite

number of each output, “sufficiently far from the boundary” (where all coordinates exceed
m0), only one output appears.

The following theorem shows that any predicate that is not eventually constant cannot
be stably decided in sublinear time by a population protocol.

I Theorem 6.1. Let φ : Nk → {0, 1} and D be a predicate-deciding population protocol that
stably decides φ. If φ is not eventually constant, then D takes expected time Ω(n).

Alistarh, Aspnes, Eisenstat, Gelashvili, and Rivest [1] showed a linear-time lower bound
on any leaderless population protocol deciding the majority predicate. Recall that their
technique is based on showing that after adding enough of the input in the minority to
change it to the majority, the effect of this addition can be effectively nullified by surgery
of the transition sequence, yielding a stable configuration with the original (now incorrect)
answer. The technique can be extended easily to show various other specific predicates,
such as equality and parity, also require linear time. We use the same technique of finding
pairs of inputs with opposite correct answers and apply a similar transition sequence surgery.
The main difficulty in showing Theorem 6.1, which covers the class of all predicates that
are semilinear but not eventually constant, is to identify a common characteristic that can
be exploited to find pairs of inputs that are α-dense for some α > 0. Here, we rely on
the semilinear structure of the predicate computed. Indeed, note that we cannot find such
α-dense pairs for the predicate φ : N2 → {0, 1} with support {(k, 2k) | k ∈ N}, which is not
eventually constant (but also not semilinear).

7 Open Questions

Time complexity of other functions. What is the optimal time complexity of computing
semilinear functions and predicates not satisfying the hypotheses of Theorems 3.1 and 6.1;
namely the eventually-N-linear functions, (e.g., f(m) = 0 if m < 3 and f(m) = m otherwise)
and eventually-constant predicates (e.g., φ(m) = 1 iff m ≥ 2)?

Stabilization vs convergence. Measuring time to stabilization in the randomized model,
as we do here, measures the expected time until the probability of changing the output
becomes 0. Our proof shows only that stabilization must take expected Ω(n) time. However,
convergence could occur much earlier in a transition sequence than stabilization (we can say

A.C. Belleville, D. Doty, and D. Soloveichik 141:13

a particular transition sequence converged at the point when the output count is the same in
every subsequently reached configuration). We conjecture that similar negative results hold
for convergence for leaderless population protocols. It is also open whether stabilization can
occur in sublinear time, even with an initial leader. The known stably computing protocols
converging in O(log5 n) time [5, 11] provably require expected time Ω(n) to stabilize.

Acknowledgements. We are grateful to Sungjin Im for the proof of an important technical
lemma, and we thank anonymous reviewers for very helpful comments.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in molecular computation. In SODA 2017: Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2017. to appear.

2 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population pro-
tocols. In ICALP 2015: Proceedings of the 42nd International Colloquium on Automata,
Languages, and Programming, Kyoto, Japan, 2015.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael Fischer, and René Peralta. Computa-
tion in networks of passively mobile finite-state sensors. Distributed Computing, 18:235–253,
2006. Preliminary version appeared in PODC 2004. doi:10.1007/s00446-005-0138-3.

4 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC 2006: Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing, pages 292–299, New York, NY, USA, 2006. ACM Press.
doi:10.1145/1146381.1146425.

5 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population pro-
tocols with a leader. Distributed Computing, 21(3):183–199, September 2008. Preliminary
version appeared in DISC 2006.

6 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007.

7 Alexandre Baccouche, Kevin Montagne, Adrien Padirac, Teruo Fujii, and Yannick Rondelez.
Dynamic dna-toolbox reaction circuits: a walkthrough. Methods, 67(2):234–249, 2014.

8 James M Bower and Hamid Bolouri. Computational modeling of genetic and biochemical
networks. MIT press, 2004.

9 E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space complete problems
for Petri nets and commutative semigroups (preliminary report). In STOC 1976: Proceed-
ings of the 8th annual ACM Symposium on Theory of Computing, pages 50–54. ACM, 1976.

10 Ho-Lin Chen, Rachel Cummings, David Doty, and David Soloveichik. Speed faults in
computation by chemical reaction networks. Distributed Computing, 2015. to appear.
Special issue of invited papers from DISC 2014.

11 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, 2014. Preliminary version
appeared in DNA 2012.

12 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

13 David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction networks.
Natural Computing, 14(2):213–223, 2015. Preliminary version appeared in DNA 2013.

14 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. Distributed Computing, 2016. to appear. Special issue of invited papers from
DISC 2015.

ICALP 2017

http://dx.doi.org/10.1007/s00446-005-0138-3
http://dx.doi.org/10.1145/1146381.1146425

141:14 Hardness of Computing with Leaderless Population Protocols

15 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966. URL: http://projecteuclid.org/
euclid.pjm/1102994974.

16 Richard M Karp and Raymond E Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969.

17 Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

18 Othon Michail and Paul G Spirakis. How many cooks spoil the soup? In International Col-
loquium on Structural Information and Communication Complexity, pages 3–18. Springer,
2016.

19 Carl A Petri. Communication with automata. Technical report, DTIC Document, 1966.
20 Niranjan Srinivas. Programming chemical kinetics: Engineering dynamic reaction networks

with DNA strand displacement. PhD thesis, California Institute of Technology, 2015.
21 Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA strand displacement

systems. In DNA 2015: Proceedings of the 21st International Conference on DNA Com-
puting and Molecular Programming, pages 133–153. Springer, 2015.

22 Vito Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi.
Mem. Acad. Lincei Roma, 2:31–113, 1926.

23 David Yu Zhang and Georg Seelig. Dynamic dna nanotechnology using strand-displacement
reactions. Nature chemistry, 3(2):103–113, 2011.

http://projecteuclid.org/euclid.pjm/1102994974
http://projecteuclid.org/euclid.pjm/1102994974

	p000-Frontmatter
	Preface
	Organization

	p001-Bojanczyk
	Introduction
	The running example: register automata
	Mild extensions of register automata
	Minimisation
	More general input alphabets
	Atoms with more structure than just equality

	Definable sets
	Graph reachability for definable sets
	Oligomorphism and orbit-finiteness

	p002-Henzinger
	p002-ZZZ-Blank
	p003-Rubinfeld
	p003-ZZZ-Blank
	p004-Thorup
	p005-Baleshzar
	Introduction
	Formal Statements and Technical Overview
	Overview of Techniques

	Upper Bounds
	The Nonadaptive Tester over the Hypercube
	The Adaptive Tester over the Hypercube
	Extension to Hypergrids

	The Lower Bound for Nonadaptive Testers over Hypercubes
	The Hard Distributions
	From Functions to Signed Graphs that are Hard to Distinguish
	Proving Theorem 3.4: Good and Bad Events
	Bounding the Probability of Bad Events: Proof of Theorem 3.9

	p006-Even
	Introduction
	Preliminaries
	Queries and On-the-Fly Generators
	Random Graph Models
	The Pointers Tree
	An efficient implementation of next-child
	Analysis of the pointer tree generator
	Data structures and space complexity
	Time complexity
	Randomness complexity

	On-the-fly Generator for BA-Graphs

	p006-ZZZ-Blank
	p007-Ron
	Introduction
	Results
	From degeneracy to moment estimation
	Designing the algorithm
	Simplicity of our algorithm
	Other related work

	The main theorem
	Sufficient conditions for r and q in Moment-estimator
	Conditions on the parameters r and q

	Satisfying Conditions 1 and 2 in general graphs
	The Degeneracy Connection
	Wrapping things up

	p007-ZZZ-Blank
	p008-Diakonikolas
	Introduction
	Our Results and Comparison to Prior Work
	Related Work
	Overview of Techniques

	A Near-Optimal Closeness Tester over Discrete Domains
	Warmup: A Simpler Algorithm
	Full Algorithm

	Nearly Matching Information-Theoretic Lower Bound

	p008-ZZZ-Blank
	p009-Ben-Eliezer
	Introduction
	Related Work
	Notation and definitions
	Main Results
	Modification Lemma
	From Deletion to Testing
	Discussion and Open Questions

	p010-Albers
	Introduction
	The Formal Framework
	Prohibition versus Penalties
	Computing Motivating Cost Configurations
	Approximating Motivating Cost Configurations
	Conclusion

	p011-Chen
	Introduction
	Main Results
	Related Work

	The Online Dispersion Problem
	The 1-Dimensional Online All-Time Worst-Case Problem
	The Lower Bound
	A Polynomial-Time Online Algorithm

	The 2-Dimensional Online All-Time Worst-Case Problem
	The Lower Bound
	A Polynomial-Time Online Algorithm

	The General k-Dimensional Online ATWC Problem
	The General k-Dimensional Offline CD Problem

	p011-ZZZ-Blank
	p012-Nagarajan
	Introduction
	Our Results and Techniques
	Related Work

	Preliminaries
	Algorithm and analysis
	Applications
	Online Buy-at-Bulk Network Design
	Throughput Maximization with ell-p-norm Capacities

	p013-Bienkowski
	Introduction
	The Model
	Previous Work
	Our Contribution
	Other Related Work

	4-Competitive Algorithm Dynamic-Local-Min
	Notation
	Algorithm definition
	DLM Analysis
	Proof for a short phase
	Proof for a long phase

	Lower Bound for Phase-Based Algorithms
	Linear Program for File Migration
	LP analysis of MTLM-like algorithms
	LP analysis of DLM-like algorithms

	Conclusions

	p014-Coester
	Introduction
	Previous Work
	Our Results
	Preliminaries

	Equivalence of Infinite Servers and Weak Adversaries
	Upper and Lower Bounds
	Weighted Trees
	Non-Discrete Spaces and Spaces with Small Infinite Subspaces
	Layered Graphs

	Algorithms with Unbounded Competitive Ratio
	Reduction to Bounded Spaces
	Open Problems

	p015-Kindler
	Introduction
	Classical and quantum automata
	Outline of the proof
	Intuition for Theorem 5

	The last step: proof of Theorem 7

	p016-Backens
	Introduction
	Holant problems
	Signature grids in terms of vectors
	Reductions

	Existing results about the Holant problem
	Holant*
	Holantc
	Other Holant problems
	Results about ternary symmetric signatures

	The quantum state perspective on signature grids
	Entanglement and its classification
	The existing results in the quantum picture

	Holant+
	Why these free signatures?
	The dichotomy theorem
	Symmetrising ternary signatures
	Constructing binary signatures
	Sketch of the hardness proof

	Conclusions

	p017-Cleve
	Introduction
	Previous work
	New results

	Brief summary of novel techniques
	The standard LCU method performs poorly on Stinespring dilations

	New LCU method for channels and completely positive maps
	Overview of the main result, Theorem 1
	Cost of expressing Lindblad evolution as Hamiltonian evolution

	p018-Dohotaru
	Introduction
	Controlled quantum amplification
	Quantum hitting times
	Finding in the quantum hitting time
	Finding in the quantum hitting time for general A

	Finding with multiple targets
	Faster algorithms for a unique marked element
	Simulation of quantum interpolated walks
	Concluding remarks
	A lemma

	p018-ZZZ-Blank
	p019-Jayaram
	Introduction
	Results & Techniques

	Linear Grammar Edit Distance in Quadratic Time
	Context Free Language Edit Distance
	Context Free Language Edit Distance Approximation
	Analysis

	p019-ZZZ-Blank
	p020-Krauthgamer
	Introduction
	Prior Work
	Our Contribution

	Reduction to Multiple-Pairs Metafontwith Unit Capacity
	Reduction to Multiple-Pairs Metafontin Capacitated Networks
	Global Max-Flow

	p020-ZZZ-Blank
	p021-Kunnemann
	Introduction
	Preliminaries
	Static LWS
	LowRankLWS
	Coin Change and Knapsack Problems
	Chain LWS
	Open Problems

	p021-ZZZ-Blank
	p022-Cygan
	Introduction
	Hardness in P
	Hardness of MinConv

	Problem definitions and known results
	3SUM
	MinConv
	Knapsack
	Other problems related to MinConv

	New results summary
	Preliminaries
	Main reductions
	Other problems related to MinConv
	Maximum consecutive subsums problem
	Tree Sparsity
	l -infinity-Necklace Alignment

	Conclusions and future work

	p022-ZZZ-Blank
	p023-Bury
	Introduction
	Preliminaries
	Hardness of Binary Jaccard Center
	Core-Covers
	A PTAS for Binary Jaccard Center
	An FPT Algorithm for Binary Jaccard Center
	A Note on Continuous Jaccard Center

	p024-Almagor
	Introduction
	Mathematical Tools
	Algebraic numbers
	First-order theory of the reals
	Polytopes and their representation

	From 3DPCP to a System of Inequalities
	Intersection of polytopes
	Reduction to the invertible case
	From the invertible case to an equation system

	Solving the System
	The case where alpha/|alpha| is a root of unity
	The case where alpha/|alpha| is not a root of unity

	Conclusions
	Proof of Theorem 1
	Discussion

	p025-Gold
	Introduction
	Preliminaries
	Dynamic Time Warping in Subquadratic Time

	p026-Blelloch
	Introduction
	Preliminaries and Notations
	An Approximate SSSP Algorithm
	Algorithm Details

	The Dominance Sequence
	Definition
	Efficient FRT tree construction based on the dominance sequences
	Expected Stretch Bound
	Efficient construction of approximate dominance sequences

	An Application of FRT-Embedding: Ramsey Partitions and Distance Oracles

	p027-Galanis
	Introduction
	Definitions and Statement of Main Result
	Overview of the Proof of Theorem 6
	Pinning, equality and simulating functions
	Supporting pinning and equality
	Realising conditional distributions induced by pinning and equality
	Simulating hard functions and inapproximability results

	Proof Sketch
	A partial sketch of the proof of Theorem 17

	p028-Galanis
	Introduction
	Proof outline and organisation

	Proof of Theorem 1
	The hard-core model with non-uniform activities
	Antiferromagnetic 2-spin systems on Delta-regular graphs
	The reduction & Proof of Theorem 1

	Proof of Lemma 4
	The case where the partition function of some tree is zero

	p028-ZZZ-Blank
	p029-Lin
	Introduction
	Preliminaries
	Functions and Signatures
	Holographic Reductions
	Realizability
	Weighted Counting CSP

	Decomposition
	When A Non-trivial Equality Function Appears
	P-transformability
	On Special Functions of Arity 4
	The Dichotomy
	The Block-rank-one Condition Captures the Dichotomy
	Balance
	Proof Sketch of Lemma 18

	Conclusion

	p030-Galicki
	Introduction
	Preliminaries and notation
	Dyadic cubes in R-n, 1/3-shift trick
	Binary expansion of elements in R-n
	Polynomial time computability and p-randomness
	Martingales-measures correspondence and derivatives

	p-porosity
	p-porosity and polynomial time computable martingales

	Polynomial-time Rademacher's theorem
	Overview of the proof
	Invariance of p-randomness under linear isometries computable in polynomial time
	Betting on epsilon-oscillation points of M-Omega
	A technical lemma
	Invariance theorems

	Existence of directional derivatives
	Linearity of directional derivatives

	p030-ZZZ-Blank
	p031-Antoniadis
	Introduction
	General Scheduling Problem and UFP-Cover
	Our Contribution
	Other related work

	QPTAS for GSP with identical release dates
	Tree profiling and grouping of jobs
	Fixing the demand deficit
	Left subproblem

	Agreeable Instances
	Preprocessing & Preliminary Observations
	Solving a subinstance with only one interval

	p032-Linhares
	Introduction
	Preliminaries
	The tree knapsack problem
	MST interdiction
	Improvement to the guarantee stated in Theorem 7
	Lower bound on the approximation ratio achievable relative to UB

	Extension to metric-TSP interdiction
	Maximum-spanning-tree interdiction

	p033-Kohler
	Introduction
	Further Related Work
	The Model

	The Algorithm
	Analysis
	Analyzing Block Cost
	Analyzing Connection Cost
	Proof of the Main Result

	Finding Stable Sets
	Lower Bound for Memory Restricted Algorithms
	Reasonable Algorithms

	p034-Chen
	Introduction
	Preliminaries
	Correlated Randomized Dependent Rounding
	O(log k)-Approximation for MML
	A Tight Approximation for Unbounded MML

	p034-ZZZ-Blank
	p035-Adamczyk
	Introduction
	Our Results and Techniques
	Universal Stochastic Set Cover
	Overview of the results

	Related work

	Preliminaries
	Universal Set Cover
	Metric facility location in the independent activation model
	Transforming the LP
	The rounding procedure

	Multicut in the independent activation model

	p035-ZZZ-Blank
	p036-Agrawal
	Introduction
	Our Results
	Related Work
	Our Techniques
	Single Key FE for DFA
	Single key FE for Turing Machines

	Organization of the paper

	Definitions: FE for Deterministic Finite Automata
	Definition
	Security

	Decomposable Functional Encryption for Circuits
	Single-Key Succinct FE for DFAs from LWE
	Correctness
	Proof of Security
	Analysis of Simulator

	Single Key Functional Encryption for Turing Machines

	p036-ZZZ-Blank
	p037-Cohen
	Introduction
	Model and Preliminaries
	Synchronous Protocols in UC
	The Probabilistic-Termination Framework
	A Lemma on Termination Probabilities

	Round-Preserving Parallel Composition: Passive Security
	Functionally Black-Box Protocols and Parallel Composition
	Passively Secure FBB Parallel-Composition Protocol

	Round-Preserving Parallel Composition: Active Security
	Feasibility of Round-Preserving Parallel Composition
	An Impossibility of FBB Round-Preserving Parallel Composition

	p037-ZZZ-Blank
	p038-Apon
	Introduction
	Our Contributions
	Technical Overview

	Notations and Preliminaries
	Notations

	Attack Model for Investigating Annihilation Attacks
	Partially Inequivalent Branching Programs
	Annihilation Attacks for Partially Inequivalent Programs
	Example of Partially Inequivalent Circuits
	Simple Pairs of Circuits that are Partially Inequivalent
	Larger Pairs of Circuits that are Partially Inequivalent
	Partially Inequivalent Universal Circuits

	p039-Pietrzak
	Introduction
	Notation and Basic Definitions
	Our Contribution
	Proof Outline
	A Weaker Result as a Ball-Bins Problem
	The General Case by Random Walk Techniques

	Preliminaries
	Interpolation Inequalities
	Moments of random walks
	Anticontentration bounds

	Proof of Lemma 1
	Partitioning the domain into T slices

	Omitted Proofs
	Proof of Lemma 5 (Strengthening of Marcinkiewicz-Zygmund's Inequality for p=4)
	Proof of Lemma 8 (Characterizing smooth min-entropy)
	Proof of Corollary 14 ((Mixed) moments of slice advantages)

	p039-ZZZ-Blank
	p040-Ben-Sasson
	Introduction
	Motivation
	A more general model: interactive oracle proofs
	Proximity and robustness

	Results
	Techniques
	Interactive proof composition
	Sublinear sumcheck
	Applying the new tools

	Open questions

	p040-ZZZ-Blank
	p041-Alman
	Introduction
	Prior Work
	Our Contributions

	Overview of the Algorithmic Techniques
	Techniques for designing dynamic fixed-parameter algorithms
	Algorithm Examples

	A dynamic kernel for d-Hitting Set

	p042-Georgiadis
	Introduction
	A Data Structure for Maintaining Joint SCC-Decompositions
	Review of Łacki's SCC Decomposition
	Towards a Joint SCC-Decomposition
	Deleting Edges from a Joint SCC-Decomposition

	Applications
	Conditional Lower Bound

	p042-ZZZ-Blank
	p043-Bernstein
	Introduction
	A competitive algorithm for incremental problems
	Lower bound on the best-possible competitive ratio
	The greedy algorithm for a subclass of incremental problems
	Lower bound

	Conclusion

	p044-Bernstein
	Introduction
	High Level Overview
	The Threshold Graph
	An Extension of the Even and Shiloach Algorithm
	The decremental SSSP algorithm
	Conclusions

	p045-Bodwin
	Introduction
	Background on Public Goods Economics
	(Non-)Algorithmic Properties of Public Goods Economies
	Our Results
	Comparison with Prior Work

	The Model and Basic Definitions
	Notation Conventions
	Economic Model
	Game Theory Definitions

	A Topological Characterization of the Core
	Backwards Implication of Theorem 9
	Sketch of Forwards Implication of Theorem 9
	Connection to Lindahl Equilibria

	Algorithm for Testing Core Membership
	Preprocessing: Confirm Pareto Efficiency of a
	Main Loop: Shrinking C-A
	Algorithm Pseudocode
	Conclusion

	p046-Bohnlein
	Introduction
	Approximability of Stackelberg Pricing Games
	Parameterized complexity of Stackelberg Pricing Games with few priceable objects
	Conclusion and future work

	p046-ZZZ-Blank
	p047-Giannakopoulos
	Introduction
	Our Results
	Prior Work

	Preliminaries and Notation
	Distributional Assumptions
	General Setting
	Welfare
	Profit

	Limited Stock
	Balanced Sequences
	Profit
	Welfare

	p048-Gravin
	Introduction
	Main Results
	Simple adversarial primitives and families
	Motivation and discussion

	Finite horizon
	General variations of MWA

	Geometric horizon

	p049-Ghazi
	Introduction
	Our Contributions
	Implications

	Overview of Proofs
	Overview of Proof of Theorem 1
	Overview of Proof of Theorem 5

	Preliminaries
	Construction for Private-Coin Uncertain Protocols
	Construction for Public-Coin Uncertain Protocols
	Open Questions

	p050-Rossman
	Introduction
	Proof outline

	Preliminaries
	Lower Bound
	Upper Bound
	Conclusion

	p050-ZZZ-Blank
	p051-Lin
	Introduction
	Preliminaries
	n-bit (Boolean) functions
	Communication complexity

	The Sensitivity Conjecture
	The Log-Rank Conjecture

	p051-ZZZ-Blank
	p052-Goos
	Introduction
	Applications and discussion
	Our techniques

	Complexity Measures
	Overview
	Tribes-List
	Composition
	Overview of proofs

	AND-Composition Lemmas
	AND-composition for query complexity
	Definitions
	AND-composition for communication complexity
	One-sided information vs. two-sided information

	p052-ZZZ-Blank
	p053-Bogdanov
	Introduction
	Optimality of distributions: Proof of Theorem 1
	Indistinguishability from approximating polynomials
	Construction of approximating polynomials

	Construction of distributions: Proof of Theorem 2
	Proof of Theorem 3
	AND-OR formulas and perfect reconstruction
	A threshold weight lower bound

	p053-ZZZ-Blank
	p054-Bezakova
	Introduction
	Preliminaries
	Win/Win algorithm for Longest Detour
	The algorithm
	Overview of the proof of Theorem 9
	Proof of Lemma 12: Rerouting in subdivided tetrahedra
	Proof of Lemma 13: Large treewidth entails subdivided tetrahedra

	Dynamic programming algorithm for exact detour

	p055-Ahmadian
	Introduction
	Statements of Results and Techniques
	Related Work

	Approximation Algorithm for Demand Matching Problem
	Iterative Relaxation Phase
	Pruning phase

	Demand Matching in Excluded-Minor Families
	A Sparsification Lemma
	A Dynamic Programming Algorithm
	The Recurrence

	p055-ZZZ-Blank
	p056-Fomin
	Introduction
	Algorithm roadmap
	Regular matroid decompositions
	Elementary reductions for Space Cover
	Solving Space Cover for basic matroids
	Solving Space Cover for regular matroids
	Processing leaves

	Reducing rank
	Conclusion

	p056-ZZZ-Blank
	p057-Giannopoulou
	Introduction
	Preliminaries
	Protrusions
	Constant-factor approximation
	Linear kernel

	p057-ZZZ-Blank
	p058-Gutin
	Introduction
	Terminology and Notation
	Strongly Connected Digraphs
	The k-Distinct Branchings Problem
	Preprocessing
	Decomposition and Reconfiguration
	Handling degenerate diblocks

	Conclusion

	p058-ZZZ-Blank
	p059-Price
	Introduction
	Our Contributions
	Comparison to Gradient Descent
	Proof Techniques

	Warmup: Gaussians OSEs
	SRHT Matrices
	Proof of Lemma 9
	Lower bound for ell-2 and ell-infty guarantee

	p060-Li
	Introduction
	Preliminaries
	Lower Bounds
	Upper Bounds

	p061-Nakos
	Introduction
	Standard Compressed Sensing
	One-Bit Compressed Sensing
	Group Testing
	Our Results

	Preliminaries
	Formal Statement of Results
	Overview of techniques

	For-each delta-l2/l2 One-Bit Compressed Sensing

	p062-Karkkainen
	Introduction
	Basic notions
	Intervals

	Algorithm for BCSSILA
	Coupling Constrained Eulerian Cycle
	BCSILA to CCEC
	BCSILA is NP-Complete
	BTSILA is NP-Complete
	Algorithm for CSSILA

	p063-Eickmeyer
	Introduction
	Preliminaries
	Neighborhood complexity of nowhere dense classes
	Kernelization for distance-r dominating sets

	p064-Knudsen
	Introduction
	Clustering
	Constructing O(1)-Spanners
	Distance Oracles

	p065-Fomin
	Introduction
	Preliminaries
	Clique-Grid Graphs
	Turing Kernels
	Exact k-Cycle
	Feedback Vertex Set
	The Cell Graph of a Clique-Grid Graph
	Outline of an Algorithm for FVS

	p065-ZZZ-Blank
	p066-Schweitzer
	Introduction
	Sampling characteristic subsets
	Gadget constructions for asymmetric tournaments
	Invariant automorphism samplers from asymmetry tests
	Invariant suborbits from invariant automorphism samplers
	Computing the automorphism group from invariant suborbits
	Discussion and open problems

	p067-Wiese
	Introduction
	Our Contribution
	Other related work
	Preliminaries and Notation

	Bounded task demands or edge capacities
	Bounded number of task demands
	FPT-range of edge capacities

	General case
	Classification of tasks and edges
	Structure via segments
	Recursive algorithm

	W[1]-hardness

	p067-ZZZ-Blank
	p068-Iwata
	Introduction
	Preliminaries
	Definitions
	Basic Reductions
	k-submodular Relaxation of Feedback Vertex Set

	Simple Quadratic-size Kernel
	Efficient Computation of a Half-integral Minimum s-cycle Cover
	Linear-time Quadratic-size Kernel

	p069-Gaspers
	Introduction
	Results
	Random Sampling and Multivariate Subroutines
	Derandomization
	Enumeration
	Case Studies
	Preliminaries
	Feedback Vertex Set
	Measure
	Algorithm
	Results

	Minimal Vertex Covers
	Minimal Feedback Vertex Sets
	Minimal Hitting Sets

	Conclusion

	p069-ZZZ-Blank
	p070-Barbero
	Introduction
	Preliminaries and basic results
	Turing kernel
	Lower bounds

	p070-ZZZ-Blank
	p071-Lokshtanov
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Removing Leaves, Induced Paths, and Short Cycles
	Bounding the Core of the Remaining Graph
	Guessing Permutations
	Dynamic Programming and Inclusion-Exclusion
	Conclusion

	p071-ZZZ-Blank
	p072-Baswana
	Introduction
	An overview of our result
	Related work
	Organization of the paper

	Preliminaries
	A heavy path decomposition

	Computation of SCCs intersecting a given path
	Proof of correctness of algorithm
	Implementation of function Reach

	Main Algorithm
	Analysis of time complexity of Algorithm 3

	p072-ZZZ-Blank
	p073-Bodwin
	Introduction
	Related Work
	Preliminaries and Notation

	Efficient Construction of FT-Preservers and Spanners
	Lower Bounds for FT Preservers and Additive Spanners
	Open Problems

	p074-Georgiadis
	Introduction
	Preliminaries
	All-pairs 2-reachability in DAGs
	Algebraic approach
	Encoding and decoding for Boolean matrix product

	All-pairs 2-reachability in strongly connected graphs
	Reduction to two single-source problems
	Strong bridges and dominator tree decomposition
	Overview of the algorithm and construction of auxiliary graphs

	All-pairs 2-reachability in general graphs
	An application: computing all dominator trees

	p075-Schlipf
	Introduction
	Vertex-connectivity vs. edge-connectivity

	Preliminaries
	The (1,1)-edge-order
	The (2,1)-edge-order
	Computing a (2,1)-edge-order
	Legs, bellies and heads
	Legs
	Bellies
	Heads

	Modifying D to D'

	Edge-Independent Spanning Trees

	p076-Mancinska
	Introduction
	The Graph Isomorphism Game
	Classical strategies

	Quantum Isomorphism
	Separating Classical and Quantum Isomorphism

	Non-signalling Isomorphism
	Conic Formulations
	Isomorphism Maps
	Coherent and Partially Coherent Algebras
	Partially Coherent Algebras
	Characterizations of DNN- and S+-Isomorphisms

	Separations

	p077-Rubinstein
	Introduction
	The computational complexity of lying
	Concurrent work of Bhaskar et al.
	Techniques

	Preliminaries
	Additive hardness
	Multiplicative hardness
	Lying is even harder

	p077-ZZZ-Blank
	p078-Manurangsi
	Introduction
	Dense CSPs
	Densest k-Subhypergraph

	Preliminaries and Notations
	Birthday Repetition Theorem: Proof Overview
	Improved Approximation Algorithm for Dense CSPs
	Total Correlation of Conditioned Sherali-Adams Solution
	New Bound on Rounding kappa-independent Solution

	Conclusion and Open Problems

	p078-ZZZ-Blank
	p079-Manurangsi
	Introduction
	Maximum Edge Biclique and Maximum Balanced Biclique
	Minimum k-Cut

	Inapproximability of Minimum k-Cut
	Inapproximability of MEB and MBB
	Preliminaries
	Bansal-Khot Long Code Test and A Candidate Reduction
	RST Technique and The Reduction from SSE to MUCHB
	Completeness
	Soundness
	Decoding an Unique Games Assignment
	Decoding a Small Non-Expanding Set

	Putting Things Together

	Conclusion

	p080-Raghavendra
	Introduction
	Our Results

	Preliminaries
	Polynomial Proofs
	Rich Solution Spaces

	Examples with Rich Solution Spaces
	Limitations

	Rich Solution Spaces Yield Bounded SoS Proofs
	Boolean Systems With No Small-Coefficient Proofs
	A First Example
	A Boolean System

	Max-Bisection Constraints

	p080-ZZZ-Blank
	p081-Korman
	Introduction
	Context and Related Work
	Setting
	Our Results

	Near Optimal Algorithms
	Configurations where all Doors are Similar
	Simple Algorithms
	On the Price of Lacking Feedback

	Two Memoryless Cascading Doors
	Equivalence of Models
	The Optimal Semi-Fractional Sequence
	The Actual Semi-Fractional Sequence

	Actual Numbers
	Examples

	p081-ZZZ-Blank
	p082-Brandt
	Introduction
	The Case of 2 Cops
	Overview
	The Graph Construction
	Observations
	The Robber's Strategy
	The Cops' Strategy
	A Lower Bound for the Robber's Strategy
	An Upper Bound for the Cops' Strategy

	p082-ZZZ-Blank
	p083-Achlioptas
	Introduction
	Formal Setting and Statement of Results
	Related Work
	POMDPs and the Reachability Problem
	Focusing and Prioritization
	LLL algorithmization

	Termination via Compression
	Break Sequences

	p083-ZZZ-Blank
	p084-Dereniowski
	Introduction
	State-of-the-Art
	Organization of the Paper

	Preliminaries
	Notation and Query Model
	Definition of a Search Strategy
	Query Sequences and Stable Strategies
	Strategies Based on Consistent Schedules

	The Results
	(1+eps)-Approximation in n^O(log n/eps^2) Time
	Extension: A Poly-Time O(sqrt(log n))-Approximation Algorithm

	Quasi-Polynomial Computation of Strategies with Small Modified Cost
	Preprocessing: Time Alignment in Schedules
	Dynamic Programming Routine for Fixed Box Size

	Reducing the Number of Down-Queries

	p085-Pudlak
	Introduction
	Notation and Preliminaries
	Hard Instances for Weak PPSZ: Proof of Theorem 5
	Hard Linear Formulas for Strong PPSZ: Proof of Theorem 6
	Robust Expanding Matrices
	Robust Kernel Expanders Exist – Proof of Theorem 20

	Proof of Lemma 23

	p085-ZZZ-Blank
	p086-Guruswami
	Introduction
	Preliminaries on function fields
	Construction of subspace design
	Subspace design from cyclotomic function fields

	p087-Goldwasser
	Introduction
	Our Results
	High Level Ideas of the Algorithm
	Pseudo-Determinism and Search vs Decision Derandomization
	Organization

	Background and Preliminaries
	Key Lemmas
	The Algorithm
	Discussion

	p087-ZZZ-Blank
	p088-Raskin
	Introduction
	Preliminaries
	Algebraic preliminaries
	The model

	The bound and the proof outline
	Defining the constructions used in the proof
	The cycle defined by the increment function
	Decision assignment trees and the corresponding faces
	Enumerating the faces and the vertices

	Calculating the parity of the permutations
	Faces and the inversions
	Summarizing the inversion counts

	Handling a weaker definition of increment
	Future directions

	p089-Matuschke
	Introduction
	Our results
	Related work

	LP formulation, approximation, and max flow/min cut
	Complexity of Max RF and Max SRF
	Reroutable flows vs. strictly reroutable flows
	Max flow/min cut gap for reroutable flows
	Summary of the bounds and tightness

	Unit capacity networks
	Computing (half-)integral solutions
	Hardness results
	General capacities
	Multiple arc failures

	p089-ZZZ-Blank
	p090-Bonnet
	Introduction
	Preliminaries
	Results
	Short k-Connect is FPT
	MC(forall-noteq-FO) is W[1]-complete
	Short Generalized Hex is W[1]-complete
	Short Maker-Breaker is W[1]-complete
	Short Maker-Maker is AW[*]-complete
	Short Enforcer-Avoider is co-W[1]-complete
	Conclusion

	p091-Bjorklund
	Introduction
	The symbolic Laplacian of a directed graph
	Corollary for k-internal out-branchings
	Modular counting of Hamiltonian cycles
	Directed Hamiltonicity via quasi-Laplacian determinants

	p092-Lee
	Introduction
	Problems and Results
	Techniques

	Preliminaries
	Short Path Edge Cut
	Short Path Vertex Cut

	p093-Rossman
	Introduction
	Related Work

	Preliminaries
	Linear Algebra
	AC0 Formulas
	The Action of (0,1)-n
	Upper Bound

	Linear-Algebraic Lemmas
	Proof of Theorem 1
	Further Remarks and Open Questions
	Another Application of Theorem 1
	The (U,V)-Search Problem
	Open Questions

	p093-ZZZ-Blank
	p094-Chistikov
	Introduction
	Preliminaries
	Summary
	Main ideas
	Universal projection and universality
	Long intersections
	Lower bounds

	p094-ZZZ-Blank
	p095-Jez
	Introduction
	The (known) algorithm
	Space consumption
	Dependency intervals
	Pair compression strategy
	Proof of Theorem 3

	p095-ZZZ-Blank
	p096-Diekert
	Introduction
	Preliminaries

	The main results
	Outline of the proof of Theorem 1
	States of the NFA
	Twisted conjugacy
	delta-periodic-compression
	Twisted pair-compression

	p097-Asada
	Introduction
	Preliminaries
	lambda-terms and Higher-order Grammars
	Homeomorphic Embedding and Kruskal's Tree Theorem
	Conjecture and Pumping Lemma for Higher-order Grammars

	Corollaries of Parys' Results
	Word to Frontier Transformation
	Proof of the Main Theorem
	Second-order Kruskal's theorem
	Related Work
	Conclusion

	p098-Datta
	Introduction
	Preliminaries
	Dynamic Complexity
	Algorithmic Technique
	Warm-up: 3-Colourability
	MSO and GSO Queries
	MSO-types
	A Feferman–Vaught-type composition theorem
	MSO on structures of bounded treewidth
	Extension to GSO logic

	MSO Optimisation Problems
	Conclusion

	p099-Bacquey
	Introduction
	Preliminaries
	Cellular automata, picture languages, linear time
	Picture structures and monotonic Horn formulas

	DLIN-ca subseteq mon-ESO-HORN
	From the formula to the automaton: the example of palindromes
	A monotonic Horn formula defining the language of palindromes
	From Phi-pal to A-pal

	mon-ESO-HORN substeq DLIN-ca
	Optimality of our main result

	p100-Reiter
	Introduction
	Preliminaries
	Main result
	Computing least fixpoints using asynchronous automata
	Capturing asynchronous runs using least fixpoints

	p101-Chalopin
	Introduction
	Event structures
	Event structures and domains
	Regular event structures

	Domains, median graphs, and CAT(0) cube complexes
	Directed NPC Complexes
	Wise's event domain tildeW-tb
	Wise's square complex X and its universal cover tildeX
	Aperiodicity of tildeX
	The square complex W and its universal cover tildeW
	(tildeW-tv,prec-tilde-o) does not have a regular nice labeling

	Conclusions and open questions

	p102-Barthe
	Introduction
	Background
	*-Liftings and Strassen's Theorem
	Basic Properties
	Equivalence with Sato's Definition

	Properties of *-Liftings
	Comparison with Existing Approximate Liftings
	*-Lifting for f-Divergences
	Conclusion

	p103-Balle
	Introduction
	Background
	Strings and Weighted Automata
	Linear Bisimulations
	Joint Spectral Radius

	Bisimulation Seminorms and Pseudometrics for WFA
	Continuity Properties
	Parameter Continuity
	Input Continuity

	An Undecidability Result
	Application: Spectral Learning for WFA
	Conclusion

	p104-Bacci
	Introduction
	Markov Chains and Bisimilarity Pseudometric
	The Closest Bounded Approximant Problem
	The Bounded Approximant Threshold Problem
	Minimum Significant Approximant Bound
	An Expectation Maximization-like Heuristic
	Conclusions and Future Work

	p105-Fijalkow
	Introduction
	Results

	Probabilistic systems and logics
	Probabilistic (bi)simulation games
	Logical characterization of bisimulation, revisited
	The pi-lambda Theorem and the Unique Structure Theorem
	Logical Characterization

	Logical characterization of simulation, revisited
	The Positive Monotone Class Theorem and the Positive Unique Structure Theorem
	The logical characterization

	The case of uncountably many labels
	A counterexample
	Logical characterizations for continuous transition functions

	Conclusions

	p106-Bojanczyk
	Introduction
	Zero and nonzero automata
	From zero to nonzero automata
	Emptiness of F-forall-trivial automata is in NP
	Emptiness of nonzero automata is in co-NP
	Conclusion

	p106-ZZZ-Blank
	p107-Benedikt
	Introduction
	Preliminaries
	Decidability via back-and-forth and equivalence
	Identifying GFP definable sentences
	Identifying GNFPk and UNFPk sentences
	Conclusions

	p108-Jung
	Introduction
	Preliminaries
	Undecidability
	Characterizations
	Decidability and Complexity
	Conclusion

	p109-Dowek
	Introduction
	Models and termination
	The lambda-Pi-calculus modulo theory
	From pre-Heyting algebras to Pi-algebras
	Layered models
	Super-consistency and proof reduction

	The lambda-Pi-calculus modulo theory
	The lambda-Pi-calculus
	The lambda-Pi-calculus modulo theory
	Examples of theories

	Algebras and Models
	Pi-algebras
	Models valued in a Pi-algebra B

	Super-consistency
	Super-consistency
	Simple type theory
	Simple type theory with a parametric quantifier

	Termination of proof reduction

	p110-Atserias
	Introduction
	Preliminaries
	Propositional logic and proofs
	Polynomials and algebraic proofs
	Constraint satisfaction problem

	Closure under reductions
	Upper bound
	Lower bounds
	Upper bounds in Lovász-Schrijver
	Initial remarks on the encoding
	Some technical lemmas
	Simulating Gaussian elimination

	Conclusions and Open Questions

	p111-Amarilli
	Introduction
	Preliminaries and Problem Statement
	Reducing to Zero-Suppressed Semantics
	Reducing to Normal Form Circuits
	Indexing OR-Components
	Enumerating Assignments
	Applications
	Conclusion

	p111-ZZZ-Blank
	p112-Alur
	Introduction
	Streaming Automata
	Evaluation Algorithm
	Lower Bounds
	Conclusion

	p112-ZZZ-Blank
	p113-Dartois
	Introduction
	Automata and transducers
	Results on reversible transducers
	Composition of reversible transducers
	One-way transducers
	Two-way transducers

	The tree-outline construction
	Streaming string transducers
	Conclusion

	p114-Bojanczyk
	Introduction
	Origin semantics
	Transductions recognised by streaming string transducers
	Origin semantics and origin graphs

	MSO on origin graphs
	Which sets of origin graphs are recognised by SSTs?
	Sketch of the proof
	Classes of origin transductions and perspectives

	p114-ZZZ-Blank
	p115-Cadilhac
	Introduction
	Preliminaries
	Continuity: The profinite approach
	The Preservation Lemma: Continuity is preserving equations
	The profinite extension of rational functions
	The Syncing Lemma: Preservation Lemma applied to transducers
	A profinite toolbox for the aperiodic setting

	Intermezzos
	Transducer structure and continuity
	Variety inclusion and inclusion of classes of continuous functions

	Deciding continuity for transducers
	Deciding continuity for group varieties
	Deciding continuity for aperiodic varieties
	Deciding Com- and Ab-continuity

	Discussion

	p116-Bournez
	Introduction
	Related work and discussions
	Formal statements

	Overview of the proof
	Concepts and results from other articles
	Generable functions
	Helper functions and constructions

	Generating fast growing functions
	Generating a sequence of dyadic rationals
	Generating a sequences of bits
	Generating an almost piecewise constant function
	Proof of the main theorem

	p117-Clemente
	Introduction
	Preliminaries
	Main results
	A generic reduction
	A new undecidability result

	From nondeterministic to deterministic PA
	Regular separability reduces to unary separability
	Applications
	Conclusions

	p117-ZZZ-Blank
	p118-Boigelot
	Introduction
	Our contribution
	Motivations and related results
	Generalisation to real numbers
	Generalisation to other numeration systems

	Preliminaries
	Automaton morphisms and pseudo-morphisms
	Ultimately-equivalent states

	Purely periodic b-recognisable sets
	The automaton A-(p,R) and its minimisation
	Nerode-equivalence and ultimate-equivalence in A-(p,R)
	Circuits labelled by the digit 0

	Characterisation of automata accepting purely periodic sets
	Complexity and algorithmic issues

	Generalisation to eventually periodic sets

	p119-Figueira
	Introduction
	Preliminaries
	d-Coverability
	Reachability
	Hardness
	Conclusion

	p120-Bozzelli
	Introduction
	The logic D of the sub-interval relation
	A spatial representation of interval models

	Satisfiability of D-Hom over finite linear orders
	Model checking for D-Hom over Kripke structures
	Conclusions

	p121-Berthon
	Introduction
	Preliminaries
	Reachability under parity constraints
	Almost-sure parity under parity constraints
	Parity with threshold probability under parity constraints
	Conclusion

	p121-ZZZ-Blank
	p122-Finkel
	Introduction
	Preliminaries
	Undecidability of Synchronizability
	The case of oriented rings
	Extensions

	p123-Basset
	Introduction
	Preliminaries
	Admissibility
	Assume admissible synthesis

	p124-Bringmann
	Introduction
	Preliminaries
	Parametric Search
	Characterization of Minimum Ratio Cycle
	Characterization of Negative Cycle
	Computing Shortest Paths in Parallel
	Approximate Hitting Sets

	Randomized Algorithm for General Graphs
	A Parallel SSSP Algorithm
	Correctness
	Running Time
	Extension to Negative Cycle Detection

	Finding the Minimum Ratio Cycle

	Deterministic Algorithm for General Graphs
	Deterministic SSSP and Negative Cycle Detection
	Correctness
	Running Time

	Minimum Ratio Cycle

	Near-Linear Time Algorithm for Constant Treewidth Graphs
	Conclusion

	p125-Bilo
	Introduction
	Mathematical Background
	Problem Statement and the PAID Property
	MMRS on Matroids
	Shortest Multidimensional Path
	Minimum Multidimensional Steiner Tree
	Minimum Multidimensional Arborescence
	An Inapproximability Result

	p125-ZZZ-Blank
	p126-Dehghani
	Introduction
	The Stochastic Model
	Our Results
	Further Related Work

	Preliminaries
	Structural Characterization
	Fractional Solutions
	Linear Program

	Reduction from Integral k-server to Fractional k-server
	Integrals Are as Strong as Fractionals On the Line
	Reduction for General Graphs

	p127-Gupta
	Introduction
	Our Contributions
	Related Work
	Outline of the paper

	Preliminaries
	Overview
	Dual FT-BFS
	Properties of contributing paths
	Space Analysis
	Analyzing non-standard paths P-a
	Analyzing long standard paths P-b
	Analyzing short standard paths P-c

	Extension to dual FT-MBFS
	Properties of Contributing paths
	Space Analysis
	Analyzing short standard paths P-c

	Conclusion

	p127-ZZZ-Blank
	p128-Abrahamsen
	Introduction
	Adjacency labeling schemes and induced universal graphs
	Our results

	Related results
	Maximum degree D
	Constant odd degree
	Other graph families

	Preliminaries
	General D
	Upper bounds on gv(GD)
	Lower bounds on gv(GD)

	p129-Asgeirsson
	Introduction
	Approximation Method
	Model
	Conflict Graph Approximation of Physical Model
	Approximating Fixed-Rate Scheduling
	Rate Control and Scheduling

	p129-ZZZ-Blank
	p130-Boczkowski
	Introduction
	The Streaming Communication model.
	Related models
	Our results

	The streaming communication model
	Communication Complexity
	Streaming algorithms
	The new model of Streaming Communication protocols
	Properties of the SC model

	Communication primitives
	A general lower bound
	Applications

	Approximate Matching in the Streaming Communication model
	Hard distributions for streaming algorithms
	Lifting hard distributions to streaming communication protocols

	p131-Monemizadeh
	Introduction
	Overview of Results
	Technical Overview
	Other Related Work

	Preliminaries
	Approximating the k-Disc Type Distribution
	Constant-Query Property Testing
	Constant-Time Approximation Algorithms

	p132-Gorain
	Introduction
	Our results
	Related work

	Exploration in polynomial time
	Fast exploration
	Map oracle
	Instance oracle

	Exploration of Hamiltonian graphs
	Conclusion

	p133-Hoefer
	Introduction
	Our Contribution

	Preliminaries and Related Work
	Related Work

	Matroids
	Submodular Matroids
	A Lower Bound

	Matching and Packing
	Bipartite Matching
	Packing
	Matching in General Graphs

	Independent Set and Local Independence

	p134-Babaioff
	Introduction
	Model and Preliminaries
	Basic Equilibrium Properties

	Existence of Non-Trivial Equilibria
	Best Response Dynamics
	Quality of the Dynamics' Outcomes
	Dynamics Starting at a Split of the Monopolist Price
	Dynamics Starting at Random Prices

	Time to Convergence

	The Quality of the Best Equilibrium

	p135-Choudhari
	Introduction
	Preliminaries
	The Parameterized Complexity of Saving a Critical Set
	The FPT Algorithm
	A Faster Algorithm For Trees
	No Polynomial Kernel, Even on Trees

	The Spreading Model
	Summary and Conclusions

	p135-ZZZ-Blank
	p136-Michail
	Introduction
	Our Approach

	Preliminaries
	Rotation
	Rotation and Connectivity Preservation
	Rotation and Sliding
	Conclusions and Further Research

	p136-ZZZ-Blank
	p137-Gmyr
	Introduction
	Model and Problem Statement
	Related Work
	Our Contribution

	Setup Phase
	Three Simple Monitoring Problems
	Bipartiteness
	Minimum Spanning Tree
	Exact MST Weight
	Approximate MST Weight
	Distributed Computation of MSTs

	Future Work

	p137-ZZZ-Blank
	p138-Doerr
	Introduction
	Our Results

	Outline of the Analysis Method
	Tight Bounds via a Target-Failure Calculus
	Uniform Treatment of Many Rumor Spreading Processes

	Precise Statement of the Technical Results
	Exponential Growth Regime
	Exponential Shrinking Regime
	Double Exponential Shrinking Regime
	Connecting Regimes

	Applying the Above Technical Results
	Summary, Outlook

	p139-Cai
	Introduction
	Notation and Background
	Our results

	Proof of the General Bound (Theorem 1.4)
	Proof of Theorem 1.4 (Upper Bound)
	Proof of Theorem 1.4 (Lower Bound)

	Proof of the Universal Bounds (Theorem 1.6, Theorem 1.7)
	Proof of Theorem 1.6
	Proof of Theorem 1.5
	Proof of Theorem 1.7

	Applications to Different Graph Topologies
	Discussion and Empirical Results

	p140-Mai
	Introduction
	Our results and techniques
	Related work

	Preliminaries
	Migration dynamics
	Birth and death of types
	Definitions and basics

	Convergence to independent sets almost surely
	Point-wise convergence
	Diffeomorphism and stability analysis via Jacobian
	Center-stable manifold and average case analysis

	Stability and bound on the number of types
	Stability
	Bound on the number of types

	p141-Belleville
	Introduction
	Introduction to the model
	Contributions
	Related work

	Preliminaries
	Population Protocols
	Time Complexity

	Exact computation of nonlinear functions
	Sublinear-time, sublinear-error approximation of linear functions with negative or non-integer coefficients is impossible
	Logarithmic-time, linear-error approximation of linear functions with nonnegative rational coefficients is possible
	Predicate computation
	Open Questions

