
Complexity-Theoretic Foundations of Quantum
Supremacy Experiments∗

Scott Aaronson1 and Lijie Chen2

1 The University of Texas at Austin, Austin, TX, USA
aaronson@cs.utexas.edu

2 Tsinghua University, Beijing, China
wjmzbmr@gmail.com

Abstract
In the near future, there will likely be special-purpose quantum computers with 40–50 high-
quality qubits. This paper lays general theoretical foundations for how to use such devices to
demonstrate “quantum supremacy”: that is, a clear quantum speedup for some task, motivated
by the goal of overturning the Extended Church-Turing Thesis as confidently as possible.

First, we study the hardness of sampling the output distribution of a random quantum circuit,
along the lines of a recent proposal by the Quantum AI group at Google. We show that there’s
a natural average-case hardness assumption, which has nothing to do with sampling, yet implies
that no polynomial-time classical algorithm can pass a statistical test that the quantum sampling
procedure’s outputs do pass. Compared to previous work – for example, on BosonSampling and
IQP – the central advantage is that we can now talk directly about the observed outputs, rather
than about the distribution being sampled.

Second, in an attempt to refute our hardness assumption, we give a new algorithm, inspired
by Savitch’s Theorem, for simulating a general quantum circuit with n qubits and depth d in
polynomial space and dO(n) time. We then discuss why this and other known algorithms fail to
refute our assumption.

Third, resolving an open problem of Aaronson and Arkhipov, we show that any strong
quantum supremacy theorem – of the form “if approximate quantum sampling is classically
easy, then the polynomial hierarchy collapses”– must be non-relativizing. This sharply contrasts
with the situation for exact sampling.

Fourth, refuting a conjecture by Aaronson and Ambainis, we show that there is a sampling
task, namely Fourier Sampling, with a 1 versus linear separation between its quantum and classical
query complexities.

Fifth, in search of a “happy medium”between black-box and non-black-box arguments, we
study quantum supremacy relative to oracles in P/poly. Previous work implies that, if one-way
functions exist, then quantum supremacy is possible relative to such oracles. We show, conversely,
that some computational assumption is needed: if SampBPP = SampBQP and NP ⊆ BPP, then
quantum supremacy is impossible relative to oracles with small circuits.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases computational complexity, quantum computing, quantum supremacy

Digital Object Identifier 10.4230/LIPIcs.CCC.2017.22

∗ Scott Aaronson is supported by a Vannevar Bush Faculty Fellowship from the US Department of Defense,
and by the Simons Foundation “It from Qubit” Collaboration. Lijie Chen is supported in part by the
National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural
Science Foundation of China Grant 61361136003.

© Scott Aaronson and Lijie Chen;
licensed under Creative Commons License CC-BY

32nd Computational Complexity Conference (CCC 2017).
Editor: Ryan O’Donnell; Article No. 22; pp. 22:1–22:67

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

1 Introduction

The Extended Church-Turing Thesis, or ECT, asserts that every physical process can be
simulated by a deterministic or probabilistic Turing machine with at most polynomial
overhead. Since the 1980s – and certainly since the discovery of Shor’s algorithm [55] in the
1990s – computer scientists have understood that quantum mechanics might refute the ECT
in principle. Today, there are actual experiments being planned (e.g., [19]) with the goal
of severely challenging the ECT in practice. These experiments don’t yet aim to build full,
fault-tolerant, universal quantum computers, but “merely” to demonstrate some quantum
speedup over the best known or conjectured classical algorithms, for some possibly-contrived
task, as confidently as possible. In other words, the goal is to answer the skeptics [41, 38]
who claim that genuine quantum speedups are either impossible in theory, or at any rate,
are hopelessly out of reach technologically. Recently, the term “quantum supremacy” has
come into vogue for such experiments, footnoteAs far as we know, the first person to use the
term in print was John Preskill [47]. although the basic goal goes back several decades, to
the beginning of quantum computing itself.

Before going further, we should address some common misunderstandings about quantum
supremacy.

The ECT is an asymptotic claim, which of course means that no finite experiment could
render a decisive verdict on it, even in principle. But this hardly makes experiments irrelevant.
If
1. a quantum device performed some task (say) 1015 times faster than a highly optimized

simulation written by “adversaries” and running on a classical computing cluster, with
the quantum/classical gap appearing to increase exponentially with the instance size
across the whole range tested, and

2. this observed performance closely matched theoretical results that predicted such an
exponential quantum speedup for the task in question, and

3. all other consistency checks passed (for example: removing quantum behavior from the
experimental device destroyed the observed speedup),

this would obviously “raise the stakes” for anyone who still believed the ECT! Indeed, when
some quantum computing researchers have criticized previous claims to have experimentally
achieved quantum speedups (see, e.g., [2]), it has typically been on the ground that, in those
researchers’ view, the experiments failed to meet one or more of the conditions above.

It’s sometimes claimed that any molecule in Nature or the laboratory, for which chemists
find it computationally prohibitive to solve the Schrödinger equation and calculate its ground
state, already provides an example of “quantum supremacy.”The idea, in other words, is that
such a molecule constitutes a “useful quantum computer, for the task of simulating itself.”

For us, the central problem with this idea is that in theoretical computer science, we
care less about individual instances than about solving problems (i.e., infinite collections of
instances) in a more-or-less uniform way. For any one molecule, the difficulty in simulating it
classically might reflect genuine asymptotic hardness, but it might also reflect other issues
(e.g., a failure to exploit special structure in the molecule, or the same issues of modeling
error, constant-factor overheads, and so forth that arise even in simulations of classical
physics).

Thus, while it’s possible that complex molecules could form the basis for a convincing
quantum supremacy demonstration, we believe more work would need to be done. In
particular, one would want a device that could synthesize any molecule in some theoretically
infinite class – and one would then want complexity-theoretic evidence that the general

S. Aaronson and L. Chen 22:3

problem, of simulating a given molecule from that class, is asymptotically hard for a classical
computer. And in such a case, it would seem more natural to call the synthesis machine the
“quantum computer, textquotedblright rather than the molecules themselves!

In summary, we regard quantum supremacy as a central milestone for quantum computing
that hasn’t been reached yet, but that might be reached in the near future. This milestone
is essentially negative in character: it has no obvious signature of the sort familiar to
experimental physics, since it simply amounts to the nonexistence of an efficient classical
algorithm to simulate a given quantum process. For that reason, the tools of theoretical
computer science will be essential to understand when quantum supremacy has or hasn’t
been achieved. So in our view, even if it were uninteresting as TCS, there would still be
an urgent need for TCS to contribute to the discussion about which quantum supremacy
experiments to do, how to verify their results, and what should count as convincing evidence
that classical simulation is hard. Happily, it turns out that there is a great deal here of
intrinsic TCS interest as well.

1.1 Supremacy from Sampling
In recent years, a realization has crystallized that, if our goal is to demonstrate quantum
supremacy (rather than doing anything directly useful), then there are good reasons to shift
our attention from decision and function problems to sampling problems: that is, problems
where the goal is to sample an n-bit string, either exactly or approximately, from a desired
probability distribution.

A first reason for this is that demonstrating quantum supremacy via a sampling problem
doesn’t appear to require the full strength of a universal quantum computer. Indeed, there
are now at least a half-dozen proposals [57, 23, 3, 44, 37, 29, 11] for special-purpose devices
that could efficiently solve sampling problems believed to be classically intractable, without
being able to solve every problem in the class BQP, or for that matter even every problem in
P. Besides their intrinsic physical and mathematical interest, these intermediate models
might be easier to realize than a universal quantum computer. In particular, because of their
simplicity, they might let us avoid the need for the full machinery of quantum fault-tolerance
[12]: something that adds a theoretically polylogarithmic but enormous-in-practice overhead
to quantum computation. Thus, many researchers now expect that the first convincing
demonstration of quantum supremacy will come via this route.

A second reason to focus on sampling problems is more theoretical: in the present state
of complexity theory, we can arguably be more confident that certain quantum sampling
problems really are classically hard, than we are that factoring (for example) is classically
hard, or even that BPP 6= BQP. Already in 2002, Terhal and DiVincenzo [57] noticed
that, while constant-depth quantum circuits can’t solve any classically intractable decision
problems, footnoteThis is because any qubit output by such a circuit depends on at most
a constant number of input qubits. they nevertheless have a curious power: namely, they
can sample probability distributions that can’t be sampled in classical polynomial time,
unless BQP ⊆ AM, which would be a surprising inclusion of complexity classes. Then, in
2004, Aaronson showed that PostBQP = PP, where PostBQP means BQP with the ability
to postselect on exponentially-unlikely measurement outcomes. This had the immediate
corollary that, if there’s an efficient classical algorithm to sample the output distribution of
an arbitrary quantum circuit – or for that matter, any distribution whose probabilities are
multiplicatively close to the correct ones – then

PP = PostBQP = PostBPP ⊆ BPPNP.

CCC 2017

22:4 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

By Toda’s Theorem [58], this implies that the polynomial hierarchy collapses to the third
level.

Related to that, in 2009, Aaronson [1] showed that, while it was (and remains) a notorious
open problem to construct an oracle relative to which BQP 6⊂ PH, one can construct oracular
sampling and relation problems that are solvable in quantum polynomial time, but that are
provably not solvable in randomized polynomial time augmented with a PH oracle.

Then, partly inspired by that oracle separation, Aaronson and Arkhipov [7, 3] proposed
BosonSampling: a model that uses identical photons traveling through a network of beamsplit-
ters and phaseshifters to solve classically hard sampling problems. Aaronson and Arkhipov
proved that a polynomial-time exact classical simulation of BosonSampling would collapse
PH. They also gave a plausible conjecture implying that even an approximate simulation
would have the same consequence. Around the same time, Bremner, Jozsa, and Shepherd
[23] independently proposed the Commuting Hamiltonians or IQP (“Instantaneous Quantum
Polynomial-Time”) model, and showed that it had the same property, that exact classical
simulation would collapse PH. Later, Bremner, Montanaro, and Shepherd [24, 25] showed
that, just like for BosonSampling, there are plausible conjectures under which even a fast
classical approximate simulation of the IQP model would collapse PH.

Since then, other models have been proposed with similar behavior. To take a few examples:
Farhi and Harrow [29] showed that the so-called Quantum Approximate Optimization
Algorithm, or QAOA, can sample distributions that are classically intractable unless PH
collapses. Morimae, Fujii, and Fitzsimons [44] showed the same for the so-called One Clean
Qubit or DQC1 model, while Jozsa and Van den Nest [37] showed it for stabilizer circuits
with magic initial states and nonadaptive measurements, and Aaronson et al. [11] showed it
for a model based on integrable particle scattering in 1 + 1 dimensions. In retrospect, the
constant-depth quantum circuits considered by Terhal and DiVincenzo [57] also have the
property that fast exact classical simulation would collapse PH.

Within the last four years, quantum supremacy via sampling has made the leap from
complexity theory to a serious experimental prospect. For example, there have by now been
many small-scale demonstrations of BosonSampling in linear-optical systems, with the current
record being a 6-photon experiment by Carolan et al. [27]. To scale up to (say) 30 or 40
photons – as would be needed to make a classical simulation of the experiment suitably
difficult – seems to require more reliable single-photon sources than exist today. But some
experts (e.g., [50, 46]) are optimistic that optical multiplexing, superconducting resonators,
or other technologies currently under development will lead to such photon sources. In the
meantime, as we mentioned earlier, Boixo et al. [19] have publicly detailed a plan, currently
underway at Google, to perform a quantum supremacy experiment involving random circuits
applied to a 2D array of 40-50 coupled superconducting qubits. So far, the group at Google
has demonstrated the preparation and measurement of entangled states on a linear array of
9 superconducting qubits [39].

1.2 Theoretical Challenges

Despite the exciting recent progress in both theory and experiment, some huge conceptual
problems have remained about sampling-based quantum supremacy. These problems are not
specific to any one quantum supremacy proposal (such as BosonSampling, IQP, or random
quantum circuits), but apply with minor variations to all of them.

S. Aaronson and L. Chen 22:5

Verification of Quantum Supremacy Experiments. From the beginning, there was the
problem of how to verify the results of a sampling-based quantum supremacy experiment.
In contrast to (say) factoring and discrete log, for sampling tasks such as BosonSampling, it
seems unlikely that there’s any NP witness certifying the quantum experiment’s output, let
alone an NP witness that’s also the experimental output itself. Rather, for the sampling
tasks, not only simulation but even verification might need classical exponential time. Yet,
while no one has yet discovered a general way around this, footnoteIn principle, one could use
so-called authenticated quantum computing [13, 26], but the known schemes for that might
be much harder to realize technologically than a basic quantum supremacy experiment, and
in any case, they all presuppose the validity of quantum mechanics. it’s far from the fatal
problem that some have imagined. The reason is simply that experiments can and will target
a “sweet spot, textquotedblright of (say) 40–50 qubits, for which classical simulation and
verification of the results is difficult but not impossible.

Still, the existing verification methods have a second drawback. Namely, once we’ve
fixed a specific verification test for sampling from a probability distribution D, we ought to
consider, not merely all classical algorithms that sample exactly or approximately from D,
but all classical algorithms that output anything that passes the verification test. To put it
differently, we ought to talk not about the sampling problem itself, but about an associated
relation problem: that is, a problem where the goal is to produce any output that satisfies a
given condition.

As it happens, in 2011, Aaronson [8] proved an extremely general connection between
sampling problems and relation problems. Namely, given any approximate sampling problem
S, he showed how to define a relation problem RS such that, for every “reasonable” model
of computation (classical, quantum, etc.), RS is efficiently solvable in that model if and only
if S is. This had the corollary that

SampBPP = SampBQP ⇐⇒ FBPP = FBQP,

where SampBPP and SampBQP are the classes of approximate sampling problems solvable
in polynomial time by randomized and quantum algorithms respectively, and FBPP and
FBQP are the corresponding classes of relation problems. Unfortunately, Aaronson’s con-
struction of RS involved Kolmogorov complexity: basically, one asks for an m-tuple of strings,
〈x1, . . . , xm〉, such that

K(x1, . . . , xm) ≥ log2
1

p1 · · · pm
−O(1),

where pi is the desired probability of outputting xi in the sampling problem. And of course,
verifying such a condition is extraordinarily difficult, even more so than calculating the
probabilities p1, . . . , pm.1 For this reason, it’s strongly preferable to have a condition that
talks only about the largeness of the pi’s, and not about the algorithmic randomness of the
xi’s. But then hardness for the sampling problem no longer necessarily implies hardness for
the relation problem, so a new argument is needed.

Supremacy Theorems for Approximate Sampling. A second difficulty is that any quantum
sampling device is subject to noise and decoherence. Ultimately, of course, we’d like hardness

1 Furthermore, this is true even if we substitute a resource-bounded Kolmogorov complexity, as Aaronson’s
result allows.

CCC 2017

22:6 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

results for quantum sampling that apply even in the presence of experimentally realistic
errors. Very recently, Bremner, Montanaro, and Shepherd [25] and Fujii [31] have taken
some promising initial steps in that direction. But even if we care only about the smallest
“experimentally reasonable” error – namely, an error that corrupts the output distribution
D to some other distribution D′ that’s ε-close to D in variation distance – Aaronson and
Arkhipov [3] found that we already engage substantial new open problems in complexity
theory, if we want evidence for classical hardness. So for example, their hardness argument
for approximate BosonSampling depended on the conjecture that there’s no BPPNP algorithm
to estimate the permanent of an i.i.d. Gaussian matrix A ∼ N(0, 1)n×nC , with high probability
over the choice of A.

Of course, one could try to close that loophole by proving that this Gaussian permanent
estimation problem is #P-hard, which is indeed a major challenge that Aaronson and Arkhipov
left open. But this situation also raises more general questions. For example, is there an
implication of the form “if SampBPP = SampBQP, then PH collapses, textquotedblright
where again SampBPP and SampBQP are the approximate sampling versions of BPP and
BQP respectively? Are there oracles relative to which such an implication does not hold?

Quantum Supremacy Relative to Oracles. A third problem goes to perhaps the core issue
of complexity theory (both quantum and classical): namely, we don’t at present have a
proof of P 6= PSPACE, much less of BPP 6= BQP or SampBPP 6= SampBQP, less still of the
hardness of specific problems like factoring or estimating Gaussian permanents. So what
reason do we have to believe that any of these problems are hard? Part of the evidence has
always come from oracle results, which we often can prove unconditionally. Particularly in
quantum complexity theory, oracle separations can already be highly nontrivial, and give us
a deep intuition for why all the “standard”algorithmic approaches fail for some problem.

On the other hand, we also know, from results like IP = PSPACE [54], that oracle
separations can badly mislead us about what happens in the unrelativized world. Generally
speaking, we might say, relying on an oracle separation is more dangerous, the less the oracle
function resembles what would actually be available in an explicit problem.2

In the case of sampling-based quantum supremacy, we’ve known strong oracle separations
since early in the subject. Indeed, in 2009, Aaronson [1] showed that Fourier Sampling – a
quantumly easy sampling problem that involves only a random oracle – requires classical
exponential time, and for that matter, sits outside the entire polynomial hierarchy. But
of course, in real life random oracles are unavailable. So a question arises: can we say
anything about the classical hardness of Fourier Sampling with a pseudorandom oracle? More
broadly, what hardness results can we prove for quantum sampling, relative to oracles that are
efficiently computable? Here, we imagine that an algorithm doesn’t have access to a succinct
representation of the oracle function f , but it does know that a succinct representation exists
(i.e., that f ∈ P/poly). Under that assumption, is there any hope of proving an unconditional
separation between quantum and classical sampling? If not, then can we at least prove
quantum supremacy under weaker (or more “generic”) assumptions than would be needed in
the purely computational setting?

2 Indeed, the algebrization barrier of Aaronson and Wigderson [6] was based on precisely this insight:
namely, if we force oracles to be “more realistic, textquotedblright by demanding (in that case) that
they come equipped with algebraic extensions of whichever Boolean functions they represent, then many
previously non-relativizing results become relativizing.

S. Aaronson and L. Chen 22:7

1.3 Our Contributions
In this paper, we address all three of the above challenges. Our results might look wide-
ranging, but they’re held together by a single thread: namely, the quest to understand
the classical hardness of quantum approximate sampling problems, and especially the meta-
question of under which computational assumptions such hardness can be proven. We’ll
be interested in both “positive” results, of the form “quantum sampling problem X is
classically hard under assumption Y , textquotedblright and “negative” results, of the form
“proving the classical hardness of X requires assumption Y .”Also, we’ll be less concerned with
specific proposals such as BosonSampling, than simply with the general task of approximately
sampling the output distribution of a given quantum circuit C. Fortuitously, though, our
focus on quantum circuit sampling will make some of our results an excellent fit to currently
planned experiments – most notably, those at Google [19], which will involve random quantum
circuits on a 2D square lattice of 40 to 50 superconducting qubits. Even though we won’t
address the details of those or other experiments, our results (together with other recent work
[19, 25]) can help to inform the experiments – for example, by showing how the circuit depth,
the verification test applied to the outputs, and other design choices affect the strength of
the computational assumptions that are necessary and sufficient to conclude that quantum
supremacy has been achieved.

We have five main results.

The Hardness of Quantum Circuit Sampling. Our first result, in Section 3, is about the
hardness of sampling the output distribution of a random quantum circuit, along the general
lines of the planned Google experiment. Specifically, we propose a simple verification test to
apply to the outputs of a random quantum circuit. We then analyze the classical hardness of
generating any outputs that pass that test.

More concretely, we study the following basic problem:

I Problem 1 (HOG, or Heavy Output Generation). Given as input a random quantum circuit
C (drawn from some suitable ensemble), generate output strings x1, . . . , xk, at least a 2/3
fraction of which have greater than the median probability in C’s output distribution.

HOG is a relation problem, for which we can verify a claimed solution in classical
exponential time, by calculating the ideal probabilities px1 , . . . , pxk for each xi to be generated
by C, and then checking whether enough of the pxi ’s are greater than the median value
(which we can estimate analytically to extremely high confidence). Furthermore, HOG is
easy to solve on a quantum computer, with overwhelming success probability, by the obvious
strategy of just running C over and over and collecting k of its outputs.3

It certainly seems plausible that HOG is exponentially hard for a classical computer. But
we ask: under what assumption could that hardness be proven? To address that question,
we propose a new hardness assumption:

I Assumption 1 (QUATH, or the QUAntum THreshold assumption). There is no polynomial-
time classical algorithm that takes as input a description of a random quantum circuit C,
and that guesses whether |〈0n|C|0n〉|2 is greater or less than the median of all 2n of the

|〈0n|C|x〉|2 values, with success probability at least 1
2 + Ω

(
1
2n

)
over the choice of C.

3 Heuristically, one expects the pxi ’s to be exponentially distributed random variables, which one can
calculate implies that a roughly 1 + ln 2

2 ≈ 0.847 fraction of the outputs will have probabilities exceeding
the median value.

CCC 2017

22:8 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Our first result says that if QUATH is true, then HOG is hard. While this might
seem nearly tautological, the important point here is that QUATH makes no reference to
sampling or relation problems. Thus, we can now shift our focus from sampling algorithms
to algorithms that simply estimate amplitudes, with a minuscule advantage over random
guessing.

New Algorithms to Simulate Quantum Circuits. But given what a tiny advantage Ω
(
2−n

)
is, why would anyone even conjecture that QUATH might be true? This brings us to our
second result, in Section 4, which is motivated by the attempt to refute QUATH. We ask:
what are the best classical algorithms to simulate an arbitrary quantum circuit? For special
quantum circuits (e.g., those with mostly Clifford gates and a few T gates [22]), there’s
been exciting recent progress on improved exponential-time simulation algorithms, but for
arbitrary quantum circuits, one might think there isn’t much to say. Nevertheless, we do
find something basic to say that, to our knowledge, had been overlooked earlier.

For a quantum circuit with n qubits and m gates, there are two obvious simulation
algorithms. The first, which we could call the “Schrödinger” algorithm, stores the entire
state vector in memory, using ∼ m2n time and ∼ 2n space. The second, which we could call
the “Feynman” algorithm, calculates an amplitude as a sum of terms, using ∼ 4m time and
∼ m+ n space, as in the proof of BQP ⊆ P#P [18].

Now typically m� n, and the difference between m and n could matter enormously in
practice. For example, in the planned Google setup, n will be roughly 40 or 50, while m
will ideally be in the thousands. Thus, 2n time is reasonable whereas 4m time is not. So a
question arises:

When m � n, is there a classical algorithm to simulate an n-qubit, m-gate quantum
circuit using both poly(m,n) space and much less than exp(m) time – ideally, more like
exp(n)?

We show an affirmative answer. In particular, inspired by the proof of Savitch’s Theorem
[52], we give a recursive, sum-of-products algorithm that uses poly(m,n) space and mO(n)

time – or better yet, dO(n) time, where d is the circuit depth. We also show how to improve
the running time further for quantum circuits subject to nearest-neighbor constraints, such
as the superconducting systems currently under development. Finally, we show the existence
of a “smooth tradeoff” between our algorithm and the 2n-memory Schrödinger algorithm.
Namely, starting with the Schrödinger algorithm, for every desired halving of the memory
usage, one can multiply the running time by an additional factor of ∼ d.

We hope our algorithm finds some applications in quantum simulation. In the meantime,
though, the key point for this paper is that neither the Feynman algorithm, nor the Schrödinger
algorithm, nor our new recursive algorithm come close to refuting QUATH. The Feynman
algorithm fails to refute QUATH because it yields only a 1/ exp(m) advantage over random
guessing, rather than a 1/2n advantage.4 The Schrödinger and recursive algorithms have
much closer to the “correct” 2n running time, but they also fail to refute QUATH because
they don’t calculate amplitudes as straightforward sums, so don’t lead to polynomial-time
guessing algorithms at all. Thus, in asking whether we can falsify QUATH, in some sense
we’re asking how far we can go in combining the advantages of all these algorithms. This
might, in turn, connect to longstanding open problems about the optimality of Savitch’s
Theorem itself (e.g., L versus NL).

4 Note that the Feynman algorithm can also be interpreted as a PP algorithm.

S. Aaronson and L. Chen 22:9

Interestingly, our analysis of quantum circuit simulation algorithms explains why this
paper’s hardness argument for quantum circuit sampling, based on QUATH, would not have
worked for quantum supremacy proposals such as BosonSampling or IQP. It works only for
the more general problem of quantum circuit sampling. The reason is that for the latter,
unlike for BosonSampling or IQP, there exists a parameter m� n (namely, the number of
gates) that controls the advantage that a polynomial-time classical algorithm can achieve
over random guessing, even while n controls the number of possible outputs. Our analysis
also underscores the importance of taking m� n in experiments meant to show quantum
supremacy, and it provides some guidance to experimenters about the crucial question of
what circuit depth they need for a convincing quantum supremacy demonstration.

Note that, the greater the required depth, the more protected against decoherence the
qubits need to be. But the tradeoff is that the depth must be high enough that simulation
algorithms that exploit limited entanglement, such as those based on tensor networks, are
ruled out. Beyond that requirement, our dO(n) simulation algorithm gives some information
about how much additional hardness one can purchase for a given increase in depth.

Strong Quantum Supremacy Theorems Must Be Non-Relativizing. Next, in Section 5,
we switch our attention to a meta-question. Namely, what sorts of complexity-theoretic
evidence we could possibly hope to offer for SampBPP 6= SampBQP: in other words, for
quantum computers being able to solve approximate sampling problems that are hard
classically? By Aaronson’s sampling/searching equivalence theorem [8], any such evidence
would also be evidence for FBPP 6= FBQP (where FBPP and FBQP are the corresponding
classes of relation problems), and vice versa.

Of course, an unconditional proof of these separations is out of the question right now,
since it would imply P 6= PSPACE. Perhaps the next best thing would be to show that,
if SampBPP = SampBQP, then the polynomial hierarchy collapses. This latter is not out
of the question: as we said earlier, we already know, by a simple relativizing argument,
that an equivalence between quantum and classical exact sampling implies the collapse
P#P = PH = BPPNP. Furthermore, in their work on BosonSampling, Aaronson and Arkhipov
[3] formulated a #P-hardness conjecture – namely, their so-called Permanent of Gaussians
Conjecture, or PGC – that if true, would imply a generalization of that collapse to the
physically relevant case of approximate sampling. More explicitly, Aaronson and Arkhipov
showed that if the PGC holds, then

SampBPP = SampBQP =⇒ P#P = BPPNP. (1)

They went on to propose a program for proving the PGC, by exploiting the random self-
reducibility of the permanent. On the other hand, Aaronson and Arkhipov also explained in
detail why new ideas would be needed to complete that program, and the challenge remains
open.

Subsequently, Bremner, Montanaro, and Shepherd [24, 25] gave analogous #P-hardness
conjectures that, if true, would also imply the implication (1), by going through the IQP
model rather than through BosonSampling.

Meanwhile, nearly two decades ago, Fortnow and Rogers [30] exhibited an oracle relative
to which P = BQP and yet the polynomial hierarchy is infinite. In other words, they showed
that any proof of the implication

P = BQP =⇒ PH collapses

would have to be non-relativizing. Unfortunately, their construction was extremely specific
to languages (i.e., total Boolean functions), and didn’t even rule out the possibility that the

CCC 2017

22:10 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

implication

PromiseBPP = PromiseBQP =⇒ PHcollapses

could be proven in a relativizing way. Thus, Aaronson and Arkhipov [3, see Section 10]
raised the question of which quantum supremacy theorems hold relative to all oracles.

In Section 5, we fill in the final piece needed to resolve their question, by constructing
an oracle A relative to which SampBPP = SampBQP and yet PH is infinite. In other words,
we show that any strong supremacy theorem for quantum sampling, along the lines of what
Aaronson and Arkhipov [3] and Bremner, Montanaro, and Shepherd [24, 25] were seeking,
must use non-relativizing techniques. In that respect, the situation with approximate sampling
is extremely different from that with exact sampling.

Perhaps it’s no surprise that one would need non-relativizing techniques to prove a strong
quantum supremacy theorem. In fact, Aaronson and Arkhipov [3] were originally led to
study BosonSampling precisely because of the connection between bosons and the permanent
function, and the hope that one could therefore exploit the famous non-relativizing properties
of the permanent to prove hardness. All the same, this is the first time we have explicit
confirmation that non-relativizing techniques will be needed.

Maximal Quantum Supremacy for Black-Box Sampling and Relation Problems. In Sec-
tion 6, we turn our attention to the black-box model, and specifically to the question: what
are the largest possible separations between randomized and quantum query complexities for
any approximate sampling or relation problem? Here we settle another open question. In
2015, Aaronson and Ambainis [9] studied Fourier Sampling, in which we’re given access to a
Boolean function f : {0, 1}n → {0, 1}, and the goal is to sample a string z with probability
f̂(z)2, where f̂ is the Boolean Fourier transform of f , normalized so that

∑
z

f̂(z)2 = 1. This

problem is trivially solvable by a quantum algorithm with only 1 query to f . By contrast,
Aaronson and Ambainis showed that there exists a constant ε > 0 such that any classical
algorithm that solves Fourier Sampling, to accuracy ε in variation distance, requires Ω(2n/n)
queries to f . They conjectured that this lower bound was tight.

Here we refute that conjecture, by proving a Ω(2n) lower bound on the randomized
query complexity of Fourier Sampling, as long as ε is sufficiently small (say, 1

40000). This
implies that, for approximate sampling problems, the gap between quantum and randomized
query complexities can be as large as imaginable: namely, 1 versus linear (!).5 This sharply
contrasts with the case of partial Boolean functions, for which Aaronson and Ambainis
[9] showed that any N -bit problem solvable with k quantum queries is also solvable with
O
(
N1−1/2k

)
randomized queries, and hence a constant versus linear separation is impossible.

Thus, our result helps once again to underscore the advantage of sampling problems over
decision problems for quantum supremacy experiments. Given the extremely close connection
between Fourier Sampling and the IQP model [23], our result also provides some evidence that
classically simulating an n-qubit IQP circuit, to within constant error in variation distance,
is about as hard as can be: it might literally require Ω(2n) time.

Aaronson and Ambainis [9] didn’t directly address the natural relational version of
Fourier Sampling, which Aaronson [1] had called Fourier Fishing in 2009. In Fourier Fishing,

5 We have learned (personal communication) that recently, and independently of us, Ashley Montanaro
has obtained a communication complexity result that implies this result as a corollary.

S. Aaronson and L. Chen 22:11

the goal is to output any string z such that f̂(z)2 ≥ 1, with nontrivial success probability.
Unfortunately, the best lower bound on the randomized query complexity of Fourier Fishing
that follows from [1] has the form 2n

Ω(1)
. As a further contribution, in Section 6 we give a

lower bound of Ω(2n/n) on the randomized query complexity of Fourier Fishing, which both
simplifies and subsumes the Ω(2n/n) lower bound for Fourier Sampling by Aaronson and
Ambainis [9] (which, of course, we also improve to Ω(2n) in this paper).

Quantum Supremacy Relative to Efficiently-Computable Oracles. In Section 7, we ask
a new question: when proving quantum supremacy theorems, can we “interpolate” between
the black-box setting of Sections 5 and 6, and the non-black-box setting of Sections 3 and 4?
In particular, what happens if we consider quantum sampling algorithms that can access
an oracle, but we impose a constraint that the oracle has to be “physically realistic”? One
natural requirement here is that the oracle function f be computable in the class P/poly:6
in other words, that there are polynomial-size circuits for f , which we imagine that our
sampling algorithms (both quantum and classical) can call as subroutines. If the sampling
algorithms also had access to explicit descriptions of the circuits, then we’d be back in the
computational setting, where we already know that there’s no hope at present of proving
quantum supremacy unconditionally. But what if our sampling algorithms know only that
small circuits for f exist, without knowing what they are? Could quantum supremacy be
proven unconditionally then?

We give a satisfying answer to this question. First, by adapting constructions due
to Zhandry [61] and (independently) Servedio and Gortler [53], we show that if one-way
functions exist, then there are oracles A ∈ P/poly such that BPPA 6= BQPA, and indeed
even BQPA 6⊂ SZKA. (Here and later, the one-way functions only need to be hard to invert
classically, not quantumly.)

Note that, in the unrelativized world, there seems to be no hope at present of proving
BPP 6= BQP under any hypothesis nearly as weak as the existence of one-way functions.
Instead one has to assume the one-wayness of extremely specific functions, for example those
based on factoring or discrete log.

Second, and more relevant to near-term experiments, we show that if there exist one-way
functions that take at least subexponential time to invert, then there are Boolean functions
f ∈ P/poly such that approximate Fourier Sampling on those f ’s requires classical exponential
time. In other words: within our “physically realistic oracle” model, there are feasible-looking
quantum supremacy experiments, along the lines of the IQP proposal [23], such that a
very standard and minimal cryptographic assumption is enough to prove the hardness of
simulating those experiments classically.

Third, we show that the above two results are essentially optimal, by proving a converse
result: that even in our P/poly oracle model, some computational assumption is still needed
to prove quantum supremacy. The precise statement is this: if SampBPP = SampBQP
and NP ⊆ BPP, then SampBPPA = SampBQPA for all A ∈ P/poly. Or equivalently: if
we want to separate quantum from classical approximate sampling relative to efficiently
computable oracles, then we need to assume something about the unrelativized world: either
SampBPP 6= SampBQP (in which case we wouldn’t even need an oracle), or else NP 6⊂ BPP
(which is closely related to the assumption we do make, namely that one-way functions exist).

So to summarize, we’ve uncovered a “smooth tradeoff” between the model of computation
and the hypothesis needed for quantum supremacy. Relative to some oracle (and even a

6 More broadly, we could let f be computable in BQP/poly, but this doesn’t change the story too much.

CCC 2017

22:12 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

random oracle), we can prove SampBPP 6= SampBQP unconditionally. Relative to some
efficiently computable oracle, we can prove SampBPP 6= SampBQP, but only under a weak
computational assumption, like the existence of one-way functions. Finally, with no oracle, we
can currently prove SampBPP 6= SampBQP only under special assumptions, such as factoring
being hard, or the permanents of Gaussian matrices being hard to approximate in BPPNP, or
our QUATH assumption. Perhaps eventually, we’ll be able to prove SampBPP 6= SampBQP
under the sole assumption that PH is infinite, which would be a huge step forward – but at
any rate we’ll need some separation of classical complexity classes.7

One last remark: the idea of comparing complexity classes relative to P/poly oracles seems
quite natural even apart from its applications to quantum supremacy. So in Appendix A, we
take an initial stab at exploring the implications of that idea for other central questions in
complexity theory. In particular, we prove the surprising result there that PA = BPPA for
all oracles A ∈ P/poly, if and only if the derandomization hypothesis of Impagliazzo and
Wigderson [36] holds (i.e., there exists a function in E with 2Ω(n) circuit complexity). In our
view, this helps to clarify Impagliazzo and Wigderson’s theorem itself, by showing precisely
in what way their circuit lower bound hypothesis is stronger than the desired conclusion
P = BPP. We also show that, if there are quantumly-secure one-way functions, then there
exists an oracle A ∈ P/poly such that SZKA 6⊂ BQPA.

1.4 Techniques
In our view, the central contributions of this work lie in the creation of new questions, models,
and hardness assumptions (such as QUATH and quantum supremacy relative to P/poly
oracles), as well as in basic observations that somehow weren’t made before (such as the
sum-products algorithm for simulating quantum circuits) – all of it motivated by the goal
of using complexity theory to inform ongoing efforts in experimental physics to test the
Extended Church-Turing Thesis. While some of our proofs are quite involved, by and large
the proof techniques are ones that will be familiar to complexity theorists. Even so, it seems
appropriate to say a few words about techniques here.

To prove, in Section 3, that “if QUATH is true, then HOG is hard, textquotedblright we
give a fairly straightforward reduction: namely, we assume the existence of a polynomial-time
classical algorithm to find high-probability outputs of a given quantum circuit C. We then
use that algorithm (together with a random self-reduction trick) to guess the magnitude of
a particular transition amplitude, such as 〈0n|C|0n〉, with probability slightly better than
chance, which is enough to refute QUATH.

One technical step is to show that, with Ω(1) probability, the distribution over n-bit
strings sampled by a random quantum circuit C is far from the uniform distribution. But
not only can this be done, we show that it can be done by examining only the very last gate
of C, and ignoring all other gates! A challenge that we leave open is to improve this, to show
that the distribution sampled by C is far from uniform, not merely with Ω(1) probability,
but with 1− 1/ exp(n) probability. In Appendix E, we present numerical evidence for this
conjecture, and indeed for a stronger conjecture, that the probabilities appearing in the output
distribution of a random quantum circuit behave like independent, exponentially-distributed
random variables. (We note that Brandao, Harrow and Horodecki [21] recently proved a
closely-related result, which unfortunately is not quite strong enough for our purposes.)

In Section 4, to give our polynomial-space, dO(n)-time classical algorithm for simulating
an n-qubit, depth-d quantum circuit C, we use a simple recursive strategy, reminiscent of

7 Unless, of course, someone were to separate P from PSPACE unconditionally!

S. Aaronson and L. Chen 22:13

Savitch’s Theorem. Namely, we slice the circuit into two layers, C1 and C2, of depth d/2
each, and then express a transition amplitude 〈x|C|z〉 of interest to us as

〈x|C|z〉 =
∑

y∈{0,1}n
〈x|C1|y〉〈y|C2|z〉.

We then compute each 〈x|C1|y〉 and 〈y|C2|z〉 by recursively slicing C1 and C2 into layers of
depth d/4 each, and so on. What takes more work is to obtain a further improvement if C
has only nearest-neighbor interactions on a grid graph – for that, we use a more sophisticated
divide-and-conquer approach – and also to interpolate our recursive algorithm with the
2n-space Schrödinger simulation, in order to make the best possible use of whatever memory
is available.

Our construction, in Section 5, of an oracle relative to which SampBPP = SampBQP
and yet PH is infinite involves significant technical difficulty. As a first step, we can use
a PSPACE oracle to collapse SampBPP with SampBQP, and then use one of many known
oracles (or, by the recent breakthrough of Rossman, Servedio, and Tan [49], even a random
oracle) to make PH infinite. The problem is that, if we do this in any naïve way, then the
oracle that makes PH infinite will also re-separate SampBPP and SampBQP, for example
because of the approximate Fourier Sampling problem. Thus, we need to hide the oracle
that makes PH infinite, in such a way that a PH algorithm can still find the oracle (and
hence, PH is still infinite), but a SampBQP algorithm can’t find it with any non-negligible
probability – crucially, not even if the SampBQP algorithm’s input x provides a clue about
the oracle’s location. Once one realizes that these are the challenges, one then has about
seven pages of work to ensure that SampBPP and SampBQP remain equal, relative to the
oracle that one has constructed. Incidentally, we know that this equivalence can’t possibly
hold for exact sampling, so something must force small errors to arise when the SampBPP
algorithm simulates the SampBQP one. That something is basically the tiny probability
that the quantum algorithm will succeed at finding the hidden oracle, which however can be
upper-bounded using quantum-mechanical linearity.

In Section 6, to prove a Ω(2n) lower bound on the classical query complexity of approximate
Fourier
Sampling, we use the same basic strategy that Aaronson and Ambainis [9] used to prove
a Ω(2n/n) lower bound, but with a much more careful analysis. Specifically, we observe
that any Fourier Sampling algorithm would also yield an algorithm whose probability of
accepting, while always small, is extremely sensitive to some specific Fourier coefficient,
say f̂(0 · · · 0). We then lower-bound the randomized query complexity of accepting with
the required sensitivity to f̂(0 · · · 0), taking advantage of the fact that f̂(0 · · · 0) is simply
proportional to

∑
x

f(x), so that all x’s can be treated symmetrically. Interestingly, we

also give a different, much simpler argument that yields a Ω(2n/n) lower bound on the
randomized query complexity of Fourier Fishing, which then immediately implies a Ω(2n/n)
lower bound for Fourier Sampling as well. However, if we want to improve the bound to
Ω(2n), then the original argument that Aaronson and Ambainis [9] used to prove Ω(2n/n)
seems to be needed.

In Section 7, to prove that one-way functions imply the existence of an oracle A ∈ P/poly
such that PA 6= BQPA, we adapt a construction that was independently proposed by Zhandry
[61] and by Servedio and Gortler [53]. In this construction, we first use known reductions
[34, 32] to convert a one-way function into a classically-secure pseudorandom permutation,
say σ. We then define a new function by gr(x) := σ(xmod r), where x is interpreted as an
integer written in binary, and r is a hidden period. Finally, we argue that either Shor’s

CCC 2017

22:14 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

algorithm [55] leads to a quantum advantage over classical algorithms in finding the period of
gr, or else gr was not pseudorandom, contrary to assumption. To show that subexponentially-
secure one-way functions imply the existence of an oracle A ∈ P/poly relative to which
Fourier Sampling is classically hard, we use similar reasoning. The main difference is that
now, to construct a distinguisher against a pseudorandom function f , we need classical
exponential time just to verify the outputs of a claimed polynomial-time classical algorithm
for Fourier Sampling f – and that’s why we need to assume 2n

Ω(1)
security.

Finally, to prove that SampBPP = SampBQP and NP ⊆ BPP imply SampBPPA =
SampBQPA for all A ∈ P/poly, we design a step-by-step classical simulation of a quantum
algorithm, call it Q, that queries an oracle A ∈ P/poly. We use the assumption SampBPP =
SampBQP to sample from the probability distribution over queries to A that Q makes at
any given time step. Then we use the assumption NP ⊆ BPP to guess a function f ∈ P/poly
that’s consistent with nO(1) sampled classical queries to A. Because of the limited number
of functions in P/poly, standard sample complexity bounds for PAC-learning imply that
any such f that we guess will probably agree with the “true” oracle A on most inputs.
Quantum-mechanical linearity then implies that the rare disagreements between f and A
will have at most a small effect on the future behavior of Q.

2 Preliminaries

For a positive integer n, we use [n] to denote the integers from 1 to n. Logarithms are base 2.

2.1 Quantum Circuits

We now introduce some notations for quantum circuits, which will be used throughout this
paper.

In a quantum circuit, without loss of generality, we assume all gates are unitary and
acting on exactly two qubits each8.

Given a quantum circuit C, slightly abusing notation, we also use C to denote the unitary
operator induced by C. Suppose there are n qubits and m gates in C; then we index the
qubits from 1 to n. We also index gates from 1 to m in chronological order for convenience.

For each subset S ⊆ [n] of the qubits, let HS be the Hilbert space corresponding to the
qubits in S, and IS be the identity operator on HS . Then the unitary operator Ui for the i-th
gate can be written as Ui := Oi ⊗ I[n]\{ai,bi}, in which Oi is a unitary operator on H{ai,bi}
(the Hilbert space spanned by the qubits ai and bi), and I[n]\{ai,bi} is the identity operator
on the other qubits.

We say that a quantum circuit has depth d, if its gates can be partitioned into d layers (in
chronological order), such that the gates in each layer act on disjoint pairs of qubits. Suppose
the i-th layer consists of the gates in [Li, Ri]. We define C[r←l] = URr ·URr−1 . . . ULl+1 ·ULl ,
that is, the sub-circuit between the l-th layer and the r-th layer.

Base Graphs and Grids

In Sections 3 and 4, we will sometimes assume locality of a given quantum circuit. To
formalize this notion, we define the base graph of a quantum circuit.

8 Except for oracle gates, which may act on any number of qubits.

S. Aaronson and L. Chen 22:15

I Definition 1. Given a quantum circuit C on n qubits, its base graph GC = (V,E) is an
undirected graph defined by V = [n], and

E = {(a, b) | there is a quantum gate that acts on qubits a and b.}.

We will consider a specific kind of base graph, the grids.

I Definition 2. The grid G of size H ×W is a graph with vertices V = {(x, y) | x ∈ [H], y ∈
[W]} and edges E = {(a, b) | |a− b|1 = 1, a ∈ V, b ∈ V }, and we say that grid G has H rows
and W columns.

2.2 Complexity Classes for Sampling Problems

Definitions for SampBPP and SampBQP

We adopt the following definition for sampling problems from [8].

I Definition 3 (Sampling Problems, SampBPP, and SampBQP). A sampling problem S is
a collection of probability distributions (Dx)x∈{0,1}∗ , one for each input string x ∈ {0, 1}n,
where Dx is a distribution over {0, 1}p(n), for some fixed polynomial p. Then SampBPP
is the class of sampling problems S = (Dx)x∈{0,1}∗ for which there exists a probabilistic
polynomial-time algorithm B that, given

〈
x, 01/ε

〉
as input, samples from a probability

distribution Cx such that ‖Cx −Dx‖ ≤ ε. SampBQP is defined the same way, except that B
is a quantum algorithm rather than a classical one.

Oracle versions of these classes can also be defined in the natural way.

A Canonical Form of SampBQP Oracle Algorithms

To ease our discussion about SampBQPO, we describe a canonical form of SampBQP oracle
algorithms. Any other reasonable definitions of SampBQP oracle algorithms (like with
quantum oracle Turing machines) can be transformed into this form easily.

Without loss of generality, we can assume a SampBQP oracle algorithm M with oracle
access to O1, oracle2, dotsc, oraclek (k is a universal constant) acts in three stages, as follows.
1. Given an input 〈x, 01/ε〉, M first uses a classical routine (which does not use the oracles)

to output a quantum circuit C with p(n, 1/ε) qubits and p(n, 1/ε) gates in polynomial
time, where p is a fixed polynomial. Note that C can use the O1, oracle2, dotsc, oraclek
gates in addition to a universal set of quantum gates.

2. Then M runs the outputted quantum circuit with the initial state |0〉⊗p(n,1/ε), and
measures all the qubits to get an outcome z in {0, 1}p(n,1/ε).

3. Finally, M uses another classical routine Aoutput (which does not use the oracles) on the
input z, to output its final sample Aoutput(z) ∈ {0, 1}∗.

Clearly, M solves different sampling problems (or does not solve any sampling problem at
all) given different oraclesO1, oracle2, dotsc, oraclek. Therefore, we useMO1,oracle2,dotsc,oraclek

to indicate the particular algorithm when the oracles are O1, oracle2, dotsc, oraclek.

2.3 Distinguishing Two Pure Quantum States

We also need a standard result for distinguishing two pure quantum states.

CCC 2017

22:16 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

I Theorem 4 (Helstrom’s decoder for two pure states). The maximum success probability for
distinguishing two pure quantum states |ϕ0〉 and |ϕ1〉 given with prior probabilities π0 and
π1, is given by

psucc = 1 +
√

1− 4π0π1F

2 ,

where F := |〈ϕ0|ϕ1〉|2 is the fidelity between the two states.

We’ll also need that for two similar quantum states, the distributions induced by measuring
them are close.

I Corollary 5. Let |ϕ0〉 and |ϕ1〉 be two pure quantum state such that ||ϕ0〉 − |ϕ1〉| ≤ ε.
For a quantum state ϕ, define D(ϕ) be the distribution on {0, 1}∗ induced by some quantum
sampling procedure, we have

‖D(ϕ0)−D(ϕ1)‖ ≤
√

2ε.

Proof. Fix prior probabilities π0 = π1 = 1
2.

Note that we have a distinguisher of |ϕ0〉 and |ϕ1〉 with success probability

1 + ‖D(ϕ0)−D(ϕ1)‖
2

by invoking that quantum sampling procedure.
By the assumption, |〈ϕ0||ϕ1〉| = |〈ϕ0|·(|ϕ0〉+(|ϕ1〉−|ϕ0〉)| ≥ 1−ε, hence F = |〈ϕ0|ϕ1〉|2 ≥

(1− ε)2. So we have

1 + ‖D(ϕ0)−D(ϕ1)‖
2 ≤

1 +
√

1− (1− ε)2

2 .

This implies ‖D(ϕ0)−D(ϕ1)‖1 ≤
√

1− (1− ε)2 =
√

2ε− ε2 ≤
√

2ε. J

2.4 A Multiplicative Chernoff Bound
I Lemma 6. Suppose X1, X2, dotsc,Xn are independent random variables taking values in
[0, 1]. Let X denote their sum and let µ = E[X]. Then for any δ > 1, we have

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3 .

I Corollary 7. For any 0 < τ , suppose X1, X2, dotsc,Xn are independent random variables
taking values in [0, tau]. Let X denote their sum and let µ = E[X]. Then for any δ > 1, we
have

Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3τ .

Proof. Replace each Xi by Xi/τ and apply the previous lemma. J

3 The Hardness of Quantum Circuit Sampling

We now discuss our random quantum circuit proposal for demonstrating quantum supremacy.

S. Aaronson and L. Chen 22:17

3.1 Preliminaries
We first introduce some notations. We use U(N) to denote the group of N × N unitary
matrices, µNHaar for the Haar measure on U(N), and µNrand for the Haar measure on N -
dimensional pure states.

For a pure state |u〉 on n qubits, we define probList(|u〉) to be the list consisting of 2n
numbers, |〈u|x〉|2 for each x ∈ {0, 1}n.

Given N real numbers a1, a2, dotsc, aN , we use uphalf(a1, a2, dotsc, aN) to denote the
sum of the largest N/2 numbers among them, and we let

adv(|u〉) = uphalf(probList(|u〉)).

Finally, we say that an output z ∈ {0, 1}n is heavy for a quantum circuit C, if it is greater
than the median of probList(C|0n〉).

3.2 Random quantum circuit on grids
Recall that we assume a quantum circuit consists of only 2-qubit gates. Our random quantum
circuit on grids of n qubits and m gates (assuming m ≥ n) is generated as follows (though
the basic structure of our hardness argument will not be very sensitive to details, and would
also work for many other circuit ensembles):

All the qubits are arranged as a
√
n×
√
n grid (see Definition 2), and a gate can only act

on two adjacent qubits.
For each t ∈ [m] with t ≤ n, we pick the t-th qubit and a random neighbor of it.9
For each t ∈ [m] with t > n, we pick a uniform random pair of adjacent qubits in the
grid

√
n×
√
n.

Then, in either case, we set the t-th gate to be a unitary drawn from µ4
Haar acting on

these two qubits.

Slightly abusing notation, we use µn,mgrid to denote both the above distribution on quantum
circuits and the distribution on U(2n) induced by it.

Conditional distribution νgrid

For convenience, for a quantum circuit C, we abbreviate adv(C|0n〉) as adv(C). Consider
a simple quantum algorithm which measures C|0n〉 in the computational basis to get an
output z. Then by definition, adv(C) is simply the probability that z is heavy for C.

We want that, when a quantum circuit C is drawn, adv(C) is large (that is, bounded
above 1/2), and therefore the simple quantum algorithm has a substantial advantage on
generating a heavy output, compared with the trivial algorithm of guessing a random string.

For convenience, we also consider the following conditional distribution νn,mgrid : it keeps
drawing a circuit C ← µn,mgrid until the sample circuit C satisfies adv(C) ≥ 0.7.

Lower bound on adv(C)

We need to show that a circuit C drawn from νn,mgrid has a large probability of having
adv(C) ≥ 0.7. In order to show that, we give a cute and simple lemma, which states that
the expectation of adv(C) is large. Surprisingly, its proof only makes use of the randomness
introduced by the very last gate!

9 The purpose here is to make sure that there is a gate on every qubit.

CCC 2017

22:18 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

I Lemma 8. For n ≥ 2 and m ≥ n

E
C←µn,mgrid

[adv(C)] ≥ 5
8 .

In fact, we conjecture that adv(C) is large with an overwhelming probability.

I Conjecture 1. For n ≥ 2 and m ≥ n2, and for all constants ε > 0,

Pr
C←µn,mgrid

[
adv(C) < 1 + ln 2

2 − ε
]
< exp{−Ω(n)}.

We give some numerical simulation evidence for Conjecture 1 in Appendix E.

I Remark 9. Assuming Conjecture 1, in practice, one can sample from νgrid by simply
sampling from µgrid, the uniform distribution over circuits—doing so only introduces an error
probability of exp{−Ω(n)}.

3.3 The HOG Problem
Now we formally define the task in our quantum algorithm proposal.

I Problem 2 (HOG, or Heavy Output Generation). Given a random quantum circuit C from
νn,mgrid for m ≥ n2, generate k binary strings z1, z2, dotsc, zk in {0, 1}n such that at least a
2/3 fraction of zi’s are heavy for C.

The following proposition states that there is a simple quantum algorithm which solves
the above problem with overwhelming probability.

I Proposition 10. There is a quantum algorithm that succeeds at HOG with probability
1− exp{−Ω(k)}.

Proof. The algorithm just simulates the circuit C with initial state |0n〉, then measures in
the computational basis k times independently to output k binary strings.

From the definition of νgrid, we have adv(C) ≥ 0.7 > 2/3. So by a Chernoff bound, with
probability 1− exp{Ω(k)}, at least a 2/3 fraction of zi’s are heavy for C, in which case the
algorithm solves HOG. J

3.4 Classical Hardness Assuming QUATH
We now state our classical hardness assumption.

I Assumption 2 (QUATH, or the Quantum Threshold assumption). There is no polynomial-
time classical algorithm that takes as input a random quantum circuit C ← νn,mgrid for m ≥ n2

and decides whether 0n is heavy for C with success probability 1/2 + Ω(2−n).

I Remark 11. Note that 1/2 is the success probability obtained by always outputting either
0 or 1. Therefore, the above assumption means that no efficient algorithm can beat the
trivial algorithm even by Ω(2−n).

Next, we show that QUATH implies that no efficient classical algorithm can solve HOG.

I Theorem 12. Assuming QUATH, no polynomial-time classical algorithm can solve HOG
with probability at least 0.99.

S. Aaronson and L. Chen 22:19

Proof. Suppose by contradiction that there is such a classical polynomial-time algorithm A.
Using A, we will construct an algorithm to violate QUATH.

The algorithm is quite simple. Given a quantum circuit C ← νn,mgrid , we first draw a
uniform random string z ∈ {0, 1}n. Then for each i such that zi = 1, we apply a NOT gate
on the i-th qubit. Note that this gate can be “absorbed” into the last gate acting on the i-th
qubit in C. Hence, we still get a circuit C ′ with m gates. Moreover, it is easy to see that
C ′ is distributed exactly the same as C even if conditioning on a particular z, and we have
〈0n|C|0n〉 = 〈0n|C ′|z〉, which means that 0n is heavy for C if and only if z is heavy for C ′.

Next our algorithm runs A on circuit C ′ to get k outputs z1, dotsc, zk, and picks an
output zi? among these k outputs uniformly at random. If zi? = z, then the algorithm
outputs 1; otherwise it outputs a uniform random bit.

Since A solves HOG with probability 0.99, we have that each zk is heavy for C ′ with
probability at least 0.99 · 2/3.

Now, since z is a uniform random string, the probability that our algorithm decides
correctly whether z is heavy for C ′ is

Pr[z = zi?] · 0.99 · 2
3 + Pr[z 6= zi?] · 1/2 = 2−n · 0.99 · 2

3 + (1− 2−n) · 1/2

= 1
2 + Ω(2−n).

But this contradicts QUATH, so we are done. J

3.5 Proof for Lemma 8
We first need a simple lemma which helps us to lower bound adv(|u〉).

For a pure quantum state |u〉, define

dev(|u〉) =
∑

w∈{0,1}n

∣∣∣|〈u|w〉|2 − 2−n
∣∣∣.

In other words, dev(|u〉) measures the non-uniformity of the distribution obtained by meas-
uring |u〉 in the computational basis.

The next lemma shows that, when dev(|u〉) is large, so is adv(|u〉). Therefore, in order to
establish Lemma 8, it suffices to lower-bound dev(|u〉).

I Lemma 13. For a pure quantum state |u〉, we have

adv(|u〉) ≥ 1
2 + dev(u)

4 .

We will also need the following technical lemma.

I Lemma 14. Let |u〉 ← µ2
rand. Then

E
|u〉←µ2

rand

[∣∣∣|〈u|0〉|2 − |〈u|1〉|2∣∣∣] = 0.5.

The proofs of Lemma 13 and Lemma 14 are based on simple but tedious calculations, so
we defer them to Appendix B.

Now we are ready to prove Lemma 8.

Proof of Lemma 8. Surprisingly, our proof only uses the randomness introduced by the
very last gate. That is, the claim holds even if there is an adversary who fixes all the gates
except for the last one.

CCC 2017

22:20 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

We use In to denote the n-qubit identity operator.
Let C ← µn,mgrid . From Lemma 13, it suffices to show that

E
C←µn,mgrid

[dev(C|0n〉)] ≥ 1
2 .

Suppose the last gate U ← µ4
Haar acts on qubits a and b. Let the unitary corresponding to the

circuit before applying the last gate be V , and |v〉 = V |0n〉. Now, suppose we apply another
unitary Ua drawn from µ2

Haar on the qubit a. It is not hard to see that U and (Ua ⊗ I1) · U
are identically distributed. So it suffices to show that

E
U←µ4

Haar,Ua←µ
2
Haar

[
adv
(

(Ua ⊗ In−1)(U ⊗ In−2)|v〉
)]
≥ 0.6.

We are going to show that the above holds even for a fixed U . That is, fix a U ∈ U(4) and
let |u〉 = U ⊗ In−2)|v〉. Then we will prove that

E
Ua←µ2

Haar

[
dev
(

(Ua ⊗ In−1)|v〉
)]
≥ 1

2 .

Without loss of generality, we can assume that a is the last qubit. Then we write

|u〉 =
∑

w∈{0,1}n
aw|w〉,

and

|z〉 = (Ua ⊗ In−1)|u〉.

Now we partition the 2n basis states into 2n−1 buckets, one for each string in {0, 1}n−1.
That is, for each p ∈ {0, 1}n−1, there is a bucket that consists of basis states {|p0〉, spzp1}.
Note that since Ua acts on the last qubit, only amplitudes of basis states in the same bucket
can affect each other.

For a given p ∈ {0, 1}n−1, if both ap0 and ap1 are zero, we simply ignore this bucket.
Otherwise, we can define a quantum state

|tp〉 = ap0|0〉+ ap1|1〉√
|ap0|2 + |ap1|2

,

and

|zp〉 = Ua|tp〉.

Clearly, we have 〈z|p0〉 =
√
|ap0|2 + |ap1|2 · 〈zp|0〉 and 〈z|p1〉 =

√
|ap0|2 + |ap1|2 · 〈zp|1〉.

Plugging in, we have

E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − 2−n
∣∣∣+
∣∣∣|〈z|p1〉|2 − 2−n

∣∣∣]
≥ E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − |〈z|p1〉|2∣∣∣] (triangle inequality)

=
(
|ap0|2 + |ap1|2

)
· E
Ua←µ2

Haar

[∣∣∣|〈zp|0〉|2 − |〈zp|1〉|2∣∣∣].

S. Aaronson and L. Chen 22:21

Now, since |tp〉 is a pure state, and Ua is drawn from µ2
Haar, we see that |zp〉 is distributed as

a Haar-random pure state. So from Lemma 14, we have

E
Ua←µ2

Haar

[∣∣∣|〈zp|0〉|2 − |〈zp|1〉|2∣∣∣] = 0.5.

Therefore,

E
Ua←µ2

Haar

[∣∣∣|〈z|p0〉|2 − 2−n
∣∣∣+
∣∣∣|〈z|p1〉|2 − 2−n

∣∣∣] ≥ 1
2 ·
(
|ap0|2 + |ap1|2

)
.

Summing up for each p ∈ {0, 1}n−1, we have

E
Ua←µ2

Haar

[dev(|z〉)] ≥ 1
2 ,

which completes the proof. J

4 New Algorithms to Simulate Quantum Circuits

In this section, we present two algorithms for simulating a quantum circuit with n qubits
and m gates: one algorithm for arbitrary circuits, and another for circuits that act locally on
grids. What’s new about these algorithms is that they use both polynomial space and close
to exp(n) time (but despite that, they don’t violate the QUATH assumption from Section 3,
for the reason pointed out in Section 1.3). Previously, it was known how to simulate a
quantum circuit in polynomial space and exp(m) time (as in the proof of BQP ⊆ P#P), or in
exponential space and exp(n) time.

In addition, we provide a time-space trade-off scheme, which enables even faster simulation
at the cost of more space usage. See Section 2.1 for the quantum circuit notations that are
used throughout this section.

4.1 Polynomial-Space Simulation Algorithms for General Quantum
Circuits

We first present a simple recursive algorithm for general circuits.

I Theorem 15. Given a quantum circuit C on n qubits with depth d, and two computational
basis states |x〉, spzy, we can compute 〈y|C|x〉 in O(n · (2d)n+1) time and O(n log d) space.

Proof. In the base case d = 1, the answer can be trivially computed in O(n) time.
When d > 1, we have

〈y|C|x〉 = 〈y|C[d←d/2+1] · C[d/2←1]|x〉

= 〈y|C[d←d/2+1]

 ∑
z∈{0,1}n

|z〉〈z|

C[d/2←1]|x〉

=
∑

z∈{0,1}n
〈y|C[d←d/2+1]|z〉 · 〈z|C[d/2←1]|x〉. (2)

Then, for each z, we calculate 〈y|C[d←d/2+1]|z〉 · 〈z|C[d/2←1]|x〉 by recursively calling the
algorithm on the two sub-circuits C[d←d/2+1] and C[d/2←1] respectively; and sum them up to
calculate (2).

CCC 2017

22:22 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

It is easy to see the above algorithm is correct, and its running time can be analyzed as
follows: let F (d) be its running time on a circuit of d layers; then we have F (1) = O(n), and
by the above discussion

F (d) ≤ 2n+1 · F (dd/2e) = O(n · 2(n+1)dlog de) = O(n · (2dlog de)n+1) ≤ O(n · (2d)n+1),

which proves our running time bound.
Finally, we can see in each recursion level, we need O(n) space to save the indices of |x〉

and |y〉, and O(1) space to store an intermediate answer. Since there are at most O(log d)
recursion levels, the total space is bounded by O(n log d). J

4.2 Faster Polynomial Space Simulation Algorithms for Grid Quantum
Circuits

When a quantum circuit is spatially local, i.e., its base graph can be embedded on a grid, we
can further speed up the simulation with a more sophisticated algorithm.

We first introduce a simple lemma which shows that we can find a small balanced cut in
a two-dimensional grid.

I Lemma 16. Given a grid G = (V,E) of size H ×W such that |V | ≥ 2, we can find a
subset S ⊂ E such that
|S| ≤ O(

√
|V |), and

after S is removed, G becomes a union of two disconnected grids with size smaller than
2
3 |V |.

Proof. We can assume H ≥W without loss of generality and simply set S to be the set of
all the edges between the bH/2c-th row and the bH/2c+ 1-th row; then both claims are easy
to verify. J

We now present a faster algorithm for simulating quantum circuits on grids.

I Theorem 17. Given a quantum circuit C on n qubits with depth d, and two computational
basis states |x〉, spzy, assuming that GC can be embedded into a two-dimensional grid with
size n (with the embedding explicitly specified), we can compute 〈y|C|x〉 in 2O(d

√
n) time and

O(d · n logn) space.

Proof. For ease of presentation, we slightly generalize the definition of quantum circuits:
now each gate can be of the form Oi⊗ I[n]\{ai,bi} (a 2-qubit gate) or Oi⊗ I[n]\{ai} (a 1-qubit
gate) or simply I[n] (a 0-qubit gate, which is introduced just for convenience).

The algorithm works by trying to break the current large instance into many small
instances which we then solve recursively. But unlike the algorithm in Theorem 15, which
reduces an instance to many sub-instances with fewer gates, our algorithm here reduces an
instance to many sub-instances with fewer qubits.

The base case, n = 1 qubit. In this case, all the gates are either 1-qubit or 0-qubit; hence
the answer can be calculated straightforwardly in O(m) time and constant space.

Cutting the grid by a small set. When n ≥ 2, by Lemma 16, we can find a subset S of
edges with |S| ≤ O(

√
n). After S is removed, the grid becomes a union of two disconnected

grids A and B (we use A,B to denote both the grids and the sets of the vertices in the grid
for simplicity) with size smaller than 2

3n.

S. Aaronson and L. Chen 22:23

Let

{R = i | Ui is of the form Oi ⊗ I[n]\{ai,bi} and (ai, bi) ∈ S},

that is, the set of the indices of the gates crossing the cut S. Without loss of generality, we
can assume that for each i ∈ R, we have ai ∈ A and bi ∈ B.

Since in a single layer, there is at most one gate acting on a particular adjacent pair of
qubits, we have

|R| ≤ O(d
√
n).

Breaking the gates in R. Now, for each i ∈ R, we decompose Oi (which can be viewed as
a matrix in C4×4) into a sum of 16 single-entry matrices Oi,1, Oi,2, dotsc,Oi,16.

Write Oi as

Oi =
∑

x,y∈{0,1}2
〈y|Oi|x〉 · |y〉〈x|.

Then we set Oi,j = 〈yj |Oi|xj〉 · |yj〉〈xj | for each j ∈ [16], where (xj , yj) is the j-th ordered
pair in {0, 1}2 × {0, 1}2.

Decomposing the instance. Now, we are going to expand each Ui = Oi ⊗ I[n]\{ai,bi} as a
sum

Ui =
16∑
j=1

Oi,j ⊗ I[n]\{ai,bi}

for each i ∈ R, and therefore decompose the answer 〈y|C|x〉 = 〈y|UmUm−1 · · ·U1|x〉 into a
sum of 16|R| terms. More concretely, for a mapping τ from R to [16] and an index i ∈ [m],
we define

Ui,tau =
{
Oi,tau(i) × I[n]\{ai,bi} i ∈ R.
Ui i 6∈ R.

Let T be the set of all mappings from R to [16]. Then we have

〈y|C|x〉 = 〈y|UmUm−1 · · ·U1|x〉 =
∑
τ∈T
〈y|Um,tauUm−1,tau · · ·U1,tau|x〉.

Dealing with the sub-instance. For each τ ∈ T and an index i ∈ [m], we are going to show
that Ui,tau can be decomposed as UAi,tau ⊗ UBi,tau, where UAi,tau and UBi,tau are operators on
HA and HB respectively.

When i ∈ R, by definition, there exist x, y ∈ {0, 1}2 and α ∈ C such that

Ui,tau = α · |y〉〈x| ⊗ I[n]\{ai,bi} = α ·
(
|y0〉〈x0| ⊗ IA\{ai}

)
⊗
(
|y1〉〈x1| ⊗ IB\{bi}

)
.

Otherwise i /∈ R. In this case, if Oi is of the form Oi ⊗ I[n]\{ai,bi}, then ai, bi must be
both in A or in B and the claim trivially holds; and the claim is also obvious when Oi is of
the form Oi ⊗ I[n]\{ai} or I[n].

Moreover, one can easily verify that each UAi,tau is of the form OAi ⊗ IA\{ai,bi} or O
A
i ⊗

IA\{ai} or simply IA, in which OAi is (respectively) a 2-qubit operator on H{ai,bi} or a 1-qubit
operator on H{ai}), and the same holds for each UBi,tau.

CCC 2017

22:24 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Hence, we have

〈y|UmUm−1 · · ·U1|x〉

=
∑
τ∈T
〈y|Um,tauUm−1,tau · · ·U1,tau|x〉.notag (3)

=
∑
τ∈T
〈y|(UAm,tau ⊗ UBm,tau)(UAm−1,tau ⊗ UBm−1,tau) · · · (UA1,tau ⊗ UB1,tau)|x〉.notag (4)

=
∑
τ∈T
〈yA|UAm,tauUAm−1,tau · · ·UA1,tau|xA〉 · 〈yB |UBm,tauUBm−1,tau · · ·UB1,tau|xB〉, (5)

where xA, xB (yA, yB) is the projection of x (y) on HA and HB .
So from the above discussion, we can then calculate 〈yA|UAm,tauUAm−1,tau · · ·UA1,tau|xA〉

with a recursive call with computational basis states |xA〉 and |yA〉, grid A, and m gates
UA1,tau, U

A
2,tau, dotsc, U

A
m,tau.

The matrix element 〈yB |UBm,tauUBm−1,tau · · ·UB1,tau|xB〉 can be computed similarly. After
that we sum up all the terms in (5) to get the answer.

Complexity analysis. Now we are going to bound the running time. Let F (n) be an upper
bound on the running time when the size of the remaining grid is n. Then we have

F (n) =
{
O(m) when n = 1.
2O(d

√
n) ·maxk∈[n/3,2n/3] F (k) otherwise.

The second case is due to the fact that the sizes of sub-instances (i.e., the sizes of A and
B) lie in [n/3, 2n/3], and T = 16|R| = 2O(d

√
n). It is not hard to see that F (n) is an

increasing function, so we have F (n) = 2O(d
√
n)F (2n/3) for n > 1, which further simplifies

to F (n) = 2O(d
√
n).

Finally, we can see that at each recursion level, we need O(d ·n) space to store the circuit,
and O(1) space to store the intermediate answer. Since there are at most logn recursion
levels, the space complexity is O(d · n logn). J

Interestingly, by using tensor network methods, Markov and Shi [43] gave an algorithm
for simulating quantum circuits on grids with similar running time to ours. However, the
difference is that Markov and Shi’s algorithm requires 2O(d

√
n) time and 2O(d

√
n) space,

whereas ours requires 2O(d
√
n) time and only polynomial space.

The algorithm of Theorem 17 achieves a speedup over Theorem 15 only for small d, but
we can combine it with the algorithm in Theorem 15 to get a faster algorithm for the whole
range of d.

I Theorem 18. There is a constant c such that, given a quantum circuit C on n qubits with
depth d, and two computational basis states |x〉, spzy, assuming that GC can be embedded into
a two dimensional grid with size n (with the embedding explicitly specified), we can compute
〈y|C|x〉 in

O(2n ·
[
1 +

(
d

c
√
n

)
n+1
]
)

time and O(d · n logn) space.

Proof. By Theorem 17, there is a constant c such that we have an O(2n) time and polynomial
space algorithm for calculating 〈y|C|x〉 when the depth is at most c

√
n for circuit on grids.

S. Aaronson and L. Chen 22:25

So we can use the same algorithm as in Theorem 15, except that we revert to the algorithm
in Theorem 17 when the depth is no more than c

√
n.

We still let F (d) be the running time on a circuit of d layers. We then have F (d) = O(2n)
when d ≤ c

√
n. From the above discussion, we can see that for d > c

√
n,

F (d) ≤ 2n+1 · F (dd2e) = O(2n · 2(n+1)dlog(d/c
√
n)e) = O(2n ·

(
d

c
√
n

)
n+1),

which proves the running time bound. And it is not hard to see that the algorithm’s space
usage is dominated by O(d · n logn). J

4.3 Space-Time Trade-off Schemes
We now show how to optimize the running time for whatever space is available.

I Theorem 19. Given a quantum circuit C on n qubits with depth d, two computational
basis states |x〉, spzy and an integer k, we can compute 〈y|C|x〉 in

O(n2n−k · 2(k+1)dlog de) ≤ O(n2n−k · (2d)k+1)

time and O(2n−k log d) space.

Proof.
Decomposing the whole Hilbert space H[n]. We first decompose H[n] into a direct sum
of many subspaces. Let wi be the i-th string in {0, 1}k in lexicographic order. For each
i ∈ [2k], let Hi = Span(|wi0n−k〉, ...|wi1n−k〉). Then we have

H[n] =
2k⊕
i=1
Hi.

Also, let Pi be the projection from H[n] to Hi; then

I[n] =
2k∑
i=1
Pi.

Now we generalize the original problem as follows: given two indices s, t ∈ [2k] and a pure
state |u〉 in Hs, we want to compute PtC|u〉. By choosing s and t such that Hs contains |x〉
and Ht contains |y〉, we can easily solve the original problem.

The base case d = 1. When there is only one layer, PtC|u〉 can be calculated straightfor-
wardly in O(n · 2n−k) time and O(2n−k) space.

Recursion. When d > 1, we have

PtC|u〉 = PtC[d←d/2+1] · C[d/2←1]|u〉

= PtC[d←d/2+1]

 ∑
z∈[2k]

Pz

C[d/2←1]|u〉

=
∑
z∈[2k]

PtC[d←d/2+1]PzC[d/2←1]|u〉.

We can then calculate PtC[d←d/2+1]PzC[d/2←1]|u〉 for each z as follows: we first use a recursive
call to get |b〉 = PzC[d/2←1]|u〉 and a second recursive call to compute PtC[d←d/2+1]|b〉 (note
that |b〉 ∈ Hz).

CCC 2017

22:26 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Complexity analysis. It is easy to see that the total space usage is O(2n−k log d), since for
each i, storing a vector in Hi takes O(2n−k) space, and we only need to record O(1) such
vectors at each recursion level. In addition, when d = 1, we need only O(2n−k) space.

For the running time bound, let F (d) denote the running time on a circuit of d layers;
then F (1) = O(n2n−k). From the above discussion, it follows that

F (d) ≤ 2k+1 · F (dd/2e) = O(n2n−k · 2(k+1)dlog(d)e) = O(n2n−k · (2d)k+1). J

The above trade-off scheme can be further improved for quantum circuits on grids.
I Theorem 20. There is a constant c such that, given a quantum circuit C on n qubits with
depth d, two computational basis states |x〉, spzy and an integer k, assuming that GC can be
embedded into a two dimensional grid with size n, we can compute 〈y|C|x〉 in

2O(n) ·
[
1 + (2d/c

√
n)k+1]

time and

O
(
2n−k max(1, log(d/

√
n))
)

space.
Proof. By Theorem 17, there is a constant c such that we have an O(2n) time algorithm for
calculating 〈y|C|x〉 for circuits on grids with depth at most c

√
n.

Then we use the same algorithm as in Theorem 19, with the only modification that when
d ≤ c

√
n, we calculate Pt · C|u〉 by 22(n−k) calls of the algorithm in Theorem 17.

With the same analysis as in Theorem 19, when d > c
√
n, we can see that the total space

usage is O(2n−k log(d/c
√
n)) , and the running time is

O(2n+2(n−k)+(k+1)dlog(d/c
√
n)e) = O(2O(n) · (2d/c

√
n))k+1).

Combining with the algorithm for d ≤ c
√
n proves our running time and space bound. J

5 Strong Quantum Supremacy Theorems Must Be Non-Relativizing

In this section we show that there is an oracle relative to which SampBPP = SampBQP, yet
PHO is infinite.

Recall that an oracle O is a function O : {0, 1}∗ → {0, 1}, and the combination of two
oracles O0, oracle1, denoted as O0 ⊕ O1, simply maps z ∈ {0, 1}∗ to Oz1(z2, z3, dotsc, z|z|)
(cf. citefenner2003oracle). We use On to denote the restriction of O on {0, 1}n.

5.1 Intuition
We have two simultaneous objectives: (1) we need SampBPP and SampBQP to be equal; and
(2) we also need PH to be infinite. So it will be helpful to review some previous results on
(1) and (2) separately.

An oracle O such that SampBPPO = SampBQPO: in order to make two classes equal,
we can use the standard method: adding a much more powerful oracle [16]. That is,
we set O to be a PSPACE-complete language, like TQBF. Then it is easy to see both
SampBPPTQBF and SampBQPTQBF become SampPSPACE (i.e., the class of approximate
sampling problems solvable in polynomial space).
An oracle O such that PHO is infinite: a line of works by Yao [60], Håstad [35], and
others constructed relativized worlds where PH is infinite, and a very recent breakthrough
by Rossman, Servedio, and Tan [49] even shows that PH is infinite relative to a random
oracle with probability 1.

S. Aaronson and L. Chen 22:27

A Failed Attempt: Direct Combination

The first natural idea is to combine the previous two results straightforwardly by setting the
oracle to be TQBF⊕O, where O is a random oracle.

Alas, it is not hard to see that this does not work: while PH is still infinite, a SampBQP
algorithm can perform Fourier Sampling (cf. Definition 27) on the random oracle bits, and it
is known that no SampBPP algorithm can do that [9] (see also Theorem 33). Hence, in this
case SampBQP 6= SampBPP.

Another Failed Attempt: Hiding a “Secret Random String” in a Secret Location

The failure of the naive approach suggests that we must somehow “hide” the random oracle
bits, since if the SampBQP algorithm has access to them, then SampBPP and SampBQP will
not be equal. More specifically, we want to hide a “secret random string” among the oracle
bits so that:
1. a PH algorithm can find it, so that PH is still infinite, but
2. a SampBQP algorithm cannot find it, so that we can still make SampBPP = SampBQP

by attaching a TQBF oracle.

Inspired by the so-called cheat-sheet construction [10], it is natural to consider a direct
hiding scheme. Imagine that the oracle bits are partitioned into two parts: one part is logN
copies of the OR function on N bits, and another part is N binary strings y1, dotsc, yN , each
with length N . Let t = a1, a2, dotsc, alogN ∈ {0, 1}logN be the answer to the copies of OR;
we can also interpret t as an integer in [N]. Finally, set yt to be a random input, while other
yi’s are set to zero.

Intuitively, a PH algorithm can easily evaluate the logN copies of OR and then get access
to the random string; while it is known that OR is hard for a quantum algorithm, so no
quantum algorithm should be able to find the location of the random string efficiently.

Unfortunately, there is a fatal issue with the above approach: a SampBQP algorithm is
also given an input x ∈ {0, 1}n and it may guess that the input x denotes the location of the
random string. That is, on some particular input, the SampBQP algorithm is “lucky” and
gets access to the random string, which still makes SampBPP and SampBQP unequal.

Hiding the “Secret Random String” in a Bunch of OR’s

Therefore, our final construction goes further. Instead of hiding the random string in a secret
location amid the oracle bits, we hide it using a bunch of ORs. That is, suppose we want to
provide N uniform random bits. Then we provide them each as an OR of N bits. In this
way, a PH algorithm is still able to access the random bits, while a quantum algorithm, even
if it’s “lucky” with its additional input, still can’t get access to these hidden random bits.

5.2 Implementation
The Distribution DO on Oracles

We first describe formally how to hide a random string inside a bunch of OR’s by defining a
distribution DO on oracles.

For notational convenience, our constructed oracles always map all odd-length binary
strings to 0. So we can alternatively describe such an oracle O by a collection of functions
{fn}+∞n=0, where each fn is a function from {0, 1}2n → {0, 1}. That is, O2n is set to be fn for
each n, while the O2n+1’s are all constant zero functions.

CCC 2017

22:28 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

For each string p ∈ {0, 1}n, we use Bn,p to denote the set of strings in {0, 1}2n with
p as a prefix. Now we first define a distribution Dn on functions {0, 1}2n → {0, 1}, from
which a sample function fn is generated as follows: initially, we set fn(x) = 0 for all
x ∈ {0, 1}2n; then for each p ∈ {0, 1}n, with probability 0.5, we pick an element e in Bn,p at
uniformly random and set fn(e) = 1. Observe that by taking the OR of each Bn,p, we get a
function g(p) := ∨x∈Bn,pfn(x), which is a uniform random function from {0, 1}n to {0, 1} by
construction.

Finally, the Dn’s induce a distribution DO on oracles, which generates an oracle O by
drawing fn ∼ Dn independently for each integer n. That is, we set O2n to be fn, and O2n+1
to be 0, for each n.

Having defined the distribution DO, we are ready to state our result formally.

I Theorem 21. For an oracle O drawn from the distribution DO, the following two statements
hold with probability 1:

SampBPPTQBF,oracle = SampBQPTQBF,oracle.
PHTQBF,oracle is infinite.

From which our desired result follows immediately.

I Corollary 22. There exists an oracle O′ = TQBF⊕O such that SampBPPO
′

= SampBQPO
′

and PHO
′
is infinite.

The rest of this section is devoted to the proof of Theorem 21.

5.3 SampBPPTQBF,oracle = SampBQPTQBF,oracle with Probability 1
We first describe an algorithm for simulating SampBQPTQBF,oracle in SampBPPTQBF,oracle,
thereby proving the first part of Theorem 21. In the following, we assume that all oracle
algorithms are given access to two oracles, TQBF and O.

Given a SampBQP oracle algorithm M , our central task is to give a SampBPP oracle
algorithm that simulates M closely. Formally:

I Lemma 23. For any SampBQP oracle algorithm M , there is a SampBPP oracle algorithm
A such that:

Let O be an oracle drawn from DO, and let DMx,varepsilon and DAx,varepsilon be the distri-
butions output by MTQBF,oracle and ATQBF,oracle respectively on input 〈x, 01/ε〉. Then with
probability at least 1− exp{−(2 · |x|+ 1/ε)}, we have

‖DMx,varepsilon −DAx,varepsilon‖ ≤ ε.

Before proving Lemma 23, we show it implies the first part of Theorem 21.

Proof of the first part of Theorem 21. Fix a SampBQP oracle algorithm M , and let O be
an oracle drawn from DO. We first show that with probability 1, there is a classical algorithm
AM such that

‖DMx,varepsilon −D
AM
x,varepsilon‖ ≤ ε for all x ∈ {0, 1}∗ and ε = 2−k for some integer k. (6)

Let A be the SampBPP algorithm guaranteed by Lemma 23. For an input x ∈ {0, 1}∗
and an integer k, we call (x, k) a bad pair if ‖DMx,2−k −D

A
x,2−k‖ > 2−k. By Lemma 23, the

expected number of bad pairs is upper-bounded by
+∞∑
n=1

2n ·
+∞∑
k=1

exp(−(2n+ 2k)) ≤
+∞∑
n=1

+∞∑
k=1

exp(−(n+ k)) ≤ O(1).

S. Aaronson and L. Chen 22:29

This means that with probability 1, there are only finitely many bad pairs, so we can handle
them by hardwiring their results into the algorithm A to get the algorithm AM we want.

Since there are only countably many SampBQP oracle algorithms M , we see with prob-
ability 1, for every SampBQP oracle algorithm M , there is a classical algorithm AM such
that (6) holds. We claim that in that case, SampBQPTQBF,oracle = SampBPPTQBF,oracle.

Let S be a sampling problem in SampBQPTQBF,oracle. This means that there is a SampBQP
oracle algorithm M , such that for all x ∈ {0, 1}∗ and ε, we have ‖DMx,varepsilon − Sx‖ ≤ ε.
Let AM be the corresponding SampBPP algorithm. Now consider the following algorithm
A′: given input 〈x, 01/ε〉, let k be the smallest integer such that 2−k ≤ ε/2; then run AM on
input 〈x, 02k〉 to get a sample from DAM

x,2−k .
Since

‖DA
′

x,varepsilon − Sx‖ = ‖DAM
x,2−k − Sx‖

≤ ‖DMx,2−k −D
AM
x,2−k‖+ ‖DMx,2−k − Sx‖ ≤ 2 · 2−k ≤ ε,

this means that A′ solves S and S ∈ SampBPPTQBF,oracle. So SampBQPTQBF,oracle ⊆
SampBPPTQBF,oracle with probability 1, which completes the proof. J

We now prove Lemma 23, which is the most technical part of the whole section.

Proof of Lemma 23. Recall that from the canonical description in Section 2.2, there exists a
fixed polynomial p, such that given input 〈x, 01/ε〉, the machineM first constructs a quantum
circuit C with N = p(|x|, 1/ε) qubits and N gates classically (C can contain TQBF and O
gates). We first set up some notation.

Notation. Recall that O can be specified by a collection of functions {fn}+∞n=0, where each
fn maps {0, 1}2n to {0, 1}. Without loss of generality, we can assume that all the O gates
act on an even number of qubits, and for each n, all the fn gates act on the first 2n qubits.

For a function f : {0, 1}k → {0, 1}, we use Uf to denote the unitary operator mapping
|i〉 to (−1)f(i)|i〉 for i ∈ {0, 1}k.

Suppose there are T O-gates in total, and suppose the i-th O-gate is an fni gate. Then
the unitary operator U applied by the circuit C can be decomposed as

U = UT+1(UfnT ⊗ IN−2nT) · · · (Ufn2
⊗ IN−2n2)U2(Ufn1

⊗ IN−2n1)U1,

where the Ui’s are the unitary operators corresponding to the sub-circuits which don’t contain
an O gate.

Our algorithm proceeds by replacing each O-gate by a much simpler gate, one by one,
without affecting the final quantum state too much. It then simulates the final circuit with
the help of the TQBF oracle.

Replacing the t-th O-gate. Suppose we have already replaced the first t−1 O-gates. That
is, for each i ∈ [t− 1], we replaced the fni gate (the i-th O-gate) with a gi gate, and now we
are going to replace the t-th O-gate.

Let

|v〉 = Ut(Ugt−1 ⊗ IN−2nt−1) · · · (Ug2 ⊗ IN−2n2)U2(Ug1 ⊗ IN−2n1)U1|0〉⊗N ,

which is the quantum state right before the t-th O gate in the circuit after the replacement.
For brevity, we use f to denote the function fnt , and we drop the subscript t of nt when

it is clear from context.

CCC 2017

22:30 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Analysis of incurred error. The t-th O-gate is an f gate. If we replace it by a g gate, the
change to the quantum state is

‖Uf ⊗ IN−2n|v〉 − Ug ⊗ IN−2n|v〉‖ = ‖(Uf − Ug)⊗ IN−2n|v〉‖.

We can analyze the above deviation by bounding its square. Let H be the Hilbert space
spanned by the last N − 2n qubits, and let ρ = TrH [|v〉〈v|]. Then we have

‖((Uf − Ug)⊗ IN−2n)|v〉‖2

= Tr
[
(Uf − Ug)†(Uf − Ug)⊗ IN−2n|v〉〈v|

]
= Tr

[
(Uf − Ug)†(Uf − Ug)ρ

]
.

Note that

(Uf − Ug)†(Uf − Ug) = 4
∑

f(i)6=g(i)

|i〉〈i|

from the definition. So we can further simplify the above trace as

Tr
[
(Uf − Ug)†(Uf − Ug)ρ

]
= 4

∑
f(i)6=g(i)

Tr[|i〉〈i|ρ] = 4
∑

f(i) 6=g(i)

〈i|ρ|i〉. (7)

Now, ρ is a (mixed) quantum state on the first 2n bits, and 〈i|ρ|i〉 is the probability
of seeing i when measuring ρ in the computational basis. So we can define a probability
distribution Q on {0, 1}2n by Q(i) := 〈i|ρ|i〉.

Using the distribution Q, the error term (7) can finally be simplified as:

4
∑

i∈{0,1}2n
Q(i) · [f(i) 6= g(i)] = 4 · Pr

i∼Q
[f(i) 6= g(i)], (8)

where [f(i) 6= g(i)] is the indicator function that takes value 1 when f(i) 6= g(i) and 0
otherwise.

A posterior distribution Dpost
n on functions from {0, 1}2n → {0, 1}. Now, recall that

f = fn is a function drawn from the distribution Dn. Our goal is to replace f by another
simple function g, such that with high probability, the introduced deviation (8) is small.

Note that when replacing the t-th O gate, we may already have previously queried some
contents of f (i.e., it is not the first fn gate in the circuit). So we need to consider the
posterior distribution Dpost

n on functions from {0, 1}2n → {0, 1}. That is, we want a function
g, such that with high probability over f ∼ Dpost

n , the error term (8) is small.
We use a function fknown : {0, 1}2n → {0, 1, ∗} to encode our knowledge: if f(i) is not

queried, then we set fknown(i) := ∗; otherwise we set fknown(i) := f(i). Then Dpost
n is simply

the distribution obtained from Dn by conditioning on the event that f is consistent with
fknown.

We can now work out the posterior distribution Dpost
n from the definition of Dn and Bayes’

rule.
For f ∼ Dpost

n , we can see that all the sets Bn,p (recall that Bn,p is the set of all strings
in {0, 1}2n with p as a prefix) are still independent. So we can consider each set separately.

For each p ∈ {0, 1}n, if there is an x ∈ Bn,p such that fknown(x) = 1, then by the
construction of Dn, all other elements y ∈ Bn,p must satisfy f(y) = 0.

S. Aaronson and L. Chen 22:31

Otherwise, if there is no x ∈ Bn,p such that fknown(x) = 1, then we set Zp = |{fknown(x) =
0 | x ∈ Bn,p}| and note that |Bn,p| = 2n. By Bayes’ rule, we see that with probability

1
2− Zp · 2−n

, all y ∈ Bn,p satisfy f(y) = 0; and for each y ∈ Bn,p such that fknown(y) = ∗,

with probability 2−n

2− Zp · 2−n
, we have that y is the only element of Bn,p that satisfies

f(y) = 1.

Construction and Analysis of g. Our construction of g goes as follows: we first set g(x) =
fknown(x) for all x such that fknown(x) 6= ∗. Then for a parameter τ which will be specified
later, we query all x ∈ {0, 1}2n with Q(x) ≥ τ , and set g(x) = f(x) for them. For all other
positions of g, we simply set them to zero. Hence, there are at most O(1/τ) +W ones in g,
where W denotes the number of ones in fknown.

The following three properties of g are immediate from the construction.

f(x) 6= g(x) implies Q(x) ≤ τ. (9)
g(x) = 1 implies f(x) = g(x). (10)
For each p ∈ {0, 1}n, there is at most one x ∈ Bn,p with f(x) 6= g(x). (11)

Upper bounding the deviation (8). Now we are going to show that Pr
x∼Q

[f(x) 6= g(x)] is

very small, with overwhelming probability over the posterior distribution Dpost
n .

We first define 2n random variables {Xp}p∈{0,1}n , where Xp =
∑

x∈Bn,p

Q(x) · [f(x) 6= g(x)]

for each p ∈ {0, 1}n. By the construction of Dpost
n , we can see that all Xp’s are independent.

Moreover, by properties (9) and (11), there is at most one x ∈ Bn,p such that f(x) 6= g(x),
and that x must satisfy Q(x) ≤ τ . Therefore Xp ∈ [0, tau] for every p.

Let X =
∑

p∈{0,1}n
Xp, and µ = E[X]. Alternatively, we can write X as

X =
∑

x∈{0,1}2n
Q(x) · [f(x) 6= g(x)],

so

µ =
∑

x∈{0,1}2n
Q(x) · E[f(x) 6= g(x)].

We claim that E[f(x) 6= g(x)] ≤ 2−n for all x ∈ {0, 1}2n, and consequently µ ≤ 2−n.
Fix an x ∈ {0, 1}2n, and suppose x ∈ Bn,p. When g(x) = 1, we must have f(x) = g(x) by
property (10). When g(x) = 0, by the definition of Dpost

n , we have f(x) = 1 with probability at

most 2−n

2− Zp · 2−n
≤ 2−n. So E[f(i) 6= g(i)] ≤ 2−n in both cases and the claim is established.

Applying the Chernoff Bound. Set δ = µ−1ε4

32T 2 . If δ ≤ 1, then we have

32T 2ε−4 ≥ µ−1 ≥ 2n.

This means that we can simply query all the positions in fn using 22n = O(T 4 · ε−8) queries,
as this bound is polynomial in |x| and 1/ε (recall that T ≤ N = p(|x|, 1/ε)).

CCC 2017

22:32 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Hence, we can assume that δ > 1. So by Corollary 7, we have

Pr[X ≥ 2δµ] ≤ Pr[X ≥ (1 + δ)µ] ≤ exp
{
−δµ3τ

}
.

Finally, we set τ = ε4

96T 2 · (2n+ ε−1 + lnT) .

Therefore, with probability

1− exp
{
−δµ3τ

}
= 1− exp(−(2n+ ε−1 + lnT)) = 1− exp(−(2n+ ε−1)

T
,

we have

‖(Uf − Ug)⊗ IN−2n|v〉‖2 = 4 ·X ≤ 8δµ = ε4

4T 2 ,

which in turn implies

‖(Uf − Ug)⊗ IN−2n|v〉‖ ≤
ε2

2T .

Moreover, we can verify that g only has O(1/τ) +W = poly(n, 1/ε) ones.

Analysis of the final circuit Cfinal. Suppose that at the end, for each t ∈ [T], our algorithm
has replaced the t-th O-gate with a gt gate, where gt is a function from {0, 1}2nt to {0, 1}.
Let Cfinal be the circuit after the replacement.

Let

V = UT+1(UgT ⊗ IN−2nT) · · · (Ug2 ⊗ IN−2n2)U2(Ug1 ⊗ IN−2n1)U1

be the unitary operator corresponding to Cfinal. Also, recall that U is the unitary operator
corresponding to the original circuit C. We are going to show that U |0〉⊗N and V |0〉⊗N , the
final quantum states produced by U and V respectively, are very close.

We first define a sequence of intermediate quantum states. Let |u1〉 = U1|0〉⊗N . Then for
each t > 1, we define

|ut〉 = Ut(Ufnt−1
⊗ IN−2nt−1)|ut−1〉.

That is, |ut〉 is the quantum state immediately before applying the t-th O-gate in the original
circuit. Similarly, we let |v1〉 = U1|0〉⊗N , and

|vt〉 = Ut(Ugt−1 ⊗ IN−2nt−1)|ut−1〉

for each t > 1.
From the analysis of our algorithm, over O ∼ DO, for each t ∈ [T], with probability

1− exp(−(2n+ ε−1))/T , we have

‖Ufnt ⊗ IN−2nt |vt〉 − Ugt ⊗ IN−2nt |vt〉‖ ≤
ε2

2T . (12)

So by a simple union bound, with probability at least 1− exp(−(2n+ ε−1)), the above
bound holds for all t ∈ [T]. We claim that in this case, for each t ∈ [T + 1], we have

‖|vt〉 − |ut〉‖ ≤ (t− 1) · ε
2

2T . (13)

S. Aaronson and L. Chen 22:33

We prove this by induction. Clearly it is true for t = 1. When t > 1, suppose (13) holds
for t− 1; then

‖|vt〉 − |ut〉‖ =‖Ut(Ogt−1 ⊗ IN−2nt−1)|vt−1〉 − Ut(fnt−1 ⊗ IN−2nt−1)|ut−1〉‖
=‖Ugt−1 ⊗ IN−2nt−1 |vt−1〉 − Ufnt−1

⊗ IN−2nt−1 |ut−1〉‖

≤‖Ugt−1 ⊗ IN−2nt−1 |vt−1〉 − Ufnt−1
⊗ IN−2nt−1 |vt−1〉‖

+ ‖Ufnt−1
⊗ IN−2nt−1 |vt−1〉 − Ufnt−1

⊗ IN−2nt−1 |ut−1〉‖

≤ ε
2

2T + ‖|ut−1〉 − |vt−1〉‖ ≤ (t− 1) · ε
2

2T ,

where the second line holds by the fact that Ut is unitary, the third line holds by the triangle
inequality, and the last line holds by (12) and the induction hypothesis.

Upper-bounding the error. Therefore, with probability at least 1− exp(−(2n+ ε−1)), we
have

‖|vT+1〉 − |uT+1〉‖ = ‖U |0〉⊗N − V |0〉⊗N‖ ≤ ε2

2 .

Now, our classical algorithm A then simulates stage 2 and 3 of the SampBQP algorithmM

straightforwardly. That is, it first takes a sample z by measuring |vT+1〉 in the computational
basis, and then outputs Aoutput(z) as its sample, where Aoutput is the classical algorithm used
by M in stage 3.

From our previous analysis, A queries the oracle only poly(n, 1/ε) times. In addition, it
is not hard to see that all the computations can be done in PSPACE, and therefore can be
implemented in poly(n, 1/ε) time with the help of the TQBF oracle. So A is a SampBPP
algorithm.

By Corollary 5, with probability at least 1−exp(−(2n+ε−1)), the distribution DAx,varepsilon
outputted by A satisfies

‖DAx,varepsilon −DMx,varepsilon‖ ≤
√

2 · ε
2

2 = ε,

and this completes the proof of Lemma 23. J

5.4 PHTQBF,oracle is Infinite with Probability 1
For the second part of Theorem 21, we resort to the well-known connection between PH and
constant-depth circuit lower bounds.

The Average Case Constant-depth Circuit Lower Bound

For convenience, we will use the recent breakthrough result by Rossman, Servedio, and
Tan [49], which shows that PH is infinite relative to a random oracle with probability 1.
(Earlier constructions of oracles making PH infinite would also have worked for us, but a
random oracle is a particularly nice choice.)

I Theorem 24. Let 2 ≤ d ≤ c
√

logn
log logn , where c > 0 is an absolute constant. Let Sipserd

be the explicit n-variable read-once monotone depth-d formula described in [49]. Then any

circuit C ′ of depth at most d − 1 and size at most S = 2n
1

6(d−1) over {0, 1}n agrees with
Sipserd on at most (1

2 + n−Ω(1/d)) · 2n inputs.

CCC 2017

22:34 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Dn as a Distribution on {0, 1}22n

In order to use the above result to prove the second part of Theorem 21, we need to interpret
Dn (originally a distribution over functions mapping {0, 1}2n to {0, 1}) as a distribution on
{0, 1}2

2n
in the following way.

Let τ be the bijection between [22n] and {0, 1}2n that maps an integer i ∈ [22n] to the
i-th binary string in {0, 1}2n in lexicographic order. Then a function f : {0, 1}2n → {0, 1}
is equivalent to a binary string xf ∈ {0, 1}2

2n
, where the i-th bit of xf , denoted xfi , equals

f(τ(i)). Clearly this is a bijection between functions from {0, 1}2n to {0, 1} and binary
strings in {0, 1}2

2n
.

For notational simplicity, when we say a binary string x ∈ {0, 1}2
2n

is drawn from Dn, it
means x is generated by first drawing a sample function f ∼ Dn and then setting x = xf .

Note that for p ∈ {0, 1}n, if p is the i-th binary string in {0, 1}n, then the set Bn,p
corresponds to the bits x(i−1)2n+1, dotsc, xi2n .

Distributional Constant-Depth Circuit Lower Bound over Dn

Now we are ready to state our distributional circuit lower bound over Dn formally.

I Lemma 25. For an integer n, let N = 2n and Sipserd be the N-variable Sipser function
as in Theorem 24.

Consider the Boolean function (Sipserd ◦ OR) on {0, 1}N
2
defined as follows:

Given inputs x1, x2, dotsc, xN2 , for each 1 ≤ i ≤ N , set

zi := ∨iNj=(i−1)N+1xj ,

and

(Sipserd ◦ OR)(x) := Sipserd(z).

Then any circuit C ′ of depth at most d − 1 and size at most S = 2N
1

6(d−1) over {0, 1}N
2

agrees with (Sipserd ◦OR) with probability at most 1
2 +N−Ω(1/d) when inputs are drawn from

the distribution Dn.

Before proving Lemma 25, we show that it implies the second part of Theorem 21 easily.

Proof of the second part of Theorem 21. Consider the function (Sipserd ◦ OR) defined as
in Lemma 25. It is easy to see that it has a polynomial-size circuit (in fact, a formula) of
depth d + 1; and by Lemma 25, every polynomial size circuit of depth d − 1 has at most
1
2 +o(1) correlation with it when the inputs are drawn from the distribution Dn. So it follows
from the standard connection between PH and AC0 that PHO is infinite with probability 1
when O ∼ DO. J

Finally, we prove Lemma 25.

Proof of Lemma 25. By Theorem 24, there is a universal constant c, such that any circuit
C of depth at most d − 1 and size at most S over {0, 1}N agrees with Sipserd on at most(

1
2 +N−c/d

)
· 2N inputs.

S. Aaronson and L. Chen 22:35

We are going to show this lemma holds for the same c. Suppose not; then we have a

circuit C of depth at most d− 1 and size at most S = 2N
1

6(d−1) over {0, 1}N
2
, such that

Pr
x∼Dn

[C(x) = (Sipserd ◦ OR)(x)] > 1
2 +N−c/d.

Now, for each y1, y2, dotsc, yN ∈ [N]N , we define a distribution Dy1,y2,dotsc,yN
n on {0, 1}N

2

as follows. To generate a sample x ∼ Dy1,y2,dotsc,yN
n , we first set x = 0N

2
. Then for each

i ∈ [N], we set x(i−1)N+yi to 1 with probability 1/2.
By construction, we can see for all x in the support of Dy1,y2,dotsc,yN

n ,

(Sipserd ◦ OR)(x) = Sipserd(xy1 , xN+y2 , x2N+y3 , dotsc, x(N−1)N+yN).

Moreover, by definition, Dn is just the average of these distributions:

Dn = N−N ·
∑

y1,y2,dotsc,yN

Dy1,y2,dotsc,yN
n .

By an averaging argument, there exist y1, y2, dotsc, yN ∈ [N]N such that

Pr
x∼Dy1,y2,dotsc,yNn

[C(x) = (Sipserd ◦ OR)(x)] > 1
2 +N−c/d.

Setting x(i−1)N+yi = zi for each i, and all other inputs to 0 in the circuit C, we then have a
circuit D of size at most S and depth at most d− 1 over {0, 1}N . And by the construction
of Dy1,y2,dotsc,yN

n and the definition of the function (Sipserd ◦OR), we see that D agrees with
Sipserd on at least a 1

2 +N−c/d fraction of inputs. But this is a contradiction. J

6 Maximal Quantum Supremacy for Black-Box Sampling and
Relation Problems

In this section we present our results about Fourier Fishing and Fourier Sampling.
We will establish an Ω(N/ logN) lower bound on the classical query complexity of

Fourier Fishing, as well as an optimal Ω(N) lower bound on the classical query complexity of
Fourier Sampling.

6.1 Preliminaries
We begin by introducing some useful notations. Throughout this section, given a function
f : {0, 1}n → {−1, 1}, we define the Fourier coefficient

f̂(z) = 2−n/2
∑

x∈{0,1}n
f(x) · (−1)x·z

for each z ∈ {0, 1}n.
We also define

adv(f) := 2−n ·
∑

z∈{0,1}n,|f̂(z)|≥1

f̂(z)2,

and set N = 2n.
The following two constants will be used frequently in this section.

SuccQ = 2√
2π

∫ +∞

1
x2e−x

2/2dx ≈ 0.801 and SuccR = 2√
2π

∫ +∞

1
e−x

2/2dx ≈ 0.317.

Finally, we use Un to denote the uniform distribution on functions f : {0, 1}n → {−1, 1}.

CCC 2017

22:36 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

An Approximate Formula for the Binomial Coefficients

We also need the following lemma to approximate the binomial coefficients to ease some
calculations in our proofs.

I Lemma 26 ((5.41) in [56]). For value n and |k − n/2| = o(n2/3), we have(
n

k

)
≈
(
n

n/2

)
· e−

(k−n/2)2
n/2

and

ln
(
n

k

)
= ln

(
n

n/2

)
− (k − n/2)2

n/2 + o(1).

6.2 Fourier Fishing and Fourier Sampling
We now formally define the Fourier Fishing and the Fourier Sampling problems.

I Definition 27. We are given oracle access to a function f : {0, 1}n → {−1, 1}.
In Fourier Sampling (or Fsampling in short), our task is to sample from a distribution D

over {0, 1}n such that ‖D − Df‖ ≤ ε, where Df is the distribution defined by

Pr
Df

[y] = 2−nf̂(y)2 =

 1
2n

∑
x∈{0,1}n

f(x)(−1)x·y
2.

In Fourier Fishing (or Ffishing in short), we want to find a z such that |f̂(z)| ≥ 1. We also
define a promise version of Fourier Fishing (promise-Ffishing for short), where the function f
is promised to satisfy adv(f) ≥ SuccQ −

1
n
.

A Simple 1-Query Quantum Algorithm

Next we describe a simple 1-query quantum algorithm for both problems. It consists of a
round of Hadamard gates, then a query to f , then another round of Hadamard gates, then a
measurement in the computational basis.

The following lemma follows directly from the definitions of Fsampling and Ffishing.

I Lemma 28. Given oracle access to a function f : {0, 1}n → {−1, 1}, the above algorithm
solves Fsampling exactly (i.e. with ε = 0), and Ffishing with probability adv(f).

We can now explain the meanings of the constants SuccQ and SuccR. When the function f
is drawn from Un, by a simple calculation, we can see that SuccQ is the success probability for
the above simple quantum algorithm on Fourier Fishing, and SuccR is the success probability
for an algorithm outputting a uniform random string in {0, 1}n.

6.3 The Ω(N/ logN) Lower Bound for Fourier Fishing
We begin with the Ω(N/ logN) randomized lower bound for Fourier Fishing. Formally:

I Theorem 29. There is no o(N/ logN)-query randomized algorithm that solves promise-Ffishing
with SuccR + Ω(1) success probability.

S. Aaronson and L. Chen 22:37

To prove Theorem 29, we first show that when the function f is drawn from Un, no classical
algorithm with o(N/ logN) queries can solve Ffishing with probability SuccR + Ω(1); we
then show with high probability, a function f ← Un satisfies the promise of promise-Ffishing.
Formally, we have the following two lemmas.

I Lemma 30. For large enough n,

Pr
f←Un

[
adv(f) < SuccQ −

1
n

]
<

1
n
.

I Lemma 31. Over f ← Un, no randomized algorithm with o(N/ logN) queries can solve
Ffishing with probability

SuccR + Ω(1).

Before proving these two technical lemmas, we show that they together imply Theorem 29
easily.

Proof of Theorem 29. Suppose by contradiction that there is an o(N/ logN) query ran-
domized algorithm A which has a SuccR + Ω(1) success probability for promise-Ffishing.
From Lemma 30, a 1 − o(1) fraction of all functions from {0, 1}n → {−1, 1} satisfy the
promise of promise-Ffishing. Therefore, when the sample function f is drawn from Uf , with
probability 1 − o(1) it satisfies the promise of promise-Ffishing, and consequently A has a
SuccR + Ω(1) success probability of solving Ffishing with that f . This means that A has a
success probability of

(1− o(1)) · (SuccR + Ω(1)) = SuccR + Ω(1)

when f ← Un, contradicting Lemma 31. J

The proof of Lemma 30 is based on a tedious calculation so we defer it to Appendix C.
Now we prove Lemma 31.

Proof of Lemma 31. By Yao’s principle, it suffices to consider only deterministic algorithms,
and we can assume the algorithm A makes exactly t = o(N/ logN) queries without loss of
generality.

Notations. Suppose that at the end of the algorithm, A has queried the entries in a subset
S ⊆ {0, 1}n such that |S| = t.

For each z ∈ {0, 1}n, we define

f̂seen(z) = 1√
t

∑
x∈S

f(x) · (−1)x·z

and similarly

f̂unseenf(z) = 1√
N − t

∑
x∈{0,1}n\S

f(x) · (−1)x·z.

From the definitions of f̂(z), f̂seen(z) and f̂unseen(z), and note that N/t = ω(logN) =
ω(lnN), we have

f̂(z) =
(√

t · f̂seen(z) +
√
N − t · f̂unseen(z)

)/√
N

= f̂seen(z)/ω(
√

lnN) + f̂unseen(z) · (1− o(1)). (14)

CCC 2017

22:38 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

W.h.p. f̂seen(z) is small for all z ∈ {0, 1}n. We first show that, with probability at least
1− o(1) over f ← Un, we have |f̂seen(z)| ≤ 2

√
lnN for all z ∈ {0, 1}n.

Fix a z ∈ {0, 1}n, and note that for the algorithm A, even though which position to
query next might depend on the history, the value in that position is a uniform random bit
in {−1, 1}. So f̂seen(z) is a sum of t uniform i.i.d. random variables in {−1, 1}.

Therefore, the probability that |f̂seen(z)| > 2
√

lnN for this fixed z is

2√
2π

∫ +∞

2
√

lnN
e−x

2/2dx = o

(
1
N

)
.

Then by a simple union bound, with probability 1− o(1), there is no z ∈ {0, 1}n such
that |f̂seen(z)| > 2

√
lnN at the end of t queries. We denote the nonexistence of such a z as

the event Ebad.

The lower bound. In the following we condition on Ebad. We show in this case, A cannot
solve Ffishing with a success probability better than SuccR, thereby proving the lower bound.

From (14), for each z ∈ {0, 1}n, we have

f̂(z) = o(1) + f̂unseen(z) · (1− o(1)).

Therefore, the probability of |f̂(z)| ≥ 1 is bounded by the probability that |f̂unseen(z)| ≥
1− o(1). Since f̂unseen(z) is independent of all the seen values in S, we have

Pr
[
f̂unseen(z) ≥ 1− o(1)

]
= 2√

2π

∫ +∞

1−o(1)
e−x

2/2dx

= 2√
2π

∫ +∞

1
e−x

2/2dx+ o(1)

= SuccR + o(1).

Hence, no matter which z is outputted by A, we have |f̂(z)| ≥ 1 with probability at most
SuccR + o(1). That means that if we condition on Ebad, then A cannot solve Ffishing with
probability SuccR + Ω(1). As Ebad happens with probability 1 − o(1), this finishes the
proof. J

6.4 The Optimal Ω(N) Lower Bound for Fourier Sampling
We first show that in fact, Lemma 31 already implies an Ω(N/ logN) lower bound for
Fourier Sampling, which holds for a quite large ε.

I Theorem 32. For any ε < SuccQ − SuccR ≈ 0.483, the randomized query complexity for
Fsampling is Ω(N/ logN).

Proof. Note when f ← Un, an exact algorithm for Fsampling can be used to solve Ffishing
with probability SuccQ. Hence, a sampling algorithm for Fsampling with total variance ≤ ε
can solve Ffishing with probability at least SuccQ − ε, when f ← Un.

Then the lower bound follows directly from Lemma 31. J

Next we prove the optimal Ω(N) lower bound for Fourier Sampling.

I Theorem 33. There is a constant ε > 0, such that any randomized algorithm solving
Fsampling with error at most ε needs Ω(N) queries.

S. Aaronson and L. Chen 22:39

Proof.
Reduction to a simpler problem. Sampling problems are hard to approach, so we first
reduce to a much simpler problem with Boolean output (“accept” or “reject”).

Let A be a randomized algorithm for Fsampling with total variance ≤ ε. For a function
f : {0, 1}n → {−1, 1} and y ∈ {0, 1}n, we set pf,y to be the probability that A outputs y
with oracle access to f .

By the definition of Fsampling, for all f , we have

1
2

∑
y∈{0,1}n

∣∣∣pf,y − 2−nf̂(y)2
∣∣∣ ≤ ε.

By an averaging argument, this implies that there exists a y∗ ∈ {0, 1}n such that

E
f←Un

[∣∣∣pf,y∗ − 2−nf̂(y∗)2
∣∣∣] ≤ 2ε

N
.

Then by Markov’s inequality, we have∣∣∣pf,y∗ − 2−nf̂(y∗)2
∣∣∣ ≤ 400ε

N
,

for at least a 199/200 fraction of f ’s. Now we set ε = 1
400 ·

1
100 .

Without loss of generality, we can assume that y∗ = 0n. Let zi := 1 + f(xi)
2 (where

x1, x2, dotsc, xN is a lexicographic ordering of inputs), Z := (z1, dotsc, zN) and |Z| :=
N∑
i=1

zi.

Then we have

2−nf̂(0n)2 =
(

2|Z|
N
− 1
)

2.

Now we can simplify the question to one of how many zi’s the algorithm A needs to query,
in order to output 0n (we call it “accept" for convenience) with a probability pZ = pf,0n that
satisfies∣∣∣∣pZ − (2|Z|

N
− 1
)

2
∣∣∣∣ ≤ 400ε

N
≤ 0.01

N
(15)

with probability at least 199/200 over Z ∈ {0, 1}N .

Analysis of the acceptance probability of A. Without loss of generality, we can assume
that A non-adaptively queries t randomly-chosen inputs zi1 , zi2 , dotsc, zit , and then accepts
with a probability qk that depends solely on k := zi1 + · · ·+ zit . The reason is that we can
change any other algorithm into this restricted form by averaging over all N ! permutations
of Z without affecting its correctness.

Let pw be the probability that A accepts when |Z| = w. Then

pw =
t∑

k=0
qk · rk,w,

where rk,w :=
(
t

k

)(
N − t
w − k

)/(N
w

)
, is the probability that zi1 + · · ·+ zit = k conditioned

on |Z| = w.

CCC 2017

22:40 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Construction and Analysis of the sets U, V,W . Now, consider the following three sets:

U :=
{
Z :

∣∣∣∣|Z| − N

2

∣∣∣∣ ≤
√
N

20

}
,

V :=
{
Z :

(
1− 1

20

)√
N

2 ≤ |Z| − N

2 ≤
√
N

2

}
,

W :=
{
Z :

(
1− 1

20

)√
N ≤ |Z| − N

2 ≤
√
N

}
.

We calculate the probability that a uniform random Z belongs to these three sets. For a
sufficiently large N , we have

Pr
Z

[Z ∈ U] ≥erf
(√

2
20

)
− o(1) > 0.075,

Pr
Z

[Z ∈ V] ≥1
2 ·
(

erf
(√

2
2

)
− erf

(√
2

2 ·
19
20

))
− o(1) > 0.01,

Pr
Z

[Z ∈W] ≥1
2 ·
(

erf(
√

2)− erf
(√

2 · 19
20

))
− o(1) > 0.005.

Construction and Analysis of w0, w1, w2. Since all Pr
Z

[Z ∈ U],Pr
Z

[Z ∈ V],Pr
Z

[Z ∈ W]
> 0.005, and recall that for at least a 1− 0.005 fraction of Z, we have∣∣∣∣pZ − (2|Z|

N
− 1
)

2
∣∣∣∣ ≤ 400ε

N
≤ 0.01

N
.

So there must exist w0 ∈ U,w1 ∈ V,w2 ∈W such that∣∣∣∣pwi − 4 ·
(
wi −N/2

N

)
2
∣∣∣∣ ≤ 0.01

N
(16)

for each i ∈ {0, 1, 2}.

To ease our calculation, let ui = wi −N/2√
N

, then we have wi = N/2 + ui
√
N . By the

definition of the ui’s, we also have |u0| ≤
1
20 , u1 ∈ [0.475, 0.5], u2 ∈ [0.95, 1].

Plugging in ui’s, for each i ∈ {0, 1, 2}, equation (16) simplifies to∣∣∣∣pwi − 4u2
i

N

∣∣∣∣ ≤ 0.01
N

. (17)

We can calculate the ranges of the pwi ’s by plugging the ranges of the ui’s,

pw0 ≤
0.02
N

,

pw1 ∈
[

0.952 − 0.01
N

, frac1 + 0.01N
]
⊆
[

0.89
N

, frac1.01N
]
,

pw2 ∈
[

4 · 0.952 − 0.01
N

, frac4 + 0.01N
]
⊆
[

3.6
N
, frac4.01N

]
.

We are going to show that the above is impossible when t = o(N). That is, one cannot
set the qk’s in such a way that all pwi ’s satisfy the above constraints when t = o(N).

S. Aaronson and L. Chen 22:41

It is safe to set qk to zero when |k− t/2| is large. To simplify the matters, we first show
that we can set nearly all the qk’s to zero. By the Chernoff bound without replacement, for
each wi and large enough c we have∑

k:|k−t/2|>c
√
t

rk,wi

= Pr
[∣∣zi1 + · · ·+ zit − t

2
∣∣ ≥ c√t : |Z| = wi = N

2 + ui
√
N
]

≤ Pr
[∣∣∣zi1 + · · ·+ zit −

(
t
2 + uit√

N

)∣∣∣ ≥ c√t− ∣∣∣(t2 + uit√
N

)
− t

2

∣∣∣ : |Z| = wi = N
2 + ui

√
N
]

≤ Pr
[∣∣∣zi1 + · · ·+ zit −

(
t
2 + uit√

N

)∣∣∣ ≥ c√t− |ui|√t : |Z| = N
2 + ui

√
N
]

(t√
N
≤
√
t)

≤ exp
{
−2 (c

√
t−|ui|

√
t)2

t

}
= exp

{
−2(c− |ui|)2}

≤ exp
{

Ω(c2)
}
.

Then we can set c = c1
√

lnN for a sufficiently large constant c1, so that for all wi’s,∑
k:|k−t/2|>c

√
t

rk,wi ≤
1
N2 .

This means that we can simply set all qk’s with |k − t/2| > c
√
t = c1

√
t lnN to zero, and

only consider k such that |k− t/2| ≤ c1
√
t lnN , as this only changes each pwi by a negligible

value. From now on, we call an integer k valid, if |k − t/2| ≤ c1
√
t lnN .

Either
rk,w0

rk,w1

≥ 0.05 or
rk,w2

rk,w1

≥ 10. Now, we are going to show the most technical part

of this proof: for all valid k, we have either
rk,w0

rk,w1

≥ 0.05 or rk,w2

rk,w1

≥ 10. (18)

Suppose for contradiction that there is a valid k that satisfies
rk,w0

rk,w1

< 0.05 and rk,w2

rk,w1

< 10. (19)

Estimation of rk,wi ’s. We first use Lemma 26 to derive an accurate estimate of ln rk,wi
for each wi.

We set Nt = N − t for simplicity. Recall that

rk,w =
(
t

k

)(
Nt

w − k

)/(N
w

)
.

For each wi, since |k − t/2| ≤ c1
√
t lnN and t = o(N), we have∣∣∣∣wi − k − Nt

2

∣∣∣∣ ≤ ∣∣∣∣wi − N

2

∣∣∣∣+
∣∣∣∣k − t

2

∣∣∣∣ ≤ ui√N + c1
√
t lnN = o(N2/3

t),

and note that |wi −N/2| = |ui
√
N | = o(N2/3). So we can apply Lemma 26 to derive

ln rk,wi = ln
(
t

k

)
+ ln

(
Nt

wi − k

)
− ln

(
N

wi

)
= − (wi − k −Nt/2)2

Nt/2
+ (wi −N/2)2

N/2 + C + ln
(
t

k

)
+ o(1),

in which C is a constant that does not depend on k or wi.

CCC 2017

22:42 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Let d = (k − t/2)/
√
t (so k = t/2 + d

√
t), and recall that wi = N/2 + ui

√
N for each wi.

We can further simplify the expression as

ln rk,wi = − (N/2+ui
√
N−t/2−d

√
t−Nt/2)2

Nt/2 + (N/2+ui
√
N−N/2)2

N/2 + C + ln
(
t

k

)
+ o(1)

= − (ui
√
N−d

√
t)2

Nt/2 + 2u2
i + C + ln

(
t

k

)
+ o(1).

Estimation of
rk,wj

rk,wi

. Note that Nt = N − t = (1 − o(1))N . So we can approximate the

ratio between two rk,wi and rk,wj by

ln
rk,wj
rk,wi

= ln rk,wj − ln rk,wi

= − (uj
√
N − d

√
t)2

Nt/2
+ 2u2

j + (ui
√
N − d

√
t)2

Nt/2
− 2u2

i + o(1)

= 2u2
j − 2u2

i + ((ui + uj)
√
N − 2d

√
t)(ui − uj)

√
N

Nt/2
+ o(1)

= 2u2
j − 2u2

i + 2(u2
i − u2

j)− 4d
√
tN

Nt
(ui − uj) + o(1)

= −4d
√
tN

Nt
(ui − uj) + o(1).

Verifying (18). Finally, to simplify matters further, we set x = −4d
√
tN

Nt
, and substitute

it in (19) for k. We have

ln rk,w0

rk,w1

= x(u1 − u0) + o(1) < − ln 20,

which simplifies to

x <
− ln 20
u1 − u0

+ o(1) ≤ − ln 20
0.505 + o(1) ≤ −5.93 + o(1).

Similarly, we have

ln rk,w2

rk,w1

= x(u1 − u2) + o(1) < ln 10

and

x > − ln 10
u2 − u1

− o(1) ≥ − ln 10
0.45 − o(1) ≥ −5.12− o(1).

contradiction.

The lower bound. So (18) holds for all valid k, which means for all k such that |k− t/2| ≤
c1
√
t lnN , either rk,w0

rk,w1

≥ 0.05 or rk,w2

rk,w1

≥ 10.

Let H be the set of all valid integers k. We set

S =
{
k ∈ H : rk,w0

rk,w1

≥ 0.05
}

and T = H \ S.

S. Aaronson and L. Chen 22:43

By (18), for any k ∈ T , we have rk,w2

rk,w1

≥ 10.

Since pw1 =
∑
k∈S

qk · rk,w1 +
∑
k∈T

qk · rk,w1 ≥
0.89
N

(recall we have set all qk’s to zero for

k /∈ H), we must have either
∑
k∈S

qk · rk,w1 ≥
0.445
N

or
∑
k∈T

qk · rk,w1 ≥
0.445
N

.

If
∑
k∈S

qk · rk,w1 ≥
0.445
N

, we have

pw0 ≥
∑
k∈S

qk · rk,w1 ·
rk,w0

rk,w1

≥ 0.445
N
· 0.05 ≥ 0.022

N
,

which contradicts the constraint that pw0 ≤
0.02
N

. Otherwise,
∑
k∈T

qk · rk,w1 ≥
0.445
N

; then

pw2 ≥
∑
k∈T

qk · rk,w1 ·
rk,w2

rk,w1

≥ 0.445
N
· 10 ≥ 4.45

N
,

which violates the requirement that pw2 ≤
4.01
N

.
Since both cases lead to a contradiction, A needs to make Ω(N) queries and this completes

the proof. J

7 Quantum Supremacy Relative to Efficiently-Computable Oracles

We now discuss our results about quantum supremacy relative to oracles in P/poly.
Building on work by Zhandry [61] and Servedio and Gortler [53], we first show that, if

(classical) one-way functions exist, then there exists an oracle O ∈ P/poly such that BPPO 6=
BQPO. Then we make a connection to the previous section by showing that, assuming
the existence of (classical) subexponentially strong one-way functions, Fourier Fishing and
Fourier Sampling are hard even when it is promised that the oracle is in P/poly.

We also study several other complexity questions relative to P/poly oracles: for example,
P vs NP, P vs BPP, and BQP vs SZK. Since these questions are not connected directly with
quantum supremacy, we will discuss them in Appendix A.

7.1 Preliminaries
Recall that an oracle O : {0, 1}∗ → {0, 1} is itself a language, so we say that an oracle O is
in P/poly when the corresponding language belongs to P/poly, and we use On to denote its
restriction to {0, 1}n.

Given two sets X and Y, we define YX as the set of functions f : X → Y. For a set X ,
we will sometimes abuse notation and write X to denote the uniform distribution on X .

(Quantum) Pseudorandom Functions and Permutations

We are going to use pseudorandom functions and permutations throughout this section, so
we first review their definitions.

I Definition 34 (PRF and PRP). A pesudorandom function is a function PRF : K×X → Y ,
where K is the key-space, and X and Y are the domain and the range. K, domain, image
are implicitly functions of the security parameter n.10 We write y = PRFk(x).

10We denote them by Kn, domainn, imagen when we need to be clear about the security parameter n.

CCC 2017

22:44 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Similarly, a pesudorandom permutation is a function PRP : K ×X → X , where K is the
key-space, and X is the domain of the permutation. K and X are implicitly functions of the
security parameter n. We write y = PRPk(x). It is guaranteed that PRPk is a permutation
on X for each k ∈ K.

For simplicity, we use PRFK to denote the distribution on functions f : X → Y by drawing
k ← K and set f := PRFk.

We now introduce the definitions of classical and quantum security.

I Definition 35 (Classical-Security). A pseudorandom function PRF : K × X → Y is (clas-
sically) secure if no classical adversary A can distinguish between a truly random function
and the function PRFk for a random k in polynomial time. That is, for every such A, there
exists a negligible function ε = ε(n) such that∣∣∣∣ Pr

k←K
[APRFk() = 1]− Pr

f←YX
[Af () = 1]

∣∣∣∣ < ε.

Also, we say that a pseudorandom function PRF is exponentially-secure, if the above holds
even for classical adversaries that take 2O(n) time.

Similarly, a pseudorandom permutation PRP is (classically) secure if no classical adversary
A can distinguish between a truly random permutation and the function PRPk for a random
k in polynomial time.

Sometimes, especially in the context of one-way functions, we will talk about subexponential
security. By this we simply mean that there is no adversary running in 2n

o(1)
time.

I Definition 36 (Quantum-Security). A pseudorandom function PRF is quantum-secure if
no quantum adversary A making quantum queries can distinguish between a truly random
function and the function PRFk for a random k in polynomial time.

Also, a pseudorandom permutation PRP is quantum-secure if no quantum adversary
A making quantum queries can distinguish between a truly random permutation and the
function PRPk for a random k in polynomial time.

On the Existence of PRFs

It is well-known that the existence of one-way functions implies the existence of PRFs and
PRPs.

I Lemma 37 ([34, 32, 33, 42]). If one-way functions exist, then there exist secure PRFs
and PRPs. Similarly, if subexponentially-secure one-way functions exist, then there exist
exponentially-secure PRFs.

We remark here that these are all purely classical assumptions, which make no reference
to quantum algorithms. Also, the latter assumption is the same one as in the famous natural
proofs barrier [48].

7.2 A Construction from Zhandry [61]

To prove our separations, we will use a construction from Zhandry [61] with some modifications.
We first construct a PRP and a PRF, and summarize some of their useful properties.

S. Aaronson and L. Chen 22:45

Definitions of PRPraw and PRFmod

Assuming one-way functions exist, by Lemma 37, let PRPraw be a secure pesudorandom
permutation with key-space Kraw and domain X raw. We interpret X raw as [N], where
N = N(n) = |X raw|.

Then we define another pseudorandom function PRFmod
(k,a)(x) = PRPraw

k ((x− 1) mod a+ 1)
where:

The key space of PRFmod isKmod = Kraw×A whereA is the set of primes in [
√
N/4, sqrtN/2].

The domain and image are both X raw, that is, Xmod = X raw and Ymod = X raw.

Note that we denote the latter one by PRFmod (not PRPmod) because it is no longer a
PRP.

Properties of PRPraw and PRFmod

We now summarize several properties of PRPraw and PRFmod, which can be proved along the
same lines as [61].

I Lemma 38 (Implicit in Claim 1 and Claim 2 of [61]). The following statements hold when
PRPraw is classical secure.
1. Both PRPraw and PRFmod are classical secure PRFs. Consequently, no classical algorithm

A can distinguish them with a non-negligible advantage.
2. Given oracle access to PRFmod

(k,a) where (k, a)← Kmod, there is a quantum algorithm that
can recover a with probability at least 1− ε.

3. There is a quantum algorithm that can distinguish PRPraw from PRFmod with advantage
1− ε.

Here ε = ε(n) is a negligible function.

For completeness, we prove Lemma 38 in Appendix D, by adapting the proofs of Claims
1 and 2 in [61].

7.3 BPP vs. BQP
Next we discuss whether there is an oracle O ∈ P/poly that separates BPP from BQP. We
show that the answer is yes provided that one-way functions exist.

I Theorem 39. Assuming one-way functions exist, there exists an oracle O ∈ P/poly such
that BPPO 6= BQPO.

Proof. We are going to use PRPraw and PRFmod from Section 7.2.
The oracle O will encode the truth tables of functions f1, f2, dotsc, where each fn is a

function from X raw
n to X raw

n . For each n, with probability 0.5 we draw fn from PRPraw
Kraw , that

is, draw k ← Kraw and set fn := PRPraw
k , and with probability 0.5 we draw fn from PRFmod

Kmod

similarly. We set L to be the unary language consisting of all 0n for which fn is drawn from
PRPraw

Kraw .
By Lemma 38, there exists a BQP machine MO that decides L correctly on all but finite

many values of n with probability 1. Since we can simply hardwire the values of n on which
MO is incorrect, it follows that L ∈ BQPO with probability 1.

On the other hand, again by Lemma 38, no BPP machine can distinguish PRPraw
Kraw and

PRFmod
Kmod with a non-negligible advantage. So let M be a BPP machine, and let En(M) be

the event that M decides whether 0n ∈ L correctly. We have

Pr
O

[En(M)] = 1
2 + o(1),

CCC 2017

22:46 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

even conditioning on events E1(M), dotsc, En−1(M). Therefore, we have Pr
O

[∧+∞
i=1En(M)] = 0,

which means that a BPP machine M decides L with probability 0. Since there are countably
many BPP machines, it follows that L /∈ BPPO with probability 1. Hence BPPO 6= BQPO

with probability 1.
Finally, note that each fn has a polynomial-size circuit, and consequently O ∈ P/poly. J

7.4 Fourier Fishing and Fourier Sampling
Finally, we discuss Fourier Fishing and Fourier Sampling. We are going to show that, assuming
the existence of subexponentially-secure one-way functions, Fourier Fishing and Fourier
Sampling are hard even when it is promised that the oracle belongs to P/poly.

I Theorem 40. Assuming the existence of subexponentially strong one-way functions, there
is no polynomial-time classical algorithm that can solve promise-Ffishing with probability

SuccR + Ω(1),

even when it is promised that the oracle function belongs to P/poly.

Proof. By Lemma 37, we can use our one-way function to construct an exponentially-secure
pseudorandom function, PRF : K × X → Y. Without loss of generality, we assume that
|Y| = 2 and |X | = 2n. Then we interpret X as the set {0, 1}n, and Y as the set {−1, 1}.

A Concentration Inequality. Now, consider the distribution PRFK on functions {0, 1}n →
{−1, 1}. We claim that

Pr
f←PRFK

[adv(f) > SuccQ − 1/n] > 1− 1
n
− o(1). (20)

To see this: from Lemma 30, we have

Pr
f←YX

[adv(f) > SuccQ − 1/n] > 1− 1
n
.

Therefore, if (20) does not hold, then we can construct a distinguisher between PRFK and
truly random functions XY by calculating adv(f) in 2O(n) time. But this contradicts the
assumption that PRF is exponentially-secure.

A distributional lower bound. Next, we show that for every polynomial-time algorithm A,
we have

Pr
f←PRFK

[Af solves Ffishing correctly] ≤ SuccR + o(1). (21)

This is because when f is a truly random function, from Lemma 31, we have

Pr
f←YX

[Af solve Ffishing correctly] ≤ SuccR + o(1).

So if (21) does not hold, then we can construct a distinguisher between PRFK and truly
random functions XY by simulating Af to get its output z, and then checking whether z is
a correct solution to Ffishing in 2O(n) time. This again contradicts our assumption that PRF
is exponentially-secure.

S. Aaronson and L. Chen 22:47

The lower bound. Finally, we prove the theorem. Suppose for contradiction that there is
such a polynomial-time algorithm A. Then when f ← PRFK, from (20), with probability
1 − 1/n − o(1), we have that f satisfies the promise of promise-Ffishing. Thus, A solves
Ffishing when f ← PRFK with probability at least

(1− o(1)) · (SuccR + Ω(1)) = SuccR + Ω(1),

which contradicts (21). J

By a similar reduction, we can show that Fourier Sampling is also hard.

I Corollary 41. Assuming the existence of subexponentially-secure one-way functions, no
polynomial-time classical algorithm can solve Fsampling with error

ε < SuccQ − SuccR ≈ 0.483,

even if it is promised that the oracle function belongs to P/poly.

Proof. For a function f , an exact algorithm for Fsampling can be used to solve Ffishing with
probability adv(f). Hence, a polynomial-time sampling algorithm A for Fsampling with error
at most ε can solve Ffishing with probability at least adv(f)− ε.

Note that by (20), when f ← PRFK, the algorithm A can solve Ffishing with probability
at least

(SuccQ −
1
n
− ε) · (1− o(1)) = SuccQ − o(1)− ε.

Therefore, by (21), we must have ε ≥ SuccQ − SuccR, which completes the proof. J

8 Complexity Assumptions Are Needed for Quantum Supremacy
Relative to Efficiently-Computable Oracles

In Section 7.4, we showed that the existence of subexponentially-secure one-way functions
implies that Fourier Sampling and Fourier Fishing are classically hard, even when it is promised
that the oracle function belongs to P/poly. We also showed that if one-way functions exist,
then there exists an oracle O ∈ P/poly which separates BPP from BQP.

It is therefore natural to ask whether we can prove the same statements unconditionally.
In this section, we show that at least some complexity assumptions are needed.

I Theorem 42. Suppose SampBPP = SampBQP and NP ⊆ BPP. Then for every oracle
O ∈ P/poly, we have SampBPPO = SampBQPO (and consequently BPPO = BQPO).

Much like in the proof of Theorem 21, we need to show that under the stated assumptions,
every SampBQP algorithm M can be simulated by a SampBPP algorithm A.

I Lemma 43. Suppose SampBPP = SampBQP and NP ⊆ BPP. Then for any polynomial
q(n) and any SampBQP oracle algorithm M , there is a SampBPP oracle algorithm A such
that:

For every O ∈ SIZE(q(n)), 11 let DMx,varepsilon and DAx,varepsilon be the distributions output
by MO and AO respectively on input 〈x, 01/ε〉. Then

‖DMx,varepsilon −DAx,varepsilon‖ ≤ ε.

11A language is in SIZE(q(n)) if it can be computed by circuits of size q(n).

CCC 2017

22:48 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Before proving Lemma 43, we show that it implies Theorem 42.

Proof of Theorem 42. Let O ∈ P/poly be an oracle. Then there exists a polynomial q(n)
such that O ∈ SIZE(q(n)).

Let S be a sampling problem in SampBQPO. This means that there is a SampBQP oracle
algorithm M , such that for all x ∈ {0, 1}∗ and ε, we have ‖DMx,varepsilon − Sx‖ ≤ ε. Let AM
be the corresponding SampBPP algorithm whose existence we’ve assumed, and consider the
following algorithm A′: given input 〈x, 01/ε〉, run AM on input 〈x, 02/ε〉 to get a sample from
DAMx,varepsilon/2.

Then we have

‖DA
′

x,varepsilon − Sx‖ = ‖DAMx,varepsilon/2 − Sx‖

≤ ‖DMx,varepsilon/2 −D
AM
x,varepsilon/2‖+ ‖DMx,varepsilon/2 − Sx‖

≤ 2 · ε2 ≤ ε.

This means that A′ solves S and S ∈ SampBPPO. Hence SampBQPO ⊆ SampBPPO. J

Now we prove Lemma 43. The simulation procedure is similar to that in Lemma 23:
that is, we replace each oracle gate, one by one, by a known function while minimizing the
introduced error. The difference is that, instead of the brute-force method as in Lemma 23,
here we use a more sophisticated PAC learning subroutine to find an “approximator” to
replace the oracle gates.

Proof of Lemma 43. Let O ∈ SIZE(q(n)); we let fn = On for simplicity.
Recall that there exists a fixed polynomial p, such that given input 〈x, 01/ε〉, the machine

M first constructs a quantum circuit C with N = p(|x|, 1/ε) qubits and N gates classically
(C can contain O gates). Without loss of generality, we can assume for each n, all fn gates
act only on the first n qubits.

For a function f : {0, 1}k → {0, 1}, recall that Uf denotes the unitary operator mapping
|i〉 to (−1)f(i)|i〉 for i ∈ {0, 1}k.

Suppose there are T O-gates in total, and the i-th O-gate is an fni gate. Then the
unitary operator U applied by the circuit C can be decomposed as

U = UT+1(UfnT ⊗ IN−nT) · · · (Ufn2
⊗ IN−n2)U2(Ufn1

⊗ IN−n1)U1,

where the Ui’s are the unitary operators corresponding to the sub-circuits which don’t contain
an O-gate.

Again, the algorithm proceeds by replacing each O-gate by a much simpler gate one by
one, without affecting the resulting quantum state too much, and then simulating the final
circuit to get a sample to output.

Replacing the t-th O-gate. Suppose we have already replaced the first t− 1 O-gates: that
is, for each i ∈ [t− 1], we replaced the fni gate (the i-th O-gate) with a gi gate. Now we are
going to replace the t-th O-gate.

Let

|v〉 = Ut(Ugt−1 ⊗ IN−nt−1) · · · (Ug2 ⊗ IN−n2)U2(Ug1 ⊗ IN−n1)U1|0〉⊗N ,

which is the quantum state right before the t-th O gate in the circuit after the replacement.
For brevity, we use f to denote the function fnt , and we drop the subscript t of nt when

it is clear from context.

S. Aaronson and L. Chen 22:49

Analysis of incurred error. The t-th O-gate is an f gate. If we replace it by a g gate, then
the deviation caused to the quantum states is

‖Uf ⊗ IN−n|v〉 − Ug ⊗ IN−n|v〉‖ = ‖(Uf − Ug)⊗ IN−n|v〉‖.

Let H be the Hilbert space corresponding to the last N−n qubits, and let ρ = TrH [|v〉〈v|].
Then proceeding exactly as in Lemma 23, we have

‖((Uf − Ug)⊗ IN−n)|v〉‖2 = 4 · Pr
i∼Q

[f(i) 6= g(i)], (22)

where Q is the probability on {0, 1}n defined by Q(i) = 〈i|ρ|i〉, and [f(i) 6= g(i)] is the
indicator function that takes value 1 when f(i) 6= g(i) and 0 otherwise.

Upper bounding the deviation (22) vis PAC learning. Now, we want to replace f by
another function g, so that the deviation term (22) is minimized.

By a standard result of PAC learning (cf. the book of Vapnik [59]), for parameters ε1 and
δ1, we can take a poly(n, varepsilon−1

1 , lnδ−1
1) number of i.i.d. samples from Q, and then

find a function g in SIZE(q(n)) which agrees with f on those samples. Then with probability
at least 1− δ1, we will have

Pr
i∼Q

[f(i) 6= g(i)] ≤ ε1.

The choice of ε1 and δ1 will be made later. In any case, with probability at least 1− δ1, we
have

‖(Uf − Ug)⊗ IN−n|v〉‖2 ≤ 4ε1,

which in turn implies

‖(Uf − Ug)⊗ IN−n|v〉‖ ≤ 2 ·
√
ε1.

Analysis of the final circuit Cfinal. Suppose that at the end, for each t ∈ [T], our algorithm
has replaced the t-th O-gate with a gt gate, where gt is a function from {0, 1}nt to {0, 1}.
Let Cfinal be the circuit after the replacement. Also, let

V = UT+1(UgT ⊗ IN−nT) · · · (Ug2 ⊗ IN−n2)U2(Ug1 ⊗ IN−n1)U1

be the unitary operator corresponding to Cfinal.

Now we set δ1 = ε

2T , and ε1 = ε4

256T 2 . Then by a union bound over all rounds, and
following exactly the same analysis as in Lemma 23, with probability at least 1−T ·δ1 = 1−ε/2,
we have

‖U |0〉⊗N − V |0〉⊗N‖ ≤ 2T ·
√
ε1 = ε2

8 .

Our classical algorithm A then simulates stages 2 and 3 of the SampBQP algorithm M

straightforwardly. It first takes a sample z by measuring V |0〉⊗N in the computational basis,
and then outputs Aoutput(z) as its sample, where Aoutput is the classical algorithm used by M
in stage 3.

By Corollary 5, with probability at least 1 − ε/2, the final distribution D on which A
takes samples satisfies

‖D − DMx,varepsilon‖ ≤
√

2 · ε
2

8 = ε

2 .

Hence, the outputted distribution DAx,varepsilon satisfies

‖DAx,varepsilon −DMx,varepsilon‖ ≤ ε.

CCC 2017

22:50 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Showing that A is a SampBPP algorithm. We still have to show that A is a SampBPP
oracle algorithm. From the previous discussion, A needs to do the following non-trivial
computations.

Taking a polynomial number of samples from Q. This task is in SampBQP (no oracle
involved) by definition. By our assumption SampBQP = SampBPP, it can be done in
SampBPP.
Finding a g ∈ SIZE(q(n)) such that g agrees with f on all the samples. This can be done
in NP, so by our assumption NP ⊆ BPP, it can be done in BPP.
Taking a sample by measuring V |0〉⊗N . Again, this task is in SampBQP, and hence can
be done in SampBPP by our assumption.

Therefore, A is a SampBPP oracle algorithm. J

9 Open Problems

There are many exciting open problems left by this paper; here we mention just a few.

1. Is QUATH (our assumption about the hardness of guessing whether |〈0|C|0〉|2 is greater
or less than the median) true or false?

2. Is Conjecture 1 true? That is, does a random quantum circuit on n qubits sample an
unbalanced distribution over n-bit strings with 1− 1/ exp(n) probability?

3. We showed that there exists an oracle relative to which SampBPP = SampBQP but PH
is infinite. Can we nevertheless show that SampBPP = SampBQP would collapse PH in
the unrelativized world? (An affirmative answer would, of course, follow from Aaronson
and Arkhipov’s Permanent-of-Gaussians Conjecture [3], as mentioned in Section 1.2.)

4. Is our classical algorithm to simulate a quantum circuit with n qubits and m gates
optimal? Or could we reduce the complexity, say from mO(n) to 2O(n) ·mO(1), while
keeping the space usage polynomial? Does it matter if we only want to sample from the
output distribution, rather than actually calculating the probabilities? What about if we
only want to guess an amplitude with small bias, as would be needed to refute QUATH?

5. For random quantum circuit sampling, we proved a conditional hardness result that
talks directly about the observed outputs of a sampling process, rather than about the
unknown distribution that’s sampled from. Can we get analogous hardness results for the
BosonSampling or IQP models, under some plausible hardness conjecture? Note that the
argument from Section 3 doesn’t work directly for BosonSampling or IQP, for the simple
reason that in those models, the advantage over chance in guessing a given amplitude
is at least 1/ exp(n), rather than 1/ exp(m) for some m� n as is the case for random
circuits.

6. We proved a lower bound of Ω(N) on the classical query complexity of Fourier Sampling,
for a rather small error ε = 1

40000 . The error constant does matter for sampling problems,
since there is no efficient way to reduce the error in general. So can we discover the exact
threshold ε for an Ω(N) lower bound? That is, find the constant ε such that there is an
o(N) query classical algorithm solving Fourier Sampling with error ε, but any classical
algorithm with error < ε needs Ω(N) queries?

7. In Section 7, we showed that there is an oracle O in P/poly separating BPP from BQP,
assuming that one-way functions exist. Is it possible to weaken the assumption to, say,
NP 6⊂ BPP?

S. Aaronson and L. Chen 22:51

Acknowledgments We thank Shalev Ben-David, Sergio Boixo, Yuzhou Gu, Greg Kuperberg,
John Martinis, Ashley Montanaro, John Preskill, Vadim Smelyansky, Ronald de Wolf, and
Mark Zhandry for helpful discussions about the subject of this paper.

References
1 S. Aaronson. BQP and the polynomial hierarchy. In Proc. ACM STOC, 2010.

arXiv:0910.4698.
2 S. Aaronson. Google, D-wave, and the case of the factor-10ˆ8 speedup for WHAT?, 2015.

URL: http://www.scottaaronson.com/blog/?p=2555.
3 S. Aaronson and A. Arkhipov. The computational complexity of linear optics. Theory of

Computing, 9(4):143–252, 2013. Earlier version in Proc. ACM STOC’2011. ECCC TR10-
170, arXiv:1011.3245.

4 S. Aaronson et al. The Complexity Zoo. URL: http://www.complexityzoo.com.
5 S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinct-

ness problems. J. of the ACM, 51(4):595–605, 2004.
6 S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. ACM

Trans. on Computation Theory, 1(1), 2009. Earlier version in Proc. ACM STOC’2008.
7 Sccot Aaronson. New evidence that quantum mechanics is hard to simulate on classical

computers. http://www.scottaaronson.com/talks/newev.ppt, 2009.
8 Scott Aaronson. The equivalence of sampling and searching. Theory of Computing Systems,

55(2):281–298, 2014.
9 Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates

quantum from classical computing. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 307–316. ACM, 2015.

10 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity
using cheat sheets. arXiv preprint arXiv:1511.01937, 2015.

11 Scott Aaronson, Adam Bouland, Greg Kuperberg, and Saeed Mehraban. The computa-
tional complexity of ball permutations. arXiv preprint arXiv:1610.06646, 2016.

12 D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error. In
Proc. ACM STOC, pages 176–188, 1997. quant-ph/9906129.

13 D. Aharonov, M. Ben-Or, and E. Eban. Interactive proofs for quantum computations.
arXiv:0810.5375, 2008.

14 Andris Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision
and element distinctness with small range. Theory of Computing, 1(1):37–46, 2005.

15 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

16 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question.
SIAM Journal on computing, 4(4):431–442, 1975.

17 C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of
quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. quant-ph/9701001.

18 E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26(5):1411–
1473, 1997. Earlier version in Proc. ACM STOC’1993.

19 Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-
term devices. arXiv preprint arXiv:1608.00263, 2016.

20 Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear functions. In
Annual International Cryptology Conference, pages 424–437. Springer, 1995.

21 Fernando G. S. L. Brandão, Aram W. Harrow, and Michał Horodecki. Local random
quantum circuits are approximate polynomial-designs. Communications in Mathematical
Physics, 346(2):397–434, 2016.

CCC 2017

http://www.scottaaronson.com/blog/?p=2555
http://www.complexityzoo.com
http://www.scottaaronson.com/talks/newev.ppt

22:52 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

22 Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits dom-
inated by clifford gates. arXiv preprint arXiv:1601.07601, 2016.

23 M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. London,
A467(2126):459–472, 2010. arXiv:1005.1407.

24 Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-case complex-
ity versus approximate simulation of commuting quantum computations. arXiv preprint
arXiv:1504.07999, 2015.

25 Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achieving quantum
supremacy with sparse and noisy commuting quantum computations. arXiv preprint
arXiv:1610.01808, 2016.

26 A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computation. In
Proc. IEEE FOCS, 2009. arXiv:0807.4154.

27 Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J
Russell, Joshua W Silverstone, Peter J Shadbolt, Nobuyuki Matsuda, Manabu Oguma,
Mikitaka Itoh, Graham D Marshall, Mark G Thompson, Jonathan C F Matthews, Toshi-
kazu Hashimoto, Jeremy L O’Brien, and Anthony Laing. Universal linear optics. Science,
349(6249):711–716, 2015.

28 Lijie Chen. A note on oracle separations for BQP. arXiv preprint arXiv:1605.00619, 2016.
29 Edward Farhi and Aram W. Harrow. Quantum supremacy through the quantum approx-

imate optimization algorithm. arXiv preprint arXiv:1602.07674, 2016.
30 L. Fortnow and J. Rogers. Complexity limitations on quantum computation. J. Comput.

Sys. Sci., 59(2):240–252, 1999. cs.CC/9811023.
31 Keisuke Fujii. Noise threshold of quantum supremacy. arXiv preprint arXiv:1610.03632,

2016.
32 O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. of the

ACM, 33(4):792–807, 1986. Earlier version in Proc. IEEE FOCS’1984, pp. 464-479.
33 Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In

Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages
25–32. ACM, 1989.

34 J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

35 Johan Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
eighteenth annual ACM symposium on Theory of computing, pages 6–20. ACM, 1986.

36 R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: deran-
domizing the XOR Lemma. In Proc. ACM STOC, pages 220–229, 1997.

37 Richard Jozsa and Marrten Van den Nest. Classical simulation complexity of extended
clifford circuits. Quantum Information & Computation, 14(7&8):633–648, 2014.

38 Gil Kalai. How quantum computers fail: quantum codes, correlations in physical systems,
and noise accumulation. arXiv preprint arXiv:1106.0485, 2011.

39 J. Kelly, R. Barends, A.G. Fowler, A. Megrant, E. Jeffrey, T.C. White, D. Sank, J.Y.
Mutus, B. Campbell, Yu Chen, et al. State preservation by repetitive error detection in a
superconducting quantum circuit. Nature, 519(7541):66–69, 2015.

40 Samuel Kutin. Quantum lower bound for the collision problem with small range. Theory
of Computing, 1(1):29–36, 2005.

41 Leonid A. Levin. The tale of one-way functions. Problems of Information Transmission,
39(1):92–103, 2003.

42 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

S. Aaronson and L. Chen 22:53

43 Igor L. Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor
networks. SIAM Journal on Computing, 38(3):963–981, 2008.

44 Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. Hardness of classically simu-
lating the one-clean-qubit model. Physical review letters, 112(13):130502, 2014.

45 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

46 Borja Peropadre, Gian Giacomo Guerreschi, Joonsuk Huh, and Alán Aspuru-Guzik. Mi-
crowave boson sampling. arXiv preprint arXiv:1510.08064, 2015.

47 John Preskill. Quantum computing and the entanglement frontier. arXiv preprint
arXiv:1203.5813, 2012.

48 A.A. Razborov and S. Rudich. Natural proofs. J. Comput. Sys. Sci., 55(1):24–35, 1997.
Earlier version in Proc. ACM STOC’1994, pp. 204-213.

49 Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hierarchy
theorem for boolean circuits. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 1030–1048. IEEE, 2015.

50 Terry Rudolph. Why I am optimistic about the silicon-photonic route to quantum comput-
ing. arXiv preprint arXiv:1607.08535, 2016.

51 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal
of the ACM (JACM), 50(2):196–249, 2003.

52 W.J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Sys. Sci., 4(2):177–192, 1970.

53 Rocco A Servedio and Steven J Gortler. Equivalences and separations between quantum
and classical learnability. SIAM Journal on Computing, 33(5):1067–1092, 2004.

54 A. Shamir. IP=PSPACE. J. of the ACM, 39(4):869–877, 1992. Earlier version in Proc.
IEEE FOCS’1990, pp. 11-15.

55 P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in Proc.
IEEE FOCS’1994. quant-ph/9508027.

56 Joel Spencer. Asymptopia, volume 71. American Mathematical Soc., 2014.
57 B.M. Terhal and D.P. DiVincenzo. Adaptive quantum computation, constant-depth cir-

cuits and Arthur-Merlin games. Quantum Information and Computation, 4(2):134–145,
2004. quant-ph/0205133.

58 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991. Earlier version in Proc. IEEE FOCS’1989, pp. 514-519.

59 Vladimir Naumovich Vapnik. Statistical learning theory, volume 1. Wiley New York, 1998.
60 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In 26th

Annual Symposium on Foundations of Computer Science (sfcs 1985), 1985.
61 Mark Zhandry. How to construct quantum random functions. In Foundations of Computer

Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 679–687. IEEE, 2012.
62 Mark Zhandry. A note on quantum-secure prps. arXiv preprint arXiv:1611.05564, 2016.

A Other Results on Oracle Separations in P/poly

In this section we discuss the rest of our results on complexity theory relative to oracles in
P/poly (see Figure 1 for an overview). For the definitions of the involved complexity classes,
see for example [4].

We first discuss P and NP. We observe that there exists an oracle O ∈ P/poly such that
PO 6= NPO unconditionally, and no oracle O ∈ P/poly can make P = NP unless NP ⊂ P/poly.

Then we discuss P and BPP. We first prove that the standard derandomization assumption
(there exists a function f ∈ E = DTIME(2O(n)) that requires a 2Ω(n)-size circuit) also implies

CCC 2017

22:54 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

P

BPP

BQP

SZKNP

SampBPP SampBQP

Figure 1 C1 → C2 indicates C1 is contained in C2 respect to every oracle in P/poly, and C1 99K C2

denotes that there is an oracle O ∈ P/poly such that CO1 6⊂ CO2 . Red indicates this statement is
based on the existence of classical one-way functions, Blue indicates the statement is based on the
existence of quantum one-way functions, and Black indicates the statement holds unconditionally.

that PO = BPPO for all O ∈ P/poly. Then, surprisingly, we show that the converse also
holds! I.e., if no such f exists, then there exists an oracle O ∈ P/poly such that PO 6= BPPO.

Finally, we discuss BQP and SZK. We show that assuming the existence of one-way
functions, there exist oracles in P/poly that separate BQP from SZK, and also SZK from
BQP.

We will need to use quantum-secure pseudorandom permutations. By a very recent result
of Zhandry [62], their existence follows from the existence of quantum one-way functions.

I Lemma 44 ([62]). Assuming quantum one way functions exist, there exist quantum-secure
PRPs.

A.1 P, BPP, BQP vs. NP
We begin with the relationships of P, BPP, and BQP to NP relative to oracles in P/poly.

The first observation is that using the function OR and standard diagonalization techniques,
together with the fact that OR is hard for quantum algorithms [17], we immediately have:

I Observation 45. There is an oracle O ∈ P/poly such that NPO 6⊂ BQPO.

On the other side, we also show that unless NP ⊂ P/poly (BQP/poly), there is no oracle
O ∈ P/poly such that NPO ⊆ BPPO (BQPO).

I Theorem 46. Unless NP ⊂ P/poly, there is no oracle O ∈ P/poly such that NPO ⊆ BPPO.
Likewise, there is no oracle O ∈ P/poly such that NPO ⊆ BQPO unless NP ⊆ BQP/poly.

Proof. Suppose there is an oracle O ∈ P/poly such that NPO ⊆ BPPO. Since BPP ⊂ P/poly,
and PO/poly ⊆ P/poly (since the relevant parts of the oracle O can be directly supplied to
the P/poly algorithm), we have NP ⊆ NPO ⊂ P/poly. The second claim can be proved in
the same way. J

The following corollary is immediate.

I Corollary 47. There is an oracle O ∈ P/poly such that PO 6= NPO, and there is no oracle
O ∈ P/poly such that PO = NPO unless NP ⊂ P/poly.

S. Aaronson and L. Chen 22:55

A.2 P vs. BPP
Next we consider the relationship between P and BPP. It is not hard to observe that
the standard derandomization assumption for P = BPP is in fact strong enough to make
PO = BPPO for every oracle O in P/poly.

Given a function f : {0, 1}n → {0, 1}, let Hwrs(f) be the minimum size of circuits
computing f exactly.

I Observation 48 (Implicit in [45, 36], see also Theorem 20.7 in [15]). If there exists a function
f ∈ E = DTIME(2O(n)) and ε > 0 such that Hwrs(f) ≥ 2εn for sufficiently large n, then
BPPO = PO for every O ∈ P/poly.

Proof Sketch. From [45] and [36], the assumption leads to a strong PRG which is able to
fool circuits of a fixed polynomial size with a logarithmic seed length.

An algorithm with an oracle O ∈ P/poly with a certain input can still be represented by
a polynomial size circuit, so we can still enumerate all possible seeds to get a deterministic
algorithm. J

Surprisingly, we show that condition is not only sufficient, but also necessary.

I Theorem 49. If for every f ∈ E = DTIME(2O(n)) and ε > 0, there are infinitely many n’s
with Hwrs(f) < 2εn, then there exists an oracle O ∈ P/poly such that BPPO 6= PO.

Proof. For simplicity, in the following we will specify an oracle O by a sequence of functions
{fi}, where each fi is a function from {0, 1}ni → {0, 1} and the sequence {ni} is strictly
increasing. That is, Oni is set to fi, and O maps all strings with length not in {ni} to 0.

As there are only countably many P oracle TM machines, we let {Ai}+∞i=1 be an ordering
of them.

The GapMaj function. Recall that the gapped-majority function, GapMaj : {0, 1}N →
{0, 1}, which outputs 1 if the input has Hamming weight ≥ 2N/3, or 0 if the input has
Hamming weight ≤ N/3, and is undefined otherwise, is the function which separates P and
BPP in the query complexity world. We are going to encode inputs to GapMaj in the oracle
bits to achieve our separation.

We call an oracle valid, if for each n, either |O−1
n (0)| ≥ 2

3 · 2
n or |O−1

n (1)| ≥ 2
3 · 2

n. That
is, if we interpret On as a binary string with length 2n, then GapMaj(On) is defined.

The language LO. For a valid oracle O, we define the following language:

LO = {0n : GapMaj(On) = 1}.

Clearly, this language lies in BPPO. To prove the theorem, we will construct a valid oracle
O such that LO 6∈ PO.

Construction of O. To construct such an oracle, we resort to the standard diagonalization
method: for each integer i, we find an integer ni and set the function Oni so that the machine
Ai can’t decide 0ni correctly. In order to do this, we will make sure that each Ai can only
see 0 when querying the function Oni . Since Ai can only see a polynomial number of bits,
we can set the remaining bits in Oni adversarially.

Let Oipart be the oracle specified by {Onj}ij=1, and let Ti be the maximum integer such
that a bit in OTi is queried by Ai when running on input 0ni . Observe that by setting
ni+1 > Ti, we can make sure that AOi (0ni) = A

Oipart
i (0ni) for each i.

CCC 2017

22:56 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Diagonalization against Ai. Suppose we have already constructed On1 , dotsc, oracleni−1 ,
and we are going to deal with Ai. Since Ai is a P machine, there exists a constant c such
that Ai runs in at most nc steps for inputs with length n. Thus, Ai can query at most nc
values in On on input 0n.

Construction and Analysis of f . Now consider the following function f , which analyzes
the behavior of AO

i−1
part

i :
given an input x ∈ {0, 1}∗, let m = |x|;
the first m1 = bm/5cc bits of x encode an integer n ∈ [2m1];
the next m2 = m−m1 bits of x encode a string p ∈ {0, 1}m2 ;
f(x) = 1 iff AO

i−1
part

i (0n) has queried On(z) for an z ∈ {0, 1}n with p as a prefix.12

It is not hard to see that f ∈ E: the straightforward algorithm which directly simulates
A
Oi−1

part
i (0n) runs in O(nc) = 2O(m/5c·c) = 2O(m) time (note that the input length is m = |x|).

Therefore, by our assumption, there exists an integer m such that 2bm/5cc > max(Ti−1, ni−1)
and Hwrs(fm) < 2m/c. Then we set ni = 2bm/5cc.

Construction and Analysis of Oni . Now, if AO
i−1
part

i (0ni) = 1 , we set Oni to be the constant
function 0, so that LO(0ni) = 0.

Otherwise, AO
i−1
part

i (0ni) = 0. We define a function g : {0, 1}ni → {0, 1} as follows: g(z) = 1
iff AO

i−1
part

i (0ni) has queried Oni(z′) for an z′ ∈ {0, 1}ni such that z and z′ share a prefix of
length m− bm/5cc. Note that g(z) can be implemented by hardwiring ni and z1...m−bm/5cc
(that is, the first m− bm/5cc bits of z) into the circuit for fm, which means that there is a
circuit of size 2m/c = n

O(1)
i for g. We set Oni := ¬g.

From the definition of g and the fact that AO
i−1
part

i (0ni) makes at most nci queries, there is
at most a

nci
2m−bm/5cc

<
nci

24cbm/5cc = n−3c
i

fraction of inputs that are 0 in ¬g. Hence, GapMaj(¬g) = 1 and LO(0ni) = 1.
We claim that in both cases, we have AO

i−1
part

i (0ni) = A
Oipart
i (0ni). This holds trivially in

the first case since we set Oni := 0. For the second case, note from the definition of g that
all queries by AO

i
part

i (0ni) to Oni return 0, and hence Ai will behave exactly the same.
Finally, since we set ni > Ti−1 for each i, we have AOi (0ni) = A

Oipart
i (0ni) 6= LO(0ni),

which means that no Ai can decide LO. J

A.3 BQP vs. SZK
Next we investigate the relationship between BQP and SZK relative to oracles in P/poly.
We first show that, by using quantumly-secure pseudorandom permutations, as well as the
quantum lower bound for distinguishing permutations from 2-to-1 functions [5], we can
construct an oracle in P/poly which separates SZK from BQP.

I Theorem 50. Assuming quantum-secure one way functions exist, there exists an oracle
O ∈ P/poly such that SZKO 6⊂ BQPO.

12For simplicity, we still use On to denote the restriction of Oi−1
part on {0, 1}n.

S. Aaronson and L. Chen 22:57

Proof. Let PRP be a quantum-secure pseudorandom permutation from K × X → X , whose
existence is guaranteed by Lemma 44.

We first build a pseudorandom 2-to-1 function from PRP. We interpret X as [N] where
N = |X |, and assume that N is even. We construct PRF2→1 : (K ×K)×X → X as follows:

The key space K2→1 is K ×K. That is, a key k ∈ K2→1 is a pair of keys (k1, k2).
PRF2→1

(k1,k2)(x) := PRPk2((PRPk1(x) mod N/2) + 1).

Note that PRF2→1 would be a uniformly random 2-to-1 function from [N] → [N], if
PRPk1 and PRPk2 were replaced by two uniformly random permutations on [N]. Hence, by a
standard reduction argument, PRF2→1 is a quantumly-secure pseudorandom 2-to-1 function.
That is, for any polynomial-time quantum algorithm A, we have∣∣∣∣∣ Pr

k←K2→1
[APRF2→1

k () = 1]− Pr
f←F2→1

X

[Af () = 1]

∣∣∣∣∣ < ε,

where ε is a negligible function and F2→1
X is the set of 2-to-1 functions from X → X .

Also, from the definition of PRP, we have∣∣∣∣ Pr
k←KPRP

[APRPk() = 1]− Pr
f←PermX

[Af () = 1]
∣∣∣∣ < ε,

where PermX is the set of permutations on X .
From the results of Aaronson and Shi [5], Ambainis [14] and Kutin [40], no o(N1/3)-query

quantum algorithm can distinguish a random permutation from a random 2-to-1 function.
Therefore, we have∣∣∣∣∣ Pr

f←F2→1
X

[Af () = 1]− Pr
f←PermX

[Af () = 1]

∣∣∣∣∣ < o(1).

Putting the above three inequalities together, we have∣∣∣∣ Pr
k←K2→1

[APRF2→1
k () = 1]− Pr

k←KPRP
[APRPk() = 1]

∣∣∣∣ < o(1),

which means A cannot distinguish PRF2→1
K2→1 and PRPKPRP .

On the other side, an SZK algorithm can easily distinguish a permutation from a two-to-
one function. Therefore, we can proceed exactly as in Theorem 39 to construct an oracle
O ∈ P/poly such that SZKO 6⊂ BQPO. J

Very recently, Chen [28] showed that, based on a construction similar to the “cheat-sheet"
function by Aaronson, Ben-David and Kothari [10], we can take any function which is hard for
BPP algorithms, and turn it into a function which is hard for SZK algorithms in a black-box
fashion. We are going to adapt this construction, together with a PRF, to build an oracle in
P/poly which separates BQP from SZK.

I Theorem 51. Assuming one-way functions exist, there exists an oracle O ∈ P/poly such
that BQPO 6⊂ SZKO.

Proof. We will use the PRFmod : Kmod × Xmod → Xmod defined in Section 7.2 here. For
simplicity, we will use X to denote Xmod in this proof. Recall that X is interpreted as [N]
for N = N(n) = |X |.

CCC 2017

22:58 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Construction of distributions Di
n. For each n, we define distributions D0

n and D1
n on

(Xn → Xn)× {0, 1}
√
N/2 as follows. We draw a function fn : X → X from PRFmod

Kmod , that is,
we draw (k, a)← Kmod = Kraw ×A, and set fn := PRFmod

(k,a); then we let z = 0
√
N/2 first, and

set za = i in Din; finally we output the pair (f, z) as a sample.

Distinguishing D0
n and D1

n is hard for SZK. Recall that SZK is a semantic class. That
is, a given protocol Π might be invalid with different oracles or different inputs (i.e., the
protocol might not satisfy the zero-knowledge constraint, or the verifier might accept with a
probability that is neither ≥ 2/3 nor ≤ 1/3). We write Π(f,z)() = ⊥ when Π is invalid given
oracle access to (f, z).

We claim that for any protocol Π, one of the following two claims must hold for sufficiently
large n:
(A) Pr

(f,z)←D0
n

[
Π(f,z)() = ⊥

]
> 0.1 or Pr

(f,z)←D1
n

[
Π(f,z)() = ⊥

]
> 0.1.

(B)
∣∣∣∣ Pr
(f,z)←D0

n

[
Π(f,z)() = 1

]
− Pr

(f,z)←D1
n

[
Π(f,z)() = 1

]∣∣∣∣ < 0.2.

That is, either Π is invalid on a large fraction of oracles, or else Π cannot distinguish D0
n

from D1
n with a very good probability.

Building a BPP algorithm to break PRFmod. Suppose for a contradiction that there are
infinitely many n such that none of (A) and (B) hold. Without loss of generality, we can
assume that

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
− Pr

(f,z)←D0
n

[
Π(f,z)() = 1

]
≥ 0.2.

We are going to build a BPP algorithm which is able to break PRFmod on those n, thereby
contradicting Lemma 38.

From (A), we have

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
−
(

1− Pr
(f,z)←D0

n

[
Π(f,z)() = 0

])
≥ 0.1,

which simplifies to

Pr
(f,z)←D1

n

[
Π(f,z)() = 1

]
+ Pr

(f,z)←D0
n

[
Π(f,z)() = 0

]
≥ 1.1.

From the definition of D0
n and D1

n, the above implies that

Pr
(k,a)←Kmod

[
Π(f,z1)() = 1 and Π(f,z0)() = 0, f = PRFmod

(k,a), z0 = 0
√
N/2, z1 = ea

]
≥ 0.1,

where ea denotes the string of length
√
N/2 that is all zero except for the a-th bit.

Analysis of distributions A(f,z)
i . By a result of Sahai and Vadhan [51], there are two

polynomial-time samplable distributions A(f,z)
0 and A(f,z)

1 such that ‖A(f,z)
0 −A(f,z)

1 ‖ ≥ 1−2−n

when Π(f,z)() = 1; and ‖A(f,z)
0 −A(f,z)

1 ‖ ≤ 2−n when Π(f,z)() = 0.
Hence, with probability 0.1 over (k, a)← Kmod, we have

‖A(f,z1)
0 −A(f,z1)

1 ‖ ≥ 1− 2−n and ‖A(f,z0)
0 −A(f,z0)

1 ‖ ≤ 2−n.

This means that either ‖A(f,z0)
0 −A(f,z1)

0 ‖ ≥ 1/3 or ‖A(f,z0)
1 −A(f,z1)

1 ‖ ≥ 1/3.
Now we show that the above implies an algorithm that breaks PRFmod, and therefore

contradicts Lemma 38.

S. Aaronson and L. Chen 22:59

The algorithm and its analysis. Given oracle access to a function f ← PRFmod
Kmod , our

algorithm first picks a random index i ∈ {0, 1}. It then simulates Ai with oracle access to
(f, z) to take a sample fromA

(f,z)
i , where z = z0 = 0

√
N/2; it records all the indices in z that are

queried by Ai. Now, with probability at least 0.1/2 = 0.05, we have ‖A(f,z0)
i −A(f,z1)

i ‖ ≥ 1/3.
Since (f, z0) and (f, z1) only differ at the a-th index of z, we can see that A(f,z0)

i must have
queried the a-th index of z with probability at least 1/3.

Hence, with probability at least 0.05/3 = Ω(1), one of the values recorded by our algorithm
is a, and in that case our algorithm can find a collision in f easily. However, when f is a
truly random function, no algorithm can find a collision with a non-negligible probability.
Therefore, this algorithm is a distinguisher between PRFmod and a truly random function,
contradicting the fact that PRFmod is secure by Lemma 38.

Construction of the oracle O. Finally, we are ready to construct our oracle O. We
will let O encode pairs (f1, z1), (f2, z2), dotsc, where fn is a function from Xn to Xn and
zn ∈ {0, 1}

√
N/2.

For each n, we draw a random index i← {0, 1}, and then draw (fn, zn)← Din. We set L
to be the unary language consisting of all 0n for which (fn, zn) is drawn from D1

n.
From Lemma 38, a quantum algorithm can distinguish D0

n from D1
n, except with negligible

probability, by recovering a. Therefore, by a similar argument as in the proof of Theorem 39,
we have L ∈ BQPO with probability 1.

On the other hand, for a protocol Π and a sufficiently large n, either (A) happens, which
means that Π(fn,zn) is invalid with probability 0.05 on input 0n, or (B) happens, which
means that Π cannot distinguish D0

n and D1
n with a constant probability.

In both cases Π cannot decide whether 0n belongs to L correctly with bounded error.
Hence, again by a similar argument as in the proof of Theorem 39, the probability that Π
decides L is 0. And since there are only countably many protocols, we have L /∈ SZKO with
probability 1, which means that BQPO 6⊂ SZKO with probability 1.

Finally, it is easy to see that O ∈ P/poly, which completes the proof. J

B Missing Proofs in Section 3

We first prove Lemma 13.

Proof of Lemma 13. Let N = 2n for simplicity and L be a list consisting of N reals:
|〈u|w〉|2 − 2−n for each w ∈ {0, 1}n. We sort all reals in L in increasing order, and denote
them by a1, a2, dotsc, aN . We also let ∆ = dev(|u〉) for brevity.

Then from the definitions of adv(|u〉) and dev(|u〉), we have

N∑
i=1

ai =0,

N∑
i=1
|ai| =∆, and

adv(|u〉) =1
2 +

N∑
i=N/2+1

ai.

CCC 2017

22:60 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Now, let t be the first index such that at ≥ 0. Then we have

N∑
i=t

ai =
N∑
i=t
|ai| =

∆
2 and

t−1∑
i=1

ai = −
t−1∑
i=1
|ai| = −

∆
2 .

We are going to consider the following two cases.
(i) t ≥ N/2 + 1. Note that ai’s are increasing and for all i < t, ai < 0, we have

N/2∑
i=1
|ai| ≥

t−1∑
i=N/2+1

|ai|,

which means

t−1∑
i=N/2+1

|ai| ≤
1
2 ·

t−1∑
i=1
|ai| ≤

∆
4 .

Therefore,

N∑
i=N/2+1

ai ≥
N∑
i=t

ai +
t−1∑

i=N/2+1

ai ≥
1
2 + ∆

2 −
∆
4 ≥

1
2 + ∆

4 .

(ii) t ≤ N/2. In this case, note that we have

N∑
i=N/2+1

ai ≥
N/2∑
i=t

ai.

Therefore,

N∑
i=N/2+1

ai ≥
1
2 ·

N∑
i=t

ai ≥
∆
4 .

Since in both cases we have
N∑

i=N/2+1

ai ≥
∆
4 , it follows that

adv(|u〉) = 1
2 +

N∑
i=N/2+1

ai ≥
1
2 + ∆

4 ,

which completes the proof. J

Now we prove Lemma 14.

Proof of Lemma 14. The random pure state |u〉 can be generated as follows: draw four i.i.d.
reals x1, x2, x3, x4 ∼ N (0, 1), and set

|u〉 = (x1 + x2i)|0〉+ (x3 + x4i)|1〉√
x2

1 + x2
2 + x2

3 + x2
4

.

S. Aaronson and L. Chen 22:61

Hence, we have

E
[∣∣∣|〈u|0〉|2 − |〈u|1〉|2∣∣∣]

=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

1
(2π)2

|x2
1 + x2

2 − x2
3 − x2

4|
x2

1 + x2
2 + x2

3 + x2
4
· e−(x2

1+x2
2+x2

3+x2
4)/2dx1dx2dx3dx4

=
∫ 2π

0

∫ 2π

0

∫ +∞

0

∫ +∞

0

1
(2π)2 ·

|ρ2
1 − ρ2

2|
ρ2

1 + ρ2
2
· ρ1ρ2 · e−(ρ2

1+ρ2
2)/2dρ1dρ2dθ1dθ2

(x1 = ρ1 sin θ1, y1 = ρ1 cos θ1, x2 = ρ2 sin θ2, y2 = ρ2 cos θ2)

=
∫ +∞

0

∫ +∞

0

|ρ2
1 − ρ2

2|
ρ2

1 + ρ2
2
· ρ1ρ2 · e−(ρ2

1+ρ2
2)/2dρ1dρ2

=1
2 J

C Missing Proofs in Section 6

We prove Lemma 30 here.

Proof of Lemma 30. We prove the concentration inequality by bounding the variance,

Var[adv(f)] = E[adv(f)2]− E[adv(f)]2.

Note that

E[adv(f)]2 =
(

2√
2π

∫ +∞

1
x2e−x

2/2dx

)
2 = Succ2

Q.

We now calculate E[adv(f)2]. We have

E
f

[adv(f)2] = E
f

[(
E

z∈{0,1}n
[f̂2(z) · 1|f̂(z)|≥1]

)
2
]

= E
f

[
E

z1,z2∈{0,1}n

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]]
.

= E
z1,z2∈{0,1}n

[
E
f

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]]
.

Now there are two cases: z1 = z2 and z1 6= z2. When z1 = z2, let z = z1 = z2; then we have

Exf

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]
=E
f

[
f̂4(z) · 1|f̂(z)|≥1

]
= 2√

2π

∫ +∞

1
x4e−x

2/2dx

=O(1).

Next, if z1 6= z2, then without loss of generality, we can assume z1 = 0N . Now we define two
sets A and B,

A = {x ∈ {0, 1}n : (z2 · x) = 0} and B = {x ∈ {0, 1}n : (z2 · x) = 1}.

We also define

f̂A := 1√
N/2

·
∑
z∈A

f(z) and f̂B := 1√
N/2

·
∑
z∈B

f(z).

CCC 2017

22:62 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Then from the definitions of f̂(z1) and f̂(z2), we have

f̂(z1) = 1√
2
· (f̂A + f̂B) and f̂(z1) = 1√

2
· (f̂A − f̂B).

Therefore,

E
f

[
f̂2(z1)f̂2(z2) · 1|f̂(z1)|≥1∧|f̂(z2)|≥1

]
=
(

1√
2π

)
2 ·
∫
|a+b|≥

√
2

|a−b|≥
√

2

1
4 · (a + b)2 · (a− b)2 · e−(a2+b2)/2 · dadb.

Let x = a+ b and y = a− b. Then

a = x+ y

2 , b = x− y
2 , da = dx+ dy

2 , and db = dx− dy
2 .

Also note that x2 + y2 = 2(a2 + b2). Plugging in x and y, the above can be simplified to

1
2π

∫
|x|≥

√
2

|y|≥
√

2

1
4x

2y2e−(x2+y2)/4 · 1
2dxdy = 1

2π

(∫
|x|≥
√

2

1
2
√

2
· x2e−x

2/4dx

)
2

= 1
2π

(∫ +∞

√
2

1√
2
· x2e−x

2/4dx

)
2

= 1
2π

(∫ +∞

1
2t2e−t

2/2dt

)
2 (t = x/

√
2)

=
(

2√
2π

∫ +∞

1
t2e−t

2/2dt

)
2 = Succ2

Q.

Putting two cases together, we have

E
f

[adv(f)2] = 1
N
·O(1) + N − 1

N
· Succ2

Q,

which in turn implies

Var[adv(f)] = O(1/N). J

D Missing Proofs in Section 7

For completeness, we prove Lemma 38 here.

Proof of Lemma 38. In the following, we will always use ε = ε(n) to denote a negligible
function. And we will denote X raw as X for brevity. Recall that we interpret X as [N] for
N = N(n) = X .

Both PRPrawand PRFmod are classically-secure PRFs. It is well-known that a secure PRP
is also a secure PRF; therefore PRPraw is a classically-secure PRF. So we only need to prove
this for PRFmod.

Recall that PRFmod
(k,a)(x) = PRPraw

k ((x− 1) mod a+ 1). We first show that if the PRPraw

in the definition of PRFmod were replaced by a truly random function, then no classical
polynomial-time algorithm A could distinguish it from a truly random function. That is,∣∣∣∣ Pr

f←XX ,a←A
[Af mod a() = 1]− Pr

f←XX
[Af () = 1]

∣∣∣∣ < ε, (23)

where f mod a(x) := f((x− 1) mod a+ 1).

S. Aaronson and L. Chen 22:63

Clearly, as long as A never queries its oracle on two points x and x′ such that x ≡ x′

(mod a), the oracle will look random. Suppose A makes q queries in total. There are
(
q

2

)
possible differences between query points, and each difference is at most N . So for large
enough N , each difference can be divisible by at most two different moduli from A (recall
that each number in A lies in [

√
N/4, sqrtN/2]). And since |A| ≥ Ω(

√
N/ logN), the total

probability of querying two x and x′ such that x ≡ x′ (mod a) is at most

O

(
q2 logN√

N

)
,

which is negligible as N is exponential in n. This implies (23).
Now, since PRPraw is a classically-secure PRF, for any polynomial-time algorithm A, we

have∣∣∣∣ Pr
f←XX ,a←A

[Af mod a() = 1]− Pr
f←PRPraw

Kraw ,a←A
[Af mod a() = 1]

∣∣∣∣ < ε, (24)

since otherwise we can directly construct a distinguisher between PRPraw
Kraw and XX .

Note that

Pr
f←PRPraw

Kraw ,a←A
[Af mod a() = 1] = Pr

f←PRFmod
Kmod

[Af () = 1]

by their definitions. Hence, (23) and (24) together imply that∣∣∣∣∣ Pr
f←PRFmod

Kmod

[Af () = 1]− Pr
f←XX

[Af () = 1]

∣∣∣∣∣ < ε

for any polynomial-time algorithm A. This completes the proof for the first statement.

Quantum algorithm for recovering a given oracle access to PRFmod
Kmod . Let (k, a)← Kmod,

f = PRFmod
(k,a) and g = PRPraw

k . From the definitions, we have f = g mod a.
Since g is a permutation, there is no collision (x, x′) such that g(x) = g(x′). Moreover, in

this case, f = g mod a has a unique period a. Therefore, we can apply Boneh and Lipton’s
quantum period-finding algorithm [20] to recover a. Using a polynomial number of repetitions,
we can make the failure probability negligible, which completes the proof for the second
statement.

Quantum algorithm for distinguishing PRPraw and PRFmod. Finally, we show the above
algorithm implies a good quantum distinguisher between PRPraw and PRFmod. Given oracle
access to a function f , our distinguisher A tries to recover a period a using the previously
discussed algorithm, and accepts only if f(1) = f(1 + a).

When f ← PRPraw
Kraw , note that f is a permutation, which means A accepts with probability

0 in this case.
On the other side, when f ← PRFmod

Kmod , from the second statement, A can recover the
period a with probability at least 1− ε. Therefore A accepts with probability at least 1− ε.

Combining, we find that A is a distinguisher with advantage 1− ε, and this completes
the proof for the last statement. J

CCC 2017

22:64 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

E Numerical Simulation For Conjecture 1

Recall Conjecture 1, which said that a random quantum circuit C on n qubits satisfies
adv(C) ≥ Cthr − ε with probability 1− 1/ exp(n), where

Cthr := 1 + ln 2
2 .

We first explain where the magic number Cthr comes from. Suppose C is drawn from
µ2n

Haar instead of µgrid. Then C|0n〉 is a random quantum state, and therefore the values
2n · |〈x|C|0〉|’s, for each x ∈ {0, 1}n are distributed very closely to 2n i.i.d. exponential
distributions with λ = 1.

So, assuming that, we can see that the median of probList(C|0〉) concentrates around ln 2,
as ∫ ln 2

0
e−xdx = 1

2 ,

which also implies that adv(C) concentrates around∫ +∞

ln 2
xe−xdx = Cthr = 1 + ln 2

2 ≈ 0.846574.

In the following, we first provide some numerical evidence that the values in probList(C|0〉)
also behave like exponentially distributed random variables, which explains why the constant
should indeed be Cthr. Then we provide a direct numerical simulation for the distribution of
adv(C) to argue that adv(C) approximately follows a nice normal distribution. Finally we
examine the decreasing rate of the standard variance of adv(C) to support our conjecture.

E.1 Numerical Simulation Setting

In the following we usually set n = 9 or n = 16 (so that
√
n is an integer); and we always set

m = n2 as in Conjecture 1.

E.2 Distribution of probList(C|0〉): Approximate Exponential
Distribution

In Figure 2 we plot the histogram of the distribution of the normalized probabilities in
probList(C|0〉) where C ← µ16,256

grid , that is,

{2n · p : p ∈ probList(C|0〉)}.

And we compare it with the exponential distribution with λ = 1. From Figure 2, it is easy
to observe that these two distributions are quite similar.

E.3 Distribution of adv(C): Approximate Normal Distribution

Next we perform direct numerical simulation to see how adv(C) is distributed when C ← µn,mgrid .
Our results suggest that adv(C) approximately follows a normal distribution with mean close
to Cthr.

S. Aaronson and L. Chen 22:65

Figure 2 A histogram of (normalized) probList(C|0〉), where C ← µ16,256
grid . The x-axis represents

the probability, and the y-axis represents the estimated density, and the red line indicates the PDF
of the exponential distribution with λ = 1.

Figure 3 A histogram of the adv(C)’s of the 105 i.i.d. samples from µ9,81
grid . The x-axis represents

the value of adv(C), and the y-axis represents the estimated density, and the red line indicates the
PDF of the normal distribution N (0.846884, 0.008139112).

CCC 2017

22:66 Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Figure 4 A histogram of the adv(C)’s of the 105 i.i.d. samples from µ16,256
grid . The x-axis represents

the value of adv(C), the y-axis represents the estimated density, and the red line indicates the PDF
of the normal distribution N (0.846579, 0.0007125712).

Figure 5 The empirical decay of the variance of adv(C). Here a point (x, y) means that the
standard variance of the corresponding adv(C)’s for the 1000 i.i.d. samples from µx,x2

general is y. Also,
the red line represents the function y = 0.1/x.

S. Aaronson and L. Chen 22:67

E.3.1 µ9,81
grid , 105 samples

We first draw 105 i.i.d. samples from µ9,81
grid and plot the distribution of the corresponding

adv(C)’s in Figure 3. From Figure 3, we can see that the distribution of adv(C) follows a
nice normal distribution, with mean very close to Cthr.

E.3.2 µ16,256
grid , 105 samples

Next, we draw 105 i.i.d. samples from µ16,256
grid and plot the distribution of the corresponding

adv(C)’s in Figure 4. From Figure 4, we can observe that the distribution of adv(C) in
this case also mimics a nice normal distribution, with mean even closer to Cthr than in the
previous case.

E.4 The Empirical Decay of Variance
The previous subsection suggests that adv(C) follows a normal distribution with mean
approaching Cthr. If that’s indeed the case, then informally, Conjecture 1 becomes equivalent
to the conjecture that the variance σ of Cthr becomes O(1/n) as n→ +∞. So we wish to
verify the latter conjecture for µn,n

2

grid with some numerical simulation.

The circuit distribution µn,mgeneral

Unfortunately, the definition of µn,mgrid requires n to be a perfect square, and there are only
five perfect squares for which we can perform quick simulations (n ∈ {1, 4, 9, 16, 25}). So
we consider the following distribution µn,mgeneral on n qubits and m circuits instead: each of m
gates is a Haar random two-qubit gate acting on two qubits chosen uniformly at random. In
this case, since we don’t need to arrange the qubits in a square grid, n can be any positive
integer.

Numerical simulation shows that adv(C) is distributed nearly the same when C is drawn
from µn,n

2

general or µ
n,n2

grid for n = 3 or n = 4, so it is reasonable to consider µgeneral instead of
µgrid.

For each n = 2, 3, dotsc, 16, we draw 1000 i.i.d. samples from µn,n
2

general, and calculate the
variance of the corresponding adv(C)’s. The results are summarized in Figure 5.

From Figure 5, we can observe that the variance decreases faster than the inverse function
1/x; hence it supports Conjecture 1.

CCC 2017

	Introduction
	Supremacy from Sampling
	Theoretical Challenges
	Our Contributions
	Techniques

	Preliminaries
	Quantum Circuits
	Complexity Classes for Sampling Problems
	Distinguishing Two Pure Quantum States
	A Multiplicative Chernoff Bound

	The Hardness of Quantum Circuit Sampling
	Preliminaries
	Random quantum circuit on grids
	The HOG Problem
	Classical Hardness Assuming QUATH
	Proof for Lemma 8

	New Algorithms to Simulate Quantum Circuits
	Polynomial-Space Simulation Algorithms for General Quantum Circuits
	Faster Polynomial Space Simulation Algorithms for Grid Quantum Circuits
	Space-Time Trade-off Schemes

	Strong Quantum Supremacy Theorems Must Be Non-Relativizing
	Intuition
	Implementation
	SampBPP-(TQBF,oracle)=SampBQP-(TQBF,oracle) with Probability 1
	PH-(TQBF,oracle) is Infinite with Probability 1

	Maximal Quantum Supremacy for Black-Box Sampling and Relation Problems
	Preliminaries
	Fourier Fishing and Fourier Sampling
	The Omega(N/log(N)) Lower Bound for Fourier Fishing
	The Optimal Omega(N) Lower Bound for Fourier Sampling

	Quantum Supremacy Relative to Efficiently-Computable Oracles
	Preliminaries
	A Construction from Zhandry [61]
	BPP vs. BQP
	Fourier Fishing and Fourier Sampling

	Complexity Assumptions Are Needed for Quantum Supremacy Relative to Efficiently-Computable Oracles
	Open Problems
	Other Results on Oracle Separations in P/poly
	P, BPP, BQP vs. NP
	P vs. BPP
	BQP vs. SKZ

	Missing Proofs in Section 3
	Missing Proofs in Section 6
	Missing Proofs in Section 7
	Numerical Simulation For Conjecture 1
	Numerical Simulation Setting
	Distribution of probList(C|0>): Approximate Exponential Distribution
	Distribution of adv(C): Approximate Normal Distribution
	mu-(9,81;grid), exp(10,5) samples
	mu-(16,256;grid), exp(10,5) samples

	The Empirical Decay of Variance

