
Distribution Testing Lower Bounds via Reductions
from Communication Complexity
Eric Blais1, Clément L. Canonne2, and Tom Gur3

1 University of Waterloo, Waterloo, ON, Canada
eric.blais@uwaterloo.ca

2 Columbia University, New York, NY, USA
ccanonne@cs.columbia.edu

3 UC Berkeley, Berkeley, CA, USA
tom.gur@berkeley.edu

Abstract
We present a new methodology for proving distribution testing lower bounds, establishing a
connection between distribution testing and the simultaneous message passing (SMP) commu-
nication model. Extending the framework of Blais, Brody, and Matulef [15], we show a simple
way to reduce (private-coin) SMP problems to distribution testing problems. This method allows
us to prove new distribution testing lower bounds, as well as to provide simple proofs of known
lower bounds.

Our main result is concerned with testing identity to a specific distribution p, given as a
parameter. In a recent and influential work, Valiant and Valiant [53] showed that the sample
complexity of the aforementioned problem is closely related to the `2/3-quasinorm of p. We obtain
alternative bounds on the complexity of this problem in terms of an arguably more intuitive
measure and using simpler proofs. More specifically, we prove that the sample complexity is
essentially determined by a fundamental operator in the theory of interpolation of Banach spaces,
known as Peetre’s K-functional. We show that this quantity is closely related to the size of the
effective support of p (loosely speaking, the number of supported elements that constitute the
vast majority of the mass of p). This result, in turn, stems from an unexpected connection to
functional analysis and refined concentration of measure inequalities, which arise naturally in our
reduction.
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1 Introduction

Distribution testing, as first explicitly introduced in [9], is a branch of property testing [48, 31]
concerned with the study of sublinear algorithms for making approximate decisions regarding
probability distributions over massive domains. These algorithms are granted access to
independent samples from an unknown distribution and are required to test whether this
distribution has a certain global property. That is, a tester for property Π of distributions
over domain Ω receives a proximity parameter ε > 0 and is asked to determine whether a
distribution p over Ω (denoted p ∈ ∆(Ω)) has the property Π or is ε-far (say, in `1-distance)
from any distribution that has Π, using a small number of independent samples from p. The
sample complexity of Π is then the minimal number of samples needed to test it. Throughout
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28:2 Distribution Testing Lower Bounds via Reductions from Communication Complexity

the introduction, we fix ε to be small constant and refer to a tester with respect to proximity
parameter ε as an ε-tester.

In recent years, distribution testing has been studied extensively. In a significant body of
work spanning more than a decade [8, 41, 7, 42, 2, 14, 37, 53, 23, 56, 36, 13, 25], a myriad of
properties has been investigated under this lens. Starting with [32, 10, 8], this includes the
testing of symmetric properties [45, 54, 51, 52], of structured families [11, 35, 3, 17, 4, 20, 19],
as well as testing under some assumption on the unknown instance [47, 24, 27, 26]. Tight
upper and lower bounds on the sample complexity have been obtained for properties such as
uniformity, identity to a specified distribution, monotonicity, and many more (see references
above, or [46, 18] for surveys). However, while by now numerous techniques and approaches
are available to design distribution testers, our arsenal of tools for proving lower bounds on
the sample complexity of distribution testing is significantly more limited. There are only
a handful of standard techniques to prove lower bounds; and indeed the vast majority of
the lower bounds in the literature are shown via Le Cam’s two-point method (also known as
the “easy direction” of Yao’s minimax principle) [57, 44]. In this method, one first defines
two distributions Y and N over distributions that are respectively yes-instances (having
the property) and no-instances (far from having the property). Then it remains to show
that with high probability over the choice of the instance, every tester that can distinguish
between pyes ∼ Y and pno ∼ N must use at least a certain number of samples. In view of this
scarcity, there has been in recent years a trend towards trying to obtain more, or simpler to
use, techniques [54, 25]; however, this state of affairs largely remains the same.

In this work, we reveal a connection between distribution testing and the simultaneous
message passing (SMP) communication model, which in turn leads to a new methodology for
proving distribution testing lower bounds. Recall that in a private-coin SMP protocol, Alice
and Bob are given strings x, y ∈ {0, 1}k (respectively), and each of the players is allowed to
send a message to a referee (which depends on the player’s input and private randomness)
who is then required to decide whether f(x, y) = 1 by only looking at the players’ messages
and flipping coins.

Extending the framework of Blais, Brody, and Matulef [15], we show a simple way of
reducing (private-coin) SMP problems to distribution testing problems. This foregoing
methodology allows us to prove new distribution testing lower bounds, as well as to provide
simpler proofs of known lower bounds for problems such as testing uniformity, monotonicity,
and k-modality (see Section 8).

Our main result is a characterization of the sample complexity of the distribution identity
testing problem in terms of a key operator in the study of interpolation spaces, which arises
naturally from our reduction and for which we are able to provide an intuitive interpretation.
Recall that in this problem, the goal is to determine whether a distribution q over domain
Ω (denoted q ∈ ∆(Ω)) is identical to a fixed distribution p; that is, given a full description
of p ∈ ∆(Ω), we ask how many independent samples from q are needed to decide whether
q = p, or whether q is ε-far in `1-distance from p.1

In a recent and influential work, Valiant and Valiant [53] showed that the sample
complexity of the foregoing question is closely related to the `2/3-quasinorm of p, defined
as ‖p‖2/3 =

(∑
ω∈Ω |p(ω)|2/3

)3/2. That is, viewing a distribution p ∈ ∆(Ω) as an |Ω|-
dimensional vector of probabilities, let p−max

−ε be the vector obtained from p by zeroing

1 Note that this is in fact a family of massively parameterized properties {Πp}p∈∆(Ω), where Πp is the
property of being identical to p. See [39] for an excellent survey concerning massively parameterized
properties.
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Table 1 Summary of results. All the bounds are stated for constant proximity parameter ε.

Property Our results Previous bounds

Uniformity Ω̃(
√
n) Θ(

√
n) [32, 42]

Identity to p Ω
(
κ−1
p (1− ε)

)
, O
(
κ−1
p (1− c · ε)

)
Ω
(
‖p−max
ε ‖2/3

)
, O
(
‖p−max
c′·ε ‖2/3

)
[53]

Monotonicity Ω̃(
√
n) Θ(

√
n) [11, 4, 20]

k-modal Ω̃(
√
n) Ω̃(max(

√
n, k)) [19]

Log-concavity, Monotone
Hazard Rate Ω̃(

√
n) Θ(

√
n) [4, 20]

Binomial, Poisson Binomial Ω̃
(
n1/4) Θ

(
n1/4) ([3, 20]

Symmetric sparse support Ω̃(
√
n)

Junta distributions
(PAIRCOND model) Ω(k)

out the largest entry as well as the set of smallest entries summing to ε (note that p−max
−ε

is no longer a probability distribution). Valiant and Valiant gave an ε-tester for testing
identity to p with sample complexity O

(
‖p−max
−cε ‖2/3

)
, where c > 0 is a universal constant,

and complemented this result with a lower bound of Ω
(
‖p−max
−ε ‖2/3

)
.2

In this work, using our new methodology, we show alternative and similarly tight bounds
on the complexity of identity testing, in terms of a more intuitive measure (as we discuss below)
and using simpler arguments. Specifically, we prove that the sample complexity is essentially
determined by a fundamental quantity in the theory of interpolation of Banach spaces, known
as Peetre’s K-functional. Formally, for a distribution p ∈ ∆(Ω), the K-functional between `1
and `2 spaces is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.

This operator can be thought of as an interpolation norm between the `1 and `2 norms
of the distribution p (controlled by the parameter t), naturally inducing a partition of p into
two sub-distributions: p′, which consists of “heavy hitters” in `1-norm, and p′′, which has a
bounded `2-norm. Indeed, the approach of isolating elements with large mass and testing in
`2-norm seems inherent to the problem of identity testing, and is the core component of both
early works [32, 8] and more recent ones [27, 25, 30]. As a further connection to the identity
testing question, we provide an easily interpretable proxy for this measure κp, showing that
the K-functional between the `1 and `2 norms of the distribution p is closely related to the
size of the effective support of p, which is the number of supported elements that constitute
the vast majority of the mass of p; that is, we say that p has ε-effective support of size T if
1−O(ε) of the mass of p is concentrated on T elements (see Section 2.4 for details).

Having defined the K-functional, we can proceed to state the lower bound we derive for
the problem.3

2 We remark that for certain p’s, the asymptotic behavior of O
(
‖p−max
−cε ‖2/3

)
strongly depends on the

constant c, and so it cannot be omitted from the expression. We further remark that this result was
referred to by Valiant and Valiant as “instance-optimal identity testing” as the resulting bounds are
phrased as a function of the distribution p itself – instead of the standard parameter which is the domain
size n.

3 As stated, this result is a slight strengthening of our communication complexity reduction, which yields
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I Theorem 1 (Informally stated). Any ε-tester of identity to p ∈ ∆(Ω) must have sample
complexity Ω

(
κ−1
p (1− 2ε)

)
.

In particular, straightforward calculations show that for the uniform distribution we obtain
a tight lower bound of Ω(

√
n), and for the Binomial distribution we obtain a tight lower

bound of Ω
(
n1/4).

To show that tightness of the lower bound above, we complement it with a nearly matching
upper bound, also expressed in terms of the K-functional.

I Theorem 2 (Informally stated). There exist an absolute constant c > 0 and an ε-tester of
identity to p ∈ ∆(Ω) that uses O

(
κ−1
p (1− cε)

)
mples.4

In the following section, we provide an overview of our new methodology as well as the
proofs for the above theorems. We also further discuss the interpretability of the K-functional
and show its close connection to the effective support size. We conclude this section by
outlining a couple of extensions of our methodology.

Dealing with sub-constant values of the proximity parameter. Similarly to the commu-
nication complexity methodology for proving property testing lower bounds [15], our method
inherently excels in the regime of constant values of the proximity parameter ε. Therefore,
in this work we indeed focus on the constant proximity regime. However, in Section 5.1 we
demonstrate how to obtain lower bounds that asymptotically increase as ε tends to zero, via
an extension of our general reduction.

Extending the methodology to testing with conditional samples. Testers with sample
access are by far the most commonly studied algorithms for distribution testing. However,
many scenarios that arise both in theory and practice are not fully captured by this model.
In a recent line of works [22, 21, 1, 28, 29], testers with access to conditional samples were
considered, addressing situations in which one can control the samples that are obtained
by requesting samples conditioned on membership on subsets of the domain. In Section 9,
we give an example showing that it is possible to extend our methodology to obtain lower
bounds in the conditional sampling model.

1.1 Organization
We first give a technical overview in Section 2, demonstrating the new methodology and
presenting our bounds on identity testing. Section 3 then provides the required preliminaries
for the main technical sections. In Section 4 we formally state and analyze the SMP reduction
methodology for proving distribution testing lower bounds. In Section 5, we instantiate the
basic reduction, obtaining a lower bound on uniformity testing, and in Section 5.1 show how
to extend the methodology to deal with sub-constant values of the proximity parameter. (We
stress that Section 5.1 is not a prerequisite for the rest of the sections, and can be skipped at
the reader’s convenience.) In Section 6 we provide an exposition to the K-functional and
generalize inequalities that we shall need for the following sections. Section 7 then contains
the proofs of both lower and upper bounds on the problem of identity testing, in terms of

a lower bound of Ω
(
κ−1
p (1− 2ε)/ logn

)
. This strengthening is described in Section 7.3.

4 Similarly to the [53] bound, for certain p’s, the asymptotic behavior of O
(
κ−1
p (1− 2ε)

)
depends on the

constant c, and so it cannot be omitted from the expressi
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the K-functional. In Section 8, we demonstrate how to easily obtain lower bounds for other
distribution testing problems. Finally, in Section 9 we discuss extensions to our methodology;
specifically, we explain how to obtain lower bounds in various metrics, and show a reduction
from communication complexity to distribution testing in the conditional sampling model.

2 Technical Overview

In this section we provide an overview of the proof of our main result, which consists of new
lower and upper bounds on the sample complexity of testing identity to a given distribution,
expressed in terms of an intuitive, easily interpretable measure. To do so, we first introduce
the key component of this proof, the methodology for proving lower bounds on distribution
testing problems via reductions from SMP communication complexity. We then explain how
the relation to the theory of interpolation spaces and the so-called K-functional naturally
arises when applying this methodology to the identity testing problem.

For the sake of simplicity, throughout the overview we fix the domain Ω = [n] and fix the
proximity parameter ε to be a small constant. We begin in Section 2.1 by describing a simple
“vanilla” reduction for showing an Ω̃(

√
n) lower bound on the complexity of testing that a

distribution is uniform. Then, in Section 2.2 we extend the foregoing approach to obtain a
new lower bound on the problem of testing identity to a fixed distribution. This lower bound
depends on the best rate obtainable by a special type of error-correcting codes, which we
call p-weighted codes. In Section 2.3, we show how to relate the construction of such codes to
concentration of measure inequalities for weighted sums of Rademacher random variables;
furthermore, we discuss how the use of the K-functional, an interpolation norm between `1
and `2 spaces, leads to stronger concentration inequalities than the ones derived by Chernoff
bounds or the central limit theorem. Finally, in Section 2.4 we establish nearly matching
upper bounds for testing distribution identity in terms of this K-functional, using a proxy
known as the Q-norm. We then infer that the sample complexity of testing identity to a
distribution p is roughly determined by the size of the effective support of p (which is, loosely
speaking, the number of supported elements which together account for the vast majority of
the mass of p).

2.1 Warmup: Uniformity Testing
Consider the problem of testing whether a distribution q ∈ ∆([n]) is the uniform distribution;
that is, how many (independent) samples from q are needed to decide whether q is the
uniform distribution over [n], or whether q is ε-far in `1-distance from it. We reduce the
SMP communication complexity problem of equality to the distribution testing problem of
uniformity testing.

Recall that in a private-coin SMP protocol for equality, Alice and Bob are given strings
x, y ∈ {0, 1}k (respectively), and each of the players is allowed to send a message to a referee
(which depends on the player’s input and private randomness) who is then required to decide
whether x = y by only looking at the players’ messages and flipping coins.

The reduction is as follows. Assume there exists a uniformity tester with sample complexity
s. Each of the players encodes its input string via a balanced asymptotically good code
C (that is, C : {0, 1}k → {0, 1}n is an error-correcting code with constant rate and relative
distance δ = Ω(1), which satisfies the property that each codeword of C contains the same
number of 0’s and 1’s). Denote by A ⊂ [n] the locations in which C(x) takes the value 1
(i.e., A = { i ∈ [n] : C(x)i = 1 }), and denote by B ⊂ [n] the locations in which C(y) takes
the value 0 (i.e., B = { i ∈ [n] : C(y)i = 0 }). Alice and Bob each send O(s) uniformly

CCC 2017



28:6 Distribution Testing Lower Bounds via Reductions from Communication Complexity

Figure 1 The reduction from equality in the SMP model to uniformity testing of distributions.
In (A) we see that the uniform distribution is obtained when x = y, whereas in (B) we see that
when x 6= y, we obtain a distribution that is “far” from uniform.

distributed samples from A and B, respectively. Finally, the referee invokes the uniformity
tester with respect to the distribution q = (UA + UB) /2, emulating each draw from q by
tossing a random coin and deciding accordingly whether to use a sample by Alice or Bob.
See Figure 1.

The idea is that if x = y, then C(x) = C(y), and so A and B are a partition of the set
[n]. Furthermore, since |C(x)| = |C(y)| = n/2, this is a equipartition. Now, since Alice and
Bob send uniform samples from an equipartition of [n], the distribution q that the referee
emulates is in fact the uniform distribution over [n], and so the uniformity tester will accept.
On the other hand, if x 6= y, then C(x) and C(y) disagree on a constant fraction of the
domain. Thus, A and B intersect on δ/2 elements, as well as do not cover δ/2. Therefore q is
uniform on a (1− δ)-fraction of the domain, unsupported on a (δ/2)-fraction of the domain,
and has “double” weight 2/n on the remaining (δ/2)-fraction. In particular, since δ = Ω(1),
the emulated distribution q is Ω(1)-far (in `1-distance) from uniform, and it will be rejected
by the uniformity tester.

As each sample sent by either Alice or Bob was encoded with O(logn) bits, the above
constitutes an SMP protocol for equality with communication complexity O(s log(n)). Yet it
is well known [40] that the players must communicate Ω(

√
k) bits to solve this problem (see

Section 4), and so we deduce that s = Ω(
√
k/ log(n)) = Ω̃(

√
n).
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2.2 Revisiting Distribution Identity Testing: A New Lower Bound

Next, consider the problem of testing whether a distribution q ∈ ∆([n]) is identical to a
fixed distribution p, provided as a (massive) parameter; that is, given a full description of
p ∈ ∆([n]), we ask how many independent samples from q are needed to decide whether q = p,
or whether q is ε-far in `1-distance from p. As mentioned earlier, Valiant and Valiant [53]
established both upper and lower bounds on this problem, involving the `2/3-quasinorm
of p. We revisit this question, and show different – and more interpretable – upper and
lower bounds. First, by applying our new communication complexity methodology to the
distribution identity problem, we obtain a simple lower bound expressed in terms of a new
parameter, which is closely related to the effective support size of p.

Consider any fixed p ∈ ∆([n]). As a first idea, it is tempting to reduce equality in the SMP
model to testing identity to p by following the uniformity reduction described in Section 2.1,
only instead of having Alice and Bob send uniform samples from A and B, respectively,
we have them send samples from p conditioned on membership in A and B respectively.
That is, as before Alice and Bob encode their inputs x and y via a balanced, asymptotically
good code C to obtain the sets A = { i ∈ [n] : C(x)i = 1 } and B = { i ∈ [n] : C(y)i = 0 },
which partition [n] if x = y, and intersect on Ω(n) elements (as well as fail to cover Ω(n)
elements of [n]) if x 6= y. Only now, Alice sends samples independently drawn from p|A, i.e.,
p conditioned on the samples belonging to A, and Bob sends samples independently drawn
from p|B, i.e., p conditioned on the samples belonging to B; and the referee emulates the
distribution q = (p|A + p|B)/2.

However, two problems arise in the foregoing approach. The first is that while indeed
when x = y the reduction induces an equipartition A,B of the domain, the resulting weights
p(A) and p(B) in the mixture may still be dramatically different, in which case the referee
will need much more samples from one of the parties to emulate p. The second is a bit more
subtle, and has to do with the fact that the properties of this partitioning are with respect to
the size of the symmetric difference A∆B, while really we are concerned about its mass under
the emulated distribution q (and although both are proportional to each other in the case of
the uniform distribution, for general p we have no such guarantee). Namely, when x 6= y the
domain elements which are responsible for the distance from p (that is, the elements which
are covered by both parties (A ∩B) and by neither of the parties ([n] \ (A ∪B)) may only
have a small mass according to p, and thus the emulated distribution q will not be sufficiently
far from p. A natural attempt to address these two problems would be to preprocess p by
discarding its light elements, focusing only on the part of the domain where p puts enough
mass pointwise; yet this approach can also be shown to fail, as in this case the reduction
may still not generate enough distance.5

Instead, we take a different route. The key idea is to consider a new type of codes, which
we call p-weighted codes, which will allow us to circumvent the second obstacle. These are
code whose distance guarantee is weighted according to the distribution p; that is, instead of
requiring that every two codewords c, c′ in a code C satisfy dist(x, y) def=

∑n
i=1 |xi − yi| ≥ δ,

5 In more detail, this approach would consider the distribution p′ obtained by iteratively removing
the lightest elements of p until a total of ε probability mass was removed. This way, every element
i in the support of p′ is guaranteed to have mass p′i ≥ ε/n: this implies that the weights p′(A)
and p′(B) are proportional, and that each element that is either covered by both parties or not
covered at all will contribute ε/n to the distance from p′. However, the total distance of q from p

would only be Ω
(
| supp

(
p′
)
| · ε/n

)
; and this only suffices if p and p′ have comparable support size,

i.e. | supp(p) | = O
(
| supp

(
p′
)
|
)
.

CCC 2017
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we consider a code Cp : {0, 1}k → {0, 1}n such that every c, c′ ∈ Cp satisfy

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi| ≥ δ.

Furthermore, to handle the first issue, we adapt the “balance” property accordingly, requiring
that each codeword be balanced according to p, that is, every c ∈ Cp satisfies

∑n
i=1 p(i) · ci =

1/2.
It is straightforward to see that if we invoke the above reduction while letting the parties

encode their inputs via a balance p-weighted code Cp, then both of the aforementioned
problems are resolved; that is, by the p-balance property the weights p(A) and p(B) are equal,
and by the p-distance of Cp we obtain that for x 6= y the distribution q = (pA + pB)/2 is
Ω(1)-far from p. Hence we obtain a lower bound of Ω

(√
k/ log(n)

)
on the query complexity

of testing identity to p. To complete the argument, it remains to construct such codes, and
determine what the best rate k/n that can be obtained by p-weighted codes is.

2.3 Detour: p-weighted Codes, Peetre’s K-functional, and beating the
CLT

The discussion of previous section left us with the task of constructing high-rate p-weighted
codes. Note that unlike standard (uniformly weighted) codes, for which we can easily obtain
constant rate, there exist some p’s for which high rate is impossible (for example, if p ∈ ∆([n])
is only supported on one element, we can only obtain rate 1/n). In particular, by the sphere
packing bound, every p-weighted code C : {0, 1}k → {0, 1}n with distance δ must satisfy

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(δ/2) ,

where VolFn2 ,distp(r) is the volume of the p-ball of radius r in the n-dimensional hypercube,
given by

VolFn2 ,distp(r) def=

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

pi · wi ≤ r

}∣∣∣∣∣ .
Hence, we must have k ≤ n− log VolFn2 ,distp(δ/2).

In Section 7.1 we show that there exist (roughly) balanced p-weighted codes with nearly-
optimal rate,6 and so it remains to determine the volume of the p-ball of radius ε in the
n-dimensional hypercube, where recall that ε is the proximity parameter of the test. To this
end, it will be convenient to represent this quantity as a concentration inequality of sums of
weighted Rademacher random variables, as follows

VolFn2 ,distp(ε) = 2n Pr
Y∼{0,1}n

[
n∑
i=1

piYi ≤ ε

]
= 2n Pr

X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
. (1)

Applying standard tail bounds derived from the central limit theorem (CLT), we have that

Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2ε
]
≤ e

−(1−2ε)2

2‖p‖2
2 , (2)

6 We remark that since these codes are not perfectly p-balanced, a minor modification to the reduction
needs to be done. See Section 7.1 for details.
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and so we can obtain a p-weighted code Cp : {0, 1}k → {0, 1}n with dimension k =
O(1/‖p‖22), which in turn, by the reduction described in Section 2.2, implies a lower bound
of Ω(1/(‖p‖2 · log(n))) on the complexity of testing identity to p.

Unfortunately, the above lower bound is not as strong as hoped, and in particular, far
weaker than the ‖p−max

−ε ‖2/3 bound of [53].7 Indeed, it turns out that the CLT-based bound
in Equation 2 is only tight for distributions satisfying ‖p‖∞ = O(‖p‖22), and is in general too
crude for our purposes. Instead, we look for stronger concentration of measure inequalities
that “beat” the CLT. To this end, we shall use powerful tools from the theory of interpolation
spaces. Specifically, we consider Peetre’s K-functional between `1 and `2 spaces. Loosely
speaking, this is the operator defined for t > 0 by

κp(t) = inf
p′+p′′=p

‖p′‖1 + t‖p′′‖2.8

This K-functional can be thought of as an interpolation norm between the `1 and `2 norms
of the distribution p (and accordingly, for any fixed t it defines a norm on the space `1 + `2).
In particular, note that for large values of t the function κp(t) is close to ‖p‖1, whereas for
small values of t it will behave like t‖p‖2.

The foregoing connection is due to Montgomery-Smith [38], who established the following
concentration of measure inequality for weighted sums of Rademacher random variables,

Pr
[

n∑
i=1

piXi ≥ κp(t)
]
≤ e− t

2
2 . (3)

Furthermore, he proved that this concentration bound is essentially tight (see Section 6 for
a precise statement). Plugging (3) into (1), we obtain a lower bound of Ω(κ−1

p (1−2ε)/ log(n))
on the complexity of testing identity to p.

To understand and complement this result, we describe in the next subsection a nearly
tight upper bound for this problem, also expressed in terms of this K-functional; implying
that this unexpected connection is in fact not a coincidence, but instead capturing an intrinsic
aspect of the identity testing question. We also give a natural interpretation of this bound,
showing that the size of the effective support of p (roughly, the number of supported elements
that constitute the vast majority of the mass of p) is a good proxy for this parameter
κ−1
p (1− 2ε) – and thus for the complexity of testing identity to p.

2.4 Using the Q-norm Proxy to Obtain an Upper Bound

To the end of obtaining an upper bound on the sample complexity of testing identity to p, in
terms of the K-functional, it will actually be convenient to look at a related quantity, known
as the Q-norm [38]. At a high-level, the Q-norm of a distribution p, for a given parameter
T ∈ N, is the maximum one can reach by partitioning the domain of p into T sets and taking

7 For example, fix α ∈ (0, 1), and consider the distribution p ∈ ∆([n]) in which n/2 elements are of mass
1/n, and nα/2 elements are of mass 1/nα. It is straightforward to verify that ‖p‖−1

2 = Θ
(
(
√
n)α
)
,

whereas ‖p‖2/3 = Θ
(√

n
)
. (Intuitively, this is because the `2-norm is mostly determined by the few

heavy elements, whereas the `2/3-quasinorm is mostly determined by the numerous light elements.)
8 Interestingly, Holmstedt [34] showed that the infimum is approximately obtained by partitioning
p = (p′, p′′) such that p′ consists of heaviest t2 coordinates of p and p′′ consists of the rest (for more
detail, see Theorem 15).
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the sum of the `2 norms of these T subvectors. That is

‖p‖Q(T )
def= sup


T∑
j=1

∑
i∈Aj

p2
i

1/2

: (Aj)1≤j≤T partition of N

 .

Astashkin [6], following up Montgomery-Smith [38], showed that the Q-norm constitutes
a good approximation of K-functional, by proving that

‖p‖Q(t2) ≤ κp(t) ≤
√

2‖p‖Q(t2).

In Section 6 we further generalize this claim and show it is possible to get a tradeoff in the
upper bound; specifically, we prove that κp(t) ≤ ‖p‖Q(2t2). Thus, it suffices to prove an
upper bound on distribution identity testing in terms of the Q-norm.

From an algorithmic point of view, it is not immediately clear that switching to this
Q-norm is of any help. However, we will argue that this value captures – in a very quantitative
sense – the notion of the sparsity of p. As a first step, observe that if ‖p‖Q(T ) = 1, then the
distribution p is supported on at most T elements. To see this, denote by pAj the restriction
of the sequence p to the indices in Aj , and note that if ‖p‖Q(T )

def=
∑T
j=1 ‖pAj‖2 = 1, then

by the monotonicity of `p norms and since
∑T
j=1 ‖pAj‖1 = ‖p‖1 = 1 we have that

T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) = 0,

which implies that ‖pAj‖1 = ‖pAj‖2 for all j ∈ [T ].
Now, it turns out that it is possible to obtain a robust version of the foregoing observation,

yielding a sparsity lemma that, roughly speaking, shows thats if ‖p‖Q(T ) ≥ 1 − ε, then
1 − O(ε) of the mass of p is concentrated on T elements: in this case we say that p has
O(ε)-effective support of size T . (See Lemma 31 for precise statement of the sparsity lemma.)

This property of the Q-norm suggests the following natural test for identity to a distribu-
tion p: Simply fix T such that ‖p‖Q(T ) = 1− ε, and apply one of the standard procedures
for testing identity to a distribution with support size T , which require O(

√
T ) samples. But

by the previous discussion, we have ‖p‖Q(2t2) ≥ κp(t), so that setting T = 2t2 for the “right”
choice of t = κ−1

p (1 − 2ε) will translate to an O(t) upper bound – which is what we were
aiming for.

3 Preliminaries

Notation. We write [n] for the (ordered) set of integers {1, . . . , n}, and ln, log for respectively
the natural and binary logarithms. We use the notation Ω̃(f) to hide polylogarithmic
dependencies on the argument, i.e. for expressions of the form Ω(f logc f) (for some absolute
constant c). All throughout the paper, we denote by ∆(Ω) the set of discrete probability
distributions over domain Ω. When the domain is a subset of the natural numbers N, we
shall identify a distribution p ∈ ∆(Ω) with the sequence (pi)i∈N ∈ `1 corresponding to its
probability mass function (pmf). For a subset S ⊆ Ω, we denote by p|S the normalized
projection of p to S (so p|S is a probability distribution).

For an alphabet Σ, we denote the projection of x ∈ Σn to a subset of coordinates I ⊆ [n]
by x|I . For i ∈ [n], we write xi = x|{i} to denote the projection to a singleton. We denote
the relative Hamming distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn
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by dist(x, y) def= |{ xi 6= yi : i ∈ [n] }| /n. If dist(x, y) ≤ ε, we say that x is ε-close to y, and
otherwise we say that x is ε-far from y. Similarly, we denote the relative Hamming distance
of x from a non-empty set S ⊆ Σn by dist(x, S) def= miny∈S dist(x, y)). If dist(x, S) ≤ ε, we
say that x is ε-close to S, and otherwise we say that x is ε-far from S.

Distribution Testing. A property of distributions over Ω is a subset P ⊆ ∆(Ω), consisting
of all distributions that have the property. Given two distributions p, q ∈ ∆(Ω), the
`1 distance between p and q is defined as the `1 distance between their pmf’s, namely
‖p− q‖1 =

∑
i∈Ω |pi − qi|.9 Given a property P ⊆ ∆(Ω) and a distribution p ∈ ∆(Ω), we

then define the distance of p to P as `1(p,P) = infq∈P ‖p− q‖1.
A testing algorithm for a fixed property P is then a randomized algorithm T which

takes as input n, ε ∈ (0, 1], and is granted access to independent samples from an unknown
distribution p; and satisfies the following.
1. if p ∈ P, the algorithm outputs accept with probability at least 2/3;
2. if `1(p,P) ≥ ε, it outputs reject with probability at least 2/3.
In other words, T must accept with high probability if the unknown distribution has the
property, and reject if it is ε-far from having it. The sample complexity of the algorithm is
the number of samples it draws from the distribution in the worst case.

Inequalities. We now state a standard probabilistic result that some of our proofs will rely
on, the Paley–Zygmund anticoncentration inequality:

I Theorem 3 (Paley–Zygmund inequality). Let X be a non-negative random variable with
finite variance. Then, for any θ ∈ [0, 1],

Pr[X > θE[X] ] ≥ (1− θ)2E[X]2

E[X2] .

We will also require the following version of the rearrangement inequality, due to Hardy
and Littlewood (cf. for instance [12, Theorem 2.2]):

I Theorem 4 (Hardy–Littlewood Inequality). Fix any f, g : R→ [0,∞) such that lim±∞ f =
lim±∞ g = 0. Then,∫

R
fg ≤

∫
R
f∗g∗

where f∗, g∗ denote the symmetric decreasing rearrangements of f, g respectively.

Error-Correcting Codes. Let k, n ∈ N, and let Σ be a finite alphabet. A code is a one-to-one
function C : Σk → Σn that maps messages to codewords, where k and n are called the code’s
dimension and block length, respectively. The rate of the code, measuring the redundancy of
the encoding, is defined to be ρ def= k/n. We will sometime identify the code C with its image
C(Σk). In particular, we shall write c ∈ C to indicate that there exists x ∈ {0, 1}k such that
c = C(x), and say that c is a codeword of C. The relative distance of a code is the minimal
relative distance between two codewords of C, and is denoted by δ def= minc6=c′∈C{dist(c, c′)}.

We say that C is an asymptotically good code if it has constant rate and constant relative
distance. We shall make an extensive use of asymptotically good codes that are balanced,
that is, codes in which each codeword consists of the same number of 0’s and 1’s

9 Note that this is equal, up to a factor 2, to the total variation distance between p and q.
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I Proposition 5 (Good Balanced Codes). For any constant δ ∈ [0, 1), there exists a good
balanced code C : {0, 1}k → {0, 1}n with relative distance δ and constant rate. Namely, there
exists a constant ρ > 0 such that the following holds.
1. Balance: |C(x)| = n

2 for all x ∈ {0, 1}k;
2. Relative distance: dist(C(x), C(y)) > δ for all distinct x, y ∈ {0, 1}k;
3. Constant rate: k

n ≥ ρ.

Proof. Fix any code C ′ with linear distance δ and constant rate (denoted ρ′). We transform
C ′ : {0, 1}k → {0, 1}n′ to a balanced code C : {0, 1}k → {0, 1}2n′ by representing 0 and 1 as
the balanced strings 01 and 10 (respectively). More accurately, we let C(x) def= C ′(x)�C ′(x) ∈
{0, 1}n for all x ∈ {0, 1}k, where � denotes the concatenation and z̄ is the bitwise negation
of z. It is immediate to check that this transformation preserves the distance, and that C is
a balanced code with rate ρ def= 2ρ′. J

On uniformity. For the sake of notation and clarity, throughout this work we define all
algorithms and objects non-uniformly. Namely, we fix the relevant parameter (typically
n ∈ N), and restrict ourselves to inputs or domains of size n (for instance, probability
distributions over domain [n]). However, we still view it as a generic parameter and allow
ourselves to write asymptotic expressions such as O(n). Moreover, although our results are
stated in terms of non-uniform algorithms, they can be extended to the uniform setting in a
straightforward manner.

4 The Methodology: From Communication Complexity to
Distribution Testing

In this section we adapt the methodology for proving property testing lower bounds via
reductions from communication complexity, due to Blais, Brody, and Matulef [15], to the
setting of distribution testing. As observed in [15, 16], to prove lower bounds on the
query complexity of non-adaptive testers it suffices to reduce from one-sided communication
complexity. We show that for distribution testers (which are inherently non-adaptive), it
suffices to reduce from the more restricted communication complexity model of private-coin
simultaneous message passing (SMP).

Recall that a private-coin SMP protocol for a communication complexity predicate
f : {0, 1}k × {0, 1}k → {0, 1} consists of three computationally unbounded parties: Two
players (commonly referred to as Alice and Bob), and a Referee. Alice and Bob receive inputs
x, y ∈ {0, 1}k. Each of the players simultaneously (and independently) sends a message
to the referee, based on its input and (private) randomness. The referee is then required
to successfully compute f(x, y) with probability at least 2/3, using its private randomness
and the messages received from Alice and Bob. The communication complexity of an SMP
protocol is the total number of bits sent by Alice and Bob. The private-coin SMP complexity
of f , denoted SMP(f), is the minimum communication complexity of all SMP protocols that
solve f with probability at least 2/3.

Generally, to reduce an SMP problem f to ε-testing a distribution property Π, Alice and
Bob can send messages mA(x, rA, ε) and mB(y, rB , ε) (respectively) to the Referee, where
rA and rB are the private random strings of Alice and Bob. Subsequently, the Referee uses
the messages mA(x, rA, ε) and mA(y, rB , ε), as well as its own private randomness, to feed
the property tester samples from a distribution p that satisfies the following conditions: (1)
completeness: if f(x, y) = 1, then p ∈ Π; and (2) soundness: if f(x, y) = 0, then p is ε-far
from Π in `1-distance.



E. Blais, C. L. Canonne, and T. Gur 28:13

We shall focus on a special type of the foregoing reductions, which is particularly convenient
to work with and suffices for all of the our lower bounds. Loosely speaking, in these reductions
Alice and Bob both send the prover samples from sub-distributions that can be combined
by the Referee to obtain samples from a distribution that satisfies the completeness and
soundness conditions. The following lemma gives a framework for proving lower bounds
based on such reductions.

I Lemma 6. Let ε > 0, and let Ω be a finite domain of cardinality n. Fix a property Π ⊆ ∆(Ω)
and a communication complexity predicate f : {0, 1}k × {0, 1}k → {0, 1}. Suppose that there
exists a mapping p : {0, 1}k × {0, 1}k → ∆(Ω) that satisfies the following conditions.
1. Decomposability: For every x, y ∈ {0, 1}k, there exist constants α = α(x), β = β(y) ∈

[0, 1] and distributions pA(x), pB(y) such that

p(x, y) = α

α+ β
· pA(x) + β

α+ β
· pB(y)

and α, β can each be encoded with O(logn) bits.
2. Completeness: For every (x, y) = f−1(1), it holds that p(x, y) ∈ Π.
3. Soundness: For every (x, y) = f−1(0), it holds that p(x, y) is ε-far from Π in `1 distance.
Then, every ε-tester for Π needs Ω

(
SMP(f)
log(n)

)
samples.

Proof. Supose there exists an ε-tester for Π with sample complexity s′; assume without loss
of generality that the soundness of the foregoing tester is 5/6, at the cost of increasing the
query complexity to s = O(s′). Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively)
for the SMP problem. Alice computes the distribution pA(x) and the “decomposability
parameter" α = α(x) and sends 6s independent samples from pA(x), as well as the parameter
α. Analogously, Bob computes pB(y) and its parameter β = β(y), and sends 6s independent
samples from pB(y) as well as the parameter β. Subsequently, the referee generates a
sequence of q independent samples from p(x, y), where each sample is drawn as follows: with
probability α

α+β use a (fresh) sample from Alice’s samples, and with probability 1− α
α+β use

a (fresh) sample from Bob’s samples. Finally the referee feeds the generated samples to the
ε-tester for Π.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with
probability at least 1 − αs

6s ≥
5
6 , at least s independent samples from the distribution

α
α+β · pA(x) + β

α+β · pB(y), which equals to p(x, y), by the decomposability condition. If
(x, y) = f−1(1), then by the completeness condition p(x, y) ∈ Π, and so the ε-tester for Π is
successful with probability at least 5

6 ·
5
6 . Similarly, if (x, y) = f−1(0), then by the soundness

condition p(x, y) is ε-far from Π, and so the ε-tester for Π is successful with probability at
least 5

6 ·
5
6 . Finally, note that since each one of the samples provided by Alice and Bob requires

sending logn bits, the total communication complexity of the protocol is 12s logn+O(logn)
(the last term from the cost of sending α, β), hence s′ = Ω

(
SMP(f)
log(n)

)
. J

We conclude this section by stating a well-known SMP lower bound on the equality
problem. Let Eqk : {0, 1}k × {0, 1}k → {0, 1} be the equality predicate, i.e., Eqk(x, y) = 1 if
and only if x = y. In this work, we shall frequently use the following (tight) lower bound on
the Eqk predicate:

I Theorem 7 (Newman and Szegedy [40]). For every k ∈ N it holds that SMP(Eqk) =
Ω
(√

k
)
.
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5 The Basic Reduction: The Case of Uniformity

I Theorem 8. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform,
with respect to proximity parameter ε, requires Ω̃(

√
n) samples, where n = |Ω|.

Proof. Assume there exists a q-query ε-tester for the uniform distribution, with error
probability 1/6. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be a balanced code
as promised by Proposition 5 with distance ε. Namely, there exists an absolute constant
ρ > 0 such that
1. |C(x)| = n

2 for all x ∈ {0, 1}k;
2. dist(C(x), C(y)) > ε for all distinct x, y ∈ {0, 1}k;
3. k

n ≥ ρ.
Given their respective inputs x, y ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs
(C(x), C(y)) ∈ {0, 1}n × {0, 1}n, and the corresponding sets A def= { i ∈ [n] : C(x)i = 1 },
B

def= { i ∈ [n] : C(y)i = 0 }. We then invoke the general reduction of Lemma 6 as follows:
we set α = β = 1

2 , and pA(x) ∈ ∆([n]) (respectively pB(y) ∈ ∆([n])) to be the uniform
distribution on the set A (respectively B). It is clear that the decomposability condition of
the lemma is satisfied for p(x, y) = α

α+β · pA(x) + β
α+β · pB(y) = 1

2 (pA(x) + pB(y)); we thus
turn to the second and third conditions.

Completeness. If (x, y) ∈ Eq−1
k (1), then C(x) = C(y) and A = [n] \ B. This implies that

p(x, y) is indeed the uniform distribution on [n], as desired.
Soundness. If (x, y) ∈ Eq−1

k (0), then dist(C(x), C(y)) > ε, and therefore |A4B̄| > εn by
construction. Since p(x, y) assigns mass 2/n to each element in A∩B = A \ B̄, and mass
0 to any element in Ā ∩ B̄ = B̄ \ A, we have ‖p(x, y)− u‖1 = 1

n · |A4B̄| > ε; that is,
p(x, y) is ε-far from uniform.

The desired Ω
( √

n
logn

)
lower bound then immediately follows from Lemma 6 and Theorem 7.

J

5.1 Obtaining ε-Dependency
In this section, we explain how to generalize the reduction from the previous section to
obtain some dependence (albeit non optimal) on the distance parameter ε in the lower bound.
This generalization will rely on an extension of the methodology of Lemma 6: instead of
having the referee define the distribution p(x, y) as a mixture of pA(x) and pB(y) (namely,
p(x, y) = α(x)

α(x)+β(y)pA(x) + β(y)
α(x)+β(y)pB(y)), he will instead use a (random) combination

function Fε, function of ε and its private coins only. Given this function, which maps a larger
domain of size m = Θ

(
n/ε2) to [n], p(x, y) will be defined as the mixture

p(x, y) = α(x)
α(x) + β(y)pA(x) ◦ F−1

ε + β(y)
α(x) + β(y)pB(y) ◦ F−1

ε .

More simply, this allows Alice and Bob to send to the referee samples from their respective
distributions on a much larger domain m� n; the referee, who has on its side chosen how
to randomly partition this large domain into only n different “buckets,” converts these draws
from Alice and Bob into samples from the induced distributions on the n buckets, and
takes a mixture of these two distributions instead. By choosing each bucket to chave size
roughly 1/ε2, we expect this random “coarsening” of Alice and Bob’s distributions to yield
a distribution at distance only Ω(ε) from uniformity (instead of constant distance) in the
no-case; but now letting us get a lower bound on the original support size m, i.e. Ω̃

(√
n/ε2

)
,

instead of Ω̃(
√
n) as before.
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I Theorem 9. For any ε ∈ (0, 1/2) and finite domain Ω, testing that p ∈ ∆(Ω) is uniform,
with respect to proximity parameter ε, requires Ω̃(

√
n/ε) samples, where n = |Ω|.

Proof of Theorem 9. We will reduce from Eqk, where k ∈ N is again assumed big enough
(in particular, with regard to 1/ε2). Alice and Bob act as in Section 5, separately creating
(a, b) = (C(x), C(y)) ∈ {0, 1}m× ∈ {0, 1}m from their respective inputs x, y ∈ {0, 1}k (where
C : {0, 1}k → {0, 1}m is a balanced code with linear rate and distance δ def= 1/3). As
before, they consider the sets A def= { i ∈ [m] : C(x)i = 1 }, B def= { i ∈ [m] : C(y)i = 0 },
set α = β = 1

2 , and consider the distributions pA(x), pB(y) ∈ ∆([m]) which are uniform
respectively on A and B.

This is where we deviate from the proof of Theorem 8: indeed, setting n def= cε2m (where
c > 0 is an absolute constant determined later), the referee will combine the samples from
pA(x) and pB(y) in a different way to emulate a distribution p(x, y) ∈ ∆([n]) – that is, with
a much smaller support than that of pA(x), pB(y) (instead of setting p(x, y) to be, as before,
a mixture of the two).

To do so, the referee randomly partitions [m] into n sets B1, . . . , Bn of equal size r def=
|Bj | = m

n = 1
cε2 , j ∈ [n], by choosing a uniformly random equipartition of [m]. He then

defines the distribution p = p(x, y) ∈ ∆([n]) by p(j) = Pr[ i ∈ Bj ] (where i ∈ [m] is received
from either Alice or Bob). Viewed differently, the random equipartition chosen by the
referee induces a mapping Fε : [m]→ [n] such that

∣∣F−1(j)
∣∣ = r for all j ∈ [n]; and, setting

p′(x, y) = 1
2 (pA(x) + pB(y)) ∈ ∆([m]), we obtain p(x, y) as the coarsening of p′(x, y) defined

as

p(x, y)(j) =
∑

i∈F−1
ε (j)

p′(x, y)(i) = p′(x, y)(F−1
ε (j))

= 1
2
(
pA(x)(F−1

ε (j)) + pB(y)(F−1
ε (j))

)
, j ∈ [n].

Note furthermore that each sample sent by Alice and Bob (who have no knowledge of the
randomly chosen Fε) can be encoded with O(logm) = O(log n

ε ) bits.
We then turn to establish the analogue in this generalized reduction of the last two

conditions of Lemma 6, i.e. the completeness and soundness. The former, formally stated
below, will be an easy consequence of the previous section.

I Claim 10. If x = y, then p(x, y) is uniform on [n].

Proof. As in the proof of Theorem 8, in this case the distribution p′(x, y) = 1
2 (pA(x) +

pB(y)) ∈ ∆([m]) is uniform; since each “bucket” Bj = F−1
ε (j) has the same size, this implies

that p(x, y)(j) = p′(x, y)(Bj) = 1
n for all j ∈ [n]. J

Establishing the soundness, however, is not as straightforward:

I Claim 11. If x 6= y, then with probability at least 1/100 (over the choice of the equipartition
(B1, . . . , Bn)), p(x, y) is ε-far from uniform.

Proof. Before delving into the proof, we provide a high-level idea of why this holds. Since
the partition was chosen uniformly at random, on expectation each element j ∈ [n] will
have probability E[p(x, y)(j)] = E[p′(x, y)(Bj)] = 1

n . However, since a constant fraction of
elements i ∈ [m] (before the random partition) has probability mass either 0 or 2/m (as in
the proof of Theorem 8), and each bucket Bj contains r = 1/(cε2) many elements chosen
uniformly at random, we expect the fluctuations of p′(x, y)(Bj) around its expectation to be
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of the order of Ω(
√
r/m) = Ω(ε/n) with constant probability, and summing over all j’s this

will give us the distance Ω(ε) we want.
To make this argument precise, we assume x 6= y, so that A4B̄ > δm; and define

H
def= A ∩B,L def= Ā ∩ B̄ (so that |H| = |L| > δ

2m). For any j ∈ [n], we then let the random
variables H(j), L(j) be the number of “high” and ”low” elements of [m] in the bucket Bj ,
respectively:

H(j) def= |Bj ∩H| , L(j) def= |Bj ∩ L| .

From the definition, we get that p = p(x, y) satisfies p(j) = 1
m

(
2H(j) + (r −H(j) − L(j)) =

r
m + H(j)−L(j)

m for j ∈ [n]. Furthermore, it is easy to see that E[p(j)] = r
m = 1

n for all j ∈ [n],
where the expectation is over the choice of the equipartition by the referee.

As previously discussed, we will analyze the deviation from this expectation; more precisely,
we want to show that with good probability, a constant fraction of the j’s will be such that
p(j) deviates from 1/n by at least an additive Ω(

√
r/m) = ε/n. This anticoncentration

guarantee will be a consequence of the Paley–Zygmund inequality (Theorem 3) to Z(j) def=
(H(j) − L(j))2 ≥ 0; in view of applying it, we need to analyze the first two moments of this
random variable.

I Lemma 12. For any j ∈ [n], we have the following. (i) E
[
(H(j) − L(j))2] = δrm−rm−1 , and

(ii) E
[
(H(j) − L(j))4] = 3(1 + o(1))δ2r2.

Proof. Fix any j ∈ [n]. We write for convenience X and Y for respectively H(j) and L(j).
The distribution of (X,Y, r− (X −Y )) is then a multivariate hypergeometric distribution [55]
with 3 classes:

(X,Y, r − (X + Y )) ∼ MultivHypergeom3(( 1
2δm,

1
2δm, (1− δ)m)︸ ︷︷ ︸

(K1,K2,K3)

,m, r).

Conditioning on U def= X + Y , we have that E[X | U ] follows a hypergeometric distribution,
specifically E[X | U ] ∼ Hypergeom(U, 1

2δm, δm). Moreover, U itself is hypergeometrically
distributed, with U ∼ Hypergeom(r, δm,m). We can thus write

E
[
(X − Y )2] = E

[
E
[
(X − Y )2 | U

]]
= E

[
E
[
(2X − U)2 | U

]]
and

E
[
(X − Y )4] = E

[
E
[
(X − Y )4 | U

]]
= E

[
E
[
(2X − U)4 | U

]]
.

By straightforward, yet tedious, calculations involving the computation of E
[
(2X − U)2 | U

]
and E

[
(2X − U)4 | U

]
(after expanding and using the known moments of the hypergeometric

10One can also use a formal computation system, e.g. Mathematica:

Expectation[ Expectation[(2 X - U)^2, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]

Expectation[ Expectation[(2 X - U)^4, {X \[Distributed] HypergeometricDistribution[U, a*m, 2 a*m]}],
{U \[Distributed] HypergeometricDistribution[r, 2*a*m, m]}]
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distribution),10 we obtain

E
[
(X − Y )2] = δr

m− r
m− 1 =

m→∞
(1 + o(1))δr

E
[
(X − Y )4] =

(δr(r −m)((−1 + 3δ(m− 1)−m)m+ 6r2( 1
2δm− 1)− 6rm( 1

2δm− 1)))
(m− 3)(m− 2)(m− 1)

−−−−→
m→∞

3δ2r2 + (1− 3δ)δr = 3δ2r2

the last equality as δ = 1/3. J

We can now apply the Paley–Zygmund inequality to Z(j). Doing so, we obtain that for
r ≤ m

4 (with some slack), and any θ ∈ [0, 1],

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥ θ√1
2δr

]
≥Pr

[ ∣∣∣H(j) − L(j)
∣∣∣ ≥ θ√δrm− r

m− 1

]

≥(1− θ2)2E
[
(H(j) − L(j))2]2

E
[
(H(j) − L(j))4

] .
By the lemma above, the RHS converges to (1−θ2)2

3 when m→∞, and therefore is at least
(1−θ2)2

4 for m big enough. We set θ def= 1/
√

2 to obtain the following: there exists M ≥ 0
such that

Pr
[ ∣∣∣H(j) − L(j)

∣∣∣ ≥√δr

4

]
≥ 1

16 (4)

for every m ≥M .
Eq. (4) implies that the number K of good indices j ∈ [n] satisfying

∣∣H(j) − L(j)
∣∣ ≥√ δr

4
is on expectation at least n

16 , and by an averaging argument11 we get that K ≥ n
20 with

probability at least 1
76 >

1
100 .

Whenever this happens, the distance from p to uniform is at least

∑
j good

∣∣∣∣p(j)− 1
n

∣∣∣∣ =
∑
j good

∣∣H(j) − L(j)
∣∣

m
≥ n

20 ·

√
δr
4

m
=
√
δr

40
n

m
=
√
c

40
√

3
ε

and choosing c ≥ 4800 so that
√
c

40
√

3 ≥ 1 yields the claim. J

From this lemma, we can complete the reduction: given a tester T for uniformity with
query complexity q, we first convert it by standard amplification into a tester T ′ with failure
probability δ def= 1/1000 and sample complexity O(q). The referee can provide samples from
the distribution p(x, t), and on input ε:

If x = y, then T ′ will return reject with probability at most 1/200;
If x 6= y, then T ′ will return reject with probability at least 199/200 · 1/100 > 1/200;

so repeating independently the protocol a constant (fixed in advance) number of times and
taking a majority vote enables the referee to solve Eqk with probability at least 2/3. Since
Ω
(√

k
)

= Ω
(√

n/ε2
)
bits of communication are required for this, and each sample sent by

11Applying Markov’s inequality: Pr
[
K < n

20

]
= Pr

[
n−K > 19n

20

]
≤ n−E[K]

19n/20 ≤
15/16
19/20 = 75

76 .
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Alice or Bob to the referee only requires Θ
(
log n

ε

)
bits, we get a lower bound of

Ω
( √

n

ε log n
ε

)
= Ω̃

(√
n

ε

)
on the sample complexity of T ′, and therefore of T . J

6 The K-Functional: An Unexpected Journey

A quantity that will play a major role in our results is the K-functional between `1 and `2,
a specific case of the key operator in interpolation theory introduced by Peetre [43]. We
start by recalling below the definition and some of its properties, before establishing (for our
particular setting) results that will be crucial to us. (For more on the K-functional and its
use in functional analysis, the reader is referred to [12] and [6].)

I Definition 13 (K-functional). Fix any two Banach spaces (X0, ‖·‖0), (X1, ‖·‖1). The K-
functional between X0 and X1 is the function KX0,X1 : (X0 +X1)× (0,∞)→ [0,∞) defined
by

KX0,X1(x, t) def= inf
(x0,x1)∈X0×X1

x0+x1=x

‖x0‖0 + t‖x1‖1.

For a ∈ `1 + `2, we denote by κa the function t 7→ K`1,`2(a, t).

In other terms, as t varies the quantity κa(t) interpolates between the `1 and `2 norms of
the sequence a (and accordingly, for any fixed t it defines a norm on `1 + `2). In particular,
note that for large values of t the function κa(t) is close to ‖x‖1, whereas for small values of
t the function κa(t) is close to t‖x‖2 (see Corollary 17). We henceforth focus on the case
of K`1,`2 , although some of the results mentioned hold for the general setting of arbitrary
Banach X0, X1.

I Proposition 14 ([12, Proposition 1.2]). For any a ∈ `1 + `2, κa is continuous, increasing,
and concave. Moreover, the function t ∈ (0, 1) 7→ κa

t is decreasing.

Although no closed-form expression is known for κa, it will be necessary for us to
understand its behavior, and therefore seek good upper and lower bounds on its value. We
start with the following inequality, due to Holmstedt [34], which, loosely speaking, shows
that the infimum in the definition of κa(t) is roughly obtained by partitioning a = (a1, a2)
such that a1 consists of heaviest t2 coordinates of a, and a2 consists of the rest.

I Proposition 15 ([6, Proposition 2.2], after [34, Theorem 4.2]). For any a ∈ `2 and t > 0,

1
4

bt
2c∑

i=1
a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2
 ≤ κa(t) ≤

bt2c∑
i=1

a∗i + t

 ∞∑
i=bt2c+1

a∗i
2

 1
2

(5)

where a∗ is a non-increasing permutation of the sequence (|ai|)i∈N.

(We remark that for our purposes, this constant factor gap between left-hand and right-hand
side is not innocuous, as we will later need to study te behavior of the inverse of the function
κa.)

Incomparable bounds on κa were obtained [38], relating it to a different quantity, the
“Q-norm,” which we discuss and generalize next.
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6.1 Approximating the K-Functional by the Q-norm
Loosely speaking, the Q-norm of a vector a (for a given parameter T ) is a mixed `1/`2 norm:
it is the maximum one can reach by partitioning the components of a into T sets, and taking
the sum of the `2 norms of these T subvectors. Although not straightforward to interpret,
this intuitively captures the notion of sparsity of a: indeed, if a is supported on k elements
then its Q-norm becomes equal to the `1 norm for parameter T ≥ k.

I Proposition 16 ([6, Lemma 2.2], after [38, Lemma 2]). For arbitrary a ∈ `2 and t ∈ N,
define the norm

‖a‖Q(t)
def= sup


t∑

j=1

∑
i∈Aj

a2
i

1/2

: (Aj)1≤j≤t partition of N

 .

Then, for any a ∈ `2, and t > 0 such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

2‖a‖Q(t2). (6)

As we shall see shortly, one can generalize this result further, obtaining a tradeoff in the
upper bound. Before turning to this extension in Lemma 18 and Lemma 21, we first state
several other properties of the K-functional implied by the above:

I Corollary 17. For any a ∈ `2,
1. κa(t) = t‖a‖2 for all t ∈ (0, 1)
2. limt→0+ κa(t) = 0
3. 1

4‖a‖1 ≤ limt→∞ κa(t) ≤ ‖a‖1.
Moreover, for a supported on finitely many elements, it is the case that limt→∞ κa(t) = ‖a‖1.

Proof. The first two points follow by definition; turning to Corollary 3, we first note the
upper bound is a direct consequence of the definition of κa as an infimum (as, for all t > 0,
κa(t) ≤ ‖a‖1). (This itself ensures the limit as t→∞ exists by monotone convergence, as κa
is a non-decreasing bounded function.) The lower bound follows from that of Theorem 15,
which guarantees that for all t > 0 κa(t) ≥ 1

4
∑bt2c
i=1 a

∗
i −−−→t→∞

1
4‖a‖1. Finally, the last point

can be obtained immediately from, e.g., the lower bound side of Proposition 16 and the
upper bound given on Corollary 3 above. J

I Lemma 18. For any a ∈ `2 and t such that t2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤ ‖a‖Q(2t2). (7)

Proof of Lemma 18. We follow and adapt the proof of [6, Lemma 2.2] (itself similar to that
of [38, Lemma 2]). The first inequality is immediate: indeed, for any sequence c ∈ `2, by the
definition of ‖a‖Q(t2) and the monotonicity of the p-norms, we have ‖c‖Q(t2) ≤ ‖c‖1; and by
Cauchy–Schwarz, for any partition (Aj)1≤j≤t2 of N,

t2∑
j=1

∑
i∈Aj

c2i

1/2

≤ t

 t2∑
j=1

∑
i∈Aj

c2i

1/2

= t‖c‖2

and thus ‖c‖Q(t2) ≤ t‖c‖2. This yields the lower bound, as

κa(t) = inf
a′+a′′=a

a′∈`1,a
′′∈`2

‖a′‖1 + t‖a′′‖2 ≥ inf
a′+a′′=a

a′∈`1,a
′′∈`2

‖a′‖Q(t2) + ‖a′′‖Q(t2) ≥ ‖a‖Q(t2)

by the triangle inequality.
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We turn to the upper bound. As `2(R) is a symmetric space and κa = κ|a|, without
loss of generality, we can assume that (ak)k∈N is non-negative and monotone non-increasing,
i.e. a1 ≥ a2 ≥ · · · ≥ ak ≥ . . . . We will rely on the characterization of κa as

κa(t) = sup
{ ∞∑

k=1
akbk : b ∈ `2,max(‖b‖∞, t

−1‖b‖2) ≤ 1
}
, t > 0

(see e.g. [6, Lemma 2.2] for a proof). The first step is to establish the existence of a “nice”
sequence b ∈ `2 arbitrarily close to this supremum:

I Claim 19. For any δ > 0, there exists a non-increasing, non-negative sequence b∗ ∈ `2
with max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1 such that

(1− δ)κa ≤
∞∑
k=1

akb
∗
k.

Proof. By the above characterization, there exists a sequence b ∈ `2 with max(‖b‖∞, t−1‖b‖2)
≤ 1 such that (1− δ)κa ≤

∑∞
k=1 akbk. We now claim that we can further take b to be non-

negative and monotone non-increasing as well. The first part is immediate, as replacing
negative terms by their absolute values can only increase the sum (since a is itself non-
negative). For the second part, we will invoke the Hardy–Littlewood rearrangement inequality
(Theorem 4), which states that for any two non-negative functions f, g vanishing at infinity,
the integral

∫
R fg is maximized when f and g are non-increasing. We now apply this

inequality to a, b, letting a∗, b∗ be the non-increasing rearrangements of a, b (in particular,
we have a = a∗) and introducing the functions fa, fb:

fa =
∞∑
j=1

aj1(j−1,j], fb =
∞∑
j=1

bj1(j−1,j]

which satisfy the hypotheses of Theorem 4. Thus, we get
∫
R fafb ≤

∫
R f
∗
af
∗
b ; as it is easily

seen that f∗a = fa∗ and f∗b = fb∗ , this yields

∞∑
k=1

akbk =
∫
R
fafb ≤

∫
R
f∗af

∗
b =

∞∑
k=1

a∗kb
∗
k =

∞∑
k=1

akb
∗
k.

Moreover, it is immediate to check that max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. J

The next step is to relate the inner product
∑∞
k=1 akb

∗
k to the Q-norm of a:

I Claim 20. Fix t > 0 such that t2 ∈ N, and let b∗ ∈ `2 be any non-increasing, non-negative
sequence with max(‖b∗‖∞, t−1‖b∗‖2) ≤ 1. Then

∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Proof. We proceed constructively, by exhibiting a partition of N into 2t2 sets A1, . . . , A2t2

satisfying
∑∞
k=1 akb

∗
k ≤

∑2t2
j=1

(∑
i∈Aj b

∗
i

2
)1/2

. This will prove the claim, by definition of
‖a‖Q(2t2) as the supremum over all such partitions.

Specifically, we inductively choose n0, n1, . . . , nT ∈ {0, . . . ,∞} as follows, where T
def= t2

c

for some c > 0 to be chosen later (satisfying T ∈ N). If 0 = n0 < n1 < · · · < nm are already
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set, then

nm+1
def= 1 + sup

{
` ≥ nm :

∑̀
i=nm+1

b∗i
2 ≤ c

}
.

From ‖b∗‖2 ≤ t, it follows that nT =∞. Let m∗ be the first index such that nm∗+1 > nm∗+1.
Note that this implies (by monotonicity of b∗) that b∗i

2 > c for all i ≤ nm∗ , and b∗i
2 ≤ c for

all i ≥ nm∗ + 1. We can write

∞∑
i=1

aib
∗
i =

T∑
m=1

nm∑
i=nm−1+1

aib
∗
i =

nm∗∑
i=1

aib
∗
i +

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i

Since ‖b∗‖∞ ≤ 1 and nm−1 + 1 = nm for all m ≤ m∗, the first term can be bounded as

nm∗∑
i=1

aib
∗
i ≤

nm∗∑
i=1

√
a2
i =

m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

.

Turning to the second term, we recall that b∗i
2 ≤ c for all i ≥ nm∗ + 1, so that∑nm

i=nm−1+1 b
∗
i

2 ≤ 2c for all m ≥ m∗ + 1. This allows us to bound the second term as

T∑
m=m∗+1

nm∑
i=nm−1+1

aib
∗
i ≤

T∑
m=m∗+1

 nm∑
i=nm−1+1

b∗i
2

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

Therefore, by combining the two we get that

(1− δ)κa(t) ≤
m∗∑
m=1

 nm∑
i=nm−1+1

a2
i

1/2

+
√

2c
T∑

m=m∗+1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)
T∑

m=1

 nm∑
i=nm−1+1

a2
i

1/2

≤ max(1,
√

2c)‖a‖Q(T ) = ‖a‖Q(2t2)

the last equality by choosing c def= 1
2 . J

We now fix an arbitrary δ > 0, and let b∗ be as promised by Claim 19. As this sequence
satisfies the assumptions of Claim 20, putting the two results together leads to

(1− δ)κa(t) ≤
∞∑
k=1

akb
∗
k ≤ ‖a‖Q(2t2).

Since this holds for all δ > 0, taking the limit as δ ↘ 0 gives the (upper bound of the)
lemma. J

We observe that, with similar techniques, one can also establish the following generalization
of Proposition 16:
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I Lemma 21 (Generalization of Proposition 16). For any a ∈ `2, t, and α ∈ [1,∞) such that
t2, αt2 ∈ N, we have

‖a‖Q(t2) ≤ κa(t) ≤
√

1 + α−1‖a‖Q(αt2). (8)

Proof of Lemma 21 (Sketch). We again follow the proof of [6, Lemma 2.2], up to the
inductive definition of n1, . . . , nj , which we change as

nm+1 = 1 + sup
{
` ≥ nm :

∑̀
i=nm+1

b2i ≤
1
α

}
.

Since ‖b‖∞ ≤ 1, we have
∑nm+1
i=nm+1 b

2
i ≤ 1 + 1

α . From ‖b‖2 ≤ t, it follows that nαt2 = ∞.
Therefore, for any δ > 0,

(1− δ)κa(t) ≤
∞∑
i=1

aibi ≤
T∑

m=1

 nm∑
i=nm−1+1

b2i

1/2 nm∑
i=nm−1+1

a2
i

1/2

≤
√

1 + 1
α
‖a‖Q(αt2).

Since this holds for all δ > 0, taking the limit gives the (upper bound of the) lemma. J

We note that further inequalities relating κa to other functionals of a were obtained
in [33].

6.2 Concentration Inequalities for Weighted Rademacher Sums
The connection between the K-functional and tail bounds on weighted sums of Rademacher
random variables was first made by Montgomery-Smith [38], to which the following result is
due (we here state a version with slightly improved constants):

I Theorem 22. Let (Xi)i∈N be a sequence of independent Rademacher random variables,
i.e. uniform on {−1, 1}. Then, for any a ∈ `2 and t > 0,

Pr
[ ∞∑
i=1

aiXi ≥ κa(t)
]
≤ e− t

2
2 . (9)

and, for any fixed c > 0 and all t ≥ 1,

Pr
[ ∞∑
i=1

aiXi ≥
1

1 + c
κa(t)

]
≥ e−

(
2
c ln

√
6(1+c)
c

)
(t2+c)

. (10)

In particular,

Pr
[ ∞∑
i=1

aiXi ≥
1
2κa(t)

]
≥ e−(ln 24)(t2+1) ≥ e−(2 ln 24)t2 .

One can intepret the above theorem as stating that the (inverse of the) K-functional κa is
the “right” parameter to consider in these tail bounds; while standard Chernoff or Hoeffding
bounds will depend instead on the quantity ‖a‖2. Before giving the proof of this theorem,
we remark that similar statements or improvements can be found in [33] and [6]; below, we
closely follow the argument of the latter.

Proof of Theorem 22. The upper bound can be found in e.g. [38], or [6, Theorem 2.2]. For
the lower bound, we mimic the proof due to Astashkin, improving the parameters of some of
the lemmas it relies on.
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I Lemma 23 (Small improvement of (2.14) in [6, Lemma 2.3]). If a = (ak)k≥1 ∈ `2, then, for
any λ ∈ (0, 1),

Pr

 ∣∣∣∣∣
∞∑
k=1

akXk

∣∣∣∣∣
2

≥ λ
∞∑
k=1

a2
k

 ≥ 1
3(1− λ)2. (11)

Proof of Lemma 23. The proof is exactly the same, but when invoking (1.10) for p = 4 we
use the actual tight version proven there for p = 2m (instead of the more general version
that also applies to odd values of p): since m = 2, we get (2m)!

2mm! = 3, and E[f ]2 ≥ 1
3E
[
f2] in

the proof (instead of (p2 + 1)−
p
2 = 1

9 ). J

Using the lemma above along with Lemma 18 in the proof of [6, Theorem 2.2], we can
strenghten it as follows: letting T def= t2

c , for arbitrary δ > 0 we fix a partition A1, . . . , AT of

N such that ‖a‖Q(T ) ≤ (1 + δ)
∑T
j=1

(∑
k∈Aj a

2
k

)1/2
,

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1√

1 + c
‖a‖Q(T )

]
(by (7))

≥ Pr

 T∑
j=1

∑
k∈Aj

akXk >
1 + δ√
1 + c

T∑
j=1

∑
k∈Aj

a2
k

1/2


≥
T∏
j=1

Pr

 ∑
k∈Aj

akXk >
1 + δ√
1 + c

∑
k∈Aj

a2
k

1/2


=
T∏
j=1

1
2 Pr


∣∣∣∣∣∣
∑
k∈Aj

akXk

∣∣∣∣∣∣
2

>

(
1 + δ√
1 + c

)2
∑
k∈Aj

a2
k




(symmetry)

≥
T∏
j=1

1
6

(
1− (1 + δ)2

1 + c

)2

. (Lemma 23)

By taking the limit as δ → 0+, we then obtain

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥

(
1
6

(
1− 1

1 + c

)2
)T

=
(

c√
6(1 + c)

) 2t2
c

= e
−
(

2
c ln

√
6(1+c)
c

)
t2
. (12)

This takes care of the case where t2

c is an integer. If this is not the case, we consider
s

def=
√
c
(⌊
t2

c

⌋
+ 1
)
, so that t2 ≤ s2 ≤ t2 + c. The monotonicity of κa then ensures that

Pr
[ ∞∑
k=1

akXk >
1

1 + c
κa(t)

]
≥ Pr

[ ∞∑
k=1

akXk >
1

1 + c
κa(s)

]

≥
(12)

e
−
(

2
c ln

√
6(1+c)
c

)
s2
≥ e
−
(

2
c ln

√
6(1+c)
c

)
(t2+c)

which concludes the proof. J

CCC 2017



28:24 Distribution Testing Lower Bounds via Reductions from Communication Complexity

6.3 Some Examples
To gain intuition about the behavior of κa, we now compute tight asymptotic expressions for it
in several instructive cases, specifically for some natural examples of probability distributions
in ∆([n]).

From the lower bound of Proposition 16 and the fact that κp ≤ ‖p‖1 for any p ∈ `1, it is
clear that as soon as t ≥

√
n, κp(t) = 1 for any p ∈ ∆([n]). It suffices then to consider the

case 0 ≤ t ≤
√
n.

The uniform distribution. We let p be the uniform distribution on [n]: pk = 1
n for all i ∈ [n].

By considering a partition of [n] into t2 sets of size n
t2 , the lower bound of Proposition 16 yields

κp(t) ≥ ‖p‖Q(t2) ≥
t√
n
. On the other hand, by definition κp(t) = infp′+p′′=p ‖p′‖1 + t‖p′′‖2 ≤

t‖p‖2 = t√
n
, and thus

κp(t) =
{

t√
n

if t ≤
√
n

1 if t ≥
√
n.

We remark that in this case, the upper bound of Holmstedt from Proposition 15 only
results in

κp(t) ≤
t2

n
+ t

√
n− t2
n2 = f

(
t√
n

)
where f : x ∈ [0, 1] 7→ x2 + x

√
1− x2. It is instructive to note this shows that this could not

possibly have been the right upper bound (and therefore that Theorem 15 cannot be tight in
general), as f is neither concave nor non-decreasing, and not even bounded by 1:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

x

f(x), κp(x
√
n)

Figure 2 Holmstedt’s upper bound (in blue) vs. true behavior of κp (in red).

From the above, we can now compare the behavior of κ−1
p (1 − 2ε) to the “2/3-norm

functional” introduced by Valiant and Valiant [53]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = (1− 2ε)

√
n, ‖p−max

−ε ‖2/3 = (1− ε)3/2√n+ o(1). (13)
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The Harmonic distribution. We now consider the case of the (truncated) Harmonic distri-
bution, letting p ∈ ∆([n]) be defined as pk = 1

kHn
for all i ∈ [n] (Hn being the n-th Harmonic

number). By considering a partition of [n] into t2 − 1 sets of size 1 and one of size n− t2,
the lower bound of Proposition 16 yields

Hnκp(t) ≥ ‖p‖Q(t2) ≥
t2−1∑
k=1

1
k

+

√√√√ n∑
k=t2

1
k2

while Holmstedt’s upper bound gives

Hnκp(t) ≤
t2−1∑
k=1

1
k

+ t

√√√√ n∑
k=t2

1
k2 .

For t = O(1), this implies that κp(t) = o(1); however, for t = ω(1) (but still less than
√
n),

an asymptotic development of both upper and lower bounds shows that

κp(t) = 2 ln t+O(1)
lnn .

Using this expression, we can again compare the behavior of κ−1
p (1− 2ε) to the 2/3-norm

functional of [53]: for ε ∈ (0, 1/2),

κ−1
p (1− 2ε) = Θ

(
n

1
2−ε
)
, ‖p−max

−ε ‖2/3 = Θ
(
n

1−ε
2

logn

)
= Θ

(
n

1−ε
2 −o(1)

)
. (14)

7 Identity Testing, revisited

For any x ∈ (0, 1/2) and sequence a ∈ `1, we let tx
def= κ−1

a (1 − 2x), where κa is the K-
functional of a as previously defined. Armed with the results and characterizations from the
previous section, we will first in Section 7.1 describe an elegant reduction from communication
complexity leading to a lower bound on instance-optimal identity testing parameterized by
the quantity tε. Guided by this lower bound, we then will in Section 7.2 consider this result
from the upper bound viewpoint, and in Theorem 30 establish that indeed this parameter
captures the sample complexity of this problem. Finally, Section 7.3 is concerned with
tightening our lower bound by using different arguments: specifically, showing that the bound
that appeared naturally as a consequence of our communication complexity approach can,
in hindsight, be established and slightly strenghtened with standard distribution testing
arguments.

7.1 The Communication Complexity Lower Bound
In this subsection we prove the following lower bound on identity testing, via reduction from
SMP communication complexity.

I Theorem 24. Let Ω be a finite domain, and let p = (p1, . . . , pn) ∈ ∆(Ω) be a distribution,
given as a parameter. Let ε ∈ (0, 1/5), and set tε

def= κ−1
p (1 − 2ε). Then, given sample

access to a distribution q = (q1, . . . , qn) ∈ ∆(Ω), testing p = q versus ‖p− q‖1 > ε requires
Ω(tε/ log(n)) samples from q.
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We will follow the argument outlined in Section 2.2: namely, applying the same overall
idea as in the reduction for uniformity testing, but with an error-correcting code specifically
designed for the distribution p instead of a standard Hamming one. To prove Theorem 24 we
thus first need to define and obtain codes with properties that are tailored for our reduction;
which we do next.

7.1.1 Balanced p-weighted codes
Recall that in our reductions so far, the first step is for Alice and Bob to apply a code to
their inputs; typically, we chose that code to be a balanced code with constant rate, and
linear distance with respect to the uniform distribution (i.e., with good Hamming distance).
In order to obtain better bounds on a case-by-case basis, it will be useful to consider a
generalization of these codes, under a different distribution:

I Definition 25 (p-distance). For any n ∈ N, given a probability distribution p ∈ ∆([n]) we
define the p-distance on {0, 1}n, denoted distp, as the weighted Hamming distance

distp(x, y) def=
n∑
i=1

p(i) · |xi − yi|

for x, y ∈ {0, 1}n. (In particular, this is a pseudometric on {0, 1}n.) The p-weight of
x ∈ {0, 1}n is given by weightp(x) def= distp(x, 0n).

A p-weighted code is a code whose distance guarantee is with respect to the p-distance.

I Definition 26 (p-weighted codes). Fix a probability distribution p ∈ ∆([n]). We say that
C : {0, 1}k → {0, 1}n is a (binary) p-weighted code with relative distance γ = γ(n) and rate
ρ = k/n if

distp(C(x), C(y)) > γ

for all distinct x, y ∈ {0, 1}k.

Recall that the “vanilla” reduction in Section 5 relies on balanced codes. We generalize
the balance property to the p-distance and allow the following relaxation.

I Definition 27 (p-weighted τ -balance). A p-weighted code C : {0, 1}k → {0, 1}n is τ -balanced
if there exists τ ∈ (0, 1) such that weightp(C(x)) ∈

( 1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k.

Now, for a distribution p, the volume of the p-ball in {0, 1}n is given by

VolFn2 ,distp(ε) def=
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ .
Next, we show that there exist nearly balanced p-weighted codes with constant relative
distance nearly optimal rate.

I Proposition 28 (Existence of nearly balanced p-weighted codes). Fix a probability dis-
tribution p ∈ ∆([n]), constants γ, τ ∈ (0, 1

3 ), and ε = max{γ, 1
2 − τ}. There exists a

p-weighted τ -balanced code C : {0, 1}k → {0, 1}n with relative distance γ such that k =
Ω(n− log VolFn2 ,distp(ε)).

In contrast, by the sphere packing bound, every p-weighted code C : {0, 1}k → {0, 1}n
with distance γ satisfies

2k︸︷︷︸
#codewords

≤ 2n

VolFn2 ,distp(γ/2) .

Hence, we have k ≤ n− log VolFn2 ,distp(γ/2).
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Proof of Theorem 28. Note that

VolFn2 ,distp(ε) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ ε

}∣∣ = 2n · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε

]
.

The probability that a randomly chosen code C : {0, 1}k → {0, 1}n does not have distance γ
is

Pr
C

[
∃x, y ∈ {0, 1}k such that distp(C(x), C(y)) ≤ γ

]
≤ 22k · Pr

w,w′∼{0,1}n
[ distp(w,w′) ≤ γ ]

≤ 22k · Pr
w∼{0,1}n

[
n∑
i=1

piwi ≤ ε

]

=
VolFn2 ,distp(ε)

2n−2k .

Hence, for sufficiently small k = Ω(n − log VolFn2 ,distp(ε)), the probability that a random
code is a p-weighted code with relative distance γ is at least 2/3; fix such k. Similarly, the
probability that a random code C : {0, 1}k → {0, 1}n is not τ -balanced (under the p-distance)
is

Pr
C

[
∃x ∈ {0, 1}k such that weightp(C(x)) /∈

(
1
2 − τ,

1
2 + τ

)]
≤ 2k · Pr

w∈{0,1}n

[ ∣∣∣∣weightp(w)− 1
2

∣∣∣∣ > τ

]
≤ 2k+1 · Pr

w∈{0,1}n

[
n∑
i=1

piwi < ε

]

≤
VolFn2 ,distp(ε)

2n−k−1 .

Thus, the probability that a random code is τ -balanced (under the p-distance) is at least 2/3,
and so, with probability at least 1

3 , a random code satisfies the proposition’s hypothesis. J

We now establish a connection between the rate of p-weighted codes and the K-functional
of p, as introduced in Section 6:

I Claim 29. Let p ∈ ∆([n]) be a probability distribution. Then, for any γ ∈ (0, 1
2 ) we have

n− log VolFn2 ,distp(γ) ≥ 1
2 ln 2κ

−1
p (1− 2γ)2

where κ−1
p (u) = inf { t ∈ (0,∞) : κa(t) ≥ u } for u ∈ [0,∞).

Proof. From the definition,

VolFn2 ,distp(γ) =
∣∣{ w ∈ Fn2 : weightp(w) ≤ γ

}∣∣ =

∣∣∣∣∣
{
w ∈ Fn2 :

n∑
i=1

piwi ≤ γ

}∣∣∣∣∣
= 2n Pr

Y∼{0,1}n

[
n∑
i=1

piYi ≤ γ

]
= 2n Pr

X∼{−1,1}n

[
n∑
i=1

piXi ≥ 1− 2γ
]

= 2n Pr
X∼{−1,1}n

[
n∑
i=1

piXi ≥ κp(uγ)
]
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where we set uγ
def= κ−1

p (1− 2γ). From Theorem 22, we then get VolFn2 ,distp(γ) ≤ 2ne−
u2
γ

2 ,

from which

n− log VolFn2 ,distp(γ) ≥ − log e−
u2
γ

2 = 1
2 ln 2u

2
γ

as claimed. J

7.1.2 The Reduction
Equipped with the nearly balanced p-weighted codes in Theorem 28, we are ready to prove
Theorem 24. Assume there exists an s-sample ε-tester for identity to p, with error probability
1/6, and assume, without loss of generality, that ε is a constant (independent of n).

Fix γ = ε and τ = (1− 2ε)/2. For a sufficiently large k ∈ N, let C : {0, 1}k → {0, 1}n be
a τ -balanced p-weighted code with relative distance γ, as guaranteed by Theorem 28; namely,
the code C satisfies the following conditions.
1. Balance: weightp(C(x)) ∈

( 1
2 − τ,

1
2 + τ

)
for all x ∈ {0, 1}k;

2. Distance: distp(C(x), C(y)) > γ for all distinct x, y ∈ {0, 1}k;
3. Rate: k = Ω(n− log VolFn2 ,distp(ε)).

We reduce from the problem of equality in the (private coin) SMP model. Given their
respective inputs x, y ∈ {0, 1}k× ∈ {0, 1}k from Eqk, Alice and Bob separately create inputs
(a, b) = (C(x), C(y)) ∈ {0, 1}n× ∈ {0, 1}n. Let A ⊆ [n] denote the set indicated by a, and
let B ⊆ [n] denote the set indicated by b̄. Alice and Bob then each send to the referee the
p-weight of their encoded input, weightp(a) = p(A) and weightp

(
b̄
)

= p(B) respectively,12 as
well as a sequence of 6cs samples independently drawn from the distribution p restricted to
the subsets A and B respectively, where c is the constant such that 1

cp(B)· ≤ p(A) ≤ c · p(B),
guaranteed by the balance property of C. Finally, the referee checks that p(A) + p(B) = 1
(and otherwise rejects) and generates a sequence of q samples by choosing independently, for
each of them, Alice’s element with probability p(A) and Bob’s with probability p(B), and
feeds these samples to the ε-tester for identity to p.

By Markov’s inequality, the above procedure indeed allows the referee to retrieve, with
probability at least 1− cs

6cs = 5
6 , at least s independent samples from the distribution

q
def= p(A) · p|A + p(B) · p|B ,

at the cost of O(s logn) bits of communication in total.
For correctness, note that if x = y, then A = B̄, which implies q = p. On the other

hand, if x 6= y, by the (p-weighted) distance of C we have distp(C(x), C(y)) > γ, and so
p(A ∩B) + p(A ∪B) > γ. Note that every i ∈ A ∩B satisfies qi = 2pi and every i ∈ A ∪B
is not supported in q. Therefore, we have ‖p− q‖1 > ε. The referee can therefore invoke the
identity testing algorithm to distinguish between p and q with probability 1−( 1

6 + 1
6 ) = 2

3 . This
implies that the number of samples q used by any such tester must satisfy s logn = Ω

(√
k
)
.

Finally, by Claim 29 we have

k = Ω
(
n− log VolFn2 ,distp(ε)

)
= Ω

(
κ−1
p (1− 2ε)2),

and therefore we obtain a lower bound of s = Ω(tε/ log(n)).

12A standard argument shows it suffices to specify p(A) and p(B) with precision roughly 1/n2, and so
sending the weights only costs O(logn) bits.
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7.2 The Upper Bound
Inspired by the results of the previous section, it is natural to wonder whether the dependence
on tε of the lower bound is the “right” one. Our next theorem shows that this is the case:
the parameter tε does, in fact, capture the sample complexity of the problem.

I Theorem 30. There exists an absolute constant c > 0 such that the following holds. Given
any fixed distribution p ∈ ∆([n]) and parameter ε ∈ (0, 1], and granted sample access to an
unknown distribution q ∈ ∆([n]), one can test p = q vs. ‖p− q‖1 > ε with O

(
max

(
tcε
ε2 ,

1
ε

))
samples from q. (Moreover, one can take c = 1

18).

7.2.1 High-level idea
As discussed in Section 2.4, the starting point of the proof is the connection between the
K-functional and the “Q-norm” obtained in Lemma 18: indeed, this result ensures that for
T = 2t2O(ε), there exists a partition of the domain into sets A1, . . . , AT such that

1−O(ε) ≤ ‖p‖Q(T ) =
T∑
j=1

√∑
i∈Aj

p2
i =

T∑
j=1
‖pAj‖2

where pAj is the restriction of the sequence p to the indices in Aj . But by the monotonicity
of `p norms, we know that

∑T
j=1 ‖pAj‖2 ≤

∑T
j=1 ‖pAj‖1 =

∑T
j=1

∑
i∈Aj pi = ‖p‖1 = 1.

Therefore, what we obtain is in fact that

0 ≤
T∑
j=1

(‖pAj‖1 − ‖pAj‖2︸ ︷︷ ︸
≥0

) ≤ O(ε).

Now, if the right-hand side were exactly 0, then this would imply ‖pAj‖1 = ‖pAj‖2 for all j,
and thus that p has (at most) one non-zero element in each Aj . Therefore, testing identity
to p would boil down to testing identity on a distribution with support size T , which can be
done with O(

√
T/ε2) samples.

This is not actually the case, of course: the right-hand-side is only small and not exactly
zero. Yet, one can show that a robust version of the above holds, making this intuition precise:
in Lemma 31, we show that on average, most of the probability mass of p is concentrated on
a single point from each Aj . This sparsity implies that testing identity to p on this set of T
points is indeed enough – leading to the theorem.

7.2.2 Proof of Theorem 30
Let p ∈ ∆([n]) be a fixed, known distribution, assumed monotone non-increasing without
loss of generality: p1 ≥ p2 ≥ · · · ≥ pn. Given ε ∈ (0, 1/2), we let tε be as above, namely such
that

κp(tε) ≥ 1− 2ε.

From this, it follows by Lemma 18 that

‖p‖Q(T ) ≥ 1− 2ε, (15)

where we set T def= 2t2ε. Choose A1, . . . , AT to be a partition of [n] achieving the maximum
(since we are in the finite, discrete case) defining ‖p‖Q(T ); and let p̃ be the subdistribution
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on T elements defined as follows. For each j ∈ [T ], choose ij
def= arg maxi∈Aj pi, and set

p̃(j) def= p(ij).

I Lemma 31 (Sparsity Lemma). There exists an absolute constant κ > 0 such that p̃([T ]) =∑T
j=1 p(ij) ≥ 1− κε. (Moreover, one can take κ def= 2

3−
√

7 ' 5.65.)

Proof. Fix any j ∈ [T ], and for convenience let A def= Aj . Write a∗ for the maximum
element for p in A, so that p(ij) = maxa∈A p(a) = p(a∗). We have by monotonicity
p(A) ≥

√∑
a∈A p(a)2, and moreover, letting α def= p(A)− p(a∗) = p(A \ {a∗}),

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a 6=a∗

p(a)2 ≥ p(a∗) + α−
√
p(a∗)2 + α2.

We let s > 1 be a (non-integer) parameter to be chosen later. Suppose first that α ≤ s
s+1p(A),

or equivalenty α ≤ sp(a∗). In that case, we have

p(A)−
√∑
a∈A

p(a)2 ≥ p(a∗) + α− p(a∗)

√
1 +

(
α

p(a∗)

)2

≥ p(a∗) + α− p(a∗)
(

1 +
√
s2 + 1− 1

s

α

p(a∗)

)

=
(

1−
√
s2 + 1− 1

s

)
α

def= L1(s)α

where we relied on the inequality
√

1 + x2 ≤ 1 +
√
s2+1−1
s x for x ∈ [0, s]. However, if

α > sp(a∗), then we have

p(A)−
√∑
a∈A

p(a)2 = p(a∗) + α−
√
p(a∗)2 +

∑
a 6=a∗

p(a)2 ≥ α−
√∑
a6=a∗

p(a)2

≥ α−

√
bsc
(α
s

)2
+ 1 ·

(
α− bsc

s
α

)2

=

1−

√
bsc
s2 +

(
1− bsc

s

)2
α

def= L2(s)α.

using the fact that p(a∗) is the maximum probability value of any element, so that the total
α has to be spread among at least bsc+ 1 elements (recall that s will be chosen not to be
an integer). Optimizing these two bounds leads to the choice of s def= 4+

√
7

3 /∈ N, for which
L1(s) = L2(s) = 3−

√
7 ' 0.35.

Putting it together, we obtain, summing over all j ∈ [T ], that

1− ‖p‖Q(T ) =
T∑
j=1

p(Aj)−
T∑
j=1

√∑
i∈Aj

p(i)2 =
T∑
j=1

p(Aj)−√∑
i∈Aj

p(i)2


≥ (3−

√
7)

T∑
j=1

(p(Aj)− p(ij))

= (3−
√

7) (1− p̃([T ]))

which implies p̃([T ]) ≥ 1
3−
√

7‖p‖Q(T ) −
1

3−
√

7 + 1 ≥ 1− 2
3−
√

7ε by Eq. (15). J
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I Lemma 32. Fix p, ε as above, let S def= {i1, . . . , iT } be the corresponding set of T elements,
and take κ as in Lemma 31. For any q ∈ ∆([n]), if (i)

∑T
j=1 q(ij) ≥ 1 − (κ + 1

3 )ε and (ii)∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣ ≤ 1
3ε, then ‖p− q‖1 ≤ (3κ+ 1)ε.

Proof. Unrolling the definition, and as p(S̄) ≤ κε by Lemma 31,

‖p− q‖1 =
n∑
i=1
|p(i)− q(i)| =

T∑
j=1
|p(ij)− q(ij)|+

∑
i/∈S

|p(i)− q(i)|

≤
T∑
j=1
|p(ij)− q(ij)|+ p(S̄) + q(S̄)

≤
T∑
j=1
|p(ij)− q(ij)|+ κε+ (κ+ 1

3 )ε =
T∑
j=1

∣∣∣∣p(S) p̃(j)
p(S) − q(S) q̃(j)

q(S)

∣∣∣∣+ (2κ+ 1
3 )ε

≤ p(S)
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+
T∑
j=1

q̃(j)
q(S) |p(S)− q(S)|+ (2κ+ 1

3 )ε

= p(S) ·
T∑
j=1

∣∣∣∣ p̃(j)p(S) −
q̃(j)
q(S)

∣∣∣∣+ |p(S)− q(S)|+ (2κ+ 1
3 )ε

≤ 1
3ε+ (κ+ 1

3 )ε+ (2κ+ 1
3 )ε = (3κ+ 1)ε

concluding the proof of the lemma. J

Let κ > 0 be the constant from Lemma 31. We let ε′ def= ε
3κ+1 , and T

def= 2t2ε′ ,
{i1, . . . , iT } ⊆ [n] the corresponding value and elements (i.e., T and the ij ’s are as in
the foregoing discussion (chosen with regard to ε′ and the known distribution p)). For
convenience, denote by q̃ the (unknown) subdistribution on [T ] defined by q̃(j) def= q(ij) for
j ∈ [T ].

We first verify that q̃([T ]) ≥ 1− κε′, with O(1/ε′) samples (specifically, we distinguish,
with probability at least 9/10, between q̃([T ]) ≥ 1−κε′ and q̃([T ]) ≤ 1− (κ+ 1

3 )ε′; and reject
in the latter case). Once this is done, we apply one of the known identity testing algorithms
to p̄, q̄ ∈ ∆([T ]), renormalized versions of p̃, q̃:

p̄ = p̃

p̃([T ]) , q̄ = q̃

q̃([T ])

using rejection sampling (note that we have the explicit description of p̄; and, since q̃([T ]) ≥
1 − (κ + 1

3 )ε′ (conditioning on the first test meeting its guarantee), we can obtain m

independent samples from q̄ with an expected O(m) number of samples from q). This is done
with parameter ε′ and failure probability 1/10; and costs O

(√
T

ε′2

)
= O

(
tε′
ε′2

)
samples from q.

Turning to the correctness: we condition on both tests meeting their guarantees, which
by a union bound holds with probability at least 4/5.

If p = q, then q(S) = p(S) ≥ 1 − κε′, and q̄ = p̄: neither the first nor the second test
reject, and the overall algorithm accepts.
If the algorithm accepts, then q(S) ≥ 1−(κ+ 1

3 )ε′ (by the first test) and
∑T
j=1

∣∣∣ p̃(j)p(S) −
q̃(j)
p(S)

∣∣∣ ≤
ε′ (by the second): Lemma 32 then guarantees that ‖p− q‖1 ≤ 3κ+ 1ε′ = ε.

Observing that for κ = 2
3−
√

7 (as suggested by Lemma 31) we have 3κ+ 1 ≤ 18 establishes
the last part of the theorem.
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7.3 Tightening the Lower Bound
As a last step, one may want to strenghten the lower bound obtained by the communication
complexity reduction of Theorem 24. We here describe how this can be achieved using more
standard arguments from distribution testing. However, we stress that these arguments in
some sense are applicable “‘after the fact,” that is after Section 7.1 revealed the connection
to the K-functional, and the bound we should aim for. Specifically, we prove the following:

I Theorem 33. For any p ∈ ∆([n]), and any ε ∈ (0, 1/2) any algorithm testing identity to p
must have sample complexity Ω

(
tε
ε

)
.

Proof. Fix p ∈ ∆([n]) and ε ∈ (0, 1/2) as above, and consider the corresponding value tε;
we assume that tε ≥ 2, as otherwise there is nothing to prove.13 Without loss of generality
– as we could always consider a sufficiently small approximation, and take the limit in the
end, we further assume the infimum defining κp is attained: let h, ` ∈ [0, 1]n be such that
p = h+ ` and κp(tε) = ‖h‖1 + tε‖`‖2 = 1− 2ε.

Since ‖`‖1 = 1−‖h‖1, from the definition of h, `, we have that 1− 2ε = 1−‖`‖1 + tε‖`‖2,
from which

0 < ‖`‖2 =
‖`‖1 − 2ε

tε
≤ 1
tε

(16)

(note that the right inequality is strict because ε > 0: since if ‖`‖2 = 0, then ‖`‖1 = 0 and
h = p; but then κtε = ‖p‖1 = 1.) In particular, this implies ‖`‖1 − 2ε > 0.

With this in hand, we will apply the following theorem, due to Valiant and Valiant:

I Theorem 34 ([53, Theorem 4]). Given a distribution p ∈ ∆([n]), and associated values
(εi)i∈[n] such that εi ∈ [0, pi] for each i, define the distribution over distributions Q by the
process: independently for each domain element i, set uniformly at random qi = pi ± εi,
and then normalize q to be a distribution. Then there exists a constant c > 0 such that is
takes at least c

(∑n
i=1 ε

4
i /p

2
i

)−1/2 samples to distinguish p from Q with success probability
2/3. Further, with probability at least 1/2 the `1 distance between p and a uniformly random
distribution from Q is at least min

(∑n
i=1 εi −maxi εi, 1

2
∑n
i=1 εi

)
.

We want to invoke the above theorem with ` being, roughly speaking, the “random
perturbation” to p. Indeed, since ` has small `2 norm of order O(1/tε) by (16) (which gives
a good lower bound) and has `1 sum Ω(ε) (which gives distance), this seems to be a natural
choice.

In view of this, set α def= 2ε
‖`‖1
∈ (0, 1) and, for i ∈ [n], εi

def= α`i ≤ `i ∈ [0, pi]. Theorem 33
will then be a direct consequence of the next two claims:

I Claim 35 (Distance). We have min
(∑n

i=1 εi −maxi εi, 1
2
∑n
i=1 εi

)
≥ ε.

Proof. Since by our choice of α it is immediate that
∑n
i=1 εi = 2ε

‖`‖1

∑n
i=1 `i = 2ε, it suffices

to show that maxi εi ≤ ε, or equivalently that maxi `i ≤ 1
2‖`‖1. But this follows from the

fact that ‖`‖∞ ≤ ‖`‖2 ≤
‖`‖1
tε

, and our assumption that tε ≥ 2. J

It then remains to analyze the lower bound obtained through the application of The-
orem 34:

I Claim 36 (Lower bound). With the εi’s defined as before,
(∑n

i=1 ε
4
i /p

2
i

)−1/2 ≥ 2tε
ε .

13 Indeed, an immediate lower bound of Ω(1/ε) on this problem holds.
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Proof. Unrolling the definition of the εi’s,

n∑
i=1

ε4
i

p2
i

= α4
n∑
i=1

`4i
p2
i

= α4
n∑
i=1

`2i
p2
i

`2i ≤ α4
n∑
i=1

`2i = 24ε4

‖`‖41
‖`‖22 =

(
4ε2

‖`‖21

‖`‖1 − 2ε
tε

)2

where the last equality is (16). This yields

(
n∑
i=1

ε4
i

p2
i

)−1/2

≥ tε
4ε2 ·

‖`‖21
‖`‖1 − 2ε = tε

2ε ·

(
‖`‖1
2ε

)2

‖`‖1
2ε − 1

≥ 2tε
ε

where the last inequality comes from f : x > 1 7→ x2

x−1 achieving its minimum, 4, at x = 2. J

Combining the two claims with Theorem 34 implies, by a standard argument, the lower
bound of Theorem 33. J

I Remark. A straightforward modification of the proof of Theorem 33 allows one to prove a
somewhat more general statement, namely a lower bound of Ω

(
γtγ/ε

2) for any γ ∈ [ε, 1/2]
such that tγ ≥ 2. In particular, this implies an incomparable bound of Ω

(
t1/4/ε

2) as long as
p does not put almost all its probability weight on O(1) elements.

On the optimality of our bound. We conclude this section by briefly discussing the
optimality of our bound, and specifically whether one could hope to strenghten Theorem 33
to obtain an Ω

(
tε/ε

2) lower bound. Unfortunately, it is easy to come up with simple (albeit
contrived) counterexamples: e.g., fix ε ∈ (0, 1/3), and let p ∈ ∆([n]) be the distribution that
puts mass 1− 3ε on the first element and uniformly spreads the rest among the remaining
n− 1 elements. A straightforward calculation shows that, for this distribution p = p(ε), one
has κ−1

p (1− 2ε) = Θ(
√
n); and it is not hard to check that one can indeed test identity to p

with O(
√
n/ε) samples only,14 and so the Ω(tε/ε) lower bound is tight in this case.

Although this specific instance is somewhat unnatural, as it fails to be a counterexample
for any distance parameter ε′ � ε, it does rule out an improvement of Theorem 33 for the
full range of parameters. On the other hand, it is also immediate to see that the upper
bound O

(
tε/ε

2) cannot be improved in general, as demonstrated by choosing p to be the
uniform distribution (yet, in this case, the extension provided by the above remark does
provide the optimal bound).

8 Lower Bounds on Other Properties

In this section we demonstrate how our methodology can be used to easily obtain lower bounds
on the sample complexity of various properties of distributions. To this end, we provide
sketches of proofs of lower bounds for monotonicity testing, k-modality, and the “symmetric
sparse support” property (that we define below). We remark that using minor variations
on the reductions presented in Section 5 and Section 7, it is also straightforward to obtain
lower bounds for properties of distributions such as being binomially distributed, Poisson
binomially distributed, and having a log-concave probability mass function. Throughout this
section, we fix ε to be a small constant and refer to testing with respect to proximity Θ(ε).

14 Indeed, any distribution q such that ‖q − p‖1 > ε must either be such that |p(1)− q(1)| = Ω(ε) or∣∣p|[n]\{1} − q|[n]\{1}
∣∣ = Ω(1). The first case only takes O(1/ε) samples, while the second can be achieved

by rejection sampling with O(1/ε) ·O(
√
n) samples.
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Monotonicity on the integer line and the Boolean hypercube. We start with the problem
of testing monotonicity on the integer line, that is, testing whether a distribution p ∈ ∆([n])
has a monotone probability mass function. Consider the “vanilla” reduction, presented in
Section 5. Note that for yes-instances, we obtain the uniform distribution, which is monotone.
For no-instances, however, we obtain a distribution p that has mass 1/n on a (1− ε)-fraction
of the domain, is unsupported on a (ε/2)-fraction of the domain, and has mass 2/n on
the remaining (ε/2)-fraction. Typically, p is Ω(1)-far from being monotone; however, it
could be the case that the first (respectively, last) εn/2 elements are of 0 mass, and the last
(respectively, first) εn/2 elements are of mass 2/n, in which case p is perfectly monotone.
To remedy this, all we have to do is let the referee emulate a distribution p′ ∈ ∆([3n]) such

that p′i =
{

1
3pi−n i ∈ {n+ 1, . . . , 2n}
1

3n otherwise
. It is immediate to see that the probability mass

functions of p′ is (ε/3)-far from monotone.
The idea above can be extended to monotonicity over the hypercube as follows. We start

with the uniformity reduction, this time over the domain {0, 1}n. As before, yes-instances
will be mapped to the uniform distribution over the hypercube, which is monotone, and
no-instances will be mapped to a distribution that has mass 1/2n on a (1− ε)-fraction of
the domain, is unsupported on a (ε/2)-fraction of the domain, and has mass 1/2n−1 on
the remaining (ε/2)-fraction – but could potentially be monotonously strictly increasing (or
decreasing). This time, however, the “boundary“ is larger than the “edges” of the integer line,
and we cannot afford to pad it with elements of weight 1/2n. Instead, the referee, who receives
for the players samples drawn from a distribution p ∈ ∆({0, 1}n), emulates a distribution
p′′ ∈ ∆

(
{0, 1}n+1) over a larger hypercube whose additional coordinate determines between

a negated or regular copy of p; that is, p′(z) =
{
p(z) z1 = 0

1
2n−1 − p(z) z1 = 1

(where the referee

chooses z1 ∈ {0, 1} independently and uniformly at random for each new sample). Hence,
even if p is monotonously increasing (or decreasing), the emulated distribution p′′ is Ω(ε)-far
from monotone. By the above, we obtain Ω̃(

√
n) and Ω̃(2n/2) lower bounds on the sample

complexity of testing monotonicity on the line and on the hypercube, respectively.

k-modality. Recall that a distribution p ∈ ∆([n]) is said to be k-modal if its probability mass
function has at most k “peaks” and “valleys.” Such distributions are natural generalizations
of monotone (for k = 0) and unimodal (for k = 1) distributions. Fix a sublinear k, and
consider the uniformity reduction presented in Section 5, with the additional step of letting
the prover apply a random permutation to the domain [n] (similarly to the reduction shown
in Section 5.1). Note that yes-instances are still mapped to the uniform distribution (which
is clearly k-modal), and no-instances are mapped to distributions with mass 1/n, 2/n, and 0
on a (1− ε), (ε/2), and (ε/2) (respectively) fractions of the domain. Intuitively, applying a
random permutation of the domain to such a distribution “spreads” the elements with masses
0 and 2/n nearly uniformly, causing many level changes (i.e., high modality); indeed, it is
straightforward to verify that with high probability over the choice of a random permutation
of the domain, such a distribution will indeed be Ω(ε)-far from k-modal. This yields an
Ω̃(
√
n) lower bound on the sample complexity of testing k-modality, nearly matching the

best known lower bound of Ω(max(
√
n, k/ log k)) following from [19], for k/ log(k) = O(

√
n).

Symmetric sparse support. Consider the property of distributions p ∈ ∆([n]) such that
when projected to its support, p is mirrored around the middle of the domain. That is, p is
said to have a symmetric sparse support if there exists S = {i0 < i2 < · · · < i2`} ⊆ [n] with
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i` = n
2 such that: (1) p(i) = 0 for all i ∈ [n] \ S, and (2) p(i`+1−j) = p(i`+j) for all 0 ≤ j ≤ `.

We sketch a proof of an Ω̃(
√
n) lower bound on the sample complexity of testing this property.

Once again, we shall begin with the uniformity reduction presented in Section 5, obtaining
samples from a distribution p ∈ ∆([n/2]). Then the referee emulates samples from the
distribution p′ ∈ ∆([n]) that is distributed as p on its left half, and uniformly distributed on

its right half; that is, p′i =
{
pi/2 i ∈ [n]
1/n otherwise

. Note that yes-instances are mapped to the

uniform distribution, which has symmetric sparse support, and no-instances are mapped to
distributions in which the right half is uniformly distributed and the left half contains εn/2
elements of mass 2/n, and hence it is Ω(ε)-far from having symmetric sparse support.

Other properties. As aforementioned, similar techniques as in the reductions above (as well
as in the identity testing reduction of Section 7, invoked on a specific p, e.g., the Bin(n, 1/2)
distribution) can be applied to obtain nearly-tight lower bounds of Ω̃(

√
n) (respectively

Ω̃
(
n1/4)) for the properties of being log-concave and monotone hazard rate (respectively

Binomially and Poisson Binomially distributed). See e.g., [20] for the formal definitions of
these properties.

9 Testing with Conditional Samples

In this section we show that reductions from communication complexity protocols can be used
to obtain lower bounds on the sample complexity of distribution testers that are augmented
with conditional samples. These testing algorithms, first introduced in [22, 21], aim to
address scenarios that arise both in theory and practice yet are not fully captured by the
standard distribution testing model.

In more detail, algorithms for testing with conditional samples are distribution testers
that, in addition to sample access to a distribution p ∈ ∆(Ω), can ask for samples from
p conditioned on the sample belonging to a subset S ⊆ Ω. It turns out that testers with
conditional samples are much stronger than standard distribution testers, leading in many
cases to exponential savings (or even more) in the sample complexity. In fact, these testing
algorithms can often maintain their power even if they only have the ability to query subsets
of a particular structure.

One of the most commonly studied restricted conditional samples models is the PAIRCOND
model [21]. In this model, the testers can either obtain standard samples from p, or specify
two distinct indices i, j ∈ Ω and get a sample from p conditioned on membership in S = {i, j}.
As shown in [21, 18], even under this restriction one can obtain constant- or poly log(n)-query
testers for many properties, such as uniformity, identity, closeness, and monotonicity (all of
which require Ω(

√
n) or more samples in the standard sampling setting). This, along with

the inherent difficulty of proving hardness results against adaptive algorithms, makes proving
lower bounds in this setting a challenging task; and indeed the PAIRCOND lower bounds
established in the aforementioned works are quite complex and intricate.

We will prove, via a reduction from communication complexity, a strong lower bound on
the sample complexity of any PAIRCOND algorithm for testing junta distributions, a class of
distributions introduced in [5] (see definition below).

Since PAIRCOND algorithms are stronger than standard distribution testers (in particular,
they can make adaptive queries), we shall reduce from the general randomized communication
complexity model (rather than from the SMP model, as we did for standard distribution
testers). In this model, Alice and Bob are given inputs x and y as well as a common random

CCC 2017



28:36 Distribution Testing Lower Bounds via Reductions from Communication Complexity

string, and the parties aim to compute a function f(x, y) using the minimum amount of
communication.

We say that a distribution p ∈ ∆({0, 1}n) is a k-junta distribution (with respect to the
uniform distribution) if its probability mass function is only influenced by k of its variables.
We outline below a proof of the following lower bound.

I Theorem 37. Every PAIRCOND algorithm for testing k-junta distributions must make
Ω(k) queries.

Sketch of Proof. We closely follow the k-linearity lower bound in [15] and reduce from
the unique (k/2)-disjointness problem. In this promise problem, Alice and Bob get inputs
x ∈ {0, 1}n and y ∈ {0, 1}n (respectively) of Hamming weight k/2 each, and the parties are
required to decide whether

∑n
i=1 xiyi = 1 or

∑n
i=1 xiyi = 0. It is well-known that in every

randomized protocol for this problem the parties must communicate Ω(k) bits.
Assume there exists a PAIRCOND algorithm for testing k-junta distributions, with query

complexity q. The reduction is as follows. Alice sets A = { i ∈ [n] : xi = 1 } and considers
the character function χA(z) = ⊕i∈Azi, and similarly Bob sets B = { i ∈ [n] : yi = 1 }
and considers the character function χB(z) = ⊕i∈Bzi. Both players then invoke the tester
for k-junta distributions, feeding it samples emulated from the distribution p ∈ ∆({0, 1}n)
given by p(z) = χA4B(z)/2n−1 (where χA4B(z) = ⊕i∈A4Bzi); note that since the non-zero
character functions are balanced, p is indeed a probability distribution. Recall that each
query of a PAIRCOND algorithm is performed by either setting S = {0, 1}n, or choosing
z, z′ ∈ {0, 1}n and setting S = {z, z′}, then sampling from p|S . The players emulate each
PAIRCOND query by the following rejection sampling procedure:

Sampling query (S = {0, 1}n): Alice and Bob proceed as follows.
1. Choose z ∈ S uniformly at random, using shared randomness;
2. Exchange χA(z) and χB(z) between the players, and compute χA4B(z) = χA(z)·χB(z);
3. If χA4B(z) = 1, feed the tester with the sample z. Otherwise repeat the process.
Note that since χA4B(z) is a balanced function, then on expectation each PAIRCOND
query to p can be emulated by exchanging O(1) bits.

Pairwise query (S = {z, z′} for some z, z′ ∈ {0, 1}n): exchange χA(z), χA(z′) and
χB(z), χB(z′) between the players, compute χA4B(z) and χA4B(z′), and use shared
randomness to sample from S with the corresponding (now fully known) conditional
probabilities.

The above gives a protocol with expected communication complexity O(q), correct with prob-
ability 5/6. To convert it to a honest-to-goodness protocol with communication complexity
O(q) and success probability 2/3, it suffices for Alice and Bob to run the above protocol and
stop (and output reject) as soon as they go over Ck bits of communication, for some absolute
constant C > 0. An application of Markov’s inequality guarantees that this happens with
probability at most 1/6, yielding the claimed bound on the error probability of the protocol.

Finally, note that on the one hand, if (x, y) is such that
∑n
i=1 xiyi = 0, then χA4B(z)

is a degree-k character, and in particular, a k-junta. Hence, by definition p is a k-junta
distribution. On the other hand, if (x, y) is such that

∑n
i=1 xiyi = 1, then χA4B(z) is a

degree-(k − 2) character, which in particular disagrees with every k-junta on Ω(1)-fraction
of the inputs. Therefore, since p is uniform over its support, we can deduce that that p is
Ω(1)-far in `1-distance from any k-junta distribution. J
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