
A Note on Amortized Branching Program
Complexity∗

Aaron Potechin

Institute for Advanced Study, Princeton, NJ, USA
aaronpotechin@gmail.com

Abstract
In this paper, we show that while almost all functions require exponential size branching programs
to compute, for all functions f there is a branching program computing a doubly exponential
number of copies of f which has linear size per copy of f . This result disproves a conjecture
about non-uniform catalytic computation, rules out a certain type of bottleneck argument for
proving non-monotone space lower bounds, and can be thought of as a constructive analogue of
Razborov’s result that submodular complexity measures have maximum value O(n).
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1 Introduction

In amortized analysis, which appears throughout complexity theory and algorithm design,
rather than considering the worst case cost of an operation, we consider the average cost
of the operation when it is repeated many times. This is very useful in the situation where
operations may have a high cost but if so, this reduces the cost of future operations. In this
case, the worst-case rarely occurs and the average cost of the operation is much lower. A
natural question we can ask is as follows. Does amortization only help for specific operations,
or can any operation/function be amortized?

For boolean circuits, which are closely related to time complexity, Uhlig [12],[13] showed
that for any function f , as long as m is 2o( n

log n ) there is a circuit of size O( 2n

n ) computing f
on m different inputs simultaneously. As shown by Shannon [11] and Lupanov [6], almost all
functions require circuits of size Θ( 2n

n ) to compute, which means that for almost all functions
f , the cost to compute many inputs of f is essentially the same as the cost to compute one
input of f !

In this paper, we consider a similar question for branching programs, which are closely
related to space complexity. In particular, what is the minimum size of a branching program
which computes many copies of a function f on the same input? This question is highly
non-trivial because branching programs are not allowed to copy bits, so we cannot just
compute f once and then copy it. In this paper, we show that for m = 22n−1, there is a
branching program computing m copies of f which has size O(mn) and thus has size O(n)
per copy of f .

This work has connections to several other results in complexity theory. In catalytic
computation, introduced by Buhrman, Cleve, Koucký, Loff, and Speelman [2], we have an
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4:2 A Note on Amortized Branching Program Complexity

additional tape of memory which is initially full of unknown contents. We are allowed to
use this tape, but we must restore it to its original state at the end of our computation. As
observed by Girard, Koucký, and McKenzie [5], the model of a branching program computing
multiple instances of a function is a non-uniform analogue of catalytic computation and our
result disproves Conjecture 25 of their paper. Our result also rules out certain approaches
for proving general space lower bounds. In particular, any lower bound technique which
would prove a lower bound on amortized branching program complexity as well as branching
program size cannot prove non-trivial lower bounds. Finally, our result is closely related to
Razborov’s result [10] that submodular complexity measures have maximum size O(n) and
can be thought of as a constructive analogue of Razborov’s argument.

1.1 Outline
In Section 2 we give some preliminary definitions. In section 3 we give our branching program
construction, proving our main result. In section 4 we briefly describe the relationship
between our work and catalytic computation. In section 5 we discuss which lower bound
techniques for proving general space lower bounds are ruled out by our construction. Finally,
in section 6 we describe how our work relates to Razborov’s result [10] on submodular
complexity measures.

2 Preliminaries

In this section, we define branching programs, branching programs computing multiple copies
of a function, and the amortized branching program complexity of a function.

I Definition 1. We define a branching program to be a directed acyclic multi-graph B with
labeled edges and distinguished start nodes, accept nodes, and reject nodes which satisfies
the following conditions.
1. Every vertex of B has outdegree 0 or 2. For each vertex v ∈ V (B) with outdegree 2,

there exists an i ∈ [1, n] such that one of the edges going out from v has label xi = 0 and
the other edge going out from v has label xi = 1.

2. Every vertex with outdegree 0 is an accept node or a reject node.
Given a start node s of a branching program and an input x ∈ {0, 1}n, we start at s and do
the following at each vertex v that we reach. If v is an accept or reject node then we accept
or reject, respectively. Otherwise, for some i, one of the labels going out from v has label
xi = 0 and the other edge going out from v has label xi = 1. If xi = 0 then we take the edge
with label xi = 0 and if xi = 1 then we take the edge with label xi = 1. In other words, we
follow the path starting at s whose edge labels match x until we reach an accept or reject
node and accept or reject accordingly.

Given a branching program B and start node s, let fB,s(x) = 1 if we reach an accept
node when we start at s on input x and let fB,s = 0 if we reach a reject node when we start
at s on input x. We say that (B, s) computes fB,s.

We define the size of a branching program B to be |V (B)|, the number of vertices/nodes
of B.

I Remark. We can consider branching programs whose start nodes all compute different
functions, but for this note we will focus on branching programs whose nodes all compute
the same function.

I Definition 2. We say that a branching program B computes f m times if B has m start
nodes s1, · · · , sm and fB,si

= f for all i.
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I Remark. In the case where m = 1 we recover the usual definition of a branching program
B computing a function f : if f(x) = 1 then B goes from s to an accept node on input x and
if f(x) = 0 then B goes from s to a reject node on input x.

I Definition 3. We say that a branching program B is index-preserving if there is an m
such that:
1. B has m, start nodes s1, · · · , sm, m accept nodes a1, · · · , am, and m reject nodes

r1, · · · , rm,
2. for all i and all inputs x, if B starts at si on input x then it will either end on ai or ri.

I Definition 4. Given a function f .
1. We define bm(f) to be the minimal size of an index-preserving branching program which

computes f m times.
2. We define the amortized branching program complexity bavg(f) of f to be

bavg(f) = lim
m→∞

bm(f)
m

.

I Proposition 5. For all functions f , bavg(f) is well-defined and is equal to inf { bm(f)
m : m ≥ 1}.

Proof. Note that for all m1,m2 ≥ 1, bm1+m2(f) ≤ bm1(f) + bm2(f) as if we are given a
branching program computing f m1 times and a branching program computing f m2 times,
we can take their disjoint union and this will be a branching program computing f m1 +m2
times. Thus for all m0 ≥ 1, k ≥ 1, and 0 ≤ r < m0, bkm0+r(f) ≤ kbm0(f) + br(f). This
implies that limm→∞

bm(f)
m ≤ bm0 (f)

m0
and the result follows. J

3 The Construction

In this section, we give our construction of a branching program computing doubly expo-
nentially many copies of a function f which has linear size per copy of f , proving our main
result.

I Theorem 6. For all f , bavg(f) ≤ 64n. In particular, for all f , taking m = 22n−1,
bm(f) ≤ 32n22n .

Proof. Our branching program has several parts. We first describe each of these parts and
how we put them together and then we will describe how to construct each part. The first
two parts are as follows:
1. A branching program which simultaneously identifies all functions g : {0, 1}n → {0, 1}

that have value 1 for a given x. More preceisely, it has start nodes s1, · · · , sm where
m = 22n−1 and has one end node tg for each possible function g : {0, 1}n → {0, 1}, with
the guarantee that if g(x) = 1 for a given g and x then there exists an i such that that
the branching program goes from si to tg on input x.

2. A branching program which simultaneously evaluates all functions g : {0, 1}n → {0, 1}.
More precisely, it has one start node sg for each function g and has end nodes a′1, · · · , a′m
and r′1, · · · , r′m, with the guarantee that for a given g and x, if g(x) = 1 then the branching
program goes from sg to a′i for some i and if g(x) = 0 then the branching program goes
from sg to r′i for some i.

If f is the function which we actually want to compute, we combine these two parts as
follows. The first part gives us paths from {si : i ∈ [1,m]} to {tg : g(x) = 1}. We now
take each tg from the first part and set it equal to s(f∧g)∨(¬f∧¬g) in the second part. Once
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Figure 1 This figure illustrates part 1 of our construction for n = 2. The functions for the top
vertices are given by the truth tables at the top and each other vertex corresponds to the function
inside it. Blue edges can be taken when the corresponding variable has value 1, red edges can be
taken when the corresponding variable has value 0, and purple edges represent both a red edge and
a blue edge (which are drawn as one edge to make the diagram cleaner). Note that for all inputs x,
there are paths from the start nodes to the functions which have value 1 on input x at each level.

we do this, if f(x) = 1 then for all g, g(x) = 1 ⇐⇒ (f ∧ g) ∨ (¬f ∧ ¬g) = 1 so we will
have paths from {tg : g(x) = 1} = {s(f∧g)∨(¬f∧¬g) : g(x) = 1} to {ai : i ∈ [1,m]}. If
f(x) = 0 then for all g, g(x) = 1 ⇐⇒ (f ∧ g) ∨ (¬f ∧ ¬g) = 0, so we will have paths
from {tg : g(x) = 1} = {s(f∧g)∨(¬f∧¬g) : g(x) = 1} to {ri : i ∈ [1,m]}. Putting everything
together, when f(x) = 1 we will have paths from {si : i ∈ [1,m]} to {ai : i ∈ [1,m]} and
when f(x) = 0 we will have paths from {si : i ∈ [1,m]} to {ri : i ∈ [1,m]}.

Combining these two parts gives us a branching program B which computes f m times.
However, these paths do not have to map si to a′i or r′i, they can permute the final destinations.
In other words, B will not be index-preserving. To fix this, we construct a final part which
runs the branching program we have so far in reverse. If we added this final part to B, this
would fix the permutation issue but would get us right back where we started! To avoid this,
we instead have two copies of the final part, one applied to {a′i : i ∈ [1,m]} and one applied
to {r′i : i ∈ [1,m]}. This separates the case when f(x) = 1 and the case f(x) = 0, giving us
our final branching program.

We now describe how to construct each part. For the first part, which simultaneously
identifies the functions which have value 1 on input x, we have a layered branching program
with n+ 1 levels going from 0 to n. At level j, for each function g : {0, 1}j → {0, 1}, we have
22n−2j nodes corresponding to g. For all j ∈ [1, n] we draw the arrows from level j − 1 to
level j as follows. For a node corresponding to a function g : {0, 1}j−1 → {0, 1}, we draw an
arrow with label xj = 1 from it to a node corresponding to a function g′ : {0, 1}j → {0, 1}
such that g′(x1, · · · , xj−1, 1) = g(x1, · · · , xj−1). Similarly, we draw an arrow with label
xj = 0 from it to a node corresponding to a function g′ : {0, 1}j → {0, 1} such that
g′(x1, · · · , xj−1, 0) = g(x1, · · · , xj−1). We make these choices arbitrarily but make sure that
no two arrows with the same label have the same destination.
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Figure 2 This figure illustrates part 2 of our construction for n = 2. The functions for the
bottom vertices are given by the truth tables at the bottom and each other vertex corresponds to
the function inside it. Note that for all inputs x, the paths go between the functions which evaluate
to 1 on input x and the accept nodes and between the functions which evaluate to 0 on input x and
the reject nodes.

For the second part, which simultaneously evaluates each function, we have a layered
branching program with n + 1 levels going from 0 to n. At level n − j, for each function
g : {0, 1}j → {0, 1}, we have 22n−2j nodes corresponding to g. For all j ∈ [1, n] we draw the
arrows from level n− j to level n− j + 1 as follows. For a node corresponding to a function
g : {0, 1}j → {0, 1}, we draw an arrow with label xj = 1 from it to a node corresponding
to the function g(x1, · · · , xj−1, 1) and draw an arrow with label xj = 0 from it to a node
corresponding to the function g(x1, · · · , xj−1, 0). Again, we make these choices arbitrarily
but make sure that no two edges with the same label have the same destination.

For the final part, note that because we made sure not to have any two edges with the
same label have the same destination and each level has the same number of nodes, our
construction so far must have the following properties:
1. Every vertex has indegree 0 or 2. For the vertices v with indegree 2, there is a j such that

one edge going into v has label xj = 1 and the other edge going into v has label xj = 0.
2. The vertices which have indegree 0 are precisely the vertices in the bottom level.
These conditions imply that if we reverse the direction of each edge in the branching program
we have so far, this gives us a branching program which runs our branching program in
reverse. As described before, we now take two copies of this reverse program. For one copy,
we take its start nodes to be a′1, · · · , a′m and relabel its copies of s1, · · · , sm as a1, · · · , am.
For the other copy, we take its start nodes to be r′1, · · · , r′m and relabel its copies of s1, · · · , sm
as r1, · · · , rm. J

4 Relationship to catalytic computation

In catalytic computation, we have additional memory which we may use but this memory
starts with unknown contents and we must restore this memory to its original state at the
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4:6 A Note on Amortized Branching Program Complexity

end. Our result is related to catalytic computation through Proposition 9 of [5], which says
the following

I Proposition 7. Let f be a function which can be computed in space s(n) using catalytic
tape of size l(n) ≤ 2s(n). Then b2l(n)(f) is 2l(n) · 2O(s(n)).

For convenience, we give a proof sketch of this result here.

Proof Sketch. This can be proved using the same reduction that is used to reduce a Turing
machine using space s(n) to a branching program of size 2O(s(n)), with the following differences.
There are 2l(n) possibilities for what is in the catalytic tape at any given time, so the resulting
branching program is a factor of 2l(n) times larger. The requirement that the catalytic tape
is restored to its original state at the end implies that there must be 2l(n) disjoint copies
of the start, accept, and reject nodes, one for each possibility for what is in the catalytic
tape originally. This means that the branching program computes f 2l(n) times. Finally, the
condition that l(n) ≤ 2s(n) is necessary because otherwise the branching program would have
to be larger in order to keep track of where the pointer to the catalytic tape is pointing! J

Girard, Koucký, and McKenzie [5] conjectured that for a random function f , for all m ≥ 1,
bm(f) is Ω(mb1(f)). If true, this conjecture would imply (aside from issues of non-uniformity)
that a catalytic tape does not significantly reduce the space required for computing most
functions. However, our construction disproves this conjecture.

That said, our construction requires m to be doubly exponential in n. It is quite possible
that log( bm(f)

m ) is Ω(log(b1(f))) for much smallerm, which would still imply (aside from issues
of non-uniformity) that a catalytic tape does not reduce the space required for computing
most functions by more than a constant factor.

5 Barrier for input-based bottleneck arguments

As noted in the introduction, our result rules out any general lower bound approach which
would prove lower bounds on amortized branching program complexity as well as branching
program size. In this section, we discuss one such class of techniques.

One way we could try to show lower bounds on branching programs is as follows. We
could argue that for the given function f and a given branching program B computing f ,
for every YES input x the path that B takes on input x contains a vertex giving a lot of
information about x and thus G must be large to accomodate all of the possible inputs.
We observe that this kind of argument would show lower bounds on amortized branching
program complexity as well as on branching program size and thus cannot show nontrivial
general lower bounds. We assume for the remainder of the section that we are trying to
compute some function f : {0, 1}n → {0, 1} with a branching program of a given type.

I Definition 8. We define a function description h to be a mapping which takes a branching
program B and assigns a funtion hv : {0, 1}n → Ω to every vertex v of B. Here Ω can be an
arbitrary set but we will focus on the case when Ω = {0, 1}.

I Example 9. A particularly useful function description is the reachability function descrip-
tion which sets hv(x) = 1 if it is possible to reach v from a start node on input x and sets
hv(x) = 0 otherwise.

I Definition 10. We define a bottleneck criterion c to be a mapping which takes a function
g : {0, 1}n → Ω and an x ∈ {0, 1}n and outputs 0 or 1. The idea is that c(g, x) = 1 if g gives
a lot of information about x and c(g, x) = 0 otherwise.
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I Definition 11. We say that a function description and bottleneck criterion (h, c) are valid
for a given type of branching program if for any branching program B of this type, any YES
input x, and any path P in B from a start node to an accept node on input x there is a
vertex v ∈ V (P ) such that c(hv, x) = 1.

I Definition 12. We say that a bottleneck criterion c has selectivity Sc if there is a set of
YES inputs I such that for all g, there are at most |I|Sc

inputs x ∈ I such that c(g, x) = 1

We note that bottleneck criteria with high selectivity imply large lower size bounds on the
given type of branching program.

I Proposition 13. If there exists a valid function description and bottleneck criterion (h, c)
for a given type of branching program and c has selectivity Sc then any branching program of
the given type computing f must have size at least Sc.

We now observe that bottleneck criteria with high selectivity also imply large lower size
bounds on amortized branching programs.

I Lemma 14. If there exists a valid function description and bottleneck criterion (h, c) for
a given type of branching program and c has selectivity Sc then any branching program of the
given type computing f m times has size at least mSc

Proof. Let B be a branching program computing f m times. Let N be the total number of
times that we have a vertex v ∈ V (B) and an input x ∈ I such that c(hv, x) = 1. On the one
hand, N ≥ m|I| as for each x ∈ I there are m disjoint paths in B from a start node to an
accept node, each of which must contain a vertex v such that c(hv, x) = 1 (as otherwise (h, c)
wouldn’t be valid). On the other hand, since c has selectivity Sc, for each v ∈ V (B) there
are at most |I|Sc

x ∈ I such that c(hv, x) = 1. Thus, N ≤ |V (B)|·|I|
Sc

. Putting these two bounds
together, we have that |V (B)|·|I|

Sc
≥ m|I| which implies that |V (B)| ≥ mSc, as needed. J

I Corollary 15. Given a valid function description and bottleneck criterion (h, c) for general
branching programs, Sc ≤ 64n

Proof. By Lemma 14, if (h, c) is a valid function description and bottleneck criterion and c
has selectivity Sc then for all m, bm(f) ≥ mSc. However, Theorem 6 says that for m = 22n−1,
bm(f) ≤ 64mn. Thus, we must have that Sc ≤ 64n, as needed. J

I Remark. To prove such an upper bound on Sc it is sufficient to find a B which computes
f m times. B does not have to be index-preserving. As noted in the proof of Theorem 6, the
first two parts of the construction in Theorem 6 are sufficient to construct such a B. Thus,
we have the same upper bound on Sc even for oblivious read-twice branching programs (a
branching program is oblivious if it reads the input bits in the same order regardless of the
input)!

5.1 Examples of input-based bottleneck arguments
In this subsection, we briefly discuss which lower bound approaches can be viewed as input-
based bottleneck arguments. In particular, we note that the current framework of Potechin
and Chan [3] for analyzing monotone switching networks can be seen as an input-based
bottleneck argument, as can many lower bounds on read-once branching programs.

I Example 16 (Fourier analysis on monotone switching networks). At a high level, the current
framework of Potechin and Chan [3] for analyzing monotone switching networks works as
follows:

CCC 2017



4:8 A Note on Amortized Branching Program Complexity

1. Take I to be a large set of minimal YES inputs which are almost disjoint from each other.
2. Use the reachability function description, focusing on the maximal NO instances (the

cuts).
3. Carefully construct a set of functions gxi for each x ∈ I and use the criterion c(hv, x) = 1

if |〈gxi, hv〉| ≥ a
l for some i and is 0 otherwise, where a > 0 is a constant and l is the

maximum length of an accepting path in the switching network. The intuition is that the
functions gxi pick out high-degree information about the input x which much be processed
to accept x, so any accepting path for x must contain a vertex v where |〈gxi, hv〉| is large
for some i.

4. Use Fourier analysis to argue that c has high selectivity.

I Example 17 (k-clique). Wegener [14] and Zak [15] independently proved exponential lower
bounds on the size of read-once branching programs solving the problem of whether a graph
G has a clique of linear size. To prove their lower bounds, they argue that near the start
node, the branching program must branch off like a tree or else it cannot be completely
accurate. This kind of argument is not captured with an input-based bottleneck argument,
as it uses the structure of the given braching program. That said, we can prove a (n

k)
n−k+1

lower size bound on read-once branching programs for k-clique with the following input-based
bottleneck argument:
1. We take c to be the following bottleneck criterion. We take I to be the set of minimal

YES instances, i.e. graphs which have a clique of size k and no other edges. Since we
are considering a read-once branching program, for each node v we have a partition of
the input bits based on whether they are examined before or after reaching v (input bits
which are never examined on any computation path containing v can be put in either
side). Given an x ∈ I, this induces a partition (E1, E2) of the edges of the k-clique in x.
We take c(v, x) = 1 if there is a path from a start node to an accept node on input x
which passes through v and we have that E1 contains k− 2 of the edges incident to some
vertex u in the k-clique but there is no vertex u in the k-clique such that E1 contains all
k − 1 edges incident with u.

2. We argue that c has high selectivity as follows. If c(v, x) = c(v, x′) = 1 for some v, x, x′
then consider the corresponding partitions (E1, E2) and (E′1, E′2). E1 ∪ E′2 and E′1 ∪ E2
must form k-cliques so we must have that |E1| = |E′1| and |E2| = |E′2| and E1∪E′2, E′1∪E2
contain no extra edges.
Now let A be the set of vertices w of the k-clique in x such that both E1 and E2 contain
some but not all of the edges incident to w in x. We observe that the k-clique in x′

contains A as otherwise the edges in E1 ∪E′2 and E′1 ∪E2 incident to w are wasted which
is impossible as E1 ∪ E′2 and E′1 ∪ E2 can have no extra edges. Thus, we can only have
c(v, x′) = 1 for the x′ such that the k-clique contains A.
From the definition of c, A must include some vertex u in the k-clique of x and k − 2 of
its neighbors, so |A| ≥ k − 1. This implies that c(v, x′) = 1 for at most n− k + 1 distinct
x′. The total number of x′ ∈ I is

(
n
k

)
so our lower bound is (n

k)
n−k+1 .

I Example 18 (Majority). In his master’s thesis introducing branching programs, Masek
[7] proved a quadratic lower bound on the size of read-once branching programs computing
the majority function. With an input-based bottleneck argument, we obtain a lower bound
of Ω(n 3

2 ), which is lower, but there is a reason for this. We can prove our lower bound as
follows. Here we assume that n ≥ 3 is odd.
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1. We take I to be the set of inputs with exactly n+1
2 ones.

2. We note that in order for the branching program to be read-once and be correct on
all inputs from all starting nodes, we must have that for each node v of the branching
program, there is a partition (A,B) of the inputs bits such that on all paths from a start
node to v, only input bits in A are examined and on all paths from v to an accept node
or reject node, only inputs in B are examined. Moreover, if |A| < n

2 then every path
from a start node to v must examine all of the bits in A and must have the same number
of these bits equal to one.

3. We choose an m < n
2 and take c(v, x) = 1 if |A| = m and there is a path from a start

node to v on input x and we take c(v, x) = 0 otherwise. Note that for any vertex v, all of
the x such that c(v, x) = 1 have the same number of ones in A so there can be at most
O( |I|√

m
) such x and c has selectivity Ω(

√
m).

4. We sum this over all m < n
2 obtaining our final lower bound of Ω(n 3

2 )

I Remark. With a more complicated argument, it can be shown that this lower bound applies
even if we allow the branching program to reject a small portion of the YES inputs (while
still requiring that it rejects all NO inputs). This is a reason why we only obtain a lower
bound of Ω(n 3

2 ) rather than Ω(n2); we can probabilistically choose a branching program of
size O(n 3

2 log(n)) for majority which rejects all NO inputs and accepts any given YES input
with very high probability.
I Remark. If we assume that our branching program is oblivious as well as read-once (in
which case we can assume without loss of generality that the input bits are read in order)
then we can prove an Ω(n2) lower bound using an input-based bottleneck argument. The
idea is that we can take a different set of inputs I in order to increase the selectivity of our
bottleneck criterion c. In particular, for each m we can take a set of inputs Im such that Im
contains m+ 1 minimal YES inputs, each with a different number of ones in the first m bits.
This c now has selectivity m and summing over all m < n

2 gives a lower bound of Ω(n2)
As these examples show, input-based bottleneck arguments are effective for proving lower

bounds on read-once branching programs. Thus, Theorem 6 and Lemma 14, which together
rule out input-based bottleneck arguments even for oblivious read-twice branching programs,
provide considerable insight into the spike in difficulty between proving lower bounds for
read-once branching programs and read-twice branching programs which can be seen in
Razborov’s survey [9] on branching programs and related models. That said, Theorem 6 and
Lemma 14 do not say anything about lower bounds based on counting functions such as
Nechiporuk’s quadratic lower bound [8] or lower bounds based on communication complexity
arguments such as Babai, Nisan, and Szegedy’s result [1] proving an exponential lower bound
on oblivious read-k branching programs for arbitrary k. We also note that Cook, Edmonds,
Medabalimi, and Pitassi [4] give another explanation for the failure of bottleneck arguments
past read-once branching programs.

6 Linear upper bound on complexity measures

Another way we could try to lower bound branching program size is through a complexity
measure on functions. However, Razborov [10] showed that submodular complexity measures
cannot have superlinear values. In this section we show that this is also true for a similar
class of complexity measures, branching complexity measures, which correspond more closely
to branching programs. We then show that all submodular complexity measures are also
branching complexity measures, so Theorem 6 is a constructive analogue and a slight
generalization of Razborov’s result [10].

CCC 2017
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I Definition 19. We define a branching complexity measure µb to be a measure on functions
which satisfies the following properties:
1. ∀i, µb(xi) = µb(¬xi) = 1,
2. ∀f, µb(f) ≥ 0,
3. ∀f, i, µb(f ∧ xi) + µb(f ∧ ¬xi) ≤ µb(f) + 2,
4. ∀f, g, µb(f ∨ g) ≤ µb(f) + µb(g).

I Definition 20. Given a node v in a branching program, define fv(x) to be the function
such that fv(x) is 1 if there is a path from some start node to v on input x and 0 otherwise.
Note that for any start node s, fs = 1.

I Lemma 21. If µb is a branching complexity measure then for any branching program, the
number of non-end nodes which it contains is at least

1
2

( ∑
t:t is an end node

µb(ft)−
∑

s:s is a start node
µb(fs)

)
.

Proof. Consider what happens to
∑
t:t is an end node µb(ft) −

∑
s:s is a start node µb(fs) as we

construct the branching program. At the start, when we only have the start nodes and these
are also our end nodes, this expression has value 0. Each time we merge end nodes together,
this can only decrease this expression. Each time we branch off from an end node, making
the current node a non-end node and creating two new end nodes, this expression increases
by at most 2. Thus, the final value of this expression is at most twice the number of non-end
nodes in the final branching program, as needed. J

I Corollary 22. For any branching complexity measure µb and any function f , µb(f) ≤ 130n

Proof. By Lemma 21 we have that for all m ≥ 1, mµb(f)−mµb(1)
2 ≤ m · bm(f). Using

Theorem 6 and noting that µb(1) ≤ 2 we obtain that µb(f) ≤ 130n. J

Finally, we note that every submodular complexity measure µs is a branching complexity
measure, so Corollary 22 is a slight generalization of Razborov’s result [10] (though with a
worse constant).

I Definition 23. A submodular complexity measure µs is a measure on functions which
satisfies the following properties:
1. ∀i, µ(xi) = µ(¬xi) = 1,
2. ∀f, µ(f) ≥ 0,
3. ∀f, g, µs(f ∨ g) + µs(f ∧ g) ≤ µs(f) + µs(g).

I Lemma 24. Every submodular complexity measure µs is a branching complexity measure.

Proof. Note that

µs(f ∨ xi) + µs(f ∧ xi) ≤ µs(f) + µs(xi)

and

µs((f ∨ xi) ∧ ¬xi) + µs((f ∨ xi) ∨ ¬xi) = µs(f ∧ ¬xi) + µs(1) ≤ µs(f ∨ xi) + µs(¬xi) .

Combining these two inequalities we obtain that

µs(f ∧ ¬xi) + µs(1) + µs(f ∧ xi) ≤ µs(f) + µs(xi) + µs(¬xi)

which implies that µs(f ∧ ¬xi) + µs(f ∧ xi) ≤ µs(f) + 2− µs(1) ≤ µs(f) + 2, as needed. J
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7 Conclusion

In this paper, we showed that for any function f , there is a branching program computing a
doubly exponential number of copies of f which has linear size per copy of f . This result
shows that in the branching program model, any operation/function can be amortized with
sufficiently many copies. This result also disproves a conjecture about nonuniform catalytic
computation, rules out certain approaches for proving general lower space bounds, and gives
a constructive analogue of Razborov’s result [10] on submodular complexity measures.

However, the number of copies required in our construction is extremely large. A remaining
open problem is to determine whether having a doubly exponential number of copies is
necessary or there a construction with a smaller number of copies. Less ambitiously, if we
believe but cannot prove that a doubly exponential number of copies is necessary, can we
show that a construction with fewer copies would have surprising implications?

Acknowledgments. The author would like to thank Avi Wigderson and Venkatesh Medabalimi
for helpful conversations.
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