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Abstract
We consider the problem of finding the minimum-weight subgraph that satisfies given con-
nectivity requirements. Specifically, given a requirement r ∈ {0, 1, 2, 3} for every vertex, we
seek the minimum-weight subgraph that contains, for every pair of vertices u and v, at least
min{r(v), r(u)} edge-disjoint u-to-v paths. We give a polynomial-time approximation scheme
(PTAS) for this problem when the input graph is planar and the subgraph may use multiple
copies of any given edge (paying for each edge separately). This generalizes an earlier result for
r ∈ {0, 1, 2}. In order to achieve this PTAS, we prove some properties of triconnected planar
graphs that may be of independent interest.
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1 Introduction

The survivable network design problem aims to find a low-weight subgraph that connects a
subset of vertices and will remain connected despite edge failures, an important requirement
in the field of telecommunications network design. This problem can be formalized as the
I-edge connectivity problem for an integer set I as follows: for an edge-weighted graph G
with a requirement function on its vertices r : V (G)→ I, we say a subgraph H is a feasible
solution if for any pair of vertices u, v ∈ V (G), H contains min{r(u), r(v)} edge-disjoint
u-to-v paths; the goal is to find the cheapest such subgraph. In the relaxed version of the
problem, H may contain multiple (up to max I) copies of G’s edges (H is a multi-subgraph) in
order to achieve the desired connectivity, paying for the copies according to their multiplicity;
otherwise we refer to the problem as the strict version. Thus I = {1} corresponds to the
minimum spanning tree problem and I = {0, 1} corresponds to the minimum Steiner tree
problem. Here our focus is when max I ≥ 2.

This problem and variants have a long history. The I-edge connectivity problem, except
when I = {1} and I = {0}, is MAX-SNP-hard [13]. There are constant-factor approxi-
mation algorithms for the strict {k}-edge-connectivity problem: for k = 2, Frederickson
and Jájá [16] gave a 3-approximation for this problem, and Sebő and Vygen [24] gave a
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4/3-approximation for this problem in unweighted graphs; for any k, Khuller and Vishkin [19]
gave a 2-approximation for this problem. Klein and Ravi [23] gave a 2-approximation for
the strict {0, 1, 2}-edge-connectivity problem. For general requirements, Jain [18] gave a
2-approximation for both the strict and relaxed versions of the problem.

We study this problem in planar graphs. In planar graphs, the I-edge connectivity
problem, except when I = {1} and I = {0}, is NP-hard (by reduction from Hamiltonian
cycle). Berger, Czumaj, Grigni, and Zhao [4] gave a polynomial-time approximation scheme1
(PTAS) for the relaxed {1, 2}-edge-connectivity problem, and Berger and Grigni [5] gave a
PTAS for the strict {2}-edge-connectivity problem. Zheng [26] gave a linear PTAS for the
strict {3}-edge-connectivity problem in unweighted planar graphs. Borradaile and Klein [8]
gave an efficient2 PTAS (EPTAS) for the relaxed {0, 1, 2}-edge-connectivity problem3. The
only planar-specific algorithm for non-spanning, strict edge-connectivity is a PTAS for the
following problem: given a subset R of edges, find a minimum weight subset S of edges, such
that for every edge in R, its endpoints are two-edge-connected in R ∪ S [22]; otherwise, the
best known results for the strict versions of the edge-connectivity problem when I contains 0
and 2 are the constant-factor approximations known for general graphs.

In this paper, we give an EPTAS for the relaxed {0, 1, 2, 3}-edge-connectivity problem
in planar graphs. This is the first PTAS for connectivity beyond 2-connectivity in planar
graphs:

I Theorem 1. For any ε > 0 and any planar graph instance of the relaxed {0, 1, 2, 3}-edge
connectivity problem, there is an O(n logn)-time algorithm that finds a solution whose weight
is at most 1 + ε times the weight of an optimal solution.

In order to give this EPTAS, we must prove some properties of triconnected (three-vertex
connected) planar graphs that may be of independent interest. One simple-to-state corollary
of the sequel is:

I Theorem 2. In a planar graph that minimally pairwise triconnects a set of terminal
vertices, every cycle contains at least two terminals.

In the remainder of this introduction we overview the PTAS framework for network
design problems in planar graphs [9] that we use for the relaxed {0, 1, 2, 3}-edge connectivity
problem. In this overview we highlight the technical challenges that arise from handling
3-edge connectivity. We then overview why we use properties of vertex connectivity to address
an edge connectivity problem and state our specific observations about triconnected planar
graphs that we require for the PTAS framework to apply. In the remainder, 2-EC refers to
“relaxed {0, 1, 2}-edge-connectivity” and 3-EC refers to “relaxed {0, 1, 2, 3}-edge-connectivity”.

1.1 Overview of the planar PTAS framework
The planar PTAS framework grew out of a PTAS for travelling salesperson problem [21]
and has been used to give PTASes for Steiner tree [7, 10], Steiner forest [3] and 2-EC [9]
problems. For simplicity of presentation, we follow the PTAS whose running time is doubly

1 A polynomial-time approximation scheme for an minimization problem is an algorithm that, given a
fixed constant ε > 0, runs in polynomial time and returns a solution within 1 + ε of optimal. The
algorithm’s running time need not be polynomial in ε.

2 A PTAS is efficient if the running time is bounded by a polynomial whose degree is independent of ε.
3 Note that Borradaile and Klein [8] claimed their PTAS would generalize to relaxed {0, 1, . . . , k}-edge-

connectivity, but this did not come to fruition.
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exponential in 1/ε [7]; this can be improved to singly exponential as for Steiner tree [10].
Note that for all these problems (except Steiner forest, which requires a preprocessing step
to the framework), the optimal value OPT of the solution is within a constant factor of the
optimal value of a Steiner tree on the same terminal set where we refer to vertices with
non-zero requirement as terminals. In the following, Oε-notation hides factors depending
on ε.

The PTAS framework

The PTAS framework for a planar connectivity problem in graph G consists of the following
steps. We describe the steps in terms of the relaxed I-edge connectivity problem, which,
at this high level, are easy to generalize from the application of this framework to Steiner
tree [7] and 2-EC [9]:

Step 1: Find the spanner subgraph H (described below) having the properties:
(S1) w(H) = Oε(OPT), and
(S2) H contains a feasible solution to the connectivity problem of value at most (1 +
ε)OPT.

To find a (1+O(ε))-approximate solution in G, it is sufficient to find a (1+ε)-approximate
nearly-optimal solution in H by (S2).

Step 2: Decompose the spanner into a set of subgraphs, called slices, such that:
(A1) each slice has branchwidth Oε(1),
(A2) the boundary of a slice is a set of cycles and every cycle bounds exactly two slices,
(A3) the weight of all boundary edges is at most εOPT.
The slice boundaries correspond to every kth breadth-first level in the dual graph; this
gives property (A2). By choosing k = Oε(1), we get property (A1). Property (A3) follows
from (S1) for k sufficiently large.

Step 3: Add artificial terminals to slice boundaries and assign connectivity requirements so
that:
(B1) for each slice, there is a feasible solution over the original and artificial terminals

whose weight is bounded by the weight of the slice boundary plus the weight of the
optimal solution in the slice.

(B2) the union of these slice solutions is a feasible solution for the original original.
This can be done by adding a terminal to a boundary cycle if the cycle separates any
two original terminals and assigning this terminal a connectivity requirement equal to
the maximum connectivity requirement the cycle separates (e.g. 2 if the cycle separates
two terminals each having a connectivity requirement of 2); this process and the fact that
edge connectivity is transitive guarantees property (B2). Property (B1) is guaranteed by
property (A3) as seen by adding 2 max I copies of the slices to a solution in H.

Step 4: Solve the problem with respect to original and artificial terminals in each slice.
By property (A1), we can do this by dynamic programming over the branch decomposition.

Step 5: Return the union of the slice solutions.

We apply this PTAS framework to the 3-EC problem. Algorithmically, the modifications
needed for 3-EC (as compared to 2-EC or Steiner tree) are limited to Step 4; we can obtain an
Oε(n)-time dynamic program for the I-edge connectivity problem on graphs with branchwidth
Oε(1), which is similar to that for the k-vertex-connectivity spanning subgraph problem in
Euclidean space given by Czumaj and Lingas in [12, 13]. We will argue that the spanner
construction (with larger constants) is the same as used for Steiner tree and 2-EC; this

APPROX/RANDOM’17
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argument is the bulk of the technical challenge of this work. Borradaile, Klein and Mathieu
show that Step 1 can be done in Oε(n logn) time [10, 9] and Steps 2 and 3 can be done in
O(n) time. Therefore, we will achieve an Oε(n logn) running time for 3-EC.

Spanners for connectivity problems

The spanner construction for Steiner tree and 2-EC [10] (and, as we will argue, for 3-EC)
starts with finding the mortar graph MG of the input graph G. The mortar graph is a
grid-like subgraph of G that spans all the terminals and has total weight bounded by Oε(1)
times the minimum weight of a Steiner tree spanning all the terminals (i.e. weight Oε(OPT)).
To construct the mortar graph, we first find an approximate Steiner tree connnecting all
terminals and recursively add some short paths. Each face of MG is bounded by four (1 + ε)
approximations to short paths; the subgraph of G that is enclosed by a face of MG is called
a brick.

A structure theorem shows that there is a nearly optimal solution for Steiner tree and
2-EC whose intersection with each brick is a set of non-crossing trees with Oε(1) leaves that
are portals (a subset of Oε(1) designated vertices of the boundary of the brick) [9]. Each such
tree can be computed efficiently since each is a Steiner tree with vertices on the boundary of
a planar graph (a brick) [14].

We compute the spanner subgraph H by starting with the mortar graph, assigning Oε(1)
vertices of each brick boundary to be portals and adding to the spanner all Steiner trees for
each subset of portals in each brick. Since there are Oε(1) Steiner trees per brick and each
has weight at most the boundary of the brick, the spanner has weight Oε(OPT). By the
structure theorem, it is sufficient to solve the given problem in the spanner.

Extension to the 3-EC problem

To prove that the PTAS framework extends to 3-edge connectivity, we need to show this
construction results in a spanner for 3-EC, that is, that H contains a (1 + ε)-approximate
solution to 3-EC. This is the main technical challenge of this work. We will prove:

I Theorem 3 (Structure Theorem for 3-EC). For any ε > 0 and any planar graph instance
(G,w, r) of the 3-EC problem, there exists a feasible solution S in the spanner H such that

the weight of S is at most (1 + cε)OPT where c is an absolute constant, and
the intersection of S with the interior of any brick is a set of Oε(1) trees whose leaves
are on the boundary of the brick and each tree has Oε(1) leaves.

The interior of a brick is the set of brick edges that are not on the boundary of the brick
(that is, not in MG). We denote the interior of a brick B by int(B). Consider a brick B of
G whose boundary is a face of MG and consider the intersection of OPT with the interior of
this brick, OPT ∩ int(B). To prove the Structure Theorem, we will show that:
(P1) OPT∩ int(B) can be partitioned into a set of trees T whose leaves are on the boundary

of B.
(P2) If we replace any tree in T with another tree spanning the same leaves, the result is a

feasible solution.
(P3) There is another set of O(1) trees T ′ and a set of brick boundary edges B′ that costs

at most a 1 + ε factor more than T , such that each tree of T ′ has O(1) leaves and
(OPT \ T ) ∪ T ′ ∪B′ is a feasible solution.

Property P1 implies that we can decompose an optimal solution into a set of trees inside of
bricks plus some edges ofMG. Property P2 shows that we can treat those trees independently
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Figure 1 If the bold red tree (left) is OPT ∩ int(B) (where B is denoted by the rectangle),
replacing the tree with another tree spanning the same leaves (right) could destroy 3-connectivity
between t1 and t2. We will show that such a tree cannot exist in a minimally connected graph.

with regard to connectivity, and this gives us hope that we can replace OPT ∩ int(B) with
some Steiner trees with terminals on the boundary which we can efficiently compute in planar
graphs [14]. Property P3 shows that we can compute an approximation to OPT ∩ int(B) by
guessing O(1) leaves.

For the Steiner tree problem, P1 and P2 are nearly trivial to argue; the bulk of the work
is in showing P3 [7].

For the 2-EC problem, P1 depends on first converting G and OPT into G′ and OPT′ such
that OPT′ biconnects (two-vertex connects) the terminals requiring two-edge connectivity
and using the relatively easy-to-argue fact that every cycle of OPT′ contains at least one
terminal. By this fact, a cycle in OPT′ must contain a vertex of the brick’s boundary (since
MG spans the terminals), allowing the partition of OPT′ ∩ int(B) into trees. P2 and P3
then require that two-connectivity across the brick is maintained.

For the 3-EC problem, P1 is quite involved to show, but further to that, showing Property
P2 is also involved; the issues4 are illustrated in Figure 1 and are the focus of Sections 2 and 3.
As with 2-EC, we convert OPT into a vertex connected graph to simplify the arguments.
Given Properties P1 and P2, we illustrate Property P3 by following a similar argument as
for 2-EC; since this requires reviewing more details of the PTAS framework, we cover this in
Section 4.

Non-planar graphs

We point out that, while previously-studied problems that admit PTASes in planar graphs
(e.g. independent set and vertex cover [2], TSP [21, 20, 1], Steiner tree [10] and forest [3],
2-EC [9]) generalize to surfaces of bounded genus [6], the method presented in this paper for
3-EC is hard to be generalized to higher genus surfaces. In the generalization to bounded
genus surfaces, the graph is preprocessed (by removing some provably unnecessary edges)
so that one can compute a mortar graph whose faces bound disks. This guarantees that
even though the input graph is not planar, the bricks are; this is sufficient for proving

4 The issues also appear in 2-ECP, but we explain why it is easy to handle in 2-ECP in the next subsection.

APPROX/RANDOM’17
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Figure 2 Vertex v is cleaved into vertices v1 and v2. The edges incident to v are partitioned into
two sets A and B to become incident to distinct copies.

above-numbered properties in the case of TSP, Steiner tree and forest and 2-EC. However,
for 3-ECP, in order to prove P2, we require global planarity, not just planarity of the brick.
To the authors’ knowledge, this is the only problem that we know to admit a PTAS in planar
graphs that does not naturally generalize to toroidal graphs.

1.2 Reduction to vertex connectivity
Now we overview how we use vertex connectivity to argue about the structural properties of
edge-connectivity required for the spanner properties.

We require a few definitions. Vertices x and y are k-vertex-connected in a graph G if
G contains k pairwise vertex disjoint x-to-y paths. If k = 3 (k = 2), then x and y are also
called triconnected (biconnected). For a subset Q of vertices in G and a requirement function
r : Q→ {2, 3}, subgraph H is said to be (Q, r)-vertex-connected if every pair of vertices x, y
in Q is k-vertex-connected where k = min{r(x), r(y)}. We call the vertices of Q terminals.
If r(x) = 3 (r(x) = 2) for all x ∈ Q, we say H is Q-triconnected (Q-biconnected). We say
a (Q, r)-vertex-connected graph is minimal, if no edge or vertex can be deleted without
violating the connectivity requirements.

We cleave vertices to transform edge-connectivity into vertex-connectivity. Informally,
cleaving a vertex is splitting the vertex into two copies and adding a zero-weight edge between
the copies; incident edges choose between the copies in a planarity-preserving way (Figure 2).
We can cleave the vertices of OPT, creating OPT′, so that if two terminals are k-edge-
connected in OPT, there are corresponding terminals in OPT′ that are k-vertex-connected.
We will prove that OPT′ satisfies Properties P1 and P2 and since OPT′ is obtained from
OPT by cleavings, these two properties also hold for OPT.

To prove that OPT′ satisfies Property P1, we show that every cycle in OPT′ contains at
least one terminal (Section 2). To prove that OPT′ satisfies Property P2, we define the notion
of a terminal-bounded component: a connected subgraph is a terminal-bounded component if
it is an edge between two terminals or obtained from a maximal terminal-free subgraph S
(a subgraph containing no terminals), by adding edges from S to its neighbors (which are
all terminals by maximality of S). In Section 3, we show that in a minimal Q-triconnected
graph any terminal-bounded component is a tree whose leaves are terminals as well as:

I Theorem 4 (Connectivity Separation Theorem). Given a minimal (Q, r)-vertex-connected
planar graph, for any pair of terminals x and y that require triconnectivity (biconnectivity),
there are three (two) vertex disjoint paths from x to y in G such that any two of them do not
contain edges of the same terminal-bounded tree.

I Corollary 5. Given a minimal (Q, r)-vertex-connected planar graph, for any pair of
terminals x and y that require triconnectivity (biconnectivity), there exist three (two) vertex
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X 

y 

Figure 3 A minimal Q-triconnected graph. The bold vertices are terminals. The dashed path
connects two x-to-y paths but it does not contain any terminal.

disjoint x-to-y paths such that any path that connects any two of those x-to-y paths contains
a terminal.

This corollary can be viewed as a generalization of the following by Borradaile and Klein for
2-ECP [9]:

I Theorem 6. (Theorem 2.8 [9]). Given a graph that minimally biconnects a set of terminals,
for any pair of terminals x and y and for any two vertex disjoint x-to-y paths, any path that
connects these paths must contain a terminal.

Note that Theorem 6 holds for general graphs while we only know Corollary 5 to hold
for planar graphs, underscoring why our PTAS does not generalize to higher-genus graphs.
Further “for any” is sufficient for biconnectivity (Theorem 6) whereas “there exists” is
necessary for triconnectivity (Corollary 5) as illustrated by the example in Figure 3. Higher
connectivity comes at a price.

For OPT′, Corollary 5 implies Property P2. Consider the set of disjoint paths guaranteed
by Corollary 5. If any tree replacement in a brick merges any two disjoint paths, say P1 and
P2, in the set (the replacement in Figure 1 merges three paths), then the replaced tree must
contain at least one vertex of P1 and one vertex of P2. This implies the replaced tree contains
a P1-to-P2 path P such that each vertex in P has degree at least two in the replaced tree.
Further, P contains a terminal by Corollary 5. However, all the terminals are in the mortar
graph, which forms the boundaries of the bricks. So P must have a common vertex with the
boundary of the brick. By Property P1, the replaced tree, which is in the intersection of
OPT′ with the interior of the brick, can only contain leaves on the boundary of the brick.
Therefore, the replaced tree can not contain such a P1-to-P2 path, otherwise there is a vertex
in P that has degree one in the tree.

2 Vertex-connectivity basics

In this section, we consider minimal (Q, r)-vertex-connected graphs for a subset Q of vertices
and a requirement function r : Q→ {2, 3}.

Borradaile and Klein prove that in a minimal Q-biconnected graph, every cycle contains a
terminal (Theorem 2.5 [9]). We show a similar property for a minimal (Q, r)-vertex connected
graph here. This property implies property P1, that is the intersection of an optimal solution
with the interior of any brick can be partitioned into a set of trees whose leaves are on the
boundary of the brick. Note that our proof for this property does not depend on planarity.

For a Q-triconnected graph H, we can obtain another graph H ′ by contracting all the
edges incident to the vertices of degree two in H. We say H ′ is contracted version of H and,

APPROX/RANDOM’17
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alternatively, is contracted Q-triconnected. We can prove that H ′ is triconnected. Further, if
H is a minimal Q-triconnected graph, then the contracted version of H is also a minimal
Q-triconnected graph. And if |Q| > 3, then we can prove H ′ is simple by the result of
Eswaran and Tarjan [15].

Holton, Jackson, Saito and Wormald study the removability of edges in triconnected
graphs [17]. For an edge e = uv of a simple, triconnected graph G, removing e consists of
(i) deleting uv from G, (ii) if u or v now have degree 2, contracting incident edges, and (iii)
deleting parallel edges. If the resulting graph after removing e is triconnected, then e is said
to be removable.

By applying several results of Holton et al. [17] about removable edges, we can prove
that every cycle in a minimum contracted Q-triconnected graph contains a terminal. For a
graph G that is (Q, r)-vertex connected, let G′ be a minimum Q-triconnected graph that is
a supergraph of G. Let G′′ is the contracted version of G′. Then every cycle in G′′ contains
a terminal. Since G′ is a subdivision of G′′, we know every cycle in G′ contains a terminal.
Since G is a subgraph of G′, we have the following theorem.

I Theorem 7. For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-
connected graph. Then every cycle in G contains a vertex of Q.

3 Connectivity Separation

In this section we continue to focus on vertex connectivity and prove the Connectivity
Separation Theorem. The Connectivity Separation Theorem for biconnectivity follows easily
from Theorem 6. To see why, consider two paths P1 and P2 that witness the biconnectivity
of two terminals x and y. For an edge of P1 to be in the same terminal-bounded component
as an edge of P2, there would need to be a P1-to-P2 path that is terminal-free. However, such
a path must contain a terminal by Theorem 6. Herein we mainly focus on triconnectivity.

For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-connected
planar graph. We say a subgraph is terminal-free if it is connected and does not contain any
terminals. It follows from Theorem 7 that any terminal-free subgraph of G is a tree. We
partition the edges of G into terminal-bounded components as follows: a terminal-bounded
component is either an edge connecting two terminals or is obtained from a maximal terminal-
free tree T by adding the edges from T to its neighbors, all of which are terminals. Theorem 8
will show that any terminal-bounded subgraph is also a tree.

For a connected subgraph χ of G and an embedding of G with outer face containing no
edge of χ, let C(χ) be the simple cycle that strictly encloses the fewest faces and all edges
of χ, if such a cycle exists. (Note that C(χ) does not exist if there is no aforementioned
choice for an outer face.) In order to prove the Connectivity Separation Theorem for bi- and
triconnectivity, we start with the following theorem:

I Theorem 8 (Tree Cycle Theorem). Let T be a terminal-bounded component in a minimal
Q-triconnected planar graph H. Then T is a tree and C(T ) exists with the following
properties
(a) The internal vertices of T are strictly inside of C(T ).
(b) All vertices strictly inside of C(T ) are on T .
(c) All leaves of T are in C(T ).
(d) Any pair of distinct maximal terminal-free subpaths of C(T ) does not contain vertices of

the same terminal-bounded tree.

Theorem 2 follows from this Tree Cycle Theorem.
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Proof of Theorem 2. For a contradiction, assume there is a cycle in H that only containing
one terminal, then there is a terminal-bounded component containing that cycle, which can
not be a tree, contradicting the Tree Cycle Theorem. J

We give an overview of the proof the Tree Cycle Theorem in Subsection 3.2. First, let us see
how the Tree Cycle Theorem implies the Connectivity Separation Theorem.

3.1 The Tree Cycle Theorem implies the Connectivity Separation
Theorem

For a requirement function r : Q→ {2, 3}, let G be a minimal (Q, r)-vertex-connected planar
graph. Let Q3 be the set of terminals requiring triconnectivity, and let H be a minimal
Q3-triconnected subgraph of G. Let Q2 = Q \ Q3. Consider two terminals x and y. We
sketch the proof here.

Suppose x and y only require biconnectivity. For this case, we know the graph is bicon-
nected and by applying a result of Whitney [25] for the ear decomposition of a biconnected
graph, we can find a simple cycle C containing x and y such that every C-to-C path con-
tains a terminal as an internal vertex. As argued at the start of Section 3, this proves the
Connectivity Separation Theorem for x and y.

Suppose x and y require triconnectivity, that is x, y ∈ Q3. Since graph H is Q3-
triconnected, there are three internally vertex-disjoint paths from x to y in H. We modify
these three paths such that they do not contain edges of the same terminal-bounded tree.
Suppose all three paths contain some edges of a common terminal-bounded tree T . By
the Tree Cycle Theorem, there is a cycle C(T ) that contains all leaves of T and all other
vertices of T are enclosed by C(T ). So all the tree paths must intersect cycle C(T ). Note
that since both of x and y are terminals, the edges incident to x and y are not in the same
terminal-bounded tree. So, for each x-to-y path, we can identify non-trivial subpaths: one
to-C(T ) prefix and one from-C(T ) suffix. We can find two subpaths of C(T ) and one path in
T such that they are vertex-disjoint and the union of these three subpaths together with the
to-C(T ) prefices and the from-C(T ) suffices defines another three internally vertex-disjoint
x-to-y paths in H. Only one of the three new paths will contain edges of T . By property
(d) of the Tree Cycle Theorem, the two subpaths of C(T ) will not introduce any shared
terminal-bounded tree. We can apply a similar modification when there are only two x-to-y
paths containing edges of the same terminal-bounded tree. The argument for extending the
property from H to G requires minimal extra work.

3.2 Proof of Tree Cycle Theorem
Let G be a minimal Q3-triconnected planar graph. We prove the Tree Cycle Theorem for
the contracted Q3-triconnected graph H obtained from G. If the theorem is true for H, then
it is true for G since subdivision will maintain the properties of the theorem. We give a
high-level overview of the proof.

We focus on a maximal terminal-free tree T ∗, rooted arbitrarily, of H and the correspond-
ing terminal-bounded component T (that is, T ∗ ⊂ T ). We show that there is a face of H that
does not touch any internal vertex of T ∗, which guarantees that there is a drawing of H such
that T ∗ is enclosed by some cycle. We take this face of H as the infinite face. We view T ∗

as a set P of root-to-leaf paths. For each path in P , we can find a cycle that strictly encloses
only vertices on the paths. The outer cycle of the cycles for all the paths in P defines C(T ).
See Figure 4. Property (a) directly follows from the construction. Property (b) is proved

APPROX/RANDOM’17
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Figure 4 Illustration of C(T ). The dashed cycle is CP for P from l0 to l1 and the dotted cycle is
CP ′ for P ′ from l0 to l2. The outer boundary forms C(T ).

by induction on the number of root-to-leaf paths of T : when we add a new cycle for a path
from P , the new outer cycle will only strictly enclose vertices of the root-to-leaf paths so far
considered. After that, we show any two terminals are triconnected when T is a tree: by
modifying the three paths between terminals in a similar way to the proof for Connectivity
Separation, only one path will require edges in T . Since T is connected, this proves T is a tree
by minimality of H. Combining the above properties and triconnectivity of H, we can obtain
property (c). Property (d) is proved by contradiction: if there is another terminal-bounded
tree T ′ that shares two terminal-free paths of C(T ), then there is a terminal-free path in T ′.
We can show there is a removable edge in this path of T ′, contradicting the minimality of H.

4 Proof of the Structure Theorem

In this section, we give a brief overview of the proof of the Structure Theorem (Theorem 3);
full details are in the full version of the paper. First we introduce some properties of the
mortar graph and bricks. For a brick B, let ∂B be its boundary and int(B) = E(B) \E(∂B)
be its interior. A path is ε-short if the distance between every pair of vertices on that path is
at most (1 + ε) times the distance between them in G. Bricks have the following properties.

I Lemma 9 (Lemma 6.10 [10] rewritten). The boundary of a brick B, in counterclockwise
order, is the concatenation of four paths WB, SB, EB and NB (west, south, east and north)
such that:

Every vertex of Q ∩B is in NB ∪ SB.
NB is 0-short and every proper subpath of SB is ε-short.

The paths that form eastern and western boundaries of bricks are called supercolumns, and
the weight of all edges in supercolumns is at most εOPT (Lemma 6.6 [10]). We designate a
set of vertices, called portals, evenly spaced on the boundary of each brick. Each brick has
only constant number (depending on ε) of portals on its boundary.

To prove the Structure Theorem, we transform OPT for the instance (G,Q, r) so that it
satisfies the following properties (repeated from the introduction):
(P1) OPT∩ int(B) can be partitioned into a set of trees T whose leaves are on the boundary

of B.
(P2) If we replace any tree in T with another tree spanning the same leaves, the result is a

feasible solution.
(P3) There is another set of O(1) trees T ′ and a set of brick boundary edges B′ that costs

at most a 1 + ε factor more than T , such that each tree of T ′ has O(1) leaves and
(OPT \ T ) ∪ T ′ ∪B′ is a feasible solution.
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The transformation consists of the following steps:
Augment. We add four copies of each supercolumn; we take two copies each to be interior

to the two adjacent bricks. After this, connectivity between the east and west boundaries
of a brick will be transformed to that between the north and south boundaries. Since the
weight of all supercolumns is at most εOPT, this only increases the weight by an small
fraction of OPT.

Cleave. By cleaving a vertex, we split it into multiple copies while keeping the connectivity
as required by adding artificial edges of weight zero between two copies and maintaining
a planar embedding. We call the resulting solution OPTC . In this step, we turn k-edge-
connectivity into k-vertex-connectivity for k = 1, 2, 3. By Theorem 7, we can obtain
Property P1: OPTC ∩ int(B) can be partitioned into a set T of trees whose leaves are in
∂B. By Corollary 5, we can obtain Property P2: we can obtain another feasible solution
by replacing any tree in T with another tree spanning the same leaves.

Flatten. For each brick B, we consider the connected components of OPTC ∩ int(B). If
the component only spans vertices in the north or south boundary, we replace it with
the minimum subpath of the boundary that spans the same vertices. This will not
increase the weight much by the ε-shortness of the north and south boundaries. Note
that vertex-connectivity may break as a result, but edge-connectivity is maintained. In
the remainder, we only maintain edge-connectivity. We call the resulting solution OPTF .

Restructure. For each brick B, we consider the connected components of OPTF ∩ int(B).
We replace each component with a subgraph through a mapping φ. The new subgraph
may be a tree or a subgraph Ĉ that is the union of a cycle and two subpaths of ∂B. The
mapping φ has the following properties:

For any component χ of OPTF ∩ int(B), φ(χ) is connected and spans χ ∩ ∂B.
For two components χ1 and χ2 of OPTF ∩ int(B), if φ(χi) 6= Ĉ for at least one of
i = 1, 2, then φ(χ1) and φ(χ2) are edge-disjoint, taking into account edge multiplicities.
The new subgraph φ(OPTF ∩ int(B)) has only constant number (depending on ε) of
vertices in the boundary ∂B.

We can prove that the total weight is increased by at most εOPTF , giving Property P3.
We call the resulting solution OPTR.

Redirect. We connect each vertex j of OPTR ∩ int(B) in the boundary ∂B to the nearest
portal p on ∂B by adding multiple copies of the short j-to-p subpath of ∂B. Similar
to 2-ECP, we can prove this only increases the weight by an ε fraction of OPT and the
resulting solution satisfies the Structure Theorem.

Acknowledgements. We thank Hung Le, Amir Nayyeri and David Pritchard for helpful
discussions.
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