
Streaming Complexity of Approximating Max
2CSP and Max Acyclic Subgraph
Venkatesan Guruswami∗1, Ameya Velingker†2, and
Santhoshini Velusamy‡3

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,
USA
venkatg@cs.cmu.edu

2 School of Computer and Communication Sciences, EPFL, Lausanne,
Switzerland
ameya.velingker@epfl.ch

3 Department of Computer Science and Engineering, Indian Institute of
Technology Madras, Chennai, India
cs13b059@smail.iitm.ac.in

Abstract
We study the complexity of estimating the optimum value of a Boolean 2CSP (arity two constraint
satisfaction problem) in the single-pass streaming setting, where the algorithm is presented the
constraints in an arbitrary order. We give a streaming algorithm to estimate the optimum within
a factor approaching 2/5 using logarithmic space, with high probability. This beats the trivial
factor 1/4 estimate obtained by simply outputting 1/4th of the total number of constraints.

The inspiration for our work is a lower bound of Kapralov, Khanna, and Sudan (SODA ’15)
who showed that a similar trivial estimate (of factor 1/2) is the best one can do for Max CUT.
This lower bound implies that beating a factor 1/2 for Max DICUT (a special case of Max 2CSP),
in particular, to distinguish between the case when the optimum is m/2 versus when it is at most
(1/4 + ε)m, where m is the total number of edges, requires polynomial space. We complement
this hardness result by showing that for DICUT, one can distinguish between the case in which
the optimum exceeds (1/2 + ε)m and the case in which it is close to m/4.

We also prove that estimating the size of the maximum acyclic subgraph of a directed graph,
when its edges are presented in a single-pass stream, within a factor better than 7/8 requires
polynomial space.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases approximation algorithms, constraint satisfaction problems, optimiza-
tion, hardness of approximation, maximum acyclic subgraph

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.8

1 Introduction

We are concerned with the ability of single-pass streaming algorithms to estimate the
optimum value of constraint satisfaction problems (CSPs), focusing in particular on very

∗ Research supported in part by NSF grant CCF-1526092.
† Work done mostly while at CMU.
‡ Work done mostly while at CMU, Pittsburgh during S.N. Bose Scholars Program 2016 conducted by

the Science and Engineering Board (SERB), Department of Science and Technology (DST), Govt. of
India, the Indo-U.S. Science and Technology Forum (IUSSTF) and WINStep Forward.

© Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

simple (Boolean, arity two) constraints. The impetus for our investigation is a striking lower
bound result by Khanna, Kapralov, Sudan [16] for the problem of estimating the Max Cut
in a graph, when the edges arrive one-by-one in a streaming fashion. There is a trivial factor
1/2-approximation for the problem using only O(logn) space, namely, count the number
of edges and output half this value as the estimate for Max Cut value.1 The authors of
[16] showed that even with Ω̃(

√
n) space, a single-pass streaming algorithm cannot achieve

a factor (1/2 + ε)-approximation, for any constant ε > 0.2 The lower bound in fact holds
even if the edges arrive in a random (as opposed to worst-case) order. A later work shows
that obtaining a β-approximation, for some β bounded away 1 requires Ω(n) space [17]. In
contrast, there are streaming algorithms producing a (1− ε)-approximation in Õε(n) space,
by use of “cut sparsifiers” [2, 19].

1.1 Context: Approximation resistance of CSPs
The Max Cut problem is a particular, most basic form of CSP, with underlying constraints
being of the form x 6= y. More generally, a CSP over domain D is specified by a template
Λ = {P1, . . . , Ps} of predicates Pi : Dai → {0, 1} (ai is the arity of Pi), and an instance
of MaxCSP(Λ) is specified by a variable set V and a collection of “constraint tuples" (i, τ)
with i ∈ {1, 2, . . . , s} denoting the type of constraint and τ ∈ V ai denoting the tuple of
variables to which the constraint is applied. The goal is to find an assignment σ : V → D

so that a maximum number of constraints are satisfied, where a constraint (i, τ) is satisfied
by σ if Pi(σ(τ1), . . . , σ(τai)) = 1 (in other words, setting the variables in the scope of this
constraint according to assignment σ satisfies the predicate Pi). The maximum possible
number of satisfied constraints is called the optimum value of the CSP instance. For most
templates Λ, the Max CSP problem is NP-hard to solve optimally (see [20] for a dichotomy
theorem for Max CSP classifying the rare easy cases). So there has been a lot of work
on designing approximation algorithms. An absolutely trivial algorithm is the random
assignment algorithm that ignores the instance structure, and simply assigns a random value
to each variable. This achieves a αΛ approximation for MaxCSP(Λ) where αΛ = mini{E[Pi]},
with the expectation taken over a random input to Pi – we call αΛ the random assignment
threshold. Since the seminal work of Håstad [13] it has been established that for several
interesting CSPs, it is NP-hard to beat the performance ratio of this trivial algorithm! Such
CSPs are called approximation resistant in the literature (see, for instance, [8] and references
therein). Already for arity 3, several important CSPs such as Max E3SAT and Max E3LIN
(linear equations mod 2) are approximation resistant.

Thanks to semidefinite programming, for arity 2 CSPs, one can do better than the αΛ
factor [7, 14]. In particular, for (Boolean) Max 2CSP, where the domain is D = {0, 1} and
Λ includes all predicates of arity 2, the seminal work of Goemans and Williamson [7], gave
a factor 0.79607 algorithm (this ratio was further improved to 0.8593 in [4]).3 The GW
algorithm was a substantial improvement over the random assignment threshold of 1/4 which
was also the best known algorithm for Max 2CSP at that time. For the specific case of
Max Cut, Goemans and Williamson get the famous 0.87856 approximation factor, a vast

1 We use numbers < 1 to designate the approximation ratio for the maximization problems we study: a
factor γ approximation means the output estimate is at least γ times the optimum, and always at most
the optimum.

2 Throughout, we allow streaming algorithms to be randomized, and their estimate should satisfy the
approximation guarantee with probability say 9/10.

3 This guarantee is stated for the Max DICUT problem, which is a CSP with a single predicate P (x, y) =
x ∧ y, but in fact it holds for Max 2CSP in general.

V. Guruswami, A. Velingker, and S. Velusamy 8:3

improvement over the random assignment threshold of 1/2 (which was again the best known
algorithm at that point).

The aforementioned Khanna, Kapralov, Sudan result [16], however, shows that in the
streaming model, Max Cut is approximation resistant! Thus, streaming algorithms cannot
non-trivially estimate the optimum of even the simplest CSP. This raises the question whether
streaming algorithms operating in small space can non-trivially approximate (i.e., beat the
random assignment threshold) for some CSP, or whether every CSP is approximation resistant
in the streaming model.

1.2 Our results for Max 2CSP and Max DICUT
In this work, we give a factor 2/5 streaming algorithm for Max 2CSP that uses O(logn)
space. In particular, this beats the random assignment threshold of 1/4.

I Theorem 1. Fix any γ > 0. There is an efficient single-pass streaming algorithm that,
given as input a Max 2CSP instance on n variables, with constraints arriving one-by-one in
an arbitrary order, uses Oγ(logn) space and with probability at least 9/10 outputs an estimate
in the range [(2/5− γ)OPT,OPT], where OPT is the optimum value of the CSP instance.

Any arity 2 Boolean predicate can be expressed as the disjunction of (at most 4) AND
constraints, at most one of which can be satisfied by any assignment. By AND constraints,
we mean one of the predicates (x∧ y), (x∧ y), (x∧ y), and (x∧ y) (that is, we take an AND
of two literals). Any Max 2CSP instance can thus be mapped into a Max 2AND instance
with the same optimum value. The above theorem therefore follows from our result about
Max 2AND stated below (without loss of generality, in the rest of the paper, we only focus
on Max 2AND and not Max 2CSP):

I Theorem 2. Fix any γ > 0. There is an Oγ(logn) space single-pass streaming algorithm
that can estimate the optimum value of a Max 2AND instance, whose AND constraints arrive
in an arbitrary order, within a factor of 2/5−γ with probability at least 9/10. More specifically,
on an instance with m constraints and optimum value OPT, the algorithm outputs a lower
estimate on OPT which, with probability at least 9/10, lies in the range [(2/5−γ)OPT,OPT].

Our algorithm and analysis are simple and elementary, and are based on the combination
of two observations. The first is that the bias of instance, which is sum over all variables
of |posv − negv| where posv (resp. negv) is the number of AND constraints in which v

participates as a positive literal (resp. negated literal), is a good proxy for the optimum
value when the optimum is large. The second is that the bias can be estimated efficiently in
a streaming fashion via L1 norm estimation of a vector under bounded dynamic updates of
its coordinates.

Note that prior to 1994 there was no efficient algorithm known to approximate Max
2AND (or even the restricted Max DICUT problem) within a factor better than the random
assignment threshold of 1/4. So, its simplicity notwithstanding, it is perhaps surprising that
one can in fact have a low-space and time-efficient streaming algorithm that achieves a factor
much better then 1/4.

Since the semidefinite programming based approximation for Max DICUT, many works
have also given simpler algorithms that beat the factor 1/4. We mention some of them
here. Trevisan used randomized rounding of a natural linear program to give a factor 1/2
algorithm [21]. Alimonti obtained a factor 1/3 approximation using local search [1]. Halperin
and Zwick presented simple factor 2/5 and 9/20 algorithms based on some path removal
ideas, and also a factor 1/2 algorithm (via a combinatorial method to find a half-integral LP

APPROX/RANDOM’17

8:4 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

solution) [11]. (In Appendix A, we give a different proof of the half-integrality of the LP,
and the associated (non-streaming) factor 1/2 algorithm.) Feige and Jozeph [5] give a very
simple factor 2/5 algorithm for Max DICUT: take the greedy cut which sets variables whose
out-degree is at least their in-degree to 0, and remaining to 1, and return the better of this
cut and a uniformly random cut.

None of these algorithms seem to have an efficient streaming implementation. The closest
to our algorithm is the greedy algorithm in [5], and we are able to get a streaming friendly
estimate of the DICUT value by avoiding computation of the greedy cut, but instead the
total bias of all vertices. Further our approach extends naturally to Max 2AND.

Hardness of factor 1/2 + ε approximation. We do not know if the 2/5 approximation
factor for Max 2AND is the best possible in the streaming model. However, one cannot
achieve an approximation factor larger than 1/2. This is because, by a trivial reduction from
the streaming lower bound for Max Cut in [16], we can deduce the following hardness even
for the special case of Max DICUT.

I Theorem 3. For any constant ε > 0, a factor (1/2+ε) randomized streaming approximation
algorithm for Max DICUT must use space Ω̃(

√
n). Specifically, a randomized streaming

algorithm that can decide, with success probability 9/10, whether an m edge directed graph
has a dicut of value at least m/2 or has no dicut of value (1/4 + ε)m, requires Ω̃(

√
n) space.

Complementary algorithmic result. We show the tightness of the above hardness result via
the following algorithmic result for Max DICUT. The approach is again based on estimation
of the bias of the graph: we prove that graphs whose dicut value is close to m/4 must have
small bias, and graphs with dicut value noticeably larger than m/2 must have noticeable
bias.

I Theorem 4. There is a randomized streaming algorithm using O(logn) space that can,
with probability 9/10, distinguish between directed graphs with maximum dicut value more
than (1/2 + 8ε)m from graphs with maximum dicut value at most (1/4 + ε)m (where m is the
number of edges), for any ε ∈ (0, 1/16).

1.3 Streaming complexity of Maximum Acylic Subgraph
In the final part of the paper, we turn to another fundamental problem, Maximum Acyclic
Subgraph (MAS): Given a directed graph G = (V,E), find an acyclic subgraph with maximum
possible number of edges. Equivalently, we want an ordering of the vertices in V so that a
maximum number of arcs in E go forward. Note that this makes MAS also a kind of 2CSP,
albeit over a large domain D = {1, 2, . . . , |V |} with constraints of the form x < y.

The trivial algorithm which orders elements randomly, or the deterministic algorithm
that takes the better solution among an arbitrary ordering and its reversal, achieves a factor
1/2 approximation. Unlike 2CSPs over fixed domains, where there are algorithms that
beat the random assignment threshold [3, 14], for MAS there is no known polynomial time
factor (1/2 + ε) approximation algorithm. However, such an algorithm is ruled out under
Khot’s Unique Games Conjecture [9]. The best known NP-hardness for MAS seems to be for
approximation factors exceeding 65/66 [18].

Motivated by this state of affairs, we investigate whether one can show better hardness
results against the restricted model of single-pass streaming algorithms. Our ultimate goal
here would be to show that getting a (1/2 + ε)-approximation requires polynomial space
(we conjecture this to be the case). In this work, we prove the following weaker result. The

V. Guruswami, A. Velingker, and S. Velusamy 8:5

proof proceeds via a reduction from the Boolean Hidden Matching problem, inspired by an
analogous reduction for Max Cut from [16].

I Theorem 5. Any randomized algorithm that, given a single pass over a stream of edges of
an n-vertex directed graph G in arbitrary order, outputs a (7/8 + ε)−approximation to the
MAS value of G with probability at least 3/4, must use Ωε(

√
n) space.

We note that the above hardness factor is much better than the currently best known
NP-hardness. This raises a general theme of showing space lower bounds for approximation
in the streaming model for problems that currently lack intractability results in the form of
NP-hardness (or perhaps even Unique Games-hardness). In this broader context, one should
of course take hardness results in the streaming model with a grain of salt – the streaming
lower bound for Max Cut shows that streaming algorithms might be much weaker than
polynomial time algorithms. Still, we view this direction as an interesting blend between
approximation algorithms in general and constraint satisfaction in particular and streaming
complexity, one that could nevertheless shed some new light on the core difficulty of problems
such as MAS.

1.4 Open problems
We close this front matter by highlighting two natural open problems raised by our work.

1. What is the best approximation ratio achievable by a single-pass streaming algorithm
with logarithmic space for Max 2CSP (or even the restricted Max DICUT)? The answer
lies in the range [2/5, 1/2]. We suspect either 2/5 or 1/2 might be the right answer.

2. What is the best approximation ratio achievable by a single-pass streaming algorithm
with logarithmic space for Maximum Acyclic Subgraph? The answer lies in the range
[1/2, 7/8]. Here we conjecture that 1/2 is the right answer.

2 Preliminaries

Max 2AND. We formally define the Max 2AND problem. An instance of the problem
consists of a set of boolean variables x1, x2, . . . , xn, along with a set of clauses on these
variables. Each clause consists of a conjunction of two literals, i.e., each clause is of one of
the following forms, for some i 6= j: xi ∧ xj , xi ∧ xj , or xi ∧ xj . The value of the instance is
the maximum possible number of clauses that are satisfied for some setting of x1, x2, . . . , xn.

For each variable, it will be convenient to consider the number of constraints in which
that variable appears as a literal in either positive or negative form. Thus, for any i, we
define posi to be the number of constraints in which xi appears non-negated, while we define
negi to be the number of constraints in which xi appears negated, i.e., as xi.

Special Case: Maximum Dicuts. One special case of the Max 2AND problem is the Max
DICUT problem. We describe the Max DICUT in the terminology of graph theory below.

G = (V,E) denotes a directed graph with vertex set V and edge set E, where |V | = n

and |E| = m. For any vertex v ∈ V , dv, inv, and outv denote the overall degree, in-degree
and out-degree of vertex v, respectively.

I Definition 6. A dicut is an ordered partition (A,B) of the vertex set of a directed graph
into two disjoint subsets. The dicut value or size of the dicut is defined as the number of
directed edges going from a vertex in A to a vertex in B.

APPROX/RANDOM’17

8:6 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

I Definition 7. A maximal dicut (Max DICUT) of a directed graph G = (V,E) is a dicut
with the maximum dicut value.

Let (S, T) be an ordered partition of V and u be a vertex in V . Then, E(S → T) denotes
the set of edges going from set S to set T , E(u → T) denotes the set of edges going from
vertex u to vertices in set T , E(S → u) denotes the set of edges going from vertices in set S
to vertex u, and E(S → S) denotes the edges with both endpoints inside the set S.
I Remark. Note that the Max DICUT problem can be viewed as a special case of the MAX
2AND problem in which each clause has exactly one positive literal and one negative literal.
Vertices of the underlying graph correspond to boolean variables, and each directed edge
from vertex i to vertex j corresponds to a clause of the form xi ∧ xj . It is easy to see that a
maximal dicut (A,B) in the graph terminology corresponds to the assignment of variables
defined by xi = 1 if vertex i is in set A, while xi = 0 if vertex i is in set B.
I Remark. The value of any Max 2AND instance with m clauses is at least m

4 , since a
uniformly random assignment of boolean variables satisfies m

4 clauses on expectation.

I Definition 8. A randomized algorithm is said to give a α−approximation to Max 2AND
with failure probability δ (or success probability 1 − δ) if for any instance Ψ, it outputs a
value in the interval [αd, d] with probability at least 1− δ, where δ ∈

[
0, 1

2
)
, α ∈ (0, 1), and

d is the Max 2AND value of Ψ.

3 Single-Pass Streaming Complexity

Given a single pass over a stream of m constraints (in arbitrary order) of a Max 2AND
instance Ψ over n variables, the problem is to estimate the Max 2AND value of Ψ using
O(logn) space.

3.1 (2/5 − γ)-Approximation of Max 2AND
In analysing the Max 2AND value of an instance, it will be useful to consider a notion we
call bias. Intuitively, for each vertex, we wish to compare the number of constraints in which
xi appears in positive form versus the number of constraints in which xi appears in negated
form. The following definition of bias captures this intuition.

I Definition 9. The bias of a Max 2AND instance Ψ on n variables, denoted biasΨ, is
defined as

biasΨ =
n∑
i=1
|posi − negi|.

I Remark. 0 ≤ biasΨ ≤ 2m.
Next, we prove a couple of theorems showing the relation between the bias of an instance

and the Max 2AND value.
Intuitively, observe that if the bias of an instance is close to 2m, then most variables

xi satisfy the property that most constraints involving xi have the same literal on xi (i.e.,
xi appears in positive or negated form). Thus, it is reasonable to expect that in order to
maximize the number of satisfied constraints, xi should be set to the value that guarantees
the truth of most of these literals. The following theorem essentially states that this is the
case, and a bias close to 2m implies a Max 2AND value that is close to optimal, i.e., close to
m.

V. Guruswami, A. Velingker, and S. Velusamy 8:7

I Theorem 10. If the bias of an instance Ψ with n variables and m constraints is at least
(1− ε)2m, where ε ∈ [0, 1], then the Max 2AND value of Ψ is at least (1− ε)m.

Proof. Assume that biasΨ ≥ (1 − ε)2m. Now, consider the following greedy assignment
x1 = x′1, x2 = x′2, . . . , xn = x′n: For each i, we let x′i = 1 if posi ≥ negi, and x′i = 0 otherwise.
We claim that the number of constraints satisfied by this assignment is at least (1 − ε)m,
which would imply that the Max 2AND value of Ψ is also at least (1− ε)m.

Note that the number of unsatisfied constraints is at most
n∑
i=1

min{posi, negi}.

Thus, using the fact that

biasΨ =
n∑
i=1
|posi − negi|

=
n∑
i=1

(posi + negi)− 2
n∑
i=1

min{posi, negi}

= 2m− 2
n∑
i=1

min{posi, negi}, (1)

we have that the number of satisfied constraints of the assignment is at least

m−
n∑
i=1

min{posi, negi} ≥ m−
2m− biasΨ

2 = biasΨ

2 ≥ (1− ε)m ,

as desired. J

The following theorem essentially shows a converse statement, namely, that in order to
have a near-optimal Max 2AND value, i.e., close to m, the bias needs to be close to 2m.

I Theorem 11. If the bias of a Max 2AND instance Ψ with n variables and m constraints
is at most (1− ε)2m, where ε ∈ [0, 1], then its Max 2AND value is at most

(
1− ε

2
)
m.

Proof. Consider an assignment x1 = x′1, x2 = x′2, . . . , xn = x′n that satisfies the maximum
number of constraints of Ψ. Note that for any i, at least min{posi, negi} constraints involving
xi are not satisfied. Therefore, the total number of constraints of Ψ that are not satisfied is
at least∑n

i=1 min{posi, negi}
2 .

By (1), it follows that the Max 2AND value of Ψ is at most

m−
∑n
i=1 min{posi, negi}

2 = m− 2m− biasΨ

4 = m

2 + biasΨ

4

≤ m

2 + (1− ε)2m
4 =

(
1− ε

2

)
m,

as desired. J

The above theorems show us that the bias of an instance and its Max 2AND value are
closely related. Thus, if we can compute the bias of an instance efficiently in the single-pass
streaming setting, then we obtain a method to estimate its Max 2AND value.

APPROX/RANDOM’17

8:8 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

Algorithm 1 A (2/5−γ)-approximation algorithm of Max 2AND in the single-pass streaming
setting.

1: Input: A single pass over them constraints of an instance Ψ over n variables x1, x2, . . . , xn,
along with a parameter γ < 2/5 for desired closeness of approximation ratio.

2: Choose δ = 5γ/(4− 5γ).
3: Compute the L1 norm of the bias vector using the technique given in [15] (for an

approximation within 1± δ) to obtain b̃iasΨ.
4: if b̃iasΨ ≥ m/2 then
5: return b̃iasΨ/2(1 + δ)
6: else
7: return m/4
8: end if

Let us define the bias vector of a Max 2AND instance Ψ with n variables andm constraints
to be a vector with n components such that the ith component is equal to posi − negi for
all v ∈ V (G). Then, biasΨ is the L1 norm of the bias vector. Each constraint l1 ∧ l2 that
arrives in the stream changes the ith and jth components of the bias vector, where literal l1
involves variable xi and l2 involves variable xj . In particular, the arrival of the constraint
increases the ith component by 1 if l1 is xi while it decreases the component by 1 if l1 is xi.
Similarly, the jth component increases by 1 if l2 is xj , while it decreases by 1 if l2 is xj .

The following theorem given by Indyk in [15] shows that it is possible to compute the
L1 norm of a vector efficiently under bounded dynamic updates of its coordinates in the
single-pass streaming setting.

I Theorem 12 (from [15]). Let S be a stream of data, where each chunk of data is of the form
(i, a), i ∈ [n] and a ∈ {−M . . .M}, where M is a constant. The L1 norm of the data defined
by L1(S) = ‖V (S)‖1, where V (S)i =

∑
(i,a)∈S a can be estimated by an algorithm that, given

an arbitrary input stream S, outputs a quantity in the interval [(1− ε)L1(S), (1 + ε)L1(S)]
with probability at least 9/10, such that the algorithm uses only O(logn/ε2) words of storage.

Theorem 12 can be adapted to our setting by converting each constraint of the form
xi ∧ xj to a data chunk {(i, 1), (j, 1)}, each constraint of the form xi ∧ xj to a data chunk
{(i, 1), (j,−1)}, and each constraint of the form xi ∧ xj to a data chunk {(i,−1), (j,−1)}.
This shows that we can compute the bias of a directed graph up to any constant precision
with high probability.

We are now ready to show our main algorithmic result, namely, that one can obtain a
2/5-approximation to Max 2AND in the streaming model.

I Theorem 13. Algorithm 1 is a (2/5 − γ)-approximation algorithm of Max 2AND with
success probability 9/10 in the single-pass streaming setting.

Proof. Note that if biasΨ = (1/4 + ε)2m, ε ∈ [δ/2, 3/4], then by Theorem 10, the Max
2AND value Val of Ψ is at least (1/4 + ε)m and by Theorem 11, Val is at most (5/8 + ε/2)m.
Moreover, by Theorem 12, with probability at least 9/10, the L1 norm estimation subroutine
of Algorithm 1 outputs an estimate b̃iasΨ ∈ ((1− δ)biasΨ, (1 + δ)biasΨ). Since

(1− δ)biasΨ ≥ (1− δ)
(

1
4 + ε

)
2m ≥ (1− δ)

(
1
4 + δ

2

)
2m ≥ m

2 ,

V. Guruswami, A. Velingker, and S. Velusamy 8:9

Algorithm 1 returns b̃iasΨ/2(1 + δ) in this case. Furthermore,

b̃iasΨ/2
Val ≥ (1− δ)biasΨ/2

(5/8 + ε/2)m = (1− δ)(1/4 + ε)m
(5/8 + ε/2)m ≥ 2

5(1− δ)

and

b̃iasΨ/2
Val ≤ (1 + δ)biasΨ/2

(1/4 + ε)m ≤ (1 + δ)(1/4 + ε)m
(1/4 + ε)m ≤ 1 + δ .

Thus, we obtain an approximation ratio of

2
5 ·

1− δ
1 + δ

≥ 2
5 − γ.

by the choice of δ in the algorithm
Next, consider the case in which biasΨ < (1/4 + δ/2)2m. Then, note that the algorithm

always outputs a value that is at least m/4(1 + δ). Moreover, by Theorem 11, we have that
Val ≤ (5/8 + δ/4)m. Therefore, the approximation ratio in this case is

m/4(1 + δ)
(5/8 + δ/4)m = 2

5 ·
1 + δ

1 + 2δ
5
≥ 2

5 − γ . J

3.2 Hardness of (1/2 + ε)-approximation and a complementary
streaming algorithm for Max DICUT

Next, we consider the Max DICUT problem. We start by examining the regime in which the
Max DICUT value of an instance is close to the lower bound of m/4, i.e., as suboptimal as
possible. For the Max DICUT problem, we define the following notion of bias for a directed
graph G.

I Definition 14. We define the bias of a directed graph G = (V,E), denoted biasG, as
biasG =

∑
v∈V |outv − inv|.

I Remark. Note that biasG, as defined in Definition 14, gives the identical value as biasΨ for
the corresponding MAX 2AND instance Ψ (see Remark 2 for the correspondence). We use
the notion biasG along with the graph formulation of Max DICUT for convenience in this
section.

The following theorem shows that if the DICUT value of a Max DICUT instance is close
to m/4, then the bias of the corresponding graph must be small.

I Theorem 15. If the Max DICUT value of a directed graph G = (V,E) is at most
(1

4 + ε
)
m,

where ε ∈
[
0, 1

16
]
, then its bias is at most 32εm.

Proof. Let G = (V,E) be a directed graph with Max DICUT value at most
(1

4 + ε
)
m, where

ε ∈
[
0, 3

4
]
. Let (A,B) be a maximal dicut of G.

|E(A→ B)| ≤
(

1
4 + ε

)
m. (2)

|E(B → A)| ≤
(

1
4 + ε

)
m. (3)

For every vertex u ∈ A, we have

|E(u→ B)| ≥ |E(A→ u)|. (4)

APPROX/RANDOM’17

8:10 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

If there is a u ∈ A that does not satisfy (4), then it can be moved to set B to give a dicut of
larger size, which contradicts the fact that (A,B) is a maximal dicut of G. Similarly, for
every vertex v ∈ B, we have

|E(A→ v)| ≥ |E(v → B)|. (5)

The total number of edges in the graph is

|E(A→ A)|+ |E(B → B)|+ |E(A→ B)|+ |E(B → A)| = m. (6)

From (4) and (5), we have

max(|E(A→ A)|, |E(B → B)|) ≤ |E(A→ B)| ≤
(

1
4 + ε

)
m. (7)

From (2), (3), (6) and (7), we get

min(|E(A→ A)|, |E(B → A)|, |E(B → B)|) ≥
(

1
4 − 3ε

)
m. (8)

We will now obtain an upper bound on
∑
v∈B |outv − inv|.∑

v∈B
|outv − inv| =

∑
v∈B

∣∣|E(v → B)|+ |E(v → A)| − |E(B → v)| − |E(A→ v)|
∣∣

≤
∑
v∈B

(
∣∣|E(v → B)| − |E(A→ v)|

∣∣+
∣∣|E(v → A)| − |E(B → v)|

∣∣). (9)

Using (2),(5) and (8), we get∑
v∈B

∣∣|E(v → B)| − |E(A→ v)|
∣∣ =

∑
v∈B
|E(A→ v)| −

∑
v∈B
|E(v → B)|

≤
(

1
4 + ε

)
m−

(
1
4 − 3ε

)
m

= 4εm. (10)

We call a vertex v ∈ B “good" if

|E(B → v)| > |E(v → A)|.

and “bad" if it is not “good". Now, consider the ordered partition (B,A). If we move a
“good" vertex from B to A, the dicut value of the resulting partition is larger than the dicut
value of (B,A). We know that the size of any dicut in G is at most

(1
4 + ε

)
m. From (8), we

can infer that the increase in the dicut value by moving a “good" vertex cannot exceed 4εm.
Let Bg denote the set of all “good" vertices in B. We have∑

v∈Bg

(|E(B → v)| − |E(v → A)|) ≤ 4εm. (11)

Let Bb denote the set of all “bad" vertices in B. From (8) and (11), we get∑
v∈Bb

|E(B → v)| ≥
(

1
4 − 3ε

)
m−

∑
v∈Bg

|E(B → v)|

≥
(

1
4 − 3ε

)
m− 4εm−

∑
v∈Bg

|E(v → A)|

=
(

1
4 − 7ε

)
m−

∑
v∈Bg

|E(v → A)|. (12)

V. Guruswami, A. Velingker, and S. Velusamy 8:11

Using (12), we get

∑
v∈Bb

(|E(v → A)| − |E(B → v)|) ≤
∑
v∈B
|E(v → A)| −

(
1
4 − 7ε

)
m

= |E(B → A)| −
(

1
4 − 7ε

)
m

≤ 8εm. (13)

From (9), (10), (11) and (13), we have∑
v∈B
|outv − inv| ≤ 16εm.

Using similar arguments, we can conclude that∑
v∈A
|outv − inv| ≤ 16εm.

Hence, the bias of G is at most 32εm. J

I Corollary 16. If the Max DICUT value of a directed graph G = (V,E) is m
4 , then its bias

is 0, i.e., inv = outv ∀v ∈ V .

I Remark. It is reasonable to expect a converse statement of Theorem 15 to hold, i.e., that a
bias close to zero implies a Max DICUT value that is close to m/4. However, it turns out that
such a statement is not true. For example, consider the following instance of Max DICUT:
Let G(V,E) be an undirected perfect matching on 2n vertices. Using G, construct a directed
graph G′(V,E′) by adding directed edges u → v, v → u to E′ for each undirected edge
(u, v) in E. The Max DICUT value of G′ is n, which is much larger than m/4 = 2n/4 = n/2.
However, the bias of G′ is 0.

We now state the non-existence of a better-than-1/2−approximation algorithm for Max
DICUT when the constraints of an instance arrive one-by-one in random order in the
single-pass streaming setting.

Kapralov et al. gave a lower bound for approximating MAXCUT in the single-pass
streaming setting in [16]. By showing a simple reduction from MAXCUT to Max DICUT,
we observe that the same lower bound applies to Max DICUT. The following theorem is
taken from [16].

I Theorem 17 (from [16]). Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be
an undirected graph. Any randomized algorithm that, given a single pass over a stream of
edges of G presented in random order, outputs a (1/2 + ε)−approximation to the value of
the maximum cut in G with probability at least 9/10 over its internal randomness must use
Ω̃(
√
n) space.

The reduction from MAXCUT to Max DICUT is as follows. Given any undirected graph
G, convert it into a directed graph G′ by adding two directed edges u→ v and v → u for
every edge (u, v) ∈ E(G). Observe that G has a cut of size k if and only if G′ has a dicut of
size k. Therefore, the MAXCUT value of G is equal to the Max DICUT value of G′. Note
that this reduction can be done on the fly and does not require any additional storage. Thus,
we have the following theorem.

APPROX/RANDOM’17

8:12 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

I Theorem 18. Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be a directed
graph. Any randomized algorithm that, given a single pass over a stream of edges of G
presented in random order, outputs a (1/2 + ε)−approximation to the Max DICUT value of
G with probability at least 9/10 over its internal randomness must use Ω̃(

√
n) space.

I Remark. Since an instance of Max DICUT can be viewed as a special instance of Max 2AND
in which all clauses have one positive literal and one negative literal, the aforementioned
theorem also precludes the existence of a randomized streaming algorithm that approximates
the Max 2AND value of an instance to a factor of 1/2 + ε without using Ω̃(

√
n) space.

To prove Theorem 17, [16] showed that no o(
√
n) algorithm can distinguish between

distributions DY and DN , where graphs drawn from DY have MAXCUT value m, while
graphs drawn from DN have MAXCUT value at most (1/2 + ε)m for any ε ∈ [0, 1/2]. By
applying the reduction from MAXCUT to Max DICUT (the number of edges is doubled
in the reduced graph), we can conclude than no o(

√
n) algorithm can distinguish between

directed graphs with Max DICUT value m/2 and graphs with Max DICUT value at most
(1/4 + ε)m for any ε ∈ [0, 1/4].

I Theorem 19. Given a single pass over the edges of a directed graph G in any order, by
computing the bias of G we can distinguish between directed graphs with Max DICUT value
more than (1/2 + 8ε)m and graphs with Max DICUT value at most (1/4 + ε)m for any
ε ∈ (0, 1/16), with success probability 9/10.

Proof. If the Max DICUT value of a graph is at most (1
4 + ε)m, then using Theorem 15 we

can conclude that its bias is at most 32εm. If the Max DICUT value of a graph is more than
(1− δ)m, then using the contrapositive result of Theorem 11, we can conclude that its bias
is more than (1− 2δ)2m. By substituting δ = 1/2− 8ε, we get that the bias of the graph is
more than 32εm. Thus, we can distinguish the two graphs by computing their bias values
using the L1 sampling method. J

Note that while [16] implied that no o(
√
n) algorithm can distinguish between directed

graphs with Max DICUT value m/2 and graphs with Max DICUT value at most (1/4 + ε)m
for any ε ∈ [0, 1/4], Theorem 19 shows that it is possible to distinguish between directed
graphs with Max DICUT value (1/2 + 0.0001)m and graphs with Max DICUT value at
most (1/4 + 0.00001)m in the single-pass streaming setting using a O(logn) algorithm that
computes the bias of a graph.

4 Maximum Acyclic Subgraph

I Definition 20. The Maximum Acyclic Subgraph (MAS) value of a directed graph G =
(V,E) is the size of the largest acyclic subgraph of G, where we define the size of a graph to
be the number of edges in it.

Given a single pass over a stream of edges of a directed graph G = (V,E), we are interested
in computing an approximate estimate of the MAS value of G using logarithmic space.

I Definition 21. A randomized algorithm is said to give a α−approximation to MAS for
some α ∈ (0, 1) if for any input G = (V,E), it outputs a value in the interval [αd, d] with
probability at least 9/10, where d is the MAS value of G.

In this section, we show the non-existence of a better-than-7/8−approximation algorithm
to MAS in the low-space single-pass streaming setting. We show this via a reduction from

V. Guruswami, A. Velingker, and S. Velusamy 8:13

ai bi ai bi

ci di ci di

xi = 0 xi = 1

Figure 1 Edge set E1.

Boolean Hidden Matching (BHM), a two party one-way communication problem. A strong
communication lower bound for BHM was given by Gavinsky et al. in [6]. In [16], Kapralov
et al. showed the hardness of approximating MAXCUT using the BHM problem and its
extension given by Verbin and Yu in [22]. Inspired by this, here we adapt this approach to
show hardness of approximating MAS.

I Definition 22. The Boolean Hidden Matching (BHM) problem is a communication
complexity problem in which Alice gets a Boolean vector x ∈ {0, 1}n and Bob gets an
undirected perfect matching M on n vertices and a Boolean vector w of length n/2, where we
identify the perfect matching M with its Boolean edge incidence matrix of dimension n

2 × n.
It is a promise problem in which Bob outputs YES when Mx⊕ w = 0n/2 and outputs NO
when Mx⊕ w = 1n/2.

The following theorem was proved by Gavinsky et al. in [6].

I Theorem 23. Any randomized one-way communication protocol for solving BHM, where
Alice sends messages to Bob, that succeeds with probability at least 9/10 has complexity
Ω(
√
n).

We now use the above theorem to prove our streaming lower bound for approximating MAS.

I Theorem 24. Let ε > 0 be a constant. Let G = (V,E), |V | = n, |E| = m be a directed
graph. Any randomized algorithm that, given a single pass over a stream of edges of G,
outputs a (7/8 + ε)−approximation to the MAS value of G with probability at least 9/10 over
its internal randomness must use Ω(

√
n) space.

Proof. Let ALG be a randomized algorithm that uses space c and gives a better-than-
7/8−approximation to MAS in the single-pass streaming setting. We will show that ALG can
be used to obtain a randomized one-way communication protocol for BHM with complexity c.

Let x ∈ {0, 1}n be the vector that Alice receives. Alice creates edge set E1, her part of
the graph that will be given as input to ALG, as shown in Fig. 1. For each i ∈ [n], she
creates four vertices ai, bi, ci and di. If xi = 0, she adds edges ai → bi and di → ci to E1.
Else, she adds edges bi → ai and ci → di to E1. She then treats E1 as the first half of the
stream of edges, runs ALG on E1 and sends the state of ALG to Bob.

Bob constructs edge set E2, his part of the graph, as shown in Fig. 2 and Fig. 3. Let
M be the perfect matching on n vertices and w be the boolean vector of length n/2 that
Bob receives. Let Mi = (i1, i2) denote the i−th edge in the matching M (fix any ordering)
and wi denote the i−th coordinate of w, where i ∈ [n/2]. If wi = 0, he adds edges bi1 → ai2 ,
bi2 → ai1 , di1 → ci2 and di2 → ci1 to E2. Else, he adds edges bi1 → bi2 , ai2 → ai1 , di1 → di2
and ci2 → ci1 to E2.

He treats E2 as the second half of the stream and completes the execution of ALG on
the stream starting from the state that Alice sent. The total number of edges in the graph is

APPROX/RANDOM’17

8:14 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 1, xi2 = 0 xi1 = 1, xi2 = 1

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 0, xi2 = 0 xi1 = 0, xi2 = 1

Figure 2 Edge set E2 when wi = 0 (Cycles are marked in brown).

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 1, xi2 = 0 xi1 = 1, xi2 = 1

ai1 bi1
ai1 bi1

ci1 di1
ci1 di1

ai2 bi2
ai2 bi2

ci2 di2
ci2 di2

xi1 = 0, xi2 = 0 xi1 = 0, xi2 = 1

Figure 3 Edge set E2 when wi = 1 (Cycles are marked in brown).

V. Guruswami, A. Velingker, and S. Velusamy 8:15

2n+ 4(n/2) = 4n (Alice adds two edges for each coordinate of x and Bob adds four edges for
each edge in M). If the MAS value output by ALG is greater than 7n/2, then Bob outputs
NO, else he outputs YES.

The correctness of the reduction can be shown in the following way.

Mx⊕ w =



x11 ⊕ x12 ⊕ w1
...

xi1 ⊕ xi2 ⊕ wi
...

x(n/2)1 ⊕ x(n/2)2 ⊕ w(n/2)

 .

As depicted in Fig. 2 and Fig. 3, we can observe that when xi1 ⊕xi2 ⊕wi = 0, there is exactly
one cycle and when xi1 ⊕xi2 ⊕wi = 1, there are no cycles. Therefore, if Mx⊕w = 1n/2, then
the graph is acyclic and the MAS value is 4n. If Mx⊕ w = 0n/2, then the graph contains
exactly n/2 disjoint cycles (corresponding to each i ∈ [n/2]) and hence the MAS value is
7n/2 (subtract one edge from each cycle to get the maximum acyclic subgraph). Since ALG
gives a better-than-7/8−approximation to MAS, it outputs a MAS value greater than 7n/2
if and only if Mx ⊕ w = 1n/2. Since the state sent by Alice to Bob (after executing the
first half of the stream) contains at most c bits, the above protocol has randomized one-way
communication complexity c with success probability at least 9/10. By using Theorem 23,
we infer that c = Ω(

√
n). J

References
1 Paola Alimonti. Non-oblivious local search for MAX 2-CSP with application to MAX DI-

CUT. In 23rd International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 2–14, 1997.

2 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
Proceedings of the 28th annual ACM symposium on Theory of computing, pages 47–55,
1996.

3 Lars Engebretsen and Venkatesan Guruswami. Is constraint satisfaction over two variables
always easy? Random Structures and Algorithms, 25(2):150–178, 2004.

4 Uriel Feige and Michel X. Goemans. Aproximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT. In Third Israel Symposium on The-
ory of Computing and Systems (ISTCS), pages 182–189, 1995. doi:10.1109/ISTCS.1995.
377033.

5 Uriel Feige and Shlomo Jozeph. Oblivious algorithms for the Maximum Directed Cut
problem. Algorithmica, 71(2):409–428, 2015. doi:10.1007/s00453-013-9806-z.

6 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Ex-
ponential separations for one-way quantum communication complexity, with applications
to cryptography. In Proceedings of the Thirty-ninth Annual ACM Symposium on The-
ory of Computing, STOC’07, pages 516–525, New York, NY, USA, 2007. ACM. doi:
10.1145/1250790.1250866.

7 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

8 Venkatesan Guruswami and Euiwoong Lee. Towards a characterization of approximation
resistance for symmetric CSPs. In Proceedings of Approximation, Randomization, and
Combinatorial Optimization: Algorithms and Techniques (APPROX/RANDOM), pages
305–322, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.305.

APPROX/RANDOM’17

http://dx.doi.org/10.1109/ISTCS.1995.377033
http://dx.doi.org/10.1109/ISTCS.1995.377033
http://dx.doi.org/10.1007/s00453-013-9806-z
http://dx.doi.org/10.1145/1250790.1250866
http://dx.doi.org/10.1145/1250790.1250866
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305

8:16 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

9 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the ran-
dom ordering is hard: Inapproximability of maximum acyclic subgraph. In Proceedings of
the 49th IEEE Symposium on Foundations of Computer Science, pages 573–582, 2008.

10 Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable horn SAT and exact hitting set. Theory of Computing, 8(11):239–267, 2012.
doi:10.4086/toc.2012.v008a011.

11 Eran Halperin and Uri Zwick. Combinatorial approximation algorithms for the maximum
directed cut problem. In Proceedings of the 12th Annual Symposium on Discrete Algorithms,
pages 1–7, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365412.

12 Eran Halperin and Uri Zwick. Combinatorial approximation algorithms for the maximum
directed cut problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA’01, pages 1–7, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=365411.365412.

13 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

14 Johan Håstad. Every 2-CSP allows nontrivial approximation. Computational Complexity,
17(4):549–566, 2008. doi:10.1007/s00037-008-0256-y.

15 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, May 2006. doi:10.1145/1147954.1147955.

16 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming Lower Bounds for
Approximating MAX-CUT. In Proceedings of the Twenty-sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’15, pages 1263–1282, Philadelphia, PA, USA, 2015.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2722129.2722213.

17 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + Ω(1))-
approximation to MAX-CUT Requires Linear Space. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’17, pages 1703–
1722, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=3039686.3039798.

18 Alantha Newman. Approximating the maximum acyclic subgraph. Master’s thesis, MIT,
June 2000.

19 D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. STOC,
pages 563–568, 2008.

20 Johan Thapper and Stanislav Zivny. The complexity of finite-valued CSPs. J. ACM,
63(4):37:1–37:33, 2016. doi:10.1145/2974019.

21 Luca Trevisan. Parallel approximation algorithms by positive linear programming. Al-
gorithmica, 21(1):72–88, 1998. doi:10.1007/PL00009209.

22 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by re-
versals, and other problems. In Proceedings of the Twenty-second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA’11, pages 11–25, Philadelphia, PA, USA, 2011.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.
cfm?id=2133036.2133038.

A Approximating Max DICUT Using LP Rounding

In this section, we give a deterministic 1/2−approximation algorithm to solve the Max
DICUT problem in polynomial time in the usual setting (not streaming).

We first look at the binary integer programming (BIP) formulation of the Max DICUT
problem. Given a directed graph G = (V,E), the objective is to obtain an ordered partition

http://dx.doi.org/10.4086/toc.2012.v008a011
http://dl.acm.org/citation.cfm?id=365411.365412
http://dl.acm.org/citation.cfm?id=365411.365412
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.1007/s00037-008-0256-y
http://dx.doi.org/10.1145/1147954.1147955
http://dl.acm.org/citation.cfm?id=2722129.2722213
http://dl.acm.org/citation.cfm?id=2722129.2722213
http://dl.acm.org/citation.cfm?id=3039686.3039798
http://dx.doi.org/10.1145/2974019
http://dx.doi.org/10.1007/PL00009209
http://dl.acm.org/citation.cfm?id=2133036.2133038
http://dl.acm.org/citation.cfm?id=2133036.2133038

V. Guruswami, A. Velingker, and S. Velusamy 8:17

(A,B) of V such that the number of edges not in E(A→ B) is minimum.

minimize
∑

e(i,j)∈E

ze.

subject to ze ≥ xi, ∀e(i, j) ∈ E.
ze ≥ 1− xj , ∀e(i, j) ∈ E.

ze, xi ∈ {0, 1}, ∀i ∈ V, ∀e ∈ E.

In the above BIP, e(i, j) denotes a directed edge e from vertex i to vertex j. xi, ∀i ∈ V
are indicator variables. If xi = 0, then i ∈ A, else i ∈ B. ze is constrained to be at least as
large as max(xi, 1− xj). Since the objective is to minimize

∑
e(i,j)∈E ze, in any BIP solution,

ze = max(xi, 1− xj). Thus, ze = 0 if e ∈ E(A→ B) and 1 otherwise. Hence, the optimal
value of

∑
e(i,j)∈E ze gives the number of edges not in the Max DICUT of G.

It is hard to get an exact solution for the above BIP in the worst case. Therefore, we
consider below its LP relaxation to approximately estimate the number of edges not in the
Max DICUT.

minimize
∑

e(i,j)∈E

ze.

subject to ze ≥ xi, ∀e(i, j) ∈ E.
ze ≥ 1− xj , ∀e(i, j) ∈ E.

ze, xi ∈ [0, 1] , ∀i ∈ V, ∀e ∈ E.

Any optimum solution to the above LP assigns ze = max(xi, 1− xj). Thus {xi} are the
independent variables and we denote any solution f to the above LP by f = {xi}. The
existence of a half-integral optimal solution to the LP and a combinatorial algorithm to
obtain it was given by Halperin and Zwick in [12]. In this paper, we present an alternate
algorithm to obtain a half-integral optimal solution to the LP, adapted from [10].

I Theorem 25 (Half Integrality). There is a polynomial-time algorithm that given a optimal
solution f = {xi} to the above LP, converts f into another optimal solution f∗ = {x∗i } such
that each x∗i is half-integral, i.e., x∗i ∈ {0, 1, 1/2}, and Val(f∗) ≤ Val(f).

Proof. Algorithm 2 takes as input the above LP formulation and one of the solutions
f = {xi}, and outputs the desired f∗. At a high level, the algorithm iteratively moves the
LP variables that are not half integral to half integral values. We need to prove that the
algorithm terminates in polynomial number of iterations and in each iteration, it creates a
valid LP solution whose objective value is at most the previous objective value.

Algorithm 2 always maintains a valid solution f to the LP (i.e., all x′is are in the range
[0, 1]). We first prove that it terminates within a polynomial number of iterations. Consider
the set Wf = {0 < x < 1/2 : ∃i ∈ V | x = xi or x = 1 − xi}. In each loop, the algorithm
picks a p from Wf . At the end of the loop, p is removed from Wf and no new element is
added. Thus, after a linear number of steps Wf = ∅ and the loop terminates.

We now prove that the objective value of the LP does not increase after each iteration.
Define f (t) = {x(t)

i = t}i∈S ∪ {x(t)
i = 1− t}i∈S′ ∪ {x(t)

i = xi}i∈V \(S∪S′) for t ∈ [a, b]. Observe
that p ∈ [a, b]. If we can show that Val(f (t)) is a linear function for t ∈ [a, b], it proves that
min(Val(f (a)),Val(f (b))) ≤ Val(f (p)) = Val(f). To prove linearity of Val(f (t)), we only need
to show that gij(t) = max(x(t)

i , 1− x(t)
j) is linear for t ∈ [a, b], ∀e(i, j) ∈ E. We prove each

case separately for t ∈ [a, b].

APPROX/RANDOM’17

8:18 Streaming Complexity of Approximating Max 2CSP and Max Acyclic Subgraph

Algorithm 2 Round any LP solution f = {xi} to a half-integral solution f∗, with Val(f∗) ≤
Val(f).

1: while ∃i ∈ V : xi /∈ {0, 1, 1/2} do
2: choose k ∈ v, such that xk /∈ {0, 1, 1/2} (arbitrarily)
3: if xk < 1/2 then
4: p← xk
5: else
6: p← 1− xk
7: end if
8: S ← {i : xi = p}, S′ ← {i : xi = 1− p}
9: a← max{xi : xi < p, 1− xi : xi > 1− p, 0}

10: b← min{xi : xi > p, 1− xi : xi < 1− p, 1/2}
11: f (a) ← {x(a)

i = a}i∈S ∪ {x
(a)
i = 1− a}i∈S′ ∪ {x(a)

i = xi}i∈V \(S∪S′)

12: f (b) ← {x(b)
i = b}i∈S ∪ {x

(b)
i = 1− b}i∈S′ ∪ {x(b)

i = xi}i∈V \(S∪S′)
13: if Val(f (a)) ≤Val(f (b)) then
14: f ← f (a)

15: else
16: f ← f (b)

17: end if
18: end while
19: return f (as f∗)

If i, j ∈ V \(S ∪ S′), gij(t) is a constant function.
If i ∈ S, j ∈ S′, gij(t) = t.
If i ∈ S′, j ∈ S, gij(t) = 1− t.
If i, j ∈ S (or i, j ∈ S′), g(t) = max(t, 1− t). Since a, b ≤ 1

2 and t ∈ [a, b], gij(t) = 1− t.
If i ∈ S, j ∈ V \(S ∪ S′), g(t) = max(t, 1− xj). If we plot all the x′is and 1− x′is on the
[0, 1] line, a is the maximum value less than p and b is the minimum value greater than p.
∀i ∈ V \(S ∪ S′), xi /∈ (a, b) and 1− xi /∈ (a, b).Thus, depending on xj , gij(t) is either a
constant or a linear function.
If i ∈ S′, j ∈ V \(S ∪ S′) (or i ∈ V \(S ∪ S′), j ∈ S ∪ S′), we can show that gij(t) is linear
by using the same argument as above. J

I Lemma 26. If the optimum value of the LP is at most εm, then the Max DICUT value
of the corresponding graph is at least

(
1− 3

2ε
)
m.

Proof. Using Algorithm 2, we obtain a half-integral solution to the LP relaxation in poly-
nomial time. This solution partitions the vertex set into three subsets. Let A = {i : xi =
0}, B = {i : xi = 1} and U = {i : xi = 1/2}. The solution assigns ze = 0 for e ∈ E(A→ B),
ze = 1/2 for e ∈ E(U → B) ∪E(A→ U) ∪E(U → U) and ze = 1 otherwise. If we round off
each variable in U to either 0 or 1 with probability 1/2, on expectation, at least half of {ze}
that are assigned value 1/2 currently become 0. This implies that there exists a rounding r
which makes at most half of {ze} with value 1/2 become 1 after that.

Since the LP optimum is at most εm, the number of {ze} that take value 1/2 are at most
2εm. After rounding r, the LP solution looks similar to the BIP solution. The increase in
the objective value is at most 1

2 × 2εm× 1
2 = ε

2m. Thus, the Max DICUT value of the graph
is at least

(
1− 3

2ε
)
m. J

V. Guruswami, A. Velingker, and S. Velusamy 8:19

Algorithm 3 A deterministic 1/2−approximation algorithm of Max DICUT.
1: Input: A directed graph G = (V,E).
2: Solve the LP relaxation of the Max DICUT problem for G. Let t be the corresponding

optimum value.
3: if t ≤ m/2 then
4: return (m− 3t/2)
5: else
6: return m/4
7: end if

I Theorem 27. Algorithm 3 is a deterministic polynomial time 1/2−approximation algorithm
of Max DICUT.

Proof. The running time of Algorithm 3 follows from the fact that any LP can be solved
in deterministic polynomial time. If t is the optimum value returned by the LP relaxation,
then the BIP optimum value is at least t. This implies that the Max DICUT value of the
corresponding graph is at most m − t. Lemma 26 implies that the Max DICUT value is
at least (m− 3t/2). When t ≤ m/2, the algorithm returns (m− 3t/2) as the Max DICUT
value. In this case, the approximation ratio is (m− 3t/2)/(m− t) ≥ 1/2. When t > m/2,
the Max DICUT value is at most m/2. Since the algorithm outputs m/4 in this case, the
approximation ratio is 1/2. J

APPROX/RANDOM’17

	Introduction
	Context: Approximation resistance of CSPs
	Our results for Max 2CSP and Max DICUT
	Streaming complexity of Maximum Acylic Subgraph
	Open problems

	Preliminaries
	Single-Pass Streaming Complexity
	2/5 - gamma-Approximation of Max 2AND
	Hardness of 1/2 + epsilon-approximation and a complementary streaming algorithm for Max DICUT

	Maximum Acyclic Subgraph
	Approximating Max DICUT Using LP Rounding

