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Abstract
In this paper, we give tight approximation algorithms for the k-center and matroid center prob-
lems with outliers. Unfairness arises naturally in this setting: certain clients could always be
considered as outliers. To address this issue, we introduce a lottery model in which each client j
is allowed to submit a parameter pj ∈ [0, 1] and we look for a random solution that covers every
client j with probability at least pj . Out techniques include a randomized rounding procedure
to round a point inside a matroid intersection polytope to a basis plus at most one extra item
such that all marginal probabilities are preserved and such that a certain linear function of the
variables does not decrease in the process with probability one.
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1 Introduction

The classic k-center and Knapsack Center problems are known to be approximable to within
factors of 2 and 3 respectively [5]. These results are best possible unless P=NP [6, 5]. In
these problems, we are given a metric graph G and want to find a subset S of vertices of G
subject to either a cardinality constraint or a knapsack constraint such that the maximum
distance from any vertex to the nearest vertex in S is as small as possible. We shall refer to
vertices in G as clients. Vertices in S are also called centers.

It is not difficult to see that a few outliers (i.e., very distant clients) may result in a very
large optimal radius in the center-type problems. This issue was raised by Charikar et. al.
[2], who proposed a robust model in which we are given a parameter t and only need to serve
t out of given n clients (i.e. n− t outliers may be ignored in the solution). Here we consider
three robust center-type problems: the Robust k-Center (RkCenter) problem, the Robust
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10:2 A Lottery Model for Center-Type Problems with Outliers

Knapsack Center (RKnapCenter) problem, and the Robust Matroid Center (RMatCenter)
problem.

Formally, an instance I of the RkCenter problem consists of a set V of vertices, a metric
distance d on V , an integer k, and an integer t. Let n = |V | denote the number of vertices
(clients). The goal is to choose a set S ⊆ V of centers (facilities) such that (i) |S| ≤ k,
(ii) there is a set of covered vertices (clients) C ⊆ V of size at least t, and (iii) the objective
function

R := max
j∈C

min
i∈S

d(i, j)

is minimized.
In the RKnapCenter problem, we are given a budget B > 0 instead of k. In addition,

each vertex i ∈ V has a weight wi ∈ R+. The cardinality constraint (i) is replaced by the
knapsack constraint:

∑
i∈S wi ≤ B. Similarly, in the RMatCenter problem, the constraint (i)

is replaced by a matroid constraint: S must be an independent set of a given matroidM.
Here we assume that we have access to the rank oracle ofM.

In [2], the authors introduced a greedy algorithm for the RkCenter problem that achieves
an approximation ratio of 3. Recently, Chakrabarty et. al. [1] give a 2-approximation
algorithm for this problem. Since the k-center problem is a special case of the RkCenter
problem, this ratio is best possible unless P=NP.

The RKnapCenter problem was first studied by Chen et. al. [3]. In [3], the authors
show that one can achieve an approximation ratio of 3 if allowed to slightly violate the
knapsack constraint by a factor of (1 + ε). It is still unknown whether there exists a true
approximation algorithm for this problem. The current inapproximability bound is still 3
due to the hardness of the Knapsack Center problem.

The current best approximation guarantee for the RMatCenter problem is 7 by Chen et.
al. [3]. This problem has a hardness result of (3 − ε) via a reduction from the k-supplier
problem.

From a practical viewpoint, unfairness arises inevitably in the robust model: some clients
will always be considered as outliers and hence not covered within the guaranteed radius. To
address this issue, we introduce a lottery model for these problems. The idea is to randomly
pick a solution from a public list such that each client j ∈ V is guaranteed to be covered
with probability at least pj , where pj ∈ [0, 1] is the success rate requested by j. In practice,
one possible way to determine these pj ’s is based on the cost that the clients are willing to
pay for their probability of being served. Also, observe that the special case when pj = 1 for
all j ∈ V is equivalent to the standard model.

In this paper, we introduce new approximation algorithms for these problems under this
model. (Note that this model has been used recently for the k-center and Knapsack Center
problems (without outliers) in [4], which will appear soon on arXiv. All the techniques and
problems in [4] are different.) We also propose improved approximation algorithms for the
RkCenter problem and the RMatCenter problem.

1.1 The Lottery Model
In this subsection, we formally define our lottery model for the above-mentioned problems.
First, the Fair Robust k-Center (FRkCenter) problem is formulated as follows. Besides the
parameters V, d, k and t, each vertex j ∈ V has a “target” probability pj ∈ [0, 1]. We are
interested in the minimum radius R for which there exists a distribution D on subsets of V
such that a set S drawn from D satisfies the following constraints:
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Coverage constraint: |C| ≥ t with probability one, where C is the set of all clients in V that
are within radius R from some center S,

Fairness constraint: Pr[j ∈ C] ≥ pj for all j ∈ V , where C is as in the coverage constraint,
Cardinality constraint: |S| ≤ k with probability one.

Here we aim for a polynomial-time, randomized algorithm that can sample from D. Note
that the RkCenter is a special of this variant in which all pj ’s are set to be zero.

The Fair Robust Knapsack Center (FRKnapCenter) problem and Fair Robust Matroid
Center (FRMatCenter) problem are defined similarly except that we replace the cardinality
constraint by a knapsack constraint and a matroid constraint, respectively. More formally,
in the FRKnapCenter problem, we are given a budget B ∈ R+ and each vertex i has a weight
wi ∈ R+. We require the total weight of centers in S to be at most B with probability
one. Similarly, in the FRMatCenter problem, we are given a matroidM and we require the
solution S to be an independent set ofM with probability one.

1.2 Our contributions and techniques
First of all, we give tight approximation algorithms for the RkCenter and RMatCenter
problems.

I Theorem 1. There exist a 2-approximation algorithm for the RkCenter problem1 and a
3-approximation algorithm for the RMatCenter problem.

Our main results for the lottery model are summarized in the following theorems.

I Theorem 2. For any given constant ε > 0 and any instance I = (V, d, k, t, ~p) of the
FRkCenter problem, there is a randomized polynomial-time algorithm A which can compute a
random solution S such that
|S| ≤ k with probability one,
|C| ≥ (1− ε)t, where C is the set of all clients within radius 2R from some center in S
and R is the optimal radius,
Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

I Theorem 3. For any ε > 0 and any instance I = (V, d, w,B, t, ~p) of the FRKnapCenter
problem, there is a randomized polynomial-time algorithm A which can return random solution
S such that∑

i∈S wi ≤ (1 + ε)B with probability one,
|C| ≥ t, where C is the set of vertices within distance 3R from some vertex in S,
Pr[j ∈ C] ≥ pj for all j ∈ V .

Finally, the FRMatCenter can be reduced to (randomly) rounding a point in a matroid
intersection polytope. We design a randomized rounding algorithm which can output a
pseudo solution, which consists of a basis plus one extra center. By using a preprocessing
step and a configuration LP, we can satisfy the matroid constraint exactly (respectively,
knapsack constraint) while slightly violating the coverage and fairness constraints in the
FRMatCenter (respectively, FRKnapCenter) problem. We believe these techniques could be
useful in other facility-location problems (e.g., the matroid median problem [7, 10]) as well.

1 A 2-approximation algorithm has also been found independently by Chakrabarty et. al. [1], and in a
private discussion between Marek Cygan and Samir Khuller. Our algorithm here is different from the
algorithm in [1].
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10:4 A Lottery Model for Center-Type Problems with Outliers

I Theorem 4. For any given constant γ > 0 and any instance I = (V, d,M, t, ~p) of the
FRMatCenter (respectively, FRKnapCenter) problem, there is a randomized polynomial-time
algorithm A which can return a random solution S such that
S is a basis ofM with probability one, (respectively, w(S) ≤ B with probability one)
|C| ≥ t− γ2n, where C is the set of vertices within distance 3R from some vertex in S,
there exists a set T ⊆ V of size at least (1 − γ)n, which is deterministic, such that
Pr[j ∈ C] ≥ pj − γ for all j ∈ T .

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we review some basic properties of
matroids and discuss a filtering algorithm which is used in later algorithms. Then we develop
approximation algorithms for the FRkCenter, FRKnapCenter, and FRMatCenter problems in
the next three sections.

2 Preliminaries

2.1 Matroid polytopes

We first review a few basic facts about matroid polytopes. For any vector z and set S, we let
z(S) denote the sum

∑
i∈S zi. LetM be any matroid on the ground set Ω and rM be its

rank function. The matroid base polytope ofM is defined by

PM :=
{
x ∈ RΩ : x(S) ≤ rM(S) ∀S ⊆ Ω; x(Ω) = rM(Ω); xi ≥ 0 ∀i ∈ Ω

}
.

I Definition 5. Suppose Ax ≤ b is a valid inequality of PM. A face D of PM (corresponding
to this valid inequality) is the set D := {x ∈ PM : Ax = b} .

The following theorem gives a characterization for any face of PM (See, e.g., [9, 8]).

I Theorem 6. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = rM(S) ∀S ∈ L; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and L is a chain family of sets: L1 ⊂ L2 ⊂ . . . ⊂ Lm. Moreover, it is sufficient
to choose L as any maximal chain L1 ⊂ L2 ⊂ . . . ⊂ Lm such that x(Li) = rM(Li) for all
i = 1, 2, . . . ,m.

I Proposition 7. Let x ∈ PM be any point and I be the set of all tight constraints of PM
on x. Suppose D is the face with respect to I. Then one can compute a chain family L for
D as in Theorem 6 in polynomial time.

I Corollary 8. Let D be any face of PM. Then it can be characterized by

D =
{
x ∈ RΩ : x(S) = bS ∀S ∈ O; xi = 0 ∀i ∈ J ; x ∈ PM

}
,

where J ⊆ Ω and O is a family of pairwise disjoint sets: O1, O2, . . . , Om, and bO1 , . . . , bOm

are some integer constants.
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Algorithm 1 RFiltering (x, y)
1: V ′ ← ∅
2: for each cluster Fj in decreasing order of sj =

∑
i∈V :d(i,j)≤R xij do

3: if Fj is unmarked then
4: V ′ ← V ′ ∪ {j}
5: Set all unmarked clusters Fk (including Fj itself) s.t. Fk ∩ Fj 6= ∅ as marked.
6: Let cj be the number of marked clusters in this step.
7: ~c← (cj : j ∈ V ′)
8: return (V ′,~c)

2.2 Filtering algorithm
All algorithms in this paper are based on rounding an LP solution. In general, for each vertex
i ∈ V , we have a variable yi ∈ [0, 1] which represents the probability that we want to pick i
in our solution. (In the standard model, yi is the “extent” that i is opened.) In addition, for
each pair of i, j ∈ V , we have a variable xij ∈ [0, 1] which represents the probability that j is
connected to i.

Note that in all center-type problems, the optimal radius R is always the distance
between two vertices. Therefore, we can always “guess” the value of R in O(n2) time.
WLOG, we may assume that we know the correct value of R. For any j ∈ V , we let
Fj := {i ∈ V : d(i, j) ≤ R ∧ xij > 0} and sj :=

∑
i∈V :d(i,j)≤R xij . We shall refer to Fj as

a cluster with cluster center j. Depending on a specific problem, we may have different
constraints on xij ’s and yi’s. In general, the following constraints are valid in most of the
problems here:∑

j∈V

∑
i∈V :d(i,j)≤R

xij ≥ t, (1)

∑
i∈V :d(i,j)≤R

xij ≤ 1, ∀j ∈ V, (2)

xij ≤ yi, ∀i, j ∈ V, (3)
yi, xij ≥ 0, ∀i, j ∈ V. (4)

For the fair variants, we may also require that∑
i∈V :d(i,j)≤R

xij ≥ pj , ∀j ∈ V. (5)

Constraint (1) says that at least t vertices should be covered. Constraint (2) ensures that
each vertex is only connected to at most one center. Constraint (3) means vertex j can only
connect to center i if it is open. Constraint (5) says that the total probability of j being
connected should be at least pj . By constraints (2) and (3), we have y(Fj) ≤ 1.

The first step of all algorithms in this paper is to use the following filtering algorithm
to obtain a maximal collection of disjoint clusters. The algorithm will return the set V ′ of
cluster centers of the chosen clusters. In the process, we also keep track of the number cj of
other clusters removed by Fj for each j ∈ V ′.

3 The k-center problems with outliers

In this section, we first give a simple 2-approximation algorithm for the RkCenter problem.
Then, we give an approximation algorithm for the FRkCenter problem, proving Theorem 2.

APPROX/RANDOM’17
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Algorithm 2 RkCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: S ← the top k vertices i ∈ V ′ with highest value of ci.
3: return S

3.1 The robust k-center problem
Suppose I = (V, d, k, t) is an instance the RkCenter problem with the optimal radius R.
Consider the polytope PRkCenter containing points (x, y) satisfying constraints (1)–(4), and
the cardinality constraint:∑

i∈V
yi ≤ k. (6)

Since R is the optimal radius, it is not difficult to check that PRkCenter 6= ∅. Let us pick any
fractional solution (x, y) ∈ PRkCenter. The next step is to round (x, y) into an integral solution
using the simple Algorithm 2.

Analysis. By construction, the algorithm returns a set S of k open centers. Note that, for
each i ∈ S, ci is the number of distinct clients within radius 2R from i. Thus, it suffices to
show that

∑
i∈S ci ≥ t. By inequality (2), we have that sj ≤ 1 for all j ∈ V ′. Thus,∑

i∈V ′
cisi ≥

∑
i∈V

si ≥ t,

where the first inequality is due to the greedy choice of vertices in V ′ and the second inequality
follows by (1). Now recall that the clusters whose centers in V ′ are pairwise disjoint. By
constraint (6), we have∑

i∈V ′
si ≤

∑
i∈V ′

y(Fi) ≤
∑
i∈V

yi ≤ k.

It follows by the choice of S that
∑
i∈S ci ≥ t. This concludes the first part of Theorem 1.

3.2 The fair robust k-center problem
Assume I = (V, d, k, t, ~p) be an instance of the FRkCenter problem with the optimal radius
R. Fix any ε > 0. If k ≤ 2/ε, then we can generate all possible O

(
n1/ε) solutions and then

solve an LP to obtain the corresponding marginal probabilities. So the problem can be
solved easily in this case. We will assume that k ≥ 2/ε for the rest of this section. Consider
the polytope PFRkCenter containing points (x, y) satisfying constraints (1)–(4), the fairness
constraint (5), and the cardinality constraint (6). We now show that PFRkCenter is actually a
valid relaxation polytope.

I Proposition 9. We have that PFRkCenter 6= ∅.

Fix any small parameter ε > 0. The description of our algorithm is shown in Algorithm 3.

Analysis. First, note that one can find such a vector δ in line 5 as the system of δ(V ′) = 0
and ~c·δ = 0 consists of two constraints and at least 3 variables (and hence is underdetermined.)
By construction, at least one more fractional variable becomes rounded after each iteration.
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Algorithm 3 FRkCenterRound (ε, x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: for each j ∈ V ′ do
3: y′j ← (1− ε)

∑
i∈Fj

xij
4: while y′ still contains ≥ 3 fractional values in (0, 1) do
5: Let δ ∈ RV ′ , δ 6= 0 be such that δi = 0 ∀i ∈ V ′ : y′i ∈ {0, 1}, δ(V ′) = 0, and ~c · δ = 0.
6: Choose scaling factors a, b > 0 such that

y′ + aδ ∈ [0, 1]V ′ and y′ − bδ ∈ [0, 1]V ′

there is at least one new entry of y′ + aδ which is equal to zero or one
there is at least one new entry of y′ − bδ which is equal to zero or one

7: With probability b
a+b , update y

′ ← y′ + aδ; else, update y′ ← y′ − bδ.
8: return S = {i ∈ V : y′i > 0}.

Thus, the algorithm terminates after O(n) rounds. Let S denote the (random) solution
returned by FRkCenterRound and C be the set of all clients within radius 3R from some
center in S. Theorem 2 can be verified by the following propositions.

I Proposition 10. |S| ≤ k with probability one.

I Proposition 11. |C| ≥ (1− ε)t with probability one.

I Proposition 12. Pr[j ∈ C] ≥ (1− ε)pj for all j ∈ V .

4 The Knapsack Center problems with outliers

We study the RKnapCenter and FRKnapCenter problems in this section. Recall that in these
problems, each vertex has a weight and we want to make sure that the total weight of the
chosen centers does not exceed a given budget B. We first give a 3-approximation algorithm
for the RKnapCenter problem that slightly violates the knapsack constraint. Although this
is not better than the known result by [3], both our algorithm and analysis here are more
natural and simpler. It serves as a starting point for the next results. For the FRKnapCenter,
we show that it is possible to satisfy the knapsack constraint exactly with small violations in
the coverage and fairness constraints.

4.1 The robust knapsack center problem
Suppose I = (V, d, w,B, t) is an instance the RKnapCenter problem with the optimal radius
R. Consider the polytope PRKnapCenter containing points (x, y) satisfying constraints (1)–(4),
and the knapsack constraint:∑

i∈V
wiyi ≤ B. (7)

Again, it is not difficult to check that PRKnapCenter 6= ∅. Let us pick any fractional solution
(x, y) ∈ PRKnapCenter. See Algorithm 4 for the pseudo-approximation algorithm to round
(x, y).

Analysis. We first claim that P ′ 6= ∅ which implies that the extreme point Y of P ′ (in
line 4) does exist. To see this, let zi := si for all i ∈ V ′. Then we have∑

i∈V ′
cizi =

∑
i∈V ′

cisi ≥
∑
i∈V

si ≥ t.

APPROX/RANDOM’17



10:8 A Lottery Model for Center-Type Problems with Outliers

Algorithm 4 RKnapCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′, let vi ← arg minj∈Fi

{wj} be the vertex with smallest weight in Fi
3: Let P ′ :=

{
z ∈ [0, 1]V ′ :

∑
i∈V ′ cizi ≥ t ∧

∑
i∈V ′ wvi

zi ≤ B
}

4: Compute an extreme point Y of P ′
5: return S = {vi : i ∈ V, Yi > 0}

Also,∑
i∈V ′

wvi
zi =

∑
i∈V ′

wvi
si

=
∑
i∈V ′

wvi

∑
j∈Fi

xji

≤
∑
i∈V ′

wvi

∑
j∈Fi

yj

≤
∑
i∈V ′

∑
j∈Fi

wjyj ≤
∑
i∈V

wiyi ≤ B.

All the inequalities follow from LP constraints and definitions of si, ci, and vi. Thus, z ∈ P ′,
implying that P ′ 6= ∅.

I Proposition 13. RKnapCenterRound returns a solution S such that w(S) ≤ B+2wmax
and |C| ≥ t, where C is the set of vertices within distance 3R from some vertex in S and
wmax is the maximum weight of any vertex in V .

4.2 The fair robust knapsack center problem
In this section, we will first consider a simple algorithm that only violates the knapsack
constraint by two times the maximum weight of any vertex. Then using a configuration
polytope to “condition” on the set of “big” vertices, we show that it is possible to either
violate the budget by (1 + ε) or to preserve the knapsack constraint while slightly violating
the coverage and fairness constraints.

4.2.1 Basic algorithm
Suppose I = (V, d, w,B, t, ~p) is an instance the FRKnapCenter problem with the optimal radius
R. Consider the polytope PFRKnapCenter containing points (x, y) satisfying constraints (1)–(4),
the fairness constraint (5), and the knapsack constraint (7). The proof that PFRKnapCenter 6= ∅
is very similar to that of Proposition 9 and is omitted here.

The following algorithm is a randomized version of RKnapCenterRound.

Analysis. It is not hard to verify that P ′ 6= ∅ (see the analysis in Section 4.1). This means
that the decomposition at line 4 can be done.

I Proposition 14. The algorithm BasicFRKnapCenterRound returns a random solution
S such that w(S) ≤ B + 2wmax, |C| ≥ t, and Pr[j ∈ C] ≥ pj for all j ∈ V , where C is the set
of vertices within distance 3R from some vertex in S and wmax is the maximum weight of
any vertex in V .
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Algorithm 5 BasicFRKnapCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: For each i ∈ V ′ let vi := arg minj∈Fi

{wj} be the vertex with smallest weight in Fi
3: Let P ′ :=

{
z ∈ [0, 1]V ′ :

∑
i∈V ′ cizi ≥ t ∧

∑
i∈V ′ wvi

zi ≤ B
}

4: Let zi ← si for all i ∈ V ′. Write z as a convex combination of extreme points
z(1), . . . , z(n+1) of P ′:

z = p1z
(1) + . . .+ pn+1z

(n+1),

where
∑
` p` = 1 and p` ≥ 0 for all ` ∈ [n+ 1].

5: Randomly choose Y ← z` with probability p`.
6: return S = {vi : i ∈ V, Yi > 0}

Algorithm 6 FRKnapCenterRound1 (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: return S = BasicRFKnapCenterRound (x′, y′)

4.2.2 An algorithm slightly violating the budget constraint

Fix a small parameter ε > 0. A vertex i is said to be big iff wi > εB. Then there can be
at most 1/ε big vertices in a solution. Let U denote the collection of all possible sets of big
vertices. We have that |U| ≤ nO(1/ε). Consider the configuration polytope Pconfig1 containing
points (x, y, q) with the following constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U∑

j∈V
∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U,wi > 1/ε
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U

We first claim that Pconfig1 is a valid relaxation polytope for the problem.

I Proposition 15. We have that Pconfig1 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig1 and use the following algorithm to round it.
We are now ready to prove Theorem 3.

Proof of Theorem 3. We will show that FRKnapCenterRound1 will return a solution
S with properties in Theorem 3. Let E(U) denote the event that U ∈ U is picked in the

APPROX/RANDOM’17



10:10 A Lottery Model for Center-Type Problems with Outliers

algorithm. Note that (x′, y′) satisfies the following constraints:∑
j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \U and wi > εB. Thus, the two extra
fractional vertices opened by BasicFRKnapCenterRound will have weight at most εB.
By Proposition 14, we have w(S) ≤ B + 2εB = (1 + 2ε)B. Moreover, conditioned on U , we
have

Pr[j ∈ C|E(U)] ≥
∑

i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU .

Thus, by definition of Pconfig1 and our construction of S, we get

Pr[j ∈ C] =
∑
U∈U

Pr[j ∈ C|E(U)] Pr[E(U)]

≥
∑
U∈U

∑
i∈V :d(i,j)≤R

xij

≥ pj . J

4.2.3 An algorithm that satisfies the knapsack constraint exactly
Let ε > 0 a small parameter to be determined. Let U denote the collection of all possible
sets of verticies with size at most d1/εe. We have that |U| ≤ nO(1/ε). Suppose R is the
optimal radius to our instance. Given a set U ∈ U , we say that vertex j ∈ V is blue if there
exists i ∈ U such that d(i, j) ≤ 3R. Otherwise, vertex i is said to be red. For any i ∈ V , let
RBall(i, U,R) denote the set of red vertices within radius 3R from i:

RBall(i, U,R) := {j ∈ V : (d(i, j) ≤ 3R ∧ @k ∈ U : d(k, j) ≤ 3R)}.

Consider the configuration polytope Pconfig2 containing points (x, y, q) with the following
constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈V wiy

U
i ≤ qUB ∀U ∈ U∑

j∈V
∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U
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Algorithm 7 FRKnapCenterRound2 (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← BasicRFKnapCenterRound (x′, y′)
4: Let i1, i2 be vertices in S ′ \ U having largest weights.
5: return S = S ′ \ {i1, i2}

We first claim that Pconfig2 is a valid relaxation polytope for the problem.

I Proposition 16. We have that Pconfig2 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig2 and use the Algorithm 7 to round it.

Analysis. Let us fix any γ > 0 and set ε := γ2

2 . Also, let E(U) denote the event that U ∈ U
is picked in the algorithm. Again, observe that (x′, y′) satisfies the following inequalities:∑

j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈V

wiy
′
i ≤ B.

Recall that the algorithm BasicFRKnapCenterRound will return a solution S ′ con-
sisting of a set S ′′ with w(S ′′) ≤ B plus (at most) two extra “fractional” centers i∗ and i∗∗.
Moreover, we have 0 < y′i∗ , y

′
i∗∗ < 0, which implies that i∗, i∗∗ /∈ U . Thus, by removing the

two centers having highest weights in S ′ \ U , we ensure that the total weight of S is within
the given budget B with probability one.

Now we shall prove the coverage guarantee. By Proposition 14, S ′ covers at least t
vertices within radius 3R. If a vertex is blue, it can always be connected to some center in
U ; and hence, it is not affected by the removal of i1, i2. Because each of i1 and i2 can cover
at most εn other red vertices, we have

|C| ≥ t− 2εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered by S ′ (i.e.,
there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected due to the removal
of i1 or i2. We say that j is a bad vertex iff E[Xj ] ≥ γ. Otherwise, vertex j is said to be
good. Note that

∑
j∈V Xj ≤ 2εn with probability one. Thus, there can be at most 2εn/γ

bad vertices. Let T be the set of all good vertices. Then

|T | ≥ n− 2εn/γ = (1− γ)n.

APPROX/RANDOM’17
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Algorithm 8 RMatCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) .
2: Let P ′ :=

{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Fi) ≤ 1 ∀i ∈ V ′

}
3: Find a basic solution Y ∈ P ′ which maximizes the linear function f : [0, 1]V → R defined

as

f(z) :=
∑
j∈V ′

cj
∑
i∈Fj

zi for z ∈ [0, 1]V .

4: return S = {i ∈ V : Yi = 1}.

By Proposition 14, Pr[j is covered by S ′] ≥ pj . For any j ∈ T , we have

Pr[j ∈ C] = Pr[j is covered by S ′ ∧Xj = 0]
= Pr[j is covered by S ′]− Pr[j is covered by S ′ ∧Xj = 1]
≥ Pr[j is covered by S ′]− Pr[Xj = 1]
≥ pj − γ.

This concludes the first part of Theorem 4 for the FRKnapCenter problem.

5 The Matroid Center problems with outliers

In this section, we will first give a tight 3-approximation algorithm for the RMatCenter
problem, improving upon the 7-approximation algorithm by Chen et. al. [3]. Then we study
the FRMatCenter problem and give a proof for the second part of Theorem 4.

5.1 The robust matroid center problem
Suppose I = (V, d,M, t) is an instance the RMatCenter problem with the optimal radius R.
Let rM denote the rank function ofM. Consider the polytope PRMatCenter containing points
(x, y) satisfying constraints (1)–(4), and the matroid rank constraints:

y(U) ≤ rM(U), ∀U ⊆ V. (8)

Since R is the optimal radius, it is not difficult to check that PRMatCenter 6= ∅. Let us pick
any fractional solution (x, y) ∈ PRMatCenter. The next step is to round (x, y) into an integral
solution. Our 3-approximation algorithm is summarized in Algorithm 8.

Analysis. Again, by construction, the clusters Fi are pairwise disjoint for i ∈ V ′. Note
that P ′ is the matroid intersection polytope between M and another partition matroid
polytope saying that at most one item per set Fi for i ∈ V ′ can be chosen. Moreover, y ∈ P ′
implies that P ′ 6= ∅. Thus, P ′ has integral extreme points and optimizing over P ′ can be
done in polynomial time. Note that the solution S is feasible as it satisfies the matroid
constraint. The correctness of RMatCenterRound follows immediately by the following
two propositions.

I Proposition 17. There are at least f(Y ) vertices in V that are at distance at most 3R
from some open center in S.

I Proposition 18. We have that f(Y ) ≥ t.

This analysis proves the second part of Theorem 1.
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Algorithm 9 RoundSinglePoint (y, ~r)
1: δ∗ ← max{δ : z ∈ PM; zv = yv + δrv ∀v ∈ V }
2: y′ ← y + δ∗~r

3: return (y′, δ∗)

5.2 The fair robust matroid center problem
In this section, we consider the FRMatCenter problem. It is not difficult to modify and
randomize algorithm RMCenterRound so that it would return a random solution satisfying
both the fairness guarantee and matroid constraint, and preserving the coverage constraint
in expectation. This can be done by randomly picking Y inside P ′. However, if we want to
obtain some concrete guarantee on the coverage constraint, we may have to (slightly) violate
either the matroid constraint or the fairness guarantee. We leave it as an open question
whether there exists a true approximation algorithm for this problem.

We will start with a pseudo-approximation algorithm which always returns a basis ofM
plus at most one extra center. Our algorithm is quite involved. We first carefully round
a fractional solution inside a matroid intersection polytope into a (random) point with a
special property: the unrounded variables form a single path connecting some clusters and
tight matroid rank constraints. Next, rounding this point will ensure that all but one cluster
have an open center. Then opening one extra center is sufficient to cover at least t clients.

Finally, using a similar preprocessing step similar to the one in Section 4.2.3, we can
correct the solution by removing the extra center without affecting the fairness and coverage
guarantees by too much. This algorithm concludes Theorem 4.

5.2.1 A pseudo-approximation algorithm
Suppose I = (V, d,M, t, ~p) is an instance the robust matroid center problem with the optimal
radius R. Let rM denote the rank function ofM and PM be the matroid base polytope of
M. Consider the polytope PFRMatCenter containing points (x, y) satisfying constraints (1)–(4),
the fairness constraint (5), and the matroid constraints (8). Using similar arguments as in
the proof of Proposition 9, we can show that PFRMatCenter is a valid relaxation.

I Proposition 19. We have that PFRMatCenter 6= ∅.

Our algorithm will use the following rounding operation iteratively.
Given a point y ∈ PM and a vector ~r, the procedure RoundSinglePoint will move y

along direction ~r to a new point y + δ∗~r for some maximal δ∗ > 0 such that this point still
lies in PM. Note that one can find such a maximal δ∗ in polynomial time. We will choose
the initial point (x, y) as a vertex of PFRMatCenter. By Cramer’s rule, the entries of y will be
rational with both numerators and denominators bounded by O(2n). The direction vector ~r
also has this property by construction. Thus, it is not hard to verify that the maximal value
of δ∗ for which y + δ∗~r ∈ PM is also rational and has both numerator and denominator at
most O(2n) in every iteration. So we can compute δ∗ exactly by a simple binary search.

See the appendix for more details.

5.2.2 Analysis of PseudoFRMCenterRound
I Proposition 20. In all but the last iteration, the while-loop (lines 4 to 8) of PseudoFRM-
CenterRound preserves the following invariant: if y′ lies in the face D of PM (w.r.t. all
tight matroid rank constraints) at the beginning of the iteration, then y′ ∈ D at the end of
this iteration.

APPROX/RANDOM’17
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I Proposition 21. PseudoFRMCenterRound terminates in polynomial time.

I Proposition 22. In all iterations, the while-loop (lines 4 to 8) of PseudoFRMCenter-
Round satisfies the invariant that y′(Fj) ≤ 1 for all Fj ∈ F .

I Proposition 23. PseudoFRMCenterRound returns a solution S which is some inde-
pendent set ofM plus (at most) one extra vertex in V .

Recall that C is the (random) set of all clients within radius 3R from some center in S,
where R is the optimal radius. The following two propositions will conclude our analysis.

I Proposition 24. |C| ≥ t with probability one.

I Proposition 25. Pr[j ∈ C] ≥ pj for all j ∈ V .

So far we have proved the following theorem.

I Theorem 26. PseudoFRMCenterRound will return a random solution S such that
S is the union of some basis ofM with (at most) one extra vertex,
|C| ≥ t with probability one,
Pr[j ∈ C] ≥ pj for all j ∈ V .

5.2.3 An algorithm satisfying the matroid constraint exactly

Using a similar technique as in Section 4.2.3, we will develop an approximation algorithm
for the FRMatCenter problem which always returns a feasible solution. Let ε > 0 a small
parameter to be determined. Let U denote the collection of all possible sets of verticies with
size at most d1/εe such that U is an independent set ofM. Again, we have that |U| ≤ nO(1/ε).
Suppose R is the optimal radius to our instance. For any i ∈ V , recall that RBall(i, U,R) is
the set of red vertices within radius 3R from i.

Consider the configuration polytope Pconfig3 containing points (x, y, q) with the following
constraints:

∑
U∈U qU = 1∑
i∈V :d(i,j)≤R x

U
ij ≤ qU ∀j ∈ V,U ∈ U∑

U∈U
∑
i∈V :d(i,j)≤R x

U
ij ≥ pj ∀j ∈ V

xUij ≤ yUi ∀i, j ∈ V,U ∈ U∑
i∈W yUi ≤ qUrM(W ) ∀U ∈ U ,W ⊆ V∑
j∈V

∑
i∈V :d(i,j)≤R x

U
ij ≥ qU t

yUi = 1 ∀U ∈ U , i ∈ U
yUi = 0 ∀U ∈ U , i ∈ V \ U, |RBall(i, U,R)| ≥ εn
xUij , y

U
i , qU ≥ 0 ∀i, j ∈ V,U ∈ U

We first claim that Pconfig3 is a valid relaxation polytope for the problem.

I Proposition 27. We have that Pconfig3 6= ∅.

Next, let us pick any (x, y, q) ∈ Pconfig3 and use Algorithm 10 to round it.
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Algorithm 10 FRMCenterRound (x, y, q)
1: Randomly pick a set U ∈ U with probability qU
2: Let x′ij ← xUij/qU and y′i ← min{yUi /qU , 1}
3: S ′ ← PseudoFRMCenterRound (x′, y′)
4: Let i∗ be the “extra” vertex in S ′.
5: return S = S ′ \ {i}

Analysis. We are now ready to prove the second part of Theorem 4. Let us fix any γ > 0
and set ε := γ2. Also, let E(U) denote the event that U ∈ U is picked in the algorithm. Note
that (x′, y′) satisfies the following inequalities:∑

j∈V

∑
i∈V :d(i,j)≤R

x′ij ≥ t,∑
i∈V :d(i,j)≤R

x′ij ≤ 1, ∀j ∈ V,

∑
i∈V :d(i,j)≤R

x′ij =
∑

i∈V :d(i,j)≤R

xij/qU , ∀j ∈ V,

x′ij ≤ y′i, ∀i, j ∈ V,∑
i∈W

y′i ≤ rM(W ), ∀W ⊆ V.

Moreover, y′i = 1 for all i ∈ U and y′i = 0 for all i ∈ V \ U and RBall(i, U,R) ≥ εn.
Recall that the algorithm PseudoFRMCenterRound will return a solution S ′ is the

union of a basis ofM with an extra center i∗. Moreover, we have 0 < y′i∗ < 0, which implies
that i∗ /∈ U . Thus, by removing i∗ from S ′, we ensure that the resulting set is a basis ofM
with probability one.

Now we shall prove the coverage guarantee. By Theorem 26, S ′ covers at least t vertices
within radius 3R. If a vertex is blue, it can always be connected to some center in U ; and
hence, it is not affected by the removal of i1, i2. Because each of i∗ can cover at most εn
other red vertices, we have

|C| ≥ t− εn = 1− γ2n.

For any j ∈ V , let Xj be the random indicator for the event that j is covered by S ′ (i.e.,
there is some i ∈ S ′ such that d(i, j) ≤ 3R) but becomes unconnected due to the removal
of i∗. We say that j is a bad vertex iff E[Xj ] ≥ γ. Otherwise, vertex j is said to be good.
Again,

∑
j∈V Xj ≤ εn with probability one. Thus, there can be at most εn/γ bad vertices.

Let T be the set of all good vertices. Then

|T | ≥ n− εn/γ = (1− γ)n.

By Theorem 26, Pr[j is covered by S ′] ≥ pj . So, for any j ∈ T , we have

Pr[j ∈ C] ≥ Pr[j is covered by S ′]− Pr[Xj = 1] ≥ pj − γ.
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A Details of the pseudo-approximation for FRMatCenter

The main algorithm is summarized in Algorithm 11, which can round any vertex point
(x, y) ∈ PFRMatCenter. Basically, we will round y iteratively. In each round, we construct
a (multi)-bipartite graph where vertices on the left side are the disjoint sets O1, O2, . . .

in Corollary 8. Vertices on the right side are corresponding to the disjoint sets F1, F2, . . .

returned by RFiltering. Now each edge of the bipartite graph, connecting Oi and Fj ,
represents some unrounded variable yv ∈ (0, 1) where v ∈ Oi and v ∈ Fj . See Figure 1.

Then we carefully pick a cycle (path) on this graph and round variables on the edges
of this cycle (path). This is done by subroutines RoundCycle, RoundSinglePath, and
RoundTwoPaths. See Figures 2, 3, and 4. Basically, these procedures will first choose
a direction ~r which alternatively increases and decreases the variables on the cycle (path)
so that (i) all tight matroid constraints are preserved and (ii) the number of (fractionally)
covered clients is also preserved. Now we randomly move y along ~r or −~r using procedure
RoundSinglePoint to ensure that all the marginal probabilities are preserved.

Finally, all the remaining, fractional variables will form one path on the bipartite graph.
We round these variables by the procedure RoundFinalPath which exploits the integrality
of any face of a matroid intersection polytope. Then, to cover at least t clients, we may need
to open one extra facility.
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Figure 1 Construction of the multi-bipartite graph H = (L,R, EH) in the main algorithm.

Algorithm 11 PseudoFRMCenterRound (x, y)
1: (V ′,~c)← RFiltering (x, y) and let F ← {Fj : j ∈ V ′}
2: Set y′i ← xij for all j ∈ V ′, i ∈ Fj
3: Set y′i ← 0 for all i ∈ V \

⋃
j∈V ′ Fj

4: while y′ still contains some fractional values do
5: Note that y′ ∈ PM. Compute the disjoint sets O1, . . . , Ot and constants bO1 , . . . , bOt

as in Corollary 8.
6: Let O0 ← V \

⋃t
i=1Oi and F0 ← V \

⋃
j∈V ′ Fj

7: Construct a multi-bipartite graph H = (L,R, EH) where
each vertex i ∈ L, where L = {0, . . . , t}, is corresponding to the set Oi
each vertex j ∈ R, where R = {0} ∪ {k : Fk ∈ F}, is corresponding to the set Fj
for each vertex v ∈ V such that yv ∈ (0, 1): if v belongs to some set Oi and Fj ,
add an edge e with label v connecting i ∈ L and j ∈ R.

8: Check the following cases (in order):
Case 1: H contains a cycle. Let ~v = (v1, v2, . . . , v2`) be the sequence of edge labels
on this cycle. Update y′ ← RoundCycle(y′, ~v) and go to line 4.
Case 2: H contains a maximal path with one endpoint in L and the other in R.
Let ~v = (v1, v2, . . . , v2`+1) be the sequence of edge labels on this path. Update
y′ ← RoundSinglePath(y′, ~v) and go to line 4.
Case 3: There are at least 2 distinct maximal paths (not necessarily disjoint) having
both endpoints in R. Let ~v1, ~v2 be the sequences of edge labels on these two paths.
Update y′ ← RoundTwoPaths(y′, ~v1, ~v2,~c) and go to line 4.
The remaining case: all edges in H form a single path with both endpoints
in R. Let (v1, v2, . . . , v2`) be the sequence of edge labels on this path. Let
Y ← RoundFinalPath(y′, ~v) and exit the loop.

9: return S = {i ∈ V : Yi = 1}.

Algorithm 12 RoundCycle (y′, ~v)

1: Initialize ~r = ~0, then set rvj
= (−1)j for j = 1, 2, . . . , |~v|

2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1
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Figure 2 The left part shows a cycle. The right part shows how the variables on the cycle are
being changed by RoundCycle.

Algorithm 13 RoundSinglePath (y′, ~v)

1: Initialize ~r = ~0, then set rvj = (−1)j+1 for j = 1, 2, . . . , |~v|
2: (y1, δ1)←RoundSinglePoint(y′, ~r)
3: return y1

Algorithm 14 RoundTwoPaths (y′, ~v,~v′,~c)
1: WLOG, suppose j1, j2 ∈ R are endpoints of v1, v2` of the path ~v respectively and cj1 ≥ cj2

2: WLOG, suppose j′1, j′2 ∈ R are endpoints of v′1, v′2`′ of the path ~v′ respectively and
cj′1 ≥ cj′2

3: ∆1 ← cj1 − cj2 ; ∆2 ← cj′1 − cj′2 ; ~r ← ~0
4: V +

1 ← {v1, v3, . . . , v2`−1};V −1 ← {v2, v4, . . . , v2`}
5: V +

2 ← {v′2, v′4, . . . , v′2`′};V
−
2 ← {v′1, v′3, . . . , v′2`′−1}

6: for each v ∈ V +
1 : rv ← rv + 1; for each v ∈ V −1 : rv ← rv − 1

7: for each v ∈ V +
2 : rv ← rv + ∆1/∆2; for each v ∈ V −2 : rv ← rv −∆1/∆2

8: (y1, δ1)←RoundSinglePoint(y′, ~r)
9: (y2, δ2)←RoundSinglePoint(y′,−~r)
10: With probability δ1/(δ1 + δ2): return y2
11: With remaining probability δ2/(δ1 + δ2): return y1

Algorithm 15 RoundFinalPath (y,~v)

1: P1 ←
{
z ∈ [0, 1]V : z(U) ≤ rM(U) ∀U ⊆ V ∧ z(Oi) = bOi

∀i ∈ L \ {0} ∧ zi = 0 ∀i : yi = 0
}

2: P2 ← {z ∈ [0, 1]V : z(Fj) = y(Fj) ∀j ∈ V ′ \ J ∧ z(Fj) ≤ 1 ∀j ∈ J}, where J ⊆ R is the
set of vertices in R on the path ~v.

3: Pick an arbitrary extreme point ŷ of P ′ = P1 ∩ P2
4: for each j ∈ R and j is on the path ~v: if ŷ(Fj) = 0, pick an arbitrary u ∈ Fj and set
ŷu ← 1.

5: return ŷ
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Figure 3 The left part shows a single path. The right part shows how the variables on the path
are being changed by RoundSinglePath.
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Figure 4 The left part shows an example of two distinct maximal paths chosen in Case 3. The
black edge is common in both paths. The middle and right parts are two possibilities of rounding y.
With probability δ1/(δ1 + δ2), the strategy in the right part is adopted. Otherwise, the strategy in
the middle part is chosen.
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