
Fractional Set Cover in the Streaming Model∗

Piotr Indyk1, Sepideh Mahabadi2, Ronitt Rubinfeld3,
Jonathan Ullman4, Ali Vakilian5, and Anak Yodpinyanee6

1 CSAIL, MIT, Cambridge, MA, USA
indyk@mit.edu

2 CSAIL, MIT, Cambridge, MA, USA
mahabadi@mit.edu

3 CSAIL, MIT and TAU, Cambridge, MA, USA
ronitt@csail.mit.edu

4 CCIS, Northeastern University, Boston, MA, USA
jullman@ccs.neu.edu

5 CSAIL, MIT, Cambridge, MA, USA
vakilian@mit.edu

6 CSAIL, MIT, Cambridge, MA, USA
anak@mit.edu

Abstract
We study the Fractional Set Cover problem in the streaming model. That is, we consider the
relaxation of the set cover problem over a universe of n elements and a collection of m sets,
where each set can be picked fractionally, with a value in [0, 1]. We present a randomized (1 + ε)-
approximation algorithm that makes p passes over the data, and uses Õ(mnO(1/pε) +n) memory
space. The algorithm works in both the set arrival and the edge arrival models. To the best of
our knowledge, this is the first streaming result for the fractional set cover problem. We obtain
our results by employing the multiplicative weights update framework in the streaming settings.
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1 Introduction

Set Cover is one of the classical NP-hard problems in combinatorial optimization. In this
problem the input consists of a set (universe) of n elements U = {e1, · · · , en} and a collection
of m sets F = {S1, · · · , Sm}. The goal is to find the minimum size set cover of U , i.e., a
collection of sets in F whose union is U . The LP relaxation of Set Cover (called SetCover-LP)
is also well-studied. It is a continuous relaxation of the problem where each set S ∈ F can
be selected “fractionally”, i.e., assigned a number xS from [0, 1], such that for each element e
its “fractional coverage”

∑
S:e∈S xS is at least 1, and the sum

∑
S xS is minimized. Both

variants are well-studied and have many applications in operations research [23, 25, 11],
information retrieval and data mining [34], learning theory [26], web host analysis [15], etc.
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12:2 Fractional Set Cover in the Streaming Model

A natural lnn-approximation greedy algorithm of Set Cover, which in each iteration
picks the best remaining set, is widely used and known to be the best possible under
P 6= NP [29, 21, 33, 5, 31, 18]. However, the greedy algorithm is sequential in nature and
does not perform efficiently in the standard models developed for massive data analysis; in
particular, in the streaming model. In streaming Set Cover [34], the ground set U is stored
in the memory, the sets S1, · · · , Sm are stored consecutively in a read-only repository and
the algorithm can only access the sets by performing sequential scans (or passes) over the
repository. Moreover, the amount of (read-write) memory available to the algorithm is much
smaller than the input size (which can be as large as mn). The objective is to design a
space-efficient algorithm that returns a (nearly)-optimal feasible cover of U after performing
only a few passes over the data. Streaming Set Cover has witnessed a lot of developments in
recent years, and tight upper and lower bounds are known, in both low space [20, 13] and
low approximation [17, 24, 8, 12, 7] regimes.

Despite the above developments, the results for the fractional variant of the problem are
still unsatisfactory. To the best of our knowledge, it is not known whether there exists an
efficient and accurate algorithm for this problem that uses only a logarithmic (or even a poly
logarithmic) number of passes. This state of affairs is perhaps surprising, given the many
recent developments on fast LP solvers [27, 37, 28, 4, 3, 35]. To the best of our knowledge,
the only prior results on streaming Packing/Covering LPs were presented in paper [1], which
studied the LP relaxation of Maximum Matching.

1.1 Our Results
In this paper, we present the first (1+ε)-approximation algorithm for the fractional Set Cover
in the streaming model with constant number of passes. Our algorithm performs p passes
over the data stream and uses Õ(mnO( 1

pε ) +n) memory space to return a (1 +ε) approximate
solution of the LP relaxation of Set Cover for positive parameter ε ≤ 1/2.

We emphasize that similarly to the previous work on variants of Set Cover in streaming
setting, our result also holds for the edge arrival stream in which the pair of (Si, ej) (edges)
are stored in the read-only repository and all elements of a set are not necessarily stored
consecutively.

1.2 Related work
Set Cover Problem. The Set Cover problem was first studied in the streaming model
in [34], which presented an O(logn)-approximation algorithm in O(logn) passes and using
Õ(n) space. This approximation factor and the number of passes can be improved to O(logn)
by adapting the greedy algorithm thresholding idea presented in [16] . In the low space
regime (Õ(n) space), Emek and Rosen [20] designed a deterministic single pass algorithm that
achieves an O(

√
n)-approximation. This is provably the best guarantee that one can hope for

in a single pass even considering randomized algorithms. Later Chakrabarti and Wirth [13]
generalized this result and provided a tight trade-off bounds for Set Cover in multiple passes.
More precisely, they gave an O(pn1/(p+1))-approximate algorithm in p-passes using Õ(n)
space and proved that this is the best possible approximation ratio up to a factor of poly(p)
in p passes and Õ(n) space.

A different line of work started by Demaine et al. [17] focused on designing a “low”
approximation algorithm (between Θ(1) and Θ(logn)) in the smallest possible amount of
space. In contrast to the results in the Õ(n) space regime, [17] showed that randomness is
necessary: any constant pass deterministic algorithm requires Ω(mn) space to achieve constant



P. Indyk et al. 12:3

approximation guarantee. Further, they provided a O(4p logn)-approximation algorithm
that makes O(4p) passes and uses Õ(mn1/p + n). Later Har-Peled et al. [24] improved the
algorithm to a 2p-pass O(p logn)-approximation with memory space Õ(mn1/p + n)1. The
result was further improved by Bateni et al. where they designed a p-pass algorithm that
returns a (1 + ε) logn-approximate solution using mnΘ(1/p) memory [12].

As for the lower bounds, Assadi et al. [8] presented a lower bound of Ω(mn/α) memory
for any single pass streaming algorithm that computes a α-approxime solution. For the
problem of estimating the size of an optimal solution they prove Ω(mn/α2) memory lower
bound. For both settings, they complement the results with matching tight upper bounds.
Very recently, Assadi [7] proved a lower bound for streaming algorithms with multiple passes
which is tight up to polylog factors: any α-approximation algorithm for Set Cover requires
Ω(mn1/α) space, even if it is allowed polylog(n) passes over the stream, and even if the sets
are arriving in a random order in the stream. Further, [7] provided the matching upper bound:
a (2α+ 1)-pass algorithm that computes a (α+ ε)-approximate solution in Õ(mn

1/α

ε2 + n
ε )

memory (assuming exponential computational resource).

Max Cover Problem. The first result on streaming Max k-Cover showed how to compute
a (1/4)-approximate solution in one pass using Õ(kn) space [34]. It was improved by
Badanidiyuru et al. [9] to a (1/2− ε)-approximation algorithm that requires Õ(n/ε) space.
Moreover, their algorithm works for a more general problem of Submodular Maximization
with cardinality constraints. This result was later generalized for the problem of non-monotone
submodular maximization under constraints beyond cardinality [14]. Recently, McGregor and
Vu [30] and Bateni et al. [12] independently obtained single pass (1− 1/e− ε)-approximation
with Õ(m/ε2) space. On the lower bound side, [30] showed a lower bound of Ω̃(m) for
constant pass algorithm whose approximation is better than (1− 1/e). Moreover, [7] proved
that any streaming (1− ε)-approximation algorithm of Max k-Cover in polylog(n) passes
requires Ω̃(m/ε2) space even on random order streams and the case k = O(1). This bound is
also complemented by the Õ(mk/ε2) and Õ(m/ε3) algorithms of [12, 30]. For more detailed
survey of the results on streaming Max k-Cover refer to [12, 30, 7].

Covering/Packing LPs. The study of LPs in streaming model was first discussed in the
work of Ahn and Guha [1] where they used multiplicative weights update (MWU) based
techniques to solve the LP relaxation of Maximum (Weighted) Matching problem. They used
the fact that MWU returns a near optimal fractional solution with small size support: first
they solve the fractional matching problem, then solve the actual matching only considering
the edges in the support of the returned fractional solution.

Our algorithm is also based on the MWU method, which is one of the main key techniques
in designing fast approximation algorithms for Covering and Packing LPs [32, 36, 22, 6]. We
note that the MWU method has been previously studied in the context of streaming and
distributed algorithms, leading to efficient algorithms for a wide range of graph optimization
problems [1, 10, 2].

For a related problem, covering integer LP (covering ILP), Assadi et al. [8] designed a
one pass streaming algorithm that estimates the optimal solution of {min c>x | A>x ≥
b,x ∈ {0, 1}n} within a factor of α using Õ(mnα2 · bmax +m+ n · bmax) where bmax denotes

1 In streaming model, space complexity is of interest and one can assume exponentital computation power.
In this case the algorithms of [17, 24] save a factor of logn in the approximation ratio.

APPROX/RANDOM’17



12:4 Fractional Set Cover in the Streaming Model

the largest entry of b. In this problem, they assume that columns of A, constriants, are
given one by one in the stream.

In a different regime, [19] studied approximating the feasibility LP in streaming model
with additive approximation. Their algorithm performs two passes and is most efficient when
the input is dense.

1.3 Our Techniques
Preprocessing. Let k denote the value of the optimal solution. The algorithm starts by
picking a uniform fractional vector (each entry of value O( km )) which covers all frequently
occurring elements (those appearing in Ω(mk ) sets), and updates the uncovered elements in
one pass. This step considerably reduces the memory usage as the uncovered elements have
now lower occurrence (roughly m

k ). Note that we do not need to assume the knowledge of
the correct value k: in parallel we try all powers of (1 + ε), denoting our guess by `.

Multiplicative Weight Update. To cover the remaining elements, we employ the MWU
framework and show how to implement it in the streaming setting. In each iteration of
MWU, we have a probability distribution p corresponding to the constraints (elements) and
we need to satisfy the average covering constraint. More precisely, we need an oracle that
assigns values to xS for each set S so that

∑
S pSxS ≥ 1 subject to ‖x‖1 ≤ `, where pS is

the sum of probabilities of the elements in the set S. Then, the algorithm needs to update p
according to the amount each element has been covered by the oracle’s solution. The simple
greedy realization of the oracle can be implemented in the streaming setting efficiently by
computing all pS while reading the stream in one pass, then choosing the heaviest set (i.e.,
the set with largest pS) and setting its xS to `. This approach works, except that the number
of rounds T required by the MWU framework is large. In fact, T = Ω(φ logn

ε2 ), where φ is
the width parameter (the maximum amount an oracle solution may over-cover an element),
which is Θ(`) in this naïve realization. Next, we show how to decrease T in two steps.

Step 1. A first hope would be that there is a more efficient implementation of the oracle
which gives a better width parameter. Nonetheless, no matter how the oracle is implemented,
if all sets in F contain a fixed element e, then the width is inevitably Ω(`). This observation
implies that we need to work with a different set system that has small width, but at the
same time, it has the same objective value as of the optimal solution. Consequently, we
consider the extended set system where we replace F with all subsets of the sets in F . This
extended system preserves the optimality, and under this system we may avoid over-covering
elements and obtain T = O(logn) (for constant ε).

In order to turn a solution in our set system into a solution in the extended set system
with small width, we need to remove the repeated elements from the sets in the solution
so that every covered element appears exactly once, and thereby getting constant width.
However, as a side effect, this reduces the total weight of the solution (

∑
S∈sol pSxS), and

thus the average covering constraint might not be satisfied anymore. In fact, we need to
come up with a guarantee that, on one hand, is preserved under the pruning step, and on
the other hand, implies that the solution has large enough total weight

Therefore, to fulfill the average constraint under the pruning step, the oracle must
instead solve the maximum coverage problem: given a budget, choose sets to cover the
largest (fractional) amount of elements. We first show that this problem can be solved
approximately via the MWU framework using the simple oracle that picks the heaviest set,
but this MWU algorithm still requires T passes over the data. To improve the number of



P. Indyk et al. 12:5

SetCover-LP 〈〈Input: U ,F〉〉

minimize
∑
S∈F

xS

subject to
∑
S:e∈S

xS ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ F

Figure 1 LP relaxation of Set Cover.

passes, we perform element sampling and apply the MWU algorithm to find an approximate
maximum coverage of a small number of sampled elements, whose subproblem can be stored
in memory. Fortunately, while the number of fractional solutions to maximum coverage is
unbounded, by exploiting the structure of the solutions returned by the MWU method, we
can limit the number of plausible solutions of this oracle and approximately solve the average
constraint, thereby reducing the space usage to Õ(m) for a O( logn

ε2 )-pass algorithm.

Step 2. To further reduce the number of required passes, we observe that the weights of
the constraints change slowly. Thus, in a single pass, we can sample the elements for multiple
rounds in advance, and then perform rejection (sub-)sampling to obtain an unbiased set of
samples for each subsequent round. This will lead to a streaming algorithm with p passes
and mnO(1/p) space.

Extension. We also extend our result to handle general covering LPs. More specifically, in
the LP relaxation of Set Cover, maximize c>x subject to Ax ≥ b and x ≥ 0, A has entries
from {0, 1} whereas entries of b and c are all ones. If the non-zero entries instead belong to a
range [1,M ], we increase the number of sampled elements by poly(M) to handle discrepancies
between coefficients, leading to a poly(M)-multiplicative overhead in the space usage.

2 MWU Framework of the Streaming Algorithm for Fractional Set
Cover

In this section, we present a basic streaming algorithm that computes a (1 + ε)-approximate
solution of the LP-relaxation of Set Cover for any ε > 0 via the MWU framework. We will,
in the next section, improve it into an efficient algorithm that achieves the claimed O(p)
passes and Õ(mn1/p) space complexity.

Let U and F be the ground set of elements and the collection of sets, respectively, and
recall that |U| = n and |F| = m. Let x ∈ Rm be a vector indexed by the sets in F , where xS
denotes the value assigned to the set S. Our goal is to compute an approximate solution to
the LP in Figure 1. Throughout the analysis we assume ε ≤ 1/2, and ignore the case where
some element never appears in any set, as it is easy to detect in a single pass that no cover
is valid. For ease of reading, we write Õ and Θ̃ to hide polylog(m,n, 1

ε ) factors.

Outline of the algorithm. Let k denote the optimal objective value, and 0 < ε ≤ 1/2 be
a parameter. The outline of the algorithm is shown in fracSetCover (Figure 2). This
algorithm makes calls to the subroutine feasibilityTest, that given a parameter `, with high
probability, either returns a solution of objective value at most (1 + ε/3)`, or detects that the
optimal objective value exceeds `. Consequently, we may search for the right value of ` by

APPROX/RANDOM’17



12:6 Fractional Set Cover in the Streaming Model

fracSetCover(ε):
B Finds a feasible (1 + ε)-approximate solution in O( logn

ε
) iterations

for ` ∈ {(1 + ε/3)i | 0 ≤ i ≤ log1+ε/3 n} do in parallel: x` ← feasibilityTest(`, ε/3)
return x`∗ where `∗ ← min{` : x` is not INFEASIBLE}

Figure 2 fracSetCover returns a (1 + ε)-approximate solution of SetCover − LP , where fea-
sibilityTest is an algorithm that returns a solution of objective value at most (1 + ε/3)` when
` ≥ k.

considering all values in {(1 + ε/3)i | 0 ≤ i ≤ log1+ε/3 n}. As for some value of ` it holds that
k ≤ ` ≤ k(1 + ε/3), we obtain a solution of size (1 + ε/3)` ≤ (1 + ε/3)(1 + ε/3)k ≤ (1 + ε)k
which gives an approximation factor (1 + ε). This whole process of searching for k increases
the space complexity of the algorithm by at most a multiplicative factor of log1+ε/3 n ≈

3 logn
ε .

The feasibilityTest subroutine employs the multiplicative weights update method
(MWU) which is described next.

2.1 Preliminaries of the MWU method for solving covering LPs
In the following, we describe the MWU framework. The claims presented here are standard
results of the MWU method. For more details, see e.g. Section 3 of [6]. Note that we
introduce the general LP notation as it simplifies the presentation later on.

Let Ax ≥ b be a set of linear constraints, and let P , {x ∈ Rm : x ≥ 0} be the polytope
of the non-negative orthant. For a given error parameter 0 < β < 1, we would like to solve
an approximate version of the feasibility problem by doing one of the following:

Compute x̂ ∈ P such that Aix̂− bi ≥ −β for every constraint i.
Correctly report that the system Ax ≥ b has no solution in P.

The MWU method solves this problem assuming the existence of the following oracle that
takes a distribution p over the constraints and finds a solution x̂ that satisfies the constraints
on average over p.

I Definition 2.1. Let φ ≥ 1 be a width parameter and 0 < β < 1 be an error parameter. A
(1, φ)-bounded (β/3)-approximate oracle is an algorithm that takes as input a distribution p
and does one of the following:

Returns a solution x̂ ∈ P satisfying
p>Ax̂ ≥ p>b− β/3, and
Aix̂− bi ∈ [−1, φ] for every constraint i.

Correctly reports that the inequality p>Ax ≥ p>b has no solution in P.

The MWU algorithm for solving covering LPs involves T rounds. It maintains the (non-
negative) weight of each constraint in Ax ≥ b, which measures how much it has been
satisfied by the solutions chosen so far. Let wt denote the weight vector at the beginning
of round t, and initialize the weights to w1 , 1. Then, for rounds t = 1, . . . , T , define
the probability vector pt proportional to those weights wt, and use the oracle above to
find a solution xt. If the oracle reports that the system p>Ax ≥ p>b is infeasible, the
MWU algorithm also reports that the original system Ax ≥ b is infeasible, and terminates.
Otherwise, define the cost vector incurred by xt as mt , 1

φ (Ax−b), then update the weights
so that wt+1

i , wti(1− βmt
i/6) and proceed to the next round. Finally, the algorithm returns

the average solution x̄ = 1
T

∑T
t=1 xt.
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Feasibility-SC-LP 〈〈Input: U ,F , `〉〉∑
S∈F

xS ≤ `∑
S:e∈S

xS ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ F

(a) LP relaxation of Feasibility Set Cover.

Feasibility-Covering-LP 〈〈Input: A,b, c, `〉〉

c>x ≤ ` (objective value)
Ax ≥ b (covering)

x ≥ 0 (non-negativity)

(b) LP relaxation of the Feasibility Covering problem.

Figure 3 LP relaxations of the feasibility variant of set cover and general covering problems.

The MWU theorem (e.g., Theorem 3.5 of [6]) shows that T = O(φ logn
β2 ) is sufficient to

correctly solve the problem, yielding Aix̂ − bi ≥ −β for every constraint, where n is the
number of constraints. In particular, the algorithm requires T calls to the oracle.

I Theorem 2.2 (MWU Theorem [6]). For every 0 < β < 1, φ ≥ 1 the MWU algorithm
either solves the Feasibility − Covering − LP problem up to an additive error of β (i.e.,
solves Aix− bi ≥ −β for every i) or correctly reports that the LP is infeasible, making only
O(φ logn

β2 ) calls to a (1, φ)-bounded β/3-approximate oracle of the LP.

2.2 Semi Streaming MWU-based algorithm for factional Set Cover
Setting up our MWU algorithm. As described in the overview, we wish to solve, as a
subroutine, the decision variant of SetCover − LP known as Feasibility − SC − LP given
in Figure 3a, where the parameter ` serves as the guess for the optimal objective value.

To follow the conventional notation for solving LPs in the MWU framework, consider the
more standard form of covering LPs denoted as Feasibility-Covering-LP given in Figure 3b.
For our purpose, An×m is the element-set incidence matrix indexed by U × F ; that is,
Ae,S = 1 if e ∈ S, and Ae,S = 0 otherwise. The vectors b and c are both all-ones vectors
indexed by U and F , respectively. We emphasize that, unconventionally for our system
Ax ≥ b, there are n constraints (i.e. elements) and m variables (i.e. sets).

Employing the MWU approach for solving covering LPs, we define the polytope

P` , {x ∈ Rm : c>x ≤ ` and x ≥ 0}.

Observe that by applying the MWU algorithm to this polytope P and constraints Ax ≥ b,
we obtain a solution x̄ ∈ P` such that Ae

(
x̄

1−β

)
≥ be−β

1−β = 1 = be, where Ae denotes the
row of A corresponding to e. This yields a (1 +O(ε))-approximate solution for β = O(ε).

Unfortunately, we cannot implement the MWU algorithm on the full input under our
streaming context. Therefore, the main challenge is to implement the following two subtasks
of the MWU algorithm in the streaming settings. First, we need to design an oracle that
solves the average constraint in the streaming setting. Moreover, we need to be able to
efficiently update the weights for the subsequent rounds.

Covering the common elements. Before we proceed to applying the MWU framework, we
add a simple first step to our implementation of feasibilityTest (Figure 4) that will greatly
reduce the amount of sapce required in implementing the MWU algorithm. This can be
interpreted as the fractional version of Set Sampling described in [17]. In our subroutine, we
partition the elements into the common elements that occur more frequently, which will be

APPROX/RANDOM’17



12:8 Fractional Set Cover in the Streaming Model

feasibilityTest(`, ε):

α, β ← ε
3 , pcurr ← 1m×1 B The initial prob. vector for the MWU algorithm on U

B Compute a cover of common elements in one pass
xcmn ← α`

m
· 1m×1, freq← 0n×1

for each set S in the stream do
for each element e ∈ S do

freqe ← freqe + 1
if e appears in more than m

α`
sets (i.e. freqe > m

α`
) then B Common element

pcurr
e ← 0

pcurr ← pcurr

‖pcurr‖ B pcurr represents the current prob. vector

xtotal ← 0m×1

B MWU algorithm for covering rare elements
repeat T times

B Solve the corresp. oracle of MWU and decide if the solution is feasible
try x← oracle(pcurr, `,F)

xtotal ← xtotal + x

B In one pass, update p according to x
z← 0n×1

for each set S in the stream do
for each element e ∈ S do
ze ← ze + xS

if (pcurr)>z < 1− β/3 then B Detect infeasible solutions returned by oracle
report INFEASIBLE

pcurr ← updateProb(pcurr, z)

xrare ← xtotal

(1−β)T B Scaled up the solution to cover rare elements

return xcmn + xrare

Figure 4 A generic implementation of feasibilityTest. Its performance depend on the imple-
mentations of oracle, updateProb. We will investigate different implementations of oracle in the
gray box.

covered if we simply choose a uniform vector solution, and the rare elements that occur less
frequently, for which we perform the MWU algorithm to compute a good solution. In one
pass we can find all frequently occurring elements by counting the number of sets containing
each element. The amount of required space to perform this task is O(n logm).

We call an element that appears in at least m
α` sets common, and we call it rare otherwise,

where α = Θ(ε). Since we are aiming for a (1 + ε)-approximation, we can define xcmn as a
vector whose all entries are α`

m . The total cost of xcmn is α` and all common elements are
covered by xcmn. Thus, throughout the algorithm we may restrict our attention to the rare
elements.

Our goal now is to construct an efficient MWU-based algorithm, which finds a solution
xrare covering the rare elements, with objective value at most `

1−β ≤ (1 + ε− α)`. We note
that our implementation does not explicitly maintain the weight vector wt described in
Section 2.1, but instead updates (and normalizes) its probability vector pt in every round.
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heavySetOracle(p, `,F):
Compute pS for every S ∈ F while reading the set system B either from stream or memory
S∗ ← argmaxS∈FpS
if pS < (1− β/3)/` then report INFEASIBLE
x← 0n×1, xS ← `

return x

Figure 5 heavySetOracle computes pS of every set given the set system in a stream or stored
memory, then returns the solution x that optimally places value ` on the corresponding entry. It
reports INFEASIBLE if there is no sufficiently good solution, concluding that the set system is
infeasible.

2.3 First Attempt: Simple Oracle and Large Width
A greedy solution for the oracle. We implement the oracle for MWU algorithm such that
φ = `, and thus requiring Θ(` logn/β2) iterations (Theorem 2.2). In each iteration, we need
an oracle that finds some solution x ∈ P` satisfying p>Ax ≥ p>b− β/3, or decides that no
solution in P` satisfies p>Ax ≥ p>b.

Observe that p>Ax is maximized when we place value ` on xS∗ where S∗ achieves
the maximum value pS ,

∑
e∈S pe. Further, for our application, b = 1 so p>b = 1. Our

implementation heavySetOracle of oracle given in Figure 5 below is a deterministic
greedy algorithm that finds a solution based on this observation. As Aex ≤ ‖x‖1 ≤ `,
heavySetOracle implements a (1, `)-bounded (β/3)-approximate oracle. Therefore, the
implementation of feasibilityTest with heavySetOracle computes a solution of objective
value at most (α+ 1

1−β )` < (1 + ε
3 )` when ` ≥ k as promised.

Finally, we track the space usage which concludes the complexities of the current version
of our algorithm: it only stores vectors of length m or n, whose entries each requires a
logarithmic number of bits, yielding the following theorem.

I Theorem 2.3. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in O(k logn

ε2 ) passes and using Õ(m+n) memory
for any positive ε ≤ 1/2. The algorithm works in both set arrival and edge arrival streams.

The presented algorithm suffers from large number of passes over the input. In particular,
we are interested in solving the fractional Set Cover in constant number of passes using
sublinear space. To this end, we first reduce the required number of rounds in MWU by a
more complicated implementation of oracle.

3 Max Cover Problem and its Application to Width Reduction

In this section, we improve the described algorithm in the previous section and prove the
following result.

I Theorem 3.1. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in p passes and uses Õ(mnO(1/pε) + n) memory
for any 2 ≤ p ≤ polylog(n) and 0 < ε ≤ 1/2. The algorithm works in both set arrival and
edge arrival streams.

Recall that in implementing oracle, we must find a solution x of total size ‖x‖1 ≤ ` with
a sufficiently large weight p>Ax. Our previous implementation chooses only one good entry
xS and places its entire budget ` on this entry. As the width of the solution is roughly the
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12:10 Fractional Set Cover in the Streaming Model

maximum amount an element is over-covered by x, this implementation induces a width
of `. In this section, we design an oracle that returns a solution in which the budget is
distributed more evenly among the entries of x to reduce the width. To this end, we design
an implementation of oracle of the MWU approach based on the Max `-Cover problem
(whose precise definition will be given shortly). The solution to our Max `-Cover aids in
reducing the width of our oracle solution to a constant, so the required number of rounds
of the MWU algorithm decreases to O( logn

ε2 ), independent of `. Note that, if the objective
value of an optimal solution of Set Cover(U ,F) is `, then a solution of width o(`) may not
exist, as shown in Lemma 3.2 (whose proof is given in Section A.1). This observation implies
that we need to work with a different set system. Besides having small width, an optimal
solution of the Set Cover instance on the new set system should have the same objective
value of the optimal solution of Set Cover(U ,F).

I Lemma 3.2. There exists a set system in which, under the direct application of the MWU
framework in computing a (1 + ε)-approximate solution, induces width φ = Ω(k), where k is
the optimal objective value. Moreover, the exists a set system in which the approach from
the previous section (which handles the frequent and rare elements differently) has width
φ = Θ(n) = Θ(

√
m/ε).

Extended Set System. First, we consider the extended set system (U , F̆), where F̆ is the
collection containing all subsets of sets in F ; that is,

F̆ , {R : R ⊆ S for some S ∈ F}.

It is straightforward to see that the optimal objective value of Set Cover over (U , F̆) is equal
to that of (U ,F): we only add subsets of the original sets to create F̆ , and we may replace
any subset from F̆ in our solution with its original set in F . Moreover, we may prune any
collection of sets from F into a collection from F̆ of the same cardinality so that, this pruned
collection not only covers the same elements, but also each of these elements is covered
exactly once. This extended set system is defined for the sake of analysis only: we will never
explicitly handle an exponential number of sets throughout our algorithm.

We define `-cover as a collection of sets of total weight `. Although the pruning of an
`-cover reduces the width, the total weight p>Ax of the solution will decrease. Thus, we
consider the weighted constraint of the form

∑
e∈U

(
pe ·min{1,

∑
S:e∈S

xS}

)
≥ 1;

that is, we can only gain the value pe without any multiplicity larger than 1. The problem of
maximizing the left hand side is known as the weighted max coverage problem: for a parameter
`, find an `-cover such that the total value pe’s of the covered elements is maximized.

3.1 The Maximum Coverage Problem
In the design of our algorithm, we consider the weighted Max k-Cover problem, which is
closely related to Set Cover. Extending upon the brief description given earlier, we fully
specify the LP relaxation of this problem. In the weighted Max k-Cover(U ,F , `,p), given a
ground set of elements U , a collection of sets F over the ground set, a budget parameter
`, and a weight vector p, the goal is to return ` sets in F whose weighted coverage, the
total weight of all covered elements, is maximized. Moreover, since we are aiming for a
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MaxCover-LP 〈〈Input: U ,F , `,p〉〉

maximize
∑
e∈U

peze

subject to
∑
S:e∈S

xS ≥ ze ∀e ∈ U∑
S∈F

xS = `

0 ≤ ze ≤ 1 ∀e ∈ U
xS ≥ 0 ∀S ∈ F

Figure 6 LP relaxation of weighted Max k-Cover.

fractional solution of Set Cover, we consider the LP relaxation of weighted Max k-Cover,
MaxCover − LP (see Figure 6); in this LP relaxation, ze denotes the fractional amount that
an element is covered, and hence is capped at 1.

As an intermediate goal, we aim to compute an approximate solution ofMaxCover − LP ,
given that the optimal solution covers all elements in the ground set, or to correctly detect
that no solution has weighted coverage of more than (1− ε). In our application, the vector
p is always a probability vector: p ≥ 0 and

∑
e∈U pe = 1. We make the following useful

observation.

I Observation 3.3. Let k be the value of an optimal solution of SetCover − LP (U ,F) and
let p be an arbitrary probability vector over the ground set. Then there exists a fractional
solution of MaxCover − LP (U ,F , `,p) whose weighted coverage is one if ` ≥ k.

δ-integral near optimal solution of MaxCover-LP. Our plan is to solve MaxCover-LP over
a randomly projected set system, and argue that with high probability this will result in a
valid oracle. Such an argument requires an application of the union bound over the set of
solutions, which is generally of unbounded size. To this end, we consider a more restrictive
domain of δ-integral solutions: this domain has bounded size, but is still guaranteed to
contain a sufficiently good solution.

I Definition 3.4 (δ-integral solution). A fractional solution xn×1 of an LP is δ-integral if
1
δ · x is an integral vector. That is, for each i ∈ [n], xi = viδ where each vi is an integer.

Next we claim that maxCoverOracle given in Figure 7 below, which is the MWU
algorithm with heavySetOracle for solvingMaxCover − LP , results in a δ-integral solution.
The proof of the following lemma is given in Section A.2.

I Lemma 3.5. Consider a MaxCover − LP with the optimal objective value OPT (where
the weights of elements form a probability vector). There exists a Θ( ε

2
MC

logn )-integral solution
of MaxCover − LP whose objective value is at least (1 − εMC)OPT. In particular, if an
optimal solution covers all elements U (` ≥ k), maxCoverOracle returns a solution whose
weighted coverage is at least 1− εMC in polynomial time.

Pruning a fractional `-cover. In our analysis, we aim to solve the Set Cover problem under
the extended set system. We claim that any solution x with coverage z in the actual set
system may be turned into a pruned solution x̆ in the extended set system that provides
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maxCoverOracle(U ,F , `):
x← MWU solution of Set Cover LP relaxation implemented with heavySetOracle
return x

Figure 7 maxCoverOracle returns a fractional `-cover with weighted coverage at least 1− β/3
w.h.p. if ` ≥ k. It provides no guarantee on its behavior if ` < k.

the same coverage z, but satisfies the strict equality
∑
S̆∈F̆ :e∈S̆ x̆S̆ = ze. Since ze ≤ 1, the

pruned solution satisfies the condition for an oracle with width one. We give an algorithm
prune for pruning x into x̆ in Section A.3 and only state the property of this algorithm here.

I Lemma 3.6. A fractional `-cover x of (U ,F) can be converted, in polynomial time, to a
fractional `-cover x̆ of (U , F̆) such that for each element e, its coverage ze =

∑
S̆∈F̆ :e∈S̆ x̆S̆ =

min(
∑
S:e∈S xS , 1).

We remark that in order to update the weights in the MWU framework, it is sufficient
to know the vector z, which has a simple formula given in the lemma above. The actual
solution x̆ is not necessary.

3.2 Sampling-Based Oracle for Fractional Max Coverage
In the previous section, we simply needed to compute the values pS ’s in order to construct a
solution for the oracle. Here as we aim to bound the width of oracle, our new task is to
find a fractional `-cover x whose weighted coverage is at least 1−β/3. The element sampling
technique, which is also known from prior work in streaming Set Cover and Max k-Cover,
is to sample a few elements and solve the problem over the sampled elements only. Then,
by applying the union bound over all possible candidate solutions, it is shown that w.h.p.
a nearly optimal cover of the sampled elements also covers a large fraction of the whole
ground set. This argument applies to the aforementioned problems precisely because there
are standard ways of bounding the number of all integral candidate solutions (e.g. `-covers).

However, in the fractional setting, there are infinitely many solutions. Consequently, we
employ the notion of δ-integral solutions where the number of such solutions is bounded. In
Lemma 3.6, we showed that there always exists a δ-integral solution to MaxCover − LP
whose coverage is at least a (1− εMC)-fraction of an optimal solution. Moreover, the number
of all possible solutions is bounded by the number of ways to divide the budget ` into `/δ
equal parts of value δ and distribute them (possibly with repetition) among m entries:

IObservation 3.7. The number of feasible δ-integral solutions toMaxCover − LP (U ,F , `,p)
is O(m`/δ) for any multiple ` of δ.

Next, we design our algorithm using the element sampling technique: we show that a
(1− β/3)-approximate solution of MaxCover − LP can be computed using the projection of
all sets in F over a set of elements of size Θ( ` logn logmn

β4 ) picked according to p. For every
fractional solution (x, z) and subset of elements V ⊆ U , let CV(x) ,

∑
e∈V peze denote the

coverage of elements in V where ze = min(1,
∑
S:e∈S xS). We may omit the subscript V in

CV if V = U .
The following lemma, which is essentially an extension of the Element Sampling lemma

of [17] for our application, MaxCover-LP, shows that a (1− εMC)-approximate `-cover over
a set of sampled elements of size Θ(` logn logmn/γ4) w.h.p. has a weighted coverage of
at least (1 − 2γ)(1 − εMC) if there exists a fractional `-cover whose coverage is 1. Thus,
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choosing εMC = γ = β/9 yields the desired guarantee for maxCoverOracle, leading to the
performance given in Theorem 3.9. The omitted proofs are given in Section A.4-A.5.

I Lemma 3.8. Let εMC and γ be parameters. Consider the MaxCover − LP (U ,F , `,p)
with optimal solution of value OPT, and let L be a multi-set of s = Θ(` logn log(mn)/γ4)
elements sampled independently at random according to the probability vector p. Let xsol be
a (1− εMC)-approximate Θ( γ2

logn )-integral `-cover over the sampled elements. Then with high
probability, C(xsol) ≥ (1− 2γ)(1− εMC)OPT.

I Theorem 3.9. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution of SetCover − LP (U ,F) in O(logn/ε2) passes and uses Õ(m/ε6 + n)
memory for any positive ε ≤ 1/2. The algorithm works in both set arrival and edge arrival
streams.

3.3 Final Step: Running Several MWU Rounds Together
We complete our result by further reducing the number of passes at the expense of increasing
the required amount of memory, yielding our full algorithm fastFeasibilityTest in Figure 8.
More precisely, aiming for a p-pass algorithm, we show how to execute R , T

Θ(p) = Θ( logn
pβ2 )

rounds of the MWU algorithm in a single pass. We show that this task may be accomplished
with a multiplicative factor of f ·Θ(logmn) increase in memory usage, where f , nΘ(1/(pβ)).

Advance sampling. Consider a sequence of R consecutive rounds i = 1, . . . , R. In order to
implement the MWU algorithm for these rounds, we need (multi-)sets of sampled elements
L1, . . . ,LR according to probabilities p1, . . . ,pR, respectively (where pi is the probability
corresponding to round i). Since the probabilities of subsequent rounds are not known in
advance, we circumvent this problem by choosing these sets Li’s with probabilities according
to p1, but the number of samples in each set will be |Li| = s · f · Θ(logmn) instead of s.
Then, once pi is revealed, we sub-sample the elements from Li to obtain L′i as follow: for a
(copy of) sampled element ê ∈ Li, add ê to L′i with probability piê

p1
ê
f
; otherwise, simply discard

it. Note that it is still left to be shown that the probability above is indeed at most 1.
Since each e was originally sampled with probability p1

e, then in L′i, the probability that a
sampled element ê = e is exactly pie/f . By having f ·Θ(logmn) times the originally required
number of samples s in the first place, in expectation we still have E[|L′i|] = |Li|

∑
e∈U

pie
f =

(s · f ·Θ(logmn)) 1
f = s ·Θ(logmn). Due to the Θ(logmn) factor, by the Chernoff bound, we

conclude that with w.h.p. |L′i| ≥ s. Thus, we have a sufficient number of elements sampled
with probability according to pi to apply Lemma 3.8, as needed.

Change in probabilities. As noted above, we must show that the probability that we sub-
sample each element is at most 1; that is, pie/p1

e ≤ f = nΘ(1/(pβ)) for every element e and
every round i = 1, . . . , R. We bound the multiplicative difference between the probabilities
of two consecutive rounds as follows (see Section A.6 for proof).

I Lemma 3.10. Let p and p′ be the probability of elements before and after an update. Then
for every element e, p′e ≤ (1 +O(β))pe.

Therefore, after R = Θ( logn
pβ2 ) rounds, the probability of any element may increase by at

most a factor of (1 +O(β))Θ( logn
pβ2 ) ≤ eΘ( logn

pβ ) = nΘ(1/(pβ)) = f , as desired. This concludes
the proof of Theorem 3.1.
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Implementation details. We make a few remarks about the implementation given in Fig-
ure 8. First, even though we perform all sampling in advance, the decisions of maxCoverOr-
acle do not depend on any Li of later rounds, and updateProb is entirely deterministic:
there is no dependency issue between rounds. Next, we only need to perform updateProb
on the sampled elements L = L1∪· · ·∪LR during the current R rounds. We therefore denote
the probabilities with a different vector qi over the sampled elements L only. Probabilities
of elements outside L are not required by maxCoverOracle during these rounds, but we
simply need to spend one more pass after executing R rounds of MWU to aggregate the new
probability vector p over all (rare) elements. Similarly, since maxCoverOracle does not
have the ability to verify, during the MWU algorithm, that each solution xi returned by
the oracle indeed provides a sufficient coverage, we check all of them during this additional
pass. Lastly, we again remark that this algorithm operates on the extended set system: the
solution x returned by maxCoverOracle has at least the same coverage as x̆. While x̆ is
not explicitly computed, its coverage vector z can be computed exactly.

3.4 Extension to general covering LPs
We remark that our MWU-based algorithm can be extended to solve a more general class
of covering LPs. Consider the problem of finding a vector x that minimizes c>x subject to
constraints Ax ≥ b and x ≥ 0. In terms of the Set Cover problem, Ae,S ≥ 0 indicates the
multiplicity of an element e in the set S, be > 0 denotes the number of times we wish e to be
covered, and cS > 0 denotes the cost per unit for the set S. Now define

L , min
(e,S):Ae,S 6=0

Ae,S
becS

and U , max
(e,S)

Ae,S
becS

.

Then, we may modify our algorithm to obtain the following result.

I Theorem 3.11. There exists a streaming algorithm that w.h.p. returns a (1+ε)-approximate
fractional solution to general covering LPs in p passes and using Õ(mUε6L ·n

O( 1
pε ) +n) memory

for any 3 ≤ p ≤ polylog(n), where parameters L and U are defined above. The algorithm
works in both set arrival and edge arrival streams.

Proof. We modify our algorithm and provide an argument of its correctness as follows. First,
observe that we can convert the input LP into an equivalent LP with all entries be = cS = 1
by simply replacing each Ae,S with Ae,S

becS
. Namely, let the new parameters be A′,b′ and

c′, and we consider the variable x′ where x′S = cSxS . It is straightforward to verify that
c′>x′ = c>x and A′ex′ = Aex

be
, reducing the LP into the desired case. Thus, we may afford

to record b and c, so that each value Ae,S
becS

may be computed on-the-fly. Henceforth we
assume that all entries be = cS = 1 and Ae,S ∈ {0}∪ [L,U ]. Observe as well that the optimal
objective value k may be in the expanded range [1/U, n/L], so the number of guesses must
be increased from logn

ε to log(nU/L)
ε .

Next consider the process for covering the rare elements. We instead use a uniform
solution xcmn = α`L

m · 1. Observe that if an element occurs in at least m
α`L sets, then

Aexcmn =
∑
S:e∈S Ae,S ·

α`
m ≥

m
α`L ·L ·

α`
m = 1. That is, we must adjust our definition so that

an element is considered common if it appears in at least m
α`L sets. Consequently, whenever

we perform element sampling, the required amount of memory to store information of each
element increases by a factor of 1/L.

Next consider Lemma 3.5, where we show an existence of integral solutions via the MWU
algorithm with a greedy oracle. As the greedy implementation chooses a set S and places
the entire budget ` on xS , the amount of coverage Ae,SxS may be as large as `U as Ae,S is
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fastFeasibilityTest(`, ε):

α, β ← ε
3 , pcurr ← 1m×1 B The initial prob. vector for the MWU algorithm on U

Compute a cover of common elements in one pass B See Fig. 4’s feasibilityTest block

xtotal ← 0m×1

B MWU algorithm for covering rare elements
repeat p times

R← Θ( logn
pβ2 ) B Number of MWU iterations performed together

B In one pass, projects all sets in F over the collections of samples L1, · · · LR
sample L1, . . . ,LR according to pcurr each of size `nΘ(1/(pβ)) poly(logmn)
L ← L1 ∪ · · · ∪ LR, FL ← ∅ B L is a set whereas L1, . . . ,LR are multi-sets
for each set S in the stream do FL ← FL ∪ {S ∩ L}

B Each pass simulates R rounds of MWU
for each e ∈ L do q1

e ← pcurr
e B Project pcurr

n×1 to q1
|L|×1 over sampled elements

q1 ← q1

‖q1‖
for each round i = 1, . . . , R do
L′i ← sample each elt e ∈ Li with probab. qie

q1en
Θ(1/(pβ)) B Rejection Sampling

xi ←maxCoverOracle(L′i,FL, `) B w.h.p. C(xi) ≥ 1− β/3 when ` ≥ k
B In no additional pass, updates probab. q over sampled elts according to xi
z← 0|L|×1 B Compute coverage over sampled elements
for each element-set pair e ∈ S where S ∈ FL do ze ← min(ze + xiS , 1)
qi+1 ← updateProb(qi, z) B Only update weights of elements in L

B In one pass, updates probab. pcurr over all (rare) elts according to x1, . . . ,xR
z1, . . . , zR ← 0n×1 B Compute coverage over all (rare) elements
for each element-set pair e ∈ S in the stream do

for each round i = 1, . . . , R do zie ← min(zie + xiS , 1)
for each round i = 1, . . . , R do

if (pcurr)>zi < 1− β/3 then B Detect infeasible solutions
report INFEASIBLE

xtotal ← xtotal + xi, pcurr ← updateProb(pcurr, zi) B Perform actual updates

xrare ← xtotal

(1−β)T B Scaled up the solution to cover rare elements

return xcmn + xrare

Figure 8 An efficient implementation of feasibilityTest which performs in p passes and consumes
Õ(mnO( 1

pε
) + n) space.

no longer bounded by 1. Thus this application of the MWU algorithm has width φ = Θ(`U)
and requires T = Θ( `U logn

ε2MC
) rounds. Consequently, its solution becomes Θ( `T ) = Θ( ε2MC

U logn )-
integral. As noted in Observation 3.7, the number of potential solutions from the greedy
oracle increases by a power of U . Then, in Lemma 3.8, we must reduce the error probability
of each solution by the same power. We increase the number of samples s by a factor of U
to account for this change, increasing the required amount of memory by the same factor.

As in the previous case, any solution x may always be pruned so that the width is
reduced to 1: our algorithm prune still works as long as the entries of A are non-negative
(Section A.3). Therefore, the fact that entries of A may take on values other than 0 or 1
does not affect the number of rounds (or passes) of our overall application of the MWU
framework. Thus, we may handle general covering LPs using a factor of Õ(U/L) larger
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memory within the same number of passes. In particular, if the non-zero entries of the input
are bounded in the range [1,M ], this introduces a factor of Õ(U/L) ≤ Õ(M3) overhead in
memory usage. J
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A Omitted Proofs

A.1 Proof of Lemma 3.2
Proof. For the first claim, we consider an arbitrary set system, then modify it by adding a
common element e to all sets. Recall that the MWU framework returns an average of the
solutions from all rounds. Thus there must exist a round where the oracle returns a solution
x of size ‖x‖1 = Θ(k). For the added element e, this solution has

∑
S:e∈S xS =

∑
S∈F xS =

Θ(k), inducing width φ = Ω(k).
For the second claim, consider the following set system with k =

√
m/ε and n = 2k + 1.

For i = 1, . . . , k, let Si = {ei, ek+i, e2k+1}, whereas the remaining m− k sets are arbitrary
subsets of {e1, . . . , ek}. Observe that ek+i is contained only in Si, so xSi = 1 in any valid set
cover. Consequently the solution x where xS1 = · · · = xSk = 1 and xSk+1 = · · · = xS2k+1 = 0
forms the unique (fractional) minimum set cover of size k =

√
m/ε. Next, recall that an

element is considered rarely occurring if it appears in at most m
α` >

m
εk sets. As ek+1, . . . , e2k

each only occurs once, and e2k+1 only appears in k =
√
m/ε = m

εk sets, these k + 1 elements
are deemed rare and thus handled by the MWU framework.

The solution computed by the MWU framework satisfies
∑
S:e∈S xS ≥ 1− β for every e,

and in particular, for each e ∈ {ek+1, . . . , e2k}. Therefore, the average solution places a total
weight of at least (1− β) ·Θ(k) on xS1 , . . . , xSk , so there must exist a round that places at
least the same total weight on these sets. However, these k sets all contain e2k+1, yielding∑
S:e2k+1∈S xS ≥ (1− β) ·Θ(k) = Ω(k), implying a width of Ω(k) = Ω(

√
m/ε). J

A.2 Proof of Lemma 3.5
Proof. Let (x∗, z∗) denote the optimal solution of value OPT to MaxCover − LP , which
implies that ‖x∗‖1 ≤ ` and Ax∗ ≥ z∗. Consider the following covering LP: minimize ‖x‖1
subject to Ax ≥ z∗ and x ≥ 0. Clearly there exists an optimal solution of objective value
`, namely x∗. This covering LP may be solved via the MWU framework. In particular,
we may use the oracle that picks one set S with maximum weight (as maintained in the
MWU framework) and places its entire budget on xS . For an accurate guess `′ = Θ(`) of
the optimal value, this algorithm returns an average of T = Θ( `

′ logn
ε2MC

) = Θ( ` logn
ε2MC

) oracle
solutions. Observe that the outputted solution x is of the form xS = vS`

′

T = vSδ where vS is
the number of rounds in which S is chosen by the oracle, and δ = `′

T = `′ε2MC
` logn = Θ( ε

2
MC

logn ). In
other words, x is ( ε

2
MC

logn )-integral. By Theorem 2.2, x satisfies Ax ≥ (1− εMC)z∗. Then in
MaxCover − LP , the solution (x, (1− εMC)z∗) yields coverage at least p>((1− εMC)z∗) =
(1− εMC)p>z∗ = (1− εMC)OPT. J

A.3 Proof of Lemma 3.6
Proof. Consider the algorithm prune in Figure 9. As we pick a valid amount r ≤ xS to
move from xS to x̆S̆ at each step, x̆ must be an `-cover (in the extended set system) when
prune finishes. Observe that if

∑
S:e∈S xS < 1 then e will never be removed from any S̆,
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prune(x):
x̆← 0|F̆|×1, z← 0n×1 B Maintain the pruned solution and its coverage amount
for each S ∈ F do

S̆ ← S

while xS > 0 do
r ← min(xS ,mine∈S̆(1− ze)) B Weight to be moved from xS to x̆S̆
xS ← xS − r, xS̆ ← xS̆ + r B Move weight to the pruned solution
for each e ∈ S̆ do ze ← ze + r B Update coverage accordingly
S̆ ← S̆ \ {e ∈ S̆ : ze = 1} B Remove e with ze = 1 from S̆

return z

Figure 9 The prune subroutine lifts a solution in F to a solution in F̆ with the same MaxCover-
LP objective value and width 1. The subroutine returns z, the amount by which members of F̆
cover each element. The actual pruned solution x̆ may be computed but has no further use in our
algorithm and thus not returned.

so ze is increased by xS for every S, and thus ze =
∑
S:e∈S xS . Otherwise, the condition

r ≤ 1− ze ensures that ze stops increasing precisely when it reaches 1. Each S takes up to
n+ 1 rounds in the while loop as one element e ∈ S is removed at the end of each round.
There are at most m sets, so the algorithm must terminate (in polynomial time).

We note that in Section 3.4, we need to adjust prune to instead achieves the condition
ze = min(Aex, 1) where entries of A are arbitrary non-negative values. We simply make the
following modifications: choose r ← min(xS ,mine∈S̆

1−ze
Ae,S

) and update ze ← ze + r · Ae,S ,
and the same proof follows. J

Remark that to update the weights in the MWU framework, it is sufficient to have
the coverage

∑
S̆∈F̆ :e∈S̆ x̆S̆ , which are the ze’s returned by prune; the actual solution x̆ is

not necessary. Observe further that our MWU algorithm can still use x instead of x̆ as
its solution because x has no worse coverage than x̆ in every iteration, and so does the
final, average solution. Lastly, notice that the coverage z returned by prune has the simple
formula ze = min(

∑
S:e∈S xS , 1). That is, we introduce prune to show an existence of x̆,

but will never run prune in our algorithm.

A.4 Proof of Lemma 3.8
Proof. Consider the MaxCover − LP (U ,F , `,p) with optimal solution (xOPT, zOPT) of
value OPT, and let xsol be a (1 − εMC)-approximate Θ( γ2

logn )-integral `-cover over the
sampled elements and zsol be its corresponding coverage vector. Denote the sampled
elements with L = {ê1, · · · , ês}. Observe that by defining each Xi as a random variable that
takes the value zOPT

êi
with probability pêi and 0 otherwise, the expected value of X =

∑s
i=1 Xi

is

E[X] =
s∑
i=1

E[Xi] = s
∑
e∈U

pe · zOPT
e = s · C(xOPT) = s ·OPT.

Let τ = s(1− γ)OPT. Since Xi ∈ [0, 1], by applying Chernoff bound on X, we obtain

Pr
[
CL(xOPT) ≤ τ

]
= Pr[X ≤ (1− γ)E[X]]

≤ e−
γ2E[X]

3 ≤ e−
Ω(` log(mn) logn/γ2)

3 = (mn)−Ω(` logn/γ2).
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Therefore, since xsol is a (1 − εMC)-approximate solution of MaxCover − LP (L,F , `,p),
with probability 1− (mn)−Ω(` logn/γ2), we have CL(xsol) ≥ (1− εMC)τ .

Next, by a similar approach, we show that for any fractional solution x, if CL(x) ≥
CL(xOPT), then with probability 1−(mn)−Ω(` logn/γ2), C(x) ≥

( 1−γ
1+γ

)
(1−εMC)OPT. Consider

a fractional `-cover (x, z) whose coverage is less than
( 1−γ

1+γ
)
(1− εMC)OPT. Let Yi denote

a random variable that takes value zêi with probability pêi , and define Y =
∑s
i=1 Yi.

Then, E[Yi] = C(x) <
( 1−γ

1+γ
)
(1 − εMC)OPT. For ease of analysis, let each Ȳi ∈ [0, 1] be

an auxiliary random variable that stochastically dominates Yi with expectation E[Ȳi] =( 1−γ
1+γ

)
(1− εMC)OPT, and Ȳ =

∑s
i=1 Ȳi which stochastically dominates Ȳ with expectation

E[Ȳ] = s ·
( 1−γ

1+γ
)
(1− εMC)OPT = (1−εMC)τ

1+γ . We then have

Pr[CL(x) > (1− εMC)τ ] = Pr[Y > (1− εMC)τ ] = Pr
[
Y > (1 + γ)E[Ȳ]

]
≤ Pr

[
Ȳ > (1 + γ)E[Ȳ]

]
≤ e−

γ2E[Ȳ]
3 ≤ (mn)−Ω(` logn/γ2),

using the fact that
( 1−γ

1+γ
)
(1− εMC) = Θ(1) for our interested range of parameters. Thus,

Pr
[
C(x) ≤

(1− γ
1 + γ

)
(1− εMC)OPT and CL(x) > (1− εMC)τ

]
≤ (mn)−Ω(` logn/γ2).

In other words, except with probability (mn)−Ω(` logn/γ2), a chosen solution x that offers at
least as good empirical coverage over L as xOPT (namely xsol) does have actual coverage of
at least

( 1−γ
1+γ

)
(1− εMC)OPT.

Since the total number of Θ( γ2

logn )-integral `-covers is O(m` logn/γ2) (Observation 3.7),
applying union bound, with probability at least 1 − O(m` logn/γ2) · (mn)−Ω(` logn/γ2) =
1− 1

poly(mn) , a (1− εMC)-approximate Θ( γ2

logn )-integral solution of Max k-Cover(L,F , `,p)
has weighted coverage of at least

( 1−γ
1+γ

)
(1− εMC)OPT > (1− 2γ)(1− εMC)OPT over U . J

A.5 Proof of Theorem 3.9
Proof. The algorithm clearly requires Θ(T ) passes to simulate the MWU algorithm. The
required amount of memory, besides Õ(n) for counting elements, is dominated by the
projected set system. In each pass over the stream, we sample Θ(` logmn logn/ε4) elements,
and since they are rarely occurring, each is contained in at most Θ(mε` ) sets. Finally, we
run log1+Θ(ε) n = O(logn/ε) instances of the MWU algorithm in parallel to compute a
(1 + ε)-approximate solution. In total, our space complexity is Θ(` logmn logn/ε4) ·Θ(mε` ) ·
O(logn/ε) = Õ(m/ε6). J

A.6 Proof of Lemma 3.10
Proof. Recall the weight update formula wt+1

e = wte(1−
β(Ăex̆−be)

6φ ) for the MWU framework,
where Ăn×|F̆| represents the membership matrix corresponding to the extended set system
(U , F̆). In our case, the desired coverage amount is be = 1. By construction, we have
Ăex̆ = ze ≤ 1; therefore, our width is φ = 1, and −1 ≤ Ăex̆− be ≤ 0. That is, the weight of
each element cannot decrease, but may increase by at most a multiplicative factor of 1 + β/6,
before normalization. Thus even after normalization no weight may increase by more than a
factor of 1 + β/6 = 1 +O(β). J
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