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Abstract
We study the Glauber dynamics for Ising model on (sequences of) dense graphs. We view the
dense graphs through the lens of graphons [19]. For the ferromagnetic Ising model with inverse
temperature β on a convergent sequence of graphs {Gn} with limit graphon W we show fast
mixing of the Glauber dynamics if βλ1(W ) < 1 and slow (torpid) mixing if βλ1(W ) > 1 (where
λ1(W ) is the largest eigenvalue of the graphon). We also show that in the case βλ1(W ) = 1 there
is insufficient information to determine the mixing time (it can be either fast or slow).
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1 Introduction

Spin systems have been extensively studied in physics [11], mathematics [25], and machine
learning [24]. An important and challenging computational question is efficiently sampling
configurations from the distribution of a model (spin system). A popular sampling method
(and the focus of our paper) is Glauber dynamics [11]. One of the most studied spin models
is Ising model [14, 12]. Even though there is a polynomial-time algorithm to sample from the
distribution of the ferromagnetic Ising model [13] it is still useful (for reasons of simplicity,
generality, and speed) to study the Glauber dynamics for the model [15, 21]. A basic question
is: what properties of the underlying graph and the temperature make the Glauber dynamics
fast (or slow)? In the case of sparse graphs the dynamics was studied for, for example, Z2

(see, e.g., [20]), general bounded degree graphs [22], and graphs with bounded connective
constant [27, 26].

In the case of dense graphs the dynamics was studied for the complete graph [15] (for
more general models on the complete graph, see [6, 2]). Our goal is to understand the
impact of the structural properties (analaogously to the connective constant) of the dense
graphs and the speed of Glauber dynamics. We will view dense graphs through the lens
of graphons [19] and use the notions of free energy of a spin system on a graphon [4]. We
give a threshold for the inverse temperature below which Glauber dynamics is rapidly mixing

∗ This material is based upon work supported by the National Science Foundation under NSF grant
CCF-1563757.

© Rupam Acharyya and Daniel Štefankovič;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 Glauber Dynamics for Ising Model on Convergent Dense Graph Sequences

and above which the mixing is slow. This generalizes [15] from complete graphs to general
dense graph sequences. We also show that at the critical point it is not possible to draw a
conclusion about the mixing time for a convergent sequence of graphs just by looking at the
limit graphon.

We obtain our lower bound results by studying the typical configurations of the model [23,
15]. A phase of a spin configuration denotes what fraction of vertices get what spin. The most
probable (dominant) phases play an important role in influencing the speed of the Glauber
dynamics. Intuitively, a unique dominant phase (at a high temperature) corresponds to
fast mixing of Glauber dynamics, whereas multiple dominant phases (at a low temperature)
correspond to slow mixing of Glauber (and other) dynamics (moving between phases requires
the chain to move through a high energy barrier). The typical phases were previously studied,
for example, to show slow mixing of Glauber dynamics [23, 15, 8] and to prove hardness
results for sampling [10, 9, 28].

2 Background

2.1 Homogeneous Ferromagnetic Ising Model (with no external field)
Ising Model was introduced in 1920’s by Lenz [14] and Ising [12]. Let G = (V (G), E(G))
be a finite graph. In a configuration of the model, each vertex is assigned a spin from
the set {+1,−1}. The energy of a configuration σ, is specified by the Hamiltonian of the
configuration

H(σ) = −
∑
v∼w

J(v, w)σ(v)σ(w),

where v ∼ w denotes v is a neighbor of w in G and J(v, w) denotes the interaction strength
between vertices v and w.

We study homogeneous ferromagnetic Ising Model, that is, we assume J(v, w) = 1 for all
v, w ∈ V . The probability measure µ, on the set of configurations Ω = {+1,−1}|V (G)|, for
this model is given by,

µ(σ) = e−βH(σ)

Z(β) ,

where β > 0 is called the inverse temperature and Z(β), the normalization factor is called
the partition function.

This work focuses on dense graphs. We follow [15] in re-parameterizing the inverse
temperature β as β/n, where n = |V (G)|. So the probability measure for dense graphs can
be rewritten as,

µ(σ) = e(β/n)·S(σ)

Z(β) ,

where S(σ) =
∑
v,w∈V,v∼w σ(v)σ(w).

2.2 Glauber Dynamics
In this paper we analyze Glauber Dynamics to sample from the distribution of the model.
The (single site) Glauber Dynamics for the probability measure µ is defined by the following
transition rule.
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1. Pick a vertex v (also called site) uniformly at random from V (G).
2. Change the spin of v with respect to the spins of its neighbors, i.e., in the new configuration,

spin of v will be +1 with a probability of p(σ, v), where

p(σ, v) :=
exp(βnSv(σ))

exp(βnSv(σ)) + exp(−βnSv(σ))
,

and Sv(σ) =
∑
w∈V,v∼w σ(w).

We study the following (standard) notion of mixing time. The mixing time τmix(ε) of a
Markov chain with state space Ω, transition matrix P and stationary distribution π is

τmix(ε) = max
X0∈Ω

min{t : dTV (P t(X0, ·), π) ≤ ε}.

Usually ε = 1
4 or ε = 1

2e is used.

2.3 Convergent Sequence of Dense Graphs
We study sequences of dense graphs using notions of convergence defined in [3, 4].

Let G be a weighted graph with non-negative vertex weights αv that sum to 1 and edge
weights βuv ∈ [0, 1]. Let G′ be another weighted graph with non-negative vertex weights α′i
that sum to 1 and edge weights β′ij ∈ [0, 1]. Let χ(G,G′) be the set of fractional overlays
between G and G′, where a fractional overlay (between G and G′) is X ∈ RV (G)×V (G′)

≥0 such
that

∑
iXvi = αv(G) and

∑
vXvi = α′i(G′). The cut distance between G and G′ is (see [19])

δ�(G,G′) = min
X∈χ(G,G′)

d�(G,G′, X), (1)

where

d�(Gn, G,X) = max
Q,R⊂V (G)×V (G′)

∣∣∣∣ ∑
(v,i)∈Q,(u,j)∈R

XviXuj(βuv − β′ij)
∣∣∣∣. (2)

The free energy of an Ising model with parameter β/n for a dense graph Gn is defined as
follows (see [17]).

F̂(Gn, β) = − 1
|V (Gn)| lnZ(Gn, β),

where Z(Gn, β) =
∑
σ:V (Gn)→{+1,−1} exp( 1

n

∑
(u,v)∈E(Gn) βσ(u)σ(v)).

Microcanonical free energy is a more detailed version of free energy – we compute the
free energy for each phase (by phase we mean the fraction of the vertices with positive spin),
formally defined for a ∈ [0, 1] as follows (see [17]):

F̂a(G, β) = − 1
n

lnZa(G, β),

where Za(G, β) =
∑
σ∈Ωa(G) exp(βn

∑
(u,v)∈E(G) σ(u)σ(v)) and

Ωa(G) = {σ : V (G)→ {−1,+1}
∣∣ |σ−1({+1})| − a|V (G)|

∣∣ ≤ 1}.

In [4] it has been shown that convergence w.r.t. cut metric implies convergence w.r.t. mi-
crocanonical free energy and free energy (they also show converse if one has convergence
w.r.t. microcanonical free energies for all spin models).

APPROX/RANDOM’17
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2.4 Limit Object of Convergence: Graphon
The limits of the convergence w.r.t. the cut norm are graphons [19].

I Definition 1 (Graphon, [19]). A graphon W is a symmetric measurable function W :
[0, 1]2 → [0, 1]. (The symmetry means W (x, y) = W (y, x) for all x, y ∈ [0, 1].)

The simplest graphons correspond to step functions with finitely many steps.

I Definition 2 (Step Graphon, [19]). Let S1, . . . , Sk be a disjoint decomposition of [0, 1] into
intervals for some finite k and let P be a symmetric k × k matrix with entries from [0, 1]. A
function U : [0, 1]2 → [0, 1] is a step graphon with value matrix P if ∀i, j and ∀(x, y) ∈ Si×Sj
U(x, y) = Pij . We call α1, . . . , αk the step sizes of the step graphon, where αi = |Si| for
i ∈ {1, . . . , k}.

Given a weighted graph H (with |V (H)| = n) a step graphon WH can be naturally
constructed as follows. Let S1, . . . , Sn be disjoint sub-intervals of [0, 1] such that Si is of
size αi, where αi is the weight of the vertex i ∈ V (G). For x ∈ Si and y ∈ Sj we let
WH(x, y) = βij , where βij is the weight of the edge between vertices i and j (if there is no
edge between i and j we let βij = 0).

I Definition 3 (Eigenvalue of a Graphon). [17] Given a graphon W , consider the following
operator TW : L2[0, 1]→ L1[0, 1]:

(TW f)(x) =
∫

[0,1]
W (x, y)f(y) dy.

The operator TW has discrete spectrum, i.e., a multi-set of real nonzero eigenvalues λ1, λ2, . . .

(sorted in the non-increasing order by their absolute value), such that λn → 0. We call these
the eigenvalues of the graphon W . The eigenvalue with highest absolute value is denoted
λ1(W ).

The notions of cut distance, free energy, and micro-canonical free energy extend from graphs
to graphons (see [17]).

The cut distance between two graphons is:

δ�(W,U) := inf
φ
‖Wφ − U‖� := inf

φ
sup
S,T

∣∣∣∣ ∫
S×T

Wφ(x, y)− U(x, y) dx dy
∣∣∣∣,

where φ : [0, 1] → [0, 1] is a measure preserving function and Wφ(x, y) = W (φ(x), φ(y)).
The cut distance between a graph G and a step graphon W is denoted by δ�(G,W ) =
δ�(WG,W ).

The free energy of a graphon is defined as

F(W,β) = inf
m:[0,1]→[−1,1]

E(W,β,m), (3)

where

E(W,β,m) = −β2 〈m,TWm〉 − Ent(m), (4)

and

Ent(m) = −
∫ 1

0

1
2(1−m(x)) log(1

2(1−m(x))) dx−
∫ 1

0

1
2(1 +m(x)) log(1

2(1 +m(x))) dx,



R. Acharyya and D. Štefankovič 23:5

and

〈m,TWm〉 =
∫

[0,1]2
W (x, y)m(x)m(y) dx dy.

The microcanonical free energy of a graphon with phase a ∈ [0, 1] is

Fa(W,β) = inf
m:[0,1]→[−1,1] and

∫
[0,1]

m(x) dx=a
E(W,β,m), (5)

where E(W,β,m) is defined as in (4).
A sequence of dense graphs {Gn} is said to be convergent to a graphonW if δ�(Gn,W )→

0. For a sequence of dense graphs {Gn} converging to a graphon W it has been shown [3, 4]
that the free energy and microcanonical free energy of the dense graphs converge to the free
energy and microcanonical free energy of the graphon.

I Proposition 4 ([4]). Suppose {Gn} be a sequence of dense graphs convergent to a graphon
W : [0, 1]2 → [0, 1]. Then
1. F̂(Gn, β)→ F(W,β).
2. ∀a ∈ [0, 1], F̂a(Gn, β)→ Fa(W,β).

3 Main Results and Related Works

3.1 Results for Mixing Time
The Glauber dynamics for Ising model has been extensively studied in [13, 15, 22]. The
dynamics is well understood when the graph has bounded degree [13, 21, 1]. In the dense
scenario the dynamics has been analyzed for the complete graph [15] (so-called mean field
model). The complete graph corresponds to graphon with W (x, y) = 1 (for all x, y ∈ [0, 1]).
Our goal here is to extend this work to general graphons (we aim to understand the connection
between the mixing time, the inverse temperature, and the structure of the graphon).

For the Ising model on the complete graph [15] show that the mixing of Glauber Dynamics
is fast when β < 1 and it is exponentially slow when β > 1. This threshold behavior extends
to convergent dense graph sequences – we provide a threshold for the parameter β, such that,
below the threshold mixing of Glauber dynamics is fast and above the threshold mixing is
slow (our result matches the threshold for the complete graph – the threshold is β = 1/λ1(W )
and for complete graph λ(W ) = 1). Formally we have the following results.

I Theorem 5. Consider a homogeneous ferromagnetic Ising model (with no external field)
with inverse temperature β and a graphon W . If {Gn} → W , then the mixing time of the
Glauber Dynamics for Ising model on Gn satisfies the following:
1. If λ1(W ) · β < 1 then τmix(Gn) = O(n log(n)).
2. If λ1(W ) · β > 1 then τmix(Gn) = eΩ(n).

Remark (mixing in critical case): In the above theorem we haven’t stated any result for
the critical temperature, i.e., when λ1(W )β = 1. This is because, at the critical temperature
one cannot draw conclusion about the mixing time for a convergent sequence of graphs just
by looking at the limit graphon. We show examples of two different graph sequences which
converge to the same graphon, even though at critical temperature mixing is fast for one
sequence and slow for the other. These examples are discussed in Section 9.

APPROX/RANDOM’17
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3.2 Results for Phase Diagram
A phase α of the Ising model is the set of configurations which has αn fraction of vertices with
+1 spin. The weight of a phase is the value of the partition function when restricted to the
configurations with the given phase signature. The phase which has maximum weight is called
the dominant phase. It has been seen earlier that when the model is studied on a graph, the
phase diagram of the model changes with different values of the parameter β. For example,
when Ising model is studied on complete graphs the model exhibits an unique dominant
phase if β < 1 and it has multiple dominant phases when β > 1. It has been shown in [15]
that coexistence of multiple dominant phases implies slow mixing, because to get from one
phase to another it requires to pass through a high free energy barrier. Hence studying phase
diagram for spin models has been focus of numerous previous studies [23, 10, 9]. The goal of
these studies was to understand the speed of the dynamics. As we know from Section 2.4
that the free energy is defined as the negative of the logarithm of the partition function, to
find the dominant phase we need to find the phase which minimizes the free energy. In this
paper our interest is to study the behavior of the phase transition on a sequence of graphs.
For this purpose we study the behavior of the free energy on the limit graphon, i.e., we try to
find for what values of β there is an unique minimizer (equivalently unique dominant phase)
in the expression for the free energy. Formally we have the following theorem.

I Theorem 6. Consider a graphon W and the free energy function for the graphon W with
respect to the inverse temperature parameter β is defined as in (4).
1. If λ1(W ) · β < 1 then the function E(W,β,m) has unique1 local minimum.
2. If λ1(W ) · β > 1 then the function E(W,β,m) has multiple2 global minima.

4 Organization

In Section 5 we prove for a convergent graph sequence than one can align the graphs in the
sequence with a step graphon (that is close to the limit graphon) in such a way that most
vertices have same neighborhood statistics as the step graphon. This property will later
be used to prove the upper bound result of Theorem 5. Next in Section 6 we establish the
phase digram for different values of β (Theorem 6). The result about phase diagram is an
important tool to prove the lower bound of mixing time of Theorem 5. Finally in Section 7
we prove the upper bound result at high temperature and in Section 8 we prove that the
mixing is slow on the graphs in the sequence at low temperature. All the remaining proofs
can be found in the Appendix.

5 Labeling Graphs in a Convergent Graph Sequence

In this section we will deduce some properties of convergent graph sequences which will be
used to prove the upper bound result of Theorem 5.

I Definition 7 (GOOD and BAD vertices). Let U be a step graphon with k steps, value
matrix P , and step sizes α1, . . . , αk. Let G be a graph and let φ : V (G)→ {1, . . . , k} be a

1 By unique we mean unique up to measurability, i.e., m1 and m2 are two solutions then the set where
they differ has measure zero

2 By multiple we mean there exists at least two functions m1 and m2 such that the set where they differ
has measure greater than zero
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labeling. Let v be a vertex of G and let i = φ(v). We call the vertex v to be GOOD with ε
tolerance if for all j ∈ {1, . . . , k},

|{w |w ∼ v;φ(w) = j}| ≤ (Pijαj + ε)n.

Otherwise we call the vertex to be BAD w.r.t. ε tolerance.

I Definition 8 (Proper Labeling). Let G be a graph and U be a step graphon. A labeling
φ : V (G)→ {1, . . . , k} is said to be proper up to ε tolerance w.r.t. U if there are at most εn
many BAD vertices w.r.t. ε tolerance.

With the above definitions we can now state the following lemma.

I Lemma 9. Let {Gn} be a sequence of graphs such that Gn → W for some graphon W .
Then for any ε > 0 there exists k = k(ε), n0 = n0(ε) and a step graphon U with k steps such
that δ�(W,U) ≤ ε and such that ∀n ≥ n0 we have that Gn has a proper labeling up to ε
tolerance w.r.t. U .

To prove the Lemma 9 we will first prove an easier version of the lemma when the limit
graphon is a step graphon.

I Lemma 10. Let {Gn} be a sequence of graphs such that Gn → U for some step graphon
U . Then for any ε > 0 there exists n0 = n0(ε) such that ∀n ≥ n0 we have that Gn has a
proper labeling up to ε tolerance w.r.t. U .

Proof of Lemma 10. We know that Gn → U implies that for given ε > 0 there exists n0
such that ∀n ≥ n0,

δ�(Gn, U) ≤ ε2/2. (6)

Since every step graphon can be viewed as arising from a weighted graph G by the construction
shown in in Section 2.3, we will, w.l.o.g., assume U = WG. Hence δ�(Gn, U) = δ�(Gn,WG) =
δ�(Gn, G). Now for two weighted graphs we have

δ�(Gn, G) = min
X∈χ(Gn,G)

d�(Gn, G,X), (7)

where X is a fractional overlay, i.e.,
∑
iXvi = 1

n and
∑
vXvi = αi(G) and

d�(Gn, G,X) = max
Q,R⊂V (Gn)×V (G)

∣∣∣∣ ∑
(v,i)∈Q,(u,j)∈R

XviXuj(1− Pij)
∣∣∣∣. (8)

Note that we give weight 1
n to each vertex v ∈ V (Gn) (as Gn is originally unweighted). The

1 in (8) is the weight of the edge (u, v) ∈ E(Gn). Similarly αi(G) is the weight of the vertex
i ∈ V (G) and Pij is the weight of the edge (i, j) ∈ E(G). Now let X be the fractional overlay
which minimizes the cut distance. We assign the label φ of a vertex v ∈ V (Gn) from the
distribution {nXvi}i, i.e., φ(v) = i with probability nXvi. Note that for any vertex,

E
[∣∣{w|w ∼ v;φ(w) = j}

∣∣] = n
∑
w|w∼v

Xwj .

Now we call a vertex v to be dangerous for (i, j) if φ(v) = i and∑
w|w∼v

Xwj ≥ αjPij + ε

2 . (9)

Now we will show that there are not too many such dangerous vertices.

APPROX/RANDOM’17
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Bound on number of Dangerous Vertices: First we fix i and j. Let Q be the set of all
dangerous vertices for (i, j) and R be the set of all vertices w ∈ V (G) with label j . Then
from (9), (6) and (8) we have:∑

v∈Q
Xvi(αjPij + ε

2) ≤
∑
v∈Q

Xvi

∑
w∼v

Xwj ≤
∑
v∈Q

Xvi

∑
w∈R

XwjPij + ε2

2 =
∑
v∈Q

XviαjPij + ε2

2 .

(10)

Hence from (10) we have
∑
v∈QXvi ≤ ε. So from Chernoff Bound w.h.p. the number of

dangerous vertices are at most εn. Next we look at the vertices which are not dangerous for
any (i, j), i.e., if φ(v) = i, then for all j we have∑

w|w∼v

Xwj ≤ αjPij + ε

2 . (11)

We now move on to prove that the probability there there exists too many BAD vertices is
very low. We now use Yv as an indicator variable to denote whether the vertex v is BAD or
not. Hence it is enough to bound Pr[

∑
v Yv ≥ εn]. Now from Markov’s inequality we have:

Pr[
∑
v

Yv ≥ εn] ≤
∑
v E[Yv]
εn

. (12)

Hence we now need to bound E[Yv]. Again using Markov’s inequality we have

E[Yv] = Pr[v is BAD]

=
∑
i

Pr[v gets label i] · Pr[∃j 3 |{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n
∣∣∣φ(v) = i]

≤
∑
i

nXvi

∑
j

Pr[|{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n]. (13)

Using Chernoff-Hoeffding bound for any non-dangerous vertex v we have,

Pr[|{w|w ∼ v;φ(w) = j}| ≥ (Pijαj + ε)n] ≤ exp(−nε2/4). (14)

Now from (12) and (13) we have:

Pr[
∑
v

Yv ≥ εn] ≤ kn exp(−nε2/4)
εn

= k

ε
exp(−nε2/4).

Hence we have the lemma. J

Proof of Lemma 9. As Gn →W we have for given ε > 0 there exists n0 such that

δ�(Gn,W ) ≤ ε2

4 . (15)

Also from [17] we have for any graphon W we have that ∃ a step function U with k steps
(where k is sufficiently large) such that

δ�(U,W ) ≤

√
2

log2 k
‖U‖2 ≤

ε2

4 . (16)

Hence from (15) and (16) we have the following analog of (6)

δ�(U,Gn) = δ�(GU , Gn) ≤ ε2

2 , (17)

where GU is a graph on k vertices. Now the remainder of the proof of the lemma is identical
to the proof of Lemma 10. J
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6 Phase Diagram

In this section we will prove Theorem 6. As free energy of the model is the infimum over the
set of all measurable functions from [0, 1] to [−1, 1] (defined in Section 2.4) we first need to
prove that there exists some such function at which the infimum is achieved. Then we will
analyze its properties.

I Lemma 11. Let E(W,β,m) be the function as defined by (4). Then the following infimum
is attained for some measurable function m:

inf
m:[0,1]→[−1,1]

E(W,β,m). (18)

Proof of Lemma 11 has been deferred to Appendix. Assuming the existence we now move on
to prove Theorem 6.

Proof of Theorem 6.
Case I: λ1(W )β < 1. In this case we will prove that the functional m 7→ E(W,β,m) is
strictly convex. Then there will be an unique minimum up to measurability (strict convexity
implies unique minimum because if there were two minima available then by strict convexity
there average will have a strictly lesser functional value which is a contradiction). Formally
we prove the following lemma.

I Lemma 12. E(W,β,m) is defined as in (3). Then for all 0 ≤ α ≤ 1 and for all measurable
functions m, p from [0, 1] to [−1, 1] we have :

E(W,β, (1− α)m+ αp) < (1− α)E(W,β,m) + αE(W,β, p).

whenever λ1(W )β < 1.

We prove the above lemma in the Appendix.

Case II: λ1(W )β > 1. For the purpose of the proof we slightly re-parameterize the
functions. In particular we define ρ(x) := 1

2 (m(x) + 1). Hence the optimization problem can
be written as:

inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1). (19)

If two measurable functions f, g : [0, 1]→ [0, 1] differ on a set of measure zero we write f ≈
m
g.

Now we define a new set S = {ρ : [0, 1]→ [0, 1]|
∫

[0,1] ρ(x) dx = 1
2}. We will show that the

minimum doesn’t lie in the set S. For the function ρ(x) = 1/2 everywhere we argue that it
cannot be the minimum by a local perturbation argument. For all the other functions ρ ∈ S
we use the following transformation to produce a function with a smaller value.

I Definition 13. Given a function ρ ∈ S we define another measurable function ρ̂ : [0, 1]→
[0, 1] as follows:

ρ̂(x) =
{ ρ(x) if ρ(x) ≥ 1

2 ,

1− ρ(x) otherwise.

Now we have the following lemma for ρ̂ the proof of which has been deferred to Appendix.

APPROX/RANDOM’17
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I Lemma 14. If ρ ∈ S = {ρ : [0, 1] → [0, 1]|
∫

[0,1] ρ(x) dx = 1
2} \ {ρ : [0, 1] → [0, 1]|f ≈

m

ρ and ρ(x) = 1
2∀x ∈ [0, 1]} and ρ̂ is defined as in Definition 13, then

E(W,β, 2ρ̂− 1) < E(W,β, 2ρ− 1). (20)

It remains to rule out the function ρ(x) = 1
2 (for x ∈ [0, 1]), that is, to show that this

function is also not an minimum point for E(W,β, 2ρ − 1). More formally we have the
following lemma.

I Lemma 15. Consider the following minimization problem from (18)

inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1).

If λ1(W )β > 1 then ρ : [0, 1] → [0, 1]|ρ(x) = 1
2∀x is not a minimizer of the optimization

problem.

Hence from the Lemma 14 and 15 we have that the minimizers of E(W,β, 2ρ−1) is not in the
set S = {ρ : [0, 1]→ [0, 1]|

∫
[0,1] ρ(x) dx = 1

2}. Note that E(W,β, 2ρ−1) = E(W,β, 2(1−ρ)−1).
Hence if ρopt is a minimizer of E(W,β, 2ρ− 1) so is 1− ρopt. Hence the optimization problem
has multiple minima. J

7 Upper Bound for the Mixing Time

We will now prove the upper bound result stated in the Theorem 5 using path coupling, a
well known proof technique for bounding mixing time. We state a lemma from [5] which will
be used for the proof.

I Lemma 16. [5] Let X be a Markov chain. Let GX be the graph of the Markov chain. Let
` be a length function on the edges of GX such that `(x, y) ≥ 1 for each edge {x, y} ∈ E(GX ).
This then naturally extends to a metric (which we also denote by `), where `(x, y) is the
length of the shortest path from x to y. Suppose that for each edge (x, y) ∈ GX there exists a
coupling (X1, Y1) of P (x, ·) and P (y, ·) such that the following holds:

Ex,y[`(X1, Y1)] ≤ `(x, y)e−α.

Then

tmix(η) ≤
⌈
− log(η) + log(diam(X ))

α

⌉
,

where diam(X ) = maxx,y∈GX `(x, y) is the diameter of GX

Now we prove the main theorem about fast mixing in high temperature.

Proof of Theorem 5.1. From Lemma 9 we know that for any ε > 0 for any sufficiently
large n the graph Gn can be properly labeled up to ε tolerance (call ) w.r.t. some step
graphon U such that U is ε-close to the limit graphon W , i.e., δ�(U,W )ε. Let’s call the
labeling as φ. Let k be the number of steps in U and α1, . . . , αk be the step sizes. Now we
define the length function ` to be used in the path coupling argument.
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Defining the Distance: For a vertex v ∈ V (G) we define the following quantity,

d̂v =
{ dφ(v) if v is GOOD w.r.t. φ,

1
λ1(U)

∑
j dj if v is BAD w.r.t. φ,

where (d1, . . . , dk) is the eigenvector corresponding to the largest eigenvalue (λ1(U)) of the
step graphon U , where the eigenvector is scaled so that di ≥ 1. Note that if for all i we have
di ≥ 1 then 1

λ1(U)
∑
j dj ≥ 1. Now the distance between any two arbitrary configurations σ′

and τ ′ is defined as:

`(σ′, τ ′) =
∑

v∈V (G) and σ′(v)6=τ ′(v)

d̂v.

Choice of ε: Now let ε0 > 0 be such that (λ1(W ) + ε0)β = 1. We will choose U such that
|λ1(W ) − λ1(U)| ≤ ε0/4 and take ε > 0 such that εdbad(1 + λ1(U)) = (minj dj) ε0

4 , where
dbad = 1

λ1(U)
∑
j dj .

Defining the Path Coupling: Let σ, τ be two configurations such that the two configurations
differ only at v and σ(v) = −1 and τ(v) = +1. Now we describe a coupling (X,Y ) such that
X starts with σ and Y starts with τ .

Pick one vertex w u.a.r from V .
If w /∈ N (v) then update the spin of w in both X and Y with transition probability
specified by the dynamics [in Section 2.2].
If w ∈ N (v) then pick a number Z ∈ [0, 1] and set

X1(w) =
{ +1, if Z ≤ p(σ, v),
−1, otherwise,

and

Y1(w) =
{ +1, if Z ≤ p(τ, v)
−1, otherwise,

where

p(σ, v) = eβSv(σ)

eβSv(σ) + e−βSv(σ) , (21)

and Sv(σ) =
∑
v∼w σ(w).

From the definition of the coupling we can see that the disagreement of the two configurations
spreads further with probability p(τ, v)− p(σ, v). We have the following upper bound on the
probability of spreading disagreement.

I Claim 17 (see, e.g., [16]). Consider Ising model on a dense graph G with inverse temperature
β and let σ, τ be two configurations such that the two configurations differ only at v and
σ(v) = −1 and τ(v) = +1. Also p(σ, v) is defined as in (21). Then we have

p(τ, v)− p(σ, v) ≤ tanh(β
n

).

Now we analyze the expected decrease of the coupling distance in two cases to satisfy the
hypothesis of the Lemma 16.

APPROX/RANDOM’17
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Case I: v is GOOD: As we can see from Lemma 9 if v is a GOOD vertex then we have
number of neighboring vertices of v with label j is ≤ (Pijαj + ε)n. As we have seen in the
coupling we choose a vertex w u.a.r., i.e., w.p. 1

n . Now we have the following cases:
If w = v, then d(X1, Y1) = 0.
If w /∈ N (v) ∪ {v}, then d(X1, Y1) = di.
If w ∈ N (v) and w gets label j by the labeling, then w.p. p(τ, v)− p(σ, v),
`(X1, Y1) = di + dj , if w is GOOD,
`(X1, Y1) = di + dbad, if w is BAD.

where dbad = 1
λ1(U)

∑
j dj . Also from Lemma 9 there are at most εn many BAD vertices. So

from Claim 17 and the above discussion we have

E[`(X1, Y1)] ≤ di(1−
1
n

) + 1
n
· tanh(β/n)

[∑
j

(Pijαj + ε)n · dj + εn · dbad

]
≤ di(1−

1
n

) + 1
n
· β
[∑

j

(Pijαj + ε) · dj + ε · dbad

]
= di(1−

1
n

) + 1
n
· β
[∑

j

(
Pijαjdj + εdbad(1 + λ(U))

]
= di(1−

1
n

) + 1
n
· β
[
λ1(U)di + εdbad(1 + λ(U))

]
≤ di exp

(
− 1
n

(
1− β

(
λ1(U) + ε

dbad

di
(1 + λ1(U))

)))
. (22)

By the choice of ε we then have

β
(
λ1(U) + ε

dbad

di
(1 + λ1(U)

)
≤ β

(
λ1(U) + ε0

4
)
≤ (λ1(W ) + ε0

2 )β < 1. (23)

Hence using (23) in (22) we have

E[`(X1, Y1)] ≤ di exp(− 1
n
c),

where c = 1− β
(
λ1(U) + εdbad

di
(1 + λ1(U))

)
> 0 and so from Lemma 16 we have the theorem.

Case II: v is BAD: In this case we will consider that v is BAD w.r.t. the labeling and so it
can be connected to all the vertices in the worst case. Using similar discussion for case I we
have:

If w = v, then d(X1, Y1) = 0.
If w /∈ N (v) ∪ {v}, then d(X1, Y1) = dbad.
If w ∈ N (v) and w gets label j by the labeling, then w.p. p(τ, v)− p(σ, v),
`(X1, Y1) = dbad + dj , if w is GOOD.
`(X1, Y1) = dbad + dbad, if w is BAD.

Similarly we have,

E[`(X1, Y1)] ≤ dbad(1− 1
n

) + 1
n
· tanh(β/n)

[∑
j

ndj + εn · dbad

]
≤ dbad(1− 1

n
) + 1

n
· β
[∑

j

dj + ε · dbad

]
≤ dbad(1− 1

n
) + 1

n
· β · dbad

[
λ1(U) + ε

]
≤ dbad exp

(
− 1
n

(
1− β

(
λ1(U) + ε

)))
.
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By the choice of ε we then have

β(λ1(U) + ε) ≤ β(λ1(W ) + ε0

2 ) < 1.

Hence we will have the theorem from Lemma 16. J

8 Lower Bound for Mixing Time

Here we will prove the result about slow mixing of Theorem 5 using the well known
conductance bound technique [7].

I Lemma 18. [7] LetM be a Markov chain with state space Ω, transition matrix P , and
stationary distribution µ. Let A ⊂ Ω such that µ(A) ≤ 1

2 , and B ⊂ Ω that forms a barrier in
the sense Pij = 0 for i ∈ A \B and j ∈ Ac \B. Then the mixing time ofM is at least µ(A)

8µ(B) .

To find such sets we look at the sets with given signature or phase. Formally we define

Aα := {σ
∣∣|{v ∈ V (G)|σ(v) = +}| = αn}. (24)

Now let Zα denotes the partition function with signature α. To apply the Lemma 18 we
consider A = A< 1

2
=
⋃
α< 1

2

Aα and B = A 1
2
. Trivially B is barrier between A and A{. Now to

show lower bound of µ(A)
8µ(B) we give a lower bound on µ(A) and an upper bound on µ(B).

Lower bound on µ(A). Assume {Gn} be a convergence sequence of dense graphs which
converges to a graphon W , then the graphs also converge w.r.t. the microcanonical free
energy, where microcanonical energy Fa(W,β) is defined as

Fa(W,β) := inf
ρ:α(ρ)=a

E(W,β, 2ρ− 1).

Now let’s look at the free energy from (3):

F(W,β) = inf
ρ:[0,1]→[0,1]

E(W,β, 2ρ− 1) = E(W,β, 2ρopt − 1).

Now let’s say we have
∫

[0,1] ρ
opt(x) dx = αc for some constant αc (w.l.o.g., we can assume

αc < 1/2). We denote Z ′α = Z(β)|Ωα and Zα = Z(β)|Aα , where Ωα is defined in Section 2.3.
Then from Proposition 4 we have :∣∣∣ 1

n
log(Z ′αc)− sup∫

[0,1]
ρ(x) dx=αc

(
−Fαc(W,β)

)∣∣∣ < ε

⇒
∣∣∣ 1
n

log(Z ′αc) + E(W,β, 2ρopt − 1)
∣∣∣ < ε

⇒ 1
n

log(Z ′αc) > E(W,β, 2ρopt − 1)− ε

⇒ 1
n

log(Z< 1
2
) > 1

n
log(Z ′αc) > −E(W,β, 2ρopt − 1)− ε

⇒ Z< 1
2
> exp(n(−E(W,β, 2ρopt − 1)− ε)). (25)

where we denote Z< 1
2

= ∪α< 1
2
Zα.
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Upper bound on µ(B): Suppose sup∫
[0,1]

ρ(x)= 1
2

E 1
2
(W,β, 2ρ−1) = E(W,β, 2ρ∗−1), for some ρ∗.

Now from Proposition 4 we have that,∣∣∣ 1
n

log(Z ′1
2
)− sup∫

[0,1]
ρ(x)= 1

2

(
−F 1

2
(W,β)

)∣∣∣ < ε

⇒
∣∣∣ 1
n

log(Z ′1
2
) + E(W,β, 2ρ∗ − 1)

∣∣∣ < ε

⇒ 1
n

log(Z ′1
2
) < −E(W,β, 2ρ∗ − 1) + ε

⇒ 1
n

log(Z 1
2
) < 1

n
log(Z ′1

2
) < −E(W,β, 2ρ∗ − 1) + ε

⇒ Z 1
2
< exp(n(−E(W,β, 2ρ∗ − 1) + ε)). (26)

Proof of Theorem 5.2. From (25) and (26) we have that

µ(A)
8µ(B) ≥

exp(n(−E(W,β, 2ρopt − 1)− ε))
exp(n(−E(W,β, 2ρ∗ − 1) + ε))

= exp(n(−E(W,β, 2ρopt − 1) + E(W,β, 2ρ∗ − 1)− 2ε))
= exp(n(c− 2ε)). (27)

where c = −E(W,β, 2ρopt − 1) + E(W,β, 2ρ∗ − 1). As in this case we have βλ1(W ) > 1
and so from Theorem 6.2 we have c > 0. Hence choosing ε sufficiently small we obtain the
theorem. J

9 Counterexample at Critical Temperature

9.1 Example of Fast Mixing at Critical Temperature
In this section we show a sequence of graphs {Gn} such that {Gn} → W and we assume
λ1(W )β = 1. But the mixing time of Glauber dynamics on Gn is O(n logn). To show this
we consider the graphs sampled from the model G(n, 1

2 −
1

logn ). Note that, if Gn is sampled
from the model G(n, 1

2 −
1

logn ) then {Gn} → W , where W is constant function such that
W (x, y) = 1

2 for all x, y. So we assume β = 2. By Chernoff bound it can be shown that
w.h.p. for each vertex we have the number of neighbors of v is ≤ n

2 . Hence following the
same path coupling defined in Section 7, we get fast mixing.

9.2 Example of Slow Mixing at Critical Temperature
In this section we show a sequence of graphs {Gn} such that {Gn} → W and we assume
λ1(W )β = 1. But the mixing time of Glauber dynamics on Gn is super-polynomial (more
precisely, exp(Ω(

√
n))). To show this we consider the graphs sampled from the model

G(n, 1
2 + 1

logn ). Note that, if Gn is sampled from the model G(n, 1
2 + 1

logn ) then {Gn} →W ,
where W is constant function such that W (x, y) = 1

2 for all x, y. So we assume β = 2.

9.2.1 Properties of Random Graph
I Lemma 19. Given a graph G(= (V,E)) ∼ G(n, 1

2 + 1
logn ). Assume S ⊂ V such that

|S| = n
2 + k, for some k ≥ 0. Then we have w.h.p.:
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1. E(S, Sc) = (1
2 + 1

logn )(n
2

4 − k
2)[1± c√

n
].

2. E(S, S) = (1
2 + 1

logn )(
(
n/2+k

2
)
)[1± c√

n
].

3. E(Sc, Sc) = (1
2 + 1

logn )(
(
n/2−k

2
)
)[1± c√

n
].

Proof. The lemma follows from Chernoff bound. J

Upper Bound on Balanced Configuration: From Lemma 19 we have w.h.p. for balanced
configurations we have

µ(B) ≤
(
n

n/2

)
exp(2 2

n
(1
2 + 1

logn )
(
n/2
2

)
[1 + c√

n
]) exp(− 2

n
(1
2 + 1

logn )n
2

4 [1− c√
n

])

=
(
n

n/2

)
exp( 2

n
(1
2 + 1

logn )[2
(
n/2
2

)
(1 + c√

n
)− n2

4 (1− c√
n

)])

≤ 2n exp( 2
n

(1
2 + 1

logn )[n
2

4 (1 + c√
n
− 1 + c√

n
)])

= 2n exp(c
√
n[ 12 + 1

logn ]). (28)

Lower Bound on Unbalanced Configuration: Similarly from Lemma 19 we have w.h.p. for
configurations with (n2 + k) pluses and (n2 − k) minuses we have

µ(A) ≥
(

n

n/2 + k

)
exp( 2

n
(1
2 + 1

logn )[
(
n/2 + k

2

)
+
(
n/2− k

2

)
] · [1− c√

n
])

· exp(− 2
n

(1
2 + 1

logn )[n
2

4 − k
2][1 + c√

n
])

=
(

n

n/2 + k

)
exp( 2

n
(1
2 + 1

logn )[n
2

4 + k2] · [1− c√
n

])

· exp(− 2
n

(1
2 + 1

logn )[n
2

4 − k
2][1 + c√

n
])

=
(

n

n/2 + k

)
exp( 2

n
(1
2 + 1

logn )
[
(n

2

4 + k2) · (1− c√
n

)− (n
2

4 − k
2)(1 + c√

n
)
]
)

=
(

n

n/2 + k

)
exp( 2

n
(1
2 + 1

logn )
[
2(−n

3/2c

4 + k2)
]
)

≥ 1√
πn/2

2n exp(−2k2

n
− 4k3

n2 ) exp( 2
n

(1
2 + 1

logn )
[
2(−n

3/2c

4 + k2)
]
). (29)

Here we use the fact that,(
n

n/2 + k

)
≥ 1√

πn/2
2n exp(−2k2

n
− 4k3

n2 ).

Now taking k = c1n
7/8 we have from (28) and (29) we have:

µ(A)
µ(B) ≥

1√
πn/2

exp(−2k2

n
− 4k3

n2 ) · exp([12 + 1
logn ](−2c

√
n+ 4k2

n
))

= 1√
πn/2

exp(−2k2

n
− 4k3

n2 − c
√
n− 2c

√
n

logn + 2k2

n
+ 4k2

n logn )
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= 1√
πn/2

exp(4k2

n
[ 1
logn −

c1
n1/8 ]− c

√
n− 2c

√
n

logn )

= 1√
πn/2

exp(Ω(
√
n)).

Hence we have the lower bound.
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10 Appendix

10.1 Proof of Theorem 6
Here we will prove the remaining proofs of Theorem 6. Before moving on to the proofs we
need the following standard definitions.

10.1.1 Preliminaries
We will use the following with X being the space of measurable functions [0, 1]→ [0, 1] and
X∗ will be the dual space.
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I Definition 20 (Weak Convergence). Let X be a normed space. Then a sequence {fn} in
X is said to be weak-convergent to f ∈ X if

∀L ∈ X∗ we have L(fn)→ L(f) as n→∞,

and we denote this by fn →
w
f .

I Definition 21 (Weak Compactness). Let (X, ‖ · ‖) be a normed space with dual space X∗.
Then a set M ⊂ X is called weak compact, if every sequence in M has a weak convergent
subsequence with limit in M .

Next we will state two facts and a lemma which we will use in the proof of main theorem.

I Fact 22. Let {fn} be a sequence in X such that fn →
w
f then 〈fn, h〉 → 〈f, h〉 for all

h ∈ X.

I Fact 23. The set of measurable function from [0, 1] to [0, 1] are weak-compact.

I Lemma 24. Let fn →
w
f then we have

lim sup
n→∞

H(fn) ≤ H(f).

I Definition 25 (Smoothed Function). Let U be a step graphon with steps S1, . . . , Sk and f
be a measurable function such that f : [0, 1]→ [0, 1]. Then smoothed version of f w.r.t. U is
defined by the step function g with the step S1, . . . , Sk as follows:

g(x) = ci if x ∈ Si,

where ci =
√

〈fn,TWnfn〉∫
Si×Si

W (x,y) dx dy
.

I Fact 26. Let f be a measurable function from [0, 1] to [0, 1] and gn be the smoothed version
of f w.r.t. the step graphon Wn. Then
1. 〈f, TWn

f〉 = 〈gn, TWn
gn〉,

2. Ent(fn) ≤ Ent(gn).

10.1.2 Proof of Lemma 11
Proof of Lemma 11. Let’s denote the value of the objective function at infimum by D, i.e.,

D = inf
m:[0,1]→[−1,1]

E(W,β,m) = inf
m:[0,1]→[−1,1]

(
− β

2 〈m,TWm〉 − Ent(m)
)
,

where

Ent(m) = −
∫ 1

0

1
2(1−m(x)) log(1

2(1−m(x))) dx

−
∫ 1

0

1
2(1 +m(x)) log(1

2(1 +m(x))) dx.

Let {m′n} be the sequence of functions such that −β2 〈m
′
n, TWm

′
n〉 −Ent(m′n)→ D. By weak

compactness of the set of measurable functions we know that there exists a subsequence
{mn} of {m′n} and a measurable function m such that −β2 〈mn, TWmn〉 → −β2 〈m,TWm〉.
From [18] we also have for any graphon W there exist a sequence of step graphons {Wt}’s
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such that Wt →W in L1 distance. Hence we can also write −β2 〈m,TWtm〉 → −
β
2 〈m,TWm〉.

Let gt be the smoothed version of m w.r.t. the step graphon Wt as defined in Definition 25.
Using Fact 26 and the weak compactness of the set of measurable functions there exists a
function g such that

〈m,TWt
m〉 = 〈gt, TWt

gt〉 → 〈g, TW g〉. (30)

Now let’s assume another function ρ : [0, 1] → [0, 1] such that ρ(x) = 1
2 (1 −m(x)) ∀x ∈

[0, 1]. Also we define the functional for any measurable ρ : [0, 1] → [0, 1] as H(ρ) =
−
∫

[0,1] ρ(x) log(ρ(x)) dx. Hence Ent(m) = H(ρ) +H(1− ρ). Now Now from Lemma 24 and
Fact 26 we have

Ent(g) ≥ lim sup
n→∞

Ent(gt) ≥ lim sup
t→∞

Ent(m). (31)

Hence from (30) and (31) we have

lim inf
t→∞

(
− β

2 〈m,TWt
m〉 − Ent(m)

)
≥ −β2 〈g, TW g〉 − Ent(g)

D ≥ − c2 〈g, TW g〉 − Ent(g). (32)

Hence the optimum is achieved for g which is a measurable function from [0, 1] to [0, 1] by
weak*-compactness of the set. Hence the infimum is achieved. J

10.1.3 Remaining Proofs for Theorem 6.1
We need to prove the strict convexity of the functional defined in Lemma 12. Taking
ρ(x) := 1

2 (m(x) + 1) in (3) we have

E(W,β,m) = −β2 〈m,TWm〉 − Ent(m)

= −β2 〈(2ρ− 1), TW (2ρ− 1)〉 − Ent(2ρ− 1)

= −β2

∫
[0,1]2

(2ρ(x)− 1)(2ρ(y)− 1)W (x, y) dx dy︸ ︷︷ ︸
I(ρ)

−Ent(2ρ− 1). (33)

We use this re-parameterization of the function as the function ρ is an eigenvector for the
operator TW and we will use the property of the eigenvector in the proof.

Proof of Lemma 14. We assume ρ(x) := 1
2 (m(x) + 1) and s(x) := 1

2 (p(x) + 1). Now from
(33) for any α ∈ [0, 1] we have the following lemma about the functional I defined in (33).

I Lemma 27. For any ρ, s : [0, 1]→ [0, 1] (ρ 6= s up to measurability) and any α ∈ [0, 1] we
have

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s) < 2α(1− α)||ρ− s||22.

Also for the Ent functional we have the following lower bound.

I Lemma 28. For any ρ, s : [0, 1]→ [0, 1] and any α ∈ [0, 1] we have

Ent((1−α)(2ρ−1) +α(2s−1))− (1−α)Ent(2ρ−1)−αEnt(2s−1) ≥ 2α(1−α)||ρ− s||22.

From the statement of Lemma 27 and 28, Lemma 12 directly follows. J

APPROX/RANDOM’17
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Now we finish the remaining proofs.

Proof of Lemma 27. From (33) we have

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s)

= −β2

[ ∫
[0,1]2

(2((1− α)ρ(x) + αs(x))− 1)(2((1− α)ρ(y) + αs(y))− 1)W (x, y) dx dy

−
∫

[0,1]2

(
(1− α)(2ρ(x)− 1)(2ρ(y)− 1)− α(2s(x)− 1)(2s(y)− 1)

)
W (x, y) dx dy

]
= β

2

∫
[0,1]2

[
4α(1− α)[ρ(x)ρ(y) + s(x)s(y)− 2ρ(x)s(y)]

]
W (x, y) dx dy

= 2βα(1− α)
∫

[0,1]2

[
(ρ(x)− s(x))(ρ(y)− s(y))

]
W (x, y) dx dy. (34)

Now in (34) we use the fact that λ1(W ) is the largest eigenvalue of the graphon W as defined
in Definition 3 and also λ1(W )β < 1. So we can rewrite (34) as,

I((1− α)ρ+ αs)− (1− α)I(ρ)− αI(s)

= 2α(1− α)β
∫

[0,1]
(ρ(y)− s(y))

[ ∫
[0,1]

(ρ(x)− s(x))W (x, y) dx
]
dy

≤ 2α(1− α)(λ1(W )β)
∫

[0,1]
(ρ(y)− s(y))2 dy < 2α(1− α)||ρ− s||22. (35)

This completes the proof. J

Proof of Lemma 28. To prove the lemma we will use the following lemma as the main tool.

I Lemma 29. Let α ∈ [0, 1] and R,S ∈ (0, 1). Then we have

−(1− α)R ln(1 + α

R
(S −R))− αS ln(1 + 1− α

S
(R− S))

−(1− α)(1−R) ln(1 + α

1−R (R− S))− α(1− S) ln(1 + 1− α
1− S (S −R))

≥ 2α(1− α)(S −R)2.

Now we apply Lemma 29 for each point of the integral, i.e., we set R = ρ(x) and S = s(x)
and taking integral over [0, 1] we have

Ent((1− α)(2ρ− 1) + α(2s− 1))− (1− α)Ent(2ρ− 1)− αEnt(2s− 1)

= −(1− α)
∫

[0,1]

[
ρ(x) ln(1 + α

ρ(x) (s(x)− ρ(x)))− αs(x) ln(1 + 1− α
s(x) (ρ(x)− s(x)))

− (1− α)(1− ρ(x)) ln(1 + α

1− ρ(x) (ρ(x)− s(x)))

− α(1− s(x)) ln(1 + 1− α
1− s(x) (s(x)− ρ(x)))

]
dx

≥ 2α(1− α)
∫

[0,1]
(ρ(x)− s(x))2 dx = 2α(1− α)||ρ− s||22.

This completes the proof of Lemma 28. J
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Now we state another lemma which is used to prove Lemma 29.

I Lemma 30. Let R ∈ (0, 1) and x ∈ (−R, 1−R). Then

F (R, x) := −R ln(1 + x

R
)− (1−R) ln(1− x

1−R )− 2x2 ≥ 0. (36)

Proof. We have F (R, x) = F (1−R,−x) and hence it is enough to show (36) for x ≥ 0. Note
that

F (R, 0) = 0 and lim
x→(1−R)−

F (R, x) =∞. (37)

We have that F (R, x) is differentiable on (−R, 1−R) with

∂

∂x
F (R, x) = −x(2x+ 2R− 1)2

(x+R)(x− (1−R)) .

If R ≥ 1/2 there are no critical points of F (R, x) on (0, 1 − R) and from (37) we get
F (R, x) ≥ 0 for x ∈ (0, 1−R). Now assume R < 1/2. The only critical point of F (R, x) on
(0, 1−R) is x = 1/2−R. We only need to prove that for all R ∈ (0, 1/2)

F (R, 1/2−R) ≥ 0.

It will be convenient to parameterize R = 1/2− T . We have

F (1/2− T, T ) = (1/2− T ) ln(1− 2T ) + (1/2 + T ) ln(1 + 2T )− 2T 2 =: G(T ).

Note that G(0) = 0 and

G′(T ) = − ln(1− 2T ) + ln(1 + 2T )− 4T.

We will show G′(T ) ≥ 0 for T ∈ [0, 1/2). Note that G′(0) = 0 and for T ∈ [0, 1/2) we have

G′′(T ) = 16T 2

1− 4T 2 ≥ 0,

and hence G′(T ) ≥ 0 for T ∈ [0, 1/2). J

Proof of Lemma 29. From Lemma 30 we have

(1− α)F (R,α(S −R)) + αF (S, (1− α(R− S)),

which is equivalent to the inequality we are proving. J

10.1.4 Remaining Proofs for Theorem 6.2
Recall that S = {ρ : [0, 1]→ [0, 1]|

∫
[0,1] ρ(x) dx = 1

2}. Also assume Alρ = {x ∈ [0, 1]|ρ(x) <
1
2} and A

g
ρ = {x ∈ [0, 1]|ρ(x) > 1

2}. Then note that Alρ has positive measure if and only if
Agρ has positive measure. Also denote Ageqρ = Agρ ∪Aeqρ , where Aeqρ = {x ∈ [0, 1]|ρ(x) = 1

2}.

I Definition 31. Given a function ρ ∈ S we define another measurable function ρ̂ : [0, 1]→
[0, 1] as follows:

ρ̂(x) =
{ ρ(x) if x ∈ Agρ,

1− ρ(x) otherwise.

APPROX/RANDOM’17
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We have the following important property of ρ̂:

I Claim 32. If x ∈ Alρ then ρ̂(x) > ρ(x).

I Claim 33. Assume ρ : [0, 1]→ [0, 1] is a measurable function and ρ̂ as defined in defini-
tion 31. Then
1. ρ̂ is also a measurable function.
2. Ent(2ρ̂− 1) = Ent(2ρ− 1).

Proof of Claim 33.
1. Follows from the properties of measurability.
2. This follows from the symmetry of Ent function. J

Proof of Lemma 33. From Claim 33 we know that Ent(2ρ̂ − 1) = Ent(2ρ − 1). Hence to
prove (20) it is enough to prove that if ρ ∈ S = {ρ : [0, 1] → [0, 1]|

∫
[0,1] ρ(x) dx = 1

2} \ {ρ :
[0, 1]→ [0, 1]|f ≈

m
ρ and ρ(x) = 1

2∀x}, then

I(ρ̂) < I(ρ).

where I(ρ) is defined as in (33). This follows because ρ(x) ≤ ˆρ(x) for all x and in particular
ρ(x) < ˆρ(x), when x ∈ Alρ and also W (x, y) is positive everywhere. J

Proof of Lemma 15. Let’s consider the following function ρb : [0, 1]→ [0, 1]:

ρb(x) = 1
2(1 + εe1(x)),

for all x ∈ [0, 1], where e1 is the eigenfunction w.r.t. the largest eigenvalue of W , i.e.,∫
[0,1]W (x, y)e1(y)dy = λ1(W )e1(x) and ε > 0 is some parameter. Now we have

I(ρb) = I(1
2(1 + εe(x)) = −β2

∫
[0,1]2

(εe1(x))(εe1(y))W (x, y) dx dy

= −ε2 β

2

∫
[0,1]2

e1(x)e1(y)W (x, y) dx dy

= −ε2 β

2 λ1(W )‖e1‖22 < −
ε2

2 ‖e1‖22. (38)

Similarly for entropy we have:

Ent(2ρb − 1) = Ent(ε · e)

= −
∫

[0,1]

1
2(1 + εe1(x)) log(1

2(1 + εe1(x)))−
∫

[0,1]

1
2(1− εe1(x)) log(1

2(1− εe1(x)))

= − log 1
2 −

∫
[0,1]

1
2(1 + εe1(x)) log(1 + εe1(x))−

∫
[0,1]

1
2(1− εe1(x)) log(1− εe1(x))

= − log 1
2 −

∫
[0,1]

1
2(1 + εe1(x))[εe1(x)− ε2e2

1(x) + ε3e3
1(x)− · · · ]

−
∫

[0,1]

1
2(1 + εe1(x))[−εe1(x)− ε2e2

1(x)− ε3e3
1(x)− · · · ]

≈ − log 1
2 −

ε2

2 ‖e1‖2
2. (39)

Hence from (38) and (39) E(W,β, 2ρb − 1) ≈ E(W,β, 2ρ 1
2 − 1)− cε · ε2 which implies that

E(W,β, 2ρ− 1) is decreasing in the given direction and we have the lemma. J
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