
Continuous Monitoring of `p Norms in Data
Streams∗

Jarosław Błasiok1, Jian Ding2, and Jelani Nelson3

1 Harvard University, Cambridge, MA, USA
jblasiok@g.harvard.edu

2 University of Chicago, Chicago, MA, USA
jianding@galton.uchicago.edu

3 Harvard University, Cambridge, MA, USA
minilek@seas.harvard.edu

Abstract
In insertion-only streaming, one sees a sequence of indices a1, a2, . . . , am ∈ [n]. The stream
defines a sequence of m frequency vectors x(1), . . . , x(m) ∈ Rn with (x(t))i

def= |{j : j ∈ [t], aj = i}|.
That is, x(t) is the frequency vector after seeing the first t items in the stream. Much work in
the streaming literature focuses on estimating some function f(x(m)). Many applications though
require obtaining estimates at time t of f(x(t)), for every t ∈ [m]. Naively this guarantee is
obtained by devising an algorithm with failure probability � 1/m, then performing a union
bound over all stream updates to guarantee that all m estimates are simultaneously accurate
with good probability. When f(x) is some `p norm of x, recent works have shown that this union
bound is wasteful and better space complexity is possible for the continuous monitoring problem,
with the strongest known results being for p = 2 [29, 10, 9]. In this work, we improve the state
of the art for all 0 < p < 2, which we obtain via a novel analysis of Indyk’s p-stable sketch [30].

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases data streams, continuous monitoring, moment estimation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2017.32

1 Introduction

Estimating statistics of frequency vectors implicitly defined by insertion-only update streams,
as defined in the abstract, was first studied by Flajolet and Martin in [24]. They studied the
so-called distinct elements problem, in which f(x) is the support size of x. In the insertion-
only model, the support size of x is equivalent to the number of distinct ai appearing in the
stream. One goal in such streaming algorithms, both for this particular distinct elements
problem as well as for many others function estimation problems studied in subsequent works,
is to minimize the space consumption of the stream-processing algorithm, ideally using o(n)
words of memory (note there is always a trivial n space algorithm by storing x explicitly in
memory).

For over two decades, work on estimating statistics of frequency vectors of streams
remained dormant, until the work of [1] on estimating the p-norm ‖x‖p = (

∑n
i=1 x

p
i )1/p in
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32:2 Continuous Monitoring of `p Norms in Data Streams

streams for integer p ≥ 1. Since then several works have studied these and several other
problems, from the perspective of both upper and lower bounds, including estimating ‖x‖p
for all 0 < p ≤ 2 (not necessarily integral) [1, 30, 32, 49, 41, 42, 39, 44, 38, 37], ‖x‖p for
p > 2 [1, 4, 21, 33, 7, 26, 34, 2, 16, 13, 25], empirical entropy [19, 20, 6, 28] and other
information-theoretic quantities [31, 27, 14], cascaded norms [22, 36, 35], and several others.
There have also been general theorems classifying which statistics of frequency vectors admit
space-efficient streaming estimation algorithms [15, 8, 17, 12, 11].

Taking a dynamic data structural viewpoint, “streaming algorithms” is simply a synonym
for “dynamic data structures” but with an implied focus on minimizing memory consumption
(typically striving for an algorithm using sublinear memory). Elements in the stream can
be viewed as updates to the frequency vector x (seeing a ∈ [n] in the stream can be seen
as update(a, 1), causing the change xa → xa + 1), and the request for an estimate of some
statistic of x is a query. In this data structural language, all the works cited in the previous
paragraph provide Monte-Carlo guarantees of the following form for queries: starting from any
fixed frequency vector and after executing any fixed sequence of updates, the probability that
the output of a subsequent query then fails is at most δ. Here we say a query fails if, say, the
output is not a good approximation to some particular f(x) (this will be made more formal
later). In many applications however, one does not simply want the answer to one query
at the end of some large number of updates, but rather one wants to continuously monitor
the data stream. That is, the sequence of data structural operations is an intermingling of
updates and queries. For example, one may have a threshold T in mind, and if f(x) ever
increases beyond T some data analyst should be alerted. Such a goal could be achieved
(approximately) by querying after every update to determine whether the updated frequency
vector satisfies this property. Indeed, the importance of supporting continuous queries in
append-only databases (analogous to the insertion-only model of streaming) was recognized
25 years ago in [47], with several later works focused on continuous stream monitoring with
application areas in mind such as trend detection, anomaly detection, financial data analysis,
and (bio)sensor data analysis [3, 18, 46].

If one assumes that a query is being issued after every update, then in a stream of m
updates the failure probability should be set to δ � 1/m so that, by a union bound, all
queries succeed. Most Monte-Carlo streaming algorithms achieve some space S to achieve
failure probability 1/3, at which point one can achieve failure probability δ by running
Θ(lg(1/δ)) instantiations of the algorithm in parallel and returning the median estimate (see
for example [1]). This method increases the space from S to Θ(S lg(1/δ)), and for many
problems (such as `p-norm estimation) it is known that at least in the so-called strict turnstile
model (i.e. update(a,∆) is allowed for both positive and negative ∆, but we are promised
xi ≥ 0 for all i at all times) this form of space blow-up is necessary [37]. Nevertheless,
although improved space lower bounds have been given when desiring that the answer to
a single query fails with probability at most δ, no such blow-up has been shown necessary
for the continuous monitoring problem in which one wants, with failure probability 1/3, to
provide simultaneously correct answers for m queries intermingled with m updates. In fact
to the contrary, in certain scenarios such as estimating distinct elements or the `2-norm in
insertion-only streams, improved upper bounds have been given!

I Definition 1. We say a Monte-Carlo randomized streaming algorithm A provides strong
tracking for f in a stream of length m with failure probability η if at each time t ∈ [m], A
outputs an estimate f̃t such that

P(∃t ∈ [m] : |f̃ t − f(x(t))| > εf(x(t))) < η.
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We say that A provides weak tracking for f if

P(∃t ∈ [m] : |f̃ t − f(x(t))| > ε sup
t′∈[m]

f(x(t′))) < η.

Note if f is monotonically increasing, then for insertion-only streams supt′∈[m] f(x(t′)) is
simply f(x(m)).

The first non-trivial tracking result we are aware of which outperformed the median trick
for insertion-only streaming was the RoughEstimator algorithm given in [40] for estimating
the number of distinct elements in a stream. RoughEstimator provided a strong tracking
guarantee for f(x) = | support(x)| (the distinct elements problem) for constant ε, η, using the
same space as what is what is required to answer only a single query. This strong tracking
algorithm was used as a subroutine in the main non-tracking algorithm of that work for
approximating the number of distinct elements in a data stream up to 1 + ε.

For `p-estimation for p ∈ (0, 2], without tracking, it is known that O(ε−2 lg(1/δ)) words
of memory is achievable to return a (1 + ε)-approximate value of f(x) = ‖x‖p with failure
probability δ [1, 30, 39]1. This upper bound thus implies a strong tracking algorithm with
space complexity O(ε−2 lgm) for tracking failure probability η = 1/3, by setting δ < 1/(3m)
and performing a union bound. The work [29] considered the strong tracking variant of
`p-estimation in insertion-only streams for for any p in the more restricted interval (1, 2].
They showed that the same algorithms of [1, 30], unchanged, provide strong tracking with
η = 1/3 with space O(ε−2(lgn+ lg lgm+ lg(1/ε))) words2. This is an improvement over the
standard median trick and union bound when the stream length is very long (m > nω(1))
and ε is not too small (ε > 1/mo(1)). They also showed that in an update model which
allows deletions of items (“turnstile streaming”), any algorithm which only maintains a linear
sketch Πx of x must use Ω(lgm) words of memory for constant ε, showing that the median
trick is optimal for this restricted class of algorithms.

A different algorithm was given in [10] for strong tracking for `2 using spaceO(ε−2(lg(1/ε)+
lg lgm)). It was then most recently shown in [9] that the AMS sketch itself of [1] (though
with 8-wise independent hash functions instead of the original 4-wise independence proposed
in [1]) provides strong tracking in space O(ε−2 lg lgm), and weak tracking in space O(1/ε2).
That is, the AMS sketch provides weak tracking without any asymptotic increase in space
complexity over the requirement to correctly answer only a single query.

Despite the progress in upper bounds for tracking `2, the only non-trivial improvement
for tracking `p is the O(ε−2(lgn + lg lgm + lg(1/ε))) upper bound of [29]. Although this
bound provides an improvement for very long streams (m super-polynomial in n), it does
not provide any improvement over the standard median trick for the case most commonly
studied case in the literature of m,n being polynomially related.

Our contribution

We show that Indyk’s p-stable sketch [30] for 0 < p ≤ 2, derandomized using bounded
independence as in [39], provides weak tracking while using O(lg(1/ε)/ε2) words of space.
It also provides strong tracking using O(ε−2(lg lgm+ lg(1/ε)) words of space. Our bounds
thus both improve the space complexity achieved in [29] for `p-tracking, and well as the

1 For constant δ and p = 2, [1] shows that space O(ε−2(lgn+ lg lgm)) bits is achievable in insertion-only
streams.

2 For p = 2 their space is as written including the space required to store all hash functions, but for
1 < p < 2 this space bound assumes that the storage of hash functions is for free.
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range of p supported from p ∈ (1, 2] to all p ∈ (0, 2] (note for p > 2, it is known that any
algorithm requires polynomial space even to obtain a 2-approximation for a single query, i.e.
the non-tracking variant of the problem [4]).

2 Notation

We use [n] for integer n to denote {1, . . . , n}. We measure space in words unless stated
otherwise, where a single word is at least lg(nm) bits. For p ∈ (0, 2], we let Dp denote the
symmetric p-stable distribution, scaled so that for Z ∼ Dp, P(|Z| > 1) = 1

2 . The distribution
Dp has the property that it is supported on the reals, and for any fixed vector v ∈ Rn
and Z1, . . . , Zn, Z i.i.d. from Dp,

∑n
i=1 Zixi is equal in distribution to ‖x‖p · Z. See [45] for

further reading on these distributions.
For two vectors u, v ∈ Rn we write u � v to denote coordinatewise comparison, i.e. u � v

iff ∀iui ≤ vi. For a finite set S, we write #S to denote cardinality of this set.

3 Preliminaries

The following lemma is standard. A proof with explicit constants can be found in [43,
Theorem 42].

I Lemma 2. If Z ∼ Dp, then P(Z > λ) ≤ Cp

λp for some explicit constant Cp depending only
on p.

We also state some other results we will need.

I Lemma 3 (Paley-Zygmund). If Z ≥ 0 is a random variable with finite variance, then

P(Z > θEZ) ≥ (1− θ)2 (EZ)2

E(Z2) .

I Corollary 4. For fixed vector v ∈ Rn, if σ ∈ {±1}n is a vector of 4-wise independent
random signs, then

P(〈σ, v〉2 ≥ 2
3‖v‖

2
2) ≥ 1

27 .

Proof. This follows from E〈σ, v〉4 < 3(E〈σ, v〉2)2 and the Paley-Zygmund inequality. J

I Theorem 5 ([10, 9, Theorem 15]). Let v(1), v(2), . . . v(m) ∈ Rn, be a sequence of vectors
such that 0 � v(1) � v(2) � . . . � v(m). Let σ ∈ {±1}n be a vector of 4-wise independent
random signs. Then

P
(

sup
i≤m
|〈σ, v(i)〉| > λ‖v(n)‖2

)
<
C

λ2

for some universal constant C.

I Theorem 6. [39, 23] If Zi ∼ Dp for i ∈ [n] are k-wise independent random variables, then
for every vector x ∈ Rn and every pair a, b ∈ R ∪ {±∞} we have

P(〈Z, x〉 ∈ (a, b)) = P(‖x‖pZ1 ∈ (a, b))±O(k−1/p) .

I Theorem 7. [5, Lemma 2.3] Let X1, . . . Xn ∈ {0, 1} be a sequence of k-wise independent
random variables, and let µ =

∑n
i=1 EXi. Then

∀λ > 0, P(
n∑
i=1

Xi ≥ (1 + λ)µ) ≤ exp(−Ω(min{λ, λ2}µ)) + exp(−Ω(k)) .
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4 Overview of approach

Indyk’s p-stable sketch picks a random matrix Π ∈ Rd×n such that each entry is drawn
according to the distribution Dp. It then maintains the sketch Πx(t) of the current frequency
vector. This sketch can be easily updated as the frequency vector changes, i.e. after observing
an index aj ∈ [n] we update the sketch by Πx(t+1) := Πx(t) + Πeaj

. An ‖x‖p-estimate query
is answered by returning the median of |Πx(i)|j over j ∈ [d]. Since storing Π in memory
explicitly is prohibitively expensive, we generate it so that the entries in each row are k-wise
independent for k = O(1/εp) (as done in [39]), and the d seeds used to generate the rows of Π
are O(lg(1/(εδ)))-wise independent. We also work with discretized p-stable random variables
to take bounded memory. All together, the bounded independence and discretization, also
performed in [39], allow us to store Π using low memory.

We then show that instantiating Indyk’s algorithm with d = O(ε−2 lg(1/(εδ))) provides
the weak tracking guarantee with failure probability δ. The analysis of the correctness of this
algorithm is as follows. Let πi denote the ith row of Π. We first show a result resembling the
Doob’s martingale inequality – namely, in Section 5 we show that for a fixed i, if we look at
the evolution of 〈πi, x(t)〉 as t increases, the largest attained value (supt≤m〈πi, x(t)〉) is with
good probability not much larger than the median of the distribution |〈πi, x(m)〉|, which is
the typical magnitude of the counter at the end of the stream. This fact resembles similar
facts shown in [10, 9] for when the πi have independent Rademachers as entries, though our
situation is complicated by the fact that p-stable random variables have much heavier tails.

We then, discussed in Section 5.1, show how the previous paragraph implies a weak
tracking algorithm with d = O(ε−2 lg(1/(εδ))): we split the sequence of updates into poly(1/ε)
intervals such that the `p-norm of the frequency vector of updates in each of those intervals,
i.e. ‖x(t+1) − x(t)‖p, is of the order εΘ(1)‖x(m)‖p. We then union bound over the poly(1/ε)
intervals to argue that the algorithm’s estimate is good at each of the interval endpoints.
This is the source of the extra factor of lg(1/ε) in our space bound: to obtain ε−Ω(1) failure
probability to union bound over these intervals. On the other hand, within each of the
intervals most of the counters do not change too rapidly by the argument developed in
Section 5.

Finally, in Section 5.2 we show how given an algorithm satisfying a weak tracking
guarantee, one can use it to get a strong-tracking algorithm with slightly larger space
complexity. This argument was already present in [9]. One first identifies q points in the
input stream at which the `p norm roughly doubles when compared to the previously marked
point. There are only O(lgm) such intervals. It is then enough to ensure that our algorithm
satisfies weak tracking for all those O(lgm) prefixes simultaneously, in order to deduce that
the algorithm in fact satisfies strong tracking. This is done by union bound over O(lgm)
bad events (as opposed to standard union bound over O(m) bad events), which introduces
an extra lg lgm factor in the space complexity as when compared to weak tracking.

5 Analysis

We first show two lemmas that play a crucial role in our weak tracking analysis.

I Lemma 8. Let x ∈ Rn be a fixed vector, and Z ∈ Rn be a random vector with k-wise
independent entries drawn according to Dp. Then

P(
n∑
i=1

x2
iZ

2
i ≥ λ2‖x‖2p) ≤

C

λp
+O(k−1/p)

for some universal constant C.

APPROX/RANDOM’17
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Proof. Let E0 be the event
∑n
i=1 x

2
iZ

2
i ≥ λ2‖x‖2p. Note that E0 depends only on |Zi|, and

does not depend on the signs of the Zi. We write Zi = |Zi|σi, where σi are k-wise independent
random signs. Conditioning on |Zi|,

E
σ

( n∑
i=1

xi|Zi|σi

)2
∣∣∣∣∣∣|Z1|, . . . |Zn|

 =
n∑
i=1

x2
iZ

2
i

and therefore for any |Z1|, . . . , |Zm| for which E0 holds, by Corollary 4

P
σ

( n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

∣∣∣∣∣∣|Z1|, . . . , |Zm|


≥ P

σ

( n∑
i=1

xi|Zi|σi

)2

≥ 2
3

n∑
i=1

x2
iZ

2
i

∣∣∣∣∣∣|Z1|, . . . , |Zm|


≥ 1

27

and thus

P
σ

( n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

∣∣∣∣∣∣|Z1|, . . . |Zn|

 ≥ 1E0

27 ,

where 1E0 is an indicator random variable for event E0. Integrating over |Zi|,

P
σ,Z

( n∑
i=1

xi|Zi|σi

)2

≥ 2
3λ

2‖x‖2p

 ≥ 1
27 P

Z
(E0). (1)

On the other hand |Zi|σi has the same distribution as Zi, and moreover

P
Z

( n∑
i=1

xiZi

)2

≥ 2
3λ

2‖x‖2p

 = P
Z

(
|〈x, Z〉| ≥

√
2
3λ‖v‖p

)

≤ P
Z

(
‖x‖pZ̃ ≥

√
2
3λ‖x‖p

)
+O(k−1/p)

≤ C

λp
+O(k−1/p) (2)

where Z̃ ∼ Dp. The inequalities are obtained via Theorem 6 and Lemma 2. Combining (1),
(2) yields

P
Z

(E0) ≤ 27C
λp

+O(k−1/p). J

I Lemma 9. Let x(1), x(2), . . . x(m) ∈ Rn satisfy 0 � x(1) � x(2) � . . . � x(m). Let Z ∈ Rn
have k-wise independent entries marginally distributed according to Dp. Then for some Cp
depending only on p,

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ Cp

(
1

λ2p/(2+p) + k−1/p
)
.
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Proof. Observe that for any β we have

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ P

(
n∑
i=1

Z2
i (x(m))2

i ≥ β2‖x(m)‖2p

)

+ P

(
sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

∣∣∣∣∣
n∑
i=1

Z2
i (x(m))2

i < β2‖x(m)‖2p

)
.

Lemma 8 directly implies that

P

(
n∑
i=1

Z2
i (x(m))2

i ≥ β2‖x(m)‖2p

)
≤ C

βp
+ C

k1/p . (3)

On the other hand we can write Zi = |Zi|σi, where σi are k-wise independent Rademacher
random variables, independent from |Zi|. Let us define w(k) ∈ Rn for k ∈ [m] to be the
vector with coordinates (w(k))i := (x(k))i|Zi|, so that 〈x(k), Z〉 = 〈w(k), σ〉, and in particular

sup
k≤m

∣∣∣〈Z, x(i)〉
∣∣∣ = sup

k≤m

∣∣∣〈σ,w(i)〉
∣∣∣ .

Now, if we condition on |Z1|, . . . |Zn|, then the sequence w(1), . . . w(k) of vectors satisfies the
assumptions of Theorem 5, and we can conclude that

P
(

sup
k≤m

∣∣∣〈σ,w(k)〉
∣∣∣ > λ

β
‖w(m)‖2

)
≤ Cβ2

λ2 .

Moreover if |Zi| are such that
∑n
i=1 Z

2
i (x(m))2

i ≤ β2‖x(m)‖2p, or equivalently ‖w(m)‖22 ≤
β2‖x(m)‖2p, we have

P
(

sup
k≤m

∣∣∣〈σ,w(k)〉
∣∣∣ > λ‖x(m)‖p

)
≤ Cβ2

λ2 ,

which implies

P

(
sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

∣∣∣∣∣
n∑
i=1

(Zix(m)
i )2 < β‖x(m)‖2p

)
≤ Cβ2

λ2 .

This together with Equation (3) yields

P
(

sup
k≤m
|〈Z, x(k)〉| ≥ λ‖x(m)‖p

)
≤ 1
βp

+ Cβ2

λ2 + C

k1/p .

We can take β := Θ(λ
2

2+p ), to have 1
βp + Cβ2

λ2 = O(λ−
2p

2+p ). J

5.1 Weak tracking of ‖x‖p

In this section we upper bound the number of rows needed in Indyk’s p-stable sketch with
boundedly independent entries to achieve weak tracking.

I Lemma 10. Let x(1), . . . x(m) ∈ Rn be any sequence satisfying 0 � x(1) � x(2) � . . . � x(m).
Take Π ∈ Rd×n to be a random matrix with entries drawn according to Dp, and such that the
rows are r-wise independent, and all entries within a row are s-wise independent.

For every k ∈ [m], define sk to be median
(
|(Πx(k))1|, . . . , |(Πx(k))d|

)
. If d = Ω(ε−2(lg 1

ε +
lg 1

δ )), r = Ω(lg 1
ε + lg 1

δ ) and s = Ω(ε−p), then with probability at least 1− δ we have

∀k ∈ [m], ‖x(k)‖p − ε‖x(m)‖p ≤ sk ≤ ‖x(k)‖p + ε‖x(m)‖p .

APPROX/RANDOM’17
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Proof. Consider a sequence of indices 1 < t1 < t2 < . . . < tq+1 = m, constructed inductively
in the following way. We take t1 to be the smallest index with ‖x(t1)‖p ≥ ε4‖x(m)‖p. Given
tk, we take tk+1 to be the smallest index such that ‖x(tk+1) − x(tk)‖p ≥ ε4‖x(m)‖p if there
exists one, and tk+1 = m otherwise.

Observe q ≤ ε−8. Indeed, for p ≥ 1 we have

‖x(m)‖pp = ‖x(t1)+
∑

1≤i<q
(x(ti+1)−x(ti))‖pp ≥ ‖x(t1)‖pp+

∑
1≤i<q

‖x(ti+1)−x(ti)‖pp ≥ qε4p‖x(m)‖pp

where the inequality ‖x(t1) +
∑
i≥1(x(ti+1) − x(ti))‖pp ≥ ‖x(t1)‖pp +

∑
1≤i<q ‖x(ti+1) − x(ti)‖pp

holds because all vectors x(1) and x(ti+1) − x(ti) for every i have non-negative entries – we
can consider each coordinate separately, and use the fact that for p ≥ 1 and nonnegative
numbers ai we have (

∑
ai)p ≥

∑
api – or equivalently, ‖a‖p1 ≥ ‖a‖pp. After rearranging this

yields q ≤ ε−4p.
Similarly, for p ≤ 1, we have that for non-negative numbers ai, (

∑
i≤q ai)p ≥ qp−1∑ i ≤ qapi

(this is true because for fixed
∑
ai, the sum

∑
api is maximized when all ai are equal), and

therefore

‖x(m)‖pp = ‖x(t1) +
∑

1≤i<q
(x(ti+1) − x(ti))‖pp ≥ qp−1

‖x(t1)‖pp +
∑

1≤i<q
‖x(ti+1) − x(ti)‖pp


≥ qpε4p‖x(m)‖pp

which implies q ≤ ε−4.
For j ∈ [m], let us define

lj := #{i : |〈πi, x(j)〉| < (1− ε)‖x(j)‖p}

uj := #{i : |〈πi, x(j)〉| > (1 + ε)‖x(j)‖p}.

Let π̃i be a vector of i.i.d. random variables drawn according to Dp. We know
that 〈π̃i, x(j)〉 ∼ ‖x(j)‖pDp. Hence P(|〈π̃i, x(j)〉| > ‖x(j)‖p) = 1

2 , and P(|〈π̃i, x(j)〉| >
(1 + ε)‖x(j)‖p) ≤ 1

2 − 2Cε for some universal constant C. Similarly P(|〈π̃i, x(j)〉| <
(1− ε)‖x(j)‖p) ≤ 1

2 − 2Cε.
Entries of πi are s-wise independent, for s ≥ C2ε

−p with some large constant C2 depending
on C. Thus by Theorem 6, P(|〈πi, x(j)〉| < (1− ε)‖x(j)‖p) ≤ P(|〈π̃i, x(j)〉| < (1− ε)‖x(j)‖p) +
Cε ≤ 1

2 − Cε, and analogously for P(|〈πi, x(j)〉| > (1 + ε)‖x(j)‖p) < 1
2 − Cε.

Hence

E lj ≤ d
(

1
2 − Cε

)
Euj ≤ d

(
1
2 − Cε

)
.

For j ∈ [q], let Sj be the event{
ltj ≤

d

2 −
Cd

2 ε

}
∧
{
utj ≤

d

2 −
Cd

2 ε

}
Note that for fixed j and varying i, indicator random variables for the events “|〈πi, x(j)〉| <

(1− ε)‖x(j)‖p” are r-wise independent. Thus by Theorem 7, P(Sj) ≥ 1−C ′ exp(−Ω(dε2))−
exp(−Ω(r)). Taking d = Ω(ε−2(lg 1

ε + lg 1
δ )) and r = Ω(lg 1

εδ ) we obtain P(Sj) ≥ 1 − δε8

2 ,
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and hence by a union bound all Sj hold simultaneously except with probability at most δ
2

since the number of events Sj is q ≤ ε−8.
For i ∈ [d] and j ∈ [q], let Ei,j be the event

∃s ∈ [tj , tj+1 − 1], |〈x(s) − x(tj), πi〉| > ε‖x(m)‖p.

By construction of the sequence tj , all x(s)−x(tj) above have `p norm at most ε4‖x(m)‖p,

we can invoke Lemma 9 to deduce that P(Eij) ≤ C3

(
ε4

ε

)2/3
+ C3s

−1/p. Again if we pick
s ≥ C4ε

−p for sufficiently large C4 and small enough ε we have P(Eij) ≤ C
4 ε. Therefore for

any fixed j, we have

E
d∑
i=1

1Eij
≤ C

4 dε

And finally again by Theorem 7, for each j

P(
d∑
i=1

1Eij ≥
C

2 dε) . exp(−C ′dε) + exp(−C ′r)

We have d ≥ C3ε
−2 lg 1

δε , and q ≤ ε
−8, hence for sufficiently small ε, we have exp(−C ′dε) ≤

δ
2q . On the other hand if r = Ω(lg 1

δε ) is sufficiently large, we have exp(−C ′r) ≤ δ
2q . We

invoke the union bound over all j to deduce that with probability at least 1− δ
2 the following

event V holds:

∀j,
d∑
i=1

1Eij
≤ C

2 dε.

We know that with probability at least 1 − δ simultaneously V and all the events Sj
hold. We will show now that, when these events all hold, then ∀k ‖x(k)‖p −Kε‖x(m)‖p ≤
sk ≤ ‖x(k)‖p +Kε‖x(m)‖p for some universal constant K. Indeed, consider some k, and let
us assume that tj ≤ k ≤ tj+1. With event Sj satisfied, we know that #{i : |〈πi, x(tj)〉| ≤
‖x(tj)‖p + ε‖x(m)‖p} ≥ d

( 1
2 + Cε

2
)
, and with event V satisfied, we know that for all but Cε

2 d

of indices i we have |〈πi, x(k) − x(tj)〉| ≤ ε‖x(m)‖.
By the triangle inequality |〈πi, x(k)〉| ≤ |〈πi, x(tj)〉|+ |〈πi, x(k) − x(tj)〉|, yielding

#{i : |〈πi, vk〉| ≤ ‖vtj‖p + 2ε‖vm‖p} ≥
d

2 .

With similar reasoning we can deduce that

#{i : |〈πi, x(k)〉| ≥ ‖x(tj)‖p − 2ε‖x(m)‖p} ≥
d

2 ,

which implies the median of |〈πi, x(k)〉| over i ∈ [d] is in the range ‖x(tj)‖p ± 2ε‖x(m)‖p. In
other words

‖x(tj)‖p − 2ε‖x(m)‖p ≤ sk ≤ ‖x(ti)‖p + 2ε‖x(m)‖p.

Finally we also have
∣∣‖x(k)‖p − ‖x(tj)‖p

∣∣ ≤ ε‖x(m)‖p by construction of the sequence
{tj}qj=1, so the claim follows up to rescaling ε by a constant factor. J

I Lemma 11. The above algorithm can be implemented using O(ε−2 lg(1/(εδ)) lgm) bits of
memory to store fixed precision approximations of all counters (Πx(k))i, and
O(ε−p lg(1/(εδ)) lg(nm)) bits to store Π.

APPROX/RANDOM’17
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Proof. Consider a sketch matrix Π as in Lemma 10 – i.e. Π ∈ Rd×n with random Dp
entries, such that all rows are r-wise independent and all entries within a row are s-wise
independent. Moreover let us pick some γ = Θ(εm−1) and consider discretization Π̃ of Π,
namely each entry Π̃ij is equal to Πij rounded to the nearest integer multiple of γ. The
analysis identical to the one in [39, A.6] shows that this discretization have no significant
effect on the accuracy of the algorithm, and moreover that one can sample from a nearby
distribution using only τ = O(lgmε−1) uniformly random bits. Therefore we can store such
a matrix succinctly using O (rs(lgn+ τ) + r lg d) bits of memory, by storing a seed for a
random r-wise independent hash function h : [d]→ {0, 1}O(s(lgn+τ)) and interpreting each
h(i) as a seed for an s-wise independent hash function describing the i-th row of Π̃ [48,
Corollary 3.34]. Hence the total space complexity of storing the sketch matrix Π̃ in a succinct
manner is O

(
lg δ−1+lg ε−1

εp (lgn+ lgm)
)
bits.

Additionally we have to store the sketch of the current frequency vector itself, i.e. for
all i ∈ [d] we need to store 〈π̃i, x(k)〉; for every such counter we need O(lgmε−1) = O(lgm)
bits, and there are d = O

(
lg ε−1+lg δ−1

ε−2

)
counters. J

We thus have the following main theorem of this section.

I Theorem 12. For any p ∈ (0, 2] there is an insertion-only streaming algorithm that
provides the weak tracking guarantees for f(x) = ‖x‖p with probability 1− δ using at most
O
(

lgm+lgn
ε2 (lg ε−1 + lg δ−1)

)
bits of memory.

5.2 Strong tracking of ‖x‖p

In this section we discuss achieving a strong tracking guarantee. The same argument for
`2-tracking appeared in [9]. The reduction is in fact general, and shows that for any monotone
function f the strong tracking problem for f reduces to the weak tracking version of the
same problem with smaller failure probability.

I Lemma 13. Let f : Rn → R+ be any monotone functon of Rn (i.e. x � y =⇒ f(x) ≤
f(y)), such that mini f(ei) = 1 (where ei are standard basis vectors). Let A be an insertion-
only streaming algorithm satisfying weak tracking for any sequence of updates with probability
1 − δ and accuracy ε. Then for a sequence of frequency vectors 0 � x(1) � . . . � x(m)

algorithm A satisfies strong tracking with probability 1− δ lg f(x(m)) and accuracy 2ε.

Proof. Define t1 < t2 < · · · < tq so that ti is the smallest index in [m] larger than ti−1 with
f(x(ti)) ≥ 2i (if no such index exists, define q = i and tq = m). Note that q ≤ lg f(x(m)).

The algorithm will fail with probability at most δ to satisfy the conclusion of Theorem 12
for a particular sequence of vectors x(1), x(2), . . . x(tj). That is, for every j, with probability
1− δ, we have that

∀i ≤ tj , f(x(i))− εf(x(tj)) ≤ f̃ i ≤ f(x(i)) + εf(x(tj)),

where f̃ t is the estimate output by the algorithm at time t.
We can union bound over all j ∈ [q] to deduce that except with probability qδ ≤

δ lg f(x(m)),

∀i ≤ tj , f(x(i))− εf(x(tj)) ≤ f̃ i ≤ f(x(i)) + εf(x(tj)).

By construction of the sequence of tj , we know that for every i, if we take tj to be smallest
such that i ≤ tj , then f(x(tj)) ≤ 2f(x(i)), and the claim follows. J
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I Theorem 14. For any p ∈ (0, 2] there is an insertion-only streaming algorithm that
provides strong tracking guarantees for estimating the `p-norm of the frequency vector
with probability 1 − δ and multiplicative error 1 + ε, with space usage in bits bounded by
O
(

lgm+lgn
ε2 (lg ε−1 + lg δ−1 + lg lgm)

)
.

Proof. This follows from Lemma 11 and Lemma 13 by observing that after a sequence of
m insertions, the `p norm of the frequency vector is bounded by m2, i.e. lg(‖x(m)‖p) =
O(lgm). J
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