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Abstract
Random graph models and associated inference problems such as the stochastic block model
play an eminent role in computer science, discrete mathematics and statistics. Based on non-
rigorous arguments physicists predicted the existence of a generic phase transition that separates
a “replica symmetric phase” where statistical inference is impossible from a phase where the
detection of the “ground truth” is information-theoretically possible. In this paper we prove a
contiguity result that shows that detectability is indeed impossible within the replica-symmetric
phase for a broad class of models. In particular, this implies the detectability conjecture for
the disassortative stochastic block model from [Decelle et al.: Phys. Rev. E 2011]. Additionally,
we investigate key features of the replica symmetric phase such as the nature of point-to-set
correlations (‘reconstruction’).
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1 Introduction

1.1 The cavity method
Models based on random graphs have come to play a role in combinatorics, probability,
statistics and computer science that can hardly be overstated. For example, the random
k-SAT model is of fundamental interest in computer science [4], the stochastic block model
has gained prominence in statistics [1, 24, 36], low-density parity check codes have become a

∗ A full version of the paper is available at https://arxiv.org/abs/1704.01043.
† The research leading to these results has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
278857–PTCC.

‡ Supported by DFG grant EF 103/1-1.
§ Supported by Austrian Science Fund (FWF): P26826.
¶ Supported by Stiftung Polytechnische Gesellschaft PhD grant.

© Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetanopoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2017).
Editors: Klaus Jansen, José D.P. Rolim, David Williamson, and Santosh S. Vempala; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2017.40
https://arxiv.org/abs/1704.01043
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


40:2 Charting the Replica Symmetric Phase

pillar of modern coding theory [40] and problems such as random graph coloring have been
the lodestars of probabilistic combinatorics since the days of Erdős and Rényi [4, 10, 39].
Additionally, very similar models have been studied in statistical physics as models of
disordered systems [31] and over the past 20 years physicists developed an analytic but
non-rigorous technique for the study of such models called the ‘cavity method’. This non-
rigorous approach has inspired numerous “predictions” with an impact on an astounding
variety of problems (e.g., [15, 31, 33, 42]). Hence the task of putting the cavity method
on a rigorous foundation has gained substantial importance. Despite recent successes (e.g.,
[13, 17, 22, 36, 8, 16, 28]) much remains to be done. In particular, while the cavity method
can be applied almost mechanically to a wide variety of problems, most rigorous arguments
still hinge on model-specific deliberations, a state of affairs that begs the questions of whether
we can rigorise the physics calculations wholesale. This is the thrust of the present paper.

One of the most important predictions of the cavity method is that random graph models
generically undergo a condensation phase transition [27] that separates a “replica symmetric
phase” without extensive long-range correlations from a phase where long-range correlations
prevail. The fact that a phase transition occurs at the location predicted by the cavity
method was recently proved for a fairly broad family of models [13]. However, that result fell
short of establishing the connection to the nature of correlations claimed by the physics work.
We rigorise the entire “physics story” of how correlations evolve up to the condensation phase
transition as predicted in [18, 27, 29], including the nature of long-range correlations and
the onset of point-to-set correlations known as the “reconstruction threshold”. Furthermore,
verifying a prominent prediction from [15], we prove a contiguity statement that has an
impact on statistical inference problems such as the stochastic block model.

The results of this paper cover a wide class of random graph models, even broader than the
family of models for which the condensation threshold was previously derived in [13]. Before
presenting the general results in Section 2, we illustrate their impact on three important
examples: the Potts antiferromagnet on the Erdős-Rényi random graph, the stochastic block
model and the diluted k-spin model.

1.2 The Potts antiferromagnet
Let q ≥ 2 be an integer, let Ω = {1, . . . , q} be a set of q “colors” and let β > 0. The
antiferromagnetic q-spin Potts model on a graph G = (V,E) at inverse temperature β is the
distribution on ΩV defined by

µG,q,β(σ) = (Zq,β(G))−1 ∏
{v,w}∈E

exp(−β1{σ(v) = σ(w)}), (1.1)

where Zq,β(G) =
∑
τ∈ΩV

∏
{v,w}∈E exp(−β1{τ(v) = τ(w)}).

The Potts model can be viewed as a version of the graph coloring problem where
monochromatic edges are not strictly forbidden but merely incur a ‘penality factor’ of
exp(−β). The model has received attention in the context of the complexity of counting
(e.g., [20]).

The Potts model on the random graph G = G(n, p) with vertex set Vn = {x1, . . . , xn}
whose edge set E(G) is obtained by including each of the possible edge with probability
p ∈ [0, 1] independently, has received considerable attention as well (e.g. [5, 12, 14]). The
most challenging case turns out to be that p = d/n for a fixed real d > 0. The key problem
associated with the model is to determine the distribution of the variable lnZβ(G, q, β).

Recently Coja-Oghlan, Krzakala, Perkins and Zdeborová [13] determined the condensation
threshold dcond(q, β). Specifically, this is defined as the smallest value of d where the function
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d 7→ limn→∞
1
nE[lnZβ(G, q, β)] is non-analytic (the existence of the limit was proved by

Bayati, Gamarnik and Tetali [9]). The precise formula for dcond(q, β) is complicated and not
important here, but we recall the explicit Kesten-Stigum bound

dcond(q, β) ≤ dKS(q, β) =
(
q − 1 + e−β

1− e−β

)2

. (1.2)

Moreover, Azuma’s inequality shows that 1
n lnZq,β(G) converges to limn→∞

1
nE[lnZq,β(G)]

in probability, and thus lnZq,β(G) has fluctuations of order o(n). On the other hand, given
that, e.g., the size of the largest component of G exhibits fluctuations of order

√
n even once

we condition on the number |E(G)| of edges, one might expect that so does lnZq,β(G). Yet
remarkably, the following theorem shows that lnZq,β(G) merely has bounded fluctuations
given |E(G)|. In fact, we can determine the precise limiting distribution.

I Theorem 1. Let q ≥ 2, β > 0 and 0 < d < dcond(q, β). With (Kl)l≥3 a sequence of
independent Poisson variables with mean E[Kl] = dl/(2l), let

K =
∞∑
l=3

Kl ln(1 + δl)−
dlδl
2l where δl = (q − 1)

(
e−β − 1

q − 1 + e−β

)l
.

Then E|K| <∞ and as n→∞ the random variable,

lnZq,β(G)−
(
n+ 1

2

)
ln q − |E(G)| ln

(
1− 1− e−β

q

)
+ q − 1

2 ln
(

1 + d(1− e−β)
q − 1 + e−β

)
+ dδ1

2 + d2δ2
4

converges in distribution to K.

Arguably the key element of the physics narrative is that for d < dcond(q, β) the measure
µG,q,β is free from extensive long-range correlations, while such correlations emerge for
d > dcond(q, β). Our next result verifies this conjecture. Formally, we define the overlap of
two colorings σ, τ : Vn → Ω as the probability distribution ρσ,τ = (ρσ,τ (s, t))s,t∈Ω on Ω× Ω
with ρσ,τ (s, t) = |σ−1(s) ∩ τ−1(t)|/n for s, t ∈ Ω. Thus, ρσ,τ (s, t) is the probability that a
random vertex v is colored s under σ and t under τ . Let ρ̄ denote the uniform distribution
on Ω×Ω. We write σ1,σ2 for two independent samples from µG,q,β , denote the expectation
with respect to σ1,σ2 by 〈 · 〉G,q,β and the expectation over the choice of G by E [ · ].

I Theorem 2. For all q ≥ 2, β > 0 we have

dcond(q, β) = inf
{
d > 0 : lim sup

n→∞
E 〈‖ρσ1,σ2 − ρ̄‖TV〉G > 0

}
.

Theorem 2 implies the absence of extensive long-range correlations in the replica symmetric
phase. Indeed, for two vertices x, y ∈ Vn and s, t ∈ Ω let

µG,x,y(s, t) = 〈1{σ1(x) = s,σ1(y) = t}〉G

be the joint distribution of the spins assigned to x, y. It is known (e.g., [6, Section 2]) that

lim
n→∞

E 〈‖ρσ1,σ2 − ρ̄‖TV〉G = 0 iff lim
n→∞

1
n2

∑
x,y∈Vn

E‖µG,x,y − ρ̄‖TV = 0. (1.3)

APPROX/RANDOM’17
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Hence, Theorem 2 implies that for d < dcond(q, β), with probability tending to 1, the colors
assigned to two random vertices x, y of G are asymptotically independent. By contrast,
Theorem 2 and (1.3) also show that the same ceases to be true beyond dcond(q, β).

The condensation transition is conjectured to be preceded by another threshold where
certain “point-to-set correlations” emerge [27]. Intuitively, the reconstruction threshold is the
point from where for a random vertex y ∈ Vn correlations between the color assigned to y
and the colors assigned to all vertices at a large enough distance ` from y persist. Formally,
with σ chosen from µG let ∇`,(G, y) be the σ-algebra on ΩVn generated by the random
variables σ(z) with z ranging over all vertices at distance at least ` from y. Then

corr(d) = lim
`→∞

lim sup
n→∞

1
n

∑
y∈Vn

∑
s∈Ω

E
〈∣∣∣〈1{σ(y) = s}

∣∣∇`(G, y)
〉
G, − 1/q

∣∣∣〉
G

(1.4)

measures the extent of correlations between y and a random boundary condition in the limit
`, n→∞ (the outer limit exists due to mononicity). Indeed, with the expectation E [ · ] in
(1.4) referring to the choice of G, the outer 〈 · 〉G chooses a random coloring of the vertices at
distance at least ` from y and the inner 〈 · |∇`(G, y)〉G averages over the color of y given the
boundary condition.

The reconstruction threshold is defined as drec(q, β) = inf{d > 0 : corrq,β(d) > 0}. A
priori, calculating drec(q, β) appears to be quite challenging because we seem to have to
control the joint distribution of all the colors at distance ` from y. However, according to
physics predictions drec(q, β) is identical to the corresponding threshold on a random tree
[27], conceptually a much simpler object. Formally, let T(d) be the Galton-Watson tree with
offspring distribution Po(d). Let r be its root and for an integer ` ≥ 1 let T`(d) be the finite
tree obtained by deleting all vertices at distance greater than ` from r. Then

corr?(d) = lim
`→∞

∑
s∈Ω

E
〈∣∣∣〈1{σ(r) = s}

∣∣∇`(T`(d), r)
〉
T`(d) − 1/q

∣∣∣〉
T`(d)

measures the extent of correlations between the color of the root and the colors at the
boundary of the tree. Accordingly, the tree reconstruction threshold is defined as d?rec(q, β) =
inf{d > 0 : corr?(d) > 0}. Combining Theorem 2 with a result in [21], we obtain

I Corollary 3. For every q ≥ 2 and β > 0 we have 1 ≤ drec(q, β) = d?rec(q, β) ≤ dcond(q, β).

1.3 The stochastic block model
The disassortative stochastic block model, first introduced in [24], is defined as follows: First
choose a random q-coloring σ∗ : Vn → Ω of n vertices with q ≥ 2 . Then, setting

din = dqe−β

q − 1 + e−β and dout = dq

q − 1 + e−β (1.5)

we generate a random graph G∗ by connecting any two vertices v, w of the same color with
probability din/n and any two with distinct with probability dout/n independently. Thus,
the average degree of G∗ converges to d in probability.

Two fundamental statistical problems arise [15]. First, given q, β, for what values of d is
it possible to perform non-trivial inference, i.e., obtain a better approximation to σ∗ given
the random graph G∗ that just a random guess (see [15] for a formal definition)? A second,
more modest task is the detection problem, which merely asks whether the random graph G∗
can be told apart from the natural “null model”, i.e., the plain Erdős-Rényi graph G.
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Decelle, Krzakala, Moore and Zdeborová [15] predicted that for d < dcond(q, β), i.e.,
below the Potts condensation threshold, it is information-theoretically impossible to solve
either problem. On the other hand, they predicted that there exist efficient algorithms to
solve either problem if d > dKS(q, β) from (1.2). Both of these conjectures were proved
in the case q = 2 by Mossel, Neeman and Sly [37, 38] and Massoulié [30]. The positive
algorithmic conjecture was proved in full by Abbe and Sandon [2]. On the negative side, [13]
shows that no algorithm can infer a non-trivial approximation to σ∗ if d < dcond(q, β) for
any q ≥ 3, β > 0. Further, Banks, Moore, Neeman, and Netrapalli [5] employed a second
moment argument to determine an explicit range of d where it is impossible to discern G∗
from G. However, there remained an extensive gap between their explicit bound and the
actual condensation threshold. Our next result closes this gap and thus settles the conjecture
from [15].

G and G∗ are mutually contiguous for d > 0 if for any sequence (An)n of events we have

lim
n→∞

P [G ∈ An] = 0 iff lim
n→∞

P [G∗ ∈ An] = 0.

If so, then clearly no algorithm (efficient or not) can discern with probability 1−o(1) whether
a given graph stems from the stochastic block model G∗ or the “null model” G.

I Theorem 4. For all q ≥ 3, β > 0, d < dcond(q, β) the models G and G∗ are mutually
contiguous.

This result is tight since [13, Theorem 2.6] implies that G,G∗ fail to be contiguous for
d > dcond(q, β).
I Remark. There is a similar conjecture regarding the assortative version of the stochastic
block model, which can be seen as an inference version of the ferromagnetic Potts model.
However, the assortative block model, and ferromagnetic models generally, are beyond the
scope of the present work as such models violate one of the key technical assumptions that
our proofs require (condition POS and BAL below).

1.4 The diluted k-spin model
Our third application deals with a model that is of fundamental interest in physics [23, 31, 34].
For integers k ≥ 2, n ≥ 1 and a real p ∈ [0, 1] let H = Hk(n, p) be the random k-uniform
hypergraph on Vn = {x1, . . . , xn} whose edge set E(H) is obtained by including each of the

(
n
k

)
possible k-subsets of Vn with probability p independently. Additionally, let J = (Je)e∈E(H) be
a family of independent standard Gaussians. The k-spin model on H at inverse temperature
β > 0 is the distribution on the set {−1, 1}Vn defined by

µH,J,β(σ) = 1
Zβ(H,J)

∏
e∈E(H)

exp
(
βJe

∏
y∈e

σ(y)
)
, (1.6)

where Zβ(H,J) =
∑
τ∈{±1}Vn

∏
e∈E(H) exp

(
βJe

∏
y∈e τ(y)

)
.

The most interesting and at the same time most challenging scenario arises in the case of
a sparse random hypergraph [32]. Specifically, set p = d/

(
n−1
k−1
)
for a fixed d > 0.

Guerra and Toninelli [23] determined the condensation threshold in the special case where
k = 2 but noticed that their argument does not extend to k ≥ 3. Proving a conjecture
from [19], the following theorem pinpoints the condensation thereshold for all k ≥ 3.

Let us write P(X ) for the set of all probability distributions on a finite set X and
identify P(X ) with the standard simplex in RX . Moreover, let P2(X ) be the space of all

APPROX/RANDOM’17



40:6 Charting the Replica Symmetric Phase

probability measures on P(X ) and let P2
∗ (X ) be the space of all π ∈ P2(X ) whose barycenter∫

P(X ) µdπ(µ) is the uniform distribution on X . Finally, let Λ(x) = x ln x.

I Theorem 5. Suppose that d > 0, β > 0 and that k ≥ 3. Let γ be a Poisson variable with
mean d, let I1, I2, . . . be standard Gaussians and for π ∈ P2

∗ ({±1}) let ρπ1 ,ρπ2 , . . . ∈ P({±1})
be random variables with distribution π, all mutually independent. Define

Bk−spin(d, β, π)

= 1
2E

Λ

 ∑
σk∈{±1}

γ∏
j=1

∑
σ1,...,σk−1∈{±1}

(1 + tanh(βIjσ1 · · ·σk))
k−1∏
h=1

ρπkj+h(σh)


−d
k
E

Λ

1 +
∑

σ1,...,σk{±1}

tanh(βI1σ1 · · ·σk)
k∏
h=1

ρπh(σh)

 .
and dcond(k, β) = inf{d > 0 : supπ∈P2

∗({1,−1}) Bk−spin(d, β, π) > ln 2}. Then 0 < dcond(k, β) <
∞ and

lim
n→∞

1
n
E[lnZβ(H,J)]

{
= ln 2 + d√

2πk

∫∞
−∞ ln(cosh(z)) exp(−z2/2)dz if d ≤ dcond(k, β),

< ln 2 + d√
2πk

∫∞
−∞ ln(cosh(z)) exp(−z2/2)dz if d > dcond(k, β).

As in the Potts model, the condensation threshold is conjectured to be related to the
nature of correlations under µH,J,β . The following theorem proves this conjecture for even
values of k. We recall the overlap notation from Section 1.2.

I Theorem 6. For all β > 0 and k ≥ 4 even, it holds that

dcond(k, β) = inf
{
d > 0 : lim sup

n→∞
E
〈
‖%σ1,σ2 − ρ̄‖TV

〉
H,β > 0

}
.

The corresponding statement for k = 2 was proved by Guerra and Toninelli, but they point
out that their argument does not extend to larger k [23]. Furthermore, arguing as for the
Potts model, we get that E〈‖ρσ1,σ2 − ρ̄‖TV〉H = o(1) iff the spins of two randomly chosen
vertices of H are asymptotically independent with probability tending to one.

2 Main results

2.1 Definitions and assumptions
Factor graphs have emerged as a unifying framework for a multitude of problems. The main
results of this paper, which we present in this section, therefore deal with a general class of
random factor graph models, subject merely to a few easy-to-check assumptions. Formally, let
Ω be a finite set of spins, let k ≥ 2 be an integer and let Ψ be a set of functions ψ : Ωk → (0, 2)
that we call weight functions. A Ψ-factor graph G = (V, F, (∂a)a∈F , (ψa)a∈F ) consists of a set
V of variable nodes, a set F of constraint nodes, an ordered k-tuple ∂a = (∂1a, . . . , ∂ka) ∈ V k
for each a ∈ F and a weight function ψa ∈ Ψ for each a ∈ F . We can picture G as a bipartite
graph with variable nodes on one side and constraint nodes on the other in which each
constraint node a is adjacent to ∂1a, . . . , ∂ka and adorned with a weight function ψa. This
allows us to speak of, e.g., the distance of two nodes. But we keep in mind that actually the
neighborhood ∂a is an ordered tuple. The Gibbs distribution of G is the distribution on ΩV
defined by µG(σ) = ψG(σ)/Z(G) for σ ∈ ΩV , where

ψG(σ) =
∏
a∈F

ψa(σ(∂1a), . . . , σ(∂ka)) and Z(G) =
∑
τ∈ΩV ψG(τ).



A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos 40:7

For a weight function ψ : Ωk → (0, 2) and a permutation θ : [k] → [k] we define
ψθ : Ωk → (0, 2), (σ1, . . . , σk) 7→ ψ(σθ(1), . . . , σθ(k)). Throughout the paper we assume that
Ψ is a measurable set of weight functions such that for all ψ ∈ Ψ and all permutations θ we
have ψθ ∈ Ψ. Moreover, we fix a probability distribution P on Ψ. We always denote by ψ
an element of Ψ chosen from P , and we set

q = |Ω| and ξ = ξ(P ) = q−k
∑
σ∈Ωk E[ψ(σ)].

Furthermore, we always assume that P is such that the following three inequalities hold:

E[ln8(1−max{|1−ψ(τ)| : τ ∈ Ωk})] < ∞,
E[max{ψ(τ)−4 : τ ∈ Ωk}] < ∞,∑

τ∈Ωk

E[(ψ(τ)− ξ)2] > 0.
(2.1)

The first two bound the ‘tails’ of ψ(τ) for τ ∈ Ωk. The third one provides that ψ is
non-constant.

We define the random Ψ-factor graph G(n,m,P ) as follows. The set of variable nodes is
Vn = {x1, . . . , xn}, the set of constraint nodes is Fm = {a1, . . . , am} and the neighborhoods
∂ai ∈ V kn are chosen uniformly and independently for i = 1, . . . ,m. Furthermore, the
weight functions ψai ∈ Ψ are chosen from the distribution P mutually independently and
independently of (∂ai)i=1,...,m. Where P is apparent we just write G(n,m) rather than
G(n,m,P ). For a fixed d > 0, i.e. independent of n, let m = md(n) have distribution
Po(dn/k) and write G = G(n,m, P ) for brevity. Then the expected degree of a variable
node is equal to d.

Apart from the condition (2.1) the main results require (some of) the following four
assumptions; crucially, they only refer to the distribution P on the set Ψ of weight functions.

SYM. For all i ∈ {1, . . . , k}, ω ∈ Ω and ψ ∈ Ψ we have∑
τ∈Ωk 1{τi = ω}ψ(τ) = qk−1ξ (2.2)

and for every permutation θ and every measurable A ⊂ Ψ we have that P (A) = P ({ψθ :
ψ ∈ A}).

BAL. The function

φ : µ ∈ P(Ω) 7→
∑
τ∈Ωk E[ψ(τ)]

∏k
i=1 µ(τi)

is concave and attains its maximum at the uniform distribution on Ω.
MIN. Let R(Ω) be the set of all probability distribution ρ = (ρ(s, t))s,t∈Ω on Ω × Ω such

that
∑
s∈Ω ρ(s, t) =

∑
s∈Ω ρ(t, s) = q−1 for all t ∈ Ω. The function

ρ ∈ R(Ω) 7→
∑
σ,τ∈Ωk E[ψ(σ)ψ(τ)]

∏k
i=1 ρ(σi, τi)

has the uniform distribution on Ω× Ω as its unique global minimizer.
POS. For all π, π′ ∈ P2

∗ (Ω) the following is true. With ρ1,ρ2, . . . chosen from π, ρ′1,ρ′2, . . .
chosen from π′ and ψ ∈ Ψ chosen from P , all mutually independent, we have

0 ≤ E

[
Λ
( ∑
τ∈Ωk

ψ(τ)
∏
i∈[k]

ρi(τi)
)]

+ (k − 1)E
[

Λ
( ∑
τ∈Ωk

ψ(τ)
∏
i∈[k]

ρ′i(τi)
)]

−E

[
kΛ
( ∑
τ∈Ωk

ψ(τ)ρ1(τ1)
∏

i∈[k]\{1}
ρ′i(τi)

)]
.

(2.3)

APPROX/RANDOM’17
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Conditions similar to SYM, BAL and POS appeared in [13], too. The upshot is that
all four conditions can be checked solely by inspecting the distribution P on weight functions,
and this is not normally difficult. For a more detailed discussion of these conditions see the
full version of this paper in [11].

It is not difficult to cast the Potts antiferromagnet and the k-spin model as factor graph
models. For the Potts model we let k = 2 and we merely introduce a single weight function
ψq,β(σ, τ) = exp(−β1{σ = τ}). The four conditions SYM, BAL, POS and MIN are easily
verified. For the k-spin model we need infinitely many weight functions, one for each J ∈ R,
defined by ψJ,β(σ1, . . . , σk) = 1 + tanh(Jβ)σ1 · · ·σk, and P is the distribution of ψJ,β with
J a standard Gaussian. The conditions SYM, BAL and POS hold for this model for any k
and MIN is satisfied for even k.

2.2 Results
We proceed with the results on the condensation phase transition, the limiting distribution
of the free energy, the overlap, the reconstruction and the detection thresholds for general
random factor graph models.

I Theorem 7. Assume that P satisfies SYM, BAL and POS and let d > 0. With γ a
Po(d)-random variable, ρπ1 ,ρπ2 , . . . chosen from π ∈ P2

∗ (Ω) and ψ1,ψ2, . . . ∈ Ψ chosen from
P , all mutually independent, let

B(d, P, π) = E

[
1
qξγ Λ

(∑
σ∈Ω

∏
i∈[γ]

∑
τ∈Ωk

1{τk = σ}ψi(τ)
∏

j∈[k−1]
ρπki+j(τj)

)]

−d(k−1)
kξ E

[
Λ
( ∑
τ∈Ωk

ψ1(τ)
∏
i∈[k]

ρπj (τj)
)] (2.4)

and let dcond = inf
{
d > 0 : supπ∈P2

∗(Ω) B(d, P, π) > ln q + d
k ln ξ

}
. Then 1/(k−1) ≤ dcond <

∞ and

lim
n→∞

1
n
E[lnZ(G)]

{
= ln q + d

k ln ξ if d ≤ dcond,

< ln q + d
k ln ξ if d > dcond.

Theorem 7 generalizes [13, Theorem 2.7], which requires that the set Ψ of weight functions
be finite (and thus does not cover the k-spin model).

Admittedly the formula for dcond provided by Theorem 7 is neither very simple nor very
explicit, but we are not aware of any reason why it ought to be. Yet there is a natural
generalization of the Kesten-Stigum bound from (1.2) that provides an easy-to-compute
upper bound on dcond in terms of the spectrum of a certain linear operator. The operator is
constructed as follows. For ψ ∈ Ψ let Φψ ∈ RΩ×Ω be the matrix with entries

Φψ(ω, ω′) = q1−kξ−1∑
τ∈Ωk 1{τ1 = ω, τ2 = ω′}ψ(τ) (ω, ω′ ∈ Ω) (2.5)

and let Ξ = ΞP be the linear operator on the q2-dimensional space RΩ ⊗ RΩ defined by

Ξ = ΞP = E[Φψ ⊗ Φψ]. (2.6)

Furthermore, letting E = {z ∈ Rq ⊗ Rq : ∀y ∈ Rq : 〈z,1⊗ y〉 = 〈z, y ⊗ 1〉 = 0}, with 1 denot-
ing the vector with all entries equal to one, we introduce

dKS =
(

(k − 1) max
x∈E:‖x‖=1

〈Ξx, x〉
)−1

, (2.7)

with the convention that dKS =∞ if maxx∈E:‖x‖=1 〈Ξx, x〉 = 0.
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I Theorem 8. If P satisfies SYM and BAL, then dcond ≤ dKS.

We shall see in Section 3 that Ξ is related to the “broadcasting matrix” of a suitable
Galton-Watson tree, which justifies referring to dKS as a generalized version of the classical
Kesten-Stigum bound from [26]. While this bound is not generally tight, it plays a major
conceptual role, as will emerge in due course.

Theorem 7 easily implies that n−1 lnZ(G) converges to ln q + d
k ln ξ in probability if

d < dcond. Yet due to the scaling factor of 1/n this is but a rough first order approximation.
The next theorem, arguably the principal achievement of the paper, yields the exact limiting
distribution of the unscaled free energy lnZ(G) in the entire replica symmetric phase.
Recalling (2.5), let the Ω× Ω-matrix

Φ = ΦP = E[Φψ]. (2.8)

I Theorem 9. Assume that P satisfies SYM, BAL, POS and MIN and that 0 < d < dcond.
Let (Kl)l≥1 be a family of Poisson variables with means E[Kl] = 1

2l (d(k − 1))l and let
(ψl,i,j)l,i,j≥1 be a sequence of samples from P , all mutually independent. Then the random
variable

K =
∑∞
l=1

[
(d(k−1))l

2l
(
1− tr(Φl)

)
+
∑Kl

i=1 ln tr
∏l
j=1 Φψl,i,j

]
(2.9)

satisfies E|K| <∞ and we have the following convergence in distribution:

lnZ(G)−
(
n+ 1

2
)

ln q −m ln(ξ) + 1
2
∑
λ∈Eig(Φ)\{1} ln(1− d(k − 1)λ) n→∞−→ K.

(2.10)

Let ρ̄ be the uniform distribution on Ω× Ω, while for σ, τ ∈ ΩVn we defined the overlap
ρσ,τ such that ρσ,τ (ω, ω′) = |σ−1(ω) ∩ τ−1(ω′)|/n. The following theorem confirms one of
the core tenets of the physicists’ cavity method, namely the absence of extensive long-range
correlations for d < dcond.

I Theorem 10. If SYM, BAL, POS , MIN hold, then it holds that

dcond = inf
{
d > 0 : lim sup

n→∞
E 〈‖ρσ,τ − ρ̄‖TV〉G > 0

}
.

The condensation phase transition is generally preceded by another threshold where
certain point-to-set correlations emerge, the reconstruction threshold [27]. Indeed, the
quantity corr(d) as defined in (1.4) generalises naturally to any random factor graph model.
Further, we can easily construct a mulit-type Galton-Watson tree T (d, P ) that mimics the
local geometry of a random factor graph G. Its types are variable and constraint nodes, each
of the latter endowed with a weight function ψ ∈ Ψ. The root is a variable node r. The
offspring of a variable node is a Po(d) number of constraint nodes whose weight functions are
chosen from P independently. Moreover, the offspring of a constraint node is k − 1 variable
nodes. For an integer ` ≥ 0 we let T `(d, P ) denote the (finite) tree obtained from T (d, P ) by
deleting all variable nodes at distance greater than 2` from r. We set

corr?(d) = lim
`→∞

∑
s∈Ω E

〈∣∣∣∣〈1{σ(r) = s}
∣∣∇`(T `(d, P ), r)

〉
T `(d,P )

− 1/q
∣∣∣∣〉
T `(d,P )

. (2.11)

The tree reconstruction threshold is defined as d?rec = inf{d > 0 : corr?(d) > 0}.

I Theorem 11. If P satisfies SYM, BAL, POS and MIN, then 0 < drec = d?rec ≤ dcond.

APPROX/RANDOM’17
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Theorem 11 generalises results from [21, 35]. For further discussion see the full version [11].
Finally, there is a natural statistical inference version of the random factor graph model,

the teacher-student model [42], a generalisation of the stochastic block model. The model is
defined as follows.

TCH1 an assignment σ∗ : Vn → Ω, the ground truth, is chosen uniformly at random.
TCH2 independently of σ∗, draw m = md(n) from the Poisson distribution with mean

dn/k.
TCH3 generate G∗ with factor nodes a1, . . . , am by choosing the neighborhoods ∂aj and

the weight functions ψaj
from the distribution

P
[
∂aj = (y1, . . . , yk), ψaj ∈ A

]
∝ E[1{ψ ∈ A}ψ(σ(y1), . . . , σ(yk))], (2.12)

independently for i = 1, . . . ,m.

As in the case of the stochastic block model, the detection problem arises: given a factor
graph G, for what d is it possible to discern whether G was chosen from the model G∗ or
from the “null model” G? The following theorem shows that the detection threshold is
always given by dcond.

I Theorem 12. If P satisfies SYM, BAL, POS and MIN, then G,G∗ are mutually
contiguous for all d < dcond, while G,G∗ fail to be mutually contiguous for d > dcond.

The disassortative stochastic block model and the teacher-student model G∗ are known
to be mutually contiguous [13] and thus Theorem 4 follows from Theorem 12.

3 Proof strategy

The apex of the present work is Theorem 9 about the limiting distribution of the free energy;
all the other results follow from it almost immediately. For such a result the usual approach
would be the second moment method, pioneered by Achlioptas and Moore [3], in combination
with the small subgraph conditioning technique of Robinson and Wormald [25, 41]. However,
this approach does not generally allow for tight results (in particular, it typically stops
working well below the condensation threshold).

We craft a proof around the teacher-student model G∗ instead. Specifically, the main
achievement of the recent paper [13] was to verify the cavity formula for the leading order
lim
n→∞

1
nE[lnZ(G∗)] of the “free energy” lnZ(G∗) (in the case that the set Ψ is finite). We will

replace the second moment calculation by that free energy formula, generalized to infinite
Ψ, and combine it with a suitably generalized small subgraph conditioning technique. The
challenge is to integrate these two components seamlessly. We accomplish this by realizing
that, remarkably, both arguments are inherently and rather elegantly tied together via the
spectrum of the linear operator Ξ from (2.6). But to develop this novel approach we first
need to recall the classical second moment argument and understand why it founders.

3.1 Two moments do not suffice
For any second moment calculation it is crucial to fix the number of constraint nodes as
otherwise its fluctuations would boost the variance. Hence, we will work with an integer
sequence m = m(n) ≥ 0. We fix d > 0 and consider specific integer sequences m = m(n) ≥ 0
such that |m(n)− dn/k| ≤ n3/5 for all n. LetM(d) be the set of all such sequences.
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The second moment method rests on showing that E[Z(G(n,m))2] = O(E[Z(G(n,m))]2).
If this is the case, then from Azuma’s inequality we get that limn→∞ n−1E[lnZ(G(n,m))] =
limn→∞ n−1 lnE[Z(G(n,m))]. The second limit is easy to compute because the expecta-
tion sits inside the logarithm, and thus we obtain the leading order of the “free energy”
lnZ(G(n,m)). In fact, if we can calculate the second moment E[Z(G(n,m))2] sufficiently
accurately, then it may be possible to determine the limiting distribution of lnZ(G(n,m))
precisely. Suppose that there is a sufficiently simple random variable Q(G(n,m)) such that

Var[Z(G(n,m))] = (1 + o(1))Var[E[Z(G(n,m))|Q(G(n,m))]]. (3.1)

The formula

Var[Z(G(n,m))] = Var[E[Z(G(n,m))|Q(G(n,m))]] + E[Var[Z(G(n,m))|Q(G(n,m))]]

implies

E[Var[Z(G(n,m))|Q(G(n,m))]] = o(E[Z(G(n,m))]2) (3.2)

and it is not difficult to deduce from (3.2) that lnZ(G(n,m))− lnE[Z(G(n,m))|Q(G(n,m))]
converges to 0 in probability. Hence, we get the limiting distribution of lnZ(G(n,m)) if
Q(G(n,m)) is simple enough so that the law of lnE[Z(G(n,m))|Q(G(n,m))] is easy to
express. The basic insight behind the small subgraph conditioning technique is that (3.1)
sometimes holds with a variable Q that is determined by the statistics of bounded-length
cycles in G(n,m) [25, 41].

Anyhow, the crux of the entire argument is to calculate E[Z(G(n,m))2]. Stirling’s formula
yields the following approximation of E[Z(G(n,m))2] in terms of the overlaps:

lnE[Z(G(n,m))2] = max
ρ∈P(Ω2)

nH(ρ) +m ln
( ∑
s,t∈Ωk

E[ψ(s)ψ(t)]
∏
i∈[k]

ρ(si, ti)
)

+O(lnn),

(3.3)

where H(ρ) denotes the entropy of ρ. Hence, computing the second moment comes down
to identifying the overlap ρ that renders the dominant contribution to the second moment.
Indeed, the second moment bound E[Z(G(n,m))2] = O(E[Z(G(n,m))]2) holds if and only if
the maximum (3.3) is attained at the uniform overlap ρ̄. However, this is not generally true
for d below but near the condensation threshold.

This problem was noticed and partly remedied in prior work by applying the second
moment method to a suitably truncated random variable (e.g. [7, 12]). This method revealed,
e.g., the condensation threshold in a few special cases such as the random graph q-coloring
problem [7] and the random regular k-SAT model, albeit only for large q and k. Yet apart
from introducing such extraneous conditions, arguments of this kind require a meticulous
combinatorial study of the specific model.

3.2 The condensation phase transition and the overlap
The merit of the present approach is that we avoid combinatorial deliberations altogether.
Instead we employ an asymptotic formula for E[lnZ(G∗)] for the teacher-student model G∗.

I Theorem 13. If P satisfies SYM, BAL and POS and d > 0, then with B(d, P, π) from
(2.4) we have lim

n→∞
n−1E[lnZ(G∗)] = sup

π∈P2
∗(Ω)
B(d, P, π).

APPROX/RANDOM’17
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Theorem 13 was established in [13] for a set Ψ of weight functions that is finite and the proof
of Theorem 13 is based on a limiting argument.

We deduce the following result from Theorem 13 by observing that ∂
∂d lnZ(G∗) can be

expressed in terms of the overlap. Let G∗(n,m) be the teacher-student model with a fixed
number m of constraint nodes.

I Proposition 14. Assume that BAL, SYM, POS and MIN hold and that d < dcond.
There exists a sequence ζ = ζ(n), ζ(n) = o(1) but n1/6ζ(n)→∞ as n→∞, such that for
all m ∈M(d) we have

E
〈
‖ρσ1,σ2 − ρ̄‖TV

〉
G∗(n,m) ≤ ζ

2. (3.4)

Proposition 14 resolves our second moment troubles. Indeed, it enables a generic way of
setting up a ‘truncated’ random variable: with ζ from Proposition 14 we define

Z(G) = Z(G)1
{〈
‖ρσ1,σ2 − ρ̄‖TV

〉
G
≤ ζ
}
. (3.5)

Hence, Z(G) = Z(G) if “most” pairs σ1,σ2 drawn from µG have overlap close to ρ̄, and
Z(G) = 0 otherwise. Since up to contiguity the teacher-student model G∗(n,m) corresponds
to a reweighted version of the random factor graph model G(n,m) where each graph G is
weighted according to its partition function Z(G), Proposition 14 shows immediately that
this truncation does not diminish the first moment.

I Corollary 15. If BAL, SYM, POS and MIN hold and d < dcond, then E[Z(G(n,m))] ∼
E[Z(G(n,m))] uniformly for all m ∈M(d).

The second moment calculation for Z is easy, too. Indeed, the very construction (3.5) of
Z guarantees that the dominant contribution to the second moment of Z comes from pairs
with an overlap close to ρ̄. Hence, computing the second moment comes down to expanding
the right hand side of (3.3) around ρ̄ via the Laplace method. Yet in order to do so we need
to verify that ρ̄ is a local maximum of the function

ρ ∈ P(Ω2) 7→ H(ρ) + d

k
ln
∑
s,t∈Ωk

E[ψ(s)ψ(t)]
k∏
i=1

ρ(si, ti) (3.6)

from (3.3). For the special case of the Potts antiferromagnet the overlap concentration (3.4)
was established and the second moment argument for Z was carried out in [13]. While the
generalization to random factor graph models is anything but straightforward, an even more
important difference lies in the application of the Laplace method. But of course there ought
to be a general, conceptual explanation. As we shall see momentarily, there is one indeed,
namely the generalized Kesten-Stigum bound.

3.3 The Kesten-Stigum bound
To see the connection, we observe that the Hessian of (3.6) at the point ρ̄ is equal to
q(id− d(k − 1)Ξ), where Ξ us the matrix from (2.6). Hence, taking into account that the
argument ρ is a probability distribution on Ω×Ω, we find that ρ̄ is a local maximum of (3.6)
if and only if

〈(id− d(k − 1)Ξ)x, x〉 > 0 for all x ∈ Rq ⊗ Rq such that x ⊥ 1⊗ 1. (3.7)

In order to get a handle on the spectrum of the operator Ξ from (2.6) we begin with the
following observation about the matrices Φψ and Φ from (2.5) and (2.8).
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I Lemma 16. Let P satisfy SYM. Then the matrix Φψ is stochastic and thus Φψ1 = 1 for
every ψ ∈ Ψ. Moreover, Φ is symmetric and doubly-stochastic. If, additionally, P satisfies
BAL, then maxx⊥1 〈Φx, x〉 ≤ 0.

Proceeding to the operator Ξ, we recall the definition of E from (2.7) and we introduce

E ′ = {x ∈ Rq ⊗ Rq : 〈x,1⊗ 1〉 = 0} ⊃ E . (3.8)

I Lemma 17. Assume that P satisfies SYM, BAL. The operator Ξ is self-adjoint, Ξ(1⊗1) =
1⊗ 1 and for every x ∈ Rq we have Ξ(x⊗ 1) = (Φx)⊗ 1, Ξ(1⊗ x) = 1⊗ (Φx) and

〈Ξ(x⊗ 1), x⊗ 1〉 ≤ 0, 〈Ξ(1⊗ x),1⊗ x〉 ≤ 0 if x ⊥ 1. (3.9)

Furthermore, ΞE ⊂ E and ΞE ′ ⊂ E ′.

Lemma 17 shows that Ξ induces a self-adjoint operator on the space E .
The following proposition yields a bound on the spectral radius of this operator. Let

Eig∗(Ξ) = {λ ∈ R : ∃x ∈ E \ {0} : Ξx = λx} .

I Proposition 18. If P satisfies SYM and BAL, then dcond(k − 1) maxλ∈Eig∗(Ξ) |λ| ≤ 1.

The proof of Proposition 18 is based on establishing an inherent connection between the
spectrum of Ξ and the Bethe free energy functional B from (2.4). Specifically, we use the
eigenvector of Ξ to construct a candidate maximum of the functional B. Theorem 8 is
immediate from Proposition 18.

Lemma 17 and Proposition 18 show that (3.7) is satisfied, and thus that ρ̄ is a local max-
imum of (3.6), for all d < dcond. Indeed, it is immediate from (3.9) that 〈(id− d(k − 1)Ξ)x, x〉 >
0 if x is of the form 1 ⊗ y or y ⊗ 1 for some 1 ⊥ y ∈ Rq, and Theorem 8 shows that
〈(id− d(k − 1)Ξ)x, x〉 > 0 for all x ∈ E . Hence, Proposition 18 links the free energy calcula-
tion for G∗ with the second moment of Z.

3.4 Second moment redux
Observe that by Lemma 16 the set Eig (Φ) of eigenvalues of Φ contains precisely one non-
negative element, namely 1. Therefore, the following formula makes sense.

I Proposition 19. Suppose that P satisfies SYM and BAL and let 0 < d. Then uniformly
for all m ∈M(d),

E[Z(G(n,m))] ∼ qn+ 1
2 ξm∏

λ∈Eig(Φ)\{1}
√

1− d(k − 1)λ
. (3.10)

Proceeding to the second moment, we recall from Lemma 17 that Ξ induces an endomorphism
on the subspace E ′ from (3.8) and for the spectrum of Ξ on E ′ we write

Eig′(Ξ) = {λ ∈ R : ∃x ∈ E ′ \ {0} : Ξx = λx}.

Lemma 17 and Proposition 18 imply that dcond(k − 1)λ ≤ 1 for all λ ∈ Eig′(Ξ). Therefore,
the following formula for the second moment makes sense, too.

I Proposition 20. If P satisfies SYM and BAL and let 0 < d < dcond. Then uniformly
for all m ∈M(d),

E[Z(G(n,m))2] ≤ (1 + o(1))q2n+1ξ2m∏
λ∈Eig′(Ξ)

√
1− d(k − 1)λ

. (3.11)

APPROX/RANDOM’17
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Combining Corollary 15 with Propositions 19 and 20 and applying Lemma 17, we obtain for
m ∈M(d),

E[Z(G(n,m))2]
E[Z(G(n,m))]2 ∼

∏
λ∈Eig(Φ)\{1} 1− d(k − 1)λ∏
λ∈Eig′(Ξ)

√
1− d(k − 1)λ

=
∏

λ∈Eig∗(Ξ)

1√
1− d(k − 1)λ

if d < dcond.

(3.12)

In particular, the ratio of the second moment and the square of the first is bounded as
n→∞.

3.5 Virtuous cycles
In order to determine the limiting distribution of lnZ(G(n,m)) we are going to “explain”
the remaining variance of Z(G(n,m)) in terms of the statistics of the bounded-length cycles
of G(n,m). However, by comparison to prior applications of the small subgraph conditioning
technique, here it does not suffice to merely record how many cycles of a given length occur.
We also need to take into account the specific weight functions along the cycle. Yet this
approach is complicated substantially by the fact that there may be infinitely many different
weight functions. To deal with this issue we are going to discretize the set of weight functions
and perform a somewhat delicate limiting argument.

For integer ` > 0, E1, . . . , E` ⊂ Ψ and s1, t1, . . . , s`, t` ∈ {1, . . . , k} a signature of order `
is a family

Y = (E1, s1, t1, E2, s2, t2, . . . , E`, s`, t`)

such that si 6= ti for all i ∈ {1, . . . , `} and s1 < t1 if ` = 1. We let Y be the set of all
signatures.

For a factor graph G we call a family (xi1 , ah1 , . . . , xi` , ah`
) a cycle of signature Y in G

if the following holds: All i1, . . . , i` ∈ {1, . . . , n} are pairwise distinct, the same holds for
h1, . . . , h` ∈ {1, . . . ,m}. We impose an orientation on how we traverse the cycle, i.e. we start
from xi1 and we traverse towards the constraint node with the smaller index or s1 < t1 if
` = 1. For this reason we require i1 = min{i1, . . . , i`}, while h1 < h` if ` > 1. The weight
functions along the cycle belong to E1, . . . , E`, i.e. ψahj

∈ Ej , for j = 1, . . . , `. Finally, we
require that the cycle enters the jth constraint node in position sj and leaves in position tj .

Let CY (G) denote the number of cycles of signature Y . Moreover, for an event A ⊂ Ψ
with P (A) > 0 and h, h′ ∈ {1, . . . , k} define the q × q matrix ΦA,h,h′ by letting

ΦA,h,h′(ω, ω′) = q1−kξ−1
∑
τ∈Ωk

1{τh = ω, τh′ = ω′}E[ψ(τ)|A] (ω, ω′ ∈ Ω). (3.13)

In addition, for a signature Y = (E1, s1, t1, . . . , E`, s`, t`) define

κY = 1
2`

(
d

k

)` ∏̀
i=1

P (Ei), ΦY =
∏̀
i=1

ΦEi,si,ti , κ̂Y = κY tr(ΦY ). (3.14)

A cycle of order ` is a family (xi1 , ah1 , . . . , xi` , ah`
) of signature (Ψ, s1, t1, . . . ,Ψ, s`, t`)

for some sequence s1, t1, . . . , s`, t`, and we let C` signify the number of such cycles. Finally,
two signatures Y = (E1, s1, t1, . . . , E`, s`, t`), Y ′ = (E′1, s′1, t′1, . . . , E′`′ , s′`′ , t′`′) are disjoint if
either ` 6= `′, or for some for some i we have (si, ti) 6= (s′i, t′i) or Ei ∩ E′i = ∅. We establish
the following enhancement that takes the weight functions along the cycles into account.
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I Proposition 21. Suppose that P satisfies SYM and BAL. Let Y1, Y2, . . . Yl ∈ Y be pairwise
disjoint signatures and let y1, . . . , yl be non-negative integers. Let d > 0. Then uniformly for
all m ∈M(d),

P [∀t ≤ l : CYt
(G(n,m)) = yt] ∼

∏l
t=1 P [Po(κYt

) = yt] ,

P [∀t ≤ l : CYt(G∗(n,m)) = yt] ∼
∏l
t=1 P [Po(κ̂Yt) = yt] .

Thus, for disjoint Y1, . . . , Yl the cycle counts CYt
are asymptotically independent Poisson.

Finally, we establish that K from Theorem 9 is well-defined. We view Ψ ⊂ [0, 2]Ωk as
a subset of a cube in Euclidean speace. For an integer r ≥ 1 let Cr be the partition of Ψ
induced by slicing the cube into pairwise disjoint sub-cubes of side length 1/r. Further,
let Y`,r denote the set of all signatures (E1, s1, t1, . . . , E`, s`, t`) such that E1, . . . , E` ∈ Cr
and such that P (Ei) > 0 for all i ≤ `, and define Y≤`,r =

⋃`
l=1 Yl,r. Furthermore, if ψ ∈ Ψ

belongs to a sub-cube C ∈ Cr, then we let

ψ(r)(τ) = E[ψ(τ)|C] (τ ∈ Ωk).

I Proposition 22. Assume that P satisfies SYM and BAL and let 0 < d < dcond. Let
(Kl)l≥1 be a family of independent Poisson variables with E[Kl] = (d(k − 1))l/(2l) and let
(ψl,i,j)l,i,j be a family of independent samples from P . Furthermore, define

K`,r =
∑̀
l=1

 (d(k − 1))l

2l
(
1− tr(Φl)

)
+

Kl∑
i=1

ln tr
l∏

j=1
Φ
ψ

(r)
l,i,j

 ,
K` =

∑̀
l=1

 (d(k − 1))l

2l
(
1− tr(Φl)

)
+

Kl∑
i=1

ln tr
l∏

j=1
Φψl,i,j


and K =

∑∞
`=1K`. Then all K`,r are uniformly bounded in the L1-norm, K`,r is L1-convergent

to K` as r →∞ and K` is L1-convergent to K as `→∞. Furthermore,

lim
`→∞

lim
r→∞

exp
∑

Y ∈Y≤`,r

(κY − κ̂Y )2

κY
=

∏
λ∈Eig∗(Ξ)

1√
1− d(k − 1)λ

.

Equipped with Propositions 19–22 we can determine the limiting distribution of lnZ(G)
and thus prove Theorem 9 by applying Janson’s version of the small subgraph conditioning
theorem [25] if the set Ψ is finite. In the case of infinite Ψ additional steps are necessary, see
in the full version of this paper in [11].
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