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—— Abstract

The minrank of a directed graph G is the minimum rank of a matrix M that can be obtained from
the adjacency matrix of G by switching some ones to zeros (i.e., deleting edges) and then setting
all diagonal entries to one. This quantity is closely related to the fundamental information-
theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS’06), network coding and
distributed storage, and to Valiant’s approach for proving superlinear circuit lower bounds (Vali-
ant, Boolean Function Complexity ’92).

We prove tight bounds on the minrank of directed Erdés-Rényi random graphs G(n, p) for all
regimes of p € [0, 1]. In particular, for any constant p, we show that minrk(G) = ©(n/logn) with
high probability, where G is chosen from G(n,p). This bound gives a near quadratic improvement
over the previous best lower bound of Q(y/n) (Haviv and Langberg, ISIT’12), and partially settles
an open problem raised by Lubetzky and Stav (FOCS ’07). Our lower bound matches the well-
known upper bound obtained by the “clique covering” solution, and settles the linear index coding
problem for random graphs.

Finally, our result suggests a new avenue of attack, via derandomization, on Valiant’s ap-
proach for proving superlinear lower bounds for logarithmic-depth semilinear circuits.
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1 Introduction

In information theory, the index coding problem [5, 4] is the following: A sender wishes
to broadcast over a noiseless channel an n-symbol string x € F™ to a group of n receivers
Ry, ..., Ry, each equipped with some side information, namely, a subvector x g, of x indexed
by a subset K; C {1,...,n}. The index coding problem asks what is the minimum length m
of a broadcast message that allows each receiver R; to retrieve the i¢th symbol z;, given his
side-information x g, and the broadcasted message. The side information of the receivers can
be modeled by a directed graph K,,, in which R; observes the symbols K; := {z; : (i,j) €
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E(K,)}. K, is sometimes called the knowledge graph. A canonical example is where IC,, is
the complete graph (with no self-loops) on the vertex set [n], i.e., each receiver observes all
but his own symbol. In this simple case, broadcasting the sum Y . | x; (in F) allows each
receiver to retrieve his own symbol, hence m = 1.

This problem is motivated by applications to distributed storage [3], on-demand video
streaming (ISCOD, [6]) and wireless networks (see, e.g., [27]), where a typical scenario
is that clients miss information during transmissions of the network, and the network is
interested in minimizing the retransmission length by exploiting the side information clients
already possess. In theoretical computer science, index coding is related to some important
communication models and problems in which players have overlapping information, such
as the one-way communication complexity of the index function [17] and the more general
problem of network coding [1, 10]. Index coding can also be viewed as an interesting special
case of nondeterministic computation in the (notoriously difficult to understand) multiparty
Number-On-Forehead model, which in turn is a promising approach for proving data structure
and circuit lower bounds [20, 21, 16]. The minimum length of an index code for a given
graph has well-known relations to other important graph parameters. For instance, it is
bounded from below by the size of the maximum independent set, and it is bounded from
above by the clique-cover number (x(G)) since for every clique in G, it suffices to broadcast
a single symbol (recall the example above). The aforementioned connections also led to
algorithmic connections (via convex relaxations) between the computational complexity of
graph coloring and that of computing the minimum index code length of a graph [9].

In the context of circuit lower bounds, Riis [22] observed that a certain index coding
problem is equivalent to the so-called shift conjecture of Valiant [25] (see Subsection 1.1
below). If true, this conjecture would resolve a major open problem of proving superlinear
size lower bound for logarithmic-depth circuits.

When the encoding function of the index code is linear in x (as in the example above),
the corresponding scheme is called a linear index code. In their seminal paper, Bar-Yossef et
al. [4] showed that the minimum length m of a linear index code is characterized precisely by
a parameter of the knowledge graph IC,, called the minrank (minrkg(KCy,)), first introduced
by Haemers [12] in the context of Shannon capacity of graphs.! Informally, minrkg(KC,,) is
the minimum rank (over F) of an n x n matrix M that “represents” K, in the sense that
M contains a zero in all entries corresponding to non-edges, and non-zero entries on the
diagonal. Entries corresponding to edges are arbitrary. (Over Fy this is equivalent to being
the adjacency matrix of a subgraph of K,, with diagonal entries set to one.) Note that
without the “diagonal constraint”, the above minimum would trivially be 0, and indeed this
constraint is what makes the problem interesting and hard to analyze. While linear index
codes are in fact optimal for a large class of knowledge graphs (including directed acyclic
graphs, perfect graphs, odd “holes” and odd “anti-holes” [4]), there are examples where
non-linear codes outperform their linear counterparts [18]. In the same paper, Lubetzky and
Stav [18] posed the following question about typical knowledge graphs, namely,

What is the minimum length index code for a random knowledge graph K, = G, ,,?

Here, Gy, ,, denotes a random Erdds-Rényi directed graph, i.e., a graph on n vertices in which
each arc is taken independently with probability p. In this paper, we partially answer this
open problem by determining the optimal length of linear index codes for such graphs. In

L To be precise, this holds only for graphs without self-loops. We will ignore this minor issue in this paper
as it will not affect any of our results.
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other words, we prove a tight lower bound on the minrank of G, , for all values of p € [0, 1].
In particular,

» Theorem 1 (Main theorem, informal). For any constant 0 < p < 1 and any field F of
cardinality |F| < n®M), it holds with high probability that

minrkF(gn,p):e( o > .

logn

The formal quantitative statement of our result can be found in Corollary 11 below.
We note that our general result (see Theorem 10) extends beyond the constant regime to
subconstant values of p, and this feature of our lower bound is crucial for potential applications
of our result to circuit lower bounds (we elaborate on this in the next subsection). Theorem 1
gives a near quadratic improvement over the previously best lower bound of Q(y/n) [18, 14],
and settles the linear index coding problem for random knowledge graphs, as an O,(n/logn)
linear index coding scheme is achievable via the clique-covering solution (see Section 1.2).

In the following subsection, we propose a concrete (yet admittedly still quite challenging)
approach for proving superlinear circuit lower bounds based on a potential “derandomization”
of Theorem 1.

1.1 Connections to circuit lower bounds for semilinear circuits
1.1.1 General log-depth circuits

In his seminal line of work, Valiant [23, 24, 25] proposed a path for proving superlinear
lower bounds on the size of circuits with logarithmic depth, one of the main open questions
in circuit complexity. Informally speaking, Valiant’s “depth reduction” method [23, 26]
allows one to reduce any circuit of size O(n) and depth O(logn) (with n inputs and n
outputs), to a new circuit with the same inputs and outputs, where now each output gate
is an (arbitrary) Boolean function of (i) at most n® inputs (for any constant €¢) which are
“hard-wired” to this output gate, and (i7) an additional fixed set of m = O.(n/loglogn)
“common bits” by(x), ..., by, (z) which in general may be arbitrary Boolean functions of the
input x = x1,...,,. Therefore, if one could exhibit a function that cannot be computed in
this model using O(n/loglogn) common bits, this would imply a superlinear circuit lower
bound for logarithmic depth circuits.

Valiant [25] proposed a concrete candidate hard function for this new model, namely the
function whose input is an n-bit string « and a number i € {0,...,n — 1} and whose output
is the ith cyclic shift of z. Valiant conjectured that no “pre-wired” circuit as above can
realize all n cyclic shifts using m = O(n/loglogn) common bits (in fact, Valiant postulated
that m = Q(n) common bits are required, and this still seems plausible). This conjecture
is sometimes referred to as Valiant’s shift conjecture. As noted earlier in the introduction,
Riis [22] observed that a certain index coding problem is equivalent to this conjecture. Let
G = (V, A) be a directed graph, and i € {0,...,n — 1}. We denote by G* the graph with
vertex set V and arc set A = {(u,v + i(mod n)) : (u,v) € A}. Riis [22] showed that the
following conjecture is equivalent to Valiant’s shift conjecture:

» Conjecture 2. There exists € > 0 such that for all sufficiently large n and every graph G
on n vertices with maz-out-degree at most n®, there exists a shift i such that the minimum
length of an index coding scheme for G* (over Fy) is w(n/loglogn).

46:3
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1.1.2 Semilinear log-depth circuits

Let us consider a function f(x,p) whose input is partitioned into two parts, = € {0,1}* and
p € {0,1}'. We say that the function f is semilinear if for every fixed value of p = py, the
function f(x,po) is a linear function (over Fy) of z. The class of semilinear functions is quite
rich, and includes for instance bilinear functions in = and p (such as matrix multiplication)
and permutations 7, (z) of = that may depend arbitrarily on p. A circuit G is called semilinear
if for every fixed value of p = pg, one can assign linear functions to the gates of G, so that G
computes f(x,pp). So it is only the circuit’s topology that is fixed, and the linear functions
computed by the gates may depend arbitrarily on p.

It is easy to see that a semilinear function with a one-bit output can always be computed
by a linear-size log-depth semilinear circuit (namely, the full binary tree). However, if we
consider semilinear functions with O(n) output bits, then the semilinear circuit complexity
of a random function is Q(n?/logn) with high probability. It is an open problem to prove a
superlinear lower bound against log-depth semilinear circuits [21]. This would follow from
the semilinear variant of Valiant’s shift conjecture, which is equivalent to the following slight
modification of Conjecture 2 [21, 22].

» Conjecture 3. There exists € > 0 such that for all sufficiently large n and every graph G
on n vertices with maz-out-degree at most n®, there exists a shift i such that the minimum
length of a linear index coding scheme for G* (over Fz) is w(n/loglogn). Equivalently,

Y G of out-degrees at most n° 3 i € [n] minrky(G') = w(n/loglogn) .

Theorem 1 (and the more precise concentration bound we prove in Theorem 10) asserts
that with high probability, a graph chosen from G,, , (with p = n~! for the expected degree of
each vertex to be n®) has minrank Q(n). Conjecture 3 would follow from a “derandomization”
of Theorem 1 in which we replace the distribution G, , with a random shift of an arbitrary
given graph of the right degree. In fact, for the purpose of circuit lower bounds, one could
replace cyclic shifts with any (efficiently computable) set of at most exp(O(n)) permutations.

(Since the permutation itself is part of the input, its description size must be linear in n.)

1.1.3 Semilinear series-parallel circuits

Finally, we mention one last circuit class for which the above “derandomization” approach
might be easier. Here we replace the depth restriction by another restriction on the topology
of the circuit. Namely, a circuit G = (V, A) is called Valiant series-parallel (VSP), if there is
a labeling of its vertices [: V' — R, such that for every arc (u,v) € A, l(u) < I(v), but there
is no pair of arcs (u,v), (u/,v") € A, such that I(u) < l(u") < I(v) < I(v"). Most of the known
circuit constructions (i.e., circuit upper bounds) are VSP circuits. Thus, it is also a big open
question in circuit complexity to prove a superlinear lower bound on the size of semilinear
VSP circuits (of arbitrary depth).

Valiant [23], Calabro [8], and Riis [22] show that in order to prove a superlinear lower
bound for semilinear VSP circuits, it suffices to show that for a sufficiently large constant d,
for every graph G of max-out-degree at most d, the minrank of one of its shifts is at least
n/100. We note that Theorem 1 for this regime of p = d/n gives a lower bound of n/20.
Thus, derandomization of the theorem in this regime would imply a superlinear lower bound.
Note that in the case of p = O(n~1), the entropy of a random graph is only O(nlogn) bits,
hence, information-theoretically it seems easier to derandomize than the case of p = n°~ 1.
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1.2 Proof overview of Theorem 1

In [18], Lubetzky and Stav showed that for any field IF and a directed graph G,

minrkg(G) - minrkg(G) > n .

This inequality gives a lower bound of Q(y/n) on the expected value of the minrank of
Gn,1/2- (Indeed, the random variables G, ; /o and g'ml /2 have identical distributions). Since

minrkg(Gy, p) is monotonically non-increasing in p, the same bound holds for any p < 1/2.

Haviv and Langberg [14] improved this result by proving a lower bound of Q(y/n) for all
constant p (and not just p < 1/2), and also by showing that the bound holds with high
probability.

We now outline the main ideas of our proof. For simplicity we assume that F = [F5 and
p = 1/2. To prove that minrka(G,, ,) > k, we need to show that with high probability, G, ,
has no representing matrix (in the sense of Definition 4) whose rank is less than k.

As a first attempt, we can show that any fized matrix M with 1s on the diagonal of rank
less than k has very low probability of representing a random graph in G, ,, and then apply
a union bound over all such matrices M. Notice that this probability is simply 275%", where
s is the sparsity of M (i.e., the number of non-zero entries) and the n is to account for the
diagonal entries. Moreover, we observe that the sparsity s of any rank-k matrix with 1s on
its main diagonal must be? at least ~ n?/k. Finally, since the number of n x n matrices of
rank k is ~ 22"% (as a rank-k matrix can be written as a product of n x k by k x n matrices,
which requires 2nk bits to specify), by a union bound, the probability that G,, , contains a
subgraph of rank < k is bounded from above by (roughly) 227k . (1/2)”2/’“7 which is <« 1 for
k = O(y/n). This recovers the previous Q(y/n) lower bound of [14] (for all constant p, albeit
with a much weaker concentration bound).

To see why this argument is “stuck” at /n, we observe that we are not overcounting and
1/2 and sparsity s ~ n3/2. For instance, we can
take the rank n'/2 matrix that consists of n'/2 diagonal n'/2 x n'/2 blocks of 1s (a disjoint
1/2 equal-sized cliques), and replace the first nl/?
Each such matrix has probability 2-n"% of representing G, , (because of its sparsity) and
there are 2""* of them, so the union bound breaks for k = Q(y/n).

In order to go beyond +/n, we need two main ideas. To illustrate the first idea, notice
that in the above example, even though individually each matrix has probability g—n?/?
of representing G, ,, these “bad events” are highly correlated. In particular, each of these
events implies that G, , must contain n'/2 — 1 disjoint cliques, an event that happens with

. 3/2 .
indeed, there are 2" '~ matrices of rank k =~ n

union of n

roughly the same probability 9—n?, Therefore, we see that the probability that the union
of these bad events happens is only 2*”3/2, greatly improving on the naive union bound
argument. (We remark that this idea of “bunching together related events” is reminiscent
of the chaining technique as used, e.g., in analyzing Gaussian processes.) More generally,
the first idea (and also centerpiece) of our proof is Lemma 9, which shows that every matrix
must contain a “nice” submatrix (in a sense to be defined below). The second and final idea,
described in the next paragraph, will be to bound the number of “nice” submatrices, from
which the proof would follow by a union bound over all such submatrices.

2 To see why, notice that any maximal linearly independent set of columns must “cover” all coordinates,
i.e., there must not be any coordinate that is zero in all vectors, as otherwise we could take the column
vector corresponding to that coordinate and it would be linearly independent of our set (due to the
nonzero diagonal) in contradiction to maximality. Assuming all columns have roughly the same number
of 1s, we obtain that each column has at least n/k 1s, leading to the claimed bound. See Lemma 8 for
the full proof.

columns with arbitrary values.
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Before defining what we mean by “nice”, we mention the following elementary yet crucial
fact in our proof: Every rank k matrix is uniquely determined by specifying some k linearly
independent rows, and some k linearly independent columns (i.e., a row basis and a column
basis) including the indices of these rows and columns (see Lemma 6). This lemma implies
that we can encode a matrix using only =~ spqsis - logn bits, where spqs:s is the minimal
sparsity of a pair of row and column bases that are guaranteed to exist. This in turn implies
that there are only ~ 2%¢asis 8™ guch matrices. Now, since the average number of 1s in a row
or in a column of a matrix of sparsity s is s/n, one might hope that such a matrix contains
a pair of row and column bases of sparsity k - (s/n), and this is precisely our definition of
a “nice” matrix. (Obviously, not all matrices are nice, and as the previous example shows,
there are lots of “unbalanced” matrices where the nonzero entries are all concentrated on a
small number of columns, hence they have no sparse column basis even though the average
sparsity of a column is very low; this is exactly why we need to go to submatrices.)

To complete this overview, notice that using the bound on the number of “nice” matrices,
the union bound yields

2kslog(n)/n . (1/2)57

so one could set the rank parameter k to be as large as ©(n/logn) and the above expression
would still be < 1. A similar bound holds for nice submatrices, completing the proof.

2 Preliminaries

For an integer n, we denote the set {1,...,n} by [n]. For an integer n and 0 < p <1, we
denote by G, , the probability space over the directed graphs on n vertices where each arc is
taken independently with probability p.

For a directed graph G, we denote by x(G) the chromatic number of the undirected
graph that has the same set of vertices as G, and an edge in place of every arc of G. By G
we mean a directed graph on the same set of vertices as G that contains an arc if and only if
G does not contain it.3

Let F be a finite field. For a vector v € F", we denote by v/ the jth entry of v, and
by v/ € F7 the vector v truncated to its first j coordinates. For a matrix M € F"*" and
indices ¢, j € [n], let M; ; be the entry in the ith row and jth column of M, Col;(M) be the
ith column of M, Row;(M) be the ith row of M, and rk(M) be the rank of M over F.

By a principal submatriz we mean a submatrix whose set of row indices is the same as
the set of column indices. By the leading principal submatriz of size k we mean a principal
submatrix that contains the first k£ columns and rows.

For a matrix M € F"*", the sparsity s(M) is the number of non-zero entries in M. We
say that a matrix M € F**" of rank k contains an s-sparse column (row) basis, it M contains
a column (row) basis (i.e., a set of k linearly independent columns (rows)) with a total of at
most s non-zero entries.

» Definition 4 (Minrank [4, 18]). * Let G = (V, A) be a graph on n = |V| vertices with the
set of directed arcs A. A matrix M € F"*™ represents G if M, ; # 0 for every i € [n], and

3 Throughout the paper we assume that graphs under consideration do not contain self-loops. In particular,
neither G nor G has self-loops.

In this paper we consider the directed version of minrank. Since the minrank of a directed graph does
not exceed the minrank of its undirected counterpart, a lower bound for a directed random graph
implies the same lower bound for an undirected random graph. The bound is tight for both directed
and undirected random graphs (see Theorem 12).

4
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M, ; = 0 whenever (i,j) ¢ A and ¢ # j. The minrank of G over F is

minrkg(G) = rk(M) .

min
M represents G

We say that two graphs differ at only one vertez if they differ only in arcs leaving one
vertex. Following [13, 14], to amplify the probability in Theorem 10, we shall use the following
form of Azuma’s inequality for the vertex exposure martingale.

» Lemma 5 (Corollary 7.2.2 and Theorem 7.2.3 in [2]). Let f(-) be a function that maps
directed graphs to R. If f satisfies the inequality |f(H) — f(H')| <1 whenever the graphs H
and H' differ at only one vertez, then

Pr{| f(Gnp) — Ef (Gnp)]| > AWn— 1] < 2e7X/2

3 The Minrank of a Random Graph

The following elementary linear-algebraic lemma shows that a matrix M € F"*™ of rank k is
fully specified by k linearly independent rows, k linearly independent columns, and their 2k
indices. In what follows, we denote by M,, i, the set of matrices from F**™ of rank k.

» Lemma 6 (Row and column bases encode the entire matrix). The mapping ¢: M, —
(F1Xm)k s (Fn*1)E % [n]?* defined as

¢(M) = (R7cvilv"'vikvjlv"'vjk) )

is a one-to-one mapping, where R = (Row;, (M), ...,Row;, (M)) and C = (Col;, (M), ...,
Col;, (M) are, respectively, a row basis and a column basis of M € M, j.

Proof. We first claim that the intersection of R and C' has full rank, i.e., that the submatrix
M’ € FF*k obtained by taking rows iy, ..., and columns ji,...,j, has rank k. This is

a standard fact, see, e.g., [15, p20, Section 0.7.6]. We include a proof for completeness.

Assume for convenience that (i1,...,it) = (1,...,k) and (j1,...,Jk) = (1,...,k). Next,
assume towards contradiction that rk(M’) = rk({Coly (M’),...,Colx(M")}) = k' < k. Since
C' is a column basis of M, every column Col;(M) is a linear combination of vectors from

C, and in particular, every Col;(M’) is a linear combination of {Coly (M’), ..., Coly(M')}.

Therefore, the k x n submatrix M" := (Col=F(M),..., Col=*(M)) has rank k’. On the other
hand, the k rows of M": Rowy(M),...,Rowg (M) were chosen to be linearly independent
by construction. Thus, rk(M") = k > k', which leads to a contradiction.

In order to show that ¢ is one-to-one, we show that R and C' (together with their indices)
uniquely determine the remaining entries of M. We again assume for convenience that
(i1y...,i5) = (1,...,k) and (j1,...,Jk) = (1,..., k). Consider any column vector Col;(M),
i € [n]\ [k]. By definition, Col;(M) = Zle o - Coly (M) for some coefficient vector
@i = (q1,...,q;,) € F¥*L Thus, in order to completely specify all the entries of Col;(M),
it suffices to determine the coefficient vector ;. But M’ has full rank, hence the equation

M'al = Col=F (M)

has a unique solution. Therefore, the coefficient vector «; is fully determined by M’ and
Col?k(M ). Thus, the matrix M can be uniquely recovered from R,C and the indices

{31, yin}, {1, - gk} <

46:7
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The following corollary gives us an upper bound on the number of low-rank matrices
that contain sparse column and row bases. In what follows, we denote by M, s the set
of matrices over F"*"™ of rank k that contain an s-sparse row basis and an s-sparse column
basis.

» Corollary 7 (Efficient encoding of sparse-base matrices).

M s < (n - [FI)™

Proof. Throughout the proof, we assume without loss of generality that s > k, as otherwise
|IMu.ks] = 0 hence the inequality trivially holds. The function ¢ from Lemma 6 maps
matrices from My, s to (R,C,i1,...,%k,j1,--.,Jk), where R and C are s-sparse bases.
Therefore, the total number of matrices in M, j s is bounded from above by

((kn> . IIF|5>2 2 < ((n2)"- \IF|S)2 % < (n- [F)

s
where the last inequality follows from & < s. <

Now we show that a matrix of low rank with nonzero entries on the main diagonal must
contain many nonzero entries. To get some intuition on this, notice that a rank 1 matrix
with nonzero entries on the diagonal must be nonzero everywhere. Also notice that the
assumption on the diagonal is crucial — low rank matrices in general can be very sparse.

» Lemma 8 (Sparsity vs. Rank for matrices with non-zero diagonal). For any matriz M € F™**™
with non-zero entries on the main diagonal (i.e., M;; # 0 for all i € [n]), it holds that

n2

W) = o

Proof. Let s denote s(M). The average number of nonzero entries in a column of M is s/n.
Therefore, Markov’s inequality implies that there are at least n/2 columns in M each of
which has sparsity at most 2s/n. Assume without loss of generality that these are the first
n/2 columns of M. Now pick a maximal set of linearly independent columns among these
columns. We claim that the cardinality of this set is at least n?/(4s). Indeed, in any set of
less than n?/(4s) columns, the number of coordinates that are nonzero in at least one of
those columns is less than

4s n 2

n? 2s n

and therefore there exists a coordinate ¢ € {1,...,n/2} that is zero in all those columns. As
a result, the ¢th column, which by assumption has a nonzero i¢th coordinate, must be linearly
independent of all those columns, in contradiction to the maximality of the set. We therefore
get that

rk(M) > n?/(4s) ,
as desired. <

The last lemma we need is also the least trivial. In order to use Corollary 7, we would
like to show that any n x n matrix of rank k£ has sparse row and column bases, where by
sparse we mean that their sparsity is roughly k/n times that of the entire matrix. If the
number of nonzero entries in each row and column was roughly the same, then this would be
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trivial, as we can take any maximal set of linearly independent columns or rows. However,
in general, this might be impossible to achieve. E.g., consider the n x n matrix whose first
k columns are chosen uniformly and the remaining n — k columns are all zero. Then any
column basis would have to contain all first k& columns (since they are linearly independent
with high probability) and hence its sparsity is equal to that of the entire matrix. Instead,
what the lemma shows is that one can always choose a principal submatriz with the desired
property, i.e., that it contains sparse row and column bases, while at the same time having
relative rank that is at most that of the original matrix.

» Lemma 9 (Every matrix contains a principal submatrix of low relative-rank and sparse bases).
Let M € M,, 1, be a matriz. There exists a principal submatriz M’ € M,y of M, such that
k' /n' <k/n, and M' contains a column basis and a row basis of sparsity at most

2K
S(M/) . F .

Note that if M contains a zero entry on the main diagonal, the lemma becomes trivial.
Indeed, we can take M’ to be a 1 x 1 principal submatrix formed by this zero entry. Thus,
the lemma is only interesting for matrices M without zero elements on the main diagonal
(i.e., when every principal submatrix has rank greater than 0).

Proof. We prove the statement of the lemma by induction on n. The base case n = 1 holds
trivially.

Now let n > 1, and assume that the statement of the lemma is proven for every m x m
matrix for 1 < m < n. Let s(i) be the number of nonzero entries in the ith column plus
the number of non-zero entries in the ith row (note that a nonzero entry on the diagonal
is counted twice). Let also smax = max; s(i). By applying the same permutation to the
columns and rows of M we can assume that s(1) < s(2) < --- < s(n) holds.

If for some 1 < n’ < n, the leading principal submatrix M’ of dimensions n’ x n’ has
rank at most k' < n'k/n, then we use the induction hypothesis for M’. This gives us
a principal submatrix M" of dimensions n” x n” and rank k", such that M” contains a
column basis and a row basis of sparsity at most s(M") - %l,/ Also, by induction hypothesis
kK" /n" <K' /n' < k/n, which proves the lemma statement in this case.

Now we assume that for all n’ < n, the rank of the leading principal submatrix of
dimension n’ x n’ is greater than n'k/n. We prove that the lemma statement holds for
M’ = M for a column basis, and an analogous proof gives the same result for a row basis.

For every 0 < i < Smax, let a; = |{j : s(j) =i}|. Note that

smi( a;=n. (1)
i=0

Let us select a column basis of cardinality k& by greedily adding linearly independent vectors
to the basis in non-decreasing order of s(i). Let k; be the number of selected vectors j with
s(j) = 4. Then

ki = k. 2)
1=0

Next, for any 0 < ¢ < Spax, consider the leading principal submatrix given by indices ¢ with
s(i) < t. The rank of this matrix is at most k' = >_'_, ki, and its dimensions are n’ x 7/,
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where n’ = Zﬁ:o a; < n. Thus by our assumption k'/n’ > k/n, or equivalently,

To finish the proof, notice that the sparsity of the constructed basis of M is at most

Smax Smax Smax Smax Smax Smax 2]€

sz—ZZk%ﬁ i_:z_;ai— Zz a; = s(M - <

t=1 i=t
Now we are ready to prove our main result — a lower bound on the minrank of a random

graph.
» Theorem 10.
log(1 _Q(M)
Pr {minrkm(gn,p) >Q (nog(/p)) } > 1—e log? (n[EI/p) )
log (n|F|/p)
Proof. Let us bound from above probability that a random graph G, ,, has minrank at most

__nlog(1/p)
Clog (n|F|/p) ’

for some constant C' to be chosen below.
Recall that by Lemma 9, every matrix of rank at most k contains a principal submatrix
M’ € M,y s of sparsity s’ = s(M') with column and row bases of sparsity at most
, 2k

s —,
n

where k' /n/ < k/n. By Corollary 7, there are at most (n - |[F|)5(2s'5/7) such matrices M’,
and (for any s’) there are (:,) ways to choose a principal submatrix of size n/ in a matrix of
size n X m. Furthermore, recall that Lemma 8 asserts that for every n’, &/,

12
!
s > —. 6
= 4k (6)
Finally, since M’ contains at least s’ — n’ off-diagonal non-zero entries, G, , contains it with
probability at most pS'*”/. We therefore have

3

Pr [minrkg(Gp.p) < K]

2k
< Z Pr {gn,p contains M" € My i, s(M') = &', s(bases of M') < s’ - —
n
k’,n’,s’
n s'—n' 128’k /n
<Y (1) onm
k'n’,s’
< Z 271’ logn—s'log(1/p)+n’log(1/p)+(12s"k/n) log (n'|F|) , (7>

’ / !
k'n',s
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where all the summations are taken over n', k', s.t. k'/n’ < k/n and s’ > Z—Ij, and the first

inequality is again by Lemma 9. We now argue that for sufficiently large constant C, all
positive terms in the exponent of (7) are dominated by the magnitude of the negative term

(s'log(1/p)). Indeed:
n’logn + n'log(1/p) + (125'k/n) log (n'|F|) = n’log (n/p) + (125'k/n) log (n'|F|)
< (4K fn') g (n/p) + (125'k /) log (n[F) < (165'k /n) log (n[F/p)
= (165'/C)log (1/p) ,

where the first inequality follows from (6), and the second one follows from k'/n’ < k/n.
Thus, for C' > 16,

. nlog(1/p) 4 (s Tox(1 _aq
Pr [minrkp(G, ) < ———=L20 | < pt. 2= s" log(1/p)) < 9—O(log(n))
“(Gn0) < Clog (ulF1/p)

where the last inequality follows from:

nlog(1/p) _ nlog(1/p) _ nlog(1/p)Clog (n[F|/p) _ Clogn

"log(1/p) > =
Slogl/p) 2 — === — 4nlog(1/p) =7y

In particular, E [minrkg(Gp p)] > #%. Furthermore, note that changing a single row

(or column) of a matrix can change its minrank by at most 1, hence the minrank of two
graphs that differ in one vertex differs by at most 1. We may thus apply Lemma 5 with
A=0 <M> to obtain

log (n[F[/p)
2
. nlog(1/p) —Q(%)
Pr | minrkp (G, ZQ( > 1—e og? (nlFl/p) )
i) 2 0 (S
as desired. <

» Corollary 11. For a constant 0 < p < 1 and a field F of size |F| < n©W),

Pr [ minrkg (G p) > Q(n/logn)] > 1 — e 2n/los”n)

3.1 Tightness of Theorem 10

In this section, we show that Theorem 10 provides a tight bound for all values of p bounded
away from 1 (i.e., p <1 —€(1)). (See also the end of the section for the regime of p close to

1.)

» Theorem 12. For any p bounded away from 1,

Gy~ 0o V] L o
Pr mmrkF(Qn,p)—O<logn+log(1/p)>] =l |

~1/8 a5 otherwise the statement is trivial.

Proof. We can assume that p > n

As we saw in the introduction, in the case of a clique (a graph with an arc between every
pair of distinct vertices) it is enough to broadcast only one bit. This simple observation leads
to the “clique-covering” upper bound: If a directed graph G can be covered by m cliques,
then minrkg(G) < m [11, 4, 14]. Note that the minimal number of cliques needed to cover G
is exactly x(G). Thus, we have the following upper bound: For any field F and any directed
graph G,

minrkp(G) < x(G) . (8)
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Since the complement of G,, ,, is Gy, 1—p, it follows from (8) that an upper bound on x(G,,1-p)
implies an upper bound on minrkg(G, ;).

Let G,, , denote a random Erdds-Rényi undirected graph on n vertices, where each edge
is drawn independently with probability p. For constant p, the classical result of Bollobés [7]
asserts that the chromatic number of an undirected random graph satisfies

nlog (1/p)

2log n (140(1)] >1—e %M (9)

Pr X( ;,1—p) S
In fact, Pudlak, Rodl, and Sgall [21] showed that (9) holds for any p > n~1/%,

Since we define the chromatic number of a directed graph to be the chromatic number
of its undirected counterpart, x(Gn,i—p) = X(ggl_]ﬂ). The bound (9) depends on p only

logarithmically (log (1/p)), thus, asymptotically the same bounds hold for the chromatic
number of a random directed graph. |

The lower bound of Theorem 10 is also almost tight for the other extreme regime of
p=1—¢, where € = o(1). Luczak [19] proved that for p =1 — Q(1/n),

Pr{x@ry ) < =Py oy 51— (ma - ) (10)

~ 2logn(l —p)
When p = 1 — ¢, the upper bound (10) matches the lower bound of Theorem 10 for
e > n 2 For e = O(n~1), (10) gives an asymptotically tight upper bound of O(1).
Thus, we only have a gap between the lower bound of Theorem 10 and known upper bounds
when p =1 — ¢ and w(1) < ne < n°W,
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