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—— Abstract

In arithmetic circuit complexity the standard operations are {+, x}. Yet, in some scenarios
exponentiation gates are considered as well (see e.g. [6, 1, 28, 30]). In this paper we study
the question of efficiently evaluating a polynomial given an oracle access to its power. Among
applications, we show that:
A reconstruction algorithm for a circuit class C can be extended to handle f¢ for f € C.
There exists an efficient deterministic algorithm for factoring sparse multiquadratic! polyno-
mials.
There is a deterministic algorithm for testing a factorization of sparse polynomials, with
constant individual degrees, into sparse irreducible factors. That is, testingif f =¢1-... gm
when f has constant individual degrees and g;-s are irreducible.
There is a deterministic reconstruction algorithm for multilinear? depth-4 circuits with two
multiplication gates.
There exists an efficient deterministic algorithm for testing whether two powers of sparse
polynomials are equal. That is, f = ¢g° when f and g are sparse.
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1 Introduction

Let f(z) € Flz1,22,...,2n] be a polynomial over the field F. In this paper we study the
following question: given e € N and an oracle access to f¢ € Flx1, xa, ..., x,]| can we efficiently
implement an oracle access to f? That is, we wish to evaluate f on a set of points a,b, ...
(which might be unknown upfront) given an oracle access to f¢. An efficient randomized
algorithm for this problem was given in [23]. Where, in fact, a randomized polynomial
factorization algorithm was given. In addition, in terms of circuit complexity, it was shown
in [43, 20] that if f¢ has a small circuit then so does f, when the characteristic of F is zero
or coprime with e.

For our applications, we only need to solve the problem in the oracle model, yet deter-
ministically. Although, it is conceivable that the techniques of [43, 20] could work in oracle
model, they will still be subject to the co-primality condition. In this paper we solve the
problem for any e.

It is clear that as the first step, we should be able to extract e-th roots of field elements.
For instance, if f is constant. We refer to such an algorithm as an e-th root oracle R..
However, having root oracles is not enough for our task as demonstrated by the following
example.

L A polynomial is multiquadratic if the degree of each variable is at most 2.
2 A polynomial is multilinear if the degree of each variable is at most 1.
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Let h(z) = 3x — 4 and f = h%. Suppose that we wish to evaluate h(x) at x = 1,2 given
an oracle access to f(x) and using a square-root oracle Rs. As f(1) =1, f(2) = 4 the oracle
might return h(1) = Ry(1) = 1 and h(2) = Ra(4) = 2 (for example, returning the positive
root). Note, however, that these evaluations are inconsistent with either +h! More generally,
there could be e different hq, ... h. polynomials resulting in the same polynomial when raised
the e-th power (i.e. Vi € [n] : hf = f). Therefore, in order to prevent the aforementioned
situation our algorithm should output an oracle access to exactly one of them. We prove the
following theorem.

» Theorem 1 (Technical Contribution). There exists a deterministic algorithm that given
e € N, an e-th root oracle R. and an oracle access to a polynomial f¢ € Flx1,xa,...,2,] of
degree at most d uses poly(n,d, e,log |F|) field operations and oracle calls to R., and outputs
an oracle access to w - f, where w € F is such that w® = 1.

We note that similar ideas appeared previously in the literature, although partially and
implicitly. The problem can seen as a version of list-decoding of Reed-Muller codes. Indeed,
mirroring the list-decoding algorithm of [42] and the factorization algorithm of [23], the
proposed algorithm uses an anchor point and draws a line to that point in order to choose
the correct answer from a small list of possible answers. We now discuss related problems
and applications.

1.1 Multivariate Polynomial Factorization

One of the fundamental problems in algebraic complexity is the problem of polynomial
factorization: given a polynomial f € Flzy,xa,...,2,] over a field F, find its irreducible
factors. Other than being natural, the problem has many applications such as list decoding
[41, 17] and derandomization [19]. A large amount of research has been devoted to finding
efficient algorithms for this problem (see e.g. [48]) and numerous randomized algorithms
were designed [49, 20, 21, 23, 48, 22, 47]. However, the question of whether there exist
deterministic algorithms for this problem remains an interesting open question (see [48, 27]).

Perhaps the simplest factorization algorithm is a root oracle. We note that the best known
deterministic root extraction algorithms over the finite fields have polynomial dependence
on the field characteristic p (see e.g. [36, 48, 14, 27]). While in the randomized setting, this
dependence is polynomial in log p. In particular, there is no known efficient deterministic
root extraction algorithm when p is large. Over fields with characteristic 0 (e.g. Q) both the
deterministic and the randomized complexities are polynomial in the bit-complexity of the
coefficients (see [31]). Therefore, we can say that root extraction is, perhaps, the simplest
hard problem in polynomial factorization. For sake of uniformity we formulate all our results
in terms of root oracles and log |F| which stands for the bit-complexity of the coeflicients in
the underlying polynomials.

1.2 Polynomial Reconstruction

Let F be a field and C a class of circuits. The reconstruction problem for the class C is
defined as follows. Given an oracle access to a polynomial f € Flzy,za,...,2,], computable
by a circuit from C, output a circuit C € C that computes f. A reconstruction algorithm is
efficient if the number of queries it makes to f and its running time are polynomial in the
size of the representation of f in the class C. The reconstruction problem can be seen as the
algebraic analog of the learning problem.
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An immediate application of our main theorem is reconstruction beyond an exponentiation
gate. More formally, we can efficiently extend a reconstruction algorithm for a circuit class C
to handle polynomials of the form f¢ when f is computable by a circuit C' € C. Note that in
general f¢ might not be computable by a circuit in C.

» Theorem 2. Let A be a deterministic (randomized) reconstruction algorithm for a circuit
class C, let f € C and let T(f) denote the number of operations A uses to reconstruct f.
Then there exists a deterministic (randomized) algorithm that given e € N, an e-th root oracle
R. and an oracle access to the polynomial f¢ € Flx1,xa,...,x,] of degree at most d, uses
poly(n,d,log |F|,T(f)) field operations and oracles calls to R, and A, and outputs a circuit
forw - f, where w € F is such that w® = 1.

As a corollary we get to extend reconstruction algorithms for specific classes of circuits.
An s-sparse polynomial is polynomial with at most s (non-zero) monomials. Sparse poly-
nomials were deeply studied (see e.g. [5, 29, 32]) and, in fact, several efficient deterministic
reconstruction algorithms were given. Our next result extends the reconstruction algorithm
of [29] to powers of sparse polynomials.

» Theorem 3. Let n,s,d,e € N and let f(Z) € Flxy,za,...,2,] be an s-sparse polynomial of
degree at most d. Then there exists a deterministic algorithm that given e € N, an oracle access
to the polynomial f¢ € Flxy,xa,...,x,] and an e-th root oracle R, uses poly(n,d, e, s,log|F|)
field operations and oracles calls, and outputs w - f, where w € F is such that w® = 1.

Read-once formulas are formulas in which each variable appears at most once. A read-once
polynomial is a polynomial computable by a read-once formula. Those are the smallest possible
polynomials that depend on all of their variables. Although they form a very restricted model
of computation, read-once formulas received a lot of attention [18, 25, 3, 8, 6, 7, 38, 39, 33, 45].
In [38] a n®{°8™)_time reconstruction algorithm for read-once formulas was given. In [33], the
runtime of the algorithm was improved to poly(n). Our next result extends the reconstruction
algorithm further to powers of read-once polynomials. We note that the reconstruction
algorithm of [6] actually deals with a richer model of read-once formulas with exponentiation
gates. Yet, that algorithm is randomized.

» Theorem 4. Let n,e € N and let f(z) € Flz1,zo,...,z,] be a read-once polynomial.
Then there exists a deterministic algorithm that given an oracle access to the polynomial
f €F[z1,29,...,2,) and an e-th root oracle R, uses poly(n) - poly(e,log |F|) field operations
and oracles calls, and outputs a read-once formula VU that computes w - f, where w € F is
such that w® = 1.

A depth-4 STIXTI(k) circuit has 4 layers of alternating (4, xX) gates and it computes a
polynomial of the form C(z1,x2, -+ ,2,) = Zle F, = Zle Hj;l P;; where k is the fan-in
of the top X gate and d; are the fan-ins of the II gates at the second level. These circuits
were previously studied in [2, 16, 26, 35]. In particular, in [16] a randomized reconstruction
algorithm was given for multilinear depth-4 circuits with k = 2 (i.e. ZIIXII(2) circuits). As
an application, we derandomize their algorithm using a square root oracle. We note that our
result achieves an optimal derandomization since in [46] it was shown that any reconstruction
algorithm for this circuit class must compute square roots.

» Theorem 5. Let n,s € N and suppose char(F) # 2. Then there exists a deterministic
algorithm that given an oracle access to the polynomial f € Flxy,xa,. .., x,] computable by
a multilinear STIXTI(2) circuit of size s and a square root oracle Ry uses poly(n, s, log |F|)
field operations and oracles calls, and outputs a XIIXII(2) circuit that computes f.
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1.3 Sparse Polynomial Factorization

Coming up with an efficient deterministic factorization algorithm for sparse polynomials
(given as a list of monomials) is a classical open question posed by von zur Gathen and
Kaltofen in [49]. An inherent difficulty in tackling the problem lies within the fact that a
factor of a sparse polynomial need not be sparse. Example 5.1 in [49] demonstrates that a
blow-up in the sparsity of a factor can be super-polynomial over any field. Consequently, just
writing down the irreducible factors as lists of monomials can take super-polynomial time. In
fact, the randomized algorithm of [49] assumes that the upper bound on the sparsity of the
factors is known. In light of this difficulty, a simpler problem was posed in that same paper:
Given m + 1 sparse polynomials f,g1,92,...9m test if f =¢g1-g2 ... gm. This problem is
referred to as “testing sparse factorization”.

Our main result gives a deterministic factorization algorithm for sparse multiquadratic
polynomials.

» Theorem 6. Let n,s € N and suppose char(F) # 2. There exists a deterministic algorithm
that given an s-sparse multiquadratic polynomial f(z) € Flx1,xo, ..., x,] and a square root
oracle Ry uses poly(n,s,log|F|) field operations and oracle calls to Ry and outputs the
irreducible factors of f(z). That is, a list hy,..., hy of irreducible polynomials such that
f=h1-... hg.

We also show how to test sparse factorization for a special case of polynomials with
constant individual degrees.

» Theorem 7. Let f,g1,...9m € Flz1,z2,...,2,] be s-sparse polynomials a let d be a bound
on the individual degrees of f. Then given f,q1,...9m, there exists a deterministic algorithm
that tests if f =g1-g2- ... gm using poly(n,s? log|F|) field operations.

Using techniques from Differential Field Theory we show that some identity testing
algorithms could be extended to work beyond an exponentiation gate. In particular, we
prove the following theorem which can be seen as testing symmetric sparse factorization.
We note that setting e = 1 instantiates to testing sparse factorization in the case when

fi=fa=...=fm

» Theorem 8. Let n,s,d,e,§ € N and let f(Z),9(Z) € Flzy,x2,...,2T,] be two s-sparse
polynomials of degree at most §. Furthermore, suppose that char(F) = 0 or char(F) >
d - min(e,d). Then there exists a deterministic algorithm that given f, g, d and e uses
poly(n, s,d, e, d,log|F|) field operations and tests whether f¢ = g°.

We note that similar results to Theorems 7 and 8 follow from the works of [1, 4]. For the
result of Theorem 8 we give a more direct and simple algorithm.

1.4 Techniques

Our main technique is to convert an oracle access to a power of a polynomial f¢ into an
oracle access to the polynomial itself f. As was discussed in the first part of the Introduction,
a necessarily condition is having an efficient root extraction algorithm for field elements,
referred to as a “root oracle”. Yet, as was demonstrated further, applying root oracles naivly
can result in inconsistency. More specifically, as there could be e roots of a polynomial,
differing only by a multiplicative factor of a root of unity of order e, a root oracle can
mismatch the answers to different oracle queries. We solve this problem by introducing an
anchor and matching all the queries to that anchor. More specifically, we fix a non-zero
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assignment @ of f. For query point b we compute the root along the line Kayg(t) that passes
through @ and b. Thus, we reduce the problem from n variables to 1. Finally, we show how
to use a root oracle to compute a root of a univariate polynomial. The latter is carried out
via Squarefree decomposition. See Sections 2.5 and 4.1 for more details.

In order to deal with sparse multiquadratic polynomials, we first show that a factor
of such a polynomial is also sparse. Next, we apply the quadratic formula to get explicit
expressions for the factors. Yet, these expression involve square roots. Computing a square
root of a polynomial h can be seen as computing & f given h = f2. To this end, we first apply
our main technique to get an oracle access for f and then use a reconstruction algorithm for
sparse polynomials to compute the polynomial. See Section 4.3 for more details.

Another tool that we use is Resultants and Subresultants. These objects have seen
various applications in algebraic complexity, computer algebra, elimination theory and other
areas (see e.g. [15, 48, 10]). In particular, these are used to test coprimality of polynomials.
We show how to efficiently employ them with sparse polynomial of constant degree. The
main observation is that a resultant of two sparse polynomials of constant degrees is also a
somewhat sparse polynomial of a “small” degree. For more details see Sections A and 2.4.

1.5 Previous Results

Over the last three decades the question of derandomizing sparse polynomial factorization
has seen only a very partial progress. In [37], Shpilka & Volkovich gave efficient deterministic
factorization algorithms for sparse multilinear polynomials. This result was extended in [44]
to the model of sparse polynomials that split into multilinear factors. For the testing version
of the problem, Saha et al. [34] presented an efficient deterministic algorithm for the special
case when the sparse polynomials are sums of univariate polynomials.

1.6 Organization

We begin by some basic definitions and notation in Section 2 when in Section 2.5 we show
how to compute a root of a univariate polynomial. In Section 3 we discuss sparse polynomials,
their properties and some related efficient algorithms which leverage these properties. In
particular, in Section 3.1 we prove that a factor of a sparse multiquadratic polynomial is also
sparse. In Section 4 we give all our results showing how to perform certain computations
on polynomials given an oracle access to their powers. We begin (Section 4.1) by showing
how convert an oracle access to f¢ into an oracle access to f using an e-th root oracle,
thus proving Theorem (Theorem 1) which is our main technical contribution. The first
application is given in Section 4.2 where we show how to extend a reconstruction algorithm
for a circuit class C to handle powers of polynomials from C (Theorem 2). As a corollary, we
obtain an efficient reconstruction algorithm for powers of sparse (Theorem 3) and read-once
(Theorem 4) polynomials. Our main application is given in Section 4.3 where we present
the first efficient factorization algorithm for sparse multiquadratic polynomials, thus proving
theorem Theorem 6. In Section C, using different techniques but following the general line,
we show how certain polynomial identity testing algorithms can be extended to handle powers
of polynomials. We conclude the paper with discussion and open questions in Section 5.

2 Preliminaries

Let [F denote a field, finite or otherwise, and let F denote its algebraic closure.
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2.1 Polynomials

A polynomial f € Flxy,zo,...,2,] depends on a variable x; if there are two inputs @, BeF
differing only in the i*" coordinate for which f(@) # f(8). We denote by var(f) the set of
variables that f depends on. We say that f is g are similar and denote by it f ~ g if f = ag
for some e # 0 € F. For a polynomial f(z1,...,2,), a variable ; and a field element «, we
denote with f|;,— the polynomial resulting from substituting « to z;. Similarly given a
subset I C [n] and an assignment a € F"*, we define f|z,—3, to be the polynomial resulting
from substituting a; to x; for every ¢ € I.

» Definition 9 (Line). Given a,b € F” we define a line passing through @ and b as b F—
F", £,5(t) = (1—t)-a+t-b. In particular, £, ;(0) = @ and £, ;(1) = b.

» Definition 10 (Degrees, Leading Monomials, Leading Coefficients). The leading monomial of
a polynomial f, lm(f) is defined as the largest non-zero monomial of f (with its coefficient)
with respect to the lexicographical order of the monomials. The total degree of f is the
J

largest total degree of a monomial in f. Let z; € var(f). We can write: f = Z?:O fj -z

such that Vj, z; & var(f;) and fg # 0. The leading coefficient of f w.r.t to z; is defined as
Icg,(f) £ fa. The individual degree of z; in f is defined as deg, (f) 2 d.

It easy to see that for every f,g € F[z1,2a,...,2,] and i € [n] we have that: Im(f - g) =
Im(f) -1m(g) and lcg, (f - g) = lca, (f) - Ica, (9)-

2.2 Partial Derivatives

The concept of a partial derivative of a multivariate function and its properties are well-known
and well-studied for continuous domains (such as, R, C etc.). This concept can be extended
to polynomials and rational functions over arbitrary fields from a purely algebraic point of
view. For more details we refer to reader to [24].

€

» Definition 11. For a monomial M = « - z{' -z}

cxln € Fley, za,...,2,) and a
. . Lo . A

variable z; we define the partial derivative of M with respect to z;, as % = we; -

ei—1 .

; -xtr. The definition can be extended to F[z1,xa,...,2z,] by imposing lin-

e1
xl DR x
earity and to F(zq, 22, ...,z,) via the quotient rule.

Observe that the sum, product, quotient and chain rules carry over. In addition, when
F =R or F = C the definition coincides with the analytical one. The following set of rational
function plays an important role.

» Definition 12 (Field of Constants). The Field of Constants of F(x1,xa,...,2,) is defined
as C(F(z1,x2,...,2n)) 2 {f e F(xy,z2,...,2y) | Vi€ [n],g—i = }

It is easy to see that the field of constants is, indeed, a field and in particular F C
C(F(z1,x2,...,2y)). Furthermore, this containment is proper for fields with positive charac-
teristics and equality holds only for fields with characteristic 0. The following Lemma gives
a precise characterization of C(F(z1,x2,...,2y)).

» Lemma 13. Let F be a field of characteristic p. Then for every n € N:
1. C(F(x1,22,...,2,)) =F when p=0.
2. C(F(x1,ma,...,2,)) =F(2f, 28, ..., 22) when p is positive.
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2.3 Factors and Perfect Powers

Let f,g € Flz1, 22, ...,2,] be polynomials. We say that ¢ divides f, or equivalently g is a
factor of f, and denote it by g | f if there exists a polynomial h € Flzy,x2,...,2,] such
that f = g - h. We say that f is irreducible if f is non-constant and cannot be written as a
product of two non-constant polynomials. For e € N, we say that f is a perfect e-th power if
there exists a polynomial h € Flx1, xa, ..., x,] such that f = he. Equivalently, we say that h
is f’s e-th root. Given the notion of divisibility we define the gcd of a set of polynomials in
the natural way. Given the notion of irreducibility we can state the important property of
the uniqueness of factorization,

» Lemma 14 (Uniqueness of Factorization). Let h{'-...-hiF = gfll . .-gZ’f’ be two factorizations
of the same non-zero polynomial into irreducible, pairwise comprise factors. Then k = k'
and there exists a permutation o : (k] — [k] such that hi ~ go(;) and e; = e[, for i € [k].

o(i

By definition, the ratio a/ of two e-th of roots a field element (i.e. a® = 3¢ # 0) is
a root of unity of order e. We show that the same holds for perfect roots of polynomials.
More precisely, two e-th roots of the same polynomial differ only by a multiplicative factor w
satisfying w® = 1.

» Lemma 15. Let f(z),h(z),9(Z) € Flr1,x2,...,2,] be polynomials such that f(z) =
h(z)e = g(x)¢ for some e € N. In addition, let o € F,a € F™ such that a¢ = f(a) # 0.
Then

1. There exists w € F such that w® =1 and h(Z) = w - g(T).

2. There exists a unique polynomial w(Z) € Flzy,x2,...,zy] s.t. f(Z) = uw(Z)® and u(a) = a.

The proof can be found in Section D.

2.4 GCD and Subresultants

As was mentioned earlier, the notion of divisibility gives rise to the notion of a ged of a set of
polynomials in the natural way. Furthermore, the uniqueness of factorization property of the
rings of polynomials Flx1, zs, ..., x,] ensures that a ged is defined up to a multiplication by
a field element. We can also consider versions of gcd when we concentrate on a single variable
and treat the remaining variables as field elements. That is, given fi,..., f;, consider
ged,, (f1,. .-, fm). Naturally, such ged’s is defined up to a multiplication by a rational
function depending on the remaining variables. Yet, in all such ged’s the variable x; has the
same degree.

» Example 16. Let f = 2323 + 2225 + 2123 + 1122 and g = 2223, ged(f, g) = x172 while
ged,, (f,9) = 1. Yet, deg, (ged,, (f,g)) = deg,, (gcd(f,g)) = 1.

» Lemma 17. Let f,g # 0 € Flzy, 22, ...,2,] and let e; denote the individual degree of x;
in g. Then g | f iff Vi with e; > 0 : deg, (ged,, (f,9)) = e;.

Proof. If g | f then the statement is clear. Suppose g [ f. Let g = ngj be a factorization

of g into irreducible, pairwise comprise factors. By definition, there exists j such that g}ij If.

Let x; € var(g;). As such, deg, (gcd, (f,g)) < e; —deg, (g;) < ei. <

» Definition 18 (Subresultant - Definition 7.3 from [15]). Let f,g € Flz1,x2,...,2,] be
polynomials. Fix i € [n] and let d and e denote the degree of the variable z; in f and g,
respectively. We can write: f = Z;'i:o f; -l such that Vj,2; € var(f;) and g = > 4 _o gk - ¥
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such that Vk,x; € var(gx). For 0 < j < min{e, d} the j-th Subresultant of f and g w.r.t z;,
Sz, (4, f,9) is defined as a determinant of the (d+ e —2j) X (d+ e — 2j) minor of the Sylvester
Matrix of f and g. That is, the entities of the matrix are f;-s and g-s.

Below is the crucial property of subresultants:

» Lemma 19 (Lemma 7.1 and Theorem 7.3 from [15]). For every variable x;, the degree
of x; in ged,, (f,g) equals to smallest j such that Sy, (j, f,g9) # 0. In addition, if u,v €

Flxy,xa,...,x,] such that x; & var(u) U var(v) then ¥i,j: Su,(J,uf,vg) = Sz, (4, f,9) -
48, (9) |y degs, (f)

Combining Lemmas 17 and 19 gives the following:

» Corollary 20. Let f,g £ 0 € Flzy,29,...,2,] and let e; denote the individual degree of x;
ing. Then g | f iff Vi withe; >0: S,,(e; — 1, f,9) =0.
Proof. If g | f and e; > 0, then deg, (gcd, (f,g)) = e; and thus S, (e;, f,g) # 0 while

i

Sz, (e; — 1, f,9) = 0. On the other hand, if S,,(e; — 1, f,¢9) = 0 it must be the case that
Sz, (€, f,9) # 0 since deg, (ged,, (f,9)) < €. <

2.5 Univariate Polynomials: Squarefree Decomposition and Root
Computation

In this section we show how to compute the e-th roots of univariate polynomials using root
oracles. We begin by discussing a Squarefree Decomposition of a polynomial. This is one of
the steps in the majority of the polynomial factorization algorithms.

» Definition 21 (Squarefree polynomials). We say that a polynomial f(y) € F[y] is squarefree
if g(y)* 1 f(y) for every g(y) € Fly].

» Definition 22 (Squarefree Decomposition). Let f(y) € F[y] be polynomial of degree at
most d. The squarefree decomposition of f(y) is a sequence of pairwise coprime, squarefree
polynomials (g1, ..., gq) such that f =g1-g3-...- g%

The next lemma shows that for monic polynomials the squarefree decomposition is unique.
Moreover, this decomposition can be computed efficiently.

» Lemma 23 (Theorem 14.23 of [48] and extensions). Let f(y) € Fly] be a non-constant,
monic polynomial of degree at most d. Then there exists a unique squarefree decomposition
into a sequence of monic polynomials. Moreover, there exists a deterministic algorithm that
given the polynomial f(y) uses poly(d,log|F|) field operations and computes its squarefree
decomposition.

The squarefree decomposition gives rise to a simple e-th root computation algorithm for
univariate polynomials. In addition, this algorithm can be used to test whether a univariate
polynomial is indeed a perfect power.

» Lemma 24. Let g(y) € Fly] be a non-constant, monic polynomial of degree at most d
an let (g1,...,94) be its squarefree decomposition. Then g(y) = h(y)¢ for some e € N and
h(y) € Fly] iff g; =1 when e [fi.

The proof can be found in Section D. The following is immediate given the previous
lemmas.
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» Corollary 25. There exists a deterministic algorithm that given a non-constant, monic
polynomial f(y) € Fly] of degree at most d outputs a polynomial h(y) € Fly] such that
f(y) = h(y)© if one exists using poly(d,log |F|) field operations.

We can extend the algorithm to handle arbitrary univariate polynomials by making a
call to a root oracle.

» Lemma 26. There exists a deterministic algorithm that given e € N, an e-th root oracle
R, and a polynomial f(y) € Fly] of degree at most d uses poly(d,log|F|) field operations and
one oracle call to Re and computes an e-th root of f(y). That is, the algorithm outputs a
polynomial h(y) € Fly] such that f(y) = h(y)® if one exists. Otherwise, the algorithm rejects.

Proof. If f(y) = a € F is a field element (i.e. a constant polynomial), output R.(«).

Otherwise, consider f(y) 2 fly)/le(f). As f(y) is a non-constant, monic polynomial we
can apply Corollary 25 to compute h(y) € F[y] such that f(y) = h(y)¢. In addition, let
a = R.(le(f)). Output « - h(y). Observing that (« - h(y))® = f(y) completes the proof. <«

3 Sparse Polynomials

In this section we discuss sparse polynomials, their properties and some related efficient
algorithms which leverage these properties.

An s-sparse polynomial is polynomial with at most s (non-zero) monomials. We denote
by || f]| the sparsity of f. In this section we list several results related to sparse polynomials.
We begin with a corollary from [37] that shows that a sparse multilinear polynomial can be
factored efficiently. Moreover, all its factors are sparse.

» Lemma 27 ([37]). Given a multilinear polynomial f € Flxi,z0,...,2,], there is a
poly(n, ||f|]) time deterministic algorithm that outputs the irreducible factors, hy, ..., hy of
[ Furthermore, ||h| - [[ha]l - ... - [[hxll = [If]]-

The following result gives an efficient reconstruction algorithm for sparse polynomials.

» Lemma 28 ([29]). Letn,s,d € N. There exists a deterministic algorithm that given an ora-
cle access to an s-sparse polynomial f € Flxy,xo, ..., x,] of degree d uses poly(n, s, d, log |F|)
field operations and outputs f.

As a corollary we obtain an efficient algorithm for testing identity and, more generally,
similarity between sparse polynomials. We leave the proof of the corollary as an easy exercise
for the reader.

» Corollary 29. Let f,g € Flxy,xa,...,2,] be s-sparse polynomials of degree at most d.
Then there exists an algorithm that given f,g uses poly(n,d, s,log|F|) field operations and
tests if f ~ g. If yes, the algorithm also outputs a € F such that f = ag.

Additionally, we obtain an efficient algorithm for sparse polynomial division given an
upper bound on the sparsity of the quotient polynomial. The main idea is to reconstruct
to the quotient polynomial as a sparse polynomial, using the original polynomials as oracle
access. Given a candidate sparse polynomial we then can verify whether it is indeed the
quotient polynomial.

» Lemma 30 ([29, 11]). Letn,s,d,t € N. Let f,g € Flx1,xa,...,x,] be s-sparse polynomials
of degree at most d. Then there exists an algorithm that given f, g uses poly(n,d, s, t,log |F|)
field operations and computes the quotient polynomial of f and g if it a t-sparse polynomial.
That is, if f = gh for some h € Flx1,x9,...,2,], |h]| < t then the algorithm outputs h.
Otherwise, the algorithm rejects.
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Corollary 29 can be also extended to handle products of sparse polynomials.

» Lemma 31 ([35]). Let n,s,d € N. There exists a deterministic algorithm that given an
oracle access to a product of s-sparse polynomials f € Flxy,za,...,x,] when f =]]g; of
degree d uses poly(n, s,d,log |F|) field operations and tests if f = 0.

3.1 Sparse Multiquadratic Polynomials

In this section we prepare the ground for our main application - efficient factorization
algorithm for sparse multiquadratic polynomials. We begin by showing that a factor of a
sparse multiquadratic polynomials is also sparse. Recall that in general a sparse polynomial
can have a dense factor.

» Lemma 32. Let 0 # f,g € Flxy,x9,...,x,] be polynomials such that g is multiquadratic.
Then f|g = [Ifl < llgll-

Proof. The proof is by induction on the number of variables. The base case is when
n = 0. That is, f,g € F. Clearly, in this case | f|| = |lg|| = 1 and the claim holds. Now
suppose that n > 1. By definition, f - h = g for some h € Flzy,29,...,2,]. We have two
cases to consider: Suppose var(f) Nvar(h) = (). In this case ||f| - ||2]] = |lg]| and hence
171 < llgll. Otherwise, pick z; € var(f) Nvar(h). Since g is multiquadratic we can write
f = fix; + fo and h = h;x; + hg such that f;, h;, fo and hy do not depend on x;. Therefore:

lgll = lI(fixi + fo) - (hizi + ho)|| = || fihia} + (fohi + fiho)ai + foholl > || fihill + || fohol-
By the induction hypothesis || fihil| > ||fi]| and | fohol > [ fol|. Consequently, |g| >
£kl + [l foholl = I fill + | foll = || f|| implying the claim of the lemma. <

It is easy to see that this bound is tight. The following corollary is immediate by combining
the bound with Lemma 30.

» Corollary 33. Let n,s,d € N. There exists an algorithm that given s-sparse multiquadratic
polynomials f,g € Flx1,xa,...,x,] uses poly(n,s,d,log |F|) field operations and computes
the quotient polynomial of f and g. That is, if f = gh for some h € Flz1,x2,...,2,] then
the algorithm outputs h. Otherwise, the algorithm rejects.

We can extend the result to the case when a polynomial is a factor of a product of
sparse multiquadratic polynomials. Note that such a product need not be either sparse or
multiquadratic.

» Corollary 34. Let 0 £ f,g1,...,9k € Flz1,22,...,2,] be polynomials such that for all

i € [k], g; is multiquadratic. Then f|g1-...-gx = |IfIl <llgall---- - llgxll-
Proof. Since f | g1 -...- gk, we can write f = f1 -...- fr such that f; | g;. By the Lemma:
1fill < llgill. Therefore: [[f[| < [lfall <. [[fxll < llgall - - llgwll- <

The following lemma shows that if a sparse multiquadratic polynomial over a field with
an odd characteristic factors in a certain way, then the corresponding discriminant is a
polynomial and, in fact, a sparse polynomial.

» Lemma 35. Suppose char(F) # 2. Let f = az? + bx; + ¢ € Flwy,22,...,2,] be a
multiquadratic polynomial that can be factored as f = g - h when both g and h depend on x;.
Then there exists a multiquadratic polynomial A € Flz1, 22, ..., 1, such that A? = b* — 4dac.
Moreover, | Al < || ]I
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Proof. Let ¢ = g;x; + go and h = h;xz; + hg. By comparing the coefficients of z; on
both sides of the equation we get that a = g;h; , b = g;ho + goh; and ¢ = gghg. Therefore,
b% —4dac = (giho+goh:)? —4gihigoho = (giho —gohs)?. Consequently, selecting A 2 giho—goh;
takes care of the first claim. The claim regarding the degree follows from the fact that the
degree of every variable in b2 —4ac is at most 4. Finally, as (b+A)(b—A) = 4ac, by Corollary 34:
16+ All < lla]| - [le]l, implying that [|A] < [lal| - [[e]| +[1b]l < (la]l + (bl + lelD* = I £]?. <

4 Computations beyond an Exponentiation Gate and Application

In this section we give all our results showing how perform certain computations on polyno-
mials given an oracle access to their powers.

4.1 Evaluation beyond an Exponentiation Gate

The most basic task for polynomial manipulation is evaluating a polynomial given via an
oracle access. In this section we show how to transform an oracle access to the polynomial
f€ into an oracle access to f itself. This can be thought of having an oracle equipped with a
clever root extraction algorithm. Our main result is given in the following algorithm.

Input: Oracle access to a polynomial f = g° € Flxy,za,...,2,]; a € F" s.t.
fla) # 0;

e € N, e-th root oracle R..

Evaluation points by, ba, ... € Flay,za,. .., xy)

Output: h(by), h(bs),... when h(Z) € Flxy,29,...,2,] is a polynomial s.t. h¢ = f.

1 a+ Re(f(a)) /* Computed only once. */
2 Compute hy(t) such that hy(t)® = f(¢; 5(t)) /* Invoking Lemma 26 */
3 /8 — hb( ) ’

4 return hy(1) - /B

Algorithm 1: Polynomial Oracle Transformation.

> Lemma 36. Let h(Z) € Flz1, 22, ..., 2,] be such that f(z) = h(z)® and h(a) = a. Then
for every b € Flay,xa, ..., x,] Algorithm 1 outputs h(b).

Proof. First, by Lemma 15 such a polynomial h(Z) exists and is unique. In addition, 8 # 0

since 3¢ = hy(0)¢ = f(£; 5(0)) = f(a) # 0. Therefore, the output of algorithm is well-defined.

Next, we have that hg(t)® = f(¢; ( )) = h(l; (). By Lemma 15, hy(t) = w - h(£; 5(t)) for
-h(

hy(1)-a {a, 5(1))- 0‘ _ wh(b)a _ T
some w € F. Therefore: = he ) =ThGE = h(b).

<

Note that Algorithm 1 requires a non-zero point of f(z) as an additional input. Generally
speaking, finding such a point is the well-known problem of Polynomial Identity Testing
(PIT) which is not known to have an efficient deterministic algorithm. We now argue that
for our purposes we do not need a PIT algorithm.

Recall that we are in the setting where the root of f(Z) is evaluated on a sequence of
points. Given each new query point b € F” we can first evaluate f(z) on b. If f(b) # 0, we
can set @ = b and use this @ as the non-zero input onwards. Observe that Algorithm 1 works
for the case @ = b as well. However, one may ask what happens with the previous query
points? Or, what if for all the query points b are zeros of f? Observe that if f(b) = 0 then
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h(b) = 0 for any h(Z) € Flzy,z2,...,2,] such that h(z)¢ = f(Z). Therefore, there is no issue
of inconsistency here and the oracle just needs to output 0. Consequently, we can patch
Algorithm 1 by using the first non-zero query point as a (if one exists). Theorem 1 follows
as a corollary of Lemma 36 and the above discussion.

4.2 Reconstruction beyond an Exponentiation Gate

An immediate application of the polynomial evaluation algorithm is reconstruction beyond
an exponentiation gate. More formally, let A be a reconstruction algorithm for a circuit class
C. By definition, A requires an oracle access to f € C to reconstruct it. We can extend the
algorithm to reconstruct f(Z) given an oracle access to f(Z)¢ and an e-th root oracle R., by
simulating each query of A. However, in the spirit of Lemma 15 the reconstruction algorithm
might end up outputting w - f(Z) depending on the root oracle R, at hand. This reasoning
is summarized in Theorem 2. As a corollary we get the following;:

Proof of Theorem 3. Apply Theorem 2 with Lemma 28. <
Theorem 4 also follows as a corollary given the following result:

» Lemma 37 ([33]). Let n € N. There exists a deterministic algorithm that given an
oracle access to a read-once polynomial f € Flxq,xa,...,x,] uses poly(n) - poly(log |F|) field
operations and outputs a read-once formula VU that computes f.

4.3 Deterministic Factorization of Sparse Multiquadratic Polynomials

For the case of sparse multiquadratic polynomials we can actually push those techniques
further to obtain complete factorization thus proving Theorem 6. We now give the overview
of the algorithm. Suppose char(F) # 2. Let f € F[z1,zs,...,2,] be a multiquadratic
polynomial and let z; be a variable such that f factors as f = g - h when both g and h
depend on z;. We can view f as f = ax? + bx; + ¢ when a(Z), b(Z) are ¢(Z) polynomials that
do not depend on z;. Given this view, we can express g and h in terms of a,b and ¢ using the
quadratic formula. That is, we can write a - f = (az; +b/2+ A/2) - (axz; + b/2 — A/2) when
A is a polynomial satisfying A? = b? — 4ac. By Lemma 32, both factors are || f||-sparse so we
could continue this process recursively. However, there are some issues with this approach.
First, it is not clear that A is a polynomial since the expression b?> — 4ac might not be a
perfect square. Next, suppose that A were a polynomial. Is it sparse? Answers to these
question were given in Lemma 35. Finally, how do we compute A? For that purpose we
apply Theorem 3 that allows us reconstruct a sparse polynomial f given an oracle access to
its power f¢. Formally, an instantiation of Theorem 3 with e = 2,d = 4n,s = || f||? together
with Lemma 35 give rise to the following corollary.

» Corollary 38. Suppose char(F) # 2. Let f = ax? + bx; + ¢ € Fla1,29,...,2,] be a
multiquadratic polynomial that can be factored as f = g - h when both g and h depend on x;.
Then there exists a deterministic algorithm that given i € [n], the polynomial f(Z) and a
square root oracle Ry uses poly(n, || f]],1og |[F|) field operations and oracles calls, and outputs
a multiquadratic polynomial A € F[z1, 2o, ..., 1, such that A® = b? — 4ac and ||A]] < || f]|*.

However, this still does not solve the problem entirely, as we obtain a factorization of a - f
instead of f, while a need not be constant. Another issue is that f could factor differently:
f = (a'z? +Vz; + )h and in particular the polynomial a = a’ - h could be reducible. We
solve both problems by changing the way we apply recursion: we first recursively factorize
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a(x) and then iteratively use Corollary 33 to write f as f = ged(f,a) - f'. To finish the
algorithm we need to observe that f’ is either irreducible or factors as above. We now move
the proof of Theorem 6.

Input: A multiquadratic polynomial f(Z) € F[zq, z2,...,z,]; A square root oracle
Ry
Output: A list hq,..., hi of the irreducible factors of f. That is, f =hy -...- hg.
1 f<_lcwn(f) ;
2 if f is a constant then S « () else S « Factor(f);
s u+ f; T+ 0
4 foreach h € S do
5 v < u/h; /* using the algorithm in Corollary 33. */
6 if v#1 then u <+ velse S« S\ {h}; T« TU{h};
7 end
8 if deg, (u)=1 then
9 ‘ return S U {u}
10 else
11 Write u = ax? + bx,, + ¢ ;
12 Compute A < v/b? — 4ac; /* using the algorithm in Corollary 38. */

13 | Ny < axy, +b/2+ A2 n_ +— ax, +b/2 — A/2;
14 foreach h € T' do

15 v < n4/h; /* using the algorithm in Corollary 33. */
16 if v #1 then ny + v; else n_ + n_/h;
17 end

18 |y« Im(u)/Im(ny - n-);
19 if u=~ny -n_ then return SU {yn,,n_} else return S U {u};

20 end

Algorithm 2: Factoring Sparse Multiquadratic Polynomials when char(F) # 2.

Proof of Theorem 6. The outline of the algorithm is given in Algorithm 2. First of all, as
f(Z) is given to us as a list of monomials, we can assume wlog that var(f) = [n] by renaming

the variables. The proof is by induction on m(f) = [var(le,., ()]

Running time: Observe that throughout the execution of the algorithm ||ul|, ||v|| < ||f]l
and |0 |, [In—|l < ||f]|*. Initially, the bound holds by the definition of the polynomials. As
each update results from a division, the claim regarding the sparsity follows from Lemma 32.
Therefore, by Corollaries 33 and 38 we get that the total number of field operations and
oracle calls to Ry satisfies the following recurrent expression: t(m, || f]|) < t(m —1,|f|) +
poly(m, || f|l,log |F|) resulting in ¢t(m, || f||) = poly(m, || f]|,log [F|). As m <n — 1, the claim
regarding the running time follows.

Analysis: Suppose that m(f) > 1. We need to fix some notations. Let f = hy -...- hy
be a factorization of f into irreducible factors. Let g denote the product of those h;-s
that depend on x,. Note that there can be at most two such factors. Therefore, we
can write: f = hy ... hp -g. Finally, let § = lc,, (g) and let § = g1 - ... ¢ be a
factorization of § into irreducible factors. Note that ged(g,g) = 1 since x,, € var(g) and
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g contains only the factors the depend on x,,. Moreover, given the above we get that:
f =hy-...hpw-Gg=hy-...-hg - G1-...- G is a factorization of f into irreducible factors. As
m( f) < m(f), by the induction hypothesis the set S will contain the irreducible factors of f.
By the uniqueness of factorization, S will contain exactly the polynomials a1hy, ..., ag his
and 191, ..., Bege for some {a;},{B;} CF\{0}. Consequently, the ‘for each’ loop separates
the hj-s from g;-s by gradually dividing f by the containment of S. Observe, that at the
end of the loop we get that: S = {a1hy,...,aphe}, T = {51G1,--.,0ede}. Moreover, as
u=f=hy-... - hy g at the beginning of the loop and gcd(yg, §;) = 1 for every j, we get
that u = e = % for some v € F. Therefore, to complete the algorithm we need to
compute the irreducible factors of u and concatenate them with S. Recall that by definition
g (and hence u) is a product of at most two irreducible polynomials, both depending on x,.

If deg, (u) = deg, (g) = 1 then u must be a single irreducible factor and thus f =
athy - ... aphp - uis a factorization of f into irreducible factors. Otherwise, deg, (u) =
deg, (g) = 2 and there can be two cases. If u is irreducible, then again f = ayhy-...-aphp -u
is a factorization of f into irreducible factors and the algorithm will return this factorization
since for every n_ and 7, the identity test u =" yn, - n_ will fail. Otherwise, we can write
u as a product of two irreducible polynomials, both depending on z,. By Corollary 38
the discriminant polynomial A in Line 12 is computed successfully. As yu = g we have
that § = ya. Consequently, we can write u- g1 -... gy = u-§ = u-vya = yN4 - N—. As
each §; is an irreducible polynomial, it must be the case that either §; | ny or g; | n—.
Thus, at Line 17 we have that v = ~vny - n—. We can easily compute v by noting that
lm(u) = lm(yny - n—) = ylm(ny - n-). In conclusion, f = a1hy - ...  aghp -y -n— is a
factorization of f into irreducible factors and the algorithm will return this factorization
passing the identity test u =" yn4 - 7_.

The analysis of the base case m(f) = 0 is similar. First, note that if u = f is irreducible
then the algorithm will return {u}. Otherwise, we can write u as a product of two irreducible
polynomials, both depending on z,. By definition, a-u = ny -n—. As a # 0 € F,
y= 1ml(r;+(12,) = hInHE((zui) = L and hence u = 1n, -n_ = yn4 -n_. In conclusion we get that in
the base case, f = yn, - n— is a factorization of f into irreducible factors and the algorithm
will return this factorization passing the identity test w =’ 4m, - 7_. This completes the
proof. <

5 Discussion & Open Questions

In this paper we study computations beyond a (single) exponentiation gate and present
some applications, with the main one being the first efficient deterministic factorization
algorithm for sparse multiquadratic polynomials over odd characteristics. Can we devise
such algorithms for multicubic polynomials? Or more generally, when the individual degree
of each variable is constant? One of the milestones on the route to this goal has to do with
estimating the sparsity of the factors of such polynomials. To this end, we propose the
following conjecture:

» Conjecture 39. There exists a function v : N — N such that if f € Flz1,22,...,2,] is a
polynomial with individual degrees at most d then g | f = |lg|| < || f]|¥?.

Our results show that v(1) = v(2) = 1. As we noted before, the value of ¥(3) is unknown.
We also note that the conjecture gives rise to an efficient deterministic algorithm for testing
sparse factorization into polynomials with constant individual degrees.

In addition, combined with the randomized factorization algorithm of [49], we can obtain
an efficient factorization algorithm for such polynomial. Using Theorem 7 we can this
algorithm zero-error, Las Vegas algorithm (i.e. ZPP-type).
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Another milestone in sparse polynomial factorization is computing a root of a sparse
polynomial. Theorem 8 allows us to test whether the polynomial f is an e-th root of the
polynomial g. But can we actually compute f given g7 Once again, an upper bound on
the corresponding sparsity could be useful. We can get the desired result by combining this
bound with Theorem 3. We propose the following conjecture:

» Conjecture 40. Suppose char(F) = 0 or “large enough” There exists a function p: N — N
such that for for every f € Flxy,xa,...,2,] and e € N: || f|| < ||f¢|*e).

Note even when n = 1, there exist sparse-square polynomials. That is, polynomials f such
that ||f2]| < | fl, implying that x(2) > 1. For more details see [13, 9] and references within.

In addition, Example 6.1 in [44] shows that when the field characteristic is close to
the degree of the polynomial in question, even a square root of sparse polynomial could
be very dense. Therefore, the bound could only hold for “large enough” (in terms of n,d
etc..) characterstic. Finally, can we extend Theorem 8 to fields with “small” characteristics?
Perhaps, by extending Lemma 487
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A Sparse Polynomials with Constant Individual Degrees

In this section we present an efficient factorization testing algorithm for sparse polynomials
with constant individual degrees. In particular, we prove Theorem 7. We begin by observing
that a Subresultant (Definition 18) of two sparse polynomials with constant degrees is a
(somewhat) sparse polynomial with a (slightly larger) constant degree.

» Observation 41. Let f,g € Flxy,za,...,x,] be s-sparse polynomials with individual degrees
at most d. Then for every i € [n] and j < d the polynomial Sy, (j, f,g) is an s°D-sparse
polynomial with individual degrees at most O(d?).
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» Lemma 42. Let f, g € Flzq,22,...,2,] be s-sparse polynomials a let d be a bound on the
individual degrees of f. Then there exists an algorithm that given f and g tests if g | [ using
poly(n, s?,log |F|) field operations.

Proof. For i € [n], let d; and e; denote the individual degrees of x; in f and g, respectively.
We can assume wlog that Vi : ¢; < d; < d. Otherwise, the answer is, clearly, “no”. The
algorithm will follow the procedure outlined in Corollary 20: Output “yes” iff Vi with e; > 0:
SL(eZ - 17f7g) =0.

The correctness follows immediately from Corollary 20. The running time follows from
Observation 41. |

The efficient division algorithm gives rise to an efficient procedure for computing GCD
given a list of sparse irreducible polynomials. Theorem 7 follows as a corollary of this result.

» Theorem 43. Let f,g1,...9m € Flx1,xo,...,2,] be s-sparse polynomials a let d be a
bound on the individual degrees of f. More over, let g = [[¢; and suppose that g;-s are
irreducible. Then given f,gi,...gm, Algorithm 3 computes ged(f,g) using poly(n, s¢, log |F|)
field operations.

Input: s-sparse polynomials f, g1,...gm € Flx1,z2,..., 2]
Output: ey, ..., e, such that ged(f,g) =[] g

1 Use Corollary 29 to collect similar polynomials /* wlog g = H:il gf; and e <d,

where g; are irreducible, pairwise coprime factors */
2 For each i € [m/] find the maximal e;, 0 < ¢; < ¢} such that g;* | f. /* Using
Lemma 42 */

Algorithm 3: Compute the GCD of sparse polynomials with constant individual
degrees.

Proof. The claim regarding the running time follows from Corollary 29 and Lemma 42. Since
gi’s are irreducible polynomials, there exist a subset S such that g ~ [] gi€S gf ;. Therefore,
ged(f, g) will be of the form Hg,:eS g;" for some e; < e;. As d is a bound on the individual
degrees of f, we get that e¢; < d. <

B Deterministic Reconstruction Algorithm for Multilinear XTIXII(2)
Circuits

In this section we prove Theorem 5. We build on the following result of Gupta et al. [16]:

» Lemma 44 (Implicit in [16]). Let n,s € N. Let A be an algorithm that given an oracle
access to an s-sparse split polynomial f € Flxq,xa,. .., x,] output its irreducible factors using
T(n,s) operations. Then there exists a deterministic algorithm that given an oracle access
to the polynomial f € Flx1,xa,...,x,] computable by a multilinear XIIXTII(2) circuit of size
s and uses poly(n, s,log |F|,T(n,s)) field operations and oracles calls to A, and outputs a
SIXII(2) circuit that computes f.

Originally, they invoke the randomized black-box factorization algorithm of Kaltofen &
Trager [23] along with Lemma 28 to obtain an efficient randomized reconstruction algorithm.
We are able to derandomize the reconstruction algorithm by extending Algorithm 2 to handle
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s-sparse split polynomials. These are polynomials that can be written as products of s-sparse
(not necessarily irreducible) polynomials. Note that an s-sparse split polynomial need not be
sparse. To this end, we require the following Folklore results. (See e.g. [48], [12], [40] and
reference within).

» Lemma 45 (Folklore). Let f € Fla1,x2,...,3,] be a polynomial of degree d and let i € [n].
We can write: f = Z?:o fj @] such that Vj,x; & var(f;). Then there exists a deterministic
algorithm that given i,j and an oracle access to f uses poly(n,d,log|F|) field operations and
outputs an oracle for f;.

To handle a division of s-sparse split polynomials we will need a s-sparse version of
Corollary 33. We give a somewhat stronger statement: a black-box version of Lemma 42.

» Lemma 46. Let n,s,d € N. Let f € Flz1,xa,...,x,] be an s-sparse split polynomial with
individual degrees at most d. There exists an algorithm that given an oracle access to f and
an irreducible s-sparse polynomial g € Flxq, 2, ..., x,] with individual degrees at most d

uses poly(n,sdz,log |F|) field operations and computes the quotient polynomial of f and g.
That is, if f = gh for some h € F[xq, 2a,...,x,] then the algorithm outputs an oracle for h.
Otherwise, the algorithm rejects.

Proof. We can write f = f’-u where f’ is the product of all the irreducible factors of f
that depend on z;. In addition, we can write ' = ijo fi :cZ such that Vj,z; & var(f}).
Clearly, f’ is s¢ sparse and u is s-sparse split. Using Lemma 45, we can obtain oracles for
fj - u. Fori € [n], let d; and e; denote the individual degrees of z; in f and g, respectively.
We can determine d; using Lemma 31. Hence, we can assume wlog that Vi : e; < d; < d.
Otherwise, the answer is, clearly, “no”. The algorithm will follow the procedure outlined
in Corollary 20: Output “yes” iff Vi with e; > 0: S;,(e; — 1, f,g) = 0 using Lemma 45 to
perform the test. The correctness follows immediately from Corollary 20. For the running
time, by Lemma 19, S, (e; — 1, f,g) = Sz, (e; =1, f',g)-u®. S;.(e;—1, f’, g) is a determinant
of a (d; — e; +2) x (d; — e; +2) matrix whose entries are s-sparse polynomials with individual
degrees at most d resulting in an PLeC)
O(d?). Therefore, we can compute the expression using Lemmas 31 and 45. |

-sparse polynomial with individual degrees at most

Based on the above we can now prove the s-sparse split version of Theorem 6.

» Theorem 47. Let n,s € N and suppose char(F) # 2. There exists a deterministic
algorithm that given an oracle access to an s-sparse split multiquadratic polynomial f(Z) €
Flxy, 2o, ..., x,] and a square Toot oracle Ry uses poly(n, s,log |F|) field operations and oracle
calls to Ry and outputs the irreducible factors of f(x). That is, a list hy, ..., hi of irreducible
polynomials such that f = hy-...- hg.

Proof. By definition, f = hy - ... hgy. By Lemma 32, we can assume wlog that h;-s are
irreducible and are, in fact, the irreducible factors of f. Therefore, we can invoke Algorithm 2
with the following minor changes:

In Line 1, use Lemma 45 to compute f

In Line 5, use the algorithm of Lemma 46 with d = 2 instead of Corollary 33.

In Line 11, use Lemma 28 to reconstruct u as an s2-sparse polynomial.

The analysis of the algorithms essentially remains the same. Note that these change
introduces only a polynomial overhead to sparsities of the intermediate polynomials (and
thus to the algorithm). Yet, as was established above, the irreducible factors are s-sparse. <

Theorem 5 follows by applying Theorem 47 to Lemma 44.
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C Polynomial Identity Testing beyond an Exponentiation Gate

Using techniques from Differential Field Theory we show how to transform an identity test
of powers of polynomials into an identity test that involves partial derivatives of those same
polynomials. This transformation can be applied for classes of polynomials that are closed
under partial derivatives such as sparse polynomials.

» Lemma 48. Let f(z),h(z) 0 € F(x1,x2,...,2,) and let e,d € N. There exz'sts c(z) €
F(z1,22,...,7,) such that f(2)? = c(z) - h(z)® and 8“ =04fd-h- af e f- Ba:l'

Proof.

(=) Suppose f(2)* = ¢(z)-h(@)°. Then d-h- 25 = pr 2000 — b c().e- 20 p(z)e! =
e-c(s?:)-f}@l ~§—£:ef-@

(<) Consider c2 i—: By definition: 83—; = ( 89“ SfAl e —e 8:1: - he—l fd) =

%- (d-g—aﬁ-h—e gf f) = 0 and the claim follows. <

The following theorem provides an algorithm for an identity testing of powers of polyno-
mials over fields with zero or large enough characteristics.

» Theorem 49. Let f(z),h(z) # 0 € Flz1,za,...,z,] be polynomials of degree at most §

and let e,d € N. Furthermore, suppose that p 2 char(F) = 0 or p > ¢ - min(e, d). Then
f(@)? = h(x)¢ iff Im(f)? = Im(h)¢ and for each i € [n] we have that d - h - af =e-f- 8%.

Proof.

(=) Follows from Lemma 48 and the definition of Im.

(<) By iterative application of Lemma 48 we get that there exists ¢(Z) € C(F(z1, z2,...,Ty))
such that f(z)¢ = ¢(¥) - h(z)®. We claim that ¢(z) € F. Assume the contrary. Then,
by Lemma 13 p > 0 and there exist u(z),v(z) € Flz¥,25,...,22] such that ged(u,v) =1
and ¢(z) = Zgg Therefore, we can write: f(7)? - v(Z) = h(Z)¢ - u(z). By definition
Im(f)?1m(v) = lm(h)®-Im(u), which implies that Im(v) = Im(u). In particular, v(z),u(z) ¢ F
as ¢(z) € F and thus deg(u),deg(v) > p. Assume wlog that d < e. Then p > dd. As
ged(u,v) = 1 we get that u | f¢ which implies that p < dd thus leading to a contradiction.
Therefore, c¢(z) = a € F. By definition Im(f)? = o - Im(h)¢, which implies that o = 1 and we
are done. <

Theorem 8 follows an as easy corollary by noting that the preconditions of Theorem 49
can be efficiently checked given two sparse polynomials. It is also to be noted that similar
characterization could be obtained by considering the 2 x 2 Wronskian of the polynomials f¢
and h®. However, we believe that our proof is cleaner and more direct.

D Missing Proofs

Proof of Lemma 15.

1. If h = 0 then clearly g = 0 and the claim follows. Otherwise, let h = h{' - ... - h*
and g = g;" ... gz’f' be factorizations of h and g into irreducible, pairwise comprise
factors, respectively. We have that A" - ... hi*® = h¢ = ¢¢ = gt -gZ’f"e are two

factorizations of the same non-zero polynomial. By Lemma 14, k = k¥’ and, wlog h; ~ g;
and e; = e}. Consequently, h = w - g for some w € F. Finally, h® = w® - ¢¢ = w® - h® and
the claim follows.
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2. First, note that h(a)®

= f(a) # 0 and thus h(a) # 0. Let us consider u(Z) 2 ”‘hh(%).
By definition, u(a) = %g) =« and u(z)® = a;}é;—;f = f(?)(‘;gi) = f(z). Now, suppose
there exists a polynomial v(Z) € Flzy, s, ..., 2,] satisfying the same properties. By
the first part of the Lemma we have that u = w - v for some w € F. Therefore,
a=u(a) =w-v(a) =w -« implying that w = 1. Consequently, u = v. <

Proof of Lemma 24. Let (¢1,...,94) be as above. Consider the polynomial h 2 11 gz/e.

el
We have that: h¢ = [] ¢! = [[ ¢¢ = g when the last equality follows from the property of g;
el i

and we are done. For the other direction, let ¢ = h® and let (hy,...,hq) be the squarefree
decomposition of h(y). Consider the following sequence:

~ h-b e el

gi = / i

1 otherwise
We have that
€
s = Tt~ T~ (1) ==
i eli J J

In addition, (g1,...,d4) is a sequence of pairwise coprime, squarefree polynomials. By
uniqueness, the sequence (g, ..., Jq) is squarefree decomposition of g and the claim follows.

<
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