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—— Abstract

The suffix array augmented with the LCP array is perhaps the most important data structure in
modern string processing. There has been a lot of recent research activity on constructing these
arrays in external memory. In this paper, we engineer the two fastest LCP array construction
algorithms (ESA 2016) and improve them in three ways. First, we speed up the algorithms by
up to a factor of two through parallelism. Just 8 threads is sufficient for making the algorithms
essentially I/O bound. Second, we reduce the disk space usage of the algorithms making them
in-place: The input (text and suffix array) is treated as read-only and the working disk space
never exceeds the size of the final output (the LCP array). Third, we add support for large
alphabets. All previous implementations assume the byte alphabet.
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1 Introduction

The suffix array [12, 3], a lexicographically sorted list of the suffixes of a text, is one of the
most important data structures in modern string processing. It is frequently augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest common
prefixes between lexicographically adjacent suffixes. Together they are the basis of powerful
text indexes such as enhanced suffix arrays [1] and many compressed full-text indexes [13].
Modern textbooks spend dozens of pages in describing their applications, see e.g. [14, 11].

The construction of the two arrays is a bottleneck in many applications. There has been a
lot of recent research on external memory construction of these data structures. Here we are
interested in the construction of the LCP array given the suffix array and the text. The two
fastest external memory algorithms for this task are currently EM-S® and EM-SI, recently
introduced in [4]. In this paper, we improve EM-S® and EM-SI in several ways.

First, we modify both algorithms to use multiple threads during their execution. Parallel-
ization does not reduce or speed up I/O as such, but it can speed up those stages that are
dominated by computation rather than I/O. Cache misses in particular can be expensive
enough to dominate I/O. Our experimental results show that EM-SI benefits only a little
from parallelization, but the speed of EM-S® improves by as much as a factor of two for
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some texts. Eight threads is sufficient to achieve an essentially maximum speed up as the
computation becomes I/O bound.

Second, we reduce the disk space usage of both algorithms. Disk space usage can be more
crucial than speed, because a lack of sufficient free disk space can prevent a computation
entirely. We make both algorithms in-place in the sense that the disk space usage never
exceeds what is needed for the input (the text, the suffix array, and for EM-SI, the Burrows—
Wheeler transform (BWT)) and the output (the LCP array). Thus any machine that has
sufficient disk space for the inputs and the outputs can run these algorithms. The input is
treated as read-only, i.e., it is never deleted or written over even temporarily. The working
disk space, i.e., disk space used in addition to the inputs, is reduced by more than a factor
of two in some cases. The fully in-place computation slows down the algorithms but never
more than 36% and often much less.

Third, we modify both algorithms to handle large alphabets. All previous implementations
work only for the byte alphabet. While it is possible to split large characters into multiple
bytes, construct suffix and LCP arrays for the resulting text over the byte alphabet, and
then post-process to construct the desired arrays, this requires much more time and disk
space than using algorithms that can handle large alphabets natively. We demonstrate this
for EM-S® and EM-SI in our experiments.

Related work. Suffix array construction in external memory has a long history. The most
recent addition is fSAIS [8], which is also the first implementation able to handle large
alphabets natively. LCP array construction in external memory has been studied much
less. It was first achieved by modifying suffix array construction to produce the LCP array
simultaneously [2]. Independent construction of the LCP array given the suffix array as
input is preferable and was first achieved by LCPScan [5]. The only further practical
improvements are EM-S® and EM-SI. A very recent theoretical break-through is the first
LCP array construction algorithm [6] with I/O complexity O(sort(n)) for a text of length n,
where sort(n) is the complexity of sorting n integers, but it is not competitive in practice.
Another recent result is an algorithm for computing the succinct representation of the PLCP
(permuted LCP) array in external memory [16].

2 Basic Data Structures

Throughout we consider a string X = X[0..n) = X[0]X[1]...X[n — 1] of [X] = n symbols
drawn from an alphabet of size 0. Here and elsewhere we use [i..j) as a shorthand for
[i..j — 1]. For i € [0..n], we write X[i..n) to denote the suffix of X of length n — 4, that is
X[i..n) = X[@]X[i + 1] ... X[n — 1]. We will often refer to suffix X[i..n) simply as “suffix i”.

The suffiz array [12, 3] of X is an array SA = SA[0..n] which contains a permutation of
the integers [0..n] such that X[SA[0]..n) < X[SA[1]..n) < --+ < X[SA[n]..n). In other words,
SA[j] =4 iff X[i..n) is the (j + 1)*® suffix of X in ascending lexicographical order. Another
representation of the permutation is the @ array [9] ®[0..n) defined by ®[SA[j]] = SA[j — 1]
for j € [1..n]. In other words, the suffix ®[i] is the immediate lexicographical predecessor
of the suffix i, and thus SA[n — k] = ®*¥[SA[n]] for k € [0..n]. An example illustrating the
arrays is given in Table 1.

Let lep(, j) denote the length of the longest-common-prefix (LCP) of suffix ¢ and suffix
j. For instance, in the example of Table 1, lep(0,6) = 3 = |bab| and lep(7,4) = 5 =
|abbab|. The longest-common-prefiz array [12, 10], LCP[1..n], is defined such that LCP[i] =
lep(SAJi], SA[i — 1]) for i € [1..n]. The permuted LCP array [9] PLCP[0..n) is the LCP array
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Table 1 Examples of the arrays used by the algorithms for the text X = babaabbabbab.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

Xf] b a b a a b b a b b a b -

SAlH] 12 3 10 1 7 4 11 2 9 0 6 8 5
BWT[E{] » b b b b a a a b $ b a a

®H 9 10 11 12 7 8 0 1 6 2 3 4 -

LCP[i{j] - 0 1 2 2 5 0 1 2 3 3 1 4
PLCP[i{j] 3 2 1 0O 5 4 3 2 1 2 1 0 -
i+PLCPi] 3 3 3 3 9 9 9 9 9 11 11 11 -
2i+PLCP[{] 3 4 5 6 13 14 15 16 17 20 21 22 -
PLCPYG) 3 2 1 0 5 4 3 2 1 0 0 -
PLCPPG) 3 8 7 6 5 4 3 2 1 2 1 0 -

permuted from the lexicographical order into the text order, i.e., PLCP[SA[j]] = LCPJj] for
€ [1..n]. Then PLCP[i] = lep(i, ®[i]) for all 4 € [0..n). Table 1 shows example LCP and
PLCP arrays.
The row ¢ + PLCP[i] in Table 1 illustrates (the first part of) the following property of
the PLCP array, which is the basis of all efficient algorithms for LCP array construction.

» Lemma 1 ([5]). Leti,j € [0..n). Ifi < j, then i+PLCP[i] < j+PLCP[j]. Symmetrically,
if @[] < ®[j], then ®[i] + PLCP[:] < ®[j] + PLCPj].

The succinct PLCP array [15] PLCPgycc[0..2n) represents the PLCP array using 2n bits.
Specifically, PLCPyycc[j] = 1 if j = 2i + PLCPJi] for some i € [0..n), and PLCPyuc[j] =0
otherwise. Notice that the value 2i + PLCP[i] is unique for each ¢ by Lemma 1 as illustrated
in Table 1.

For ¢ > 1, the sparse PLCP array PLCP,[0..[n/q]) is defined by PLCP,[i] = PLCP]ig],
i.e., it contains every ¢'" entry of PLCP. We also define ®,[0..[n/q]) by ®,[i] = ®[ig] so that
PLCP,[i] = lep(gi, ®4[i]). The sparse PLCP array can be used as a compact representation
of the full PLCP array because the other entries can be bounded using the following lemma.

» Lemma 2 ([9]). For any i € [0..n), let
PLCP (i) = max(0, PLCP,[[i/q]] — (i — qli/q]))

PLCP[[i/q]] + (qli/q] —4) if qli/q]l <n

PLCP}(i) =
CPy(0) { n—i—1 otherwise

Then PLCP (i) < PLCP[i] < PLCP(4).

Although the difference PLCquli(i) - PLCP}J0 (2) has no non-trivial limit for an individual i,
the sum of the differences is bounded by the following lemma.

» Lemma 3 ([9]). 3., PLCPY (i) — PLCP (i) < (¢ — 1)n + ¢°.

The Burrows—Wheeler transform BWT[0..n] of X is defined by BWT[i] = X[SA[i] — 1] if
SA[i] > 0 and otherwise BWT([i] = $, where § is a special symbol that does not appear in the
text. We say that an lcp value LCP[i]| = PLCP[SA[i]] is reducible if BWT[i] = BWT[i — 1]
and rreducible otherwise. The significance of reducibility is summarized in the following two
lemmas.

» Lemma 4 ([9]). If PLCP[i] is reducible, then PLCP[i{] = PLCP[i — 1] — 1 and ®[i] =
ofi— 1]+ 1.

» Lemma 5 ([9, 7]). The sum of all irreducible lep values is < nlogn.
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3 Basic Algorithms

In this section, we describe the basic algorithms EM-S® and EM-ST introduced in [4]. Some
details are omitted and others only sketched; we refer to [4] for full details.

3.1 EM-S® Algorithm

The first algorithm EM-S® gets the text X and the suffix array SA as input, and performs
the following steps:

1. Compute PLCP, for ¢ chosen so that PLCP,, fits in RAM. During this step, we consider
the text divided into segments that fit in RAM.

a. Compute ®, by scanning SA.

b. Generate all pairs (¢, ®[¢]) such that 7 is a multiple of ¢ using ®,. Write each pair
(7, ®[7]) to disk into the file associated with the text segment that contains ®[i]. Notice
that the pairs in each file are naturally sorted by 1.

c. For each text segment, load the segment into RAM. Read the pairs (i, ®[¢]) from the
associated file while simultaneously scanning the full text so that the position X[i] is
reached when the pair (¢, ®[¢]) is processed. For each pair, compute lep(i, ®[i]) and
write it to disk into a separate file for each segment. When computing ¢ = lep(i, ®[i])
we use the fact that £ > lep(¢/, ®[i']) — (¢ — ') by Lemma 1, where (i’, ®[¢']) is the pair
processed just previously. This ensures that the text scan never needs to backtrack.

d. Construct PLCP, in RAM by reading each value PLCP,[i] from the file associated
with the text segment containing ®,[i].

2. Compute LCP using PLCP, based on Lemma 2. During this step, we consider the text
divided into half-segments so that two half-segments fit in RAM. Every possible pair of
half-segments is loaded into RAM once.

a. Scan SA to generate all (i, ®[i]) pairs. For each pair use PLCP, (stored in RAM)
to compute the lower bound ¢ = PLCP[°(i) (and the upper bound PLCP}(4)) for
PLCP[i] using Lemma 2. Write the pair (i 4+ ¢, ®[i] + ¢) to disk, where there is a
separate file for each pair of half-segments. If PLCP;O(Z') = PLCPZi(i), no pair is
written since we already know the exact lcp value.

b. For each pair of half-segments, load them to RAM and compute lcp(j, k) for each pair
(4, k) obtained from the associated file. The resulting value lep(j, k) is written to disk
to a separate file for each pair of half-segments.

c. Scan SA to generate all (i, ®[¢]) pairs. For each pair, compute ¢ = PLCP};’(i) (and
PLCPZi(z’)) as in step 2(a) and read the value ¢/ = lep(i + £, ®[i] 4+ ¢) from the
appropriate file. Then PLCP[i] = £+ ¢’ is the next value in the LCP array.

In Step 1(c), the computation of the lcp value may overflow the segment, i.e., ®[i] is in
the segment but ®[i] + ¢ is not. To deal with an overflow, we have in RAM an overflow
buffer (of size of one disk block) containing the beginning of the next segment. An overflow
beyond even the overflow buffer is handled by reading from disk. Similar overflows can occur
in Step 2(b). There too we use overflow buffers but comparisons beyond the overflow buffers
are simply aborted. In cases, where such an aborted comparison is possible (based on the
upper bound PLCqu‘i(i)), extra pairs are generated in Step 2(a) to continue the potentially
aborted comparison when the appropriate pair of half-segments is in RAM. We refer to [4]
for further details and analysis of overflow handling.
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3.2 EM-SI Algorithm

The second algorithm EM-SI gets X, SA and BWT as input, and has the following steps:

1. Compute the succinct PLCP array PLCPgy... For this step, we consider PLCPgycc
divided into segments that fit in RAM and the text divided into half-segments so that
two half-segments fit in RAM.

a. Scan SA and BWT to form a pair (i, ®[¢]) for each ¢ such that PLCP[i] is irreducible.

The pairs are written to disk where there is a separate file for each pair of text
half-segments.

b. Compute the bitvector R[0..n], where R[i] = 1 iff PLCP[4] is irreducible. If R does not
fit in RAM, it is computed one RAM-sized segment at a time. The irreducible positions
are determined either by scanning SA and BWT or by scanning the irreducible (¢, ®[])
pairs produced in Step 1(a), whichever takes less 1/0.

c. For each pair of text half-segments, load them to RAM and compute PLCP[i] =
lep(z, ®[i]) for each pair (i, ®[i]) obtained from the associated file. For each computed
PLCP]i], we write the value 2i + PLCPJ¢] to disk into a separate file for each PLCPgyc.
segment.

d. For each PLCPg,cc segment, initialize it with zeros in RAM, read the values from the
associated file and set the corresponding bits to 1. Then read the corresponding part
of R to determine the reducible lcp values using Lemma 4 and set the corresponding
bits of PLCPgyec to 1. See [4] for details.

2. Compute LCP from PLCPg,... For this step, we consider the full PLCP array (not

PLCPgycc) divided into segments that fit into RAM.

a. Scan SA and write each value SAJi] to disk into the file associated with the PLCP
segment that contains the position SA[].

b. For each PLCP segment, create it in RAM by scanning the relevant part of PLCPgycc.

Then read the SA[i] values from the associated file, compute LCP[i] = PLCP[SA[i]],
and write it to disk into a separate file for each segment.

c. Scan SA, and for each i € [0..n), read LCPJ[i] from the file associated with the PLCP
segment that contains SA[i] and write it to the final LCP file.

Overflows in Step 1(c) are handled as in Step 1(c) of EM-S®: using overflow buffers, and
when that is not enough, reading directly from disk.

4 Parallelization

We have implemented both algorithms to use multiple threads during most stages of the
computation. In both algorithms, several stages process a sequence of items so that the
computation for one item is independent of other items and takes approximately the same
time for all items. Such computation is trivial to parallelize: load a bufferful of items at a time
to RAM and split the buffer evenly between threads. Below we describe the parallelization
only for more complicated stages.

4.1 Parallelizing EM-So

The first more complicated stage in EM-S® is Step 1(c). Here the algorithm processes a
sequence of (i, ®[i]) pairs for each text segment, and the computation for each pair depends
on the preceding pair. In the parallel version, the full sequence of pairs on disk is evenly
split among the threads, and each thread processes its part completely independently from
other threads.

17:5
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During the stage, each thread has to scan a part of the text. Typically, each thread scans
a different part of the text with only a negligible overlap between the parts. However, for
highly repetitive texts with extremely large lcp values the overlaps can be large which could
increase the amount of I/O significantly. To avoid this, we compute a super-sparse PLCP
array PLCP,, for p > ¢, which can be done quickly using essentially the internal memory
®-algorithm [9]. We then use PLCP,, to compute lower bounds according to Lemma 2, which
limits the total overlaps to less than n. The sizes of the text parts for different threads may
vary but this is no problem as text scanning is strongly I/O-bound. The important thing is
to minimize the times when no thread is doing I/0O.

The second nontrivial parallelization in EM-S® is Step 2(b). Here processing a single
item, i.e., computing lep(j, k), can involve a very long string comparison in RAM. The length
of each comparison is not known in advance which makes load balancing difficult. Very long
string comparisons are rare even for highly repetitive texts, but they tend to come in clusters.
To see why this happens, consider a pair (j, k) = (i + ¢, ®[i] + ), where { = PLCP;O(Z').
The lower bound ¢ ensures that the average length of comparisons is less than ¢, but there
can still be rare cases where the lower bound is poor and a long comparison results. If
(j. k) is such a case, then so is (j',k') = ((i + 1) + PLCP°(i + 1), ®[i + 1] + PLCP’(i + 1))
unless ¢ + 1 is is a multiple of ¢. If furthermore 7 4+ 1 is a reducible position — and most
positions are reducible for highly repetitive texts — k' = k and 7/ = j or ¥’ = k + 1 and
j' =7 +1, and thus (j, k) and (j/, k") are processed with the same pair of half-segments. If
1+ 2, 1+ 3 and so on are reducible positions too, we can get a cluster of such bad cases.
We could identify such a cluster by the fact that the difference k& — j is the same for all the
pairs, and once identified, we can use Lemma 4 to avoid doing a long comparison more than
once. However, the identification of such a cluster would require sorting the pairs (4, k) by
k — j, and avoiding expensive sorting was one of the main ideas of the original algorithm.
Consequently, our approach is to first ignore potential long comparisons and simply split
a bufferful of (j, k) pairs evenly between threads. However, the average length of string
comparisons is monitored, and if it exceeds a threshold, the computation is aborted and the
buffer is processed in a long-lcp mode instead. In the long-lep mode, the (j, k) pairs in the
buffer are sorted by the difference k — j so that we can then utilize Lemma 4. The sorting
is parallelized, and the sorted buffer is split evenly among threads. Because of the sorting,
the long-lcp mode is too slow to use all the time. This approach speeds up the computation
significantly for highly repetitive files even in a single thread mode, and with mutiple threads
it avoids bad load balancing.

4.2 Parallelizing EM-SI

The first nontrivial step in EM-SI is Step 1(c). As in Step 2(b) of EM-S®, some string
comparisons can be long, but similar clustering of long comparisons is very unlikely because
only irreducible lcp values are computed. Thus simply splitting a bufferful of (i, ®[i]) pairs
evenly between threads works well enough and there is no monitoring of comparison lengths.
However, the exception are comparisons that extend beyond the end of a half-segment and
even the overflow buffers (which never happens in Step 2(b) in EM-S®). In the sequential
version, such a comparison is completed immediately by reading parts of text from disk. In
the parallel version, the extended comparisons are postponed until all threads are finished,
and then performed separately.

The second nontrivial step in EM-SI is Step 1(d), where we want to set bits in a
bitvector held in RAM (a segment of PLCPyy..) at positions read from disk. The problem in
parallelizing this arises from two or more threads trying to simultaneously set different bits
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in the same byte or word. To avoid this, the bitvector is divided into buckets and a bufferful
of positions to set is first distributed into the buckets. Then each bucket is processed by a
single thread. There are more buckets than threads and the buckets are assigned to threads
so that each thread sets about the same number of positions.

5 In-Place Computation

When determining the disk usage of the algorithms, we assume that the inputs are on disk
during the whole computation and are never modified. We are then interested in the disk
space used in addition to the input, which we call the working disk space. The smallest
possible working disk space by any algorithm is the size of the output, the LCP array. In
this section, we describe modifications to the algorithms that achieve exactly this minimum
working space making the algorithms in-place in this sense.

For concreteness, we assume that large integers, including lcp values, are stored using
40-bit integers by default, as they are in our current implementation, and thus the minimum
working space is 40n bits or 5n bytes.

The peak working disk space usage in basic EM-S® happens in Step 2(b) and is 15n
bytes in the worst case consisting of n (4, k) pairs and n lcp values produced as output of the
step. In practice, the peak is closer to 10n bytes since each file of (j, k) pairs is deleted when
it is no more needed, and can be even less because no (j, k) pair is stored when lep(i, ®[i])
can be determined from the sparse PLCP array. A working disk space of 10n bytes may be
needed in Step 2(c) too.

In EM-SI, the worst case peak disk usage can be 15n bytes in Step 1(c). However, the
disk usage is actually 10-157 bytes, where r is the number of irreducible lcp values. For many
files, r < n/3 and the disk usage of Step 1(c) is actually less than 5n bytes. In Step 2(c), the
disk usage is always 10n bytes without any optimization.

Both algorithms involve large files that are scanned once and then deleted. In our
implementation of the basic algorithms, such files are split into multiple subfiles that are
deleted as soon as the scan has passed them. This reduces the working disk space of both
algorithms to about 10n bytes in the worst case and just slightly more than 5n bytes is some
cases. There are realistic inputs requiring about 10n bytes, which is still twice the minimum,
and our goal is to reduce it to 5n bytes in all cases.

5.1 Compact Encoding of LCP Values

By default, lcp values are stored on disk using 5 bytes, but in some cases we can reduce the
space using special representations. One such special representation is used for storing the
sparse PLCP array PLCP,. The default representation needs 5n/q bytes, but when ¢ < 40
we instead use a bitvector of n 4+ n/q bits defined similarly to PLCPgcc.

The main technique to reduce the size of lep values is the V-byte encoding [17], which
uses a variable number of bytes to store each value. The total size of such encoding can be
bounded by the following result.

» Lemma 6. The total number of bytes in the V-byte encoding of a sequence of < k non-
negative integers summing up to < s is al most

k+s/27 if s/k <27
% + (s — 27k)/25  if 27 < s/k <215 427
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Table 2 Working disk space (in bytes) during Steps 2(a) and (b) in EM-S® with partitioning.

i | ni/n q pairs lcp values PLCP, total
4.39 | 3.95n ni +qn/27 nin/g (4474 £ + &) n < 4.78n
1] 0.395 40.50 | 3.95n ni +qn/27 5n/q (43454 5 + 2)n < 4.83n
51..8551 | 3.95n 2, + A sn/g | (4744 5t — 235 4 ) n <
4.39 | 3.3n n1 + na2 + qn/2 LT (4154 g5 + &) n < 4.46n
200330 40.92 | 3.3n n1+na + qn/27 5n/q (4.025+ & +2)n < 4.8n
93.8264 | 3.3n 2(n +n2) + M=XGUE) 5 | (4754 o — 915 4 5)n <50
4.39 | 2.75n n+qn/2" mirle | (3.875+ % + &) n<4.19n
3] 0.275 40..127 | 2.75n n+ qn/2" 5n/q (375+ % +2)n<4.79n
128..8300 | 2.75n 2n 4 ans2n sn/g | (475+ s — 5 +2)n <5n

The output of Step 2(b) of EM-S® consists of the values PLCP[i] — PLCP}zo(i), which we
call lcp delta values. By Lemma 3, the sum of all n lcp delta values is at most gn, and thus
we can use Lemma 6 to bound the total size. The details are described in Section 5.2.

To take advantage of V-byte encoding in EM-SI, we make some modifications to it. First,
in Step 1(c), we write PLCP[i] instead of 2i + PLCP[i] to output and use V-byte encoding.
Since the total sum of irreducible lcp values is at most nlogn, we can again bound the total
size by Lemma 6. Instead of deleting the pairs (i, ®[i]) as soon as possible, we keep the i’s so
that we can compute 2i + PLCPJi] in Step 1(d). To be able to delete the ®[i]’s earlier, they
are stored in a different file than the i’s.!

The second modification to EM-SI is in Step 2, where we now construct and use a sparse
PLCP array PLCP,, that fits in RAM. In the output of Step 2(b) and input of Step 2(c), we
replace each value LCP[i] with the corresponding lcp delta value LCP[i] — PLCP};(SA[i]).
Then we can again use V-byte encoding and Lemma 6 to bound the total size of the lcp
values.

5.2 Partitioning

The main tool for reducing disk space usage is a technique called partitioning introduced
in [5]. Consider Step 2(a) in EM-S® that produces and stores up to n (j, k) pairs and then
Step 2(b) processes and deletes the pairs. The pairs need up to 10n bytes of temporary
disk space. To reduce the space, we divide the pairs into three parts of sizes n; = 0.395n,
ny = 0.33n and ng = 0.275n, and perform the Steps 2(a) and (b) for one part at a time.
Then the peak disk usage stays under 5n bytes at all times as detailed in Table 2. There is
an upper limit of 8264 on the value of ¢ but that is sufficient to fit PLCP, into RAM in all
practical scenarios. Furthermore, a larger ¢ or smaller disk usage can be achieved by using
more than three parts.

We also use partitioning in Step 1 of EM-SI. We perform the full step 1 except the setting
of reducible bits for one part at a time. That is, after processing one part, we will have, for
each irreducible ¢ processed in that part, the bit 2i + PLCP[¢] set in PLCPgyec and the bit ¢
set in R. Once all parts have been processed, we produce the final PLCPgy.. by setting the
reducible bits. With three parts of size at most n/3 each, the working disk space stays well
under 5n bytes.

! The separation of i’s and ®[4]’s into separate files helps with Step 1(b) too, because we need only i’s to
determine the irreducible positions.
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The disadvantage of partitioning is that it needs some additional I/O depending on
exactly how the partitioning is done. We have implemented two partitioning modes for
each algorithm and always choose the one that produces less additional I/O. The first mode
is called lex-partitioning and simply involves splitting SA into parts. When processing
a part, we only need to scan the relevant part of SA. However, then each pair of text
half-segments needs to be loaded into RAM once for each part. For large files, the loading of
the half-segments dominates the I/O, and thus we instead use the second partitioning mode
called text-partitioning. The items are partitioned according to which pair of half-segments
they belong to. Then most pairs of half-segments need to be loaded only once. On the other
hand, we then need to scan the full suffix array for each part, which makes it the slower
option for smaller files.

Finally, partitioning also happens in Steps 2(a)—(b) in EM-SI. Recall that earlier we
modified Step 2(b) to produce lcp delta values as output. In this case, we always perform
lex-partitioning into two parts of sizes n; = 0.58 and ny = 0.42. Then the working disk space
remains below 5n bytes when ¢ < 20000.

5.3 Final Steps

The final step of EM-S®, Step 2(c), performs two tasks: it reads the lep values from multiple
files and merges them into a single sequence, and it converts the lcp delta values into the
final lcp values. The in-place version separates the tasks, first merging in Step 2(c¢’), and
then converting in Step 2(c”). Since the total size of the V-byte encoded delta values is
always less than 2.5n bytes, the working disk space during merging stays below 5n bytes.
For conversion, the merged delta value file is split into multiple subfiles so that each subfile
can be deleted after it has been processed. The split points are decided adaptively during
merging so that the working disk space never exceeds 5n bytes. The first subfile can always
contain more than half the values. The following subfiles are smaller, and the last subfile is
small enough so that we can load it in RAM and delete it from disk before conversion.

The final step of EM-SI, Step 2(c), after the modification to use V-byte encoded delta
values, is essentially the same as the last step of EM-S®: merge and convert lcp delta values
into the final LCP array, and is implemented similarly.

6 Experimental Results

Algorithms. The starting point and the baseline in our experiments are the original C++
implementations of the EM-S® and EM-ST algorithms described in [4]. Both algorithms are
sequential, assume byte alphabet, and use more disk space than is needed for the output.
We modified these implementations in the following ways:
First, we parallelized the computation as described in Section 4. All basic parallelizations
were done using OpenMP, and for more non-trivial parallelizations we use threads and
synchronization mechanisms from the standard C++ library;
Second, we added the “in-place mode” to both algorithms that reduces the working disk
space to the space needed by the final LCP array as described in Section 5. We kept the
“out-of-place mode” in the implementation for cases, where speed is the priority;
Third, we modified the implementations to handle symbols of arbitrary size (that is a
multiple of byte). This is relatively straightforward, as both algorithms only perform
symbol comparisons, but our implementations are the first to explicitly support large-
alphabet external-memory construction of the LCP array.
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Table 3 Statistics of data used in the experiments; 1007 /n is the percentage of irreducible lcp
values among all lcp values (where r denotes the number of irreducible lcps) and X, /r is the average
length of the irreducible lcp value (where X, is the sum of all irreducible lcps). Smaller files in
experiments are prefixes of full test files. The input symbols are encoded using bytes for all files
except words, for which we use 32 bits per symbol.

Input n,/2%° |3 1007 /n X /r
kernel 128.0 229 0.09 1494.76
geo 128.1 211 0.15 1221.49
wiki 128.7 213 16.71 29.40
dna 128.0 6 18.46 23.79
debruijn 128.0 2 99.26 35.01
words 12.5 97002175 42.49 5.17

Each of the two algorithms has thus four variants: depending on whether it uses parallelism,
and whether it runs in the in-place mode. The implementations are capable of using arbitrary
types to represent integers and text symbols, but for simplicity in all experiments in this
section we use 40-bit integers. The implementations used in experiments (as well as datasets
described next) are available at http://www.cs.helsinki.fi/group/pads/.

Setup. We performed experiments on a machine equipped with two six-core 1.9 GHz Intel
Xeon E5-2420 CPUs (capable, via hyper-threading, of running 24 threads) with 15 MiB L3
cache and 120 GiB of DDR3 RAM. For experiments we limited the RAM in the system
to 4 GiB (with the kernel boot flag) and all algorithms were allowed to use 3.5 GiB in all
experiments. The machine had 6.8 TiB of free disk space striped with RAIDO across four
identical local disks achieving a (combined) transfer rate of about 480 MiB/s (read/write).
The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs were
compiled using g++ version 5.2.1 with -03 -march=native options. All reported runtimes
are wallclock (real) times. The machine had no other significant CPU tasks running and
for all sequential algorithms only a single thread of execution was used for computation (we
permit a constant number of extra threads as long as they do not perform computation, e.g.,
threads responsible for scheduling I/O requests are allowed). The parallel algorithms used
the full parallelism available on the machine (24 threads), unless explicitly stated otherwise.

Datasets. For the experiments we used the following files (see Table 3 for some statistics):
kernel: a concatenation of ~10.7 million source files from over 300 versions of Linux
kernel (see http://wuw.kernel.org/). This is an example of highly repetitive file;
geo: a concatenation of all versions (edit history) of Wikipedia articles about all countries
and 10 largest cities in the XML format. The resulting file is also highly repetitive;
wiki: a concatenation of wikipedia, w-source, w-books, w-news, w-quote, w-versity, and
w-voyage dumps dated 20160203 in XML (see http://dumps.wikimedia.org/);
dna: a collection of DNA reads from multiple human genomes filtered from symbols other
than {A,C,G,T,N} and newline (see http://www.1000genomes.org/);
debruijn: a binary De Bruijn sequence of order k is an artificial sequence of length
2% + k — 1 than contains all possible binary k-length substrings. It contains nearly n
irreducible lcps (see [9, Lemma 5]) which is the worst case for EM-ST;
words: a collection of natural language text parsed into words and converted into 4-byte
integers, see http://www.statmt.org/wmt16/translation-task.html.


http://www.cs.helsinki.fi/group/pads/
http://www.kernel.org/
http://dumps.wikimedia.org/
http://www.1000genomes.org/
http://www.statmt.org/wmt16/translation-task.html
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Figure 1 Scalability of the parallel algorithms compared to their sequential versions.

Parallel Algorithms. In the first experiment, we compare the parallel versions of the
algorithms studied in this paper with their sequential versions. We executed the algorithms
on increasing length prefixes of all testfiles and measured the runtime. For now we use all
algorithms in the basic out-of-place mode. The results are given in Figure 1.

The parallel version of EM-S® achieves a significant speedup across all prefix sizes and
input types. This is caused by the fact, that the algorithm performs a lot of random accesses
to @, in Step 1 and PLCP,, in Steps 2(a) and 2(c), making them strongly compute-bound.
The parallelization helps even in Step 2(b), since most of the lcp comparisons are short which
prevents OS from effective cache prefetching. The average speedup across all input types
varies from 46% for 4 GiB inputs to 32% for full testfiles.

The speedup for EM-SI is notably smaller, since its sequential version is already largely
I/O-bound. While for non-repetitive inputs the algorithm achieves a speedup of about 10%,
for highly repetitive data (kernel, geo), the speedup is negligible, particularly for large text.

In the second experiment, we focus on the parallel version of EM-S®, as it benefits more
from parallelism than EM-SI. We executed the algorithm on the largest instances of two
testfiles (wiki and geo serving as examples of non-repetitive and highly-repetitive input)
using different number of threads (we point out here, that the sequential version and parallel
version running on a single thread are not the same implementation as the purely sequential
version can avoid certain computations), and measured the runtime. As seen in Figure 2,
the maximum speedup is already achieved with about 8 threads. At this point the algorithm
becomes essentially I/O-bound.

In-Place Algorithms. In the next experiment we study the in-place variants of the algorithms
described in Section 5. The in-place mode increases the I/O in both algorithms mostly due
to additional scans of SA. The change in I/O volume is, however, not significant, hence for
brevity we do not report I/O volume in this section. To study the effect on runtime, we
executed the algorithms both in the in-place and the out-of-place mode on different prefixes
of testfiles, and measured the runtime and disk space usage (to measure disk usage we used
our own script but as a sanity check we ran a preliminary set of experiments in the in-place
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Figure 2 Left: Normalized runtime of the parallel version of EM-S® on the prefixes of length
n =128 x 23°. Right: Normalized runtime vs. disk space usage of the parallel algorithms in the in-
place mode compared to the basic (out-of-place) mode. The three dots of each color/shape correspond
to text prefixes of sizes 4, 16, and 64 GiB, which for the words file means n € {239,232 234},

Table 4 Comparison of two approaches to LCP array construction for large-alphabet inputs.

Algorithm Time [ ot ] Disk space [ bytes } I/0 volume [ bytes }

symbol symbol symbol
EM-S® native 0.41 8.43 137.25
EM-S® byte-based 1.00 34.07 254.12
EM-SI native 0.38 5.53 116.78
EM-SI byte-based 1.08 21.94 259.56

mode using a setup, where the available disk space is only negligibly larger than the output
LCP array). For simplicity, we present the results for parallel versions but they were very
similar on sequential versions. The results are given in Figure 2. We point out that due
to the simultanous disk space measurement, these runs are slightly slower and thus not
comparable to Figure 1, but the relative runtimes remain the same.

The slowdown of the in-place mode compared to basic versions is very moderate. The
maximum slowdown for EM-S® was about 36% (but in most cases much smaller), and the
maximum slowdown for EM-SI was about 17%. The working disk space usage in some cases,
particularly for non-repetitive inputs, is reduced by more than a factor of two.

Large Alphabet. Suppose that the input string consists of symbols drawn from a large
alphabet such that each symbol requires more than one byte. To compute the LCP array
for such strings we can take one of two approaches. First, we can use an algorithm that
natively supports large alphabet, and we have modified our implementations to provide such
support. A recently published implementation of EM scalable and space-efficient suffix array
construction provides a large-alphabet support, complementing this approach [8].

An alternative method is to first split each symbol into a group of symbols over byte
alphabet. One can then apply a byte-based suffix sorter to compute the suffix array, then run
a byte-based LCP array construction, and then compute and select the final subset of LCP
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values in the postprocessing stage (which requires one scan of SA and LCP). A drawback of
this approach is that reducing the alphabet increases the length of the string. For example,
if the symbols of the original string of length n were encoded using 32-bit integers and we
wish to obtain a string over byte alphabet, the resulting string has length 4n.

To compare the two approaches in practice we used the parallel versions of the two
algorithms studied in this paper in the basic (out-of-place) mode. We executed each
algorithm on the prefix of the words testfile of length n = 12.5 x 230 (with each symbol
encoded using four bytes), first using the native large-alphabet mode, and then assuming
the input is over byte alphabet, and compared the resources needed by the two approaches.
We exclude the resources needed to compute the suffix array of the byte-interpreted input
(needed in the second approach), as well as the postprocessing of the LCP array. The results,
scaled with respect to the large-alphabet string, are reported in Table 4. Using the algorithm
that natively supports large alphabet is about 2.5 x faster, uses half of the I/O volume, and
requires about 4 x less working disk space. The overall disk usage (i.e., including input)
of the native mode is even smaller, because the SA of the large-alphabet text is four times
smaller than the SA of the byte-intepreted text.
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