
Optimal Computation of Overabundant Words
Yannis Almirantis1, Panagiotis Charalampopoulos2, Jia Gao3,
Costas S. Iliopoulos4, Manal Mohamed5, Solon P. Pissis6, and
Dimitris Polychronopoulos7

1 National Center for Scientific Research Demokritos, Athens, Greece
yalmir@bio.demokritos.gr

2 Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

3 Department of Informatics, King’s College London, London, UK
jia.gao@kcl.ac.uk

4 Department of Informatics, King’s College London, London, UK
costas.iliopoulos@kcl.ac.uk

5 Department of Informatics, King’s College London, London, UK
manal.mohamed@kcl.ac.uk

6 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

7 Computational Regulatory Genomics Group, MRC London Institute of
Medical Sciences, Imperial College London, Hammersmith Hospital Campus,
London, UK
dpolychr@imperial.ac.uk

Abstract
The observed frequency of the longest proper prefix, the longest proper suffix, and the longest
infix of a word w in a given sequence x can be used for classifying w as avoided or overabundant.
The definitions used for the expectation and deviation of w in this statistical model were described
and biologically justified by Brendel et al. (J Biomol Struct Dyn 1986). We have very recently
introduced a time-optimal algorithm for computing all avoided words of a given sequence over an
integer alphabet (Algorithms Mol Biol 2017). In this article, we extend this study by presenting
an O(n)-time and O(n)-space algorithm for computing all overabundant words in a sequence x of
length n over an integer alphabet. Our main result is based on a new non-trivial combinatorial
property of the suffix tree T of x: the number of distinct factors of x whose longest infix is the
label of an explicit node of T is no more than 3n−4. We further show that the presented algorithm
is time-optimal by proving that O(n) is a tight upper bound for the number of overabundant
words. Finally, we present experimental results, using both synthetic and real data, which justify
the effectiveness and efficiency of our approach in practical terms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases overabundant words, avoided words, suffix tree, DNA sequence analysis

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.4

1 Introduction

Brendel et al. in [6] initiated research into the linguistics of nucleotide sequences that focused
on the concept of words in continuous languages – languages devoid of blanks – and introduced
an operational definition of words. The authors suggested a method to measure, for each
possible word w of length k, the deviation of its observed frequency f(w) from the expected
frequency E(w) in a given sequence x. The observed frequency of the longest proper prefix,

© Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal Mohamed,
Solon P. Pissis, and Dimitris Polychronopoulos;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Optimal Computation of Overabundant Words

the longest proper suffix, and the longest infix of w in x were used to measure E(w). The
values of the deviation, denoted by dev(w), were then used to identify words that are avoided
or overabundant among all possible words of length k. The typical length of avoided (or
of overabundant) words of the nucleotide language was found to range from 3 to 5 (tri- to
pentamers). The statistical significance of the avoided words was shown to reflect their
biological importance. That work, however, was based on the very limited sequence data
available at the time: only DNA sequences from two viral and one bacterial genomes were
considered. Also note that the range of typical word length k might change when considering
eukaryotic genomes, the complex dynamics and function of which are expected to impose
more demanding roles to avoided or overabundant words of nucleotides.

To this end, in [1], we presented an O(n)-time and O(n)-space algorithm for computing
all avoided words of length k in a sequence of length n over a fixed-sized alphabet. For words
over an integer alphabet of size σ, the algorithm requires time O(σn), which is optimal for
sufficiently large σ. We also presented a time-optimal O(σn)-time algorithm to compute
all avoided words (of any length) in a sequence of length n over an integer alphabet of size
σ. We provided a tight asymptotic upper bound for the number of avoided words over an
integer alphabet and the expected length of the longest one. We also proved that the same
asymptotic upper bound is tight for the number of avoided words of fixed length k when the
alphabet is sufficiently large. The authors in [3, 2, 4] studied a similar notion of unusual words
– based on different definitions than the ones Brendel et al. use for expectation and deviation
– focusing on the factors of a sequence; based on Brendel et al.’s definitions, we focus on any
word over the alphabet. More recently, space-efficient detection of unusual words has also
been considered [5]; such avoidances is becoming an interesting line of research [18].

In this article, we wish to complement our study in [1] by focusing on overabundant
words. The motivation comes from molecular biology. Genome dynamics, i.e. the molecular
mechanisms generating random mutations in the evolving genome, are quite complex, often
presenting self-enhancing features. Thus, it is expected to often give rise to words of
nucleotides which will be overabundant, i.e. being present at higher amounts than expected
on the basis of their longest proper prefix, longest proper suffix, and longest infix frequencies.
One specific such mechanism, which might generate overabundant words, is the following: it
is well-known that in a genomic sequence of an initially random composition, the existing
relatively long homonucleotide tracts present a higher frequency of further elongation than
the frequency expected on the basis of single nucleotide mutations [15]; that is, they present
a sort of autocatalytic self-elongation. This feature, in combination with the much higher
frequency of transition vs. transversion mutation events, generates overabundant words which
are homopurinic or homopurimidinic tracts. It is also anticipated that the overabundance
of homonucleotide tracts will strongly differentiate between conserved and non-conserved
parts of the genome. While this phenomenon is largely free to act within the non-conserved
genomic regions, and thus it is expected to generate there large amounts of overabundant
words, it is hindered in the conserved genomic regions due to selective constraints.

Our Contributions. Analogously to avoided words [6, 11, 1], many different models and
algorithms exist for identifying words that are in abundance in a given sequence; see for
instance [7, 9]. In this article, we make use of the biologically justified model introduced
by Brendel et al. [6] and, by proving non-trivial combinatorial properties, we show that it
admits efficient computation for overabundant words as well. We also present experimental
results, using both synthetic and real data, which further highlight the effectiveness of this
model. The computational problem can be described as follows. Given a sequence x of length

Y.Almirantis et al. 4:3

n and a real number ρ > 0, compute the set of ρ-overabundant words, i.e. all words w for
which dev(w) ≥ ρ. We present an O(n)-time and O(n)-space algorithm for computing all
ρ-overabundant words (of any length) in a sequence x of length n over an integer alphabet.
This result is based on a combinatorial property of the suffix tree T of x that we prove here:
the number of distinct factors of x whose longest infix is the label of an explicit node of T
is no more than 3n− 4. We further show that the presented algorithm is time-optimal by
proving that O(n) is a tight upper bound for the number of ρ-overabundant words. Finally,
we pose an open question of combinatorial nature on the maximum number OW(n, σ) of
overabundant words that a sequence of length n over an alphabet of size σ > 1 can contain.

2 Terminology and Technical Background

2.1 Definitions and Notation
We begin with basic definitions and notation, generally following [8]. Let x = x[0]x[1] . . . x[n−
1] be a word of length n = |x| over a finite ordered alphabet Σ of size σ, i.e. σ = |Σ|. In
particular, we consider the case of an integer alphabet; in this case each letter is replaced by
its rank such that the resulting word consists of integers in the range {1, . . . , n}. In what
follows we assume without loss of generality that Σ = {0, 1, . . . , σ − 1}. We also define Σx

to be the alphabet of word x and σx = |Σx|. For two positions i and j on x, we denote by
x[i . . j] = x[i] . . . x[j] the factor (sometimes called subword) of x that starts at position i and
ends at position j (it is empty if j < i), and by ε the empty word, word of length 0. We
recall that a prefix of x is a factor that starts at position 0 (x[0 . . j]) and a suffix is a factor
that ends at position n− 1 (x[i . . n− 1]), and that a factor of x is a proper factor if it is not
x itself. A factor of x that is neither a prefix nor a suffix of x is called an infix of x. We
denote the reverse word of x by rev(x), i.e. rev(x) = x[n− 1]x[n− 2] . . . x[1]x[0]. We say that
x is a power of a word y if there exists a positive integer k, k > 1, such that x is expressed
as k consecutive concatenations of y; we denote that by x = yk.

Let w = w[0]w[1] . . . w[m − 1] be a word, 0 < m ≤ n. We say that there exists an
occurrence of w in x, or, more simply, that w occurs in x, if w is a factor of x, which we
denote by w � x. Every occurrence of w can be characterised by a starting position in x.
Thus we say that w occurs at position i in x when w = x[i . . i+m− 1]. Further, let f(w)
denote the observed frequency, that is, the number of occurrences of a non-empty word w in
word x. If f(w) = 0 for some word w, then w is called absent (which is denoted by w 6� x),
otherwise, w is called occurring.

By f(wp), f(ws), and f(wi) we denote the observed frequency of the longest proper prefix
wp, suffix ws, and infix wi of w in x, respectively. We can now define the expected frequency
of word w, |w| > 2, in x as in Brendel et al. [6]:

E(w) = f(wp)× f(ws)
f(wi)

, if f(wi) > 0; else E(w) = 0. (1)

The above definition can be explained intuitively as follows. Suppose we are given f(wp),
f(ws), and f(wi). Given an occurrence of wi in x, the probability of it being preceded by
w[0] is f(wp)

f(wi) as w[0] precedes exactly f(wp) of the f(wi) occurrences of wi. Similarly, this
occurrence of wi is also an occurrence of ws with probability f(ws)

f(wi) . Although these two
events are not always independent, the product f(wp)

f(wi) ×
f(ws)
f(wi) gives a good approximation of

the probability that an occurrence of wi at position j implies an occurrence of w at position
j − 1. It can be seen then that by multiplying this product by the number of occurrences of
wi we get the above formula for the expected frequency of w.

WABI 2017

4:4 Optimal Computation of Overabundant Words

O(σn) O((σn)2) O(n)

ρ1 ρ2
dev(w)

number of words

Figure 1 For a word x, the words for which dev(w) is defined are the ones of the form w = aub,
where u is a factor of x and a, b ∈ Σ, not necessarily distinct. There are O(n2) distinct factors in a
word of length n and for each of these we obtain σ2 words of this form. We have shown that the
ρ1-avoided words are O(σn) [1]. In this article, we show that the ρ2-overabundant ones are O(n).

Moreover, to measure the deviation of the observed frequency of a word w from its expected
frequency in x, we define the deviation (χ2 test) of w as:

dev(w) = f(w)− E(w)
max{

√
E(w), 1}

. (2)

For more details on the biological justification of these definitions see [6] and [1].
Using the above definitions and two given thresholds, we can classify a word w as either

avoided, common, or overabundant in x. In particular, for two given thresholds ρ1 < 0 and
ρ2 > 0, a word w is called ρ1-avoided if dev(w) ≤ ρ1, ρ2-overabundant if dev(w) ≥ ρ2, and
(ρ1, ρ2)-common otherwise (see Figure 1). We have very recently shown that the number of
ρ1-avoided words is O(σn), and have introduced a time-optimal algorithm for computing all
of them in a given sequence over an integer alphabet [1]. In this article, we show that the
number of ρ2-overabundant words is O(n), and study the following computational problem.

AllOverabundantWordsComputation
Input: A word x of length n and a real number ρ > 0
Output: All ρ-overabundant words in x

2.2 Suffix Trees
In our algorithms, suffix trees are used extensively as computational tools. For a general
introduction to suffix trees see [8].

The suffix tree T (x) of a non-empty word x of length n is a compact trie representing all
suffixes of x. The nodes of the trie which become nodes of the suffix tree are called explicit
nodes, while the other nodes are called implicit. Each edge of the suffix tree can be viewed
as an upward maximal path of implicit nodes starting with an explicit node. Moreover, each
node belongs to a unique path of that kind. Then, each node of the trie can be represented
in the suffix tree by the edge it belongs to and an index within the corresponding path.

We use L(v) to denote the path-label of a node v, i.e., the concatenation of the edge
labels along the path from the root to v. We say that v is path-labelled L(v). Additionally,
D(v) = |L(v)| is used to denote the word-depth of node v. Node v is a terminal node if and
only if L(v) = x[i . . n− 1], 0 ≤ i < n; here v is also labelled with index i. It should be clear
that each occurring word w in x is uniquely represented by either an explicit or an implicit

Y.Almirantis et al. 4:5

node of T (x). The suffix-link of a node v with path-label L(v) = αy is a pointer to the node
path-labelled y, where α ∈ Σ is a single letter and y is a word. The suffix-link of v exists if v
is a non-root internal node of T (x).

In any standard implementation of the suffix tree, we assume that each node of the suffix
tree is able to access its parent. Note that once T (x) is constructed, it can be traversed in a
depth-first manner to compute the word-depth D(v) for each node v. Let u be the parent of
v. Then the word-depth D(v) is computed by adding D(u) to the length of the label of edge
(u, v). If v is the root then D(v) = 0. Additionally, a depth-first traversal of T (x) allows us
to count, for each node v, the number of terminal nodes in the subtree rooted at v, denoted
by C(v), as follows. When internal node v is visited, C(v) is computed by adding up C(u) of
all the nodes u, such that u is a child of v, and then C(v) is incremented by 1 if v itself is a
terminal node. If a node v is a leaf then C(v) = 1.

We assume that the terminal nodes of T (x) have suffix-links as well. We can either store
them while building T (x) or just traverse it once and construct an array node[0 . . n− 1] such
that node[i] = v if L(v) = x[i . . n − 1]. We further denote by Parent(v) the parent of a
node v in T (x) and by Child(v, α) the explicit node that is obtained from v by traversing
the outgoing edge whose label starts with α ∈ Σ. A batch of q Child(v, α) queries can be
answered off-line in time O(n+ q) for a word x over an integer alphabet (via radix sort).

3 Combinatorial Properties

In this section, we prove some properties that are useful for designing the time-optimal
algorithm presented in the next section.

I Fact 1. Given a word x of length n over an alphabet of size σ, the number of words w for
which dev(w) is defined is O((σn)2).

Proof. For a word w over Σ, dev(w) is only defined if wi � x. Hence the words w for which
dev(w) is defined are of the form aub for some non-empty u � x and a, b ∈ Σ. For each
distinct factor u 6= ε of x there are σ2 words of the form aub, a, b ∈ Σ. Since there are O(n2)
distinct factors in a word of length n, the fact follows. J

I Fact 2. Every word w that does not occur in x and for which dev(w) is defined has
dev(w) ≤ 0.

Proof. For such a word we have that E(w) ≥ 0 and that f(w) = 0 and hence dev(w) =
f(w)−E(w)

max{
√

E(w),1}
≤ 0. J

Naïve algorithm. By using Fact 2, we can compute dev(w), for each factor w of x, thus
solving Problem AllOverabundantWordsComputation. There are O(n2) such factors,
however, which make this computation inefficient.

I Fact 3. Given a factor w of a word x, if wi corresponds to an implicit node in the suffix
tree T (x), then so does wp.

Proof. A factor w′ of x corresponds to an implicit node T (x) if and only if every occurrence
of it in x is followed by the same unique letter b ∈ Σ. Hence, since wp = awi for some a ∈ Σ,
if wi is always followed by, say, b ∈ Σ, every occurrence of wp in x must also always be
followed by b. Thus wp corresponds to an implicit node as well. J

I Lemma 4. If w is a factor of a word x and wi corresponds to an implicit node in T (x),
then dev(w) = 0.

WABI 2017

4:6 Optimal Computation of Overabundant Words

Proof. If a word w′ � x corresponds to an implicit node along the edge (u, v) in T (x) and
L(v) = w then the number of occurrences of w′ in x is equal to that of w.

If wi corresponds to an implicit node on edge (u, v) it follows immediately that f(wi) =
f(ws), as either ws also corresponds to an implicit node in the same edge or ws = L(v). In
addition, from Fact 3 we have that wp is an implicit node as well and it similarly follows
that f(wp) = f(w). We thus have E(w) = f(wp)×f(ws)

f(wi) = f(w) and hence dev(w) =
f(w)−E(w)

max{
√

E(w),1}
= 0. J

Based on these properties, the aim of the algorithm in the next section is to find the factors
of x whose longest infix corresponds to an explicit node and check if they are ρ-overabundant.
More specifically, for each explicit node v in T (x), such that L(v) = y, we aim at identifying
the factors of x that have y as their longest infix (i.e. factors of the form ayb, a, b ∈ Σ).
We will do that by identifying the factors of x that have y as their longest proper suffix
(i.e. factors of the form ay, a ∈ Σ) and then checking for each of these the different letters that
succeed it in x. Then we can check in time O(1) if each of these words is ρ-overabundant.

Note that the algorithm presented in Section 4 is fundamentally different and in a sense
more involved than the one presented in [1] for the computation of occurring ρ-avoided
words (note that a ρ-avoided word can be absent). This is due to the fact that for occurring
ρ-avoided words we have the stronger property that wp must correspond to an explicit node.

I Theorem 5. Given a word x of length n, the number of distinct factors of x of the form
ayb, where a, b ∈ Σ and y 6= ε is the label of an explicit node of T (x), is no more than
3n− 2− 2σx.

Proof. Let S be the set of all explicit or implicit nodes in T (x) of the form yb such that y is
represented by an explicit node other than the root. We have at most 2n− 2− σx of them;
there are at most 2n − 2 edges in T (x), but σx of them are outgoing from the root. For
such a word yb, the number of factors of x of the form ayb is equal to the degree of the node
representing rev(yb) in T (rev(x)).

For every node in S, we obtain a distinct node in T (rev(x)). Let us suppose that k1 of
these nodes are non-root internal explicit nodes, k2 are leaves, and the rest 2n−2−σx−k1−k2
are implicit nodes. Each internal explicit node u contributes at most deg(u) factors, where
deg(u) is the number of outgoing edges of node u, each leaf contributes 0 factors, and each
implicit node contributes at most 1 factor.

Hence the number of such factors would be maximised if we obtained all the non-root
internal explicit nodes and no leaves in T (rev(x)). Let T (rev(x)) have m non-root internal
explicit nodes. The resulting upper bound then is

∑
u∈T (rev(x))\{root} deg(u) + (2n− 2−σx−

m) ≤ n+m− σx + (2n− 2− σx −m) = 3n− 2− 2σx.
Note that

∑
u∈T (rev(x))\{root} deg(u) ≤ n+m− σx since there are at most n edges from

explicit internal nodes to leaves and m edges to other internal nodes; σx of these are outgoing
from the root. J

I Corollary 6. The ρ-overabundant words in a word x of length n are at most 3n− 2− 2σx.

Proof. By Fact 2, Lemma 4, and symmetry, it follows that the ρ-overabundant words in x
are factors of x of the form ayb, where a, b ∈ Σ, such that y 6= ε is represented by an explicit
node in T (x) and rev(y) represented by an explicit node in T (rev(x)). Hence they are a
subset of the set of words considered in Theorem 5. J

I Lemma 7. The ρ-overabundant words in a word x of length n over a binary alphabet
(e.g. Σ = {a, b}) are no more than 2n− 4.

Y.Almirantis et al. 4:7

Proof. For every internal explicit node u of T (x), other than the root, let deg′(u) be deg(u)+1
if node u is terminal and deg(u) otherwise. The sum of deg′(u) over the internal explicit
non-root nodes of T (x) is no more than 2n− 4 (ignoring the case when x = αn, α ∈ Σ). We
will show that, for each such node, the ρ-overabundant words with wi = L(u) as their longest
proper infix are at most deg′(u).

Case I: deg′(u) = 2.
Subcase 1: deg(u) = 1. Node u is terminal and it has an edge with label α. We can
then have at most 2 ρ-overabundant words with wi as their longest proper infix: awiα

and bwiα.
Subcase 2: deg(u) = 2. Node u is not terminal and it has an edge with label a and an
edge with label b. If only one of awi and bwi occurs in x we are done. If both of them
occur in x we argue as follows (irrespective of whether wi is also a prefix of x):
If awia is ρ-overabundant, then
f(awia)− f(awi)× f(wia)/f(wi) ≥ ρ > 0⇒ f(awia)/f(awi) > f(wia)/f(wi)⇔ 1−
f(awia)/f(awi) < 1−f(wia)/f(wi)⇔ f(awib)/f(awi) < f(wib)/f(wi)⇔ f(awib)−
f(awi)× f(wib)/f(wi) < 0
and hence awib is not ρ-overabundant. (Similarly for bwia and bwib.)

Case II: deg′(u) = 3. Node u is terminal and it has an edge with label a and an edge
with label b. If only one of awi and bwi occurs in x or if both of them occur in x, but wi

is not a prefix of x, we can have at most 2 ρ-overabundant words with wi as the proper
longest infix; this can be seen by looking at the node representing rev(wi) in T (rev(x)),
which falls in Case I.
So we only have to consider the case where both awi and bwi occur in x and wi is a
prefix of x. For this case, we assume without loss of generality that awi is a suffix of x.
If awia is ρ-overabundant, then
f(awia) − f(awi) × f(wia)/f(wi) ≥ ρ > 0 ⇒ f(awia)/f(awi) > f(wia)/f(wi) ⇔
1−f(awia)/f(awi) < 1−f(wia)/f(wi)⇔ (f(awib)+1)/f(awi) < (f(wib)+1)/f(wi)⇒
f(awib)/f(awi) < (f(wib)/f(wi)⇔ f(awib)− f(awi)× f(wib)/f(wi) < 0
and hence awib is not ρ-overabundant. Thus in this case we can have at most 3 = deg′(u)
ρ-overabundant words.

We can thus have at most deg′(u) ρ-overabundant words for each internal explicit non-root
node of T (x). This concludes the proof. J

I Lemma 8. The ρ-overabundant words in a word of length n are O(n) and this bound is
tight. There exists a word over the binary alphabet with 2n− 6 ρ-overabundant words.

Proof. The asymptotic bound follows directly from Corollary 6. The tightness of the
asymptotic bound can be seen by considering word x = ban−2b, a, b ∈ Σ, of length n and
some ρ such that 0 < ρ < 1/n. Then for every prefix w of x of the form bak and for
every suffix w′ of x of the form akb, 2 ≤ k ≤ n − 2, we have that f(wp) = f(w′s) = 1,
f(ws) = f(w′p) = n − k − 1, and f(wi) = f(w′i) = n − k. Hence for any w we have
dev(w) = 1 − 1×(n−k−1)

n−k = 1
n−k > ρ. For instance, for w = ban−2, we have dev(w) = 1/2.

There are 2n−6 = Ω(n) such factors and hence at least these many ρ-overabundant words. J

I Corollary 9. The (ρ1, ρ2)-common words in a word of length n over an alphabet of size σ
are O((σn)2).

Proof. By Fact 1 we know that dev(w) is defined for O((σn)2) words. The ρ1-avoided ones
are O(σn) [1], while the ρ2-overabundant are O(n) by Corollary 6. Hence the (ρ1, ρ2)-common
words are O((σn)2). J

WABI 2017

4:8 Optimal Computation of Overabundant Words

node v u = suffix-link[v]

q = Child(v, α) z = suffix-link[q]

node v u = suffix-link[v]

q = Child(v, α), label[q] = i label[z] = i+ 1

Figure 2 The above figures illustrate the nodes (implicit or explicit) considered in a step (lines
6–37) of Algorithm 1. The figure on the left presents the case where Child(v, α) is an internal node,
while the right one the case that it is a leaf. Black nodes represent implicit nodes along the edge
(v, q) that we have to consider as potential wp, and the red dotted line joins them with the respective
(white) explicit node that represents the longest suffix of this wp, i.e. wi.

4 Algorithm

Based on Fact 2 and Lemma 4 all ρ-overabundant words of a word x are factors of x of the
form ayb, where a, b ∈ Σ and y is the label of an explicit node of T (x). It thus suffices to
consider these words and check for each of them whether it is ρ-overabundant. We can find
the ones that have their longest proper prefix represented by an explicit node in T (x) easily,
by taking the suffix-link from that node during a traversal of the tree. To find the ones that
have their longest proper prefix represented by an implicit node we use the following fact,
which follows directly from the definition of the suffix-links of the suffix tree.

I Fact 10. Suppose aw, where a ∈ Σ and w ∈ Σ∗, is a factor of a word x and that w is
represented by an explicit node v in T (x), while aw by an implicit node along the edge (u1, u2)
in T (x). The suffix-link from u2 points to a node in the subtree of T (x) rooted at v.

The algorithm first builds the suffix tree of word x, which can be done in time and space
O(n) for words over an integer alphabet [10]. It is also easy to compute D(v) and C(v), for
each node v of T (x), within the same time complexity (lines 2–5 in Algorithm 1).

The algorithm then performs a traversal of T (x). When it first reaches a node v, it
considers L(v) as a potential longest proper prefix of ρ-overabundant words – i.e. L(v) = wp =
awi, where a ∈ Σ. By following the suffix-link to node u, which represents the respective wi,
and based on the first letter of the label of each outgoing edge (v, q) from v, it computes
the deviation for all possible factors of x of the form wpb, where b ∈ Σ. (Note that we can
answer all the Child(u, α) queries off-line in time O(n) in total for integer alphabets.) It is
clear that this procedure can be implemented in time O(n) in total (lines 7–19).

Then, while on node v and based on Fact 10, the algorithm considers for every outgoing
edge (v, q), the implicit nodes along this edge that correspond to words (potential wp’s)
whose proper longest suffix (the respective wi) is represented by an explicit node in T (x).

Hence, when D(q)−D(v) > 1 the algorithm follows the suffix-link from node q to node z.
It then checks whether Parent(z) = u. If not, then the word L(q)[0 . .D(Parent(z))] is
represented by an implicit node along the edge (v, q) and hence L(q)[0 . .D(Parent(z)) + 1]
has to be checked as a potential ρ-overabundant word. After the check is completed, the
algorithm sets z = Parent(z) and iterates until Parent(z) = u. This is illustrated in

Y.Almirantis et al. 4:9

Algorithm 1 Compute all ρ-overabundant words
1: procedure ComputeOverabundantWords(word x, real number ρ)
2: T (x)← BuildSuffixTree(x)
3: for each node v ∈ T (x) do
4: D(v)← word-depth of v
5: C(v)← number of terminal nodes in the subtree rooted at v
6: for each node v ∈ T (x) do . prefix node
7: . Report ρ-overabundant words w such that wp is explicit
8: u← suffix-link[v] . infix node
9: if D(v) > 1 and IsInternal(v) then
10: fp ← C(v), fi ← C(u)
11: if fi > fp and u 6= Root(T (x)) then
12: for each child y of node v do
13: if not(IsTerminal(y) and D(y) = D(v) + 1) then
14: fw ← C(y)
15: α← L(y)[D(v) + 1]
16: fs ← C(Child(u, α))
17: E ← fp × fs/fi

18: if (fw − E)/(max{1,
√
E}) ≥ ρ then

19: Report(L(y)[0 . .D(v)])
20: . Report ρ-overabundant words w such that wp is implicit
21: for each child y of node v do
22: if D(y) > D(v) + 1 then
23: if IsInternal(y) then
24: z ← suffix-link[y]
25: else . y is a terminal node
26: i← label[y]
27: z ← node[i+ 1]
28: if D(z) = D(Parent(z)) + 1 then
29: z ← Parent(z)
30: fw ← fp ← C(y)
31: while Parent(z) 6= u do
32: fi ← C(Parent(z))
33: fs ← C(z)
34: E ← fp × fs/fi

35: if (fw − E)/(max{1,
√
E}) ≥ ρ then

36: Report(L(y)[0 . .D(Parent(z)) + 1])
37: z ← Parent(z)

Figure 2. By Theorem 5, the Parent(z) = u check will fail O(n) times in total. All other
operations take time O(1) and hence this procedure takes time O(n) in total (lines 20–37).

We formalise this procedure in Algorithm 1, where we assume that the suffix tree of x$ is
built, where $ is a special letter, $ /∈ Σ. This forces all terminal nodes in T (x) to be leaf
nodes. We thus obtain the following result; optimality follows directly from Lemma 8.

I Theorem 11. Algorithm 1 solves problem AllOverabundantWordsComputation in
time and space O(n), and this is time-optimal.

5 Experimental Results: Effectiveness, Efficiency, and Applications

Algorithm 1 was implemented as a program to compute the ρ-overabundant words in
one or more input sequences. The program was implemented in the C++ programming

WABI 2017

4:10 Optimal Computation of Overabundant Words

Table 1 The deviation of the randomly generated inserted word w, as well as the word wmax

with the maximum deviation. The length of each of the 25 randomly generated sequences over
Σ = {A, C, G, T} was n = 80, 000, the length of w was m = 6, and ρ = 0.000001. In green are the
cases when the word with the maximum deviation was w itself or one of its factors.

Times t of inserting w 20 40 80 160 320
w TTACAA GTGCCC CACTTT AGTTAC AAACAG

dev(w) 2.233313 4.143015 5.623615 6.010327 5.674220
wmax CTCCTATG GTGCCC CACTTT AGTTA ACAG

dev(wmax) 3.354102 4.143015 5.623615 6.900740 9.617803
w AATCTG AGTCGA GAAGTC TATCTT CAAAAA

dev(w) 2.034233 2.888529 4.456468 5.073860 11.071170
wmax ATTGGGG TCTGTATG GAAGTC ATCTT CAAAAA

dev(wmax) 3.265609 3.272727 4.456468 6.115612 11.071170
w GTACCA GGCGTG AAGGAT GGGTCC TTCCGG

dev(w) 2.187170 3.658060 4.428189 5.467296 5.256409
wmax TCTGTGCG ACGATACC AAGGAT GGTCC TTCCG

dev(wmax) 3.548977 4.000000 4.428189 6.787771 9.105009
w CCATAG GTTGAT TGAGCG ACATTT CTTGTA

dev(w) 2.470681 2.467858 4.214544 5.755475 5.362435
wmax CAGTGGTC TTTTCCT TGAGC ACATT TTGTA

dev(wmax) 3.333333 3.368226 5.072968 6.376277 9.467110
w TCGACA CGCTTT TACAAC TATTAG TGAGAT

dev(w) 1.531083 2.789220 3.552902 4.959926 5.124976
wmax CTTTGCT ATTACC ACAAC ATTAG GACAT

dev(wmax) 3.308195 3.322163 5.653479 6.837628 10.012316

language and developed under GNU/Linux operating system. Our program makes use of
the implementation of the compressed suffix tree available in the Succinct Data Structure
Library [12]. The input parameters are a (Multi)FASTA file with the input sequence(s) and
a real number ρ > 0. The output is a file with the set of ρ-overabundant words per input
sequence. The implementation is distributed under the GNU General Public License, and
it is available at http://github.com/solonas13/aw. The experiments were conducted on
a Desktop PC using one core of Intel Core i5-4690 CPU at 3.50GHz under GNU/Linux.
The program was compiled with g++ version 4.8.4 at optimisation level 3 (-O3). We also
implemented a brute-force approach to confirm the correctness of our implementation. Here
we do not plot the results of the brute-force approach as it is easily understood that it is
orders of magnitude slower than our linear-time approach.

Experiment I (Effectiveness). In the first experiment, our task was to establish the ef-
fectiveness of the statistical model in identifying overabundant words. To this end, we
generated 25 random sequences of length n = 80, 000 over the DNA alphabet Σ = {A, C, G, T}
(uniform distribution). Then for each of these sequences, we inserted a random word w of
length m = 6 in t random positions. We varied the value of t based on the fact that in a
random sequence of length n over an alphabet of size σ = |Σ|, where letters are independent,
identically uniformly distributed random variables, a specific word of length m is expected
to occur roughly r = n/σm times. We hence considered t equal to r, 2r, 4r, 8r, and 16r. We
then ran our program for each resulting sequence to identify the ρ-overabundant words with

http://github.com/solonas13/aw

Y.Almirantis et al. 4:11

 0

 500

 1000

 1500

 2000

 2x107 4x107 6x107 8x107 1x108 1.2x108

T
im

e
 [
s]

Length n

DNA
Proteins

Figure 3 Elapsed time of Algorithm 1 using synthetic DNA (σ = 4) and proteins (σ = 20)
sequences of length 1M to 128M.

ρ = 0.000001, and output the deviation of the inserted word w, as well as the word wmax
with the maximum deviation. The inserted word w was reported as a ρ-overabundant word
in all cases. Furthermore, in many cases the word with the maximum deviation was w itself
and in many other cases one of its factors; this was true in all cases for t ≥ 80 ≈ 4r. Hence,
the model is effective in identifying words that are overabundant. The full results of this
experiment are presented in Table 1.

Experiment II (Efficiency). Our task here was to establish the fact that the elapsed time of
the implementation grows linearly with n, the length of the input sequence. As input datasets,
for this experiment, we used synthetic DNA (σ = 4) and proteins (σ = 20) sequences ranging
from 1 to 128 M (Million letters). For each sequence we used a constant value of ρ = 10.
The results are plotted in Fig. 3. It becomes evident from the results that the elapsed time
of the program grows linearly with n. The longer time required for the proteins sequences
compared to the DNA sequences for increasing n is explained by the dependence of the
time required to answer queries of the form Child(v, α) on the size of the alphabet (σ = 20
vs. σ = 4) in the implementation of the compressed suffix tree we used.

Experiment III (Real Application). Here we proceed to the examination of seven collections
of Conserved Non-coding Elements (CNEs) obtained through multiple sequence alignment
between the human and other genomes. Despite being located at the non-coding part of
genomes, CNEs can be extremely conserved on the sequence level across organisms. Their
genesis, functions and evolutionary dynamics still remain enigmatic [16, 13]. The detailed
description of how those CNEs were identified can be found in [17]. For each CNE of these
datasets, a sequence stretch (surrogate sequence) of non-coding DNA of equal length and
equal GC content was taken at random from the repeat-masked human genome. The CNEs
of each collection were concatenated into a single long sequence and the same procedure
was followed for the corresponding surrogates. We have determined through the proposed
algorithm the overabundant words for k = 10 (decamers) and ρ = 3 for these fourteen datasets
and the results are presented in Table 2. Likewise, in Table 3, we show all overabundant
words (i.e. k > 2) for ρ = 3.

WABI 2017

4:12 Optimal Computation of Overabundant Words

Table 2 Number of overabundant words for k = 10 and ρ = 3.

k = 10, CNEs CNEs CNEs CNEs CNEs Mammalian Amniotic
ρ = 3 75–80 80–85 85–90 90–95 95–100
Surr 1,144 718 473 297 469 15,470 2,874
CNEs 331 181 100 59 71 491 149
Ratio 3.46 3.97 4.73 5.03 6.61 31.51 19.29

Table 3 Number of overabundant words for k > 2 and ρ = 3.

k > 2, CNEs CNEs CNEs CNEs CNEs Mammalian Amniotic
ρ = 3 75–80 80–85 85–90 90–95 95–100
Surr 5,925 3,798 2,770 1,948 2,405 69,022 12,913
CNEs 1,373 778 512 390 403 7,549 1,401
Ratio 4.32 4.88 5.41 4.99 5.97 9.14 9.22

The first five CNE collections have been composed through multiple sequence alignment
of the same set of genomes (human vs. chicken; mapped on the human genome) and
they differ only in the thresholds of sequence similarity applied between the considered
genomes: from 75% to 80% (the least conserved CNEs, which thus are expected to serve
less demanding functional roles) to 95–100% which represent the extremely conserved non-
coding elements (UCNEs or CNEs 95–100) [17]. The remaining two collections have been
composed under different constraints and have been derived after alignment of Mammalian
and Amniotic genomes. In Tables 2 and 3, the last line shows the ratios formed by the
numbers of overabundant words of each concatenate of surrogates divided by the numbers of
overabundant words of the corresponding CNE dataset.

Inspecting data contained in Tables 2 and 3, first we observe in all cases that absolute
numbers of overabundant words drop from low- to high-conserved CNE concatenates. This
feature is shared by the corresponding concatenates of surrogate sequences as evidenced
along table rows from CNEs 75–80 to CNEs 95–100. This is due to the considerable decrease
in absolute numbers of the corresponding elements in the human genome, which is reflected
to the length of their concatenates. Note that in genomic sequences, extreme conservation is
always clearly less frequent than medium conservation. As the studied sequences decrease in
length, the numbers of overabundant words also drop in each category (CNEs or surrogates).
Consequently, the important quantity is the ratio of these numbers between CNE and
surrogate dataset. As amniotic and mammalian CNEs are classes characterized by different
conservation thresholds (the former being much more conserved), they also present disparate
overabundant word numbers, again the corresponding ratios being the relevant quantities.

Two results directly related to our analysis stem from inspection of Tables 2 and 3:
1. In all cases, the number of overabundant words from the surrogate concatenate of

sequences far exceeds the corresponding number derived from the CNE dataset.
2. In the case of datasets with increasing degree of similarity between aligned genomes

(from 75–80 to 95–100), the ratios of the numbers of overabundant words show a clear,
increasing trend.

Both these findings can be understood on the basis of the difference in functionality
between CNE and surrogate datasets. As we briefly describe in Section 1, this systematic
difference (finding 1 above) is expected on the basis of the self-enhancing elongation of
relatively long homonucleotide tracts [14, 15], which occurs mainly in the non-constrained

Y.Almirantis et al. 4:13

parts of the genome, here the surrogate datasets. Therefore, we expect and we do find
that CNE datasets always have less overabundant words than their corresponding surrogate.
Moreover, finding 2 corroborates the proposed mechanism of overabundance, as in CNE
datasets 1–5 depletion in overabundant words quantitatively follows the degree of sequence
conservation. Inspection of the individual overabundant words found in the surrogate datasets
verifies that they largely consist of short repeats of the types described in [14] and in [15].
There is an analogy of this finding with a corresponding one, concerning the occurrence of
avoided words in the same sequence sets, which is described in [1].

6 Open Question

By Corollary 6 and Lemma 8, we have the following bounds on the maximum number
OW(n, σ) of overabundant words in a sequence of length n over an alphabet of size σ > 1:

2n− 6 ≤ OW(n, σ) ≤ 3n− 2− 2σ.

We have conducted computational experiments, and for σ > 2 we obtained sequences with
more than 2n overabundant words. An open problem is thus to find OW(n, σ).

References
1 Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal

Mohamed, Solon P. Pissis, and Dimitris Polychronopoulos. On avoided words, absent
words, and their application to biological sequence analysis. Algorithms for Molecular
Biology, 12(1):5, 2017.

2 Alberto Apostolico, Mary Ellen Bock, and Stefano Lonardi. Monotony of surprise and
large-scale quest for unusual words. Journal of Computational Biology, 10(3-4):283–311,
2003.

3 Alberto Apostolico, Mary Ellen Bock, Stefano Lonardi, and Xuyan Xu. Efficient detection
of unusual words. Journal of Computational Biology, 7(1-2):71–94, 2000.

4 Alberto Apostolico, Fang-Cheng Gong, and Stefano Lonardi. Verbumculus and the discov-
ery of unusual words. Journal of Computer Science and Technology, 19(1):22–41, 2004.

5 Djamal Belazzougui and Fabio Cunial. Space-efficient detection of unusual words. In
SPIRE, volume 9309 of LNCS, pages 222–233. Springer, 2015.

6 Volker Brendel, Jacques S Beckmann, and Edward N Trifonov. Linguistics of nucleotide
sequences: morphology and comparison of vocabularies. Journal of Biomolecular Structure
and Dynamics, 4(1):11–21, 1986.

7 Chris Burge, Allan M. Campbello, and Samuel Karlin. Over- and under-representation of
short oligonucleotides in DNA sequences. Proc Natl Acad Sci USA, 89(4):1358–1362, 1992.

8 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
2007.

9 Alain Denise, Mireille Régnier, and Mathias Vandenbogaert. Assessing the statistical signi-
ficance of overrepresented oligonucleotides. In WABI, volume 2149 of LNCS, pages 85–97.
Springer Berlin Heidelberg, 2001.

10 Martin Farach. Optimal suffix tree construction with large alphabets. In FOCS, pages
137–143. IEEE, 1997.

11 Mikhail S. Gelfand and Eugene V. Koonin. Avoidance of palindromic words in bacterial
and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Research,
25(12):2430–2439, 1997.

WABI 2017

4:14 Optimal Computation of Overabundant Words

12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In SEA, volume 8504 of LNCS, pages 326–
337. Springer, 2014.

13 Nathan Harmston, Anja Barešić, and Boris Lenhard. The mystery of extreme non-coding
conservation. Phil. Trans. R. Soc. B, 368(1632):20130021, 2013.

14 Suzanne E. Hile and Kristin A. Eckert. Positive correlation between DNA polymerase
α-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite se-
quences. Journal of Molecular Biology, 335(3):745–759, 2004.

15 G. Levinson and G.A. Gutman. Slipped-strand mispairing: a major mechanism for DNA
sequence evolution. Molecular Biology and Evolution, 4(3):203–221, 1987.

16 Dimitris Polychronopoulos, Diamantis Sellis, and Yannis Almirantis. Conserved noncod-
ing elements follow power-law-like distributions in several genomes as a result of genome
dynamics. PloS One, 9(5):e95437, 2014.

17 Dimitris Polychronopoulos, Emanuel Weitschek, Slavica Dimitrieva, Philipp Bucher, Gio-
vanni Felici, and Yannis Almirantis. Classification of selectively constrained DNA elements
using feature vectors and rule-based classifiers. Genomics, 104(2):79–86, 2014.

18 Ivan Rusinov, Anna Ershova, Anna Karyagina, Sergey Spirin, and Andrei Alexeevski.
Lifespan of restriction-modification systems critically affects avoidance of their recognition
sites in host genomes. BMC Genomics, 16(1):1, 2015.

	Introduction
	Terminology and Technical Background
	Definitions and Notation
	Suffix Trees

	Combinatorial Properties
	Algorithm
	Experimental Results: Effectiveness, Efficiency, and Applications
	Open Question

