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—— Abstract

Analysis of differential alternative splicing from RNA-seq data is complicated by the fact that
many RNA-seq reads map to multiple transcripts, and that annotated transcripts from a given
gene are often a small subset of many possible complete transcripts for that gene. Here we describe
Yanagi, a tool which segments a transcriptome into disjoint regions to create a segments library
from a complete transcriptome annotation that preserves all of its consecutive regions of a given

length L while distinguishing annotated alternative splicing events in the transcriptome. In this
paper, we formalize this concept of transcriptome segmentation and propose an efficient algorithm
for generating segment libraries based on a length parameter dependent on specific RNA-Seq
library construction. The resulting segment sequences can be used with pseudo-alignment tools
to quantify expression at the segment level. We characterize the segment libraries for the reference
transcriptomes of Drosophila melanogaster and Homo sapiens. Finally, we demonstrate the utility
of quantification using a segment library based on an analysis of differential exon skipping in
Drosophila melanogaster and Homo sapiens. The notion of transcript segmentation as introduced
here and implemented in Yanagi will open the door for the application of lightweight, ultra-fast
pseudo-alignment algorithms in a wide variety of analyses of transcription variation.
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1 Introduction

Messenger RNA transcript abundance estimation from RNA-Seq data is a crucial task in
studies that seek to describe the effect of genetic or environmental changes on gene expression.
Differential expression analysis over either genes or transcripts is used to find the set of genes
or transcripts with different expression levels between conditions. Although there are many
tools that can provide satisfying results at the gene level, transcript level analysis still faces
major challenges that make the problem of transcript expression quantification harder.

Over the years, various approaches have addressed the joint problems of (gene level)
transcript expression quantification and differential alternative RNA processing. Much effort
in the area has been dedicated to the problem of efficient alignment of reads to a genome or
a transcriptome, since this is typically a bottleneck in the analytical processes that start with
RNA-Seq reads and yield gene-level expression or differentially expressed transcripts. Among
these approaches are alignment techniques such as bowtie [6], Tophat [16, 5], and Cufflinks
[17], and newer techniques such as sailfish [10], RapMap [13], Kallisto [2] and Salmon [9],
which provide efficient strategies that are much faster, but maintain comparable, or superior,
accuracy.

In order to achieve faster alignment and quantification, the newer methods introduced
novel approaches, such as alignment-free k-mer based quantification [Sailfish], quasi-mapping
[RapMap], pseudo-alignment [Kallisto], or lightweight alignment [Salmon]. These methods all
simplified the expected outcome of the alignment step, finding only sufficient read-alignment
information required by the quantification step, utilizing k-mer counting to be the sufficient
statistic built from the alignment step. In other words, given a transcriptome reference, an
index of kmers is created and used to find a mapping between reads and the list of compatible
transcripts based on each approach’s definition of compatibility. The next step would be to
resolve the ambiguity in reads that were mapped to multiple transcripts. Multi-mapping reads
are common even assuming error free reads, due to shared regions produced by alternative
splicing. The ambiguity in mapping reads is resolved using probabilistic models, such as the
EM algorithm, to produce the abundance estimate of each transcript [8].

The presence of sequence repeats and paralogous genes in many organisms also creates
ambiguity in the placement of reads. Moreover, the fact that alternatively spliced transcripts
share most of their genomic region, greatly increases the portion of reads coming from
these shared regions and consequently reads being multi-mapped becomes more frequent
when aligning to enumerated transcripts. In fact, local splicing variations can be joined
combinatorially to create a very large number of possible transcripts from many genes. An
extreme case is the Drosophila gene Dscam, which can produce over 38,000 transcripts by
joining less than 50 exons [19]. More generally, long-read sequencing indicates that although
there are correlations between distant splicing choices [15], a large number of possible
combinations is typical. Thus, standard annotations, which enumerate only a minimal subset
of transcripts from a gene (e.g. [3]) are inadequate descriptions. Furthermore, short read
sequencing, which is likely to remain the norm for some time, does not provide information
for long-range correlations between splicing events.

In this paper, we propose a novel strategy that aims at constructing a set of segments that
can be used in the read-alignment-quantification steps instead of the whole transcriptome
without loss of information. Such a set of segments (a segment library) can fully describe
individual events (primarily local splicing variation, but also editing sites or sequence variants)
independently, leaving the estimation of transcript abundances as a separate problem. Here
we introduce and formalize the idea of transcriptome segmentation, propose and analyze an
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algorithm for transcriptome segmentation, and present a tool called Yanagi, which implements
this segmentation algorithm to build a segment library from a reference transcriptome based
on the possible splicing variations. We show results from the application of Yanagi to
reference transcriptomes of Drosophila melanogaster and Homo sapiens that characterize
the resulting segment libraries. Since the segment libraries are amenable for usage with
lightweight pseudo-alignment methods for segment quantification, we illustrate the utility
of the segmentation approach using the differential analysis of exon skipping events across
samples from two conditions of interest. We use simulation studies in Drosophila melanogaster
and Homo sapiens and show that this is a promising approach for this type of analysis.

2 Methodology

Exonic regions of a messenger RNA precursor can be combined differently through alternative
splicing (AS) to form distinct isoforms. Alternative transcripts can be generated by AS proper
(including exon skipping, mutual exon exclusion, intron retention, and alternative splice
site use), alternative transcription start sites, and alternative 3’ termini (sites of cleavage
and polyadenylation). Combinations of these allow more complex events. A comprehensive
treatment of the different types of splicing events can be found in [18]. Over 95% of human
genes with multiple exons undergo AS [18]; consequently a majority of the coding genomic
region is spliced into more than one isoform.

The goal of our approach is to segment the transcriptome into a set of disjoint regions
(where disjointness is parameterized by a specific read length) without losing any possible
transcriptome sub-sequence that may be sequenced in a given RNA-Seq experiment. Af-
terwards, we can pseudo-align reads into the set of segments and quantify abundance at
the segment level for use in further downstream analysis. Consequently, our quantification
pipeline can use available kmer-based pseudo-mapping or pseudo-alignment techniques over
the set of segments generated by Yanagi from the transcriptome reference and generate
counts for segments. The rest of this section describes Yanagi’s algorithm for generating
the segment library. We later discuss how it can be used for quantification purposes using
differential analysis of exon skipping events as an illustrative use case.

2.1 Transcriptome Segments Properties

» Definition 1 (Segment). A segment seg(Exs,loc,w) is a genomic region of width w
beginning at genomic location loc and spanning the sequence of consecutive exonic regions
FExs. Exonic regions are considered consecutive if they are consecutively joined into at least
one possible isoform.

» Definition 2 (L-disjoint property). The set of segments S is L-disjoint if and only if
width[overlap(seg;, seg;)| < L;Vseg;, seg; € S,i # j

That restricts any pair of L-disjoint segments to have an overlap region shorter than
parameter L, corresponding to the read length of a specific RNA-Seq experiement. In other
words no read of length at least L can be mapped to both segments of an L-disjoint segment
pair, assuming error-free reads.

Given a reference transcriptome, a naive approach to generating such L-disjoint segments
would be to use the set of exonic regions and junctions defined in the transcriptome and
generate segments spanning each exonic region and junction. Specifically, a junction segment
would be formed by spanning L — 1 positions from both sides of the junction and exon
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Figure 1 An example of naive segments based on exons and junctions. Two cases are shown, each
is represented using a splicing graph of two transcripts, along with a set of possible RNA-seq reads
and the generated segments following the naive approach. The first case (left) shows a simple case
where the naive approach successfully generates segments spanning all possible reads. The second
case (right) shows a case of two short exons (E2, E3 of width k < L) where the naive approach fails
to span the given read.

segments would simply include the genomic sequence of the exon that does not overlap any of
the junction segments. Figure 1 (left) shows a simple exon skipping event using splicing graph
representation [4] and the corresponding generated segments following that naive approach.
This approach would successfully generate segments capturing all possible sequences required
to map any read to the transcriptome. However this naive approach faces a few challenges.

First, exons that are shorter than parameter L are problematic. For instance, around
30% of the exons in the UCSC hg38 genome are shorter than 100bp (Illumina’s common
paired-end read length). These short exons will make junction segments miss reads that span
more than two of such short exons. Consider the example in Figure 1 (right) where the two
exons E2, E3 of width k£ are both shorter than L, no segments will capture a read that span
El, E2, and E3 for instance.

Another related challenge is that the annotated exons are not strictly disjoint in the
reference itself. Some annotated exons overlap due the use of alternative transcription start
and end sites. Such challenges indicate that more careful choice of segments is necessary to
guarantee the L-disjointness property, so we formalized an additional segment property.

First, denote Tzs(exs) as the set of annotated transcripts splicing exons exs € Exs,
and Tzs(seg) as the union of Txs(exs) for exons exs included in segment seg. We can
define a subsumption relationship between segments as seg; (Exs, loc, w) > segs(FExs,loc, w)
if Tes(segr) = Txs(sege) and width(seg;) > width(segs). With this relationship we can
define the following property of a segment library.

» Definition 3 (Max-spanning property).
segi (Exs,loc,w) = sega(Exs,loc,w) = sega(Exs,loc,w) ¢ S,Vsegi(Exs,loc,w) € S.

Thus a segment is the longest common sequence of genomic regions starting at loc, such
that these regions are spliced similarly, i.e. the entire sequence belongs to the same set of
transcripts. That means the three junctions J1, J2, J3 shown in 1 (right) will be concatenated
into one segment which captures any read of length L spanning any of these junctions.

2.2 Segmentation Algorithm Overview

Given the transcriptome annotation (GTF format file) and the transcript sequences (FASTA
format files) as input, Yanagi generates the set of segments and its sequences (as a FASTA
file) as the output of the segmentation process. Figure 2 illustrates an example of how Yanagi
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perform transcriptome segmentation given the splicing graph of a complex AS event studied
n [18]. Recall, that in splicing graphs, nodes represent genomic regions and edges represent
how the regions are spliced, while paths represent possible transcripts.

The transcriptome segmentation process can be summarized into three steps: (1) Prepro-
cessing the transcriptome annotation in order to obtain disjoint transcriptome regions, (2)
Constructing a Segments Graph (SgG), and finally (3) Generating the segment library. Each
transaction in Figure 2 represents one of these three steps.

2.3 Preprocessing

In our algorithm, exons and junctions serve as initial candidates for segment generation.
We apply a preprocessing step to eliminate exon overlaps present in the transcriptome
reference from events involving alternative 3’/5’ splice sites, or transcription start/end sites.
This step ensures that any splicing event is occurring either at the beginning or the end
of a genomic segment, which makes the process of generating L-disjoint and max covering
segments easier. The preprocessing step is independent from the parameter L, so it can be
done only once per transcriptome reference. We implemented the preprocessing step based
on the GenomicRanges package in R, specifically the disjoin function, which takes less than
a few seconds to run on the human genome.

2.4 Segments Graph

Currently Yanagi builds a separate segment graph for each gene, since there are no alternative
splicing events between transcripts of different genes. However, future work may use segment
graphs that connect different genes sharing regions of identical sequence length L or greater,
but we have yet to address this.

» Definition 4 (Segment Graph). A segment graph G is an acyclic directed graph defined by
the pair (N, E), where N is a set of nodes representing segments, and F is the set of directed
edges between the nodes. An edge e : (n;,n;) € E is created if the segment corresponding to
node n; directly precedes the segment corresponding to node n; in some transcript.

» Definition 5 (Segment Node). A segment node n is a node in segment Graph G that
represents an L-disjoint and maz-spanning segment seg, (Exsy,,loc,,w,), such that w, > L.

While full details of the algorithm are given in Appendix A, here we present a high-level
description. For a given gene, the algorithm iterates over the set of annotated transcripts in
that gene. A cursor loc starting at the beginning of a transcript slides over the sequence of
genomic regions forming that transcript. Given the current cursor location loc,, a seed of the
node n is initiated. Then a refinement step, explained further in the next paragraph, is used
to handle cases involving exons shorter than L. The segment node is then added to the graph
with the key pair (exs,,loc,) as the node identifier, and the cursor loc is advanced to the
new location. It should be noted that the out-degree of each segment node corresponds to
the number of upcoming alternative splices. The final step is generating the actual segments.
Any segment with an out-degree greater than one is a candidate start of a segment. Each
possible path beginning at a start-segment node till the following start-segment node (or a
leaf node) produces an output segment. See Figure 2 and Appendix A for the full details
of the segmentation algorithm. It is worth mentioning that a segment graph may look like
a de Bruijn graph (DBG) that is commonly used in assembly problems. However, a path
of nodes in DBG represents a sequence of k-mer components while a path of nodes in SgG
represents a sequence of genomic regions spliced into an isoform. As a result, the DBG built
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from the list of transcripts and the DBG built from the list of segments should be identical,
since both graphs represent the same sequences of nucleotides.

Back to the issue of short regions which raises the possibilities of generating segment
nodes of length L spanning more than two exonic regions. Once the key pair (exs,,loc,)
is determined, the node refinement step determines the extent of that node and how the
cursor loc should be advanced in order to preserve the L-disjointness constraint. Figure 3
shows a diagram of how a segment node is refined. The logic behind the refinement step is
aggregating the sequence of nodes expected to be created spanning the same set of regions
exs,; since it is guaranteed that there are no splicing events occurring between the start and
end of region Fx,, the next necessary segment node would be the node spanning part of
Ez, 1. Consequently, the new location of the cursor loc would be the location where the first
segment spanning Fx,; starts. That aggregation improves the time and space complexity
of the algorithm as it reduces the number of generated nodes, and avoids shredding the
genome in dense areas of short exons which may impose a problem in the quantification step
as discussed in next subsection. In fact, the refinement step ensures that for every distinct
value of exs, there is a maximum of two segment nodes generated and that reduces the
algorithm complexity by factor of L.

As an attempt to analyze the complexity of the algorithm, we can estimate a loose upper
bound of the number of segment nodes IV in G. Consider a gene with Ty transcripts and E,
disjoint genomic regions (obtained by the preprocessing step), where the maximum width of
such a region is wy,q,. Recalling the property mentioned in the previous paragraph, that a
maximum of two nodes can be generated for the same set of regions, a segmentation iteration

for a transcript that spans E; < E, regions can generate 1 < o(E;— | —£ —‘) < o(E¢) segment
nodes. That gives the upper bound of O[ZTg(Et - [wL b] or o[T,.(E4 — {#—‘ )] for N.

That means the time and space complexity of the graph construction increases when using
lower values of parameter L, or with organisms of longer and more complex transcriptome
structure. Table 1 shows time and memory analysis for constructing the segments library
for two organisms used in our later analysis. The results shows that running Yanagi is an
efficient and fast process that does not add a burden in terms of time and space requirements.

2.5 Quantification Analysis

After the transcriptome segmentation stage, Yanagi provides the set of generated segments
in FASTA format. The segment sequences are accompanied by headers specifying metadata
of how each segment was formed, including: gene ID, the set of exonic regions exs included
in the segment, start and end locations in the first and last spanned regions, and the set
of transcripts corresponding to the segment. The quantification stage starts afterwards
by supplying the segment sequences to the preferred kmer-based pseudo-alignment tool,
e.g. kallisto, sailfish or RapMap. For single end reads we can obtain segment counts from
these tools. In the paired end case, we obtain pseudo alignments from either kallisto or
RapMap as a BAM file for each read in the read pair independently. The two generated
BAM files are then processed together to obtain segment-pair read counts. A read ry is
counted toward a pair of segments < segi, sego > if the first end is mapped to seg; and the
second end to segs while both seg; and segs have at least one transcript in common. This
latter condition ensures that the counts reflects only annotated transcripts, although this
condition can be relaxed in principle in favor of identifying unannotated transcripts.

After the segment quantification stage, a count tables for each sample is prepared to be
used in the downstream analysis. In this paper we illustrate a workflow based on Yanagi
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Figure 2 The process of generating segments using the splice graph for an example of a complex
splicing event. Fach transition represents one of the three main steps of the transcriptome segment-
ation process. Assuming no short exons for simplicity. Step two and three are cropped to include
only the beginning portion of the graph for brevity.

using the problem of differential analysis of exon skipping events across samples from two
conditions of interest. By providing the list of annotated splicing events, Yanagi maps
each exon skipping event with its corresponding set of segments and sums their counts.
For example, an exon skipping event is defined by three exons as in Figure 1 (left). Two
segment-level counts are calculated: one from segments spanning the inclusion junction and
another from the segments spanning the skipping junction. Note that although segments are
L-disjoint, if the skipped exon is shorter than L we can have more than one segment spanning
the inclusion junctions. Figure 4 illustrates a full workflow based on Yanagi, assuming
paired-end reads and targeting AS quantification.

3 Experiments

3.1 Segment Analysis

To analyze the outcome of the segmentation stage, we used Yanagi to build segment libraries
for the fruit fly and human genomes: Drosophila melanogaster (UCSC dm6) and Homo
sapiens (UCSC hg38) genome assemblies and annotations respectively. These organisms show
different genome characteristics, e.g. the fruit fly genome has longer exons and transcripts
than the human genome, while the number of transcripts per gene is much higher for human
genome than the fruit fly. A summary of the properties of each genome is found in [12].
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Figure 3 Diagram illustrates the node refinement step, for a node spanning n genomic regions.
The step determines the extent of the node and how the cursor loc should advance in each of the
two candidate cases.

Since L is the only parameter value required by the segmentation algorithm, we tried
different values of L to understand the impact of that choice on the generated segments
library. Recall that the choice of L is based on the expected read length of the sequencing
experiment. For this analysis we chose the set L = (40, 108,1000, 10000).

Figure 5 shows the histogram of the lengths of the generated segments compared to the
the full lengths of the transcripts, for each value of L, for both fruit fly (left) and human
(right) genomes. It should be noted that the generated segments should be of at least length
L. However, there are the exceptions of segments hitting the end of the transcript where the
remaining portion of transcript is shorter than L. The figure shows the expected behavior
when increasing the value of L; using small values of L tends to shred the transcriptome
more (higher frequencies for small sequence lengths), especially with genomes of complex
splicing structure like the human genome. While with high values of L, such as L = 10, 000,
the minimum segment length required tends to be higher than the length of most transcripts,
ending up generating segments such that each segment represents a whole transcript.

Figure 6 shows how the number of generated segments in a gene is compared to the number
of the transcripts in that gene, for each value of L, for both fruit fly (left) and human (right)
genomes. A similar behavior is observed while increasing the value L, as with the segments
length distribution. The fitted line included in each scatter plot provides indication of how
the number of target sequences grows compared to the original transcriptome. For example
when using L = 108, which is a suitable value with Illumina reads, the number of target
sequences per gene, which will be the target of the subsequent pseudo-alignment steps, almost
doubles. It is clear from both figures the effect of the third step in the segmentation stage.
It is important not to shred the transcriptome so much that the target sequences become
very short leading to resulting complications in the pseudo-alignment and quantification
steps, and not to increase the number of target sequences leading to increasing the processing
complexity of these steps.

3.2 Use Case: Differential Exon Skipping

We use the analysis of differential exon skipping events across samples from two conditions
of interest as a use case of how to apply segment-level quantification in downstream analysis.
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Figure 4 Yanagi-based workflow for alternative splicing analysis, based on paired-end RNA-Seq
reads. Dotted blocks are components introduced to assist Yanagi.
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Figure 5 Histogram of transcripts lengths vs. segments lengths for both fruit fly (left) and human
(right) genomes, with different values of L (40, 108, 1000, 10,000). Dotted vertical line represents
the used value of L during the transcriptome segmentation.

Datasets. The experiments are based on the simulation data provided by [12] for both
fruit fly and human organisms (dm3 and hg37 assembly versions, respectively). Each dataset
consists of samples from two conditions. Each condition has three replicates. The reads for
the replicates are simulated from real RNA-seq samples, to get realistic expression values,
after incorporating a variance model and the change required between conditions. The
simulation is restricted to only protein-coding genes in the primary genome assembly. The
difference in transcripts usage across conditions was simulated in 1000 genes randomly
selected from genes with at least two transcripts and high enough expression levels. For each
of these 1000 genes, the expression levels of the two most abundant transcripts is switched
across conditions. Refer to [12] for full details of the preparation procedure of the dataset.

Differential Splicing Model. Recall that the outcome of the alternative splicing quantifica-
tion workflow (as in figure 4) is two counts per exon skipping event for each sample: the
inclusion count and the exclusion count. The count matrix is then used in a linear model for
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Figure 6 Number of transcripts vs. number of segments, per gene, for both fruit fly (left) and
human (right) genomes, with different values of L (40, 108, 1000, 10,000). The figure shows how a
fitted line (solid blue) compares to the identity line (dotted black).

differential splicing detection for count y;; of segment 4, sample j:
10g2 Yij = bo + 50(.]) X (25,5(2) — 1) X by + 5t(2) X by
with

1, if j is case

de(j) = {0 o
1, if 4 is inclusion

%(0) = {0 0.W.

Parameter by models the expected log counts for exclusion segment in control samples,
and parameter b, models expected log counts for the inclusion segment in control samples.
With this, parameter b; corresponds to the log-odds ratio for the Percent Spliced In (PSI)
statistic frequently used for alternative splicing analysis. Denoting ¥y and ¥; as the PSI
values for case and control respectively, b; = 1/21log, (13’\},1 / 1}'&’,0 ). This model is similar
to the DEXSeq model [1], modified to accomodate inclusion/exclusion counts at the single
event level.

Preliminary Results. We tested this model over the synthetically generated data for both
genomes (using the Limma-voom R Package [11, 7]) using the segments library generated
by Yanagi with different values of the parameter L. The preliminary results shown here
considers exon skipping events that involve only one inclusion transcript and one exclusion
transcript, just to obtain a reasonable level of stability. In addition, only transcripts of high
enough expression levels are considered, i.e. the two transcripts have a combined TPM value
of 1. Similar constraints is advised in previous analysis [12, 14].

Figure 7 shows ROC plots for sensitivity and specificity measures, for each genome. As a
reference, we applied the same linear model on the transcripts’ true TPMs provided while
preparing the dataset. In principle, the prediction based on the true transcript expression
levels (TPMs) would give an upper bound performance, given the particular setting of this
synthetic dataset and the provided linear model. Figure 7 shows that using our segments
library with the proposed workflow, and using the suitable value of L, gives promising results
in detecting differential splicing events (Table 2 shows the AUC values). A suitable value
of L would be a value corresponds to the read length of the data, as discussed earlier in
Definition 2. While using lower value of L intensely shreds the reference into segments shorter



M. K. Gunady, S. Cornwell, S. M. Mount, and H. Corrada Bravo

Table 1 Running time (seconds) and memory usage (gigabytes) by Yanagi to generate segment
library for fruit fly (Dm6) and human (Hg38) genomes, for both the preprocessing and segmentation
steps. Time for the preprocessing step does not include the time to load the FASTA and GTF files.
Most of the memory usage is from loading the input data in both steps. Running on a 6-core 2.1 GHz
AMD processor, using single-threaded processes. The lower half shows the time and memory usage
for running Rapmap’s quasi-mapping using the segments library and the the full transcriptome, to
quantify samples of 40M paired-end reads, each of length 101bp.

Dm6 Hg38
time(s) memory(GB) time(s) memory(GB)
Preprocessing 13 0.9 112 1.5
Segmentation
L=40 20 0.4 248 1.3
L=108 20 0.4 250 1.3
L=1000 20 0.4 228 1.3
L=10000 8.5 0.4 7 1.3
Rapmap Indexing (4 Threads)
L=108 103 0.8 420 2.6
Tks 121 1.1 480 3.7
Rapmap Quantification (8 Threads)
L=108 236 0.7 220 2.1
Tks 292 1.2 416 3.1

Table 2 AUC values for the ROC curves in Figure 7 for both fruit fly and human genomes.
Including the AUC value when using the transcripts’ true TPM, besides AUC values from applying
the linear model to the generated segments counts using different values of L.

Tx. TPM Seg.Counts

L=40 L=108 L =1000 L =10000

Dm3 0.912 0.762 0.889 0.824 0.760
Hg37 0.916 0.706 0.881 0.754 0.727

than the reads which hurts the quantification step, using higher values rather increases the
portion of unnecessary overlap between the generated segments, leading to higher rates of
multi-mapped reads.

The results also shows that the segmentation approach gives slightly better performance
in the fruit fly case. That matches the fact that the fly transcriptome structure is much
simpler than the human transcriptome. Besides, the sequences in the fruit fly are more
unique with no allele repeats as the case with the human genome. That makes the counts in
the quantification step more stable for the differential analysis.

4 Discussion and Conclusion

In this paper we introduce Yanagi, an efficient tool that creates disjoint segments of refer-
ence transcriptomes amenable for quantification of RNA-seq reads using pseudo-alignment
techniques. We have formalized the notion of transcriptome segmentation, and proposed an
efficient algorithm for constructing L-disjoint, max-spanning segments. We report on the
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(dm3 genome) (hg37 genome)
Tx.TPM -—+ Sg.Cnts L=40 — - Sg.Cnts L=108 Tx.TPM -~ Sg.Cnts L=40 — - Sg.Cnts L=108
-+ Sg.Cnts L=1000 Sg.Cnts L=10000 -+ Sg.Cnts L=1000 Sg.Cnts L=10000

True positive rate
True positive rate

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False positive rate False positive rate

Figure 7 ROC plots for differential alternative splicing (exon skipping events), for both fruit
fly (left) and human (right) genomes. ROC curves are included for: transcript-level quantification,
besides segment-level quantification using different values of the parameter L.

characteristics of segment libraries in Drosophila melanogaster and Homo sapiens, and use
the resulting segments in a use case of differential analysis of exon skipping events across
samples in two conditions of interest.

Although it may appear that the discussed Yanagi-based workflow can perform quantifica-
tion only for the annotated transcripts, the workflow can be extended to discover unannotated
transcripts. An unannotated junction can be detected during the segment quantification
stage by relaxing the restriction of accepting alignments of a pair of reads only if the pair of
segments belong to at least one annotated transcript. When this restriction is relaxed, an
unannotated junction can be detected when reads show enough evidence of that junction.
I.e. when a segment pair that has no transcripts in common has high enough count.

Finally, the issues of paralogs and intersecting genes are not tackled in the scope of this
paper. However, it is clear that there is no extra alignment complexity added due to these
issues over the transcriptme-based alignment. Consequently, the occurrence of multi-mapping
resulting from such cases also remains the same as the transcriptome-based quantification.
So a warranted extension to the current approach of Yanagi is to consider distinct genes that
share identical exonic regions of length greater than L altogether.

The concept of transcriptome segmentation, and a tool that can build a segments library,
opens the door for more extended analysis than just the use case mentioned in this paper.
For instance, segment counts can serve as statistics into algorithms for differential isoform
usage analysis, for which existing pseudo-alignment methods are commonly used. Moreover,
segment level quantification can provide much more flexible opportunities for analysis
including quantification of RNA editing or other non splicing variations. Currently we are
exploring the possibility of utilizing the concept of segmentation into the problem of variant
calling.
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A  Transcriptome Segmentation Algorithm

Algorithm 1 Yanagi’s Segments Library Generation

Require: Transcriptome Annotation (GTF File), Transcripts Sequences (FASTA Files)
1: TeDB <+ makeTxDBFromGTFFile > Preprocessing Step
2: DExs < disjoinExons(TxDB)
3: TeDB < adjustTeDB(TxDB, DExs)

Step 2 — Segment Graph Construction

4: procedure CONSTRUCT_ SEG_GRAPH(TzDB,g, L) > SgG of gene g
5: G < emptygraph
6: St ¢
7 prev < DUMMY_NODE
8: for each Tz € TzDB(g) do > For each transcript in gene g
9: loc + start(Tz)
10: while loc < end(Tx) do > Iterate till the end of transcript
11: gr < GenomicRange(Tx,loc,loc + L)
12: Exs <+ exons[TxDB(gr)]
13: W, l0Cpeqy ¢~ REFINE_ NODE(Exs, loc, L) > Node refinement step
14: node < getOrCreateNode(G, < Exs,loc,w >)
15: Tzs(node) + Txs(node) + Tz
16: Next(prev) < Next(prev) + node > Make an edge
17: if T'zs(prev) # Tas(node) then > Mark branches in graph
18: for each n € Next(prev) do
19: St St+n
20: prev <— node > Advance loop
21: loc < lochew
22: return G, St > The SgG of gene g

Step 3 — Segments Library Generation

23: procedure GENERATE_ SEGMENTS(G, St)

24:
25:
26:
27:
28:
29:

30:

for each node € St do > Iterate over branching points in G
seg <— newsegment > Initialize a new segment
seg.appendN ode(node)
while |Next(node)| =1 do > Aggregating chain of nodes into the segment

node < Next(node)
seg.appendN ode(node)

outputSegment(seg)
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