
Towards Distance-Based Phylogenetic Inference in
Average-Case Linear-Time∗

Maxime Crochemore1, Alexandre P. Francisco2, Solon P. Pissis3,
and Cátia Vaz4

1 Department of Informatics, King’s College London, London, UK
2 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon,

Portugal
3 Department of Informatics, King’s College London, London, UK
4 INESC-ID and Instituto Superior de Engenharia de Lisboa, Instituto

Politécnico de Lisboa, Lisbon, Portugal

Abstract
Computing genetic evolution distances among a set of taxa dominates the running time of many
phylogenetic inference methods. Most of genetic evolution distance definitions rely, even if indir-
ectly, on computing the pairwise Hamming distance among sequences or profiles. We propose
here an average-case linear-time algorithm to compute pairwise Hamming distances among a set
of taxa under a given Hamming distance threshold. This article includes both a theoretical ana-
lysis and extensive experimental results concerning the proposed algorithm. We further show how
this algorithm can be successfully integrated into a well known phylogenetic inference method.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases computational biology, phylogenetic inference, Hamming distance

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.9

1 Introduction

The evolutionary relationships between different species or taxa are usually inferred through
known phylogenetic analysis techniques. Some of these techniques rely on the inference of
phylogenetic trees, which can be computed from molecular sequences or from profiles built
by sequencing specific regions, e.g., housekeeping genes for a given species. Phylogenetic
trees are also used in other contexts, such as to understand the evolutionary history of gene
families, to allow phylogenetic foot-printing, to trace the origin and transmission of infectious
diseases, or to study the co-evolution of hosts and parasites [11, 23].

In most cases, the process of phylogenetic inference starts with a multiple alignment of
the sequences under study; and then tree-building methods are used. These methods rely on
some distance-based analysis of sequences or profiles [24].

Distance-based methods for phylogenetic analysis rely on a measure of genetic evolution
distance, which is often defined directly or indirectly from the fraction of mismatches at
aligned positions, with gaps either ignored or counted as mismatches. A first step of these
methods is to compute this distance between all pairs of sequences. The simplest approach

∗ This work was partly supported by the Royal Society International Exchanges Scheme, and by na-
tional funds through FCT – Fundação para a Ciência e Tecnologia, under projects BacGenTrack
(TUBITACK/0004/2014), PRECISE (SAICTPAC/0021/2015) and UID/CEC/500021/2013.

© Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, and Cátia Vaz;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

is to use the Hamming distance, also known as observed p-distance, defined as the number of
positions at which two aligned sequences differ. Note that the Hamming distance between
two sequences underestimates their true evolutionary distance and, thus, a correction formula
based on some model of evolution is often used [11, 24]. Although distance-based methods
not always produce the best tree for the data, usually they also incorporate an optimality
criterion into the distance model for getting more plausible phylogenetic reconstructions,
such as the minimum evolution criterion [5], the least squares criterion [22] or the clonal
complexes expansion and diversification [7].

Most of the distance-based methods are agglomerative methods. They start with each
sequence being a singleton cluster and, at each step, they join two clusters. The iterative
process stops when all sequences are part of a single cluster. A phylogenetic tree is obtained
within this process. At each step the candidate pair is selected taking into account the
distance among clusters as well as the optimality criterion chosen to adjust it.

The computation of a distance matrix (2D array containing the pairwise distances between
the elements of a set) is a common first step for distance-based methods, such as eBURST [8],
goeBURST [9], Neighbor Joining [25] and UPGMA [26]. This particular step dominates
the running time of most methods, taking Θ(md2) time in general, d being the number of
sequences or profiles and m the length of each sequence or profile. For large-scale datasets
this running time may be quite problematic.

However, depending on the underlying model of evolution and on the optimality criterion,
it may not be strictly necessary to be aware of the complete distance matrix. There are
methods that continue to provide optimal solutions without a complete matrix. For such
methods, one may still consider a truncated distance matrix and several heuristics, combined
with final local searches through topology rearrangements, to improve the running time [22].
The goeBURST, our use case in this article, is an example of a method that can work with
truncated distance matrices by construction, i.e., one needs only to know which pairs are at
Hamming distance at most k.

Our results. We propose here an average-case O(md)-time and O(md)-space algorithm to
compute the pairs of sequences, among d sequences of length m, that are at distance at most
k, when k < (m−k−1)·logσ

logmd , where σ is the size of the sequences alphabet. We support our
result with both a theoretical analysis and an experimental evaluation on synthetic and real
datasets of different data types (MLST, cgMLST, wgMLST and SNP). We further show that
our method improves goeBURST.

Structure of the article. We describe and analyze the proposed algorithm in Section 2.
The goeBURST use case is presented in Section 3. The experimental evaluation using both
synthetic and real datasets is presented in Section 4.

2 Closest pairs in linear time

Let P be the set of profiles (or sequences) each of length m, defined over an integer alphabet
Σ, (i.e., Σ = {1, . . . ,mO(1)}), with d = |P | and σ = |Σ|. Let also H : P × P → {0, . . . ,m}
be the function such that H(u, v) is the Hamming distance between profiles u, v ∈ P . Given
an integer threshold 0 < k < m, the problem is to compute all pairs u, v ∈ P such that
H(u, v) ≤ k, and the corresponding H(u, v) value, faster than the Θ(md2) time required to
compute naïvely the complete distance matrix for the d profiles of length m.

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:3

Table 1 Data structures used in our approach for each step.

Profile indexing Candidate profile pairs enumeration Pairs verification

Suffix array Binary search Naïve
LCP based clusters RMQLCP

We address this problem by indexing all profiles P using the suffix array (denoted by
SA) and the longest common prefix (denoted by LCP) array [16]. We rely also on a range
minimum queries (RMQ) data structure [1, 2] over the LCP array (denoted by RMQLCP).
The problem is then solved in three main steps:
1. Index all profiles using the SA data structure.
2. Enumerate all candidate profile pairs given the maximum Hamming distance k.
3. Verify each candidate profile pair by checking if the associated Hamming distance is no

more than k.
Table 1 summarizes the data structures and strategies followed in each step. Profiles are
concatenated and indexed using SA. Depending on the strategy to be used, we further process
the SA and build the LCP array and pre-process it for fast RMQ. This allows for enumerating
candidate profile pairs and computing distances faster.

In what follows, we detail the above steps and show how the data structures are used to
improve the overall running time.

2.1 Step 1: Profile indexing
Profiles are concatenated and indexed in an SA in O(md) time and space [12, 14]. Let us
denote this string by s. Since we only need to compute the distances between profiles that are
at Hamming distance at most k, we can conceptually split each profile into k non-overlapping
blocks of length L = b m

k+1c each. It is then folklore knowledge that if two profiles are within
distance k, they must share at least one such block of length L. Our approach is based on
using the SA of s to efficiently identify matching blocks among profile pairs. This lets us
quickly filter in candidate profile pairs and filter out the ones that can never be part of the
output.

2.2 Step 2: Candidate profile pairs enumeration
The candidate profile pairs enumeration step provides the pairs of profiles that do not differ
in more than k positions, but it may include spurious pairs. Since SA is an ordered structure,
a simple solution is to use a binary search approach. For each block of each profile, we can
obtain in O(L log n) time, where n = md, all the suffixes that have that block as a prefix. If
a given match is not aligned with the initial block, i.e. it does not occur at the same position
in the respective profile, then it should be discarded. Otherwise, a candidate profile pair is
reported. This searching procedure is done in O(dkL logn) = O(n logn) time.

Another solution relies on computing the LCP array: the longest common prefix between
each pair of consecutive elements within the SA. This information can also be computed
in O(n) time and space [13]. Since SA is an ordered structure, for the contiguous suffixes
si, si+1, si+2 of s, with 0 ≤ i < n− 2, we have that the common prefix between si and si+1
is at least as long as the common prefix of si and si+2. By construction, it is possible to get
the position of each suffix in the corresponding profile in constant time. Then, we cluster the
corresponding profiles of contiguous pairs if they have an LCP value greater than or equal to
L and they are also aligned. This clustering procedure can be done in O(kd2) time.

WABI 2017

9:4 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

2.3 Step 3: Pairs verification
After getting the set of candidate profile pairs, a naïve solution would be to compute the
distance for each pair of profiles by comparing them in linear time, i.e., O(m) time. However,
if we compute the LCP array of s, we can then perform a sequence of O(k) RMQ over the
LCP array for checking if a pair of profiles is at distance at most k. These RMQ over the
LCP array correspond to longest common prefix queries between a pair of suffixes of s. Since
after a linear-time pre-processing over the LCP array, RMQ can be answered in constant
time per query [1], we obtain a faster approach for computing the distances. This alternative
approach takes O(k) time to verify each candidate profile pair instead of O(m) time.

2.4 Average-case analysis
Algorithm 1 below details the solution based on LCP clusters; and Theorem 1 shows that
this algorithm runs in linear time on average using linear space. We rely here on well-known
results concerning the linear-time construction of the SA [12, 14] and the LCP array [13], as
well as the linear-time pre-processing for the RMQ data structure [2].

In what follows, LCP[i], i > 0, stores the length of the longest common prefix of suffixes
si−1 and si of s, and RMQLCP(i, j) returns the index of the smallest element in the subarray
LCP[i . . . j] in constant time [2]. We rely also on some auxiliary subroutines; let L = b m

k+1c:

Aligned(i). Let ` = i mod m, i.e., the starting position of the suffix si within a profile.
Then this subroutine returns `/L if ` is multiple of L, and −1 otherwise.

HD(pi, pj, `). Given two profiles pi and pj which share a substring of length L, starting
at index `L, this subroutine computes the minimum of k and the Hamming distance
between pi and pj . This subroutine relies on RMQLCP to find matches between pi and
pj and, hence, it runs in O(k) time since it can terminate after k mismatches.

I Theorem 1. Given d profiles of length m each over an integer alphabet Σ of size σ > 1
with the letters of the profiles being independent and identically distributed random variables
uniformly distributed over Σ, and the maximum Hamming distance 0 < k < m, Algorithm 1
runs in O(md) average-case time and space if

k <
(m− k − 1) · log σ

logmd .

Proof. Let us denote by s the string of length md obtained after concatenating the d profiles.
The time and space required for constructing the SA and the LCP arrays for s and the RMQ
data structure over the LCP array is O(md).

Let us denote by B the total number of blocks over s and by L the block length. We
set L = b m

k+1c and thus we have that B = dbmL c. Let us also denote by C a maximal set of
indices over x satisfying the following:
1. the length of the longest common prefix between any two suffixes of s starting at these

indices is at least L;
2. both of these suffixes start at the starting position of a block;
3. and both indices correspond to the starting position of the ith block in their profiles.

This can be done in O(md) time using the LCP array (lines 7–17). Processing all such sets
C (lines 21–27) requires total time

PROCi,j × Pairs

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:5

Algorithm 1: Algorithm using LCP clusters.
1 Input: A set P of d profiles of length m each; an integer threshold 0 < k < m.
2 Output: The set X of distinct pairs of profiles that are at Hamming distance at

most k, i.e., X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.
3 Initialization: Let s = s[0 . . . n− 1] be the string of length n = md obtained after

concatenating the d profiles, and L = b m
k+1c. Construct the SA S for s, the LCP

array for s and RMQLCP. Initialize a hash table H to track verified pairs.
4 Candidate pairs enumeration:
5 X := ∅; `p := −1; Ct := ∅, for 0 ≤ t ≤ k
6 foreach 1 ≤ i < n do
7 ` := LCP[i]
8 if ` ≥ L then
9 pi := bS[i]/mc

10 x := Aligned(i)
11 if x 6= −1 then
12 Cx := Cx ∪ {pi}
13 if `p = −1 then
14 pi−1 := bS[i− 1]/mc
15 x := Aligned(i− 1)
16 if x 6= −1 then
17 Cx := Cx ∪ {pi−1}

18 `p := `

19 else if `p 6= −1 then
20 Pairs enumeration:
21 foreach Ct, with 0 ≤ t ≤ k do
22 foreach (p, q) ∈ Ct × Ct : p < q do
23 if (p, q) /∈ H then
24 H := H ∪ {(p, q)}
25 δ := HD(p, q, t)
26 if δ ≤ k then
27 X := X ∪ {(p, q)}

28 `p := −1; Ct := ∅, for 0 ≤ t ≤ k

29 Finalize: Return the set X.

where PROCi,j is the time required to process a pair i, j of elements of a set C, and Pairs
is the sum of |C|2 over all such sets C. We have that PROCi,j = O(k) by using RMQ over
the LCP array. Additionally, by the stated assumption on the d profiles, the expected value
for Pairs is no more than Bd

σL
: we have B blocks in total and each block can only match at

most d other blocks by the conditions above. Hence, the algorithm requires on average the
following running time

O(md+ k · Bd
σL

).

WABI 2017

9:6 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

Let us analyze this further to obtain the relevant condition on k. We have the following:

k · Bd
σL

=
k · b m

bm/(k+1)cc · d
2

σb
m
k+1 c

≤
k · (m

bm/(k+1)c) · d
2

σ
m
k+1−1 .

Since 0 < k < m by hypothesis, we have the following:

k · (m
bm/(k+1)c) · d

2

σ
m
k+1−1 ≤ (md)2

σ
m
k+1−1 .

By some simple rearrangements we have that:

(md)2

σ
m
k+1−1 = (md)2

(md)
log σ

logmd (m
k+1−1)

= (md)2− (m−k−1) log σ
(k+1) logmd .

Consequently, in the case when

k <
(m− k − 1) · log σ

logmd

the algorithm requires O(md) time on average. The extra space usage is clearly O(md). J

3 Use case: goeBURST algorithm

The distance matrix computation is a main step in distance-based methods for phylogenetic
inference. This step dominates the running time of most methods, taking Θ(md2) time, for d
sequences of length m, since it must compute the distance among all sequence pairs. But for
some methods, or when we are only interested in local phylogenies for sequences or profiles of
interest, one does not need to know all pairwise distances for reconstructing a phylogenetic
tree. The problem addressed in this article was motivated by the goeBURST algorithm [9],
our use case. goeBURST is one of such methods for which one must know only the pairs of
sequences that are at Hamming distance at most k. The solution proposed here can however
be extended to other distance-based phylogenetic inference methods, that rely directly or
indirectly on Hamming distance computations. Note that most methods either consider the
Hamming distance or its correction accordingly to some formula based on some model of
evolution [11, 24]. In both cases we must start by computing the Hamming distance among
sequences, but not necessarily all of them [22].

The underlying model of goeBURST is as follows: a given genotype increases in frequency
in the population as a consequence of a fitness advantage or of random genetic drift, becoming
a founder clone in the population; and this increase is accompanied by a gradual diversification
of that genotype, by mutation and recombination, forming a cluster of phylogenetic closely-
related strains. This diversification of the “founding” genotype is reflected in the appearance
of genetic profiles differing only in one housekeeping gene sequence from this genotype – single
locus variants (SLVs). Further diversification of those SLVs will result in the appearance of
variations of the original genotype with more than one difference in the allelic profile, e.g.,
double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as a graphic matroid optimization
problem and, hence, it follows a classic greedy approach [21]. Given the maximum Hamming
distance k, we can define a graph G = (V,E), where V = P (set of profiles) and E = {(u, v) ∈
V 2 | H(u, v) ≤ k}. The main goal of goeBURST is then to compute a minimum spanning
forest for G taking into account the distance H and a total order on links. It starts with
a forest of singleton trees (each sequence/profile is a tree). Then it constructs the optimal

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:7

forest by adding links connecting profiles in different trees in increasing order accordingly
to the total order, similarly to what is done in the Kruskal’s algorithm [15]. In the current
implementation, a total order for links is implicitly defined based on the distance between
sequences, on the number of SLVs, DLVs, TLVs, on the occurrence frequency of sequences,
and on the assigned sequence identifier. With this total order, the construction of the tree
consists of building a minimum spanning forest in a graph [15], where each sequence is a node
and the link weights are defined by the total order. By construction, the pairs at distance δ
will be joined before the pairs at distance δ + 1.

4 Experimental evaluation

We evaluated the proposed approach using both real and synthetic datasets. We used
real datasets obtained through different typing schemas, namely wide-genome multi-locus
sequence typing (wgMLST) data, core-genome multi-locus sequence typing (cgMLST) data,
and single-nucleotide polymorphism (SNP) data. Table 2 summarizes the real datasets used.
We should note that wgMLST and cgMLST datasets contain sequences of integers, where
each column corresponds to a locus and different values in the same column denote different
alleles. Synthetic datasets comprise sets of binary sequences of variable length, uniformly
sampled, allowing us to validate our theoretical findings.

We implemented both versions described above in the C programming language: one based
on binary search over the SA; and another one based on finding clusters in the LCP array.
Since allelic profiles can be either string of letters or sequences of integers, we relied on https:
//github.com/y-256/libdivsufsort and http://www.larsson.dogma.net/qsufsort.c
libraries, respectively. For RMQ over the LCP array, we implemented a fast well-known
solution that uses constant time per query and linearithmic space for pre-processing [1].

All tests were conducted on a machine running Linux, with an Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB of RAM. All binaries
where produced using GCC 5.3 with full optimization enabled.

4.1 Synthetic datasets
We first present results with synthetic data for different values of d, m and k. All synthetic
sequences are binary sequences uniformly sampled. Results presented in this section were
averaged over ten runs and for five different sets of synthetic data.

The bound proved in Theorem 1 was verified in practice. For k satisfying the conditions
in Theorem 1, the running time of our implementation grows almost linearly with n, the size
of the input. We can observe in Fig. 1 a growth slightly above linear. Since we included the
time for constructing the SA, the LCP array and the RMQ data structure, with the last one
in linearithmic time, that was expected.

We also tested our method for values of k exceeding the bound shown in Theorem 1. For
d = m = 4096 and a binary alphabet, the bound for k given in Theorem 1 is no more than
bm/(2 logm)c = 170. For k above this bound we expect that proposed approaches are no
longer competitive with the naïve approach. As shown in Fig. 2, for k > 250 and k > 270
respectively, both limits above the predicted bound, the running time for both computing
pairwise distances by finding lower and upper bounds in the SA, and by processing LCP
based clusters, becomes slower than the running time of the naïve approach.

In Fig. 3 we have the running time as a function of the number d of profiles, for different
values of m and for k satisfying the bound given in Theorem 1. The running time for
the naïve approach grows quadratically with d, while it grows linearly for both computing

WABI 2017

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
http://www.larsson.dogma.net/qsufsort.c

9:8 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

t (
s)

n = d*m (#/106)

Binary search

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
t (

s)

n = d*m (#/106)

LCP based clusters

Figure 1 Synthetic datasets, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances by finding lower and upper bounds in the SA, and by processing
LCP based clusters, as function of the input size n = dm.

Table 2 Real datasets used in the experimental evaluation. (*)Dataset provided by the Molecular
Microbiology and Infection Unit, IMM.

Dataset
Typing Profile Number of

Reference
method length distinct elements

Campylobacter jejuni wgMLST 5446 5669 (*)
Salmonella enterica wgMLST 3002 6861 [6]
Salmonella typhi SNP 22143 1534 [20]
Streptococcus pneumoniae cgMLST 235 1968 [4, 3, 19]

pairwise distances by finding lower and upper bounds in the SA, and by processing LCP
based clusters. Hence, for synthetic data, as described by Theorem 1, the result holds.

4.2 Real datasets
For each dataset in Table 2, we ranged the threshold k accordingly and compared the
approaches discussed in Section 2 with the naïve approach that computes the distance for all
sequence pairs. Results are provided in Table 3.

In most cases, the approach based on the LCP clusters is the fastest up to two orders
of magnitude compared to the naïve approach. As expected, in the case when data are not
uniformly random, our method works reasonably well for smaller values of k than the ones
implied by the bound in Theorem 1. As an example, the upper bound on k for C. jejuni
would be around 200, but the running time for the naïve approach is already better for k = 64.
We should note however that the number of candidate profile pairs at Hamming distance at
most k is much higher than the expected number when data are uniformly random. This
tells us that we can design a simple hybrid scheme that chooses a strategy (naïve or the

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:9

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

Binary search

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

LCP based clusters

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

Figure 2 Synthetic datasets, with σ = 2 and m = 4096. Running time for computing pairwise
distances by finding lower and upper bounds in the SA, and by processing LCP based clusters, as
function of the number d of profiles and for different values of k.

proposed method) depending on the nature of the input data. It seems also to point out
clustering effects on profile dissimilarities, which we may exploit to improve our results. We
leave both tasks as future work for the full version of this article.

We incorporated the approach based on finding lower and upper bounds in the SA in the
implementation of goeBURST algorithm, discussed in Section 3. We did not incorporate the
approach based on the LCP clusters as the running time did not improve much as observed
above. Since running times are similar to those reported in Table 3, we discuss only the
running time for C. jejuni. We need only to index the input once. We can then use the index
in the different stages of the algorithm and for different values of k. In the particular case
of goeBURST, we use the index twice: once for computing the number of neighbors at a
given distance, used for untying links according to the total order discussed in Section 3,
and a second time for enumerating pairs at distance below a given threshold. Note that the
goeBURST algorithm does not aim to link all nodes, but to identify clonal complexes (or
connected components) for a given threshold on the distance among profiles [9]. In the case
of C. jejuni dataset, and for k = 52, the running time is around 36 seconds, while the naïve
approach takes around 115 seconds, yielding a three-fold speedup.

In this case we get several connected components, i.e., several trees, connecting the most
similar profiles. We provide the tree for the largest component in Fig. 4, where each node
represents a profile. The nodes are colored according to one of the loci for which profiles in
this cluster differ. Note that this tree is optimal with respect to the criterion used by the
goeBURST algorithm, not being affected by the threshold on the distance. In fact, since this
problem is a graphic matroid, the trees found for a given threshold will be always subtrees of
the trees found for larger thresholds [21]. Comparing this tree with other inference methods
is beyond the scope of this article; the focus here was on the faster computation of an optimal
tree under this model.

WABI 2017

9:10 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=256

Naive
Bin search

LCP clusters

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=512

Naive
Bin search

LCP clusters

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=1024

Naive
Bin search

LCP clusters

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=2048

Naive
Bin search

LCP clusters

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=4096

Naive
Bin search

LCP clusters

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=8192

Naive
Bin search

LCP clusters

Figure 3 Synthetic datasets, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances naïvely, by finding lower and upper bounds in the SA, and by
processing LCP based clusters, as a function of the number d of profiles.

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:11

Figure 4 The tree inferred for the largest connected component found with k = 52 for the C.
jejuni dataset. Image produced by PHYLOViZ [18].

WABI 2017

9:12 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

Table 3 Time and percentage of pairs processed for each method and dataset.

Dataset k
Naïve Binary search LCP clusters

t (s) pairs (%) t (s) pairs (%) t (s) pairs (%)

C. jejuni

8 108.59 100 0.22 0.06 0.17 0.06
16 109.30 100 0.48 0.32 0.34 0.32
32 108.60 100 3.52 5.45 2.67 5.45
64 108.60 100 231.05 99.98 162.36 99.98

S. enterica

8 89.85 100 1.04 2.37 0.95 2.37
16 87.26 100 7.16 12.69 6.73 12.69
32 85.36 100 36.29 33.22 30.76 33.22
64 84.63 100 254.45 82.44 187.15 82.44

S. typhi
89 28.83 100 16.63 91.48 12.02 91.48
178 28.32 100 46.98 99.91 32.03 99.91
890 30.04 100 113.57 100 129.14 100

S. pneumoniae

8 0.56 100 0.02 0.93 0.02 0.93
16 0.57 100 0.05 1.71 0.04 1.71
32 0.56 100 0.20 4.42 0.15 4.42
64 0.58 100 5.63 73.36 5.01 73.36

In many studies, the computation of trees based on pairwise distances below a given
threshold, usually small compared with the total number of loci, combined with ancillary data,
such as antibiotic resistance and host information, allows microbiologists to uncover evolution
patterns and study the mechanisms underlying the transmission of infectious diseases [10].

5 Concluding remarks

Most distance-based phylogenetic inference methods rely directly or indirectly on Hamming
distance computations. The computation of a distance matrix is a common first step for such
methods, taking Θ(md2) time in general, with d being the number of sequences or profiles
and m the length of each sequence or profile. For large-scale datasets this running time may
be problematic; however, for some methods, we can avoid to compute all-pairs distances [22].

We addressed this problem when only a truncated distance matrix is needed, i.e., one
needs to know only which pairs are at Hamming distance at most k. This problem was
motivated by the goeBURST algorithm [9], which relies on a truncated distance matrix
by construction. We proposed here an average-case linear-time and linear-space algorithm
to compute the pairs of sequences or profiles that are at Hamming distance at most k,
when k < (m−k−1)·logσ

logmd , where σ is the size of the alphabet. We integrated our solution in
goeBURST demonstrating its effectiveness using both real and synthetic datasets.

We must note however that our analysis holds for uniformly random sequences and, hence,
as observed with real data, the presented bound may be optimistic. It is thus interesting to
investigate how to address this problem taking into account local conserved regions within
sequences. Moreover, it might be interesting to consider in the analysis null models such as
those used to evaluate the accuracy of distance-based phylogenetic inference methods [24].

The proposed approach is particularly useful when one is interested in local phylogenies,
i.e., local patterns of evolution, such as searching for similar sequences or profiles in large
typing databases. In this case we do not need to construct full phylogenetic trees, with tens
of thousands of taxa. We can focus our search on the more similar sequences or profiles,

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:13

within a given threshold k. There are however some issues to be solved in this scenario,
namely, dynamic updating of the data structures used in our algorithm. Note that after
querying a database, if new sequences or profiles are identified, then we should be able to
add them while keeping our data structures updated. Although more complex and dynamic
data structures are known, a technique proposed recently for adding dynamism to otherwise
static data structures can be useful to address this issue [17]. This and other challenges
raised above are left as future work.

References

1 Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics: 4th Latin American Symposium, volume 1776 of Lecture
Notes in Computer Science, pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

2 Michael A Bender, Martín Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of
Algorithms, 57(2):75–94, 2005. doi:10.1016/j.jalgor.2005.08.001.

3 Claire Chewapreecha, Simon R. Harris, Nicholas J. Croucher, Claudia Turner, Pekka Mart-
tinen, Lu Cheng, Alberto Pessia, David M. Aanensen, Alison E. Mather, Andrew J. Page,
Susannah J. Salter, David Harris, Francois Nosten, David Goldblatt, Jukka Corander,
Julian Parkhill, Paul Turner, and Stephen D. Bentley. Dense genomic sampling iden-
tifies highways of pneumococcal recombination. Nature Genetics, 46(3):305–309, 2014.
doi:10.1038/ng.2895.

4 Nicholas J Croucher, Jonathan A Finkelstein, Stephen I Pelton, Patrick K Mitchell,
Grace M Lee, Julian Parkhill, Stephen D Bentley, William P Hanage, and Marc Lipsitch.
Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature Ge-
netics, 45(6):656–663, 2013. doi:10.1038/ng.2625.

5 Richard Desper and Olivier Gascuel. Fast and accurate phylogeny reconstruction algorithms
based on the minimum-evolution principle. Journal of Computational Biology, 9(5):687–705,
2002. doi:10.1089/106652702761034136.

6 EnteroBase. Enterobase.warwick.ac.uk. URL: http://enterobase.warwick.ac.uk.
7 Edward J. Feil, Edward C. Holmes, Debra E. Bessen, Man-Suen Chan, Nicholas P. J. Day,

Mark C. Enright, Richard Goldstein, Derek W. Hood, Awdhesh Kalia, Catrin E. Moore,
et al. Recombination within natural populations of pathogenic bacteria: short-term em-
pirical estimates and long-term phylogenetic consequences. Proceedings of the National
Academy of Sciences, 98(1):182–187, 2001. doi:10.1073/pnas.98.1.182.

8 Edward J. Feil, Bao C. Li, David M. Aanensen, William P. Hanage, and Brian G. Spratt.
eBURST: inferring patterns of evolutionary descent among clusters of related bacterial
genotypes from multilocus sequence typing data. Journal of Bacteriology, 186(5):1518–
1530, 2004. doi:10.1128/JB.186.5.1518-1530.2004.

9 Alexandre P Francisco, Miguel Bugalho, Mário Ramirez, and João Carriço. Global optimal
eBURST analysis of multilocus typing data using a graphic matroid approach. BMC
Bioinformatics, 10(1), 2009. doi:10.1186/1471-2105-10-152.

10 Alexandre P. Francisco, Cátia Vaz, Pedro T. Monteiro, José Melo-Cristino, Mário Ramirez,
and Joao A. Carriço. PHYLOViZ: phylogenetic inference and data visualization for se-
quence based typing methods. BMC Bioinformatics, 13(1):87, 2012. doi:10.1186/
1471-2105-13-87.

11 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: con-
cepts, algorithms and applications. Cambridge University Press, 2010. doi:10.1017/
CBO9780511974076.

WABI 2017

http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1038/ng.2895
http://dx.doi.org/10.1038/ng.2625
http://dx.doi.org/10.1089/106652702761034136
http://enterobase.warwick.ac.uk
http://dx.doi.org/10.1073/pnas.98.1.182
http://dx.doi.org/10.1128/JB.186.5.1518-1530.2004
http://dx.doi.org/10.1186/1471-2105-10-152
http://dx.doi.org/10.1186/1471-2105-13-87
http://dx.doi.org/10.1186/1471-2105-13-87
http://dx.doi.org/10.1017/CBO9780511974076
http://dx.doi.org/10.1017/CBO9780511974076

9:14 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

12 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

13 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-
time longest-common-prefix computation in suffix arrays and its applications. In An-
nual Symposium on Combinatorial Pattern Matching, pages 181–192. Springer, 2001.
doi:10.1007/3-540-48194-X.

14 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In
Annual Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes in
Computer Science, pages 200–210. Springer, 2003. doi:10.1016/j.jda.2004.08.002.

15 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.
2307/2033241.

16 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

17 J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Dynamic data structures for docu-
ment collections and graphs. In Proceedings of the 34th ACM Symposium on Principles of
Database Systems, pages 277–289. ACM, 2015. doi:10.1145/2745754.2745778.

18 Marta Nascimento, Adriano Sousa, Mário Ramirez, Alexandre P. Francisco, João A. Car-
riço, and Cátia Vaz. PHYLOViZ 2.0: providing scalable data integration and visualiz-
ation for multiple phylogenetic inference methods. Bioinformatics, 33(1):128–129, 2017.
doi:10.1093/bioinformatics/btw582.

19 National Center for Biotechnology Information. GeneBank. URL: ftp://ftp.ncbi.nih.
gov/genomes/archive/old_genbank/Bacteria/.

20 Andrew J. Page, Ben Taylor, Aidan J. Delaney, Jorge Soares, Torsten Seemann, Jac-
queline A. Keane, and Simon R. Harris. SNP-sites: rapid efficient extraction of SNPs from
multi-FASTA alignments. Microbial Genomics, 2(4), 2016. doi:10.1099/mgen.0.000056.

21 Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., 1982.

22 Fabio Pardi and Olivier Gascuel. Distance-based methods in phylogenetics. In
Encyclopedia of Evolutionary Biology, pages 458–465. Elsevier, 2016. doi:10.1016/
B978-0-12-800049-6.00206-7.

23 D. Ashley Robinson, Edward J. Feil, and Daniel Falush. Bacterial population genetics in
infectious disease. John Wiley & Sons, 2010. doi:10.1002/9780470600122.

24 Naruya Saitou. Introduction to evolutionary genomics. Springer, 2013. doi:10.1007/
978-1-4471-5304-7.

25 Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.
doi:10.1093/oxfordjournals.molbev.a040454.

26 Robert R. Sokal. A statistical method for evaluating systematic relationships. Univ Kans
Sci Bull, 38:1409–1438, 1958.

http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1007/3-540-48194-X
http://dx.doi.org/10.1016/j.jda.2004.08.002
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/2745754.2745778
http://dx.doi.org/10.1093/bioinformatics/btw582
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/
http://dx.doi.org/10.1099/mgen.0.000056
http://dx.doi.org/10.1016/B978-0-12-800049-6.00206-7
http://dx.doi.org/10.1016/B978-0-12-800049-6.00206-7
http://dx.doi.org/10.1002/9780470600122
http://dx.doi.org/10.1007/978-1-4471-5304-7
http://dx.doi.org/10.1007/978-1-4471-5304-7
http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454

	Introduction
	Closest pairs in linear time
	Step 1: Profile indexing
	Step 2: Candidate profile pairs enumeration
	Step 3: Pairs verification
	Average-case analysis

	Use case: goeBURST algorithm
	Experimental evaluation
	Synthetic datasets
	Real datasets

	Concluding remarks

