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—— Abstract

Motivation: Many common clustering algorithms require a two-step process that limits their
efficiency. The algorithms need to be performed repetitively and need to be implemented together
with a model selection criterion, in order to determine both the number of clusters present in the
data and the corresponding cluster memberships. As biomedical datasets increase in size and
prevalence, there is a growing need for new methods that are more convenient to implement and
are more computationally efficient. In addition, it is often essential to obtain clusters of sufficient
sample size to make the clustering result meaningful and interpretable for subsequent analysis.
Results: We introduce Shrinkage Clustering, a novel clustering algorithm based on matrix fac-
torization that simultaneously finds the optimal number of clusters while partitioning the data.
We report its performances across multiple simulated and actual datasets, and demonstrate its
strength in accuracy and speed in application to subtyping cancer and brain tissues. In addition,
the algorithm offers a straightforward solution to clustering with cluster size constraints. Given
its ease of implementation, computing efficiency and extensible structure, we believe Shrinkage
Clustering can be applied broadly to solve biomedical clustering tasks especially when dealing
with large datasets.
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1 Introduction

Cluster analysis is one of the most frequently used unsupervised machine learning methods
in biomedicine. The task of clustering is to automatically uncover the natural groupings of a
set of objects based on some known similarity relationships. Often employed as a first step
in a series of biomedical data analyses, cluster analysis helps to identify distinct patterns
in data and suggest classification of objects (e.g. genes, cells, tissue samples, patients) that
are functionally similar or related. Typical applications of clustering include subtyping
cancer based on gene expression levels [31], classifying protein subfamilies based on sequence
similarities [5], distinguishing cell phenotypes based on morphological imaging metrics [26],
and identifying disease phenotypes based on physiological and clinical information [22].
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Many algorithms have been developed over the years for cluster analysis [32], including
hierarchical approaches [11] (e.g., ward-linkage, single-linkage) and partitional approaches that
are centroid-based (e.g., K-means [15]), density-based (e.g., DBSCAN [7]), distribution-based
(e.g., Gaussian mixture models [19]), or graph-based (e.g., Normalized Cut [25]). Notably,
nonnegative matrix factorization (NMF) has received a lot of attention in application to
cluster analysis, because of its ability to solve challenging pattern recognition problems and
the flexibility of its framework [14]. NMF-based methods have been shown to be equivalent
to a relaxed K-means clustering and Normalized Cut spectral clustering with particular
cost functions [6], and NMF-based algorithms have been successfully applied to clustering
biomedical data [4].

With few exceptions, most clustering algorithms group objects into a pre-determined
number of clusters, and do not inherently look for the number of clusters in the data.
Therefore, cluster evaluation measures are often employed and are coupled with clustering
algorithms to select the optimal clustering solution from a series of solutions with varied
cluster numbers. Commonly used model selection methods for clustering, which vary in
cluster quality assessment criteria and sampling procedures, include Silhouette [24], X-means
[23], Gap Statistic [29], Consensus Clustering [20], Stability Selection [13], and Progeny
Clustering [10]. The drawbacks of coupling cluster evaluation with clustering algorithms
include (i) computation burden, since the clustering needs to be performed with various
cluster numbers and sometimes multiple times to assess the solution’s stability; and (ii)
implementation burden, since the integration can be laborious if algorithms are programmed
in different languages or are available on different platforms.

Here, we propose a novel clustering algorithm Shrinkage Clustering based on symmetric
nonnegative matrix factorization notions [12]. Specifically, we utilize unique properties of a
hard clustering assignment matrix to simplify the matrix factorization problem and to design
a fast algorithm that accomplishes the two tasks of determining the optimal cluster number
and performing clustering in one. The Shrinkage Clustering algorithm is mathematically
straightforward, computationally efficient, and structurally flexible. In addition, the flexible
framework of the algorithm allows us to extend it to clustering applications with minimum
cluster size constraints.

2 Methods

2.1 Problem Formulation

Let X = {Xj, ..., Xn} be a finite set of N objects. The task of cluster analysis is to group
objects that are similar to each other and separate those that are dissimilar to each other.
The completion of a clustering task can be broken down to two steps: (i) deriving similarity
relationships among all objects (e.g., Euclidean distance); (ii) clustering objects based on
these relationships. The first step is sometimes omitted when the similarity relationships
are directly provided as raw data, for example in the case of clustering genes based on
their sequence similarities. Here, we assume that the similarity relationships were already
derived and are available in the form of a similarity matrix Sy, where S;; € [0,1] and
Si; = 9. In the similarity matrix, a larger S;; represents more resemblance in pattern or
closer proximity in space between X; and X;, and vice versa.

Suppose Anxx is a clustering solution for objects with similarity relationships Sy« -
Since we are only considering the case of hard clustering, we have A;, € {0,1} and Zéil A =
1. Specifically, K is the number of clusters obtained, and A;; takes the value of 1 if X;
belongs to cluster k and takes the value of 0 if it does not. The product of A and its transpose
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AT represents a solution-based similarity relationship S (i.e. S = AAT), in which S'Z-j takes
the value of 1 when X; and X are in the same cluster and 0 otherwise. Unlike S;; which
can take continuous values between 0 and 1, S'ij is a binary representation of the similarity
relationships indicated by the clustering solution. If a clustering solution is optimal, the
solution-based similarity matrix S should be similar to the original similarity matrix S if not
equal.

Based on this intuition, we formulate the clustering task mathematically as

. _AAT
min IS — AA ||F

K N (1)
subject to A, € {0,1}, ZA““ =1, ZA““ #0 .
k=1 i=1

The goal of clustering is therefore to find an optimal cluster assignment matrix A, which
represents similarity relationships that best approximate the similarity matrix S derived
from the data. The task of clustering is transformed into a matrix factorization problem,
which can be readily solved by existing algorithms. However, most matrix factorization
algorithms are generic (not tailored to solving special cases like Function 1), and are therefore
computationally expensive.

2.2 Properties and Rationale

In this section, we explore some special properties of the objective Function 1 that lay
the ground for Shrinkage Clustering. Unlike traditional matrix factorization problems, the
solution A we are trying to obtain has special properties, i.e. A;; € {0,1} and Zszl Ay = 1.
This binary property of A greatly simplifies the objective Function 1 as below.

. AT
mAnHS AAY||F

N N
= mjnz Z(Sij - Az (] Aj)2

i=1 j=1
N
RS ST SRR S
=1 je{jlA;=A;} JE{iIA#A;}
N N N
B S SRRIEITEES 3 o
i=1 je{j|A;=A;} i=1j=1

Here, A; represents the ith row of A, and the symbol e denotes the inner product of two
vectors. Note that A; e A; take binary values of either 0 or 1, because A;; € {0,1} and
Zszl A;r = 1. In addition, Zf\il Zj\;l Sfj is a constant that does not depend on the
clustering solution A. Based on this simplification, we can reformulate the clustering problem
as

N
minf(A) = >, Y, (1-28y). (2)

=1 je{jlAi=A;}

Let’s now consider how the value of the objective Function 2 changes when we change
the cluster membership of an object X;. Suppose we start with a clustering solution A, in
which X; belongs to cluster k (A;; = 1). When we change the cluster membership of X;
from k to k' with the rest remaining the same, we would obtain a new clustering solution A’
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in which A}, =1 and A}, = 0. Since S is symmetric (i.e. S;; = Sj;), the value change of the
objective Function 2 is

Afi = f(A") = f(A)

=D (1-28) = > (1=25;)+ > (1—-28;) — Y (1—25;)

jew’ ek ek’ jek (3)
=2() (1-28;) =Y (1-285;))
ek’ jek

2.3 Shrinkage Clustering: Base Algorithm

Based on the simplified objective Function 2 and its properties with cluster changes (Func-
tion 3), we designed a greedy algorithm Shrinkage Clustering to rapidly look for a clustering
solution A that factorizes a given similarity matrix S. As described in Algorithm 1, Shrinkage
Clustering begins by randomly assigning objects to a sufficiently large number of initial
clusters. During each iteration, the algorithm first removes any empty clusters generated
from the previous iteration, a step that gradually shrinks the number of clusters; then it
permutes the cluster membership of the object that most minimizes the objective function.
The algorithm stops when the solution converges (i.e. no cluster membership permutation
can further minimize the objective function), or when a pre-specified maximum number of
iterations is reached. Shrinkage Clustering is guaranteed to converge to a local optimum as
shown in Theorem 1. The main and advantageous feature of Shrinkage Clustering is that it
shrinks the number of clusters while finding the clustering solution. During the process of
permuting cluster memberships to minimize the objective function, clusters automatically
collapse and become empty until the optimization process is stabilized and the optimal
cluster memberships are found. The number of clusters remaining in the end is the optimal
number of clusters, since it stabilizes the final solution. Therefore, Shrinkage Clustering
achieves both tasks of (i) finding the optimal number of clusters and (ii) finding the clustering
memberships.

» Theorem 1. Shrinkage Clustering monotonically converges to a (local) optimum.

Proof. We first demonstrate the monotonically decreasing property of the objective Function 2
in each iteration of the algorithm. There are two steps taken in each iteration: (i) removal of
empty clusters; and (ii) permutation of cluster memberships. Step (i) does not change the
value of the objective function, because the objective function only depends on non-empty
clusters. On the other hand, step (ii) always lowers the objective function, since a cluster
membership permutation is chosen based on its ability to achieve the greatest minimization
of the objective function. Combing step (i) and (ii), it is obvious that the value of the
objective function monotonically decreases with each iteration. Since ||S — AAT||p > 0
and ||S — AAT||p = Zfil > jeiilai=a; (1 —255) + Zfil Zjvzl S7;, the objective function
has a lower bound of — Ef\il Z;‘Vﬂ S7;. Therefore, a convergence to a (local) optimum is
guaranteed, because the algorithm is monotonically decreasing with a lower bound. |

2.4 Shrinkage Clustering with Cluster Size Constraints

It is well-known that K-means can generate empty clusters when clustering high-dimensional
data with over 20 clusters, and Hierarchical Clustering often generate tiny clusters with few
samples. In practice, clusters of too small a size can sometimes be full of outliers, and they
are often not preferred in cluster interpretation since most statistical tests do not apply to
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Algorithm 1 Shrinkage Clustering: Base Algorithm

Input: Sy (similarity matrix)
Ky (intial number of clusters)
Initialization:
a. Generate a random Ay, (cluster assignment matrix)
b. Compute S =1 — 25
repeat
1. Remove empty clusters:
(a) Delete empty columns in A (i.e. {j] Zivzl A;; =0})
2. Permute the cluster membership that minimizes Function 2 the most:
(a) Compute M = SA
(b) Compute v by v; = mjian'j - Zjil(M o A);;, where

o represents the element-wise product (Hadamard product)
(c) Find the object X with the greatest optimization potential,
i.e. X = argminv;
K3

(d) Permute the membership of X to C’, where C’ = arg minMg
j

until vazl v; = 0 or reaching max number of iterations
Output: A (cluster assignment)

Algorithm 2 Shrinkage Clustering with Cluster Size Constraints

Additional Input: w (minimum cluster size).

Updated Step 1:
(a) Remove columns in A that contain too few objects, i.e. {j| SN | A < w}
(b) Reassign objects in these clusters to clusters with the greatest minimization

small sample sizes. Though extensions to K-means were proposed to solve this issue [3],
the attempt to control cluster sizes has not been easy. In contrast, the flexibility and the
structure of Shrinkage Clustering offers a straightforward and rapid solution to enforcing
constraints on cluster sizes. To generate a clustering solution with each cluster containing at
least w objects, we can simply modify Step 1 of the iteration loop in Algorithm 1. Instead of
removing empty clusters in the beginning of each iteration, we now remove clusters of sizes
smaller than a pre-specified size w. The base algorithm (Algorithm 1) can be viewed as a
special case of w = 0 in the size-constrained Shrinkage Clustering algorithm.

3 Results

3.1 Experiments on Similarity Data
3.1.1 Testing with Simulated Similarity Matrices

We first use simulated similarity matrices to test the performance of Shrinkage Clustering
and to examine its sensitivity to the initial parameters and noise. As a proof of concept,
we generate a similarity matrix S directly from a known cluster assignment matrix A by
S = AAT. Here, the cluster assignment matrix Ajgoxs is randomly generated to consist
of 100 objects grouped into 5 clusters with unequal cluster sizes (i.e. 15, 17, 20, 24 and
24 respectively). The similarity matrix Sigox100 generated from the product of A and AT
therefore represents an ideal case, where there is no noise, since each entry of .S only takes a
binary value of either 0 or 1.
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Table 1 Clustering results of simulated similarity matrices with varying size constraints (w),
where C is the cluster generated by Shrinkage Clustering.

w=20 w =20 w =25
Ci C2 C3 C4 C5|Cl (C2 C3 C4|C1 C2
Cluster 1 0 0 24 0 0 0 24 0 0 0 24
Cluster 2 15 0 0 0 0 15 0 0 0 15 0
Cluster 3 0 0 0 0 24 0 0 24
Cluster 4 0 17 0 0 0 17 0 0 0 17 0
Cluster 5 0 0 0 0 0 20 | 20 0

True Label

We apply Shrinkage Clustering to this simulated similarity matrix S with 20 initial
random clusters and repeat the algorithm for 1000 times. Each run, the algorithm accurately
generates 5 clusters with cluster assignments A in perfect match with the true cluster
assignments A (an example shown in Table 1 under w = 0), demonstrating the algorithm’s
ability to perfectly recover the cluster assignments in a non-noisy scenario. The shrinkage
paths of the first 5 runs (Figure 1A) illustrate that most runs start around a number of 20
clusters, and all of them shrink down gradually to a final number of 5 clusters when the
solution reaches an optimum. We then test whether the algorithm is sensitive to the initial
number of clusters (Ky) by running it with Ky ranging from 5 (true number of clusters)
to 100 (maximum number of clusters). In each case, the true cluster structure is recovered
perfectly, demonstrating the robustness of the algorithm to different initial cluster numbers.
The shrinkage paths in Figure 1B clearly show that in spite of starting with various initial
numbers of clusters, all paths converge to the same number of clusters at the end.

Next, we investigate the effects of size constraints on Shrinkage Clustering’s performance
by varying w from 1 to 5, 10, 20 and 25. The algorithm is repeated 50 times in each case.
We find that as long as w is smaller than the true minimum cluster size (i.e. 15), the size
constrained algorithm can perfectly recover the true cluster assignments A in the same way
as the base algorithm. Once w exceeds the true minimum cluster size, clusters are forced to
merge and therefore result in a smaller number of clusters (example clustering solutions of
w = 20 and w = 25 shown in Table 1). In these cases, it is impossible to find the true cluster
structure because the algorithm starts off with fewer clusters than the true number of clusters
and it works uni-directionally (i.e. only shrinks). Besides enabling supervision on the cluster
sizes, size-constrained Shrinkage Clustering is also computationally advantageous. Figure 1C
shows that a larger w results in fewer iterations needed for the algorithm to converge, and the
effect reaches a plateau once w reaches certain sizes (e.g. w = 10 in this case). The shrinkage
paths (Figure 1D) show that it is the reduced number of iterations at the beginning of a run
that speeds up the entire process of solution finding when w is large.

In reality, it is rare to find a perfectly binary similarity matrix similar to what we
generated from a known cluster assignment matrix. There is always a certain degree of
noise clouding our observations. To investigate how much noise the algorithm can tolerate
in the data, we add a layer of Gaussian noise over the simulated similarity matrix. Since
S;; € {0,1}, we create a new similarity matrix SV containing noise defined by

if S;; =0
SN — lel 1 oij ’
{17‘5‘ lfSZjZI
where £ ~ N(0,02). Figure 1E illustrates the changes of the similarity distribution density
as the standard deviation o varies from 0 to 0.5. When ¢ = 0 (i.e. no noise), SV is
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Figure 1 Testing results on simulated similarity data: (A) The first 5 shrinkage paths from
running base algorithm with different initiations. (B) Example shrinkage paths with varying initial
cluster numbers of 5, 10, 20, 50 and 100. (C) The average number of iterations spent with w taking
values of 1 to 5, 10, 15, 20 and 25. (D) Example shrinkage paths for w of 1 to 5, 10, 15, 20 and 25
(path of w = 10 is in overlap with w = 15). (E) The similarity distribution for & from 0 to 0.5. (F)
The probability of successfully recovering the underlying cluster structure against different noise
levels.

Bernoulli distributed. As o becomes larger and larger, the bimodal shape is flattened by
noise. When o = 0.5, approximately 32% of the similarity relationships are reversed, and

hence observations have been perturbed too much to infer the underlying cluster structure.
The performances of Shrinkage Clustering in these noisy conditions are shown in Figure 1F.

The algorithm proves to be quite robust against noise, as the true cluster structure is 100%
recovered in all conditions except for when o > 0.4.

3.1.2 Biological Case Study: TCGA Dataset

To illustrate the performance of Shrinkage Clustering on real biological similarity data, we

apply the algorithm to subtyping tumors from the Cancer Genome Atlas (TCGA) dataset [27].

Derived from the TCGA database, the dataset includes 293 samples from 3 types of cancers,
which are Breast Invasive Carcinoma (BRCA, 207 samples), Glioblastoma Multiforme (GBM,
67 samples) and Lung Squamous Cell Carcinoma (LUSC, 19 samples). The data is presented
in the form of a similarity matrix, which integrates information from the gene expression
levels, DNA methylation and copy number aberration. Since the similarity scores from the
TCGA dataset are in general skew to 1, we first normalize the data by shifting its mean
around 0.5 and by bounding values that are greater than 1 and smaller than 0 to 1 and 0
respectively. We then perform Shrinkage Clustering to cluster the cancer samples, the result
of which is shown in comparison to the true cancer types (Table 2). We can see that the
algorithm generates three clusters, successfully predicting the true number of cancer types
contained in the data. The clustering assignments also demonstrate high accuracy, as the
majority of samples are correctly clustered with samples of the same type.
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Table 2 Clustering results of the TCGA dataset, where the clustering assignments from Shrinkage
Clustering are compared against the three known tumor types.

Cluster 1 Cluster 2  Cluster 3

BRCA 3 204 0
GBM 0 0 67
LUSC 17 2 0

Table 3 Performances of Shrinkage Clustering on Simulated, Iris and Wine data, where the
clustering assignments are compared against the three simulated centers, three Iris species and three
wine types respectively.

Simulated Iris Wine
Center cl1 C2 (C3 Species Cl C2 | Type | C1 C2 C3
(-2, 2) 0 49 1 setosa 50 0 1 0 59 0
(=2,-2) | 0O 1 49 | wversicolor | 0 50 2 59 6 0
(2, 0) 50 0 0 virginica 0 50 3 0 6 48

3.2 Experiments on Feature-based Data
3.2.1 Testing with Simulated and Standardized Data

Since similarity matrices are not always available in most clustering applications, we now
test the performance of Shrinkage Clustering using feature-based data that does not directly
provide the similarity information between objects. To run Shrinkage Clustering, we first
convert the data to a similarity matrix using S = exp(—(D(X)/B0)?), where [D(X)];;
is the Euclidean distance between X; and X, o is the standard deviation of D(X), and
B = E(D(X)?)/0o?. The same conversion method is used for all datasets in the rest of this

paper.

As a proof of concept, we first generate a simulated three-cluster two-dimensional data
set by sampling 50 points for each cluster from bivariate normal distributions with a
common identity covariance matrix around centers at (—2, 2), (—2, 2) and (0, 2) respectively.
The clustering result from Shrinkage Clustering is shown in Table 3, where the algorithm
successfully determines the existence of 3 clusters in the data and obtains a clustering solution
with high accuracy.

Next, we test the performance of Shrinkage Clustering using two real data sets, the Iris
[8] and the wine data [1], both of which are frequently used to test clustering algorithms;
and they can be downloaded from the University of California Irvine (UCI) machine learning
repository [2]. The clustering results from Shrinkage Clustering for both datasets are shown
in Table 3, where the clustering assignments are compared to the true cluster memberships
of the Iris and the wine samples respectively. In application to the wine data, Shrinkage
Clustering successfully identifies a correct number of 3 wine types and produces highly
accurate cluster memberships. For the Iris data, though the algorithm generates two instead
of three clusters, the result is acceptable because the species versicolor and virginica are
known to be hardly distinguishable given the features collected.
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Table 4 Clustering Accuracy Comparison of the seven algorithms based on NMI (Normalized
Mutual Information), Rand Index, F1 score and K (the optimal cluster number).

Type Metric | Shrinkage Spectral K-means Hierarchical PAM DBSCAN  Affinity
NMI 0.50 0.29 0.46 0.09 0.50 0.29 0.27
BCWD Rand 0.77 0.68 0.75 0.55 0.77 0.64 0.52
F1 0.80 0.69 0.79 0.69 0.80 0.72 0.22
K (2) 2 2 2 2 2 3 21
NMI 0.56 0.20 0.58 0.17 0.54 0.31 0.40
AIBT Rand 0.79 0.68 0.80 0.37 0.78 0.64 0.76
F1 0.61 0.39 0.62 0.40 0.59 0.43 0.26
K (4) 4 4 4 4 4 5 31

3.2.2 Biological Case Study 1: Breast Cancer Wisconsin Diagnostic
(BCWD)

The BCWD dataset [28, 17] contains 569 breast cancer samples (357 benign and 212
malignant) with 30 characteristic features computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. The dataset is available on the UCI machine learning

repository [2] and is one of the most popularly tested dataset for clustering and classification.

Here, we apply Shrinkage Clustering to the data and compare its performance against six
commonly used clustering methods: Spectral Clustering [33], K-means [15], Hierarchical

Clustering [11] (Ward’s method [30]), PAM [16], DBSCAN [7] and Affinity Propagation [9)].

Since K-means, Spectral Clustering, Hierarchical Clustering and PAM do not inherently
determine the optimal cluster number and require the cluster number as an input, we first
run these algorithms with cluster numbers from 2 to 10, and then use the mean Silhouette
width as the criterion to select the optimal cluster number. The accuracy of all clustering
solutions is evaluated using four metrics: Normalized Mutual Information (NMI) [18], Rand
Index [18], F1 score [18], and the optimal cluster number (K).

The performance results (Table 4) show that Shrinkage Clustering correctly predicts
a 2 cluster structure from the data and generates the clustering assignments with high
accuracy. Notably, Shrinkage Clustering is the only algorithm that correctly estimates the
optimal cluster number among the three algorithms (together with DBSCAN and Affinity
Propagation) that inherently determine cluster numbers. When comparing the cluster
assignments against the true cluster memberships, we can see that Shrinkage Clustering is
one of the two best performers (with PAM) across all accuracy metrics.

3.2.3 Biological Case Study 2: Allen Institute Brain Tissue (AIBT)

The AIBT dataset [21] contains RNA sequencing data of 377 samples from four types of
brain tissues, i.e. 99 samples of temporal cortex, 91 samples of parietal cortex, 93 samples of
cortical white matter, and 94 samples hippocampus isolated by macro-dissection. For each
sample, the expression levels of 50282 genes are included as features, and each feature is
normalized to have a mean of 0 and a standard deviation of 1 prior to testing. In contrast to
the previous case study, the AIBT data is much larger in size with significantly more features
being measured. Therefore, this would be a great example to test both the accuracy and the
speed of clustering algorithms in face of greater data sizes and higher dimensions.

Similar to the previous case study, we apply Shrinkage Clustering and the six commonly
used clustering algorithms to the data, and use mean Silhouette width to select the optimal
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Figure 2 Computation time of all clustering algorithms in application to the AIBT data.

cluster number for algorithms that do not inherently determine the cluster number. The
performances of all seven algorithms measured across the four accuracy metrics (i.e. NMI,
Rand, F1, K) are shown in Table 4. Among the three algorithms with built-in cluster number
determination, Shrinkage Clustering is the only algorithm that accurately predicts a 4 cluster
structure, whereas DBSCAN and Affinity Propagation both over-estimate the total number
of clusters present in the data. In addition, Shrinkage Clustering is the second best performer
among all seven algorithms in terms of clustering quality, with comparable accuracy to the
top performer (K-means).

Next, we record and compare the speed of the seven algorithms for clustering the data.
The speed comparison results, shown in Figure 2, demonstrate the unparalleled speed of
Shrinkage Clustering compared to the rest of the algorithms. Shrinkage Clustering is twice
as fast as DBSCAN and Affinity Propagation, and it is faster than Hierachical, PAM and
K-means by more than 20 times. In particular, the same data that takes Shrinkage Clustering
only 73 seconds to cluster can take Spectral clustering more than 20 hours.

4 Discussion

From the biological case studies, we showed that Shrinkage Clustering is computationally
advantageous in speed with high clustering accuracy comparable to the best performers of
the six commonly used clustering algorithms. This advantage in speed mainly comes from
the fact that Shrinkage Clustering integrates the clustering of the data and the determination
of the optimal cluster number into one seamless process, so the algorithm only needs to run
once in order to complete the clustering task. In contrast, algorithms like K-means, PAM
and Spectral Clustering perform clustering on a single cluster number basis, therefore they
need to be repeatedly run for all cluster numbers of interest before a clustering evaluation
method can be applied. Notably, the clustering evaluation method Silhouette that we used
in this experiment does not perform any repetitive clustering validation and therefore is
a much faster method compared to other commonly used methods that require repetitive
validation [10]. This means that Shrinkage Clustering would have an even greater advantage
in computation speed compared to the methods tested in this paper if we use a cluster
evaluation method that has a repetitive nature (e.g. Consensus Clustering, Gap Statistics,
Stability Selection).

One prominent feature of Shrinkage Clustering is its flexibility to solve semi-supervised
clustering problems, i.e. its ability to add constraints to the minimum cluster size. The size
constraints can help prevent generating empty or tiny clusters (which are often observed in
Hierarchical Clustering and sometimes in K-means applications), and can produce clusters of
sufficiently large sample sizes as required by the user. This is particularly useful when we
need to perform subsequent statistical analyses based on the clustering solution, since clusters
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of too small a size can make a statistical testing infeasible. For example, one application of
cluster analysis in clinical studies is identifying subpopulations of cancer patients based on
their gene expression levels, which is usually followed with a survival analysis to determine
the prognostic value of the gene expression patterns. In this case, clusters that contain too
few patients can hardly generate any significant or meaningful patient outcome comparison.
In addition, it is difficult to take actions based on tiny patient clusters (e.g. in the context of
designing clinical trials), since these clusters are hard to validate.

In summary, we developed a new NMF-based clustering method, Shrinkage Clustering,
which shrinks the number of clusters to an optimum while simultaneously optimizing the
cluster memberships. The algorithm performed with high accuracy on both simulated and
actual data, exhibited excellent robustness to noise, and demonstrated superior speeds
compared to some of the commonly used algorithms. The base algorithm has also been
extended to accommodate requirements on minimum cluster sizes, which can be particularly
beneficial to clinical studies and the general biomedical community. The size-constrained
extension also illustrates the flexibility of the Shrinkage Clustering algorithm framework and
the ease of adapting it towards semi-supervised learning tasks. Interesting future research
directions include exploring Shrinkage Clustering’s capability to deal with missing data or
incomplete similarity matrices, as well as extending the algorithm to handle semi-supervised
clustering tasks with must-link and cannot-link constraints.

—— References

1 S. Aeberhard, D. Coomans, and O. De Vel. Comparison of classifiers in high dimensional
settings. Dept. Math. Statist., James Cook Univ., North Queensland, Australia, Tech. Rep,
(92-02), 1992.

2 Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

3 P.S. Bradley, K. P. Bennett, and Ayhan Demiriz. Constrained k-means clustering. Microsoft
Research, Redmond, pages 1-8, 2000.

4 Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. Metagenes
and molecular pattern discovery using matrix factorization. Proceedings of the national
academy of sciences, 101(12):4164-4169, 2004.

5 Elisa Boari de Lima, Wagner Meira Junior, and Raquel Cardoso de Melo-Minardi. Isofunc-
tional protein subfamily detection using data integration and spectral clustering. PLoS
Comput Biol, 12(6):¢1005001, 2016.

6  Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of nonnegative ma-
trix factorization and spectral clustering. In Proceedings of the 2005 SIAM International
Conference on Data Mining, pages 606-610. STAM, 2005.

7  Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, volume 96, pages
226-231, 1996.

8 Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179-188, 1936.

9 Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
science, 315(5814):972-976, 2007.

10 Chenyue W. Hu, Steven M. Kornblau, John H. Slater, and Amina A. Qutub. Progeny
clustering: A method to identify biological phenotypes. Scientific reports, 5, 2015.

11 Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241-254, 1967.

12 Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative matrix factorization for
graph clustering. In Proceedings of the 2012 SIAM international conference on data mining,
pages 106-117. SIAM, 2012.

11:11

WABI 2017



11:12

Shrinkage Clustering: A Fast and Size-Constrained Algorithm

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M. Buhmann. Stability-based
validation of clustering solutions. Neural computation, 16(6):1299-1323, 2004.

Tao Li and Chris H. Q. Ding. Nonnegative matrix factorizations for clustering: A survey.,
2013.

James MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281-297. California, USA, 1967.

Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. Cluster:
cluster analysis basics and extensions. R package version, 1(2):56, 2012.

Olvi L Mangasarian, W. Nick Street, and William H. Wolberg. Breast cancer diagnosis
and prognosis via linear programming. Operations Research, 43(4):570-577, 1995.
Christopher D. Manning, Prabhakar Raghavan, Hinrich Schiitze, et al. Introduction to
information retrieval, volume 1. Cambridge University Press, 2008.

Geoffrey J. McLachlan and Kaye E. Basford. Mixture models. inference and applications
to clustering. Statistics: Textbooks and Monographs, New York: Dekker, 1988, 1, 1988.
Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clustering: a
resampling-based method for class discovery and visualization of gene expression microarray
data. Machine learning, 52(1-2):91-118, 2003.

Thomas J. Montine, Joshua A. Sonnen, Kathleen S. Montine, Paul K. Crane, and Eric B.
Larson. Adult changes in thought study: dementia is an individually varying convergent
syndrome with prevalent clinically silent diseases that may be modified by some commonly
used therapeutics. Current Alzheimer Research, 9(6):718-723, 2012.

Wendy C. Moore, Deborah A. Meyers, Sally E. Wenzel, W. Gerald Teague, Huashi Li, Xing-
nan Li, Ralph D’Agostino Jr., Mario Castro, Douglas Curran-Everett, Anne M. Fitzpatrick,
et al. Identification of asthma phenotypes using cluster analysis in the severe asthma re-
search program. American journal of respiratory and critical care medicine, 181(4):315-323,
2010.

Dan Pelleg, Andrew W. Moore, et al. X-means: Extending K-means with Efficient Estima-
tion of the Number of Clusters. In ICML, pages 727-734, 2000.

Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53—65, 1987.
Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888-905, 2000.

John H Slater, James C. Culver, Byron L. Long, Chenyue W. Hu, Jingzhe Hu, Taylor F
Birk, Amina A. Qutub, Mary E. Dickinson, and Jennifer L. West. Recapitulation and
modulation of the cellular architecture of a user-chosen cell of interest using cell-derived,
biomimetic patterning. ACS nano, 9(6):6128-6138, 2015.

Nora Speicher and Thomas Lengauer. Towards the identification of cancer subtypes by in-
tegrative clustering of molecular data. PhD thesis, Universitat des Saarlandes Saarbriicken,
2012.

W. Nick Street, William H. Wolberg, and Olvi L. Mangasarian. Nuclear feature extrac-
tion for breast tumor diagnosis. In IS&amp;T/SPIE’s Symposium on Electronic Imaging:
Science and Technology, pages 861-870. International Society for Optics and Photonics,
1993.

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411-423, 2001.

Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the
American statistical association, 58(301):236—244, 1963.



C.W. Hu, H. Li, and A. A. Qutub

31

32

33

Pratyaksha Wirapati, Christos Sotiriou, Susanne Kunkel, Pierre Farmer, Sylvain Prader-
vand, Benjamin Haibe-Kains, Christine Desmedt, Michail Ignatiadis, Thierry Sengstag,
Frédéric Schiitz, et al. Meta-analysis of gene expression profiles in breast cancer: toward a
unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer
Research, 10(4):R65, 2008.

Christian Wiwie, Jan Baumbach, and Richard Réttger. Comparing the performance of
biomedical clustering methods. Nature Methods, 12(11):1033-1038, 2015.

Achim Zeileis, Kurt Hornik, Alex Smola, and Alexandros Karatzoglou. kernlab-an S4
package for kernel methods in R. Journal of statistical software, 11(9):1-20, 2004.

11:13

WABI 2017



	Introduction
	Methods
	Problem Formulation
	Properties and Rationale
	Shrinkage Clustering: Base Algorithm
	Shrinkage Clustering with Cluster Size Constraints

	Results
	Experiments on Similarity Data
	Testing with Simulated Similarity Matrices
	Biological Case Study: TCGA Dataset

	Experiments on Feature-based Data
	Testing with Simulated and Standardized Data
	Biological Case Study 1: Breast Cancer Wisconsin Diagnostic (BCWD)
	Biological Case Study 2: Allen Institute Brain Tissue (AIBT)


	Discussion

