
16th Symposium on
Experimental Algorithms

SEA 2017, June 21–23, 2017, London, United Kingdom

Edited by

Costas S. Iliopoulos
Solon P. Pissis
Simon J. Puglisi
Rajeev Raman

LIPIcs – Vo l . 75 – SEA 2017 www.dagstuh l .de/ l ip i c s

Editors
Costas S. Iliopoulos Solon P. Pissis
King’s College London King’s College London
London, UK London, UK
csi@kcl.ac.uk solon.pissis@kcl.ac.uk

Simon J. Puglisi Rajeev Raman
University of Helsinki University of Leicester
Helsinki, Finland Leicester, UK
puglisi@cs.helsinki.fi r.raman@leicester.ac.uk

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, I.1.2 Algorithms

ISBN 978-3-95977-036-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-036-1.

Publication date
August, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SEA.2017.0

ISBN 978-3-95977-036-1 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-036-1
http://www.dagstuhl.de/dagpub/978-3-95977-036-1
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-036-1
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

SEA 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman 0:ix

Invited Papers

Designing Energy-Efficient Heat Recovery Networks using Mixed-Integer
Nonlinear Optimisation

Radu Baltean-Lugojan, Christodoulos A. Floudas, Ruth Misener, and Miten Mistry 1:1–1:1

Dictionaries Revisited
Martin Farach-Colton . 2:1–2:1

Engineering Streaming Algorithms
Graham Cormode . 3:1–3:1

Regular Papers

Better Process Mapping and Sparse Quadratic Assignment
Christian Schulz and Jesper Larsson Träff . 4:1–4:15

The Isomap Algorithm in Distance Geometry
Leo Liberti and Claudia D’Ambrosio . 5:1–5:13

Distributed Domain Propagation
Robert Lion Gottwald, Stephen J. Maher, and Yuji Shinano . 6:1–6:11

Efficient Algorithms for k-Regret Minimizing Sets
Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri 7:1–7:23

Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs
Amariah Becker, Eli Fox-Epstein, Philip N. Klein, and David Meierfrankenfeld . . 8:1–8:17

Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via
Low-High Orders

Loukas Georgiadis, Giuseppe F. Italiano, and Aikaterini Karanasiou 9:1–9:16

Extending Search Phases in the Micali-Vazirani Algorithm
Michael Huang and Clifford Stein . 10:1–10:19

A Framework of Dynamic Data Structures for String Processing
Nicola Prezza . 11:1–11:15

Practical Range Minimum Queries Revisited
Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit 12:1–12:16

Compression with the tudocomp Framework
Patrick Dinklage, Johannes Fischer, Dominik Köppl, Marvin Löbel,
and Kunihiko Sadakane . 13:1–13:22

Algorithm Engineering for All-Pairs Suffix-Prefix Matching
Jihyuk Lim and Kunsoo Park . 14:1–14:12

16th Symposium on Experimental Algorithms.
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

The Quantile Index – Succinct Self-Index for Top-k Document Retrieval
Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit 15:1–15:14

Online Construction of Wavelet Trees
Paulo G. S. da Fonseca and Israel B. F. da Silva . 16:1–16:14

Engineering External Memory LCP Array Construction: Parallel, In-Place and
Large Alphabet

Juha Kärkkäinen and Dominik Kempa . 17:1–17:14

Personal Routes with High-Dimensional Costs and Dynamic Approximation
Guarantees

Stefan Funke, Sören Laue, and Sabine Storandt . 18:1–18:13

Consumption Profiles in Route Planning for Electric Vehicles: Theory and
Applications

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:1–19:18

Efficient Traffic Assignment for Public Transit Networks
Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser,
Peter Vortisch, Dorothea Wagner, and Tobias Zündorf . 20:1–20:14

Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting
Community Structure

Tobias Heuer and Sebastian Schlag . 21:1–21:19

Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments
Jacob Focke, Nicole Megow, and Julie Meißner . 22:1–22:14

Faster Betweenness Centrality Updates in Evolving Networks
Elisabetta Bergamini, Henning Meyerhenke, Mark Ortmann, and Arie Slobbe 23:1–23:16

Fast Deterministic Selection
Andrei Alexandrescu . 24:1–24:19

Fast and Scalable Minimal Perfect Hashing for Massive Key Sets
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo 25:1–25:16

Generating Practical Random Hyperbolic Graphs in Near-Linear Time and with
Sub-Linear Memory

Manuel Penschuck . 26:1–26:21

Incremental Low-High Orders of Directed Graphs and Applications
Loukas Georgiadis, Konstantinos Giannis, Aikaterini Karanasiou,
and Luigi Laura . 27:1–27:21

Jdrasil: A Modular Library for Computing Tree Decompositions
Max Bannach, Sebastian Berndt, and Thorsten Ehlers . 28:1–28:21

On the Separation of Topology-Free Rank Inequalities for the Max Stable Set
Problem

Stefano Coniglio and Stefano Gualandi . 29:1–29:13

Graph Partitioning with Acyclicity Constraints
Orlando Moreira, Merten Popp, and Christian Schulz . 30:1–30:15

Contents 0:vii

Bilevel Programming Approaches to the Computation of Optimistic and
Pessimistic Single-Leader-Multi-Follower Equilibria

Nicola Basilico, Stefano Coniglio, Nicola Gatti, and Alberto Marchesi 31:1–31:14

The Impact of Landscape Sparsification on Modelling and Analysis of the Invasion
Process

Daniyah A. Aloqalaa, Jenny A. Hodgson, and Prudence W.H. Wong 32:1–32:16

Ad-Hoc Affectance-selective Families for Layer Dissemination
Harshita Kudaravalli and Miguel A. Mosteiro . 33:1–33:16

SEA 2017

Preface

This volume contains papers presented at the 16th International Symposium on Experimental
Algorithms (SEA 2017), held June 21–23, 2017, in London, UK.

SEA 2017 continued a now well-established tradition of encouraging high-quality research
in experimental computer science and algorithm engineering, providing an opportunity to
bring together specialists and young researchers working in the area. The SEA conference
series grew out of a seven-year history of the Workshop on Experimental Algorithms (WEA).
Previous WEA and SEA meetings have been held in Latvia, Switzerland, Brazil, Greece,
Spain, Italy, USA, Germany, Italy, France, and Denmark.

We solicited papers in the broad area of experimental algorithmics, with the Program
Committee deciding to accept 30 papers, out of a total of 68 submissions.

Each submission received at least three reviews. Papers were submitted and reviewed
using the EasyChair online system. Authors of accepted papers come from 14 countries,
across five continents (Asia, Australia, Europe, North America, South America).

The scientific program included three invited lectures, given by:
Graham Cormode on “Engineering Streaming Algorithms”;
Martin Farach-Colton on “Dictionaries Revisited”;
Ruth Misener on “Designing Energy-Efficient Heat Recovery Networks using Mixed-Integer
Nonlinear Optimisation”.

We thank the invited speakers for accepting our invitation and for their excellent present-
ations at the conference.

We thank all authors who submitted their work for consideration at SEA 2017.
We wish to thank the Program Committee and the external reviewers, whose thorough

and timely reviews helped us select the presented papers. The success of the scientific
program is due to their hard work. We also thank the SEA steering committee for giving us
the opportunity to host SEA 2017.

SEA 2017 was organized by the Department of Informatics at King’s College London,
whose administrative and financial support we gratefully acknowledge.

London Costas S. Iliopoulos
June 2017 Solon P. Pissis

Simon J. Puglisi
Rajeev Raman

16th Symposium on Experimental Algorithms.
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Program Committee

Maike Buchin Ruhr University Bochum, Germany
Christina Burt University of Melbourne, Australia
Sandor Fekete TU Braunschweig, Germany
Irene Finocchi University of Rome - La Sapienza, Italy
Ambros Gleixner Zuse Institute Berlin, Germany
Dominik Kempa University of Helsinki, Finland
Nicole Megow University of Bremen, Germany
Ulrich Meyer Goethe-Universitat Frankfurt am Main, Germany
Shin-Ichi Minato Hokkaido University, Japan
Petra Mutzel Technical University of Dortmund, Germany
Gonzalo Navarro University of Chile, Chile
Giuseppe Ottaviano Facebook, USA
Panos Pardalos University of Florida, USA
Solon P. Pissis (Chair) King’s College London, UK
Simon J. Puglisi (Chair) University of Helsinki, Finland
Rajeev Raman (Chair) University of Leicester, UK
Barna Saha University of Massachusetts Amherst, USA
Alessandra Sala Nokia Bell Labs, Ireland
Sabine Storandt University of Wuerzburg, Germany
Rossano Venturini University of Pisa, Italy
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Renato Werneck Amazon, USA
Christos Zaroliagis University of Patras, Greece

16th Symposium on Experimental Algorithms.
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Ajwani, Deepak
Alzamel, Mai
Arroyuelo, Diego
Barth, Lukas
Behdju, Mahyar
Belazzougui, Djamal
Beller, Timo
Berg, Jeremias
Bollhöfer, Matthias
Brinkjost, Tobias
Brückner, Guido
Buchhold, Valentin
Charalampopoulos, Panagiotis
Chavez, Edgar
Choudhary, Keerti
Cseh, Ágnes
D’Andreagiovanni, Fabio
Droschinsky, Andre
Erlebach, Thomas
Fariña, Antonio
Fleischman, Daniel
Fuentes, Jose
Funke, Stefan
Galhotra, Sainyam
Gamrath, Inken
Gog, Simon
Hackfeld, Jan
Hamann, Michael
Heliou, Alice
Herrera, Gioconda
Huang, Chien-Chung
Jabrayilov, Adalat
Karrenbauer, Andreas
Konow, Roberto
Konstantopoulos, Charalampos
Kontogiannis, Spyros
Kriege, Nils
Krinninger, Sebastian
Krupke, Dominik
Kurpicz, Florian
Kurz, Denis

Köppl, Dominik
Lall, Ashwin
Li, Jian
Lübbecke, Marco
Mallozzi, Lina
Margellos, Kostas
Matuschke, Jannik
Mihalák, Matúš
Moreno-Centeno, Erick
Mömke, Tobias
Müller, Benjamin
Nicholson, Patrick K.
Niknejad, Amir
Papagelis, Manos
Penschuck, Manuel
Petri, Matthias
Piperno, Adolfo
Pothitos, Nikolaos
Radermacher, Marcel
Rice, Michael
Schickedanz, Alexander
Schäfer, Till
Serrano, Felipe
Shinano, Yuji
Sorrentino, Francesco
Stiller, Sebastian
Strasser, Ben
Tesch, Alexander
Tischler, German
van der Grinten, Alexander
van der Zanden, Tom
Veith, David
Vitaletti, Andrea
von Looz, Moritz
Välimäki, Niko
Wild, Sebastian
Witzig, Jakob
Zanotto, Leandro
Zey, Bernd
Zündorf, Tobias
Çela, Eranda

16th Symposium on Experimental Algorithms.
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Designing Energy-Efficient Heat Recovery
Networks using Mixed-Integer Nonlinear
Optimisation
Radu Baltean-Lugojan1, Christodoulos A. Floudas2,
Ruth Misener3, and Miten Mistry4

1 Department of Computing, Imperial College London, South Kensington, UK
rb2309@imperial.ac.uk

2 Texas A & M Energy Institute, Texas A & M University, College Station, TX,
USA
floudas@tamu.edu

3 Department of Computing, Imperial College London, South Kensington, UK
r.misener@imperial.ac.uk

4 Department of Computing, Imperial College London, South Kensington, UK
miten.mistry11@imperial.ac.uk

Abstract
Many industrial processes involve heating and cooling liquids: a quarter of the EU 2012 energy
consumption came from industry and industry uses 73% of this energy on heating and cooling.
We discuss mixed-integer nonlinear optimisation and its applications to energy efficiency. Our
particular emphasis is on algorithms and solution techniques enabling optimisation for large-scale
industrial networks.

As a first application, optimising heat exchangers networks may increase efficiency in indus-
trial plants. We develop deterministic global optimisation algorithms for a mixed-integer nonlin-
ear optimisation model that simultaneously incorporates utility cost, equipment area, and hot/-
cold stream matches. We automatically recognise and exploit special mathematical structures
common in heat recovery. We also computationally demonstrate the impact on the global optim-
isation solver ANTIGONE and benchmark large-scale test cases against heuristic approaches.

As a second application, we discuss special structure in nonconvex quadratically-constrained
optimisation problems, particularly through the lens of stream mixing and intermediate blending
on process systems engineering networks. We take a parametric approach to uncovering topolo-
gical structure and sparsity of the standard pooling problem in its p-formulation. We show that
the sparse patterns of active topological structure are associated with a piecewise objective func-
tion. Finally, the presentation explains the conditions under which sparsity vanishes and where
the combinatorial complexity emerges to cross over the P/NP boundary. We formally present
the results obtained and their derivations for various specialised instances.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Heat exchanger network, Mixed-integer nonlinear optimisation, Log
mean temperature difference, Deterministic global optimisation

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.1

Category Invited Talk

© Radu Baltean-Lugojan, Christodoulos A. Floudas, Ruth Misener, and Miten Mistry;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Dictionaries Revisited
Martin Farach-Colton

Rutgers University, Piscataway, NJ, USA
martin@farach-colton.com

Abstract
Dictionaries are probably the most well studied class of data structures. A dictionary supports
insertions, deletions, membership queries, and usually successor, predecessor, and extract-min.
Given their centrality to both the theory and practice of data structures, surprisingly basic ques-
tions about them remain unsolved and sometimes even unposed. This talk focuses on questions
that arise from the disparity between the way large-scale dictionaries are analyzed and the way
they are used in practice.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Bε-trees, file system, write optimization

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.2

Category Invited Talk

© Martin Farach-Colton;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Engineering Streaming Algorithms
Graham Cormode

Department of Computer Science, Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick, Coventry, UK
g.cormode@warwick.ac.uk

Abstract
Streaming algorithms must process a large quantity of small updates quickly to allow queries
about the input to be answered from a small summary. Initial work on streaming algorithms
laid out theoretical results, and subsequent efforts have involved engineering these for practical
use. Informed by experiments, streaming algorithms have been widely implemented and used in
practice. This talk will survey this line of work, and identify some lessons learned.

1998 ACM Subject Classification H.2.8 [Database Management] Database Applications, Data
mining, F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and
Problems

Keywords and phrases Data stream algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.3

Category Invited Talk

© Graham Cormode;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Better Process Mapping and Sparse Quadratic
Assignment∗

Christian Schulz1 and Jesper Larsson Träff2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany; and
University of Vienna, Vienna, Austria
christian.schulz@kit.edu, christian.schulz@univie.ac.at

2 TU Wien, Vienna, Austria
traff@par.tuwien.ac.at

Abstract
Communication and topology aware process mapping is a powerful approach to reduce commu-
nication time in parallel applications with known communication patterns on large, distributed
memory systems. We address the problem as a quadratic assignment problem (QAP), and present
algorithms to construct initial mappings of processes to processors as well as fast local search
algorithms to further improve the mappings. By exploiting assumptions that typically hold for
applications and modern supercomputer systems such as sparse communication patterns and hier-
archically organized communication systems, we arrive at significantly more powerful algorithms
for these special QAPs. Our multilevel construction algorithms employ recently developed, per-
fectly balanced graph partitioning techniques and excessively exploit the given communication
system hierarchy. We present improvements to a local search algorithm of Brandfass et al. (2013),
and decrease the running time by reducing the time needed to perform swaps in the assignment
as well as by carefully constraining local search neighborhoods. Experiments indicate that our
algorithms not only dramatically speed up local search, but due to the multilevel approach also
find much better solutions in practice.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms, G.4 [Mathematical
Software] Algorithm Design and Analysis

Keywords and phrases rank reordering, graph algorithms, process mapping, graph partitioning

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.4

1 Introduction

Communication performance between processes in high-performance systems depends on
many factors. For example, communication is typically faster if communicating processes
are located on the same processor node compared to the cases where processes reside on
different nodes. This becomes even more pronounced for large supercomputer systems where
processors are hierarchically organized into, e. g., islands, racks, nodes, processors, cores with
corresponding communication links of similar quality. Given the communication pattern
between processes and a hardware topology description that reflects the quality of the
communication links, one hence seeks to find a good mapping of processes onto processors
such that pairs of processes exchanging large amounts of data are located closely.

Such a mapping can be computed by solving a corresponding quadratic assignment
problem (QAP) which is a hard optimization problem. Sahni and Gonzalez [26] have shown

∗ This work was partially supported by DFG grants SA 933/11-1.

© Christian Schulz and Jesper Larsson Träff;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Better Process Mapping and Sparse Quadratic Assignment

QAP to be strongly NP-hard and, unless P=NP, admitting no polynomial-time constant factor
approximation algorithm. In addition, there are no algorithms that can solve meaningful
instances with n > 20 to optimality in a reasonable amount of time [9]. Hence, heuristic
algorithms are necessary in order to solve large scale instances. Multiple heuristics have been
proposed to tackle real world instances [7, 17, 23]. We present more details in Section 3.

In this work, we make two important assumptions that are typically valid for modern
supercomputers and the applications that run on those. First, communication patterns are
almost always sparse since not all processes have to communicate with each other. This
is especially true for large scale scientific simulations in which the underlying models of
computation and communication are already sparse, see, e. g., [10, 14, 28]. To efficiently
parallelize the simulation one normally employs graph partitioning techniques which then in
turn yield a sparse communication pattern between the processes. Second, we assume that the
hardware communication topology under consideration is hierarchical with communication
links on the same level in the hierarchy having the same communication speed. This is
typically observed in current high-performance systems, e. g., SuperMUC1.

Using these assumptions, we derive algorithms that are able to create high quality
mappings, as well as faster local search algorithms for improving assignments. Overall,
our algorithms are able to compute better solutions than other recent heuristics for the
problem. Improving the (practical) complexity of such algorithms is highly important, since
the number of cores available in supercomputers is still increasing dramatically. The rest of
this paper is organized as follows. In Section 2, we introduce basic concepts and describe
relevant related work, such as the algorithm of Brandfass et al. [7], in more detail. We present
our main contributions in Section 3. We implemented the techniques presented here in the
graph partitioning framework KaHIP [27] (Karlsruhe High Quality Graph Partitioning).
A summary of extensive experiments to evaluate algorithm performance is presented in
Section 4. Experiments indicate that our algorithm not only drastically speeds up local
search, but due to the multilevel approach that employs recently developed high quality
partitioning techniques also finds better solutions in practice.

2 Preliminaries

The total communication requirement between the set of processes in (some section of) an
application can be modeled by a weighted communication graph. The underlying hardware
topology can likewise be modeled by a weighted graph, but since the graph is complete
(any physical processor can communicate with any other physical processor through the
underlying networks), we represent it by a topology cost matrix which can for instance reflect
the costs of routing along shortest (cheapest) paths between processes. Our abstract problem
is to embed the communication graph onto the topology graph under optimization criteria
that we explain below. We assume that the number of nodes in host and topology graphs
are the same. Unless otherwise mentioned, a processing element (PE) typically represents a
core of a machine.

Basic Concepts. In the following, we consider an undirected graph G = (V = {0, . . . , n−
1}, E) with edge weights ω : E → R>0, node weights c : V → R≥0, n = |V |, and m = |E|.
We extend c and ω to sets, i. e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). We let

Γ(v) := {u : {v, u} ∈ E} denote the neighbors of a node v. A graph S = (V ′, E′) is said

1 Leibniz Supercomputing Centre, Gauss Centre for Supercomputing e.V.

C. Schulz and J. L. Träff 4:3

to be a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). We call S an induced
subgraph when E′ = E ∩ (V ′ × V ′).

Throughout the paper, C ∈ Rn×n denotes the communication matrix and D ∈ Rn×n the
hardware topology matrix or distance matrix. More precisely, Ci,j describes the amount
of communication that has to be done between process i and j, and Di,j represents the
weighted distance between PE i and PE j. That is, the cost for communicating the amount
Ci,j between processors i and j is Ci,jDi,j . We follow Brandfass et al. [7] and others, and
model the embedding problem as a quadratic assignment problem (QAP): Find a one-to-one
mapping Π of processes to PEs which minimizes the overall communication cost. More
precisely, we want to minimize J(C,D,Π) :=

∑
i,j CΠ(i),Π(j)Di,j where the sum is over all

PE pairs and k = Π(i) means that process k is assigned to PE i. Note that searching for
the inverse permutation instead, i. e., assigning process i to PE Π−1(i), results in the same
assignment problem as Π is a one-to-one mapping. Throughout this work, we assume that C
and D are symmetric – otherwise one can create equivalent QAP problems with symmetric
inputs [7]. In this paper, we focus on sparse communication patterns, and therefore do not
want to store the complete communication matrix but instead represent it more efficiently
as a graph. On the other hand, typical system topologies feature a hierarchy that we can
exploit. Hierarchy information, and in general D, is given implicitly and can be queried, and
therefore does not have to be stored explicitly.

Graph partitioning is a key component in our algorithms to find initial solutions. The graph
partitioning problem looks for blocks of nodes V1,. . . ,Vk that partition V , i. e., V1∪· · ·∪Vk = V

and Vi ∩Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈ 1..k : c(Vi) ≤ Lmax :=
(1 + ε)dc(V)/ke for some parameter ε. In the perfectly balanced case the imbalance parameter
ε is set to zero, i. e., no deviation from the average is allowed. One commonly used objective
is to minimize the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

Related Work. There has been a huge amount of research on GP, and we refer the reader
to [4, 8] for extensive material and references. All general-purpose methods that work well
on large real-world graphs are based on the multilevel principle. The basic idea can be
traced back to multigrid solvers for systems of linear equations [31]. Well-known MGP
software packages include Jostle [34], Metis [19], and Scotch [25]. Jostle contains algorithms
to compute processor assignments in scientific simulations. Jostle integrates local search
into a multi-level method to partition the model of computation and communication. To
do so, they solve the problem on the coarsest level and afterwards perform refinement that
takes the user supplied network communication model into account. Scotch performs dual
recursive bipartitioning to perform this task. There is likewise a large literature on process
mapping [6, 24], often in the context of scientific applications using MPI [22] (Message-Passing
Interface). Bokhari shows that the mapping problem is equivalent to the graph isomorphism
problem [5]. Hatazaki [16] was among the first authors to propose graph partitioning to solve
the process mapping problem for unweighted process topologies in the specific context of MPI.
Träff [32] used a similar approach, and gave one of the first non-trivial implementations for the
NEC vector supercomputers. Mercier and Clet-Ortega and later Jeannot [20, 21] simplify the
mapping problem by only considering the topology inside the compute nodes themselves and
ignoring the topology of the network. Multiple placement policies are investigated to enhance
overall system performance. Yu et al. [35] discuss and implement embedding heuristics for
the BlueGene 3d torus systems. Hoefler and Snir [18] optimize instead the congestion of the
mapping, show that this problem is NP-complete, and give a corresponding heuristic with an
experimental evaluation based on application data from the Florida Sparse Matrix Collection.

SEA 2017

4:4 Better Process Mapping and Sparse Quadratic Assignment

Routing aware mapping heuristics taking the hierarchy of specific hardware topologies into
account were discussed in [1]. A resource-aware graph partitioning framework has been
proposed by Chan et al. [11]. Vogelstein et al. [33] concentrate on solving general quadratic
assignment and graph matching problems. They propose a gradient based heuristic that
involves solving assignment problems and give experimental evidence for better solution
quality and speed compared to certain other heuristics. The worst-case complexity of their
approach is O(n3) steps.

Detailed Related Work. We now discuss related work by Müller-Merbach [23], Heider [17]
and Brandfass et al. [7] as well as Glantz et al. [15] in greater detail since our work either
makes use of the tools proposed by those authors or because we compare against their results.
Müller-Merbach [23] proposes a greedy construction method to obtain an initial permutation
for the QAP. The method roughly works as follows: Initially compute the total communication
volume for each processor and also the total distance for each core. Note that this corresponds
to the weighted degrees of the vertices in the communication and distance models, respectively.
Afterwards, the process with the largest communication volume is assigned to the core with
the smallest total distance. To build a complete assignment, the algorithm proceeds by looking
at unassigned vertices and cores. For each of the unassigned processes the communication
load to already assigned vertices is computed. For each core, the total distance to already
assigned cores is computed. The process with the largest communication sum is assigned to
the core with the smallest distance sum. Glantz et al. [15] note that the algorithm does not
link the choices for the vertices and cores and propose a modification of this algorithm called
GreedyAllC (the best algorithm in [15]). GreedyAllC links the mapping choices by scaling
the distance with the amount of communication to be done. The algorithm has the same
asymptotic complexity and memory requirements as the algorithm by Müller-Merbach. We
also compare our proposed methods against GreedyAllC in Section 4.

Heider [17] proposes a method to improve an already given permutation/mapping. The
method repeatedly tries to perform swaps in the assignment. To do so, the author defines
a pair-exchange neighborhood N(Π) that contains all permutations that can be reached
by swapping two elements in Π. Here, swapping two elements means that Π(i) will be
assigned to processor j and Π(j) will be assigned to processor i after the swap is done. The
algorithm then looks at the neighborhood in a cyclic manner. More precisely, in each step
the current pair (i, j) is updated to (i, j + 1) if j < n, to (i+ 1, i+ 2) if j = n and i < n− 1,
and lastly to (1, 2) if j = n and i = n − 1. A swap is performed if it yields positive gain,
i. e., the swap reduces the objective. The overall runtime of the algorithm is O(n3). We
denote the search space with N2. To reduce the runtime, Brandfass et al. [7] introduce a
couple of modifications. First of all, only symmetric inputs are considered. If the input is
not symmetric, the input is substituted by a symmetric one such that the output of the
algorithm remains the same. Second, pairs (i, j) for which the objective cannot change, are not
considered. For example, if two processes reside on the same compute node, swapping them
will not change the objective. Lastly, the authors partition the neighborhood search space
into s consecutive index blocks and only perform swaps inside those blocks. This reduces the
number of possible pairs from O(n2) to O(ns) overall pairs. We denote the search space with
Np (pruned neighborhood). In addition, instead of starting from the identity permutation,
the authors use the method of Müller-Merbach [23] to compute an initial solution. This
improves runtime of the local search approach as well as the objective of the solution.

C. Schulz and J. L. Träff 4:5

3 Rank Reordering Algorithms

We now present our main contributions and techniques. This includes algorithms to compute
initial solutions, speeding up the local search algorithms for sparse communication patterns
and defining new search spaces for the local search algorithm. Throughout this section,
we assume that the input communication matrix is already given as a graph GC, i. e., no
conversion of the matrix into a graph is necessary. More precisely, the graph representation
is defined as GC := ({1, . . . , n}, E[C]) where E[C] := {(u, v) | Cu,v 6= 0}. In other words, E[C]
is the edge set of the processes that need to communicate with each other. Note that the
set contains forward and backward edges, and that the weights of the edges in the graph
correspond to the entries in the matrix C.

3.1 Initial Solutions

We propose two strategies exploiting the hierarchy. Intuitively, we want to identify subgraphs
in the communication graph of processes that have to communicate much with each other
and then place such processes closely, i. e., on the same node, same rack and so forth. In the
following, we assume a homogeneous hierarchy of the supercomputer, but our algorithms can
be extended to heterogeneous hierarchies in a straightforward way. Let S = a1, a2, ..., ak be
a sequence describing the hierarchy of the supercomputer (with n = Πiai). The sequence
should be interpreted as each processor having a1 cores, each node a2 processors, each rack
a3 nodes, We propose two algorithms to compute initial mappings, a top down and a
bottom up approach. The first one, top down, splits the communication graph recursively
and the second one, builds a hierarchy bottom up.

The top down approach starts by computing a perfectly balanced partition of GC into
ak blocks each having n/ak vertices (processes). The partitioning task is done using the
techniques provided by Sanders and Schulz [27] which provide high quality partitions and
guarantee that each block of the output partition has the specified amount of vertices. In
principle, the nodes of each block will be assigned completely to one of the ak system entities.
Each of the system entities provides precisely n/ak PEs. We then proceed recursively and
partition each subgraph induced by a block into ak−1 blocks and so forth. The recursion
stops as soon as the subgraphs have only a1 vertices left. In the base case, we assign processes
to permutation ranks.

The bottom up approach proceeds in the opposite order of the hierarchy. That means
the communication graph GC is split first into k = n/a1 blocks with precisely a1 vertices
each. Again, this is done using the perfectly balanced partitioning techniques mentioned
above. Each block will later on be assigned to a unique system entity that is able to host a1
processes, i. e., a node having a1 cores. Then each of the blocks is contracted and we partition
the contracted graph and so forth. In this case, if replacing edges of the form {u,w} , {v, w}
would generate two parallel edges {x,w}, we insert a single edge with C′x,w = Cu,w + Cv,w.
This way, the correct sum of the distances are accounted for in later stages of the algorithm.
The recursion stops as soon as the last hierarchy stage is reached, i. e., the last graph with n′
vertices has been partitioned into n′/ak vertices with ak vertices each. Recall that vertices in
the same block will be assigned to a specified subpart of the system. In this case, a vertex in
the graph on the last level of the recursion represents a whole set of tasks with the property
that the sum of the vertex weights of each block is precisely the amount of PEs that are
present in the subsystem that they are assigned to. We then backtrack the recursion to
construct the final mapping.

SEA 2017

4:6 Better Process Mapping and Sparse Quadratic Assignment

3.2 Faster Swapping
Initially computing as well as recomputing the objective function after a swap is performed
is an expensive step in the algorithm of Brandfass et al. [7]. In their work, both the commu-
nication pattern as well as the distances between the PEs are given as complete matrices.
These matrices have a quadratic number of elements and hence the initial computation of
the objective function costs O(n2) time. After a swap is performed, Brandfass et al. update
the objective using the objective function value before the swap. This is done by looking
at all elements in the corresponding columns of the communication and distance matrix.
Overall, an update step in their algorithm takes O(n) time which is clearly a bottleneck for
sparse communication patterns. We now describe how we speed up the initial computation
as well as the update of the objective. As a first step, we rewrite the objective to work with
the inverse of the permutation:

J(C,D,Π) =
∑
i,j

CΠ(i),Π(j)Di,j

=
∑
u,v

Cu,vDΠ−1(u),Π−1(v)

with the interpretation that task u is assigned to PE Π−1(u). This makes it easier to work
with the graph representation of the communication matrix. We rewrite the objective to
work with the graph representation instead of the complete communication pattern matrix C:

J(C,D,Π) :=
∑

(u,v)∈E[C]

Cu,vDΠ−1(u),Π−1(v).

The first observation is that given an initial mapping, we can compute the initial object-
ive in O(n + m) time which is better for sparse graphs. Our next goal is to make the
update of the objective fast after a swap has been performed. To do so, let ΓΠ−1(u) :=∑

v∈N(u) Cu,vDΠ−1(u),Π−1(v) be the contribution to the objective of a single vertex u given
the current mapping. Note that by using ΓΠ−1 , we can again rewrite the objective
J(C,D,Π) :=

∑
u∈V ΓΠ−1(u). Throughout the algorithm, the vertex contributions Γ are

always kept up to date. Additionally, it is quite easy to see that performing a swap in the
assignment only affects the nodes that are swapped themselves as well as their neighborhood
in the communication graph. Hence, we only need to update the node contributions of those
nodes and can update the objective accordingly. We update the node contributions as follows:
Let u and v be the vertices to be swapped in their assignment Π−1. We start by subtracting
the node contributions of all affected nodes from the objective. Before we perform the swap,
we iterate over the neighbors of u and v and subtract the contribution induced by the edge
connecting the neighbor from its Γ value. We then set the node contributions of u and v to
zero and perform the swap. Now we again iterate over all neighbors, basically recomputing
the node contributions of u and v, and at the same time adding the new contribution induced
by the edge connecting the neighbor to its Γ value. As a last step, we add the new node
contributions of all affected nodes from the objective. Overall, this takes O(du + dv) time
where du and dv are the degrees of the vertices u and v in the communication graph.

3.3 Alternative Local Search Spaces
We now define swapping neighborhoods using the communication graph GC . In the simplest
version, assignments are only allowed to be swapped if the processes are connected by an
edge in the communication graph, i. e., the processes have to communicate with each other.

C. Schulz and J. L. Träff 4:7

We denote this neighborhood with NC . The size of the search space is O(m) since it contains
exactly m pairs that may be swapped. Swaps are performed in random order. Local search
terminates after m unsuccessful swaps, i. e., all pairs have been tried and no swap resulted
in a gain in the objective. Note that this approach assumes that swaps with positive gain
are close in terms of graph theoretic distance in the communication graph. We also define
augmented neighborhoods in which swaps are allowed if two processes have distance less than
d in the communication graph. We denote this neighborhood by Nd

C . Note that this creates
a sequence of neighborhoods increasing in size NC ⊆ N2

C ⊆ . . . ⊆ Nn
C = N2 where N2 is the

largest neighborhood used by Brandfass et al. [7] (see Section 2). Our experimental section
shows that performing swaps with small graph theoretic distance in the communication
graph is sufficient to obtain good solutions.

3.4 Miscellanea
Constant Time Distance Oracle. Storing the complete distance matrix requires O(n2)
space. However, due to the problem structure it is not necessary to store the complete matrix.
Instead one can build an interval tree over the given PE’s describing the hierarchy. The
distance of two PEs can then be found by finding the lowest common ancestor in the tree.
Such a query can be answered in constant time by investing O(n) preprocessing time [3].

We can use a simpler approach that obtains the distance of two PEs by a few, simple
division operations. More precisely, for a hierarchy S = a1, a2, ..., ak we initially build an
array describing the sizes of the intervals on the different levels of the hierarchy. A query
then proceeds to scan the implicitly given intervals from top to bottom until the PEs are not
on the same subsystem. We then return the corresponding distance.

4 Experiments

Methodology. We have implemented the algorithm described above within the KaHIP
framework using C++ and compiled all algorithms using gcc 4.6.3 with full optimization’s
turned on (-O3 flag). We integrated our algorithms in KaHIP v1.00 graph partitioning
framework where the mapping codes are used as post-processing as well as in a separate
release VieM [29] (Vienna Mapping and Sparse Quadratic Assignment) to make the mapping
codes themselves available to a broader audience. They will integrated into that framework
and also released separately. The codes of Brandfass et al. [7] could not be made available to
us, so that we implemented those algorithms in our framework as well. Our implementation
also uses the sparse representation of the communication pattern. GreedyAllC [15] has
been kindly provided by the authors. We also compare against the dual recursive bisection
codes of Hofler and Snir [18] (LibTopoMap). Our experiments evaluate the objective of
the quadratic assignment problem as well as the running time necessary to compute the
solution. To keep the evaluation simple, we use mostly one system hierarchy configuration D.
We perform ten repetitions of each algorithm using different random seeds for initialization.
Unless otherwise mentioned, we use the geometric mean when reporting averages in order
to give every instance the same influence on the final score. The system we are using to
compute solutions has four Octa-core Intel Xeon E5-4640 processors (32 cores) which run at
a clock speed of 2.4 GHz. It has 512 GB local memory.

Instances. We use graphs from various sources to test our algorithm. In Section 4.1, we use
these graphs as input to a partitioning algorithm that partitions them into a given number
of blocks and then computes the communication graph C which is the input to our mapping

SEA 2017

4:8 Better Process Mapping and Sparse Quadratic Assignment

Table 1 Average running time and average speedup of local search for pruned search space Np.
Here, m/n is the average density of the instances, tLS the average running time of the algorithm
using slow gain computations and tfastLS the average running time using fast gain computations.

n m/n tLS[s] tfastLS[s] speedup
64 6.7 0.016 0.003 5.3
128 7.3 0.064 0.006 10.7
256 7.9 0.268 0.014 19.1
512 8.3 1.073 0.029 37.0
1K 8.8 4.263 0.059 72.3
2K 9.2 17.083 0.124 137.8
4K 9.7 68.360 0.260 262.9
8K 10.3 268.907 0.540 498.0
16K 11.2 1 075.107 1.158 928.4
32K 12.5 4 348.374 2.472 1 759.1

algorithms. We use the largest six graphs from Chris Walshaw’s benchmark archive [30].
Graphs derived from sparse matrices have been taken from the Florida Sparse Matrix
Collection [12]. We also use graphs from the 10th DIMACS Implementation Challenge [2]
website. Here, rggX is a random geometric graph with 2X nodes where nodes represent
random points in the unit square and edges connect nodes whose Euclidean distance is below
0.55

√
lnn/n. The graph delX is a Delaunay triangulation of 2X random points in the unit

square. The graphs af_shell9, thermal2, and nlr are from the matrix and the numeric
section of the DIMACS benchmark set. The graphs europe and deu are large road networks
of Europe and Germany taken from [13]. Basic properties of the graphs under consideration
can be found in Table A.3.

4.1 Sparse Quadratic Assignment Problem
In this section, we look at the impact of the various algorithmic components that we presented
throughout the paper. In general, we use a hierarchy S = a1, . . . , ak describing the system
hierarchy and communication parameters D = d1, . . . , dk describing the distances between
various cores in the subsystems. More precisely, di describes the distance of two cores that
are in the same subsystems for i′ < i, and in different subsystems for i′ ≥ i. The total
number of cores is given by n =

∏
i ai. Here, we focus on two different system configurations

to keep the evaluation simple. Our process in this section is as follows: Take the input graph,
partition it into n blocks using the fast configuration of KaHIP, compute the communication
graph induced by that (vertices represent blocks, edges are induced by connectivity between
blocks, edge cut between two blocks is used as communication volume) and then compute
the mapping of the communication graph to the specified system.

4.1.1 Speed-Up of Local Search
We now take the algorithm configurations initially used by Brandfass et al. [7] and investigate
the impact of our faster local search algorithms. The configurations are as follows: Use
the greedy growing algorithm by Müller-Merbach (as described in Section 2) to provide
initial solutions and use the pruned local search neighborhood Np by Brandfass et al. [7] (see
Section 2 for details). We run two configurations: One in which computing the gain takes
linear time (the old algorithm) and one with our improved algorithm. In this experiment,

C. Schulz and J. L. Träff 4:9

0.001

0.01

0.1

1

10

100

1000

10000

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e

n+m

Slow
Fast

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40

S
p
ee

d
u
p

m/n

1

10

100

1000

3596
10000

 0 500 1000 1500 2000 2500

S
p
ee

d
u
p

Instance

Figure 1 From left to right: Time of local search for both configurations (slow and fast),
algorithmic speedup as a function of graph density, algorithmic speedup for the different instances.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500

R
a
ti

o

N2

N10
N5
N3
Np
N2
N1

Mueller-Merbach
 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500

R
a
ti

o

N2

N10
N5
N3

Np
N2
N1

Mueller-Merbach

Figure 2 Left/Right: performance plot with respect to solution quality/running time for different
local search algorithms.

we use S = 4 : 16 : k, D = 1 : 10 : 100 with k = 2i, i ∈ {1, ..., 9}. Note that the objective
of the computed solutions by the algorithm using faster gain computations is precisely the
same as their counter part, hence we do not report the value of the objective in this section.
The results of the experiments are summarized in Figure 1 and Table 1. First, we observe
that our new algorithm is always faster than the old algorithm. This is expected since the
models of computation and communication that are mapped are indeed sparse. Table 1
shows that our fast local search algorithm scales almost linearly in n while the algorithm
not using fast gain computations shows quadratic scaling behaviour. The table also already
shows a dependency of our algorithm on the density of the instances. This is due to the
fact that the gain computation depends on the degrees of the vertices in the communication
graph and is in alignment with our theoretical analysis. The expected dependency on the
density of the instances can also be seen more clearly in Figure 1. The smallest algorithmic
speedup obtained in this experiment is two and the largest speedup is approximately 3 596.
We conclude that exploiting the sparsity of the application can improve the running time of
local search significantly. From now on, we now always use fast gain computations.

4.1.2 Local Search Neighborhoods
In this section, we look at the influence of local search neighborhoods on final solution
quality. The base configuration used here employs the greedy growing algorithm by Müller-
Merbach for initialization. Afterwards local search is done using the specified local search
neighborhood, i. e., the quadratic neighborhood N2, the pruned quadratic neighborhood
Np and the communication graph based neighborhoods Nd := Nd

C for d ∈ {1, 2, 3, 5, 10}.
Again, we use S = 4 : 16 : k, D = 1 : 10 : 100 with k = 2i, i ∈ {1, ..., 9}. To get a visual
impression of the solution quality of the different algorithms, Figure 2 presents performance
plots using all instances. A curve in a performance plot for algorithm X is obtained as

SEA 2017

4:10 Better Process Mapping and Sparse Quadratic Assignment

Table 2 Average ratios for solution quality and running time. Baseline denotes the construction
heuristic of Müller-Merbach without local search. Algorithms use the baseline algorithm and add
local search with the respective local search neighborhood. Comparisons are done against the
baseline algorithm. Quality improvements are shown in %.

n N2 Np N1 N2 N10 N2 Np N1 N2 N10

baseline/{baseline+local search} local search/baseline
quality improvement [%] average running time ratios:

64 17.4 17.4 6.3 13.0 17.2 26.2 27.1 2.6 13.3 44.1
128 16.0 10.9 3.8 8.5 15.4 63.9 25.2 2.7 16.8 92.8
256 17.3 10.0 3.4 8.3 17.3 114.7 18.9 2.5 16.3 149.0
512 17.6 8.9 3.2 8.0 17.5 171.8 11.3 1.8 12.7 190.2
1K 18.8 8.2 3.1 8.2 18.2 259.1 6.8 1.3 10.0 245.1
2K 19.5 8.1 3.1 8.2 19.1 348.2 3.7 0.9 7.0 258.6
4K 20.5 8.0 3.3 8.7 19.8 472.0 2.0 0.6 5.1 231.8
8K 21.6 8.0 3.6 9.4 20.9 728.2 1.0 0.5 4.0 212.0
16K 23.1 8.3 4.2 10.4 22.1 1 030.8 0.6 0.3 2.9 173.6
32K 25.0 9.1 5.4 11.9 23.7 1 220.9 0.3 0.2 2.1 128.2

overall: 19.68 9.69 3.94 9.46 19.12 443.58 9.69 1.34 9.02 172.54

follows: For each instance, we calculate the ratio between the objective or running time
obtained by any of the considered algorithms and objective or running time of algorithm X.
These values are then sorted. Additionally, we present average ratios of solution quality
and running time in Table 2. First, the local search algorithm using the N1 neighborhood
appears to be the fastest algorithm but also the worst in terms of solution quality. Compared
to the initial construction heuristic it takes roughly a factor 1.34 in running time while
improving solution quality by roughly 4%. With increasing distance d for the local search
neighborhood Nd, solutions improve but also the running time increases. As expected, the
local search algorithm using the largest local search neighborhood N2 computes the best
solutions. Here, solutions generated by the initial heuristic are improved by roughly 20%.
However, this is also the slowest algorithm (a factor 443 slower than the initial construction
heuristic). Also note that we are only able to evaluate the performance of the algorithm at
that scale due to the fast gain computations introduced in this paper. Additionally, as n
increases the algorithm becomes much slower. This is due to the fact that convergence of
the algorithm takes more time for larger n. In contrast, the other local search neighborhoods
show much better scaling behaviour as expected. The local search neighborhood N10 is faster
and computes solutions that are only slightly worse than N2. For example, for n = 32K
the algorithm using N10 is more than a factor nine faster and computes solutions that are
only 5.5% worse.

4.1.3 Initial Heuristics and Their Scaling Behaviour
We now evaluate the different heuristics that can be used to create solutions. For the evalu-
ation, we employ the algorithm of Müller-Merbach [23], GreedyAllC [15], LibTopoMap [18]
(dual recursive bisectioning), Identity, Random, the Bottom-Up as well as the Top-Down
and the Top-Down algorithm combined with local search that uses the N10 neighborhood
(Top-Down+N10). The problems we look at are defined as S1 = 4 : 16 : k, D1 = 1 : 10 : 100
with k ∈ {1, . . . , 128}. We run the Bottom-Up algorithm only to k ≤ 50 due to its large
running time. Figure 3 shows the average improvement over solutions obtained by the

C. Schulz and J. L. Träff 4:11

-80

-60

-40

-20

 0

 20

 40

 60

 80

2
10

2
11

2
12

2
14

Im
p
ro

v
em

en
t

in
 %

n

TopDown+N10
TopDown
BottomUp

Identity

LipTopoMap
GreedyAllC

Mueller-Merbach
Random

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 16T 32T

R
a
ti

o

TopDown+N10
TopDown

Identity
LibTopoMap
GreedyAllC

Mueller-Merbach
Random

Figure 3 Average improvement in % for different values of n for different algorithms over the
algorithm by Müller-Merbach (top) and a performance plot comparing solution quality (bottom).

algorithm of Müller-Merbach and a performance plot for the different algorithms. Indeed,
the random mapping algorithms perform worse than the algorithm of Müller-Merbach. On
average, the objective computed by the algorithm is 67% worse than the solutions computed
by the algorithm of Müller-Merbach. Our Top-Down algorithms yields the best solutions on
most of the instances. On average, solutions computed by Top-Down are 52% better than
the solutions computed by Müller-Merbach. Adding local search with the N10 neighborhood
to the algorithm yields additional 5.3% improvement on average. GreedyAllC only improves
slightly, i. e., 1% on average, over the algorithm of Müller-Merbach. The identity mapping
seems to be the best algorithm for powers of two. This is due to the way the input to the
algorithms is constructed, i. e., blocks are initially assigned by KaHIP. To be more precise,
KaHIP uses a recursive bisection algorithm on the input graph to compute a model of
computation and communication (the input to our mapping algorithms). In each recursion
it assigns consecutive blocks to the left side and to the right side. Hence, for powers of two,
the identity mapping yields a strategy similar to using recursive bisection on the model to
be mapped with good bisections. If the number of elements is not a power of two, then the
bisections implied by the identity are not good and hence it performs worse.

LibTopoMap is somewhere in between. It mostly computes better solutions than the
greedy algorithms but overall worse solutions than BottomUp and TopDown. On average,
solutions are 8% better than the solutions computed by the greedy algorithm of Müller-
Merbach. Interestingly, its achieved solution quality is better when the number of vertices in
the instances is close to a power of two. This is due to the fact that the algorithm uses dual
recursive bisection on the communication and processor graph. However, when the input
size is not close to a power of two, there are no good bisections in the processor graph.

In our experiments, Bottom-Up is the slowest algorithm. This is due to the fact that on
the coarsest level large partitioning problems have to be solved. The Top-Down algorithm
does not have the problem, but is still slower than all other algorithms (except Bottom-Up).
On average it is a factor 194 slower than the Müller-Merbach algorithm and a factor 40
slower than GreedyAllC. LibTopoMap is roughly a factor 18 slower than the algorithm of
Müller-Merbach. However, the running time of Top-Down is on average only 80% of the time
it takes to partition the input graph (using the fast configuration of KaHIP), i. e., the time it
takes to create the model which is the input to the mapping algorithms. Adding local search
with the N10 neighborhood to the algorithm costs additional time, on average 64% of the
time it takes to partition the graph. Considering also the high solution quality advantage,
we believe that the algorithms are still highly useful in practice.

SEA 2017

4:12 Better Process Mapping and Sparse Quadratic Assignment

Scalability. We now scale the problem size to n = 219 processes/cores. We take the
largest graph from our benchmark collection rgg24 and create mapping problems defined
as S1 = 4 : 16 : 128 : k, D1 = 1 : 10 : 100 : 1000 with k ∈ 2i, i ∈ {1, . . . , 8}. We run
Müller-Merbach and the TopDown+N1 algorithm once. Both algorithms work well on our
machine until i = 4 (n = 217), at which point there is not sufficient memory available if
the implementations use the full distance matrix. Note that the machine has 512GB of
memory. Hence, we performed a second run of both algorithms computing distances online
(as described in Section 3.4). Note that the version of the Müller-Merbach algorithm is only
able to solve larger problem sizes due to both of our changes: the sparse representation of
the communication pattern as well as online computation of distances. Computing distances
online slows down Müller-Merbach roughly by a factor of five and local search by a factor of
three. The running time of TopDown remains the same since it uses the provided hierarchy
instead of the distance matrix. In turn the running time advantage of Müller-Merbach also
decreases. This is also due to the fact that Müller-Merbachs algorithm is a quadratic time
algorithm. For the largest mapping problem (n = 219), the Müller-Merbach algorithm takes
a factor 1.64 longer than TopDown. Overall, computing distances online enables a potential
user of the algorithms to tackle larger mapping problems.

5 Conclusion

In high performance systems, different cores that are on the same processor usually have the
same communication link quality when they communicate with each other, as do cores that
are on the same node but not on the same processor and so forth. Using these assumptions,
we derived algorithms to create initial mappings as well as faster local search algorithms
with alternative local search spaces. Overall, our algorithms drastically speedup local search
and are able to compute high quality solutions.

Important future work includes deriving distributed parallel algorithms for the problem.
Moreover, we want to investigate algorithms to create a hierarchy of the system if it is not
provided as an input to our algorithm. It may be worth to look at more complex local search
neighborhoods, e. g., local search spaces that allow to swap whole groups of assignments or
allow swapping along cycles in the communication graph. We also want to study the impact
of our process mapping on parallel application performance.

References
1 A.H. Abdel-Gawad, M. Thottethodi, and A. Bhatele. RAHTM: Routing Algorithm Aware

Hierarchical Task Mapping. In Int’l Conference for High Performance Computing, Net-
working, Storage and Analysis (SC), pages 325–335, 2014.

2 D.A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Bench-
marking for graph clustering and partitioning. In Encyclopedia of Social Network Analysis
and Mining, pages 73–82. Springer, 2014.

3 M.A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin American
Symposium on Theoretical Informatics, volume 1776, pages 88–94. Springer, LNCS, 2000.

4 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
5 S.H. Bokhari. On the mapping problem. IEEE Trans. Computers, 30(3):207–214, 1981.

URL: http://dx.doi.org/10.1109/TC.1981.1675756, doi:10.1109/TC.1981.1675756.
6 S.H. Bokhari. Assignment problems in parallel and distributed computing, 2012.
7 B. Brandfass, T. Alrutz, and T. Gerhold. Rank reordering for MPI communication optim-

ization. Computers & Fluids, 80:372–380, 2013.

http://dx.doi.org/10.1109/TC.1981.1675756
http://dx.doi.org/10.1109/TC.1981.1675756

C. Schulz and J. L. Träff 4:13

8 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph
Partitioning. In Algorithm Engineering – Selected Topics, to app., ArXiv:1311.3144, 2014.

9 R.E. Burkard, E. Cela, P.M. Pardalos, and L. S. Pitsoulis. The quadratic assignment
problem. In Handbook of combinatorial optimization, pages 1713–1809. Springer, 1998.

10 Ü.V. Çatalyürek and C. Aykanat. Decomposing Irregularly Sparse Matrices for Parallel
Matrix-Vector Multiplication. In Proc. of the 3rd Int’l Workshop on Parallel Algorithms
for Irregularly Structured Problems, volume 1117, pages 75–86. Springer, 1996.

11 Siew Yin Chan, Teck Chaw Ling, and Eric Aubanel. The impact of heterogeneous multi-
core clusters on graph partitioning: an empirical study. Cluster Computing, 15(3):281–302,
2012. doi:10.1007/s10586-012-0229-4.

12 T. Davis. The University of Florida Sparse Matrix Collection.
13 D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms.

In Algorithmics of Large and Complex Networks, volume 5515 of LNCS State-of-the-Art
Survey, pages 117–139. Springer, 2009.

14 J. Fietz, M. Krause, C. Schulz, P. Sanders, and V. Heuveline. Optimized Hybrid Parallel
Lattice Boltzmann Fluid Flow Simulations on Complex Geometries. In Proc. of Euro-Par
2012 Parallel Processing, volume 7484 of LNCS, pages 818–829. Springer, 2012.

15 R. Glantz, H. Meyerhenke, and A. Noe. Algorithms for mapping parallel processes onto grid
and torus architectures. In 23rd Euromicro Int’l Conference on Parallel, Distributed, and
Network-Based Processing, pages 236–243. IEEE Computer Society, 2015. doi:10.1109/
PDP.2015.21.

16 T. Hatazaki. Rank reordering strategy for MPI topology creation functions. In 5th European
PVM/MPI User’s Group Meeting, volume 1497 of LNCS, pages 188–195. Springer, 1998.

17 C.H. Heider. A computationally simplified pair-exchange algorithm for the quadratic as-
signment problem. Technical report, DTIC Document, Center for Naval Analyses Arlington
VA, 1972.

18 T. Hoefler and M. Snir. Generic topology mapping strategies for large-scale parallel archi-
tectures. In Proc. 25th Int’l Conf. on Supercomputing, pages 75–84. ACM, 2011.

19 G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

20 G. Mercier and J. Clet-Ortega. Towards an efficient process placement policy for MPI
applications in multicore environments. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting (EuroMPI), pages 104–115. Springer, 2009.

21 G. Mercier and Emmanuel J. Improving MPI applications performance on multicore
clusters with rank reordering. In 18th European MPI Users’ Group Meeting, pages 39–
49, 2011.

22 MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1.
23 H. Müller-Merbach. Optimale Reihenfolgen, volume 15 of Ökonometrie und Unternehmens-

forschung. Springer, 1970.
24 P.M. Pardalos and H. Wolkowicz, editors. Quadratic Assignment and Related Problems,

Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-21, 1993,
volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
DIMACS/AMS, 1994. URL: http://dimacs.rutgers.edu/Volumes/Vol16.html.

25 F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.
26 S. Sahni and T. F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–

565, 1976. URL: http://doi.acm.org/10.1145/321958.321975, doi:10.1145/321958.
321975.

27 P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Parti-
tioning. In 12th Int’l Sym. on Experimental Algorithms (SEA’13), volume 7933 of LNCS.
Springer, 2013.

SEA 2017

http://dx.doi.org/10.1007/s10586-012-0229-4
http://dx.doi.org/10.1109/PDP.2015.21
http://dx.doi.org/10.1109/PDP.2015.21
http://dimacs.rutgers.edu/Volumes/Vol16.html
http://www. labri.fr/pelegrin/scotch
http://doi.acm.org/10.1145/321958.321975
http://dx.doi.org/10.1145/321958.321975
http://dx.doi.org/10.1145/321958.321975

4:14 Better Process Mapping and Sparse Quadratic Assignment

28 K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Sci-
entific Simulations. In The Sourcebook of Parallel Computing, pages 491–541, 2003.

29 C. Schulz and J. L. Träff. VieM v1.00 – Vienna Mapping and Sparse Quadratic Assignment
User Guide. CoRR, abs/1703.05509, http://viem.taa.univie.ac.at/, 2017. URL: http:
//arxiv.org/abs/1703.05509.

30 A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and Multilevel
Optimisation Approach to Graph-Partitioning. Global Optimization, 29(2):225–241, 2004.

31 R.V. Southwell. Stress-Calculation in Frameworks by the Method of “Systematic Relaxa-
tion of Constraints”. Proc. of the Royal Society of London, 151(872):56–95, 1935.

32 J. L. Träff. Implementing the MPI process topology mechanism. In ACM/IEEE Supercom-
puting, 2002.

33 J.T. Vogelstein, J.M. Conroy, V. Lyzinski, L. J. Podrazik, S.G. Kratzer, E.T. Harley, D. E.
Fishkind, R. J. Vogelstein, and C.E. Priebe. Fast approximate quadratic programming for
graph matching, April 2015. doi:10.1371/journal.pone.0121002.

34 C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement
Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

35 H. Yu, I-H. Chung, and J. E. Moreira. Topology mapping for Blue Gene/L supercomputer.
In ACM/IEEE Supercomputing, page 116, 2006.

http://viem.taa.univie.ac.at/
http://arxiv.org/abs/1703.05509
http://arxiv.org/abs/1703.05509
http://dx.doi.org/10.1371/journal.pone.0121002

C. Schulz and J. L. Träff 4:15

A Benchmark Instance Properties

Table 3 Benchmark instance properties.

Graph n m

UF Graphs
cop20k_A 99 843 1 262 244
2cubes_sphere 101 492 772 886
thermomech_TC 102 158 304 700
cfd2 123 440 1 482 229
boneS01 127 224 3 293 964
Dubcova3 146 689 1 744 980
bmwcra_1 148 770 5 247 616
G2_circuit 150 102 288 286
shipsec5 179 860 4 966 618
cont-300 180 895 448 799

Large Walshaw Graphs
598a 110 971 741 934
fe_ocean 143 437 409 593
144 144 649 1 074 393
wave 156 317 1 059 331
m14b 214 765 1 679 018
auto 448 695 3 314 611

Large Other Graphs
del23 ≈8.4M ≈25.2M
del24 ≈16.7M ≈50.3M
rgg23 ≈8.4M ≈63.5M
rgg24 ≈16.7M ≈132.6M
deu ≈4.4M ≈5.5M
eur ≈18.0M ≈22.2M
af_shell9 ≈504K ≈8.5M
thermal2 ≈1.2M ≈3.7M
nlr ≈4.2M ≈12.5M

SEA 2017

The Isomap Algorithm in Distance Geometry
Leo Liberti1 and Claudia D’Ambrosio2

1 CNRS LIX Ecole Polytechnique, Palaiseau, France
liberti@lix.polytechnique.fr

2 CNRS LIX Ecole Polytechnique, Palaiseau, France
dambrosio@lix.polytechnique.fr

Abstract
The fundamental problem of distance geometry consists in finding a realization of a given weighted
graph in a Euclidean space of given dimension, in such a way that vertices are realized as points
and edges as straight segments having the same lengths as their given weights. This problem arises
in structural proteomics, wireless sensor networks, and clock synchronization protocols to name
a few applications. The well-known Isomap method is a dimensionality reduction heuristic which
projects finite but high dimensional metric spaces into the “most significant” lower dimensional
ones, where significance is measured by the magnitude of the corresponding eigenvalues. We
start from a simple observation, namely that Isomap can also be used to provide approximate
realizations of weighted graphs very efficiently, and then derive and benchmark six new heuristics.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, F.2.1 Numerical
Algorithms and Problems, J.3 Life and Medical Sciences

Keywords and phrases distance geometry problem, protein conformation, heuristics

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.5

1 Introduction

The fundamental problem in Distance Geometry (DG) is as follows.

Distance Geometry Problem (DGP). Given an integer K ≥ 1 and a simple,
edge-weighted, undirected graph G = (V,E, d), where d : E → R+, determine whether
there exists realization function x : V → RK such that:

∀{i, j} ∈ E ‖xi − xj‖ = dij . (1)

The DGP arises in many applications, for various values of K. Two important applications for
K = 3 are the determination of protein structure from distance data [36], and the localization
of a fleet of unmanned submarine vehicles [2]. The localization of mobile sensors in a wireless
network is a well-studied application for the case K = 2 [11, 5, 16, 9]. The only engineering
application we are aware of for the case K = 1 is to clock synchronization protocols in
computer networks [32]. Although Equation (1) is actually a schema (since the norm is
unspecified), most of the literature about the DGP uses the Euclidean norm (or 2-norm)
[21, 19], which is also the focus of this paper. In this context, the name of the problem is
Euclidean DGP (EDGP).

It is worth mentioning that, although the system of equations in Equation (1) involves
square roots, the squared system

∀{i, j} ∈ E ‖xi − xj‖2 = d2
ij . (2)

© Leo Liberti and Claudia D’Ambrosio;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 The Isomap Algorithm in Distance Geometry

has the same set of solutions as Equation (1) and is a polynomial system of degree two [12].
This makes it amenable to be studied using methods of algebraic geometry, for example [35].
It was shown in [29] that the EDGP is NP-hard, by reduction from Partition to the case
K = 1. Another proof for K = 2 was sketched in [38], and further proofs for some variants
in K = 3 and general K were given in [17] and [20]. If the dimensionality K is not given in
advance, then the question is whether the given graph admits a realization in some dimension
K. This problem is known as Euclidean Distance Matrix Completion Problem
(EDMCP). This difference between being given a K as part of the input or obtaining K as
part of the output is considerable: while the EDGP is NP-hard, we do not know whether
the EDMCP is NP-hard or in P (or neither, assuming P 6= NP).

Isomap [34] is a well-known dimension reduction algorithm which is able to project a set
X ⊂ Rn of high dimensional points belonging to a low-dimensional manifold to its intrinsic
dimension (say, K).

In this paper, we describe an easy adaptation of the Isomap algorithm to solve the EDGP.
The rationale for using Isomap on the EDGP is that finding realizations in high dimensional
spaces is empirically easier than in a given dimension K. We then describe six heuristics for
the EDGP based on Isomap, and evaluate them computationally on a test set consisting of
protein instances of different sizes.

It is often remarked that the EDGP and EDMCP only serve as abstract models for
real-life applications, since in most engineering and biological settings only interval estimates
or distributions of the distances are known (rather than exact distance values). Although we
do not treat the case of intervals or distributions here, we note that it is at least theoretically
possible to extend our heuristic methods to the interval case without excessive trouble —
the simplest way to do so is to run the same heuristics using the distribution average on
each interval. A better approach would replace error measures based on exact distances by
corresponding measures in intervals [21].

The rest of this paper is organized as follows. In Section 2, we give a very brief account of
the history of DG, introducing some of the concepts which we shall use later on in the paper.
In Section 3 we describe the Isomap algorithm and its relationship to EDMCP and EDGP.
In Section 4 we define and motivate our new heuristics based on Isomap. Our computational
results are discussed in Section 5.

2 A very short history of DG

DG was formally introduced by Karl Menger in [24, 25], at a time when, under Hilbert’s
drive [14], the concerted effort of many mathematicians (specially from Mitteleuropa) pushed
towards the axiomatization of mathematics in general, and specifically of geometry [18].
Menger and some of his students (Gödel among them) were part of the Vienna Circle, but
when this became politicized, Menger founded his famous mathematisches Kolloquium, which
ran at the University of Vienna between 1928 and 1937. It is interesting that the only
co-authored paper published by Gödel appears in the proceedings of Menger’s Kolloquium,
and is about DG [18, 22]. Menger’s foundational work is an axiomatization of geometry
which puts metric spaces at its core (e.g. convexity can be defined via betweenness of points).
Its main achievement is to characterize the metric spaces according to the dimension of
the Euclidean spaces they can be realized in. Menger’s work was continued by his student
Blumenthal [7], but remained firmly in the domain of pure mathematics.1

1 Another useful application dating from ancient Greece was Heron’s formula for computing the area of a
triangle from the lengths of its sides, extensively used in agricultural measurements.

L. Liberti and Claudia D’Ambrosio 5:3

A finite metric space (V, d) is a finite set V with an associated metric d. It is usually
represented as a weighted complete graph or a distance matrix. The graph is simple,
undirected and edge-weighted, say G = (V,E, d) where E = {{i, j} | i < j ∈ V } and
d : E → R+ such that d(i, j) is the value of the metric on the edge {i, j} of the underlying
set V . The distance matrix is an n × n symmetric matrix D with zero diagonal, where
n = |V |, such that the component dij is the value of the metric defined on i and j, for all
i < j ∈ V . Given some positive integer K, a metric space (V, d) is realized in the Euclidean
space RK w.r.t. ‖ · ‖ if there exists a realization function from V to RK w.r.t. ‖ · ‖. The main
problem in DG, for Menger and Blumenthal, was that of categorizing finite metric spaces
(V, d) according to the integers K such that V can be realized in RK .

A note [31] written by Schoenberg’s in 1935 on a paper by Fréchet showed that any
Euclidean Distance Matrix (EDM) D = (dij), i.e. when the metric is the 2-norm, can be
efficiently transformed into the Gram matrix of a Euclidean realization of the underlying
metric. Since a matrix X is Gram if and only if it is Positive Semidefinite (PSD), and since
PSD matrices can be factored as X = xx> where x is a matrix of rank K ≤ n, this offers
a method for finding a realization of D in RK [33]. This result was subsequently adapted
to work on wrong or approximate EDMs by replacing negative eigenvalues of D by zero,
and resulted in the hugely successful multidimensional scaling (MDS) method [8]. A further
refinement, obtained by using only at most K positive eigenvalues of D, called principal
component analysis (PCA) was equally successful. This firmly establishes DG as a branch
not only of pure, but also of applied mathematics.

The first explicit mention of the DGP appears to arise in a 1978 paper by Yemini [37],
which calls the reader’s attention to the problem of finding a realization in the plane of a set
of mobile sensors where the distances are only known if two sensors are close enough.

3 The Isomap method in Distance Geometry

The Isomap algorithm projects a finite subset of points X ⊂ Rn to RK (for some positive
given K < n) as follows:
1. it computes all pairwise distances for X, yielding the distance matrix D
2. it selects a subset d of “short” Euclidean distances in D (usually up to a given threshold),

yielding a simple connected weighted graph G = (V,E, d) where d : E → R+;
3. it computes all shortest paths in G, and produces an approximate distance matrix D̃,

where D̃ij = dij for all {i, j} ∈ E and D̃ij is the value of the shortest path from i to j
otherwise;

4. it derives a corresponding approximate Gram matrix B̃ by setting

B̃ = −1
2JD̃

2J, (3)

where J = In − 1
n11>;

5. it finds the (diagonal) eigenvalue matrix Λ of B̃ and the corresponding eigenvector matrix
P , so that B̃ = P>ΛP ;

6. since B̃ is only an approximation of a Gram matrix, it might have some negative
eigenvalues: Isomap replaces all the negative eigenvalues with zeroes;

7. in case there are still more than K positive eigenvalues, Isomap replaces the smallest
ones, leaving only the largest K eigenvalues on the diagonal of a PSD matrix Λ̃;

8. finally, it sets x = P>
√

Λ̃.
Steps 4–8 are collectively known as PCA. Without Step 7, they are known as classic MDS [15].

SEA 2017

5:4 The Isomap Algorithm in Distance Geometry

3.1 Isomap and the EDMCP
How can Isomap apply to the EDGP? A simple explanation is as follows: solving the EDGP is
hard, but solving the EDMCP is not as hard, and provides a realization x′ of G in (generally)
more than K dimensions, say in Rn. At this point, Isomap could be applied to x′ and give
an approximate projection in RK .

Although it was mentioned in Section 1 that no-one knows yet whether the EDMCP is
NP-hard or in P, that statement refers to the usual definition of these complexity classes in
the the Turing Machine (TM) computational model. On the other hand, the fact that the
EDMCP can be solved efficiently in practice can be made more precise.

I Theorem 1. The EDMCP can be solved in a polynomial number of basic steps in the Real
RAM computational model [6].

Proof. We first show that the EDMCP can be described by the following pure feasibility
Semidefinite Program (SDP):

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X � 0.

}
(4)

Assume Equation (4) has a solution X∗ for a given EDMCP instance. Then, since X∗ is a
PSD matrix, it is also a Gram matrix, which means that it can be factored as X∗ = Y Y >.
Consider a realization x∗ ∈ Rn given by x∗i = Yi for each i ∈ V , where Yi is the i-th row of
Y . Then we have

‖x∗i − x∗j‖2 = ‖Yi − Yj‖2 = Y >i Yi + Yj
>Yj − 2YiYj = Xii +Xjj − 2Xij = d2

ij

by the linear constraints in Equation (4). This means that Y is a valid realization for G
in Rn, i.e. the given EDMCP instance is YES. Assume now that Equation (4) is infeasible,
but suppose that the given instance is YES: then it has a realization Y of G in Rn, and it
is immediate to verify that its Gram matrix X∗ = Y Y > satisfies Equation (4) providing a
contradiction, so the given EDMCP instance must be NO, which concludes the first part of
the proof.

Having established that solving the EDMCP is the same as solving Equation (4), we
remark that the Interior Point Method (IPM) can be used to solve SDPs in polynomial time
to any desired accuracy [1] in the TM computational model. If a primal path-following IPM
based on Newton’s steps could be run on a Real RAM machine, it would find an exact real
solution for the EDMCP. J

In practice, the IPM can only compute approximate solutions to Equation (4) in floating
point precision, which might not satisfy the constraints exactly. But SDP technology can be
used in practice to solve EDMCPs efficiently to very good approximations.

3.2 Isomap and the EDGP
Although our basic idea is to solve an EDMCP instance in order to find a high dimensional
realization of G as a pre-processing step to applying Isomap, it is easy to streamline this
procedure better. We observe that Step 3 requires a weighted graph G as input, and that a
weighted graph is part of the definition of any EDGP instance. It is therefore sufficient to
start Isomap from Step 3. The Isomap for DG works as follows.
(A) Run the Floyd-Warshall all-shortest-paths algorithm [23] on the partial distance matrix

DG represented by G = (V,E, d) and obtain D̃, a completion of DG;

L. Liberti and Claudia D’Ambrosio 5:5

(B) find the (approximate) Gram matrix B̃ of D̃;
(C) find the PSD matrix B′ closest to B̄ by zeroing the negative eigenvalues, and then

perform PCA to extract an approximate realization x in RK .
The interest in using the Isomap for DG is that it lends itself to the construction of many

heuristics, through its combination with various pre- and post-processing algorithms. For
example, Step 1, which essentially aims at solving an EDMCP instance by completing the
corresponding graph using shortest paths, can be replaced by the solution of the SDP in
Equation (4). Moreover, the final solution x obtained in Step 3 can be used as a starting
point by a local Nonlinear Programming (NLP) solver.

4 Isomap heuristics

We list in this section six new heuristics based on Isomap for solving EDGPs.
(i) Isomap. This is the Isomap algorithm for DG as described in Section 3.2.
(ii) IsoNLP. This variant adds a post-processing phase consisting of a local NLP solver to

improve the output of Isomap (see Section 4.1 below). Because of the importance of
this phase, every following heuristic also uses it.

(iii) SPT. This variant, the name of which stands for spanning tree, replaces Step 1 of
the Isomap algorithm definition given in Section 3.2 as follows: compute a realization
x′ ∈ RK using a spanning tree of G (see Section 4.2 below for details). This realization
is then used to obtain the EDM D̃. SPT also adds a post-processing local NLP solution
phase.

(iv) SDP. This variant replaces Step 1: solve Equation (4) using a “natural” SDP formulation
(see Section 4.3 below), obtain a realization x′ in Rn, and use it to compute the EDM
D̃. SDP also adds a post-processing local NLP solution phase.

(v) Barvinok. This variant is similar to SDP, but it endows the SDP with an objective
function designed to decrease the rank of the solution x′ to p = O(

√
|E|) (see Section 4.4

below). Barvinok also adds a post-processing local NLP solution phase.
(vi) DGSol. This variant uses one of the first modern algorithms for solving EDGPs, dgsol

[26], to compute an initial realization x′ in RK , which it then uses to compute the EDM
D̃ (see Section 4.5 below). DGSol also adds a post-processing local NLP solution phase.

4.1 Post-processing using a local NLP solver (IsoNLP)
Although Isomap can be used on its own, the quality of the realizations it obtains is greatly
improved when the output is used as a starting point for a local NLP algorithm, such as
active set or barrier algorithms [13]. Aside from Isomap, the rest of our heuristics all include
this post-processing phase.

In the case of the SDP and Barvinok heuristics, this post-processing is backed by a
theoretical result given in [4], also exploited in [10], which states that there is an SDP
solution of Equation (4) which is asymptotically not too far from the manifold of solutions
of Equation (2): hence, it makes sense to try a single local descent to reach that manifold.

The choice of solver was carried out through some preliminary computational experiments.
Since most tests were carried out in Python, we limited ourselves to solvers offering a Python
API. Among these, we decided to use the one which proved out to be empirically fastest,
namely lbfgs from scipy.optimize, limited to 50 iterations. Code optimization might
change this choice, specially in view of the fact that we only employed Python-enabled solvers,
with APIs that shine more for ease of coding than efficiency.

SEA 2017

5:6 The Isomap Algorithm in Distance Geometry

4.2 Spanning tree realization heuristic (SPT)
A possible way to construct an approximate distance matrix D̃ based on an EDGP instance
G consists in identifying a spanning subgraph of G for which the EDGP can be solved
efficiently, and then use the corresponding realization to compute D̃. We use trees, which
are a polynomial case of the EDGP.

Let T be a tree on V , and for each v ∈ V let NT (v) be the set of vertices adjacent to
v in T . The following algorithm realizes any tree in K = 1, and more specifically in the
non-negative half-line R+.
1. Let r be a vertex with highest degree in G;
2. let xr = 0;
3. let Q = {r} be a priority queue containing vertices with their degrees w.r.t. V rQ as

priority;
4. pop the vertex u with highest priority from Q;
5. for each v ∈ NT (u) let xv = xu + duv and add v to Q.

I Lemma 2. The above algorithm is correct and runs in linear time.

Proof. The important invariant of the algorithm is that every vertex u entering Q has a
known realization xu: this holds by Step 5 and because at the first iteration Q only contains
r, realized at xr = 0. It is also easy to see that, by connectedness of G, every vertex in
V enters Q at least once. Moreover, since G is a tree, it has no cycles, which implies that
no vertex can ever enter Q more than once. Since every vertex enters Q exactly once, the
complexity of this algorithm is Θ(|V |). J

Once a tree is realized in a half-line, one can embed the realization in as many dimensions as
needed, by embedding a congruent copy of the half-line in an appropriate Euclidean space.

The algorithm we use to construct a realization in RK from a tree is based on the above
one. It takes a general graph G as input, grows a largest-degree priority spanning tree, and
realizes each vertex v as a uniformly chosen random point on the sphere centered at xu with
radius duv for each edge {u, v} in the spanning tree. More precisely, we modify the above
algorithm as follows: (a) we introduce a set Z (initialized to {r}) that records the vertices
entering the tree and replace NT (u) by NG(u) r Z; (b) we replace xv = xu + duv by xv
sampled uniformly at random from SK−1(xu, duv).

4.3 Euclidean distance SDP objective (SDP)
Another way to compute D̃ is to solve the SDP in Equation (4), and obtain a realization
Y having rank generally higher than K; D̃ is then set to the EDM corresponding to Y .
IPM algorithms for SDP offer us some additional flexibility in that they solve optimization
problems rather than pure feasibility problems such as Equation (4).

In the SDP heuristic, we simply rewrite the pure feasibility SDP as an optimization
problem. First, we reformulate Equation (2) as follows:

min
∑

{i,j}∈E
‖xi − xj‖2

∀{i, j} ∈ E ‖xi − xj‖2 ≥ d2
ij .

 (5)

The objective function of Equation (5) “pulls together” the realizations of the vertices,
limited to the minimum possible value dij of each pairwise distance in E because of the

L. Liberti and Claudia D’Ambrosio 5:7

constraints. Notice that Equation (5) has a convex objective but reverse convex constraints,
both linearized in the SDP relaxation below [10]:

min
X�0

∑
{i,j}∈E

(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij ,

 (6)

Once the SDP solver finds a feasible solution X∗ for Equation (6), one can either compute D̃
by inverting Equation (3) with B̃ = X∗, or factor X∗ into Y Y > and then use the realization
Y in Rn to compute D̃ as the corresponding EDM.

4.4 Barvinok’s result (Barvinok)
The Barvinok heuristic is very similar to the SDP heuristic, but we solve a different SDP: more
precisely, we endow Equation (4) with an objective function minF •X for some “regular”
matrix F (we sketch the regularity definition below). Barvinok proves in [3] that this SDP
will generally provide a realization Y having rank O(

√
|E|) rather than O(n). We recall that

F • Y is the trace of the dot product of F> and X. Write the columns of F one after the
other to obtain a column vector in Rn2 , and do the same for X: then F •X corresponds to
the “ordinary” scalar product between these vectors.

More precisely, Barvinok proves that if a graph is realizable in Rt for some t which is
generally O(n), then it is also realizable for t = b(

√
8|E|+ 1− 1)/2c. The way he achieves

this result is by showing that there exists a solution X to the SDP

min
X�0

F •X

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij ,

}
(7)

having rank ≤ t, and that there exist matrices F which yield these low-rank solutions.
Specifically, F must be “regular” with respect to the quadratic forms involved in the
constraints of Equation (7). In other words, if we write Xii + Xjj − 2Xij as Qij • X for
some real symmetric n× n matrix Qij (for each {i, j} ∈ E), then F must be “regular” with
respect to all the Qijs.

Regularity, in this context, is defined by two conditions, one easy to explain and one harder.
First, and easiest, F should be positive definite (PD), namely all its eigenvalues should be
strictly positive. The hard part is as follows: consider the set of n× n matrices X that are
feasible in (4): since each such X is PSD, it can be factored into Y Y >. As X ranges over
the feasible region of Equation (7), Y ranges over possible realizations of G having various
ranks r ≤ n. We let this range be Y = {Y ∈ Rr×n | Y Y > = X satisfies (4) ∧ 1 ≤ r ≤ n}.
Now we partition Y according to the values of r:

∀r ≤ n Yr = {Y ∈ Rn×r | Y Y > = X satisfies (4)}.

We then require that the map ψF : R|E| → Rn×n given by ψF (z) = F −
∑

{i,j}∈E
zijQ

ij

intersects each Yr transversally, for each r ≤ n. A map φ between smooth manifolds A→ B

intersects a submanifold B′ ⊆ B transversally if either φ(A) has no intersection with B′ at
all or, if it does, the intersection points are “well behaved”, meaning their tangent spaces are
non-singular in a certain way. Explaining this more precisely would require the introduction
of too many new concepts; to give a suggestion, the curves ψ(z) = z2 + c intersect the
manifold z = 0 transversally as long c 6= 0, since at c = 0 the tangent of ψ(z) at the
intersection point is parallel to the manifold z = 0.

SEA 2017

5:8 The Isomap Algorithm in Distance Geometry

In summary, F is regular if it is positive definite (PD) and the map ψF (z) intersects each
Yr transversally. Since regular matrices prevent a corresponding (linear) map from displaying
some type of singularity, most PD matrices are regular once the quadratic forms are fixed.
Indeed, Barvinok’s paper does not even suggest a way to sample or construct such matrices.

In [3, Example 4.1], Barvinok exploits the special structure of r-diagonal matrices to
prove that the rank reduction is improved if the Qij are r-diagonal. Since our quadratic
forms are fixed, and not r-diagonal in general, this is hardly relevant to our case. On the
other hand, strictly diagonally dominant r-diagonal matrices are PD, so this suggests a good
way to randomly generate regular matrices. We recall that a matrix F is r-diagonal if it
consists of a diagonal band of width 2r + 1, i.e. an identity with r (small) nonzero entries
to the left and right of the i-th diagonal entry. The off-diagonal nonzeros should be small
enough for the matrix to be diagonally dominant and, in particular, PD.

4.5 Moré-Wu’s dgsol algorithm
The dgsol algorithm has an outer iteration and an inner one [26]. The outer iteration starts
from a smoothed convexified version of the penalty objective function

f(x) =
∑
{i,j}∈E

(
‖xi − xj‖2

2 − d2
ij

)2 (8)

obtained via a Gaussian transform

〈f〉λ(x) = 1
πKn/2λKn

∫
RKn

f(y) exp(−‖y − x‖2
2/λ

2)dy, (9)

which tends to f(x) as λ → 0. For each fixed value of λ in the outer iteration, the inner
iteration is based on the step

x`+1 = x` − α`H`∇〈f〉λ(x`),

for ` ∈ N, where α` is a step size, and H` is an approximation of the inverse Hessian matrix
of f . In other words, the inner iteration implements a local NLP solution method which uses
the optimum at the previous value of λ as a starting point.

Overall, this yields a homotopy method which traces a trajectory as a function of λ→ 0,
where a unique (global) optimum of the convex smoothed function 〈f〉λ for a high enough
value of λ (hopefully) follows the trajectory to the global minimum of the multimodal,
nonconvex function 〈f〉0 = f .

The initial solution could theoretically be obtained by setting λ large enough so that
〈f〉λ(x) is convex, but DGSol’s initial solution is computed by means of a spanning tree
realization instead (see Section 4.2).

5 Computational assessment

We consider two test sets: a larger test set based on instances of various sizes, and a smaller
test set with five very large sized instances. All instances are protein instances derived
from Protein Data Bank (PDB) files, which contain realizations in R3. In order to obtain
realistic instances, we computed the EDMs of these realizations, then kept the partial distance
matrix consisting of all distances within a threshold of 5Å. This generates instances that
are similar to the type of distance data produced by Nuclear Magnetic Resonance (NMR)
experiments [30].

L. Liberti and Claudia D’Ambrosio 5:9

All of the heuristics have been coded in Python 2.7. All the tests have been obtained
on a single core of an Intel Xeon processor at 2.53GHz with 48GB RAM. SDPs were solved
using Mosek 7.1.0.41 [27] through the PICOS [28] Python-based API.

5.1 Small to large sizes
We consider a set of 25 protein instances with sizes ranging from n = 15, |E| = 39 to n = 488,
|E| = 5741, detailed in Table 1. For each instance and solution method we record the (scaled)
mean (MDE) and largest (LDE) distance error of the solution, defined as:

mde(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖2 − dij |
dij

;

lde(x) = 1
|E|

max
{i,j}∈E

| ‖xi − xj‖2 − dij |
dij

as a measure of the solution quality, as well as the CPU time taken by each method. All CPU
times have been computed in Python using the time module. The last three lines of Table 1
contain geometric means, averages and standard deviations. Best results are emphasized in
boldface.

According to Table 1, IsoNLP and Barvinok are the best heuristics with respect to both
MDE and LDE, whereas Isomap is the fastest (but quality-wise among the worst).

5.2 Very large sizes
For the large sized instance benchmark, we considered a set of five very large protein datasets,
detailed in Table 2. None of the heuristics above, aside from Isomap, was able to terminate
within 12h of CPU time, the issue being that our post-processing phase based on Python’s
scipy.optimize.lbfgs local NLP solver is too slow. The results obtained by Isomap,
however, are quite poor qualitywise, with MDE and LDE measures attaining values around
0.99 for all five instances.

We therefore decided to re-implement2 IsoNLP using a fully compiled language (a mixture
of pure C and Fortran 77). We use the Isomap algorithm to obtain a starting point for dgopt,
the optimization engine used by dgsol. Since dgopt is a homotopy method rather than a
simple NLP solver, we thought it would be fair to compare this heuristic with dgsol itself,
which uses a spanning tree heuristic (see Section 4.2) to provide a starting point to dgopt.
The results of our tests are presented in Table 2.

The results do not show a clear quality-wise dominance of either solution method. CPU
time wise, DGSol has a clear advantage: this is easily explained since IsoNLP differs from
DGSol only by the choice of the initial (approximate) realization, which takes O(n3) in IsoNLP
(finding eigenvalues and eigenvectors within IsoMAP) and O(n) in DGSol (Lemma 2). Given
the large lde values, by our past experience the only reliable solution in Table 2 is the water
realization obtained by IsoNLP (see Figure 1).

Methodologically, there is a generality vs. efficiency trade-off at play in evaluating IsoNLP
versus DGSol. Whereas the former applies to the EDGP for any given K, the latter only
solves EDGP instances with K fixed to the constant 3 (this trade-off does not concern our
implementation, which calls parts of the dgsol program). Speficically, the evaluation of the
integral in Equation (9) depends on a dy = dy1 · · · dyK which explicitly depends on K.

2 See http://www.lix.polytechnique.fr/~liberti/isomapheur.zip.

SEA 2017

http://www.lix.polytechnique.fr/~liberti/isomapheur.zip

5:10 The Isomap Algorithm in Distance Geometry

Ta
bl
e
1

C
om

pa
ra

tiv
e

re
su

lts
on

sm
al

lt
o

la
rg

e
si

ze
d

pr
ot

ei
n

in
st

an
ce

s
(K

=
3)

.

In
st

an
ce

m
de

ld
e

C
P

U
N

am
e

n
|E

|
Iso

m
ap

Iso
N

LP
SP

T
SD

P
Ba

rv
in

ok
D

GS
ol

Iso
m

ap
Iso

N
LP

SP
T

SD
P

Ba
rv

in
ok

D
GS

ol
Iso

m
ap

Iso
N

LP
SP

T
SD

P
Ba

rv
in

ok
D

GS
ol

C0
70

0o
dd

.1
15

39
0.

58
5

0.
00

1
0.

19
0

0.
06

8
0.

00
0

0.
13

5
0.

98
9

0.
00

4
0.

89
6

0.
38

9
0.

00
1

0.
63

4
0.

00
2

1.
45

6
1.

58
9

0.
90

6
1.

30
5

1.
74

7
C0

70
0o

dd
.2

15
39

0.
59

9
0.

00
0

0.
18

7
0.

08
6

0.
00

0
0.

12
8

0.
98

5
0.

00
2

0.
95

6
0.

38
9

0.
00

9
1.

00
0

0.
00

3
1.

37
6

1.
22

6
1.

00
2

1.
06

3
0.

88
7

C0
70

0o
dd

.3
15

39
0.

59
9

0.
00

0
0.

06
0

0.
08

6
0.

00
0

0.
12

8
0.

98
5

0.
00

2
0.

32
6

0.
38

9
0.

00
9

1.
00

0
0.

00
3

1.
25

9
1.

25
6

0.
86

1
1.

16
7

0.
87

7
C0

70
0o

dd
.4

15
39

0.
59

9
0.

00
0

0.
28

3
0.

08
6

0.
00

1
0.

12
8

0.
98

5
0.

00
2

2.
44

9
0.

38
9

0.
00

8
1.

00
0

0.
00

3
1.

34
7

1.
22

2
0.

97
6

1.
06

3
1.

03
3

C0
70

0o
dd

.5
15

39
0.

59
9

0.
00

0
0.

22
5

0.
08

6
0.

00
0

0.
12

8
0.

98
5

0.
00

2
0.

86
7

0.
38

9
0.

00
7

1.
00

0
0.

00
3

1.
28

4
1.

15
7

0.
98

7
1.

10
0

0.
70

0
C0

70
0o

dd
.6

15
39

0.
59

9
0.

00
0

0.
28

3
0.

08
6

0.
00

0
0.

12
8

0.
98

5
0.

00
2

1.
52

0
0.

38
9

0.
00

2
1.

00
0

0.
00

2
1.

37
2

1.
19

6
0.

99
8

1.
30

5
0.

90
9

C0
70

0o
dd

.7
15

39
0.

58
5

0.
00

1
0.

08
0

0.
06

8
0.

00
0

0.
13

5
0.

98
9

0.
00

4
0.

36
1

0.
38

9
0.

00
1

0.
63

4
0.

00
3

1.
46

9
1.

32
2

0.
89

4
1.

09
3

1.
71

9
C0

70
0o

dd
.8

15
39

0.
58

5
0.

00
1

0.
05

6
0.

06
8

0.
00

0
0.

13
5

0.
98

9
0.

00
4

0.
27

5
0.

38
9

0.
00

3
0.

63
4

0.
00

3
1.

40
8

1.
30

6
0.

69
2

1.
07

9
1.

74
4

C0
70

0o
dd

.9
15

39
0.

58
5

0.
00

1
0.

05
7

0.
06

8
0.

00
0

0.
13

5
0.

98
9

0.
00

4
0.

30
1

0.
38

9
0.

00
2

0.
63

4
0.

00
2

1.
43

0
1.

17
2

0.
79

1
1.

09
3

1.
74

5
C0

70
0o

dd
.A

15
39

0.
58

5
0.

00
1

0.
04

3
0.

06
8

0.
00

0
0.

13
5

0.
98

9
0.

00
4

0.
31

6
0.

38
9

0.
00

4
0.

63
4

0.
00

2
1.

29
4

1.
26

9
0.

72
2

1.
22

0
1.

52
3

C0
70

0o
dd

.B
15

39
0.

58
5

0.
00

1
0.

15
1

0.
06

8
0.

00
0

0.
13

5
0.

98
9

0.
00

4
1.

02
2

0.
38

9
0.

00
4

0.
63

4
0.

00
2

1.
29

7
1.

27
9

0.
87

1
1.

11
1

1.
74

7
C0

70
0o

dd
.C

15
39

0.
83

5
0.

02
2

0.
03

3
0.

03
9

0.
03

1
0.

02
5

1.
01

2
0.

14
7

0.
39

3
0.

21
1

0.
29

4
0.

16
7

0.
00

4
6.

80
3

6.
36

9
7.

37
1

7.
03

0
7.

00
0

C0
70

0o
dd

.D
36

24
2

0.
83

5
0.

02
2

0.
04

1
0.

03
9

0.
04

2
0.

02
5

1.
01

2
0.

14
7

0.
42

3
0.

21
1

0.
26

8
0.

16
7

0.
00

6
6.

80
6

6.
57

5
7.

42
2

7.
60

3
7.

09
5

C0
70

0o
dd

.E
36

24
2

0.
83

5
0.

02
2

0.
06

4
0.

03
9

0.
03

1
0.

02
5

1.
01

2
0.

14
7

0.
89

4
0.

21
1

0.
26

0
0.

16
7

0.
00

6
6.

91
1

6.
63

8
7.

36
5

6.
97

9
7.

00
8

C0
70

0o
dd

.F
36

24
2

0.
59

9
0.

00
0

0.
04

7
0.

08
6

0.
00

0
0.

12
8

0.
98

5
0.

00
2

0.
30

8
0.

38
9

0.
00

5
1.

00
0

0.
00

2
1.

29
9

1.
31

0
1.

00
8

1.
10

0
1.

04
0

C0
15

0a
lt

er
.1

37
33

5
0.

78
6

0.
05

8
0.

06
6

0.
01

4
0.

01
5

0.
01

0
0.

99
2

0.
57

1
0.

69
3

0.
25

6
0.

28
5

0.
25

3
0.

00
4

9.
49

2
9.

45
6

10
.2

76
10

.1
20

9.
27

2
C0

08
0c

re
at

e.
1

60
68

1
0.

88
7

0.
05

3
0.

08
3

0.
02

4
0.

02
4

0.
05

4
1.

96
7

0.
94

9
0.

78
9

0.
51

1
0.

51
6

0.
71

8
0.

01
2

18
.8

35
19

.7
20

21
.2

47
20

.9
06

19
.9

62
C0

08
0c

re
at

e.
2

60
68

1
0.

88
7

0.
05

3
0.

04
7

0.
02

4
0.

02
4

0.
05

4
1.

96
7

0.
94

9
0.

58
5

0.
51

1
0.

51
2

0.
71

8
0.

00
8

18
.7

91
20

.0
09

21
.7

28
20

.8
85

19
.7

40
C0

02
0p

db
10

7
99

9
0.

93
9

0.
11

0
0.

11
9

0.
05

9
0.

06
0

0.
10

3
1.

24
2

1.
11

3
1.

34
9

1.
08

2
1.

13
8

0.
79

8
0.

03
5

29
.0

24
27

.7
72

35
.2

73
35

.4
86

32
.4

79
1g

uu
15

0
95

5
0.

98
6

0.
06

8
0.

06
9

0.
05

7
0.

05
7

0.
06

1
0.

99
9

0.
85

4
0.

83
0

0.
73

5
0.

75
1

0.
76

8
0.

04
8

30
.8

69
28

.7
84

41
.4

88
41

.8
52

37
.8

48
1g

uu
-1

15
0

95
9

0.
98

6
0.

06
1

0.
06

3
0.

05
8

0.
05

7
0.

06
0

1.
00

0
0.

71
1

0.
85

5
0.

80
5

0.
82

9
0.

77
8

0.
05

3
31

.3
22

31
.4

42
42

.3
08

41
.5

90
37

.2
18

1g
uu

-4
00

0
15

0
96

8
0.

97
4

0.
08

1
0.

08
0

0.
07

2
0.

06
5

0.
07

9
1.

00
0

0.
90

1
0.

72
8

0.
76

0
0.

96
1

0.
82

6
0.

05
0

30
.3

52
29

.8
56

42
.3

30
39

.8
32

42
.0

15
C0

03
0p

kl
19

8
32

47
0.

96
1

0.
11

2
0.

16
0

0.
07

6
0.

07
7

0.
13

7
1.

19
7

1.
35

4
2.

23
0

1.
99

5
2.

05
4

1.
40

1
0.

09
1

10
5.

17
5

10
4.

77
5

14
9.

19
2

14
6.

36
0

11
1.

85
9

1P
PT

30
2

31
02

0.
98

4
0.

12
1

0.
12

9
0.

12
8

0.
12

9
0.

12
3

1.
00

0
1.

51
9

1.
21

9
1.

94
4

1.
95

6
1.

22
4

0.
35

6
11

2.
44

8
11

0.
34

5
18

5.
81

5
18

7.
18

2
11

8.
68

1
10

0d
48

8
57

41
0.

98
7

0.
14

6
0.

14
6

0.
15

5
0.

15
7

0.
13

7
1.

00
0

1.
57

7
1.

39
7

1.
76

4
1.

74
9

1.
35

8
0.

82
8

22
9.

80
9

21
3.

13
6

65
9.

63
8

65
9.

28
0

23
3.

11
5

G
eo

M
ea

n
0.

74
0.

00
0.

09
0.

06
0.

00
0.

08
1.

07
0.

04
0.

73
0.

50
0.

06
0.

66
0.

01
6.

30
6.

04
5.

93
6.

63
6.

30
A

vg
0.

76
0.

04
0.

11
0.

07
0.

03
0.

10
1.

09
0.

44
0.

88
0.

63
0.

47
0.

77
0.

06
26

.1
2

25
.2

1
49

.6
9

49
.5

5
27

.9
6

St
D

ev
0.

17
0.

05
0.

07
0.

03
0.

04
0.

04
0.

27
0.

55
0.

57
0.

52
0.

65
0.

34
0.

18
51

.6
9

48
.8

2
13

5.
08

13
4.

97
53

.2
6

L. Liberti and Claudia D’Ambrosio 5:11

Table 2 Tests on large protein instances (K = 3).

Instance mde lde CPU
Name |V | |E| IsoNLP dgsol IsoNLP dgsol IsoNLP dgsol
water 648 11939 0.005 0.15 0.557 0.81 26.98 15.16
3al1 678 17417 0.036 0.007 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074 0.078 0.936 0.932 374.01 60.28
il2 2084 45251 0.012 0.035 0.910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 0.950 0.897 7400.48 454.375

Figure 1 Comparison between water from the PDB (left) and the same structure reconstructed
using IsoNLP (right).

6 Conclusion

This paper is concerned with Isomap-based heuristics for solving the Euclidean Distance
Geometry Problem. It discusses the Isomap algorithm in the context of Distance Geometry,
proposes six new heuristics, and benchmarks them on a set of protein conformation instances
of various sizes.

References

1 F. Alizadeh. Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

2 A. Bahr, J. Leonard, and M. Fallon. Cooperative localization for autonomous underwater
vehicles. International Journal of Robotics Research, 28(6):714–728, 2009.

3 A. Barvinok. Problems of distance geometry and convex properties of quadratic maps.
Discrete and Computational Geometry, 13:189–202, 1995.

4 A. Barvinok. Measure concentration in optimization. Mathematical Programming, 79:33–53,
1997.

5 P. Biswas, T. Lian, T. Wang, and Y. Ye. Semidefinite programming based algorithms for
sensor network localization. ACM Transactions in Sensor Networks, 2:188–220, 2006.

6 L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions, and universal machines. Bulletin of
the American Mathematical Society, 21(1):1–46, 1989.

7 L. Blumenthal. Theory and Applications of Distance Geometry. Oxford University Press,
Oxford, 1953.

8 T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, Boca Raton, 2001.
9 M. Cucuringu, Y. Lipman, and A. Singer. Sensor network localization by eigenvector

synchronization over the Euclidean group. ACM Transactions on Sensor Networks, 8:1–42,
2012.

SEA 2017

5:12 The Isomap Algorithm in Distance Geometry

10 G. Dias and L. Liberti. Diagonally dominant programming in distance geometry. In
R. Cerulli, S. Fujishige, and R. Mahjoub, editors, International Symposium in Combin-
atorial Optimization, volume 9849 of LNCS, pages 225–236, New York, 2016. Springer.

11 L. Doherty, K. Pister, and L. El Ghaoui. Convex position estimation in wireless sensor net-
works. In Twentieth Annual Joint Conference of the IEEE Computer and Communications
Societies, volume 3 of INFOCOM, pages 1655–1663, Piscataway, 2001. IEEE.

12 I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli. Euclidean distance matrices: Essen-
tial theory, algorithms and applications. IEEE Signal Processing Magazine, 1053-5888:12–
30, Nov. 2015.

13 R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, second edition, 1991.
14 D. Hilbert. Grundlagen der Geometrie. Teubner, Leipzig, 1903.
15 I. Jolliffe. Principal Component Analysis. Springer, Berlin, 2nd edition, 2010.
16 N. Krislock and H. Wolkowicz. Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization, 20:2679–2708, 2010.
17 C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecular distance

geometry problem. Computational Optimization and Applications, 52:115–146, 2012.
18 L. Liberti and C. Lavor. Six mathematical gems in the history of distance geometry. In-

ternational Transactions in Operational Research, 23:897–920, 2016.
19 L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and

applications. SIAM Review, 56(1):3–69, 2014.
20 L. Liberti, C. Lavor, and A. Mucherino. The discretizable molecular distance geometry

problem seems easier on proteins. In A. Mucherino, C. Lavor, L. Liberti, and N. Maculan,
editors, Distance Geometry: Theory, Methods, and Applications, pages 47–60. Springer,
New York, 2013.

21 L. Liberti, C. Lavor, A. Mucherino, and N. Maculan. Molecular distance geometry methods:
from continuous to discrete. International Transactions in Operational Research, 18:33–51,
2010.

22 L. Liberti, G. Swirszcz, and C. Lavor. Distance geometry on the sphere. In JCDCG2,
LNCS, New York, accepted. Springer.

23 K. Mehlhorn and P. Sanders. Algorithms and Data Structures. Springer, Berlin, 2008.
24 K. Menger. Untersuchungen über allgemeine Metrik. Mathematische Annalen, 100:75–163,

1928.
25 K. Menger. New foundation of Euclidean geometry. American Journal of Mathematics,

53(4):721–745, 1931.
26 J. Moré and Z. Wu. Global continuation for distance geometry problems. SIAM Journal

of Optimization, 7(3):814–846, 1997.
27 Mosek ApS. The mosek manual, Version 7 (Revision 114), 2014. (www.mosek.com).
28 G. Sagnol. PICOS: A Python Interface for Conic Optimization Solvers. Zuse Institut

Berlin, 2016. URL: picos.zib.de.
29 J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings

of 17th Allerton Conference in Communications, Control and Computing, pages 480–489,
1979.

30 T. Schlick. Molecular modelling and simulation: an interdisciplinary guide. Springer, New
York, 2002.

31 I. Schoenberg. Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une
classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert". Annals of
Mathematics, 36(3):724–732, 1935.

32 A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied
and Computational Harmonic Analysis, 30:20–36, 2011.

picos.zib.de

L. Liberti and Claudia D’Ambrosio 5:13

33 M. Sippl and H. Scheraga. Cayley-Menger coordinates. Proceedings of the National
Academy of Sciences, 83:2283–2287, 1986.

34 J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290:2319–2322, 2000.

35 L. Wang, R. Mettu, and B.R. Donald. An algebraic geometry approach to protein structure
determination from NMR data. In Proceedings of the Computational Systems Bioinform-
atics Conference, Piscataway, 2005. IEEE.

36 K. Wüthrich. Protein structure determination in solution by nuclear magnetic resonance
spectroscopy. Science, 243:45–50, 1989.

37 Y. Yemini. The positioning problem – a draft of an intermediate summary. In Proceedings of
the Conference on Distributed Sensor Networks, pages 137–145, Pittsburgh, 1978. Carnegie-
Mellon University.

38 Y. Yemini. Some theoretical aspects of position-location problems. In Proceedings of the
20th Annual Symposium on the Foundations of Computer Science, pages 1–8, Piscataway,
1979. IEEE. doi:10.1109/SFCS.1979.39.

SEA 2017

http://dx.doi.org/10.1109/SFCS.1979.39

Distributed Domain Propagation∗

Robert Lion Gottwald1, Stephen J. Maher2, and Yuji Shinano3

1 Zuse Institute Berlin, Berlin, Germany
robert.gottwald@zib.de

2 Zuse Institute Berlin, Berlin, Germany
maher@zib.de

3 Zuse Institute Berlin, Berlin, Germany
shinano@zib.de

Abstract
Portfolio parallelization is an approach that runs several solver instances in parallel and ter-
minates when one of them succeeds in solving the problem. Despite its simplicity, portfolio
parallelization has been shown to perform well for modern mixed-integer programming (MIP)
and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be
a simple technique in modern MIP and SAT solvers that effectively finds additional domain re-
ductions after the domain of a variable has been reduced. In this paper we introduce distributed
domain propagation, a technique that shares bound tightenings across solvers to trigger further
domain propagations. We investigate its impact in modern MIP solvers that employ portfolio
parallelization. Computational experiments were conducted for two implementations of this par-
allelization approach. While both share global variable bounds and solutions, they communicate
differently. In one implementation the communication is performed only at designated points in
the solving process and in the other it is performed completely asynchronously. Computational
experiments show a positive performance impact of communicating global variable bounds and
provide valuable insights in communication strategies for parallel solvers.

1998 ACM Subject Classification G.1.6 Optimization, D.1.3 Concurrent Programming

Keywords and phrases mixed integer programming, parallelization, domain propagation, port-
folio solvers

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.6

1 Introduction

A MIP is a problem with the general form:

min{c>x : Ax ≤ b, l ≤ x ≤ u, xj ∈ Z, for all j ∈ I},

with matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn, and l, u ∈ (R ∪ {−∞, +∞})n, as well as
a set I ⊆ {1, . . . , n}, which identifies the subset of variables that are integer. This paper
deals with algorithmic approaches that aim to reduce the domain of a variable—methods
to increase or decrease components of l or u respectively—within a parallel solver. An
algorithmic approach of particular interest is domain propagation.

MIP and SAT solvers employ domain propagation after the domain of a variable has been
reduced to find further reductions for variables occurring in the same constraints or clauses.

∗ This work has been supported by the Research Campus MODAL Mathematical Optimization and
Data Analysis Laboratories funded by the Federal Ministry of Education and Research (BMBF
Grant 05M14ZAM). All responsibility for the content of this publication is assumed by the authors.

© Robert Lion Gottwald, Stephen J. Maher, and Yuji Shinano;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 6; pp. 6:1–6:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Distributed Domain Propagation

In modern branch-and-bound based MIP solvers domain propagation has a major positive
impact on performance [2, 3, 4, 17]. It is usually performed at every node of the branch-and-
bound tree to exploit the possible additional domain reductions that result from applying
branching decisions. Regularly performing domain propagation is advantageous since it is
able to achieve domain reductions and detect infeasible nodes with a small computational
effort compared to solving the respective linear programming (LP) relaxation.

Beyond the traditional application, domain propagation has been incorporated into many
different parts of a MIP solver. Gamrath [11] applied domain propagation during strong
branching. This use of domain propagation has been shown to significantly improve the
solver performance and reduce the branch-and-bound tree size. The average number of LP
iterations for strong branching decreased and better dual bounds were obtained while no
more time was spent in strong branching.

Modern solvers only propagate constraints if there is the potential of finding domain
reductions; i.e. for general linear constraints at least one variable must have a tighter bound
than in the last propagation. In branch-and-bound based solvers this generally occurs after
each branching decision. However, there are other reasons why a the domain of a variable
might be reduced. For instance, some MIP solvers employ a technique called reduced cost
strengthening [19] that exploits dual information. Particularly, if a variable has non-zero
reduced cost in the LP relaxation of a node, a bound can be inferred given the objective
value ẑ of a feasible primal solution. Because the variable has non-zero reduced cost, its
LP solution value must be at the variable’s bound. Furthermore, the reduced cost of this
variable tells us how much the objective function changes if the variable moves away from its
bound. Thereby a bound can be obtained for the variable, that must be satisfied by any
solution with objective value ẑ or better. If this technique is employed by using the LP
relaxation at the root node, the obtained bound is globally valid.

In MIP solvers parallelization can be employed in a variety of ways [21]. A common
approach is to parallelize the branch-and-bound algorithm by processing the subproblems
concurrently. Another method is portfolio parallelization, sometimes also called (parallel)
racing. In this form of parallelization multiple solvers with different configurations solve the
same problem instance in parallel. The approach can be extended by the communication of
global information such as feasible solutions and cutting planes. An efficient implementation
of these approaches can be difficult due to the complexity that arises from the synchronization
of global information.

Although portfolio parallelization does not distribute the work required to solve an
instance, it has been shown to be competitive with the parallelization of the branch-and-
bound tree search for a small number of processors [7, 14, 10, 5]. One reason for this is
a phenomenon called performance variability [15]. It refers to the large differences in the
performance of a solver that are observed after alterations expected to entail a neutral
performance impact; e.g. setting a different random seed or permuting the problem instance.

2 Parallelization in SCIP

In SCIP [12], one of the fastest non-commercial MIP solvers, different forms of parallelization
have been implemented. A deterministic shared memory portfolio parallelization of SCIP,
referred to as concurrent SCIP, will be presented. Also, there exists a shared memory
parallelization of SCIP called FiberSCIP [25], and a distributed memory parallelization
called ParaSCIP [24]. The latter two only differ in the framework used for communication
and both aim at parallelizing the tree search, but can also be configured to perform racing

R. L. Gottwald, S. J. Maher, and Y. Shinano 6:3

only. This paper compares both shared memory parallelizations, concurrent SCIP, and
FiberSCIP.

The main difference between concurrent SCIP and FiberSCIP is the method of com-
munication and the timing for sending and receiving information. In FiberSCIP all
communications between solver threads are done via a controller thread, the LoadCoordin-
ator, fully asynchronously. In concurrent SCIP the solvers instead gather the information
and then communicate when they reach certain points in the solving process using a shared
data structure.

2.1 Concurrent SCIP
The development of concurrent SCIP was motivated by an effort to exploit performance
variability and aid the fast discovery of feasible solutions. The experiments and parts of
the description of concurrent SCIP in this section are also contained in the first author’s
master thesis [13], while the distributed domain propagation is a new feature presented in
this paper.

Concurrent SCIP allows to run multiple solver instances in parallel on separate threads.
For the purpose of diversification the solvers can be configured to use different settings and
random seeds. Additionally, they can share feasible solutions and global variable bounds
throughout the solving process. Of particular importance is the sharing of global variable
bounds, which is the focus of this paper. The frequency of communication is adjusted
dynamically based on the amount of the gap—difference between upper and lower bounds—
that was closed between communication points.

Each type of solver used in concurrent SCIP is implemented as a new plugin type of SCIP.
Therefore, in addition to SCIP solvers with different parameter settings, other algorithms
and solvers could be included into a parallel portfolio. Concurrent SCIP can be compiled
either with tinycthread 1, a thin wrapper around the platform specific threads, or with
OpenMP [8]. In this paper the tinycthread version is used to compare with FiberSCIP,
because they both use Pthreads on Linux.

An important requirement for concurrent SCIP is a deterministic solving process, so
that the behavior of the solver can be reproduced. To satisfy this requirement care must be
taken when implementing communication between the solvers. In a single-threaded program
the sequence of instructions is the same between multiple runs; or at least it appears to be
from the programmer’s viewpoint even though modern microprocessors reorder instructions
internally. In contrast, there are usually millions of different interleavings of instructions that
can occur for a single multi-threaded program. One execution of such a program depends
on the scheduling decisions of the operating system and other factors that are beyond the
control of the programmer. Not only does this make it hard to develop correct multi-threaded
applications, it also makes such applications non-deterministic by default. Therefore, in
concurrent SCIP the solvers only share information at communication points, which are
determined by using a deterministic clock [4]. However, a solver must wait if it wants to
read information from a communication point that has not yet been reached by all solvers,
otherwise it would incur non-determinism. For this reason a deterministic communication
scheme can suffer from high idle times. To measure the impact of such behavior, concurrent
SCIP can also be configured to use the wall clock instead of the deterministic clock for
determining the communication points.

1 http://tinycthread.github.io/

SEA 2017

http://tinycthread.github.io/

6:4 Distributed Domain Propagation

wall clock deterministic clock

0 500 1,000
0

500

1,000

1,500
cl

o
ck

ti
m

e
[s

ec
on

d
s]

0 500 1,000
0

500

1,000

1,500

solving time [seconds]

0 500 1,000
0

500

1,000

1,500

(a) instance biella1 (b) instance net12 (c) instance aflow40b

Figure 1 Deterministic clock with different settings.

An ideal deterministic clock closely resembles the CPU time of each thread. The
deterministic clock in SCIP was chosen to be a linear combination of solving statistics that
are already available in SCIP, such as the number of LP iterations. For the purpose of
choosing good coefficients for this linear combination, data was collected from runs on several
instances of MIPLIB 2010 [15] with different predefined emphasis settings, e.g. for finding
feasible solutions or proving optimality. The data consists of observations of the solving
time and the values of the statistics at that time. All the observations collected from the
same run are dependent, because the statistics and the solving time are counted from the
beginning of the solving process. Hence, the data was transformed by subtracting from each
observation the values of the previous observation for each run. The resulting observations
pertain to a roughly equal time interval in the solving process, and depend only on solving
statistics counted within that interval. Still, predicting the solving time from the statistics
across different instances requires to also take the size of a problem into account. Therefore,
the observations were scaled by the number of non-zeros in the presolved problem.

To compute the coefficients for the scaled statistics we used a linear regression method
called Lasso [26], which applies a parametrized `1-regularization. Penalizing the `1-norm of
the solution vector causes the regression algorithm to bias towards a sparse solution with
small coefficients, which aids the prediction accuracy. Other linear regression methods that
use a different regularization where also considered, e.g. `2-regularization or a combination
of those. However, the solutions obtained using Lasso gave the best predictions.

For the regression an implementation of scikit-learn [20] was used and the amount of
regularization was chosen by cross-validation. To avoid overfitting to instance specific traits,
the data of a single instance at a time was left out during cross-validation. The resulting
linear combination has non-zero coefficients for the number of primal and dual LP iterations
with warm-start information, the number of bound changes in probing mode, and the number
of calls to an internal function that checks whether the solving has been stopped.

In Figure 1 the deterministic clock is visualized for different instances. The dashed lines
show the progression of the deterministic clock with different parameter settings, the solid
line shows the wall clock. For the deterministic clock, the emphasis settings for optimality,
feasibility and easy instances, that are provided by SCIP, where used in addition to the
default settings. The emphasis setting for optimality separates more aggressively, the setting
for feasibility applies heuristics more aggressively, and the setting for easy instances avoids
expensive techniques for presolving, separation and heuristics to focus on the tree search. The
deterministic clock is usually close to the wall clock (Figure 1a and 1b), but on some instances
it does not run at the same speed for different settings (Figure 1c). Such a behavior cannot
be avoided in general as the deterministic clock is tuned for good results only on average

R. L. Gottwald, S. J. Maher, and Y. Shinano 6:5

actual average

0 200 400 600
0

20

40

60

80

100

solving time [seconds]

C
P

U
u

ti
li

za
ti

on
[%

]

0 200 400 600
0

20

40

60

80

100

18.69% average idle 6.73% average idle

(a) no delay (b) with delay

Figure 2 The CPU utilization of concurrent SCIP using 8 threads on the instance biella1, once
without a delay and once using a delay.

and the same setting can produce very different results on different instances. Therefore, a
setting on which the deterministic clock runs slower can be detrimental to the performance
of concurrent SCIP, even though this setting would be beneficial if the wall clock was used
instead.

If solvers are able to access shared information immediately, a barrier is required at each
communication point, i.e. a point in the program at which a thread can only continue if all
other threads have reached the barrier. Because such a barrier-based synchronization scheme
would cause a large amount of idle time—especially when the deterministic clock deviates
between threads—we introduced a delay before the solvers read data from a communication
point. With a delay d, the solvers only read information from communication points that
occurred at time t− d or earlier, if their own deterministic clock is at time t. The solvers
thereby receive information that is slightly outdated, still, the performance is better because
they are waiting to a lesser extent. Even though the solvers still have to wait if the drift of
the deterministic clock becomes too large, the CPU utilization improved significantly, as can
be seen in Figure 2. Therein the CPU utilization was measured for concurrent SCIP running
with different emphasis settings on eight threads. In Figure 2a no delay was used and in
Figure 2b the delay was chosen as the deterministic equivalent of one second. Choosing a
shorter delay did not make much of a difference here, because the delay effectively amounts
at least to the time since the last communication point. With this delay the idle time reduced
from 18.69% to 6.73%; put in other words, by using a delay concurrent SCIP was able to
utilize roughly one CPU core more.

2.2 FiberSCIP
The Ubiquity Generator (UG) Framework2 is a framework for the parallelization of branch-
and-bound based solvers on distributed or shared memory computing environments. The aim
of the UG framework is to parallelize branch-and-bound based solvers from the “outside”. In
this regard, the UG framework has been used to provide external parallelization for the base
solvers SCIP, Xpress [9] and PIPS-SBB [18]. To provide the capability to employ the UG

2 http://ug.zib.de/

SEA 2017

http://ug.zib.de/

6:6 Distributed Domain Propagation

framework on shared and distributed memory environments, two different parallelization
implementations are available. The distributed memory implementation of the UG framework
uses the standardized Message Passing Interface (MPI). Alternatively, the shared memory
implementation makes use of the Pthreads library.

The application of UG to parallelize SCIP has resulted in the solvers FiberSCIP
(ug[SCIP, Pthreads]) [25] and ParaSCIP (ug[SCIP, MPI]) [23], for shared and distributed
memory respectively. Since FiberSCIP was designed as a development environment for
ParaSCIP, it serves as an ideal platform to evaluate the performance of distributed domain
propagation and potentially leading to the adoption of this algorithmic feature into a
large-scale parallel branch-and-bound solver.

There are three main phases of parallel branch-and-bound based solvers: ramp-up, primary,
and ramp-down phases. For details regarding each of these phases, the reader is referred to
Ralphs [22], Xu et al. [27], and Shinano et al. [25]. In the current work, the focus will be
on the ramp-up phase, which is defined as the time period at the beginning of the solving
process until sufficiently many branch-and-bound nodes are available to keep all processing
units busy the first time. In the ramp-up phase FiberSCIP provides an implementation of
racing ramp-up [25]. At the start of computation this form of ramp-up immediately sends a
copy of the root branch-and-bound node to all available threads via the LoadCoordinator
and commences parallel solving. To diversify the resulting branch-and-bound trees that are
found across the set of all threads, different parameter settings are provided. This form of
ramp-up is similar to a portfolio solving approach for MIP.

The different SCIP parameter settings used during racing ramp-up are compiled into
FiberSCIP. They are a combination of the emphasis settings provided by SCIP labeled
as off, fast, default, and aggressive for the different components in SCIP such as primal
heuristics, presolvers, and separators. Exactly one solver uses the default settings of SCIP.

3 Distributed domain propagation

Our goal is to exploit variable bound information in a parallel portfolio solver to identify
additional domain propagations. We let each solver in a parallel portfolio share new global
variable bounds with the other solvers. A solver receiving these bounds propagates them
against its local information and again shares the resulting domain reductions with the other
solvers. We call this technique distributed domain propagation (DDP) and expect it to help
solving problems within fewer branch-and-bound nodes, as a result of tighter variable bounds
reducing the search space.

Portfolio parallelization involves having different settings in each solver, which results
in different solution processes. Notably, each solver may generate conflicts [1] and cuts not
generated in any other solver. Also the reduced costs in the LP relaxation of the root node
may not be the same due to degeneracy. Since all of this information is used for domain
propagation, a bound reduction that can be found in one solver may not be found in the other
solvers. As such, DDP is able to perform additional domain reductions in each individual
solver by sharing global variable information.

The DDP is implemented on top of the plugin structure of SCIP. It uses an event handler
that reacts on global domain reductions for each variable and a propagator that applies the
domain reductions received from other solvers. The implementations for concurrent SCIP
and FiberSCIP differ in how they transfer the bound from the event handler in one solver
to the propagator in another solver.

In concurrent SCIP the event handler stores the best bound for a variable whenever it
reacts on a global bound change event. Once a communication point is reached, the bounds

R. L. Gottwald, S. J. Maher, and Y. Shinano 6:7

stored in the event handler are passed to a shared data structure where they are merged
with bound changes from other solvers. If a solver reads this data structure, all bounds that
are tighter than the current ones are passed to the propagator. The next time SCIP does
domain propagation it will call the propagator, which will then apply the domain reductions.

In FiberSCIP a different implementation of DDP is provided. The major difference lies in
the method of communication. When either a new incumbent solution is found or the domain
of a variable has been reduced in a solver, this information is sent to the LoadCoordinator
immediately. The LoadCoordinator stores the best incumbent solution and the tightest
lower and upper bounds for each variable. When the LoadCoordinator receives an
updated solution or bound, it is broadcasted to all solvers immediately. This results in
asynchronous communication between all solvers. After receiving the bound, the procedure
is the same as that of concurrent SCIP.

SCIP applies so-called dual reductions, which may cut off feasible solutions. Some of
these reductions can cut off optimal solutions, but guarantee to keep at least one optimal
solution. However, if such reductions from different solvers are applied together, it may
happen that all optimal solutions are cut off. Accordingly, these dual reductions are disabled
in all but one of the solvers. Thus it is ensured that the variable domains remain valid for all
solvers. Note that reduced cost strengthening can be applied in all solvers, since it does not
cut off optimal solutions.

Another difficulty for sharing variable bounds is the different formulations that arise from
using different presolving techniques in each solver. When transferring a variable bound from
one solver to another, it must first be transformed back into the original problem formulation
and then re-transformed into the formulation of the solver that receives the bound.

4 Computational results

Computational experiments have been performed with SCIP 4.0.0 using SoPlex 3.0.0 [16]
as an LP solver. The time limit was set to one hour on a cluster with 128GB memory and
two Intel Xeon E5-2690 v4 2.60GHz processors per node. A subset of instances collected
from the test sets of MIPLIB 3.0 [6], MIPLIB 2003 3, and the benchmark set of MIPLIB
2010 [15] were used for the experiments. The subset was selected by excluding instances
that default SCIP solved in less than a second or within the root node. Furthermore, the
instances mspp16 and bley_xl1 were excluded due to memory issues and errors in one of the
solvers, respectively. The resulting test set contains 125 instances.

The settings used for the different SCIP solvers in concurrent SCIP and in FiberSCIP
were the same settings that FiberSCIP uses for racing ramp-up. The default behavior
of presolving a problem instance before distributing it to the solvers was disabled. This
makes the solving behavior of concurrent SCIP and FiberSCIP closer to that of default
SCIP—aiding the comparability of their results.

Table 1 shows a comparison of the number of bounds that where tightened via DDP. For
both implementations the number of such domain reductions were counted on all variables
and also the subset applied to integer variables. The results are given for the winning solver
and were aggregated by using a shifted geometric mean with a shift of 10. An interesting
observation is that a larger number of threads leads to more domain reductions being found
by DDP. This stems from the effect explained in the previous section, since more solvers with
different configurations result in more diverse information being used for domain propagation.

3 http://miplib.zib.de/

SEA 2017

http://miplib.zib.de/

6:8 Distributed Domain Propagation

Table 1 Comparison of the number of domain reductions that were found via DDP in concurrent
SCIP and FiberSCIP. The domain reductions on the subset of integer variables are given additionally
in the second column.

#Dom. red. #Int. dom. red.
Solver Settings

Concurrent SCIP 4 threads 15.3 7.6
8 threads 17.6 7.9
12 threads 21.9 8.8

Concurrent SCIP (wall clock) 4 threads 16.0 8.7
8 threads 18.8 9.8
12 threads 27.9 14.3

FiberSCIP 4 threads 89.9 42.8
8 threads 130.7 55.9
12 threads 147.9 60.5

Additionally, the results show a huge difference in the number of domain reductions
found by DDP between concurrent SCIP and FiberSCIP which is caused by the different
communication schemes; in FiberSCIP a new bound reduction is communicated immediately
and will therefore be received with a much smaller delay than in concurrent SCIP. Thus
DDP could find a domain reduction that the solvers may have found by themselves shortly
after. In concurrent SCIP that is more unlikely since it will communicate less frequently and
the other solvers will read the shared domain reductions later, due to the delay used in this
implementation. Also, concurrent SCIP will only communicate the best bound of a variable
for which SCIP finds subsequent domain reductions between two communication points.

The performance of each portfolio solver with and without DDP is presented in Table 2.
In preparing these results, only a subset of the original test set was used that contained
75 instances where at least one bound was tightened by DDP. The reduction of the test
set is justified, because DDP does no additional computations and only communicates if
domain reductions are found. Hence, it has no measurable impact if there are no domain
reductions and including all the instances would merely introduce random noise to the
comparison due to the non-deterministic behavior of FiberSCIP. In Table 2 the number of
nodes were aggregated with a geometric mean shifted by 100 and the time was aggregated
with a geometric mean shifted by 10.

In most settings a positive impact of DDP on the running time and the number of
nodes is visible. However, on the 4 thread setting for FiberSCIP and concurrent SCIP
using the deterministic clock DDP did not seem to help. Because DDP performed very well
with the same settings in concurrent SCIP using the wall clock, we attribute the outlier to
performance variability. Also it is expected that the performance variability is larger with a
smaller number of threads.

Due to the overhead introduced by the deterministic synchronization, FiberSCIP is
expected to outperform concurrent SCIP. Nevertheless, the large difference that also occurs
when using the wall clock in concurrent SCIP indicates that the parameters which control the
communication need to be adjusted. Notably, the delay and the synchronization frequency
seem to be suboptimal. Also it can be observed on both implementations that DDP performs
better with fewer than 12 threads. This is only partially caused by an increased communication
effort when more solvers are used. More importantly, the architecture of SCIP is not yet
exploiting shared memory parallelism and requires to duplicate an unnecessary large amount

R. L. Gottwald, S. J. Maher, and Y. Shinano 6:9

Table 2 Comparison of default SCIP, concurrent SCIP using the deterministic clock or the wall
clock, and FiberSCIP on the 75 instances that were solved with all settings and where DDP was
able to find at least one domain reduction in any setting.

with DDP without DDP

Time Nodes Time Nodes
Solver Settings

FiberSCIP 4 threads 119.9 5129.5 118.8 5217.5
8 threads 112.9 4087.6 120.2 4406.2
12 threads 121.5 4294.3 123.7 4286.3

Concurrent SCIP 4 threads 172.2 5354.9 172.9 5512.8
8 threads 179.4 4971.4 182.1 4821.3
12 threads 202.8 4976.6 205.8 4543.8

Concurrent SCIP (wall clock) 4 threads 136.2 5243.8 143.9 5631.0
8 threads 140.7 4527.8 145.0 4660.2
12 threads 152.6 4557.7 155.8 4799.4

SCIP default 148.2 8556.1

of data and SCIP’s performance is already memory bandwidth bound in many parts of the
code. An increased number of threads slows down the computations in each thread even
without any communication. The reason for this slow down are various effects caused by the
increased load on the systems resources, e.g. more context switches, page faults and cache
misses. For a detailed discussion we refer to Shinano et al. [25]. In due consideration of these
effects we conclude that an increased performance for a larger number of threads is not an
issue of the algorithmic approach of DDP, but of an efficient implementation that better
exploits a shared memory architecture.

5 Concluding Remarks

This paper has introduced distributed domain propagation (DDP), a technique for finding
global variable domain reductions in a parallel portfolio solver. Computational experiments
were conducted to compare a deterministic synchronized implementation in concurrent SCIP
and an asynchronous implementation in FiberSCIP on standard MIP instances.

In order to reproduce the results presented in this paper the readers can find the source
code of SCIP and FiberSCIP in the release version 4.0.0 of the SCIP Optimization Suite
(http://scip.zib.de/#scipoptsuite) and all instance data that was used can be retrieved
from the MIPLIB homepage (http://miplib.zib.de).

The computational experiments show that DDP improves the overall performance of a
portfolio solver significantly. The communication strategy of FiberSCIP gives better results
in the experiments presented here. However, the communication settings and the parameter
settings used in the individual solvers are not optimal for concurrent SCIP. Additionally,
only concurrent SCIP provides deterministic communication. Both implementations suffer
from a general slowdown due to a limited memory bandwidth if more than eight threads are
used. For optimal performance one has to strike a balance between the two communication
strategies to minimize the communication overhead while domain reductions are still applied
within a short time frame. The algorithmic approach of DDP, however, has been shown to
significantly improve the performance in a parallel portfolio of MIP solvers.

SEA 2017

http://scip.zib.de/#scipoptsuite
http://miplib.zib.de

6:10 Distributed Domain Propagation

References
1 Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization,

4(1):4–20, 2007. Mixed Integer ProgrammingIMA Special Workshop on Mixed-Integer
Programming. doi:10.1016/j.disopt.2006.10.006.

2 Tobias Achterberg. Scip: Solving constraint integer programs. Math. Prog. Comp., 1(1):1–
41, 2009.

3 Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger.
Presolve reductions in mixed integer programming. Technical Report 16-44, ZIB, Takustr.7,
14195 Berlin, 2016.

4 Tobias Achterberg and Roland Wunderling. Mixed Integer Programming: Analyzing 12
Years of Progress, pages 449–481. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
doi:10.1007/978-3-642-38189-8_18.

5 Tomáš Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A Massively Parallel Portfolio
SAT Solver, pages 156–172. Springer International Publishing, Cham, 2015. doi:10.1007/
978-3-319-24318-4_12.

6 R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

7 R. Carvajal, S. Ahmed, G. Nemhauser, K. Furman, V. Goel, and Y. Shao. Using diversific-
ation, communication and parallelism to solve mixed-integer linear programs. Oper. Res.
Lett., 42(2):186–189, March 2014. doi:10.1016/j.orl.2013.12.012.

8 Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: portable shared
memory parallel programming, volume 10. MIT press, 2008.

9 FICO Xpress-Optimizer. http://www.fico.com/en/Products/DMTools/
xpress-overview/Pages/Xpress-Optimizer.aspx.

10 Matteo Fischetti, Andrea Lodi, Michele Monaci, Domenico Salvagnin, and Andrea Tra-
montani. Improving branch-and-cut performance by random sampling. Mathematical Pro-
gramming Computation, 8(1):113–132, 2016. doi:10.1007/s12532-015-0096-0.

11 Gerald Gamrath. Improving strong branching by domain propagation. EURO Journal on
Computational Optimization, 2(3):99–122, 2014. doi:10.1007/s13675-014-0021-8.

12 Gerald Gamrath, Tobias Fischer, Tristan Gally, Ambros M. Gleixner, Gregor Hendel, Thor-
sten Koch, Stephen J. Maher, Matthias Miltenberger, Benjamin Müller, Marc E. Pfetsch,
Christian Puchert, Daniel Rehfeldt, Sebastian Schenker, Robert Schwarz, Felipe Serrano,
Yuji Shinano, Stefan Vigerske, Dieter Weninger, Michael Winkler, Jonas T. Witt, and
Jakob Witzig. The SCIP Optimization Suite 3.2. Technical Report 15-60, ZIB, Takustr.7,
14195 Berlin, 2016.

13 Robert Lion Gottwald. Experiments with a Parallel Portfolio of SCIP Solvers. Master’s
thesis, Freie Universität Berlin, 2016.

14 Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. Manysat: a parallel SAT solver. JSAT,
6(4):245–262, 2009. URL: http://jsat.ewi.tudelft.nl/content/volume6/JSAT6_12_
Hamadi.pdf.

15 Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and
Kati Wolter. MIPLIB 2010. Math. Prog. Comp., 3:103–163, 2011.

16 Stephen J. Maher, Tobias Fischer, Tristan Gally, Gerald Gamrath, Ambros Gleixner,
Robert Lion Gottwald, Gregor Hendel, Thorsten Koch, Marco E. Lübbecke, Matthias
Miltenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Se-
bastian Schenker, Robert Schwarz, Felipe Serrano, Yuji Shinano, Dieter Weninger, Jonas T.
Witt, and Jakob Witzig. The scip optimization suite 4.0. Technical Report 17-12, ZIB, Tak-
ustr.7, 14195 Berlin, 2017.

http://dx.doi.org/10.1016/j.disopt.2006.10.006
http://dx.doi.org/10.1007/978-3-642-38189-8_18
http://dx.doi.org/10.1007/978-3-319-24318-4_12
http://dx.doi.org/10.1007/978-3-319-24318-4_12
http://dx.doi.org/10.1016/j.orl.2013.12.012
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Optimizer.aspx
http://dx.doi.org/10.1007/s12532-015-0096-0
http://dx.doi.org/10.1007/s13675-014-0021-8
http://jsat.ewi.tudelft.nl/content/volume6/JSAT6_12_Hamadi.pdf
http://jsat.ewi.tudelft.nl/content/volume6/JSAT6_12_Hamadi.pdf

R. L. Gottwald, S. J. Maher, and Y. Shinano 6:11

17 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Annual Design
Automation Conference, DAC’01, pages 530–535, New York, NY, USA, 2001. ACM. doi:
10.1145/378239.379017.

18 Lluıs-Miquel Munguıa, Geoffrey Oxberry, and Deepak Rajan. Pips-sbb: A parallel
distributed-memory branch-and-bound algorithm for stochastic mixed-integer programs.
Technical report, Optimization Online, 2015.

19 George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.
Wiley-Interscience, New York, NY, USA, 1988.

20 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

21 Ted Ralphs, Yuji Shinano, Timo Berthold, and Thorsten Koch. Parallel solvers for mixed
integer linear programming. Technical Report 16-74, ZIB, Takustr.7, 14195 Berlin, 2016.

22 T.K. Ralphs. Parallel branch and cut. In Parallel Combinatorial Optimization, pages
53–101. Wiley, 2006.

23 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch. ParaS-
CIP – a parallel extension of SCIP. In Christian Bischof, Heinz-Gerd Hegering, Wolfgang E.
Nagel, and Gabriel Wittum, editors, Competence in High Performance Computing 2010,
pages 135–148. Springer, 2012. doi:10.1007/978-3-642-24025-6_12.

24 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten Koch, and Mi-
chael Winkler. Solving open MIP instances with ParaSCIP on supercomputers using up
to 80,000 cores. In Proc. of 30th IEEE International Parallel & Distributed Processing
Symposium, 2016. to appear.

25 Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Winkler. Fiberscip – a shared
memory parallelization of scip. Technical Report 13-55, ZIB, Takustr.7, 14195 Berlin, 2013.

26 Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

27 Y. Xu, T.K. Ralphs, L. Ladányi, and M. J. Saltzman. Computational experience with a
software framework for parallel integer programming. The INFORMS Journal on Comput-
ing, 21:383–397, 2009.

SEA 2017

http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1007/978-3-642-24025-6_12

Efficient Algorithms for k-Regret Minimizing Sets∗

Pankaj K. Agarwal1, Nirman Kumar2, Stavros Sintos3, and
Subhash Suri4

1 Department of Computer Science, Duke University, Durham, NC, USA
pankaj@cs.duke.edu

2 Department of Computer Science, University of Memphis, Memphis, TN, USA
nkumar8@memphis.edu

3 Department of Computer Science, Duke University, Durham, NC, USA
ssintos@cs.duke.edu

4 Department of Computer Science, UC Santa Barbara, Santa Barbara, CA,
USA
suri@cs.ucsb.edu

Abstract
A regret minimizing set Q is a small size representation of a much larger database P so that user
queries executed on Q return answers whose scores are not much worse than those on the full
dataset. In particular, a k-regret minimizing set has the property that the regret ratio between
the score of the top-1 item in Q and the score of the top-k item in P is minimized, where the
score of an item is the inner product of the item’s attributes with a user’s weight (preference)
vector. The problem is challenging because we want to find a single representative set Q whose
regret ratio is small with respect to all possible user weight vectors.

We show that k-regret minimization is NP-Complete for all dimensions d ≥ 3, settling an
open problem from Chester et al. [VLDB 2014]. Our main algorithmic contributions are two
approximation algorithms, both with provable guarantees, one based on coresets and another
based on hitting sets. We perform extensive experimental evaluation of our algorithms, using
both real-world and synthetic data, and compare their performance against the solution proposed
in [VLDB 14]. The results show that our algorithms are significantly faster and scalable to much
larger sets than the greedy algorithm of Chester et al. for comparable quality answers.

1998 ACM Subject Classification H.2.8 Database Applications

Keywords and phrases regret minimizing sets, skyline, top-k query, coreset, hitting set

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.7

1 Introduction

Multi-criteria decision problems pose a unique challenge for databases systems: how to
present the space of possible answers to a user. In many instances, there is no single best
answer, and often a very large number of incomparable objects satisfy the user’s query. For
instance, a database query for a car or a smart phone can easily produce an overwhelming
number of potential choices to present to the user, with no obvious way to rank them. Top-k
and the skyline operators are among the two main techniques used in databases to manage
this kind of complexity, but each has its own shortcoming.

∗ Work by Agarwal and Sintos is supported by NSF under grants CCF-15-13816, CCF-15-46392, and
IIS-14-08846, by ARO grant W911NF-15-1-0408, and by Grant 2012/229 from the U.S.-Israel Binational
Science Foundation. Work by Suri and Kumar is supported by NSF under grant CCF-15-25817.

© Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Efficient Algorithms for k-Regret Minimizing Sets

The top-k operator relies on the existence of a utility function that is used to rank
the objects satisfying the user’s query, and then selecting the top k by score according
to this function. A commonly used utility function takes the inner product of the object
attributes with a weight vector, also called the user’s preference, thus forming a weighted
linear combination of the different features. However, formulating the utility function is
complicated, as users often do not know their preferences precisely, and, in fact, exploring
the cost-benefit tradeoffs of different features is often the goal of database search.

The second approach of skylines is based on the principle of pareto optimality: if an
object p is better than another object q on all features, then p is always preferable to q by
any rational decision maker. This coordinate-wise dominance is used to eliminate all objects
that are dominated by some other object. The skyline is the set of objects not dominated
by any other object, and has proved to be a powerful tool in multi-criteria optimization.
Unfortunately, while skylines are extremely effective in reducing the number of objects in
low dimensions, their utility drops off quickly as the dimension (number of features) grows,
especially when objects in the database have anti-correlated features (attributes). A related
construct called k-skybands [15, 27] grows even more rapidly.

Regret minimization is a recent approach, proposed initially by Nanongkai et al. [31], to
address the shortcomings of both the top k and skylines. It hybridizes top k and skylines by
computing a small representative subset Q of the much larger database P so that for any
preference vector the top ranked item in Q is a good approximation of the top ranked item
in P. The hope is that the size of Q is much smaller than that of the skyline of P. The goal
is to find a subset Q of small size whose approximation error is also small: posed in the form
of a decision question, is there a subset of r objects so that every user’s top-1 query can
be answered within error at most x%? In general, this is too stringent a requirement and
motivated Chester et al. [12] to propose a more relaxed version of the problem, called the
k-regret minimization.1 In k-regret minimization, the quality of approximation is measured
as the gap between the score of the top 1 item in Q and the top k item in P expressed as a
ratio, so that the value is always between 0 and 1.

Problem formulation. An object is represented as a point p = (p1, . . . , pd) in Rd with
non-negative attributes, i.e., pi ≥ 0 for every i ≤ d. Let X = {(p1, . . . , pd) ∈ Rd | pi ≥ 0 ∀i}
denote the space of all objects, and let P ⊂ X be a set of n objects. A user preference is also
represented as a point u = (u1, . . . , ud) ∈ X, i.e., all ui ≥ 0. Given a preference u ∈ Rd, we
define the score of an object p to be ω(u, p) = 〈u, p〉 =

∑d
i=1 uipi.

For a preference u ∈ X and an integer k ≥ 1, let ϕk(u,P) denote the point p in P with
the k-th largest score (i.e., there are less than k points of P with larger score than ω(u, p)
and there are at least k points with score at least ω(u, p)), and let ωk(u,P) denote its score.
Set Φk(u,P) = {ϕj(u,P) | 1 ≤ j ≤ k} to be the set of k top points with respect to preference
u.2 For brevity, we set ω(u,P) = ω1(u,P). If P is obvious from the context, we drop P from
the list of the arguments, i.e., we use ωk(u) to denote ωk(u,P) and so on.

1 We should point out that the term k-regret is used to denote different things by Nanongkai et al. [31]
and Chester et al. [12]. In the former, k-regret is the representative set of k objects, whereas in the
latter, k-regret is used to denote the regret ratio between the scores of top 1 and top k. In our paper,
we follow the convention of Chester et al. [12].

2 If there are multiple objects with score ωj(u,P), then either we include all such points in Φk(u,P) or
break the tie in a consistent manner.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:3

Figure 1 Left: top 3 points in two different preferences. Right: Set of points in the red circles is
a (1, 0)-regret set. Set of points in the blue circles is a (3, 0)-regret set.

For a subset Q ⊆ P and a preference u, define the regret of Q for preference u (w.r.t. P),
denoted by `k(u,Q,P), as

`k(u,Q,P) = max{0, ωk(u,P)− ω(u,Q)}
ωk(u,P) .

That is, `k(u,Q,P) is the relative loss in the score of the k-th topmost object if we replace
P with Q. We refer to the maximum regret of Q, `k(Q,P) = maxu∈X `k(u,Q,P) as the
regret ratio of Q (w.r.t. P). If `k(Q) ≤ ε, we refer to Q as a (k, ε)-regret set (see Figure 1).
By definition, a (k, ε)-regret set is also a (k′, ε)-regret set for any k′ ≥ k. In particular, a
(1, ε)-regret set is a (k, ε)-regret set for any k ≥ 1. However, there may exist a (k, ε)-regret
set whose size is much smaller than any (k − 1, ε)-regret set, so the notion of (k, ε)-regret set
is useful for all k.

Notice that `k(Q) is a monotonic decreasing function of its argument, i.e., if Q1 ⊆ Q2, then
`k(Q1) ≥ `k(Q2). Furthermore, for any t > 0, ω(tu, p) = tω(u, p) but ϕk(tu,P) = ϕk(u,P),
Φk(tu,P) = Φk(u,P), and `k(tu,Q,P) = `k(u,Q,P) (scale invariance).

Our goal is to compute a small subset Q ⊆ P with small regret ratio, which we refer to as
the k-regret minimizing set (k-RMS) problem3. Since the regret ratio can be decreased by
increasing the size of the subset, there are two natural formulations of the RMS problem.
(i) min-error : Given a set P of objects and a positive integer r, compute a subset of P of

size r that minimizes the regret ratio, i.e., return a subset Q∗ = argminQ⊆P:|Q|≤r `k(Q),
where we define `r = `k(Q∗).

(ii) min-size: Given a set P of objects and a parameter ε > 0, compute a smallest size subset
with regret ratio at most ε, i.e., return Q# = argminQ⊆P:`k(Q)≤ε |Q|, and set sε = |Q#|.

Our results. The main results of our paper can be summarized as follows:
(I) In Section 2, we show that the RMS problem is NP-Complete for all dimensions d ≥ 3

and k > 1, answering an open problem from [12]. Previously, the problem was known to
be solvable in polynomial time for d = 2 and intractable for d = Ω(n).

(II) In Section 3, we present a coreset-based universal approximation, which shows that
every P ⊂ X admits an O(1

ε(d−1)/2)) size (1, ε)-regret set, and thus also a (k, ε)-regret set,
for any k ≥ 1 and ε > 0. The size of this regret-set is independent of the size of P, it
can be computed in time O(n + 1

εd−1), and it can be dynamically updated per point
insertion and deletion in time O(polylog(n)

εd−1).

3 We will refer to the k-RMS problem simply as RMS problem.

SEA 2017

7:4 Efficient Algorithms for k-Regret Minimizing Sets

(III) In Section 4, we present an instance-specific approximation scheme, complementing
the NP-Completeness of regret-set minimization. This is significant because the size of
(k, ε)-regret set for a generic P can be much smaller than the coreset-based bound of
1/ε d−1

2 . In particular, our algorithm computes a (k, 2ε)-regret set of P4 whose size is
within a log-factor of the optimal (k, ε)-regret set. With binary search, we can use this
algorithm to also approximate the min-error version of the problem.

(IV) In Section 5, we describe our experimental results and evaluate the efficacy and the
efficiency of our algorithms on both synthetic and real data sets. We compare our
algorithms with the state of the art greedy algorithm for the k-regret minimization
problem presented in [12]. Our hitting-set based algorithm is significantly faster than
the previous known algorithms and the maximum regret ratios of the returned sets are
very close, if not better, than the maximum regret ratios of the greedy algorithm. The
coreset algorithm is significantly faster than hitting set and greedy algorithms. Although
the (maximum) regret ratio of the set returned by the core-set based algorithm is worse
than those of other algorithms, the regret in 90%–95% directions is roughly the same as
that of the other two algorithms.

Remarks. While preparing our submission, we learned of two recent and independent
discoveries with partial overlap with our work [8, 4]. In [8] the authors prove that RMS
problem is NP-Hard for k ≥ 1 and d ≥ 3, and describe a coreset-based approximation
algorithm. We present a simpler proof to show that RMS problem is NP-hard for k ≥ 2 and
d ≥ 3. In addition, we show that RMS problem is NP-Complete which is not straightforward.
Our coreset-based algorithm is related to their result, however, we first implemented it
and run experiments for the RMS problem comparing the results with other competitive
algorithms. In [4] the authors describe an efficient algorithm for 1-RMS problem in 2-d and
a near-linear time approximation for the 1-RMS problem in higher dimensions, along with
experimental evaluation. We give a more general, randomized approximation algorithm for
the k-RMS problem with better approximation factor, and same running time with [4] up to
logarithmic factors with high probability.

2 3D RMS is NP-Complete

In this section we show that the k-RMS problem is NP-Complete for d = 3 and k ≥ 2.

Membership in NP. It turns out that due to bit-complexity issues, even establishing
membership in NP is not straightforward in d = 3, and requires some non-trivial ideas. The
starting point of our proof is a polynomial-time algorithm for computing the regret ratio of
a subset Q ⊆ P.

Let Ω = {p− q | p, q ∈ P, p 6= q} be the set of vectors in directions passing through a pair
of points of P. For a vector w ∈ Ω, let hw : 〈x,w〉 = 0, be the plane normal to w passing
through the origin. By construction, for w = p− q the score of p is higher than that of q for
all preferences in one of the open halfspaces bounded by hw (namely, 〈x,w〉 > 0), lower in
the other halfspace, and equal for all preferences in hw. Set H = {hw | w ∈ Ω} ∪ {xi = 0 |
1 ≤ i ≤ 3}, i.e., H includes all the planes hw along with the coordinate planes. H induces
a decomposition A(H) of R3 into cells of various dimensions, where each cell is a maximal

4 The approximation ratio 2 is not important. We can actually compute a (k, tε)-regret set for an arbitrary
small constant t > 1.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:5

Figure 2 H for a set of 3 points in R3.

connected region of points lying in the same subset of hyperplanes of H (see Figure 2). It is
well known that
(i) each cell of A(H) is a polyhedral cone with the origin as its apex (i.e., each cell is the

convex hull of a finite set of rays, each emanating from the origin), and
(ii) the only 0-dimensional cell of A(H) is the origin itself, and the 1-dimensional cells are

rays emanating from the origin. Let C ⊆ A(H) be the set of cells that lie in X, the
positive orthant.

For each cell C ∈ C, let `k(C,Q) = maxu∈C `k(u,Q) the regret ratio of Q within C. Then
`k(Q) = maxC∈C `k(C,Q). The following lemma is useful in computing `(C,Q).

I Lemma 1. For each cell C ∈ A(H) and for any i ≤ n, ϕi(u,P) (and thus ϕi(u,Q)) is the
same for all u ∈ C.

Proof. Suppose on the contrary, there are two points u1, u2 ∈ C, and j ≥ 0 such that
ϕj(u1,Q) 6= ϕj(u2,Q). Hence, there are two points p1, p2 ∈ Q such that 〈u1, p1〉 ≥ 〈u1, p2〉
and 〈u2, p1〉 ≤ 〈u2, p2〉, and at least one of the inequalities is strict. Let hw ∈ H be the plane
that is normal to p1 − p2 and passes through the origin. It divides R3 into two halfspaces.
Reference vectors u1, u2 lie in the opposite halfspaces of hw, and at least one of the u1, u2
lies in the open halfspace. However, this is a contradiction because u1, u2 lie in the same cell
of A(H) and thus lie on the same side of each plane in H. J

Fix a cell C. Let pi = ϕ1(u,Q) and pj = ϕk(u,P) for any u ∈ C (from Lemma 1 we have
that the ordering inside a cell is the same). Furthermore, let hj be the plane 〈x, pj〉 = 1
and let C↓ = hj ∩ C. C↓ is a 2D polygon and each ray ρ in C intersects C↓ at exactly one
point ρ↓. Since `(u,Q) is the same for all points on ρ, `k(C,Q) = `k(C↓,Q). Furthermore,
by Lemma 1, `k(C↓,Q) is either 0 for all u ∈ C↓ or

`k(C↓,Q) = max
u∈C↓

ω(u, pj)− ω(u, pi)
ω(u, pj)

= max
u∈C↓

[1− ω(u, pi)] = 1− min
u∈C↓

〈u, pi〉.

Since C↓ is convex and 〈u, pi〉 is a linear function, it is a minimum within C↓ at a vertex
of C↓, so we compute 〈u, pi〉 for each vertex u ∈ C↓ and choose the one with the minimum
value. Repeating this step for all cells of C we compute `k(Q).

By a well known result in discrete geometry [3], the total number of vertices in C↓ over all
cells C ∈ C is O(|H|2) = O(n4). Furthermore, if b bits are used to represent the coordinates
of each point in P, each vertex of C↓ requires O(b) bits. Finally, the algorithm extends to
higher dimensions in a straightforward manner. The total running time in Rd is O(n2d−1).
We thus conclude the following.

I Lemma 2. The RMS problem is in NP.

SEA 2017

7:6 Efficient Algorithms for k-Regret Minimizing Sets

NP-Hardness Reduction. We first show the hardness for k = 2 and ε = 0, which is easily
extended to other values of k, ε. Recall that a preference vector has only non-negative
coordinates. For simplicity, however, we first consider all points in R3 as preference vectors
and define `k(Q) = maxu∈R3 `k(u,Q), and later we describe how to restrict the preference
vectors to X.

Recall that the RMS problem for ε = 0 and k = 2 asks: Is there a subset Q ⊆ P of size r
such that in every direction u, the point in Q with the highest score along u, i.e., ϕ1(u,Q),
has score at least as much as that of the second best in P along u, i.e., of the point ϕ2(u,P)?

Let Π be a strictly convex polytope in R3. The 1-skeleton of Π is the graph formed by
the vertices and edges of Π. Given Π and an integer r > 0, the convex-polytope vertex-cover
(CPVC) asks whether the 1-skeleton of Π has a vertex cover of size at most r, i.e., whether
there is a subset C of vertices of Π of size r such that every edge is incident on at least
one vertex of C. The CPVC problem is NP-Complete, as shown by Das and Goodrich [13].
Given Π with V as the set of its vertices, we construct an instance of the RMS problem for
k = 2, as follows. First we translate Π so that the origin lies inside Π. Next we set P = V .
The next lemma proves the NP-hardness of the RMS problem for k = 2 and ε = 0.

I Lemma 3. Q ⊆ V is a vertex cover of Π if and only if Q is a (2, 0)-regret set for P.

Proof. If Q is a vertex cover of Π, we show that Q is also a (2, 0)-regret set. Take a vector
u ∈ R3 and assume that q = ϕ1(u,P) (if there is more than one point with rank one, we can let
q be any one of them). If q ∈ Q then obviously ω1(u,Q) = ω1(u,P) ≥ ω2(u,P). Now, assume
that q /∈ Q. Let (q, q1), . . . , (q, qg) be the edges in Π incident on q. Set Nq = {qi | 1 ≤ i ≤ g}.
Since Q is a vertex cover of Π and q /∈ Q, Nq ⊆ Q. We claim that ϕ2(u,P) ∈ Nq, which
implies that ω(u,Q) ≥ ω2(u,P). Hence, Q is a (2, 0)-regret set.

Indeed, since Π is convex, and q is maximal along direction u, the plane h on q vertical to
u is a supporting hyperplane for Π. A plane h′ parallel to h is translated toward the origin
starting with its initial position at h. There are two cases. In the first case, where q and
ϕ2(u,P) have the same score, they belong to the same face of Π that must be contained in h
itself – in this case h also contains a point from Nq, since every face containing q and points
other than q must contain a 1 dimensional face as well, and therefore a point in Nq. In the
second case, as h′ is translated, it must first hit one of the neighbors of q, by convexity. As a
result, in any case, there will be a point in Nq that gives the rank-two point on u.

Next, if Q is a (2, 0)-regret set, we show that Q is a vertex cover of Π. Suppose to the
contrary Q is not a vertex cover of Π, i.e., there is an edge (q1, q2) in Π but q1, q2 /∈ Q.
Since Π is a strictly convex polytope, there is a plane h tangent to Π at the edge (q1, q2)
that does not contain any other vertex of Π. If we take the direction u normal to h then
Φ2(u,P) = {q1, q2}. If q1, q2 /∈ Q then ω1(u,Q) < ω2(u,P), which contradicts the assumption
that Q is a (2, 0)-regret set of P. J

By applying an affine transformation to the polytope Π, described in Appendix A, we
can show that the RMS problem is NP-hard even when preferences are restricted to X.

Choosing ε > 0. While the above suffices to prove the hardness of the RMS problem for
ε = 0, it is possible that when ε > 0 the problem is strictly easier. However, we show the
stronger result that the RMS problem is NP-hard even when ε is required to be strictly
positive. In order to get the NP-hardness of the RMS problem for ε > 0 and k = 2, we
find a small enough strictly positive value of ε with bounded bit complexity such that any
(2, ε)-regret set is also a (2, 0)-regret set, and vice versa. For each cell C ∈ C, we take a

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:7

direction uC ∈ C and let λC = 1− ω3(uC ,P)/ω2(uC ,P) > 0. By defining ε = 1
2 minC λc we

can conclude the result.

Larger values of k. By making k − 1 copies of each point in the above construction it is
straightforward to show that the RMS problem is NP-complete for any k ≥ 2 and d ≥ 3.

I Theorem 4. The RMS problem is NP-Complete for d ≥ 3 and for k ≥ 2.

3 Coreset-based Approximation

In this section, we present an approximation scheme for the RMS problem using coresets.
The general idea of a coreset is to approximately preserve some desired characteristics of the
full data set using only a tiny subset [2]. The particular geometric characteristic most relevant
to our problem is the extent of the input data in any direction, which can be formalized as
follows. Given a set of points P and a direction u ∈ Rd, the directional width of P along
u, denoted width(u,P), is the distance between the two supporting hyperplanes of Rd, one
in direction u and the other in direction −u. The connection between k-regret and the
directional width comes from the fact that the supporting hyperplane in a direction u is
defined by the extreme point in that direction, and its distance from the origin is simply its
score. Therefore, we have the equality: width(u,P) = ω(u,P) + ω(−u,P).

We use coresets that approximate directional width to approximate k-regret sets. In
particular, a subset Q ⊆ P is called an ε-kernel coreset if width(u,Q) ≥ (1− ε) width(u,P),
for all directions u ∈ Rd. Showing that an ε-kernel coreset of P is also an (1, ε)-regret set of
P and using the results of [1, 10] to compute small ε-kernel coresets efficiently, we prove the
following result.

I Theorem 5. Given a set P of n points in Rd, ε > 0 and an integer k > 0, we can compute
in time O(n+ 1

εd−1) a subset Q ⊆ P of size O(1
ε(d−1)/2) whose k-regret ratio is at most ε. The

set Q can also be maintained under insertion/deletion of points in P in time O(logd n
εd−1) per

update.

Proof. We first show that if Q ⊆ P is an ε-kernel coreset of P then Q is also (1, ε)-regret set of
P. If Q is an ε-kernel coreset of P then width(u,P)− width(u,Q) ≤ εwidth(u,P) ≤ εω(u,P).
The last inequality follows because ω(−u,P) ≤ 0. Furthermore ω(−u,Q) ≤ ω(−u,P). We
thus have

ω(u,P)− ω(u,Q) = ω(u,P) + ω(−u,P)− ω(u,Q)− ω(−u,P)
≤ width(u,P)− ω(u,Q)− ω(−u,Q)
= width(u,P)− width(u,Q)
≤ εω(u,P).

Hence, ω(u,Q) ≥ (1− ε)ω(u,P) and Q is an (1, ε)-regret set of P. Chan [10] has described
an algorithm for computing ε-kernel of size O(1

ε(d−1)/2) in time O(n+ 1
εd−1). The dynamic

update performance follows from the construction in [1]. J

By comparison, the algorithm in [31] computes a set Q with `1(Q) ≤ d−1
(r−d+1)

1
d−1 +d−1

,

which implies a (1, ε)-regret set of size O(1
εd−1). Thus, our result improves the bound of [31]

significantly. In addition, if points in P lie uniformly on the unit sphere, then it is known
that a valid ε-kernel Q can have size Ω(1

ε(d−1)/2), and hence the result in [1] is optimal in the
worst case. By a similar construction we can also show that the regret-set bound achieved in
Theorem 5 is asymptotically optimal.

SEA 2017

7:8 Efficient Algorithms for k-Regret Minimizing Sets

4 Regret Approximation using Hitting Sets

While Theorem 5 shows that every point set admits a (k, ε)-regret set of size O(1
ε(d−1)/2),

a specific instance of P may have a much smaller regret set. In this section, we present
an efficient scheme to approximate the optimal (k, ε)-regret set, by formulating the RMS
problem as a hitting-set problem.

A range space (or set system) Σ = (X,R) consists of a set X of objects and a family R of
subsets of X. A subset H ⊆ X is a hitting set of Σ if H ∩R 6= ∅ for all R ∈ R. The hitting
set problem asks to compute a hitting set of the minimum size. The hitting set problem is a
classical NP-Complete problem, and a well-known greedy O(logn)-approximation algorithm
is known.

We construct a set system Σ = (P,R) such that a subset Q ⊆ P is a (k, ε)-regret set if
and only if Q is a hitting set of Σ. We then use the greedy algorithm to compute a small-size
hitting set of Σ. A weakness of this approach is that the size of R could be very large and
the greedy algorithm requires R to be constructed explicitly. Consequently, the approach is
expensive even for moderate inputs say d ∼ 5.

Inspired by the above idea, we propose a bicriteria approximation algorithm: given P
and ε > 0, we compute a subset Q ⊆ P of size O(sε log sε) that is a (k, 2ε)-regret set of P;
the constant 2 is not important, it can be made arbitrarily small at the cost of increasing
the running time. By allowing approximations to both the error and size concurrently, we
can construct a much smaller range space and compute a hitting set of this range space.

The description of the algorithm is simpler if we assume the input to be well conditioned.
We therefore transform the input set, without affecting an RMS, so that the score of the
topmost point does not vary too much with the choice of preference vectors, i.e., the ratio
maxu∈X ω(u,P)
minu∈X ω(u,P) is bounded by a constant that depends on d.

We transform P into another set P′, so that (i) for any u ∈ X, ϕ1(u,P′) does not lie close
to the origin and (ii) for any (k, ε)-regret set Q ⊆ P, the corresponding subset Q′ ⊆ P′ is
a (k, ε)-regret set in P′, and vice versa. The transformation is a non-uniform scaling of P.
Nanongkai et al. [31] showed that such a scaling of P satisfies (ii). For each 1 ≤ j ≤ d, let
mj = maxpi∈P pij be the maximum value of the jth coordinate among all points. Let B ⊆ P
contains the points corresponding to these mj values. We refer to B as the basis of P. We
divide the j-th coordinate of all points by mj , for all j = 1, 2, . . . , d. Let P′ be the resulting
set, and let B′ be the transformation of B. We note that for each coordinate j there is a
point p′i ∈ B′ with p′ij = 1. The different scaling factor in each coordinate can be represented
by the diagonal matrix M where Mjj = 1/mj , and so P′ = MP. The key property of this
affine transformation is the following lemma.

I Lemma 6. Let M be the affine transformation described above and let P′ = MP. Then,√
d · ‖u‖ ≥ ω(u,P′) ≥ 1√

d
· ‖u‖, for all u ∈ X.

Proof. Since ω(·, ·) is a linear function, without loss of generality consider a vector u ∈ X
with ‖u‖ = 1. After the transformation M , for each coordinate j, we have p′j ≤ 1. Therefore,
‖p′‖ ≤

√
d and also

√
d ≥ ω(u,P′) because u is a unit vector. For the second inequality, we

note that for any unit norm vector u we must have uj ≥ 1√
d
, for some j. Since our transform

ensures the existence of a point p′ ∈ B′ with p′j = 1, we must have ω(u,P′) ≥ 〈u, p′〉 ≥ 1√
d
.

This completes the proof. J

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:9

4.1 Approximation Algorithms
We first show how to formulate the min-size version of the RMS problem as a hitting set
problem. Let P, k, and ε be fixed. For a vector u ∈ X, let Ru = {p ∈ P | ω(u, p) ≥
(1− ε)ωk(u, p)}. Note that if ε = 0, then Ru = Φk(u), the set of top-k points of P in direction
u. Set Ru = {Ru | u ∈ X}. Although there are infinitely many preferences we show below
that |Ru| is polynomial in |P|. We now define the set system Σ = (P,Ru).

I Lemma 7.
(i) |Ru| = O(nd).
(ii) A subset Q ⊆ P is a hitting set of Σ if and only if Q is a (k, ε)-regret set of P.

Proof.
(i) Note that Ru is a subset of P that is separated from P \ Ru by the hyperplane hu :
〈u, x〉 ≥ (1− ε)ωk(u,P). Such a subset is called linearly separable. A well-known result
in discrete geometry [3] shows that a set of n points in Rd has O(nd) linearly separable
subsets. This completes the proof of (i).

(ii) First, by definition any (k, ε)-regret set Q has to contain a point of Ru for all u ∈ X
because otherwise `k(u,Q) > ε. Hence, Q is a hitting set of Σ. Conversely, if Q∩Ru 6= ∅,
then `k(u,Q) ≤ ε. If Q is a hitting set of Σ, then Q ∩Ru 6= ∅ for all u ∈ X, so Q is also
a (k, ε)-regret set. J

We can thus compute a small-size (k, ε)-regret set of P by running the greedy hitting set
algorithm on Σ. In fact, the greedy algorithm in [7] returns a hitting set of size O(sε log sε).
As mentioned above, the challenge is the size of Ru. Even for small values of k, |Ru| can be
Ω(nbd/2c) [3]. Next, we show how to construct a much smaller set system.

Recall that `k(u,Q) is independent of ‖u‖ so we focus on unit preference vectors, i.e.,
we assume ‖u‖ = 1. For the analysis, we also assume that P = MP from Lemma 6. Let
U = {u ∈ X | ‖u‖ = 1} be the space of all unit preference vectors; U is the portion of the
unit sphere restricted to the positive orthant. For a given parameter δ > 0, a set N ⊂ U is
called a δ-net if the spherical caps of radius δ around the points of N cover U, i.e. for any
u ∈ U, there is a point v ∈ N with 〈u, v〉 ≥ cos(δ). A δ-net of size O(1

δd−1) can be computed
by drawing a "uniform" grid on U. In practice, it is simpler and more efficient to choose a
random set of O(1

δd−1 log 1
δ) directions – this will be a δ-net with probability at least 1/2.

Let N be a δ
2d -net of U, and let RN = {Ru | u ∈ N}.

Set ΣN = (P,RN). Note that |RN| = O(1
δd−1). Our main observation, stated in the lemma

below and proven in Appendix B, is that it suffices to compute a hitting set of ΣN. Recall
that basis B of P is the subset of at most d points, one per coordinate, corresponding to the
points with the highest value per coordinate.

I Lemma 8. Let Q′ be a hitting set of ΣN, and let B be the basis of P. Then Q = Q′ ∪B is
a (k, ε+ δ − δε)-regret set of P.

Algorithm 1 summarizes the algorithm. Greedy_HS is the greedy algorithm in [7] for
computing a hitting set. Scale(P) is the procedure that scales the set P according to the
transformation M in Lemma 6. Basis(P) is the method to find the basis B.

Analysis. The correctness of the algorithm follows from Lemma 8. Since a hitting set of Σ
is also a hitting set of ΣN, ΣN has a hitting set of size at most sε. The greedy algorithm in
[7] returns a hitting set of size O(sε log sε) for d ≥ 4 and of size O(sε) for d ≤ 3. Therefore
|Q| = O(sε log sε) for d ≥ 4 and O(sε) for d = 3. Computing the set B takes O(n) time. N

SEA 2017

7:10 Efficient Algorithms for k-Regret Minimizing Sets

Algorithm 1 RMS_HS
Input: P: Input points, k ≥ 1: rank, ε, δ ∈ [0, 1]: error parameters.
Output: Q a (k, ε+ δ − δε)-regret set
1: B := Basis(P)
2: P := Scale(P)
3: N := δ

2d -net of U
4: Ru := {p ∈ P | ω(u, p) ≥ (1− ε)ωk(u,P)}
5: RN := {Ru | u ∈ N}
6: Q′ := Greedy_HS(P,RN)
7: Return Q := Q′ ∪B

can be constructed in O(|N|) time and we can compute Ru for each u ∈ N in O(n) time. The
greedy algorithm in [7] takes O(n

δd−1 logn log 1
δ) expected time (the bound on the running

time also holds with high probability).

Putting everything together and setting δ = ε, we obtain the following:

I Theorem 9. Let P ⊂ X be a set of n points in Rd, k ≥ 1 an integer, and ε > 0 a parameter.
Let sε be the minimum size of a (k, ε)-regret set of P. A subset Q ⊆ P can be computed in
O
(

n
εd−1 log(n) log

(1
ε

))
expected time such that Q is a (k, 2ε)-regret set of P. The size of Q is

O(sε log sε) for d ≥ 4 and O(sε) for d ≤ 3.

Notice that we can improve the running time of Theorem 9 to O
(

n
εd−1

)
using the simple

greedy algorithm for the hitting set problem. In this case, the size of Q is O(sε log 1
ε).

min-error RMS. Recall that the min-error problem takes as input a parameter r, and
returns a subset Q ⊆ P of size at most r such that `k(Q) ≤ `r, where `r is the minimum
regret ratio of a subset of P of size at most r. We propose a bicriteria approximation
algorithm for the min-error problem using Algorithm 1.

Let E = {1− ωj(u,P)/ωk(u,P) | k < j ≤ n, u ∈ N}, and let ε0 ∈ E be the smallest value
such that sε0 ≤ r. Since N is a δ

2d -net it can be shown (similar to the proof of Lemma 8)
that ε0 ≤ (1− δ)`r + δ, so we can solve the min-error problem approximately by performing
a binary search on the values in E. However, testing whether sε ≤ r for a given ε is hard, so
we use an approximate decision procedure as follows: For a value ε ∈ E, we run Algorithm 1.
If it returns a subset of size larger than cr log r, where c > 0 is an appropriate constant, we
search among the values larger than ε, and among the smaller values otherwise. In the end,
we return a set Q of size O(r log r). Notice that if ε > `r, then Algorithm 1 always returns a
set of size less than cr log r. The following theorem summarizes the results of the min-error
version of the problem.

I Theorem 10. Let P ⊂ X be a set of n points in Rd, k ≥ 1 an integer, and r > 0, 0 < δ < 1
two parameters. A subset Q ⊆ P can be computed in O(n

δd−1 log(n) log
(1
δ

)
log
(
n
δ

)
) expected

time such that `k(Q) ≤ (1 − δ)`r + δ. The size of Q is O(r log r) for d ≥ 4 and O(r) for
d ≤ 3.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:11

Table 1 Summary of datasets used in experiments.

ID Description d n Skyline
BB Basketball 5 21961 200

ElNino Oceanographic 5 178080 1183
Colors Colors 9 68040 674
AntiCor Anti-correlated points 4 10000 657
Sphere Points on unit sphere 4 15000 15000

SkyPoints Many points close to skyline 3 500 100

5 Experiments

We have implemented our algorithms as well as the current state of the art, namely, the greedy
algorithms described in [31, 12], and experimentally evaluated their relative performance.5

Algorithms. In particular, the four algorithms we evaluate are the following:
RRS is the Randomized Regret Set algorithm, based on coresets, described in Section 3.

In our implementation, rather than choosing O(1
ε(d−1)/2) random preferences all at once, we

choose them in stages and maintain a subset Q until `k(Q) ≤ ε.
HS is the H itting Set algorithm presented in Section 4. Notice that for k = 1, the

optimum solution of the RMS problem will always be a subset of the skyline of P. Hence, to
reduce the running time we only run the algorithm for k = 1 on skyline points. Furthermore,
instead of choosing O(1

εd−1) directions in one step and find a hitting set, we can sample in
stages and maintain a hitting set until we find a (k, ε)-regret set.

NSLLX is the greedy algorithm for 1-RMS problem described in [31], which iteratively
finds the preference u with the maximum regret using an LP algorithm and adds ϕ1(u,P) to
the regret set. We use Gurobi software [17] to solve the LP problems efficiently. We remark
that this algorithm, as a preprocessing step, removes all data points that are not on the
skyline.

CTVW is the extension of the NSLLX algorithm for k > 1, proposed by [12], and it is
the state of the art for the k-RMS problem. In [12] they discard all the points not on the
skyline as preprocessing to run the experiments. The CTVW algorithm solves many (in the
worst-case, Ω(n)) instances of large LP programs to add the next point to the regret set. The
number of LP programs is controlled by a parameter T – a larger T increases the probability
of adding a good point to the regret set, but also leads to a slower algorithm. In the original
paper, the authors suggested a value of T that is exponential in k; for instance, T ≥ 2.4× 107

for k = 10, which is clearly not practical. In practice, Chester et al. [12] used T = 54 for
k = 4, which is also the value we adopted in our experiments for comparison. Indeed, using
T > 54 increases the running time but does not lead to significantly better regret sets.

The algorithms are implemented in C++ and we run on a 64-bit machine with four 3600
MHz cores and 16GB of RAM with Ubuntu 14.04. In evaluating the quality `k(Q) of a regret
set Q ⊆ P, we compute the regret for a large set of random preferences (for example for
d = 3 we take 20000 preferences), and use the maximum value found as our estimate. In fact,
this approach gives us the distribution of the regret over the entire set of preference vectors.

5 All data sets that we used and our implementation can be found on https://users.cs.duke.edu/
~ssintos/kRMS_SEA

SEA 2017

https://users.cs.duke.edu/~ssintos/kRMS_SEA
https://users.cs.duke.edu/~ssintos/kRMS_SEA

7:12 Efficient Algorithms for k-Regret Minimizing Sets

Datasets. We use the following datasets in our experiments, which include both synthetic
and real-world.

BB (databasebasketball.com) is the basketball dataset that has been widely used
for testing algorithms for skyline computation, top-k queries, and the k-RMS problem,
[12, 21, 24, 25, 39]. Each point in this dataset represents a basketball player and its
coordinates contain five statistics (points, rebounds, blocks, assists, fouls) of the player.

ElNino (archive.ics.uci.edu/ml/datasets/El+Nino) is the ElNino dataset contain-
ing oceanographic data such as wind speed, water temperature, surface temperature etc.
measured by buoys stationed in the Pacific ocean, and also used in [12]. This dataset has
some missing values, which we have filled in with the minimum value of a coordinate for the
point. If some values are negative they are replaced by the absolute value.

Colors (www.ics.uci.edu/ mlearn/MLRepository.html) is a data set containing the
mean, standard deviation, and skewness of each H, S, and V in the HSV color space of a
color image. This set is also a popular one for evaluating skylines and regret sets (see [5, 31]).

AntiCor is a synthetic set of points with anti-correlated coordinates. Specifically, let
h be the hyperplane with normal n = (1, . . . , 1), and at distance 0.5 from the origin. To
generate a point p, we choose a random point p̃ on h ∩ X, a random number t v N (0, σ2),
for a small standard deviation σ, and p = p̃+ tn. If p ∈ X we keep it, otherwise discard p.
By design, many points lie on the skyline and the top-k elements can differ significantly even
for nearby preferences. This data set is also widely used for testing top-k queries or skyline
computation (see [6, 31, 39, 29]). For our experiments we set σ = 0.1 and generate 10000
points.

Sphere is a set of points uniformly distributed on the unit sphere inside X, in which
clearly all the points lie on the skyline. We generate the Sphere dataset with 15000 points
for d = 4 (all points lie on the skyline).

SkyPoints is a modification of the Sphere data set. We choose a small fraction of points
from the Sphere data set and for each point p add, say, 20 points that lie very close to p but
are dominated by p. For larger value of k, say k > 5, considering only the skyline points is
hard to decide which point is going to decrease the maximum regret ratio in the original set.
We generate SkyPoints data set for d = 3, 500 points; with 100 points on the skyline.

In evaluating the performance of algorithms, we focus on two main criteria, the runtime and
the regret ratio, but also consider a number of other factors that influence their performance
such as the value of k, the size of the skyline etc.

RRS and HS are both randomized algorithms so we report the average size of the regret
sets and the average running time computed over 5 runs. For k = 1, we use the NSLLX
algorithm, and for k = 10, we use its extension, the CTVW algorithm. In some plots there
are missing values for the CTVW algorithm, because we stopped the execution after running
it on a data set for 2 days.

Running time. We begin with the runtime efficiency of the four algorithms, which is
measured in the number of seconds taken by each to find a regret set, given a target regret
ratio. Figure 3 shows the running times of NSLLX, HS, and RRS for k = 1. The algorithm
RRS is the fastest. For some instances, the running time of HS and RRS are close but in
some other instances HS is up to three times slower. The NSLLX algorithm is the slowest,
especially for smaller values of the regret ratio. The relative advantage of our algorithms is
quite significant for datasets that have large skylines, such as AntiCor and Sphere. Even
for k = 1, NSLLX is 7 times slower than HS on AntiCor data set and 480 times slower on
Sphere data set, for regret ratio ≤ 0.01.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:13

0.2

0.35

0.5

0.65

0.8

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

NSLLX

HS

RRS

(a) BB

0.2

0.7

1.2

1.7

2.2

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

NSLLX

HS

RRS

(b) AntiCor

0

6000

12000

18000

24000

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

NSLLX

HS

RRS

(c) Sphere

0.5

2

3.5

5

6.5

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

NSLLX

HS

RRS

(d) ElNino

Figure 3 Running time for k = 1.

8

33

58

83

108

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

CTVW

HS

RRS

(a) BB

0

150

300

450

600

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

CTVW

HS

RRS

(b) AntiCor

0

30000

60000

90000

120000

150000

0
.0
0
5

0
.0
0
6

0
.0
0
7

0
.0
0
8

0
.0
0
9

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

0
.0
7

0
.0
8

0
.0
9

0
.1

0
.2

Ti
m
e

Regret

CTVW

HS

RRS

(c) Sphere

25

625

1225

1825

2425

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

CTVW HS RRS

(d) ElNino

Figure 4 Running time for k = 10.

SEA 2017

7:14 Efficient Algorithms for k-Regret Minimizing Sets

0.6

1.5

2.4

3.3

4.2

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

NSLLX

HS

RRS

(a) Sphere, k = 1

0.5

1.4

2.3

3.2

4.1

5

Ti
m
e

Regret

CTVW HS RRS

(b) Sphere, k = 10

0.4

1

1.6

2.2

2.8

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

CTVW HS RRS

(c) AntiCor, σ = 0.1, k = 10

0

1

2

3

4

5

Ti
m
e

Regret

CTVW HS RRS

(d) AntiCor, σ = 0.01, k = 10

Figure 5 log10-scale running time.

The speed advantage of RRS and HS algorithms over CTVW becomes much more
pronounced for k = 10, as shown in Figure 4. Recall that CTVW discards all points that are
not on the skyline. The running time is significantly larger if one runs this algorithm on the
entire point set or when the skyline is large. For example, for the AntiCor and Sphere data
sets, which have large size skylines, the CTVW algorithm is several orders of magnitude
slower than ours. If we set the parameter σ = 0.01 for AntiCor data set, and generate
10000 points (the skyline has 8070 points in this case) the running time of CTVW is much
higher as can be seen in Figure 9b. Because of the high running time of NSLLX and CTVW
algorithms, in Figure 5, we show the running time in the log scale with base 10.

Regret ratio. We now compare the quality of the regret sets (size) computed by the four
algorithms. Figures 6 and 7 show the results for k = 1 and for k = 10, respectively.

The experiments show that in general the HS algorithm finds regret sets comparable in
size to NSLLX and CTVW. This is also the case for AntiCor data set if we set σ = 0.01 as
can be seen in Figure 9a. The RRS algorithm tends to find the largest regret set among
the four algorithms, but it does have the advantage of dynamic udpates: that is, RRS can
maintain a regret set under insertion/deletion of points. However, since the other algorithms
do not allow efficient updates, we do not include experiments on dynamic updates.

The sphere data set is the worst-case example for regret sets since every point has the
highest score for some direction. As such, the size of the regret set is much larger than for
the other data sets. HS and RRS algorithm rely on random sampling on preference vectors
instead of choosing vectors adaptively to minimize the maximum regret, it is not surprising
that for Sphere data sets CTVW does 1.5-3 times better than the HS algorithm. Nevertheless,
as we will see below the regret of HS in 95% directions is close to that of CTVW.

Regret distribution. The regret ratio only measures the largest relative regret over all
preference vectors. A more informative measure could be to look at the entire distribution of
the regret over all preference vectors.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:15

14

19

24

29

34

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

NSLLX

HS

RRS

(a) BB

18

22

26

30

34

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

NSLLX

HS

RRS

(b) AntiCor

45

1000

1955

2910

3865

4820

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

NSLLX

HS

RRS

(c) Sphere

7

32

57

82

107

132

157

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

NSLLX

HS

RRS

(d) ElNino

Figure 6 Maximum regret ratio for k = 1.

4

8

12

16

20

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

CTVW HS RRS

(a) BB

5

9

13

17

21

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

CTVW HS RRS

(b) AntiCor

10

965

1920

2875

3830

Si
ze

Regret

CTVW HS RRS

(c) Sphere

4

24

44

64

84

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

CTVW HS RRS

(d) ElNino

Figure 7 Maximum regret ratio for k = 10.

SEA 2017

7:16 Efficient Algorithms for k-Regret Minimizing Sets

0

0.03

0.06

0.09

0.12

0.15

0.18

10 20 30 40 50 60 70 80 85 90 95 100

R
e

gr
et

Percentile (%)

Greedy HS Coreset

(a) Sphere, r=20

0

0.03

0.06

0.09

0.12

0.15

60 70 80 85 90 95 100

R
e

gr
et

Percentile (%)

Greedy HS Coreset

(b) AntiCor, r=10

0

0.06

0.12

0.18

0.24

60 70 80 85 90 95 100

R
e

gr
et

Percentile (%)

Greedy HS Coreset

(c) BB, r=5

0

0.03

0.06

0.09

0.12

0.15

50 60 70 80 85 90 95 100

R
e

gr
et

Percentile (%)

Greedy HS Coreset

(d) ElNino, r=5

0

0.05

0.1

0.15

0.2

60 70 80 85 90 95 100

R
e

gr
et

Percentile (%)

Greedy HS Coreset

(e) Color, r=5

Figure 8 Regret distributions, k = 1.

We first show the results for the two synthetic main data sets, namely, Sphere and
AntiCor. See Figures 8a, 8b. In this experiment, we fixed the regret set size to 20 for the
Sphere dataset and 10 for the AntiCor dataset. We observe that the differences in the regret
ratios in 95% of the directions are much smaller than the differences in the maximum regret
ratios. For example, the difference of the maximum regret ratio between RRS and NSLLX
in Sphere data set is 0.048, while the difference in the 95% (85%) of the directions is 0.019
(0.0096). As we can see in Figures 8c, 8d, 8e we get similar results for the real data sets. For
the real datasets we fix the regret size to 5 because for higher values we found that 95% of
the directions had 0-regret ratio for all algorithms.

Impact of larger k. We remarked in the introduction that the size of (k, ε)-regret set can
be smaller for some datasets than their (1, ε)-regret set, for k > 1. We ran experiments to
confirm this phenomenon, and the results are shown in Figures 9c, 9d for Colors data set.
As Figure 9c shows, the size of 1-regret set is 3.5 times larger than 10-regret sets for some
values of the regret ratio. Figure 9d shows how the size of the regret set computed by the
HS algorithm decreases with k, for a fixed value of the regret ratio 0.01.

Skyline effect. In order to improve its running time, the algorithm CTVW [12] removes
all the non-skyline points, as a preprocessing step, before computing the regret set. While
expedient, this strategy also risks finding directions with high k-regret ratio, and as a result

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:17

5

15

25

35

45

Si
ze

Regret

CTVW

HS

RRS

(a) Regret Ratio, σ = 0.01, k = 10

0

20000

40000

60000

80000

100000

Ti
m
e

Regret

CTVW

HS

RRS

(b) Running Time, σ = 0.01, k = 10

6

14

22

30

38

46

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

NSLLX

HS (k=1)

CTVW

HS (k=10)

(c) Regret ratio for k = 1, 10.

9

14

19

24

29

1 2 3 4 5 6 7 8 9 10
Si
ze

k

(d) Size of the (k, 0.01)-regret set as a function of
k.

11

31

51

71

91

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Si
ze

Regret

CTVW CTVW* HS RRS

(e) Regret ratio, SkyPoints

0

250

500

750

1000

0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05

Ti
m
e

Regret

CTVW

CTVW*

HS

RRS

(f) Running time, SkyPoints

Figure 9 Figures 9a, 9b: AntiCor. Figures 9c, 9d: Colors. Figures 9e, 9f: SkyPoints.

may lead to worse regret set. In this experiment, we used the Skypoint dataset to explore
this cost/benefit tradeoff. In particular, the modified version of CTVW that does not remove
non-skyline points is called CTVW*. The results are shown in Figure 9e, which confirm that
removal of non-skyline points can cause significant increase in the size of the regret set, for a
given target regret ratio. (In this experiment, the regret size differences are most pronounced
for small values of regret ratio. When large values of regret ratio are acceptable, the loss of
good candidate points is no longer critical.) Of course, while CTVW* finds nearly as good a
regret set as HS, its running time is much worse than that of HS, or CTVW, because of this
change, as shown in Figure 9f.

6 Related Work

The work on regret minimization was inspired by preference top-k and skyline queries.
Both of these research topics try to help a user find the “best objects” from a database.
Top-k queries assign scores to objects by some method, and return the objects with the
topmost k scores while the skyline query finds the objects such that no other object can
be strictly better. Efficiently answering top-k queries has seen a long line of work, see
e.g. [14, 16, 18, 19, 26, 28, 35, 36, 40, 41, 43] and the survey [20]. In earlier work, the ranking

SEA 2017

7:18 Efficient Algorithms for k-Regret Minimizing Sets

of points was done by weight, i.e., ranking criterion was fixed. Recent work has considered
the specification of the ranking as part of the query. Typically, this is specified as a preference
vector u and the ranking of the points is by linear projection on u see e.g. [14, 19, 41].
Another ranking criterion is based on the distance from a given query point in a metric space
i.e., the top-k query is a k-nearest neighbor query [37].

In general, preference top-k queries are hard, and this has led to approximate query
answering [11, 41, 42]. Motivated by the need of answering preference top-k queries, Nan-
ongkai et. al. [31] introduced the notion of a 1-regret minimizing set (RMS) query. Their
definition attempted to combine preference top-k queries and the concept of skylines. They
gave upper and lower bounds on the regret ratio if the size of the returned set is fixed to r.
Moreover, they proposed an algorithm to compute a 1-regret set of size r with regret ratio
O
(

d−1
(r−d+1)1/(d−1)+d−1

)
, as well as a greedy heuristic that works well in practice.

Chester et. al. [12] generalized the definition of 1-RMS to the k-RMS for any k ≥ 1.
They showed that the k-RMS problemis NP-hard when the dimension d is also an input to
the problem, and they provided an exact polynomial algorithm for d = 2. There has been
more work on the 1-RMS problem see [9, 30, 34], including a generalization by Faulkner et.
al. [22] that considers non-linear utility functions.

The 1-regret problem can be easily addressed by the notion of ε-kernel coresets, first
introduced by Agarwal et al. [1]. Later, faster algorithms were proposed to construct a
coreset [10].

The 1-RMS problem is also closely related to the problem of approximating the Pareto
curve (or skyline) of a set of points. Papadamitriou and Yannakakis [32, 33] considered this
problem and defined an approximate Pareto curve as a set of points whose (1 + ε) scaling
dominates every point on the skyline. They showed that there exists such a set of polynomial
size [32, 33]. However, computing such a set of the smallest size is NP-Complete [23]. See
also [38].

References
1 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent measures of

points. Journal of the ACM (JACM), 51(4):606–635, 2004.
2 P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via coresets.

Combinatorial and computational geometry, 52:1–30, 2005.
3 P.K. Agarwal and M. Sharir. Arrangements and their applications. Handbook of computa-

tional geometry, pages 49–119, 2000.
4 A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient computation of regret-ratio minimizing

set: A compact maxima representative. In Proc. SIGMOD, 2017. To appear.
5 I. Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline evaluation. ACM

Transactions on Database Systems (TODS), 33(4):31, 2008.
6 S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. 17th Int. Conf.

Data Eng., pages 421–430, 2001.
7 H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite vc-dimension.

Discrete & Computational Geometry, 14(4):463–479, 1995.
8 W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. Chi-Wing Wong, and W. Zhan. k-

regret minimizing set: Efficient algorithms and hardness. In ICDT 2017-20th International
Conference on Database Theory, pages 11:1–11:19, 2017.

9 I. Catallo, E. Ciceri, P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k diversity
queries over bounded regions. ACM Transactions on Database Systems (TODS), 38(2):10,
2013.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:19

10 T.M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions.
In Proceedings of the twentieth annual symposium on Computational geometry, pages 152–
159. ACM, 2004.

11 D. Chen, G.-Z. Sun, and N. Z. Gong. Efficient approximate top-k query algorithm using
cube index. In Asia-Pacific Web Conference, pages 155–167. Springer, 2011.

12 S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing k-regret minimizing
sets. Proceedings of the VLDB Endowment, 7(5):389–400, 2014.

13 G. Das and M.T. Goodrich. On the complexity of optimization problems for 3-dimensional
convex polyhedra and decision trees. Computational Geometry, 8(3):123–137, 1997.

14 G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc top-k query answering for data
streams. In Proceedings of the 33rd International Conference on Very Large Data Bases,
VLDB’07, pages 183–194, 2007.

15 Z. Gong, G.-Z. Sun, J. Yuan, and Y. Zhong. Efficient top-k query algorithms using k-
skyband partition. In International Conference on Scalable Information Systems, pages
288–305. Springer, 2009.

16 U. Güntzer, W. Balke, and W. Kiessling. Optimizing multi-feature queries for image data-
bases. In Proceedings of the 26th International Conference on Very Large Data Bases,
VLDB’00, pages 419–428, 2000.

17 Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2015. URL: http://www.
gurobi.com.

18 J.-S. Heo, J. Cho, and K.-Y. Whang. The hybrid-layer index: A synergic approach to
answering top-k queries in arbitrary subspaces. In 2010 IEEE 26th International Conference
on Data Engineering (ICDE 2010), pages 445–448. IEEE, 2010.

19 V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the efficient
execution of multi-parametric ranked queries. SIGMOD Rec., 30(2):259–270, May 2001.

20 I. F. Ilyas, G. Beskales, and M.A. Soliman. A survey of top-k query processing techniques
in relational database systems. ACM Computing Surveys (CSUR), 40(4):11, 2008.

21 S. Jasna and M. J. Pillai. An algorithm for retrieving skyline points based on user specified
constraints using the skyline ordering. International Journal of Computer Applications,
104(11), 2014.

22 T. Kessler Faulkner, W. Brackenbury, and A. Lall. k-regret queries with nonlinear utilities.
Proceedings of the VLDB Endowment, 8(13):2098–2109, 2015.

23 V. Koltun and C.H. Papadimitriou. Approximately dominating representatives. Theor.
Comput. Sci., 371(3):148–154, February 2007.

24 R.D. Kulkarni and B. F. Momin. Skyline computation for frequent queries in update in-
tensive environment. Journal of King Saud University-Computer and Information Sciences,
2015.

25 R.D. Kulkarni and B. F. Momin. Parallel skyline computation for frequent queries in
distributed environment. In Computational Techniques in Information and Communication
Technologies (ICCTICT), 2016 International Conference on, pages 374–380. IEEE, 2016.

26 C. Li, Kevin K.C.-C. Chang, and I. F. Ilyas. Supporting ad-hoc ranking aggregates. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,
SIGMOD’06, pages 61–72, 2006.

27 Q. Liu, Y. Gao, G. Chen, Q. Li, and T. Jiang. On efficient reverse k-skyband query
processing. In International Conference on Database Systems for Advanced Applications,
pages 544–559. Springer, 2012.

28 A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-accessible data-
bases. ACM Trans. Database Syst., 29(2):319–362, June 2004.

29 M. Morse, J.M. Patel, and W. I. Grosky. Efficient continuous skyline computation. Inform-
ation Sciences, 177(17):3411–3437, 2007.

SEA 2017

http://www.gurobi.com
http://www.gurobi.com

7:20 Efficient Algorithms for k-Regret Minimizing Sets

30 D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino. Interactive regret minimization. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,
pages 109–120. ACM, 2012.

31 D. Nanongkai, A.D. Sarma, A. Lall, R. J. Lipton, and J. Xu. Regret-minimizing represent-
ative databases. Proceedings of the VLDB Endowment, 3(1-2):1114–1124, 2010.

32 C.H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal
access of web sources. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, FOCS’00, pages 86–92, 2000.

33 C.H. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS’01, pages 52–59, 2001.

34 P. Peng and R.C.-W. Wong. Geometry approach for k-regret query. In 2014 IEEE 30th
International Conference on Data Engineering, pages 772–783. IEEE, 2014.

35 S. Rahul and Y. Tao. Efficient top-k indexing via general reductions. In Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS’16, pages 277–288, 2016.

36 M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic
guarantees. In Proceedings of the 300th International Conference on Very Large Data
Bases, VLDB’04, pages 648–659, 2004.

37 E. Tiakas, G. Valkanas, A.N. Papadopoulos, Y. Manolopoulos, and D. Gunopulos. Pro-
cessing top-k dominating queries in metric spaces. ACM Trans. Database Syst., 40(4):23:1–
23:38, January 2016.

38 S. Vassilvitskii and M. Yannakakis. Efficiently computing succinct trade-off curves. Theor.
Comput. Sci., 348(2):334–356, December 2005.

39 A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse top-k queries. In 2010
IEEE 26th International Conference on Data Engineering (ICDE 2010), pages 365–376.
IEEE, 2010.

40 D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked queries. In Proceedings
of the 32Nd International Conference on Very Large Data Bases, VLDB’06, pages 235–246,
2006.

41 A. Yu, P.K. Agarwal, and J. Yang. Processing a large number of continuous preference
top-k queries. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 397–408. ACM, 2012.

42 A. Yu, P.K. Agarwal, and J. Yang. Top-k preferences in high dimensions. IEEE Trans.
Knowl. Data Eng., 28(2):311–325, 2016.

43 Z. Zhang, S. w. Hwang, K.C.-C. Chang, M. Wang, C.A. Lang, and Y. c. Chang. Boolean
+ ranking: Querying a database by k-constrained optimization. In Proceedings of the 2006
ACM SIGMOD International Conference on Management of Data, SIGMOD’06, pages
359–370, 2006.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:21

A Affine transformation of polytope Π

From Lemma 3 we know that RMS problem is NP-Hard when the preferences vectors are in
R3. Here, we show that RMS problem is NP-Hard even when preferences are restricted to X.
The reduction is similar to the reduction proposed in Lemma 3. The only difference is that
polytope Π needs to have two additional properties:
(i) All vertices of Π must lie in the first orthant.
(ii) For any edge (v1, v2) of Π, where v1, v2 are vertices of P , there is a direction u ∈ X such

that v1, v2 are the top vertices in direction u.
It is easy to satisfy property (i) because the translation of the vertices of a polytope does
not change the rank of the points in any direction. On the other hand, property (ii) is not
guaranteed by the construction in [13].

We show that there is an affine transformation of Π that can be computed and applied in
polynomial time, to get a polytope Π′ with the same combinatorial structure as Π, but that
also satisfies properties (i), and (ii). The fact that the polytope has the same combinatorial
structure implies that the underlying graph is the same, and therefore a vertex cover will
also be a (2, 0)-regret set of Π. Next, we describe the details of the transformation.

Construction. First, we translate Π such that the origin o is inside Π. Then, we compute
the polar dual Π∗6. Let v be a vertex of Π∗. Translate Π∗ such that v becomes the origin.
Then take a rotation such that polytope Π∗ does not intersect the negative orthant – i.e.,
the set of points in R3 which have all coordinates strictly negative; we can always do it
because Π∗ is convex. Let u1, u2, u3 be the three directions emanating from the origin such
that the cone defined by them, contains the entire polytope Π∗. Such directions always
exist and can be found in polynomial time. It is known that we can find in polynomial time
an affine transformation such that u1 is mapped to the direction e1 = (1, 0.01, 0.01), u2 to
direction e2 = (0.01, 1, 0.01) and u3 to e3 = (0.01, 0.01, 1) (we can do it by first transforming
u1, u2, u3 to the unit axis vectors and then transform them to e1, e2, e3). Apply this affine
transformation to Π∗ to get Π̂∗. Polytope Π̂∗ lies in the first orthant, except of vertex v
which is at the origin. Shift this polytope slightly such that the origin lies in the interior of
the polytope, v lies in the negative orthant, and all the other vertices are still in the first
orthant. Such a translation can be computed in polynomial time by subtracting from all
coordinates a quantity m/2, where m is the value of the minimum coordinate over all points
except v. Hence, after the translation, v = (−m/2,−m/2,−m/2). Finally we compute the
polar dual of Π̂∗; call this Π̂. Translate Π̂ until all vertices have positive coordinates, and let
Π′ denote the new polytope.

I Lemma 11. Polytope Π′ is combinatorially equivalent to Π and satisfies properties (i),
(ii).

Proof. We start by mapping property (ii) in the dual space. Consider a polytope G and
its dual G∗ (where the origin lies inside them). It is well known that any vertex v of G
corresponds to a hyperplane hv in the dual space that defines a facet of G∗. An edge
between two vertices in G corresponds to an edge between the two corresponding faces in
G∗. Furthermore, if a vertex v of G is the top-k vertex of G in a direction u, then the

6 The polar dual of a polytope containing the origin o is defined as the intersection of all hyperplanes
〈x, p〉 ≤ 1 where p ∈ P , and it can be equivalently defined as the intersection of the dual hyperplanes
〈x, v〉 ≤ 1 for all the vertices v of P .

SEA 2017

7:22 Efficient Algorithms for k-Regret Minimizing Sets

corresponding hyperplane hv is the k-th hyperplane (among the n dual hyperplanes) that is
intersected by the ray ou, where o is the origin. From the above it is straightforward to map
property (ii) in the dual space: (ii’) For any edge (f1, f2) where f1, f2 are faces of G∗ there
is a direction u ∈ X such that the first two hyperplanes that are intersected by the ray ou
are h1, h2, where h1 is the hyperplane that contains the face f1 and h2 the hyperplane that
contains the face f2.

We now show how these properties can be guaranteed in Π̂∗. Notice that from the
construction of Π̂∗, the origin lies inside Π̂∗ and all faces of Π̂∗ have non empty intersection
with the positive octant. By convexity, Π̂∗ satisfies property (ii’) because for any edge
e = (f1, f2) of Π̂∗ there is a ray emanating from the origin that first intersects the edge e,
and hence the hyperplanes h1, h2 are the first hyperplanes that are intersected by the ray. So,
its dual polytope Π̂ satisfies property (ii). In addition, Π∗ is combinatorially equivalent to Π,
by duality. Since we apply an affine transformation Π̂∗ is also combinatorially equivalent
to Π∗. Finally, the polytope Π̂ is combinatorially equivalent to Π̂∗ (its dual). Notice that
translation does not change the combinatorial structure of a polytope or the ordering of the
points in any direction, so Π′ satisfies property (ii), property (i) by definition, and is also
combinatorially equivalent to Π. J

The first part of the NP-Hardness proof is the same with the case of all directions in R3

in Lemma 3, if Q is a vertex cover of Π′ then it is also a (2, 0)-regret set. Using property (ii)
of Π′, it is straightforward to show the other direction.

B Proof of Lemma 8

I Lemma 8. Let Q′ be a hitting set of ΣN, and let B be the basis of P. Then Q = Q′ ∪B is
a (k, ε+ δ − δε)-regret set of P.

Proof. It suffices to show that for any direction u ∈ U there is a point q ∈ Q for which
ω(u, q) ≥ (1− δ)(1− ε)ωk(u,P) (because 1− (ε+ δ − δε) = (1− δ)(1− ε)).

We first consider the case when ωk(u,P) ≤ 1
(1−ε)

√
d
. In this case, by the proof of Lemma 6

the set B is guaranteed to contain a point q with ω(u, q) ≥ 1√
d
, which proves the claim. So

let now assume that ωk(u,P) > 1
(1−ε)

√
d
. Let ū ∈ N be a direction in the net N such that,

(û, ū) ≤ δ/2d, where (û, ū) is the angle between u and ū. Such a direction exists because N
is a δ

2d -net on U. Observe that,

‖u− ū‖ =
√

2− 2 cos((û, ū)) = 2 sin
(

(û, ū)
2

)
≤ δ

2d ,

where we have used first the cosine rule, the identity 1 − cos θ = 2 sin2 (θ
2
)
, as well as the

inequality sin θ ≤ θ for θ ≥ 0 in the final step. Also, observe that for any p ∈ P we have,

|ω(u, p)− ω(ū, p)| ≤ δ

2
√
d
. (1)

This follows because,

|ω(u, p)− ω(ū, p)| = |〈u, p〉 − 〈ū, p〉| = |〈u− ū, p〉| ≤ ‖u− ū‖ · ‖p‖ ≤ δ

2d ·
√
d = δ

2
√
d
,

where we have used the Cauchy-Schwarz inequality for the first inequality, the upper bound
on ‖u− ū‖ derived earlier, along with ‖p‖ ≤

√
d (by Lemma 6) for the second inequality.

P.K. Agarwal, N. Kumar, S. Sintos, and S. Suri 7:23

Let x1, x2, . . . , xk ∈ P be the top-k points along direction u, i.e., xi = ϕi(u,P). Also, let
yk be the top-k point along direction ū. As remarked we can assume, ω(u, xi) ≥ ω(u, xk) ≥

1
(1−ε)

√
d
. Now, for any i = 1, 2, . . . , k we have that,

ω(ū, xi) ≥ ω(u, xi)−
δ

2
√
d
≥ ω(u, xi)−

(1− ε)δ
2 ω(u, xi)

= ω(u, xi)
(

1− (1− ε)δ
2

)
≥ ω(u, xk)

(
1− (1− ε)δ

2

)
.

The first inequality follows by Equation 1, and the second inequality holds since ω(u, xi) ≥
ω(u, xk) > 1

(1−ε)
√
d
. This implies that there are k points whose scores are each at least

ω(u, xk)
(

1− (1−ε)δ
2

)
, and therefore the k-th best score along ū, i.e., ω(ū, yk), is at least

ω(u, xk)
(

1− (1−ε)δ
2

)
. Now, the algorithm guarantees that there is a point q ∈ Q such that

ω(ū, q) ≥ (1− ε)ω(ū, yk). We claim that this q “settles” direction u as well, up-to the factor
(1− δ)(1− ε). Indeed,

ω(u, q) ≥ ω(ū, q)− δ

2
√
d
≥ (1− ε)ω(ū, yk)− δ

2
√
d

≥ (1− ε)
(

1− (1− ε)δ
2

)
ω(u, xk)− δ

2
√
d

≥ (1− ε)
(

1− (1− ε)δ
2

)
ω(u, xk)− (1− ε)δ

2 ω(u, xk)

= (1− ε)(1− δ + δε/2)ω(u, xk) ≥ (1− δ)(1− ε)ω(u, xk)

This completes the proof. J

SEA 2017

Engineering an Approximation Scheme for
Traveling Salesman in Planar Graphs∗

Amariah Becker1, Eli Fox-Epstein2, Philip N. Klein3, and
David Meierfrankenfeld4

1 Department of Computer Science, Brown University, Providence, RI, USA
becker@cs.brown.edu

2 Department of Computer Science, Brown University, Providence, RI, USA
ef@cs.brown.edu

3 Department of Computer Science, Brown University, Providence, RI, USA
klein@cs.brown.edu

4 Department of Computer Science,Brown University, Providence, RI, USA
nfelddav@cs.brown.edu

Abstract
We present an implementation of a linear-time approximation scheme for the traveling salesman
problem on planar graphs with edge weights. We observe that the theoretical algorithm involves
constants that are too large for practical use. Our implementation, which is not subject to the
theoretical algorithm’s guarantee, can quickly find good tours in very large planar graphs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Traveling Salesman, Approximation Schemes, Planar Graph Algorithms,
Algorithm Engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.8

1 Introduction

“Many (if not most) polynomial-time approximation schemes (PTASs) ... for the
traveling salesman problem (TSP) and related problems suffer from gigantic constant
factors.” –Müller-Hannemann and Schirra [17]

Overcoming gigantic constant factors. Müller-Hannemann and Schirra’s introduction on
algorithm engineering [17] gives this example of how the daunting complexity of algorithms
and outrageous “constants,” byproducts of worst-case asymptotic analysis preferred by the
theory community, can lead to seemingly unimplementable algorithms. Tazari and Müller-
Hannemann [21] give the first implementation of an “inherently impractical” algorithm
suffering from abysmal hidden constants: a PTAS for the Steiner Tree problem on planar
graphs. Their surprising outcome was a very practical implementation, one that could
get reasonably good solutions on larger instances than could be addressed with previous
implementations. Our work on implementation of a seemingly theoretical approximation
scheme is inspired by that outcome.

The framework underlying the Steiner-tree PTAS [4] was presented in a paper [15] that
illustrated the framework by presenting a linear-time approximation scheme for the Traveling

∗ Research funded by NSF grant CCF-14-09520. Klein’s research received additional support from the
Radcliffe Institute of Advanced Study, Harvard University.

© Amariah Becker, Eli Fox-Epstein, Philip N. Klein, and David Meierfrankenfeld;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

Salesman Problem (TSP) on the metric defined by a planar graph with edge-weights. The
application of the framework to this problem is perhaps the simplest illustration of the
framework, though the dynamic program at its heart is harder for TSP than for Steiner tree.

Our implementation as a first step. We describe an implementation of this TSP approxim-
ation scheme, adapted and engineered so that it is no longer guaranteed to find near-optimal
tours but it runs quickly. Our implementation typically runs in less than a millisecond
per vertex and provides significantly better tours than similarly fast heuristics on very
large graphs. Due to the magnitude of the constants involved, it was not our objective
to outperform existing implementations on small graphs. Instead, this proof-of-concept
implementation targets very large graphs, tests the strategies for coping with the challenges
of highly theoretical algorithms outlined by Tazari and Müller-Hannemann [21], and promotes
implementation within the theory community, even for the most theoretical algorithms.

Moreover, this implementation is a first step toward implementing more complicated,
related approximation schemes for other problems, including Subset TSP (a.k.a. Steiner
TSP), in which the tour need only visit a given subset of the vertices. It is also a first step
towards implementing a method that can cope with the nonplanarities and asymmetry of
real road networks. Such progress is potentially valuable because there is potential to address
other problems arising in road networks, such as ride-sharing, package-delivery routing, and
public transportation layout. It remains to be seen whether these techniques can be adapted
to address practical applications; in this work we add to the evidence provided by Tazari and
Müller-Hannemann showing that the large constant factors in the theoretical algorithms do
not represent a fundamental obstacle in this effort. It is in this sense that our implementation
is a proof of concept.

Alternative implementations. The literature on solving TSP exactly, approximately, and
heuristically in a variety of settings is too vast to thoroughly review. Much of the literature
and implementations address primarily the Euclidean case, in which one seeks a tour through
a Euclidean space that visits all given points and has minimum length. In particular,
implementations (e.g. [3, 18]) that aim for both linear time and high-quality solutions are
restricted to the Euclidean case. A more general problem is metric TSP, in which the
distances between points is a metric. One source of metrics is edge-weighted undirected
graphs; the metric completion of such a graph is the metric space over its vertices in which
the u-to-v distance is the length of a shortest u-to-v path. Note that a tour in such a metric
space corresponds to a closed walk in the graph that is allowed to travel through a vertex
more than once. Thus the graph need not be Hamiltonian to admit a tour.

The leading TSP codes (Concorde [1] , LKH-2 [14], and Google’s or-tools) require that
all vertex-to-vertex distances be available, i.e. all these distances are stored in a table or
there is a procedure to compute any such distance given the two vertices. This works quite
well for Euclidean instances because a point-to-point distance can be computed very quickly.
For instances arising from edge-weighted graphs, this is a serious obstacle: for the graphs we
want to address, the number of vertices is too large for an all-pairs-distance table. There
is a publicly available implementation of a high-quality distance oracle (a data structure
supporting fast vertex-to-vertex distance queries) that of Dibbelt et al. [9] (RoutingKit),
based on the algorithm of Geisberger et al. [10]. In our experiments with this implementation,
however, distance-finding is not fast enough to make the existing TSP codes competitive for
very large graphs. Indeed, the running time of the Lin-Kernighan heuristic is reported [13]
to increase as n2.2, and in our experience with RoutingKit, the time per distance was 0.04
seconds.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:3

Moreover, the primary motivation of our work is not to beat existing codes specifically
addressing TSP but to illustrate the potential of an approach to optimization problems on
planar graphs and to identify algorithmic techniques that could help make this approach
useful in practice.

However, it is useful to have a baseline for tour quality in order to evaluate the effectiveness
of our implementation on very large graphs. There is one other theoretical algorithm that
runs in linear time and finds approximately optimal tours on edge-weighted planar graphs:
the 2-approximation derived from a minimum-weight spanning tree. This algorithm finds a
minimum-weight spanning tree and then obtains an Euler tour of the doubled tree. We found
that the minimum-spanning-tree heuristic runs very fast on large instances but produces
tours that are far worse than those produced by our implementation.

One natural enhancement to the minimum-spanning-tree algorithm is to “shortcut” the
tour it produces: a segment of the tour that visits only vertices already visited can be replaced
by a shortest path. However, this enhancement has two drawbacks. First, carrying out the
enhancement on a very large graph requires substantially more time than our implementation,
even when the distance oracle of Dibbelt et al. [9] is used to compute these shortest paths.
Second, the quality of the tours produced on very large graphs derived from road maps is
inferior to those found by our implementation. We outline these results in Section 4.2.

What about other approximation algorithms for TSP in graphs? Christofides’ algorithm [7]
gives a 1.5-approximation, but requires computing a minimum-weight T -join. We are aware of
no code that can compute this without first computing all-pairs distance, though Barahona [2]
gives a theoretical O(n1.5 log n) algorithm for planar graphs.

In independent work, Xia et al. [22] reported on experiments with a graph-based method
for the Steiner TSP, finding a tour visiting a given subset of vertices. We briefly discuss
their approach in Section 1.2 since it uses a term defined in that section.

Approximating the Held-Karp lower bound. How then can we evaluate the quality of the
tours obtained by our implementation? We have implemented an algorithm to compute an
approximately optimal Held-Karp lower bound. The algorithm uses the packing-covering
framework (see, e.g., [23], also known as multiplicative-weights update) and a dynamic
algorithm for minimum-weight cuts that is based on a min-cut algorithm [5] for planar graphs.
The approximate solutions we obtain for Held-Karp are enough to show that, on large graphs
derived from road maps, our implementation finds tours of good quality.

Summary of our contributions. Our main contributions are as follows:
We have implemented a theoretically linear-time approximation scheme for TSP in
edge-weighted planar graphs.
Our implementation incorporates data structures and heuristics that turn a highly
theoretical algorithm into a procedure that shows promise as a practical tool.
For appropriate settings of the parameters (going beyond what theoretical analysis allows),
our implementation processes a graph in less than a millisecond per vertex and produces
a tour that is empirically within 5% to 15% of optimal.
We have also developed a procedure for deriving lower bounds on TSP in planar graphs.
This enables us to measure the quality of the tours produced by our implementation.

A live demonstration of our implementation applied to graphs derived from road maps is
available at http://tsp.cs.brown.edu.

SEA 2017

http://tsp.cs.brown.edu

8:4 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

1.1 Overview
After reviewing some fundamentals, we give a brief overview of the algorithm we implement:
the linear-time approximation scheme for TSP in planar graphs [15]. We observe that setting
the parameters according to theoretical analysis would lead to impractical runtimes. We
show that, even with tighter analysis of the constants hidden in the running time analysis, an
implementation with theoretical guarantees would require tremendous computation power.
For example, achieving a 1.5-approximation might require in excess of 2144n comparisons.
Next, we describe the design choices of our implementation in detail, and discuss extensive
experimental results. Finally, we compare this implementation with Tazari and Müeller-
Hannemann’s.

1.2 Preliminaries
We assume familiarity with TSP, graph algorithms, dynamic programming on branch decom-
positions, and approximation algorithms, including PTASs.

Planar graphs. Throughout, all graphs considered are planar and embedded. The dual
of a planar graph G is the graph whose vertices are the faces of G, with edges between
faces which share a boundary edge. The radial of a planar graph G is the bipartite graph
whose vertices are the union of the vertices of G and the faces of G, with edges between each
incident vertex-face pair.

Dynamic programming and branch decompositions. A branch decomposition of a graph
is a rooted binary tree and a bijection between leaves of the tree and edges of the graph.
Each edge e of the tree defines a cluster of graph edges, namely those edges corresponding
to the tree leaves whose leaf-to-root path contains e. The boundary of a cluster is the set of
all vertices with at least one incident edge within the cluster and one not within the cluster.
The width of a branch decomposition is the maximum cardinality of any cluster’s boundary.
The branchwidth of a graph is the minimum width of any branch decomposition of the graph.
By considering only interactions on the boundary, branch decompositions are amenable to
dynamic programming.

A sphere-cut decomposition is a branch decomposition where, for each cluster, a Jordan
curve intersects no edges and exactly the boundary vertices. This induces a cyclic order to
the boundary. In a planar graph whose radial graph has radius k, a sphere-cut decomposition
of width at most k + 1 can be found in linear time using Tamaki’s heuristic [20].

In independent work, Xia et al. [22] very recently reported on experiments on solving
the Steiner traveling salesman problem, finding a tour that visits a given subset of vertices
(terminals). They started with a graph derived from road maps and pruned away vertices
and edges not on shortest terminal-to-terminal paths. They then found an optimal sphere-cut
decomposition (i.e. one whose width is the branchwidth of the pruned graph), and then
used the decomposition to find an optimal tour. The algorithm [24] for finding an optimal
sphere-cut decomposition, based on the algorithm of Seymour and Thomas [19], requires
O(n3) time. Given a graph and a sphere-cut decomposition of width w, the algorithm of Xia
et al. takes O(72wn2) time to compute the optimal tour.

Xia et al. reported on experiments finding an optimal tour using the sphere-cut decom-
position and finding an approximately optimal tour using Christofides’ 1.5-approximation
algorithm. However, they addressed much smaller graphs; the largest graph they considered
had 300 vertices and 363 edges.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:5

TSP. Let OPT(G) be the minimum cost of a TSP tour of graph G and MST(G) be the cost of
a minimum spanning tree of G. It is well-known that MST(G) < OPT(G) ≤ 2 MST(G), giving
a trivial 2-approximation algorithm. Christofides’ algorithm [7] gives a 1.5-approximation,
but requires computing a minimum-weight perfect matching, for which no nearly linear-time
algorithm is known on planar graphs.

2 PTAS for TSP

We implement a slight variation of the Klein’s PTAS [15]. In this section, we briefly summarize
the algorithm. As input, we have a planar graph G0 = (V (G0), E(G0)) equipped with an
embedding and edge cost function c(·). We additionally have a precision parameter ε ∈ (0, 1].
The algorithm consists of four steps, described without the compromises necessary for fast
runtimes:
1. Cost reduction: find an edge subgraph G1 ⊆ G0 of total cost at most c(G1) =

(1 + 2/ε1)MST(G0), for some constant ε1 depending only on ε such that OPT(G0) ≤
OPT(G1) ≤ (1 + ε1)OPT(G0). The subroutine Spanner provided by Klein [15] satisfies
these requirements and is practical.

2. Slab decomposition: split the graph into a collection of subgraphs called slabs, each of
which has branchwidth at most 2/ε2 +3 such that each vertex appears in at least one slab,
and the sum of the costs of optimal TSP tours on the slabs is at most OPT(G1)+2ε2c(G1),
where ε2 is a constant depending only on ε.

3. Dynamic programming: for each slab, build a branch decomposition and solve TSP
exactly on it. For each cluster in the decomposition, we build a table of configurations and
their corresponding costs: all relevant interactions between the interior and the exterior
of the cluster. An upper bound on the number of configurations per cluster of width k is
M(k) = 32k. Solving TSP exactly on a graph with a branch decomposition of width k,
takes O(34kn) time, since the DP performs pairwise compatibility checks of configurations
from sibling clusters. (A tighter upper bound on the number of configurations per cluster
is M(k) =

∑k
i=0 Ck−i

(2k
2i

)
where Cj is the jth Catalan number.)

4. Combining: return the union of the exact solutions on the slabs.

The final output has total cost at most

OPT(G1) + 2ε2c(G1) ≤ (1 + ε1)OPT(G0) + 2ε2(1 + 2/ε1)MST(G0)
< (1 + ε1)OPT(G0) + 2ε2OPT(G0) + 4ε2/ε1OPT(G0)
= (1 + ε1 + 2ε2 + 4ε2/ε1)OPT(G0).

3 Engineering Considerations

We benefit from the pessimism of worst-case analysis in several places. Before discussing
how we engineer the algorithm, we note that the worst-case analysis is overly pessimistic.
First, MST(G0) frequently costs significantly less than OPT(G0).

Second, frequently the branchwidth is less than the theoretical upper bound. Third, the
total cost of slab boundaries is typically much less than 2ε2c(G1). Furthermore, some edges
in slab boundaries also belong to optimal solutions. Finally, the structure of the sphere-cut
decompositions we use ensures that only rarely are two clusters merged in a way that requires
considering a number of configuration pairs that is at all close to the theoretical upper limit.

Next we summarize our implementation. As part of the input, it takes parameters ε1
and ε2 separately, as their effects in practice differ from the theoretical guarantees.

SEA 2017

8:6 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

Figure 1 Delaunay triangulation of TSPLIB’s berlin52: bold edges indicate a spanner with
ε1 = 0.1 (left) and ε1 = 0.5 (right).

Figure 2 berlin52: spanner in black (ε1 = 0.1) and slab boundaries for ε2 = 1/3 (left)
and ε2 = 1/4 (right).

Cost reduction. The implementation finds graph G1 from G0 as in [15]. On a planar graph,
this can be done in linear time [6, 16]. In practice, though, we use Kruskal’s algorithm and
observe that the time spent building a minimum spanning tree is usually less than 0.001%
of the total runtime under reasonable choices of ε2. Refer to Figure 1 for examples of two
spanners on a small graph.

Slab decomposition. The implementation performs a breadth-first search of the dual graph.
This partitions the dual edges into two types: those with endpoints on the same level of
the search tree (type A) and those with endpoints on different levels (type B). Each edge is
assigned a level by the minimum level of its endpoints. Level interval (i, j) consists of all
type A edges with level in [i+ 1, j] and all type B edges with level in [i, j]. The type B edges
of level i form the upper seam and the type B edges of level j form the lower seam. The
edges in a level interval can induce a slab. The slabs used will have the property that the
only edges shared between slabs are seams and the only vertices shared between slabs are
incident to seam edges. Refer to Figure 2.

Dynamic program. Essentially all of the runtime is spent in the dynamic program. Because
of this, most of the complexity in the implementation focuses on efficiently finding pairs of
compatible configurations and merging compatible pairs into a parent configuration, and it
is here that the choice of engineering techniques have the greatest impact.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:7

CL CR

CP

(a) compatible (b) incompatible (c) incompatible

Figure 3 Prefix configuration pairs for merging child clusters CL and CR into parent cluster CP :
gray circles represent boundary vertices, black circles represent portals, and black lines represent tour
segments. Starting with the uppermost shared vertex and going down, the left prefix configuration
[(,(,),-,(,),-,)] is (a) compatible with the right prefix configuration [(,(,(,-,),(,-,)], (b) incompatible with
the right prefix configuration [(,(,(,-,),),-,)] because the inner prefix cycle indicates a disconnected
tour, and (c) incompatible with the right prefix configuration [(,(,(,),-,(,),-] because the crossings do
not align.

Recall, each non-root, non-leaf cluster in a sphere-cut decomposition has a sibling and a
parent. Furthermore, since each cluster is bounded by a Jordan curve, a natural cyclic order
is assigned to the cluster’s boundary vertices.

Since a TSP tour can enter or exit a cluster at most twice per vertex (subsequent crossings
can be uncrossed), we split each boundary vertex into two portals, representing these potential
connections. An involution is stored mapping portals to portals: each portal is associated with
another (or to itself, when there is no entrance/exit at the portal). This involution is stored
in two different ways, depending on the context: either as small integers representing the
portal number or using nested parentheses (really, an array of enum objects) where matching
parentheses map to one another (since TSP tours in planar graphs can be uncrossed).

The prefix of a cluster’s portals is the interval of portals common to both children in
the cyclic order induced by the cluster’s bounding Jordan curve. Whether two child-cluster
configurations are compatible can be determined mostly by comparing the section of the
configurations corresponding to the prefix portals. Cycles formed between prefix portals not
shared with the parent cluster indicate incompatible configurations because the final tour
must be connected. Additionally, the child-cluster configurations must agree on the presence
of a crossing at a prefix portal. That is, if a portal is mapped to itself on one side, it is
mapped to itself on the other.1 Refer to Figure 3 for examples of prefix compatibility.

In practice, computing the entire dynamic programming table is prohibitively expensive:
merging two clusters with boundary size just 5 theoretically requires considering over 20
times more pairs of configurations than there are vertices in the largest road network publicly
available for testing; in order for the algorithm to “act” like it is linear time, clusters must
discard some configurations. Tazari and Müeller-Hannemann face a similar problem with large
dynamic programming tables and impose a cap on the size of their dynamic programming
table. We follow this strategy and limit each cluster to hold the λ best configurations found,
plus one corresponding to the MST-based 2-approximation of the original graph to ensure
that there is always a solution.

1 For technical reasons, vertices common to the parent and both children pose additional complication.

SEA 2017

8:8 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

((−)	
 ((−) − −) −
 ((−)) − − −
 ((−) () −)
 ((−) −) ()

− − (-	
− − (−) (−)
− − (−	 − −) −
− − (−	 (−))
− − (−	 () −)

!!

()	−	
)	(−)	(−	

Figure 4 Each leaf of the trie corresponds to the prefix configuration generated by the root-to-leaf
path. Configurations are grouped by prefix and stored (sorted by cost) at these leaves. Two such
leaves are shown. The crossed-off trie branches represent invalid prefix configurations.

Rather than generating all pairs of compatible configurations and selecting the λ best, we
generate them in order of increasing cost as follows. The configurations for each cluster are
partitioned such that if a configuration is compatible with one configuration in a part, it is
compatible with each other configuration in the part. Partitioning by equivalence classes on
prefixes suffices. These parts can be efficiently stored as lists sorted by non-decreasing cost at
the leaves of a trie. Each root-to-leaf path is the prefix in the nested-parenthesis representation
common to all the configs stored at the leaf (refer to Figure 4). Once compatible pairs
of leaves are found by traversing the tries for the child configurations in tandem, pairs of
pointers to the lists’ first elements are inserted into a min-heap keyed by the sum of the
costs of the pointed-to elements. To get the next cheapest configuration, one pops the heap.
Then, the appropriate pointer is incremented and the pair is re-inserted into the heap.

Note that just popping the heap λ times is insufficient, as some of these pairs might yield
the same parent configurations. Instead, the heap is popped and parents are formed until λ
have been collected. The actual formation of parent configurations from a compatible pair
of child configurations is delayed until necessary, as this transformation turns out to be a
bottleneck.

Post processing. As a post-processing heuristic, we draw inspiration from [8]: some number
of tours, determined by an input parameter, are produced by running the full algorithm
with several different slab decompositions. We then make a new graph from the union of the
edges used in these tours and run the PTAS on this (unlike [8], which would just run the
dynamic program on it).

Tours output by the PTAS typically are very suboptimal around slab boundaries. Re-
cursively re-solving on the graph induced by the set of edges occurring in the tour is effective.
The maximum permitted recursion depth is another parameter of the implementation.

4 Experimental Results

Our implementation consists of about 5000 lines of C++11 with no external dependencies.
We use the g++ compiler, version 5.2.0, on the Debian 8 operating system.

We use two types of graphs for testing:
Road networks from OpenStreetMap [12] of the major American cities of Tulsa, Dallas,
Los Angeles, Rochester, and Chicago. Crossing edges are planarized by introducing a
new vertex at the crossing point.
Synthetic instances: grids with each degree-4 face randomly triangulated and random
small integer costs assigned to each edge.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:9

0

5

10

15

20

25

0 2 4 6 8 10

R
un

tim
e
(h
ou

rs
)

Millions of vertices

Figure 5 Runtime is linear in the size of the graph.

Table 1 Comparison of the performance of four heuristics on road networks.

Graph # Vertices LB 2MST Shortcut 2MST Fast PTAS Slow PTAS
val/LB ms/v val/LB ms/v val/LB ms/v val/LB ms/v

rochester 19488 100746068 1.41 <0.01 1.31 0.06 1.11 0.15 1.03 4.33
tulsa 68335 65840000 1.45 <0.01 1.34 0.22 1.11 0.23 1.04 3.41
dallas 403393 36332200 1.57 <0.01 1.45 2.17 1.34 0.24 1.15 4.05
chicago 1032016 31782700 1.49 <0.01 1.38 5.90 1.32 0.48 1.09 5.83

losangeles 1135323 53903389 1.44 <0.01 1.35 6.83 1.25 0.34 1.09 2.24

4.1 Linear Runtime
Our implementation exhibits linear runtime. The figure below shows the running time of the
algorithm, with an arbitrary, realistic choice of parameters, on a series of synthetic square
grids as described above.

Over 99.99% of the time on large instances is spent in the dynamic program; a plot of
the runtime breakdown would be uninteresting.

4.2 Quality
There are two aspects of evaluating the quality of the tours returned by our algorithm: how
close to optimal the tours are and how our solutions compare to other implementations.
To address the former, we compute lower bounds on tour lengths, as described in the next
section. For large graphs however, the latter point poses a problem. As discussed in the
introduction, leading TSP implementations require all-pairs distances, which is infeasible
for very large non-Euclidean instances. We compare the performance of our implementation
with two different MST-based heuristics:

The 2MST heuristic doubles the edges of the minimum-spanning-tree.
The Shortcut 2MST heuristic follows the tour of the 2MST heuristic but takes shortcuts
to avoid unnecessarily re-visiting vertices.
Fast PTAS is our implementation with a quicker-running set of parameters
Slow PTAS is our implementation with a slower-running set of parameters

The ratios of tour lengths to lower bounds, given in Table 1 and depicted in Figure 6,
provide upper bounds for solution error. We additionally report the runtime in milliseconds

SEA 2017

8:10 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 200000 400000 600000 800000 1× 106 1.2× 106

R
at
io

to
lo
w
er

bo
un

d

Number of vertices

2 MST
Shortcut MST

Fast PTAS
Slow PTAS

Figure 6 Visual comparison of heuristic quality on road networks.

0

1

2

3

4

5

6

7

8

0 200000 400000 600000 800000 1× 106 1.2× 106

T
im

e
pe

r
ve
rt
ex

(m
s/
v)

Number of vertices

2 MST
Shortcut MST

Fast PTAS
Slow PTAS

Figure 7 Visual comparison of heuristic runtime per vertex on road networks.

per vertex (refer to Figure 7). The 2MST heuristic runs extremely quickly even on very
large graphs but provides a poor approximation. The Shortcut 2MST heuristic slightly
outperforms the basic 2MST heuristic but takes much longer to find (the running time
is superlinear in graph size). Our Fast PTAS tours are found very quickly and show a
substantial improvement over 2MST, and our Slow PTAS tours are close to optimal.

4.3 The Effects of Parameters on Performance

To explore the effects of various parameters on runtime and tour cost, we ran a parameter
sweep across six graphs and a variety of settings of each of four parameters: slab height
(1/ε2), number of configurations (λ), number of re-solves, and number of tour unions.
We examined each parameter separately to identify trends in the effects on runtime and
tour cost. In particular we wanted to identify parameter settings that exhibited a promising
cost-runtime tradeoff. Figures 8, 9, 10, and 11 show the parameter effects on performance
for the Los Angeles road network.

Figure 8 shows the effect of the slab height parameter. Recall that in Step 2 of the
approximation scheme (Section 2, see also Section 3), the graph is decomposed into slabs.
Each slab consists of a consecutive sequence of levels of a breadth-first search. The slab
height is the number of levels comprising each slab.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:11

58
60
62
64
66
68
70
72
74
76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ur

co
st

(m
ill
io
ns
)

Runtime (hours)

4

5

6

7

8

9

10

11

Sl
ab

he
ig
ht
:

1/
ε 2

Figure 8 Performance by slab size for Los Angeles road network.

58
60
62
64
66
68
70
72
74
76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ur

co
st

(m
ill
io
ns
)

Runtime (hours)

0

1

2

3

4

5

6

N
um

be
r
of

re
pe

at
s

Figure 9 Performance by number of tour re-solves for Los Angeles road network.

Figures 9 and 10 shows the effect of the re-solves and tour unions parameters respect-
ively. Recall (see Post Processing in Section 3) that the implementation finds several tours
using different slab decompositions (all with the same height), takes the union, and repeats
on the union. The number of tour re-solves is the number of times this happens. The number
of tour unions refers to the size of the union taken in each repeat.

Finally, Figure 11 shows the effect of the number of configurations parameter. Recall
that in the dynamic program, for each cluster of the branch decomposition, the implementation
limits the size of the table of configurations stored for that cluster. The limit is λ, the number
of configurations.

The number of retained configurations, λ, appears to have only a weak association to
tour quality, but very fast runtimes require small λ values. Recall that the algorithm returns
a tour composed of the union of slab tours which is often very suboptimal at the slab seams;
re-solving on the graph induced by edges of the initial resulting tour (and iterating several
times) can greatly improve tour quality with minimal increase in runtime. Similarly, taking
the union of several solutions and re-solving on the resulting graph comprised of the union
of the tours also improves tour quality. In both of these post-processing strategies the
branchwidth of the graph used to re-solve TSP is typically much smaller than that of the
original graph, which both substantially changes the slab decomposition and decreases the
runtime.

SEA 2017

8:12 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

58
60
62
64
66
68
70
72
74
76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ur

co
st

(m
ill
io
ns
)

Runtime (hours)

1

2

3

4

5

6

N
um

be
r
of

un
io
ns

Figure 10 Performance by number of tour unions for Los Angeles road network.

58
60
62
64
66
68
70
72
74
76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

To
ur

co
st

(m
ill
io
ns
)

Runtime (hours)

2
4
6
8
10
12
14
16
18
20

λ
(t
ho

us
an

ds
)

Figure 11 Performance by number of configurations for Los Angeles road network.

Interestingly and unexpectedly, larger slab heights (smaller ε2) produce worse solutions.
We attribute this to all values of λ being too small: the configurations kept in any cluster are
only a tiny subset of potential configurations, increasing the odds of missing an important
one.

Overall, we see that some parameters (such as number of repeats and unions) have clear
benefits to tour quality whereas other parameters have more complicated and intricate effects
and potential dependencies.

5 Computing a Lower Bound on the Traveling-Salesman Tour

We needed a way to evaluate the quality of the tours found by our code. Other implementations
(e.g. Concorde and LKH) include subroutines for computing lower bounds but none supported
finding a lower bound on a graph with many vertices where distances between vertices take
more than a few hundred nanoseconds to compute.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:13

5.1 The Mathematical Program
We wrote a procedure to find an approximately optimal solution to the dual of the linear
program (LP) that optimizes over the subtour elimination polytope. This LP is:

min c · x : x ≥ 0,
∑
{xe : e ∈ δ(S)} ≥ 2 for every nontrivial subset S (V

where there is a variable xe for each edge and a constraint for each nontrivial cut in the
graph. A nontrivial cut is the set of edges between the two parts of a bipartition of the
vertices. For a subset S of vertices, δ(S) is the set of edges between S and V − S.

The above LP is a relaxation of TSP: any tour induces an LP solution of the same value.
Therefore, the value of the LP is at most the value of the best tour.

Our procedure computes a solution to the dual of the above LP, namely

max ~2 · y : y ≥ 0,
∑
{yS : e ∈ δ(S)} ≤ ce for every edge e.

This LP has a variable yS assigning a weight to every cut δ(S). For each edge e, the total
weight of cuts containing e is required to be at most the cost of e. The goal is to maximize
twice the sum of the cut edges. This is called a packing of cuts. By LP duality, the value of
this LP equals the value of the LP with the subtour elimination constraints.

5.2 Approximation Scheme
Our procedure approximates the value of the packing LP using an approximation scheme of
Young [23] for solving fairly general mathematical programs (packing/covering) via solving
a sequence of simpler mathematical programs. In this application of the method, in each
iteration the procedure must find a cut whose weight is less than a threshold. The weights are
adjusted in each iteration. In particular, in each iteration the procedure increases the weights
of edges in the cut just selected, and adjusts the threshold. The number of iterations grows
as O(ε−2m log m) where m is the number of edges. Each iteration of the implementation
takes a step that is larger than that prescribed by theory; the implementation uses binary
search to find the largest step size that preserves the algorithm’s invariant.

The main work in each iteration is to find a cut of weight less than the threshold. There
is a near-linear-time algorithm [5] for min-weight cut in planar graphs. The algorithm uses
shortest-path separators, divide-and-conquer, and an O(n log n) algorithm for minimum
st-cut in a planar graph. We implemented this algorithm but using it to implement an
iteration is far too slow for our purposes. We therefore used it as the basis for a dynamic
min-cut algorithm.

5.3 Dynamic Algorithm for Min-Weight Cut in Planar Graphs
The divide-and-conquer algorithm forms a balanced binary tree, a recursive-decomposition
tree: each internal node has an associated min st-cut instance on a subgraph, and each
leaf has an associated global min-cut instance. The dynamic algorithm maintains a priority
queue of solutions to these instances, ordered according to the weights of the solutions.
However, the algorithm does not automatically update the solutions or the priority queue
when edge-weights increase.

When the LP algorithm requests a cut of weight less than a threshold, the dynamic
algorithm examines the cut in the priority queue whose key is smallest, and computes the
true weight of the cut (i.e. with respect to current edge-weights). If the true weight is
less than the threshold, the dynamic algorithm returns it; if not, the algorithm puts the

SEA 2017

8:14 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

corresponding instance in a queue of instances to reprocess, and moves on to the next cut
in the priority queue. Once the cuts in the priority queue are exhausted and no cut of
weight less than the threshold has been found, the algorithm turns to the queue of instances
to reprocess; it selects the smallest of these instances and recomputes the corresponding
cut. If that cut’s weight is still not less than the threshold, the algorithm goes to the next
larger instance, and so on. If this queue is exhausted, the algorithm starts from scratch,
recomputing shortest-path separators and the recursive-decomposition tree.

5.4 Experiments
As predicted by theory, the runtime of the lower bound procedure depends quadratically
on the inverse of the precision parameter ε. Also as predicted by theory, the number of
iterations grows as O(n log n). The runtime appears to scale slightly superlinearly with the
size of the graph, illustrating the empirical effectiveness of our dynamic min-cut algorithm.

The data are shown in the Appendix A.

6 Discussion

We implemented a PTAS for TSP on planar graphs designed to handle instances with millions
of vertices in a reasonable amount of time. Our analysis demonstrates that, despite the
significant hurdles presented by massive constants obscured in asymptotic notation, with a
bit of engineering, highly theoretical algorithms can become practical. Data used for the
road-map experiments will be made available at http://tsp.cs.brown.edu.

Comparison with Steiner tree. Like [21], we found that the maximum table size, λ, has
a major effect on runtime and quality. Implementing heuristics for pruning tables more
effectively seems like a viable strategy toward engineering a better, faster implementation.

In the “Conclusion and Outlook” section [21], Tazari and Müller-Hannemann write that
it “would be very interesting to see how the PTAS performs for [TSP] and especially, [sic] if
one can drastically reduce the required table sizes using well-known lower and upper bounds
for the TSP.” Unfortunately, it seems that the additional complexity of configurations in the
dynamic program for TSP (compared to those in Steiner tree) means that tables are not
able to be significantly smaller.

In Steiner tree, the configuration for a cluster boundary can be represented completely by
a non-crossing partition of the vertices of the boundary; this bounds the number of configura-
tions for a cluster of width k at Ck, which is significantly smaller than the

∑k
i=0 Ck−i

(2k
2i

)
we

encounter. For example, with a boundary size of 5, there are at most 42 Steiner tree config-
urations and over 2,000 TSP configurations. Furthermore, actually combining configurations
or determining if they are compatible is significantly more complicated.

Potential improvements. Our tours on the larger graphs might be better relative to the
optimum than we have reported: running the lower-bound code for longer will improve those
lower bounds.

The dynamic program can be easily parallelized. Considerable speedup might therefore
be achieved on multi-core processors by using parallel processing.

Racing several techniques to solve the slabs and taking whichever finishes first could
provide a significant speedup; although the slabs can contain O(n) vertices, frequently they
are small and could be solved more quickly with other techniques, e.g. local search. Simply
post-processing the tour using local search is likely to significantly improve the tour length.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:15

Upper and lower bounds could be used to prune away entire subtrees of the trie storing
configurations. A deeper understanding of which branch decompositions lead to good
solutions given a small λ value might improve quality significantly. Additionally, different
algorithms may yield lower-width branch decompositions; experimenting with these may be
fruitful.

Integrating our lower-bound computations into the dynamic program could prove fruitful
by determining which clusters have near-optimal-cost configurations and which need more
time invested. (Currently the lower-bound code is too slow to serve in that way.)

Tamaki’s heuristic [20] can be generalized [11] to handle planar hypergraphs. It might be
possible to use this to handle the localized nonplanarities that arise in road maps.

Adaptation to related problems. As discussed earlier, this is a first step in providing a
robust implementation capable of handling a suite of related problems, such as Steiner TSP.
To adapt to these other problems, one might need a more involved spanner step, as well as
to modify the configuration compatibility-checking code. Most of the engineering techniques
applied here will translate, often without modification, to related problems.

References
1 D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP solver, 2006.
2 F. Barahona. Planar multicommodity flows, max cut, and the chinese postman problem. In

Polyhedral Combinatorics, Proceedings of a DIMACS Workshop, Morristown, New Jersey,
USA, June 12-16, 1989, pages 189–202, 1990.

3 J. J. Bartholdi and L.K. Platzman. Heuristics based on spacefilling curves for combinatorial
problems in euclidean space. Management Science, 34(3):291–305, 1988.

4 G. Borradaile, P.N. Klein, and C. Mathieu. An O(n logn) approximation scheme for steiner
tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1–31:31, 2009.

5 P. Chalermsook, J. Fakcharoenphol, and D. Nanongkai. A deterministic near-linear time
algorithm for finding minimum cuts in planar graphs. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 828–829, 2004.

6 D. Cheriton and R.E. Tarjan. Finding minimum spanning trees. SIAM Journal on Com-
puting, 5(4):724–742, 1976.

7 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon University, 1976.

8 W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS Journal
on Computing, 15(3):233–248, 2003.

9 J. Dibbelt, B. Strasser, and D. Wagner. Customizable contraction hierarchies. ACM Journal
of Experimental Algorithmics, 21(1):1.5:1–1.5:49, 2016.

10 R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. Exact routing in large road networks
using contraction hierarchies. Transportation Science, 46(3):388–404, 2012.

11 Q.P. Gu and H. Tamaki. Improved bounds on the planar branchwidth with respect to the
largest grid minor size. Algorithmica, 64(3):416–453, 2012.

12 M. Haklay and P. Weber. Openstreetmap: User-generated street maps. IEEE Pervasive
Computing, 7(4):12–18, 2008.

13 K. Helsgaun. An effective implementation of the lin-kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106–130, 2000.

14 K. Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical
Programming Computation, 1(2-3):119–163, 2009.

SEA 2017

8:16 Engineering an Approximation Scheme for Traveling Salesman in Planar Graphs

15 P.N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with
edge-weights. SIAM Journal on Computing, 37(6):1926–1952, 2008.

16 T. Matsui. The minimum spanning tree problem on a planar graph. Discrete Applied
Mathematics, 58(1):91–94, 1995.

17 M. Müller-Hannemann and S. Schirra, editors. Algorithm engineering: bridging the gap
between algorithm theory and practice, volume LNCS 5971. Springer, 2010.

18 G. Reinelt. Fast heuristics for large geometric traveling salesman problems. ORSA Journal
on Computing, 4(3):206–217, 199.

19 P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241,
1994.

20 H. Tamaki. A linear time heuristic for the branch-decomposition of planar graphs. In
Algorithms – ESA 2003, volume 2832 of Lecture Notes in Computer Science, pages 765–
775. Springer, 2003.

21 S. Tazari and M. Müller-Hannemann. Dealing with large hidden constants: Engineering a
planar Steiner tree PTAS. Journal of Experimental Algorithmics (JEA), 16:3–6, 2011.

22 Y. Xia, M. Zhu, Q. Gu, L. Zhang, and X. Li. Toward solving the steiner travelling salesman
problem on urban road maps using the branch decomposition of graphs. Information
Sciences, 374:164–178, 2016.

23 N.E. Young. Sequential and parallel algorithms for mixed packing and covering. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 538–546, 2001.

24 M. Zhu. Computational study on branch decompositions of planar graphs. Master’s thesis,
School of Computing Science, Simon Fraser University, 2013.

A Experiments with lower-bound procedure

As predicted by theory, the number of iterations grows as O(n log n). Here the curve is
50 n log n:

0

5

10

15

20

25

0 5000 10000 15000 20000 25000 30000 35000 40000

M
ill
io
ns

of
ite

ra
tio

ns

Number of vertices

Figure 12 Lower-bound code: Number of interations grows as 50 n log n for graph size n.

A. Becker, E. Fox-Epstein, P. N. Klein, and D. Meierfrankenfeld 8:17

The runtime in minutes of several runs with different values of ε on a road network of
Rochester, NY is illustrated, along with the curve 0.008/ε2 − 0.18.

0
1
2
3
4
5
6
7
8
9

10

0 0.05 0.1 0.15 0.2

R
un

tim
e
(m

in
ut
es
)

Precision parameter ε

Figure 13 Lower-bound code: Runtime shrinks as 0.008/ε2 − 0.18 for precision parameter ε.

As visualized below, the runtime of the lower bound code appears to scale slightly
superlinearly with the size of the graph. This shows the empirical effectiveness of our
dynamic-min-cut algorithm. This plot shows runtime on a variety of synthetic grids with
ε = 0.05.

0

1

2

3

4

5

6

7

0 5000 10000 15000 20000 25000 30000 35000 40000

R
un

tim
e
(m

in
ut
es
)

Number of vertices

Figure 14 Lower-bound code: Runtime as a function of graph size.

SEA 2017

Approximating the Smallest 2-Vertex-Connected
Spanning Subgraph via Low-High Orders
Loukas Georgiadis1, Giuseppe F. Italiano2, and
Aikaterini Karanasiou3

1 University of Ioannina, Ioannina, Greece
loukas@cs.uoi.gr

2 University of Rome Tor Vergata, Rome, Italy
giuseppe.italiano@uniroma2.it

3 University of Rome Tor Vergata, Rome, Italy
Aikaterini.Karanasiou.@uniroma2.it

Abstract
Let G = (V,E) be a 2-vertex-connected directed graph with m edges and n vertices. We consider
the problem of approximating the smallest 2-vertex connected spanning subgraph (2VCSS) of G,
and provide new efficient algorithms for this problem based on a clever use of low-high orders.
The best previously known algorithms were able to compute a 3/2-approximation in O(m

√
n+n2)

time, or a 3-approximation faster in linear time. In this paper, we present a linear-time algorithm
that achieves a better approximation ratio of 2, and another algorithm that matches the previous
3/2-approximation in O(m

√
n+ n2) time. We conducted a thorough experimental evaluation of

all the above algorithms on a variety of input graphs. The experimental results show that both
our two new algorithms perform well in practice. In particular, in our experiments the new
3/2-approximation algorithm was always faster than the previous 3/2-approximation algorithm,
while their two approximation ratios were close. On the other side, our new linear-time algorithm
yielded consistently better approximation ratios than the previously known linear-time algorithm,
at the price of a small overhead in the running time.

1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks, Trees, G.2.2
[Graph Theory] Graph Algorithms

Keywords and phrases 2-vertex connectivity, approximation algorithms, directed graphs

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.9

1 Introduction

The problem of approximating subgraphs that satisfy certain connectivity requirements has
received a lot of attention (see, e.g., [9], and the survey [21]). In general, computing efficiently
small spanning subgraphs that retain some desirable properties of an input graph is of
particular importance when dealing with large-scale networks (e.g., networks with hundreds
of million to billion edges), which arise often in today’s applications. In this framework,
designing practically efficient algorithms is also of the utmost importance. In particular, one
of the biggest challenge is to design fast linear-time algorithms, since algorithms with higher
running times might be practically infeasible on large-scale networks.

Before defining formally our problems, we need some preliminary definitions. Let G =
(V,E) be a strongly connected directed graph (digraph) with m edges and n vertices. A vertex
x of G is a strong articulation point if G \ x is not strongly connected, i.e., the removal of x
destroys the strong connectivity of G. A strongly connected digraph G is 2-vertex-connected

© Loukas Georgiadis, Giuseppe F. Italiano, and Aikaterini Karanasiou;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

if it has at least three vertices and no strong articulation points. More generally, a strongly
connected digraph is k-vertex connected if it has at least k + 1 vertices and the removal of
any set of at most k − 1 vertices leaves the graph strongly connected. The computation
of a smallest (i.e., with minimum number of edges) k-vertex-connected spanning subgraph
(kVCSS) of a given k-vertex-connected graph is a fundamental problem in network design.

In this paper, we consider the problem of approximating the smallest 2-vertex con-
nected spanning subgraph (2VCSS) of a 2-vertex connected digraph G. The current best
approximation ratio for this problem is 3/2, and it was achieved first by the algorithm by
Cheriyan and Thurimella [5], which runs in O(m2) time. Georgiadis [11] presented a faster
linear-time algorithm which achieves a 3-approximation. He then combined his algorithm
with the 3/2-approximation algorithm of Cheriyan and Thurimella [5] to achieve a new 3/2-
approximation algorithm which runs in faster O(m

√
n+ n2) time. As explicitly mentioned

in [11], the previous experimental study on approximation algorithms for the 2VCSS problem
by Georgiadis [11] focused mainly on the solution quality achieved in practice, and not much
effort was put into optimizing the running time of the algorithms considered.

The main contributions of this paper are two new efficient algorithms for this problem
which exploit in a novel fashion the low-high order of a digraph [14]. Specifically, we
first provide a linear-time algorithm that achieves a better approximation ratio of 2, thus
improving significantly the best previous approximation ratio achievable in linear time for
this problem [11]. Next, we show how to combine our new linear-time algorithm with the
3/2-approximation algorithms of Cheriyan and Thurimella [5] for 2VCSS and of Zhao et
al. [27] for approximating the smallest strongly connected spanning subgraph (SCSS), so as
to obtain an algorithm that achieves a 3/2-approximation in O(m

√
n+ n2) time for 2VCSS.

Hence, our new algorithm matches the previously known best bounds of [11].
To assess their practical value, we conducted a thorough experimental evaluation of all

the above algorithms on a variety of input graphs. In order to make a fair comparison,
in addition to the efficient implementations of our new algorithms, we also provide newly
engineered and faster implementations of the algorithms by Georgiadis [11], which have
better running times in practice while still achieving the same approximation ratios.

Our experimental results show that both our two new algorithms perform well in practice.
In particular, in our experiments the new 3/2-approximation algorithm kept essentially the
same approximation ratio as the previous algorithm, but it was significantly faster. On the
other side, our new linear-time algorithm yielded consistently better approximation ratios
than the previously known linear-time algorithm, at the price of a small overhead in the
running time.

We observe that recent work [12, 13] considered also slightly more general problems than
the one considered in this paper, such as approximating the smallest strongly connected
spanning subgraph that maintains 2-connectivity relations of a strongly connected digraph
G (where G is not necessarily 2-vertex-connected). Some of the results in this paper extend
directly to this setting as well. For instance, our new linear-time 2-approximation algorithm
for 2VCSS immediately implies a linear-time 2-approximation algorithm for computing the
smallest strongly connected spanning subgraph of G that maintains the maximal 2-vertex-
connected subgraphs of G.

2 Preliminaries

In this section, we review some basic notions and results used in our algorithms. A flow
graph G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex s ∈ V

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:3

𝑎

𝑏 𝑐

𝑓 𝑔

𝑑 𝑒

ℎ

𝐺

7 3

5

1

8

46

2

𝑎

𝑏 𝑐

𝑓 𝑔

𝑑 𝑒

ℎ

𝐵

𝑎

𝑏 𝑐

𝑓 𝑔

𝑑 𝑒

ℎ

𝑅

Figure 1 A 2-vertex-connected digraph G with vertices numbered in a low-high order (left); two
divergent spanning trees B and R of G rooted at vertex a (right).

such that all vertices are reachable from s. The dominator relation in G is defined as follows.
A vertex v is a dominator of a vertex w (v dominates w) if every path from s to w contains
v; v is a proper dominator of w if v dominates w and v 6= w. The dominator relation in
G can be represented by a tree rooted at s, the dominator tree D, such that v dominates
w if and only if v is an ancestor of w in D. Throughout the paper, for each vertex v 6= s

we let d(v) denote the parent of v in D. The dominator tree is a central tool in program
optimization and code generation [6], and it has applications in other diverse areas [16]. The
dominator tree of a flow graph can be computed in linear time [1, 4].

A spanning tree T of a flow graph G is a tree with root s that contains a path from s to
v for all vertices v.

Given a rooted tree T , we denote by T (v) the subtree of T rooted at v (we also view T (v)
as the set of descendants of v).

Let T be a tree rooted at s with vertex set V , and let t(v) denote the parent of a vertex v
in T . If v is an ancestor of w, we denote by T [v, w] the path from v to w in T . In particular,
D[s, v] consists of the vertices that dominate v. If v is a proper ancestor of w, T (v, w] is
the path to w from the child of v that is an ancestor of w. A tree T is flat if its root is the
parent of every other vertex.

A preorder of T is a total order of the vertices of T such that, for every vertex v, the
descendants of v are ordered consecutively, with v first.

A low-high order δ of G [14] is a preorder of the dominator tree D with the following
property: for all vertices v 6= s, either (d(v), v) ∈ E or there are two edges (u, v) ∈ E,
(w, v) ∈ E such that u is less than v (u <δ v), v is less than w (v <δ w), and w is not a
descendant of v in D. . Note that if D is flat, then the above definition of a low-high order
δ is simplified as follows: for all vertices v 6= s, either (s, v) ∈ E or there are two edges
(u, v) ∈ E, (w, v) ∈ E such that u <δ v and v <δ w. See Figure 1. Every flow graph G

has a low-high order, computable in linear-time [14]. Low-high orders provide a correctness
certificate for dominator trees that is straightforward to verify [26], and also have applications
in path-determination problems [14, 25] and in fault-tolerant network design [2, 3, 15].

Let G = (V,E, s) be a flow graph, and let D be a dominator tree of G. Fix a low-high
order δ of G and let E′ ⊆ E be a subset of edges of G. We say that E′ satisfies δ if for any
vertex v 6= s we have that either (d(v), v) ∈ E′ or there are two edges (u, v) ∈ E′, (w, v) ∈ E′
such that u <δ v and v <δ w, and w is not a descendant of v in D. If E′ ⊆ E satisfies δ,
then G′ = (V,E′, s) is a flow graph with the same dominator tree as G.

A notion closely related to low-high orders is that of divergent spanning trees [14].

SEA 2017

9:4 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

Let G = (V,E, s) be a flow graph. Two spanning trees B and R of G, rooted at s, are
divergent if for all v, the paths from s to v in B and R share only the dominators of v, i.e.,
B[s, v] ∩R[s, v] = D[s, v].

Every flow graph has a pair of divergent spanning trees. Given a low-high order of G,
two divergent spanning trees of G can be computed in time O(m+ n) [14].

Let G = (V,E) be a strongly connected graph. Note that, for any arbitrarily selected
start vertex s in V , Gs = (V,E, s) is a flow graph. Since there is no danger of ambiguity, in
the following we will denote by G both the original strongly connected graph G and the flow
graph Gs. We denote by GR = (V,ER) the reverse digraph of G that results from G after
reversing all edge directions. Arbitrarily fix a start vertex s in V : similarly to before, we
also denote by GR the flow graph with start vertex s, and by DR the dominator tree of the
flow graph GR. As proved in [19], a vertex v 6= s is a strong articulation point of G if and
only if v is not a leaf in D or not a leaf in DR. This implies the following property, which
will be used throughout the paper:

I Property 1. A strongly connected graph G is 2-vertex-connected if and only if:
(a) Both D and DR are flat, and
(b) G \ s is strongly connected.

3 A linear-time 2-approximation algorithm

In this section, we present our new linear-time algorithm that computes a 2-approximation
to the smallest 2-vertex-connected subgraph (2VCSS) of a 2-vertex-connected digraph G.
The algorithm, which we call LH-Z, exploits the properties of low-high orders and uses the
algorithm of Zhao et al. [27] for computing approximate smallest strongly connected spanning
subgraphs (SCSS). LH-Z, described in Algorithm 1 as pseudocode, works as follows. We first
choose arbitrarily a vertex s in G and start with an approximate smallest strongly connected
spanning subgraph H of G \ s, which can be computed with the algorithm of Zhao et al. [27]
(lines 1–3). We then compute a low-high order of the flow graph G with start vertex s (line
4); next, we add edges to H so as to ensure that the edge set of H satisfies δ, that is, δ is
also a low-high order for all vertices v 6= s in H (lines 5–17). This step is repeated also for
the reverse flow graph GR, with the same start vertex s (line 18). We start by proving that
the spanning subgraph computed by Algorithm LH-Z is 2-vertex-connected.

I Lemma 2. Algorithm LH-Z computes a 2-vertex-connected spanning subgraph of G.

Proof. Let H be the subgraph computed by LH-Z. To show that H is 2-vertex connected,
we prove that Property 1 holds. Note that (b) trivially holds because H is initially a strongly
connected spanning subgraph of G \ s (line 2), and it remains so after adding edges. It thus
remains to show that both H and HR have flat dominator trees. We only prove this for H,
since the same argument applies to HR.

Let δ be the low-high order of G computed in line 4. We argue that after the execution
of the for loop in lines 5–17, δ must be also a low-high order in H (i.e., the edges of H satisfy
δ). Consider an arbitrary vertex v 6= s. Let (x, v) be an edge entering v in the initial strongly
connected spanning subgraph of G computed in line 2. If x >δ v, then, by the definition of δ,
there is at least one edge (y, v) ∈ E such that y <δ v. (Note that we can have y = s since
s <δ v for all v 6= s.) Hence, after the execution of the for loop for v, the edge set EH will
contain at least two edges (u, v) and (w, v) such that u <δ v <δ w. On the other hand, if
x <δ v, then the definition of δ implies that there is an edge (y, v) ∈ E such that y >δ v or
y = s. Notice that in either case y 6= x because (x, v) is an edge of G \ s. So, again, after the

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:5

Algorithm 1: LH-Z(G)
Input: 2-vertex-connected digraph G = (V,E)
Output: 2-approximation of a smallest 2-vertex-connected spanning subgraph

H = (V,EH) of G
1 Choose an arbitrary vertex s of G as start vertex.
2 Compute a strongly connected spanning subgraph H = (V \ s, EH) of G \ s.
3 Set H ← (V,EH).
4 Compute a low-high order δ of flow graph G with start vertex s.
5 foreach vertex v 6= s do
6 if there are two edges (u, v) and (w, v) in EH such that u <δ v and v <δ w then
7 do nothing
8 end
9 else if there is no edge (u, v) ∈ EH such that u <δ v then

10 find an edge e = (u, v) ∈ E with u <δ v
11 set EH ← EH ∪ {e}
12 end
13 else if there is no edge (w, v) ∈ EH such that v <δ w then
14 find an edge e = (w, v) ∈ E with v <δ w or w = s

15 set EH ← EH ∪ {e}
16 end
17 end
18 Execute the analogous steps of lines 4–17 for the reverse flow graph GR with start

vertex s.
19 return H = (V,EH)

execution of the for loop for v, the edge set EH will contain at least two edges (u, v) and
(w, v) such that either u <δ v <δ w, or u <δ v and w = s. It follows that δ is a low-high
order for all vertices v 6= s in H.

As proved in [14], this implies that H contains two divergent spanning trees B and R
of G. Since G is 2-vertex-connected, it has a flat dominator tree, and thus we have that
B[s, v] ∩R[s, v] = {s, v} for all v ∈ V \ s. Hence, since H contains B and R, the dominator
tree of H is also flat. J

We remark that the construction of H in algorithm LH-Z guarantees that s will have
in-degree and out-degree at least 2 in H. (This fact is implicit in the proof of Lemma 2.)
Indeed, H will contain the edges from s to the vertices in V \ s with minimum and maximum
order in δ, and the edges entering s from the vertices in V \ s with minimum and maximum
order in δR.

I Theorem 3. Algorithm LH-Z computes a 2-approximation for 2VCSS in linear time.

Proof. We first establish the approximation ratio of LH-Z by showing that |EH | ≤ 4n. The
approximation ratio of 2 follows from the fact that any vertex in a 2-vertex-connected digraph
must have in-degree at least two. In line 2 we can compute an approximate smallest strongly
connected spanning subgraph H of G \ s [20]. For this, we can use the linear-time algorithm
of Zhao et al. [27], which selects at most 2(n− 1) edges. Now consider the edges selected
in the for loop of lines 5–17. Since after line 2, H \ s is strongly connected, each vertex
v ∈ V \s has at least one entering edge (x, v). If x <δ v then lines 10–11 will not be executed;

SEA 2017

9:6 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

otherwise, v <δ x and lines 14–15 will not be executed. Thus, the for loop of lines 5–17 adds
at most one edge entering each vertex v 6= s. The same argument implies that the analogous
steps executed for GR add at most one edge leaving each vertex v 6= s. Hence, at the end of
the execution EH contains at most 4(n− 1) edges.

Note that the algorithm by Zhao et al. [27] runs in linear time, and a low-high order can
also be computed in linear-time [14]. Furthermore, all other steps of Algorithm LH-Z can be
implemented in linear time. This yields the lemma. J

I Remark. In line 2 of algorithm LH-Z, we can alternatively set H to be the union of two
spanning trees as follows. We choose an arbitrary vertex s′ 6= s as the start vertex of G \ s
and compute two spanning trees T and TR of the flow graphs G\ s and (G\ s)R, respectively,
rooted at s′. Then, we letH consist of the edges {(u, v) : (u, v) ∈ T}∪{(u, v) : (v, u) ∈ TR},
which are at most 2(n− 1) as required by the proof of Theorem 3. In our implementation,
however, we use the algorithm of Zhao et al. [27] instead. This way, we obtained better
results in practice.

4 A 3/2-approximation algorithm

In this section we present a new algorithm, called LH-Z-CT, that combines our linear-time
algorithm LH-Z described in Section 3 with the 3/2-approximation algorithm of Cheriyan
and Thurimella [5]. We first describe a simple filtering algorithm that computes a minimal
2VCSS, and then give an overview of the Cheriyan-Thurimella algorithm.

Let G = (V,E) be the input 2-vertex-connected digraph. A simple O(m2)-time algorithm
that gives a 2-approximation G′ = (V,E′) of the smallest 2VCSS of G filters out redundant
edges as follows: Initially, we set G′ = G. Then, we process the edges of E in an arbitrary
order: when we process an edge (x, y) we test if G′ \(x, y) contains at least two vertex-disjoint
paths from x to y. If this is the case, then we remove the edge (x, y) from E′; otherwise,
we keep the edge (x, y) in E′ and proceed with the next edge. Clearly, at the end of this
procedure G′ is a minimal 2VCSS of G, i.e., for any edge (x, y) ∈ E′, G′ \ (x, y) is not
2-vertex-connected. We refer to this algorithm as MINIMAL.

Testing if a digraph G has two vertex-disjoint paths from x to y can be done in O(m)
time by using two iterations of the Ford-Fulkerson flow-augmenting method [10]. The Ford-
Fulkerson method actually finds edge-disjoint paths, but we can also compute vertex-disjoint
paths after applying vertex-splitting. Specifically, we create a modified graph G = (V ,E)
that results from G as follows. The vertex set V contains a pair of vertices v− and v+ for
each vertex v ∈ V . The edge set E contains the edges (v−, v+) corresponding to all v ∈ V .
Also, for each edge (v, w) ∈ E, we include the edge (v+, w−) in E. It is easy to see that
there are k vertex-disjoint paths from x to y in G if and only if there are k edge-disjoint
paths from x+ to y− in G. Note that G has 2n vertices and m+ n edges.

The algorithm by Cheriyan and Thurimella [5] (CT) uses matchings in order to improve
the approximation guarantee of MINIMAL. Let M ⊆ E be a set of edges such that every
vertex has indegree and outdegree at least one in the subgraph having vertex set V and edge
set M .

We call a minimum such set M a 1-matching of G. This can be computed in time
O(m

√
n) via a reduction to maximum bipartite matching [18]. After computing M , the CT

algorithm executes a slightly modified filtering phase, which applies the two vertex-disjoint
paths test to all edges in E \M . Hence, CT computes a subgraph G′ = (V,E′) of G, where
E′ = M ∪ F and F is a minimal set of edges of G such that G′ is 2-vertex-connected.
Algorithm CT also runs in O(m2) time.

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:7

Algorithm 2: LH-Z-CT(G)
Input: 2-vertex-connected digraph G = (V,E)
Output: 3/2-approximation of a smallest 2-vertex-connected spanning subgraph

H = (V,EH) of G
1 Compute a 1-matching M of G.
2 Choose an arbitrary vertex s of G as start vertex.
3 Let G′ be the subgraph of G \ s, for arbitrary start vertex s, that contains only the

edges in M .
4 Compute the strongly connected components C1, . . . , Ck in G′.
5 Form a contracted version Ğ of G \ s as follows. For each strongly connected

component Ci of G′, we contract all vertices in Ci into a representative vertex
ui ∈ Ci.

6 Compute a strongly connected spanning subgraph Ğ′ of Ğ. Let Z be the original
edges of G that correspond to the edges of Ğ selected in Ğ′.

7 Set H ← (V,EH = M ∪ Z).
8 Compute a low-high order δ of flow graph G with start vertex s.
9 foreach vertex v 6= s do

10 if there are two edges (u, v) and (w, v) in EH such that u <δ v and v <δ w then
11 do nothing
12 end
13 else if there is no edge (u, v) ∈ EH such that u <δ v then
14 find an edge e = (u, v) ∈ E with u <δ v
15 set EH ← EH ∪ {e}
16 end
17 else if there is no edge (w, v) ∈ EH such that v <δ w then
18 find an edge e = (w, v) ∈ E with v <δ w or w = s

19 set EH ← EH ∪ {e}
20 end
21 end
22 Execute the analogous steps of lines 4–17 for the reverse flow graph GR with start

vertex s.
23 foreach edge (x, y) of EH \M do
24 if there are two vertex-disjoint paths from x to y in H \ (x, y) then
25 Set EH ← EH \ (x, y).
26 end
27 end
28 return H = (V,EH)

Our Algorithm LH-Z-CT (whose pseudocode is described below) works as follows. First,
it computes a 1-matching M as CT. Let s be an arbitrary start vertex, and let G′ be the
subgraph of G \ s that contains only the edges in M . We compute the strongly connected
components C1, . . . , Ck in G′, and form a contracted version Ğ of G \ s as follows. For each
strongly connected component Ci of G′, we contract all vertices in Ci into a representative
vertex ui ∈ Ci.

Then, we execute the linear-time algorithm of Zhao et al. [27] to compute a strongly
connected spanning subgraph of Ğ, and store the original edges of G that correspond to the
selected edges by the Zhao et al. algorithm. Let Z be this set of edges. Next, we compute

SEA 2017

9:8 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

a low-high order of G with root s, and use it in order to compute a 2-vertex-connected
spanning subgraph H of G using as many edges from Z and M as possible, as in LH-Z.

Then, we run the filtering phase of Cheriyan and Thurimella, as follows. For each edge
(x, y) of H that is not in M , we test if x has two vertex-disjoint paths to y in H \ (x, y). If it
does, then we set H ← H \ (x, y).

I Theorem 4. Algorithm LH-Z-CT computes a 3/2-approximation for 2VCSS in O(m
√
n+n2)

time.

Proof. First, we note that the spanning subgraph computed by algorithm LH-Z-CT is 2-
vertex-connected since it satisfies Property 1. Indeed, let H ′ be the graph computed in
lines 1–22. Then H ′ is 2-vertex-connected, since it contains a strongly connected spanning
subgraph of G \ s, and a set of edges that satisfies a low-high order of G and GR. Also, the
filtering phase preserves the 2-vertex-connectivity of H.

Next, we establish the 3/2 approximation ratio of LH-Z-CT by showing that a specific
execution of CT produces the same output subgraph.

Let S be the set of edges of H ′ (i.e., the edges of H just after the execution of lines
1–22). Note that the approximation ratio of CT does not depend on the order that edges are
processed during the filtering phase. Hence, we can assume that CT processes the edges of
E \ S first. Notice that for each (x, y) ∈ E \ S, H ′ contains two vertex-disjoint paths from x

to y. Hence, each such edge will not be included in the subgraph computed by CT. So, if
we fix the order in which the edges in S are processed, the filtering phase in both CT and
LH-Z-CT will remove exactly the same redundant edges.

Finally, we consider the running time of LH-Z-CT. Line 1 takes O(m
√
n) time [18], and

lines 2–5 take O(m) time [24]. In line 6, we can compute a SCSS of Ğ in O(m) time [27],
and in line 8 we can compute a low-high order of G in O(m) time [14]. Finally, the loops in
lines 9–2 and 23–27 take O(m) and O(n2) time, respectively. J

We mention that in our implementation, the bipartite matching is computed via max-flow,
using an implementation of the Goldberg-Tarjan push-relabel algorithm [17] from [7], which
is known to be very fast in practice.

5 Empirical Analysis

For the experimental evaluation we use the graph datasets shown in Table 1, taken from
the Koblenz Network Collection [22], the Stanford Network Analysis Project [23] and the
9th DIMACS Implementation Challenge [8]. For each tested graph, we computed its largest
2-vertex-connected subgraph and used that as input to our algorithms. We wrote our
implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3) to compile the
code. We report the running times on a GNU/Linux machine, with Ubuntu (16.04LTS): a
Dell Inspiron 64-bit machine with Intel® Core ™ i7-7500U processor’s seventh-generation (4
MB of cache, up to 3.5GHz) and 16 GB of RAM memory. In our experiments we did not use
any parallelization, and each algorithm ran on a single core. We report CPU times measured
with the getrusage function, averaged over ten different runs.

Since we do not know the size of the optimal 2VCSS in each of these graphs, we measure
the quality of the produced solution G′ = (V ′, E′) by calculating the relative distance from
the naive theoretical lower bound, i.e., |E

′|−2|V |
2|V | × 100%. We refer to this relative distance as

the quality measure (qm).

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:9

Table 1 Real-world graphs used in the experiments. From each original graph, we extracted its
largest 2-vertex-connected subgraph. The number of vertices n and of edges m refer to each such
subgraph.

Graph 2VCCs Type

n m

amazon-302 55414 241663 co-purchase [23]

amazon-601 276049 2461072 co-purchase [23]

advogato 3140 35979 social [22]

rome99 2249 6467 road network [8]

soc-Epinions 17117 395183 trust network [23]

web-BerkStan-1 1106 8206 web [23]

web-BerkStan-2 4927 28142 web [23]

web-BerkStan-3 29145 439148 web [23]

web-Google 77480 840829 web [23]

web-NotreDame-1 1462 10195 web [23]

web-NotreDame-2 1409 9663 web [23]

web-NotreDame-3 1416 13226 web [23]

web-Stanford-1 5179 129897 web [23]

web-Stanford-2 10893 162295 web [23]

wiki-signed 14895 324776 online contact [22]

wikiTalk 49430 2461072 wiki communication [23]

5.1 Implemented Algorithms

In our experimental evaluation we compared a total of six algorithms for computing the
(approximated) smallest 2-vertex-connected spanning subgraph. In addition to our two new
algorithms, LH-Z (Section 3) and LH-Z-CT (Section 4), we also considered the algorithms
from [11]: FAST, CT, MINIMAL and FAST-CT.

Algorithm FAST computes a 3-approximation in linear-time by using divergent spanning
trees. Specifically, it computes the edges of two divergent spanning trees of G and of two
divergent spanning trees of GR so that it satisfies Property 1(a). Then it tests if these edges
also satisfy Property 1(b), and if not it adds the edges of a SCSS of G \ s by running the
algorithm of Zhao et al. [27]. MINIMAL computes a 2-approximation in O(m2) time by
applying the two vertex-disjoint paths test (see Section 4) and FAST-CT combines FAST
with the 3/2-approximation algorithm of Cheriyan and Thurimella [5], which gives a 3/2-
approximation in O(m

√
n+ n2) time. In the experiments reported in [11], FAST achieved

the best running times, while FAST-CT achieved the best solution quality.
Here, we also provide a new and faster implementation of CT, MINIMAL and FAST-CT,

that we refer to as CT+, MINIMAL+ and FAST-CT+. The main improvement is in the
implementation of the filtering phase. In the original implementations in [11], the filtering
phase is performed by computing dominators in order to avoid computing the modified graph

SEA 2017

9:10 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

G (which is obtained by applying vertex-splitting). Specifically, to test if G′ \ (x, y) has two
vertex-disjoint paths from x to y, FAST-CT sets x as the start vertex of G′ and computes
the immediate dominator d(y) of y. Such two paths exist if and only if d(y) = x. Our new
implementations apply two iterations of the flow-augmentation method on the modified
graph G, as described in Section 4.

(We used the same implementation of the filtering phase in LH-Z-CT as well.)
We only report the comparison of the running times for FAST-CT and its improved

implementation FAST-CT+ in Figure 2 and Table 2. (Both implementations produce the
same solutions.) As it is evident, our improved implementation is faster by one order of
magnitude. Similar speedups are obtained for CT+ and MINIMAL-CT+

5.2 Experimental Results

The running time and quality measure of LH-Z, FAST, LH-Z-CT, FAST-CT+, CT+, and
MINIMAL+ are given in Tables 3 and 4, and plotted in Figures 3 and 4. Recall that the
quality measure of each of the algorithms FAST-CT, CT, and MINIMAL from [11] is identical
to the quality measure achieved by the corresponding improved implementations FAST-CT+,
CT+, and MINIMAL+, respectively. Hence, we do not report the results of the former
implementations. It is easy to observe that the algorithms belong to two distinct classes, with
FAST and LH-Z being faster than the rest by approximately four to five orders of magnitude.
One the other hand, on average they produce a 2VCSS with about 10–20% more edges.

Since for large scale graphs it is important to be able to compute a good solution very
fast, it is interesting to compare the performance of the linear-time algorithms FAST and
LH-Z. We observe that in all test cases LH-Z was able to compute a 2VCSS with 6–25% fewer
edges at the price of a small overhead in the running time.

In our next experiment, we compare algorithms FAST-CT+ and LH-Z-CT which produce
the best solutions overall. Observe that LH-Z-CT is always faster, mainly due to the fact that
it has to process fewer edges during the filtering phase. Moreover, in some instances LH-Z-CT
is significantly faster; e.g., its more than 45% times faster for wiki-signed and amazon-601.
FAST-CT+ on the other hand, produced better solutions in 10 out the 14 test graphs, but
the difference is marginal (at most 6.7% fewer edges).

Finally, we consider the performance of CT+ and MINIMAL+. Notice that although
MINIMAL+, rather surprisingly, computes better solutions in 3 test graphs, its performance
is rather unstable. Observe, for instance, that for 3 graphs (web-Stanford-2, web-BerkStan-3
and web-Google) it computes a worse solution than LH-Z. CT+ seems more robust in that
sense, but with the exception of 4 graphs it computed an inferior solution compared to
FAST-CT+, while being significantly slower.

Hence, our main conclusions are the following:
Our new linear-time algorithm, LH-Z, computes a 2VCSS of reasonable quality very fast.
Hence, if one wants a fast and good solution LH-Z is the right choice.
Executing the filtering phase on a sparse subgraph of the input digraph, produced by
either FAST or LH-Z, not only decreases the running time drastically, but also helps to
compute a smaller 2VCSS in the end.

Acknowledgments. We are grateful to the authors of [7] for providing the implementation
of their algorithm.

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:11

 0.01

 0.1

 1

 10

 100

 1000

 10000

1+e4 1+e5 1+e6

ro
m

e9
9

w
eb

-N
ot

re
D

am
e-

3

w
eb

-B
er

kS
ta

n-
2

ad
vo

ga
to

w
eb

-S
ta

nf
or

d-
2

w
eb

-S
ta

nf
or

d-
1

am
az

on
-3

02
w

ik
i-s

ig
ne

d
so

c-
Ep

in
io

ns

w
eb

-B
er

kS
ta

n-
3

w
eb

-G
oo

gl
e

w
ik

iT
al

k

am
az

on
-6

01

FAST-CT
FAST-CT+

Figure 2 Running times (in seconds) of FAST-CT vs our improved implementation FAST-CT+.
(The data on the experiment with amazon-601 is not reported, because FAST-CT took too long to
finish.)

Table 2 Running times (in seconds) of the plot shown in Figure 2.

Graph FAST-CT+ FAST-CT

rome99 0.076 1.312

web-BerkStan-1 0.044 0.220

web-NotreDame-3 0.060 0.568

web-BerkStan-2 0.452 8.404

advogato 0.352 2.692

web-Stanford-2 1.628 15.228

web-Stanford-1 3.424 46.800

amazon-302 131.376 1569.784

wiki-signed 17.436 217.672

soc-Epinions 19.132 197.940

web-BerkStan-3 23.264 488.604

web-Google 220.480 4200.888

wikiTalk 169.580 1689.104

amazon-601 6959.168 >24h

SEA 2017

9:12 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

Table 3 Solution Quality (Quality Measure) of all algorithms that we considered.

Graph LH-Z FAST LH-Z-CT FAST-CT+ CT+ MINIMAL+

rome99 19.39 26.52 7.65 7.16 6.85 6.56

web-BerkStan-1 26.36 54.75 9.13 6.69 21.75 4.66

web-NotreDame-3 40.89 65.50 24.61 26.20 39.83 33.47

web-BerkStan-2 24.78 35.89 9.18 7.66 17.16 20.25

advogato 50.26 80.69 20.84 16.83 16.57 20.95

web-Stanford-2 40.79 73.20 14.94 14.36 32.02 47.78

web-Stanford-1 53.74 65.88 27.70 28.95 41.18 51.81

amazon-302 27.65 48.86 10.59 11.46 13.68 9.61

wiki-signed 58.37 84.44 36.61 28.02 27.50 29.80

soc-Epinions 50.50 75.63 21.98 19.86 20.59 27.56

web-BerkStan-3 51.25 70.76 35.38 32.45 41.23 52.25

web-Google 42.83 65.24 24.88 24.40 35.60 44.95

wikiTalk 62.99 78.11 40.91 38.91 37.38 38.33

amazon-601 34.82 68.99 10.16 12.74 24.64 17.08

Table 4 Running times (in seconds) of all algorithms that we considered.

Graph LH-Z FAST LH-Z-CT FAST-CT+ CT+ MINIMAL+
rome99 0.001 0.001 0.062 0.076 0.092 0.144
web-BerkStan-1 0.001 0.001 0.016 0.044 0.060 0.052
web-NotreDame-3 0.004 0.001 0.036 0.060 0.088 0.088
web-BerkStan-2 0.004 0.004 0.332 0.452 1.148 1.792
advogato 0.004 0.004 0.196 0.352 0.792 0.916
web-Stanford-2 0.012 0.008 1.380 1.628 4.640 7.668
web-Stanford-1 0.012 0.016 2.472 3.424 6.948 11.104
amazon-302 0.040 0.036 86.120 131.376 156.956 195.064
wiki-signed 0.028 0.024 9.132 17.436 42.984 66.948
soc-Epinions 0.040 0.028 13.792 19.132 58.780 79.216
web-BerkStan-3 0.028 0.024 20.072 23.264 53.524 77.900
web-Google 0.084 0.072 168.096 220.480 378.764 687.964
wikiTalk 0.116 0.092 140.464 169.580 838.528 1191.800
amazon-601 0.396 0.400 3678.768 6959.168 69434.112 11374.128

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:13

 10

 20

 30

 40

 50

 60

 70

 80

 90

1+e4 1+e5 1+e6

ro
m
e9
9

w
eb
-B
er
kS
ta
n-
1

w
eb
-N
ot
re
D
am

e-
3

w
eb
-B
er
kS
ta
n-
2

ad
vo
ga
to

w
eb
-S
ta
nf
or
d-
2

w
eb
-S
ta
nf
or
d-
1

am
az
on
-3
02

w
ik
i-s
ig
ne
d

so
c-
Ep
in
io
ns

w
eb
-B
er
kS
ta
n-
3

w
eb
-G
oo
gl
e

w
ik
iT
al
k

am
az
on
-6
01

FAST
LH-Z

 0.0001

 0.001

 0.01

 0.1

1+e4 1+e5 1+e6

ro
m
e9
9

w
eb
-B
er
kS
ta
n-
1

w
eb
-N
ot
re
D
am

e-
3

w
eb
-B
er
kS
ta
n-
2

ad
vo
ga
to

w
eb
-S
ta
nf
or
d-
2

w
eb
-S
ta
nf
or
d-
1

am
az
on
-3
02

w
ik
i-s
ig
ne
d

so
c-
Ep
in
io
ns

w
eb
-B
er
kS
ta
n-
3

w
eb
-G
oo
gl
e

w
ik
iT
al
k

am
az
on
-6
01

LH-Z
FAST

Figure 3 Performance of linear-time algorithms: solution quality (top) and running time in
seconds (bottom). Running times and graph sizes (number of edges) are shown in log scale.

SEA 2017

9:14 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

 10

 20

 30

 40

 50

1+e4 1+e5 1+e6

ro
m

e9
9

w
eb

-B
er

kS
ta

n-
1

w
eb

-N
ot

re
D

am
e-

3

w
eb

-B
er

kS
ta

n-
2

ad
vo

ga
to

w
eb

-S
ta

nf
or

d-
2

w
eb

-S
ta

nf
or

d-
1

am
az

on
-3

02
w

ik
i-s

ig
ne

d
so

c-
Ep

in
io

ns
1

w
eb

-B
er

kS
ta

n-
3

w
eb

-G
oo

gl
e

w
ik

iT
al

k-
1

am
az

on
-6

01

CT+
MINIMAL+

LH-Z-CT
FAST-CT+

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1+e4 1+e5 1+e6

ro
m

e9
9

w
eb

-B
er

kS
ta

n-
1

w
eb

-N
ot

re
D

am
e-

3

w
eb

-B
er

kS
ta

n-
2

ad
vo

ga
to

w
eb

-S
ta

nf
or

d-
2

w
eb

-S
ta

nf
or

d-
1

am
az

on
-3

02
w

ik
i-s

ig
ne

d
so

c-
Ep

in
io

ns
1

w
eb

-B
er

kS
ta

n-
3

w
eb

-G
oo

gl
e

w
ik

iT
al

k-
1

am
az

on
-6

01

CT+
MINIMAL+

LH-Z-CT
FAST-CT+

Figure 4 Performance of algorithms CT+, MINIMAL+, LH-Z-CT and FAST-CT+: solution quality
(top) and running time (bottom). (Better viewed in color.) Running times and graph sizes (number
of edges) are shown in log scale.

L. Georgiadis, G. F. Italiano, and A. Karanasiou 9:15

References
1 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM

Journal on Computing, 28(6):2117–32, 1999.
2 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed graphs.

In Yoram Moses, editor, Distributed Computing, volume 9363 of Lecture Notes in Computer
Science, pages 528–543. Springer Berlin Heidelberg, 2015.

3 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph: Generic
and optimal. In Proc. Symposium on Theory of Computing, pages 509–518, 2016.

4 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008.

5 J. Cheriyan and R. Thurimella. Approximating minimum-size k-connected spanning sub-
graphs via matching. SIAM J. Comput., 30(2):528–560, 2000.

6 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490, 1991.

7 D. Delling, A.V. Goldberg, I. Razenshteyn, and R. F. Werneck. Graph partitioning with
natural cuts. In 25th International Parallel and Distributed Processing Symposium (IP-
DPS’11), 2011.

8 C. Demetrescu, A.V. Goldberg, and D. S. Johnson. 9th DIMACS Implementation Chal-
lenge: Shortest Paths, 2007. URL: http://www.dis.uniroma1.it/~challenge9/.

9 J. Fakcharoenphol and B. Laekhanukit. An O(log2 k)-approximation algorithm for the k-
vertex connected spanning subgraph problem. In Proc. Symposium on Theory of Computing,
STOC’08, pages 153–158, New York, NY, USA, 2008. ACM.

10 D.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
NJ, USA, 2010.

11 L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a
directed graph. In Proc. European Symposium on Algorithms, pages 13–24, 2011.

12 L. Georgiadis, G. F. Italiano, A. Karanasiou, C. Papadopoulos, and N. Parotsidis. Sparse
subgraphs for 2-connectivity in directed graphs. In Proc. Symposium on Experimental
Algorithms, (SEA 2016), pages 150–166, 2016.

13 L. Georgiadis, G. F. Italiano, C. Papadopoulos, and N. Parotsidis. Approximating the
smallest spanning subgraph for 2-edge-connectivity in directed graphs. In Proc. European
Symposium on Algorithms, pages 582–594, 2015.

14 L. Georgiadis and R.E. Tarjan. Dominator tree certification and divergent spanning trees.
ACM Transactions on Algorithms, 12(1):11:1–11:42, November 2015.

15 L. Georgiadis and R.E. Tarjan. Addendum to “Dominator tree certification and divergent
spanning trees”. ACM Transactions on Algorithms, 12(4):56:1–56:3, August 2016.

16 L. Georgiadis, R. E. Tarjan, and R.F. Werneck. Finding dominators in practice. Journal
of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

17 A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35:921–940, October 1988.

18 J. E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2:225–231, 1973.

19 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012.

20 S. Khuller, B. Raghavachari, and N. E. Young. Approximating the minimum equivalent
digraph. SIAM J. Comput., 24(4):859–872, 1995. Announced at SODA 1994, 177-186.

21 G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems. Approx-
imation Algorithms and Metaheuristics, 2007.

SEA 2017

http:// www.dis.uniroma1.it/~challenge9/

9:16 Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High

22 Jérôme Kunegis. KONECT: the Koblenz network collection. In 22nd International World
Wide Web Conference, WWW’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion
Volume, pages 1343–1350, 2013.

23 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

24 R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

25 T. Tholey. Linear time algorithms for two disjoint paths problems on directed acyclic
graphs. Theoretical Computer Science, 465:35–48, 2012.

26 J. Zhao and S. Zdancewic. Mechanized verification of computing dominators for formalizing
compilers. In Proc. 2nd International Conference on Certified Programs and Proofs, pages
27–42. Springer, 2012.

27 L. Zhao, H. Nagamochi, and T. Ibaraki. A linear time 5/3-approximation for the minimum
strongly-connected spanning subgraph problem. Information Processing Letters, 86(2):63–
70, 2003.

http://snap.stanford.edu/data

Extending Search Phases in the Micali-Vazirani
Algorithm∗

Michael Huang1 and Clifford Stein2

1 Department of IEOR, Columbia University, New York, NY, USA
mh3166@columbia.edu

2 Department of IEOR, Columbia University, New York, NY, USA
cliff@ieor.columbia.edu

Abstract
The Micali-Vazirani algorithm is an augmenting path algorithm that offers the best theoretical
runtime of O(n0.5m) for solving the maximum cardinality matching problem for non-bipartite
graphs. This paper builds upon the algorithm by focusing on the bottleneck caused by its
search phase structure and proposes a new implementation that improves efficiency by extending
the search phases in order to find more augmenting paths. Experiments on different types of
randomly generated and real world graphs demonstrate this new implementation’s effectiveness
and limitations.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases matching, graph algorithm, experimental evaluation, non-bipartite

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.10

1 Introduction

Matching, a commonly studied problem in the field of algorithms, has a variety of applications
in other fields such as bioinformatics, computer science, statistics, and operations research.
The paper focuses on a new efficient implementation for finding the maximum cardinality
matching for non-bipartite graphs. Additionally, our experiments on non-bipartite graphs
generated from historical NYC taxi cab trip data, demonstrate non-bipartite matching in
solving consumer matching problems like forming carpools.

Non-bipartite matching has been a well studied problem. Since first O(n4) algorithm
provided by Edmonds’ [3] in 1965 there have been contributions from Gabow [5], Kameda and
Munro [9], Lawler [11], Even and Kariv [4], and Micali and Vazirani [15]. The Micali-Vazirani
(MV) algorithm remains the most efficient algorithm for non-bipartite graphs with the same
O(
√
nm) Hopcroft and Karp runtime [8] for bipartite graphs. Implementation studies from

the first DIMACS Implementation Challenge [2, 14] showed that the algorithm is efficient in
practice as well by comparing it against Gabow’s O(n3) implementation. In a more recent
study by Kececioglu and Pecqueur [10], its performance was still better against Tarjan’s
O(mnα(m,n)) implementation, but performed slightly worse compared to the modified
O(mnα(m,n)) implementation presented.

In this study, we improve the MV algorithm by testing various implementations on
different graph types. Since the MV algorithm is an augmenting path algorithm, previous

∗ This work was partially supported by NSF grant CCF-1421161.

© Michael Huang and Clifford Stein;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Extending Search Phases in the Micali-Vazirani Algorithm

works have suggested improving the performance by reducing the number of phases. We also
reduce the number of phases. Our key idea is that, in each phase, we find extra augmenting
paths in addition to the maximal set of shortest edge-disjoint augmenting paths. This
additional work only takes O(m) time and, in many cases, significantly reduces the number
of phases of the algorithm. We also consider several previously suggested improvements and
find that one, greedy initialization, also helps reduce the number of phases. Using both of
these improvements we obtain significant reduction in the number of phases. While the worst
case running time remains, the observed running time is much better.

2 Algorithm

2.1 Basic Definitions

A matching for an undirected graph G = (V,E) is a set of edges M such that no two
edges meet at a vertex. We designated edges and the corresponding vertices in M and not
in M as matched and unmatched edges/vertices, respectively. The maximum cardinality
matching problem finds any matching such that the number of edges in the set is maximized.
Many algorithms that solve this problem search for augmenting paths. An alternating
path is a simple path that alternates between edges in M and in E −M . An augmenting
path is an alternating path that starts and ends with unmatched vertices. We augment by
changing unmatched edges to matched edges and vice versa for all edges on the augmenting
path–increasing the cardinality of the matching increases by one. When there are no more
augmenting paths, a maximum matching is found.

Matching in bipartite and non-bipartite graphs qualitatively differ. In the first type, all
lengths of alternating paths to a matched vertex v have the same parity (odd or even), where
as matched vertices in second type can be both–which lead to odd length alternating cycles.
This makes matching more difficult for non-bipartite graph, but Edmonds addressed this
challenge by introducing structures called blossoms to handle odd-length cycles. In the MV
algorithm, petals are the equivalent structure and are essential for achieving the efficient
runtime.

2.2 Micali-Vazirani Algorithm

We will give a brief description of the Micali-Vazirani Algorithm based on Vazirani’s most
recent paper on the topic [16]. This paper presented a complete proof of the runtime and
defined some new terms that we will use to describe the finer details of the algorithm.

2.2.1 Key Concepts

First we provide concepts specific to the MV algorithm. Below are relevant definitions that
are used in the high level description of the MV algorithm in Listing 1.

I Definition 1 (Evenlevel and oddlevel of v). An evenlevel/oddlevel is the length of the
shortest even/odd alternating path from an unmatched vertex to v, denoted as evenlevel(v)
and oddlevel(v), respectively.

I Definition 2 (Minlevel and maxlevel of v). The minlevel of v, denoted as minlevel(v), is
the minimum of evenlevel(v) and oddlevel(v). Similarly, the maxlevel is the maximum of
evenlevel(v) and oddlevel(v).

M. Huang and C. Stein 10:3

Listing 1 Micali-Vazirani Algorithm pseudocode.
1 Set initial greedy matching for G
2 Reset edge labels
3 Set minlevel = 0 and maxlevel = ∞ for each unmatched vertex
4 Set minlevel = ∞ and maxlevel = ∞ for each matched vertex
5 Set level = 0
6 If there exist u such that maxlevel (u) == level or minlevel (u) ==

↪→ level then continue , else go to line 31
7 For each u such that maxlevel (u) == level or minlevel (u) == level:
8 For each unscanned (u,v) with appropriate edge parity :
9 If minlevel (v) ≥ level + 1 then ,
10 Set minlevel (v) = level + 1
11 Add u to the list of predecessors of u
12 Label (u,v) as prop
13 Else ,
14 label (u,v) as bridge
15 If tenacity ((u,v)) != ∞ then
16 Add (u,v) to the list of bridges with the same tenacity
17 For each bridge of tenacity == 2* level + 1:
18 Find support using DDFS
19 If bottleneck found then
20 Augment alternating path
21 Delete the vertices in the augmented path and all vertices that

↪→ are orphanned (no predcessors) as a result
22 Else ,
23 For each v in the support :
24 Set maxlevel (v) = 2* level + 1 - minlevel (v)
25 If v is an inner vertex then
26 For all incident (v,u) which are not props:
27 If tenacity ((u,v)) != ∞ then
28 Add (u,v) to the list of bridges with the same tenacity
29 Set level = level + 1
30 If augmentation occured then go back to line 2, else go to line 6
31 Return the current matching

I Definition 3 (Inner and outer vertices). A vertex is outer if oddlevel(v) > evenlevel(v) and
inner otherwise.

I Definition 4 (Tenacity). Tenacity of vertex v is defined as, tenacity(v) = evenlevel(v) +
oddlevel(v). Tenacity of edge (u, v) is defined as, tenacity((u, v)) = oddlevel(u) + oddlevel(v)
+ 1 for an matched edge and tenacity((u, v)) = evenlevel(u) + evenlevel(v) + 1 for an
unmatched edge.

I Definition 5 (Predecessor, prop, and bridge). For any edge (u, v) such that minlevel(v) ==
minlevel(u) + 1, u is defined to be a predecessor of v. Any edge that joins a vertex and its
predecessor is defined as a prop. If an edge is not a prop, then it is a bridge.

I Definition 6 (Support of a bridge). If (u, v) is a bridge of tenacity t, then the support is
defined as {w|tenacity(w) = t and ∃ a maxlevel(w) path containing (u, v)}

The double depth first search (ddfs) algorithm is also specifically emphasized in Vazirani’s
paper, since it is an essential method for finding augmenting paths and forming petals. The

SEA 2017

10:4 Extending Search Phases in the Micali-Vazirani Algorithm

ddfs finds disjoint paths to the root nodes from any pair of vertices in a level graph. In the
MV algorithm, if such paths exist then an augmenting path is found, otherwise there is a
bottleneck and we form a petal.

2.2.2 Algorithm Description
The MV algorithm is a non-bipartite matching algorithm that operates in phases. Each
phase finds a maximal set of vertex disjoint shortest length augmenting paths. Like the
Hopcroft-Karp algorithm for bipartite graphs, each phase synchronously constructs a level
graph using breadth-first search from unmatched vertices to find alternating paths. Every
time the level graph expands, the algorithm identifies bridges and performs double depth
first searches on them to check for augmenting paths and to form petals. After performing
the double depth first searches at the current level, the phase ends if a path was augmented.
The algorithm terminates once we search the entire graph and do not find an augmenting
path.

Below is a general overview of the MV algorithm in Listing 1:
Lines 5–30: One complete phase
Lines 6–16: The synchronous breadth-first search
Lines 17–28: Using ddfs to find augmenting paths and forming petals
Lines 30: Phase termination condition
Lines 6: Algorithm termination condition

Since each phase ends when the maximum set of vertex disjoint minimum length alternating
path is augmented, there are at most

√
n phases. The algorithm also guarantees O(m) [6]

runtime per phase which leads to the overall runtime of O(m
√
n).

2.3 Past Work
In Kececioglu and Pecqueur [10] a new O(mnα(m,n)) time implementation of Edmonds’
algorithm demonstrated that including simple heuristics in the algorithm could significantly
impact runtime. While the MV algorithm is theoretically the most efficient algorithm known
for non-bipartite matching, experimental studies have identified potential inefficiencies in
implementation [14]. Due to the heuristics’ success in improving the Edmonds’ algorithm,
we considered three analogous heuristics and improvements to target these inefficiencies of
the MV algorithm.

2.3.1 Greedy matching initialization
It is a natural idea to “initialize” a maximum matching algorithm with a greedy (maximal)
matching. Kececioglu [10] considered initializing the modified Edmonds’ algorithm with
different greedy matching algorithms since starting with a larger matching would reduce
the number of augmenting paths needed to be found. The function is the same in the MV
algorithm, but its impact may be greater since we would start with fewer search trees which
would reduce the amount of searching per phase in addition to reducing the total number of
phases.

2.3.2 Order of bridge processing
Bridge processing potentially impacts the performance of the MV algorithm as well.
Mattingly [14] provided examples demonstrating the importance of bridge processing order
towards scenarios where a optimal matching could be found in a single phase. We can extend
this observation and note that even if a maximum matching cannot be found in the phase,

M. Huang and C. Stein 10:5

the order processing bridges can affect phase performance. By processing bridges that lead
to augmentations first, we can avoid processing future bridges that may be topologically
deleted. Changing the order of bridge processing leads to not only fewer phases as Mattingly
suggested, but also shorter phases.

2.3.3 Blossom formation
In previous work, Crocker [2] noted that blossom formation limited the performance of
Gabow’s implementation of the Edmonds’ blossom algorithm. Kececioglu [10] addressed the
issue with heuristics to avoid or delay blossom related operations for Tarjan’s implement-
ation of Edmonds’ blossom algorithm. While these heuristics failed to provide significant
performance boosts, it may improve the performance of the MV algorithm. This is closely
related the order of bridge processing since we may be able to avoid forming petals if the
related bridges are deleted after an augmentation.

2.4 Preliminary Results
In initial trials, only greedy matching initialization significantly reduced the number of
phases of the MV algorithm. For determining the best order for processing trees, difficulty
arose from identifying which alternating paths should be augmented. Attempts were made
by considering the number different free nodes and alternating paths that were associated
with a bridge, however, tracking that information was complicated and priority was hard
to determine since we could only compare bridges associated with alternating paths of the
same length. Reducing blossom formation was unsuccessful as well since phases without
augmentations need blossoms to be formed in order to construct the level graph properly,
meaning the gains from reducing the number of blossoms formed is diminished in future
phases.

2.5 Algorithmic contribution
The Micali-Vazirani algorithm can be improved either by reducing the number of phases or
improving the efficiency of the phases themselves. Due to the bottlenecks analyzed and the
previous work of others, this paper mainly focuses on the former rather than the latter and
achieves this by proposing broader algorithmic changes rather than technical/computational
changes. As a result, the improvements in the number of phases are unaffected by the
computing environment and can be directly compared to the theoretical runtime.

2.5.1 Motivation
The primary inefficiency examined in this paper relates to the termination conditions of each
phase. In previous works, it has been noted that the MV algorithm’s performance is closely
related to the number of phases due to the high overhead in initiating phases[2]. As the
minimum alternating paths get longer, the time to grow each individual search tree from the
unmatched vertices increases and the number of paths augmented per phase decreases. The
initialization for each phase becomes inefficient if we continually reconstruct the same trees
and do not find an augmenting path.

An avenue to attack this inefficiency is to preserve the search trees by continuing the
search phase. Figure 1 provides motivation for why this works. The dashed edges denote
matches while the solid edges are unmatched edges. As the graph continues to the right,
the number of edges separating the triangles grows so that the edges between the kth and
k + 1th triangle is greater than the number of edges between the k − 1th and kth triangle.

SEA 2017

10:6 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 1 The red edges form the augmenting path between the free vertices at the top of each
triangle.

In this scenario, the greedy initialization of the graph leaves vertices 1, 2, 3, and 4
unmatched. A phase of the base MV algorithm terminates after we augment the path
between vertices 1 and 2 in the figure. Even though the search trees of vertices 3 and 4
remain unaffected by the augmentation, the phase resets and the progress towards finding
the path between these two vertices is discarded. Extending the search phase would allow
the augmenting path between 3 and 4 to be discovered in the next search level instead of
the next phase. Assuming the numbering continues in the figure, nodes 2n− 1 and 2n will
be matched in the same phase as well. Thus, instead of augmenting the path between the
2n− 1 and 2n in the nth phase, we augment the paths for all pairs in the first phase.

2.5.2 Termination conditions
Our primary contribution to the MV algorithm targets the termination bottleneck by not
resetting phases even after an augmentation occurs. To describe the changes to the algorithm
we reference the pseudocode in Listing 1 and the actual Python code. Below are the names
of the key procedures in the Python code and the corresponding lines in the pseudocode.

MIN – This is the search procedure that constructs the level graph and corresponds to
lines 7–16 in Listing 1. The MIN procedure in the Python code is provided an array of
vertices to search every phase. These vertices are set in the previous MIN procedures
and in the previous MAX procedures. If the list is empty at the start of the procedure,
the MV algorithm terminates.
MAX – This is the bridge processing procedure that forms petals and augments alternating
paths. It corresponds to lines 17–28 in Listing 1. When petals are formed, vertices are
given their maxlabel and are added to the list of nodes for MIN to process. If augmentation
occurs the current phase terminates.

In the MV algorithm, each phase alternates between running the MIN and MAX procedure
until the termination condition in MIN or MAX is realized. Our modification removes the
augmentation termination condition (line 30) in MAX and replaces it with the condition
that the phase will terminate after running a designated number of MAX procedures that
augmented at least one path. We can set this value so that each phase terminates only when
the end condition is met by MIN. The extended phase MV algorithm pseudocode can be
seen in Listing 2 in the appendix.

The modification allows the algorithm to preserve work put into constructing the level
graph in the current phase. Additionally, the level graph that remains after augmentation
preserves the search trees from unmatched nodes that were disjoint from the augmented
paths since it topologically deletes the search trees of the matched nodes. This results in the
selection of a maximal set of augmenting paths during each phase.

The three principles/observations that make the modification immediately attractive are:
1. It is guaranteed to not have more phases than the original algorithm.
2. In earlier phases, the alternating paths are shorter. That means the total number of

alternating paths that intersect with augmented paths is lower and the maximal matching
will find a larger fraction of the remaining matches.

M. Huang and C. Stein 10:7

3. In later phases, the number of alternating paths becomes more sparse as the number of
free vertices decreases and are more likely to have different lengths. It also becomes less
likely that augmenting one path will impact other search trees. Extending the phases
saves in reconstructing unused search trees in a manner similar to the motivational
example discussed earlier.

3 Experiments

In past experimental studies, the best algorithm in practice was Kececioglu’s modification
of Tarjan’s O(mnα(m,n)) algorithm, which ran roughly 4 times faster than Crocker’s MV
algorithm[10]. Our experiments will primarily focus on measuring the relative improvements
that can be made on the MV algorithm by reducing the number of phases. The relative
measure can provide insight on how it will perform against Kececioglu’s algorithm.

Since the main goal focuses on methods reducing the number of search phases, less effort
was put into the implementation and selection of data structures that could optimize the
performance of each individual search phase. In order to remain consistent, we use the same
implementation of the search phase for each variant of the algorithm.

The implementation was written in Python 2.7.10 and utilizes the time, csv, NumPy, and
NetworkX modules. The majority of the experiments were conducted on Columbia Business
School research grid. For larger graphs that required more memory to store the node and
edge data, we used a Intel Xeon E5-2667 processor with 256 GB of main memory. The
different implementations and experiments are available at:

https://github.com/mh3166/Extended_MV_algorithm

3.1 Variants/Implementations
For our experiment, we present two different modifications:

1. The first chooses a different initialization method. We construct the initial maximal
matching using the heuristics and reductions discussed in Magun’s experimental work
with greedy matching algorithms [13]. Like our simple greedy algorithm, every time
an edge is added to the the matching, the adjacent vertices and the adjacent edges are
removed from the graph. We then find the maximal matching for the remaining graph.
The new greedy algorithm performs 1 reductions which means that in the current graph,
the edges of vertices of degree 1 must be included in the maximal matching. It also
uses a heuristic (referred to as Heuristic 1), which states that each edge we add to the
maximal matching must include a node with minimum degree in the current graph, and
another heuristic, which states that the opposite node to the one in Heuristic 1 must
have minimum degree among the neighboring vertices.

2. The second is our algorithmic contribution that replaces the termination condition for
the MAX phase of the MV algorithm with a more relaxed version that only terminates a
phase after it encounters a specified number of MAX phases that augmented a path. In
the experiment, this number was 100 and was never reached in any trial.
Let the following be notation for the different variants of the MV algorithm.
a. MV0 is the base algorithm
b. MV1 is the variant with modification 1.
c. MV2 is the variant with modification 2.
d. MV3 is the variant with modification 1. and modification 2.

SEA 2017

https://github.com/mh3166/Extended_MV_algorithm

10:8 Extending Search Phases in the Micali-Vazirani Algorithm

3.2 Graphs
Building upon the previous MV algorithm work of Crocker [2] and Mattingly and Ritchey
[14], we examined the graphs of previous experiments that had non-trivial processing times.
Given that we know the structure of these graphs, the results can provide insight into the
improved performance. We also tested the algorithm on real world graphs that provided
significant challenge to the original algorithm in order to demonstrate the improved algorithm’s
robustness. Below are the selected graph:

1. Random graphs with n nodes and with expected degree d. This is a Erdős-Rényi
graph, a binomial graph that was generated with the fast_gnp_ random_graph method
in NetworkX [7]. It takes the inputs n and p = d

n . Following Crocker [2], we chose the
average degrees that differed by factors of 21/16 and chose a range of 0 ≤ d ≤ 8.

2. Grid graphs with n2 nodes with expected degree d. The grid graph is a n× n lattice
graph that has some of the edges removed. Rather than having each node be adjacent to
four edges, we construct it so that the average degree d of the graph is 2 ≤ d ≤ 4. The
graph is constructed by visiting each node and adding each of the four edges to the graph
with probability p = 1− (1− d

4)1/2 which accounts for visiting each edge twice. We test
sizes for 4 ≤ n ≤ 10.

3. One-connected triangles with 2k triangles. The graph has 2k vertex disjoint triangles.
These triangles are then interconnected by only one edge. To construct the graph, we
add the following edges

(3i, 3i+ 1), (3i+ 1, 3i+ 2), (3i+ 2, 3i) 0 ≤ i ≤ 2k − 1,

(3i+ (i mod 3), 3i+ 3 + (i mod 3)) 0 ≤ i ≤ 2k − 2,

where {0, . . . , 3 · 2k − 1} is the set of vertices. Since the algorithm will process the edges
and nodes in numerical order, the graphs are randomized by switching numbering while
maintaining the same structure. We test for 10 ≤ k ≤ 20.

4. Three-connected triangles with 2k triangles. The graph also has 2k vertex disjoint
triangles. The triangles are now interconnected by three edges instead of one. To construct
the graph, we add the following edges

(3i, 3i+ 1), (3i+ 1, 3i+ 2), (3i+ 2, 3i) 0 ≤ i ≤ 2k − 1,

(3i, 3i+ 3), (3i+ 1, 3i+ 4), (3i+ 2, 3i+ 5) 0 ≤ i ≤ 2k − 2,

where {0, . . . , 3·2k−1} is the set of vertices. Again we randomize the graph by randomizing
the labels of the nodes. We test for 10 ≤ k ≤ 14. The lower range is because we run into
recursion issues when opening petals in graphs with k ≥ 15.

5. Real World Graphs are composed of selections from Stanford’s Large Network Dataset
Collection [12] as well as graphs constructed by the NYC taxi cab data from 2015 as
shown in Table 1. From Stanford’s data set we chose network graphs showing representing
Amazon’s product co-purchasing network as of certain dates. Most of these graphs were
only selected for their size and average degree rather than for their practical application.
From the NYC taxi cab data, we constructed a more realistic matching problem the
graph by finding taxicab passengers who were close in departure time and location and
were headed in a similar direction. See the github link for the code that generated these
graphs. The maximum matching in this graph would provide the maximum number of
carpooling opportunities in NYC in a day.

M. Huang and C. Stein 10:9

Table 1 Description of Real World Graphs.

Network Graph |N | |E| Avg. Deg.

Amazon Co-Purchasing 3/2/03 262111 899792 3.43
Amazon Co-Purchasing 3/12/03 400727 2349869 5.86
Amazon Co-Purchasing 5/5/2003 410236 2439437 5.95
Amazon Co-Purchasing 6/1/2003 403394 2443408 6.06

2/1/15 Taxi Data 325109 952974 2.93
2/2/15 Taxi Data 569599 1487866 2.61
2/4/15 Taxi Data 1216990 3414986 2.81
2/5/15 Taxi Data 1578057 4564025 2.89
2/7/15 Taxi Data 2335680 6993447 2.99

Figure 2 Average search phases and running time as the expected degree changes for random
graphs with 220 nodes.

4 Results

In this section, we observe the relationship between the structure of the graphs and the
performance of the algorithms.

Overall, we see phase reduction and thus lower running time when utilizing our modifica-
tion of extending phases. Changing the greedy initialization also has significant impact on
phases (~60% reduction at best) and running time as well, but we get the most consistent
performance in phase reduction when combining the two modifications as seen by MV3. In
the few cases where MV3 performs worse than MV2, we are mainly hampered by overhead
in our modified greedy initialization.

While we see overall improvement, we also see noticeable differences in performance on
different graphs.

4.1 Random Graphs
The random graphs experiment provides a starting point to analyze what could reduce the
number of phases in the MV algorithm. As seen in Figure 2, we replicated the observation
from Crocker [2] that the number of phases peaks at degree ~3 and empirically observed the
proposition by Bast[1] that with high probability the length of the maximum augmenting
path–and thus the maximum number of phases–for any non-maximum matching is O(logn)

SEA 2017

10:10 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 3 Average percent reduction of search phases and running time as the number of nodes
increases for random graphs with an expected degree of

√
8.

for random graphs with average degree above some constant c. In this experiment, we also
discovered that utilizing an initialization heuristic alone can reduce phases and that it can
also improve the performance of the MV algorithm with extended search phases.

From Magun [13], we know that compared to initializing with a random maximal matching,
both the starting number of matches and average degree of the free vertices are more likely
to be greater. That implies the MV algorithm could be receiving a performance boost from
the fewer matches to be found or the larger number of alternating paths per free vertex.

4.2 Grid graphs
To further investigate the effect of search phase extension and the initialization heuristic,
we can compare the random graph experiment to the grid graph experiment by comparing
Figure 4 to Figure 3. In the worst case examples, grid graphs require significantly more
phases and thus more time to be solved compared to random graphs. Additionally, the
initialization heuristic has little effect in improving performance as graph size grows. While
we again see that the worst case performance occurs in randomly generated graphs with an
average degree of 3, it is clear that the limited range of degrees for vertices has a negative
effect on the performance of the MV algorithm.

4.3 One-connected Triangles
One-connected triangle graphs provide an even more extreme scenario where simple structures
result in high phase costs for the MV algorithm. In Figure 5, we see that applying the

M. Huang and C. Stein 10:11

Figure 4 Average percent reduction of search phases and running time as the number of nodes
increases for grid graphs with expected degree of 3.12.

initialization heuristic helps deal with that issue by consistently reducing the number of
phases by 60%. However, by extending phases, the MV2 and MV3 algorithm perform
significantly better by reducing the number of phases by over a factor of 50 as seen in Table 2.
This type of graph closely resembles the motivational graph in Figure 1 and demonstrates the
type of graphs and subgraphs that benefit from extending search phases. See the appendix
for further discussion.

4.4 Three-connected Triangles
The Three-connected triangle graph experiment had similar results to the one-connected
version in terms of the phase count. We include this experiment to demonstrate the effect
of nested petals on performance. In the algorithm, the nested structure requires recursive
calls to open petals in order to find augmenting paths. From a technical standpoint, in
larger graphs this triggers the default maximum recursion depth safeguard for Python which
terminates the algorithm early. This problem can be avoided by implementing a non-recursive
method for finding augmenting paths as discussed by Mattingly [14].

4.5 Real World Graphs
In Table 3, we see that the benefits of the greedy initialization and phase extension apply
to real world graphs. Our results primarily focused on solving the maximum cardinality
matching problem for large graphs where each phase is computationally expensive. The

SEA 2017

10:12 Extending Search Phases in the Micali-Vazirani Algorithm

Table 2 Average runtime and phase for one connected triangle graphs as number of triangles
increase.

Average Runtime (sec) Average Phases
Triangles MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.923 0.374 0.34 0.327 24.1 10 4 3.7
212 7.734 2.627 2.019 2.04 50.5 18 4.8 4.2
214 89.298 24.088 11.175 11.002 103.1 35.6 5.4 5.1
216 829.863 195.934 53.978 52.98 200.8 70.2 6.3 5.8
218 6185.386 1668.073 238.776 221.504 410.2 140.1 8.4 6.5

Table 3 Search phases and running time for different real world graphs.

Average Runtime (sec) Average Phases
Network Graph MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3

Amazon Co-Purchasing 3/2/03 178.89 194.36 66.23 118.12 21 20 4 5
Amazon Co-Purchasing 3/12/03 398.23 466.23 227.72 248.53 18 19 5 3
Amazon Co-Purchasing 5/5/2003 380.5 422.09 191.73 256.7 18 17 5 4
Amazon Co-Purchasing 6/1/2003 400.7 469.1 260.45 287.07 17 18 5 4

2/1/15 Taxi Data 622.61 458.32 187.15 141.46 53 42 10 6
2/2/15 Taxi Data 972.02 946.72 315.67 257.57 56 48 11 7
2/4/15 Taxi Data 3142.8 2852.5 724.79 640.93 72 59 10 7
2/5/15 Taxi Data 5277.9 4552.8 1158.1 1035.1 75 63 10 7
2/7/15 Taxi Data 9480.2 8593.6 1868.8 1546.5 81 75 11 7

results of the real world graphs fall in line with the artificially created graphs. The Amazon
Co-Purchasing graphs demonstrate the higher average degree correlates to fewer phases
observation discovered in the random graph experiments. The modifications to the MV
algorithm thus have a lesser impact towards improving performance. The taxi graph results
provide an example of graphs whose performance is dictated by degree and structure. While
the higher degree reduces the number of phases needed compared to that of the worst case
random graphs, the number of phases needed does not decrease at the same rate. Thus, we
see significant improvement similar to that of artificial graphs that have a specific structure.
These real world graphs show that our modifications are effective against structure that
hampers the MV algorithm.

5 Discussion

5.1 Runtime
Through our experiments we have seen that the removal of the termination condition in
MAX greatly reduces the number of phases the algorithm must be processed. When we plot
the growth of number of phases vs. the log size of the problem in Figure 6, we see that there
is a linear relationship. Thus, it seems that the number of phases grows in O(logn).

Additionally, in our experiments, after obtaining the maximum matching, we also were
able to calculate the fraction of remaining matches that were processed during each phase.
Figure 7 plots the average fraction found per phase for one-triangle connected graphs as
the graph size grows in number of triangles. We see that the algorithms with the extended
phases can better preserve the O(logn) number of phases by consistently finding a high
fraction of remaining matches per phase.

M. Huang and C. Stein 10:13

Figure 5 Average percent reduction of search phases and running time as the number of triangles
increases for one-connected triangle graphs.

5.2 Worst Case Graph
From our experiments we have only seen graphs that perform well after making the algorithmic
modification to the MV algorithm. Figure 8 is an example of a type of graph where the
worst case runtime is O(

√
nm).

With the greedy matching shown after the initial phase, both the base and the modified
algorithm will have a O(

√
nm) runtime if it first augments the path that intersects all other

alternating paths. The resulting new graph again has a alternating path that intersects all
other alternating paths. In each phase, there is the possibility that only one path will be
augmented. Since we start with n matchings to be found and the starting graph is of size
O(n2), we obtain the O(

√
n) number of phases. In this case, the modified algorithms have

the same performance as the base MV algorithm.

6 Conclusion

We introduced a new implementation of the Micali-Vazirani algorithm that effectively reduced
the number of search phases and demonstrated its effectiveness on a variety of graph types.
Our primary contribution considers extending search phases which in our experiment reduces
the number of phases by at least 40% in smaller graphs and up to 98% in larger graphs.
The phase reduction translates well to runtime when the phase improvement is large. This
saves in overhead cost from reseting the graph each phase. For cases where the graphs
could already be solved by the base MV algorithm in a few phases, runtime improvement is

SEA 2017

10:14 Extending Search Phases in the Micali-Vazirani Algorithm

Figure 6 Comparison of phase growth with and without the termination condition in MAX
phase.

Figure 7 Comparison of average percent of remaining matches found per phase.

smaller since the algorithm is already using each phase efficiently. In the future, we hope to
improve the more technical aspects of the implementation, such as choosing more efficient
data structures and cleaning up any inefficiencies in the code. A fully optimized version
would allow for better comparison with matching algorithms in previous works as well as
matching algorithms exclusive to bipartite graphs. From a more theoretical standpoint,
we would also like to study how the structure of the graphs impacts the performance of
the modified MV algorithm. This may provide insight that could result in more significant
contributions that could improve the performance of the MV algorithm.

References

1 Holger Bast, Kurt Mehlhorn, Guido Schafer, and Hisao Tamaki. Matching algorithms are
fast in sparse random graphs. Theory of Computing Systems, 39(1):3–14, 2006.

2 Steven T. Crocker. An experimental comparison of two maximum cardinality matching
programs. In Catherine C. McGeoch David S. Johnson, editor, Network Flows and Match-
ing: First DIMACS Implementation Challenge, volume 12 of Discrete Mathematics and
Theoretical Computer Science, pages 519–537, 1993.

M. Huang and C. Stein 10:15

Figure 8 Example of O(
√

nm) performance for the modified algorithm: Augmented paths are in
red. In the example, the worst case maximal set of one is chosen in each phase.

3 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

4 Shimon Even and Oded Kariv. An O(n2.5) algorithm for maximum matching in general
graphs. In Foundations of Computer Science, 1975., 16th Annual Symposium on, pages
100–112. IEEE, 1975.

5 Harold N. Gabow. An efficient implementation of Edmonds’ algorithm for maximum match-
ing on graphs. Journal of the ACM (JACM), 23(2):221–234, 1976.

6 Harold N. Gabow. Set-merging for the Matching Algorithm of Micali and Vazirani. arXiv
preprint arXiv:1501.00212, 2014.

7 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

8 John E. Hopcroft and Richard M. Karp. A n5/2 algorithm for maximum matchings in
bipartite. In Switching and Automata Theory, 1971., 12th Annual Symposium on, pages
122–125. IEEE, 1971.

9 T. Kameda and I. Munro. A O(|V | · |E|) algorithm for maximum matching of graphs.
Computing, 12(1):91–98, 1974.

10 John D. Kececioglu and A. Justin Pecqueur. Computing maximum-cardinality matchings
in sparse general graphs. In Algorithm Engineering, pages 121–132, 1998.

11 Eugene L. Lawler. Combinatorial optimization, 1976.
12 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,

jun 2014. URL: http://snap.stanford.edu/data.
13 Jakob Magun. Greeding matching algorithms, an experimental study. J. Exp. Algorithmics,

3, sep 1998. doi:10.1145/297096.297131.
14 R. Bruce Mattingly and Nathan P. Ritchey. Implementing an o(sqrtNm) cardinality match-

ing algorithm. In Catherine C. McGeoch David S. Johnson, editor, Network Flows and

SEA 2017

http://snap.stanford.edu/data
http://dx.doi.org/10.1145/297096.297131

10:16 Extending Search Phases in the Micali-Vazirani Algorithm

Matching: First DIMACS Implementation Challenge, volume 12 of Discrete Mathematics
and Theoretical Computer Science, pages 539–556, 1993.

15 Silvio Micali and Vijay V. Vazirani. An O(
√
|V | · |E|) algoithm for finding maximum

matching in general graphs. In Foundations of Computer Science, 1980, 21st Annual
Symposium on, pages 17–27. IEEE, 1980.

16 Vijay V. Vazirani. An improved definition of blossoms and a simpler proof of the MV
matching algorithm. CoRR, abs/1210.4594, 2012. URL: http://arxiv.org/abs/1210.
4594.

A Appendix

A.1 Additional Results: Graphs

Figure 9 Average percent reduction of search phases and running time as the number of triangles
increases for three-connected triangle graphs.

http://arxiv.org/abs/1210.4594
http://arxiv.org/abs/1210.4594

M. Huang and C. Stein 10:17

Figure 10 Average search phases and running time as the expected degree increases for grid
graphs with 220 nodes.

A.2 Additional Results: Tables

Table 4 Average search phases and running time as the number of nodes increases for random
graphs with an expected degree of

√
8.

Average Runtime (sec) Average Phases
N MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.106 0.078 0.076 0.084 10.2 2.6 4.8 2
212 0.846 0.482 0.48 0.496 16.4 4.2 5.4 2.6
214 6.208 2.694 2.47 2.184 28.6 7.8 7 3.4
216 53.052 15.654 14.58 11.13 48 9.6 8.2 3.2
218 343.739 100.947 67.186 48.578 69.5 17.1 8.6 3.5
220 1549.718 469.49 262.22 192.17 97.8 26.6 9.6 4

Table 5 Average runtime and phase for three connected triangle graphs as number of triangles
increase.

Average Runtime (sec) Average Phases
Triangles MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
29 0.535 0.262 0.251 0.291 12.4 6 3.6 3.8
210 1.266 0.609 0.6 0.581 17.6 8.6 4.1 4
211 3.464 1.332 1.218 1.37 25.5 11.8 4.3 4.5
212 10.144 3.686 3.374 2.931 35 14.4 5 5
213 33.639 10.169 7.482 7.423 50 19.7 5.1 5.3
214 179.793 33.029 18.856 19.772 70.2 27.3 5.1 5.5

SEA 2017

10:18 Extending Search Phases in the Micali-Vazirani Algorithm

Table 6 Average search phases and running time as the number of nodes increases for grid graphs
with expected degree of 3.12.

Average Runtime (sec) Average Phases
N MV0 MV1 MV2 MV3 MV0 MV1 MV2 MV3
210 0.12 0.141 0.085 0.132 4.8 2.9 2.4 1.8
212 0.639 0.811 0.362 0.535 9.5 7 3.2 3.1
214 6.082 6.552 2.125 2.919 15.3 16.8 4.1 4
216 47.305 49.861 11.824 14.806 27.4 27.8 4.5 4.5
218 545.662 622.501 93.476 92.991 87.9 89.5 7.6 6.9
220 2819.185 2928.456 324.903 366.417 171.1 174.9 11 10.9

A.3 Micali-Vazirani Algorithm with Extended Phases

Listing 2 Micali-Vazirani Algorithm pseudocode.
1 Set initial greedy matching for G
2 Reset edge labels
3 Set minlevel = 0 and maxlevel = ∞ for each unmatched vertex
4 Set minlevel = ∞ and maxlevel = ∞ for each matched vertex
5 Set level = 0
6 Set augmentation_count = 0
7 If there exist u such that maxlevel (u) == level or minlevel (u) ==

↪→ level then continue , else go to line 31
8 For each u such that maxlevel (u) == level or minlevel (u) == level:
9 For each unscanned (u,v) with appropriate edge parity :
10 If minlevel (v) ≥ level + 1 then ,
11 Set minlevel (v) = level + 1
12 Add u to the list of predecessors of u
13 Label (u,v) as prop
14 Else ,
15 label (u,v) as bridge
16 If tenacity ((u,v)) != ∞ then
17 Add (u,v) to the list of bridges with the same tenacity
18 For each bridge of tenacity == 2* level + 1:
19 Find support using DDFS
20 If bottleneck found then
21 Augment alternating path
22 Delete the vertices in the augmented path and all vertices that

↪→ are orphanned (no predcessors) as a result
23 Else ,
24 For each v in the support :
25 Set maxlevel (v) = 2* level + 1 - minlevel (v)
26 If v is an inner vertex then
27 For all incident (v,u) which are not props:
28 If tenacity ((u,v)) != ∞ then
29 Add (u,v) to the list of bridges with the same tenacity
30 Set level = level + 1
31 If augmentation occured then augmentation_count += 1
32 If augmentation_count == 100 then go to line 2, else go to line 7
33 Return the current matching

M. Huang and C. Stein 10:19

A.4 Lemmas
I Lemma 7. Augmenting a maximal set of vertex disjoint augmenting paths that includes a
maximal set of vertex disjoint shortest augmenting paths increases the length of the shortest
augmenting path in the new matching

Proof. Let M be the initial matching, let M ′ be the subsequent matching after augmenting
the maximal set of disjoint shortest augmenting paths P in M , and let M ′′ be the subsequent
matching after augmenting the maximal set of disjoint augmenting paths P ′ in M . From
Hopcroft and Karp [8] we know that if the length of the shortest augmenting path of a
matching M is l, then the length of the shortest augmenting path in M ′ is strictly greater
than l. Since P ∈ P ′ and the paths in P ′−P are disjoint from P , augmenting the set P ′−P
in matching M ′ gives us M ′′. The shortest augmenting path cannot get shorter, thus the
shortest augmenting path in M ′′ is still strictly greater than l. J

A.5 Additional Discussion
We can show O(m logn) in the worst case for certain families of graphs while also proving
the base algorithm operates in O(

√
nm) time. The construction of such a graph is similar to

that of the one-connected triangles graph in that it is constructed by joining vertex disjoint
triangles. Instead of joining the triangles with one edge, it is replaced by a sequence of edges
described below.

Let the number of edges between each triangle be determined by the following. Let us
number the triangles from 1 to k. The number of edges joining triangle 2i − 1 and 2i be
2(i− 1) + 1 and let the number of edges joining triangle 2i and 2i+ 1 be 2i+ 1.

To demonstrate the worst case performance, let us assume that after a greedy matching,
we have a graph such that the only free vertices are the nodes of each triangle i that is not
adjacent to the set of edges connecting the triangle to triangle i− 1 or i+ 1.

In the case of the modified algorithm MV2, we see that after the initial greedy matching,
each phase selects a maximal set of augmenting paths. Since the unmatched vertices essentially
lie on the same line, augmenting paths will always be guaranteed to be matched at most two
potential free vertices. That means the algorithm also never encounters non vertex disjoint
alternating paths. The problem can be reduced to selecting a maximal matching, where
unmatched edges are the alternating paths. Rather than randomly choosing the matching, it
is determined by the length of the alternating paths, but since it is a maximal selection, the
equivalent problem is also a maximal matching. Since we know that a maximal matching is
a 2-approximation of the maximum matching, it implies that the maximal set of alternating
paths is also a 2-approximation of selecting the maximum set of augmenting paths. Thus,
we are guaranteed to reduce the number of remaining matchings to be found in half each
phase giving us the O(m logn) worse case run time.

SEA 2017

A Framework of Dynamic Data Structures for
String Processing∗

Nicola Prezza

Technical University of Denmark, DTU Compute, Lyngby, Denmark
npre@dtu.dk

Abstract
In this paper we present DYNAMIC, an open-source C++ library implementing dynamic com-
pressed data structures for string manipulation. Our framework includes useful tools such as
searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed
strings and FM indexes. We prove close-to-optimal theoretical bounds for the resources used
by our structures, and show that our theoretical predictions are empirically tightly verified in
practice. To conclude, we turn our attention to applications. We compare the performance of
five recently-published compression algorithms implemented using DYNAMIC with those of state-
of-the-art tools performing the same task. Our experiments show that algorithms making use of
dynamic compressed data structures can be up to three orders of magnitude more space-efficient
(albeit slower) than classical ones performing the same tasks.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases C++, dynamic, compression, data structure, bitvector, string

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.11

1 Introduction

Dynamism is an extremely useful feature in the field of data structures for string manipulation,
and has been the subject of study in many recent works [5, 17, 24, 31, 20, 13]. These results
showed that – in theory – it is possible to match information-theoretic upper and lower bounds
on space of many problems related to dynamic data structures while still supporting queries
in provably optimal time. From the practical point of view however, many of these results
are based on complicated structures which prevent them from being competitive in practice.
This is due to several factors that in practice play an important role but in theory are often
poorly modeled, such as cache locality, branch prediction, disk accesses, context switches,
memory fragmentation. Good implementations must take into account all these factors in
order to be practical; this is the main reason why little work in this field has been done on
the experimental side. An interesting and promising (but still under development) step in
this direction is represented by Memoria [22], a C++14 framework providing general purpose
dynamic data structures. Other libraries are also still under development (ds-vector [7]) or
have been published but the code is not available [5, 17, 2]. Practical works considering weaker
dynamic queries have also appeared. In [29] the authors consider rewritable arrays of integers
(no indels or partial sums are supported). In [30] practical close-to-succinct dynamic tries are
described (in this case, only navigational and child-append operations are supported). To
the best of our knowledge, the only working implementation of a dynamic succinct bitvector

∗ Part of this work was done while the author was a PhD student at the University of Udine, Italy. Work
supported by the Danish Research Council (DFF-4005-00267).

© Nicola Prezza;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 A Framework of Dynamic Data Structures for String Processing

is [11]. This situation changes dramatically if the requirement of dynamism is dropped.
In recent years, several excellent libraries implementing static data structures have been
proposed: sdsl [12] (probably the most comprehensive, used, and tested), pizza&chili [25]
(compressed indexes), sux [34], succinct [33], libcds [18]. These libraries proved that static
succinct data structures can be very practical in addition to being theoretically appealing.

In view of this gap between theoretical and practical advances in the field, in this paper
we present DYNAMIC: a C++11 library providing practical implementations of some basic
succinct and compressed dynamic data structures for string manipulation: searchable partial
sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM
indexes. Our library has been extensively profiled and tested, and offers structures whose
performance are provably close to the theoretical lower bounds (in particular, they approach
succinctness and logarithmic queries). DYNAMIC is an open-source project and is available
at [8].

We conclude by discussing the performance of five recently-published BWT/LZ77 com-
pression algorithms [26, 28, 27] implemented with our library. On highly compressible
datasets, our algorithms turn out to be up to three orders of magnitude more space-efficient
than classical algorithms performing the same tasks.

2 The DYNAMIC library

The core of our library is a searchable partial sum with inserts data structure (SPSI in what
follows). We start by formally defining the SPSI problem and showing how we solve it in
DYNAMIC. We then proceed by describing how we use the SPSI structure as a building block
to obtain the dynamic structures implemented in our library.

2.1 The Core: Searchable Partial Sums with Inserts
The Searchable Partial Sums With Inserts (SPSI) problem asks for a data structure PS
maintaining a sequence s1, . . . , sm of non-negative integers and supporting the following
operations on it:

PS.sum(i) =
∑i

j=1 sj ;
PS.search(x) is the smallest i such that

∑i
j=1 sj > x;

PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;
PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

As discussed later, a consequence of the fact that our SPSI does not support delete
operations is that also the structures we derive from it do not support delete; we plan to
add this feature in our library in the future.

DYNAMIC’s SPSI is a B-tree storing integers s1, . . . , sm in its leaves and subtree size/partial
sum counters in internal nodes. SPSI’s operations are implemented by traversing the tree
from the root to a target leaf and accessing internal nodes’ counters to obtain the information
needed for tree traversal. The choice of employing B-trees is motivated by the fact that a big
node fanout translates to smaller tree height (w.r.t. a binary tree) and nodes that can fully
fit in a cache line (i.e. higher cache efficiency). We use a leaf size l (i.e. number of integers
stored in each leaf) always bounded by

0.5 logm ≤ l ≤ logm

and a node fanout f ∈ O(1). f should be chosen according to the cache line size; a bigger
value for f reduces cache misses and tree height but increases the asymptotic cost of handling

N. Prezza 11:3

single nodes. See Section 2.2 for a discussion on the maximum leaf size and f values used in
practice in our implementation. Letting l = c · logm be the size of a particular leaf, we call
the coefficient 0.5 ≤ c ≤ 1 the leaf load.

In order to improve space usage even further while still guaranteeing very fast operations,
integers in the leaves are packed contiguously in word arrays and, inside each leaf L, we assign
to each integer the bit-size of the largest integer stored in L. In the next section we prove that
this simple blocking strategy leads to a space usage very close to the information-theoretic
minimum number of bits needed to store the integers s1, . . . , sm. It is worth to notice that
– as opposed to other works such as [2] – inside each block we use a fixed-length integer
encoding. Such an encoding allows much faster queries than variable-length integer codes
(such as, e.g., Elias’ delta or gamma) as in our strategy integers are stored explicitly and do
not need to be decoded first. Whenever an integer overflows the maximum size associated to
its leaf (after an update operation), we re-allocate space for all integers in the leaf. This
operation takes O(logm) time, so it does not asymptotically increase the cost of update
operations. Crucially, in each leaf we allocate space only for the integers actually stored
inside it, and re-allocate space for the whole leaf whenever we insert a new integer or we
split the leaf. With this strategy, we do not waste space for half-full leaves1. Note, moreover,
that since the size of each leaf is bounded by Θ(logm), re-allocating space for the whole leaf
at each insertion does not asymptotically slow down insert operations.

2.1.1 Theoretical Guarantees
Let us denote with m/ logm ≤ L ≤ 2m/ logm the total number of leaves, with Lj , 0 ≤ j < L,
the j-th leaf of the B-tree (using any leaf order), and with I ∈ Lj an integer belonging to
the j-th leaf. The total number of bits stored in the leaves of the tree is∑

0≤j<L

∑
I∈Lj

max_bitsize(Lj)

where max_bitsize(Lj) = maxI∈Lj
(bitsize(I)) is the bit-size of the largest I ∈ Lj , and

bitsize(x) is the number of bits required to write number x in binary: bitsize(0) = 1 and
bitsize(x) = blog2 xc+ 1, for x > 0. The above quantity is equal to∑

0≤j<L

cj · logm ·max_bitsize(Lj)

where 0.5 ≤ cj ≤ 1 is the j-th leaf load. Since leaves’ loads are always upper-bounded by 1,
the above quantity is upper-bounded by

logm
∑

0≤j<L

max_bitsize(Lj)

which, in turn, is upper-bounded by

logm
∑

0≤j<L

bitsize

 ∑
I∈Lj

I

 ≤ logm
∑

0≤j<L

1 + log2

1 +
∑

I∈Lj

I

 .

In the above inequality, we use the upper-bound bitsize(x) ≤ 1 + log2(1 + x) to deal with
the case x = 0. Let M = m +

∑m
i=1 si = m +

∑
0≤j<L

∑
I∈Lj

I be the sum of all integers

1 in practice, to speed up operations we allow a small fraction of the leaf to be empty.

SEA 2017

11:4 A Framework of Dynamic Data Structures for String Processing

stored in the structure plus m. From the concavity of log and from L ≤ 2m/ logm, it can be
derived that the above quantity is upper-bounded by

2m · (log(M/m) + log logm+ 1) .

To conclude, we store O(1) pointers/counters of O(logM) bits each per leaf and internal
node. We obtain:

I Theorem 1. Let s1, . . . , sm be a sequence of m non-negative integers andM = m+
∑m

i=1 si.
The partial sum data structure implemented in DYNAMIC takes at most

2 ·m (log(M/m) + log logm+O(logM/ logm))

bits of space and supports sum, search, update, and insert operations on the sequence
s1, . . . , sm in O(logm) time.

Our implementation uses the standard C++ memory allocator to allocate memory for
the growing dynamic structures. As shown in the experimental section, this choice results
in a non-negligible fraction of memory being wasted due to memory fragmentation. Ad-
hoc allocators such as the one discussed in [5] can significantly alleviate this effect. In
our experiments we observed that – even taking into account memory fragmentation –
the bit-size of our dynamic partial sum structure is well approximated by function 1.19 ·
m (log(M/m) + log logm+ logM/ logm). See the experimental section for full details.

2.2 Plug and Play with Dynamic Structures
The SPSI structure described in the previous section is used as a building block to obtain all
dynamic structures of our library. In DYNAMIC, the SPSI structure’s type name is spsi and
is parametrized on three template arguments: the leaf type (here, the type packed_vector
is always used2), the leaf size and the node fanout. DYNAMIC defines two SPSI types with
two different combinations of these parameters:

typedef spsi < packed_vector ,256 ,16 > packed_spsi ;
typedef spsi < packed_vector ,8192 ,16 > succinct_spsi ;

The reasons for the particular values chosen for the leaf size and node fanout will be
discussed later. We use these two types as basic components in the definition our structures.

2.2.1 Gap-Encoded Bitvectors
DYNAMIC implements gap-encoded bitvectors using an SPSI to encode gap lengths: bitvector
0s1−110s2−11 . . . 0sm−11 (si > 0) is encoded with a partial sum on the sequence s1, . . . , sm.
For space reasons, we do not describe how to reduce the gap-encoded bitvector problem to
the SPSI problem; the main idea is to reduce bitvector’s access and rank operations to
SPSI’s search operations, bitvector’s select operations to SPSI’s sum operations, bitvector’s
insert1 operations to SPSI’s insert operations, and bitvector’s insert0/delete0 operations
to SPSI’s update operations.

DYNAMIC’s name for the dynamic gap-encoded bitvector class is gap_bitvector. The
class is a template on the SPSI type. We plug packed_spsi in gap_bitvector as follows:

2 packed_vector is simply a packed vector of fixed-size integers supporting all SPSI operations in linear
time.

N. Prezza 11:5

typedef gap_bitvector < packed_spsi > gap_bv ;

and obtain:

I Theorem 2. Let B ∈ {0, 1}n be a bit-sequence with b bits set. The dynamic gap-encoded
bitvector gap_bv implemented in DYNAMIC takes at most

2 · b (log(n/b) + log log b+O(logn/ log b)) (1 + o(1))

bits of space and supports rank, select, access, insert, and delete0 operations on B in
O(log b) time.

In our experiments, the optimal node fanout for the SPSI structure employed in this
component turned out to be 16, while the optimal leaf size 256 (these values represented a
good compromise between query times and space usage). Our benchmarks show (see the
experimental section for full details) that the bit-size of our dynamic gap-encoded bitvector
is well approximated by function 1.19 · b (log(n/b) + log log b+ logn/ log b).

It is worth to notice that an alternative efficient implementation of bitvectors is run-
length encoding (RLE): a bitvector 0k11k20k3 . . . can be represented with an SPSI on the
integer sequence k1, k2, k3, This representation results advantageous in cases where the
underlying bitvector contains also long runs of bits set (e.g. a wavelet tree on a string
with long equal-letter runs). We preferred using gap-encoding for two main reasons. First
of all, in our library gap-encoded bitvectors are at the core of run-length encoded strings
(more details in Section 2.2.3). In such structures, every equal-letter run is marked with
a bit set in a gap-encoded bitvector. This breaks the symmetry between zeros and ones
in the bitvector as strings with long equal-letter runs will generate bitvectors with very
few bits set. Then, note that the above-mentioned RLE bitvector representation allows for
efficient access operations, but does not support (fast) rank. To support rank, one should
store separately the cumulated lengths of runs of zeros (or ones). This is exactly what our
run-length compressed string (on the alphabet {0, 1}) does (see Section 2.2.3).

2.2.2 Succinct Bitvectors and Entropy-Compressed Strings
Let n be the bitvector length. Dynamic succinct bitvectors can be implemented using an
SPSI where all m = n stored integers are either 0 or 1. At this point, rank operations on
the bitvector correspond to sum on the partial sum structure, and select operations on
the bitvector can be implemented with search on the partial sum structure3. access and
insert operations on the bitvector correspond to exactly the same operations on the partial
sum structure. Note that in this case we can accelerate operations in the leaves by a factor
of logn by using constant-time built-in bitwise operations such as popcount, masks and
shifts. This allows us to use bigger leaves containing Θ(log2 n) bits, which results in a total
number of internal nodes bounded by O(n/ log2 n). The overhead for storing internal nodes
is therefore of o(n) bits. Moreover, since in the leaves we allocate only the necessary space
to store the bitvector’s content (i.e. we do not allow empty space in the leaves), it easily
follows that the dynamic bitvector structure implemented in DYNAMIC takes n+ o(n) bits of
space and supports all operations in O(logn) time.

3 Actually, search permits to implement only select1. select0 can however be easily simulated with
the same solution used for search by replacing each integer x ∈ {0, 1} with 1 − x at run time. This
solution does not increase space usage.

SEA 2017

11:6 A Framework of Dynamic Data Structures for String Processing

In our experiments, the optimal node fanout for the SPSI stucture employed in the
succinct bitvector structure turned out to be 16, while the optimal leaf size 8192. DYNAMIC’s
name for the dynamic succinct bitvector is succinct_bitvector. The class is a template
on the SPSI type. DYNAMIC defines its dynamic succinct bitvector type as:

typedef succinct_bitvector < succinct_spsi > suc_bv ;

We obtain:

I Theorem 3. Let B ∈ {0, 1}n be a bit-sequence. The dynamic succinct bitvector data
structure suc_bv implemented in DYNAMIC takes n + o(n) bits of space and supports rank,
select, access, and insert operations on B in O(logn) time.

In our experiments (see the experimental section) the size of our dynamic succinct
bitvector was always upper-bounded by 1.23 ·n bits. The 23% overhead on top of the optimal
size comes mostly from memory fragmentation (16%). The remaining 7% comes from succinct
structures on top of the bit-sequence.

Dynamic compressed strings are implemented with a wavelet tree built upon dynamic
succinct bitvectors. We explicitly store the topology of the tree (O(|Σ| logn) bits) instead
of encoding it implicitly in a single bitvector. This choice is space-inefficient for very large
alphabets, but reduces the number of rank/select operations on the bitvector(s) with
respect of a wavelet tree stored as a single bitvector. DYNAMIC’s compressed strings (wavelet
trees) are a template on the bitvector type. DYNAMIC defines its dynamic string type as:

typedef wt_string <suc_bv > wt_str ;

The user can choose at construction time whether to use a Huffman, fixed-size, or Gamma
encoding for the alphabet. Gamma encoding is useful when the alphabet size is unknown
at construction time. The Huffman encoding of the string uses at most n(H0 + 1) bits; a
Huffman-shaped wavelet tree only adds a low-order overhead on top of this representation.
In our library, we store the Huffman tree topology using pointers (instead of concatenating
the wavelet tree’s bitvectors into a single bitvector). This strategy reduces the number of
operations needed to navigate the tree, but adds a O(|Σ| logn)-bits overhead. We obtain:

I Theorem 4. Let S ∈ Σn be a string with zero-order entropy equal to H0. The Huffman-
compressed dynamic string data structure wt_str implemented in DYNAMIC takes

n(H0 + 1)(1 + o(1)) +O(|Σ| logn)

bits of space and supports rank, select, access, and insert operations on S in average
O((H0 + 1) logn) time.

When a fixed-size encoding is used (i.e. dlog2 |Σ|e bits per character), the structure takes
n log |Σ|(1 + o(1)) +O(|Σ| logn) bits of space and supports all operations in O(log |Σ| · logn)
time.

2.2.3 Run-Length Encoded Strings
To run-length encode a string S ∈ Σn, we adopt the approach described in [32]. We store
one character per run in a string H ∈ Σr, we mark the end of the runs with a bit set in a
bit-vector Vall[0, . . . , n− 1], and for every c ∈ Σ we store all c-runs lengths consecutively in a
bit-vector Vc as follows: every m-length c-run is represented in Vc as 0m−11.

N. Prezza 11:7

I Example 5. Let S = bc#bbbbccccbaaaaaaaaaaa. We have: H = bc#bcba, Vall =
11100010001100000000001, Va = 00000000001, Vb = 100011, Vc = 10001, and V# = 1

By encoding H with a wavelet tree and gap-compressing all bitvectors, we achieve run-
length compression. It can be easily shown that this representation allows supporting rank,
select, access, and insert operations on S, but for space reasons we do not give these
details here. In DYNAMIC, the run-length compressed string type rle_string is a template
on the gap-encoded bitvector type (bitvectors Vall and Vc, c ∈ Σ) and on the dynamic
string type (run heads H). We plug the structures of the previous sections in the above
representation as follows:
typedef rle_string <gap_bv , wt_str > rle_str ;

and obtain:

I Theorem 6. Let S ∈ Σn be a string with rS equal-letter runs. The dynamic run-length
encoded string data structure rle_str implemented in DYNAMIC takes

rS · (4 log(n/rS) + log |Σ|+ 4 log log rS +O(logn/ log rS)) (1 + o(1)) +O(|Σ| logn)

bits of space and supports rank, select, access, and insert operations on S in O(log |Σ| ·
log rS) time.

2.2.4 Dynamic FM Indexes
An FM index [10] is a data structure supporting rank operations over the Burrows-Wheeler
transform [3] (BWT) of the text, plus a suitable sampling mechanism that associates text
positions to a subset of BWT positions (i.e. a suffix array sampling). Such a data structure
takes space close to that of the compressed text (provided that the string structure used is
compressed) and supports fast counting and locating occurrences of a pattern in the text. If
the data structure used to represent the string supports also insert operations, then the
FM index support also left-extensions of the text [4, 21, 20].

We obtain dynamic FM indexes by combining a dynamic Burrows-Wheeler transform with
a sparse dynamic vector storing the suffix array sampling. In DYNAMIC, the BWT is a template
class parametrized on the L-column and F-column types. For the F column, a run-length
encoded string is always used. DYNAMIC defines two types of dynamic Burrows-Wheeler
transform structures (wavelet-tree/run-length encoded):
typedef bwt <wt_str ,rle_str > wt_bwt ;
typedef bwt <rle_str ,rle_str > rle_bwt ;

Dynamic sparse vectors are implemented inside the FM index class using a dynamic
bitvector marking sampled BWT positions and a dynamic sequence of integers (an SPSI)
storing non-null values. We combine a Huffman-compressed BWT with a succinct bitvector
and an SPSI:
typedef fm_index <wt_bwt , suc_bv , packed_spsi > wt_fmi ;

and obtain:

I Theorem 7. Let S ∈ Σn be a string with zero-order entropy equal to H0, P ∈ Σm

a pattern occurring occ times in T , and k the suffix array sampling rate. The dynamic
Huffman-compressed FM index wt_fmi implemented in DYNAMIC takes

n(H0 + 2)(1 + o(1)) +O(|Σ| logn) + (n/k) logn

bits of space and supports:

SEA 2017

11:8 A Framework of Dynamic Data Structures for String Processing

access to BWT characters in average O((H0 + 1) logn) time
count in average O(m(H0 + 1) logn) time
locate in average O((m+ occ · k)(H0 + 1) logn) time
text left-extension in average O((H0 + 1) logn) time

If a plain alphabet encoding is used, all (H0 + 1) terms are replaced by log |Σ| and times
become worst-case.

If, instead, we combine a run-length compressed BWT with a gap-encoded bitvector and
an SPSI as follows:

typedef fm_index <rle_bwt , gap_bv , packed_spsi > rle_fmi ;

we obtain:

I Theorem 8. Let S ∈ Σn be a string whose BWT has r runs, P ∈ Σm a pattern occurring
occ times in T , and k the suffix array sampling rate. The dynamic run-length compressed
FM index rle_fmi implemented in DYNAMIC takes

r · (4 log(n/r) + log |Σ|+ 4 log log r +O(logn/ log r)) (1+o(1))+O(|Σ| logn)+(n/k) logn

bits of space and supports:
access to BWT characters in O(log |Σ| · log r) time
count in O(m · log |Σ| · log r) time
locate in O((m+ occ · k)(log |Σ| · log r)) time
text left-extension in O(log |Σ| · log r) time

The suffix array sample rate k can be chosen at construction time.

3 Experimental Evaluation

We start by presenting detailed benchmarks of our gap-encoded and succinct bitvectors, that
are at the core of all other library’s structures. We then turn our attention to applications:
we compare the performance of five recently-published compression algorithms implemented
with DYNAMIC against those of state-of-the-art tools performing the same tasks and working
in uncompressed space. All experiments were performed on a intel core i7 machine with
12 GB of RAM running Linux Ubuntu 16.04.

3.1 Benchmarks: Succinct and Gap-Encoded Bitvectors

We built 34 gap-encoded (gap_bv) and 34 succinct (suc_bv) bitvectors of length n = 500 ·106

bits, varying the frequency b/n of bits set in the interval [0.0001, 0.99]. In each experiment, we
first built the bitvector by performing n insertb queries, b being equal to 1 with probability
b/n, at uniform random positions. After building the bitvector, we executed n rank0, n
rank1, n select0, n select1, and n access queries at uniform random positions. Running
times of each query were averaged over the n repetitions. We measured memory usage in
two ways: (i) internally by counting the total number of bits allocated by our procedures –
this value is denoted as allocated memory in our plots –, and (ii) externally using the tool
/usr/bin/time – this value is denoted as RSS in our plots (Resident Set Size).

N. Prezza 11:9

Working space. We fitted measured RSS memory with the theoretical predictions of
Section 2.1.1 using a linear regression model. Parameters of the model were inferred using the
statistical tool R (function lm). In detail, we fitted RSS memory in the range b/n ∈ [0, 0.1]4
with function k · f(n, b) + c, where: f(n, b) = b · (log(n/b) + log log b + logn/ log b) is our
theoretical prediction (recall that memory occupancy of our gap-encoded bitvector should
never exceed 2f(n, b)), k is a scaling factor accounting for memory fragmentation and average
load distribution in the B-tree, and c is a constant accounting for the weight of loaded
C++ libraries (this component cannot be excluded from the measurements of the tool
/usr/bin/time). Function lm provided us with parameters k = 1.19 and c = 28, 758, 196
bits ≈ 3.4MB. The value for c was consistent with the space measured with b/n close to 0.

Figures 1 and 2 show memory occupancy of DYNAMIC’s bitvectors as a function of the
frequency b/n of bits set. In Figure 1 we compare both bitvectors. In Figure 2 we focus on
the behavior of our gap-encoded bitvector in the interval b/n ∈ [0, 0.1]. In these plots we
moreover show the growth of function 1.19 · f(n, b) + 28, 758, 196. Plot in Figure 1 shows that
our theoretical prediction fits almost perfectly the memory usage of our gap-encoded bitvector
for b/n ≤ 0.7. The plot suggests moreover that for b/n ≥ 0.1 it is preferable to use our
succinct bitvector rather than the gap-encoded one. As far as the gap-encoded bitvector is
concerned, memory fragmentation5 amounts to approximately 15% of the allocated memory
for b/n ≤ 0.5. This fraction increases to 24% for b/n close to 1. We note that RSS memory
usage of our succinct bitvector never exceeds 1.29n bits: the overhead of 0.29n bits is
distributed among (1) rank/select succinct structures (≈ 0.07n bits) (2) loaded C++
libraries (a constant amounting to approximately 3.4 MB, i.e. ≈ 0.06n bits in this case),
and memory fragmentation (≈ 0.16n bits). Excluding the size of C++ libraries (which is
constant), our bitvector’s size never exceeds 1.23n bits (being 1.20n bits on average).

Query times. Plots in Figures 3-6 show running times of our bitvectors on all except
rank0 and select0 queries (which were very close to those of rank1 and select1 queries,
respectively). We used a linear regression model (inferred using R’s function lm) to fit query
times of our gap-encoded bitvector with function c+ k · log b. Query times of our succinct
bitvector were interpolated with a constant (with n fixed). These plots show interesting
results. First of all, our succinct bitvector supports extremely fast (0.01µs on average)
access queries. rank and select queries are, on average, 15 times slower than access
queries. As expected, insert queries are very slow, requiring – on average – 390 times the
time of access queries and 26 times that of rank/select queries. On all except access
queries, running times of our gap-encoded bitvector are faster than (or comparable to) those
of our succinct bitvector for b/n ≤ 0.1. Combined with the results depicted in Plot 1, these
considerations confirm that for b/n ≤ 0.1 our gap-encoded bitvector should be preferred to
the succinct one. access, rank, and select queries are all supported in comparable times
on our gap-encoded bitvector (≈ 0.05 · log b µs), and are one order of magnitude faster than
insert queries.

4 For b/n ≥ 0.1 it becomes more convenient – see below – to use our succinct bitvector, so we considered
it more useful to fit memory usage in b ∈ [0, 0.1]. In any case – see plot 1 – the inferred model fits the
experimental data well in the (wider) interval b/n ∈ [0, 0.7].

5 We estimated the impact of memory fragmentation by comparing RSS and allocated memory, after
subtracting from RSS the estimated weight – approximately 3.4 MB – of loaded C++ libraries.

SEA 2017

11:10 A Framework of Dynamic Data Structures for String Processing

bitvectors (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06 b

its
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50
0

15
00

25
00

35
00

RSS gap_bv
allocated gap_bv
1.19 f(n,b) + 28758196
RSS suc_bv
allocated suc_bv

Figure 1 Memory occupancy of DYNAMIC’s bitvectors. We show the growth of function f(n, b) =
b(log(n/b) + log log b + log n/ log b) opportunely scaled to take into account memory fragmentation
and the weight of loaded C++ libraries.

gap_bv (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06 b

its
)

0 0.02 0.04 0.06 0.08 0.1

0
10

0
20

0
30

0
40

0
50

0
60

0 RSS gap_bv
allocated gap_bv
1.19 f(n,b) + 28758196

Figure 2 Memory occupancy of DYNAMIC’s gap-encoded bitvector in the interval b/n ∈ [0, 0.1]
(for b/n > 0.1 the succinct bitvector is more space-efficient then the gap-encoded one). The picture
shows that allocated memory closely follows our theoretical prediction (function f(n, b)).

N. Prezza 11:11

bitvectors: access queries

Frequency of bits set (b/n)

T
im

e
(µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

0.
8

suc_bv
gap_bv
−0.93 + 0.06 log(b)
0.01

Figure 3 Running times of our bitvectors on access queries. Bitvectors’ size is n = 5× 108 bits.

bitvectors: insert queries

Frequency of bits set (b/n)

T
im

e
(µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
6

1.
2

1.
8

2.
4

3.
0

3.
6

4.
2

4.
8

5.
4

6.
0

6.
6

suc_bv
gap_bv
−4.75 + 0.34 log(b)
3.9

Figure 4 Running times of our bitvectors on insert queries. Bitvectors’ size is n = 5× 108 bits.

SEA 2017

11:12 A Framework of Dynamic Data Structures for String Processing

bitvectors: rank1 queries

Frequency of bits set (b/n)

T
im

e
(µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

suc_bv
gap_bv
−0.82 + 0.05 log(b)
0.14

Figure 5 Running times of our bitvectors on rank1 queries. Bitvectors’ size is n = 5× 108 bits.

bitvectors: select1 queries

Frequency of bits set (b/n)

T
im

e
(µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

suc_bv
gap_bv
−0.71 + 0.04 log(b)
0.14

Figure 6 Running times of our bitvectors on select1 queries.

N. Prezza 11:13

3.2 An Application: Space-Efficient Compression Algorithms
We used DYNAMIC to implement five recently-published algorithms [26, 28, 27] computing
the Burrows-Wheeler transform [3] (BWT) and the Lempel-Ziv 77 factorization [35] (LZ77)
within compressed working space: cw-bwt [27] builds a BWT within n(Hk + 1) + o(n log σ)
bits of working space by breaking it in contexts and encoding each context with a zero-order
compressed string; rle-bwt builds the BWT within Θ(r) words of working space using the
structure of Theorem 6; h0-lz77 [28] computes LZ77 online within n(H0 + 2) + o(n log σ)
bits using a dynamic zero-order compressed FM index; rle-lz77-1 and rle-lz77-2 [26]
build LZ77 within Θ(r) words of space by employing a run-length encoded BWT augmented
with a suffix array sampling based on BWT equal-letter runs and LZ77 factors, respectively.
Implementations of these algorithms can be found within the DYNAMIC library [8]. We
compared running times and working space of our algorithms against those of less space-
efficient (but faster) state-of-the-art tools solving the same problems. BWT construction tools:
se-sais [1, 12] (Θ(n) Bytes of working space), divsufsort [23, 12] (Θ(n) words), bwte [9]
(constant user-defined working space; we always used 256 MB), dbwt [6] (Θ(n) Bytes). LZ77
factorization tools: isa6r [16, 19] (Θ(n) words), kkp1s [15, 19] (Θ(n) words), lzscan [14, 19]
(Θ(n) Bytes). We generated two highly repetitive text collections by downloading all
versions of the Boost library (github.com/boostorg/boost) and all versions of the English
Einstein’s Wikipedia page (en.wikipedia.org/wiki/Albert_Einstein). Both datasets
were truncated to 5 · 108 Bytes to limit RAM usage of the and computation times of the
tested tools. The sizes of the 7-Zip-compressed datasets (www.7-zip.org) were 120 KB
(Boost) and 810 KB (Einstein). The datasets can be found within the DYNAMIC library [8]
(folder /datasets/). RAM usage and running times of the tools were measured using the
executable /usr/bin/time.

In Figure 7 we report our results. Solid and a dashed horizontal lines show the datasets’
sizes before and after compression with 7-Zip, respectively. Our tools are highlighted in red.
We can infer some general trends from the plots. Our tools use always less space than the
plain text, and from one to three orders of magnitude more space than the 7-Zip-compressed
text. h0-lz77 and cw-bwt (entropy compression) always have working space very close
to (and always smaller than) the plain text, with cw-bwt (k-th order compression) being
more space-efficient than h0-lz77 (0-order compression). On the other hand, tools using
a run-length compressed BWT – rle-bwt, rle-lz77-1, and rle-lz77-2 – are up to two
orders of magnitude more space-efficient than h0-lz77 and cw-bwt in most of the cases. This
is a consequence of the fact that run-length encoding of the BWT is particularly effective in
compressing repetitive datasets. bwte represents a good trade-off in both running times and
working space between tools working in compressed and uncompressed working space. kkp1s
is the fastest tool, but uses a working space that is one order of magnitude larger than the
uncompressed text and three orders of magnitude larger than that of rle-bwt, rle-lz77-1,
and rle-lz77-2. As predicted by theory, tools working in compact working space (lzscan,
se-sais, dbwt) use always slightly more space than the uncompressed text, and one order
of magnitude less space than tools working in O(n) words. To conclude, the plots show that
the price to pay for using complex dynamic data structures is high running times: our tools
are up to three orders of magnitude slower than tools working in Θ(n) words of space. This
is mainly due to the large number of insert operations – one per text character – performed
by our algorithms to build the dynamic FM indexes.

SEA 2017

github.com/boostorg/boost
en.wikipedia.org/wiki/Albert_Einstein
www.7-zip.org

11:14 A Framework of Dynamic Data Structures for String Processing

●
●

2.0 3.0 4.0 5.0

2

3

4

5

6

7

boost

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

2.0 3.0 4.0 5.0

2

3

4

5

6

7

einstein

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7 BWT and LZ77 compression algorithms. In red: tools implemented using DYNAMIC.
Solid/dashed lines: space of the input files before and after 7-Zip compression, respectively.

References
1 Timo Beller, Maike Zwerger, Simon Gog, and Enno Ohlebusch. Space-Efficient Construc-

tion of the Burrows-Wheeler Transform. In String Processing and Information Retrieval,
pages 5–16. Springer, 2013.

2 Daniel K. Blandford and Guy E. Blelloch. Compact representations of ordered sets. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
11–19. Society for Industrial and Applied Mathematics, 2004.

3 Michael Burrows and David J. Wheeler. A block-sorting lossless data compression al-
gorithm, 1994.

4 Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane. Compressed
indexes for dynamic text collections. ACM Transactions on Algorithms (TALG), 3(2):21,
2007.

5 Joshimar Cordova and Gonzalo Navarro. Practical dynamic entropy-compressed bitvectors
with applications. In International Symposium on Experimental Algorithms, pages 105–117.
Springer, 2016.

6 dbwt: direct construction of the BWT. http://researchmap.jp/muuw41s7s-1587/#_
1587. Accessed: 2016-11-17.

7 ds-vector: C++ library for dynamic succinct vector. https://code.google.com/archive/
p/ds-vector/. Accessed: 2016-11-17.

8 DYNAMIC: dynamic succinct/compressed data structures library. https://github.com/
xxsds/DYNAMIC. Accessed: 2017-01-22.

9 Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight data indexing and
compression in external memory. Algorithmica, 63(3):707–730, 2012.

10 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages
390–398. IEEE, 2000.

11 bitvector: succinct dynamic bitvector implementation. https://github.com/
nicola-gigante/bitvector. Accessed: 2016-11-17.

12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms, (SEA 2014), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

http://researchmap.jp/muuw41s7s-1587/#_1587
http://researchmap.jp/muuw41s7s-1587/#_1587
https://code.google.com/archive/p/ds-vector/
https://code.google.com/archive/p/ds-vector/
https://github.com/xxsds/DYNAMIC
https://github.com/xxsds/DYNAMIC
https://github.com/nicola-gigante/bitvector
https://github.com/nicola-gigante/bitvector
http://dx.doi.org/10.1007/978-3-319-07959-2_28

N. Prezza 11:15

13 Roberto Grossi, Rajeev Raman, Satti Srinivasa Rao, and Rossano Venturini. Dynamic com-
pressed strings with random access. In International Colloquium on Automata, Languages,
and Programming, pages 504–515. Springer, 2013.

14 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lightweight Lempel-Ziv parsing.
In Experimental Algorithms, pages 139–150. Springer, 2013.

15 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Combinatorial Pattern Matching. Springer, 2013.

16 Dominik Kempa and Simon J. Puglisi. Lempel-Ziv factorization: Simple, fast, practical.
In Proceedings of the Meeting on Algorithm Engineering & Expermiments, pages 103–112.
Society for Industrial and Applied Mathematics, 2013.

17 Patrick Klitzke and Patrick K. Nicholson. A general framework for dynamic succinct and
compressed data structures. Proceedings of the 18th ALENEX, pages 160–173, 2016.

18 libcds: compact data structures library. https://github.com/fclaude/libcds. Accessed:
2016-11-17.

19 LZ77 factorization algorithms. https://www.cs.helsinki.fi/group/pads/lz77.html.
Accessed: 2016-05-20.

20 Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms (TALG), 4(3):32, 2008.

21 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. J. of Computational Biology, 17(3):281–308, 2010.

22 Memoria: C++14 framework providing general purpose dynamic data structures. https:
//bitbucket.org/vsmirnov/memoria/wiki/Home. Accessed: 2016-11-17.

23 Y. Mori. Short description of improved two-stage suffix sorting algorithm, 2005.
24 Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations. SIAM

Journal on Computing, 43(5):1781–1806, 2014.
25 Pizza&Chili corpus. http://pizzachili.dcc.uchile.cl. Accessed: 2016-07-25.
26 A. Policriti and N. Prezza. Computing LZ77 in Run-Compressed Space. In 2016 Data

Compression Conference (DCC), pages 23–32, March 2016. doi:10.1109/DCC.2016.30.
27 Alberto Policriti, Nicola Gigante, and Nicola Prezza. Average linear time and compressed

space construction of the Burrows-Wheeler transform. In International Conference on
Language and Automata Theory and Applications, pages 587–598. Springer, 2015.

28 Alberto Policriti and Nicola Prezza. Fast online Lempel-Ziv factorization in compressed
space. In International Symposium on String Processing and Information Retrieval, pages
13–20. Springer, 2015.

29 Andreas Poyias, Simon J Puglisi, and Rajeev Raman. Compact Dynamic Rewritable
(CDRW) Arrays. In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 109–119. SIAM, 2017.

30 Andreas Poyias and Rajeev Raman. Improved practical compact dynamic tries. In Interna-
tional Symposium on String Processing and Information Retrieval, pages 324–336. Springer,
2015.

31 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct dynamic data structures.
In Workshop on Algorithms and Data Structures, pages 426–437. Springer, 2001.

32 Jouni Sirén, Niko Välimäki, Veli Mäkinen, and Gonzalo Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In String Processing and
Information Retrieval, pages 164–175. Springer, 2009.

33 succinct library. https://github.com/ot/succinct. Accessed: 2016-11-17.
34 sux library. http://sux.di.unimi.it/. Accessed: 2016-11-17.
35 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on information theory, 23(3):337–343, 1977.

SEA 2017

https://github.com/fclaude/libcds
https://www.cs.helsinki.fi/group/pads/lz77.html
https://bitbucket.org/vsmirnov/memoria/wiki/Home
https://bitbucket.org/vsmirnov/memoria/wiki/Home
http://pizzachili.dcc.uchile.cl
http://dx.doi.org/10.1109/DCC.2016.30
https://github.com/ot/succinct
http://sux.di.unimi.it/

Practical Range Minimum Queries Revisited
Niklas Baumstark1, Simon Gog2, Tobias Heuer3, and Julian Labeit4

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
niklas.baumstark@student.kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
simon.gog@kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
tobias.heuer@student.kit.edu

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
julian.labeit@student.kit.edu

Abstract
Finding the position of the minimal element in a subarray A[i..j] of an array A of size n is a
fundamental operation in many applications. In 2011, Fischer and Heun presented the first index
of size 2n+ o(n) bits which answers the operation in constant time for any subarray. The index
can be computed in linear time and queries can be answered without consulting the original array.
The most recent and currently fastest practical index is due to Ferrada and Navarro (DCC’16).
It reduces the range minimum query (RMQ) to more fundamental and well studied queries on
binary vectors, namely rank and select, and a RMQ query on an array of sublinear size derived
from A. A range min-max tree is employed to solve this recursive RMQ call. In this paper, we
review their practical design and suggest a series of changes which result in consistently faster
query times. Specifically, we provide a customized select implementation, switch to two levels of
recursion, and use the sparse table solution for the recursion base case instead of a range min-max
tree.

We provide an extensive empirical evaluation of our new implementation and also compare it
to the state of the art. Our experimental study shows that our proposal significantly outperforms
the previous solutions on established benchmarks (up to a factor of three) and furthermore
accelerates real world applications such as traversing a succinct tree or listing all distinct elements
in an interval of an array.

1998 ACM Subject Classification E.1 Data Structures, E.4 Coding and Information Theory

Keywords and phrases Succinct Data Structures, Range Minimum Queries, Algorithm Engin-
eering

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.12

1 Introduction

Index data structures are computed once for a given input – for instance a document collection
or a set of points – and can then be used to answer queries efficiently, without scanning
the whole data set again. Hence, a query is reduced to operations whose running time is
sublinear in the size of the original input. In the era of Big Data it is not surprising that
index structures form the backbone of many search application, such as pattern matching in
strings or range queries on point sets. The drawback of traditional index structures is that
they are usually larger than the original data and have to reside in main memory to facilitate
fast queries. An example are pointer-based search trees. This motivates the development of
space-efficient index structures which often are not only substantially smaller than traditional

© Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Practical Range Minimum Queries Revisited

indexes but can also answer queries without access to the original data. In a seminal paper,
Jacobson showed in 1989 how an arbitrary tree of n nodes can be represented in 2n+ o(n)
bits while traversal operations such as finding the parent and children of a node are still
supported in constant or logarithmic time [14]. The tree is represented as a vector over {0, 1}
and navigation is reduced to two operations: rank1(i, B) counts the number of bits set in
the prefix of size i of the binary vector B and select1(j, B) returns the position of the j-th
set bit in B. Today, there exist many other space-efficient counterparts of classic structures
which are based on these two fundamental operations; compressed text indexes such as the
FM-index are probably the most prominent example [8]. More examples can be found in
Navarro’s textbook [16].

Improving the performance of basic data structures in this area is of utmost importance
as an improvement will often directly translate to faster text indexes or other complex
structures [11]. In this paper, we develop a space-efficient data structure to solve range
minimum queries, which occur as sub-problems in many different applications. To give a
concrete example, they arise in information retrieval problems such as top-k completion [13]
and general top-k document retrieval [16].

I Definition 1. Given an array A[1..n] of n numbers. The range minimum query (RMQ)
problem is to find an index structure that returns for any range A[i..j] the position of the
leftmost minimum. More formally, for any pair of positions 1 ≤ i ≤ j ≤ n,

RMQA(i, j) = arg min
i≤k≤j

〈A[k], k〉 .

Two tuples 〈a, b〉 and 〈c, d〉 are compared lexicographically, i.e. 〈a, b〉 < 〈c, d〉 ⇐⇒ a <

c ∨ (a = c ∧ b < d).

Most solutions of the RMQ problem are based on the reduction to a restricted version of
the problem. The restriction is that adjacent entries of the input array A[1..n] only differ
by ±1. Such arrays can be represented as a bit vector B, where B[1] = 1 and B[i] = 1
if A[i]−A[i−1] = +1 and B[i] = 0 otherwise. An entry A[i] can be reconstructed by
A[i] = rank1(i, B)−rank0(i, B) = 2 ·rank1(i, B)− i. rank0 computes the number of zero
bits in a prefix of a vector, analogously to rank1. This formula is also called excess(i, B)
and we use it to define the restricted problem:

I Definition 2. Given a bit vector B[1..n], the ±1RMQ problem is to find an index structure
that returns for any range B[i..j] the position of the leftmost and rightmost excess minimum.
More formally, for any pair of positions 1 ≤ i ≤ j ≤ n,

RMQ±B(i, j) = arg min
i≤k≤j

〈excess(k,B), k〉 ,

RRMQ±B(i, j) = arg min
i≤k≤j

〈excess(k,B),−k〉 .

The RMQ problem is well studied and various solutions have been proposed. The first
optimal space index requires only 2n+ o(n) bits and was invented by Fischer and Heun [9].
It can be built in linear time and answers each query in constant time without accessing the
original array. Several authors implemented variants of the index [12, 11, 5]. Here, we briefly
describe the general idea behind these solutions in order to highlight the contributions of
this paper. Any range minimum query can be translated to a lowest common ancestor query
(LCA) on the Cartesian tree of A. The tree can be stored in a succinct representation which
uses a bitvector B of length 2n. Mapping an array element of A to a node in the tree is

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:3

reduced to a select operation. The LCA operation can be translated back into a ±1RMQ
query on the succinct tree representation. There are several options to solve the ±1RMQ
problem, and most practical implementations use the range min-max tree to do so [17, 1]. In
a last step the result of the ±1RMQ is mapped back to the corresponding position on A,
via a rank operation. Recently, Ferrada and Navarro [5] showed that with a specific tree
representation no more than three basic operation calls (2 × select, 1 × rank) are required
on top of the ±1RMQ call to answer a query1. Previous implementations in the Sdsl [11] and
Succinct [12] library require the execution of another relatively expensive basic operation
for an ancestor test. To decrease space usage, Ferrada and Navarro replaced the constant
time index for select by a binary search over the rank index [6] or a combination of select
dictionary and scanning [5]. While this negatively affects the overall query time, they show
that their solution is still the fastest on a wide range of benchmarks. However, they also
noted that the library implementations are still faster on real-world applications such as
suffix tree traversal.

In this paper we suggest a series of improvements to Ferrada and Navarro’s index.
Specifically,

We show that the knowledge about the height of the Cartesian tree can be used to
accelerate select. For trees with logarithmic height we get constant query time without
using any extra space. This is a major improvement compared to other previous imple-
mentations.
Navarro & Ferrada proposed two succinct tree representations (rightmost and leftmost
path-mapped general tree). One can choose between the two options so as to minimize
the height of the tree, but they require different basic structures (rank1/rank0 and
rightmost/leftmost ±1RMQ). We use a single mapping and simulate the other by
reversing the input.
We introduce an effective optimization for small query ranges. Replacing the second
select for the right border of the range by a local scan on the parentheses sequence
significantly improves the performance on real world applications.
We replace the traditionally used range min-max tree by a recursive call to our optimized
solution and resort to the sparse table approach after a constant number of recursions.

Combining these optimizations we obtain an index that outperforms the existing imple-
mentations not only on established benchmarks but also on real-world applications. The
remainder of the paper is organized as follows: In Section 2 we review the previous work
and present the simplified framework of Ferrada and Navarro. In Section 3 we present our
optimizations in detail and subsequently provide experimental evidence of their effectiveness
in Section 4.

2 Previous Work

A straightforward constant query time solution to the RMQ problem is to precompute every
possible query and store each answer into a lookup table of size O

(
n2). However the memory

requirement of this approach is prohibitively high. Bender & Farach-Colton [2] presented an
elegant O (n logn)-space solution, which uses a sparse version of the naive lookup table. They
precompute a table M [1..n][1.. logn] with M [i][j] = RMQA(i, i+ 2j − 1); i.e. for all queries
with an interval size that is a power of two, the answers are stored. An arbitrary query

1 We note that this simplified approach was also described by Davoodi et al. [4] in CACOON 2012.

SEA 2017

12:4 Practical Range Minimum Queries Revisited

A =

L = 1 2 3 2 3 2 1 2 3 4 3 2 3 4 3 4 3 2 1

T =

5

2

3

1

4

3

1

4

1

2

C
ar

te
si

an
 t
re

e
1 2 3 4 5 6 7 8 9 10

5

2

3

1

4

3

1

4

1

2

E
xtended

C
artesian tree

5 2 3 1 4 3 1 4 1 2

4 2 1 2 3 2 4 7 6 5 6 7 9 8 9 10 9 7 4

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1

R = 3 2 5 1 10 9 8 14 15 16
1 2 3 4 5 6 7 8 9 10

(((())()(()))()(((())())()((())()(()))))
1 2 3 4 5 6 7 8 9 10

B = 1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0

exC
C

Figure 1 Example of a Cartesian and extended Cartesian tree. Note that we use the leftmost
tie-breaking policy.

RMQ(i, j) can be answered by first determining the maximal k with 2k ≤ j − i+ 1. Then
A[M [i, k]] and A[M [j−2k+1, k]] are compared to determine the result. The method requires
just four memory accesses (two to A and two to M), a comparison, and a log-calculation
on integers which corresponds to counting leading zero bits2. We refer to this solution
as SparseTable. More space-efficient RMQ solutions are based on the Cartesian tree
introduced in [19].

I Definition 3. Given an array A[1..n] of numbers. The Cartesian tree C is a binary tree
which is recursively defined as follows: (1) If A is empty, then C(A) is the empty tree.
(2) Otherwise, let p = arg min1≤i≤|A|〈A[i], i〉 be the position of the leftmost minima. The
root of C(A) is element A[p]. Its left subtree is C(A[1..p− 1]) if p > 1 and its right subtree
C(A[p+ 1..|A|]) if p < |A|.

We denote as CL/CR the Cartesian tree where leftmost/rightmost minima are selected in
the case of ties, respectively.

Figure 1 shows the Cartesian tree for an example array. Note that one can map between
array entries and nodes. The in-order index Inorder(v) of a node v corresponds to the
nodes index in A. Conversely, we define the mapping from an index to its node with Innode3.
Gabow et al. observed that an RMQ query in A can be reduced to calculating the lowest
common ancestor (LCA) in C(A) [10].

RMQA(i, j) = Inorder(LCAC(A)(Innode(i), Innode(j))) .

Berkman and Vishkin noted, that the problem of calculating the LCA can again be reduced
to an RMQ query on an array L of the depths of the nodes in the Euler tour T through
C(A) [3]. In Figure 1 arrays T [1..2n] and L[1..2n] contain the nodes (identified by their

2 This operation is part of the instruction set of most modern CPUs.
3 Note that we omit the mapping in cases where we can directly identify nodes by their in-order index.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:5

in-order index) and their corresponding depth in the Euler tour. Note that L can be replaced
by a bit vector B as L[i] = 2 · rank1(i, B) − i). With an additional array R[1..n] which
contains the first occurrence of each node in the Euler tour LCA queries can be answered as
follows:

LCAC(A)(Innode(i), Innode(j)) = Innode(T [RMQ±B(R[i], R[j])]) .

Bender & Farach-Colton [2] solve the ±1RMQ problem by partitioning B into blocks
of size s = 1

2 logn and creating a SparseTable structure over the n
s block minima. As

there can be at most 2s =
√
n different block types, one can afford to store a lookup table

for all O
(
2s · s2) in-block RMQ queries. For an arbitrary range [i..j], the query is divided

into three sub-queries, including at most two in-block queries in the case where i and j are
not block aligned and a SparseTable query for the blocks with indexes in the interval
[d i+1

s e, b
j−1
s c]. The excess values of the three positions are compared and the position of

the leftmost minimum is returned. This solution requires a linear number of words and the
space is dominated by the SparseTable on the sequence of 2n

logn block minima.
Sadakane [18] showed that the ±1RMQ problem can be solved with just sublinearly many

bits in addition to B by first dividing B into blocks of size log3 n (SparseTable requires
O
(

n
logn

)
∈ o(n) bits), subdividing those into in sub-blocks of size 1

2 logn (SparseTable
in total again in o(n) bits) and handling the inner blocks again with tabulation as above.
He also observed that B can be transformed into a succinct representation – the balanced
parentheses sequence (BP) of C – by replacing 1/0 with opening/closing parentheses and
appending a closing parenthesis at the end.

BPs were originally introduced by Munro & Raman [15]. The 2n-bits BP is defined
by a depth-first traversal where an opening parenthesis is appended when arriving at a
node v and a closing parenthesis is appended after processing v’s subtree. Nodes in BP are
either in DFS-preorder (if they are identified with their corresponding opening parenthesis)
or in DFS-postorder. To use the presented RMQ framework, which is based on in-order,
Sadakane introduced the extended Cartesian tree exC, which adds one pseudo-leaf per node
(see Figure 1) [18]. These n leaves serve as in-order markers of the original nodes. Now
Innode and Inorder can be realized by select and rank on the parentheses pattern “()”
(or “10” if interpreted as bits) and the query can be expressed as follows:

RMQA(i, j) = rank10(RMQ±BP (exC)(select10(i), select10(j))) . (1)

In 2016, Ferrada and Navarro [5] showed how the balanced parentheses representation can
be directly applied to the Cartesian tree. They transform the binary Cartesian tree C into a
leftmost path-mapped general Cartesian tree CL (see Figure 2) using a known mapping [15].
A new pseudo-root is introduced and the node from the leftmost path in the binary tree
(from the leaf to root) are attached to the new root. This process is applied recursively on the
subtrees of the former leftmost path. In CL the node with pre-order index i+ 1 corresponds
to the node with in-order index i in C (the +1 is due to the added pseudo-root). Innode
and Inorder can by directly realized by select and rank on the opening parentheses and
the RMQ expressed as follows:

RMQA(i, j) = rank1(RRMQ±BP (CL)(select1(i+ 1)− 1, select1(j + 1))) . (2)

Note that the ±1RMQ has to return the rightmost minimum. Alternatively, they provide
the formula for the rightmost path mapping (CR); see Figure 2. In this case pre-order is

SEA 2017

12:6 Practical Range Minimum Queries Revisited

5

2

3

1

4

3

1

4

1

2Le
ft
m

os
t
pa

th
m

ap
pi

ng

5

2

3

1

4

3

1

4

1

2

R
ightm

ost path
m

apping

(() (()) (() () (() (())))) (((()) ()) ((())) (()) ())

1

2

3

4

5 6

7

8 9 10

Figure 2 Transformation of a binary Cartesian tree into a general tree. We show the leftmost
path mapping (CL) and rightmost path mapping (CR) for the example of Figure 1.

replaced by post-order, select1/rank1 by select0/rank0 and the ±1RMQ has to return
the leftmost minimum.

RMQA(i, j) = rank0(RMQ±BP (CR)(select0(i), select0(j))) . (3)

Ferrada and Navarro already noted the possibility of constructing indexes based on both
mappings and choosing the more attractive one, e.g. the one which minimizes the height of
the tree. In Figure 2 CL has a depth of five, while CR has a depth of four. This observation
acts as a starting point of our work.

3 An Optimized Recursive Solution

Our first optimization considers the select1 operation, which is used to find the position of
node v with Preorder(v) = i when answering range minimum queries using Equation 2.
The result of select can be directly determined if depth(v) is known:

I Lemma 4. Let T be a rooted ordered tree and BP be the balanced parentheses sequence
of T . The position of the representing opening parenthesis in B of a node v ∈ T with
Preorder(v) = i is select1(i, BP) = 2i−depth(v)− 1, where depth(v) ≥ 0 denotes the
distance of v to the root node.

Proof. By construction the opening parenthesis of v is appended to BP after processing the
i− 1 nodes with smaller pre-order IDs. The i− 1− depth(v) nodes which are not ancestors
of v were fully processed and we have written a parentheses pair for each of them. The
depth(v) ancestors are not yet fully processed as v is a node in their subtree. So we have
written only one parenthesis per ancestor. In total we output v’s opening parenthesis at
position 2 · (i − 1 − depth(v)) + depth(v) + 1 = 2i − depth(v) − 1 in an 1-index based
sequence. J

The answer of every select1 query can therefore be estimated using the depth of T or
the maximal excess in BP More precisely the answer must be within the interval BP [2i−
max_excess(BP) − 1..2i − 1], where max_excess(BP) := max0≤i≤|BP | excess(i, BP).
We note that for trees of logarithmic depth we can directly calculate the correct 64-bit word
containing the answer without using any extra space. To guarantee constant running time
for larger tree sizes, we can employ a sampling scheme similar which uses o(n) space and is
very similar to the traditional solution for select.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:7

 2 1 4 1 3 4 1 3 2 5
1 2 3 4 5 6 7 8 9 10

5

2

3

1

4

3

1

4

1

2

5

2

3

1

4

3

1

4

1

2

BP =(()(())((()))(()()())))

Figure 3 Left: Cartesian tree CR(A[n..1]) built over A[n..1] (the reverse array of the example in
Figure 1; the rightmost tie-breaking policy is used. Right: Leftmost-path general tree CLR(A[n..1]) of
CR(A[n..1]). Note that this is the mirrored tree of CRL (A[1..n]) in Figure 2 (right).

Next we show that it is not actually necessary to implement the rightmost mapping and
its underlying primitives as it can be simulated using the leftmost mapping on the reversed
input and a changed tie-breaking policy.

I Theorem 5. Let A[1..n] be an array of integers and ←−A = A[n..1] the array in reverse
order. Then CRL (A) is isomorphic to CLR(←−A).

Proof. First we show that reversing the input and changing the tie braking policy yields the
same Cartesian tree, hence CL(A) is isomorphic to CR(←−A). The statement is trivially true for
n = 1. For n > 1 the root of CL(A) is the leftmost minimum m = A[p]. As ←−A contains the
same values as A, m also has to be the minimum in ←−A . The mirrored position p′ = n+ 1− p
contains m and has to be the rightmost minimum in ←−A . Otherwise, there would be a p′′ > p′

with ←−A [p′′] = m which is mapped to a position q = n+ 1− (n+ 1− p) < p with A[q] = m.
This contradicts the assumption that A[p] is the leftmost minimum. The left child of the
root of CL(A) is CL(A[1..p− 1]) and the right child of the root of CR(←−A) is CR(←−A [p′ + 1..n]).
By definition ←−A [p′ + 1..n] is the reverse array of A[1..p− 1]. By induction CL(A[1..p− 1])
is isomorphic to CR(←−A [p′ + 1..n]). The same argument can be apply to ←−A [1..p′ − 1] and
A[p+ 1..n]. Thus CL(A) is isomorphic to CR(←−A).

Further we observe that CL(A) is the mirrored version of CR(←−A). I.e. the rightmost path
in CL(A) corresponds to the leftmost path in CR(←−A). Therefore, the leftmost path mapped
tree CLR(←−A) of CR(←−A) is the mirrored version of the rightmost path mapped tree CRL (A) of
CL(A). Hence CRL (A) is isomorphic to CLR(←−A). J

The right tree in Figure 2 and the right tree in Figure 3 show both trees, CRL (A) and
CLR(←−A), for our running example. A query RMQA(i, j) can be answered with CLR(←−A) as
follows. The query range [i, j] is mirrored [µ(j), µ(i)], with µ(x) = n+ 1− x, and we get the
position p of the rightmost minimum in ←−A [µ(j), µ(i)] as CLR breaks ties with rightmost policy.
The mirrored position µ(p) of p in turn is the leftmost minimum in A[i, j]. This observation
helps to simplify the query algorithm, as it does not need to support both rightmost and the
leftmost mapping.

SEA 2017

12:8 Practical Range Minimum Queries Revisited

The technique of reversing the input sequence and adjusting the query range can also be
used to implement ±1RRMQ and we therefore get a recursive algorithm. Remember that
Bender &Farach-Colton divided BP (C) into blocks of fixed size s and built the structure
again over the sequence E of block minima. The recursive structure built for E again profits
from our proposed optimizations in Lemma 4 and of Theorem 5. The recursion is terminated
when the length of E is in o(n

log2 n
) and the SparseTable structure can be applied.

Algorithm 1 summarizes the construction of our RMQ-index. The recursion base case in
Line 3 constructs SparseTable. For the remaining Λ levels, first the leftmost-path mapped
Cartesian tree with leftmost tie breaking policy CLL over A and the leftmost-path mapped
Cartesian tree with rightmost tie breaking policy CLR over the reverse of A is built. The tree
of minimal depth is selected and its balanced parentheses sequence stored in BPλ along with
a flag indicating whether A was reversed; see Lines 5–8. Next, BP is partitioned into blocks
of size sλ and two new arrays of size n

sλ
are generated in linear time by iterating over BP :

Array Iλ and Iλ contain for each block of BP the position respectively the excess-value
of the rightmost element with minimal excess. In the pseudo-code, the entries in Iλ are
considered as absolute positions in Aλ. In practice these values are stored relative to the
start index of each block. So only log sλ bits per element are required. The second array
Eλ contains the excess-value for each entry in Iλ. The entries in Eλ are stored as absolute
values, each taking log max_excess(BP) bits. In Line 11 we recursively index E. Note
that we index the reverse ←−E of E in the recursive call. We will see that this approach results
in a very simple query algorithm.

The time complexity of Algorithm 1 is linear in the original input size n for an appropriate
choice of Λ and s. For Λ = 3 and s = [logn, logn, logn] the SparseTable structure in Line 3
is built in the fourth recursive level for an array of size n′′′ = n

log3 n
; i.e. as SparseTable is

constructed in O (n′′′ logn′′′) this step takes o(n) time. It is easy to see the all remaining
steps up to and including the third recursion level take linear time.

The space complexity for this choice is 2n + o(n) bits if Eλ is represented implicitly4.
The 2n-bit term is due to BP1 and storing the relative values of I1 we get additional
O
(
n log logn

logn

)
= o(n) bits of space for the first level. For deeper recursion levels the

input is sublinear in n and we can therefore store both BPλ and Iλ in sublinear space.
Finally, SparseTable is in o(n) as the length of the input was reduced to n′′′ = n

log3 n
and

SparseTable takes O
(
n′′′ log2 n′′′

)
bits.

We have split the query implementation in two parts. The general leftmost RMQ query
(see Algorithm 2) and the rightmost ±1RMQ query (see Algorithm 3). We start by ex-
plaining Algorithm 2. The recusion base case in Line 3 is easily solved by the precomputed
SparseTable. Otherwise we follow Equation 2 by using select to map the query interval
[i, j] to position in BPλ (see Line 6 and 9), solving the ±1RRMQ and mapping the corres-
ponding position back to the original array via rank (see Line 10). Note that handling the
tree height minimization only required minor adjustments: First, we introduce a function
µ(x) = x+revλ ·(n+1−x) which maps a position x in the original array to the corresponding
position in the preprocessed array. Second, we swap the left and right bound of the given
query range for cases where the array was reversed during preprocessing (see Line 4 and 5).
This ensures that µ(i+ 1) ≤ µ(j + 1) and the range [`, r] for the recursive call has a positive
size.

4 This can be achieve by a rank structure over BPλ.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:9

Algorithm 1 Recursive construction of a Λ-level RMQ-index with leftmost tie-breaking
policy for an array A with block sizes s. The λ parameter corresponds to the current recursion
level. On level λ the data structure stores the parentheses sequence BPλ, a flag revλ which
indicates whether the sequence was reversed, and two arrays (Iλ, Eλ) which contain for
each block of BPλ the position respectively the excess-value of its rightmost element with
minimal excess.
1: procedure Preprocessing(A[1..n], λ,Λ, s = [s1, . . . , sΛ])
2: if λ > Λ then
3: construct SparseTable over A
4: else
5: if depth(CLL (A[1..n]) ≤ depth(CLR(A[n..1])) then
6: 〈BPλ, revλ〉 ← 〈CLL(A[1..n]), 0〉
7: else
8: 〈BPλ, revλ〉 ← 〈CLR(A[n..1]), 1〉

9: Iλ ← [±1RRMQBPλ
((i− 1)sλ + 1, i · sλ) | 1 ≤ i ≤ 2n+2

sλ
]

10: Eλ ← [excess(i, BPλ) | i ∈ Iλ]

11: Preprocessing(Eλ[n..1], λ+ 1,Λ, s) . Recursive construction

In the experimental part we will observe that most of the query time is spent on the two
select operations in Line 6 and 9). This motivates the optimization in Line 7. For small
ranges (j − i < logn) we scan a constant number of words for the index and excess of the
rightmost minimum. On success (6= ⊥), i.e. we reached the j-th opening parenthesis during
the scan, we output the result and avoid the second select call in Line 9.

In Algorithm 3 we finally outline our ±1RRMQ implementation. The basic concept
follows the idea of Bender & Farach-Colton (see Section 2). In Line 2 we determine the range
of blocks [`′, r′] which intersects the query interval [`, r]. In the next line, we recursively
determine the position of the rightmost minimum excess value in the blocks, which are fully
contained inside the query interval [`, r]. We mirror the range bounds as well as the result,
since we built the RMQ over the reversed array ←−E of E (see Line 11 in Algorithm 1). Note
that the recursive call returns the leftmost minimum of the reversed array, which corresponds
to the desired rightmost minimum in the non-reversed array. Next, we obtain the position
and excess-value of the rightmost minimum in the two fringe blocks `′ and r′ by accessing
the corresponding entries of I and E. If an obtained position is outside the query range
[`, r] and the corresponding excess-value smaller than the excess-value obtained from the
recursive call, we scan the fringe block to identify the position and excess-value of the
rightmost minimum inside the query range. We note, that such a strategy to avoid local
scans was similarly suggested by Ferrada and Navarro [5] in the context of range min-max
trees.

It is easy to see that the time complexity of a RMQ query is constant. There are
a constant number of recursive calls and all basic operations, except Scan, require only
constant time. Note that Scan can be implemented in constant time for blocks of size 1

2 logn
by employing lookup tables of sublinear size. In the next section, we will see that scanning
a block of a reasonable size, e.g. a constant number of cache lines, will not dominate the
practical query time.

SEA 2017

12:10 Practical Range Minimum Queries Revisited

Algorithm 2 Recursive query implementation on a Λ-level RMQ-index with leftmost tie-
breaking policy. We use two helper functions in the code: An array position x is mapped to the
corresponding position in the reversed or non-reversed array by µ(x) = x+ revλ · (n+ 1− 2x).
Method Scan(BP) returns a (excess-value,position)-pair of the rightmost element with
minimal excess at or to the left of the j-th opening parentheses. In case the j-th opening
parentheis is not located in the block ⊥ is returned.
1: procedure RMQ(i, j, λ,Λ)
2: if λ > Λ then
3: return SparseTable(i, j)

4: if revλ = 1 then . If CLR was built on the reversed sequence on level λ
5: 〈i, j〉 ← 〈j, i〉 . swap left and right bound

6: `← select1(µ(i+ 1), BPλ)− 1
7: if j − i < logn and (〈e, p〉 ← Scan(BPλ[`..`+ 2 logn])) 6= ⊥ then
8: return µ(rank1(p,BPλ))
9: r ← select1(µ(j + 1), BPλ)

10: return µ (rank1(±1RRMQ(l, r, λ,Λ), BPλ)) . Cf. Equation 2

4 Experimental Evaluation

We created a generic C++ implementation of the proposed RMQ-index. We refer to it
as NewRMQ5 and compare it to the follows baselines: the two library implementations
Sdsl6 [11] and Succinct7 [12] and the code of Ferrada and Navarro [5] (F&N’168).

The experiments were executed on a single core of a machine equipped with four Intel
Xeon E5-4640 processors, with a combined number of 32 cores and 64 hyper-threads, and 512
GiB of memory. All programs were compiled using GCC 4.8.4 with optimizations turned on.

Following the methodology in [5] we generated three variants of artificial inputs. (1) Ran-
dom inputs random: Values were drawn uniformly at random from the range [1, n].
(2) Pseudo-increasing inputs inc-δ: For a given δ, entry A[i] was chosen at random in
[i− δ, i+ delta]. (3) Pseudo-decreasing inputs dec-δ: For a given δ, entry A[i] was chosen
at random in [n− i− δ, n− i+ δ]. We varied input lengths (n = 10x, x ∈ N+) and for each
variant and generated 104 random queries [i, j] for each range size j − i+ 1 ∈ {101, .., 10x−1}.

In an initial experiment we explored the effect of varying the block size sλ and number of
recursion levels Λ in NewRMQ on random. While we tested a large range of block sizes and
recursion levels we restrict our presentation to the most promising parameters. Specifically,
s ∈ {1024, 2048, 4096}, which corresponds to 2, 4, and 8 cache lines, and Λ ∈ {1, 2, 3}.
Figure 4 depicts query times and Table 2 index space. In the following we excluded all
version with s ∈ {2048, 4069} since the query time for median sized intervals was much worse
than for s = 1024. We also excluded the Λ = 1 variants due to their larger memory overhead

5 Our code is available at https://github.com/kittobi1992/rmq-experiments.
6 Available at https://github.com/simongog/sdsl-lite (Accessed at 20.12.2016).
7 Available at https://github.com/ot/succinct (Accessed at 20.12.2016).
8 Available at https://github.com/hferrada/rmq (Accessed at 20.12.2016).

https://github.com/kittobi1992/rmq-experiments
https://github.com/simongog/sdsl-lite
https://github.com/ot/succinct
https://github.com/hferrada/rmq

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:11

Algorithm 3 Rightmost ±1RMQ query implementation on a Λ-levelRMQ-index.
1: procedure ±1RRMQ(`, r, λ,Λ)
2: 〈`′, r′〉 ← 〈

⌈
`+1
sλ

⌉
− 1,

⌊
r
sλ

⌋
+ 1〉 . Leftmost/rightmost covered blocks

3: p′ ← |Eλ|+1−RMQ(|Eλ|+1−(r′−1), |Eλ|+1−(`′+1), λ+ 1,Λ) . Recurse

4: 〈〈p`′ , e`′〉, 〈pr′ , er′〉〉 ← 〈〈Iλ[`′], Eλ[`′]〉, 〈Iλ[r′], Eλ[r′]〉〉

5: if e`′ < Eλ[p′] ∧ p`′ < ` then . Try to avoid Scan of leftmost block.
6: 〈p`′ , e`′〉 ← Scan(BPλ[`..(`′ + 1)sλ])
7: if er′ < Eλ[p′] ∧ pr′ > r then . Try to avoid Scan of rightmost block.
8: 〈pr′ , er′〉 ← Scan(BPλ[(r′ − 1)sλ..r])

9: 〈e,−p〉 ← min{〈e`′ ,−p`′〉, 〈Eλ[p′],−p′〉, 〈er′ ,−pr′〉}
10: return p

n = 109

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
pe

r
qu

er
y
[µ
s]

Block size s
1024
2048
4096

Max. number of
recursion Λ

1
2
3

Figure 4 Query time distribution for the recursive RMQ-index on input random.

and the Λ = 3 variants due to their slow performance for large intervals. In the remaining
experiments NewRMQ is therefore parametrized with by s = 1024 and Λ = 2. Figure 5
shows how much time is spent on the basic operations. Most time is spent on select1 and
access of E and I. These operations consist mainly of memory accesses and get therefore
more expensive for larger inputs due to address translation. Note that select1 is cheaper
for smaller ranges due to caching effects and also the time spent in Scan is notable for small
query ranges. For larger query ranges Scan is not triggered, as we can exclude the results
from the fringe bocks by the optimizations presented in Algorithm 3.

Next, we compare NewRMQ to the other implementations on random. The results in
Figure 6 for the three competitors are consistent with the outcome of Navarro & Ferrada’s
study [5]. The experiment shows that the optimization for large query ranges, which avoids
scanning the fringe blocks, is much more effective for NewRMQ than for F&N’16, where it
is only applied to the range min-max tree. We found that the range min-max tree is not
necessarily the cause for many cache misses but for many cache references; see Figure 7 for
detailed numbers. Applying SparseTable and the tailored select in NewRMQ reduced
the number of cache references significantly.

SEA 2017

12:12 Practical Range Minimum Queries Revisited

n = 109 n = 1010

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Size of query range [10x]

T
im

e
pe

r
qu

er
y
[n
s] Basic operation

other
SparseTable
rank1

access E & I

Scan
select1

Figure 5 Query time breakdown for NewRMQ obtained by measuring time spent in each basic
operation.

Table 1 Statistics for LCP arrays of the full Pizza&Chilli texts.

dblp dna english sources

Depth of CLL(A) 543 371 664 765
Depth of CLR(←−A) 54 120 132 3232
Depth of suffix tree 124 305 148 3238

Ratio of avoided second select calls 88.32% 91.41% 87.31% 88.33%
(by optimization in Line 7 of Algo. 2)

Next, we explore the performance on pseudo-increasing and -decreasing inputs (inc-δ and
dec-δ). Figure 8 and Figure 9 show the results. As expected the performance of NewRMQ
is very similar on both inputs, since we minimize the height of the tree in both cases. For
these inputs, it is very likely that the result of a query is located in the left or right fringe
block. Therefore the optimization that avoid the scan of fringe blocks for large query ranges
is not as effective as in the previous experiment.

Finally, we also consider the performance on a real-world application, namely the traversal
of a suffix tree. Here we build our structure over the LCP array and use RMQs to implement
the child operation for a node. A stack is used to maintain the ancestors of the currently
traversed node. Query ranges – in non-degenerate suffix trees – are typically small and
therefore the optimization in Line 7 in Algorithm 2 takes effect. Figure 10 depicts the timing
results while Table 1 quantifies the saved operations and also reports the heights of the two
Cartesian tree variants.

5 Conclusion

In this work we concerned ourselves with a practical solution for the range minimum query
problem. In order to develop a fast solution that is also space efficient, we build upon previous
theory and implementation ideas. We propose a new implementation that incorporates novel
optimizations that improve the practical performance even further. Compared to existing
solutions we replace the range min-max tree with a simpler recursive approach terminated
by a sparse table.

Our experimental results show that our new implementation is up to three times faster
than previous implementations, while retaining low space usage only slightly above the

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:13

n=107 n=108 n=109

0

2

4

6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ

Figure 6 Query time distribution for all implementations on input random.

theoretical lower bound of 2 bits per input element. For all tested inputs, including both
artificial uniform and pseudo-increasing/decreasing random sequences as well as a selected
real-world application, we consistently outperform previous implementations.

References
1 D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct trees in practice. In

Proc. ALENEX, pages 84–97. SIAM, 2010.
2 M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. LATIN, pages

88–94. Springer, 2000.
3 O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM Journal on

Computing, 22(2):221–242, 1993.
4 Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. Succinct representations of binary

trees for range minimum queries. In Proc. CACOON, pages 396–407, 2012.
5 H. Ferrada and G. Navarro. Improved range minimum queries. J. Discrete Alg., 2016. To

appear.
6 H. Ferrada and G. Navarro. Improved range minimum queries. In Proc. DCC, pages

516–525, 2016.
7 P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From

theory to practice. J. Exp. Algorithmics, 13:12:1.12–12:1.31, February 2009. doi:10.1145/
1412228.1455268.

8 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proc.
FOCS, pages 390–398, 2000.

9 J. Fischer and V. Heun. Space-efficient preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

10 H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems.
In Proc. STOC, pages 135–143. ACM, 1984.

11 S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with
succinct data structures. In Proc. SEA, pages 326–337, 2014.

SEA 2017

http://dx.doi.org/10.1145/1412228.1455268
http://dx.doi.org/10.1145/1412228.1455268

12:14 Practical Range Minimum Queries Revisited

50 59 41 37 36

Avg. number of cache misses per query

0
5

10
15
20
25

2 4 6 8

61 87 96 87 59
Avg. number of cache references per query

0
10
20
30
40
50

2 4 6 8

Size of query range [10x]

Sdsl Succinct F&N’16 NewRMQ
Figure 7 Cache access statistics for all implementations on input random of size n = 109.

12 R. Grossi and G. Ottaviano. Design of practical succinct data structures for large data
collections. In Proc. SEA, pages 5–17, 2013.

13 B. Hsu and G. Ottaviano. Space-efficient data structures for top-k completion. In Proc.
WWW, pages 583–594. ACM, 2013.

14 G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554, 1989.
15 J. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.

SIAM Journal on Computing, 31(3):762–776, 2001.
16 G. Navarro. Compact Data Structures – A practical approach. Cambridge University Press,

2016.
17 G. Navarro and K. Sadakane. Fully functional static and dynamic succinct trees. ACM

Transactions on Algorithms, 10(3):16:1–16:39, May 2014. doi:10.1145/2601073.
18 K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing Systems,

41(4):589–607, 2007.
19 J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–

239, 1980.

http://dx.doi.org/10.1145/2601073

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 12:15

δ = 0 δ = 100 δ = 10000

0

1

2

3

4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ
Figure 8 Query time distribution for pseudo-increasing input arrays of size n = 109.

δ = 0 δ = 100 δ = 10000

0

2

4

6

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Size of query range [10x]

T
im

e
[µ
s]

Sdsl Succinct F&N’16 NewRMQ
Figure 9 Query time distribution for pseudo-decreasing input arrays of size n = 109.

SEA 2017

12:16 Practical Range Minimum Queries Revisited

160

237
284

127
155

217
270

133

154

221
259

136
165

235
278

139

dblp dna

english sources

0

100

200

300

0

100

200

300

T
im

e
pe

r
qu

er
y
[n
s]

Sdsl
Succinct
F&N’16
NewRMQ

Figure 10 Application benchmark: DFS traversal of a suffix tree. RMQs over the LCP-array are
used to calculate the children of a node. We used different texts of the Pizza&Chilli corpus[7].

Table 2 Memory consumption dependent on experiment, input size, and implementation. For
Figure 5 and Figure 8 we show the data for strictly increasing respectively decreasing sequences.

Implementation Space in bits per element with varying n

n = 104 n = 105 n = 106 n = 107 n = 108 n = 109

Data of Fig. 4
s = 1024, Λ = 1 2.41 2.33 2.37 2.44 2.54 2.65
s = 1024, Λ = 2 2.41 2.18 2.16 2.16 2.16 2.17
s = 1024, Λ = 3 2.41 2.18 2.16 2.16 2.16 2.16
s = 2048, Λ = 1 2.32 2.23 2.24 2.27 2.32 2.37
s = 2048, Λ = 2 2.32 2.16 2.14 2.14 2.14 2.15
s = 2048, Λ = 3 2.32 2.16 2.14 2.14 2.14 2.14
s = 4096, Λ = 1 2.27 2.18 2.18 2.19 2.21 2.24
s = 4096, Λ = 2 2.27 2.18 2.14 2.14 2.14 2.14
s = 4096, Λ = 3 2.27 2.18 2.14 2.13 2.13 2.13

Data of Fig. 6
Sdsl 2.64 3.26 2.61 2.55 2.54 2.54
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.52 2.31 2.10 2.09 2.10 2.10
NewRMQ 2.41 2.18 2.16 2.16 2.16 2.17

Data of Fig. 8
Sdsl 2.62 3.26 2.60 2.54 2.53 2.53
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.63 2.43 2.24 2.26 2.28 2.31
NewRMQ 2.41 2.17 2.16 2.15 2.15 2.16

Data of Fig. 9
Sdsl 2.64 3.27 2.62 2.55 2.54 2.54
Succinct 2.80 2.71 2.70 2.71 2.71 2.70
F&N’16 4.51 2.29 2.07 2.05 2.06 2.06
NewRMQ 2.41 2.17 2.16 2.15 2.15 2.16

Compression with the tudocomp Framework

Patrick Dinklage1, Johannes Fischer2, Dominik Köppl3,
Marvin Löbel4, and Kunihiko Sadakane5

1 Department of Computer Science, TU Dortmund, Dortmund, Germany
pdinklag@gmail.com

2 Department of Computer Science, TU Dortmund, Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

3 Department of Computer Science, TU Dortmund, Dortmund, Germany
dominik.koeppl@tu-dortmund.de

4 Department of Computer Science, TU Dortmund, Dortmund, Germany
loebel.marvin@gmail.com

5 Grad. School of Inf. Science and Technology, University of Tokyo, Tokyo, Japan
sada@mist.i.u-tokyo.ac.jp

Abstract
We present a framework facilitating the implementation and comparison of text compression
algorithms. We evaluate its features by a case study on two novel compression algorithms based
on the Lempel-Ziv compression schemes that perform well on highly repetitive texts.

1998 ACM Subject Classification D.3.3 Frameworks, D.2.2 Software Libraries

Keywords and phrases lossless compression, compression framework, compression library, algo-
rithm engineering, application of string algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.13

1 Introduction

Engineering novel compression algorithms is a relevant topic, shown by recent approaches
like bc-zip [7], Brotli [1], or Zstandard1. Engineers of data compression algorithms face
the fact that it is cumbersome (a) to build a new compression program from scratch, and
(b) to evaluate and benchmark a compression algorithm against other algorithms objectively.
We present the highly modular compression framework tudocomp that addresses both
problems. To tackle problem (a), tudocomp contains standard techniques like VByte [28],
Elias-γ/δ, or Huffman coding. To tackle problem (b), it provides automatic testing and
benchmarking against external programs and implemented standard compressors like Lempel-
Ziv compressors. As a case study, we present the two novel compression algorithms lcpcomp
and LZ78U, their implementations in tudocomp, and their evaluations with tudocomp.
lcpcomp is based on Lempel-Ziv 77, substituting greedily the longest remaining repeated
substring. LZ78U is based on Lempel-Ziv 78, with the main difference that it allows a factor
to introduce multiple new characters.

1 https://github.com/facebook/zstd

© Patrick Dinklage, Johannes Fischer, Dominik Köppl, Marvin Löbel, and Kunihiko Sadakane;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 13; pp. 13:1–13:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.13
https://github.com/facebook/zstd
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Compression with the tudocomp Framework

1.1 Related Work

There are many2 compression benchmark websites measuring compression programs on a
given test corpus. Although the compression ratio of a novel compression program can be
compared with the ratios of the programs listed on these websites, we cannot infer which
program runs faster or more memory efficiently if these programs have not been compiled
and run on the same machine. Efforts in facilitating this kind of comparison have been made
by wrapping the source code of different compression algorithms in a single executable that
benchmarks the algorithms on the same machine with the same compile flags. Examples
include lzbench3 and Squash4.

Considering frameworks aiming at easing the comparison and implementation of new
compression algorithms, we are only aware of the C++98 library ExCom [14]. The library
contains a collection of compression algorithms. These algorithms can be used as components
for a compression pipeline. However, ExCom does not provide the same flexibility as we had
in mind; it provides only character-wise pipelines, i.e., it does no bitwise transmission of data.
Its design does not use meta-programming features; a header-only library has more potential
for optimization since the compiler can inline header-implemented (possibly performance
critical) functions easily.

A broader focus is set in Giuseppe Ottaviano’s succinct library [13] and Simon Gog’s
Succinct Data Structure Library 2.0 (SDSL) [12]. These two libraries provide integer coders
and helper functions for working on the bit level.

1.2 Our Results/Approach

Our lossless compression framework tudocomp aims at supporting and facilitating the
implementation of novel compression algorithms. The philosophy behind tudocomp is to
support building a pipeline of modules that transforms an input to a compressed binary
output. This pipeline has to be flexible: appending, exchanging and removing a module in
the pipeline in a plug-and-play manner is in the main focus of the design of tudocomp. Even
a module itself can be refined into submodules.

To this end, tudocomp is written in modern C++14. On the one hand, the language allows
us to write compile time optimized code due to its meta programming paradigm. On the other
hand, its fine-grained memory management mechanisms support controlling and monitoring
the memory footprint in detail. We provide a tutorial, an exhaustive documentation of the
API, and the source code at http://tudocomp.org with the permissive Apache License 2.0
to encourage developers to use and foster the framework.

In order to demonstrate its usefulness, we added reference implementations of common
compression and encoding schemes (see Section 2). On top of that, we present two novel
algorithms (see Section 3) which we have implemented in our framework. We give a detailed
evaluation of these algorithms in Section 4, thereby exposing the benchmarking and the
visualization tools of tudocomp.

2 E.g., http://www.squeezechart.com or http://www.maximumcompression.com.
3 https://github.com/inikep/lzbench
4 https://quixdb.github.io/squash-benchmark

http://tudocomp.org
http://www.squeezechart.com
http://www.maximumcompression.com
https://github.com/inikep/lzbench
https://quixdb.github.io/squash-benchmark

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:3

2 Description of the tudocomp Framework

On the topmost abstraction level, tudocomp defines the abstract types Compressor and
Coder. A compressor transforms an input into an output so that the input can be losslessly
restored from the output by the corresponding decompressor. A coder takes an elementary
data type like a character and writes it to a compressed bit sequence. As with compressors,
each coder is accompanied by a decoder taking care of restoring the original data from
its compressed bit sequence. By design, a coder can take the role of a compressor, but a
compressor may not be suitable as a coder (e.g., a compressor that needs random access on
the whole input).

tudocomp provides implementations of the compressors and the coders shown in the
tables below. Each compressor and coder gets an identifier (right column of each table).

Compressors

BWT bwt
Coder wrapper encode
LCPComp (Section 3.2) lcpcomp
LZ77 (Def. 1), LZSS [25] output lzss_lcp
LZ78 (Def. 2) lz78
LZ78U (Section 3.3) lz78u
LZW [27] lzw
Move-To-Front mtf
Re-Pair [20] repair
Run-Length-Encoding rle

Integer Coders

Bit-Compact Coder bit
Elias-γ [6] gamma
Elias-δ [6] delta

String Coders

Canonical Huffman Coder [29] huff
A Custom Static Low Entropy En-
coder (Section 3.2)

sle

The behavior of a compressor or coder can be modified by passing different parameters.
A parameter can be an elementary data type like an integer, but it can also be an instance
of a class that specifies certain subtasks like integer coding. For instance, the compres-
sor lzss_lcp(threshold, coder) takes an integer threshold and a coder (to code an
LZ77 factor) as parameters. The coder is supplied as a parameter such that the compressor
can call the coder directly (instead of alternatively piping the output of lzss_lcp to a
coder).

The support of class parameters eases the deployment of the design pattern strategy [11].
A strategy determines what algorithm or data structure is used to achieve a compressor-
specific task.

Library and Command Line Tool. tudocomp consists of two major components: a stan-
dalone compression library and a command line tool tdc. The library contains the core
interfaces and implementations of the aforementioned compressors and coders. The tool tdc
exposes the library’s functionality in form of an executable that can run compressors directly
on the command line. It allows the user to select a compressor by its identifier and to pass
parameters to it, i.e., the user can specify the exact compression strategy at runtime.

Example. For instance, the LZ78U compressor (Section 3.3) expects a compression strategy,
an integer coder, and an integer variable specifying a threshold. Its strategy can define param-
eters by itself, like which string coder to use. A valid call is ./tdc -a ’lz78u(coder = bit,
comp = buffering(string_coder = huff), threshold = 3)’ input.txt -o
output.tdc, where tdc compresses the file input.txt and stores the compressed bit se-
quence in the file output.tdc. To this end, it uses the compressor lz78u parametrized by

SEA 2017

13:4 Compression with the tudocomp Framework

Compressor

Strategies Coder(s)

… …
InputFile

Buffer

Stream

Output File

Buffer

Stream

Decompressor/CompressorInput Output

… …

Figure 1 Flowchart of a possible compression pipeline. The compressors of tudocomp work with
abstract data types for input and output, i.e., a compressor is unaware of whether the input or
the output is a file, is stored in memory, or is accessed using a stream. A compressor can follow
one or more compression strategies that can have (nested) parameters. Usually, a compressor is
parametrized with one or more coders (e.g., for different integer ranges or strings) that produce the
final output.

the coder bit for integer values, by the compression strategy buffering with huff to code
strings, and by a threshold value of 3. Note that coder and string_coder are parameters
for two independently selectable coders. When selecting a coder we have to pay attention
that a static entropy coder like huff needs to parse its input in advance (to generate a
codeword for each occurring character). To this end, we can only apply the coder huff with
a compression strategy that buffers the output (for lz78u this strategy is called buffering).
To stream the output (i.e., the opposite of buffering the complete output in RAM), we can
use the alternative strategy streaming. This strategy also requires a coder, but contrary
to the buffering strategy, that coder does not need to look at the complete output (e.g.,
universal codes like gamma).

In this fashion, we can build more sophisticated compression pipelines like lzma applying
different coders for literals, pointers, and lengths. Each coder is unaware of the other coders,
as if every coder was processing an independent stream.

Decompression. After compressing an input using a certain compression strategy, the
tool adds a header to the compressed file so that it can decompress it without the need
for specifying the compression strategy again. However, this behavior can be overruled by
explicitly specifying a decompression strategy, e.g., in order to test different decompression
strategies.

Helper classes. tudocomp provides several classes for easing common tasks when engineering
a new compression algorithm, like the computation of SA, ISA or LCP. tudocomp generates
SA with divsufsort5, and LCP with the Φ-algorithm [17]. The arrays SA, ISA, and LCP
can be stored in plain arrays or in packed arrays with a bit width of dlgne (where n is the
length of the input text), i.e., in a bit-compact representation. We provide the modes
plain, compressed, and delayed to describe when/whether a data structure should be
stored in a bit-compact representation: In plain mode, all data structures are stored in plain
arrays; in compressed mode, all data structures are built in a bit-compact representation.
In delayed mode, tudocomp first builds a data structure A in a plain array; when all
other data structures are built whose constructions depended on A, A gets transformed
into a bit-compact representation. While direct and compressed are the fastest or the

5 https://github.com/y-256/libdivsufsort

https://github.com/y-256/libdivsufsort

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:5

memory-friendliest modes, respectively, the data structures produced by delayed are the
same as compressed, though delayed is faster than compressed.

If more elaborated algorithms are desired (e.g., for producing compressed data structures
like the compressed suffix array), it is easy to use tudocomp in conjunction with SDSL for
which we provide an easy binding.

Combining streaming and offline approaches. A compressor can stream its input (online
approach) or request the input to be loaded into memory (offline approach). Compressors
can be chained to build a pipeline of multiple compression modules, like as in Figure 1.

2.1 Example Implementation of a Compressor

(a) C++ Source Code
1 #include <tudocomp/tudocomp.hpp>
2 class BWTComp : public Compressor {
3 public: static Meta meta() {
4 Meta m("compressor", "bwt");
5 m.option("ds").templated<TextDS<>>();
6 m.needs_sentinel_terminator();
7 return m; }
8 using Compressor::Compressor;
9 void compress(Input& in, Output& out) {

10 auto o = out.as_stream();
11 auto i = in.as_view();
12 TextDS<> t(env().env_for_option("ds"),i);
13 const auto& sa = t.require_sa();
14 for(size_t j = 0; j < t.size(); ++j)
15 o << ((sa[j] != 0) ? t[sa[j] − 1]
16 : t[t.size() − 1]);
17 }
18 void decompress(Input&, Output&){/*[...]*/}
19 };

(b) Execution with tdc

1 > echo −n ’aaababaaabaababa’ > ex.txt
2 > ./tdc −a bwt −o bwt.tdc ex.txt
3 > hexdump −v −e ’"%-2_c"’ bwt.tdc
4 b w t % a b b \0a b a b b a a a a a a a a
5 > ./tdc −a ’bwt:rle’ −o rle.tdc ex.txt
6 > hexdump −v −e ’"%-3_c"’ rle.tdc
7 b w t : r l e % a b b \0 \0 a b

a b b \0 a a 006

The source code (a) on the left implements
a compressor that computes the Burrows-
Wheeler transform (BWT) (see Section 3.1)
of an input. To this end, it loads the input
into memory using (line 11) in.as_view()
and computes the suffix array using (line 13)
t.require_sa(). In the function meta, we
state that we assume the unique terminal
symbol (represented by the byte ‘\0’) as part
of the text, and that we want to register
the class BWTComp as a Compressor with the
identifier bwt. By doing so, we can call the
compressor directly in the command line
tool tdc using the argument -a bwt. In
the shell code (b) on the left, you can see
how we produced the BWT of our running
example. The program hexdump outputs
each character of a file such that non-visible
characters are escaped. A %-sign separates
the header from the body in the output.

Next, we use the binary composition operator : connecting the output of its left operand
with the input of its right operand. In the shell code, this operator pipes the output of bwt
to the run-length encoding compressor rle, which transforms a substring aaa · · · a︸ ︷︷ ︸

m times

to aam

with m ≥ 0 encoded in VByte (the output is a byte sequence).
(c) Assembling a compression pipeline

1 > ./tdc −a bwt −o bwt.tdc pc_english.200MB
2 > ./tdc −a ’bwt:rle:mtf:encode(huff)’ −o bzip

.tdc pc_english.200MB
3 > stat −c"%s␣%n" pc_english.200MB *.tdc
4 209715200 pc_english.200MB
5 209715209 bwt.tdc
6 66912437 bzip.tdc

Finally, the compressor bwt can be used
as part of a pipeline to achieve good compres-
sion quality: Given a move-to-front compres-
sor mtf and a Huffman coder huff, we can
build a chain bwt:rle:mtf:encode(huff).
The compressor encode is a wrapper that

turns a coder into a compressor. The last code fragment (c) on the left shows the calls of
this pipeline and a call of bwt only. Using stat, we measure the file sizes (in bytes) of the
input pc-english (see Section 4) and both outputs.

SEA 2017

13:6 Compression with the tudocomp Framework

2.2 Specific Features

tudocomp excels with the following additional properties:

Few Build Requirements. To deploy tudocomp, the build management software cmake,
the version control system git, Python 3, and a C++14 compiler are required. cmake
automatically downloads and builds other third-party software components like the SDSL.
We tested the build process on Unix-like build environments, namely Debian Jessie, Ubuntu
Xenial, Arch Linux 2016, and the Ubuntu shell on Windows 10.

Unit Tests. tudocomp offers semi-automatic unit tests. For a registered compressor,
tudocomp can automatically generate test cases that check whether the compressor can
compress and decompress a set of selected inputs successfully. These inputs include border
cases like the empty string, a run of the same character, samples on various subranges in
UTF-8, Fibonacci strings, Thue-Morse strings, and strings with a high number of runs [22].
These strings can be generated on-the-fly by tdc as an alternative input.

Type Inferences. The C++ standard does neither provide a syntax for constraining type
parameters (like generic type bounding in Java) nor for querying properties of a class at
runtime (i.e., reflection). To address this syntactic lack, we augment each class exposed to
tdc and to the unit tests with a so-called type. A type is a string identifier. We expect that
classes with the same type provide the same public methods. Types resemble interfaces of
Java, but contrary to those, they are not subject to polymorphism. Common types in our
framework are Compressor and Coder. The idea is that, given a compressor that accepts a
Coder as a parameter, it should accept all classes of type Coder. To this end, each typed class
is augmented with an identifier and a description of all parameters that the class accepts.
All typed classes are exposed by the tool tdc that calls a typed class by its identifier with
the described parameters. Types provide a uniform, but simple declaration of all parameters
(e.g., integer values, or strategy classes). The aforementioned exemplaric call of lz78u at the
beginning of Section 2 illustrates the uniform declaration of the parameters of a compressor.

Evaluation tools. To evaluate a compressor pipeline, tudocomp provides several tools to
facilitate measuring the compression ratio, the running time, and the memory consump-
tion. By adding --stats to the parameters of tdc, the tool monitors these measurement
parameters: It additionally tracks the running time and the memory consumption of the
data structures in all phases. A phase is a self-defined code division like a pre-processing
phase, or an encoding phase. Each phase can collect self-defined statistics like the number of
generated factors. All measured data is collected in a JSON file that can be visualized by the
web application found at http://tudocomp.org/charter. An example is given in Figure 6.

In addition, we have a command line comparison tool called compare.py that runs
a predefined set of compression programs (that can be tudocomp compressors or external
compression programs). Its primary usage is to compare tudocomp compression algorithms
with external compression programs. It monitors the memory usage with the tool valgrind
–tool=massif –pages-as-heap=yes. This tool is significantly slower than running tdc with
--stats.

http://tudocomp.org/charter

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:7

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T a a a b a b a a a b a a b a b a $
SA[i] 17 16 7 1 8 11 2 14 5 9 12 3 15 6 10 13 4
ISA[i] 4 7 12 17 9 14 3 5 10 15 6 11 16 8 13 2 1
LCP[i] - 0 1 5 2 4 6 1 3 4 3 5 0 2 3 2 4
BWT[i] a b b $ a b a b b a a a a a a a a

Figure 2 Suffix array, inverse suffix array, LCP array and BWT of the running example.

3 New Compression Algorithms

With the aid of tudocomp, it is easy to implement new compression algorithms. We
demonstrate this by introducing two novel compression algorithms: lcpcomp and LZ78U.
To this end, we first recall some definitions.

3.1 Theoretical Background
Let Σ denote an integer alphabet of size σ = |Σ| ≤ nO(1) for a natural number n. We call
an element T ∈ Σ∗ a string. The empty string is ε with |ε| = 0. Given x, y, z ∈ Σ∗ with
T = xyz, then x, y and z are called a prefix, substring and suffix of T , respectively. We
call T [i..] the i-th suffix of T , and denote a substring T [i] · · ·T [j] with T [i..j].

For the rest of the article, we take a string T of length n. We assume that T [n] is a
special character $ /∈ Σ smaller than all characters of Σ so that no suffix of T is a prefix of
another suffix of T .

SA and ISA denote the suffix array [21] and the inverse suffix array of T , respectively.
LCP[2..n] is an array such that LCP[i] is the length of the longest common prefix of the
lexicographically i-th smallest suffix with its lexicographic predecessor for i = 2, . . . , n. The
BWT [3] of T is the string BWT with

BWT[j] =
{
T [n] if SA[j] = 1,
T [SA[j]− 1] otherwise,

for 1 ≤ j ≤ n. The arrays SA, ISA, LCP and BWT can be constructed in time linear to the
number of characters of T [18].

As a running example, we take the text T := aaababaaabaababa$. The arrays SA, LCP
and BWT of this example text are shown in Figure 2.

Given a bit vector B with length |B|, the operation B. rank1(i) counts the number of
‘1’-bits in B[1..i], and the operation B. select1(i) yields the position of the i-th ‘1’ in B.

There are data structures [15, 4] that can answer rank and select queries on B in constant
time, respectively. Each of them uses o(|B|) additional bits of space, and both can be built
in O(|B|) time.

The suffix trie of T is the trie of all suffixes of T . The suffix tree [26] of T , denoted
by ST, is the tree obtained by compacting the suffix trie of T . It has n leaves and at most n
internal nodes. The string stored in an edge e is called the edge label of e, and denoted
by λ(e). The string depth of a node v is the length of the concatenation of all edge labels
on the path from the root to v. The leaf corresponding to the i-th suffix is labeled with i.

Each node of the suffix tree is uniquely identified by its pre-order number. We can store
the suffix tree topology in a bit vector (e.g., DFUDS [2] or BP [15, 23]) such that rank and
select queries enable us to address a node by its pre-order number in constant time. If the

SEA 2017

13:8 Compression with the tudocomp Framework

a a a b a b a a a b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(1,2) (3,3) (2,4) (3,5)

(a) LZ77

a a a b a b a a a b a a b a b a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(11,6)(5,2) (8,4)

(b) lcpcomp

Figure 3 References of the (a) LZ77 factorization with the threshold t = 2, and of the (b) lcpcomp
factorization with the same threshold. The output of the LZ77 and the lcpcomp algorithms are
a(1,2)b(3,3)(2,4)(3,5)$ and a(11,6)a(5,2)(8,4)ba$, respectively.

context is clear, we implicitly convert an ST node to its pre-order number, and vice versa.
We will use the following constant time operations on the suffix tree:

parent(v) selects the parent of the node v,
level-anc(`, d) selects the ancestor of the leaf ` at depth d (level ancestor query), and
leaf-select(i) selects the i-th leaf (in lexicographic order).

A factorization of T of size z partitions T into z substrings T = F1 · · ·Fz. These
substrings are called factors. In particular, we have:

I Definition 1. A factorization F1 · · ·Fz = T is called the Lempel-Ziv-77 (LZ77) fac-
torization [30] of T with a threshold t ≥ 1 iff Fx is either the longest substring of length at
least t occurring at least twice in F1 · · ·Fx, or, if such a substring does not exist, a single
character. We merge successive occurrences of the latter type of factors to a single factor
and call it a remaining substring.

The usual definition of the LZ77 factorization fixes t = 1. We introduced the version with a
threshold to make the comparison with lcpcomp (Section 3.2) fairer.

I Definition 2. A factorization F1 · · ·Fz = T is called the Lempel-Ziv-78 (LZ78) fac-
torization [31] of T iff Fx = Fy · c with Fy = argmaxS∈{Fy :y<x}∪{ε} |S| and c ∈ Σ for all
1 ≤ x ≤ z.

3.2 lcpcomp
The idea of lcpcomp is to search for long repeated substrings and substitute one of their
occurrences with a reference to the other. Large values in the LCP-array indicate such
long repeated substrings. There are two major differences to the LZ77 compression scheme:
(1) while LZ77 only allows back-references, lcpcomp allows both back and forward references;
and (2) LZ77 factorizes T greedily from left to right, whereas lcpcomp makes substitutions at
arbitrary positions in the text, greedily chosen such that the number of substituted characters
is maximized. This process is repeated until all remaining repeated substrings are shorter
than a threshold t. On termination, lcpcomp has generated a factorization T = F1 · · ·Fz,
where each Fj is either a remaining substring, or a reference (i, `) with the intended meaning
“copy ` characters from position i” (see Figure 3b for an example).

Algorithm. The LCP array stores the longest common prefix of two lexicographically
neighboring suffixes. The largest entries in the LCP array correspond to the longest substrings
of the text that have at least two occurrences. Given a suffix T [SA[i] ..] whose entry LCP[i]
is maximal among all other values in LCP, we know that T [SA[i] ..SA[i] + LCP[i] − 1] =
T [SA[i− 1] ..SA[i− 1] + LCP[i]− 1], i.e., we can substitute T [SA[i] ..SA[i] + LCP[i]− 1] with
the reference (SA[i− 1] , LCP[i]). In order to find a suffix whose LCP entry is maximal, we
need a data structure that maintains suffixes ordered by their corresponding LCP values. We

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:9

use a maximum heap for this task. To this end, the heap stores suffix array indices whose
keys are their LCP values (i.e., insert i with key LCP[i], 2 ≤ i ≤ n). The heap stores only
those indices whose keys are at least t.

While the heap is not empty, we do the following:
1. Remove the maximum from the heap; let i be its value.
2. Report the reference (SA[i− 1] , LCP[i]) and the position SA[i] as a triplet (SA[i− 1] ,

LCP[i] , SA[i]).
3. For every 1 ≤ k ≤ LCP[i] − 1, remove the entry ISA[SA[i] + k] from the heap (as these

positions are covered by the reported reference).
4. Decrease the keys of all entries j with SA[i]−LCP[i] ≤ SA[j] < SA[i] to min(LCP[j] ,SA[i]−

SA[j]). (If a key becomes smaller than t, remove the element from the heap.) By doing
so, we prevent the substitution of a substring of T [SA[i] ..SA[i] + LCP[i]− 1] at a later
time.

1 template<class text_t>
2 class MaxHeapStrategy : public Algorithm {
3 public: static Meta meta() {
4 Meta m("lcpcomp_strategy", "heap");
5 return m; }
6 using Algorithm::Algorithm;
7 void create_factor(size_t pos, size_t src,

size_t len);
8 void factorize(text_t& text, size_t t) {
9 text.require(text_t::SA | text_t::ISA |

text_t::LCP);
10 auto& sa = text.require_sa();
11 auto& isa = text.require_isa();
12 auto lcpp = text.release_lcp()−>relinquish

();
13 auto& lcp = *lcpp;
14 ArrayMaxHeap<typename text_t::lcp_type::

data_type> heap(lcp, lcp.size(), lcp.
size());

15 for(size_t i = 1; i < lcp.size(); ++i)
16 if(lcp[i] >= t) heap.insert(i);
17 while(heap.size() > 0) {
18 size_t i = heap.top(), fpos = sa[i],
19 fsrc = sa[i−1], flen = heap.key(i);
20 create_factor(fpos, fsrc, flen);
21 for(size_t k=0; k < flen; k++)
22 heap.remove(isa[fpos + k]);
23 for(size_t k=0;k < flen && fpos > k;k++) {
24 size_t s = fpos − k − 1;
25 size_t j = isa[s];
26 if(heap.contains(j)) {
27 if(s + lcp[j] > fpos) {
28 size_t l = fpos − s;
29 if(l >= t)
30 heap.decrease_key(j, l);
31 else heap.remove(j);
32 }}}}}};

As an invariant, the key ` of a suffix
array index i stored in the heap will always
be the maximal number of characters such
that T [i..i + ` − 1] occurs at least twice in
the remaining text.

The reported triplets are collected in a
list. To compute the final output, we sort the
triplets by their third component (storing
the starting position of the substring substi-
tuted by the reference stored in the first two
components). We then scan simultaneously
over the list and the text to generate the
output. Figure 4 demonstrates how the lcp-
comp factorization of the running example
is done step-by-step.

The code on the left implements the com-
pression strategy of lcpcomp that uses a max-
imum heap. We transfered the code from
the compressor class to a strategy class since
the lcpcomp compression scheme can be im-
plemented in different ways. Each strat-
egy receives a text. Its goal is to compute
all factors (created by the create_factor
method). In the depicted strategy, we use a
maximum heap to find all factors. The heap

is implemented in the class ArrayMaxHeap. An instance of that class stores an array A of
keys and an array heap maintaining (key-value)-pairs of the form (A[i], i) with the order
(A[i], i) < (A[j], j) :⇔ A[i] < A[j]. To access a specific element in the heap by its value, the
class has an additional array storing the position of each value in the heap.

Although a reference r can refer to a substring that has been substituted by another
reference after the creation of r, in Lem. 4 (Appendix), we show that it is always possible to
restore the text.

Time Analysis. We insert at most n values into the heap. No value is inserted again.
Finally, we use the following lemma to get a running time of O(n lgn) :

SEA 2017

13:10 Compression with the tudocomp Framework

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T a a a b a b a a a b a a b a b a $
SA[i] 17 16 7 1 8 11 2 14 5 9 12 3 15 6 10 13 4

LCP[i] – 0 1 5 2 4 6 1 3 4 3 5 0 2 3 2 4
LCP1[i] – 0 0 1 2 4 0 1 0 4 3 0 0 0 3 2 0
LCP2[i] – 0 0 1 2 0 0 0 0 2 0 0 0 0 1 0 0
LCP3[i] – 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4 Step-by-step computation of the lcpcomp compression scheme in Figure 3b. We scan
for the largest LCP value in LCP and overwrite values in LCP instead of using a heap. Each row
LCPi[i] shows the LCP array after computing a substitution. The LCP value of the starting position
of the selected largest repeated substring has a green border. The updated values are colored, either
due to deletion (red) or key reduction (blue). Ties are broken arbitrarily. The number of red zeros in
each row is equal to the number above the green bordered zero in the corresponding row minus one.

I Lemma 3. The key of a suffix array entry is decreased at most once.

Proof. Let us denote the key of a value i stored in the heap by K[i]. Assume that we
have decreased the key K[j] of some value j stored in the heap after we have substituted
a substring T [i..i + ` − 1] with a reference. It holds that K[j] = SA[i] − SA[j] − 1 >

SA[i] − SA[j] − 1 −m ≥ K[ISA[SA[j] +m]] for all m with 1 ≤ m ≤ K[j], i.e., there is no
suffix array entry that can decrease the key of j again. J

3.2.1 Decompression

Decompressing lcpcomp-compressed data is harder than decompressing LZ77, since references
in lcpcomp can refer to positions that have not yet been decoded. Figure 3 depicts the
references built on our running example by arrows.

In order to cope with this problem, we add, for each position i of the original text, a
list Li storing the text positions waiting for this text position getting decompressed.

First, we determine the original text size (the compressor stores it as a VByte before the
output of the factorization). Subsequently, while there is some compressed input, we do the
following, using a counting variable i as a cursor in the text that we are going to rebuild:

If the input is a character c, we write T [i]← c, and increment i by one.
If the input is a reference consisting of a position s and a length `, we check whether
T [s+ j] is already decoded, for each j with 0 ≤ j ≤ `− 1:

If it is, then we can restore T [i+ j]← T [s+ j].
Otherwise, we add i+ j to the list Ls+j .

In either case, we increment i by `.

An additional procedure is needed to restore the text completely by processing the
lists: On writing T [i]← c for some text position i and some character c, we further write
T [j]← T [i] for each j stored in Li (if Lj is not empty, we proceed recursively). Afterwards,
we can delete Li since it will be no longer needed. The decompression runs in O(n) time,
since we perform a linear scan over the decompressed text, and each text position is visited
at most twice.

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:11

3.2.2 Implementation Improvements
In this section, we present an O(n) time compression algorithm alternative to the heap
strategy and a practical improvement of the decompression strategy.

Compression. This strategy computes an array A` storing all suffix array entries j with
LCP[j] = `, for each ` with t ≤ ` ≤ maxk LCP[k]. To compute the references, we sequentially
scan the arrays in decreasing order, starting with the array that stores the suffixes with
the maximum LCP value. On substituting a substring T [SA[i] ..SA[i] + LCP[i] − 1] with
the reference (SA[i− 1] , LCP[i]), we update the LCP array (instead of updating the keys
in the heap). We set LCP[ISA[SA[i] + k]]← 0 for every 1 ≤ k ≤ LCP[i]− 1 (deletion), and
LCP[j]← min (LCP[j] ,SA[i]− SA[j]) for every j with ISA[SA[i]− LCP[i]] ≤ j < i (decrease
key). Unlike the heap implementation, we do not delete an entry from the arrays. Instead,
we look up the current LCP value of an element when we process it: Assume that we want to
process A`[i]. If LCP[A`[i]] = `, then we proceed as above. Otherwise, we have updated the
LCP value of the suffix starting at position A`[i] to the value `′ := LCP[A`[i]] < `. In this
case, we append A`[i] to A`′ (if `′ < t, we do nothing), and skip computing the reference for
A`[i]. By doing so, we either omit the substring A`[i] if `′ < t, or delay the processing of
the value A`[i]. A suffix array entry gets delayed at most once, analogously to Lemma 3. In
total, the algorithm runs in O(n) time, since it performs basic arithmetic operations on each
text position at most twice.

Decompression. We use a heuristic to improve the memory usage. The heuristic defers
the creation of the lists Li storing the text positions that are waiting for the position i to
get decompressed. If a reference needs a substring that has not yet been decompressed, we
store the reference in a list L. By doing so, we have reconstructed at least all substrings that
have not been substituted by a reference during the compression. Subsequently, we try to
decompress each reference stored in L, removing successfully decompressed references from L.
If we repeat this step, more and more text positions can become restored. Clearly, after at
most n iterations, we would have restored the original text completely, but this would cost us
O
(
n2) time. Instead, we run this algorithm only for a fixed number of times b. Afterwards,

we mark all not yet decompressed positions in a bit vector B, and build a rank data structure
on top of B. Next, we create a list Li for each marked text position B. rank(i) as in the
original algorithm. The difference to the original algorithm is that Li now corresponds to
B. rank(i). Finally, we run the original algorithm using the lists Li to restore the remaining
characters.

3.3 LZ78U
A factorization F1 · · ·Fz = T is called the LZ78U factorization of T iff Fx := T [i..j + `]
with T [i..j] = argmaxS∈{Fy :y<x}∪{ε} |S| and

` :=
{

1 if T [i..j + 1] is a unique substring of T, otherwise:
1 + max {` ∈ N0 | ∀k = 1, . . . , ` @c ∈ Σ \ {T [j + k + 1]} : T [i..j + k]c occurs in T} ,

for all 1 ≤ x ≤ z. Informally, we enlarge an LZ78 factor representing a repeated sub-
string T [i..i+ `− 1] to T [i..i+ `] as long as the number of occurrences of T [i..i+ `− 1] and
T [i..i+ `] are the same.

Having the LZ78U factorization F1, . . . , Fz of T , we can output each factor Fx as a tuple
(y, Sx) such that Fx = FySx, where Fy (0 ≤ y < x) is the longest previous factor (set F0 := ε)

SEA 2017

13:12 Compression with the tudocomp Framework

0

1

2

5

4

7

3

6

8

a
a

a

b
a

b
a

$

(a) LZ78-Trie

0

7 1

2 5

6

3

4

$ a
a

ba
ba

ba

a

(b) LZ78U-Tree

Figure 5 Dictionary trees of LZ78 and LZ78U. LZ78 factorizes our running example into
1

a|
2

aa|
3

b|
4

ab|
5

aaa|
6

ba|
7

aba|
8

ba$, where the vertical bars separate the factors. The LZ78 factorization is
output as tuples: (0,a)(1,a)(0,b)(1,b)(2,a)(3,a)(4,a)(6,$). This output is represented by the
left trie (a). The LZ78U factorization of the same text is

1

a|
2

aa|
3

ba|
4

baa|
5

aba|
6

ababa|
7

$. We output it as
(0,a)(1,a)(0,ba)(3,a)(1,ba)(5,ba)(0,$). This output induces the right tree (b).

that is a prefix of Fx, and Sx is the suffix determined by the factorization. We call y the
referred index and Sx the factor label of the x-th factor. Transforming the factors to
this output induces a dictionary tree, called the LZ78U-tree, in which

every node corresponds to a factor,
the parent of a node v corresponds to the referred index of v, and
the edge between the node of the x-th factor and its parent is labeled with the factor
label of the x-th factor.

Figure 5 shows a comparison to the LZ78-trie. By the definition of the factorizations, the
LZ78-trie is a subtree of the suffix trie, whereas the LZ78U-tree is a subtree of the suffix tree.
The latter can be seen by the fact that the suffix tree compacts the unary paths of the suffix
trie. This fact is the foundation of the algorithm we present in the following. It builds the
LZ78U-tree on top of the suffix tree. The algorithm is an easier computable variant of the
LZ78 algorithms in [10, 19].

The Algorithm. The internal suffix tree nodes can be mapped to the pre-order numbers
[1..n] injectively by using rank/select data structures on the suffix tree topology. This allows
us to use n lgn bits for storing a factor id in each internal suffix tree node. To this end, we
create an array R of n lgn bits. All elements of the array are initially set to zero. In order
to compute the factorization, we scan the text from left to right. Given that we are at text
position i, we locate the suffix tree leaf ` ← leaf-select(i) corresponding to the i-th suffix.
Let p← parent(`) be `’s parent.

If R[p] 6= 0, then p corresponds to a factor Fx. Let c be the first character of the edge
label λ(p, `). The substring Fxc occurs exactly once in T , otherwise ` would not be a
leaf. Consequently, we output a factor consisting of the referred index R[p] and the string
label c. We further increment i by the string depth of p plus one.
Otherwise, using level ancestor queries, we search for the highest node v ← level-anc(`, d)
with R[v] = 0 on the path between the root (exclusively) and p (iterate over the depth d
starting with zero). We set R[v] ← z + 1, where z is the current number of computed
factors. We output the referred index R[parent(v)] and the string λ(parent(v) , v). Finally,
we increment i by the string depth of v.

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:13

Table 1 Datasets of size 200MiB. The alphabet size σ includes the terminating $-character. The
expression avgLCP is the average of all LCP values. z is the number of LZ77 factors with t = 1. The
number of runs consisting of one character in BWT is called bwt-runs. Hk denotes the k-th order
empirical entropy.

collection σ max lcp avgLCP bwt-runs z maxx |Fx| H0 H3

hashtag 179 54,075 84 63,014K 13,721K 54,056 4.59 2.46
pc-dblp.xml 97 1084 44 29,585K 7035K 1060 5.26 1.43
pc-dna 17 97,979 60 128,863K 13,970K 97,966 1.97 1.92
pc-english 226 987,770 9390 72,032K 13,971K 987,766 4.52 2.42
pc-proteins 26 45,704 278 108,459K 20,875K 45,703 4.20 4.07
pcr-cere 6 175,655 3541 10,422K 1447K 175,643 2.19 1.80
pcr-einstein.en 125 935,920 45,983 153K 496K 906,995 4.92 1.63
pcr-kernel 161 2,755,550 149,872 2718K 775K 2,755,550 5.38 2.05
pcr-para 6 72,544 2268 13,576K 1927K 70,680 2.12 1.87
pc-sources 231 307,871 373 47,651K 11,542K 307,871 5.47 2.34
tagme 206 1281 26 65,195K 13,841K 1279 4.90 2.60
wiki-all-vital 205 8607 15 80,609K 16,274K 8607 4.56 2.45
commoncrawl 115 246,266 1727 45,899K 10,791K 246,266 5.37 2.78

Since level ancestor queries can be answered in constant time, we can compute a factor
in time linear to its length. Summing over all factors we get linear time overall. We use
n lgn+ |ST| bits of working space.

Improved Compression Ratio. To achieve an improved compression ratio, we factorize
the factor labels: If Sx is the label of the x-th factor fx, then we factorize Sx = G1 · · ·Gm
with Gj := argmaxS∈{Fy :y<x,|Fy|≥t}∪Σ |S| greedily chosen for ascending values of j with
1 ≤ j ≤ m, with a threshold t ≥ 1. By doing so, the string Sx gets partitioned into characters
and former factors longer than t. The factorization of Sx is done in O(|Sx|) time by traversing
the suffix tree with level ancestor queries, as above (the only difference is that we do not
introduce a new factor to the LZ78U factorization).

4 Practical Evaluation

Table 1 shows the text collections used for the evaluation in the tudocomp benchmarks. We
provide a tool that automatically downloads and prepares a superset of the collections used
in this evaluation. The collections with the prefixes pc or pcr belong to the Pizza&Chili
Corpus6. The Pizza&Chili Corpus is divided in a real text corpus (pc), and in a repetitive
corpus (pcr). The collection hashtag is a tab-separated values file with five columns (integer
values, a hashtag and a title) [9]. The collection tagme is a list of Wikipedia fragments7.
Finally, we present two new text collections. The first collection, called wiki-all-vital,
consists of the approx. 10,000 most vital Wikipedia articles8. We gathered all articles and
processed them with the Wikipedia extractor of TANL [24] to convert each article into plain

6 http://pizzachili.dcc.uchile.cl
7 http://acube.di.unipi.it/tagme-dataset
8 https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Expanded

SEA 2017

http://pizzachili.dcc.uchile.cl
http://acube.di.unipi.it/tagme-dataset
https://en.wikipedia.org/wiki/Wikipedia:Vital_articles/Expanded

13:14 Compression with the tudocomp Framework

Construct SA

Construct Phi Array

Construct PLCP Array

Construct LCP Array

Compress LCP Array

Construct ISA

Compress ISA

Compress SA

Fill candidates

Factors at max. LCP value 987770

Factors at max. LCP value 32773

Factors at max. LCP value 133

Factors at max. LCP value 13

Factors at max. LCP value 7

Factors at max. LCP value 6

Sorting Factors

Encode Factors

Factorize

Construct Index Data Structures
Compute Factors

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time / s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
e
m

o
r
y
 P

e
a
k
 /

 G
iB

Figure 6 Compression of the collection pc-english with lcpcomp(coder=sle, threshold=5,
comp=arrays). SA and LCP are built in delayed mode. Each phase of the algorithm (like the
construction of SA) is depicted as a bar in the diagram. Each bar is additionally highlighted in
a different color with a light and a dark shade. The darker part of a phase’s bar is the amount
of memory already reserved when entering the phase; the lighter part shows the memory peak on
top of the already reserved space of the current phase. The memory consumption of a phase on
termination is equal to the darker bar of the next phase. Coherent phases are grouped together by
curly braces on the top.

text. The second collection, named commoncrawl, is composed of a random subset of a
web crawl9; this subset contains only the plain texts (i.e., without header and HTML tags)
of web sites with ASCII characters.

Setup. The experiments were conducted on a machine with 32 GB of RAM, an Intel Xeon
CPU E3-1271 v3 and a Samsung SSD 850 EVO 250GB. The operating system was a 64-bit
version of Ubuntu Linux 14.04 with the kernel version 3.13. We used a single execution thread
for the experiments. The source code was compiled using the GNU compiler g++ 6.2.0 with
the compile flags -O3 -march=native -DNDEBUG.

lcpcomp Strategies. For lcpcomp we use the heap strategy and the list decompression
strategy described in Section 3.2. We call them heap and compact, respectively. The strategies
described in Section 3.2.2 are called arrays (compression) and scan (decompression). The
decompression strategy scan takes the number of scans b as an argument. We encode the
remaining substrings of lcpcomp with a static low entropy encoder sle. The coder is similar
to a Huffman coder, but it additionally treats all 3-grams of the remaining substrings as
symbols of the input. We evaluated lcpcomp only with the coder sle, since it provided the
best compression ratio. We produced SA, ISA and LCP in the delayed mode.

LZ78U Implementation. We used the suffix tree implementation cst_sada of SDSL, since
it provides all required operations like level ancestor queries.

9 http://commoncrawl.org

http://tudocomp.org/charter/?example=sea2017.json
http://commoncrawl.org

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:15

Table 2 Output of the comparison tool for the collection pcr-cere. C and D denote the
compression and decompression phase, respectively. b and t are the parameters b and t, respectively.
The tool checks at the last column whether the sha256-checksum of the decompressed output
matches the input file.

pcr_cere.200MB (200.0MiB, sha256=577486b84633ebc71a8ca4af971eaa4e6a91bcddda17f0464ff79038cf928eab)

Compressor | C Time | C Memory | C Rate | D Time | D Memory | chk |
--

lz78u(t=5,huff) | 280.2s | 9.2GiB | 12.4643% | 5.1s | 286.9MiB | OK |
lcpcomp(t=5,heap,compact) | 235.5s | 3.4GiB | 2.8436% | 36.4s | 7.6GiB | OK |

lcpcomp(t=5,arrays,compact) | 103.1s | 3.2GiB | 2.8505% | 36.6s | 7.6GiB | OK |
lcpcomp(t=5,arrays,scans(b=25)) | 104.6s | 3.2GiB | 2.8505% | 37.2s | 4.6GiB | OK |

lzss_lcp(t=5,bit) | 98.5s | 2.9GiB | 4.0530% | 4.3s | 230.6MiB | OK |
code2 | 16.4s | 230.6MiB | 28.4704% | 6.6s | 30.6MiB | OK |
huff | 2.7s | 230.5MiB | 28.1072% | 5.9s | 30.6MiB | OK |
lzw | 14.3s | 480.9MiB | 23.4411% | 5.5s | 452.6MiB | OK |
lz78 | 13.6s | 480.8MiB | 29.1033% | 10.3s | 142.9MiB | OK |

bwtzip | 83.6s | 1.7GiB | 6.8688% | 22.6s | 1.4GiB | OK |
gzip -1 | 2.6s | 6.6MiB | 30.7312% | 1.4s | 6.6MiB | OK |
gzip -9 | 107.6s | 6.6MiB | 26.2159% | 1.0s | 6.6MiB | OK |
bzip2 -1 | 13.1s | 9.3MiB | 25.3806% | 5.1s | 8.6MiB | OK |
bzip2 -9 | 13.8s | 15.4MiB | 25.2368% | 5.6s | 11.7MiB | OK |
lzma -1 | 12.6s | 27.2MiB | 27.6205% | 3.4s | 19.7MiB | OK |
lzma -9 | 138.6s | 691.7MiB | 1.9047% | 337.3ms | 82.7MiB | OK |

Figure 6 visualizes the execution of lcpcomp with the strategy arrays in different phases
for the collection pc-english. The figure is generated with the JSON output of tdc by the
chart visualization application on our website http://tudocomp.org/charter. We loaded
the text (200MiB), constructed SA (800MiB, 32 bits per entry), computed LCP (500MiB,
20-bits per entry), computed ISA (700MiB, 28 bits per entry), and shrunk SA to 700MiB.
Summing these memory sizes gives a memory offset of 1.9GiB when lcpcomp started its
actual factorization. The factorization is divided in LCP value ranges. After the factorization,
the factors were sorted and finally transformed to a binary bit sequence by sle. Most of
the running time was spent on building SA, roughly 1GiB was spent for creating the lists Li
containing the suffix array entries with an LCP value of i.

Finally, we compare the implemented algorithms of tudocomp with some classic com-
pression programs like gzip by our comparison tool compare.py. The output of the tool
is shown in Table 2. The compressor lzss_lcp computes the LZ77 factorization (Def. 1)
by a variant of [16]. The compressor bwtzip is an alias for the compression pipeline
bwt:rle:mtf:encode(huff) devised in Section 2.1. The programs bzip2 and gzip do not
compress the highly repetitive collection pcr-cere as well as any of the tudocomp com-
pressors (excluding the plain usage of a coder). Still, our algorithms are inferior to lzma -9
in the compression ratio and the decompression speed. The high memory consumption of
LZ78U is mainly due to the usage of the compressed suffix tree.

5 Conclusions

The framework tudocomp consists of a compression library, the command line executable tdc,
a comparison tool, and a visualization tool. The library provides classic compressors and
standard coders to facilitate building a compressor, or constructing a complex compression
pipeline. Since the library was built with a focus on high modularity, a compression pipeline
does not have to get statically compiled. Instead, the tool tdc can assemble a compression
pipeline at runtime. Such a pipeline, given as a parameter to tdc, can be adjusted in detail
at runtime.

SEA 2017

http://tudocomp.org/charter

13:16 Compression with the tudocomp Framework

We demonstrated tudocomp’s capabilities with the implementation of two new com-
pressors: lcpcomp, a variant of LZ77, and LZ78U, a variant of LZ78. Both new variants
show better compression ratios than their respective originals, but have a higher memory
consumption and also slower decompression times. Further research is needed to address
these issues.

Future Research. The memory footprint of lcpcomp could be dropped by exchanging the
array implementations of SA, ISA and LCP with compressed data structures like a compressed
suffix array, an inverse suffix array sampling, and a permuted LCP (PLCP) array, respectively.
We are currently investigating a variant that only observes the peaks in the PLCP array to
compute the same output as lcpcomp. If the number of peaks is π, then this algorithm needs
at most π lgn bits on top of SA, ISA and the PLCP array.

We are optimistic that we can improve the compression ratio of our algorithms by adapting
sophisticated approaches in how the factors are chosen [1, 7, 8] and how the factors are finally
coded [5].

References

1 Jyrki Alakuijala and Zoltan Szabadka. Brotli Compressed Data Format. RFC 7932, 2016.
2 David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and

S. Srinivasa Rao. Representing trees of higher degree. Algorithmica, 43(4):275–292, 2005.
3 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, 1994.
4 David R. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.
5 Jarek Duda, Khalid Tahboub, Neeraj J. Gadgil, and Edward J. Delp. The use of asymmetric

numeral systems as an accurate replacement for Huffman coding. In Proc. PCS, pages 65–69.
IEEE Computer Society, 2015.

6 Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

7 Andrea Farruggia, Paolo Ferragina, and Rossano Venturini. Bicriteria data compression:
Efficient and usable. In Proc. ESA, volume 8737 of LNCS, pages 406–417. Springer, 2014.

8 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of Lempel-Ziv
compression. SIAM J. Comput., 42(4):1521–1541, 2013.

9 Paolo Ferragina, Francesco Piccinno, and Roberto Santoro. On analyzing hashtags in
Twitter. In Proc. ICWSM, pages 110–119, 2015.

10 Johannes Fischer, Tomohiro I, and Dominik Köppl. Lempel-Ziv computation in small space
(LZ-CISS). In Proc. CPM, volume 9133 of LNCS, pages 172–184. Springer, 2015.

11 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley, first edition, 1995.

12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In Proc. SEA, volume 8504 of LNCS, pages
326–337. Springer, 2014.

13 Roberto Grossi and Giuseppe Ottaviano. Design of practical succinct data structures for
large data collections. In Proc. SEA, volume 7933 of LNCS, pages 5–17. Springer, 2013.

14 Jan Holub, Jakub Reznicek, and Filip Simek. Lossless data compression testbed: ExCom
and Prague corpus. In Proc. DCC, page 457. IEEE Computer Society, 2011.

15 Guy Joseph Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–
554. IEEE Computer Society, 1989.

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:17

16 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factor-
ization: Simple, fast, small. In Proc. CPM, volume 7922 of LNCS, pages 189–200. Springer,
2013.

17 Juha Kärkkäinen, Giovanni Manzini, and Simon John Puglisi. Permuted longest-common-
prefix array. In Proc. CPM, volume 5577 of LNCS, pages 181–192. Springer, 2009.

18 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):1–19, 2006.

19 Dominik Köppl and Kunihiko Sadakane. Lempel-Ziv computation in compressed space
(LZ-CICS). In Proc. DCC, pages 3–12. IEEE Computer Society, 2016.

20 N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. In Proc. DCC,
pages 296–305. IEEE Computer Society, 1999.

21 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

22 Wataru Matsubara, Kazuhiko Kusano, Hideo Bannai, and Ayumi Shinohara. A series of
run-rich strings. In Proc. LATA, volume 5457 of LNCS, pages 578–587. Springer, 2009.

23 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589–607, 2007.

24 Maria Simi and Giuseppe Attardi. Adapting the tanl tool suite to universal dependencies.
In Proc. LREC. European Language Resources Association, 2016.

25 James A. Storer and Thomas G. Szymanski. Data compression via textural substitution.
J. ACM, 29(4):928–951, 1982.

26 Peter Weiner. Linear pattern matching algorithms. In Proc. Annual Symp. on Switching
and Automata Theory, pages 1–11. IEEE Computer Society, 1973.

27 Terry A. Welch. A technique for high-performance data compression. Computer, 17(6):8–19,
1984.

28 Hugh E. Williams and Justin Zobel. Compressing integers for fast file access. Comput. J.,
42(3):193–201, 1999.

29 Ian H Witten, Alistair Moffat, and Timothy C Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Morgan Kaufmann, 2nd edition, 1999.

30 Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression.
IEEE Trans. Inform. Theory, 23(3):337–343, 1977.

31 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. Inform. Theory, 24(5):530–536, 1978.

A Cycle-Free Lemma of lcpcomp

I Lemma 4. The output of lcpcomp contains enough information to restore the original text.

Proof. We want to show that the output is free of cycles, i.e., there is no text position i for
that i → · · · →︸ ︷︷ ︸

cycle length

i holds, where → is a relation on text positions such that i → j holds iff

there is a substring T [i′..i′ + ` − 1] with i ∈ [i′, i′ + ` − 1] that has been substituted by a
reference (j − i+ i′, `). If the text is free of cycles, then each substituted text position can
be restored by following a finite chain of references.

First, we show that is not possible to create cycles of length two. Assume that we
substituted T [SA[i] ..SA[i] + `i − 1] with (SA[i− 1] , `i) for t ≤ `i ≤ LCP[i]. The algorithm
will not choose T [SA[i− 1] + k.. SA[i− 1] + k+ `k− 1] for 0 ≤ k ≤ `i and t ≤ `k ≤ LCP[i]− k
to be substituted with (SA[i] + k, `k), since T [SA[i] + k..] > T [SA[i− 1] + k..] and therefore
ISA[SA[i] + k] > ISA[SA[i− 1] + k]. Finally, by the transitivity of the lexicographic order
(i.e., the order induced by the suffix array), it is neither possible to produce larger cycles. J

SEA 2017

13:18 Compression with the tudocomp Framework

Table 3 Compression and decompression with the lcpcomp strategies arrays and scan, for fixed
parameters t and b. For each collection we chose the t with the best compression ratio. Having t
fixed, we chose the b ≤ 40 with the shortest decompression running time.

compression decompression

collection t #factors ratio memory time b memory time

hashtag 5 10,088,662 25.47% 3179.9 100 17 1726 50
pc-dblp.xml 5 5,547,102 14.4 % 2929.7 99 28 1993.5 65
pc-dna 21 1,091,010 26.03% 2925 122 11 291.2 8
pc-english 5 11,405,635 27.66% 3162 123 25 792.6 36
pc-proteins 10 1,749,917 35.91% 2900 124 13 362 11
pcr-cere 22 236,551 2.45 % 3126 113 6 454.2 7
pcr-einstein.en 8 24,672 0.1 % 3288.8 113 40 1777.3 47
pcr-kernel 6 512,047 1.51 % 3356.3 116 40 2129.6 37
pcr-para 22 388,195 3.27 % 3060.8 117 6 402.3 7
pc-sources 5 8,922,703 23.36% 3271 98 30 1019.6 36
tagme 5 10,986,096 27.29% 2987.7 113 25 985.4 41
wiki-all-vital 5 13,338,470 32.46% 3163 117 27 870.4 45
commoncrawl 4 8,402,041 21.49% 3254.6 101 36 1206.11 41

B LZ78U Offline Algorithm

Instead of directly constructing the array R that is necessary to determine the referred
indices, we create a list F storing the marked LZ-trie nodes, and a bit vector B marking the
internal nodes belonging to the LZ-tree. Initially, only the root node is marked in B. Let
i, p and ` be defined as in the above tree traversal. If B[p] is set, then we append ` to F
and increment i by one. Otherwise, by using level ancestor queries, we search for the highest
node v with B[v] = 0 on the path between the root and p. We set B[v]← 1, and append v
to F . Additionally, we increment i by |λ(parent(v) , v)|. By doing so, we have computed the
factorization.

In order to generate the final output, we augment B with a rank data structure, and
create a permutation N that maps a marked suffix tree node to the factor it belongs. The
permutation N is represented as an array of z lg z bits, where N [B. rank1(F [x])] ← x, for
1 ≤ x ≤ z. At this point, we no longer need F . The rest of the algorithm sorts the factors in
the factor index order. To this end, we create an array R with z lg z bits to store the referred
indices, and an array S with z lgn bits to store the factor labels. To compute S and R, we
scan all marked nodes in B: Since the x-th marked node v corresponds to the N [x]-th factor,
we can fill up S easily: If v is a leaf, we store the first character of λ(parent(v) , v) in S[N [x]];
otherwise (v is an internal node), we store the whole string. Filling R is also easy if v is a
child of the root: we simply store the referred index 0. Otherwise, the parent p of v is not
the root; p corresponds to the y-th factor, where y := N [B. rank1(p)].

The algorithm using |ST|+n+ z(lg(2n) + lg z) + 2z lgn+ o(n) bits of working space, and
runs in linear time.

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:19

C LZ78U Code Snippet

1 void factorize(TextDS<>& T, SuffixTree& ST, std::function<void(size_t begin, size_t end,
size_t ref)> output){

2 typedef SuffixTree::node_type node_t;
3 sdsl::int_vector<> R(ST.internal_nodes,0,bits_for(T.size() * bits_for(ST.cst.csa.sigma) /

bits_for(T.size())));
4 size_t pos = 0, z = 0;
5 while(pos < T.size() − 1) {
6 node_t l = ST.select_leaf(ST.cst.csa.isa[pos]);
7 size_t leaflabel = pos;
8 if(ST.parent(l) == ST.root || R[ST.nid(ST.parent(l))] != 0) {
9 size_t parent_strdepth = ST.str_depth(ST.parent(l));

10 output(pos + parent_strdepth, pos + parent_strdepth + 1, R[ST.nid(ST.parent(l))]);
11 pos += parent_strdepth+1;
12 ++z;
13 continue;
14 }
15 size_t d = 1;
16 node_t parent = ST.root;
17 node_t node = ST.level_anc(l, d);
18 while(R[ST.nid(node)] != 0) {
19 parent = node;
20 node = ST.level_anc(l, ++d);
21 }
22 pos += ST.str_depth(parent);
23 size_t begin = leaflabel + ST.str_depth(parent);
24 size_t end = leaflabel + ST.str_depth(node);
25 output(begin, end, R[ST.nid(ST.parent(node))]);
26 R[ST.nid(node)] = ++z;
27 pos += end − begin;
28 }
29 }

Figure 7 Implementation of the LZ78U algorithm streaming the output

D More Evaluation

In this section, the execution time is measured in second, and all data sizes are measured in
mebibytes (MiB). In Table 3, we selected the t with the best compression ratio and the b with
the shortest decompression time. Although t and b tend to correlate with the compression
speed and decompression memory, respectively, selecting values for t and b that yield a good
compression ratio or a fast decompression speed seems difficult.

In Table 4, we fixed two values of t and three values of b. The compression ratio of the
strategies heap and arrays differ slightly, since the lcpcomp compression scheme does not
specify a tie breaking rule for choosing a longest repeated substring.

Figure 8 compares the number of factors of lzss_lcp with lcpcomp’s arrays strategy
on all aforementioned datasets. We varied the threshold t from 4 up to 22 and measured
for each t the number of created factors. In all cases, lcpcomp produces less factors than
lzss_lcp with the same threshold.

SEA 2017

13:20 Compression with the tudocomp Framework

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

4 6 8 10 12 14 16 18 20 22

lcpcomp@pc-sources
lcpcomp@tagme

lcpcomp@wiki-all-vital
lzss@pc-sources

lzss@tagme
lzss@wiki-all-vital

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

4 6 8 10 12 14 16 18 20 22

lcpcomp@hashtag
lcpcomp@pc-dblp.xml

lzss@hashtag
lzss@pc-dblp.xml

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

4 6 8 10 12 14 16 18 20 22

lcpcomp@pc-dna
lcpcomp@pc-english

lcpcomp@pc-proteins
lzss@pc-dna

lzss@pc-english
lzss@pc-proteins

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

2e+06

4 6 8 10 12 14 16 18 20 22

lcpcomp@pcr-cere
lcpcomp@pcr-einstein.en

lcpcomp@pcr-kernel
lcpcomp@pcr-para

lzss@pcr-cere
lzss@pcr-einstein.en

lzss@pcr-kernel
lzss@pcr-para

Figure 8 Number of factors (y-axis) of lcpcomp and LZ77 on varying the given threshold t

(x-axis).

P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane 13:21

Table 4 Evaluation of external compression programs and algorithms of the tudocomp framework
on the collection commoncrawl.

compression decompression

compressor memory output size time strategy memory time

external programs
gzip -1 6.6 61.3 2.19 6.6 1.045
bzip2 -1 9.3 55.4 14.455 8.6 4.7
lzma -1 27.2 46.7 9.395 19.7 2.37
gzip -9 6.6 53.4 6.86 6.6 0.97
bzip2 -9 15.4 50.7 14.78 11.7 4.955
lzma -9e 691.7 29.4 104.375 82.7 1.56
tudocomp algorithms
encode(sle) 265.2 137.7 24.145 30.6 10.095
encode(huff) 230.4 135 5.7 30.4 9.045
bwtzip 1730.6 43.7 83.035 1575 21.44
lcpcomp(t = 5,heap) 3598.9 44.1 228.055 compact 6592.2 33.24
lcpcomp(t = 22,heap) 3161.7 58.5 175.21 compact 3981.2 14.065

lcpcomp(t = 5,arrays)

scan(b = 6) 4930 43.1

3354.2 44.3 107.34 scan(b = 25) 2584.5 33.995
scan(b = 60) 1164.8 38.925

lcpcomp(t = 22,arrays)

scan(b = 6) 1308 10.925

2980.6 58.5 109.245 scan(b = 25) 520.9 11.265
scan(b = 60) 368.7 15.635

lzss(bit) 2980.4 60.2 108.59 230.6 6.045
lz78(bit) 480.8 83.1 17.96 254.9 11.46
lzw(bit) 480.8 70.3 18.97 663.1 7.05

SEA 2017

13:22 Compression with the tudocomp Framework

E LZ78U Pseudo Codes

Algorithm 1: Streaming LZ78U
1 ST← suffix tree of T
2 R← array of size n // maps internal suffix tree nodes to LZ trie ids
3 initialize R with zeros
4 pos← 1 // text position
5 z ← 0 // number of factors
6 while pos ≤ |T | do
7 `← leaf-select(ISA[pos])
8 if R[parent(`)] 6= 0 or parent(`) = root then
9 output the first character of λ(parent(`) , `)

10 output referred index R[parent(node)]
11 z ← z + 1
12 pos← pos+ str_depth(parent) + 1
13 else
14 d← 1 // the current depth
15 while R[level-anc(`, d)] 6= 0 do
16 d← d+ 1
17 pos← pos+ |λ(level-anc(`, d− 1) , level-anc(`, d))|
18 node← level-anc(`, d)
19 z ← z + 1
20 R[node]← z
21 output string λ(parent(node) , node)
22 output referred index R[parent(node)]
23 pos← pos+ |λ(parent(node) , node)|

Algorithm 2: Computing LZ78U memory-efficiently
1 ST← suffix tree of T
2 pos← 1
3 B ← bit vector of size n // marking the ST nodes belonging to the LZ-trie
4 F ← list of integers // storing the LZ-trie nodes in the order when they got explored
5 node← root of ST
6 while pos ≤ |T | do
7 node← child(node, T [pos]) // use level-anc to get O(1) time
8 pos← pos+ (is-leaf(node) ? 1 : |λ(parent(node) , node)|
9 if is-leaf(node) or B[node] = 0 then

10 B[node]← 1
11 F.append(node)
12 node← root of ST

13 add_rank_support(B)
14 N ← array of length z // stores for each marked ST node to which factor it belongs
15 for 1 ≤ x ≤ z do N [B. rank1(F [x])]← x
16 F ← integer array of size z // storing the referred indices
17 S ← string array of size z // storing the string of each factor
18 for 1 ≤ x ≤ z do
19 node← B. rank1(x)
20 if is-leaf(node) then S[N [x]]← first character of λ(parent(node) , node)
21 else S[N [x]]← λ(parent(node) , node)
22 if parent(node) = root then F [N [x]]← 0
23 else F [N [x]]← N [B. rank1(parent(node))]
24 return (F,S)

Algorithm Engineering for All-Pairs Suffix-Prefix
Matching∗

Jihyuk Lim1 and Kunsoo Park†2

1 Department of Computer Science and Engineering, Seoul National University,
Seoul, Korea
jhlim@theory.snu.ac.kr

2 Department of Computer Science and Engineering, Seoul National University,
Seoul, Korea
kpark@theory.snu.ac.kr

Abstract
All-pairs suffix-prefix matching is an important part of DNA sequence assembly where it is the
most time-consuming part of the whole assembly. Although there are algorithms for all-pairs
suffix-prefix matching which are optimal in the asymptotic time complexity, they are slower than
SOF and Readjoiner which are state-of-the-art algorithms used in practice. In this paper we
present an algorithm for all-pairs suffix-prefix matching that uses a simple data structure for
storing input strings and advanced algorithmic techniques for matching, which together lead to
fast running time in practice. Our algorithm is 14 times faster than SOF and 18 times faster
than Readjoiner on average in real datasets and random datasets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases all-pairs suffix-prefix matching, algorithm engineering, DNA sequence
assembly

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.14

1 Introduction

The problem of all-pairs suffix-prefix (APSP) matching is defined as follows: Given a collection
of k strings S1, S2, . . . , Sk, find the longest suffix of Si which is a prefix of Sj for all pairs
Si and Sj . Let N be the sum of lengths of the input strings S1, S2, . . . , Sk. All-pairs
suffix-prefix matching is an important part of DNA sequence assembly where it is the most
time-consuming part of the whole assembly process. In DNA sequence assembly, a parameter
om (for overlap minimum) is given for APSP matching where we want to find the longest
overlap of Si and Sj whose length is at least om. The output of APSP matching can be
stored in a k × k matrix Ov, where Ov[i, j] is the length of the longest suffix of Si that is a
prefix of Sj . Alternatively, the output can be a list of three integers (i, j, Ov[i, j]) such that
Ov[i, j] ≥ om as a compact representation.

All-pairs suffix-prefix matching has been studied in the fields of stringology and bioin-
formatics. In general, a solution for APSP matching consists of two phases: the first phase is
to build a data structure which represents all prefixes of the input strings, and the second

∗ This research was supported by Collaborative Genome Program for Fostering New Post-Genome industry
through the National Research Foundation of Korea(NRF) funded by the Ministry of Science ICT and
Future Planning (No. NRF-2014M3C9A3063541).

† Corresponding author.

© Jihyuk Lim and Kunsoo Park;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 14; pp. 14:1–14:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

matching phase is to search the data structure to find occurrences of suffixes of each input
string (or equivalently, one can build a data structure representing all suffixes of the input
strings, and search it for prefixes of each string). Gusfield et al. [8] proposed a novel algorithm
of optimal O(N + k2) time for APSP matching by building a generalized suffix tree for the
input strings. Ohlebusch and Gog [16] gave another O(N + k2)-time algorithm by building
an enhanced suffix array [1, 14] for the input strings, which improves upon Gusfield et al.’s
in running time and space. Tustumi et al. [19] further improved the running time and space
of Ohlebusch and Gog’s algorithm. Louza et al. [13] presented a parallel algorithm for APSP
matching which is based on Tustumi et al.’s. In bioinformatics too, many algorithms have
been proposed for APSP matching [5, 6, 11, 15, 9, 10, 18, 17], and Readjoiner [6] and SOF
[9] are state-of-the-art algorithms which show best performances in practice. Although the
algorithms in [8, 16, 19] are optimal in the asymptotic worst-case time complexity, Readjoiner
and SOF are faster than these algorithms in practice. Hence there is a mismatch between
theoretical results and practice. A main reason for the mismatch is that the generalized suffix
tree [8, 7] and even the enhanced suffix array [1, 14] are heavy machineries (though they
provide powerful functionalities) and so the constants hidden in the asymptotic notations
are quite big. On the other hand, SOF uses a simple but effective data structure called the
compact prefix tree (also known as compact trie) for the input strings and its matching phase
uses quite naive algorithmic techniques. As another approach, we can build the Aho-Corasick
automaton [2] for the input strings, and solve APSP matching by searching the automaton
for each input string. We implemented this approach, but the Aho-Corasick automaton is
another piece of heavy machinery and just building it (without the matching phase) takes
more time than the whole SOF.

In this paper we propose a fast algorithm for APSP matching. We first build a compact
prefix tree for the input strings, but in the matching phase we need more advanced techniques
because the only functionality that the compact prefix tree provides is to check whether
a given string is a prefix of the input strings or not. We divide the matching phase into
three cases depending on the lengths of suffixes of an input string, and in each case we use
an appropriate algorithmic technique which finds efficiently occurrences of the suffixes of
an input string corresponding to the case. We did experiments to compare our algorithm
against SOF and Readjoiner with real datasets and random datasets. In the experiments our
algorithm is 14 times faster than SOF and 18 times faster than Readjoiner on average. We
also obtain reasonable scalability with a parallel implementation of our algorithm.

2 New algorithm for APSP matching

Let S be a string of length n over an alphabet Σ. We denote the length of S by |S|. The
i-th character of S is denoted by S[i] (1 ≤ i ≤ |S|), and a substring S[i]S[i + 1]...S[j] by
S[i..j]. A substring S[1..i] for 1 ≤ i ≤ n is called a prefix of S and a substring S[i..n] for
1 ≤ i ≤ n is called a suffix of S. For strings A and B, we use A ≺ B to denote that A is
lexicographically smaller than B.

We describe the compact prefix tree CT of k input strings defined in [9]. The compact
prefix tree is basically a compact trie, i.e., there is one leaf corresponding to each input string
and every internal node has at least two children. An array sorted stores the lexicographic
ordering of the input strings such that Ssorted[1] � Ssorted[2] � ... � Ssorted[k]. The leaves of
CT are in the lexicographic order, and each node v of CT has an interval [a, b] such that
Ssorted[a], . . . , Ssorted[b] are the leaves in the subtree rooted at v. The compact prefix tree
provides a function Find(s), which returns the node v nearest to the root such that s is a

J. Lim and K. Park 14:3

Figure 1 Three cases of the matching step.

prefix of the string on the path from the root to v. If such a node does not exist, Find(s)
returns NULL. For notational convenience, let isort be the inverse function of sorted, i.e.,
isort[j] = c if j = sorted[c].

We first describe an overview of our algorithm for APSP matching. Our algorithm consists
of three steps: preprocessing, matching, and output steps. Our algorithm uses two integers
m and B as parameters (m ≥ B).

In the preprocessing step we construct a compact prefix tree CT for k input strings as in
[9]. In addition, we build auxiliary data structures which will be used in the matching
step.
In the matching step we consider each input string Si separately and do the following.
For each suffix s of Si, we find the interval [a, b] such that Ssorted[a], . . . , Ssorted[b] have s
as their prefixes. If the interval [a, b] is not empty, we insert (a, b, |s|) into oList[i]. But if
we find the interval [a, b] by calling Find(s) for every suffix s of Si, it will take too much
time. We reduce the number of calls to Find by dividing the suffixes of Si into three
cases and using different techniques for the cases. Figure 1 illustrates three cases of the
matching step.

In case 1, we consider each suffix s of Si such that |s| ≥ m. If s[m−B+ 1..m] appears
in Sj [m − B + 1..m] for some j (see Figure 1 (a)), we call Find(s); otherwise, it is
guaranteed that s does not appear as a prefix of input strings and so we don’t need to
call Find(s).
In case 2, we consider each suffix s such that B ≤ |s| < m. If s[|s| −B+ 1..|s|] appears
in Sj [|s| −B + 1..|s|] for some j (see Figure 1 (b)), we call Find(s); otherwise, s does
not appear as a prefix of input strings.
In case 3, we consider suffixes s such that |s| < B. For this case we precompute
Find(s′) for every string s′ of length less than B which appears as a prefix of input
strings, and we store them in a table Bprefix. Hence there are no calls to Find during
the matching step.

In the output step we find the longest overlap of Si and Sj for every j, which is the
largest l such that (a, b, l) is in oList[i] and interval [a, b] contains isort[j].

2.1 Preprocessing step
In the preprocessing step, we build data structures: a compact prefix tree CT , sorted, and
auxiliary data structures qrm, qList, and Bprefix.

SEA 2017

14:4 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

We construct a compact prefix tree CT by inserting input strings one by one into the
tree while maintaining the lexicographic order of characters for children of each internal
node. At the end of the insertions, then, the input strings appear in the leaves of CT in the
lexicographic order. Hence sorted and the interval [a, b] of each node can be obtained by
traversing the tree.

The values of two parameters m and B are set as follows. Let ms be the length of a
shortest string among k input strings. We define m as follows.

m =

ms if N

c1k ≤ ms ≤ N
c2k

N
c1k if ms <

N
c1k

N
c2k if ms >

N
c2k ,

(1)

for some constants c1 and c2. We define B = min(log|Σ| 2mk,m), and a string of length B
will be called a block.

We will use an auxiliary data structure qrm for case 1 in Figure 1. Let m′ = max(m, om),
and let k′ be the number of input strings whose length is at leastm′. Let S ′ = {S′1, S′2, . . . , S′k′}
be the collection of the length-m prefixes of input strings whose length is at least m′. Hence
S ′ looks like a k′ ×m matrix as in Figure 1 (a). For every string x of length B, qrm[f(x)] is
the rightmost occurrence of x in S ′, i.e.,

qrm[f(x)] =
{

max{q | x = S′i[q −B + 1..q] for 1 ≤ i ≤ k′} if x appear in S ′

B − 1 otherwise,
(2)

where f(x) is a function mapping a string x to an integer used as an index of the qrm table,
i.e.,

f(x) =
|x|∑
i=1

rank(x[i])|Σ|i−1, (3)

where rank(c) is a function mapping a character c to a lexicographic order of c within the
range [0, Σ − 1]. To compute the values of qrm, we scan all blocks (i.e., all substrings of
length B) in S ′. The table qrm is initially set to B− 1. In each position q = B,B+ 1, . . . ,m,
we consider k′ blocks xi = S′i[q −B + 1..q] for 1 ≤ i ≤ k′ and set qrm[f(xi)] to q.

We will use qList for case 2 in Figure 1. Let B′ = max(B, om) and let k′′ be the number
of input strings whose length is at least B′. Let S ′′ = {S′′1 , S′′2 , . . . , S′′k′′} be the collection of
input strings whose length is at least B′. For the last block x of S′′j for every 1 ≤ j ≤ k′′,
qList[f(x)] is defined as a list of all distinct positions q such that S′′i [q −B + 1..q] = x for
1 ≤ i ≤ k′′ and B′ ≤ q ≤ m.

If om ≥ m, we do not compute qList because case 2 finds overlaps whose length is less
than m. If om < m we compute qList by scanning all blocks in S ′′ as follows. We define a
temporary table T that indicates whether a block x appears at the end of some input string.
That is, if |Sj | ≥ B and x = Sj [|Sj | −B + 1..|Sj |], T [f(x)] = 1; otherwise, T [f(x)] = 0. In
each position q, we consider k′′ blocks xi = S′′i [q −B + 1..q] for 1 ≤ i ≤ k′′. If T [f(xi)] = 1
and q is not in qList[f(xi)] (i.e., q is not at the front of qList[f(xi)]), we insert q into
qList[f(xi)].

We will use Bprefix for case 3 in Figure 1. Consider a string s such that |s| < B. If s is a
prefix of some input string (i.e., s appears as a prefix in CT), Bprefix[f ′(s)] is a pointer to
the node v nearest to the root of CT such that s is a prefix of the string on the path from

J. Lim and K. Park 14:5

the root to v, where f ′(s) is a function mapping a string s to an integer:

f ′(s) =
|s|−1∑
i=1
|Σ|i + f(s). (4)

Note that f ′(s) maps a string s into an integer within the range [0,
∑B−1

i=1 |Σ|i − 1]. If s is
not a prefix of the input strings, Bprefix[f ′(x)] is set to NULL.

If om ≥ B, we do not compute Bprefix because case 3 finds overlaps whose length is less
than B. If om < B, we compute Bprefix as follows. Initially, all entries of Bprefix are set to
NULL. We traverse CT for all character depths (i.e., number of characters on the path from
the root) less than B, and set Bprefix[f ′(s)] for string s that appears as a prefix in CT .

The space complexity of our algorithm is bounded by the memory space used by k

input strings and the data structures CT , sorted, qrm, qList, and Bprefix. The input uses
N log |Σ| bits (i.e. O(N) space), and the data structures use O(km) space, which is O(N)
because km = Θ(N).

2.2 Matching step
In the matching step we consider each input string Si separately and we need to find
v = Find(s) for every suffix s of Si. If v is not NULL, we insert (a, b, |s|) into oList[i], where
[a, b] is the interval of v. To reduce the number of calls to Find, we have the three cases in
Figure 1.

In case 1, we consider suffixes s of Si such that |s| ≥ m′ from longest to shortest. Let p
be the start position of a current suffix s to be considered. Initially, p = 1.

If qrm[f(x)] is not m, the current suffix s cannot appear in CT as a prefix and so we don’t
need to call Find(s). Moreover, suffixes of Si starting at positions p+ 1, p+ 2, . . . ,m−
qrm[f(x)]− 1 cannot appear in CT as prefixes. Hence p is updated to p+m− qrm[f(x)].
If qrm[f(x)] is m, we make a call Find(s). If Find returns a node v, we insert (a, b, |s|)
into oList[i], where [a, b] is the interval of v. If Find returns NULL, we do nothing.
Finally, we increase p by 1.

The preprocessing and matching steps of case 1 are essentially the same as those in Wu and
Manber’s algorithm [20], which is a Boyer-Moore type algorithm [3, 4, 12], but cases 2 and 3
are different from Wu and Manber’s.

In case 2, we consider suffixes s of Si such that B′ ≤ |s| < m′. If om ≥ m (i.e.,
m′ = max(m, om) = om), we skip case 2. In case 2, therefore, m′ = m. Note that the last
blocks of the suffixes considered in this case are x = Si[|Si| −B + 1..|Si|]. Since a position q
in qList[f(x)] means that x appears at (ending) position q in one of the strings in S ′′, the
length-q suffix s of Si (i.e. s = Si[|Si| − q + 1..|Si|]) may appear in CT . Hence, we make a
call Find(s) for every position q in qList[f(x)].

In case 3, we consider suffixes s of Si such that |s| < B′. If om ≥ B (i.e., B′ =
max(B, om) = om), we skip case 3. In case 3, therefore, B′ = B. For every suffix s of Si such
that om ≤ |s| < B, we look up Bprefix[f ′(s)], which already contains the result of Find(s).

The pseudocode of the matching step is shown in Algorithm 1.

2.3 Output step
In the output step we find the longest suffix of Si that is a prefix of Sj for every j, whose
length is the largest l such that tuple (a, b, l) is in oList[i] and interval [a, b] contains isort[j].
(We assume that the output of APSP matching is a list of three integers (i, j, l) because it

SEA 2017

14:6 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

Algorithm 1 Fast algorithm for APSP matching
1: procedure FastAPSP({S1, S2, . . . , Sk}, om)
2: Precompute m, B, m′, B′, CT , sorted, qrm, qList and Bprefix
3: for i← 1 to k do . Matching step
4: p← 1 . Case 1
5: while p ≤ |Si| −m′ + 1 do
6: x← Si[p+m−B..p+m− 1]
7: if qrm[f(x)] = m then
8: v ← Find(Si[p..|Si|])
9: if v 6= NULL then

10: oList[i].insert(v.interval, |Si| − p+ 1)
11: p← p+ 1
12: p← p+m− qrm[f(x)]
13: if |Si| ≥ B′ then . Case 2
14: x← Si[|Si| −B + 1..|Si|]
15: for each q in qList[f(x)] do
16: v ← Find(Si[|Si| − q + 1..|Si|])
17: if v 6= NULL then
18: oList[i].insert(v.interval, q)
19: for p← max(|Si| −B + 2, 1) to |Si| − om+ 1 do . Case 3
20: x← Si[p..|Si|]
21: v ← Prefix[f ′(x)]
22: if v 6= NULL then
23: oList[i].insert(v.interval, |Si| − p+ 1)
24: Perform output step for oList[i]

is a more compact representation in DNA sequence assembly.) In other words, for every
1 ≤ c ≤ k we want to find the largest l such that (a, b, l) is in oList[i] and interval [a, b]
contains c. Then l is the length of the largest overlap of Si and Ssorted[c] and thus we output
(i, sorted[c], l).

Imagine that intervals [a, b] in oList[i] are on the x-axis. We scan the intervals from c = 1
to k, and maintain the values of l in tuples (a, b, l) such that interval [a, b] contains the current
c in a max-heap. Then for every current c, we output (i, sorted[c], max value in max-heap).
This process can be implemented as follows. We first make an array tA of (a, l)’s and an
array tB of (b, l)’s from tuples (a, b, l) in oList[i]. We sort tA in non-decreasing order of a’s
and tB in non-decreasing order of b’s. Finally we increase c from 1 to k, and if c hits a of
(a, l), we insert l into the max-heap, and if c hits b of (b, l′), we delete l′ from the max-heap.
Then (i, sorted[c], max value in max-heap) for every current c is a correct output.

Since the number of tuples in oList[i] is at most |Si|, the space usage of oList[i], tA, and
tB is O(|Si|) (thus O(N)), and this space for oList can be reused for every 1 ≤ i ≤ k.

2.4 Implementation options
The implementation of our algorithm provides several options: overlap minimum, output,
and parallel options. The overlap minimum option is given by −om i, where i is the value of
overlap minimum om. The output option receives 1, 2, or 3 as a parameter. In the case of 1,
the program provides the matrix Ov as output. In the case of 2, the program gives the list of

J. Lim and K. Park 14:7

Table 1 Real datasets used in experiments.

clementina sinensis trifoliata C. elegans Atta
N 104640576 154995828 46648250 167035020 315387616
k 118365 208909 62344 334465 2835

avg length 884.05 741.93 748.24 499.41 111247.84
ms 18 13 89 7 1929

three integers (i, j, Ov[i, j]). In the case of 3, it gives the list of all overlaps for each pair (not
only the longest overlap) like Readjoiner [6] and SOF [9] with −o 2. Our program with option
3 presents all the overlaps by outputting (i, sorted[a], l), (i, sorted[a+1], l), . . . , (i, sorted[b], l)
from each tuple (a, b, l) in oList[i] instead of running the output step. Given the number p
of threads as a parameter for the parallel option, our program is executed in parallel. In
the preprocessing step, qrm and qList are computed in parallel. The matching step is also
executed in parallel by p threads.

3 Experiments

Tustumi et al. [19] and Louza et al. [13] compared only the matching phases of their optimal
algorithms for APSP matching against SOF and Readjoiner, not accounting for the time to
build the data structures to store input strings, and SOF and Readjoiner are in general faster
than their algorithms. (If the time to build the data structures is included, the gap would be
greater.) Among practical algorithms [5, 6, 11, 15, 9, 10, 18, 17] for APSP matching, SOF
and Readjoiner show best performances. Therefore, we compared our algorithm1 with SOF
and Readjoiner. Our algorithm and SOF were compiled with g++ (v. 4.9.2) with the -O3
optimization flag. Readjoiner (version 1.2) was compiled using the provided Makefile with
“64bit=yes assert=no amalgamation=yes threads=yes”. For parallel experiments, we used
the OpenMP library. All experiments were conducted on a computer with Intel Xeon X5672
CPU, which has 8 cores, 32 GB RAM, and the Linux debian 3.2.0-4-amd64 operating system.

We used two types of datasets which are real and random. The five real datasets are
the complete EST databases of Citrus clementina2, Citrus sinensis2, Citrus trifoliata2,
C. elegans3, and Atta cephalotes4, which were used as the datasets in the SOF paper [9].
The alphabet of the datasets is {A,C,G, T}. Table 1 shows specific information of the
datasets. Whereas Readjoiner discards low-quality reads before APSP matching, we made
three algorithms take all reads as input strings for a fair comparison. The random datasets
are generated by a program1 that gives k strings such that the lengths of the strings follow a
normal distribution with mean µ and standard deviation σ and the characters of the strings
follow a uniform distribution over the alphabet, where k, µ and σ are parameters given by
the user. The alphabet is again {A,C,G, T}. We generated two datasets rnd1 and rnd2,
where rnd1 has 300000, 1000, and 150 as k, µ, and σ, respectively, and rnd2 has 1000000,
500, and 100.

We compare the performances of SOF, Readjoiner, and our algorithm for the whole
process of APSP matching, i.e., including the time to build their own data structures, the

1 http://theory.snu.ac.kr/?p=814
2 http://www.citrusgenomedb.org
3 http://www.uni-ulm.de/in/theo/research/seqana
4 http://antgenomes.org

SEA 2017

http://theory.snu.ac.kr/?p=814
http://www.citrusgenomedb.org
http://www.uni-ulm.de/in/theo/research/seqana
http://antgenomes.org

14:8 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

Table 2 Running time (in second) of algorithms for real datasets.

om algorithm clementina sinensis trifoliata C. elegans Atta

10

SOF 22.68 44.18 8.07 62.44 23.91
Readjoiner 114.13 450.48 57.52 231.66 -

Our1 3.44 6.10 1.50 14.83 0.70
Our2 5.07 11.21 1.94 14.52 0.86

15

SOF 21.98 40.60 7.70 61.94 24.58
Readjoiner 50.47 137.54 33.87 84.25 -

Our1 2.90 4.90 1.37 14.19 0.64
Our2 3.36 6.44 1.42 13.84 0.73

20

SOF 20.82 36.60 7.35 60.48 23.79
Readjoiner 11.53 38.42 3.36 44.15 -

Our1 2.78 4.33 1.30 14.02 0.64
Our2 2.94 4.75 1.29 13.67 0.69

25

SOF 20.35 35.89 7.33 59.62 23.86
Readjoiner 7.26 18.80 3.07 27.37 -

Our1 2.72 4.29 1.29 13.89 0.64
Our2 2.77 4.42 1.28 13.54 0.66

Figure 2 Running time (in second) of algorithms for real datasets (y-axis in log scale).

time for the matching phase, and the time to write the output (For Readjoiner, it is the
overlap phase of the whole sequence assembly). The labels of Our1 and Our2 mean our
algorithm with option output = 2 and output = 3, respectively. For SOF, option −o 2 is used.
Our2, SOF with −o 2 and Readjoiner return the same output, which includes all overlaps
for each pair of input strings. Our1 solves the problem of APSP matching as it is defined
(i.e., it returns the longest overlap for each pair of input strings). Readjoiner does not have
an option to return the longest overlap for each pair of input strings. SOF finds the longest
overlap only when it returns the matrix Ov (with option −o 1), but when it returns a list
of (i, j, Ov[i, j]) as output (with option −o 2), it returns all overlaps for each pair of input
strings and there is no way to return the longest overlap for each pair. In our algorithm we
set c1 to 16 and c2 to 8 in all experiments.

J. Lim and K. Park 14:9

Table 3 Running time (in second) of algorithms for random datasets.

om algorithm rnd1 rnd2 om algorithm rnd1 rnd2

10

SOF 109.16 258.82

20

SOF 108.40 252.59
Readjoiner 481.10 1322.40 Readjoiner 31.67 149.51

Our1 5.26 13.44 Our1 4.85 12.67
Our2 5.14 14.01 Our2 4.74 12.48

15

SOF 108.92 256.03

25

SOF 107.3 250.25
Readjoiner 123.60 214.52 Readjoiner 7.34 14.70

Our1 4.86 13.03 Our1 4.77 12.38
Our2 4.81 12.84 Our2 4.83 12.16

Figure 3 Running time (in second) of algorithms for random datasets (y-axis in log scale).

Table 2 and Figure 2 show the running time (in second) of each algorithm with the real
datasets. We carried out experiments when om is 10, 15, 20, and 25. The y-axis (i.e. running
time) of Figure 2 is in log scale. Our algorithm outperforms SOF and Readjoiner in all cases.
In the experiment with Atta, we obtained a huge speed-up compared with SOF because
case 1 of the matching step of our algorithm is very effective when m is large. When one
of the input strings is very large (its length is over 15 millions in Atta), SOF shows a poor
performance. In the experiment with Atta, Readjoiner stopped and printed "cannot realloc()
memory" for all values of om. Readjoiner is not efficient for small values of om (e.g., om = 5).
Experimental results show that our algorithm performs well consistently, not depending on
one large input string or values of om.

Table 3 and Figure 3 show the running time of each algorithm with random datasets.
Again we did experiments when om is 10, 15, 20, and 25. The y-axis (i.e. running time) is in
log scale. The performance of our algorithm is better than those of SOF and Readjoiner in
all cases. The running time of Readjoiner decreases as om increases.

We computed the average speedup of our algorithm Our2 over SOF and Readjoiner for all
experiments. The average speedup of Our2 over SOF for all 28 experiments (5 real datasets
+ 2 random datasets and 4 values of om) is about 14 and that of Our2 over Readjoiner for
all 24 experiments (4 read datasets + 2 random datasets and 4 values of om) is about 18.

Table 4 and Figure 4 show the running time of each algorithm with parallel options for
real datasets. We used different numbers of threads (1, 2, 4, and 8) and a fixed value 15 of
om, which was the value of om in all experiments of the SOF paper [9]. Our algorithm and
SOF show reasonable scalability in all experiments. However, SOF does not scale well in the
experiment with Atta because SOF has poor scalability when one of the input strings is very
large. Readjoiner does not show good scalability in all experiments.

The peak value of memory usage is measured by /usr/bin/time -v. Table 5 and Figure 5
show the peak memory for SOF, Readjoiner, and Our2 on the real datasets with om = 15.

SEA 2017

14:10 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

Table 4 Running time (in second) of algorithms with parallel options 1, 2, 4, and 8.

algorithm thread clementina sinensis trifoliata C. elegans Atta

SOF

1 21.98 40.60 7.70 61.94 24.59
2 11.63 21.41 4.32 34.98 23.23
4 6.95 11.41 2.26 20.10 23.15
8 4.61 8.56 1.59 14.22 23.06

Readjoiner

1 50.47 137.54 33.87 84.25 -
2 42.92 118.02 19.67 80.88 -
4 41.57 117.39 18.35 77.86 -
8 43.22 113.64 18.14 71.71 -

Our1

1 2.90 4.90 1.37 14.19 0.64
2 1.88 3.17 0.99 8.94 0.62
4 1.28 2.04 0.53 5.79 0.43
8 1.09 1.97 0.44 4.96 0.42

Our2

1 3.36 6.44 1.42 13.84 0.73
2 2.34 4.81 0.93 8.44 0.72
4 1.77 3.52 0.61 5.69 0.54
8 1.48 3.43 0.50 4.84 0.53

Figure 4 Running time (in second) of algorithms with parallel options 1, 2, 4 and 8 (y-axis in
log scale).

J. Lim and K. Park 14:11

Table 5 Peak memory usage (in MB) of algorithms.

clementina sinensis trifoliata C. elegans Atta
SOF 53 81 26 101 111

Readjoiner 191 419 83 88 -
Our2 128 263 89 280 270

Figure 5 Peak memory usage of algorithms.

Our algorithm uses more memory than SOF in all cases because of additional auxiliary data
structures, but the memory usage of our algorithm is still within the optimal bound of O(N)
as described in Sections 2.1 and 2.3. Our algorithm uses more memory or less memory than
Readjoiner depending on datasets.

4 Conclusion

In this paper we have presented a fast algorithm for all-pairs suffix-prefix matching. The
main idea of the algorithm is a combination of a simple but effective data structure for storing
input strings and advanced algorithmic techniques for matching to achieve fast running time.
Experimental results show that our algorithm runs much faster than previous state-of-the-art
algorithms SOF and Readjoiner for APSP matching. Also we obtain reasonable scalability
with a parallel implementation of our algorithm.

References

1 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

2 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

3 Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

4 Maxime Crochemore, Artur Czumaj, Leszek Gąsieniec, Thierry Lecroq, Wojciech
Plandowski, and Wojciech Rytter. Fast practical multi-pattern matching. Information
Processing Letters, 71(3-4):107–113, 1999.

5 Hieu Dinh and Sanguthevar Rajasekaran. A memory-efficient data structure representing
exact-match overlap graphs with application for next-generation dna assembly. Bioinform-
atics, 27(14):1901–1907, 2011.

6 Giorgio Gonnella and Stefan Kurtz. Readjoiner: a fast and memory efficient string graph-
based sequence assembler. BMC bioinformatics, 13(1):82, 2012.

SEA 2017

14:12 Algorithm Engineering for All-Pairs Suffix-Prefix Matching

7 Dan Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge university press, 1997.

8 Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the all
pairs suffix-prefix problem. Information Processing Letters, 41(4):181–185, 1992.

9 Maan Haj Rachid and Qutaibah Malluhi. A practical and scalable tool to find overlaps
between sequences. BioMed research international, 2015, 2015.

10 Maan Haj Rachid, Qutaibah Malluhi, and Mohamed Abouelhoda. Using the sadakane com-
pressed suffix tree to solve the all-pairs suffix-prefix problem. BioMed research international,
2014, 2014.

11 David Hernandez, Patrice François, Laurent Farinelli, Magne Østerås, and Jacques Schren-
zel. De novo bacterial genome sequencing: millions of very short reads assembled on a
desktop computer. Genome research, 18(5):802–809, 2008.

12 R. Nigel Horspool. Practical fast searching in strings. Software: Practice and Experience,
10(6):501–506, 1980.

13 Felipe A. Louza, Simon Gog, Leandro Zanotto, Guido Araujo, and Guilherme P. Telles.
Parallel computation for the all-pairs suffix-prefix problem. In International Symposium
on String Processing and Information Retrieval, pages 122–132. Springer, 2016.

14 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935–948, 1993.

15 Eugene W. Myers. The fragment assembly string graph. Bioinformatics, 21(suppl 2):ii79–
ii85, 2005.

16 Enno Ohlebusch and Simon Gog. Efficient algorithms for the all-pairs suffix-prefix problem
and the all-pairs substring-prefix problem. Information Processing Letters, 110(3):123–128,
2010.

17 Maan Haj Rachid, Qutaibah Malluhi, and Mohamed Abouelhoda. A space-efficient solution
to find the maximum overlap using a compressed suffix array. In Biomedical Engineering
(MECBME), 2014 Middle East Conference on, pages 329–333. IEEE, 2014.

18 Jared T. Simpson and Richard Durbin. Efficient construction of an assembly string graph
using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

19 William H.A. Tustumi, Simon Gog, Guilherme P. Telles, and Felipe A. Louza. An improved
algorithm for the all-pairs suffix–prefix problem. Journal of Discrete Algorithms, 37:34–43,
2016.

20 Sun Wu, Udi Manber, et al. A fast algorithm for multi-pattern searching. Technical report,
University of Arizona. Department of Computer Science, 1994.

The Quantile Index – Succinct Self-Index for
Top-k Document Retrieval
Niklas Baumstark1, Simon Gog2, Tobias Heuer3, and Julian Labeit4

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
niklas.baumstark@student.kit.edu

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
simon.gog@kit.edu

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
tobias.heuer@student.kit.edu

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
julian.labeit@student.kit.edu

Abstract
One of the central problems in information retrieval is that of finding the k documents in a large
text collection that best match a query given by a user. A recent result of Navarro & Nekrich
(SODA 2012) showed that single term and phrase queries of length m can be solved in optimal
O(m + k) time using a linear word sized index. While a verbatim implementation of the index
would be at least an order of magnitude larger than the original collection, various authors
incrementally improved the index to a point where the space requirement is currently within a
factor of 1.5 to 2.0 of the text size for standard collections.

In this paper, we propose a new time/space trade-off for different top-k indexes. This is
achieved by sampling only a quantile of the postings in the original inverted file or suffix array-
based index. For those queries that cannot be answered using the sampled version of the index
we show how to compute the query results on the fly efficiently. As an example, we apply our
method to the top-k framework by Navarro & Nekrich. Under probabilistic assumptions that
hold for most standard texts, and for a standard scoring function called term frequency, our index
can be represented with only sublinearly many bits plus the space needed for a compressed suffix
array of the text, while maintaining poly-logarithmic query times. We evaluate our solution on
real-world datasets and compare its practical space usage and performance against state-of-the-
art implementations. Our experiments show that our index compresses below the size of the
original text. To our knowledge it is the first suffix array-based text index that is able to break
this bound in practice even for non-repetitive collections, while still maintaining reasonable query
times of under half a millisecond on average for top-10 queries.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Text Indexing, Succinct Data Structures, Top-k Document Retrieval

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.15

1 Introduction

Given a large collection of text documents, it remains an important problem in computer
science to pre-process them in a way that afterwards user queries about the documents in
the collection can be answered efficiently. The general setting for top-k retrieval that we
concern ourselves with is the following: Given a collection of documents D = {d1, d2, . . . , dN}
where each document di is a string over some alphabet Σ, a pattern string p ∈ Σ∗, a scoring
function ω : D × Σ∗ → R and a parameter k ∈ {1, 2, . . . N}, find the k documents di that

© Niklas Baumstark, Simon Gog, Tobias Heuer, and Julian Labeit;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

contain p and maximize ω(di, p). If D and ω are given upfront, we might want to build an
index data structure that is independent of the pattern p and allows us to process a series
of patterns much more efficiently, without having to scan the entire document collection
each time. This is surely not feasible for every possible scoring function ω, hence we restrict
ourselves to an interesting subset of scoring functions. An example of such a function is term
frequency, which simply counts how often the pattern appears in the document.

More complex scoring functions, such as Okapi BM25, incorporate more features – namely
document frequency and document length – and often lead to better results in practice. In
standard information retrieval nomenclature, the type of query described above is called a
phrase query. Depending on the data structures used, phrase queries can be much harder to
solve than single term queries, which consist of a single token (such as a word in a natural
text). If suffix arrays are used as the basic building block of an index, these two types of
queries can be treated the same because no parsing of the text into tokens is required.

There are two main approaches for solving the top-k retrieval problem. Inverted indexes are
used almost exclusively in practice by real-world search engines such as Apache Lucene [20].
Inverted indexes store all occurrences (or postings) of a term in a document in posting
lists. Decades of research have yielded very compact and fast indexes using this technique.
Nevertheless, there are some inherent limitations of the inverted index approach: In order to
support phrase queries efficiently, additional information needs to be stored alongside the
postings, and heuristics are used to ensure that tokens appear together and in the correct
order in the resulting documents.

In 2010, Culpepper et al. [3] presented the first implementation of Hon et al.’s top-k
index for phrase queries that is based on suffix arrays [9]. Since then, various authors have
improved the space efficiency of suffix array-based indexes significantly. The current state
of the art can produce indexes that are within a factor of 1.5 to 2 of the text size, while
supporting arbitrary phrase queries efficiently [11]. However, space usage is still a clear
advantage of inverted indexes, which are typically much smaller than the original text.

We contribute a new technique that can be applied to both inverted indexes and suffix
array-based indexes to decrease space usage by trading it for query time. We achieve this by
storing only a fraction of the posting lists, and provide an algorithm that can reconstruct
the rest of the result list on the fly, in the case where this is necessary because many results
are requested – i.e. k is sufficiently large. We implemented our idea on top of an existing
top-k index that is based on the framework by Navarro & Nekrich [16]. In particular, we
took the implementation from [11] and improved its space usage by a factor of 2 to 2.5 using
our quantile sampling method. Our experimental evaluation shows that query times are
dependent on the specific query, but are within a factor of 10-20 of the unmodified index in
the most unfavourable cases and comparable on average.

2 Related Work

One of the basic tasks closely related to top-k retrieval is document listing – enumerating all
documents in which a pattern occurs. In 1998, Matias et al. augmented suffix trees in order
to solve the document listing problem efficiently [12]. Muthukrishnan introduced an optimal
time index for document listing in 2002 [13]. The solution uses a range minimum query
data structure to enumerate all distinct document IDs in a lexicographic range. Sadakane
proposed a succinct version of the index [18]. As the underlying data structure Sadakane uses
a compressed suffix array (CSA). For a comprehensive survey on CSAs and basic succinct
data structures used in text indexes we refer to [15]. In total Sadakane’s solution needs

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:3

|CSA|+ 4n+ o(n) bits to perform document listing, where |CSA| is the size of a compressed
suffix array. Since then numerous indexes based on CSAs have been proposed supporting all
kinds of different operations. In the following we will focus on the top-k retrieval problem.

In 2009, Hon et al. introduced a general top-k retrieval framework and showed how to solve
the problem using an index taking up only a linear number of words [9]. In their work they
introduce the notion of weighted arrows in the generalized suffix tree. Queries are answered by
enumerating the heaviest arrows pointing out of subtrees of the tree. Subsequently, Navarro
& Nekrich showed how to further improve this framework to achieve optimal O(m+ k) query
time, where m is the pattern length, and reduced its space consumption [16]. This is done by
representing arrows as 2-d weighted grid points and using a three-sided prioritized orthogonal
range search data structure to answer top-k queries. In 2013, Tsur published the first top-k
document framework using optimal |CSA|+ o(n) bits of space with poly-logarithmic query
times [21]. The query time was reduced by Thankachan & Navarro to O(k log2 k logε n) suffix
array accesses for any constant ε > 0 [17]. For a comprehensive overview of the different
problems and solutions concerning document retrieval please refer to the survey put together
by Navarro [14].

In recent years there have been numerous practical implementations of suffix array-based
document retrieval frameworks. In 2013, Konow & Navarro showed that with a frequency
sampling of the suffix tree nodes they can actually implement the Navarro–Nekrich scheme
using 3 to 4 times the original text size for non-repetitive collections while achieving top-k
query times well below a millisecond [10]. In 2014, Brisaboa et al. introduced the K2-treap
to solve weighted top-k range queries faster and more space-efficiently in practice [2]. In
the following year, Gog & Navarro simplified the implementation by Konow & Navarro by
introducing a new mapping of suffix array ranges to coordinate ranges of the grid [8]. Their
implementation uses 2.5 to 3 times the input size while maintaining comparable query times.
Recently, Labeit & Gog proposed a technique to encode the document IDs of the grid points
more compactly [11]. With this technique they achieve index sizes of 1.5 to 2 times the input
size at the cost of higher query times. [7] gives a comprehensive overview of the techniques
developed in this line of research.

Additionally, some of the prior art specializes on repetitive string collections. Gagie et al.
show how document listing, top-k retrieval and document counting can be solved while
exploiting the properties of repetitive collections [4]. They introduce the interleaved LCP
array and precomputed document lists. Both concepts might also be applicable to top-k
retrieval on non-repetitive collections.

3 Quantile Filtering

3.1 Preliminaries
For a collection D and scoring function ω we define Rp = (d1, d2, ...) to be the result list
containing all documents in which p occurs in descending score order. In the literature Rp are
often referred to as impact-ordered posting lists of term p. Consider the example collection
D = {d1 : ATATT, d2 : TTATA, d3 : AATT, d4 : TTA}, pattern p = TA and term frequency as the
scoring function. Then RTA = (d2, d1, d4) as TA appears twice in d2, once in d1 and once in
d4. The top-k retrieval problem can be defined as computing the first k entries of Rp, which
we denote by the function top-k(p, R).

Additionally we define Occp = ((d1, pos1), (d2, pos2), ...) to be the list of all occurrences
of the pattern p. For our example collection OccTA = ((d1, 1), (d2, 1), (d2, 3), (d4, 1)). If
we concatenate all documents to one string with a separator character we obtain D∗ =

SEA 2017

15:4 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

Algorithm 1: The generic query algorithm.
Input: Search pattern p, integer k > 0
Output: Top-k documents containing pattern p, sorted by scoring function

1 if k · q ≤count(p, D∗) then
2 return top-k(p, Rq)
3 else
4 Occp ← locate(p, D∗)
5 return top-k-on-the-fly(Occp)

ATATT#TTATA#AATT#TTA and can then compute |Occp| by counting the occurrences of p in
D∗. We can generate Occp by first computing all locations of p in D∗ and then mapping the
locations to pairs of document ID and location within the document. This mapping can be
performed using a compressed bit vector. We call a pattern p right-maximal if it has two
occurrences in D∗ succeeded by different characters. The inner nodes of the suffix tree of D∗
corresponds to all the right-maximal patterns. Finally, we denote the set of all Rp for all
right-maximal patterns as R.

3.2 Basic Framework

In the following we propose a sampling technique of the sorted posting lists Rp. The
sampling allows us to use a standard pattern matching index, such as a compressed suffix
array (CSA), to reduce the number of postings which need to be represented by our top-k
retrieval index. The pattern matching index only needs to support the basic operations
locate(p) and count(p), which compute the set Occp and its cardinality, respectively.

Let q ∈ N be the quantile parameter. Then Rqp is defined as the list containing the upper
q-th quantile of Rp, i.e. the b |occp|

q c highest ranked elements of Rp. We denote the set of all
Rqp lists for all right-maximal substrings p of D∗ as Rq. Our top-k retrieval index represents
only the Rq lists, instead of the R lists. When solving top-k queries we first compute |Occp|
using a pattern matching index. If k · q ≤ |Occp| the query can be answered using the top-k
index representing Rq. Otherwise the query is answered by computing the result list from
Occp on the fly. Note that in the latter case the cardinality of Occp is bounded by q · k,
which ensures the efficiency of the framework. Algorithm 1 gives the pseudocode for the
query algorithm.

With the proposed framework we can solve regular top-k queries on R using a top-k
query on Rq plus additional operations on a pattern matching index and some on-the-fly
computations. We will analyze the asymptotic behaviour of our index under the assumption
that the input texts are randomly drawn from a source satisfying the Szpankowski A2
model [19]. This is reasonable to assume for most texts occurring in practice. The A2 model
was first used in the context of document listing by Gagie et al. [5]. We use it to bound the
height of the suffix tree with high probability by Θ(logn).

By choosing different values for q we get different time/space trade-offs between the size
of Rq and the time needed for locate and the on-the-fly computation. The following theorem
characterizes the relation between q and the size of Rq.

I Theorem 1. For a document collection generated from a source satisfying the Szpankowski
A2 model, |Rq| = O(n logn

q) holds with high probability, where |Rq| =
∑
p(|Rqp|) for all right

maximal substrings p of D∗.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:5

Proof. Each right-maximal substring p of D∗ can be identified by a unique node v in the
suffix tree of D∗. We can bound the number of distinct documents in which p occurs by the
number of nodes in the subtree rooted at v. Thus the total result list size of p can be bounded
by |Rp| ≤ |subtree(v)|. Under Szpankowski’s A2 model the generalized suffix tree has height
h = Θ(logn) with high probability (w.h.p). Hence the sum over all such subtrees is bounded
by

∑
v |subtree(v)| ∈ O(n logn) and consequently |R| ∈ O(n logn) w.h.p. By construction

Rq has a factor of q less elements than the lists in R so in total we get |Rq| = O(n logn
q)

w.h.p. J

3.3 Succinct Self-Index
We apply our method to a state-of-the-art implementation of the Navarro–Nekrich scheme
for top-k retrieval. Our choice is based on the fact that their framework already includes a
CSA for pattern matching and that recent implementations only need O(log logn) index bits
per input character1 to represent Rq. We first give a short overview of the Navarro–Nekrich
scheme and then we apply Theorem 1 to show that our index indeed is succinct. For a more
in-depth discussion of the ideas underlying the Navarro–Nekrich scheme and the various
improvements since its inception please refer to [7].

The foundation of the top-k retrieval framework was laid out by Hon et al. [9]. The key
idea is to answer top-k queries by inserting the edges of the suffix trees of the individual
input documents into the suffix tree of D∗. The edges are associated with the corresponding
document ID and are directed towards the root. Additionally the score ω(d, p) is computed,
where d is the corresponding document ID and p is the pattern represented by the node that
the arrow points to. This score is used as the weight of the arrow. Hon et al. observed that
top-k queries for a pattern p can be solved by enumerating the k heaviest arrows originating
inside and pointing outside of the subtree representing p. Navarro & Nekrich showed that
each arrow can be represented as a weighted 2-d grid point [16]. The x coordinates of a
grid point is its position in a certain in-order traversal of the arrows by their origin. The
y coordinate of a grid point is the tree depth of the tree node that it points to.

The set of all such grid points is called G. Top-k queries are solved by answering three-
sided prioritized orthogonal range queries on G. The x range of the query is chosen so that
it contains all arrows starting in the subtree corresponding to the query pattern p. The y
range is chosen so that only arrows are reported that point out of the subtree corresponding
to the query pattern p. Additionally, to increase the practical performance of the framework,
singletons are handled in a separate document listing data structure. Singletons are arrows
that start at suffix tree leaves and thus account for at least half of all the arrows.

I Theorem 2. For a document collection generated from a source satisfying the Szpankowski
A2 model, applying quantile filtering to the Navarro–Nekrich scheme yields a succinct top-k
self-index with high probability. More precisely we obtain an index using |CSA|+ o(n) bits
of space and O(k · polylog(n,m)) time to answer a top-k query for a pattern of length m.
Here |CSA| is the space used by the compressed suffix array, which is assumed to support
standard operations in time O(polylog(n,m)).

Proof. We choose q ∈ Θ(logn(log logn)2) so that using Theorem 1 we get |Rq| ∈
o(n/ log logn). We only keep those grid points from G that represent results in Rq. We call

1 To achieve O(log logn) index bits per character the input collection needs to satisfy the Szpankowski
A2 model and the values of the scoring function have to be encodable in O(n log logn) bits.

SEA 2017

15:6 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

this the quantile-filtered grid Gq which consequently contains at most o(n/ log logn) grid
points. To store Gq in an augmented wavelet tree we need O(log logn) bits per grid point.
Thus the total space to store Gq is o(n) bits. We apply coordinate compression on the x
range of the grid Gq. Then the mapping of suffix tree leaves to x coordinates can be stored
explicitly using o(n) bits. Finally, we use the data structure from [11] to store the document
IDs. Using Elias-Fano encoding and a similar analysis as in [11] the IDs can be represented
indirectly in O(log logn) bits per grid point. So all the document IDs can be represented in
o(n) bits. The overall index needs |CSA|+ o(n) bits of space with high probability.

The query time is dominated in the worst case by the k · q accesses to the CSA. They are
needed to compute Occp in line 4 of Algorith 1. Depending on TCSA, the access time of the
CSA, we get an overall query complexity of O(TCSA(n,m) · k · logn(log logn)2). J

This succinct self-index for top-k document retrieval index is called the quantile index.
For other grid representations (or scoring functions) with higher space usage we can simply
adapt q accordingly. It can always be chosen such that the index space is bounded by
|CSA|+ o(n) bits, potentially at the cost of a higher worst-case query time. In practice q
can be chosen empirically such that the grid component of the index requires little space
compared to the CSA component.

4 Index Details

Our practical implementation of the quantile index consist of five basic components, listed
below. The list does not include the suffix tree of the collection D∗ because it is needed only
temporarily and can be discarded after the construction is finished.

Gq, the 2-d weighted range search data structure over the filtered Navarro–Nekrich
grid points. Each grid point corresponds to exactly one arrow and has an additional
coordinate x representing a specific order of the arrows which is described in Section 4.1.
a compressed suffix array (CSA) of the concatenation of all documents in the input
collection. It is used to determine the lexicographical suffix array interval [l, r] for a given
query, and to implement the fallback case where q · k > r − l + 1 and thus we cannot
consult Gq. Different sampling rates s lead to different time/space trade-offs for this
component.
a compressed bit vector B marking the positions in the concatenated input D∗ where a
new document begins.
a data structure DOC which stores the document IDs for each point in Gq. In Section 4.3
we describe how to incorporate the ideas from [11] to decrease the space usage of
this component. We have implemented variants of our index with and without this
optimization.
a mapping bit vector Hq, which is used to map a query suffix array interval [l, r] to a
range of grid coordinates [xl, xr].

To clarify how the quantile index works, Algorithm 2 shows how a query pattern p

is processed, using term frequency as an example scoring function. In the fallback case,
a linear-time selection algorithm such as the one of Blum et al. [1] is used to select the
top-k results, after computing the full list of candidate results by scanning the compressed
suffix array. Note that our index can support all the scoring functions that the original
Navarro–Nekrich framework supports.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:7

Algorithm 2: The query algorithm for the quantile index.
Input: Search pattern p, integer k > 0
Output: Top-k documents containing pattern p, sorted by term frequency

1 [l, r]← search(CSA, p)
2 if k · q ≤ r − l + 1 then
3 [xl, xr]← mapSAInterval(H, l, r)
4 points ← topKRangeSearch(Gq, k, [xl, xr]× [0, |p|))
5 result ← empty list
6 for p = (xp, yp) ∈ points do
7 push(result, DOC [xp])

8 else
9 freq ← new hash map with default value 0

10 for i = s to e do
11 docid ← rank(B, CSA[i])
12 freq[docid]++
13 result ← partialSort(freq, k) // select and sort only the k elements with biggest weight
14 output result

4.1 Singletons and the Vector H

Each arrow a in the original Navarro–Nekrich framework is associated with a node va in the
suffix tree of D∗. Exactly one arrow is associated with each leaf of the suffix tree. Such arrows
are called singletons because they correspond to postings with frequency one. The top-k
index by Konow & Navarro handles singletons using a separate 1-dimensional range minimum
data structure for space reasons [10]. One can view our approach as a generalization of this
idea: Since for a subtree S of the suffix we only store the most heavy b|S|/qc arrows pointing
out of it, we only keep arrows that point out of some subtree of size |S| ≥ q. This is unlikely
to be the case for singleton arrows, hence most of them will be eliminated in practice. This
allows us to handle singletons the same way as other arrows, without implementing a special
case.

To transform the arrows into grid points and apply the Navarro–Nekrich technique, we
order them using a specific depth-first traversal of the suffix tree and use the index of an
arrow in that sequence as an additional coordinate for the arrow. Algorithm 3 illustrates
the traversal. We obtain a sequence (a0, a1, . . . aM−1) of arrows, each represented by a tuple
ai = (yi, di, wi) where yi is the target depth of the arrow, di is the document associated
with it and wi is its weight. We define xi = i as the x coordinate of the arrow. The tuple
(xi, yi, wi, di) is a grid point.

Now we compute a bit vector H (ordered by x coordinate), which marks singleton grid
points with a one and all other grid points with a zero. We observe that the one bits in this
vector correspond exactly to the leaves in the suffix tree and hence to the entries of the suffix
array. We can use a rank data structure on top of H (which computes the number of ones in
any given prefix of H) to implement the mapSAInterval function used in Algorithm 2.

4.2 Construction
Our implementation of the quantile filtering works as follows: The suffix tree is traversed in
depth-first order. B-trees are used to represent for each node v the set of grid points that
correspond to arrows pointing out of the subtree rooted at v, ordered by decreasing weight.
We can compute this set for a node v by merging the sets of its children. If we reuse the

SEA 2017

15:8 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

Algorithm 3: Depth-first in-order traversal of the Navarro–Nekrich arrows.
1 Function OrderArrows(v)

Input: Suffix tree rooted at v.
Output: An ordered list of arrows originating in the subtree v

2 if v is not a leaf then
3 l← leftmost child of v
4 OrderArrows(l)
5 output arrows originating at v
6 if v is not a leaf then
7 for children r of v except l do
8 OrderArrows(r)

Table 1 Collection statistics: number of characters n, number of documents N , average document
length, alphabet size σ, and total size in MiB assuming one byte per character.

Collection n N n/N σ |D∗| in MiB
enwikibig 8,945,231,276 3,903,703 2,291 211 8,535
enwikisml 68,210,334 4,390 15,538 206 65
revisions 419,437,305 20,433 20,527 240 400
sources 244,587,464 29,993 8,154 232 233

B-tree of the largest child subtree and merge the others into it, we only need to perform
O(n logn) B-tree insertions in total. For each node v, we enumerate and mark the top q−1

fraction of grid points while eliminating points with y ≥ depth(v). The total runtime of
this traversal is O(n log2 n), under the assumption from above that the suffix tree height is
bounded by O(logn) with high probability.

The result of this construction step is a bit vector qfilter of size M that has a one bit
set for all the grid points that appear in at least one top quantile. We can now build the
2-d weighted range search data structure Gq over only the marked grid points. K2-treaps
form a good compromise between space usage and practical performance, even though they
do not provide meaningful worst-case guarantees [2]. We store qfilter and a compressed
version of H. Both are used in conjunction to map a suffix array interval to an interval of x
coordinates during query time.

4.3 Using Offset Encoding to Compress DOC

The DOC component, which stores the document IDs for all grid points in Gq can be further
compressed using the offset encoding technique from [11]. The resulting data structure is a
bit vector which can be used in conjunction with the suffix array CSA and bit vector B to
decode the document ID for a given grid point. This query time penalty, since suffix array
accesses are slower than most other basic operations used in our query algorithm. Section 5
contains a detailed analysis of the compromise between space usage and query time using
this approach.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:9

1%

5%

25%

100%

1 2 4 8 16 32 64 128 256
q

|G
q
|/
|G
| ENWIKIBIG

ENWIKISML
REVISIONS
SOURCES

Figure 1 The number of grid points after quantile filtering with varying parameter q, relative to
the total number of grid points in the Navarro–Nekrich implementation.

5 Experiments

To thoroughly evaluate the performance of our new top-k index and to compare it against
the state of the art, we ran experiments using different input collections. The experiments
were executed on a single machine equipped with four Intel Xeon E5-4640 processors, with
a combined number of 32 cores and 64 hyper-threads. All experiments were executed in a
single thread. The main memory is organized in four banks of 128 GiB each. All programs
were compiled using GCC 5.2.0 with optimizations turned on. We used a variety of text
collections for our experiments, including two dumps of the English Wikipedia of different
sizes (enwikisml and enwikibig), all the revisions of 100 Finnish Wikipedia articles (one
revision per document, revisions) and a concatenation of files from the Linux and GCC
source tree (sources). Table 1 gives an overview of the basic statistics for each collection.
We are comparing four different implementations: nn, the implementation of the Navarro–
Nekrich framework by Gog & Navarro [8]; nnl, which adds the offset encoding technique
from [11] to nn; q, our implementation of the quantile index; ql, our quantile index with
offset encoding.

For all implementations, the 2-d grid is represented by a K2-treap as previous work has
shown that K2-treaps use less space than wavelet trees and provide similar query times
in practice [7]. We were not able to include an implementation of [4] for time reasons.
Their index is designed to perform very well on repetitive collections like revisions, but for
enwikibig its index size and query times are comparable to the nn implementation which
is called surf in their experiments.

The source code used for our experiments can be found at https://github.com/
kit-susi/quantile-index and includes a script to download the input collections. The
basic data structures used by our code are included from in the Succinct Data Structure
Library [6].

5.1 Choosing the Index Parameters
Figure 1 shows how the number of stored grid points changes for different q. The experiment
indicates that by using q = 64 less than ten percent of the grid points need to be stored
for all the tested collections. Additionally we can observe that on these test collections the
number of grid points |Gq| is actually smaller than suggested by the bound O(n · logn

q). Even
for q ≤ logn we see substantial improvements.

SEA 2017

https://github.com/kit-susi/quantile-index
https://github.com/kit-susi/quantile-index

15:10 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

REVISIONS SOURCES

ENWIKIBIG ENWIKISML

0 8 16 24 32 0 8 16 24 32

40

200

1000

4000

40

200

1000

4000

Space [Bits per input character]

Av
er
ag
e
qu

er
y
tim

e
[µ
s]

NN
NNL
Q
QL
selected Q
selected QL

Figure 2 Different time/space tradeoffs resulting from varying quantile parameter q ∈
{8, 16, 32, 64, 128} and CSA sampling parameter s ∈ {4, 8, 16, 32, 64}. The x-axis shows the total
index size as ratio to the original collection size and the y-axis shows the average top-10 query times
for random sampled queries of length m = 5 in microseconds. We additional mark the indexes with
(s, q) = (16, 64) as they were selected for the other experiments.

Figure 2 shows the different time/space trade-offs in our implementation of the index,
resulting from varying CSA sampling parameter s ∈ {4, 8, 16, 32, 64} and quantile parameter
q ∈ {8, 16, 32, 64, 128}. For further experiments we use s = 16 and q = 64 as it presents an
appealing compromise between query time and index size. Figure 3 shows the total size of
the different index data structures with these parameters and highlights how much space is
needed by the individual components. As an example, for enwikibig, our largest collection,
the size of the quantile indexes q and ql is about 65 and 50 percent smaller than the size of
nn and nnl indexes, respectively. We note that the offset encoding technique from [11] is
not as effective for the quantile index as it is for the nn implementation because the number
of grid points is much smaller to begin with in relation to the size of the whole index.

5.2 Query Times
To get a first impression of the query performance of our index, we generated 100,000 random
queries by uniformly drawing 5-grams from our biggest input collection. We ran the query
set against our implementations, using different values of k, while measuring the individual
query times. The results are shown in Figure 4: The average query times per reported
document range from 3 to 50 microseconds across all the different implementations and
for the document collection enwikibig. As expected from the results of [11], the variants
using offset encoding (nnl and ql) have about a factor of 2 to 3 slower median query times
than their counterparts. The plot also clearly shows a large variance in query time for the
quantile indexes q and ql. This is due to the two completely different code paths taken
by Algorithm 2 depending on the size of the suffix array (SA) interval corresponding to the
query pattern.

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:11

ENWIKIBIG ENWIKISML REVISIONS SOURCES

NNNNL Q QL NNNNL Q QL NNNNL Q QL NNNNL Q QL
0

8

16

24

32

Sp
ac
e
[B
its

pe
r
in
pu

t
ch
ar
ac
te
r]

DOC
bit vectors
grid
CSA

Figure 3 Total index size and size of individual components for q = 64 and s = 16 in bits per
input character. grid includes the grid data structure and the RMQ data structure used by nn/nnl
to handle singletons postings. bit vectors include the H vector and the qfilter vector in the case of
q/ql.

ENWIKIBIG

1 2 4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

k

Q
ue

ry
tim

e
pe

r
do

cu
m
en
t
[µ
s]

NN
NNL
Q
QL

Figure 4 Timings to compute top-k results per reported document, for randomly drawn five-
character queries. Both median and mean query times are highlighted, outliers are omitted for
readability reasons.

Figure 5 captures the relation between SA interval size and query performance more
explicitly. The selection of queries was done in a similar manner to the simple experiment
described above, but this time the pattern length was chosen randomly between 3 and 10
for each query so as to vary the sizes of the SA intervals corresponding to the patterns. We
requested k = 10 results for each invocation of the query algorithm. The plot shows the query
times grouped by SA interval size. The separation between the two cases of Algorithm 2 is
clearly visible: For the q and ql implementations, we expect queries with an SA interval
of size smaller than q · k = 640 to trigger the fallback case where the suffix array range is
scanned, which has a running time that is quasi-linear in the SA interval size. Other queries
can make use of the more efficient grid search algorithm based on 2-d range queries, which is
independent of the SA interval size. This behaviour is clearly exhibited in all four different
collections. For enwikibig, the median query time for the most unfavourable SA interval
sizes is still within a factor of 20 of the grid search algorithm in the case of q. The plot
also shows that the offset encoding only affects the grid search case of the query algorithm,

SEA 2017

15:12 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

REVISIONS SOURCES

ENWIKIBIG ENWIKISML

1 10 102 103 104 105 106 1 10 102 103 104 105 106

1

10

100

1000

1

10

100

1000

SA interval size [rounded down to nearest power of 10]

Q
ue

ry
tim

e
pe

r
do

cu
m
en
t
[µ
s]

NN
NNL
Q
QL

Figure 5 Timings per reported document for k = 10, using queries with different suffix array
interval sizes. Both median and mean query times are highlighted, outliers are omitted for readability
reasons.

not the fallback case. This is because in the fallback case, the suffix array entries for all
occurrences of the pattern are known and the B bit vector can be consulted directly to
decode the document IDs.

6 Conclusion and Future Work

We have introduced a general technique to reduce the space usage of existing top-k retrieval
frameworks. This is achieved by storing only a fraction of the postings in the original index.
The sampling is constructed in such a way that the total number of occurrences for query
patterns which cannot be answered using the reduced index is bounded by a multiple of
k. Hence it is feasible in this case to scan all occurrences and compute the top k results
on the fly.

We show an exemplary application of this technique to a state-of-the-art suffix array-
based self-index and evaluate its practical performance. Our experiments show that we
obtain new time/space trade-offs for the problem at hand. In particular for real-world
inputs the compressed suffix array is now the largest component of our proposed index. For
non-repetitive texts this is to our knowledge the first index of this kind that is smaller than
the original text but can still be used to reconstruct the text fully and support top-k queries
with query times typically in the sub-millisecond range. An additional advantage of our
framework is that singletons do not need to be handled in a separate data structure and thus
it is easier to support more complex scoring functions. In the future we plan to implement

N. Baumstark, S. Gog, T. Heuer, and J. Labeit 15:13

different scoring function used in real-world applications such as Okapi BM25. Currently
the implementation of our construction algorithm is suboptimal, making it impractical to
evaluate the algorithms on even larger collections. This is partly due to inefficiencies in the
implementation and also an incomplete theoretical foundation. For example our construction
algorithm works by filtering a pre-computed set of grid points. It should be possible to
directly construct the quantile grid from the generalized suffix tree and achieve shorter
construction times. Furthermore, the on-the-fly computation of query results for large enough
k is currently implemented naively by scanning the suffix array. More elaborate techniques
such as the sampled document array could be used to speed up this path of the query
algorithm [17].

In this work, we only apply our general framework to one specific implementation. In
future work we plan to evaluate whether the framework is also useful when applied to other
existing data structures. For example, we are looking to combine a standard inverted index,
where postings are ordered by document ID, with multiple small quantile inverted indexes,
where postings are ordered by different custom scoring functions. With this construction it
may be possible to increase the generality of inverted indexes – which are widely deployed in
practice – even further.

References
1 M. Blum, R.W. Floyd, V. Pratt, R. L. Rivest, and R.E. Tarjan. Time bounds for selection.

Journal of Computer and System Sciences, pages 448–461, 1973.
2 N. Brisaboa, G. de Bernardo, R. Konow, and G. Navarro. K2-Treaps: Range Top-k Queries

in Compact Space. In Proc. SPIRE, pages 215–226, 2014.
3 J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin. Top-k ranked document search

in general text databases. In Proc. ESA, pages 194–205, 2010.
4 T. Gagie, A. Hartikainen, K. Karhu, J. Kärkkäinen, G. Navarro, S. J. Puglisi, and J. Sirén.

Document retrieval on repetitive collections. Information Retrieval, 2017. To appear.
5 T. Gagie, K. Karhu, G. Navarro, S. J. Puglisi, and J. Sirén. Document listing on repetitive

collections. In Proc. CPM, pages 107–119, 2013.
6 S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with

succinct data structures. In Proc. SEA, pages 326–337, 2014.
7 S. Gog, R. Konow, and G. Navarro. Practical compact indexes for top-k document retrieval.

J. Experimental Alg., 22(1):article 1.2, 2017.
8 S. Gog and G. Navarro. Improved single-term top-k document retrieval. In Proc. ALENEX,

pages 24–32, 2015.
9 W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string retrieval

problems. In Proc. FOCS, pages 713–722, 2009.
10 R. Konow and G. Navarro. Faster compact top-k document retrieval. In Proc. DCC, pages

5–17, 2013.
11 J. Labeit and S. Gog. Elias-fano meets single-term top-k document retrieval. In Proc.

ALENEX, 2017.
12 Y. Matias, S. Muthukrishnan, S. C. Sahinalp, and J. Ziv. Augmenting suffix trees, with

applications. In Proc. ESA, pages 67–78. Springer, 1998.
13 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. SODA,

pages 657–666, 2002.
14 G. Navarro. Spaces, trees and colors: The algorithmic landscape of document retrieval on

sequences. ACM Comp. Surv., 46(4):article 52, 2014.
15 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comp. Surv., 39(1), 2007.

Article 2.

SEA 2017

15:14 The Quantile Index – Succinct Self-Index for Top-k Document Retrieval

16 G. Navarro and Y. Nekrich. Top-k document retrieval in optimal time and linear space. In
Proc. SODA, pages 1066–1078, 2012.

17 G. Navarro and S. Thankachan. Faster top-k document retrieval in optimal space. In Proc.
SPIRE, pages 255–262, 2013.

18 K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete Alg.,
5(1):12–22, 2007.

19 W. Szpankowski. A generalized suffix tree and its (un) expected asymptotic behaviors.
SIAM Journal on Computing, 22(6):1176–1198, 1993.

20 The Apache Software Foundation. Apache Lucene. http://lucene.apache.org/.
21 D. Tsur. Top-k document retrieval in optimal space. Information Processing Letters,

113(12):440–443, 2013.

http://lucene.apache.org/

Online Construction of Wavelet Trees∗

Paulo G. S. da Fonseca1 and Israel B. F. da Silva2

1 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
paguso@cin.ufpe.br

2 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
ibfs@cin.ufpe.br

Abstract
The wavelet tree (WT) is a flexible and efficient data structure for representing character strings
in succinct space, while allowing for fast generalised rank, select and access operations. As such,
they play an important role in modern text indexing methods. However, despite their popularity,
not many algorithms have been published concerning their construction. In particular, while the
WT is capable of representing a sequence of length n over an alphabet of sizem in n lgm+o(n lgm)
bits, much more space is typically used for its construction. Here we propose an O(n lgm)-time
online method for the construction of the WT, requiring no prior knowledge about the input
alphabet. The proposed algorithm is conceptually simpler than other state-of-the-art methods,
while having comparable time performance and being more space-efficient in practice, since it
performs just one pass over the input text and uses little extra space other than for the structure
itself, as shown both theoretically and empirically.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Wavelet tree, Online construction

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.16

1 Introduction

The wavelet tree is a fundamental data structure proposed by Grossi, Gupta and Vitter [10],
whose myriad virtues have been widely recognised since its introduction [6, 18, 17]. They are
used for representing large character strings in tight space, while allowing for some specific
questions about their composition, for instance ‘how many occurrences of a particular letter
are there between positions 3- to 8-billion?’, to be answered very quickly, without having to
probe the string. It is thus a cornerstone of modern string matching techniques.

Despite having been introduced for well over a decade, not many papers have been
published that deal specifically with their construction. In this paper we present a simple and
efficient method for the online construction of wavelet trees. We contend that the algorithm
proposed herein is among the most efficient methods in practice, both in time and space,
and provide experimental evidence to support this claim.

We begin by describing the data structure, its main operations and space requirements.
Then we present our construction algorithm with a theoretical analysis of its costs. After
that we discuss previous related work, and where our contribution sits in the context. Finally,
we report on our experimental analysis and state our conclusions.

∗ This work was supported by the brazilian Conselho Nacional de Pesquisa – CNPq (Project MCTI/CN-
Pq/Universal 449842/2014-2) and the Fundação de Amparo à Ciência e Tecnologia de Pernambuco –
FACEPE (Project APQ-0587-1.03/14).

© Paulo G. S. da Fonseca and Israel B. F. da Silva;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Online Construction of Wavelet Trees

wavelet_tree
101000111000

aeleree
0010100

aeeee
01111

lr
01

wvt_t
01010

vtt
100

w_
01

{a,e,l,r}

{a,e}

{a} {e}

{l,r}

{l} {r}

{t,v,w,_}

{t,v}

{t} {v}

{w,_}

{w} {_}

Figure 1 Balanced WT of T = wavelet_tree over A = {a, e, l, r, t, v, w,_}. Only the bit vectors
are actually stored. The strings and alphabets are shown for illustration purposes only.

2 The Wavelet Tree

We consider strings T = t0 · · · tn−1 over a finite alphabet A = {a0, . . . , am−1}. For any
subset A′ ⊆ A, let proj(T,A′) be the noncontiguous, possibly empty, subsequence of T
consisting of all its positions in A′. We call this the projection of T on A′. In particular,
proj(T, [l : r]), with 0 ≤ l, r ≤ m, denotes the subsequence of T made of its characters in the
range A[l : r] ≡ {al, . . . , ar−1}. For example, if A = {a, b, c, d} and T = adbcabdcb, then
proj(T, [1 : 3]) = bcbcb. Complementary, we define the support of T as supp(T) = ∪n−1

i=0 {ti},
that is, the subset of A consisting of the characters in T . Hence we have proj(T, supp(T)) = T ,
and supp(proj(T,A′)) ⊆ A′.

I Definition 1. A wavelet tree (WT) of a nonempty string T with support A is a digital
search tree recursively defined as

W (T,A) =

⊥, if |A| = 1,

B(T,A0,A1)

W (proj(T,A0),A0) W (proj(T,A1),A1)
, otherwise,

(1)

where
A = A0 ∪ A1 is a nontrivial partition of the alphabet,
The root consists in an indicator bit array B(T,A0,A1) = b0 · · · bn−1 of length n = |T |,
such that bi = 0, if ti ∈ A0, or bi = 1, if ti ∈ A1,
The left and right subtrees, W (proj(T,A0),A0) and W (proj(T,A1),A1) correspond to
wavelet trees of the projections of T over the subalphabets A0 and A1, respectively, and
⊥ represents a null (empty) tree, which is the base case for unary alphabets.

The most common case of the definition of W (T,A) happens when, at each node, the
alphabet is split into two halves, as shown in Figure 1. In this case, the WT is said to be
balanced.

The WT data structure provides for generalised access, rank, and select queries. Given
W = W (T,A), W.access(i) returns the character ti, W.rank(c, i) returns the number of
occurrences of character c in T up to (and including) position i, and W.select(c, j) returns
the position of the jth occurrence of character c in T , so that if i = W.select(c, j), then

P.G. S. da Fonseca and I. B. F. da Silva 16:3

W.rank(c, i) = j. In order to do so efficiently both in time and space, the WT employs
specialised bit vectors supporting constant-time binary rank and select primitive operations, at
the cost of only a sublinear amount of extra bits E(r) = o(r), where r is the lenght of the raw
sequence of bits [1, 11]. Hence the balanced WT requires ≈ lgm(n+o(n)) = n lgm+o(n lgm)
bits of space for the bit vectors since, at every level of the tree, each letter of the text is
represented exactly once. On top of that, we have one pointer per node, each taking O(lgn)
bits, thus O(m lgn) bits for the tree structure. This O(m lgn) factor can actually be avoided,
as discussed in [18], and we can have a representation with just one bitvector and no pointers
in n lgm + o(n lgm) bits of space, which qualifies the WT as a succinct data structure
[15], since the uncompressed sequence takes n lgm bits. Moreover, the generalised access,
rank and select queries can be answered in O(lgm) time by following root-to-leaf paths and
performing rank and select queries on their bit arrays.

3 WT construction

The naive recursive procedure for building W (T,A) that mirrors Definition 1 requires
partitioning A, computing the indicator bit array of the root node, B(T,A0,A1), based on
each character of T belonging to either A0 or A1, and recursively building the left and right
subtrees from the projections of T over these subalphabets. In the balanced WT, at each
node subalphabets can be represented as [l : r] pairs, and the bit array and the projections can
be computed in one pass over the corresponding substring. In total, we have O(n lgm) time
complexity. Nevertheless this strategy requires creating and maintaining several intermediate
substrings (the projections) through the recursion stack, and going over multiple copies of
the same character of T .

The main motivation of our method is to completely avoid the costly operations of
explicitly partitioning the alphabet and projecting the strings, or any other expensive
substring manipulation like character counting or sorting. We want to process the input
string in one single pass and so our proposed algorithms are online, that is we scan each
character of T exactly once from left to right, and maintain no extra copies.

For the sake of presentation only, we consider two different scenarios. In the first case,
the support alphabet is known in advance. This situation is used as an introduction to the
more general case where the alphabet is unknown, and revealed only as the string is scanned.

3.1 WT construction with known alphabet
The first procedure, shown in Algorithm 1, is used to build a WT for a string T whose
support alphabet is given. The idea is very simple and consists in, first, initialising an empty
WT, called template, and then filling the bit arrays in one scan of T . For every scanned
character ti, the algorithm follows the corresponding (unique) root-to-leaf path, appending
the necessary bits to the nodes on its way.

There is just one subtlety that will prove important in what follows. We have been
accustomed to depictions of balanced WTs where the alphabet is literally cut in half, with
the first dm/2e symbols assigned to the first subalphabet, and the remaining bm/2c to the
second one. This is equivalent to assigning aj to left or right subtrees down the root based on
the binary representation of j from left to right, that is, from the most to the least significant
bit. However, this need not be the case in general, for it suffices that the partition be evenly
sized so as to keep the tree balanced, irrespective of which symbol goes where. So, instead,
we choose to follow the bits of j from right (lsb) to left (msb). This results in symbols being
assigned to the left/right subalphabets in an alternate fashion.

SEA 2017

16:4 Online Construction of Wavelet Trees

Algorithm 1 Balanced WT online construction with known alphabet
1: Algorithm WT0 (T = t0 · · · tn−1, A =
{a0, . . . , am−1})

2: root← buildTemplate([0 :m])
3: for i← 0, . . . , n− 1 do
4: cur ← root

5: j ← A.index(ti)
6: while cur 6= ⊥ do
7: if jmod 2 = 0 then
8: cur.B.append(0)
9: cur ← cur.left

10: else
11: cur.B.append(1)
12: cur ← cur.right

13: j ← j � 1 . Right shift
14: return root

1: Algorithm buildTemplate ([l : r])
2: if (r − l) = 1 then
3: return ⊥
4: root← new empty WT node
5: h← d(l + r)/2e
6: root.left← buildTemplate([0 :h])
7: root.right← buildTemplate([h :m])
8: return root

I Proposition 2. Algorithm 1 builds W (T,A) in O(n lgm) time, using αn lgm+O(1) bits
of space beyond the size of the WT and A, for some constant 0 < α ≤ 1.

Proof. The procedure buildTemplate is used to create a strictly binary tree with m terminal
null nodes (⊥), hence m− 1 actual nodes, of which bm/2c are leaves. Since the nodes are
empty, just O(m) time is needed.

For each character read, the algorithm visits dlgme nodes on the path from the root to a
leaf. At each node, a bit is appended to a growing bit vector, which can be done in constant
amortised time by using dynamic arrays [5, Sec 17.4]. Therefore we have O(n lgm) time for
filling the previously built template. Since m = |supp(T)| ≤ |T | = n, this phase dominates
the cost, and we have O(n lgm) time for the entire construction process.

As for the space, notice that only the currently scanned symbol of T is used in the main
loop, and so only that symbol needs to be kept in memory at any given time. Therefore
we would only need space for the WT itself (bit arrays, pointers, etc.), plus the alphabet,
plus a small constant amount of bits for the working variables. However, the dynamic arrays
require extra space to ensure the constant amortised time per append operation. At any
time, each level of the tree has as many used bits as the number of characters read so far, but
at most α times as many bits may be physically allocated, with typical values of α ranging
from 1.5 to 2. Hence at most αn lgm+O(1) bits of total extra space may be required. J

I Remark. (i) In this analysis, we are not explicitly accounting for the work to build the
auxiliary structures of the bit vectors, needed for constant-time rank/select. We can safely
assume, however, that this work is linear on the size of the arrays, and thus the proposition
remains valid. (ii) We also assume that the alphabet data type supports the computation of
the index (rank) of a given character in constant time, which is easily accomplished by many
dictionary data structures albeit with different space-time tradeoffs.

3.2 WT construction with unknown alphabet
We now turn to the online construction of the balanced WT of T with no prior knowledge
about its support alphabet. Contrary to Algorithm 1, the WT cannot be laid out in advance

P.G. S. da Fonseca and I. B. F. da Silva 16:5

in this case. Instead, the alphabet, and consequently the shape of the tree itself, must be
updated along with its content as the characters are scanned.

Let us consider first the update in the tree structure as the size m of the alphabet grows.
The structure of the WT reflects an hierarchic binary decomposition of the alphabet, with an
1:1 correspondence between nodes and subalphabets. In order to keep the partition balanced
as m increases, each new symbol will be successively assigned to either the left or right
subalphabet in an alternate fashion, as with the previous case.

Now, consider the update from W (i) = W (T [0 : i],A(i) = supp(T [0 : i])) to W (i+1) =
W (T [0 : i+ 1],A(i+1) = supp(T [0 : i+ 1])) upon reading ti. If ti = aj for some aj ∈ A(i),
then the update is similar to one iteration of Algorithm 1, for the symbol is already represented
inW (i). If, on the other hand, ti 6∈ A(i), then the update goes as follows. Let s = |A(i)| be the
size of the current alphabet. Starting at the root, if s is even (lsb=0), then the next symbol
as = ti should be assigned to the left subalphabet. Thus the next position of the root bit array
should be set to 0 and the left subtree should then be updated. If s is odd (lsb=1), we set
root.B[i] to 1 and proceed down to the right subtree. Appending a new bit to a bit vector does
not affect its previous positions because of the alternating partitioning pattern. By following
the same procedure at each node down the path, we may eventually reach an endpoint (a leaf
in this case) corresponding to a binary subalphabet, say {ap, aq} with p < q < s. After the
addition of the bit concerning ti = as to this endpoint, the subalphabet becomes {ap, aq, as},
at which point this node has to be further split into a left child accounting for the binary
subalphabet {ap, as}, and an ‘implicit’ (⊥) right child corresponding to {aq}. The new left
child bit array should now represent proj(T [: i+ 1], {ap, as}) with ap ≡ 0 and as ≡ 1, thus
being in the form 0k1, for the only occurrence of as corresponds to the newly added ti.
Another possibility is that the endpoint represents a ternary alphabet {ap, aq, ar}. In this
case it would have a left child but not a right child, which is where the update should proceed
to. So, a new right child has to be added to represent proj(T [: i+ 1], {aq, as}). An endpoint
cannot correspond to a subalphabet of size ≥ 3, or it would have split in previous iterations
and the update could have continued to one of its children.

The procedure outlined above is given in Algorithm 2. The WT1(T) algorithm returns a
reference to the root of the WT, as well as the support alphabet uncovered during the con-
struction. It uses two main functions to incrementally build the WT. The update(root,A, c)
function updates the bit vectors of the nodes in the appropriate root-to-leaf path of the
current WT, adding information about ti. As mentioned, this procedure is similar to one
iteration of Algorithm 1. It returns a pointer to the endpoint term where the update stopped,
plus the size sterm of the subalphabet represented by that node after the update. These
values are fed into the testAndSplit procedure, which tests whether term needs to be further
split and, if so, creates the appropriate child nodes.

I Proposition 3. Algorithm 2 builds W (T,A) in O(n lgm) time, using αn lgm+O(1) bits
of space beyond the size of the constructed WT and A, for some constant 0 < α ≤ 1.

Proof. As in Algorithm 1, the total work amounts to creating the tree structure and filling
the bit arrays. The only difference is that now these steps are interleaved rather than
performed one after the other. The work required for creating the tree structure alone is the
same in either case, since the resulting trees are isomorphic. As for the operations required
for filling the bit arrays, we notice that every bit of the WT is set exactly once by a call to a
bit array append operation, and is never modified thereafter. So, each bit is added in O(1)

SEA 2017

16:6 Online Construction of Wavelet Trees

Algorithm 2 Balanced WT online construction with unknown alphabet
1: Algorithm WT1 (T = t0 · · · tn−1)
2: A ← {}
3: root← new WT node
4: for i = 0, . . . , n− 1 do
5: term, sterm← update(root,A, ti)
6: testAndSplit(term, sterm)
7: A ← A∪ {ti}
8: return root,A

1: Algorithm testAndSplit(term, sterm)
2: if sterm ≤ 2 then
3: return
4: chd← new WT node
5: b← (sterm− 1) mod 2
6: k ← term.B.count(b)− 1
7: chd.B.append(0k)
8: chd.B.append(1)
9: if sterm = 3 then
10: term.left← chd

11: else if sterm = 4 then
12: term.right← chd

1: Algorithm update(root,A, c)
2: if c ∈ A then
3: s← A.index(c)
4: newc← 0
5: else
6: s← |A|
7: newc← 1
8: cur ← root

9: prev, sprev ← ⊥, 0
10: while cur 6= ⊥ do
11: prev ← cur

12: sprev ← s

13: if smod 2 = 0 then
14: cur.B.append(0)
15: cur ← cur.left

16: else
17: cur.B.append(1)
18: cur ← cur.right

19: s← s� 1
20: return prev, sprev + newc

amortised cost by using dynamic arrays.1 Hence we have the same O(n lgm) time for the
entire construction procedure.

The space requirements analysis is identical to that of Proposition 2. J

4 Related work

As mentioned, the standard recursive procedure for constructing WTs requires O(n lgm)
time. However the constants involved are somewhat large in practice, since it requires
manipulating strings at each node. The space requirements are also significant because of the
explicit projected copies of T at each level of the recursion, for a total O(n lg2 m) bits in the
worst case. As pointed out by some authors [19, 3], this space can be reduced to O(n lgm),
on top of the original sequence, by reusing parts of the same allocated space through the
recursion. This approach is implemented in LIBCDS [2]. The string manipulations remain
costly nonetheless.

One way to reuse the same copy of the input sequence is by sorting their symbols according
to the level of the recursion/WT. For instance, in a ‘classic’ WT, all the symbols whose
highest bit is 0/1 will be to the left/right of the root. Thus, is we perform a stable, in-place
sort of the sequence based on that bit, we will have all its symbols in the correct order
for the next level, and the projections can now be represented by [l : r] pairs. On the next
level, the sort is based on the second highest bit, and so on. Tischler [25] explores these

1 Actually, setting the initial bits of a newly created leaf (line 7 of procedure testAndSplit) may be a bit
‘cheaper’ in practice because we amortise the cost of getting to that node and, moreover, appending
multiple zeros can be implemented a bit faster.

P.G. S. da Fonseca and I. B. F. da Silva 16:7

ideas to give space-efficient constructions of WTs in BFS and DFS order, using between
constant and O(

√
n(lgm+ lgn)) bits of extra space depending on a parameter c that also

implies a lg c runtime multiplier. Claude and coauthors [3] also proposed space-efficient
construction algorithms that are however more complex. Their most efficient algorithm runs
in O(n lgn lg2 m + C(n lgm)) using O(lgm lgn) + E(n lgm)) extra bits, where C(r) and
E(r) denote the time to build and the space used by the auxiliary rank/select structures of
the bit vectors. Such time and space are explicitly accounted for because the construction
process depends on these structures. This algorithm is also destructive, meaning that it
overwrites the original input sequence.

Simon Gog maintains SDSL, a very complete and mature C++ library of succinct data
structures [9], containing the implementation of several methods described in the literature.
This library has a few implementations of WTs with support to various topologies, alphabets,
and bit vectors. The standard construction procedure consists in first reading the input to
compute individual character counts and the effective support alphabet size, then initializing
the tree structure, and finally filling in the node contents, much like in Algorithm 1.2 Our
novelty relative to this algorithm lies in the fact that our Algorithm 2 is online on the input
and does not require precomputing the alphabet, which is both more general in theory, and
can represent practical advantages, for example, in the context of streaming applications.

Some authors have recently proposed parallel algorithms for the construction of WTs.
Fuentes-Sepúlveda and collaborators [7] explore the fact that the node corresponding to a
certain character, at any given level of a classic WT, can be accessed by the highest bits of
its index in the alphabet (as explained in Section 3.1), to build multiple levels in parallel.
This O(n lgm) work is performed in O(n) depth with O(lgm) processors, but the algorithm
assumes continuous integers alphabet that need to be given as input. Shun [24] follows a
similar ideas but builds the WT level-by-level, each level requiring O(n) work in O(lgn)
depth, for a total O(lgn lgm) depth. These bounds are further improved by using stable
sort algorithms to sort the characters of the input at each level of the tree by its highest bits
so as to put them in the right order. However, this significantly increases memory demands.

Very recently, Munro and coauthors [13] presented the first algorithm to build a WT
in O(ndlgm/

√
lgne), therefore a

√
lgn-speedup over previous methods. Their technique is

based on the use of bit-parallelism to pack the information concerning group symbols of the
input sequence in words and process them together, thus achieving a time that is actually
smaller than the size of the structure. Unfortunately, no implementation is available to the
best of our knowledge [12].

5 Experimental analysis

In order to evaluate the applicability of our algorithm, we implemented a prototype in C
and tested it with data obtained from the Pizza&Chili corpus website [20], as summarised in
Table 1. For each data set, we created input files of sizes 2, 4, 8, 16, 32, 64, and 128 MB,
by cropping the original files. These input sizes were shown to be enough for establishing a
pattern in our experiments, as seen below. In addition, because the theoretical analysis of
the previous section assumes the word-RAM model, these sizes also allow for a more clear
comparison, unaffected by virtual secondary memory usage factors. We have then a total
of 5 × 7 = 35 input sequences of varying length (n) and alphabet size (m), the two main
parameters that affect the construction time and memory. We wanted to assess how our

2 We have not found a description or analysis of this algorithm in the literature.

SEA 2017

16:8 Online Construction of Wavelet Trees

Table 1 Data sets used in the experiments. Original sources are indicated in [20].

Data set Id Brief description Total size Alphabet size (m) H0 Entropy
dna Gene DNA sequence 386 MB 16 5.465

proteins Aminoacid sequence 1.2 GB 27 4.206
xml XML bibliography data 283 MB 97 5.262

sources C/Java source files 202 MB 230 5.537
english English language texts 2.1 GB 239 4.525

implementation behaved in practice, relative to the theoretical predictions of Propositions 2
and 3.

Our implementation, herein identified as fs, consists in a simple pointer-based WT with
O(lgm)-time access, rank, and select operations, using a straightforward implementation of
the uncompressed combined sampling rank and select bit vector [21]. We used no external
libraries other than the C standard API. It is important to note that, although the alphabet
is actually known for each data set in Table 1, this information is not fed into our algorithm.
Instead, only the path to the text file is provided, which is read in one single pass as described
in Section 3.2. In this case, the use of the C standard I/O (stdio) file manipulation functions
[14] effectively results in a buffered input stream behaviour.

For comparison sake, we benchmarked our prototype together with other publicly available
WT code. We wanted to assess the algorithms in a realistic situation where only the path
to the file with the input is given. However, each implementation has different interfaces
and so, for some of them, we wrote minimal wrapper code to read the input and pass it to
the WT constructor using the appropriate internal data structures. We account for those
operations as part of the algorithms to have a more uniform comparison. Here is a summary.

libcds. The LIBCDS [2] is a compressed data structures library whose WT code has been
used in other comparative studies, including [3, 7]. The input has to be loaded into
internal structures.

sdslil, sdslrrr. We used two variants of the WT construction example provided with the SDSL
distribution [9]. The first variant, herein identified as sdslrrr, is identical to the example
and uses RRR bit arrays[23], which is a compressed structure. Since our implementation
does not use compression, we have also added a version based on uncompressed bit array,
herein identified as sdslil. No input preprocessing was necessary.

pwt, dd. We used the code made available by the authors of [7]. The code requires that the
text be encoded in a contiguous integer alphabet whose size has to be informed, and so
we had to made the appropriate conversions.

swt. We used the code of the serialWT version made available by Shun [24], which gave the
best results among the provided variants. No input conversion was needed.

When provided, the original scripts were used to build the executables. The only eventual
modifications were made to ensure that each implementation was compiled with the same
-O3 optimisation flag. The actual code can be obtained from the address indicated at the
end of this paper. All experiments reported here were performed on a portable computer
equipped with a 2.0GHz Intel® CoreTM i7-3537U CPU, 8 GB of RAM, and running 64-bit
(Ubuntu 16.04 LTS) Linux ver. 4.4.0, with GCC ver. 5.4.0.

P.G. S. da Fonseca and I. B. F. da Silva 16:9

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'dna'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

24 8 16 32 64 128

M
em

or
y

us
ag

e
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'dna'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'proteins'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

24 8 16 32 64 128

M
em

or
y

us
ag

e
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'proteins'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'xml'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

24 8 16 32 64 128

M
em

or
y

us
ag

e
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'xml'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

Figure 2 Experimental results (Part 1 – continued on next page). On the left, the average
execution times, on the right, the corresponding memory usage information. Alphabet size (m)
grows from top to bottom row.

5.1 Time experiments
We used the input files to build WT with all algorithms and measured the total execution
time using the built-in Bash shell time command, including the user time, and the time
spent by the system on behalf of the process. The tests were repeated 5 times for each input
file and the average results are graphically summarised in the left column of Figure 2.

As it can be seen, a clear linear dependence on the length of the text is shown for all
algorithms and for any given alphabet size. The logarithmic dependence on m is also fairly
visible from the plots, by noticing, for instance, that de average times for the dna data

SEA 2017

16:10 Online Construction of Wavelet Trees

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'sources'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 100

 200

 300

 400

 500

 600

24 8 16 32 64 128

M
em

or
y

us
ag

e
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'sources'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 2

 4

 6

 8

 10

24 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(in

 s
ec

on
ds

)

Input size (in MBytes)

Execution times for data set 'english'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

 0

 100

 200

 300

 400

 500

 600

24 8 16 32 64 128

M
em

or
y

us
ag

e
(in

 M
By

te
s)

Input size (in MBytes)

Memory usage for data set 'english'

dd
fs

libcds
pwt

sdslil
sdslrrr

swt

Figure 2 Experimental results (Part 2 – continued from previous page).

(lgm = 4) are roughly half of those for the english data set (lgm ≈ 8), with the notable
exception of libcds. The results confirm the expected O(n lgm)-time behaviour for (almost)
all algorithms, although naturally not always with the same constant factors. Globally, all
algorithms performed similarly (except libcds). sdslil was actually faster than the others,
followed closely by our implementation.

In order to confirm the scalability of the method, we performed one last round of
experiments with the largest input of Table 1, that is the 2.1GB english file. This time, we
did not include the libcds method because it takes unreasonable time. As expected, the trend
was maintained and sdslil was the fastest at 1m23s, followed by fs 1m31s. Other times were
significantly higher: pwt 2m01s, sdslrrr 2m07s, dd 2m12s, and swt 2m39s.

5.2 Memory experiments
We also measured the memory usage of all algorithms on each input file using the massif tool
of the valgrind package [22]. Since all algorithms are deterministic, the memory consumption
does not vary between executions with the same input. The results are summarised in the
right column of Figure 2. Shown are the peak total heap usage in MB during each execution.

As with time, there is a clear linear dependence on the text length for all algorithms, for
any given alphabet size. The logarithmic dependence on the alphabet size is still clearly
visible for some, in particular fs, but not all implementations. It is important to observe
that the results shown in Figure 2 comprise the space taken by the WT itself, and the extra
working space used by the construction algorithm. The fact that some implementations, like

P.G. S. da Fonseca and I. B. F. da Silva 16:11

Table 2 Average memory overheads (standard deviation in parenthesis).

Data set Algorithm
dd fs libcds pwt

dna 2.76 (0.25) 0.34 (0.04) 6.27 (0.02) 1.90 (0.13)
proteins 2.84 (0.00) 0.33 (0.04) 5.12 (0.02) 1.79 (0.00)

xml 2.39 (0.00) 0.37 (0.03) 3.41 (0.01) 1.33 (0.00)
sources 1.93 (0.12) 0.24 (0.11) 3.09 (0.01) 1.00 (0.06)
english 1.98 (0.13) 0.29 (0.07) 3.06 (0.01) 1.02 (0.07)

sdslil sdslrrr swt
dna 0.99 (0.32) 0.72 (0.28) 5.88 (0.11)

proteins 1.39 (0.30) 1.28 (0.30) 5.12 (0.02)
xml 1.33 (0.22) 1.15 (0.22) 3.71 (0.02)

sources 1.10 (0.16) 0.85 (0.16) 3.00 (0.05)
english 1.11 (0.14) 0.80 (0.15) 3.01 (0.05)

libcds and swt, use much more space than the others, while representing the same information,
and, moreover, that this working memory varies very little with the alphabet size, suggest
that the total space is dominated by structures used by the construction algorithm which
depend essentially on n.

We also estimated the relative space overhead, defined as the ratio (M − S)/S, where
S = m lgn bits is a lower bound of the space taken by the uncompressed WT, and M is
the total memory measured in the experiments. The average overheads per algorithm and
per data set are shown in Table 2. The numbers confirm that the extra memory required
by fs was comfortably under the predicted upper bound of 50% due to its use of a α = 1.5
growth factor for the dynamic bit arrays. In all tests, our implementation outperformed the
others in that respect, seconded only by sdslrrr, which uses compression, with 2–3 times more
overhead.

Finally, we also performed one last test to gauge memory consumption using the 2.1GB
english file. Our method performed better than all the others by similar margins. The
fs implementation used 2.80GB, seconded by sdslrrr, which used 3.57GB, followed by pwt
4.22GB, sdslil 4.34GB, dd 6.27GB, and swt 8.23GB.

6 Discussion

We have presented a method for the online construction of the balanced wavelet tree of
a source text T requiring O(n lgm) time and very little working memory. No previous
information about the alphabet is assumed. We argue that our algorithm is conceptually
simpler than most other methods but, despite its simplicity, it compares quite well in practice
against other implementations, as shown by a series of experiments on real data, offering an
appealing time vs. space compromise, not to mention that the online characteristic makes it
more amenable to certain applications.

We regret not having an implementation of [13] to compare, but we note that, even
for inputs of one petabyte (250 bytes), the theoretical speedup would be of just about 7×.
This margin can be easily eroded in practice by a more complex code. We equally regret
not having found the space-efficient implementation PERMUTE [3] although the asymptotic
costs and the reported comparisons of this algorithm against LIBCDS suggest that our
implementation could still be a more favourable compromise.

SEA 2017

16:12 Online Construction of Wavelet Trees

Our current implementation is pointer-based, requiring O(m lgn) bits of space for the tree
topology alone, which can be a drawback for applications with large alphabets. To mitigate
this problem, we notice that Algorithm 2 builds the WT one level at a time, and so we can
represent its structure implicitly, at any time, by using an array P [0 : h] of h = 2dlg se − 1
positions, where s stands for the number of characters currently represented. As in the binary
heap [5, Sec 6.1], we assign the root to position 0 and, from there on, the left and right
children of the node at position i are associated to positions 2i+ 1 and 2i+ 2, respectively.
We let P [i] store the (pointer to the) bit vector of the node corresponding to position i. In
this case, P , and hence the WT, is actually a dynamic array of bit vectors which is doubled
every time a node is first added to a new level. This way we still have constant amortised
time per node creation and we no longer need the node pointers. However we may yet have
up to s− 2 unused positions of P , corresponding to the incomplete lowest level of the WT.
So, the overall space is about the same in the worst case as with node pointers, but it may
be more space-efficient in practice since we expect the lowest level to be fairly populated,
and the unused positions at the end of P can be easily trimmed off after the construction.

Notice also that, in the test data sets of Table 1, the alphabet size was always under 256,
so that it could be efficiently represented as a simple byte array, whereas in applications with
large alphabets, the representation of the alphabet itself can be an issue. However, this is
arguably a separate problem not particular to our construction method. In fact Algorithm 2
is reasonably oblivious to the actual data structure used, other than by supposing that it is a
form of dictionary that supports insertion and membership queries in constant time. Notice
that the space required by the alphabet was consciously excluded from the space complexity
of Proposition 3.

Another limitation of our method is that it imposes an order on the alphabet symbols
by somehow sorting them according to their order of appearance on the represented string.
By contrast, the traditional balanced WT construction recursively partitions the alphabet
in halves, respecting a certain ‘natural’ order, e.g. the lexicographic order for character
alphabets, or the ascending order for integer alphabets. While our approach is coherent with
the interpretation that the alphabet is ‘unknown’ (and hence so is its natural order), and
this does not present a problem for the rank, select, or access operations, it may void the
use of the WT on applications that assume a specific order for the alphabet, like in range
quantile queries [8].

The first algorithm presented in this paper can be adapted to other WT topologies like
the Huffman WT [18]. If we know the alphabet and relative character frequencies, then
we can build the template tree following the greedy O(m lgm) Huffman tree construction
algorithm [5, Sec 16.3] and then fill its contents just like in Algorithm 1. Even if the alphabet
is unknown, we can still first build the template with one pass over T and then fill it in a
second pass. It remains to be shown whether the single-pass online method could be adapted
to the Huffman WT within the same time bounds.

Finally, we remark that the online construction procedure shown in Algorithm 2 suggests
the static case where the input string/stream is read to its end to fill the raw bit contents of
the nodes, before the WT is ever used. These raw bit vectors are then usually processed
in linear time to produce a sub-linear amount of supporting information that allow for
constant-time binary rank and select queries. However, we notice that the construction
method is independent of the actual bit vector implementation. All it supposes is that
the bit vectors support constant (amortised) time append operations so that Proposition 3
holds. In particular, if dynamic rank/select bit vectors are used [16, 4] then this construction
method yields a partially dynamic WT implementation that allows for rank, select, and
access operations to be performed at any time on a prefix of the input sequence.

P.G. S. da Fonseca and I. B. F. da Silva 16:13

7 Availability

The source code, as well as the experimental data and scripts used in this paper can be
obtained from http://www.cin.ufpe.br/~paguso/sea2017.

Acknowledgments. We thank the anonymous reviewers for their thoughtful comments.

References
1 David Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
2 Francisco Claude. LIBCDS: A compressed data structures library

(https://github.com/fclaude/libcds2). URL: https://github.com/fclaude/libcds2.
3 Francisco Claude, Patrick K. Nicholson, and Diego Seco. Space Efficient Wavelet Tree

Construction. In Proceedings of the 18th Symposium on String Processing and Information
Retrieval - SPIRE 2011, pages 185–196, Pisa, 2011. doi:10.1007/978-3-642-24583-1_
19.

4 Joshimar Cordova and Gonzalo Navarro. Practical Dynamic Entropy-Compressed
Bitvectors with Applications. In Proceedings of the 15th International Symposium on Exper-
imental Algorithms – SEA 2016, pages 105–117, 2016. doi:10.1007/978-3-319-38851-9_
8.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, and Clifford Stein. Introduction
To Algorithms. MIT Press, 1990.

6 Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues of Wavelet
Trees. Information and Computation, 207(8):849–866, 2009. doi:10.1016/j.ic.2008.12.
010.

7 José Fuentes-Sepúlveda, Erick Elejalde, Leo Ferres, and Diego Seco. Efficient Wavelet Tree
Construction and Querying for Multicore Architectures. In Proceedings of the 13th Inter-
national Symposium on Experimental Algorithms – SEA 2014, pages 150–161, Copenhagen,
2014. doi:10.1007/978-3-319-07959-2_13.

8 Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range Quantile Queries: Another
Virtue of Wavelet Trees. In Proceedings of the 16th International Symposium on String
Processing and Information Retrieval – SPIRE 2009, pages 1–6, Saariselkä, 2009. arXiv:
arXiv:0903.4726v6, doi:10.1007/978-3-642-03784-9_1.

9 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From Theory to Practice:
Plug and Play with Succinct Data Structures. In Proceedings of the 13th International
Symposium on Experimental Algorithms – SEA 2014, pages 326–337, Copenhagen, 2014.
doi:10.1007/978-3-319-07959-2_28.

10 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-Order Entropy-Compressed
Text Indexes. In Proceedings of the 14th annual ACM-SIAM Symposium On Discrete
Algorithms – SODA 2003, pages 841–850, Philadelphia, 2003.

11 J. Ian Munro. Tables. In Proceedings of the International Conference on Foundations
of Software Technology and Theoretical Computer Science, pages 37–42, Hyderabad, 1996.
doi:10.1007/3-540-62034-6_35.

12 J. Ian Munro. Personal communication, 2017.
13 J. Ian Munro, Yakov Nekrich, and Jeffrey S. Vitter. Fast construction of wavelet trees.

Theoretical Computer Science, 638:91–97, 2016. doi:10.1016/j.tcs.2015.11.011.
14 ISO/IEC. Information technology – Programming languages – C. ISO/IEC 9899:2011 Std,

2011.
15 Guy Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon University,

1989.

SEA 2017

http://www.cin.ufpe.br/~paguso/sea2017
https://github.com/fclaude/libcds2
http://dx.doi.org/10.1007/978-3-642-24583-1_19
http://dx.doi.org/10.1007/978-3-642-24583-1_19
http://dx.doi.org/10.1007/978-3-319-38851-9_8
http://dx.doi.org/10.1007/978-3-319-38851-9_8
http://dx.doi.org/10.1016/j.ic.2008.12.010
http://dx.doi.org/10.1016/j.ic.2008.12.010
http://dx.doi.org/10.1007/978-3-319-07959-2_13
http://arxiv.org/abs/arXiv:0903.4726v6
http://arxiv.org/abs/arXiv:0903.4726v6
http://dx.doi.org/10.1007/978-3-642-03784-9_1
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/3-540-62034-6_35
http://dx.doi.org/10.1016/j.tcs.2015.11.011

16:14 Online Construction of Wavelet Trees

16 Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-
text indexes. ACM Transactions on Algorithms, 4(3):1–38, 2008. doi:10.1145/1367064.
1367072.

17 Christos Makris. Wavelet trees: A survey. Computer Science and Information Systems,
9(2):585–625, 2012. doi:10.2298/CSIS110606004M.

18 Gonzalo Navarro. Wavelet Trees for All. In Proceedings of the 23rd Annual conference on
Combinatorial Pattern Matching – CPM 2012, pages 2–26, Helsinki, 2012. doi:10.1007/
978-3-642-31265-6_2.

19 Gonzalo Navarro. Compact data structures: a pratical approach. Cambridge Univ Press,
2016.

20 Gonzalo Navarro and Paolo Ferragina. Pizza&Chili Corpus Website
(http://pizzachili.dcc.uchile.cl/). URL: http://pizzachili.dcc.uchile.cl/.

21 Gonzalo Navarro and Eliana Providel. Fast, Small, Simple Rank/Select on Bitmaps. In
Proceedings of the 11th international Symposium on Experimental Algorithms – SEA 2012,
pages 295–306, Bordeaux, 2012. doi:10.1007/978-3-642-30850-5_26.

22 Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation – PLDI 2007, pages 89–100, New York,
2007. doi:10.1145/1250734.1250746.

23 Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct Indexable Dictionaries
with Applications to Encoding k-ary Trees, Prefix Sums and Multisets. In Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms – SODA 2002, pages
233–242, San Francisco, 2002. arXiv:arXiv:0705.0552v1.

24 Julian Shun. Parallel Wavelet Tree Construction. In 2015 Data Compression Conference,
pages 63–72. IEEE, apr 2015. doi:10.1109/DCC.2015.7.

25 German Tischler. On wavelet tree construction. In Proceedings of the 22nd annual confer-
ence on Combinatorial pattern matching – CPM 2011, pages 208–218, Palermo, 2011.

http://dx.doi.org/10.1145/1367064.1367072
http://dx.doi.org/10.1145/1367064.1367072
http://dx.doi.org/10.2298/CSIS110606004M
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://dx.doi.org/10.1007/978-3-642-31265-6_2
http://pizzachili.dcc.uchile.cl/
http://dx.doi.org/10.1007/978-3-642-30850-5_26
http://dx.doi.org/10.1145/1250734.1250746
http://arxiv.org/abs/arXiv:0705.0552v1
http://dx.doi.org/10.1109/DCC.2015.7

Engineering External Memory LCP Array
Construction: Parallel, In-Place and Large
Alphabet
Juha Kärkkäinen1 and Dominik Kempa2

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
juha.karkkainen@cs.helsinki.fi

2 Helsinki Institute for Information Technology HIIT, Helsinki, Finland; and
Department of Computer Science, University of Helsinki, Helsinki, Finland
dominik.kempa@cs.helsinki.fi

Abstract
The suffix array augmented with the LCP array is perhaps the most important data structure in
modern string processing. There has been a lot of recent research activity on constructing these
arrays in external memory. In this paper, we engineer the two fastest LCP array construction
algorithms (ESA 2016) and improve them in three ways. First, we speed up the algorithms by
up to a factor of two through parallelism. Just 8 threads is sufficient for making the algorithms
essentially I/O bound. Second, we reduce the disk space usage of the algorithms making them
in-place: The input (text and suffix array) is treated as read-only and the working disk space
never exceeds the size of the final output (the LCP array). Third, we add support for large
alphabets. All previous implementations assume the byte alphabet.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases LCP array, suffix array, external memory algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.17

1 Introduction

The suffix array [12, 3], a lexicographically sorted list of the suffixes of a text, is one of the
most important data structures in modern string processing. It is frequently augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest common
prefixes between lexicographically adjacent suffixes. Together they are the basis of powerful
text indexes such as enhanced suffix arrays [1] and many compressed full-text indexes [13].
Modern textbooks spend dozens of pages in describing their applications, see e.g. [14, 11].

The construction of the two arrays is a bottleneck in many applications. There has been a
lot of recent research on external memory construction of these data structures. Here we are
interested in the construction of the LCP array given the suffix array and the text. The two
fastest external memory algorithms for this task are currently EM-SΦ and EM-SI, recently
introduced in [4]. In this paper, we improve EM-SΦ and EM-SI in several ways.

First, we modify both algorithms to use multiple threads during their execution. Parallel-
ization does not reduce or speed up I/O as such, but it can speed up those stages that are
dominated by computation rather than I/O. Cache misses in particular can be expensive
enough to dominate I/O. Our experimental results show that EM-SI benefits only a little
from parallelization, but the speed of EM-SΦ improves by as much as a factor of two for

© Juha Kärkkäinen and Dominik Kempa;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Engineering External Memory LCP Array Construction

some texts. Eight threads is sufficient to achieve an essentially maximum speed up as the
computation becomes I/O bound.

Second, we reduce the disk space usage of both algorithms. Disk space usage can be more
crucial than speed, because a lack of sufficient free disk space can prevent a computation
entirely. We make both algorithms in-place in the sense that the disk space usage never
exceeds what is needed for the input (the text, the suffix array, and for EM-SI, the Burrows–
Wheeler transform (BWT)) and the output (the LCP array). Thus any machine that has
sufficient disk space for the inputs and the outputs can run these algorithms. The input is
treated as read-only, i.e., it is never deleted or written over even temporarily. The working
disk space, i.e., disk space used in addition to the inputs, is reduced by more than a factor
of two in some cases. The fully in-place computation slows down the algorithms but never
more than 36% and often much less.

Third, we modify both algorithms to handle large alphabets. All previous implementations
work only for the byte alphabet. While it is possible to split large characters into multiple
bytes, construct suffix and LCP arrays for the resulting text over the byte alphabet, and
then post-process to construct the desired arrays, this requires much more time and disk
space than using algorithms that can handle large alphabets natively. We demonstrate this
for EM-SΦ and EM-SI in our experiments.

Related work. Suffix array construction in external memory has a long history. The most
recent addition is fSAIS [8], which is also the first implementation able to handle large
alphabets natively. LCP array construction in external memory has been studied much
less. It was first achieved by modifying suffix array construction to produce the LCP array
simultaneously [2]. Independent construction of the LCP array given the suffix array as
input is preferable and was first achieved by LCPScan [5]. The only further practical
improvements are EM-SΦ and EM-SI. A very recent theoretical break-through is the first
LCP array construction algorithm [6] with I/O complexity O(sort(n)) for a text of length n,
where sort(n) is the complexity of sorting n integers, but it is not competitive in practice.
Another recent result is an algorithm for computing the succinct representation of the PLCP
(permuted LCP) array in external memory [16].

2 Basic Data Structures

Throughout we consider a string X = X[0..n) = X[0]X[1] . . .X[n − 1] of |X| = n symbols
drawn from an alphabet of size σ. Here and elsewhere we use [i..j) as a shorthand for
[i..j − 1]. For i ∈ [0..n], we write X[i..n) to denote the suffix of X of length n − i, that is
X[i..n) = X[i]X[i+ 1] . . .X[n− 1]. We will often refer to suffix X[i..n) simply as “suffix i”.

The suffix array [12, 3] of X is an array SA = SA[0..n] which contains a permutation of
the integers [0..n] such that X[SA[0]..n) < X[SA[1]..n) < · · · < X[SA[n]..n). In other words,
SA[j] = i iff X[i..n) is the (j + 1)th suffix of X in ascending lexicographical order. Another
representation of the permutation is the Φ array [9] Φ[0..n) defined by Φ[SA[j]] = SA[j − 1]
for j ∈ [1..n]. In other words, the suffix Φ[i] is the immediate lexicographical predecessor
of the suffix i, and thus SA[n− k] = Φk[SA[n]] for k ∈ [0..n]. An example illustrating the
arrays is given in Table 1.

Let lcp(i, j) denote the length of the longest-common-prefix (LCP) of suffix i and suffix
j. For instance, in the example of Table 1, lcp(0, 6) = 3 = |bab| and lcp(7, 4) = 5 =
|abbab|. The longest-common-prefix array [12, 10], LCP[1..n], is defined such that LCP[i] =
lcp(SA[i],SA[i− 1]) for i ∈ [1..n]. The permuted LCP array [9] PLCP[0..n) is the LCP array

J. Kärkkäinen and D. Kempa 17:3

Table 1 Examples of the arrays used by the algorithms for the text X = babaabbabbab.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
X[i] b a b a a b b a b b a b -

SA[i] 12 3 10 1 7 4 11 2 9 0 6 8 5
BWT[i] b b b b b a a a b $ b a a

Φ[i] 9 10 11 12 7 8 0 1 6 2 3 4 -
LCP[i] - 0 1 2 2 5 0 1 2 3 3 1 4

PLCP[i] 3 2 1 0 5 4 3 2 1 2 1 0 -
i + PLCP[i] 3 3 3 3 9 9 9 9 9 11 11 11 -

2i + PLCP[i] 3 4 5 6 13 14 15 16 17 20 21 22 -
PLCPlo

4 (i) 3 2 1 0 5 4 3 2 1 0 0 0 -
PLCPlo

4 (i) 3 8 7 6 5 4 3 2 1 2 1 0 -

permuted from the lexicographical order into the text order, i.e., PLCP[SA[j]] = LCP[j] for
j ∈ [1..n]. Then PLCP[i] = lcp(i,Φ[i]) for all i ∈ [0..n). Table 1 shows example LCP and
PLCP arrays.

The row i+ PLCP[i] in Table 1 illustrates (the first part of) the following property of
the PLCP array, which is the basis of all efficient algorithms for LCP array construction.

I Lemma 1 ([5]). Let i, j ∈ [0..n). If i ≤ j, then i+PLCP[i] ≤ j+PLCP[j]. Symmetrically,
if Φ[i] ≤ Φ[j], then Φ[i] + PLCP[i] ≤ Φ[j] + PLCP[j].

The succinct PLCP array [15] PLCPsucc[0..2n) represents the PLCP array using 2n bits.
Specifically, PLCPsucc[j] = 1 if j = 2i+ PLCP[i] for some i ∈ [0..n), and PLCPsucc[j] = 0
otherwise. Notice that the value 2i+ PLCP[i] is unique for each i by Lemma 1 as illustrated
in Table 1.

For q ≥ 1, the sparse PLCP array PLCPq[0..dn/qe) is defined by PLCPq[i] = PLCP[iq],
i.e., it contains every qth entry of PLCP. We also define Φq[0..dn/qe) by Φq[i] = Φ[iq] so that
PLCPq[i] = lcp(qi,Φq[i]). The sparse PLCP array can be used as a compact representation
of the full PLCP array because the other entries can be bounded using the following lemma.

I Lemma 2 ([9]). For any i ∈ [0..n), let

PLCPlo
q (i) = max(0,PLCPq[bi/qc]− (i− qbi/qc))

PLCPhi
q (i) =

{
PLCPq[di/qe] + (qdi/qe − i) if qdi/qe < n

n− i− 1 otherwise

Then PLCPlo
q (i) ≤ PLCP[i] ≤ PLCPhi

q (i).

Although the difference PLCPhi
q (i)−PLCPlo

q (i) has no non-trivial limit for an individual i,
the sum of the differences is bounded by the following lemma.

I Lemma 3 ([9]).
∑

i∈[0..n) PLCPhi
q (i)− PLCPlo

q (i) ≤ (q − 1)n+ q2.

The Burrows–Wheeler transform BWT[0..n] of X is defined by BWT[i] = X[SA[i]− 1] if
SA[i] > 0 and otherwise BWT[i] = $, where $ is a special symbol that does not appear in the
text. We say that an lcp value LCP[i] = PLCP[SA[i]] is reducible if BWT[i] = BWT[i− 1]
and irreducible otherwise. The significance of reducibility is summarized in the following two
lemmas.

I Lemma 4 ([9]). If PLCP[i] is reducible, then PLCP[i] = PLCP[i − 1] − 1 and Φ[i] =
Φ[i− 1] + 1.

I Lemma 5 ([9, 7]). The sum of all irreducible lcp values is ≤ n logn.

SEA 2017

17:4 Engineering External Memory LCP Array Construction

3 Basic Algorithms

In this section, we describe the basic algorithms EM-SΦ and EM-SI introduced in [4]. Some
details are omitted and others only sketched; we refer to [4] for full details.

3.1 EM-SΦ Algorithm

The first algorithm EM-SΦ gets the text X and the suffix array SA as input, and performs
the following steps:
1. Compute PLCPq for q chosen so that PLCPq fits in RAM. During this step, we consider

the text divided into segments that fit in RAM.
a. Compute Φq by scanning SA.
b. Generate all pairs (i,Φ[i]) such that i is a multiple of q using Φq. Write each pair

(i,Φ[i]) to disk into the file associated with the text segment that contains Φ[i]. Notice
that the pairs in each file are naturally sorted by i.

c. For each text segment, load the segment into RAM. Read the pairs (i,Φ[i]) from the
associated file while simultaneously scanning the full text so that the position X[i] is
reached when the pair (i,Φ[i]) is processed. For each pair, compute lcp(i,Φ[i]) and
write it to disk into a separate file for each segment. When computing ` = lcp(i,Φ[i])
we use the fact that ` ≥ lcp(i′,Φ[i′])− (i− i′) by Lemma 1, where (i′,Φ[i′]) is the pair
processed just previously. This ensures that the text scan never needs to backtrack.

d. Construct PLCPq in RAM by reading each value PLCPq[i] from the file associated
with the text segment containing Φq[i].

2. Compute LCP using PLCPq based on Lemma 2. During this step, we consider the text
divided into half-segments so that two half-segments fit in RAM. Every possible pair of
half-segments is loaded into RAM once.
a. Scan SA to generate all (i,Φ[i]) pairs. For each pair use PLCPq (stored in RAM)

to compute the lower bound ` = PLCPlo
q (i) (and the upper bound PLCPhi

q (i)) for
PLCP[i] using Lemma 2. Write the pair (i + `,Φ[i] + `) to disk, where there is a
separate file for each pair of half-segments. If PLCPlo

q (i) = PLCPhi
q (i), no pair is

written since we already know the exact lcp value.
b. For each pair of half-segments, load them to RAM and compute lcp(j, k) for each pair

(j, k) obtained from the associated file. The resulting value lcp(j, k) is written to disk
to a separate file for each pair of half-segments.

c. Scan SA to generate all (i,Φ[i]) pairs. For each pair, compute ` = PLCPlo
q (i) (and

PLCPhi
q (i)) as in step 2(a) and read the value `′ = lcp(i + `,Φ[i] + `) from the

appropriate file. Then PLCP[i] = `+ `′ is the next value in the LCP array.

In Step 1(c), the computation of the lcp value may overflow the segment, i.e., Φ[i] is in
the segment but Φ[i] + ` is not. To deal with an overflow, we have in RAM an overflow
buffer (of size of one disk block) containing the beginning of the next segment. An overflow
beyond even the overflow buffer is handled by reading from disk. Similar overflows can occur
in Step 2(b). There too we use overflow buffers but comparisons beyond the overflow buffers
are simply aborted. In cases, where such an aborted comparison is possible (based on the
upper bound PLCPhi

q (i)), extra pairs are generated in Step 2(a) to continue the potentially
aborted comparison when the appropriate pair of half-segments is in RAM. We refer to [4]
for further details and analysis of overflow handling.

J. Kärkkäinen and D. Kempa 17:5

3.2 EM-SI Algorithm
The second algorithm EM-SI gets X, SA and BWT as input, and has the following steps:
1. Compute the succinct PLCP array PLCPsucc. For this step, we consider PLCPsucc

divided into segments that fit in RAM and the text divided into half-segments so that
two half-segments fit in RAM.
a. Scan SA and BWT to form a pair (i,Φ[i]) for each i such that PLCP[i] is irreducible.

The pairs are written to disk where there is a separate file for each pair of text
half-segments.

b. Compute the bitvector R[0..n], where R[i] = 1 iff PLCP[i] is irreducible. If R does not
fit in RAM, it is computed one RAM-sized segment at a time. The irreducible positions
are determined either by scanning SA and BWT or by scanning the irreducible (i,Φ[i])
pairs produced in Step 1(a), whichever takes less I/O.

c. For each pair of text half-segments, load them to RAM and compute PLCP[i] =
lcp(i,Φ[i]) for each pair (i,Φ[i]) obtained from the associated file. For each computed
PLCP[i], we write the value 2i+ PLCP[i] to disk into a separate file for each PLCPsucc
segment.

d. For each PLCPsucc segment, initialize it with zeros in RAM, read the values from the
associated file and set the corresponding bits to 1. Then read the corresponding part
of R to determine the reducible lcp values using Lemma 4 and set the corresponding
bits of PLCPsucc to 1. See [4] for details.

2. Compute LCP from PLCPsucc. For this step, we consider the full PLCP array (not
PLCPsucc) divided into segments that fit into RAM.
a. Scan SA and write each value SA[i] to disk into the file associated with the PLCP

segment that contains the position SA[i].
b. For each PLCP segment, create it in RAM by scanning the relevant part of PLCPsucc.

Then read the SA[i] values from the associated file, compute LCP[i] = PLCP[SA[i]],
and write it to disk into a separate file for each segment.

c. Scan SA, and for each i ∈ [0..n), read LCP[i] from the file associated with the PLCP
segment that contains SA[i] and write it to the final LCP file.

Overflows in Step 1(c) are handled as in Step 1(c) of EM-SΦ: using overflow buffers, and
when that is not enough, reading directly from disk.

4 Parallelization

We have implemented both algorithms to use multiple threads during most stages of the
computation. In both algorithms, several stages process a sequence of items so that the
computation for one item is independent of other items and takes approximately the same
time for all items. Such computation is trivial to parallelize: load a bufferful of items at a time
to RAM and split the buffer evenly between threads. Below we describe the parallelization
only for more complicated stages.

4.1 Parallelizing EM-SΦ
The first more complicated stage in EM-SΦ is Step 1(c). Here the algorithm processes a
sequence of (i,Φ[i]) pairs for each text segment, and the computation for each pair depends
on the preceding pair. In the parallel version, the full sequence of pairs on disk is evenly
split among the threads, and each thread processes its part completely independently from
other threads.

SEA 2017

17:6 Engineering External Memory LCP Array Construction

During the stage, each thread has to scan a part of the text. Typically, each thread scans
a different part of the text with only a negligible overlap between the parts. However, for
highly repetitive texts with extremely large lcp values the overlaps can be large which could
increase the amount of I/O significantly. To avoid this, we compute a super-sparse PLCP
array PLCPp for p � q, which can be done quickly using essentially the internal memory
Φ-algorithm [9]. We then use PLCPp to compute lower bounds according to Lemma 2, which
limits the total overlaps to less than n. The sizes of the text parts for different threads may
vary but this is no problem as text scanning is strongly I/O-bound. The important thing is
to minimize the times when no thread is doing I/O.

The second nontrivial parallelization in EM-SΦ is Step 2(b). Here processing a single
item, i.e., computing lcp(j, k), can involve a very long string comparison in RAM. The length
of each comparison is not known in advance which makes load balancing difficult. Very long
string comparisons are rare even for highly repetitive texts, but they tend to come in clusters.
To see why this happens, consider a pair (j, k) = (i + `,Φ[i] + `), where ` = PLCPlo

q (i).
The lower bound ` ensures that the average length of comparisons is less than q, but there
can still be rare cases where the lower bound is poor and a long comparison results. If
(j, k) is such a case, then so is (j′, k′) = ((i+ 1) + PLCPlo

q (i+ 1),Φ[i+ 1] + PLCPlo
q (i+ 1))

unless i + 1 is is a multiple of q. If furthermore i + 1 is a reducible position – and most
positions are reducible for highly repetitive texts – k′ = k and j′ = j or k′ = k + 1 and
j′ = j + 1, and thus (j, k) and (j′, k′) are processed with the same pair of half-segments. If
i + 2, i + 3 and so on are reducible positions too, we can get a cluster of such bad cases.
We could identify such a cluster by the fact that the difference k − j is the same for all the
pairs, and once identified, we can use Lemma 4 to avoid doing a long comparison more than
once. However, the identification of such a cluster would require sorting the pairs (j, k) by
k − j, and avoiding expensive sorting was one of the main ideas of the original algorithm.
Consequently, our approach is to first ignore potential long comparisons and simply split
a bufferful of (j, k) pairs evenly between threads. However, the average length of string
comparisons is monitored, and if it exceeds a threshold, the computation is aborted and the
buffer is processed in a long-lcp mode instead. In the long-lcp mode, the (j, k) pairs in the
buffer are sorted by the difference k − j so that we can then utilize Lemma 4. The sorting
is parallelized, and the sorted buffer is split evenly among threads. Because of the sorting,
the long-lcp mode is too slow to use all the time. This approach speeds up the computation
significantly for highly repetitive files even in a single thread mode, and with mutiple threads
it avoids bad load balancing.

4.2 Parallelizing EM-SI
The first nontrivial step in EM-SI is Step 1(c). As in Step 2(b) of EM-SΦ, some string
comparisons can be long, but similar clustering of long comparisons is very unlikely because
only irreducible lcp values are computed. Thus simply splitting a bufferful of (i,Φ[i]) pairs
evenly between threads works well enough and there is no monitoring of comparison lengths.
However, the exception are comparisons that extend beyond the end of a half-segment and
even the overflow buffers (which never happens in Step 2(b) in EM-SΦ). In the sequential
version, such a comparison is completed immediately by reading parts of text from disk. In
the parallel version, the extended comparisons are postponed until all threads are finished,
and then performed separately.

The second nontrivial step in EM-SI is Step 1(d), where we want to set bits in a
bitvector held in RAM (a segment of PLCPsucc) at positions read from disk. The problem in
parallelizing this arises from two or more threads trying to simultaneously set different bits

J. Kärkkäinen and D. Kempa 17:7

in the same byte or word. To avoid this, the bitvector is divided into buckets and a bufferful
of positions to set is first distributed into the buckets. Then each bucket is processed by a
single thread. There are more buckets than threads and the buckets are assigned to threads
so that each thread sets about the same number of positions.

5 In-Place Computation

When determining the disk usage of the algorithms, we assume that the inputs are on disk
during the whole computation and are never modified. We are then interested in the disk
space used in addition to the input, which we call the working disk space. The smallest
possible working disk space by any algorithm is the size of the output, the LCP array. In
this section, we describe modifications to the algorithms that achieve exactly this minimum
working space making the algorithms in-place in this sense.

For concreteness, we assume that large integers, including lcp values, are stored using
40-bit integers by default, as they are in our current implementation, and thus the minimum
working space is 40n bits or 5n bytes.

The peak working disk space usage in basic EM-SΦ happens in Step 2(b) and is 15n
bytes in the worst case consisting of n (j, k) pairs and n lcp values produced as output of the
step. In practice, the peak is closer to 10n bytes since each file of (j, k) pairs is deleted when
it is no more needed, and can be even less because no (j, k) pair is stored when lcp(i,Φ[i])
can be determined from the sparse PLCP array. A working disk space of 10n bytes may be
needed in Step 2(c) too.

In EM-SI, the worst case peak disk usage can be 15n bytes in Step 1(c). However, the
disk usage is actually 10–15r bytes, where r is the number of irreducible lcp values. For many
files, r < n/3 and the disk usage of Step 1(c) is actually less than 5n bytes. In Step 2(c), the
disk usage is always 10n bytes without any optimization.

Both algorithms involve large files that are scanned once and then deleted. In our
implementation of the basic algorithms, such files are split into multiple subfiles that are
deleted as soon as the scan has passed them. This reduces the working disk space of both
algorithms to about 10n bytes in the worst case and just slightly more than 5n bytes is some
cases. There are realistic inputs requiring about 10n bytes, which is still twice the minimum,
and our goal is to reduce it to 5n bytes in all cases.

5.1 Compact Encoding of LCP Values

By default, lcp values are stored on disk using 5 bytes, but in some cases we can reduce the
space using special representations. One such special representation is used for storing the
sparse PLCP array PLCPq. The default representation needs 5n/q bytes, but when q < 40
we instead use a bitvector of n+ n/q bits defined similarly to PLCPsucc.

The main technique to reduce the size of lcp values is the V-byte encoding [17], which
uses a variable number of bytes to store each value. The total size of such encoding can be
bounded by the following result.

I Lemma 6. The total number of bytes in the V-byte encoding of a sequence of ≤ k non-
negative integers summing up to ≤ s is at most{

k + s/27 if s/k ≤ 27

2k + (s− 27k)/215 if 27 ≤ s/k ≤ 215 + 27

SEA 2017

17:8 Engineering External Memory LCP Array Construction

Table 2 Working disk space (in bytes) during Steps 2(a) and (b) in EM-SΦ with partitioning.

i ni/n q pairs lcp values PLCPq total
4..39 3.95n n1 + qn/27 n+n/q

8

(
4.47 + q

27 + 1
8q

)
n < 4.78n

1 0.395 40..50 3.95n n1 + qn/27 5n/q
(
4.345 + q

27 + 5
q

)
n < 4.83n

51..8551 3.95n 2n1 + qn−27n1
215 5n/q

(
4.74 + q

215 − 0.395
28 + 5

q

)
n < 5n

4..39 3.3n n1 + n2 + qn/27 n+n/q
8

(
4.15 + q

27 + 1
8q

)
n < 4.46n

2 0.330 40..92 3.3n n1 + n2 + qn/27 5n/q
(
4.025 + q

27 + 5
q

)
n < 4.8n

93..8264 3.3n 2(n1 + n2) + qn−27(n1+n2)
215 5n/q

(
4.75 + q

215 − 0.725
28 + 5

q

)
n < 5n

4..39 2.75n n + qn/27 n+n/q
8

(
3.875 + q

27 + 1
8q

)
n < 4.19n

3 0.275 40..127 2.75n n + qn/27 5n/q
(
3.75 + q

27 + 5
q

)
n < 4.79n

128..8300 2.75n 2n + qn−27n
215 5n/q

(
4.75 + q

215 − 1
28 + 5

q

)
n < 5n

The output of Step 2(b) of EM-SΦ consists of the values PLCP[i]−PLCPlo
q (i), which we

call lcp delta values. By Lemma 3, the sum of all n lcp delta values is at most qn, and thus
we can use Lemma 6 to bound the total size. The details are described in Section 5.2.

To take advantage of V-byte encoding in EM-SI, we make some modifications to it. First,
in Step 1(c), we write PLCP[i] instead of 2i+ PLCP[i] to output and use V-byte encoding.
Since the total sum of irreducible lcp values is at most n logn, we can again bound the total
size by Lemma 6. Instead of deleting the pairs (i,Φ[i]) as soon as possible, we keep the i’s so
that we can compute 2i+ PLCP[i] in Step 1(d). To be able to delete the Φ[i]’s earlier, they
are stored in a different file than the i’s.1

The second modification to EM-SI is in Step 2, where we now construct and use a sparse
PLCP array PLCPq that fits in RAM. In the output of Step 2(b) and input of Step 2(c), we
replace each value LCP[i] with the corresponding lcp delta value LCP[i]− PLCPlo

q (SA[i]).
Then we can again use V-byte encoding and Lemma 6 to bound the total size of the lcp
values.

5.2 Partitioning
The main tool for reducing disk space usage is a technique called partitioning introduced
in [5]. Consider Step 2(a) in EM-SΦ that produces and stores up to n (j, k) pairs and then
Step 2(b) processes and deletes the pairs. The pairs need up to 10n bytes of temporary
disk space. To reduce the space, we divide the pairs into three parts of sizes n1 = 0.395n,
n2 = 0.33n and n3 = 0.275n, and perform the Steps 2(a) and (b) for one part at a time.
Then the peak disk usage stays under 5n bytes at all times as detailed in Table 2. There is
an upper limit of 8264 on the value of q but that is sufficient to fit PLCPq into RAM in all
practical scenarios. Furthermore, a larger q or smaller disk usage can be achieved by using
more than three parts.

We also use partitioning in Step 1 of EM-SI. We perform the full step 1 except the setting
of reducible bits for one part at a time. That is, after processing one part, we will have, for
each irreducible i processed in that part, the bit 2i+ PLCP[i] set in PLCPsucc and the bit i
set in R. Once all parts have been processed, we produce the final PLCPsucc by setting the
reducible bits. With three parts of size at most n/3 each, the working disk space stays well
under 5n bytes.

1 The separation of i’s and Φ[i]’s into separate files helps with Step 1(b) too, because we need only i’s to
determine the irreducible positions.

J. Kärkkäinen and D. Kempa 17:9

The disadvantage of partitioning is that it needs some additional I/O depending on
exactly how the partitioning is done. We have implemented two partitioning modes for
each algorithm and always choose the one that produces less additional I/O. The first mode
is called lex-partitioning and simply involves splitting SA into parts. When processing
a part, we only need to scan the relevant part of SA. However, then each pair of text
half-segments needs to be loaded into RAM once for each part. For large files, the loading of
the half-segments dominates the I/O, and thus we instead use the second partitioning mode
called text-partitioning. The items are partitioned according to which pair of half-segments
they belong to. Then most pairs of half-segments need to be loaded only once. On the other
hand, we then need to scan the full suffix array for each part, which makes it the slower
option for smaller files.

Finally, partitioning also happens in Steps 2(a)–(b) in EM-SI. Recall that earlier we
modified Step 2(b) to produce lcp delta values as output. In this case, we always perform
lex-partitioning into two parts of sizes n1 = 0.58 and n2 = 0.42. Then the working disk space
remains below 5n bytes when q < 20000.

5.3 Final Steps
The final step of EM-SΦ, Step 2(c), performs two tasks: it reads the lcp values from multiple
files and merges them into a single sequence, and it converts the lcp delta values into the
final lcp values. The in-place version separates the tasks, first merging in Step 2(c’), and
then converting in Step 2(c”). Since the total size of the V-byte encoded delta values is
always less than 2.5n bytes, the working disk space during merging stays below 5n bytes.
For conversion, the merged delta value file is split into multiple subfiles so that each subfile
can be deleted after it has been processed. The split points are decided adaptively during
merging so that the working disk space never exceeds 5n bytes. The first subfile can always
contain more than half the values. The following subfiles are smaller, and the last subfile is
small enough so that we can load it in RAM and delete it from disk before conversion.

The final step of EM-SI, Step 2(c), after the modification to use V-byte encoded delta
values, is essentially the same as the last step of EM-SΦ: merge and convert lcp delta values
into the final LCP array, and is implemented similarly.

6 Experimental Results

Algorithms. The starting point and the baseline in our experiments are the original C++
implementations of the EM-SΦ and EM-SI algorithms described in [4]. Both algorithms are
sequential, assume byte alphabet, and use more disk space than is needed for the output.
We modified these implementations in the following ways:

First, we parallelized the computation as described in Section 4. All basic parallelizations
were done using OpenMP, and for more non-trivial parallelizations we use threads and
synchronization mechanisms from the standard C++ library;
Second, we added the “in-place mode” to both algorithms that reduces the working disk
space to the space needed by the final LCP array as described in Section 5. We kept the
“out-of-place mode” in the implementation for cases, where speed is the priority;
Third, we modified the implementations to handle symbols of arbitrary size (that is a
multiple of byte). This is relatively straightforward, as both algorithms only perform
symbol comparisons, but our implementations are the first to explicitly support large-
alphabet external-memory construction of the LCP array.

SEA 2017

17:10 Engineering External Memory LCP Array Construction

Table 3 Statistics of data used in the experiments; 100r/n is the percentage of irreducible lcp
values among all lcp values (where r denotes the number of irreducible lcps) and Σr/r is the average
length of the irreducible lcp value (where Σr is the sum of all irreducible lcps). Smaller files in
experiments are prefixes of full test files. The input symbols are encoded using bytes for all files
except words, for which we use 32 bits per symbol.

Input n/230 |Σ| 100r/n Σr/r

kernel 128.0 229 0.09 1494.76
geo 128.1 211 0.15 1221.49
wiki 128.7 213 16.71 29.40
dna 128.0 6 18.46 23.79
debruijn 128.0 2 99.26 35.01
words 12.5 97 002 175 42.49 5.17

Each of the two algorithms has thus four variants: depending on whether it uses parallelism,
and whether it runs in the in-place mode. The implementations are capable of using arbitrary
types to represent integers and text symbols, but for simplicity in all experiments in this
section we use 40-bit integers. The implementations used in experiments (as well as datasets
described next) are available at http://www.cs.helsinki.fi/group/pads/.

Setup. We performed experiments on a machine equipped with two six-core 1.9GHz Intel
Xeon E5-2420 CPUs (capable, via hyper-threading, of running 24 threads) with 15MiB L3
cache and 120GiB of DDR3 RAM. For experiments we limited the RAM in the system
to 4GiB (with the kernel boot flag) and all algorithms were allowed to use 3.5GiB in all
experiments. The machine had 6.8TiB of free disk space striped with RAID0 across four
identical local disks achieving a (combined) transfer rate of about 480MiB/s (read/write).

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs were
compiled using g++ version 5.2.1 with -O3 -march=native options. All reported runtimes
are wallclock (real) times. The machine had no other significant CPU tasks running and
for all sequential algorithms only a single thread of execution was used for computation (we
permit a constant number of extra threads as long as they do not perform computation, e.g.,
threads responsible for scheduling I/O requests are allowed). The parallel algorithms used
the full parallelism available on the machine (24 threads), unless explicitly stated otherwise.

Datasets. For the experiments we used the following files (see Table 3 for some statistics):
kernel: a concatenation of ∼10.7 million source files from over 300 versions of Linux
kernel (see http://www.kernel.org/). This is an example of highly repetitive file;
geo: a concatenation of all versions (edit history) of Wikipedia articles about all countries
and 10 largest cities in the XML format. The resulting file is also highly repetitive;
wiki: a concatenation of wikipedia, w-source, w-books, w-news, w-quote, w-versity, and
w-voyage dumps dated 20160203 in XML (see http://dumps.wikimedia.org/);
dna: a collection of DNA reads from multiple human genomes filtered from symbols other
than {A, C, G, T, N} and newline (see http://www.1000genomes.org/);
debruijn: a binary De Bruijn sequence of order k is an artificial sequence of length
2k + k − 1 than contains all possible binary k-length substrings. It contains nearly n
irreducible lcps (see [9, Lemma 5]) which is the worst case for EM-SI;
words: a collection of natural language text parsed into words and converted into 4-byte
integers, see http://www.statmt.org/wmt16/translation-task.html.

http://www.cs.helsinki.fi/group/pads/
http://www.kernel.org/
http://dumps.wikimedia.org/
http://www.1000genomes.org/
http://www.statmt.org/wmt16/translation-task.html

J. Kärkkäinen and D. Kempa 17:11

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 32 64 96 12816 48 80 112

●●
● ●

●
●

●
●

● ●

●
●

T
im

e

µ
s

sy
m

bo
l

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

wiki

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 32 64 96 12816 48 80 112

●●
●

●
●

●

●● ●
●

●
●

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

dna

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 32 64 96 12816 48 80 112

●
●

●

●

●

●

●● ●

●

●

●

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

debruijn

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 32 64 96 12816 48 80 112

●● ●

●
●

●

●
●

●

●

●

●

T
im

e

µ
s

sy
m

bo
l

Input size n 230

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

geo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 32 64 96 12816 48 80 112

●
● ●

●

●

●

●
● ●

●

●

●

Input size n 230

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

kernel

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 2 4 6 8 10 12

●
●

● ●
●

●
●

●
●

●

Input size n 230

●EM−SΦ parallel EM−SI parallel
●EM−SΦ sequential EM−SI sequential

words

Figure 1 Scalability of the parallel algorithms compared to their sequential versions.

Parallel Algorithms. In the first experiment, we compare the parallel versions of the
algorithms studied in this paper with their sequential versions. We executed the algorithms
on increasing length prefixes of all testfiles and measured the runtime. For now we use all
algorithms in the basic out-of-place mode. The results are given in Figure 1.

The parallel version of EM-SΦ achieves a significant speedup across all prefix sizes and
input types. This is caused by the fact, that the algorithm performs a lot of random accesses
to Φq in Step 1 and PLCPq in Steps 2(a) and 2(c), making them strongly compute-bound.
The parallelization helps even in Step 2(b), since most of the lcp comparisons are short which
prevents OS from effective cache prefetching. The average speedup across all input types
varies from 46% for 4GiB inputs to 32% for full testfiles.

The speedup for EM-SI is notably smaller, since its sequential version is already largely
I/O-bound. While for non-repetitive inputs the algorithm achieves a speedup of about 10%,
for highly repetitive data (kernel, geo), the speedup is negligible, particularly for large text.

In the second experiment, we focus on the parallel version of EM-SΦ, as it benefits more
from parallelism than EM-SI. We executed the algorithm on the largest instances of two
testfiles (wiki and geo serving as examples of non-repetitive and highly-repetitive input)
using different number of threads (we point out here, that the sequential version and parallel
version running on a single thread are not the same implementation as the purely sequential
version can avoid certain computations), and measured the runtime. As seen in Figure 2,
the maximum speedup is already achieved with about 8 threads. At this point the algorithm
becomes essentially I/O-bound.

In-Place Algorithms. In the next experiment we study the in-place variants of the algorithms
described in Section 5. The in-place mode increases the I/O in both algorithms mostly due
to additional scans of SA. The change in I/O volume is, however, not significant, hence for
brevity we do not report I/O volume in this section. To study the effect on runtime, we
executed the algorithms both in the in-place and the out-of-place mode on different prefixes
of testfiles, and measured the runtime and disk space usage (to measure disk usage we used
our own script but as a sanity check we ran a preliminary set of experiments in the in-place

SEA 2017

17:12 Engineering External Memory LCP Array Construction

0 4 8 12 16 20 24
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

T
im

e

µ
s

sy
m

bo
l

wiki

0 2 4 6 8 10 12 14
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

●
●

●

●●

●

●EM−SΦ inplace EM−SI inplace
●EM−SΦ basic EM−SI basic

wiki

0 2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

●
●

●

●●

●

●EM−SΦ inplace EM−SI inplace
●EM−SΦ basic EM−SI basic

geo

0 4 8 12 16 20 24
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

T
im

e

µ
s

sy
m

bo
l

Number of threads

geo

0 2 4 6 8 10 12 14
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

●
●

●

●

●

●

Disk space usage

bytes
symbol

●EM−SΦ inplace EM−SI inplace
●EM−SΦ basic EM−SI basic

debruijn

0 2 4 6 8 10 12 14
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

●

●

●

●

●

●

Disk space usage

bytes
symbol

●EM−SΦ inplace EM−SI inplace
●EM−SΦ basic EM−SI basic

words

Figure 2 Left: Normalized runtime of the parallel version of EM-SΦ on the prefixes of length
n = 128× 230. Right: Normalized runtime vs. disk space usage of the parallel algorithms in the in-
place mode compared to the basic (out-of-place) mode. The three dots of each color/shape correspond
to text prefixes of sizes 4, 16, and 64GiB, which for the words file means n ∈ {230, 232, 234}.

Table 4 Comparison of two approaches to LCP array construction for large-alphabet inputs.

Algorithm Time
[

µs
symbol

]
Disk space

[bytes
symbol

]
I/O volume

[bytes
symbol

]
EM-SΦ native 0.41 8.43 137.25
EM-SΦ byte-based 1.00 34.07 254.12
EM-SI native 0.38 5.53 116.78
EM-SI byte-based 1.08 21.94 259.56

mode using a setup, where the available disk space is only negligibly larger than the output
LCP array). For simplicity, we present the results for parallel versions but they were very
similar on sequential versions. The results are given in Figure 2. We point out that due
to the simultanous disk space measurement, these runs are slightly slower and thus not
comparable to Figure 1, but the relative runtimes remain the same.

The slowdown of the in-place mode compared to basic versions is very moderate. The
maximum slowdown for EM-SΦ was about 36% (but in most cases much smaller), and the
maximum slowdown for EM-SI was about 17%. The working disk space usage in some cases,
particularly for non-repetitive inputs, is reduced by more than a factor of two.

Large Alphabet. Suppose that the input string consists of symbols drawn from a large
alphabet such that each symbol requires more than one byte. To compute the LCP array
for such strings we can take one of two approaches. First, we can use an algorithm that
natively supports large alphabet, and we have modified our implementations to provide such
support. A recently published implementation of EM scalable and space-efficient suffix array
construction provides a large-alphabet support, complementing this approach [8].

An alternative method is to first split each symbol into a group of symbols over byte
alphabet. One can then apply a byte-based suffix sorter to compute the suffix array, then run
a byte-based LCP array construction, and then compute and select the final subset of LCP

J. Kärkkäinen and D. Kempa 17:13

values in the postprocessing stage (which requires one scan of SA and LCP). A drawback of
this approach is that reducing the alphabet increases the length of the string. For example,
if the symbols of the original string of length n were encoded using 32-bit integers and we
wish to obtain a string over byte alphabet, the resulting string has length 4n.

To compare the two approaches in practice we used the parallel versions of the two
algorithms studied in this paper in the basic (out-of-place) mode. We executed each
algorithm on the prefix of the words testfile of length n = 12.5 × 230 (with each symbol
encoded using four bytes), first using the native large-alphabet mode, and then assuming
the input is over byte alphabet, and compared the resources needed by the two approaches.
We exclude the resources needed to compute the suffix array of the byte-interpreted input
(needed in the second approach), as well as the postprocessing of the LCP array. The results,
scaled with respect to the large-alphabet string, are reported in Table 4. Using the algorithm
that natively supports large alphabet is about 2.5 × faster, uses half of the I/O volume, and
requires about 4 × less working disk space. The overall disk usage (i.e., including input)
of the native mode is even smaller, because the SA of the large-alphabet text is four times
smaller than the SA of the byte-intepreted text.

References

1 M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix
arrays. J. Discrete Algorithms, 2(1):53–86, 2004. doi:10.1016/S1570-8667(03)00065-0.

2 T. Bingmann, J. Fischer, and V. Osipov. Inducing suffix and LCP arrays in external
memory. In Proceedings of the 15th Workshop on Algorithm Engineering and Experiments
(ALENEX 2013), pages 88–102. SIAM, 2013. doi:10.1137/1.9781611972931.8.

3 G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text: Pat trees and
Pat arrays. In W.B. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data
Structures & Algorithms, pages 66–82. Prentice–Hall, 1992.

4 J. Kärkkäinen and D. Kempa. Faster external memory LCP array construction. In Pro-
ceedings of the 24th Annual European Symposium on Algorithms (ESA 2016), volume 57
of LIPIcs, pages 61:1–61:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.ESA.2016.61.

5 J. Kärkkäinen and D. Kempa. LCP array construction in external memory. J. Exp. Al-
gorithmics, 21(1):1.7:1–1.7:22, April 2016. doi:10.1145/2851491.

6 J. Kärkkäinen and D. Kempa. LCP array construction using O(sort(n)) (or less) I/Os.
In Proceedings of the 23rd International Symposium on String Processing and Information
Retrieval (SPIRE 2016), volume 9954 of LNCS, pages 204–217. Springer, 2016. doi:10.
1007/978-3-319-46049-9_20.

7 J. Kärkkäinen, D. Kempa, and M. Pia̧tkowski. Tighter bounds for the sum of irreducible
LCP values. In Proceedings of the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015), volume 9133 of LNCS, pages 316–328. Springer, 2015. doi:10.
1007/978-3-319-19929-0_27.

8 J. Kärkkäinen, D. Kempa, S. J. Puglisi, and B. Zhukova. Engineering external memory in-
duced suffix sorting. In Proceedings of the 19th Workshop on Algorithm Engineering and Ex-
periments (ALENEX 2017), pages 98–108. SIAM, 2017. doi:10.1137/1.9781611974768.
8.

9 J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Permuted longest-common-prefix ar-
ray. In Proceedings of the 20th Annual Symposium on Combinatorial Pattern Match-
ing (CPM 2009), volume 5577 of LNCS, pages 181–192. Springer, 2009. doi:10.1007/
978-3-642-02441-2_17.

SEA 2017

http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1137/1.9781611972931.8
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.61
http://dx.doi.org/10.1145/2851491
http://dx.doi.org/10.1007/978-3-319-46049-9_20
http://dx.doi.org/10.1007/978-3-319-46049-9_20
http://dx.doi.org/10.1007/978-3-319-19929-0_27
http://dx.doi.org/10.1007/978-3-319-19929-0_27
http://dx.doi.org/10.1137/1.9781611974768.8
http://dx.doi.org/10.1137/1.9781611974768.8
http://dx.doi.org/10.1007/978-3-642-02441-2_17
http://dx.doi.org/10.1007/978-3-642-02441-2_17

17:14 Engineering External Memory LCP Array Construction

10 T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
prefix computation in suffix arrays and its applications. In Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching (CPM 2001), volume 2089 of LNCS, pages
181–192. Springer, 2001. doi:10.1007/3-540-48194-X_17.

11 V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cam-
bridge University Press, 2015.

12 U. Manber and G.W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

13 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput. Surv., 39(1):art-
icle 2, 2007. doi:10.1145/1216370.1216372.

14 E. Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

15 K. Sadakane. Succinct representations of lcp information and improvements in the com-
pressed suffix arrays. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2002), pages 225–232. ACM/SIAM, 2002.

16 G. Tischler. Low space external memory construction of the succinct permuted longest
common prefix array. In Proceedings of the 23rd International Symposium on String Pro-
cessing and Information Retrieval (SPIRE 2016), volume 9954 of LNCS, pages 178–190.
Springer, 2016. doi:10.1007/978-3-319-46049-9_18.

17 H.E. Williams and J. Zobel. Compressing integers for fast file access. Comput. J., 42(3):193–
201, 1999. doi:10.1093/comjnl/42.3.193.

http://dx.doi.org/10.1007/3-540-48194-X_17
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/1216370.1216372
http://dx.doi.org/10.1007/978-3-319-46049-9_18
http://dx.doi.org/10.1093/comjnl/42.3.193

Personal Routes with High-Dimensional Costs and
Dynamic Approximation Guarantees∗

Stefan Funke1, Sören Laue2, and Sabine Storandt3

1 University of Stuttgart, Stuttgart, Germany
funke@fmi.uni-stuttgart.de

2 Friedrich-Schiller-Universität Jena, Jena, Germany
soeren.laue@uni-jena.de

3 JMU Würzburg, Würzburg, Germany
storandt@informatik.uni-wuerzburg.de

Abstract
In a personalized route planning query, a user can specify how relevant different criteria as
travel time, gas consumption, scenicness, etc. are for his individual definition of an optimal
route. Recently developed acceleration schemes for personalized route planning, which rely on
preprocessing, achieve a significant speed-up over the Dijkstra baseline for a small number of
criteria. But for more than five criteria, either the preprocessing becomes too complicated or
the query answering is slow. In this paper, we first present a new LP-based preprocessing
technique which allows to deal with many criteria efficiently. In addition, we show how to further
reduce query times for all known personalized route planning acceleration schemes by considering
approximate queries. We design a data structure which allows not only to have personalized costs
but also individual approximation guarantees per query, allowing to trade solution quality against
query time at the user’s discretion. This data structure is the first to enable a speed-up of more
than 100 for ten criteria while accepting only 0.01% increased costs.

1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks

Keywords and phrases personalized route planning, contraction hierarchies, linear program,
separation oracle, approximate queries

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.18

1 Introduction

While conventional route planning engines usually compute the shortest or quickest path
between a given source and a target, individual preferences of users might differ. For example,
a user might accept a slightly later arrival time at the target in exchange for a less crowded
route, or reduced gas consumption, or fewer traffic lights or left turns on the way. To provide
full flexibility, all possible trade-offs between all criteria should be valid definitions of an
optimal route – and each query should be allowed its own definition. The personalized route
planning problem captures this idea. Formally, it can be phrased as follows: Given a street
network G(V,E), with a d-dimensional non-negative cost vector c(e) ∈ Rd for each edge
e ∈ E (where each entry reflects one criterion, e.g. c1 travel time, c2 number of traffic lights,
c3 gas price, and so on); a query consists of source and target s, t ∈ V and non-negative

∗ This work was supported by a Google Research Award on ‘Personalized Route Planning’. Sören Laue
acknowledges the support of Deutsche Forschungsgemeinschaft (DFG) under grant LA-2971/1-1.

© Stefan Funke, Sören Laue, and Sabine Storandt;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 18; pp. 18:1–18:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

weights α1, α2, · · · , αd (expressing the importance of each cost component for the user). The
goal is to compute the path p from s to t in G which minimizes

∑
e∈p α

T c(e).
Dijkstra’s algorithm which computes individual edge costs αT c(e) on demand can solve

the personalized route planning problem in O(n logn+ dm) with |V | = n, |E| = m. But for
applications where efficiency is important – as in a server-client scenario with multiple queries
per second – Dijkstra’s algorithm does not allow for sufficient throughput. Therefore, like
for the conventional route planning problem, preprocessing based speed-up techniques were
investigated in previous work. But they either suffer from a complex preprocessing routine
(based on contraction hierarchies [14]) which limits the practical applicability to d ≤ 3 [13],
[11], or with lighter preprocessing the speed-up for d ≥ 5 is less than 100 compared to the
Dijkstra baseline [10], [8], [12].

In this paper, we show how to instrument contraction hierarchies for the personalized route
planning problem with the help of linear programming. Our method is conceptually simpler
than previous attempts to use contraction hierarchies for this scenario. As a consequence, we
can perform the preprocessing also for d > 3 which was impractical before. Furthermore, we
describe a framework which allows to compute personalized queries with an approximation
guarantee. Our respective data structure allows to trade query time against solution quality.
Thereby the quality is a parameter to be set by the user, and can vary with every query.
In our experiments, we show that accepting only slightly suboptimal results enables query
answering two orders of magnitude faster than the Dijkstra baseline even for high-dimensional
costs.

1.1 Related Work
The personalized route planning problem was introduced in [13]. There, a contraction
hierarchy augmented with landmarks [15] was shown to provide a speed-up of three orders
of magnitude over the Dijkstra baseline; but only for d = 2, and with some restrictions on
the weights that can be chosen. In [11], a contraction hierarchy construction scheme was
designed that maintains all optimal paths for arbitrary dimensions d and arbitrary weights
α. But the CH construction relies on a rather complicated subroutine which involves the
computation of a dynamically changing convex hull of points in Nd. The speed-ups presented
there were about three orders of magnitude for d = 2 and two orders of magnitude for d = 3.
For larger d, no practical results could be provided.

To handle a larger number of metrics, the preprocessing paradigm for customizable route
planning schemes was applied to personalized route planning [10], [8], [12]. Here the idea is
to first construct an overlay graph independently of the metric(s). Then, in a second phase,
the edges of the overlay graphs are augmented with suitable costs or cost vectors. In [10],
the overlay graph was based on a k-path cover of the graph. This allowed to consider up
to 64 metrics for the first time. But the speed-up was rather moderate: about 12 for d = 2
and 8 for d = 64. In [8], a slightly more general personalized route planning model was
used, where also restrictions to binary weights and non-additive costs are possible. Here,
the overlay graph is obtained by some simple rules which only rely on the topology of the
graph. A speed-up of about 30 was reported for d = 8 and about 15 for d = 64. In [12],
customizable contraction hierarchies [7] and customizable route planning [4] were turned into
personalizable schemes. As the number of cost vectors of an edge in the overlay graph were
shown to become huge, optimality-preserving pruning strategies were described. With that,
the speed-up for d = 2 was reported to be about 100, for d = 10 about 70 and for d = 64
about 20.

S. Funke, S. Laue, and S. Storandt 18:3

Further speed-ups were achieved by making use of parallelization either utilizing multiple
cores [6] or even the GPU [5]. Here, the whole graph is personalized for every query by
setting all edge costs to αT c(e). But in a client/server scenario, these approaches require too
much machinery and space per user to allow for high throughput. Hence, in the remainder
of the paper, we only consider sequential approaches.

In some way the dual problem of personalized routing was considered in [3] and [9]. Here,
given a set of paths a user has traveled, the goal is to infer his weight vector α (also called
his preference) that explains why exactly these paths were chosen. While in [3] a method
based on stochastic coordinate descent was introduced, the approach in [9] relies on linear
programming. We will use similar LP-based techniques as proposed in [9] to allow for efficient
computation of personalized routes.

Suboptimal query answering for acceleration and more concise result representation
was already considered in related domains such as public transit route planning. There,
the multi-criteria setting is naturally induced, as besides travel time also the number of
transfers, the walking time and the ticket prices (among other criteria) are relevant when
planning a journey. As already with three criteria there can be hundreds or even thousands
of Pareto-optimal route options between a source and a target, fuzzy dominance [2] and
rule-based filters [1] were applied to reduce the solution set. But neither of those comes
with a guarantee that assures the output in the end to be close to the optimal solution.
In contrast, our method for approximate personalized routes will allow to fix an arbitrary
approximation factor δ ≥ 1 and the returned solution will never be more than δ times as
expensive as the optimal route.

1.2 Contribution
We provide the following new insights and algorithms for personalized route planning:

For contraction hierarchies, the preprocessing in previous work [11] required a complicated
binary-search like algorithm which involved the computation of a dynamically changing
convex hull of d-dimensional points. We present a conceptually simpler, more efficient
and robust LP-based contraction hierarchy (LP-CH). This approach also considerably
reduces the theoretical runtime dependency on d for a crucial operation in the construction
from O(d2 log(nMd)(n logn+dm+d4+d logd−1(nMd))) to O(d2 log(nMd)(n logn+dm))
where M is the maximum cost entry of any edge.
We develop a new data structure which allows to answer personalized queries in an
approximate fashion. Thereby, the approximation factor has not to be fixed a priori but
can be chosen on query time. At the heart of our data structure lies an algorithm which
sorts a list of d-dimensional cost vectors, such that the first i vectors approximate the
complete set of vectors provably well for every i.
We experimentally prove that our new contraction hierarchy preprocessing allows to
deal with more than three metrics efficiently. Our framework for approximate query
answering combines well with contraction hierarchies and also with approaches based
on customizable route planning presented in previous work. This allows us to achieve
further speed-ups when accepting slightly suboptimal results. For example, for d = 10
and an approximation factor of 1.001, query answering with our methods is two orders of
magnitude faster than with bidirectional Dijkstra.

Comparisons between results from different papers are especially challenging for personal-
ized route planning, as not only benchmark graphs might differ but more importantly also the
criteria used. The selected criteria can affect the performance significantly: Well-correlated
metrics as travel time and distance are easier to manage than conflicting objectives as travel

SEA 2017

18:4 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

time and quietness (as illustrated already in [11]). We therefore make our largest benchmark
instance with 10 meaningful metrics available1 to alleviate future comparison of algorithms.

2 Contraction Hierarchies (CH) with an LP-Oracle

In this section, we describe how to construct contraction hierarchies for multi-dimensional
costs. The main novelty compared to previous work is the usage of an LP-oracle in the
preprocessing.

2.1 Conventional Contraction Hierarchies

The contraction hierarchies approach [13] computes an overlay graph in which so called
shortcut edges span large sections of the shortest path. This reduces the hop length of
optimal paths and therefore allows Dijkstra’s algorithm to answer queries more efficiently.

The preprocessing is based on the so-called node contraction operation. Here, a node v
as well as its adjacent edges are removed from the graph. In order not to affect shortest path
distances between the remaining nodes, shortcut edges are inserted between all neighbors
u,w of v, if and only if uvw was a shortest path (which can easily be checked via a Dijkstra
run). The cost of the new shortcut edge (u,w) is set to the summed costs of (u, v) and (v, w).
In the preprocessing phase all nodes are contracted one-by-one in some order. The rank of
the node in this contraction order is also called the level of the node.

After having contracted all nodes, a new graph G+(V,E+) is constructed, containing all
original edges of G as well as all shortcuts that were inserted in the contraction process. An
edge e = (v, w) – original or shortcut – is called upwards, if the level of v is smaller than the
level of w, and downwards otherwise. By construction, the following property holds: For
every pair of nodes s, t ∈ V , there exists a shortest path in G+, which first only consist of
upwards edges, and then exclusively of downwards edges. This property allows to search for
the optimal path with a bidirectional Dijkstra only considering upwards edges in the search
starting at s, and only downwards edges in the reverse search starting in t. This reduces the
search space significantly.

For personalized route planning, we are not dealing with scalar edge costs but cost vectors.
Here, deciding the necessity of a shortcut in the CH graph is not trivial anymore. A shortcut
(u,w) with costs c(u, v) + c(v, w) has to be inserted upon contraction of v if and only if it
encodes an optimal path p from u to w for some choice of α. But checking for all possible
α ∈ [0, 1]d whether p is the respective optimal path is obviously not possible. Therefore, we
need a more efficient way to decide the necessity of a shortcut.

2.2 Shortcut Insertion Oracles

To keep the CH graph as sparse as possible, we only want to insert shortcuts which are
necessary for exact query answering. So the only way to omit the insertion of a shortcut
(u,w) which spans the edges (u, v) and (v, w) with costs c(u, v), c(v, w) is to certify that
there exists no α such that αT c(u, v) + αT c(v, w) is the minimum cost among all paths p
from u to w.

1 https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0

https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0

S. Funke, S. Laue, and S. Storandt 18:5

Convex Hull Oracle. In [11], it was shown that the shortcut insertion problem is solvable
in polynomial time for fixed dimension d by reduction to the following geometric problem:
A path p with d-dimensional cost vector c can be interpreted as point in Nd. It was shown
that this path is optimal for some choice of α if and only if the respective point is part of
the lower convex hull of all points that correspond to paths between the same source and
target. Then an algorithm was described which decides if a point is part of the lower convex
hull or not. As the convex hull might have exponential complexity, its explicit construction
and inspection is impractical. The described algorithm avoids the explicit construction by
iteratively computing optimal paths for α vectors chosen from a certain multi-dimensional
interval. If the optimal path for some α equals p, the respective shortcut is necessary for
sure and the search can be aborted. Otherwise, the optimal path p′ allows to decrease the
volume of the multi-dimensional interval of α vectors for which p could still be optimal by
at least a constant fraction. Therefore, after at most polynomially (in the input size) many
steps, the algorithm terminates and then certifies that no α exists for which p is optimal.
The main problem with this approach is that calculating the new multi-dimensional interval
for α and choosing a new reasonable α within this interval requires the computation of d-
dimensional hyperplane cuts, which is expensive and numerically unstable. The total runtime
of this approach was shown to be in O(d2 log(nMd)(n logn+ dm+ d4+d logd−1(nMd))) with
M = maxe∈E |c(e)|∞ being the maximum cost of any vector in any dimension.

We will now introduce an oracle based on linear programming which is simpler and leads
to an improved theoretical runtime of O(d2 log(nMd)(n logn+ dm)).

Naive LP Oracle. Our goal is still to either find an α for which our reference path p from
u to w with costs c(p) ∈ Nd is optimal or to certify that no such α exists. We will achieve
this by setting up an LP which has a feasible solution if and only if p is optimal for some α.

Let P be the set of all possible paths from u to w in G. We want to find an α such that
αT c(p) is not larger than αT c(p′) for all p′ ∈ P , that is, p is optimal for this choice of α. We
can express this as a simple system of linear (in)equalities or constraints:

d∑
i=1

αi = 1

αi ≥ 0 i = 1, . . . , d
αT c(p)− αT c(p′) ≤ 0 ∀p′ ∈ P

Obviously, any α which is a solution for this linear program certifies that p is optimal for
some queries. If there is no feasible solution, then for all choices of α there exists some path
p′ in P with lower costs and hence the shortcut encoding p can be omitted.

The problem with this LP is that – like for the convex hull oracle – the set P of alternative
paths from u to w might be exponentially large. Hence setting up the LP is already too
expensive to be practical.

Improved LP Oracle. The basic question is whether we really have to consider all alternative
paths in P to decide whether the shortcut is necessary or not.

The ellipsoid method [16] for LP solving does not require all constraints to be explicitly
available, but instead demands the existence of an efficient separation oracle. A separation
oracle is fed with a possible solution and then either has to verify that this is indeed a
solution for the complete LP (with all constraints) or otherwise has to return a (so far not
explicit) constraint that is violated by the current solution.

SEA 2017

18:6 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

In our setting, Dijkstra’s algorithm can serve as separation oracle: For some choice of
α, we can efficiently check whether the path p is optimal for this choice or not by running
Dijkstra with edge costs αT c(e). If p is not optimal, Dijkstra returns an alternative path p′
which provides us with the new constraint αT (c(p)− c(p′)) < 0. This constraint excludes all
choices of α for which p′ is a better route than p.

This gives rise to the following algorithm which returns true if p is optimal for some
choice of α and false otherwise:
1. Initialize the LP with α with

∑d
i=1 αi = 1 and αi ≥ 0, i = 1, . . . , d.

2. Solve the LP using the ellipsoid method. If there is no solution, return false. Otherwise
let the solution be α∗.

3. Run the Dijkstra separation oracle with α∗. If the optimal path is p, return true. If the
optimal path is p′ 6= p, add the constraint αT (c(p)− c(p′)) < 0 to the LP. Go to 2.

The separation oracle runs in O(n logn + dm). The number of iterations when using
the ellipsoid method is bounded by O(k2L) where k is the number of variables and L the
number of bits needed to represent the constraints. We have k = d and as the coefficients
represent costs of paths in G, they are bounded by nMd, hence we get L = log(nMd). In
total, this results in a runtime of O(d2 log(nMd)(n logn+ dm)).

2.3 Compacting Edges for Query Answering
As the result of the CH preprocessing, we get an overlay graph with shortcut edges. Each
shortcut edge (u,w) is augmented with a d-dimensional cost vector, which is the result of
aggregating the cost vectors along an optimal path from u to w. Naturally, there might be
many such shortcuts between u and w, representing different optimal paths for different
choices of α. During query answering, the relaxation of each of those edges might lead to
a new temporary distance label for w, hence inducing multiple decrease key operations in
the Dijkstra priority queue. If we instead merge all edges between u and w into a single
edge – now with an associated set of cost vectors S – the relaxation of this edge consists of
first computing mins∈S αT s, followed by at most a single decrease key operation, which is
much more efficient. Furthermore, the data structure we get when using customizable route
planning with personalization (as exploited in [10], [8], [12]) is also an overlay graph with
sets of cost vectors per edge (but based on a different construction process).

From now on, we assume that some overlay graph for exact query answering is avail-
able. We can modify and augment any such overlay graph to enable efficient answering of
approximate queries, as described in the next section.

3 Adaptive Approximation Guarantees

Among the set of potentially optimal routes between A and B, there are often many similar
ones from a user perspective. For example, one route might have a travel time of 34 minutes
and a gas price of 0.96 Euro, while another one has a travel time of 32 minutes and a gas price
of 0.97 Euro. Furthermore, it is not easy for a user to specify α precisely in a meaningful
way. Should the travel time be twice as important as the gas price, i.e. αT = (2/3, 1/3), or
three times as important, i.e. αT = (3/4, 1/4)? Slight variations in the choice of α might
also result in different optimal routes. Hence we argue that two routes p and p′ with very
similar costs αT c(p) ≈ αT c(p′) are almost indistinguishable for a user.

From the overlay construction, we get shortcut edges (v, w) with sets of cost vectors,
encoding paths from v to w that are optimal for some choice of α. In particular for shortcuts

S. Funke, S. Laue, and S. Storandt 18:7

between nodes far away from each other, the set of cost vectors is typically quite large and
hence relaxing the shortcut edge during query processing becomes very expensive (evaluating
each vector with the given α). If one is willing to accept some small error, it might suffice
just to inspect a few of these vectors. This gives rise to the following problem:

Consider a set of vectors S = {v ∈ Rd}, |S| = k and their objective function values αT v.
We are interested in determining an ordering v(1), v(2), . . . v(k) of the vectors in S as well as
a respective sequence of error bounds err(1) ≥ err(2) ≥ · · · ≥ err(k) = 1, such that for any
optimization direction α = (α1, . . . , αd), αi ∈ R+

0 :

min
j≤i

αT v(j)

min
v∈V

αT v
≤ err(i)

that is, when only considering the first i vectors, we will never experience an objective
function value worse than a factor err(i) than the optimum, no matter how the optimization
direction α is chosen.

Clearly, any ordering of S will yield a monotonously decreasing sequence of error bounds,
yet it is desirable to find an ordering where the errors drop as quickly as possible.

3.1 Two Greedy Strategies
In the following we present two greedy strategies to compute such an ordering. They both
make use of a subroutine which for a given set of vectors S′ ⊂ S and an additional vector
w /∈ S′ computes the maximum relative approximation error of S′ with respect to w, that is,
how much worse the objective function value can get if S′ is used to represent w. We will
elaborate on this subroutine in the next subsection but treat it as a black box for now and
denote by Terr(k) the running time of this subroutine for a set of size k.

Iterative Error Minimization (bestNext). Assume we have already determined the first
i− 1 vectors S(i−1) := v(1), . . . , v(i−1) in this ordering. As next vector v(i) we want to choose
the one in S − S(i−1) which minimizes the maximum relative error with respect to the
remaining set. We can do so by iterating through all vectors v ∈ S − S(i−1) and computing
the maximum relative approximation error of the set S(i−1) ∪ {v} with respect to each
w ∈ S − (S(i−1) ∪ {v}). As next v(i) we choose the candidate v minimizing this maximum
relative approximation error. The error bound err(i) is set accordingly. For |S| = k, O(k2)
calls to the black box subroutine are necessary to determine v(i). So in O(k3Terr(k)) time
the ordering of S can be computed. Note that if for each v ∈ S − S(i−1) we remember its
relative error wrt S(i−1), very often a call to the black box subroutine is not necessary if this
’old’ relative error is below the worst relative error already found, effectively reducing the
total running time to O(k2Terr(k)) in practice.

Worst-Error Next (worstNext). The number of calls to the black box subroutine might be
prohibitive for very large sets S. The following alternative greedy strategy also produces an
ordering using considerably less calls to the black box subroutine.

Again we assume that we have already determined the first i − 1 vectors S(i−1) :=
v(1), v(2), . . . v(i−1) in this ordering. As next vector v(i) we choose a v′ ∈ S − S(i−1) for
which the relative approximation error of S(i−1) with respect to v′ is maximized; err(i) is set
accordingly. This requires O(k) calls to the black box subroutine and hence O(k2Terr(k))
time to compute the ordering of S. As in the previous approach, calls to the black box

SEA 2017

18:8 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

subroutine can often be saved if the ’old’ relative errors are memorized, effectively reducing
the running time in practice.

3.2 Bounding the Relative Approximation Error
Consider a set of vectors S′ = {u(1), . . . u(k)} and an additional vector w /∈ S′. We are
interested in the maximum relative approximation error of U with respect to w or more
formally:

errrel = max
α

min
u∈S′

uTα

wTα
.

We will compute errrel indirectly by determining the minimal factor δ ≥ 1 such that the
vector δw is superfluous in (can be pruned from) the set U ∪ {δw} without affecting the
optimum objective function value for any α. Since δ contributes linearly to the objective
function, the minimal δ is exactly the relative approximation error errrel, since then

max
α

min
u∈S′

uTα

δwTα
= 1.

Determining whether a vector can be pruned from a set has been characterized in [12] as
follows:

I Lemma 1. A vector v ∈ Rd can be pruned from a set of vectors S ⊂ Rd if a convex
combination v′ of other vectors from S dominates v.

Here domination refers to component-wise ≤.
Based on this Lemma and similarly to [12] we search for a convex combination u′ of the

k vectors in S′ dominating the vector δw, minimizing δ.

min δ (1)

γ1u
(1) + γ2u

(2) + . . . γku
(k) ≤ δw (2)∑
γi = 1 (3)

γi ≥ 0 (4)

Note that the ≤ in inequality (2) is to be understood component-wise in each of the d
dimensions. Clearly, this LP has a feasible solution (just choose δ large enough). Since its
dual is a linear program with O(k) constraints in O(d+ 1) variables, theoretically it can be
solved in O(k) time for fixed d using approaches like see [17]. In practice, state-of-the-art
linear programming solvers suffice to quickly compute an optimum solution.

3.3 Query Answering with an Approximation Guarantee
We will use the introduced greedy strategies to sort the cost vectors for each shortcut
and remember the approximation factor for each prefix. Then, in a query with desired
approximation factor δ, we only consider the cost vectors on each shortcut until the respective
approximation factor is at least as good as δ. In that way, it is guaranteed that the outputted
path in the end has costs at most δc∗ with c∗ being the optimal costs. Note, that it does
not make sense to apply the sorting schemes to shortcuts with only a few cost vectors,
as the potential for saving is small but we introduce some space overhead by storing the
approximation factors.

S. Funke, S. Laue, and S. Storandt 18:9

4 Experimental Results

We implemented the new CH preprocessing technique as well as the algorithms to obtain
adaptive approximation guarantees in C++ (g++ 6.2.0). The edge costs as well as the
weights c, α are represented as doubles. Performance was measured on a single core of an
Intel Xeon CPU E3-1225v3 with 3.20GHz and 32GB RAM running Ubuntu Linux 16.10. For
solving LPs we called the GLPK library in version 4.60.

4.1 Benchmark
We use the street network of Germany with 22,046,972 and 44,702,123 edges extracted from
OSM2 as a benchmark graph. As in [12], we constructed the following ten meaningful metrics:
distance (euclidean distance with a precision of 1 meter), travel time (in seconds), positive
height difference with the elevations of nodes in the road network being computed using
SRTM data3 (precision of one meter, 0 for downhill edges), distance on large/medium/small
roads using OSM road categories as basis (allowing to penalize e.g. large streets which tend to
be more crowded, or small village streets as they might be too narrow), gas price according
to the formula in [13] (with one-tenth of a cent as basic unit), energy consumption for electric
vehicles (in Watt) , unit (uniformly 1 per edge) allowing to distinguish between curvy and
rather straight routes as in OSM curves are typically modeled by many small edges while
long straight roads consist of few edges only, and quietness penalizing large roads and roads
in dense road clusters (indicating city centers), with the penalty being proportional to the
length of such a road, and zero for all others. We make the graph with all metrics available
at https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0.

4.2 LP-based Contraction Hierarchy
We first investigate the performance of our new CH construction variant which uses linear
programming with a Dijkstra-based oracle for efficiently deciding which shortcuts are necessary.
We compare it to the previous version of CH which used a convex hull approach to decide the
importance of a shortcut [11]; and to the CH variant based on customizable route planning
where shortcuts are inserted independently of the metric and coated with cost vectors in a
second preprocessing phase followed by some basic pruning, see [12]. We refer to these three
variants as LP-CH (linear programming CH), H-CH (hull CH), and PC-CH (personalized
customizable CH). For d = 1, we just use conventional CH.

4.2.1 Preprocessing
In Table 1, we provide the preprocessing time as well as the number of edges in the CH-graph
and the number of cost vectors for all variants. We make the following observations: While
H-CH is only applicable up to d = 3, LP-CH can also be computed for d = 10. The resulting
graphs for H-CH and LP-CH are unsurprisingly similar. LP-CH is more efficiently computable
for d = 2 as we use a simple oracle before actually starting the LP solver: We just compute
the optimal path for all d possible α with a single 1 entry first. If the shortcut represents
one of those paths, we add it to the graph. If one of those paths dominates the shortcut, we
are sure the shortcut is unnecessary. Only if both cases do not apply, we start the LP-based

2 openstreetmap.org
3 http://srtm.csi.cgiar.org/

SEA 2017

https://www.dropbox.com/s/tclrjdkfhabu27h/ger10.zip?dl=0
openstreetmap.org
http://srtm.csi.cgiar.org/

18:10 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

Table 1 Preprocessing results for real metrics. For d = 2, the process was stopped after 99.95%
nodes were contracted, for d = 3 after 99.75% and for d = 5, d = 10 after 99% (to make PC-
CH applicable). Timings are given in minutes, for # edges/vectors the ’m’ denots millions. For
comaprison, a CH for d = 1 can be constructed (with full contraction) in less than 10 minutes
resulting a graph with 84.1 million edges.

LP-CH H-CH PC-CH
d #edges #vectors time #edges #vectors time #edges #vectors time
2 85.6m 86.3m 25 85.6m 86.2m 46 94.5m 94.8m 24
3 84.1m 86.1m 32 84.2m 86.1m 23 89.3m 90.3m 28
5 75.2m 79.7m 28 - - - 84.4m 90.7m 47
10 76.4m 82.4m 56 - - - 84.4m 91.0m 152

algorithm described in Section 2.2. For d = 2, this reduces the number of LPs to solve
significantly. Hence LP-CH is faster here as H-CH. For d = 3, more LPs have to be solved
and the convex hull approach used for H-CH is slightly more efficient. In comparison to
PC-CH, LP-CH leads to significantly smaller graphs. More advanced vector and edge pruning
techniques could reduce the number of edges and vectors in the PC-CH graph further, but
we observe that the preprocessing times are already worse for PC-CH for larger d. Also,
further contraction of nodes for high values of d was completely impossible for PC-CH as the
number of vectors grows too quickly. For LP-CH on the other hand, we could continue the
contraction process up to 99.5% of the nodes. For d = 5 this took 32 minutes and resulted
in a graph with 86.0 million vectors, for d = 10 it took about 2 hours and the final graph
contained 92.6 million vectors. Note, that there might be some superfluous vectors contained
in our LP-CH graphs as we allowed at most 100 LPs to be solved per shortcut in question,
and just inserted the shortcut if we had no conclusive answer so far. Also, to accommodate
for not having exact arithmetic on real numbers, we not only inserted a shortcut if it has
exactly the optimal cost c∗ for some α but also if the costs were less than c∗ + ε with ε being
an upper bound on the error that might occur.

4.2.2 Query Answering
Next, we compare LP-CH to PC-CH in terms of query processing efficiency. We measure
speed-up towards the bi-directional Dijkstra in the original graph. Our results for varying d
are summarized in Table 2. We observe that LP-CH outperforms PC-CH for all choices of d
but the advantage decreases with higher dimension. While the PC-CH graph contains many
more edges and vectors than the LP-CH graph, the query times for larger d are dominated
by the relaxation of few shortcuts with large cost vector sets for both approaches. For d = 5,
the LP-CH graph contains shortcuts with 455 vectors, for PC-CH up to 986 vectors. Figure 1
shows the distribution of the vector set sizes. Indeed, most of the shortcuts have very small
vector sets. But the few with large sets are typically shortcuts between important nodes
(contracted late in the preprocessing) and hence are contained in the search space of many
long-distance queries. Therefore, if the the set sizes of such shortcuts can be reduced – as
envisioned with our approximation framework – the query times can be further improved.

4.3 Adaptive Approximation via Vector Ordering
In Section 3 we have devised two strategies for ordering the vector set associated with a
shortcut edge which are evaluated in the following.

As initial test data we used randomly generated (non-dominated) vector sets in 5 and 10
dimensions, as well as actual vector sets as constructed by our LP-CH; the results can be

S. Funke, S. Laue, and S. Storandt 18:11

Table 2 Query results (averaged over 100 source-target pairs) for randomly chosen α vectors. A
poll refers to an extraction operation from the priority queue. For LP-CH and PC-Ch we list the
improvements towards the Dijkstra baseline.

Dijkstra LP-CH PC-CH
d time (ms) polls speed-up poll ratio speed-up poll ratio
2 5,192 1.4 · 107 425 616 112 286
3 5,617 1.4 · 107 311 422 98 224
5 6,357 1.5 · 107 118 259 87 185

10 7,126 1.6 · 107 71 192 54 174

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 0 50 100 150 200 250 300 350 400 450

Figure 1 Number of shortcuts in dependency of the vector set size. The y-axis is in logscale.

seen in Table 3 (averages taken over 10 runs each). For example, inspecting only the first 32
vectors of a 10 dimensional vector set of size 130 guarantees on average an approximation ratio
of 2.75 for the worstNext strategy and 2.90 for the bestNext strategy. Computing the former
ordering took 23ms, the latter 873ms on average. As to be expected, the bestNext strategy
takes considerably longer time, but sometimes yields better approximation guarantees when
only considering very few vectors. We also see that random instances hardly mimic the
instances actually appearing as vector sets of shortcuts due to the LP-CH construction. This
is also comes as no surprise given the rather strong correlation between certain metrics in
the real-world data. For the real-world instances, looking at the first 32 (out of 130) vectors
yields almost perfect results (with an error below 1.0001). Just for comparison, using a
random order leads to considerably worse approximation factors (e.g., 65 vs. 2.75 and 2.90
for the example mentioned above).

For our LP-CH we used the worstNext approach due to its quicker construction times
compared to bestNext. We only considered shortcuts with 10 or more vectors for the ordering
approach. There were less than 200, 000 such edges for all d. The results are given in Table 4.
The additional preprocessing time is less than the time to compute the LP-CH in the first
place. We see that already a very small set of vectors represent all vectors well, illustrated by
the number of vectors necessary to guarantee an approximation factor of less than 1.001. We
observe that in practice, the approximation factor is often even better, as parts of the path
over shortcuts with small vector sets are exact and also the approximation factor computed
by our approach assumes the worst possible α, which of course might not be the actual choice
of the user.

We also observe that we indeed achieve larger speed-ups even for the very tight approx-
imation factor of δ = 1.001. This is more pronounced for larger dimensions d, where we have

SEA 2017

18:12 Personal Routes with High-Dim. Costs and Dynamic Approximation Guarantees

Table 3 Performance of ordering for random and real-world vector sets of size k = 130 (averaged
over 10 runs each).

d = 5, random d = 10, random d = 10, real-world
worstNext bestNext worstNext bestNext worstNext bestNext

err2 4894.6100 918.6600 319.2000 159.8840 4.0977 1.8349
err4 739.4000 141.3070 86.1920 54.0640 1.2210 1.1787
err8 37.0480 28.3280 22.4890 21.1100 1.0338 1.0227
err16 6.4786 7.5151 6.2003 7.0924 1.0042 1.0037
err32 2.5864 2.9134 2.7582 2.9043 1.0000 1.0000
err64 1.4722 1.4895 1.6170 1.6364 1.0000 1.0000
err128 1.0094 1.0093 1.0184 1.0184 1.0000 1.0000
time 18ms 916ms 23ms 873ms 11ms 990ms

Table 4 Effect of vector reordering and approximate query answering. The ordering time (in
minutes) is the total time taken by worstNext to reorder vectors and compute approximation
guarantees for all shortcuts with at least 10 vectors. The avg. and max until good count the number
of vectors after reordering until an approximation factor of 1.001 was achieved. The speed-up is
then computed as average over 100 queries with δ = 1.001.

d ordering time avg. until good max until good speed-up
2 < 1 4.1 15 478
3 5 6.5 20 357
5 14 8.4 22 176

10 23 12.1 47 131

larger cost sets per vector and hence save more by restricting us to looking at only a few of
the vectors. So accepting only slightly suboptimal result, we achieve a speed-up of over 100
for d = 10 which was not possible before. We want to emphasize, that the approximation
factor δ can be chosen per query, hence even faster query times can be achieved by relaxing
δ, or more precise results at the cost of an increased running time.

5 Conclusions and Future Work

We introduced a new CH variant for the personalized route planning problem which allows
to deal with more metrics than previous methods while exhibiting manageable preprocessing
times and better speed-ups than approaches based on customization. But even with our new
approach, the speed-up decreases considerably for a growing number of metrics, as large
vector sets have to be inspected during query answering. As a remedy, we introduced a new
scheme which allows to sort vectors in a way that the maximum relative error is guaranteed
to be small when only few vectors are investigated. This scheme might be of independent
interest and turn out to be useful in other scenarios with complicated edge costs or edge cost
functions, as e.g. in time-dependent route planning. We experimentally proved that small
approximation factors already allow to decrease the query times significantly.

In future work, it should be investigated if the reordering could be applied already during
the preprocessing to accelerate it and maybe also allow for a later stop in the contraction
process, which in turn might lead to better query times.

S. Funke, S. Laue, and S. Storandt 18:13

References
1 Hannah Bast, Mirko Brodesser, and Sabine Storandt. Result diversity for multi-modal

route planning. In ATMOS-13th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems, volume 33, pages 123–136, 2013.

2 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing multimodal journeys in practice. In Proc. 12th International Symposium on
Experimental Algorithms (SEA), pages 260–271. Springer, 2013.

3 Daniel Delling, Andrew V. Goldberg, Moises Goldszmidt, John Krumm, Kunal Talwar, and
Renato F. Werneck. Navigation made personal: Inferring driving preferences from GPS
traces. In Proc. 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, page 31. ACM, 2015.

4 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning. In Proc. 10th International Symposium on Experimental Algorithms (SEA),
pages 376–387. Springer, 2011.

5 Daniel Delling, Moritz Kobitzsch, and Renato F. Werneck. Customizing driving directions
with GPUs. In Proc. 20th European Conference on Parallel Processing (EuroPar), pages
728–739. Springer, 2014.

6 Daniel Delling and Renato F. Werneck. Faster customization of road networks. In Proc.
12th Int. Symposium on Experimental Algorithms (SEA), volume 13, pages 30–42. Springer,
2013.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies.
In Proc. 13th Int. Symposium on Experimental Algorithms (SEA), pages 271–282, 2014.

8 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Fast exact shortest path and distance
queries on road networks with parametrized costs. In Proc. 23rd SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, page 66. ACM, 2015.

9 Stefan Funke, Sören Laue, and Sabine Storandt. Deducing individual driving preferences
for user-aware navigation. In Proc. 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, page 14. ACM, 2016.

10 Stefan Funke, André Nusser, and Sabine Storandt. On k-path covers and their applications.
Proceedings of the VLDB Endowment, 7(10), 2014.

11 Stefan Funke and Sabine Storandt. Polynomial-time construction of contraction hierarchies
for multi-criteria objectives. In Proc. 15th Meeting on Algorithm Engineering and Experi-
ments, ALENEX 2013, pages 41–54, 2013.

12 Stefan Funke and Sabine Storandt. Personalized route planning in road networks. In
Proc. 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, page 45. ACM, 2015.

13 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route planning with flexible
objective functions. In Proc. 12th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 124–137, 2010.

14 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012.

15 Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search
meets graph theory. In Proc. 16th Annual ACM-SIAM Symposium on Discrete algorithms,
SODA’05, pages 156–165, Philadelphia, PA, USA, 2005. Society for Industrial and Applied
Mathematics.

16 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

17 Raimund Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann. Symp.
on Computational Geometry (SCG), pages 211–215, New York, NY, USA, 1990. ACM.

SEA 2017

Consumption Profiles in Route Planning
for Electric Vehicles: Theory and Applications∗

Moritz Baum1, Jonas Sauer2, Dorothea Wagner3, and
Tobias Zündorf4

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
moritz.baum@kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
jonas.sauer@student.kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dorothea.wagner@kit.edu

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
zuendorf@kit.edu

Abstract
In route planning for electric vehicles (EVs), consumption profiles are a functional representation
of optimal energy consumption between two locations, subject to initial state of charge (SoC).
Efficient computation of profiles is a relevant problem on its own, but also a fundamental ingredi-
ent to many route planning approaches for EVs. In this work, we show that the complexity of a
profile is at most linear in the graph size. Based on this insight, we derive a polynomial-time algo-
rithm for the problem of finding an energy-optimal path between two locations that allows stops
at charging stations. Exploiting efficient profile search, our approach also allows partial recharg-
ing at charging stations to save energy. In a sense, our results close the gap between efficient
techniques for energy-optimal routes (based on simpler models) and NP-hard time-constrained
problems involving charging stops for EVs. We propose a practical implementation, which we
carefully integrate with Contraction Hierarchies (CH) and A* search. Even though the practical
variant formally drops correctness, a comprehensive experimental study on a realistic, large-scale
road network reveals that it always finds the optimal solution in our tests and computes even
long-distance routes with charging stops in less than 300ms.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases electric vehicles, charging station, shortest paths, route planning, profile
search, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.19

1 Introduction

Route planning services explicitly designed for EVs have to address specific aspects, since
EVs usually employ a rather limited cruising range. We study the problem of computing
routes that minimize energy consumption, in order to maximize cruising range and for drivers
to overcome range anxiety (the fear of getting stranded). This imposes nontrivial challenges.
Recharging en route may become inevitable on long-distance trips. Given that charging
stations are scarce, such stops need to be planned in advance [7, 42]. Moreover, EVs can
recuperate energy (e. g., when going downhill), but the battery capacity limits the amount

∗ Tobias Zündorf’s research was supported by DFG Research Grant WA654/23-1.

© Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Consumption Profiles in Route Planning for Electric Vehicles

of recuperable energy [9, 18, 36]. As a result, the energy-optimal route depends on the
initial SoC. This dependency is captured by the notion of (consumption) profiles, which
map SoC (at the source) to (minimum) energy consumption that is necessary to reach the
target [9, 18, 38]. Profiles are relevant in many applications, where the SoC at the start of a
journey is either unknown or can be decided by the driver, e. g., when charging overnight.
Moreover, they are an important ingredient of speedup techniques, where preprocessing is
applied to the input network for faster query times [7, 9, 18].

In this work, we examine the complexity of consumption profiles in road networks. Fur-
thermore, we discuss an important application that requires efficient computation of profiles,
namely, energy-optimal routes with intermediate charging stops. Even when optimizing
for energy consumption only, the integration of charging stations into route planning is
a nontrivial task: Recharging to a full battery at a charging station can be wasteful if it
prevents the battery from recuperating energy on a downhill ride later on. Hence, profiles
help in deciding the optimal amount of energy to be recharged at a station.

Related Work. Classic route planning approaches apply Dijkstra’s algorithm [17] to a graph
representation of the network, with fixed scalar edge costs representing, e. g., travel time.
For faster running times in practice, speedup techniques [4] accelerate online shortest-path
queries with data preprocessed in an offline phase. Examples of such techniques are CH [20],
where vertices are contracted iteratively and replaced by shortcuts in the graph, and variants
of A* search [21, 24]. Combining both techniques, Core-ALT [6] contracts most vertices and
runs A* on the remaining core graph. Some techniques were also extended to more complex
scenarios, such as time-dependent cost functions [5, 10, 12, 14]. In this context, a profile
query asks for a functional representation of travel time between locations for any departure
time. Such functions may have superpolynomial complexity [19], but can be computed by an
output-sensitive search algorithm [11, 15]. See Bast et al. [4] for a more complete survey.

Regarding route planning for EVs, computing routes that minimize energy consumption
requires the integration of battery constraints into Dijkstra’s algorithm and adaptation of
speedup techniques for fast queries [9, 18, 36]. Eisner et al. [18] observe that consumption
profiles have constant complexity for a fixed path. Subsequent works consider general profiles
possibly comprising multiple paths [9, 38], but their complexity has not been studied. Stops
at charging stations are often considered under the simplifying assumptions that the charging
always results in a fully recharged battery [22, 32, 40, 41, 42, 43]. Routes with a minimum
number of intermediate charging stops can then be computed in less than a second on
subcountry-scale graphs [41, 42]. More complex models also consider constraints on time
spent driving [8, 30] and recharging [7, 27, 31, 33, 44, 45], but this results in much more
difficult (typically NP-hard) problems and proposed techniques are inexact or impractical.

Contribution and Outline. In Section 2, we formally introduce our model, describe problem
variants, and recap basic algorithmic ingredients needed to solve them. In Section 3, we
investigate the complexity of consumption profiles. As our main result, we prove that such
profiles have linear complexity—much in contrast to profiles in time-dependent routing, which
can have superpolynomial size [19]. This enables us to compute profile search efficiently—an
algorithm relevant in various query scenarios and a crucial ingredient for many speedup
techniques. In Section 4, we consider energy-optimal routes that allow stops at charging
stations to recharge the battery. Unlike previous studies [22, 40, 41], we do not assume that
using a charging station always results in a fully recharged battery. Instead, we allow the
charging process to be interrupted beforehand to save energy. Building upon our theoretical

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:3

findings, we derive a polynomial-time algorithm to solve the problem. To make the approach
fast in practice, we propose a (heuristic) variant and integrate it with CH [18, 20] and A*
search [24]. Section 5 presents our experimental study, in which we demonstrate that our
algorithm (empirically) obtains optimal results for all queries in well below a second after
moderate preprocessing effort. We conclude with final remarks in Section 6.

2 Model, Query Variants, and Basic Algorithms

We model the road network as a directed graph G = (V,E). Energy consumption along edges
is given by the cost function c : E → R. Consumption can be negative to model recuperation,
but cycles with negative consumption are physically ruled out. An EV is equipped with a
battery of limited capacity M ∈ R≥0. Given the current SoC bu ∈ [0,M] of a vehicle at a
vertex u ∈ V , traversing an edge (u, v) ∈ E typically results in the SoC bv = bu− c(u, v) at v.
However, we also take battery constraints into account: The SoC bv must neither exceed the
limit M , nor drop below zero [1, 2, 18]. Thus, if the consumption c(u, v) of an edge (u, v)
exceeds the SoC bu at u, the edge cannot be traversed, as the battery would run empty along
the way. We indicate this case by setting bv := −∞. Conversely, if the battery is (almost)
fully charged, passing an edge with negative consumption cannot increase the SoC beyond
the maximum value M , so we obtain bv ≤ M . Given some initial SoC bs at the source
vertex s, we say that an s–t path P = [s, . . . , t] in G is feasible if and only if the battery
never runs empty, i. e., the SoC bv obtained at every vertex v of P after iteratively applying
above constraints is within the interval [0,M]. Note that a path may be infeasible even if
its cost (i. e., the sum of its consumption values) does not exceed bs: Due to negative edge
weights, there might be a prefix of greater total cost that renders the path infeasible. Given
the SoC bt at the target t of a feasible path, the energy consumption on the path is bs − bt.
This value can become negative, due to recuperation.

For the sake of simplicity and without loss of generality, we assume in this work that
c(e) ∈ [−M,M] for all edges of the input graph. Moreover, we assume that shortest paths
(wrt. the cost function c) between arbitrary pairs of vertices are unique.

Profiles. Given two vertices s ∈ V and t ∈ V of the input graph G, we define the SoC
function f : [0,M] ∪ {−∞} → [0,M] ∪ {−∞}, also called SoC profile or s–t profile, which
maps SoC at the source s to the maximum SoC at the target t (after traversing any s–t path
in G). We define f(−∞) := −∞. SoC functions are piecewise linear, so we use a sequence
F = [(x1, y1), . . . , (xk, yk)] of breakpoints to define f , such that f(b) = −∞ for b < x1,
f(b) = yk for b ≥ xk, and f(b) is obtained by linear interpolation in all other cases.

For some s–t path P , we denote by fP the profile of P , i. e., the SoC function that maps
initial SoC at s to the resulting SoC at t after traversing P . Given the SoC functions fP

and fQ of two paths P and Q, we say that fP dominates fQ (similarly, P dominates Q) if
fP (b) ≥ fQ(b) for all b ∈ [0,M].

To give a simple example, consider the SoC function f[u,v] induced by an edge (u, v) ∈ E.
Given the cost c(u, v) of the edge, battery constraints yield

f[u,v](b) :=

−∞ if b− c(u, v) < 0,
M if b− c(u, v) > M,

b− c(u, v) otherwise.

The function f[u,v] is represented by the sequence F[u,v] = [(c(u, v), 0), (M,M − c(u, v))] if

SEA 2017

19:4 Consumption Profiles in Route Planning for Electric Vehicles

c(u, v) ≥ 0 is nonnegative, and F[u,v] = [(0,−c(u, v)), (M + c(u, v),M)] otherwise. In both
cases, the function consists of two breakpoints.

Query Variants. Typically, there are two problem variants of interest. First, an SoC query
consists of a source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0,M]. It asks for a (single)
energy-optimal s–t path when departing at s with SoC bs, i. e., a path that maximizes the
SoC bt at t (and minimizes the consumption bs− bt). Second, a profile query does not take bs

as input, but asks for an s–t profile, i. e., the optimal value bt for every initial SoC bs ∈ [0,M].

Basic Algorithms. SoC queries can be answered by a variant [1, 2] of Dijkstra’s algorithm
that handles battery constraints on-the-fly, using explicit checks. However, the algorithm
is label correcting, i. e., negative edge costs may cause (exponentially many) re-scans of
vertices [28]. Potential shifting [29] can remedy this, making use of a potential function
π : V → R on the vertices with the property that c(u, v) − π(u) + π(v) ≥ 0 holds for
all (u, v) ∈ E. Then the search becomes label setting when using the reduced cost function
c(u, v)− π(u) + π(v), i. e., each vertex is scanned at most once. Distances wrt. the original
cost function are maintained and battery constraints can still be applied on-the-fly [18, 36].
We refer to this algorithm as EV Dijkstra (EVD).

Profile search [9, 37, 38] is a label-correcting algorithm that answers profile queries.
Starting from the source vertex s ∈ V , the algorithm maintains, for each vertex v, a
(tentative) s–v profile fv. It initializes fv ≡ −∞ for all v ∈ V , except fs = id. It adds s
to a priority queue, which uses the value minb∈[0,M]{b − fv(b)} as key of a vertex v, i. e.,
the minimum energy consumption of its SoC function. In each step of the main loop, the
algorithm extracts a vertex u with minimum key from the queue (thereby scanning it) and
proceeds along the lines of Dijkstra’s algorithm: Incident outgoing edges e = (u, v) are
scanned by computing the composition f = fe ◦ fu. Afterwards, it sets fv = max(fv, f), i. e.,
the pointwise maximum of fv and f , and updates v in the priority queue, if its key changed.
After termination, the label fv of every vertex v ∈ V is the s–v profile.

3 On the Complexity of Profiles

In this section, we first examine characteristics of SoC functions of single paths. Then, we
show that the complexity (i. e., number of breakpoints) of general SoC functions is linear
in the number |V | of vertices in the graph. An alternative notion that is common in the
literature [7, 8, 9, 18] utilizes consumption profiles g(·), which map initial SoC to energy
consumption between two vertices. We obtain the relation f(b) = b− g(b), hence our insights
on the complexity of SoC profiles carry over to consumption profiles directly.

Profiles Representing Paths. Given an s–t path P , Eisner et al. [18] show that the number
of breakpoints of the SoC function fP is bounded by a constant. Below, Lemma 1 recaps
this fundamental insight, but also provides a full specification of the SoC function of a single
path based on the costs of certain subpaths. We begin by defining important subpaths of an
s–t path P . First, let P+

s denote the maximum prefix of P , i. e., the prefix of P that has
maximum cost c(P+

s) wrt. energy consumption among all its prefixes. (Recall that the cost
of a path is defined as the sum of its edge costs, hence, battery constraints do not apply.)
If every prefix of P (including P itself) is negative, we obtain P+

s = [s] and c(P+
s) = 0.

Similarly, the minimum prefix P−s minimizes the cost c(P−s) among all prefixes of P . We
obtain P−s = [s] and c(P−s) = 0 in case every prefix of P is positive. The maximum suffix

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:5

s

t
1

−2
1

2
−1

P +
s P−t

P−s P +
t

(a) An s–t path with depicted edge costs.

c(P +
s)

c(P +
t)

−c(P−t)

−c(P−s)

1 2 3 4 5
0

1

2

3

4

5

−∞

(b) The corresponding SoC function.

Figure 1 An s–t path together with its SoC function, assuming that the battery capacity is M = 5.
The cost of the path is 1 and its important subpaths are indicated. Relative vertical positions of
vertices correspond to costs of subpaths starting or ending at the respective vertex. The coordinates
of breakpoints in the profile are equal to the costs of certain important subpaths.

P+
t and minimum suffix P−t are defined symmetrically. For the sake of simplicity, we assume

that P contains no subpath with cost 0 consisting of more than one vertex (this can be
enforced by perturbation of edge costs). Thus, the subpaths above are uniquely defined.
Moreover, observe that P = P−s ◦ P+

t = P+
s ◦ P−t ; see Figure 1.

Lemma 1 shows that the SoC function fP (defined by its breakpoints) of a path P is
completely determined by the costs of its important subpaths. At most two breakpoints are
necessary to represent the SoC function. It has a characteristic form: It consists of a first
part with infinite consumption (the path is infeasible for low SoC), followed by a segment
with slope 1 (the consumption is constant, thus SoC at t increases with SoC at s), and a
last segment of constant SoC (for high values of initial SoC, the battery is fully charged at
some point due to recuperation). Each of these three intervals may collapse to a single point.
The segment with slope 1 is also called the characteristic segment of the SoC function. An
example of a path and its SoC function is depicted in Figure 1.

I Lemma 1. Given an s–t path P , its SoC function fP is a piecewise linear function. It is
defined by a sequence F of breakpoints in the following way.
1. If there exists a subpath of P with cost greater than M , F = ∅ and fP ≡ −∞.
2. Otherwise, if there is a subpath of P with cost below −M , F = [(c(P+

s),M − c(P+
t))].

3. If neither such subpath exists, F = [(c(P+
s),−c(P−t)), (M + c(P−s),M − c(P+

t))].

General Profiles. For a pair of vertices s and t, different paths may be the optimal choice
for different values of initial SoC; see Figure 2. Therefore, a general SoC function is the
upper envelope of a set of SoC functions, each corresponding to a single path. We say that
an s–t path contributes to the s–t profile if it is optimal for some initial SoC. We bound the
number of breakpoints in the SoC function subject to the number of contributing paths. The
following Lemma 2 is a direct implication of the observations by Atallah [3]. (In general, the
number of breakpoints in the upper envelope of linear functions can be superlinear [46].)

I Lemma 2. Given the set P of all contributing paths of an s–t profile, the number of
breakpoints in the SoC function is linear in |P|.

Since the number of s–t paths can be exponential in the graph size, Lemma 2 does not
yield an immediate polynomial bound on the complexity of the s–t profile. Note that in the

SEA 2017

19:6 Consumption Profiles in Route Planning for Electric Vehicles

s t

−1 2

2
−5

3

(a) Graph with vertices s and t.

1 2 3 4 5 6
0

1

2

3

4

5

−∞

(b) The corresponding SoC function.

Figure 2 The SoC profile of given vertices s and t. The battery capacity is M = 6. The dashed
segment indicates dominated parts of the SoC function of the upper s–t path.

related scenario of time-dependent profiles, it was shown that the number of contributing
paths can actually become superpolynomial in the graph size [19]. In contrast, we now show
that the number of breakpoints of an SoC function is in fact linear in the number of vertices
of the input graph in the worst case.

We start with basic properties of paths and their SoC functions. Lemma 3 claims that
a path P dominates another path Q if it is shorter (wrt. the cost function c) and both its
maximum prefix and maximum suffix are shorter than the respective subpaths of Q. This
follows immediately from the structure of SoC functions and is illustrated in Figure 3.

I Lemma 3. Let P and Q be two s–t paths, such that c(P+
s) ≤ c(Q+

s), c(P+
t) ≤ c(Q+

t),
and c(P) ≤ c(Q). Then the SoC function fP of P dominates the SoC function fQ of Q.

As argued above, certain subpaths of an s–t path P are relevant to determine the
corresponding profile. We add the following definitions. The bottom vertex v− is the last
vertex of the minimum prefix (and the first vertex of the maximum suffix) of P . Similarly,
the top vertex v+ denotes the last vertex of the maximum prefix (and the first vertex of
the minimum suffix) of P . We call v− and v+ the important vertices of P . We presume
that v− 6= v+, which always holds except in the trivial case s = t. The important vertices
then separate P into three subpaths. (In case s or t are important vertices, one or two of
these subpaths may consist of a single vertex.) Moreover, we distinguish two types of paths,
depending on the order of appearance of important vertices. A path is called top-bottom path
if v+ appears before v−, otherwise it is a bottom-top path. Lemma 4 states that prefixes and
suffixes of contributing paths are uniquely defined by their corresponding important vertices.

I Lemma 4. Given two vertices s ∈ V and t ∈ V , let v ∈ V be an arbitrary fixed vertex. All
paths of the same type contributing to the s–t profile with v as their first important vertex
share the same s–v subpath. Moreover, all contributing paths of the same type with v as their
second important vertex share the same v–t subpath.

Proof. Assume for contradiction that there are two contributing paths P and Q of the same
type, such that the first important vertex of each path is v, but their respective s–v subpaths
differ. Without loss of generality, let the s–v subpath of P be shorter. We replace the
s–v subpath of Q by the subpath of P , which yields a modified path Q′. Clearly, the total
length of Q′ is below the length of Q, i. e., c(Q′) < c(Q). At the same time, neither the
maximum prefix nor the maximum suffix of Q′ exceeds the cost of the respective subpath

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:7

x = c(P +
s)

y = M − c(P +
t)

x− y = c(P)

1 2 3 4
0

1

2

3

4

−∞

Figure 3 Dominated area of an SoC function, for a path P with c(P) = −1. Its maximum prefix
and maximum suffix have cost c(P +

s) = c(P +
t) = 1. The costs induce three lines, each of which

subdivides the Euclidean plane into two half planes. The SoC function of a path Q with c(Q) ≥ c(P),
c(Q+

s) ≥ c(P +
s), and c(Q+

t) ≥ c(P +
t) lies in the shaded intersection of three of these half planes.

of Q. By Lemma 3, the modified path Q′ dominates Q, contradicting the assumption that Q
is a contributing path.

Similarly, we can replace the v–t subpath in one of two paths of the same type that share
the second important vertex v by a shorter v–t subpath. Again, we obtain a new path that
is shorter, while the lengths of its maximum prefix and suffix do not increase. Hence, at least
one of the two paths does not contribute to the profile. J

Below, Lemma 5 shows that together with their order in the path, pairs of important
vertices uniquely define contributing paths of the same type. Note that this already implies
that there are at most O(|V |2) paths contributing to an s–t profile. Afterwards, we use a
somewhat more sophisticated argument to show that the number of breakpoints is at most
linear in the number of vertices.

I Lemma 5. Let s ∈ V , t ∈ V , v− ∈ V , and v+ ∈ V be four vertices of the input graph.
There is at most one bottom-top path contributing to the s–t profile that has v− as its bottom
vertex and v+ as its top vertex. Similarly, at most one contributing top-bottom path has v+

as its top vertex and v− as its bottom vertex.

Proof. Assume for contradiction that there exist two distinct contributing s–t paths P
and Q, such that both are bottom-top paths, their bottom vertex is v−, and their top vertex
is v+. By Lemma 4, we know that P and Q share the same s–v− subpath and the same
v+–t path. Hence, their v−–v+ subpaths must differ. Without loss of generality, let the
v−–v+ subpath of P be shorter. Apparently, the total cost of the path P is lower than
the cost of Q, i. e., c(P) < c(Q). Similarly, the cost of the maximum prefix (suffix) of P is
at most the cost of the maximum prefix (suffix) of Q. By Lemma 3, this implies that P
dominates Q, contradicting the fact that Q contributes to the optimal solution. The other
case is symmetric, so the claim follows. J

Using a somewhat more sophisticated argument, Theorem 6 shows that the number of
breakpoints is at most linear in the number of vertices. It is easy to construct an example
where the number of breakpoints in the SoC function is in fact linear in |V |, so this bound is
tight up to a constant factor. This also enables profile search to run in O(|V |2 log |V |) time.

I Theorem 6. Given a source s ∈ V and a target t ∈ V in the input graph G = (V,E), the
number of contributing paths (and breakpoints) in the s–t profile is in O(|V |).

SEA 2017

19:8 Consumption Profiles in Route Planning for Electric Vehicles

V +
1 V −2

v5

x3

v3x2

v1
x1

v6
y6

v2 y5

v4

y4

1

4

2

3

5
?

(a) A constructed bipartite graph.

y4

y5

y6

1 2 3 4 5

x1 x2 x3 x4 x5 x6

M

0
M

−∞

(b) The SoC functions of the edges.

Figure 4 Illustration of the proof of Theorem 6. The constructed bipartite graph G′ contains
copies of top and bottom vertices of the input graph. Edges represent paths connecting certain
important vertices. Vertices have assigned constants x1, x2, x3, y4, y5, y6. Edge labels indicate
intervals depicted in Figure 4b, where the corresponding characteristic segments are contained in
the upper envelope. Characteristic segments connect vertical lines induced by constants x1, . . . , x6.
Parts of characteristic segments that lie on the upper envelope are highlighted (dark blue). Adding
the missing characteristic segment that connects the lines induced by x1 and x6 (to form a cycle in
the graph) results in at least one dominated SoC function.

Proof. To prove the claim, we construct a graph G′ consisting of vertices representing
important vertices in G. Edges of G′ represent contributing paths between pairs of important
vertices. We examine the structure of SoC functions of contributing paths to show that the
number of edges in this graph is in O(|V |).

We construct an undirected graph G′ that consists of the union of four sets of vertices
V −1 = {v−1 | v ∈ V }, V

+
1 = {v+

1 | v ∈ V }, V
−

2 = {v−2 | v ∈ V }, and V +
2 = {v+

2 | v ∈ V }.
Clearly, the number of vertices in G′ is linear in the number of vertices in the original graph.
We add one undirected edge for every s–t path in the original graph that contributes to the
SoC function: For every contributing bottom-top path with first important vertex u and
second important vertex w, we add the edge {u−1 , w

+
2 }. For every contributing top-bottom

path with first important vertex u and second important vertex w, we add the edge {u+
1 , w

−
2 }.

Lemma 5 implies that there are no multi-edges in the resulting graph. By construction, G′
consists of at least two components and each component induces a bipartite subgraph. We
claim that G′ contains no cycles. This implies that the resulting graph has at most O(|V |)
edges, which proves the theorem.

Assume for contradiction that there is a cycle C = [v1, . . . , vk, v1] in the graph constructed
above. There are two possible cases: Either all edges in the cycle correspond to top-bottom
paths and it contains only vertices in V +

1 ∪ V
−

2 , or all edges correspond to bottom-top paths
and all its vertices are in the set V −1 ∪ V

+
2 .

Case 1. All edges represent top-bottom paths, and therefore {v1, . . . , vk} ⊆ V +
1 ∪ V

−
2 .

Figure 4a shows an example. Consider the profile induced by all paths corresponding to the
edges of this cycle. Edges incident to some vertex vi ∈ V +

1 , with i ∈ {1, . . . , k}, correspond
to paths with the same top vertex. Lemma 4 implies that these paths also share the same
maximum prefix of some length x ∈ [0,M]. Therefore, by Lemma 1, every edge incident to
vi corresponds to some SoC function whose first breakpoint has the x-coordinate x. Thus,

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:9

the leftmost point of the characteristic segment of each of these SoC functions lies on a
vertical line defined by x; see Figure 4b. Similarly, edges incident to a bottom vertex vi ∈ V −1
represent paths with the same maximum suffix of length y ∈ [0,M]. The last breakpoint
of each SoC function associated with these paths lies on a horizontal line defined by the
y-coordinate y. Hence, each of the k vertices defines either a vertical or a horizontal line.
Every edge in the cycle C corresponds to a characteristic segment that starts at a vertical
line and ends at a horizontal line, as shown in Figure 4b.

For a constant y inducing a horizontal line, we consider the leftmost x-coordinate of
any breakpoint in an SoC function (corresponding to an edge in the cycle C) with the
y-coordinate y; see Figure 4b. In total, we defined one x-coordinate for each vertex in C,
denoted by xi for i ∈ {1, . . . , k}. Without loss of generality, assume x1 < x2 < · · · < xk.
Then, we obtain k − 1 intervals [xi, xi+1], i ∈ {1, . . . , k − 1}. By assumption, every edge
of C corresponds to a contributing path. Moreover, the characteristic segment of the SoC
function of each contributing path is (partially) contained in the upper envelope of the SoC
functions of all these paths (otherwise it would not contribute to the s–t profile). Given that
all characteristic segments are parallel (with slope 1), this implies that each segment is the
unique maximum over all characteristic segments on some interval [x, xi+1], i ∈ {1, . . . , k−1}.
However, there are only k − 1 such intervals for k contributing paths; a contradiction.

Case 2. All edges represent bottom-top paths, and therefore {v1, . . . , vk} ⊆ V −1 ∪ V
+

2 . In
this case, edges incident to a bottom vertex vi ∈ V −1 for an i ∈ {1, . . . , k} correspond to paths
with the same bottom vertex. By Lemma 4, these paths share the same minimum prefix
with length y ∈ [0,M]. Moreover, observe that a contributing bottom-top path contains no
subpath with cost below −M , since the cost of its maximum prefix must not exceed M . It
follows that SoC functions of contributing bottom-top paths are of the form as in Case 3
of Lemma 1. Thus, the leftmost point of the characteristic segment of each SoC function
represented by an edge incident to a bottom vertex vi ∈ V −1 lies on the horizontal line defined
by y. Similarly, edges incident to top vertices vi ∈ V +

1 correspond to characteristic segments
whose rightmost point lies on the same vertical line defined by a constant x ∈ [0,M]. Along
the lines of the first case, this yields a contradiction. J

4 Energy-Optimal Routes with Charging Stops

As battery capacities of EVs are typically rather small, recharging en route can be inevitable
on long-distance trips. Therefore, we extend our model to incorporate charging stops. A
subset S ⊆ V of the vertices represents designated charging stations. Every station v ∈ S has
a predefined SoC range Rv = [bmin

v , bmax
v] ⊆ [0,M]. When arriving at v with arrival SoC b,

we pick a desired departure SoC b′ ∈ [bmin
v , bmax

v] ∪ {b} with b ≤ b′. SoC ranges are useful
to model user preferences or technical features of charging stations. For example, we set
Rv := [M,M] for battery swapping stations. It is always allowed to pick the arrival SoC b as
departure SoC, to account for the possibility of not charging at v.

Given a source s ∈ V , a target t ∈ V , and the initial SoC bs ∈ [0,M] at s, the Energy-
Optimal Route with Charging Stops (EORCS) problem asks for a feasible path that minimizes
overall energy consumption, defined as the difference bs − bt between SoC at source and
target, plus the total amount rt of energy recharged at charging stations v ∈ S to reach t.
Hence, our objective is to maximize bt − rt among all feasible solutions.

There are certain challenging aspects to this problem. First, we have to determine the
departure SoC when reaching a charging station with some arrival SoC. Note that it may

SEA 2017

19:10 Consumption Profiles in Route Planning for Electric Vehicles

be wasteful to fully recharge the battery, as this may prevent recuperation on subsequent
road segments. Second, subpaths of optimal paths are not optimal in general (e. g., detours
to a charging station may be necessary). Hence, “greedy” choices can lead to suboptimal
results. A natural way to overcome this issue is the use of label sets to keep multiple solutions
at vertices, as in (exponential-time) multi-criteria search [23, 34]. In fact, this algorithm
can be adapted to our problem setting, using labels with continuous ranges of SoC and
recharged energy to reflect different choices at charging stations and the resulting SoC at
a vertex. Then, vertices maintain labels that store an SoC range and a charging range.
As in the multi-criteria scenario, we can apply Pareto dominance to remove suboptimal
labels. However, it is not obvious whether such an approach has subexponential running
time. Instead, we build upon tools from Section 3 to derive an alternative algorithm that
maintains single labels on an extended search graph and that is conceptually simpler, can
easily be integrated with known speedup techniques, and runs in polynomial time.

Optimal Paths between Charging Stations. When charging at a station u ∈ S, we have
to ensure that the SoC is sufficient to reach t or the next charging station v ∈ S. Therefore,
we examine an important subproblem, where given a charging station u ∈ S, an (optimal)
arrival SoC barru , the amount ru of energy recharged so far (at previous charging stations),
and a vertex v ∈ S ∪ {t}, we want to find a departure SoC bdepu > barru that maximizes
the objective at the target vertex t under the assumption that v is the next vertex where
energy is recharged (or v = t is the target itself). If we compute the u–v profile fu,v, we can
greedily optimize the objective on the s–v path by picking an SoC bdepu > barru that maximizes
f(bdepu)− (ru + r), where r := bdepu − barru is the amount of energy charged at u. Unfortunately,
the s–v path that maximizes this objective does not extend to the best solution at t in
general. The reason for this is that charging too much energy might prevent the vehicle from
recuperating energy on the following v–t path; see Figure 5 for an example.

Instead, we need a more sophisticated approach. To this end, we identify SoC values bdepu

that may possibly lead to an optimal solution. We know (by the FIFO property [18]) that
for an arbitrary departure SoC bdepu ∈ [0,M], the optimal u–v subpath is also energy-optimal
for bdepu . By Theorem 6, there can be at most O(|V |) such u–v paths. For each u–v path P
contributing to the u–v profile fu,v, we identify a (unique) canonical departure SoC bdepP at u
that always optimizes the objective at t under the assumption that recharging is necessary
at v (or v = t). Consider the SoC function fP of P and let bmin

P := c(P+
u) denote the

minimum SoC that is necessary to traverse P , i. e., fP (b) = −∞ if and only if b < bmin
P .

Consequently, we have bdepP ≥ bmin
P . We also know that the objective fP (bdepP)−bdepP +barru −ru

of the s–v path can only decrease for bdepP > bmin
P , since barru − ru is constant and the slope of

fP is at most 1 in the interval [bmin
P ,M]. Assuming that we recharge energy at v anyway,

charging more than bmin
P will also never turn out to be essential after visiting v: If necessary,

we can recharge missing energy at v. Therefore, given the SoC range [bmin
u , bmax

u] of u, we
pick the canonical departure SoC bdepP := max{bmin

P , bmin
u } for P , if this value lies in the SoC

range of u. Otherwise, we have bmax
u < bmin

P and charging at u never renders P feasible.

Search Graph Construction. Given the original graph G and the target vertex t ∈ V ,
we augment G with a charging station (sub-)graph Gc = (Vc, Ec), which keeps separate
vertices for distinct values of departure SoC at charging stations; see Figure 5. For each
vertex u ∈ S, we create one charging vertex u′ per distinct canonical departure SoC bdepP of
any contributing path P from u to another charging station or to the target. We explicitly
store the corresponding departure SoC bdepP with the vertex u′, i. e., we keep a mapping

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:11

s u v t

Gc

2

4

1

5 ∞

0
4 −4

2
−5

5
1 −5

b < 2
b < 4

b < 1
b < 5

0
0

4
5

5
3

Figure 5 Search graph with charging stations (red, charging range [0, M], M = 5). Vertex labels
in Gc (shaded) indicate departure SoC. Edge labels indicate costs in G, arrival SoC in Gc, and SoC
restrictions for transfer edges. While t is always reached from s with bt = 5, the optimal path (and
the objective bt − rt) depends on bs: For bs < 2, energy is charged at u (bdep

u = 2) and v (bdep
v = 1),

which yields rt = 3− bs > 1; for bs ∈ [2, 3] it is optimal to charge only at v (bdep
v = 1) to get rt = 1;

for bs ∈ [3, 4) energy is only charged at v (bdep
u = 4) to get rt = 4− bs ≤ 1; no charging is necessary

at all for bs ≥ 4. In all cases the objective at v is maximized for bdep
u = 4, which yields bv − rv = bu.

bdep : Vc → [0,M] and set bdep(u′) := bdepP . The vertex u′ itself is added to Vc. We also
add a dummy target vertex t′ to Vc with bdep(t′) := ∞. For every contributing u–v path
between vertices u ∈ S and v ∈ S ∪ {t}, we add edges (u′, v′) from the (unique) charging
vertex u′ ∈ Vc of u with bdep(u′) = bdepP to every corresponding vertex v′ ∈ Vc of v with
fP (bdepP) < bdep(v′) to Ec. Together with the edge (u′, v′), we also store the SoC upon arrival
at v′, i. e., we use a mapping barr : Ec → [0,M] and set barr(u′, v′) := fP (bdepP). To connect
G and Gc, we add (directed) transfer edges (v, v′) from each charging station v ∈ S ∪ {t}
to all its corresponding departure vertices v′ ∈ Vc. Transfer edges have no cost, but may
only be traversed if the current SoC is below the departure SoC bdep(v′) of the respective
departure vertex v′. Given the set E′ of transfer edges, we obtain the augmented graph
G′ := (V ∪ Vc, E ∪ E′ ∪ Ec). Note that its size is polynomial in the size of G.

A Polynomial-Time Algorithm. Using the augmented graph, we adapt EVD to find energy-
optimal routes in G′. The modified algorithm maintains a single label `(v) per vertex v ∈
V ∪ Vc, which stores the values of SoC bv and recharged energy rv that maximize the
objective bv− rv at v. Initially, it sets bv = −∞ and rv = 0 for all v ∈ V , except for the label
`(s) = (bs, 0) of s. In each iteration of the main loop, the label `(u) = (bu, ru) of some vertex
u in G′ with maximum key bu − ru is extracted from the queue. If u is an original vertex,
i. e., u ∈ V , the algorithm proceeds exactly like plain EVD by scanning its outgoing edges. If,
additionally, u is a charging station, i. e., u ∈ S, its corresponding charging vertices u′ ∈ Vc

are updated (and inserted into the queue) if bu < bdep(u′) and `(u) yields an improvement
to the label `(u′). Vertices u ∈ Vc in the charging station graph are handled separately by
the algorithm. For each outgoing edge (u, v) in Gc, a new label (b, r) is generated as follows.
Its SoC is set to the arrival SoC b := barr(u, v) at v and the amount of charged energy is set
to r := ru + bdep(u) − bu. If the resulting label (b, r) improves `(v), the latter is updated
accordingly. After termination, the label at the dummy target vertex t′ (i. e., the unique
vertex t′ ∈ Vc with bdep(t′) = ∞) contains the optimal pair of SoC and recharged energy.
Making use of potential shifting, Theorem 7 follows directly from the polynomial size of G′.

I Theorem 7. The problem EORCS can be solved in polynomial time.

SEA 2017

19:12 Consumption Profiles in Route Planning for Electric Vehicles

A Practical Variant. The construction of Gc is rather time-consuming on realistic instances.
Luckily, we can move most work to preprocessing, since paths between charging stations
are independent of source and target. We also propose a much simpler search graph, which
can naturally be combined with CH for further speedup. We replace the graph Gc with an
overlay graph GS = (S ∪ {t}, S × S ∪ {(v, t) | v ∈ S)}). Every edge (u, v) in GS stores as its
cost function the u–v profile (wrt. the original graph). Compared to Gc, this significantly
reduces the number of vertices. Moreover, it is straightforward to construct GS using profile
search. We slightly modify the search algorithm to work with GS instead of Gc: If a scanned
vertex u ∈ S represents a charging station, all shortcuts (u, v) in GS are scanned. For
each, the arrival SoC b that maximizes the objective at v is picked (such that b ≥ bu and
b ∈ [bmin

u , bmax
u]). If this yields an improvement to the label of v, it is updated accordingly.

As argued before, picking the SoC at v in this greedy fashion may lead to suboptimal
results (recall Figure 5). On real-world networks, however, this is very unlikely to occur, as it
requires an optimal route with two charging stops u and v, such that t can be reached from
u via v, but not directly, and at the same charging too much energy at u (to reach v on an
optimal s–v path) prevents recuperation along the v–t path due to a fully-charged battery.
Consequently, our approach always produced optimal solutions in our tests; see Section 5.

Integration with CH. In its basic variant, CH [20] iteratively contract vertices in increasing
order of (heuristic) importance during preprocessing, maintaining distances between all
remaining vertices by adding shortcut edges, if necessary. Witness searches determine
whether a shortcut is required to preserve distances. The CH query runs bidirectional from
source and target on the input graph augmented by all shortcuts added during preprocessing,
following only upward edges (from less important to more important vertices).

When solving EORCS with CH, we do not contract charging stations during preprocess-
ing [7, 41]. Hence, we stop vertex contraction at some point, leaving an uncontracted core of
charging stations (and possibly other vertices). We run profile searches on this (relatively
small) core graph to quickly construct the overlay GS . Shortcuts are only added to GS if
their corresponding SoC function is finite for some SoC.

In a basic approach, witness search uses profile search to determine whether a shortcut is
necessary. For faster preprocessing, an alternative approach replaces profiles by scalar upper
bounds maxb∈[0,M](b − f(b)) on the energy consumption of an edge with SoC function f .
Observe that negative costs are ruled out this way, since consumption must be at least
zero for a fully charged battery. This re-enables Dijkstra’s algorithm for witness searches,
computing upper bounds a ∈ [0,M] on energy consumption between a given pair of vertices.
A shortcut candidate is inserted only if its SoC function f consumes less energy for at least
one SoC, i. e., b− f(b) < a for some b ∈ [0,M]. When using upper bounds, we may end up
inserting unnecessary shortcuts. This does not affect correctness, but may (slightly) slow
down queries. (Similarly, Eisner et al. [18] use a sampling approach to avoid costly profile
search during preprocessing in their implementation.)

To obtain the full path description, we enable path unpacking by storing via vertices
during contraction, as in plain CH [20]. (Note, however, that we need one via vertex per
contributing path of an SoC function.) Additionally, we have to reconstruct paths representing
shortcuts between charging stations within the core. This can be done by precomputing
and storing the paths explicitly (in the core), or by running a profile search between each
consecutive pair of charging stations in the optimal path. Finally, the retrieved paths in the
core are unpacked. The optimal amount of energy that must be recharged is easily obtained
from the SoC profiles in the overlay GS (by picking a departure SoC for each profile that
maximizes the objective).

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:13

The query algorithm consists of two phases. The first runs a backward profile search
from t, scanning only upward and edges in the core. Shortcuts in GS are ignored by this
search. After its termination, SoC profiles from each charging station to the target are known.
We (temporarily) add the target and all corresponding shortcuts to GS . The second phase
runs modified EVD from the source s with initial SoC bs, on a graph consisting of upward
edges and all edges in the core (including GS).

Adding A* Search. On large instances, scanning shortcuts in the dense subgraph GS

becomes the major bottleneck of the approach. We add A* search [24] to improve performance.
The basic idea of A* search is to compute a consistent potential function π : V → R on the
vertices, which fulfills the condition c(u, v)− π(u) + π(v) ≥ 0 for all edges (v, v) ∈ E. The
potential of a vertex is added to the key of a label when updating the priority queue. To
make the search goal directed, we compute a consistent potential function where vertices
that are closer to the target have smaller keys.

Before the CH search, we run a label-correcting backward search from t, scanning upward
edges and core edges (except for shortcuts in GS), with (scalar) lower bounds on energy
consumption as edge costs. This yields, for each vertex v in the core, a lower bound

¯
c(v) on

energy consumption from v to t. Moreover,
¯
c(·) induces a consistent potential function on V ,

as follows immediately from the triangle inequality. The forward search is then split into
two phases. The first scans upward edges, but ignores outgoing edges of core vertices. The
second phase is initialized with all core vertices scanned during the first phase. Using the
potential function, this phase becomes goal directed.

An aggressive variant of A* search achieves further speedup at the cost of suboptimal
results. As before, when a charging station is visited by the forward search, all outgoing
shortcuts (u, v) in GS are scanned. However, we update the label of at most one vertex v ∈ S
and insert it into priority queue, namely, the one with maximum key among all vertices that
are improved by the scans.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.5 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3, and 256KiB of L2 cache.

Input and Methodology. We ran experiments on a graph representing the road network of
Western Europe, kindly provided by PTV AG (http://ptvgroup.com). Energy consumption
data stems from PHEM, a detailed micro-scale emission model [25]. We consider two vehicle
models. The first is based on a real production vehicle (Peugeot iOn) with a battery
capacity of 16 kWh (corresponding to a range of roughly 100–150 km). The second is
an artificial model with a capacity of 85 kWh (400–500 km range, similar to recent Tesla
models). Data source mentioned above are proprietary, but enable us to test our algorithms
on detailed and realistic input data. To accurately assign consumption values to road
segments, we retrieved road slopes based on elevation data from the freely available SRTM
dataset (http://www2.jpl.nasa.gov/srtm). Removing edges without reasonable energy
consumption (e. g., due to large areas with missing elevation data), we obtain a graph
with 22 198 628 vertices and 51 088 095 edges after extracting the largest strongly connected
component from the remaining graph [9]. About 11.8% and 15.2% of these edges have
negative cost for the Peugeot and the artificial model, respectively. We also conduct

SEA 2017

http://ptvgroup.com
http://www2.jpl.nasa.gov/srtm

19:14 Consumption Profiles in Route Planning for Electric Vehicles

Table 1 Performance of our approaches (Europe). The columns GS , CH, A*, and agg. (aggres-
sive A*) indicate whether a technique is enabled (•) or not (◦). For each approach and model, we
report preprocessing time, number of vertex scans during queries (#V. Sc.), and query times.

Techniques Peugeot, 16 kWh Artificial, 85 kWh

GS CH A* agg. Prepr. [s] #V. Sc. Q. [ms] Prepr. [s] #V. sc. Q. [ms]

◦ ◦ ◦ ◦ – 8 895 038 20 160.9 – 11 033 760 32 928.8
• ◦ ◦ ◦ 1 487 759 951 710.0 15 062 7 753 601 6 285.7
• • ◦ ◦ 2 860 8 433 309.6 3 246 19 616 1 281.5
• • • ◦ 2 860 3 563 128.2 3 246 10 418 297.5
• • • • 2 860 1 599 41.0 3 246 9 579 157.8

Table 2 Performance for different distributions and types of charging stations (Germany, Peugeot).
Besides timings for preprocessing and queries, we report the number of charging stations (|S|), edges
in GS (|ES |), and vertex scans (#V. Sc.) and edge scans (#E. Sc.) during queries.

Prepr. Queries

Scenario |S| T. [s] |ES | #V. Sc. #E. Sc. T. [ms]

reg-cm 1 966 548.5 539 145 4 592 125 535 4.22
mix-cm 1 966 548.1 539 145 4 592 125 381 4.19
reg-r0.01 469 487.2 22 231 2 234 50 070 1.30
reg-r0.1 4 692 582.7 2 263 310 8 904 223 779 7.97
reg-1.0 46 920 965.0 227 514 459 60 527 1 828 581 73.46

experiments on the subnetwork of Germany, which has 4 692 091 vertices and 10 805 429
edges. We located 13 810 charging stations (1 966 of them in Germany) on ChargeMap
(chargemap.com). Unless mentioned otherwise, all reported query times are average values of
1 000 queries, with source and target vertices picked uniformly at random. Charging stations
have the SoC range [0,M] and the initial SoC is set to bs = M .

Evaluation. Table 1 compares different approaches to solve EORCS on our main test
instance (Europe) for both vehicle models. Applied techniques are indicated by the four
leftmost columns. The first line (no speedup technique enabled) shows our exact baseline
approach, which is based on bi-criteria search. It requires no preprocessing, but takes 20–30
seconds to answer queries, which is rather impractical. Simply using the charging station
graph already reduces query times greatly. However, scalability of this approach is limited,
as increasing the vehicle range affects both preprocessing (longer paths between charging
stations must be computed) and queries (the search in the uncontracted network dominates
running times). Integrating CH clearly pays off, as it significantly reduces the number of
vertex scans and query time after moderate preprocessing effort (below an hour). Query time
is dominated by the search in GS . A* search helps to reduce effort spent searching in GS and
makes our approach rather practical, with running times of less than 300ms for the artificial
model. Moreover, note that even though we use a (formally) inexact implementation, the
optimal solution is found in all queries. The aggressive variant of A* further reduces query
times at the cost of inexact results (even in practice). The average relative error (not reported
in the table) is 0.7% for the Peugeot model and less than 0.01% for the artificial one. This
discrepancy in relative error can be explained by the fact that a larger battery allows the EV

chargemap.com

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:15

16 32 64 128
0

500

1 000

1 500

2 000

Battery capacity [kWh]

T
im

e
[m

s]

CH
CH+A*
CH+A* (agg.)

Figure 6 Algorithm performance subject to cruising range (Europe, Peugeot). Each point is the
median running time of 1 000 queries for one of the different approaches (CH, CH with A*, CH with
aggressive A*) under varying battery capacities.

to stick to energy-optimal paths (fewer detours are necessary), so the quality of the bounds
used in A* search increases. Consequently, outliers for the Peugeot scenario exceed 10% in
relative error in about 1% of the cases, while even the maximum error is below 0.5% for the
artificial model. For all techniques, the artificial model is harder to solve. This is mostly due
to the dense charging station graph (more labels per vertex for the baseline approach), since
more charging stations are reachable from each station.

In Table 2, we evaluate the performance of our fastest empirically exact approach (CH
with A* search) under varying types and distributions of charging stations. The first scenario
(reg-cm) uses stations from ChargeMap with (default) SoC range [0,M]. The second (mix-cm)
uses the same stations, but assigns each a charging range of a regular station ([0,M]), a “super
charger” that quickly charges to 80% SoC ([0, 0.8M]), or a swapping station ([M,M]), with
equal probability. The results indicate that SoC ranges have little impact on performance.
This is not surprising, since restricting the departure SoC can only reduce the search space
(the effect is negligible, though). Finally, we consider random distributions of charging
stations with default SoC ranges (reg-r0.01, reg-r0.1, reg-1.0), where we pick 0.01%, 0.1%,
and 1.0% of the vertices in V as charging stations uniformly at random, respectively. The
number of charging stations has a significant impact on algorithm performance. Given
that the number of edges in GS grows quadratically in the number of charging stations,
preprocessing and query slow down for very dense networks of charging stations. This limits
scalability, but our approach easily handles realistic distributions of charging stations (for
the scenario reg-1.0, the number of charging stations is higher than the current number of
gas stations in Germany).

Finally, Figure 6 shows running times of our algorithms for different battery capacities.
Without A* search, running time roughly doubles with battery capacity, because GS becomes
more dense (more reachable charging stations). Adding A* search, scalability with available
cruising range improves, since potentials quickly guide the search towards the target.

6 Conclusion

We examined consumption profiles for EVs and proved that their complexity is at most
linear in the graph size. We also investigated energy-optimal routes with charging stops
and showed how profile search can be utilized to solve the problem in polynomial time.
In a sense, we closed the gap between (efficiently solvable) energy-optimal routes [18, 36]

SEA 2017

19:16 Consumption Profiles in Route Planning for Electric Vehicles

and NP-hard time-constrained variants with charging stops [7, 35] (which generalize the
problem setting considered in this work). In particular, it is indeed the addition of a second
optimization criterion (travel time) that makes the latter problems NP-hard, rather than
the incorporation of charging stations in combination with battery constraints. We also
proposed a practical variant, which computes optimal results in well below a second on
realistic, large-scale networks.

Interesting lines of future work include reducing the number of edges in the overlay
of charging stations for better performance and scalability [13, 26, 39] or integration of
Customizable CH [16] for faster preprocessing. Moreover, one could consider a profile variant
of EORCS, i. e., ask for a consumption profile instead of a single path.

References
1 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The Op-

timal Routing Problem in the Context of Battery-Powered Electric Vehicles. In Proceedings
of the 2nd CPAIOR Workshop on Constraint Reasoning and Optimization for Computa-
tional Sustainability (CROCS’10), 2010.

2 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The
Shortest Path Problem Revisited: Optimal Routing for Electric Vehicles. In Proceedings of
the 33rd Annual German Conference on Advances in Artificial Intelligence (KI’10), volume
6359 of Lecture Notes in Computer Science, pages 309–316. Springer, 2010.

3 Mikhail J. Atallah. Some Dynamic Computational Geometry Problems. Computers &
Mathematics with Applications, 11(12):1171–1181, 1985.

4 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks, volume 9220 of Lecture Notes in Computer Science, pages 19–
80. Springer, 2016.

5 Gernot V. Batz and Peter Sanders. Time-Dependent Route Planning with Generalized
Objective Functions. In Proc. of the 20th Annual European Symp. on Algorithms (ESA’12),
volume 7501 of Lecture Notes in Computer Science, pages 169–180. Springer, 2012.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3:1–2.3:31, 2010.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.
Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles. In Proceed-
ings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS’15), pages 44:1–44:10. ACM, 2015.

8 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-Consumption Tradeoff for Electric Vehicle Route Planning. In Proceedings
of the 14th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems (ATMOS’14), volume 42 of OpenAccess Series in Informatics (OASIcs),
pages 138–151. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

9 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proc. of the 21st ACM SIGSPATIAL Int’l Conference on
Advances in Geographic Information Systems (GIS’13), pages 54–63. ACM, 2013.

10 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-
Dependent Route Planning in Road Networks with User Preferences. In Proceedings of
the 15th International Symposium on Experimental Algorithms (SEA’16), volume 9685 of
Lecture Notes in Computer Science, pages 33–49. Springer, 2016.

11 Brian C. Dean. Shortest Paths in FIFO Time-Dependent Networks: Theory and Algorithms.
Technical report, Massachusetts Institute of Technology, 2004.

Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf 19:17

12 Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, 2011.
13 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable

Route Planning in Road Networks. Transportation Science, 2015.
14 Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic Graphs. In

Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), volume 4525 of
Lecture Notes in Computer Science, pages 52–65. Springer, 2007.

15 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning, volume 5868 of
Lecture Notes in Computer Science, pages 207–230. Springer, 2009.

16 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21:1.5:1–1.5:49, 2016.

17 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

18 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Networks. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI’11), pages 1108–1113. AAAI Press, 2011.

19 Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of Time-Dependent
Shortest Paths. Algorithmica, 68(4):1075–1097, 2014.

20 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–
404, 2012.

21 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

22 Michael T. Goodrich and Paweł Pszona. Two-Phase Bicriterion Search for Finding Fast
and Efficient Electric Vehicle Routes. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS’14), pages
193–202. ACM, 2014.

23 Pierre Hansen. Bicriterion Path Problems. In Multiple Criteria Decision Making – Theory
and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems,
pages 109–127. Springer, 1980.

24 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

25 Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical report I-20/2009, University
of Technology, Graz, 2009.

26 Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multilevel Overlay
Graphs for Shortest-Path Queries. ACM Journal of Experimental Algorithmics, 13:2.5:1–
2.5:26, 2009.

27 Gerhard Huber and Klaus Bogenberger. Long-Trip Optimization of Charging Strategies for
Battery Electric Vehicles. Transportation Research Record: Journal of the Transportation
Research Board, 2497:45–53, 2015.

28 Donald B. Johnson. A Note on Dijkstra’s Shortest Path Algorithm. Journal of the ACM,
20(3):385–388, 1973.

29 Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal
of the ACM, 24(1):1–13, 1977.

30 Sebastian Kluge, Claudia Sánta, Stefan Dangl, Stefan M. Wild, Martin Brokate, Konrad
Reif, and Fritz Busch. On the Computation of the Energy-Optimal Route Dependent on
the Traffic Load in Ingolstadt. Transportation Research Part C: Emerging Technologies,
36:97–115, 2013.

SEA 2017

19:18 Consumption Profiles in Route Planning for Electric Vehicles

31 Yuichi Kobayashi, Noboru Kiyama, Hirokazu Aoshima, and Masamori Kashiyama. A Route
Search Method for Electric Vehicles in Consideration of Range and Locations of Charging
Stations. In Proceedings of the 7th IEEE Intelligent Vehicles Symposium (IV’11), pages
920–925. IEEE, 2011.

32 Chung-Shou Liao, Shang-Hung Lu, and Zuo-Jun Max Shen. The Electric Vehicle Touring
Problem. Transportation Research Part B: Methodological, 86:163–180, 2016.

33 Chensheng Liu, Jing Wu, and Chengnian Long. Joint Charging and Routing Optimization
for Electric Vehicle Navigation Systems. In Proceedings of the 19th International Federation
of Automatic Control World Congress (IFAC’14), volume 47 of IFAC Proceedings Volumes,
pages 9611–9616. Elsevier, 2014.

34 Ernesto Q. V. Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 16(2):236–245, 1984.

35 Sören Merting, Christian Schwan, and Martin Strehler. Routing of Electric Vehicles: Con-
strained Shortest Path Problems with Resource Recovering Nodes. In Proceedings of the
15th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’15), volume 48 of OpenAccess Series in Informatics (OASIcs), pages 29–
41. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015.

36 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence (AAAI’11), pages 1402–1407. AAAI Press, 2011.

37 René Schönfelder and Martin Leucker. Abstract Routing Models and Abstractions in the
Context of Vehicle Routing. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI’15), pages 2639–2645. AAAI Press, 2015.

38 René Schönfelder, Martin Leucker, and Sebastian Walther. Efficient Profile Routing for
Electric Vehicles. In Proceedings of the 1st International Conference on Internet of Vehicles
(IOV’14), volume 8662 of Lecture Notes in Computer Science, pages 21–30. Springer, 2014.

39 Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-Level Graphs for
Timetable Information in Railway Systems. In Proceedings of the 4th Workshop on Algo-
rithm Engineering & Experiments (ALENEX’02), volume 2409 of Lecture Notes in Com-
puter Science, pages 43–59. Springer, 2002.

40 Olivia J. Smith, Natashia Boland, and Hamish Waterer. Solving Shortest Path Problems
with a Weight Constraint and Replenishment Arcs. Computers & Operations Research,
39(5):964–984, 2012.

41 Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS’12), pages 20–25. ACM, 2012.

42 Sabine Storandt and Stefan Funke. Cruising with a Battery-Powered Vehicle and Not
Getting Stranded. In Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), pages 1628–1634. AAAI Press, 2012.

43 Zhonghao Sun and Xingshe Zhou. To Save Money or to Save Time: Intelligent Routing
Design for Plug-In Hybrid Electric Vehicle. Transportation Research Part D: Transport
and Environment, 43:238–250, 2016.

44 Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan. Adaptive Routing and Recharg-
ing Policies for Electric Vehicles. Working paper no. 14-02, Northwestern University, Illinois,
2014.

45 Yan Wang, Jianmin Jiang, and Tingting Mu. Context-Aware and Energy-Driven Route Op-
timization for Fully Electric Vehicles via Crowdsourcing. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1331–1345, 2013.

46 Ady Wiernik and Micha Sharir. Planar Realizations of Nonlinear Davenport-Schinzel Se-
quences by Segments. Discrete & Computational Geometry, 3(1):15–47, 1988.

Efficient Traffic Assignment for Public Transit
Networks∗

Lars Briem1, Sebastian Buck2, Holger Ebhart3, Nicolai Mallig4,
Ben Strasser5, Peter Vortisch6, Dorothea Wagner7, and
Tobias Zündorf8

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
lars.briem@kit.edu,

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
sebastian.buck@kit.edu

3 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
holger.ebhart@ira.uka.de

4 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
nicolai.mallig@kit.edu

5 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
strasser@kit.edu

6 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
peter.vortisch@kit.edu

7 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
dorothea.wagner@kit.edu

8 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
zuendorf@kit.edu

Abstract
We study the problem of computing traffic assignments for public transit networks: Given a
public transit network and a demand (i.e. a list of passengers, each with associated origin, destin-
ation, and departure time), the objective is to compute the utilization of every vehicle. Efficient
assignment algorithms are a core component of many urban traffic planning tools. In this work,
we present a novel algorithm for computing public transit assignments. Our approach is based
upon a microscopic Monte Carlo simulation of individual passengers. In order to model realistic
passenger behavior, we base all routing decisions on travel time, number of transfers, time spent
walking or waiting, and delay robustness. We show how several passengers can be processed
during a single scan of the network, based on the Connection Scan Algorithm [6], resulting in
a highly efficient algorithm. We conclude with an experimental study, showing that our assign-
ments are comparable in terms of quality to the state-of-the-art. Using the parallelized version of
our algorithm, we are able to compute a traffic assignment for more than ten million passengers
in well below a minute, which outperforms previous works by more than an order of magnitude.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Algorithms, Optimization, Route planning, Public transportation

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.20

∗ Tobias Zündorf’s research was supported by DFG Research Grant WA654/23-1.

© Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch,
Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Efficient Traffic Assignment for Public Transit Networks

1 Introduction

Traffic assignment problems are widely studied for the case of street networks and private
transport. However, virtually no work addresses the algorithmic challenges of finding a
traffic assignment for public transit networks, despite the fact that such assignments are a
very important tool for planning public transportation services. When implementing new
public transit lines (or redirecting existing ones), it is often desired, that the capacity of
all the vehicles serving the lines is well utilized. If vehicles are overcrowded, then more or
larger vehicles have to be deployed. However, if vehicles are only sparsely used, they may be
dropped from the schedule. Using traffic assignments, the utilization of the vehicles can be
estimated ahead of time allowing an efficient public transportation service design.

Determining a public transit assignment requires two components: The timetable of the
underlying public transit network; and an estimation of the overall passenger flow, specified
by individual origin, destination, and time triples, called demand. The most basic variant
of the assignment problem asks only for the expectable utilization of the vehicles operating
in the public transit network. A more elaborate variant of the problem requires that every
individual passenger is assigned to a route from his origin to his destination. The objective
of the assignment is in every case a statistical analysis of the network utilization. Thus, a
passenger may even be proportionally assigned to several routes, in order to increase the
overall accuracy of the assignment.

In this work we present a novel algorithm for computing public transit assignments.
Our approach for assigning routes to individual passengers is based on a Monte Carlo
simulation. Every passenger’s movement through the network is simulated step by step until
his destination is reached. We consider multiple criteria of each possible route, in order to
achieve a realistic movement of the passengers: the arrival time at the destination, the time
that has to be waited for connecting vehicles, the time that has to spent walking between
stops, the number of transfers between vehicles, and the delay robustness. We describe an
efficient approach for this simulation, based on the Connection Scanning Algorithm [6], which
allows for efficient one to all queries on public transit networks.

Our paper is organized as follows: In Section 2 we formally define the public transit
network and the demand, and we introduce the basic notation used throughout this paper.
Next, we propose the notion of perceived arrival times, which we use to model passenger
preferences in Section 3. We continue with presenting our algorithm in Section 4. In Section 5
we conduct an experimental study, showing that the quality of our assignment is comparable
to state-of-the-art, while the running time is more than an order of magnitude lower.

1.1 Related Work
The problem of finding a traffic assignment comprises two important subproblems. First,
achieving a high quality assignment requires a sophisticated procedure for deciding which
route a passenger would choose in the real world. Second, efficient route planning algorithms
are required in order to compute possible routes to choose from. There has been a lot of
research addressing route planning problems in recent years. A comprehensive overview of
state-of-the art route planning algorithms is given in [2]. Unlike time independent route
planning, it is quite hard to accelerate routing algorithms for public transit [4]. Several
speed-up techniques have been proposed, in order to increase the efficiency of public transit
route planning, many of them exploit the special structure of timetables. The RAPTOR [5]
algorithm is one of the first techniques solely based on an efficient timetable representation.
With Transfer Patterns [1, 3] a first approach that utilizes preprocessing in order to enable fast

L. Briem et al. 20:3

public transit queries was introduced. The author of [12] proposes an algorithm for fast profile
queries, based on a data model focused on trips and transfers between them. The Connection
Scanning Algorithm (CSA) [6, 11] relies on a particularly simple data model, namely a sorted
array of connection. Nevertheless, it allows for fast one to all profile queries. Based on CSA,
the MEAT [7] technique was developed, enabling delay robust journey planning.

An overview over traffic assignment techniques and models can be found in [10]. An
important concept for achieving realistic traffic assignments are equilibrium models, which
enable that the assignment adapts to congested parts of the network. Various variants
of equilibrium models are discussed in [8]. Just like route planning, traffic assignment
problems become more difficult when applied to public transit networks. An implementation
of state-of-the-art traffic assignment algorithms is available in VISUM from PTV AG1.

2 Preliminaries

Our algorithm operates on a public transit network (C, G) consisting of a finite set of
elementary connections C and a directed, weighted transfer graph G = (V, E , τtrans).

A connection c ∈ C is a tuple (vdep(c), varr(c), τdep(c), τarr(c), trip(c)) representing a
vehicle driving from a departure stop vdep(c) ∈ V to an arrival stop varr(c) ∈ V without
any intermediate stops. The vehicle is scheduled to depart from vdep(c) at the departure
time τdep(c) and arrives at varr(c) at the arrival time τarr(c) which we require to be greater
than τdep(c). We assume that connections departing from the same stop have a well defined
order of departure, i.e. vdep(c) = vdep(c′) ⇒ τdep(c) 6= τdep(c′). However, this is not a real
restriction, as such a scenario is unrealistic, and a unique order could be established by
perturbing the departure times by some ε > 0. Consecutive connections c1 and c2 are part
of a trip trip(c1) = trip(c2) if they are served by the same vehicle. Using two successive
connections of different trips requires a transfer in between.

Valid transfers are defined using the transfer graph G = (V, E , τtrans), where V is a set of
vertices, E ⊆ V×V is a set of directed edges, and τtrans : E → N0 is an edge weight representing
the minimal required transfer time for using an edge. We expand τtrans for arbitrary pairs
of vertices u, v ∈ V, by setting τtrans(u, v) := τtrans(e) if there exists an edge e = (u, v) ∈ E ,
otherwise we define τtrans(u, v) :=∞. Transferring between connections c1 and c2 of different
trips is only possible if there exists an edge e = (varr(c1), vdep(c2)) connecting the arrival
stop of the first connection c1 with the departure stop of the second connection c2, such
that τarr(c1) + τtrans(e) ≤ τdep(c2). Note that by our definition, a transfer edge has to
be used even if varr(c1) = vdep(c2). This enables us to model minimum transfer times
for changing between trips stopping at the same vertex. We define by τwait(v, τ, c) :=
τdep(c)− τ − τtrans(v, vdep(c)) the additional waiting time after transferring from vertex v
at time τ to vdep(c), before c departs. Given two connections c, c′ ∈ C, the waiting time for
transferring from c to c′ is given by τwait(c, c′) := τwait(varr(c), τarr(c), c′). Thus, a transfer
between connections c and c′ is valid if and only if τwait(c, c′) ≥ 0 holds. Following [5, 11],
we require that the transfer graph is transitively closed and fulfills the triangle inequality.
This ensures that an edge e = (u, v) is always a shortest path in G from u to v. We call a
vertex v ∈ V stop if there exists at least one connection c such that vdep(c) = v or varr(c) = v,
the set of all stops is denoted by S ⊆ V.

A journey j = 〈c1, . . . , ck〉 is a sequence of connections, such that transferring between
subsequent connections in j is valid. Formally, this means that the connections in j have to be

1 http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum/

SEA 2017

http://vision-traffic.ptvgroup.com/en-us/products/ptv-visum/

20:4 Efficient Traffic Assignment for Public Transit Networks

sorted chronologically. Furthermore, we require that subsequent connections ci and ci+1 are
either part of the same trip (i.e. trip(ci) = trip(ci+1)), or there exits a transfer connecting
them (i.e. τwait(ci, ci+1) ≥ 0), for every i ∈ [1, k − 1]. Analogous to connections, we
define a departure stop vdep(j) := vdep(c1), a departure time τdep(j) := τdep(c1), an arrival
stop varr(j) := varr(ck), and an arrival time τarr(j) := τarr(ck), for a journey j = 〈c1, . . . , ck〉.

In addition to a public transit network, the input of a traffic assignment instance also
contains a set of demands D. A demand D ∈ D is a triple (o(D), d(D), τdep(D)) representing
a passenger who wishes to travel from his origin o(D) ∈ V to his destination d(D) ∈ V,
starting at his departure time τdep(D). The objective of the traffic assignment is to compute
for every passenger represented by D a journey that satisfies his demand. A journey j satisfies
a demand D, if it can be used to travel from o(D) to d(D), with a departure time of at
least τdep(D). More precisely, the journey must be reachable from the demanded origin when
departing after τdep(D). This is the case, if either the journey departs not earlier than τdep(D)
directly from o(D) (i.e. o(D) = o(j)∧ τdep(D) ≤ τdep(j)) or if transferring from the origin to
the journeys departure is valid (i.e. τdep(D) + τtrans(o(D), vdep(j)) ≤ τdep(j)). Furthermore,
the journey has to end at the demanded destination, either directly or by using an additional
transfer. Formally, we assume that either varr(j) = d(D) or τtrans(varr(j), d(D)) <∞ holds.
An empty journey j = 〈〉 satisfies a demand D, if o(D) = d(D) or τtrans(o(D), d(D)) <∞
holds. Note that we do not require a journey to be optimal with respect to any metric, in
order to satisfy a demand.

Given two vertices u, v ∈ V , a u-v-profile is a function fu,v(τ) mapping departure times τ
onto the minimal costs for traveling from u at time τ to v, with respect to some cost function.
If no such journey exists we define fu,v(τ) as ∞. Profile functions are piecewise linear, since
for every departure time τ the value fu,v(τ) corresponds to a unique journey. Each journey
contributing to fu,v(τ) is either empty or has a fixed departure time, depending solely on
the journeys first connection. Since there exists only a finite number of connections, every
profile function can be described using a finite number of supporting points.

3 Perceived Arrival Time (PAT)

The core problem of computing a public transit assignment, is to decide for each passenger
which connections he takes in order to reach his destination. The quality of the resulting
assignment highly depends on these choices. Thus it is important to model the behavior and
preferences of the passengers in a realistic way. This means that we cannot assign connections
to the passengers solely based on the travel time of the resulting journey. For example, a
passenger might prefer a journey with a slightly longer travel time, if this reduces the number
of changes between vehicles.

As a means of reflecting the passengers preferences, we introduce the notion of perceived
arrival time (short PAT). Given a connection c ∈ C and a destination d ∈ V, the perceived
arrival time τp(c, d) is a measurement for how useful c is in order do reach d. The PAT τp(c, d)
depends on the possible journeys that end at d and contain c. We consider five properties
of these journeys that influence the perceived arrival time: the actual arrival time at d,
the number of transfers, the time spend walking, the time spend waiting, and the delay
robustness. We account for walking and waiting time by weighting the corresponding times
with factors λwalk, λwait ∈ R. For every transfer during the journey we add an additional cost
of λtrans ∈ R. Finally, we incorporate delay robustness by computing the expected arrival
time under the assumption that each connection has a random delay of at most ∆max

τ .
We adapt the concept of minimum expected arrival time (MEAT) introduced by Dibbelt

et al. [7], in order to model delay robustness. Following their approach, we introduce a

L. Briem et al. 20:5

random variable ∆cτ ∈ R+
0 for every connection c ∈ C, that represents the delay of the

connection. This means that the arrival stop varr(c) will be reached at τarr(c) + ∆cτ . Thus,
transferring to another connection can become invalid, if the delay exceeds the waiting time
of the transfer. The probability that the delay is at most x, is given by the cumulative
distribution function P [∆cτ ≤ x]. We define P [∆cτ ≤ x] as follows: P [∆cτ ≤ x] := 0 for x ≤ 0,
P [∆cτ ≤ x] := 1 for x ≥ ∆max

τ , and P [∆cτ ≤ x] := 31/30 − (11∆max
τ)/(300x + 30∆max

τ)
for 0 < x < 1, where ∆max

τ is the maximal delay that can occur. Based on this, the probability
that a transfer between two connections c, c′ ∈ C is valid, is given by P [∆cτ ≤ τwait(c, c′)].
Additionally, we define the probability P [y < ∆cτ ≤ x] := P [∆cτ ≤ x]− P [∆cτ ≤ y] that the
delay of c is between y and x. For more details on the delay model see [7].

We now proceed with defining the perceived arrival time τp(c, d) in a recursive way,
which allows us to take all journeys containing c into account. There exist three distinct
cases for continuing a journey after using the connection c. If it is possible to use a transfer
from the arrival stop of c to the destination, then the journey can be completed by walking.
Otherwise, the journey continues either with the next connection of the same trip as trip(c)
or the vehicle serving c is left at varr(c). Therefore we define

τp
arr(c, d) := min{τp

arr(c, d | walk), τp
arr(c, d | trip), τp

arr(c, d | trans)},

where τp
arr(c, d | walk) is the PAT under the constraint that the journey is completed by

walking from c to d, τp
arr(c, d | trip) is the PAT under the constraint that the journey continues

with the same trip as trip(c), and τp
arr(c, d | trans) is the PAT under the constraint for that

the journey continues with a transfer to another connection after c. The perceived arrival
time for walking to the destination is defined as:

τp
arr(c, d | walk) :=

{
τarr(c) if varr(c) = d

τarr(c) + λwalk · τtrans
(
varr(c), d

)
otherwise.

This means that the PAT is the actual arrival time, if the destination is reached directly by
using c. If this is not the case, the time needed for walking to the destination is multiplied
with the cost factor λwalk and added to the arrival time. For the definition of τp

arr(c, d | trip)
let T (c) := {c′ ∈ C | trip(c′) = trip(c) ∧ τdep(c′) ≥ τarr(c)} be the set of all connections
following after c in the trip of c. We then define the PAT for continuing with the same trip
as the minimum over the perceived arrival times of all subsequent connections in the trip:

τp
arr(c, d | trip) :=

{
min{τp(c′, d) | c′ ∈ T (c)} if T (c) 6= ∅
∞ otherwise.

Finally, we proceed with defining the PAT τp
arr(c, d | trans) for transferring from c to a

connection c′ of another trip. For this purpose, we first introduce the perceived time τp
trans(u, v)

for transferring from u to v as a weighted sum of walking respectively waiting time and
transfer costs:

τp
trans(u, v) :=

{
λtrans + λwait · τtrans(u, u) if u = v

λtrans + λwalk · τtrans(u, v) otherwise.

Additionally, we define τp
trans(c, c′) := τp

trans(varr(c), vdep(c′)), in order to reflect the perceived
time for transferring from a connection c to another connection c′. Transferring between
connections c, c′ ∈ C may include some additional waiting time τwait(c, c′) at the departure
stop of c′, after the actual transfer took place. We account for this by introducing the perceived

SEA 2017

20:6 Efficient Traffic Assignment for Public Transit Networks

waiting times τp
wait(v, τ, c) := λwait · τwait(v, τ, c), respectively τp

wait(c, c′) := λwait · τwait(c, c′).
Using this we define the perceived arrival time τp

arr(c, c′, d) := τp
trans(c, c′) + τp

wait(c, c′) +
τp
arr(c′, d) of journeys starting with the connection c, followed by a transfer to the connection c′,
and ending at the destination d. In order to define τp

arr(c, d | trans), we only need to specify,
which connection c′ is used after c. Here, we take not only the perceived arrival time τp(c′, d)
into account, but also the possibility that the transfer from c to c′ might become invalid
due to a delay of c. We achieve this by considering all connections that are Pareto-optimal
with respect to their PAT and their delay robustness as possible candidates. Based on
the set R(c) := {c′ ∈ C | τwait(c, c′) ≥ 0} of all connections that are reachable from c, the
set Ropt(c) of Pareto-optimal connections, reachable from c can be defined as:

Ropt(c) := {c′ ∈ R(c) | ∀c̄ ∈ R(c) : τwait(c, c̄) ≥ τwait(c, c′)⇒ τp
arr(c, c̄, d) ≥ τp

arr(c, c′, d)}.

Let 〈c1, . . . , ck〉 be the sequence of connections from Ropt(c) sorted by their waiting time
in increasing order, that is τwait(c, ci) ≥ τwait(c, ci−1) for i ∈ [2, k]. This means transferring
from c to c1 results in the minimum PAT. If however, transferring to c1 is not possible, due
to delay, c2 is the next best option, and so on. We define the waiting time when transferring
to the i-th connection of the sequence as τ cwait(i) := τwait(c, ci) for i ∈ [1, k]. For i 6= [1, k] we
set τ cwait(i) := −∞. Finally we define τp

trans(c, d) as the sum of the perceived arrival times of
all ci, weighted by the probability that transfer to ci is valid, while the transfer to ci−1 is
invalid:

τp
arr(c, d | trans) :=

k∑
i=1

(
P [τ cwait(i− 1) < ∆cτ ≤ τ cwait(i)]

P [∆cτ ≤ τ cwait(k)] · τp
arr(c, ci, d)

)
if k > 0

∞ otherwise.

Note that our recursive definition of τp(c, d) is well-defined, since it only depends on the
perceived arrival times of connections c′ with τdep(c′) > τdep(c).

4 Our Approach

Our algorithm is based on a microscopic Monte Carlo simulation of individual passengers
represented by a unique integer identifier. For each vertex of the network we maintain a list
containing all the passengers, who currently reside at the vertex. Passengers are gradually
moved from one vertex to the next, until they reach their destination. We decide for every
passenger which vertex he visits next, based on perceived arrival times. The vertex chosen as
next vertex is not necessarily the one that minimizes the PAT. We assign a probability based
on the perceived arrival times to every possible option. Next, we choose randomly an option
for every passenger. In order to increase the accuracy of the simulation we generate λmul
times as many passengers as specified by the demand. After the simulation finished, the
results are divided by λmul, in order to obtain a stochastic distribution of the passengers
specified by the demand.

We observe that passengers with the same destination d and roughly the same time
of travel, will eventually encounter each other on their journeys (at least at d). If they
meet before d, then there exists a vertex v where they have the same options for continuing
their journey to d. Our algorithm exploits this observation by evaluating the options and
computing the decisions for all passengers at v at once. In order to achieve this, we partition
the passengers based on their destination. We proceed with showing how the traffic assignment
for passenger with a common destination can be computed. A complete traffic assignment

L. Briem et al. 20:7

waiting
at stop

sitting in
vehicle

arriving
at stop

board next
vehicle?

exit
vehicle at next

stop?

demand
satisfied

generate
passengers

from demand

reached
destination?

reached
destination?

transfer to
another stop?

1.

2.

3.

yes

noyes

no

yes no

yes

no

yes no

Figure 1 A flowchart describing the movement of a passenger through the network. Passengers
are generated according to the demand. If their destination differs from their origin, then they
enter the main cycle (colored part) of the simulation. Passengers traverse the main cycle until they
reach their destination. During this they can be in one of three situations (green). The situation a
passenger is in changes depending on his decisions (red).

can be obtained by doing this for every destination and aggregating the results. For the
remainder of this chapter we assume d to be a fixed destination vertex.

We compute the traffic assignment for passengers with destination d in three phases.
First, we compute for every connection the minimum perceived arrival times for taking and
avoiding that connection. Next, we simulate the movement of the passengers through the
network. Every time a passenger could use a connection c without producing an invalid
transfer, we decide based on the previously computed perceived transfer times whether the
passenger takes the connection c. Connections that are used by the passenger are added to
the passengers journey. Finally, we simplify the journeys by removing unwanted cycles.

4.1 Perceived Arrival Time Computation
In the first phase we compute all information required to build journeys one connection at a
time. We identified three situations that can occur during the simulation of a passenger’s
movement, that require a decision about the journey’s continuation (see Figure 1).

The first situation arises when a passenger waits at a stop s, while a connection c departs
from s. In this case, it has to be decided if the passenger boards the vehicle serving c, or
keeps waiting at the stop. In order to make this decision, we need the perceived arrival times
for both alternatives. The PAT for using the connection c (i.e. boarding the vehicle) is given
by τp(c, d). On the other hand, skipping the connection c and waiting at the stop, implies
that some later connection departing from the stop has to be taken. Transferring to another
stop is not an option, as the passenger transferred to his current stop s, with the intention to
board some vehicle at s. The set of all alternative connections departing from the same stop
is given by A(c) := {c′ ∈ C | vdep(c′) = vdep(c), τdep(c′) > τdep(c)}. We use these alternative
connections to obtain the PAT τp

arr(c, d | skip c) for skipping the connection c as the sum of
the additional waiting time and the perceived arrival time of the best alternative connection.
Formally, we define: τp

arr(c, d | skip c) := min{τp
wait(vdep(c), τdep(c), c′)+τp

arr(c′, d) | c′ ∈ A(c)}.
The second situation affects passengers using a connection that is not the last connection

of its trip. These passengers again have to make a binary decision. Either they leave
the vehicle at the arrival stop of the current connection, or they use another connection

SEA 2017

20:8 Efficient Traffic Assignment for Public Transit Networks

of the trip. As before, making this decision requires the perceived arrival times of both
alternatives. The PAT for continuing with the same trip is given by τp

arr(c, d | trip). When
disembarking the vehicle, a passenger can continue his journey by either walking to his
destination or transferring to another vehicle. Therefore, the PAT for disembarking is given
by τp

arr(c, d | disembark) := min{τp
arr(c, d | walk), τp

arr(c, d | trans)}.
The last situation where a decision has to be made occurs when a passenger leaves a

vehicle, but has not yet reached his destination. In this case, it has to be decided to which
stop the passenger transfers, in order to wait for another connection. This decision requires
a perceived arrival times for every stop v that can be reached by a transfer. Similar to
the definition of τp

arr(c, d | skip c), the PAT for the stop v is given by the PAT of the best
connection c departing from v plus the additional waiting time between the arrival time τ
at v and the departure of c. As this value is required for every possible arrival time τ at v,
we simply compute a profile function fv,dwait(τ) for every vertex, which we define as:

fv,dwait(τ) := min{τp
wait(v, τ, c) + τp

arr(c, d) | c ∈ C, τdep(c) ≥ τ, vdep(c) = v}.

In summary, we require for decision making three values per connection: τp
arr(c, d | trip),

τp
arr(c, d | skip c), and τp

arr(c, d | disembark), as well as a profile function fv,dwait(τ) per vertex.
We now show how these values can be computed in a single sweep over the connection
array. As basis for our algorithm, we use the MEAT algorithm [7], which allows for efficient
all-to-one profile queries. Instead of computing minimum expected arrival time profiles, as
the original MEAT algorithm does, we compute minimum perceived arrival time profiles. In
addition to the profile fv,dwait(τ), we compute a second profile fv,dtrans(τ), which we use in order
to determine the three PAT values needed per connection. The difference between the two
profile is that fv,dtrans(τ) requires an initial transfer to another stop. Formally, we define:

fv,dtrans(τ) := min{τp
trans(v, vdep(c)) + τp

wait(v, τ, c) + τp
arr(c, d) | c ∈ C, τwait(v, τ, c) ≥ 0}.

Our algorithm maintains for every vertex the two initially incomplete profiles fv,dwait(·),
and fv,dtrans(·). Additionally we store for every trip t a value τp

arr(t), that keeps track of
the current value for τp

arr(c, d | trip) with trip(c) = t, and is initially ∞. We scan the
connection array in decreasing order by departure time. For every connection c we can
directly determine the three required values. Since we store the arrival time for continuing
with the same trip separately we can set τp

arr(c, d | trip)← τp
arr(trip(c)). The PAT for ignoring

the connection c is given by the profile that describes waiting at the departure stop of c.
Thus, we set τp

arr(c, d | skip c)← f
vdep(c),d
wait (τdep(c)). Similarly, the PAT for disembarking at

the arrival stop of c is given by the profile that requires an initial transfer. Accordingly, we
set τp

arr(c, d | disembark)← f
varr(c),d
trans (τarr(c)). For the special case that a transfer edge from

the arrival stop of c to the destination exists, we have to consider the possibility of walking
to the destination. Therefore, we set τp

arr(c, d | disembark) ← τarr(c) + τtrans(varr(c), d), if
this is smaller than the previous value of τp

arr(c, d | disembark). Afterwards, we temporarily
compute the PAT of the connection c: τp

arr(c, d)← min(τp
arr(c, d | trip), τp

arr(c, d | disembark)).
We use this value in order to update the profiles and the value τp

arr(trip(c)). First we
set τp

arr(trip(c))← τp
arr(c, d). Next, we add the point (τdep(c), τp

arr(c, d)) as a break point to
the profile fvdep(c),d

wait (·), unless this profile already contains a breakpoint with smaller PAT.
Finally, we iterate over all vertices v with (v, vdep(c)) ∈ E . For each such vertex v we add the
point (τdep(c) − τtrans(v, vdep(c)), τp

arr(c, d)) as a break point to the profile fv,dtrans(·), unless
the profile already contains a breakpoint with smaller PAT. We repeat this process for every
connection. Afterwards, we have computed all values required for decision making and can
continue with the actual assignment.

L. Briem et al. 20:9

4.2 Assignment
The second phase of our algorithm uses the previously computed perceived arrival times to
compute the journeys for all the passengers with destination d. To this intent, we maintain
for every passenger a list of connections used by the passenger. Additionally, we maintain a
list of passengers for every vertex and trip, representing the passengers currently waiting
at the vertex, respectively sitting in the vehicle serving the trip. Furthermore, we use a
queue sorted by arrival time for every vertex, containing the passengers that are currently
transferring to the stop. The transfer queue of each vertex v is initialized with passengers
created from the demand with origin v, using their desired departure time as keys.

We now describe how the passengers movement through the network is simulated, using
a single scan over the connection array in ascending order by departure time. During this
scan, we decide for each connection, which passengers use the connection. When scanning
a connection c we first determine the set of passengers that could enter the vehicle. We
establish this by removing all the passengers from the transfer queue of vdep(c) that arrive
at vdep(c) before τdep(c) These passengers are then added to the list of passengers waiting
at vdep(c). Afterwards, the list of passengers waiting at vdep(c) comprises exactly the
passengers that could enter c. We decide whether the passengers take c or not, based on
the two PATs τ1 = min(τp

arr(c, d | trip), τp
arr(c, d | disembark)) and τ2 = τp

arr(c, d | skip c). We
do so by assigning a probability P [i], that describes the likelihood of a passenger using the
option associated with τi, to each of the alternatives.

In general, given k options, with perceived arrival times τ1, . . . , τk, we define the probabil-
ity P [i] for choosing option i as follows. First, we compute the gain of each option, which we
define as g(i) := max(0,minj 6=i(τp(j))−τp(i)+λ∆max). Doing so results in a gain of zero, for
options that differ from the optimum by more than λ∆max. For all other options τi, the gain
correlates linearly to the difference between τi and the optimal, respectively nest best option.
The probability that a passenger uses option i is equivalent to the gain of option i, divided
by the sum of the gain of all other options. Formally we define: P [i] := g(i)/

∑k
j=1 g(j)).

Using this, the probabilities of the two options τ1 (for using the connection c), and τ2 (for
skipping the connection), are given by P [1] := (τ2−τ1 +λ∆max)/2λ∆max, and P [1] := 1−P [2].
Based on these probabilities, we make a random decision for every passenger waiting at the
departure stop of c. If a passenger happens to enter the connection, then he is removed
from the list of passengers waiting at vdep(c), and added to the list of passengers sitting the
trip trip(c). Furthermore, the connection c is added to the journey of the passenger.

Next, we decide for every passenger sitting in the trip, if he disembarks at the arrival
stop of the connection. In this case, the two options are given by τ1 = τp

arr(c, d | disembark)
for leaving the vehicle, and τ2 = τp

arr(c, d | trip) for continuing with the same trip. As
before we compute the probabilities of both options, and make a random decision for every
passenger sitting in the trip, based on these probabilities. Passengers disembarking the
vehicle are collected in a temporary list. If the arrival stop of the connections happens
to be the destination vertex, then the journeys of all passengers in the temporary list are
complete, and we simply continue with the next connection. Otherwise, we have to decide
for all passenger in the temporary list, to which vertex they transfers. Let v1, . . . , vk be all
vertices for which τtrans(varr(c), vi) <∞ holds. The perceived arrival time for transferring
to vi is given by τi = τp

trans(varr(c), vi) + fvi,d
wait(τarr(c) + τtrans(varr(c), vi)). Based on these

perceived arrival times, we compute the probability of a passenger transferring to vertex vi,
for i ∈ [1, k]. As before, we determine for every passenger randomly, which option he chooses.
Finally, passengers transferring to vertex v are added to the queue of transferring passengers
of the vertex v, their arrival time at v is τarr(c) + τtrans(varr(c), v). We repeat this process

SEA 2017

20:10 Efficient Traffic Assignment for Public Transit Networks

for every connectionc ∈ C. After processing every connection, we have assigned journeys to
all passengers except the ones where no valid journey exists.

4.3 Cycle Elimination
During the second phase, we assigned a journey to every passenger which might not necessarily
be an optimal journey. Therefore it is possible that the assigned journey contains cycles. In
fact, it is even possible that a journey that is optimal with respect to perceived arrival time
can contain cycles. This could be the case if the waiting cost λwait is very high, such that
driving in a circle instead of waiting reduces the perceived arrival time. However, for some
applications it might be undesirable or inadmissible to assign journeys containing cycles.
Thus, we now describe an optional third phase of our algorithm, that removes all cycles from
the assigned journeys.

In order to detect and remove cycles from a journey j = 〈c1, . . . , ck〉 satisfying a demandD,
we first convert it into a sequence 〈(v1, τ1), . . . , (v2k+2, τ2k+2)〉 of vertex, time pairs. We do so
by setting v2i := vdep(ci), τ2i := τdep(ci), v2i+1 := varr(ci), and τ2i+1 := τarr(ci), for i ∈ [1, k].
Furthermore we define the first and last pair as v1 := o(D), τ1 := τdep(D), v2k+2 := d(D),
and τ2k+2 :=∞. Given this, we say that the journey contains a cycle, if their exist indices i
and j > i+ 1, such that the part of the journey between vertices vi and vj can be replaced
by a transfer. This is possible if τi + τtrans(vi, vj) ≤ τj holds. Since the transfer graph is
transitively closed, it consist of disjoint cliques. Thus a journey can only contain a cycle if it
contains two vertices vi, vj of the same clique. We can check this efficiently while iterating
through the sequence of vertex, time pairs. For every i ∈ [1, 2k + 2] add i to a set associated
with the clique that contains vi Afterwards we check for each of these sets, if it contains
indices i, j such that τi + τtrans(vi, vj) ≤ τj holds. If we found such indices i, j, then we have
also found a cycle that can be replaced with a transfer. We remove this cycle be removing
the connections cbi/2c, . . . , cdj/2e from the journey.

4.4 Parallelization
Our algorithm begins with a short setup phase, during which the connections get sorted,
and the passengers get divided by their destination. Afterwards, a separate assignment
is computed for every destination. Finally, the results are aggregated and the algorithm
terminates. The assignment computation for the different destinations is by far the most
complex part of the algorithm and can be performed for every destination independently.
Therefore, it is quite easy to parallelize this part of the algorithm. First, the destinations
a distributed among the available processors. Afterwards each processor computes an
independent assignment for the corresponding destinations.

5 Evaluation

We implemented our algorithm in C++ compiled with GCC version 5.3.1 and optimization
flag -O3. Experiments were conducted on a quad core Intel Xeon E5-1630v3 clocked at 3.7GHz,
with 128GiB of DDR4-2133 RAM, 10MiB of L3 cach, and 256KiB of L2 cache.

5.1 Instance
We tested our algorithm on a public transit network covering the greater region of Stuttgart,
as well as some long distance routes, reaching as far as Mannheim, Basel or Munich. This

L. Briem et al. 20:11

Table 1 Instance size.

#Vertices 15 115
#Stops 13 941
#Edges 33 890
#Edges − #Loops 18 775
#Connections 780 042
#Trips 47 844
#Passenger 1 249 910

Table 2 Running time of our algorithm depending on the maximum delay ∆max
τ .

∆max
τ time

1min 108.57 sec
2min 109.92 sec
4min 111.49 sec
8min 117.32 sec

16min 125.26 sec
32min 136.25 sec
64min 149.61 sec

network as well as the associated model for demand was introduced in [9]. The timetable
covers roughly the traffic of one day, the earliest connection departs at 0:39 am and the last
connection arrives at 2:37 am on the second day. Some key figures of the network are listed
in Table 1. Since we require the transfer graph to be transitively closed, it contains a loop
edge at every vertex, which increases the number of total edges significantly. Our algorithm
depends on several tuning parameters that are used to adequately model passenger behavior.
For our experiments, we chose the following values: the walking cost is set to λwalk = 2.0,
the waiting cost is set to λwait = 0.5, the transfer cost as well as the delay tolerance are set
to λtrans = λ∆max = 300 sec, and the maximum delay is set to ∆max

τ = 60 sec.

5.2 Experiments
Our first experiment evaluates the performance of our algorithm, depending on the various
tuning parameters. These parameters are primarily intended to model different passenger
preferences. As such they do not directly influence the computational complexity of the
algorithm. In fact there is no measurable difference in running times when the paramet-
ers λwalk, λwait, λtrans, or λ∆max are changed. However, increasing the maximum delay ∆max

τ

of the connections slightly increases the running time, as stated in Table 2. For every row
in the table we repeated the assignment computation ten times and report the mean of
the resulting running times. The increase in running time is caused by the computation
of τp

arr(c, d | trans), since more connections have a non zero probability of being the successor
connection for c.

Another important tuning parameter, is the passenger multiplier λmul. Changing λmul
directly influences the amount of work that has to be done, since more passengers have
to be simulated. Figure 2 shows the running time of our algorithm dependent on λmul,
differentiated by the phases of the algorithm. As expected the running time increases with an
increasing passenger multiplier. The additional running time is mostly due to the assignment

SEA 2017

20:12 Efficient Traffic Assignment for Public Transit Networks

0 100 200 300 400 500
0

120

240

360

480

600

Passenger Multiplier λmul

T
im

e
[se

c]

Total
Assignment
Cycle Elimination
PAT
Setup

0

120

240

360

480

600

Figure 2 The running time of our algorithm depending on the passenger multiplier, differentiated
by the phases of the algorithm. Changing the passenger multiplier primarily affects the assignment
phase. Every measurement is the mean over the running times of ten repetitions of our algorithm.

phase. However, the running time of the assignment phase is not doubled when the number
of passengers is doubled. This is the case, because an increased number of passengers leads
to more passengers making the same decisions. Thus synergy effects can be used during
the computation. The PAT computation is completely independent from the number of
passengers, which leads to a constant running time as seen in Figure 2. The time required
for the cycle elimination and the setup phase (i.e. sorting the connections and distributing
the passengers by destination) increases only slightly with an increased passenger multiplier.

Next, we evaluate the performance of the parallelized version of our algorithm. For the
following experiment we use a passenger multiplier of λmul = 10, since this is in most cases
sufficient for an accurate result. The serial version of the algorithm has a running time
of 108.57 sec. Using the parallelized version with only one thread results in a slightly increased
running time of 108.92 sec. Using two threads we achieve a running time of 65.57 sec, four
threads achieve 38.41 sec. As before all measurements are the mean over ten executions.
Using four threads we only achieve a speed-up of 2.83, despite the fact that the computations
are complete independent of each other. This could be the case, because our algorithm
primarily scans through the memory. Thus, memory bandwidth could be a limiting factor.

Additionally, we compare the running time of our algorithm to VISUM, which is a
commercial tool from PTV AG. On the same instance the VISUM computation took just
above 30 minutes, and was parallelized using 8 threads. The VISUM assignment was computed
on an Intel Core i7-6700 clocked at 3.4GHz with 64GiB of RAM, running Windows 10. Thus
our algorithm outperforms the state-of-the-art by a factor of about 50.

Finally, we compare the quality of the assignment computed by our algorithm to the one
computed by VISUM. Table 3 summarizes the results. Overall, the assignments computed
by our algorithm and VISUM are quite similar. Our algorithm assigns journeys with slightly
longer mean travel time, in favor of a slightly decreased number of transfers. At the same
time, our algorithm assigns journeys with a higher maximum number of trips. The reason
for this is that VISUM prunes all journeys with more than 6 trips, while our algorithm
has no hard limit on the number of transfers. It is noticeable, that both techniques assign
about 1200 passengers to a single vehicle, since both are not able to handle vehicle capacities.

L. Briem et al. 20:13

Table 3 Comparison between an assignment computed by VISUM and our algorithm. We report
for every quantity the minimum (min), mean, standard deviation (sd), and maximum (max) over
all journeys. The figures for both assignments are quite similar. However, our assignment slightly
favors journeys with fewer trips (transfers), at the disadvantage of marginal increased travel time.

VISUM Our Algorithm

Quantity min mean sd max min mean sd max

Total travel time [min] 2.98 46.885 23.753 429.00 2.98 47.199 23.443 429.00
Time spent in vehicle [min] 0.02 21.059 18.796 380.00 0.02 21.231 18.749 323.97
Time spent walking [min] 2.00 22.394 5.200 149.00 2.00 22.476 5.265 149.00
Time spent waiting [min] 0.00 3.432 5.722 217.02 0.00 3.492 5.677 217.02

Trips per passenger 1.00 1.771 0.833 6.00 1.00 1.746 0.843 8.00
Connections per passenger 1.00 9.396 7.435 109.00 1.00 9.474 7.331 97.00
Passengers per connection 0.00 12.740 37.795 1 290.10 0.00 12.847 37.584 1 233.60

6 Conclusion and Future Work

In this work we presented a novel algorithmic approach to compute public transit traffic
assignments. As a means of modeling realistic passenger behavior we introduced perceived
arrival times. This allowed us to consider several important criteria of a journey while
developing an efficient algorithm. We showed that the resulting assignment is comparable
to the state-of-the-art in terms of quality. Concerning running time, our algorithm is more
than an order of magnitude faster then state-of-the-art.

For future work, it would be interesting to incorporate vehicle capacities and an equilibrium
model in our approach, since our experiments showed that a lack of those results in some
vehicles having a very high utilization. Moreover, we would like to incorporate the cycle
elimination phase into the assignment phase, such that journeys containing cycles are not
assigned in the first place.

References
1 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin

Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Proceedings of the 18th Annual European Symposium on Algorithms
(ESA’10), volume 6346 of Lecture Notes in Computer Science, pages 290–301. Springer,
2010.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering – Selected Results and Surveys, volume
9220 of Lecture Notes in Computer Science, pages 19–80. Springer, 2016.

3 Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-robustness of transfer patterns
in public transportation route planning. In Proceedings of the 13th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems (ATMOS’13), Open-
Access Series in Informatics (OASIcs), pages 42–54, 2013. doi:10.4230/OASIcs.ATMOS.
2013.42.

4 Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–Hannemann.
Accelerating time-dependent multi-criteria timetable information is harder than expected.
In Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Modeling,

SEA 2017

http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.42
http://dx.doi.org/10.4230/OASIcs.ATMOS.2013.42

20:14 Efficient Traffic Assignment for Public Transit Networks

Optimization, and Systems (ATMOS’09), OpenAccess Series in Informatics (OASIcs), 2009.
doi:10.4230/OASIcs.ATMOS.2009.2148.

5 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit routing.
Transportation Science, 2014. doi:10.1287/trsc.2014.0534.

6 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and
fast transit routing. In Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science, pages 43–54.
Springer, 2013.

7 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Delay-robust journeys in timetable
networks with minimum expected arrival time. In Proceedings of the 14th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (AT-
MOS’14), OpenAccess Series in Informatics (OASIcs), 2014. doi:10.4230/OASIcs.ATMOS.
2014.1.

8 Michael Patriksson. The Traffic Assignment Problem: Models and Methods. Courier Dover
Publications, 2015.

9 Johannes Schlaich, Udo Heidl, and Regine Pohlner. Verkehrsmodellierung für die Region
Stuttgart – Schlussbericht. Unpublished manuscript, 2011.

10 Yosef Sheffi. Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, NJ, 1985.
11 Ben Strasser and Dorothea Wagner. Connection scan accelerated. In Proceedings of the

16th Meeting on Algorithm Engineering and Experiments (ALENEX’14), pages 125–137.
SIAM, 2014.

12 Sascha Witt. Trip-based public transit routing. In Proceedings of the 23rd Annual European
Symposium on Algorithms (ESA’15), Lecture Notes in Computer Science. Springer, 2015.
Accepted for publication.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2009.2148
http://dx.doi.org/10.1287/trsc.2014.0534
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.1

Improving Coarsening Schemes for Hypergraph
Partitioning by Exploiting Community Structure
Tobias Heuer1 and Sebastian Schlag2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
tobias.heuer@gmx.net

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
sebastian.schlag@kit.edu

Abstract
We present an improved coarsening process for multilevel hypergraph partitioning that incor-
porates global information about the community structure. Community detection is performed
via modularity maximization on a bipartite graph representation. The approach is made suit-
able for different classes of hypergraphs by defining weights for the graph edges that express
structural properties of the hypergraph. We integrate our approach into a leading multilevel
hypergraph partitioner with strong local search algorithms and perform extensive experiments
on a large benchmark set of hypergraphs stemming from application areas such as VLSI design,
SAT solving, and scientific computing. Our results indicate that respecting community structure
during coarsening not only significantly improves the solutions found by the initial partitioning
algorithm, but also consistently improves overall solution quality.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases multilevel hypergraph partitioning, coarsening algorithms, community
detection

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.21

1 Introduction

Hypergraphs are a generalization of graphs, where each (hyper)edge (also called net) can
connect more than two vertices. The k-way hypergraph partitioning problem is the general-
ization of the well-known graph partitioning problem: partition the vertex set into k disjoint
blocks of bounded size (at most 1 + ε times the average block size), while minimizing an
objective function defined on the nets. Hypergraph partitioning (HGP) has a wide range of
applications. Two prominent areas are VLSI design and scientific computing (e. g. accelerat-
ing sparse matrix-vector multiplications) [53]. While the former is an example of a field where
small optimizations can lead to significant savings [63], the latter exemplifies problems where
hypergraph-based modeling is more flexible than graph-based approaches [16, 34, 35, 36, 43].
HGP also finds application as a preprocessing step in SAT solving, where it is used to identify
groups of connected variables [3, 24, 48].

Since hypergraph partitioning is NP-hard [46] and since it is even NP-hard to find good
approximate solutions for graphs [14], heuristic multilevel algorithms [15, 19, 33, 37] are
used in practice. These algorithms consist of three phases: In the coarsening phase, the
hypergraph is coarsened to obtain a hierarchy of smaller hypergraphs. After applying an
initial partitioning algorithm to the smallest hypergraph in the second phase, coarsening is
undone and, at each level, a local search method is used to improve the partition induced by
the coarser level.

© Tobias Heuer and Sebastian Schlag;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Community-Aware Coarsening Schemes for Hypergraph Partitioning

Coarsening is deemed to be the most important phase of the multilevel paradigm and an
area where future research is required to devise algorithms that are suitable for a wide range
of hypergraphs [40]. In order to create hypergraphs that are smaller than but structurally
similar to the given hypergraph, coarsening schemes try to identify and merge naturally
existing clusters of vertices [22]. State of the art hypergraph partitioning tools compute
matchings or clusterings using local similarity measures that only take into account the
direct neighborhood of each vertex [8, 5, 16, 22, 41, 42, 59, 60, 61]. Global considerations
are avoided due to the high running times of the respective algorithms [58].

Outline and Contribution. After introducing basic concepts and summarizing related
work in Section 2, we present our community-aware hypergraph coarsening framework in
Section 3. In a preprocessing phase, we perform modularity maximization on a bipartite
graph representation to detect global community structure in the input hypergraph. This
information is used to guide the coarsening process and to prevent contractions that obscure
naturally existing clustering structure. By incorporating information about the net sizes and
vertex degrees into the edge weights of the bipartite graph, we make our approach suitable
for different classes of hypergraphs. We implemented our algorithm in the open source
HGP framework KaHyPar [1]. Extensive experiments presented in Section 4 indicate that
respecting community structure during coarsening significantly improves solution quality
while having only a moderate impact on the running time. Section 5 concludes the paper.

2 Preliminaries

Notation and Definitions. An undirected hypergraph H = (V,E, c, ω) is defined as a set
of n vertices V and a set of m hyperedges/nets E with vertex weights c : V → R>0 and
net weights ω : E → R>0, where each net is a subset of the vertex set V (i.e., e ⊆ V). The
vertices of a net are called pins. We use P to denote the multiset of all pins in H. We extend
c and ω to sets, i.e., c(U) :=

∑
v∈U c(v) and ω(F) :=

∑
e∈F ω(e). A vertex v is incident to

a net e if v ∈ e. I(v) denotes the set of all incident nets of v. The degree of a vertex v is
d(v) := |I(v)|. The set Γ(v) := {u | ∃ e ∈ E : {v, u} ⊆ e} denotes the neighbors of v. The size
|e| of a net e is the number of its pins. Nets of size one are called single-vertex nets. A k-way
partition of a hypergraph H is a partition of its vertex set into k blocks Π = {V1, . . . , Vk} such
that

⋃k
i=1 Vi = V , Vi 6= ∅ for 1 ≤ i ≤ k and Vi∩Vj = ∅ for i 6= j. We call a k-way partition Π

ε-balanced if each block Vi ∈ Π satisfies the balance constraint: c(Vi) ≤ Lmax := (1 + ε)d c(V)
k e

for some parameter ε. Given a k-way partition Π, the number of pins of a net e in block Vi is
defined as Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. For each net e, Λ(e) := {Vi | Φ(e, Vi) > 0} denotes
the connectivity set of e. The connectivity of a net e is the cardinality of its connectivity set:
λ(e) := |Λ(e)|. A net is called cut net if λ(e) > 1. The k-way hypergraph partitioning problem
is to find an ε-balanced k-way partition Π of a hypergraph H that minimizes an objective
function over the cut nets for some ε. Several objective functions exist in the literature [6, 46].
The most commonly used cost functions are the cut-net metric cut(Π) :=

∑
e∈E′ ω(e) and

the connectivity metric (λ− 1)(Π) :=
∑

e∈E′(λ(e)− 1) ω(e), where E′ is the set of all cut
nets [23]. In this paper, we use the connectivity-metric, which accurately models the total
communication volume of parallel sparse matrix-vector multiplication [16]. Optimizing both
objective functions is known to be NP-hard [46]. Contracting a pair of vertices (u, v) means
merging v into u. The weight of u becomes c(u) := c(u) + c(v). We connect u to the former
neighbors Γ(v) of v by replacing v with u in all nets e ∈ I(v)\ I(u) and remove v from all nets
e ∈ I(u) ∩ I(v). Uncontracting a vertex u reverses the contraction. The two most common

T. Heuer and S. Schlag 21:3

ways to represent a hypergraph H = (V,E, c, ω) as an undirected graph are the clique and
the bipartite representation [38]. In the following, we use nodes and edges when referring
to a graph representation and vertices and nets when referring to H. In the clique graph
Gx(V,Ex ⊆ V 2) of H, each net is replaced with an edge for each pair of vertices in the net:
Ex := {(u, v) : u, v ∈ e, e ∈ E}. Thus the pins of a net e with size |e| form a |e|-clique in Gx.
In the bipartite graph G∗(V ∪̇E,F) the vertices and nets of H form the node set and for each
net e incident to a vertex v, we add an edge (e, v) to G∗. The edge set F is thus defined as
F := {(e, v) | e ∈ E, v ∈ e}. Each net in E therefore corresponds to a star in G∗. In both
models, node weights c and edge weights ω are chosen according to the problem domain [31].

Related Work. Since the 1990s HGP has evolved into a broad research area. We refer
to [6, 9, 53, 58] for an extensive overview, and focus instead on issues closely related to
the contributions of our paper. Well-known multilevel HGP software packages with certain
distinguishing characteristics include PaToH [16] (originating from scientific computing),
hMetis [41, 42] (originating from VLSI design), Mondriaan [61] (sparse matrix partitioning),
MLPart [5] (circuit partitioning), Zoltan [22] and Parkway [59] (parallel), UMPa [60] (directed
hypergraph model, multi-objective), and kPaToH (multiple constraints, fixed vertices) [8]. All
of these algorithms compute vertex matchings [5, 8, 16, 22, 61] or clusterings [16, 41, 42, 59]
on each level of the coarsening hierarchy. Different rating functions are used to determine the
vertices to be matched or clustered together. All clustering algorithms proceed in a local and
greedy fashion: For each vertex the neighbor that maximizes the rating function is chosen
as contraction partner. Global decisions are avoided due to the high running times of the
respective algorithms [58]. Hagen and Kahng [32] propose a O(n3) time algorithm that uses
cycles in random walks of the clique representation to identify global clustering structure.
Cong and Lim [18] use approximate edge separability computations as a global clustering
measure and give an algorithm that runs in O(m+ n logn) time on the clique representation
with m edges and n nodes. Note that for sparse hypergraphs the number of edges in the
clique representation can be as high as m ∈ O(n2). Lotfifar and Johnson [47] suggest to
cluster hyperedges and to remove less important ones to make better global vertex clustering
decisions using rough set clustering.

KaHyPar. The Karlsruhe Hypergraph Partitioning framework instantiates the multilevel
approach in its most extreme version, removing only a single vertex in every level of the
hierarchy. By using this very fine grained n-level approach combined with strong local
search heuristics, KaHyPar seems to be the method of choice for optimizing the cut- and the
(λ − 1)-metric unless speed is more important than quality [1, 56]. Currently, it contains
two coarsening algorithms. The first algorithm [56] starts with calculating the locally best
contraction partner u ∈ Γ(v) for each vertex v according to a rating function. Then the
contractions are performed in decreasing rating score order. Ratings are stored in a priority
queue and kept up-to-date during the coarsening process. Thus the algorithm always contracts
the vertex pair with the globally highest rating. In the second algorithm vertices are visited
in random order and each vertex is immediately contracted with its highest-rated neighbor.
This approach is shown to not affect the solution quality, while being significantly faster
than the first algorithm [1].

Community Detection via Modularity Maximization. Community detection tries to ex-
tract an underlying structure from a graph by dividing its nodes into disjoint subgraphs (com-
munities) such that connections are dense within subgraphs but sparse between them [28, 55].

SEA 2017

21:4 Community-Aware Coarsening Schemes for Hypergraph Partitioning

Different quality functions are used to judge the goodness of a division into communities.
The most popular quality function is the modularity of Newman and Girvan [52], which
compares the observed fraction of edges within a community with the expected fraction
of edges if edges were placed using a random edge distribution that preserves the degree
distribution of the graph [27]. More formally, given a graph G and disjoint communities
C = {C1, . . . , Cx}, modularity is defined as:

Q := 1
2m

∑
ij

[
Aij −

kikj

2m

]
δ(Ci, Cj) (1)

where Aij is the entry of the adjacency matrix A representing edge (i, j), m = 1
2
∑

ij Aij is the
number of edges in the graph, ki is the degree of node i, Ci is the community of vertex i, and
δ is the Kronecker delta. Note that this can be generalized to weighted graphs: Aij represents
the weight of edge (i, j), ki =

∑
j Aij is the weighted degree of node i and m = 1

2
∑

ij Aij is
the sum of all edge weights [51]. Modularity optimization is known to be NP-hard [13], but
several efficient heuristics exist. A fast and widely used algorithm is the Louvain method
introduced by Blondel et al. [12]: Initially, each node is assigned to a community of its
own. Then the algorithm proceeds in two phases that are repeated iteratively. In the first
phase, nodes are repeatedly assigned to the neighboring community that maximizes the
increase in modularity. This local, greedy optimization stops when no further increase is
possible. In the second phase, the graph is coarsened according to the community structure
discovered in the first phase by contracting each community into a single node. Then, the
process starts again on the coarsened graph and is repeated until the maximum modularity is
achieved. The communities of the coarsest graph determine the community structure of the
input graph. The algorithm has low computational complexity and is thus suitable for large
graphs [28, 45]. There exist several definitions of modularity adapted specifically to bipartite
graphs [10, 30, 39, 49]. However, we do not consider these in this work, since they do not
translate into fast algorithms and therefore only scale to small bipartite graphs [49]. We note
that there also exist techniques to detect communities in k-partite, k-uniform hypergraphs.
In these approaches, hypergraphs are projected to k bipartite graphs and bipartite modularity
measures are used to detect community structures [50].

3 Community-aware Coarsening

There are three main design goals underlying coarsening schemes of multilevel hypergraph
partitioning algorithms [42]:
1. Coarsening should successively reduce the size of the nets, because small nets allow

move-based local search algorithms to identify moves that improve the solution quality
more easily.

2. Coarsening should successively reduce the number of nets in the coarser hypergraphs.
This can be accomplished by preferring contractions that create single-vertex nets and
leads to simpler instances for initial partitioning, since single-vertex nets cannot be cut.

3. Vertices should be contracted in such a way that the initial partitioning algorithm is able
to compute a high-quality solution, i.e. the partition of the coarsest level should not be
significantly worse than the final partition of the hypergraph. Therefore, it is necessary
that the coarse approximations remain structurally similar to the input hypergraph.

To accommodate goals one and two, state-of-the-art HGP libraries use rating functions
to identify and contract highly connected vertices such that the number of nets and their
size is successively reduced. The most commonly used rating function is heavy-edge: Given

T. Heuer and S. Schlag 21:5

(a) input

(d) random tie-breaking

(g) community detection

(b) obscured clusters

(f) heavy neighbors

n1

u v
{u, v}

(c) maximal matching

(d) random tie-breaking (e) prefer unclustered

Figure 1 (a) Hypergraph with 10 vertices and 13 nets. Nets containing only two vertices are
shown as graph edges. By cutting net n1 the hypergraph can be partitioned into two balanced
blocks. (b) Contracting vertex pair (u, v) obscures the naturally existing clustering structure and
the cut of size 1. (c)–(f) Properties of coarsening algorithms that lead to the contraction of (u, v):
(c) Coarsening is based on maximal matchings. (d) Random tie-breaking among all neighbors with
same rating score. (e) Preferring unclustered vertices to break ties. (f) Contraction partners with
highest rating score are already too heavy. (g) Our approach: Restrict contractions to vertex pairs
within the same community. This prevents the contraction of (u, v) in all aforementioned cases.

two vertices u and v ∈ Γ(u), it is defined as r(u, v) :=
∑

e∈E′ ω(e)/(|e| − 1), where E′ :=
{I(v) ∩ I(u)}. This rating is employed in several tools including hMetis [41], Parkway [59],
KaHyPar [1, 56] and PaToH [17] and prefers vertex pairs that share a large number of
heavy nets with small size. Structural similarity between the coarser approximations and the
original hypergraph (goal three) is maintained by allowing the formation of vertex clusters
instead of enforcing matchings, since their maximality constraint can destroy some naturally
existing clusters in the hypergraph [40] (see Fig. 1 (a)–(c) for an example). Furthermore the
algorithms ensure that the distribution of vertex weights does not become too imbalanced
at the coarsest level, since this limits the number of feasible initial partitions satisfying the
balance constraint. This is done by either enforcing an upper-bound on the vertex weight or
by integrating a penalty factor into the rating function that discourages the formation of
heavy vertices.

However, since coarsening decisions are only based on local information, several situations
can arise in which naturally existing structure is obscured: If multiple neighbors have the
same rating score, coarsening algorithms employ different tie-breaking strategies such as
randomly choosing one of them or giving preference to vertices that have not yet been
clustered [1, 40] (see Fig. 1 (d),(e)). Furthermore, a restriction on the maximum allowed
vertex weight can lead to situations in which the highest rated contractions are forbidden by
the weight constraint. Therefore the coarsening algorithm performs a contraction with lower
rating score (Figure 1 (f)). Situations like these arise, because all coarsening algorithms
are guided by local, greedy decisions based on rating functions that solely consider the
weights and sizes of nets connecting candidate vertices and therefore lack a global view of
the clustering problem. If information about the community structure were to be known
before the coarsening process, these cases could have been prevented explicitly. We therefore
propose an approach to combine a global view on the problem with local coarsening decisions.

Community-aware Coarsening Framework. Our framework consists of two phases. First,
a (graph-based) community detection algorithm is used to partition the vertices of the hyper-

SEA 2017

21:6 Community-Aware Coarsening Schemes for Hypergraph Partitioning

Hypernodes
(>-nodes)

Hyperedges
(⊥-nodes)

|V | � |E|

d(v)� |e|

|V | ' |E|

d(v) ' |e|

|V | � |E|

d(v)� |e|

Figure 2 Bipartite graph-based representations of hypergraphs of varying density. In hypergraphs
with low density, the bipartite graph consists of many >-nodes with low average degree and fewer
⊥-nodes with high average degree (left). If d ≈ 1, the number of >- and ⊥-nodes and their average
degrees are roughly equal (middle). High-density hypergraphs lead to bipartite representations with
fewer >-nodes with high average degree and many ⊥-nodes with low average degree (right).

graph into a set C = {C1, . . . , Cx} of internally densely and externally sparsely connected
communities. The actual number of communities |C| is determined by the community detec-
tion algorithm. Then, a hypergraph coarsening algorithm is applied on each community Ci

independently. This can be accomplished by modifying the algorithm to only contract vertices
within the same community, i.e. given a vertex u ∈ Ci, we restrict potential contraction
partners to Γ(u)∩Ci. By preventing inter-community contractions, the coarsening algorithm
maintains the structural similarity discovered by the community detection algorithm, while
still allowing local, intra-community decisions to be based on rating functions tailored to
the HGP problem. Note that this framework is independent of the algorithms used for
community detection and coarsening. In the following, we describe one instantiation, which
performs community detection via modularity maximization using the Louvain method.

Hypergraph Representation. In order to employ the Louvain method as community detec-
tion algorithm, a suitable graph-based representation of the hypergraph has to be chosen. As
described in Section 2 the two common models are the clique and the bipartite representation.
However, several reasons make the clique representation unsuitable for our purpose. Inserting(|e|

2
)
graph edges into the clique graph for every net e destroys the natural sparsity of the

hypergraph [6] and therefore may be prohibitively costly in terms of both space and running
time. Furthermore and more importantly, this exaggerates the importance of nets with more
than two pins [57], since large nets automatically imply a high edge density in the clique
representation. We therefore use the bipartite representation, which allows us to encode any
hypergraph in O(|P |) space. In the following, we refer to the graph nodes representing the
vertices of the hypergraph as >-nodes and to the nodes representing the nets as ⊥-nodes
(see Figure 2 for an example).

Modeling Peculiarities. By performing community detection on the bipartite graph repres-
entation we receive a community partition of both the vertices and the nets of the hypergraph,
since both are represented as (>,⊥)-nodes in the graph. However, we are only interested in
the community structure of the vertices. Therefore we have to take structural properties of
the hypergraphs into account. More specifically, we have to consider the density:

d := d(v)
|e|

= |P |/n
|P |/m

= m

n
, (2)

where d(v) is the average vertex degree and |e| is the average net size. If d ≈ 1, the number
of >-nodes is roughly equal to the number of ⊥-nodes and d(v) ' |e|. If d� 1 then there are
more ⊥-nodes than >-nodes and d(v)� |e|, whereas if d� 1 the opposite is the case (see
Figure 2). In case the hypergraph exhibits low density and therefore a large average net size,

T. Heuer and S. Schlag 21:7

special care has to be taken in order to ensure that the community structure is not exclusively
shaped by the high-degree ⊥-nodes. Similarly, the large number of ⊥-nodes can lead to a
community structure that is dominated by the nets of the hypergraph in the high-density
case. Hypergraphs with density d ≈ 1 do not pose a problem, since the number of >-nodes
and ⊥-nodes as well as their degrees are balanced. We account for these structural differences
by encoding additional information about the hypergraph structure into the weights of the
bipartite graph edges.

Weighting Graph Edges. We propose three different weights for the edges (v, e) between
>-nodes v ∈ V and ⊥-nodes e ∈ E as shown in Eq. 3. The first scheme uses uniform
edge weights as a baseline. Giving each edge an equal weight is expected to provide good
clustering results for hypergraphs with d ≈ 1, since for these instances the number of >- and
⊥-nodes as well as their degrees are roughly comparable. The second and third schemes
account for the skew in low and high density hypergraphs. The weighting function ωe assigns
each edge a weight which is inversely proportional to the size of the net, i.e. smaller nets
get a higher influence on the community structure than larger nets. If many small nets
are contained within a community, the coarsening algorithm can successively reduce their
size and eventually remove them from the hypergraph (goals one and two). Furthermore,
this ensures that high-degree ⊥-nodes (i.e., large nets) do not dominate the community
structure by attracting to many >-nodes. This edge weight only affects the clustering
decisions of >-nodes, since from the perspective of ⊥-nodes each outgoing edge still has
uniform weight 1/|e|. In order to also influence the clustering decision of ⊥-nodes, the
third weighting function ωde additionally integrates the hypernode degree into the edge
weight. Strengthening the connection between ⊥-nodes and high-degree >-nodes facilitates
the formation of communities around high-degree vertices in the hypergraph. Note that it is
possible to efficiently choose an appropriate weighting scheme at runtime by calculating the
density of the hypergraph according to Eq. 2 and modifying the edge weights appropriately.

ω(v, e) := 1 ωe(v, e) := 1
|e|

ωde(v, e) := d(v)
|e|

(3)

4 Experimental Evaluation

We implemented modularity-based community detection using the Louvain method in the
n-level hypergraph partitioning framework KaHyPar (Karlsruhe Hypergraph Partitioning)
and modified the default coarsening algorithm [1] to respect the community structure.1
The code is written in C++ and compiled using g++-5.2 with flags -O3 -mtune=native
-march=native. We refer to the original algorithm as KaHyPar and to the community-aware
versions as CA(·), where · is replaced with the appropriate edge weight function. All versions
use the default configuration of KaHyPar.

Instances. We evaluate our algorithm on a large collection of 294 hypergraphs [1, 56],
which contains instances from three benchmark sets: the ISPD98 VLSI Circuit Benchmark
Suite [4], the University of Florida Sparse Matrix Collection [21], and the international
SAT Competition 2014 [11]. Sparse Matrices are translated into hypergraphs using the
row-net model [16], i.e. each row is treated as a net and each column as a vertex. For

1 Our implementation is available from https://github.com/SebastianSchlag/kahypar.

SEA 2017

https://github.com/SebastianSchlag/kahypar

21:8 Community-Aware Coarsening Schemes for Hypergraph Partitioning

Table 1 Summary of the hypergraph collection used in the experiments. Instances marked with
a ∗ are newly added and were not part of the collection used in [1, 56].

Application VLSI Sparse Matrix SAT Solving
Benchmark Set ISPD98 DAC2012 UF-SPM SAT14
Representation direct direct row-net literal primal dual
Density Class d ≈ 1 d ≈ 1 d� 1, d ≈ 1, d� 1 d� 1 d� 1 d� 1
Community Str. X X some instances 3 X X X

Hypergraphs 18 10∗ 184 92 92∗ 92∗

in Subset 10 5∗ 60 30 30∗ 30∗

SAT instances, each boolean literal is mapped to one vertex and each clause constitutes a
net [53]. In order to incorporate more recent VLSI circuits, we add the instances of the
DAC 2012 Routability-Driven Placement Contest [62] to the benchmark set. Furthermore,
each SAT instance is also converted into primal and dual representation [48], which are
more common in the SAT solving community than the literal model proposed in [53]. In the
primal model each variable is represented by a vertex and each clause is represented by a net,
whereas in the dual model the opposite is the case. While it is known that VLSI circuits and
complex networks like web graphs and social networks have a naturally existing clustering
structure [25, 27], recent work [7, 29] suggests the same for industrial SAT instances. The
complete benchmark set consists of 488 hypergraphs with unit vertex and net weights.2
It is used to compare our community-aware algorithm to KaHyPar and to other systems.
To study the effects of edge weights on the solution quality for hypergraphs with different
densities we use the representative subset of 100 hypergraphs proposed in [56] and add the
five smallest DAC2012 hypergraphs as well as the primal and dual representation of each
literal SAT hypergraph. In total, the subset therefore consists of 165 hypergraphs, which we
divide in three density classes. The class d� 1 is comprised of all hypergraphs with d < 0.75.
Hypergraphs with 0.75 ≤ d ≤ 1.25 form class d ≈ 1, while hypergraph with d > 1.25 are
assigned to class d� 1. An overview of our benchmark sets is given in Table 1. While VLSI
hypergraphs have |V | ' |E| and therefore d ' 1 [18, 53], SAT hypergraphs exhibit different
densities. A primal (or literal) hypergraph of a SAT formula with n variables and m ∈ O(n)
clauses has density d� 1, while its dual representation has d� 1. Instances derived from
sparse matrices cover all three cases.

All hypergraphs are partitioned into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks with ε = 0.03. For
each value of k, a k-way partition is considered to be one test instance, resulting in a total of
1155 instances for experiments on the subset and 3416 instances for the full benchmark set.

System and Methodology. All experiments are performed on a single core of a machine
consisting of two Intel Xeon E5-2670 Octa-Core processors (Sandy Bridge) clocked at 2.6
GHz. The machine has 64 GB main memory, 20 MB L3- and 8x256 KB L2-Cache and is
running RHEL 7.2. To show the effect of community-aware coarsening on the performance of
KaHyPar relative to state-of-the-art HGP tools, we compare it with the k-way (hMetis-K) and
the recursive bisection variant (hMetis-R) of hMetis 2.0 (p1) [41, 42], and to PaToH 3.2 [16].
These HGP libraries were chosen because they provide the best solution quality [1]. hMetis

2 The complete benchmark set along with detailed statistics for each hypergraph is publicly available
from http://algo2.iti.kit.edu/schlag/sea2017/.

3 Our benchmark set includes hypergraphs derived from web crawls and social networks.

http://algo2.iti.kit.edu/schlag/sea2017/

T. Heuer and S. Schlag 21:9

does not directly optimize the (λ−1) metric. Instead it optimizes the sum-of-external-degrees
(SOED), which is closely related to the connectivity metric: (λ− 1)(Π) = SOED(Π)− cut(Π)
for unweighted hypergraphs (i.e., each cut net contributes λ times its weight to the objective).
We therefore set both hMetis versions to optimize SOED and calculate the (λ− 1)-metric
accordingly. This approach is also used by the authors of hMetis-K [42]. hMetis-R defines
the maximum allowed imbalance of a partition differently [41]. An imbalance value of 5, for
example, allows each block to weigh between 0.45 · c(V) and 0.55 · c(V) at each bisection step.
We therefore translate our imbalance parameter ε to ε′ as described in Eq. (4) such that it
matches our balance constraint after log2(k) bisections:

ε′ := 100 ·

((1 + ε)
d c(V)

k e
c(V)

) 1
log2(k)

− 0.5

 . (4)

PaToH is configured to use a final imbalance ratio of ε to match our balance constraint.
Since PaToH ignores the random seed if configured to use the quality preset, we report both
the result of the quality preset (PaToH-Q) and the average over ten repetitions using the
default configuration (PaToH-D). All partitioners have a time limit of eight hours per test
instance. We perform ten repetitions with different seeds for each test instance and report
the arithmetic mean of the computed cut and running time as well as the best cut found.
When averaging over different instances, we use the geometric mean in order to give every
instance a comparable influence on the final result. In order to compare different algorithms
in terms of solution quality, we perform a more detailed analysis using the performance
plots introduced in [56]: For each algorithm, these plots relate the smallest minimum cut
of all algorithms to the corresponding cut produced by the algorithm on a per-instance
basis. For each algorithm, these ratios are sorted in increasing order. The plots use a cube
root scale for both axes to reduce right skewness [20] and show 1− (best/algorithm) on the
y-axis to highlight the instances were each partitioner performs badly. A point close to one
indicates that the partition produced by the corresponding algorithm was considerably worse
than the partition produced by the best algorithm. A value of zero therefore indicates that
the corresponding algorithm produced the best solution. Points above one correspond to
infeasible solutions that violated the balance constraint. Thus an algorithm is considered
to outperform another algorithm if its corresponding ratio values are below those of the
other algorithm. In order to include instances with a cut of zero into the results, we set the
corresponding cut values to one for ratio computations. Furthermore, we conduct Wilcoxon
matched pairs signed rank tests [64] (using a 1% significance level) to determine whether or
not the difference of KaHyPar-CA and the other algorithms is statistically significant. At a
1% significance level, a Z-score with |Z| > 2.58 is considered significant.

Evaluation of Edge Weights. Figure 3 summarizes the results of our experiments on the
benchmark subset using different edge weights for the bipartite graph edges. For each density
class a box plot shows the improvement of KaHyPar-CA(·) over KaHyPar for initial cuts
(computed by the initial partitioning algorithm) and the final average and best cuts (after
uncoarsening and local search). Using uniform edge weights for low density hypergraphs
worsens the solution quality. However, although the initial cuts are significantly worse in
this case, the best cuts are only 2% worse on average than those of KaHyPar. This shows
the strength of the n level approach combined with strong local search heuristics. Weighting
schemes that encode structural information about the hypergraph into the edge weights
perform significantly better. Both CA(ωe) and CA(ωde) ensure that the community structure
of the bipartite graph is not dominated by high-degree ⊥-nodes (large nets) by incorporating

SEA 2017

21:10 Community-Aware Coarsening Schemes for Hypergraph Partitioning

-75
-50
-25

0
25
50
75

In
iti

al
C

ut
Im

pr
ov

.
[%

]

-20
-10

0
10
20

-25

0

25

50

75

-15
-10
-5
0
5

10
15

Av
g.

C
ut

Im
pr

ov
.

[%
]

-5.0

-2.5

0.0

2.5

5.0

-15
-10
-5
0
5

10
15

-15
-10
-5
0
5

10
15

M
in

C
ut

Im
pr

ov
.

[%
]

-5.0

-2.5

0.0

2.5

5.0

-15
-10
-5
0
5

10
15

d � 1 d ≈ 1 d � 1

CA(ω) CA(ωe)CA(ωde) CA(ω) CA(ωe)CA(ωde) CA(ω) CA(ωe)CA(ωde)

-75
-50
-25

0
25
50
75

In
iti

al
C

ut
Im

pr
ov

.
[%

]

-20
-10

0
10
20

-25

0

25

50

75

-15
-10
-5
0
5

10
15

Av
g.

C
ut

Im
pr

ov
.

[%
]

-5.0

-2.5

0.0

2.5

5.0

-15
-10
-5
0
5

10
15

-15
-10
-5
0
5

10
15

M
in

C
ut

Im
pr

ov
.

[%
]

-5.0

-2.5

0.0

2.5

5.0

-15
-10
-5
0
5

10
15

d � 1 d ≈ 1 d � 1

CA(ω) CA(ωe)CA(ωde) CA(ω) CA(ωe)CA(ωde) CA(ω) CA(ωe)CA(ωde)

Figure 3 Comparing the improvement of KaHyPar-CA(·) (using different edge weighting schemes)
over KaHyPar on the benchmark subset. Diamonds show the mean improvement.

Table 2 Improvement of KaHyPar-CA over KaHyPar on the benchmark subset. KaHyPar-CA
uses ω(v, e) for hypergraphs with medium and high density and ωde(v, e) for low-density hypergraphs.

Improvement [%] VLSI Sparse Matrix SAT14
DAC2012 ISPD98 All WebSocial Primal Literal Dual

initial cut 20.5 13.8 4.1 24.8 23.8 34.0 12.2
min cut 3.9 2.0 0.8 3.5 3.5 4.0 1.6
average cut 4.7 2.3 1.1 5.5 4.8 5.7 2.2
worst cut 5.5 2.9 1.5 7.2 6.5 8.0 3.1

the net sizes into the edge weight. However, we can see that CA(ωde) is more stable than
CA(ωe).

Its mean improvement is close to the median, always above zero, and always above the
mean improvement of CA(ωe), which shows that additionally strengthening the connection
between ⊥-nodes and high-degree >-nodes indeed has a positive impact on solution quality.
For hypergraphs with density d ≈ 1 uniform edge weights perform best. If the density of the
hypergraph is large, all three schemes give comparable results. This can be explained by
the fact that if d� 1, most nets are small. This translates to “small stars” in the bipartite
graph (or even paths for nets with |e| = 2), which do not distort the community structure of
>-nodes. Based on these results, we configure the final version of our algorithm to choose
the weighting scheme at runtime depending on the observed density. If d ≥ 0.75, it uses
uniform edge weights, otherwise ωde(v, e).4 In the following we will refer to this configuration
as KaHyPar-CA. As can be seen in Table 2 KaHyPar-CA significantly improves the initial

4 Figure 5 in Appendix A compares all three edge weighting schemes and validates this decision.

T. Heuer and S. Schlag 21:11

Table 3 Comparing the average running times of KaHyPar-CA with KaHyPar and other tools.

Algorithm Running Time [s]
All DAC2012 ISPD98 Primal Literal Dual SPM WebSocial

KaHyPar 20.4 289.5 8.1 15.6 30.6 57.8 10.9 66.7
KaHyPar-CA 31.0 369.0 12.3 32.9 64.7 68.3 13.9 67.1
hMetis-R 79.2 446.4 29.0 66.2 142.1 200.4 41.8 89.7
hMetis-K 57.9 240.9 23.2 44.2 94.9 125.6 36.0 111.9
PaToH-Q 5.9 28.3 1.9 6.9 9.2 10.6 3.4 4.7
PaToH-D 1.2 6.5 0.4 1.1 1.6 2.9 0.8 0.9

cuts on all benchmark sets. The improvements in average cut (up to 5.7%) and min-cut
(up to 4.0%) indicate that KaHyPar-CA is indeed able to compute better solutions than
KaHyPar. Furthermore, the fact that the worst solutions of KaHyPar-CA are significantly
better (up to 8.0%) than those of KaHyPar shows that community-aware coarsening improves
the partitioner’s robustness.

Comparison with other Systems. In the following, we exclude 194 out of 3416 instances
because either PaToH-Q could not allocate enough memory or other partitioners did not
finish in time. Excluded instances are shown in Appendix B. The following comparison is
therefore based on the remaining 3222 instances.5 As can be seen in Figure 4 and Table 4,
KaHyPar-CA performs significantly better than KaHyPar on all benchmark sets. Looking at
the solution quality of all systems across all instances (top left), KaHyPar-CA produced the
best partitions for 1346 of the 3222 instances. It is followed by hMetis-R (882), KaHyPar
(734) and hMetis-K (460). PaToH-D and PaToH-Q computed the best partitions for 163
instances. Note that for some instances multiple partitioners computed the same solution.
Comparing the best solutions of KaHyPar-CA to each partitioner individually, KaHyPar-CA
produced better partitions than PaToH-D, PaToH-Q, hMetis-K, KaHyPar, hMetis-R in 2849,
2833, 2084, 1979, 1937 cases, respectively.

By using community-aware coarsening, KaHyPar-CA performs best on each of the
benchmark sets. As can be seen in Table 4, the difference in solution quality is statistically
significant for all benchmark sets except DAC2012, where KaHyPar-CA is on par with hMetis-
R. For hypergraphs derived from matrices of web graphs and social networks6, KaHyPar-CA
dominates all other systems by computing the best partitions for 86 of the 115 instances.
Table 3 compares the running times of all partitioners. Although community detection
using the Louvain method is itself a multilevel algorithm executed on the bipartite graph
representation, KaHyPar-CA remains on average faster than hMetis.

5 Conclusions and Future Work

We describe an improved coarsening scheme for hypergraph partitioning that incorporates
global information about the structure of the hypergraph by detecting communities in the

5 Interactive visualizations of the performance plots and detailed per-instance results can be found on
the website accompanying this publication: http://algo2.iti.kit.edu/schlag/sea2017/.

6 Based on the following matrices: webbase-1M, ca-CondMat, soc-sign-epinions, wb-edu, IMDB,
as-22july06, as-caida, astro-ph, HEP-th, Oregon-1, Reuters911, PGPgiantcompo, NotreDame_www,
NotreDame_actors, p2p-Gnutella25, Stanford, cnr-2000.

SEA 2017

http://algo2.iti.kit.edu/schlag/sea2017/

21:12 Community-Aware Coarsening Schemes for Hypergraph Partitioning

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

All Instances DAC2012

ISPD98 SAT14 primal

SAT14 literal SAT14 dual

Sparse Matrices Web Social

infeasible solutions

Algorithm
KaHyPar
KaHyPar-CA
hMetis-R

hMetis-K
PaToH-Q
PaToH-D

infeasible solutions

infeasible solutions infeasible solutions

infeasible solutions infeasible solutions

infeasible solutions infeasible solutions

1 10 25 50 10
0

25
0

50
0

75
0

10
00

15
00

20
00

25
00

30
00

35
00 1 5 10 20 30 40 50 60 70

1 5 10 25 50 75 10
0

12
5 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

1 10 25 50 10
0

20
0

30
0

40
0

60
0

80
0

10
00

12
00

14
00

Instances

1 5 10 20 30 40 50 60 70 80 9010
0

11
0

Instances

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10
0.20

0.40
0.60
0.80
1.00

All Instances DAC2012

ISPD98 SAT14 primal

SAT14 literal SAT14 dual

Sparse Matrices Web Social

infeasible solutions

Algorithm
KaHyPar
KaHyPar-CA
hMetis-R

hMetis-K
PaToH-Q
PaToH-D

infeasible solutions

infeasible solutions infeasible solutions

infeasible solutions infeasible solutions

infeasible solutions infeasible solutions

1 10 25 50 10
0

25
0

50
0

75
0

10
00

15
00

20
00

25
00

30
00

35
00 1 5 10 20 30 40 50 60 70

1 5 10 25 50 75 10
0

12
5 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

1 10 25 50 10
0

20
0

30
0

40
0

60
0

80
0

10
00

12
00

14
00

Instances

1 5 10 20 30 40 50 60 70 80 9010
0

11
0

Instances

Figure 4 Min-Cut performance plots comparing KaHyPar-CA with KaHyPar and other systems.
The y-axis shows the ratio between the smallest cut of all algorithms and the cut produced by the
corresponding algorithm.

T. Heuer and S. Schlag 21:13

Table 4 Results of significance tests comparing KaHyPar-CA with KaHyPar and other systems
on the full benchmark set. We report the Z-scores and p-values of the Wilcoxon matched pairs
signed rank tests. At a 1% significance level, a Z-score with |Z| > 2.58 is considered significant.
Negative Z-scores hereby indicate that KaHyPar-CA performs better than the respective algorithm.
Note that hMetis-K has slight advantages in the following comparisons because we do not disqualify
imbalanced partitions in the statistical analysis.

Class Algorithm KaHyPar-CA
Z p

DAC2012

KaHyPar −6.168 6.907e-10
hMetis-R −1.484 0.1379
hMetis-K −6.487 8.748e-11
PaToH-D −7.271 3.559e-13
PaToH-Q −7.271 3.559e-13

ISPD98

KaHyPar −7.962 1.695e-15
hMetis-R −5.806 6.403e-09
hMetis-K −2.751 0.005935
PaToH-D −9.638 5.522e-22
PaToH-Q −9.636 5.655e-22

SAT14 Primal

KaHyPar −11.22 3.232e-29
hMetis-R −4.411 1.027e-05
hMetis-K −6.918 4.579e-12
PaToH-D −17.23 1.56e-66
PaToH-Q −17.69 5.403e-70

SAT14 Literal

KaHyPar −11.3 1.354e-29
hMetis-R −4.189 2.802e-05
hMetis-K −5.475 4.375e-08
PaToH-D −19.33 3.162e-83
PaToH-Q −19.56 3.12e-85

SAT14 Dual

KaHyPar −7.271 3.573e-13
hMetis-R −8.339 7.515e-17
hMetis-K −8.071 6.969e-16
PaToH-D −18.21 4.656e-74
PaToH-Q −16.04 6.727e-58

UF-SPM

KaHyPar −5.941 2.832e-09
hMetis-R −16.75 5.467e-63
hMetis-K −21.81 1.739e-105
PaToH-D −26.83 1.557e-158
PaToH-Q −25.39 3.612e-142

WebSocial

KaHyPar −7.164 7.839e-13
hMetis-R −8.776 1.7e-18
hMetis-K −9.151 5.647e-20
PaToH-D −8.721 2.755e-18
PaToH-Q −7.368 1.737e-13

SEA 2017

21:14 Community-Aware Coarsening Schemes for Hypergraph Partitioning

bipartite graph representation via modularity maximization using the Louvain method. We
make this approach suitable for a wide spectrum of instances by appropriately choosing
weights for the graph edges based on the density of the hypergraph. Experiments on a
large benchmark set demonstrate that community-aware coarsening significantly improves
the partitioning quality of KaHyPar on all instance classes, while having only a moderate
impact on the overall running time. On all but one class, KaHyPar-CA performs statistically
significantly better than KaHyPar, hMetis, and PaToH and is on par with the best partitioner
otherwise.

There exist several ideas for future work. Given the significantly improved initial cuts, it
might be feasible to equip KaHyPar with faster (and less strong) local search algorithms to
narrow the gap between the running time of KaHyPar and PaToH. Modularity maximization
is widely used to detect community structure but also known to exhibit a certain scaling
behavior and resolution limit [26]. Future work therefore includes the analysis of whether these
limitations negatively affect the coarsening process and if multi-resolution modularity [44] can
be used as a remedy. Furthermore, there exist several alternative approaches to community
detection such as Infomap [54] and Surprise [2] that could also be evaluated in our community-
aware coarsening framework.

References
1 Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way hypergraph

partitioning algorithm. In 19th Workshop on Algorithm Engineering and Experiments,
(ALENEX), pages 28–42, 2017.

2 Rodrigo Aldecoa and Ignacio Marin. Deciphering Network Community Structure by Sur-
prise. PLOS ONE, 6(9):1–8, 09 2011.

3 F.A. Aloul, I. L. Markov, and K.A. Sakallah. MINCE: A Static Global Variable-Ordering
Heuristic for SAT Search and BDD Manipulation. Journal of Universal Computer Science,
10(12):1562–1596, 2004.

4 C. J. Alpert. The ISPD98 Circuit Benchmark Suite. In Proceedings of the 1998 International
Symposium on Physical Design, pages 80–85. ACM, 1998.

5 C. J. Alpert, J.-H. Huang, and A.B. Kahng. Multilevel Circuit Partitioning. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 17(8):655–667, 1998.

6 C. J. Alpert and A.B. Kahng. Recent Directions in Netlist Partitioning: a Survey. Integ-
ration, the VLSI Journal, 19(1–2):1 – 81, 1995.

7 C. Ansótegui, J. Giráldez-Cru, and J. Levy. The community structure of sat formulas.
In Alessandro Cimatti and Roberto Sebastiani, editors, 15th International Conference of
Theory and Applications of Satisfiability Testing (SAT), pages 410–423. Springer, 2012.

8 C. Aykanat, B.B. Cambazoglu, and B. Uçar. Multi-level Direct K-way Hypergraph Parti-
tioning with Multiple Constraints and Fixed Vertices. Journal of Parallel and Distributed
Computing, 68(5):609–625, 2008.

9 D.A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Proc. Graph Partitioning
and Graph Clustering – 10th DIMACS Implementation Challenge Workshop, volume 588
of Contemporary Mathematics. AMS, 2013.

10 M. J. Barber. Modularity and community detection in bipartite networks. Physical Review
E, 76:066102, Dec 2007.

11 A. Belov, D. Diepold, M. Heule, and M. Järvisalo. The SAT Competition 2014. http:
//www.satcompetition.org/2014/, 2014.

12 V.D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

http://www.satcompetition.org/2014/
http://www.satcompetition.org/2014/

T. Heuer and S. Schlag 21:15

13 U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner.
On Modularity Clustering. IEEE Trans. Knowledge and Data Engineering, 20(2):172–188,
2008.

14 T.N. Bui and C. Jones. Finding Good Approximate Vertex and Edge Partitions is NP-Hard.
Information Processing Letters, 42(3):153–159, 1992.

15 T.N. Bui and C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix Factorization.
In SIAM Conference on Parallel Processing for Scientific Computing, pages 445–452, 1993.

16 Ü.V. Catalyürek and C. Aykanat. Hypergraph-Partitioning-Based Decomposition for Par-
allel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, Jul 1999.

17 Ü.V. Catalyürek and C. Aykanat. PaToH: Partitioning Tool for Hypergraphs. http:
//bmi.osu.edu/umit/PaToH/manual.pdf, 1999.

18 J. Cong and S.K. Lim. Edge separability-based circuit clustering with application to
multilevel circuit partitioning. IEEE Trans. on CAD of Integrated Circuits and Systems,
23(3):346–357, 2004.

19 J. Cong and M. Smith. A Parallel Bottom-up Clustering Algorithm with Applications to
Circuit Partitioning in VLSI Design. In 30th Conference on Design Automation, pages
755–760, June 1993.

20 N. J. Cox. Stata tip 96: Cube roots. Stata Journal, 11(1):149–154(6), 2011. URL: http:
//www.stata-journal.com/article.html?article=st0223.

21 T.A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans-
actions on Mathematical Software, 38(1):1:1–1:25, 2011.

22 K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and Ü.V. Catalyürek. Parallel
Hypergraph Partitioning for Scientific Computing. In 20th International Conference on
Parallel and Distributed Processing, IPDPS, pages 124–124. IEEE, 2006.

23 W.E. Donath. Logic partitioning. Physical Design Automation of VLSI Systems, pages
65–86, 1988.

24 V. Durairaj and P. Kalla. Guiding CNF-SAT Search via Efficient Constraint Partitioning. In
Proceedings of the 2004 IEEE/ACM International Conference on Computer-aided Design,
ICCAD, pages 498–501. IEEE, 2004.

25 S. Dutt and W. Deng. VLSI Circuit Partitioning by Cluster-removal Using Iterative Im-
provement Techniques. In Proceedings of the 1996 IEEE/ACM International Conference
on Computer-aided Design, ICCAD, pages 194–200. IEEE, 1996.

26 S. Fortunato and M. Barthélemy. Resolution limit in community detection. Proceedings of
the National Academy of Sciences, 104(1):36–41, 2007.

27 S. Fortunato and D. Hric. Community detection in networks: A user guide. Physics Reports,
659:1–44, 2016.

28 Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.
29 J. Giráldez-Cru and J. Levy. Generating sat instances with community structure. Artificial

Intelligence, 238:119 – 134, 2016.
30 R. Guimerà, M. Sales-Pardo, and L.A.N. Amaral. Module identification in bipartite and

directed networks. Physical Review E, 76:036102, Sep 2007.
31 S. W. Hadley. Approximation Techniques for Hypergraph Partitioning Problems. Discrete

Applied Mathematics, 59(2):115–127, 1995.
32 L. Hagen and A.B. Kahng. A New Approach to Effective Circuit Clustering. In Proceed-

ings of the 1992 IEEE/ACM International Conference on Computer-aided Design, ICCAD,
pages 422–427. IEEE, 1992.

33 S. Hauck and G. Borriello. An Evaluation of Bipartitioning Techniques. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 16(8):849–866, Aug 1997.

SEA 2017

http://bmi.osu.edu/umit/PaToH/manual.pdf
http://bmi.osu.edu/umit/PaToH/manual.pdf
http://www.stata-journal.com/article.html?article=st0223
http://www.stata-journal.com/article.html?article=st0223

21:16 Community-Aware Coarsening Schemes for Hypergraph Partitioning

34 B. Heintz and A. Chandra. Beyond graphs: Toward scalable hypergraph analysis systems.
ACM SIGMETRICS Performance Evaluation Review, 41(4):94–97, April 2014.

35 B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes?
In International Symposium on Solving Irregularly Structured Problems in Parallel, pages
218–225, 1998.

36 B. Hendrickson and T.G. Kolda. Graph partitioning models for parallel computing. Parallel
Computing, 26(12):1519–1534, 2000.

37 B. Hendrickson and R. Leland. A Multi-Level Algorithm For Partitioning Graphs. SC
Conference, 0:28, 1995.

38 T.C. Hu and K. Moerder. Multiterminal Flows in a Hypergraph. In T.C. Hu and E.S.
Kuh, editors, VLSI Circuit Layout: Theory and Design, chapter 3, pages 87–93. IEEE
Press, 1985.

39 K. Suzuki and K. Wakita. Extracting Multi-facet Community Structure from Bipartite
Networks. In Proceedings of the 12th IEEE International Conference on Computational
Science and Engineering, CSE, pages 312–319, 2009.

40 G. Karypis. Multilevel hypergraph partitioning. In Jason Cong and Joseph R. Shinnerl,
editors, Multilevel Optimization in VLSICAD, pages 125–154. Springer, 2003.

41 G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning:
Applications in VLSI Domain. IEEE Transactions on Very Large Scale Integration VLSI
Systems, 7(1):69–79, 1999.

42 G. Karypis and V. Kumar. Multilevel K-way Hypergraph Partitioning. In Proceedings of
the 36th ACM/IEEE Design Automation Conference, pages 343–348. ACM, 1999.

43 S. Klamt, U. Haus, and F. Theis. Hypergraphs and Cellular Networks. PLOS Computa-
tional Biology, 5(5):e1000385, 05 2009.

44 R. Lambiotte. Multi-scale modularity in complex networks. In 8th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, pages 546–553,
May 2010.

45 A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative ana-
lysis. Physical Review E, 80:056117, Nov 2009.

46 T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley & Sons,
Inc., 1990.

47 F. Lotfifar and M. Johnson. A Multi-level Hypergraph Partitioning Algorithm Using Rough
Set Clustering. In 21st International Conference on Parallel and Distributed Computing
(Euro-Par), pages 159–170, 2015.

48 Z. Mann and P. Papp. Formula partitioning revisited. In Daniel Le Berre, editor, POS-14.
Fifth Pragmatics of SAT workshop, volume 27 of EPiC Series in Computing, pages 41–56.
EasyChair, 2014.

49 T. Murata. Modularity for Bipartite Networks. In N. Memon, J. J. Xu, D. L. Hicks, and
H. Chen, editors, Data Mining for Social Network Data. Springer, 2010.

50 N. Neubauer and K. Obermayer. Towards community detection in k-partite k-uniform hy-
pergraphs. In Proceedings of the NIPS 2009 Workshop on Analyzing Networks and Learning
with Graphs, pages 1–9, 2009.

51 M.E. J. Newman. Analysis of weighted networks. Physical Review E, 70:056131, Nov 2004.
52 M.E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Physical Review E, 69:026113, Feb 2004.
53 D.A. Papa and I. L. Markov. Hypergraph Partitioning and Clustering. In T. F. Gonza-

lez, editor, Handbook of Approximation Algorithms and Metaheuristics. Chapman and
Hall/CRC, 2007.

54 M. Rosvall, D. Axelsson, and C.T. Bergstrom. The map equation. The European Physical
Journal Special Topics, 178(1):13–23, 2009.

T. Heuer and S. Schlag 21:17

55 S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, August 2007.
56 S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way Hy-

pergraph Partitioning via n-Level Recursive Bisection. In 18th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 53–67, 2016.

57 D.G. Schweikert and B.W. Kernighan. A Proper Model for the Partitioning of Electrical
Circuits. In Proceedings of the 9th Design Automation Workshop, DAC, pages 57–62. ACM,
1972.

58 A. Trifunovic. Parallel Algorithms for Hypergraph Partitioning. PhD thesis, University of
London, 2006.

59 A. Trifunović and W. J. Knottenbelt. Parallel Multilevel Algorithms for Hypergraph Par-
titioning. Journal of Parallel and Distributed Computing, 68(5):563 – 581, 2008.

60 Ü. V. Çatalyürek and M. Deveci and K. Kaya and B. Uçar. UMPa: A multi-objective,
multi-level partitioner for communication minimization. In Bader et al. [9], pages 53–66.

61 B. Vastenhouw and R.H. Bisseling. A Two-Dimensional Data Distribution Method for
Parallel Sparse Matrix-Vector Multiplication. SIAM Review, 47(1):67–95, 2005.

62 N. Viswanathan, C. Alpert, C. Sze, Z. Li, and Y. Wei. The DAC 2012 Routability-driven
Placement Contest and Benchmark Suite. In Proceedings of the 49th Annual Design Auto-
mation Conference, DAC’12, pages 774–782. ACM, 2012.

63 S. Wichlund. On multilevel circuit partitioning. In 1998 International Conference on
Computer-aided Design, ICCAD, pages 505–511. ACM, 1998.

64 F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bulletin, 1(6):80–
83, 1945. URL: http://www.jstor.org/stable/3001968.

A Performance Plots of Edge Weighting Schemes

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

d � 1 d ≈ 1

d � 1 d � 1

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω) CA(ωde)

1 10 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

1 10 25 50 10
0

15
0

20
0

30
0

40
0

45
0 1 10 25 50 10
0

15
0

20
0

30
0

40
0

45
0

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

0.00

0.01

0.05
0.10

0.20

0.40
0.60
0.80
1.00

1-
(B

es
t/

A
lg

or
ith

m
)

d � 1 d ≈ 1

d � 1 d � 1

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω)
CA(ωe)

CA(ωde)

infeasible solutions

Algorithm
CA(ω) CA(ωde)

1 10 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5 1 10 25 50 10
0

15
0

20
0

30
0

40
0

50
0

1 10 25 50 10
0

15
0

20
0

30
0

40
0

45
0 1 10 25 50 10
0

15
0

20
0

30
0

40
0

45
0

Figure 5 Min-Cut performance plots comparing the different edge weighting schemes of KaHyPar-
CA on the benchmark subset.

SEA 2017

http://www.jstor.org/stable/3001968

21:18 Community-Aware Coarsening Schemes for Hypergraph Partitioning

B Excluded Test Instances

Out of 3416 test instances, we excluded the following 194 instances either because PaToH-Q
could not allocate enough memory or one of the other partitioners could not partition the
instances in the given time limit. The table is split into two groups: SAT instances and
sparse matrix instances. Note that whenever KaHyPar or KaHyPar-CA exceeded the time
limit, it was due to the long running time of local search.

Table 5 Instances excluded from the full benchmark set evaluation.

Hypergraph 2 4 8 16 32 64 128
10pipe-q0-k.dual 4 4 4 m4

10pipe-q0-k.primal � � � � � � �

11pipe-k.dual 4 m4 m4 m4 m4 m4 m4

11pipe-k m m m m

11pipe-k.primal � � � � � � m�

11pipe-q0-k.dual 4 m4 m4

11pipe-q0-k.primal � � � � � � �

9dlx-vliw-at-b-iq3.dual 4

9dlx-vliw-at-b-iq3.primal � � � � � � �

9vliw-m-9stages-iq3-C1-bug7.dual 4 lm4 lm4 lm4 lm4 lm4 lm4

9vliw-m-9stages-iq3-C1-bug7 4 4 lm4 lm4 lm4 lm�4 lm�4

Hypergraph 2 4 8 16 32 64 128
9vliw-m-9stages-iq3-C1-
bug7.primal

4 4 4 m4 m4 m4

9vliw-m-9stages-iq3-C1-bug8.dual 4 lm4 lm4 lm4 lm4 lm4 lm4

9vliw-m-9stages-iq3-C1-bug8 4 4 lm4 lm4 lm4 lm�4 lm�4

9vliw-m-9stages-iq3-C1-
bug8.primal

4 4 4 m4 m4 m4

blocks-blocks-37-1.130-
NOTKNOWN.dual

m lm lm lm lm lm4

blocks-blocks-37-1.130-
NOTKNOWN

� � � � � �

blocks-blocks-37-1.130-
NOTKNOWN.primal

� � � � � � �

E02F20.dual m

E02F22.dual m m

openstacks-p30-3.085-SAT.primal � � � � � � �

openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-
p30-3.025-NOTKNOWN.primal

� � � � � � �

openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-
p30-3.085-SAT.primal

� � � � � � �

transport-transport-city-
sequential-25nodes-1000size-
3degree-100mindistance-3trucks-
10packages-2008seed.030-
NOTKNOWN.dual

4

T. Heuer and S. Schlag 21:19

transport-transport-city-
sequential-25nodes-1000size-
3degree-100mindistance-3trucks-
10packages-2008seed.050-
NOTKNOWN.primal

� � �

q-query-3-L100-coli.sat.dual 4

q-query-3-L150-coli.sat.dual 4 4

q-query-3-L200-coli.sat.dual 4 4 4

q-query-3-L80-coli.sat.dual 4

velev-vliw-uns-2.0-uq5.dual 4 4 4 4 4

velev-vliw-uns-2.0-uq5.primal � � � � � � �

velev-vliw-uns-4.0-9.dual 4 4 4

velev-vliw-uns-4.0-9.primal � � � � � � �

192bit � �

appu m m

ESOC � � � m� �

human-gene2 m m m

IMDB 4 4 4 4

on-g500-logn16 4 4 4 4 m4 m4

Rucci1 �

sls � � � m� m� m� m�

Trec14 m

4 : KaHyPar/KaHyPar-CA exceeded time limit
l : hMetis-R exceeded time limit
m : hMetis-K exceeded time limit
� : PaToH-Q memory allocation error

SEA 2017

Minimum Spanning Tree under Explorable
Uncertainty in Theory and Experiments∗

Jacob Focke1, Nicole Megow2, and Julie Meißner3

1 Department of Computer Science, University of Oxford, Oxford, UK
jacob.focke@cs.ox.ac.uk

2 Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany
nicole.megow@uni-bremen.de

3 Institute of Mathematics, Technical University of Berlin, Berlin, Germany
jmeiss@math.tu-berlin.de

Abstract
We consider the minimum spanning tree (MST) problem in an uncertainty model where uncertain
edge weights can be explored at extra cost. The task is to find an MST by querying a minimum
number of edges for their exact weight. This problem has received quite some attention from the
algorithms theory community. In this paper, we conduct the first practical experiments for MST
under uncertainty, theoretically compare three known algorithms, and compare theoretical with
practical behavior of the algorithms. Among others, we observe that the average performance and
the absolute number of queries are both far from the theoretical worst-case bounds. Furthermore,
we investigate a known general preprocessing procedure and develop an implementation thereof
that maximally reduces the data uncertainty. We also characterize a class of instances that
is solved completely by our preprocessing. Our experiments are based on practical data from
an application in telecommunications and uncertainty instances generated from the standard
TSPLib graph library.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms, F.2.1 Computations on Dis-
crete Structures

Keywords and phrases MST, explorable uncertainty, competitive ratio, experimental algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.22

1 Introduction

Uncertain data is a common issue in many real-world optimization problems. While it is
clear that uncertain data can not be completely avoided, improved or exact data can often be
explored at an additional cost. Classical approaches to optimization under uncertainty such
as robust, stochastic, and online optimization do not capture this possibility. Uncertainty
exploration takes a different approach by taking into account the exploration of uncertain
data at extra cost. Here, the goal is to quantify the trade-off between an investment in
more precise data and the resulting quality for the solution to the optimization problem. A
major research line in this context asks for the minimum exploration cost to find an optimal
solution. In a sense, this is the opposite of robust optimization that aims for the best solution
with zero exploration cost.

∗ This research was carried out in the framework of Matheon supported by Einstein Foundation Berlin
and the German Science Foundation (DFG) under contract ME 3825/1.

© Jacob Focke, Nicole Megow, and Julie Meißner;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

Applications for optimization under explorable uncertainty can be found, e.g., in telecom-
munication or infrastructure network design, where either construction cost estimates can be
improved through expert advice, or approximate connection lengths can be ensured through
field measurements. Other optimization problems that allow uncertainty exploration are user
demand estimates that can be improved through user surveys, and weather predictions that
can be enhanced by both, additional measurements and more computational power.

In this paper, we consider the minimum spanning tree (MST) problem in the uncertainty
exploration model. For each edge, we are given an uncertainty interval in which the exact
edge weight lies. We can query each edge to find out its exact weight. The goal is to minimize
the number of queries needed until we find a minimum spanning tree. As a performance
measure we use the competitive ratio, that is, the worst-case ratio between the number of
queries needed by an algorithm and the minimum number of queries required when given
the exact data in advance. Precise definitions follow at the end of this section.

The MST problem, as one of the most fundamental and practically relevant combinatorial
optimizations problems, has been investigated intensively in the uncertainty exploration model
from the theoretical perspective. Several algorithms with provable worst-case guarantees
are known [8, 15]. In this paper, we compare these algorithms theoretically, conduct
the first practical experiments, and compare the theoretical and practical behavior of the
algorithms. Furthermore, we investigate a preprocessing that was proposed in [15]. We
develop an implementation thereof, for which we guarantee that it maximally reduces the
data uncertainty. This is not only theoretically interesting but also practically relevant, as it
reduces the data uncertainty that remains when starting an (arbitrary) algorithm.

We run our experiments on two different data sets. The first set of data is from a
telecommunication service provider. It describes a problem that appears when expanding a
cable network to a new roll-out area. First, the facility locations are chosen, that need to be
connected. The exact connection costs between the facilities are unknown and can only be
explored through costly field measurements. We find the best MST under uncertainty for
these instances. We complement this practical data by a second data set, which we generate
based on graphs available in the well-known graph library TSPLib [16].

Related Work. Optimization under uncertainty is an important, well-studied topic in theory
and practice. The major lines of research are robust optimization [2], online optimization [4],
and stochastic optimization [3], each modeling uncertain information in a different way. The
first model where uncertain information can be explicitly explored at a fixed cost was studied
by Kahan [14]. He investigated finding the maximum and median of a set of values known
to lie in given uncertainty intervals. The recent survey by Erlebach and Hoffmann [6] gives
a nice overview on research in the uncertainty exploration model. Various problems have
been studied, including the k-th smallest value in a set of uncertainty intervals [14, 13, 10]
and classical combinatorial optimization problems, such as shortest path [9], finding the
median [10], the MST problem [8, 15, 11], the cheapest set problem [7] and the knapsack
problem [12]. The latter work on the knapsack problem seems to be the only one that
contains computational experiments conducted in this field.

The MST problem with uncertain edge weights was introduced by Erlebach et al. [8].
Their deterministic algorithm achieves an optimal competitive ratio of 2. A simplification of
this algorithm that omits a repetitive restart by preserving the competitive ratio was given
in [15]. Also the existence of a dual algorithm is observed. The main contribution in [15] is
a randomized algorithm with expected competitive ratio of 1 + 1/

√
2 ≈ 1.707 whereas the

best-known lower bound is 1.5. The offline problem of finding the optimal query set for a
given realization of edge weights can be solved in polynomial time [5].

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html

J. Focke, N. Megow, and J. Meißner 22:3

Our Contribution. We theoretically compare the three algorithms for MST under un-
certainty, make practical experiments and showcase similarities and differences between
theoretical and practical observations. For the algorithms we define the best-possible pre-
processing in Section 3 and characterize a class of instances which it solves completely. We
observe exactly this structure in one of the practical data sets. Our experiments show that the
average competitive ratio is small and the total number of queries as well. The comparison
of theory and practice in Sections 2 and 5 shows that the competitive ratio and the variance
in the size of an optimal solution are far from the worst-case. While theoretically there
are instances on which the two deterministic algorithms show opposing behavior, in our
experiments their performance is almost identical for all instances. We show that there are
instances on which the two deterministic algorithms perform better than the randomized one.
Surprisingly, we observe this behavior for the telecommunication data. For the TSPLib data
the opposite happens and the randomized algorithm has a significantly smaller competitive
ratio. Conducting the first experiments, we saw that the implementation hurdle is small and
our run times are reasonably small, even though we did not optimize on it.

Problem Definition and Notation. Given an undirected, connected graph (V, E) with
|V | = n and |E| = m, we associate with each edge e ∈ E an uncertainty interval Ae. This
interval constitutes the only information about e’s unknown weight we ∈ Ae. Such an interval
is either trivial, Ae = [Le, Ue], Le = Ue, or it is non-trivial, i. e., Ae = (Le, Ue), with lower
limit Le and upper limit Ue > Le. Closed, non-trivial intervals cannot be allowed as they lead
to a non-constant competitive ratio [8]. We call an edge trivial if it has a trivial uncertainty
interval, non-trivial otherwise. Let A be the set of uncertainty intervals for E. Then an
instance of our problem is an uncertainty graph G = (V, E,A) together with a realization R
of edge weights (we)e∈E which lie in their corresponding uncertainty intervals, i. e., we ∈ Ae.

The task is to find a minimum spanning tree (MST) in the uncertainty graph G for an
a priori unknown realization R of edge weights. We may query any edge e ∈ E and obtain
its exact weight we according to R. The goal is to determine an MST through a sequence of
queries that is as short as possible. The resulting set of queries Q ⊆ E is feasible, if there is
a spanning tree which is an MST for every realization of edge weights we ∈ Ae for e ∈ E \Q

and the weights we defined by R for e ∈ Q. We call this problem MST under uncertainty.
We evaluate our algorithms by standard competitive analysis. An algorithm is c-competi-

tive if, for any realization R = (we)e∈E , the number of queries is at most c times the optimal
query number. For a fixed realization R, the optimal number of queries describes the
minimum size of a query set that verifies an MST. The competitive ratio of an algorithm is
the infimum over all c such that the algorithm is c-competitive. For randomized algorithms
we compare the expected number of queries to the optimal number of queries.

2 Introduction of Algorithms and Theoretical Comparison

In this section we discuss known algorithms for MST under uncertainty. The first (determin-
istic) algorithm Ured was introduced by Erlebach et al. [8]. It achieves the best-possible
competitive ratio of 2. Subsequently, two deterministic algorithms Cycle and Cut with
competitive ratio 2 were given by Megow et al. [15]. Originally, they were presented for the
more general problem of computing a minimum weight matroid basis in the uncertainty
exploration model. Applying Cycle to computing an MST, it can be interpreted as a variant
of Ured without repeated restarts and, thus, we consider here only the simplified variant.
The randomized algorithm Random with competitive ratio 1.707 and a preprocessing were
given also in [15]. Here the best known lower bound is 1.5.

SEA 2017

22:4 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

In our paper we consider the three algorithms Cycle, Cut and Random, which we
briefly describe below; pseudo-code can be found in the appendix. We apply the preprocessing
on the input to all three algorithms. Details on the preprocessing follow in Section 3.

Deterministic algorithm Cycle. The algorithm Cycle is a worst-out greedy algorithm that
is based on the following MST characterization: The largest-weight edge in a cycle is not
in any MST. It starts out with a candidate minimum spanning tree and then iteratively
considers the other edges. Each additional edge defines a cycle together with the candidate
tree. On this cycle, the two edges with largest upper limit are queried repeatedly, until we
either verify the additional edge has largest weight or we find an edge of larger weight on the
cycle. In the latter case we improve the tree by exchanging the two edges.

Deterministic algorithm Cut. Cut is the dual algorithm to Cycle, that is defined by
matroid duality. It uses that the minimum-weight edge in a cut is in an MST. Like in the
previous algorithm, Cut starts with a candidate MST, but iteratively considers the tree
edges. Deleting a tree edge defines a cut. On this cut we repeatedly query the two edges
with smallest lower limit, until we either verify that the tree edge has the smallest weight in
the cut or find an edge of smaller weight to replace the candidate tree edge.

Randomized algorithm. The randomized algorithm Random crucially needs a preprocessed
instance with the following structural property: For any cycle appearing in the algorithm,
any feasible query set contains either the edge with largest upper limit e or all edges
with overlapping interval, i.e., whose uncertainty interval contains the lower limit Le. The
preprocessing, which we discuss in detail in Section 3, guarantees this property [15].

The algorithm Random uses the same structure as Cycle. Starting out with a candidate
MST, it iteratively considers the remaining edges not in this tree. For each remaining edge,
the algorithm inspects the (unique) cycle it closes in the MST to see which of its edges
should be queried. The preprocessing yields that on each such cycle any feasible query set
contains either the edge with the largest upper limit, say f , or all cycle edges whose intervals
overlap with that of f . The algorithm either queries the largest edge or all overlapping edges
at once. To balance this decision over several cycles closed during the algorithm, Random
introduces a potential for each edge. In each cycle additional potential is distributed to all
overlapping edges such that they reach an equal level. Depending on the resulting amount of
potential, either these edges or the edge with largest upper limit are queried. This decision
is randomized by comparing the potential to a randomly chosen uniform threshold.

2.1 Comparing the Deterministic Algorithms
We show that there are instances on which Cycle and Cut have an opposing performance,
meaning that one algorithm is near-optimal and the other shows its worst-case performance.
Intuitively, the instance is solved by querying the edges of a single cycle C and Cycle queries
pairs of edges on C only. Cut, however, almost exclusively queries pairs with only one edge
in C. The reverse holds for instances, in which it suffices to query the edges of a single cut.

Our graph class SP consists of a path of edges S and a set of parallel edges P , each of
which closes a cycle with S. We give two realizations R1 and R2 in Figure 1.

For R1 the set S is the unique optimal query set and a query set is a feasible solution
only if it contains S. The first cycle closed by the algorithm Cycle contains S and exactly
one edge of P . It queries all edges on this cycle, which is a feasible solution of size |S|+ 1.
Cut on the other hand considers cuts of the form P + {s} with a non-queried edge s ∈ S.

J. Focke, N. Megow, and J. Meißner 22:5

Figure 1 Different realizations for the class of uncertainty graphs SP lead to different extremes
in the behavior of Cycle and Cut. Edge labels: (Le, Ue) | we.

There are |S| such cuts. For each, Cut queries a pair of edges as long as there are non-
queried edges left in P . Thus, it queries |S| + min {|S|, |P |} edges. By choosing S and P

of appropriate cardinality we can achieve every performance ratio q ∈ (1, 2] for Cut. In
particular, for |S| ≤ |P | and |S| → ∞, the performance ratio of Cycle approaches 1 and
the ratio of Cut is 2.

The reverse holds for the realization R2. In this case a feasible query set has to contain P ,
Cut finds a solution of size |P |+ 1, and Cycle queries |P |+ min {|S|, |P |} edges.

I Observation 1. For any rational q ∈ (1, 2], there exists a graph in the class SP and
a realization such that Cycle (Cut) is near-optimal whereas Cut (Cycle) yields a
performance ratio of q.

Thus, theoretically the query set sizes can vary greatly for Cycle and Cut. However, we do
not observe this behavior for any of the instances in our experiments.

2.2 Comparing Randomized and Deterministic Algorithms
We show that Random can be optimal for worst-case instances of Cycle and Cut, and –
somewhat surprisingly – the reverse is also possible.

Consider a family of cycles joined in one node, each with three edges f , g, h with
uncertainty intervals (1, 4), (0, 3) and [1, 1] respectively. Further, edge f has weight 3 and
edge g has weight 1. Then, Random terminates with a single query of either f or g in each
cycle, while Cycle and Cut query both f and g.

I Observation 2. There are instances, for which Random finds an optimal solution, while
Cycle and Cut achieve their worst-case ratio of 2.

A similar instance evokes the reverse performance behavior. Consider a cycle C with k edges
ei with interval (0, 3), one edge g with interval (0, 4) and one edge f with interval (1, 5). We
choose the weights as wei

= 2 and wg = wf = 3. Then Cycle and Cut query only edges f

and g, which is optimal, but Random yields its worst-case ratio 1 + 1/
√

2 for k →∞.

I Observation 3. There exists a family of uncertainty graphs, for which Cycle and Cut
perform optimally, whereas Random asymptotically shows its worst case behavior.

2.3 Variance of OPT
We investigate the variance of the optimal number of queries, Opt, under different realizations
for a fixed input instance. We give an example instance in which small perturbations in the
realization significantly change the value of Opt.

SEA 2017

22:6 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

Algorithm 1 Preprocessing (≺`,≺u)
Input: An uncertainty graph G = (V, E,A).
Output: A query set Q ⊆ E and the two trees T`, Tu.
1: Q← ∅.
2: Determine T` and Tu according to ≺` and ≺u respectively using Prim’s algorithm [1].
3: while T` \ Tu contains a non-trivial edge do
4: Query all non-trivial edges in T` \ Tu, and add them to Q.
5: Update T` and Tu.
6: return The query set Q and the two trees T`, Tu.

Consider a cycle C of length m consisting of an edge f with uncertainty interval (1, 4)
and m− 1 identical edges {g1, . . . , gm−1} =: G with uncertainty interval (0, 3) and weight 2.
If we set the weight of f to be 3, it suffices to query f and Opt = 1. On the other hand, if
the weight of f is 2, all edges in C have to be queried and Opt = m. Interestingly, we do
not observe this large variance in our experiments (see Section 5: The optimal solution).

I Observation 4. For a fixed uncertainty graph Opt can vary greatly even for minor changes
of the underlying realization.

3 Preprocessing

Preprocessing aims at simplifying the input instance, that is, we identify and query edges
that must be queried by any algorithm including the optimal one. Naturally, we want to
query as many such edges as possible before starting the actual algorithm.

There is a characterization of (a subset of) such edges that relies on the following definition.
Given an instance of MST under uncertainty, the lower limit tree T` is an MST for the
realization w`, in which all edge weights of edges with non-trivial uncertainty interval are
arbitrarily close to their lower limits, more precisely w`

e = Le+ε for infinitesimally small ε > 0.
The upper limit tree Tu ⊆ E is an MST for the realization in which edges have weights
arbitrarily close to their upper limit, that is, wu

e = Ue − ε. Note, that the order relation
of edges with identical lower (upper) limit is yet unspecified. By ≺` and ≺u we denote an
arbitrary but fixed pair of total orderings of edges, w.r.t. which we obtain a lower limit tree
T` and upper limit tree Tu respectively.

I Theorem 5 ([15]). Given an uncertainty graph with lower and upper limit trees T`, Tu,
any non-trivial edge e ∈ T` \ Tu is in every feasible query set for any realization.

The preprocessing in [15] iteratively computes the trees T` and Tu and queries the edges in
the set T` \ Tu until this set contains only edges with trivial uncertainty interval; see Alg. 1.
The choice of ≺` and ≺u and thus specifying the order relation of edges with identical lower
(upper) limit raises the potential for good or bad choices. As an example, consider a graph
of k identical two-edge cycles that are all joined in one node. Each cycle is of the form
C = {e1, e2}, where all edges have the same lower limit L and upper limits U1 < U2. Then,
for any ordering ≺u the upper limit tree Tu does not contain e2 for each of the cycles. For
the lower limit ordering ≺`, all orderings are feasible. For the ordering e1 ≺ e2, we have
T` = Tu and the preprocessing does not query any edge. However, for the ordering e2 ≺ e1
the two trees are disjoint and k edges are queried in the first iteration of the preprocessing.

Observing this significant impact, we define a specific pair of total orderings ≺L,≺U on
the edges and we prove that the algorithm above, Preprocessing (≺L,≺U), maximizes the
total number of queries.

J. Focke, N. Megow, and J. Meißner 22:7

I Definition 6 (Limit Orders and Trees). Let G = (V, E,A) be an uncertainty graph and let
e1, . . . , em be an arbitrary but fixed labeling of the edges in E. Then we define two orderings
for the edges in E.
Lower Limit Order: ei ≺L ej , if Lei < Lej or if Lei = Lej and one of the following

holds:
(i) ei trivial and ej non-trivial
(ii) Uei

> Uej
and ej non-trivial

(iii) Uei = Uej and i < j.
Upper Limit Order: ei ≺U ej , if Uei

< Uej
or if Uei

= Uej
and one of the following

holds:
(i) ej trivial and ei non-trivial
(ii) Lei

> Lej
and ei non-trivial

(iii) Lei = Lej and j < i.
We call the corresponding lower and upper limit trees TL and TU .

We show that Preprocessing (≺L,≺U) queries all edges which are in T` \ Tu for any
other pair of orderings ≺`,≺u. As a first step, it is not hard to see that an edge e, which is
contained in T` \ Tu for some fixed orderings ≺` and ≺u, remains in this set independently
from queries of edges other than e.

I Lemma 7. An edge in T` \ Tu remains in the set T` \ Tu until it is queried.

Proof. Let e be in T` \ Tu. As long as e is not queried, its interval limits do not change.
Querying other edges only increases their lower limits and decreases their upper limits. Hence,
e stays in T` and remains excluded from Tu. J

Next we show that Preprocessing (≺L,≺U) does not terminate while there is a non-
trivial edge in T` \ Tu. The proof of Lemma 8 considers an edge e in T` \ Tu and proves the
statement separately for the three cases e ∈ TL, e /∈ TL and e /∈ TU as well as e ∈ TU \ TL.

I Lemma 8. If there is a non-trivial edge in T` \ Tu, then there is also one in TL \ TU .

Proof. Assume there is a non-trivial edge e ∈ T` \Tu, but TL \TU contains only trivial edges.
We distinguish three cases. If e is in TL, it is also in TU . Then there is an edge h, which is
in the cut in TU \ e and in the cycle in Tu ∪ e. As it is in the cut, we have Uh ≥ Ue. At the
same time, the cycle shows Uh ≤ Ue, such that the two upper limits must be equal. Then,
the fact that h is in the cut, but not in TU means Le ≥ Lh. If h is trivial, e must also be
trivial, which contradicts our assumption. Otherwise, as we choose h /∈ TU and TL \ TU

contains only trivial edges, edge h is also not in TL. If h is not in the cut TL \ e, there must
be an edge g in TL \ TU that is in the cut TU \ e and in the cycle in TL ∪ h. This edge g

is trivial, larger than e in the ordering ≺U and smaller than h in the ordering ≺L. This
means together with the observations about the bounds of e and h we made above, that
we have Ug ≥ Ue = Uh and Le ≥ Lh ≥ Lg. Thus e and h are both trivial: a contradiction.
Alternatively we consider h is in the cut TL \ e, where only edges at least as large as e are
contained. This means Le ≤ Lh and consequently Le = Lh. The edge h is in the cut TL \ e

and in the cut TU \ e, which means we have e ≺L h and e ≺U h. However, this contradicts
that the intervals of e and h are identical.

If e is not in TL and not in TU , then there is an edge h, which is in the cut T` \ e and in
the cycle in TL ∪ e. As it is in the cut, we have Le ≤ Lh and h non-trivial, and as it is in the
cycle we have Le ≥ Lh. Thus, we have Le = Lh and Uh ≥ Ue because of the ordering ≺L.
We choose h ∈ TL. As TL \ TU contains only trivial edges, edge h is also in TU . If h is not in

SEA 2017

22:8 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

the cycle TU ∪ e, there must be an edge g in TL \ TU that is in the cut TU \ h and in the
cycle TL ∪ e. This edge g is trivial, larger than h in the ordering ≺U and smaller than e in
the ordering ≺L. This means together with the observations about the bounds of e and h

we made above, that we have Ug ≥ Uh ≥ Ue and Lh = Le ≥ Lg. Thus e and h are both
trivial: a contradiction. Alternatively we consider h is in the cycle TU ∪ e, where only edges
with upper limit at most as large as e are contained. This means Uh ≤ Ue and consequently
Uh = Ue. The edge h is in the cycle TU ∪ e and in the cycle TL ∪ e, which means we have
h ≺L e and h ≺U e. However, this contradicts that the interval of e and h is identical.

Finally, we consider e ∈ TU \ TL. Then there is an edge h in the cut TU \ e and in the
cycle TL ∪ e. This means h ∈ TL \ TU and thus trivial. Additionally we have e ≺U h, h ≺L e,
which means Lh ≤ Le ≤ Ue ≤ Uh. However, this is a contradiction as e is non-trivial. J

Combined, this means Preprocessing (≺L,≺U) queries every non-trivial edge in T` \ Tu.

I Theorem 9. Preprocessing (≺L,≺U) queries the union over all edges queried by Pre-
processing (≺`,≺u) for all orderings ≺`,≺u. Thus, it queries the maximum number of
edges characterized by Theorem 5.

Proof. We show by induction over the number of iterations that edges queried in Prepro-
cessing (≺`,≺u) are also queried in Preprocessing (≺L,≺U). By Lemma 7 and 8, all
edges queried in iteration 1 of Preprocessing (≺`,≺u) are also queried in our specific
preprocessing. Let e be an edge queried in iteration i > 1 of Preprocessing (≺`,≺u). Let S

be the set of all edges queried in the previous iterations. Then, by induction, the set S is
queried by Preprocessing (≺L,≺U). Assume edge e is not queried by Preprocessing
(≺L,≺U). We consider Preprocessing (≺`,≺u) in iteration i and additionally query all
edges which are queried by Preprocessing (≺L,≺U). By Lemma 7 edge e is still in T` \ Tu

for this new uncertainty graph. However, this is exactly the uncertainty graph at the end of
Preprocessing (≺L,≺U). Thus, the termination of the algorithm at this point contradicts
Lemma 8. J

3.1 Instances Solved by the Preprocessing
The preprocessing is a modification of the input instance and intuitively it simplifies it by
removing uncertainty. We note, however, that in theory it can lead to a worse algorithm
performance for specific input. Nevertheless, in our experiments, the preprocessing generally
improves the performance ratio of our algorithms. One class of our data sets is even solved
exactly by the preprocessing alone. We generalize this observation and characterize a family
of uncertainty graphs which can be completely solved by our preprocessing.

I Proposition 10. For uncertainty graphs, in which every cycle contains only edges with
identical lower limit or only edges with identical upper limit, Preprocessing (≺L,≺U) finds
an optimal solution.

Proof. The proof is by contradiction. Assume Preprocessing (≺L,≺U) terminates with
TL and TU and did not find a feasible query set. Then the uncertainty graph has a cycle C

on which it is unclear which edge has the largest weight. All but one edge of C are in TL.
Assume, that originally all edges on the cycle had the same upper limit. If there is only one
edge f with largest upper limit, all other edges on the cycle are trivial. Since it is unclear,
which edge has largest weight on C, f cannot also have the largest lower limit. Thus f is
non-trivial and in TL \ TU , which is a contradiction. Otherwise, there are two non-trivial
edges e and f on C with largest upper limit, e ∈ TL and f /∈ TU . This means we can define

J. Focke, N. Megow, and J. Meißner 22:9

an alternative ordering ≺u with f ≺u e and thus e /∈ Tu. Thus, for the preprocessing with
orderings ≺L and ≺u we have e ∈ TL \ Tu. By Theorem 9 this means Preprocessing
(≺L,≺U) queries e, a contradiction to e being non-trivial.

A cycle with identical lower limits can be treated analogously. J

4 Experimental Data

First, note that there is an inherent difficulty with practical experiments for exploration
uncertainty. For a practical application the uncertainty intervals might be known as well
as the exact edge weights of the queried edges. To decide the optimal number of queries
necessary, in general one needs the exact edge weights of further edges. However, in practice
there is no reason to explore additional edges after the solution has been found. Thus, even
though we have practical data we need to generate a part of the instance.

Telecommunication. For the telecommunication data we have 5 different graphs of varying
size with up to 1000 nodes available to us. For each of them we have two different sets
of uncertainty intervals. In the first set, the terrain data, we consider the building cost
uncertainty that arises from different terrains. The cost of a connection is limited by the
construction cost per meter cable through a field and the cost under a paved street times
the length of the connection. We draw the exact edge weight uniformly distributed in the
interval. In this uncertainty setting, exploring the exact weight of an edge represents the time
or cost investment it takes to identify the terrain of a particular connection. The second data
set we call existence data. This setting assumes that the terrain of the connection is known,
but it is uncertain if existing infrastructure is available or not. As a result the interval ranges
from almost no building cost due to existing infrastructure to a fixed building cost, which is
roughly known in advance. The exact edge weight follows a two-point distribution close to
the two endpoints of the interval. We maintain the ratio of 20% small weight to 80% large
weight that is observed in practice.

TSPLib. We consider the 19 graphs for the symmetric traveling salesman problem TSP of
the library TSPLib that have at most 100 nodes. They are usually used for TSP computations,
but we compute their minimum spanning trees. The library contains the exact edge weights
and we need to create corresponding uncertainty intervals. We choose the interval size
proportional to the weight of each edge, which is a natural approach that we also observe in
the telecommunication data. We experiment with the ratio between interval size and exact
edge weight, let us call this ratio d, to generate difficult instances. As before, we consider
intervals such that the realization is either uniformly distributed or two-point distributed at
the two extremes. For an edge with weight w we draw the lower limit L uniformly at random
in ((1− d) ·w, w) in the uniform case and set the upper limit U to L + d ·w. In the extremal
case we choose the lower limit close to the edge weight w such that L < w or we choose the
upper limit U close to w with w < U each with probability 1/2. Then we choose the other
limit accordingly. We computed the average competitive ratio of all three algorithms for the
two distributions and various values for d between 0.001 and 0.5 for 190 uncertainty graphs;
see Figure 6. As we are interested in a worst-case behavior, we choose for our experiments a
uniform value d = 0.065 for which all algorithms have a rather large competitive ratio.

As one aspect of our experimental analysis, we investigate for a given graph the variance of
certain parameters. We distinguish between the two data types: For the telecommunication

SEA 2017

22:10 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

Figure 2 Size of the optimal solution Opt divided by the number of edges on the y-axis and the
uncertainty graphs sorted by data set and increasing number of edges on the x-axis.

data the realization inside the uncertainty interval changes, while for the TSPLib data the
location of the fixed length uncertainty interval around the also fixed realization changes.

5 Experimental Algorithm Analysis

For the detailed analysis we draw 100 uncertainty intervals/realizations for each graph in a
data set, which yields 4800 instances in total. We perform our experiments with 20 repetitions
of Random per instance, as more repetitions did not alter the average performance. For each
of the instances we compute the number of edges, the size of the query set in the preprocessing,
the size of the optimal solution, the size of the query set for each of the three algorithms,
the run time of the three algorithms as well as that of the preprocessing. For Random
we additionally compute the average number of edges on a cycle closed in the algorithm
and the average number of edges on an algorithm cycle that have an uncertainty interval
overlapping the one of the edge with largest upper limit. For the latter two parameters, we
could not find a relation to the algorithm’s performance. We summarize our experimental
results in the following subsections. We make our code, the complete input and output data,
and further analysis available at http://www.coga.tu-berlin.de/fileadmin/i26/coga/
MSTData.zip.

5.1 The Optimal Solution
The size of the optimal solution Opt, that is, the minimum number of queries to find an
MST, naturally grows with the size of the instance. To analyze a correlation, we consider the
number of edges m as the instance size and determine the parameter Opt/m; see Figure 2.
There are instances among the telecommunication data for which the ratio Opt/m is as
large as 0.5 and other ones where it is very small. Among this small number of instances the
parameter behavior seems arbitrary. For the TSPLib data the ratio Opt/m is a lot smaller
and it decreases when m increases. Our theoretical analysis in Section 2.3 shows that for a
single instance the behavior of this parameter can change between 1/m and 1. We do observe
great variance for some instances of the telecommunication data, but very small variance for
the TSPLib data. The variance is always far from the theoretical maximum variance.

5.2 Comparing Deterministic and Randomized Algorithms
For the telecommunication data the competitive ratio of all three algorithms has roughly the
same average (cf. Figure 3). Averaging over all telecommunication instances Cycle and Cut
both have competitive ratio 1.18 and Random has the slightly worse competitive ratio of

http://www.coga.tu-berlin.de/fileadmin/i26/coga/MSTData.zip
http://www.coga.tu-berlin.de/fileadmin/i26/coga/MSTData.zip

J. Focke, N. Megow, and J. Meißner 22:11

Figure 3 Average performance, i.e., the ratio of the algorithm query set size over the optimal
query set size, for the three algorithms and the two data sets.

1.22. For the TSPLib data, the two deterministic algorithms have equal average competitive
ratio 1.37, which is significantly larger than that for the telecommunication data. Random
has a notably smaller competitive ratio of 1.11 on average, that is even smaller than the
ratio for the telecommunication data.

All average competitive ratios are far from their theoretical worst-case guarantee which
is 2 for both deterministic algorithms and ≈ 1.707 for Random. It is somewhat surpris-
ing, that despite the significant improvement of our randomized over the deterministic
algorithms for the TSPLib data, there is no improvement for the telecommunication data.
This means the usefulness of randomization depends on the considered data set. For the
telecommunication data our way of randomization may even worsen the performance. This
might seem counter-intuitive, but we give a theoretical explanation in Section 2.2.

5.3 Comparing the Deterministic Algorithms
In Section 2.1 we show that there can be a large difference between the performance ratio of
Cycle and Cut, even to the extreme case where one has ratio 1 and the other has ratio 2.
However, as displayed in Figure 3, their average performance is identical for all graphs and
both data sets. On an instance by instance comparison, the two ratios are equal for 98% of
all instances we evaluate. The largest difference between performance ratios we observe in
our experiments are seven instances with difference 0.33 and one with difference 0.7.

5.4 Variance in Performance
We compare the average performance of an algorithm to the worst performance among the
best 25% of performances as well as the worst performance among the best 75% of all

show that the variance increases with the average performance ratio of an uncertainty
graph and it is greater for the deterministic algorithms than for Random. As the variance is
equal for Cycle and Cut, we only display the graph for Cycle. For almost every graph
individually, the variance between the different instances is very small.

5.5 Worst-Case Instances
Both deterministic algorithms have a competitive ratio of 2. In our experiments, this
worst-case ratio is attained for some instances for which the optimal query number is at
most 10. For the telecommunication data the worst-case is attained only on the pathological

SEA 2017

22:12 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

Figure 4 We show the variance of the average performance of Cycle for each uncertainty graph
by displaying the 25% Quantile, the average, and the 75% Quantile of the algorithm performance.

Figure 5 Variance of the average performance of Random for each uncertainty graph with the
25% Quantile, the average, and the 75% Quantile of the algorithm performance.

example of Graph 4 consisting of a single cycle. However, the 7 smallest of the 19 graphs of
the TSPLib data showcase instances with performance ratio 2. There are graphs, for which
more than half of the instances showcase a worst-case ratio 2, but for others it is only a small
percentage. The number of cases of ratio 2 roughly decreases with the number of edges in the
graph. This is not symmetric to the case of performance ratio 1. There are more instances
and more graphs for which there are instances which the algorithms solve optimally.

5.6 Comparing the Distributions

Preprocessing (≺L,≺U) solves all telecommunication data instances with extreme distri-
bution. We prove this theoretically in Section 3 and observe that this is due to the interval
structure and not the distribution. In general, the share of instances solved by the prepro-
cessing significantly increases from uniform to extreme distribution. For the TSPLib data
the average share increases from 0.014 to 0.15 and for the telecommunication data it is 0.33
for the uniform distribution and 1 for the extreme one.

Additionally, we observe that the absolute number of queries almost always decreases,
when changing from uniform to extreme distribution for all telecommunication instances and
all algorithms. However, for the TSPLib data the behavior varies and for each graph there
are instances where the uniform distribution has a smaller query number and others where
the extreme distribution has a smaller query number.

J. Focke, N. Megow, and J. Meißner 22:13

Figure 6 Average performance of the three algorithms for the TSPLib data for different values
of the parameter d = interval size over exact edge weight.

5.7 Interval Size

To create the TSPLib data, we experimented with different interval sizes. Figure 6 shows
that the algorithms’ performance changes greatly with the chosen ratio d of interval size
over edge weight. For very large parameter d, almost all intervals overlap and their edges
must be queried. For very small d, however, only few intervals overlap and almost no queries
are required. This is true for any algorithm, and thus, it explains why Cycle, Cut and
Random have an average competitive ratio near to 1 for very small and very large d.

5.8 Running Time

We run our experiments on a Linux system with an AMD Phenom II X6 1090T (3.2GHz)
processor and 8GB RAM. Together, the three algorithms take about 1200 milliseconds to
compute. The preprocessing dominates the run time with a duration of 770 milliseconds
on average. On a one-by-one comparison Cycle and Random have similar average run
times of around 20 milliseconds, but Cut’s average run time is around 350 milliseconds. As
expected, the run time increases with the graph size. In total, our data set of 400 instances
up to a size of 70 vertices or 3000 edges can be generated and solved in roughly four hours.
As we did not optimize the implementation in terms of run time, we expect that also larger
instances can be solved in reasonable time.

References

1 R.K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and
applications. Prentice Hall, 1993.

2 A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski. Robust Optimization. Princeton Series in
Applied Mathematics. Princeton University Press, 2009.

3 J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in
Operations Research. Springer, 1997.

4 A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

5 T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty. In
Proceedings of WG, pages 164–175, 2014. doi:10.1007/978-3-319-12340-0_14.

6 T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncer-
tainty. Bulletin of the EATCS, Vol. 116, 2015.

7 T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest
set problems under uncertainty. Th. Comp. Sci., 613:51–64, 2016. doi:10.1016/j.tcs.
2015.11.025.

SEA 2017

http://dx.doi.org/10.1007/978-3-319-12340-0_14
http://dx.doi.org/10.1016/j.tcs.2015.11.025
http://dx.doi.org/10.1016/j.tcs.2015.11.025

22:14 Minimum Spanning Tree under Explorable Uncertainty in Theory and Experiments

8 T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing minimum
spanning trees with uncertainty. In Proceedings of STACS, pages 277–288, 2008. doi:
10.4230/LIPIcs.STACS.2008.1358.

9 T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest
paths with uncertainty. Journal of Algorithms, 62:1–18, 2007. doi:10.1016/j.jalgor.
2004.07.005.

10 T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the me-
dian with uncertainty. SIAM Journal on Computing, 32:538–547, 2003. doi:10.1137/
S0097539701395668.

11 J. Focke. Comparative analysis of algorithms for minimum spanning tree under uncertainty.
Master’s thesis, Technische Universität Berlin, 2017.

12 M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack problem with
queries. Computers & OR, 55:12–22, 2015. doi:10.1016/j.cor.2014.09.010.

13 M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and related
problems. Theory Comput. Syst., 59(1):112–132, 2016. doi:10.1007/s00224-015-9664-y.

14 S. Kahan. A model for data in motion. In Proceedings of STOC, pages 267–277, 1991.
doi:10.1145/103418.103449.

15 N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum
spanning tree under uncertainty. Journal on Scientific Computing, 2017.

16 G. Reinelt. TSPLIB – A traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991. doi:10.1287/ijoc.3.4.376.

http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1358
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1358
http://dx.doi.org/10.1016/j.jalgor.2004.07.005
http://dx.doi.org/10.1016/j.jalgor.2004.07.005
http://dx.doi.org/10.1137/S0097539701395668
http://dx.doi.org/10.1137/S0097539701395668
http://dx.doi.org/10.1016/j.cor.2014.09.010
http://dx.doi.org/10.1007/s00224-015-9664-y
http://dx.doi.org/10.1145/103418.103449
http://dx.doi.org/10.1287/ijoc.3.4.376

Faster Betweenness Centrality Updates in
Evolving Networks∗

Elisabetta Bergamini1, Henning Meyerhenke2, Mark Ortmann3,
and Arie Slobbe4

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
elisabetta.bergamini@kit.edu

2 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
meyerhenke@kit.edu

3 University of Konstanz, Konstanz, Germany
mark.ortmann@uni-konstanz.de

4 Australian National University, Canberra, Australia
arieslobbe1@gmail.com

Abstract
Finding central nodes is a fundamental problem in network analysis. Betweenness centrality is a
well-known measure which quantifies the importance of a node based on the fraction of shortest
paths going though it. Due to the dynamic nature of many today’s networks, algorithms that
quickly update centrality scores have become a necessity. For betweenness, several dynamic al-
gorithms have been proposed over the years, targeting different update types (incremental- and
decremental-only, fully-dynamic). In this paper we introduce a new dynamic algorithm for updat-
ing betweenness centrality after an edge insertion or an edge weight decrease. Our method is a
combination of two independent contributions: a faster algorithm for updating pairwise distances
as well as number of shortest paths, and a faster algorithm for updating dependencies. Whereas
the worst-case running time of our algorithm is the same as recomputation, our techniques consid-
erably reduce the number of operations performed by existing dynamic betweenness algorithms.
Our experimental evaluation on a variety of real-world networks reveals that our approach is
significantly faster than the current state-of-the-art dynamic algorithms, approximately by one
order of magnitude on average.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph algorithms, shortest paths, distances, dynamic algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.23

1 Introduction

Over the last years, increasing attention has been devoted to the analysis of complex networks.
A common sub-problem for many graph based applications is to identify the most central
nodes in a network. Examples include facility location [13], marketing strategies [12] and
identification of key infrastructure nodes as well as disease propagation control and crime
prevention [1]. As the meaning of “central” heavily depends on the context, various centrality
measures have been proposed (see [4] for an overview). Betweenness centrality is a well-known
measure which ranks nodes according to their participation in the shortest paths of the

∗ This work was partially supported by DFG grant ME-3619/3-1 (FINCA) and Br 2158/11-1 within the
SPP 1736 Algorithms for Big Data. A. S. acknowledges support by the RISE program of DAAD.

© Elisabetta Bergamini, Henning Meyerhenke, Mark Ortmann, and Arie Slobbe;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Faster Betweenness Centrality Updates in Evolving Networks

network. Formally, the betweenness of a node v is defined as cB(v) =
∑
s6=v 6=t

σst(v)
σst

, where
σst is the number of shortest paths between two nodes s and t and σst(v) is the number
of these paths that go through node v. The fastest algorithm for computing betweenness
centrality is due to Brandes [6], which we refer to as BA, from Brandes’s algorithm. This
algorithm is composed of two parts: an augmented APSP (all-pairs shortest paths) step,
where pairwise distances and shortest paths are computed, and a dependency accumulation
step, where the actual betweenness scores are computed. The augmented APSP is computed
by running a SSSP (single-source shortest paths) computation from each node s and the
dependency accumulation is performed by traversing only once the edges that lie in shortest
paths between s and the other nodes. Therefore, BA requires Θ(|V ||E|) time on unweighted
and Θ(|V ||E|+ |V |2 log |V |) time on weighted graphs (i.e. the time of running n SSSPs).

Networks such as the Web graph and social networks continuously undergo changes.
Since an update in the graph might affect only a small fraction of nodes, recomputing
betweenness with BA after each update would be very inefficient. For this reason, several
dynamic algorithms have been proposed over the last years [9, 14, 11]. As BA, these
approaches usually solve two sub-tasks: the update of the augmented APSP data structures
and the update of the betweenness scores. Although none of these algorithms is in general
asymptotically faster than recomputation with BA, good speedups over BA have been reported
for some of them, in particular for [11] and [14]. Nonetheless, an exhaustive comparison of
these methods is missing in the literature.

In our paper, we only consider incremental updates, i.e. edge insertions or edge weight
decreases (node insertions can be handled treating the new node as an isolated node and
adding its neighboring edges one by one). Although it might seem reductive to only consider
these kinds of updates, it is important to note that several real-world dynamic networks
evolve only this way and do not shrink. For example, in a co-authorship network, a new
author (node) or a new edge (coauthored publication) might be added to the network, but
existing nodes or edges will not disappear. Another possible application is the centrality
maximization problem, which consists in finding a set of edges that, if added to the graph,
would maximize the centrality of a certain node. The problem can be approximated with a
heuristic [7], which requires to add several edges to the graph and to recompute distances
after each edge insertion.

Our contribution. We present a new algorithm for updating betweenness centrality after an
edge insertion or an edge weight decrease. Our method is a combination of two contributions:
a new dynamic algorithm for the augmented APSP, and a new approach for updating the
betweenness scores. Based on properties of the newly-created shortest paths, our dynamic
APSP algorithm efficiently identifies the node pairs affected by the edge update (i.e. those for
which the distance and/or number of shortest paths change as a consequence of the update).
The betweenness update method works by accumulating values in a fashion similar to that
of BA. However, differently from BA, our method only processes nodes that lie in shortest
paths between affected pairs.

We compare our new approach with two of the dynamic algorithms for which the best
speedups over recomputation have been reported in the literature, i.e. KWCC [11] and KDB [14].
Compared to them, our algorithm for the augmented APSP update is asymptotically faster
on dense graphs: O(|V |2) in the worst case versus O(|V ||E|). This is due to the fact that
we iterate over the edges between affected nodes only once, whereas KDB and KWCC do it
several times. Moreover, our dependency update works also for weighted graphs (whereas
KDB does not) and it is asymptotically faster than the dependency update of KWCC for
sparse graphs (O(|V ||E|+ |V | log |V |) in the worst case versus O(|V |3)).

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:3

Our experimental evaluation on a variety of real-world networks reveals that our approach
is significantly faster than both KDB and KWCC, on average by a factor 14.7 and 7.4,
respectively.

2 Preliminaries

2.1 Notation
Let G = (V,E, ω) be a graph with node set V = V (G), edge set E = E(G) and edge weights
ω : E → R>0. In the following we will use n := |V | to denote the number of nodes and
m := |E| for the number of edges. Let d(s, t) be the shortest-path distance between any
two nodes s, t ∈ V . On a shortest path from s to t in G, we say w is a predecessor of t,
or t is a successor of w, if (w, t) ∈ E and d(s, w) + ω(w, t) = d(s, t). We denote the set of
predecessors of t as Ps(t). For a given source node s ∈ V , we call the graph composed of the
nodes reachable from s and the edges that lie in at least one shortest path from s to any
other node the SSSP DAG of s. We use σst to denote the number of shortest paths between
s and t and we use σst(v) for the number of shortest paths between s and t that go through
v. Then, the betweenness centrality cB(v) of a node v is defined as: cB(v) =

∑
s6=v 6=t

σst(v)
σst

.
Our goal is to keep track of the betweenness scores of all nodes after an update

(u, v, ω′(u, v)) in the graph, which could either be an edge insertion or an edge weight
decrease. We use G′ = (V,E′, ω′) to denote the new graph after the edge update and
d′, σ′ and P ′ to denote the new distances, numbers of shortest paths and sets of prede-
cessors, respectively. Also, we define the set of affected sources S(t) of a node t ∈ V as
{s ∈ V : d(s, t) > d′(s, t) ∨ σst 6= σ′st}. Analogously, we define the set of affected targets of
s ∈ V as T (s) := {t ∈ V : d(s, t) > d′(s, t)∨ σst 6= σ′st}. In the following we will assume G to
be directed. However, the algorithms can be easily extended to undirected graphs.

2.2 Related Work
The basic idea of dynamic betweenness algorithms is to keep track of the old betweenness
scores (and additional data structures) and efficiently update the information after some
modification in the graph. Based on the type of updates they can handle, dynamic algorithms
are classified as incremental (only edge insertions and weight decreases), decremental (only
edge deletions and weight increases) or fully-dynamic (all kinds of edge updates). However,
one commonality of all these approaches is that they build on the techniques used by BA [6],
which we therefore describe in Section 3 in more detail.

The approach proposed by Green et al. [9] for unweighted graphs maintains all previously
calculated betweenness values and additional information, such as pairwise distances, number
of shortest paths and lists of predecessors of each node in the shortest paths from each source
node s ∈ V . Using this information, the algorithm tries to limit the recomputation to the
nodes whose betweenness has been affected by the edge insertion. Kourtellis et al. [14] modify
the approach by Green et al. [9] in order to reduce the memory requirements from O(nm) to
O(n2). Instead of being stored, the predecessors are recomputed every time the algorithm
requires them. The authors show that not only using less memory allows them to scale to
larger graphs, but their approach (which we refer to as KDB, from the authors’s initials)
turns out to be also faster than the one by Green et al. [9] in practice (most likely because of
the cost of maintaining the data structure of the algorithm by Green et al.).

Kas et al. [11] extend an existing algorithm for the dynamic all-pairs shortest paths
(APSP) problem by Ramalingam and Reps [21] to also update betweenness scores. Differently

SEA 2017

23:4 Faster Betweenness Centrality Updates in Evolving Networks

from the previous two approaches, this algorithm can handle also weighted graphs. Although
good speedups have been reported for this approach, no experimental evaluation compares
its performance with that of the approaches by Green et al. [9] and Kourtellis et al. [14]. We
refer to this algorithm as KWCC, from the authors’s initials.

Nasre et al. [19] compare the distances between each node pair before and after the update
and then recompute the dependencies from scratch as in BA (see Section 3). Although this
algorithm is faster than recomputation on some graph classes (i.e. when only edge insertions
are allowed and the graph is sparse and weighted), it was shown in [3] that its practical
performance is much worse than that of the algorithm proposed by Green et al. [9]. This is
quite intuitive, since recomputing all dependencies requires Ω(n2) time independently of the
number of nodes that are actually affected by the insertion.

Pontecorvi and Ramachandran [20] extend existing fully-dynamic APSP algorithms with
new data structures to update all shortest paths and then recompute dependencies as in BA.
To our knowledge, this algorithm has never been implemented, probably because of the quite
complicated data structures it requires. Also, since it recomputes dependencies from scratch
as Nasre et al. [19], we expect its practical performance to be similar.

Differently from the other algorithms, the approach by Lee et al. [16] is not based
on dynamic APSP algorithms. The idea is to decompose the graph into its biconnected
components and then recompute the betweenness values from scratch only for the nodes in the
component affected by the update. Although this allows for a smaller memory requirement
(Θ(m) versus Ω(n2) needed by the other approaches), the speedups on recomputation reported
in [16] are significantly worse than those reported for example by Kourtellis et al. [14].

To summarize, KDB [14] and KWCC [11] are the most promising methods for a comparison
with our new algorithm. For this reason, we will describe them in more detail in Section 4
and Section 5 and evaluate them in our experiments.

Since computing betweenness exactly can be too expensive for large networks, several
approximation algorithms and heuristics have been introduced in the literature [5, 8, 22, 23]
and, recently, also dynamic algorithms that update an approximation of betweenness centrality
have been proposed [2, 3, 10, 23]. However, we will not consider them in our experimental
evaluation since our focus here is on exact methods.

3 Brandes’s algorithm (BA)

Betweenness centrality can be easily computed in time Θ(n3) by simply applying its definition.
In 2001, Brandes proposed an algorithm (BA) [6] which requires time Θ(nm) for unweighted
and Θ(n(m+n logn)) for weighted graphs, i.e. the time of computing n single-source shortest
paths (SSSPs). The algorithm is composed of two parts: the augmented APSP computation
phase based on n SSSPs and the dependency accumulation phase. As dynamic algorithms
based on BA build on these two steps as well, we explain them now in more detail.

Augmented APSP. In this first part, BA needs to perform an augmented APSP, meaning
that instead of simply computing distances between all node pairs (s, t), it also finds the
number of shortest paths σst and the set of predecessors Ps(t). This can be done while
computing an SSSP from each node s (i.e. BFS for unweighted and Dijkstra for weighted
graphs). When a node w is extracted from the SSSP (priority) queue, BA computes Ps(w)
as {v : (v, w) ∈ E ∧ d(s, w) = d(s, v) + ω(v, w)} and σsw as

∑
v∈Ps(w) σsv.

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:5

Dependency accumulation. Brandes defines the one-side dependency of a node s on a
node v as δs•(v) :=

∑
t 6=v σst(v)/σst. It can be proven [6] that

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), ∀s, v ∈ V . (1)

Intuitively, the term δs•(w) in Eq. (1) represents the contribution of the sub-DAG (of the
SSSP DAG of s) rooted in w to the betweenness of v, whereas the term 1 is the contribution of
w itself. For all nodes v such that {w : v ∈ Ps(w)} = ∅ (i.e. the nodes that have no successors),
we know that δs•(v) = 0. Starting from these nodes, we can compute δs•(v) ∀v ∈ V by
“walking up” the SSSP DAG rooted in s, using Eq. (1). Notice that it is fundamental that
we process the nodes in order of decreasing distance from s, because to correctly compute
δs•(v), we need to know δs•(w) for all successors of v. This can be done by inserting the
nodes into a stack as soon as they are extracted from the SSSP (priority) queue in the first
step. The betweenness of v is then simply computed as

∑
s6=v δs•(v).

4 Dynamic augmented APSP

As mentioned in Section 3, also dynamic algorithms based on BA build on its two steps.
In the following, we will see how KDB [14] and KWCC [11] update the augmented APSP
data structures (i.e. distances and number of shortest paths) after an edge insertion or a
weight decrease. One difference between these two approaches is that KDB does not store the
predecessors explicitly, whereas KWCC does. However, since in [14] it was shown that keeping
track of the predecessors only introduces overhead, we report a slightly-modified version of
KWCC that recomputes them “on the fly” when needed (we will also use this version in our
experiments in Section 7). We will then introduce our new approach in Section 4.3.

4.1 Algorithm by Kourtellis et al. (KDB)

Let (u, v) be the new edge inserted into G (we recall that KDB works only on unweighted
graphs, so edge weight modifications are not supported). For each source node s ∈ V , there are
three possibilities: (i) d(s, u) = d(s, v), (ii) |d(s, u)−d(s, v)| = 1 and (iii) |d(s, u)−d(s, v)| > 1
(in case (ii) and (iii), let us assume that d(s, u) < d(s, v) without loss of generality). We
recall that d is the distance before the edge insertion.

In the first case, it is easy to see that the insertion does not affect any shortest path
rooted in s, and therefore nothing needs to be updated for s.

In case (ii), the distance between s and the other nodes is not affected, since there already
existed an alternative shortest-path from s to v. However, the insertion creates new shortest
paths from s to to v and consequently to all the nodes t in the sub-DAG (of the SSSP DAG
from s) rooted in v. To account for this, for each of these nodes t, we add σsu · σvt to the
old value of σst (where σsu · σvt is the number of new shortest paths between s and t going
through (u, v)).

Finally, in case (iii), a part of the sub-DAG rooted in v might get closer to s. This case
is handled with a BFS traversal rooted in v. In the traversal, all neighbors y of nodes x
extracted from the BFS queue are examined and all the ones such that d(s, y) ≥ d′(s, x)
are also enqueued. For each traversed node y, the new distance d′(s, y) is computed as
minz:(z,y)∈E d

′(s, z) + 1 and the number of shortest paths σ′sy as
∑
z∈P ′

s(y) σsz.

SEA 2017

23:6 Faster Betweenness Centrality Updates in Evolving Networks

u

vt

Figure 1 Insertion of (u, v).

u

v

x1 x2

Figure 2 Affected targets (in green) and affected sources (x1, x2, u).

4.2 Algorithm by Kas et al. (KWCC)

KWCC updates the augmented APSP based on a dynamic APSP algorithm by Ramalingam
and Reps [21]. Instead of checking for each source s whether the new edge (or the weight
decrease) changes the SSSP DAG rooted in s, KWCC first identifies the affected sources
S = {s : d(s, v) ≥ d(s, u) + ω′(u, v)}. These are exactly the nodes for which there is some
change in the SSSP DAG. The affected sources are identified by running a pruned BFS
rooted in u on G transposed (i.e. the graph obtained by reversing the direction of edges in
G). For each node s traversed in the BFS, KWCC checks whether the neighbors of s are also
affected sources and, if not, it does not continue the traversal from them. Notice that even
on weighted graphs, a (pruned) BFS is sufficient since we already know all distances to v
and we can basically sidestep the use of a priority queue.

Once all affected sources s are identified, KWCC starts a pruned BFS rooted in v for each
of them. In the pruned BFS, only nodes t such that d(s, t) ≥ d(s, u) + ω′(u, v) + d(v, t) are
traversed (the affected targets of s). The new distance d′(s, t) is set to d(s, u)+ω′(u, v)+d(v, t)
and the new number of shortest paths σ′(s, t) is set to

∑
z∈P ′

s(t) σsz as in KDB. Compared to
KDB, the augmented APSP update of KWCC requires fewer operations. First, it efficiently
identifies the affected sources instead of checking all nodes. Second, in case (iii), KDB
might traverse more nodes than KWCC. For example, assume (u, v) is a new edge and the
resulting SSSP DAG of u is as in Figure 1. Then, KWCC will prune the BFS in t, since
d(u, t) < d(u, v) + d(v, t), skipping all the SSSP DAGs rooted in t. On the contrary, KDB
will traverse the whole subtree rooted in t, although neither the distances nor the number of
shortest paths from u to those nodes are affected. The reason for this will be made clearer in
Section 5.1.

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:7

4.3 Faster augmented APSP update
To explain our idea for improving the APSP update step, let us start with an example, shown
in Figure 2. The insertion of (u, v) decreases the distance from nodes x1, x2, u to all the
nodes shown in green. KWCC would first identify the affected sources S = {x1, x2, u} and,
for each of them, run a pruned BFS rooted in v. This means we are repeating almost exactly
the same procedure for each of the affected sources. We clearly have to update the distances
and number of shortest paths between each affected source and the affected targets (and this
cannot be avoided). However, KWCC also goes through the outgoing edges of each affected
target multiple times, leading to a worst-case running time of O(mn).1 Our basic idea is to
avoid this redundancy and is based on the following proposition (a similar result was proven
also in [18]).

I Proposition 1. Let t ∈ V and y ∈ Pv(t) be given. Then, S(t) ⊆ S(y).

Proof. Let s be any node in S(t), i.e. either d′(s, t) = d(s, t) and σ′st 6= σst (case (i)), or
d′(s, t) < d(s, t) (case (ii)). We want to show that s ∈ S(y).

Before proving this, we show that y has to be in P ′s(t). In fact, if s ∈ S(t), there have to
be shortest paths between s and t going through (u, v), i.e. d′(s, t) = d(s, u)+ω′(u, v)+d(v, t).
On the other hand, we know y ∈ Pv(t) and thus

d′(s, t) = d(s, u) + ω′(u, v) + d(v, y) + ω(y, t). (2)

Now, d(s, u)+ω′(u, v)+d(v, y) cannot be larger than d′(s, y), or this would mean that d′(s, t) >
d′(s, v) + ω(y, t), which contradicts the triangle inequality. Also, d(s, u) + ω′(u, v) + d(v, y)
cannot be smaller than d′(s, y) by definition of distance. Thus, d′(s, y) = d(s, u) + ω′(u, v) +
d(v, y). If we substitute this in Eq. (2), we obtain d′(s, t) = d′(s, y) + ω(y, t), which means
y ∈ P ′s(t).

Now, let us consider case (i). We have two options: either y was a predecessor of t
from s also before the edge update, i.e. y ∈ Ps(t), or it was not. If it was not, it means
d(s, y) + ω(y, t) > d(s, t) = d′(s, t) = d′(s, y) + ω(y, t), which implies d(s, y) > d′(s, y) and
thus s ∈ S(y). If it was, we can similarly show that d(s, y) = d′(s, y). Since we have seen
before that d′(s, y) = d(s, u) + ω′(u, v) + d(v, y), there has to be at least one new shortest
path from s to y in G′ going through (u, v), which means σ′sy > σsy and therefore s ∈ S(y).

Case (ii) can be easily proven by contradiction. We know d(s, t) ≤ d(s, y) + ω(y, t) (by
the triangle inequality) and that ω′(y, t) = ω(y, t). Thus, if it were true that d(s, y) = d′(s, y)
then

d(s, t) ≤ d(s, y) + ω(y, t) = d′(s, y) + ω(y, t) = d′(s, t), (3)

which contradicts our hypothesis that d′(s, t) < d(s, t) (case (ii)). Thus, d(s, y) 6= d′(s, y).
Since pairwise distances in G′ can only be equal to or shorter than pairwise distances in G,
d(s, y) 6= d′(s, y) implies d(s, y) > d′(s, y) and thus s ∈ S(y). J

In particular, this implies that S(t) ⊆ S(v) for each t ∈ T (u). Consequently, it is
sufficient to compute S(v) and T (u) once via two pruned BFSs. Our approach is described
in Algorithm 1. The pruned BFS to compute S(v) is performed in Line 3. Then, a pruned

1 Notice that this is true also for KDB, with the difference that KDB starts a BFS from each node instead
of first identifying the affected sources and that it also visits additional nodes.

SEA 2017

23:8 Faster Betweenness Centrality Updates in Evolving Networks

Algorithm 1: Augmented APSP update.
Input :Graph G = (V,E), edge insertion/weight decrease (u, v, ω′(u, v)), d(s, t),

σst, ∀(s, t) ∈ V 2

Output :Updated d′(s, t), σ′st, ∀(s, t) ∈ V 2

Assume : Initially d′(s, t) = d(s, t) and σ′st = σst ∀(s, t) ∈ V 2

1 vis(v)← false ∀v ∈ V ;
2 if ω′(u, v) ≤ d(u, v) then
3 S(v)← findAffectedSources(G, (u, v, ω′(u, v)));
4 d(u, v)← ω′(u, v);
5 Q← ∅;
6 p(v)← v;
7 Q.push(v);
8 vis(v)← true;
9 while Q.length() > 0 do

10 t = Q.front();
11 foreach s ∈ S(p(t)) do
12 if d(s, t) ≥ d(s, u) + ω′(u, v) + d(v, t) then
13 if d(s, t) > d(s, u) + ω′(u, v) + d(v, t) then
14 d′(s, t)← d(s, u) + ω′(u, v) + d(v, t);
15 σ′st ← 0;
16 end
17 σ′st ← σ′st + σsu · σvt;
18 if t 6= v then
19 S(t).insert(s);
20 end
21 end
22 end
23 foreach w s.t. (t, w) ∈ E do
24 if not vis(w) and d(u,w) ≥ ω′(u, v) + d(v, w) then
25 Q.push(w);
26 vis(w)← true;
27 p(w)← t;
28 end
29 end
30 end
31 end

BFS from v is executed, whereby for each t ∈ T (u) we store one of its predecessors p(t) in
the BFS (Line 27).

Let d?(s, t) be the length of a shortest path between s and t going through (u, v),
i.e. d?(s, t) := d(s, u)+ω′(u, v)+d(v, t). To finally compute S(t) all that is left to do is to test
whether d?(s, t) ≤ d(s, t) for each s ∈ S(p(t)) once we remove t from the queue (Lines 11–22).
Note that this implies that S(p(t)) was already computed. In case d?(s, t) < d(s, t), the path
from s to t via edge (u, v) is shorter than before and therefore we set d′(s, t) to d?(s, t) and
σ′st to σsu · σvt, since all new shortest paths now go through (u, v)). Also in case of equality
(d?(s, t) = d(s, t)), s is in S(t), since its number of shortest paths has changed. Consequently
we set σ′st to σst + σsu · σvt (since in this case also old shortest paths are still valid). If
d?(s, t) > d(s, t), the edge (u, v) does not lie on any shortest path from s to t, hence s /∈ S(t)
(and s is not added to S(t) in Lines 18–20).

5 Dynamic dependency accumulation

After updating distances and number of shortest paths, dynamic algorithms need to update
the betweenness scores. This means increasing the score of all nodes that lie in new shortest
paths, but also decreasing that of nodes that used to be in old shortest paths between affected

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:9

nodes. Again, we will first see how KDB and KWCC update the dependencies and then we
will present our new approach in Section 5.3.

5.1 Algorithm by Kourtellis et al. (KDB)
In addition to d and σ, KDB keeps track of the old dependencies δs•(v) ∀s, v ∈ V . The
dependency update is done in a way similar to BA (see Section 3). Also in this case, nodes v
are processed in decreasing order of their new distance d′(s, v) from s (otherwise it would
not be possible to apply Eq. (1)). However, in this case we would only like to process nodes
for which the dependency has actually changed. To do this, while still making sure that the
nodes are processed in the right order, KDB replaces the stack used in BA with a bucket list.
Every node that is traversed during the APSP update is inserted into the bucket list in a
position equal to its new distance from s. Then, nodes are extracted from the bucket list
starting from the ones with maximum distance. Every time a node v is extracted, we compute
its new dependency as δ′s•(v) =

∑
w:v∈P ′

s(w)
σ′

sv

σ′
sw

(1 + δ′s•(w)). Since we are processing the
nodes in order of decreasing new distance, we can be sure that δ′s•(v) is computed correctly.
The score of v is then updated by adding the new dependency δ′s•(v) and subtracting the
old δs•(v), which was previously stored. Also, all neighbors y ∈ P ′s(v) that are not in the
bucket list yet are inserted at level d′(s, y) = d′(s, v) − 1. Notice that, in the example in
Figure 1, all the nodes in the sub-DAG of t are necessary to compute the new dependency
of t, although they have not been affected by the insertion. This is why they are traversed
during the APSP update.

5.2 Algorithm by Kas et al. (KWCC)
KWCC does not store dependencies. On the contrary, for every node pair (s, t) for which
either d(s, t) or σst has been affected by the insertion, all the nodes in the new shortest paths
and the ones in the old shortest paths between s and t are processed. More specifically,
starting from t, all the nodes y ∈ P ′s(t) are inserted into a queue. When a node y is extracted,
we increase its betweenness by σ′(s, y) · σ′(y, t)/σ′(s, t) (i.e. the fraction of shortest paths
between s and t going through y). Then, also y enqueues all nodes in P ′s(y) and the process
is repeated until we reach s. Decreasing the betweenness of nodes in the old paths is done
in a similar fashion, with the only difference that nodes in Ps(y) are enqueued (instead of
nodes in P ′s(y)) and that σ(s, y) · σ(y, t)/σ(s, t) is subtracted from the scores of processed
nodes. Notice that the worst-case complexity of this approach is O(n3), whereas that of
KDB is O(nm). This cubic running time is due to the fact that, for each affected node pair
(s, t) (at most Θ(n2)), there could be up to Θ(n) nodes lying in either one of the old or new
shortest paths between s and t. (In the running time analysis of [14], this is represented
by the term |σold|I.) This means that, if many nodes are affected, KWCC can even be
slower than recomputation with BA. On the other hand, we have seen in Section 4.2 that
KDB also processes nodes for which the betweenness has not changed (see Figure 1 and its
explaination), which in some cases might result in a higher running time than KWCC.

5.3 Faster betweenness update
We propose a new approach for updating the betweenness scores. As KWCC, we do not store
the old dependencies (resulting in a lower memory requirement) and we only process the
nodes whose betweenness has actually been affected. However, we do this by accumulating
contributions of nodes only once for each affected source, in a fashion similar to KDB. For an

SEA 2017

23:10 Faster Betweenness Centrality Updates in Evolving Networks

affected source s ∈ S and for any node v ∈ V , let us define ∆s,•(v) as
∑
t∈T (s) σst(v)/σst.

This is the contribution of nodes whose old shortest paths from s went through v, but
which have been affected by the edge insertion. Analogously, we can define ∆′s,•(v) as∑

t∈T (s) σ
′
st(v)/σ′st. Then, the new dependency δ′s,•(v) can be expressed as:

δ′s,•(v) = δs,•(v)−∆s,•(v) + ∆′s,•(v) . (4)

Notice that for all nodes t /∈ T (s), σ′st = σst and σ′st(v) = σst(v), therefore their contribution
to δs,•(v) is not affected by the edge update. The new betweenness c′B(v) can then be
computed as cB(v) −

∑
s∈S ∆s,•(v) +

∑
s∈S ∆′s,•(v). The following theorem allows us to

compute ∆s,•(v) and ∆′s,•(v) efficiently.

I Theorem 2. For any s ∈ T, v ∈ V :

∆s,•(v) =
∑

w:v∈Ps(w)∧w∈T (s)

σsv/σsw(1 + ∆s,•(w)) +
∑

w:v∈Ps(w)∧w/∈T (s)

σsv/σsw ·∆s,•(w) .

Similarly:

∆′s,•(v) =
∑

w:v∈P ′
s(w)∧w∈T (s)

σ′sv/σ
′
sw(1 + ∆′s,•(w)) +

∑
w:v∈P ′

s(w)∧w/∈T (s)

σ′sv/σ
′
sw ·∆′s,•(w) .

Proof. We prove only the equation for ∆s,•(v), the one for ∆′s,•(v) can be proven anal-
ogously. Let t be any node in T (s), t 6= v. Then, σst(v)/σst can be rewritten as∑
w:v∈Ps(w) σst(v, w)/σst, where σst(v, w) is the number of shortest paths between s and t

going through both v and w. Then:

∆s,•(v) =
∑
t∈T (s)

σst(v)/σst =
∑
t∈T (s)

∑
w:v∈Ps(w)

σst(v, w)/σst =
∑

w:v∈Ps(w)

∑
t∈T (s)

σst(v, w)/σst .

Now, of the σsw paths from s to w, there are σsv many that also go through v. Therefore,
for t 6= w, there are σsv

σsw
· σst(w) shortest paths from s to t containing both v and w,

i.e. σst(v, w) = σsv

σsw
· σst(w). On the other hand, if t = w, σst(v, w) is simply σsv. Therefore,

we can rewrite the equation above as:

∑
w:v∈Ps(w)∧w∈T (s)

 σsv
σsw

+
∑

t∈T (s)−{w}

σst(v, w)
σst

 +
∑

w:v∈Ps(w)∧w/∈T (s)

∑
t∈T (s)

σst(v, w)
σst

=
∑

w:v∈Ps(w)∧w∈T (s)

σsv
σsw

1 +
∑

t∈T (s)−{w}

σst(w)
σst

 +
∑

w:v∈Ps(w)∧w/∈T (s)

σsv
σsw

∑
t∈T (s)

σst(w)
σst

=
∑

w:v∈Ps(w)∧w∈T (s)

σsv
σsw

(1 + ∆s,•(w)) +
∑

w:v∈Ps(w)∧w/∈T (s)

σsv
σsw
·∆s,•(w) . J

Theorem 2 allows us to accumulate the dependency changes in a way similar to BA. To
compute ∆s,•, we need to process nodes in decreasing order of d(s, ·), whereas to compute
∆′s,• we need to process them in decreasing order of d′(s, ·). To do this, we use two priority
queues PQs and PQ′s (if the graph is unweighted, we can use bucket lists as the ones used in
KDB). Notice that nodes w such that σst(w) = 0 ∧ σ′st(w) = 0 ∀t ∈ T (s) do not need to be
added to the queue. PQs and PQ′s are filled with all nodes in T (s) during the APSP update
in Algorithm 1. In PQs, nodes w are inserted with priority d(s, w) and PQ′s with priority
d′(s, w). Algorithm 2 shows how we decrease betweenness of nodes that lied in old shortest

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:11

Algorithm 2: Betweenness update for nodes in old shortest paths.
1 ∆s,•(u)← 0 ∀u ∈ V ;
2 while PQs 6= ∅ do
3 w ← PQs.extractMax();
4 cB(w)← cB(w)−∆s,•(w);
5 foreach y s.t. (y, w) ∈ E do
6 if y 6= s and d(s, w) = d(s, y) + ω(y, w) then
7 if w ∈ T (s) then
8 c← σsy

σsw
· (1 + ∆s,•(w));

9 end
10 else
11 c← σsy

σsw
·∆s,•(w);

12 end
13 if y /∈ PQs then
14 Insert y into PQs with priority d(s, y);
15 end
16 ∆s,•(y)← ∆s,•(y) + c;
17 end
18 end
19 end

paths from s (notice that this is repeated for each s ∈ S(v)). In Lines 7–12, Theorem 2 is
applied to compute ∆s,•(y) for each predecessor y of w. Then, y is also enqueued and this is
repeated until PQs is empty (i.e. when we reach s). The betweenness update of nodes in
the new shortest paths works in a very similar way. The only difference is that PQ′s is used
instead of PQ, that d′ and σ′ are used instead of d and σ and that ∆′s,• is added to cB and
not subtracted in Line 4. At the end of the update, σ is set to σ′ and d is set to d′.

In undirected graphs, we can notice that
∑
s∈S(w) ∆s,•(w) =

∑
t∈T (w) ∆t,•(w). Thus, to

account also for the changes in the shortest paths between w and the nodes in T (w), 2∆s,•
is subtracted from cB(w) in Line 4 (and analogously 2∆′s,• is added in the update of nodes
in the new shortest paths).

6 Time complexity

Let us study the complexity of our two new algorithms for updating APSP and betweenness
scores described in Section 4.3 and Section 5.3, respectively. We define the extended size
||A|| of a set of nodes A as the sum of the number of nodes in A and the number of edges
that have a node of A as their endpoint. Then, the following holds.

I Theorem 3. The running time of Algorithm 1 for updating the augmented APSP after an
edge insertion (or weight decrease) (u, v, ω′(u, v)) is Θ(||S(v)||+ ||T (u)||+

∑
y∈T (u) |S(p(y))|),

where p(y) can be any node in Pu(y).

Proof. The function findAffectedSources in Line 3 identifies the set of affected sources
starting a BFS in v and visiting only the nodes s ∈ S(v). This takes Θ(||S(v)||), since
this pruned BFS visits all nodes in S(v) and their incident edges. Then, the while loop of
Lines 9 - 30 identifies all the affected targets T (u) with a pruned BFS. This part (excluding
Lines 11 - 22) requires Θ(||T (u)||) operations, since all affected targets and their incident
edges are visited. In Lines 11 - 22, for each affected node t ∈ T (u), all the affected sources
of the predecessor p(y) of y are scanned. This part requires in total Θ(

∑
t∈T (u) |S(p(y))|)

operations. J

SEA 2017

23:12 Faster Betweenness Centrality Updates in Evolving Networks

Notice that, since |S(p(y))| is O(n) and both ||T (u)|| and ||S(v)|| are O(n+m), the worst-
case complexity of Algorithm 1 is O(n2). To show the complexity of the dependency
update described in Algorithm 2, let us introduce, for a given source node s, the set
τ(s) := T (s) ∪ {w ∈ V : ∆s,•(w) > 0}. Then, the following theorem holds.

I Theorem 4. The running time of Algorithm 2 is Θ(||τ(s)||+ |τ(s)| log |τ(s)|) for weighted
graphs and Θ(||τ(s)||) for unweighted graphs.

Proof. In the following, we assume a binary heap priority queue for weighted graphs and
a bucket list priority queue for unweighted graphs. Then, the extractMax() operation in
Line 3 requires constant time for unweighted and logarithmic time for weighted graphs. Also,
for each node extracted from PQ, all neighbors are visited in Lines 5–18. Therefore, it is
sufficient to prove that the set of nodes inserted into (and therefore extracted from) PQ is
exactly τ(s). As we said in the description of Algorithm 2, PQ is initially populated with the
nodes in T (s). Then, all nodes y inserted into PQ in Line 14 are nodes that lied in at least
one shortest path between s and a node in T (s) before the insertion. This means that there
is at least one t ∈ T (s) such that σst(y) > 0, which implies that ∆s,•(y) > 0, by definition of
∆s,•(y). J

The running time necessary to increase the betweenness score of nodes such that ∆′s,• > 0 can
be computed analogously, defining τ ′(s) = T (s)∪{w ∈ V : ∆′s,•(w) > 0}. Overall, the running
time of the betweenness update score described in Section 5.3 is Θ(

∑
s∈S ||τ(s)||+ ||τ ′(s)||) for

unweighted and Θ(
∑
s∈S ||τ(s)||+ ||τ ′(s)||+ |τ(s)| log |τ(s)|+ |τ ′(s)| log |τ ′(s)|) for weighted

graphs. Consequently, in the worst case, this is O(nm) for unweighted and O(n(m+n logn))
for weighted graphs, which matches the running time of BA. For sparse graphs, this is
asymptotically faster than KWCC, which requires Θ(n3) operations in the worst case.

7 Experimental Results

Implementation and settings. For our experiments, we implemented BA, KDB, KWCC,
and our new approach, which we refer to as iBet (from Incremental Betweenness). All the
algorithms were implemented in C++, building on the open-source NetworKit framework [24].
All codes are sequential; they were executed on a 64bit machine with 2 x 8 Intel(R) Xeon(R)
E5-2680 cores at 2.7 GHz with 256 GB RAM with a single thread on a single CPU.

Data sets and experimental design. For our experiments, we consider a set of real-
world networks belonging to different domains, taken from SNAP [17], KONECT [15], and
LASAGNE (piluc.dsi.unifi.it/lasagne). Since KDB cannot handle weighted graphs and
the pseudocode given in [14] is only for undirected graphs, all graphs used in the experiments
are undirected and unweighted. The networks are reported in Table 1. Due to the time
required by the static algorithm and the memory constraints of all dynamic algorithms
(Θ(n2)), we only considered networks with up to about 26000 nodes.

To simulate real edge insertions, we remove an existing edge from the graph (chosen
uniformly at random), compute betweenness on the graph without the edge and then re-insert
the edge, updating betweenness with the incremental algorithms (and recomputing it with
BA). For all networks, we consider 100 edge insertions and report the average over these 100
runs.

piluc.dsi.unifi.it/lasagne

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:13

Table 1 The table shows the average time taken by the static algorithm BA and the average
speedups on BA of the incremental algorithms (geometric means). The best result of each row is
shown in bold font.

Speedup on BA
Graph Nodes Edges Type BA [s] iBet KDB KWCC
HC-BIOGRID 4 039 10 321 bio. network 6.06 77.87 10.91 18.33
Mus-musculus 4 610 5 747 bio. network 3.32 119.23 9.40 11.21
Caenor-elegans 4 723 9 842 metabolic 5.12 130.89 9.58 23.64
ca-GrQc 5 241 14 484 coauthorship 4.19 206.55 7.53 14.28
advogato 7 418 42 892 social 14.65 295.39 27.69 18.45
hprd-pp 9 465 37 039 bio. network 30.29 304.24 11.33 45.90
ca-HepTh 9 877 25 973 coauthorship 21.06 199.04 8.24 34.03
dr-melanogaster 10 625 40 781 bio. network 40.76 235.54 7.94 48.57
oregon1-010526 11 174 23 409 aut. systems 24.43 237.47 15.20 21.64
oregon2-010526 11 461 32 730 aut. systems 30.07 113.10 17.23 23.08
Homo-sapiens 13 690 61 130 bio. network 68.58 237.61 10.29 58.67
GoogleNw 15 763 148 585 hyperlinks 90.42 577.49 90.01 33.80
dip20090126 19 928 41 202 bio. network 115.56 51.54 5.38 5.73
as-caida20071105 26 475 53 381 aut. systems 154.36 173.90 18.66 19.65
Geometric mean 179.1 13.0 22.9

0 20 40 60 80 100

Edge update

0

1

2

5

10

T
im

e
 [

s]

iBet

KDB

KWCC

0 20 40 60 80 100

Edge update

0

1

2

5

T
im

e
 [

s]

iBet

KDB

KWCC

Figure 3 Running times of iBet, KDB and KWCC for 100 edge updates on oregon1-010526. Left:
times for the APSP update step. Right: times for the dependency update step.

Experimental results. In Table 1 the running times of BA for each graph and the speedups of
the three incremental algorithms on BA are reported. The last line shows the geometric mean
of the speedups on BA over all tested networks. Our new method iBet clearly outperforms
the other two approaches and is always faster than both of them. On average, iBet is faster
than BA by a factor 179.1, whereas KDB by a factor 13.0 and KWCC by a factor 22.9.

Figure 3 compares the APSP update (on the left) and dependency update (on the right)
steps for the oregon1-010526 graph (a similar behavior was observed also for the other
graphs of Table 1. On the left, the running time of the APSP update phase of the three
incremental algorithms on 100 edge insertions are reported, sorted by the running time taken
by KDB. It is clear that the APSP update of iBet is always faster than the competitors. This
is due to the fact that iBet processes the edges between the affected targets only once instead
of doing it once for each affected source as both KDB and KWCC. Also, the running time
of the APSP update of KDB varies significantly. On about one third of the updates, it is
basically as fast as KWCC. This means that in these cases, KDB only visits a small amount
of nodes in addition to the affected ones (see Figure 1 and its explanation). However, in
other cases KDB can be much slower, as shown in the figure.

SEA 2017

23:14 Faster Betweenness Centrality Updates in Evolving Networks

0 20 40 60 80 100

Edge update

0

1

2

5

10

20

50

T
im

e
 [

s] iBet

KDB

KWCC

BA

Complete update APSP update Dependency update
0

100

101

102

103

104

S
p
e
e
d
u
p
 o

n
 B

A

KDB

KWCC

iBET

Figure 4 Left: Running times of iBet, KDB, KWCC and BA on the oregon1-010526 graph for
100 edge updates. Right: Average speedups on recomputation with BA (geometric mean) over all
networks of Table 1 for the three incremental algorithms. The column on the left shows the speedup
of the complete update, the one in the middle the speedup of the APSP update only and the one on
the right the speedup of the dependency update only.

On the right of Figure 3, the running times of the dependency update step are reported.
Also for this step, iBet is faster than both KDB and KWCC. However, for this part there is
not a clear winner between KWCC and KDB. In fact, in some cases KDB needs to process
additional nodes in order to recompute dependencies, whereas KWCC only processes nodes in
the shortest paths between affected nodes. However, KDB processes each node at most once
for each source node s, whereas KWCC might process the same node several times if it lies in
several shortest paths between s and other nodes (we recall that the worst-case running time
of KWCC is O(n3), whereas that of KDB is O(nm)). Notice also that in some rare cases
KDB is slightly faster than iBet in the dependency update. This is probably due to the fact
that our implementation of iBet is based on a priority queue, whereas KDB on a bucket list.

Figure 4 on the left reports the total running times of iBet, KDB, KWCC and BA on
oregon1-010526. Although the running times vary significantly among the updates, iBet is
always the fastest among all algorithms. On the contrary, there is not always a clear winner
between KDB and KWCC. On the right, Figure 4 shows the geometric mean of the speedups
on recomputation for the three incremental algorithms, considering the complete update,
the APSP update step only and the dependency update step only, respectively. iBet is the
method with the highest speedup both overall and on the APSP update and dependency
update steps separately, meaning that each of the improvements described in Section 4.3
and Section 5.3 contribute to the final speedup. On average, iBet is a factor 82.7 faster than
KDB and a factor 28.5 faster than KWCC on the APSP update step and it is a factor 9.4
faster than KDB and a factor 4.9 faster than KWCC on the dependency update step. Overall,
the speedup of iBet on KDB ranges from 6.6 to 29.7 and is on average (geometric mean of
the speedups) 14.7 times faster. The average speedup on KWCC is 7.4, ranging from a factor
4.1 to a factor 16.0.

8 Conclusions and future work

Computing betweenness centrality is a problem of great practical relevance. In this paper we
have proposed and evaluated new techniques for the betweenness update after the insertion
(or weight decrease) of an edge. Compared to other approaches, our new algorithm is easy to
implement and significantly reduces the number of operations of both the APSP update and
the dependency update. Our experiments on real-world networks show that our approach
outperforms existing methods, on average approximately by one order of magnitude.

E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe 23:15

Future work might include parallelization for further acceleration. Furthermore, we plan
to extend our techniques also to the decremental case (where an edge can be deleted from
the graph or its weight can be increased) and to batch updates, where several edge updates
might occur at the same time.

Although dynamic betweenness algorithms can be much faster than recomputation, a
major limitation for their scalability is their memory requirement of Θ(n2). An interesting
research direction is the design of scalable dynamic algorithms with a smaller memory
footprint.

Our implementations are based on NetworKit [24], the open-source framework for network
analysis, and we will publish our source code in upcoming releases of the package.

References

1 David C. Bell, John S. Atkinson, and Jerry W. Carlson. Centrality measures for disease
transmission networks. Social Networks, 21(1):1–21, 1999. doi:10.1016/S0378-8733(98)
00010-0.

2 Elisabetta Bergamini and Henning Meyerhenke. Approximating betweenness centrality
in fully dynamic networks. Internet Mathematics, 12(5):281–314, 2016. doi:10.1080/
15427951.2016.1177802.

3 Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. Approximating be-
tweenness centrality in large evolving networks. In 17th Workshop on Algorithm Engin-
nering and Experiments, ALENEX 2015, pages 133–146. SIAM, 2015. doi:10.1137/1.
9781611973754.12.

4 Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-
4):222–262, 2014. doi:10.1080/15427951.2013.865686.

5 Michele Borassi and Emanuele Natale. KADABRA is an adaptive algorithm for between-
ness via random approximation. In 24th Annual European Symposium on Algorithms, ESA
2016, volume 57 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.20.

6 Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001.

7 Pierluigi Crescenzi, Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Greedily im-
proving our own centrality in A network. In Experimental Algorithms – 14th International
Symposium, SEA 2015, Proceedings, volume 9125 of Lecture Notes in Computer Science,
pages 43–55. Springer, 2015. doi:10.1007/978-3-319-20086-6_4.

8 Robert Geisberger, Peter Sanders, and Dominik Schultes. Better approximation of be-
tweenness centrality. In 10th Workshop on Algorithm Engineering and Experiments
(ALENEX’08), pages 90–100. SIAM, 2008.

9 Oded Green, Robert McColl, and David A. Bader. A fast algorithm for streaming between-
ness centrality. In SocialCom/PASSAT, pages 11–20. IEEE, 2012.

10 Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. Fully dynamic betweenness cen-
trality maintenance on massive networks. Proceedings of 41st International Conference on
Very Large Data Bases (PVLDB 2015), 9(2):48–59, 2015.

11 Miray Kas, Matthew Wachs, Kathleen M. Carley, and L. Richard Carley. Incremental algo-
rithm for updating betweenness centrality in dynamically growing networks. In Advances
in Social Networks Analysis and Mining 2013 (ASONAM’13), pages 33–40. ACM, 2013.

12 Christine Kiss and Martin Bichler. Identification of influencers – measuring influence in
customer networks. Decision Support Systems, 46(1):233–253, 2008. doi:10.1016/j.dss.
2008.06.007.

SEA 2017

http://dx.doi.org/10.1016/S0378-8733(98)00010-0
http://dx.doi.org/10.1016/S0378-8733(98)00010-0
http://dx.doi.org/10.1080/15427951.2016.1177802
http://dx.doi.org/10.1080/15427951.2016.1177802
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1137/1.9781611973754.12
http://dx.doi.org/10.1080/15427951.2013.865686
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.20
http://dx.doi.org/10.1007/978-3-319-20086-6_4
http://dx.doi.org/10.1016/j.dss.2008.06.007
http://dx.doi.org/10.1016/j.dss.2008.06.007

23:16 Faster Betweenness Centrality Updates in Evolving Networks

13 Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar
Tenfelde-Podehl, and Oliver Zlotowski. Centrality indices. In Network Analysis, vol-
ume 3418 of LNCS, pages 16–61. Springer Berlin Heidelberg, 2005. doi:10.1007/
978-3-540-31955-9_3.

14 N. Kourtellis, G. De Francisci Morales, and F. Bonchi. Scalable online betweenness central-
ity in evolving graphs. Knowledge and Data Engineering, IEEE Transactions on, PP(99):1–
1, 2015.

15 Jérôme Kunegis. KONECT: the koblenz network collection. In 22nd International World
Wide Web Conference, WWW’13, pages 1343–1350, 2013. URL: http://dl.acm.org/
citation.cfm?id=2488173.

16 Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. Efficient algorithms for updating
betweenness centrality in fully dynamic graphs. Information Sciences, 326:278–296, 2016.

17 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,
June 2014. URL: http://snap.stanford.edu/data.

18 Chih-Chung Lin and Ruei-Chuan Chang. On the dynamic shortest path problem. Journal of
Information Processing, 13(4):470–476, April 1991. URL: http://dl.acm.org/citation.
cfm?id=105582.105591.

19 Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. Betweenness centrality
– incremental and faster. In Mathematical Foundations of Computer Science 2014 – 39th
International Symposium, MFCS 2014, volume 8635 of Lecture Notes in Computer Science,
pages 577–588. Springer, 2014.

20 Matteo Pontecorvi and Vijaya Ramachandran. Fully dynamic betweenness centrality. In
Algorithms and Computation – 26th International Symposium, ISAAC 2015, Proceedings,
volume 9472 of Lecture Notes in Computer Science, pages 331–342. Springer, 2015.

21 G. Ramalingam and Thomas W. Reps. On the computational complexity of dynamic
graph problems. Theoretical Computer Science, 158(1&2):233–277, 1996. doi:10.1016/
0304-3975(95)00079-8.

22 Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. Data Mining and Knowledge Discovery, 30(2):438–475, 2016.

23 Matteo Riondato and Eli Upfal. ABRA: approximating betweenness centrality in static
and dynamic graphs with rademacher averages. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016, pages 1145–1154.
ACM, 2016. doi:10.1145/2939672.2939770.

24 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A tool suite
for high-performance network analysis. Network Science, To appear.

http://dx.doi.org/10.1007/978-3-540-31955-9_3
http://dx.doi.org/10.1007/978-3-540-31955-9_3
http://dl.acm.org/citation.cfm?id=2488173
http://dl.acm.org/citation.cfm?id=2488173
http://snap.stanford.edu/data
http://dl.acm.org/citation.cfm?id=105582.105591
http://dl.acm.org/citation.cfm?id=105582.105591
http://dx.doi.org/10.1016/0304-3975(95)00079-8
http://dx.doi.org/10.1016/0304-3975(95)00079-8
http://dx.doi.org/10.1145/2939672.2939770

Fast Deterministic Selection
Andrei Alexandrescu

The D Language Foundation, Washington, USA

Abstract
The selection problem, in forms such as finding the median or choosing the k top ranked items

in a dataset, is a core task in computing with numerous applications in fields as diverse as statist-
ics, databases, Machine Learning, finance, biology, and graphics. The selection algorithm Median
of Medians, although a landmark theoretical achievement, is seldom used in practice because it is
slower than simple approaches based on sampling. The main contribution of this paper is a fast
linear-time deterministic selection algorithm MedianOfNinthers based on a refined definition
of MedianOfMedians. A complementary algorithm MedianOfExtrema is also proposed.
These algorithms work together to solve the selection problem in guaranteed linear time, faster
than state-of-the-art baselines, and without resorting to randomization, heuristics, or fallback
approaches for pathological cases. We demonstrate results on uniformly distributed random
numbers, typical low-entropy artificial datasets, and real-world data. Measurements are open-
sourced alongside the implementation at https://github.com/andralex/MedianOfNinthers.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Selection Problem, Quickselect, Median of Medians, Algorithm Engin-
eering, Algorithmic Libraries

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.24

1 Introduction

The selection problem is widely researched and has numerous applications. Selection is
finding the kth smallest element (also known as the kth order statistic): given an array A of
length |A| = n, a non-strict order ≤ over elements of A, and an index k, the task is to find
the element that would be in slot A[k] if A were sorted. A variant that is the focus of this
paper is partition-based selection: the algorithm must also permute elements of A such that
A[i] ≤ A[k] ∀i, 0 ≤ i < k, and A[k] ≤ A[i] ∀i, k ≤ i < n.

Quickselect, originally called Find by its creator C.A.R. Hoare [17], is the selection
algorithm most used in practice [29, 8, 25]. Like Quicksort [16], Quickselect relies on
a separate routine Partition to divide the array into elements less than or equal to, and
greater than or equal to, a specifically chosen element called the pivot. Unlike Quicksort
which recurses on both subarrays left and right of the pivot, Quickselect only recurses on
the side known to contain the kth smallest element.

The pivot choosing strategy is crucial for Quickselect because it conditions its per-
formance between O(n) and O(n2). Commonly used heuristics for pivot choosing – e.g. the
median of 1–9 elements [30, 14, 3, 8] – work well on average but have high variance and
do not offer worst-case guarantees. The “Median of Medians” pivot selection algorithm [4]
solves the selection problem in guaranteed linear time. However, MedianOfMedians is
seldom used in practice because it is intensive in element comparisons and especially swaps.
Musser’s Introselect algorithm [25] proceeds with a heuristics-informed Quickselect that
monitors its own performance and only switches to MedianOfMedians if progress is slow.
Contemporary implementations of selection (such as GNU C++ STL [13] and NumPy [28])

© Andrei Alexandrescu;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 24; pp. 24:1–24:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/andralex/MedianOfNinthers
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Fast Deterministic Selection

use Quickselect or Introselect in conjunction with simple pivot choosing heuristics.
However, all current implementations are prone to high variance in run times even if we
discount rare pathological cases. If heuristics provide poor pivot choices for the first 1–4
partition passes (when there is most data to process), the total run time increases strongly
above its average [18, 9]. A selection algorithm that combines the principled nature and
theoretical guarantees of MedianOfMedians with good practical performance on average
has remained elusive.

We seek to improve the state of the art in deterministic selection. First, we improve the
definition of MedianOfMedians to reduce comparisons and swaps. Second, we introduce
sampling to improve average performance without compromising algorithm’s linear asymp-
totic behavior. The resulting MedianOfNinthers algorithm is principled, practical, and
competitive. Third, we introduce adaptation based on the observation that MedianOfMe-
dians is specialized to find the median, but may be used with any order statistic. That
makes its performance degrade considerably when selecting order statistics away from the
median. (These situations occur naturally even when searching for the median due to the way
Quickselect works.) We devise a simple and efficient partitioning algorithm MedianOfEx-
trema for searching for order statistics close to either end of the searched array. A driver
algorithm QuickselectAdaptive chooses dynamically the most appropriate partitioning
method to find the median in linear time without resorting to randomization, heuristics, or
fallback approaches for pathological cases. Most importantly, QuickselectAdaptive does
not compromise on efficiency – it was measured to be faster than a number of baselines,
notably including GNU C++ std::nth_element. We open-sourced the implementation of
QuickselectAdaptive along with the benchmarks and datasets used in this paper [1].

The paper uses the customary pseudocode and algebraic notations. Divisions of integrals
yield the floor as in many programming languages, e.g. n/3 or n

3 are
⌊
n
3
⌋
. We make the

floor notation explicit when at least one operand is not integral. Arrays are zero-based. The
length of array A is written as |A|. We denote with A[a : b] (if a < b) a “slice” of A starting
with A[a] and ending with (and including) A[b− 1]. The slice is empty if a = b. Elements of
the array are not copied – the slice is a bounded view into the given array.

2 Related Work

Hoare created the Quickselect algorithm in 1961 [17], which still is the preferred choice of
practical implementations, in conjunction with various pivot choosing strategies. Martínez et
al. [22] analyze the behavior of Quickselect with small data sets and propose stopping
Quickselect’s recursion early and using sorting as an alternative policy below a cutoff,
essentially a simple multi-strategy Quickselect. The same authors [23] propose several
adaptive sampling strategies for Quickselect that take into account the index searched.

Blum, Floyd, Pratt, Rivest, and Tarjan created the seminal MedianOfMedians al-
gorithm [4], also known as BFPRT from its authors’ initials. Subsequent work provided
variants and improved on its theoretical bounds [12, 33, 34, 21, 5, 11]. Chen and Dumitrescu [6]
propose RepeatedStep (discussed in detail in §3), a variant of MedianOfMedians that
groups 3 or 4 elements (the original uses groups of 5 or more elements) and prove its lin-
earity. Battiato et al. [2] describe Sicilian Median Selection, an algorithm for computing an
approximate median that may be considered the transitive closure of RepeatedStep.

Floyd and Rivest created the randomized SELECT algorithm [12] in 1975. Although
further improved and benchmarked with favorable results by Kiwiel [19], at the time of this
writing we found no implementation available online and no evidence of industry adoption.

A. Alexandrescu 24:3

Algorithm 1: Quickselect.
Data: Partition, A, k with |A| > 0, 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k]

and partitions A around it.

1 while true do
2 p← Partition(A);
3 if p = k then
4 return;
5 end
6 if p > k then
7 A← A[0 : p];
8 else
9 k ← k − p− 1;

10 A← A[p+ 1 : |A|];
11 end
12 end

Algorithm 2: HoarePartition.
Data: A, p with |A| > 0, 0 ≤ p < |A|
Result: p′, the new position of A[p]; A partitioned

at A[p′]
1 Swap(A[p], A[0]);
2 a← 1;
3 b← |A| − 1;

4 loop: while true do
5 while true do
6 if a > b then break loop;
7 if A[a] ≥ A[0] then break;
8 a← a+ 1;
9 end

10 while A[0] < A[b] do b← b− 1;
11 if a ≥ b then break;
12 Swap(A[a], A[b]);
13 a← a+ 1;
14 b← b− 1;
15 end
16 Swap(A[0], A[a− 1]);
17 return a− 1;

3 Background: Quickselect, MedianOfMedians, and RepeatedStep

Quickselect [8, 20] takes as parameters the input array A and the sought order statistic k.
To facilitate exposition, our variant (Algorithm 1) also takes as parameter the partitioning
primitive Partition, in a higher-order function fashion. Partition(A) chooses and returns
an index p ∈ {0, 1, . . . , |A|−1} called pivot, and also partitions A around A[p]. Quickselect
uses the pivot to either reduce the portion of the array searched from the left when p < k,
reduce it from the right when p > k, or end the search when p = k.

The running time of Quickselect is linear if Partition(A) returns in linear time a
pivot p ranked within a fixed fraction 0 < f < 1 from either extremum of A. Most pivot
selection schemes use heuristics by choosing a pivot unlikely to be close to an extremum in
conjunction with HoarePartition, which partitions the array in O (n). (Many variants
of Hoare’s Partition algorithm [15] exist; Algorithm 2 is closer to the implementation we
used, than to the original definition.) Heuristics cannot provide a good worst-case run time
guarantee for Quickselect, but perform well on average.

MedianOfMedians, prevalently implemented as shown in BFPRTBaseline (Al-
gorithm 3) [10, 7, 26, 32], spends more time to guarantee good pivot choices. The algorithm
first computes medians of groups of 5 elements for a total of |A|5 groups. The rote routine
Median5(A, a, b, c, d, e) swaps the median of A[a], . . . , A[e] into A[c]. Computing the median
of these medians yields a pivot p with a useful property. There are |A|10 elements less than or
equal to A[p], but each of those is the median of 5 distinct elements, so A[p] is not smaller
than at least 3|A|

10 elements. By symmetry, A[p] is not greater than at least 3|A|
10 elements.

SEA 2017

24:4 Fast Deterministic Selection

Algorithm 3: BFPRTBaseline.
Data: A
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 5 then
2 return HoarePartition(A, |A|/2);
3 end
4 i← 0; j ← 0;

5 while i+ 4 < |A| do
6 Median5(A, i, i+ 1, i+ 2, i+ 3, i+ 4);
7 Swap(A[i+ 2], A[j]);
8 i← i+ 5;
9 j ← j + 1;

10 end
11 Quickselect(BFPRTBaseline, A[0 : j], j/2);
12 return HoarePartition(A, j/2);

Algorithm 4: RepeatedStep.

Data: A
Result: Pivot 0 ≤ p < |A|; A partitioned at A[p]

1 if |A| < 9 then
2 return HoarePartition(A, |A|/2);
3 end
4 i← 0; j ← 0;
5 while i+ 2 < |A| do
6 Median3(A, i, i+ 1, i+ 2);
7 Swap(A[i+ 1], A[j]);
8 i← i+ 3;
9 j ← j + 1;

10 end
11 i← 0; m← 0;
12 while i+ 2 < j do
13 Median3(A, i, i+ 1, i+ 2);
14 Swap(A[i+ 1], A[m]);
15 i← i+ 3;
16 m← m+ 1;
17 end
18 Quickselect(RepeatedStep, A[0 : m],m/2);
19 return HoarePartition(A,m/2);

Selection is initiated by invoking Quickselect(BFPRTBaseline, A, k). To prove
linearity, let us look at the worst-case number of comparisons depending on n = |A|:

C(n) ≤ C
(n

5

)
+ C

(
7n
10

)
+ 6n

5 + n (1)

where the first term accounts for the median of medians computation, the second is the time
taken by Quickselect after partitioning, the third is the cost of computing the medians of
five, and the last is the cost of HoarePartition. Consequently C(n) ≤ 22n.

The number of swaps is also of interest. BFPRTBaseline uses a common optimiza-
tion [10, 7, 26, 32] – it reuses the first quintile of A for storing the medians. S(n) satisfies:

S(n) ≤ S
(n

5

)
+ S

(
7n
10

)
+ 7n

5 +
n− n

10
2 . (2)

The terms correspond to those for C(n). Consequently S(n) ≤ 37n
2 . However, neither

bound is tight, meaning they only have advisory value; given that generating worst-case data
for MedianOfMedians remains an open problem, we use empirical benchmarks (§ 7) to
compare the performance of all algorithms discussed.

Recently Chen and Dumitrescu [6] proposed linear-time MedianOfMedians variants
that use groups of 3 or 4 elements, disproving long-standing conjectures to the contrary.
Algorithm 4 shows the pseudocode of their RepeatedStep algorithm with a group size of 3.

Key to the algorithm is that the median of medians step is repeated, thus choosing the
pivot as the median of medians of medians of three (sic). This degrades the pivot’s quality,
placing it within 2n

9 elements from either extremum of A. However, the median of medians
computation only needs to recurse on n

9 elements. Intuitively, trading off some pivot quality
for faster processing in MedianOfMedians is a good idea for competing with imprecise but
fast pivot heuristics. C(n) for Quickselect(RepeatedStep, A, k) satisfies (n = |A|):

C(n) ≤ C
(n

9

)
+ C

(
7n
9

)
+ 3n

3 + 3n
9 + n (3)

A. Alexandrescu 24:5

where the first term is the cost of computing the median of medians of medians, the second is
the worst-case time spent processing the remaining elements, and the last three terms account
respectively for computing the medians of 3, computing the medians of 3 medians of 3, and
the partitioning. Consequently C(n) ≤ 21n. For S(n), each median of three uses at most 1
swap, to which we add 1 for swapping the median to the front of the array. Partitioning
costs at most n

2 swaps in general, but the first n
18 elements are not swapped:

S(n) ≤ S
(n

9

)
+ S

(
7n
9

)
+ 2n

3 + 2n
9 +

n− n
18

2 (4)

which solves to S(n) ≤ 49n
4 . These bounds prove linearity but are not necessarily tight.

4 Partitioning During Pivot Computation

We now set out to improve these algorithms. One starting observation is that heuristics-based
partition uses a O (1) step (picking a pivot) followed by a linear pass (invoking Hoare-
Partition). In contrast, BFPRTBaseline and RepeatedStep make two linear passes:
one for finding the pivot, and one for the partitioning step (also using HoarePartition).
Therefore, algorithms in the MedianOfMedians family are at a speed disadvantage.

This motivates one key insight: we aim to integrate the two steps, i.e. make the com-
parisons and swaps performed during pivot computation also count toward partitioning.
RepeatedStep organizes the array in groups of 3 and computes the median of each group;
then it repeats the same procedure for the medians of three. That imparts a non-trivial
implicit structure onto the input array in addition to computing the pivot. However, that
structure is not used by HoarePartition. Ideally, that structure should be embedded in
the array in a form favorable to the subsequent partitioning step.

Our approach (MedianOfNinthersBasic shown in Algorithm 5) is to make the small
groups non-contiguous and choose their placement in a manner that is advantageous for the
partitioning step, so as to avoid comparing and swapping elements more than once. To that
end, we place the subarray of medians in the very middle of A, more precisely in the 5th
9thile of the array. (Recall that RepeatedStep computes a subarray of medians of medians
with |A|9 elements and recurses against it to compute its median.)

Also, instead of executing two loops, we execute a single pass that ensures the same
postcondition. This is done with Tukey’s Ninther routine [31, 3], which takes 9 array
elements, computes the medians of 3 disjoint groups of 3, and yields the median of those 3
medians. Specifically, Ninther(A, i1, i2, i3, i4, i5, i6, i7, i8, i9) computes the index of the
median of A[i1], A[i2], and A[i3] into i′1, the index of the median of A[i4], A[i5], and A[i6]
into i′2, and the index of the median of A[i7], A[i8], and A[i9] into i′3. Then it swaps A[i5]
with the median of A[i′1], A[i′2], and A[i′3]. After this operation, A[i5] is no less than at
least 3 elements and no greater than at least 3 other elements among A[i1], . . . , A[i9]. We
use Ninther against groups that pick 4 elements from the front of A, one from the mid
9thile (which receives the median), and 4 from the right of that 9thile.

These changes have important theoretical and practical advantages. First, Ninther
computes the same medians of 3 medians of 3 as the first two loops in RepeatedStep
using the same number of comparisons (12 per group of 9) but with 0–1 swaps instead
of 0–3. Second, a single pass is better than the two successive loops in RepeatedStep.
Third, after recursing to Quickselect against A

[
4|A|

9 : 5|A|
9

]
, the mid 9thile is already

partitioned properly around the pivot; there is no need to visit it again. That way, the
medians computation step contributes one ninth of the final result at no additional cost.

SEA 2017

24:6 Fast Deterministic Selection

Algorithm 5: MedianOfNinthersBasic.
Data: A
Result: Pivot p, 0 ≤ p < |A|; A partitioned at p

1 if |A| < 9 then
2 return HoarePartition(A, |A|/2);
3 end
4 f ← |A|/9;

5 for i← 4f through 5f − 1 do
6 l← i− 4f ;
7 r ← i+ 5f ;
8 Ninther(A, l, l + 1, l + 2, l + 3, i,

r, r + 1, r + 2, r + 3);
9 end

10 Quickselect(RepeatedStepBasic,
A[4f : 5f], f/2);

11 return
ExpandPartition(A, 4f, 4f + f/2, 5f − 1);

The pivot computation leaves the array well suited for partitioning by visiting 9thiles 1–
4 and 6–9 (subarrays A

[
0 : 4|A|

9

]
and A

[
5|A|

9 : |A|
]
). This work is carried by Expand-

Partition (not shown, available online [1]), a modified HoarePartition algorithm
that takes into account the already-partitioned subarray around the pivot. The call
ExpandPartition(A, a, p, b) proceeds by the following scheme, starting with i = 0 and
j = |A| − 1 and moving them toward a and b, respectively:

≤ A[p]
0

?
i→

≤ A[p]
a

A[p]
p

≥ A[p]

b

?
← j

≥ A[p]

The procedure swaps as many elements as possible between A[i : a] and A[b+ 1 : j + 1]
because that is the most efficient use of swapping – one swap puts two elements in their final
slots. There may be some asymmetry (one of i and j reaches its limit before the other) so
the pivot position may shift to the left or right. ExpandPartition returns the final position
of the pivot, which BFPRTImproved forwards to the caller. ExpandPartition(A, a, b)
performs a+ |A| − b comparisons and at most max(a, |A| − b) swaps.

The number of comparisons C(n) satisfies the recurrence:

C(n) ≤ C
(n

9

)
+ C

(
7n
9

)
+ n+ n

3 + 8n
9 . (5)

The only difference from the corresponding bound of RepeatedStep is the last term,
which is slightly smaller in this case because we don’t revisit the middle 9thile during
partitioning. The recurrence solves to C(n) ≤ 20n.

For S(n), each Ninther contributes at most 1 swap per 9 elements. In the worst case
ExpandPartition needs to swap 4n

9 elements from the left side with 4n
9 elements from the

right. However, the swaps don’t sum because one swap operation takes care of two elements
wherever possible. So the number of swaps performed by ExpandPartition is at most 4n

9 .

S(n) ≤ S
(n

9

)
+ S

(
7n
9

)
+ n

9 + 4n
9 . (6)

Consequently S(n) ≤ 5n, a sizeable improvement over RepeatedStep. Integrating pivot
searching with partitioning is crucial for improving efficiency. MedianOfNinthersBasic
not only has much better performance, but also allows further optimizations to build upon it.

5 Sampling Without Compromising Linearity

We are now ready to introduce MedianOfNinthers (Algorithm 6). It uses a hyperparameter
0 < φ ≤ 1 from which it derives a subsample size n′ =

⌊
φ|A|

3

⌋
and a gap length g =

A. Alexandrescu 24:7

Algorithm 6: MedianOfNinthers.
Data: A
Result: Pivot p, 0 ≤ p < |A|; A partitioned at p

1 n← |A|;
2 n′ ← bφn/3c;
3 if n′ < 3 then
4 return HoarePartition(A, |A|/2);
5 end
6 g ← (n− 3n′)/4;
7 Am ← A

[
2g + n′ : 2g + 2n′

]
;

8 l← g;
9 m← 2g + n′;

10 r ← 3g + 2n′;
11 for i← 0 through n′/3− 1 do
12 Ninther(A, l,m, r, l + 1,m+ n′/3, r + 1,

l + 2,m+ 2n′/3, r + 2,m,m+ n′/3,
m+ 2n′/3);

13 m← m+ 1;
14 l← l + 3;
15 r ← r + 3;
16 end
17 Quickselect(MedianOfNinthers, Am, n

′/2);
18 return ExpandPartition(A,

2g + n′, 2g + n′ + n′/2, 2g + 2n′);

|A|−3n′

4 , after which it chooses three equidistant disjoint subarrays from A as follows: Al =
A [g : g + n′], Am = A [2g + n′ : 2g + 2n′], and Ar = A [3g + 2n′ : 3g + 3n′]. The three
subarrays have length n′ each, and the gaps around them have length g each (except for the
last gap which is longer by (|A| − 3n′) mod 4), as illustrated below.

0

Al

g g + n′

Am

2g + n′ 2g + 2n′
Ar

3g + 2n′3g + 3n′

The plan is to save time by computing the pivot solely by looking at Al, Am, and Ar
instead of visiting the entire array. The approach is essentially to perform the same algorithm
as MedianOfNinthersBasic against the conceptual concatenation of Al, Am, and Ar.

The challenge is choosing an appropriate iteration schedule for picking the 9 elements to
pass to Ninther. We do so by pairing successive triples of adjacent elements in Al with
the triple Am[i], Am[i + n′/3], Am[i + 2n′/3] (having i range in {0, 1, . . . , n′/3 − 1}) and
with successive triples of adjacent elements in Ar. The result of each ninther is swapped to
Am[2i], i.e. to the second tertile of Am, which in turn is in the middle of A. After the loop,
the second tertile of Am contains the medians needed for recursion.

Let us prove linearity of Quickselect(MedianOfNinthers, A, k) by computing an
upper bound of the number of comparisons C(n) from the recurrence:

C(n) ≤ C
(
φn

9

)
+ C

(
n− 2φn

9

)
+ 12φn

9 + n(9− φ)
9 . (7)

The first term accounts for the recursive call to Quickselect, which processes that many
elements. The second term accounts for processing the remainder of the array (as reasoned
for RepeatedStep, in the worst case 2φn

9 elements are eliminated in one partitioning step),
the third is the cost of the first loop (12 comparisons for each Ninther call, of which there
are φn

9), and the last is the cost of ExpandPartition. Consequently C(n) ≤ (11φ+9)n
φ . As

expected, the number of comparisons goes up as φ goes down. For swaps we obtain (with
the same term positions):

S(n) ≤ S
(
φn

9

)
+ S

(
n− 2φn

9

)
+ φn

9 + (9− φ)n
18 (8)

resulting in the bound S(n) ≤ (φ+9)n
2φ . Although this result is theoretically unremarkable, it

is attractive engineering-wise. It means we can fine-tune the tradeoff between the time spent
computing the pivot and the quality of the pivot, without ever losing the linearity of the

SEA 2017

24:8 Fast Deterministic Selection

algorithm. An entire spectrum opens up between the constant sample size used by heuristics
and the full scan performed by all MedianOfMedians variations discussed so far.

6 Adaptation: MedianOfExtrema

Finding the kth order statistic in A is most difficult for k = |A|
2 . However, sometimes k may

be closer to one side of A than to its middle. Skewed values of k are possible not only when
requested by the caller (e.g. fetch the 1000 best-ranked items from a large input), but also
while computing the median proper. Recall that Quickselect (Algorithm 1) reduces |A|
progressively in a loop, which changes the relationship between |A| and k. A few iterations
bring the median search to an endgame of chasing a k close to 0 or |A|.

Quickselect(A, k) runs faster for skewed values of k than for k = |A|
2 because any

pivot choosing method has a higher likelihood of finding a good pivot (one that allows
eliminating a large fraction of the searched array). This puts elaborate pivot computing
methods at a disadvantage compared to simple heuristics, so such situations are worth
addressing. To that end we define a specialized algorithm MedianOfExtrema with two
variants, MedianOfMinima for order statistics close to 0, and MedianOfMaxima for
order statistics close to |A|. In the following we limit the discussion to MedianOfMinima.
The corresponding variant MedianOfMaxima is defined analogously.

For small values of k relative to |A|, the partition function should not find a pivot to
the left of k because that would only eliminate a small portion of the input. Martínez
et al. discuss this risk for their related proportional-of-3 strategy [23]. So we require that
MedianOfMinima must find a pivot not smaller than k.

MedianOfMinima (Algorithm 7) is based on the following intuition. MedianOfMedi-
ans computes medians of small groups and takes their median to find a pivot approximating
the median of A. In this case, we pursue an order statistic skewed to the left, so instead of
the median of each group, we compute its minimum; then, we obtain the pivot by computing
the median of those groupwise minima. By construction, the pivot’s rank will be shifted to
the left of the true median. This is an easier task, too, because computing the minimum of a
group is simpler and computationally cheaper than computing the group’s median. We place
these minima at A’s front so they don’t need to be swapped again.

The outer loop in Algorithm 7 organizes A such that its first 2k slots contain the minima
of groups of size γ = |A|

2k elements. Specifically, A[0] receives the minimum over A[0] and
the first group of γ − 1 elements of A [2k : |A|]; A[1] receives the minimum over A[1] and
the second group over γ − 1 elements of A [2k : |A|]; and so on through A[2k − 1], which
receives the minimum over A[2k−1] and the 2kth group of γ−1 elements of A [2k : |A|]. This
permutation ensures that for each element in A [0 : 2k], there are at least γ − 1 additional
elements in A [2k : |A|] greater than or equal to it.

The next steps compute the kth order statistic over A [0 : 2k] (i.e. the upper median of
the subarray of minima, as the name of the algorithm suggests), and uses the obtained A[k]
as pivot to expand the obtained partition to the entire array A. The recursive call replaces
Quickselect with QuickselectAdaptive. The latter (fully specified in the next section)
chooses to use either MedianOfMinima, MedianOfNinthers, or MedianOfMaxima
depending on the ratio of k to |A|.

Let us assess the quality of the pivot p obtained by calling MedianOfMinima(A, k),
i.e. the length of the subarray we can eliminate from the search after one call to Medi-
anOfMinima. Obviously p ≥ k because the recursive call to QuickselectAdaptive
places k elements to the left of A[k] that are no greater than it. In addition, each of the k

A. Alexandrescu 24:9

Algorithm 7: MedianOfMinima.
Data: A, 0 < k < |A|/6
Result: Pivot p, k ≤ p ≤ |A|/2; A partitioned at

A[p]
1 if |A| = 1 then
2 return 0;
3 end
4 γ ← |A|/2k;
5 k ← G;

6 for i← 0 through 2k − 1 do
7 m← 2k + i(γ − 1);
8 for j ← m+ 1 through m+ γ − 1 do
9 if A[j] < A[j - 1] then

10 m← j;
11 end
12 end
13 if A[m] < A[i] then
14 Swap(A[i], A[m]);
15 end
16 end
17 QuickselectAdaptive(A[0 : 2k], k);
18 return ExpandPartition(A, 0, k, 2k);

elements in subarray A [k : 2k] is greater than or equal to the pivot; but by construction,
for each of these elements there are γ − 1 others greater than or equal to the pivot in the
subarray A [2k : |A|]. It follows that at least k

⌊
|A|
2k

⌋
elements of A are greater than or equal

to the pivot. Through algebraic manipulation we get k
⌊
|A|
2k

⌋
≥ |A|−2k+1

2 ≥ |A|2 − k so the

call MedianOfMinima(A, k) yields a pivot that allows the elimination of at least |A|2 − k
elements from the search.

These elements are eliminated from the search at the next iteration of QuickselectA-
daptive, and we want to make sure the cost of the computation stays within linear bounds.
The cost of eliminating these elements is n− k for the minima computations plus a recursion
on 2k elements. We conservatively require by the Master Theorem [27] that the recursion
on 2k elements eliminates more than 2k elements, so n

2 − k > 2k, which results in the
requirement k < n

6 . Conversely, for the MedianOfMaxima the threshold is k > 5n
6 . These

thresholds work well in practice and are used in the implementation and experiments.

6.1 Choosing Strategy Dynamically: QuickselectAdaptive
In order to implement adaptation, we need to dynamically choose the partitioning algorithm
from among MedianOfMinima, MedianOfNinthers, and MedianOfMaxima. A good
place to decide strategy is the Quickselect routine itself, which has access to the information
needed and drives the selection process. Before each partitioning step, the appropriate
partitioning algorithm is chosen depending on the relationship between |A| and k. After
partitioning, both A and k are modified and a new decision is made, until the search is over.
QuickselectAdaptive (Algorithm 8) embodies this idea.

7 Experiments and Results

For the implementation [1] we choose the sampling constant for MedianOfNinthers
φ = 1.0

64.0 for arrays up to 217 elements and φ = 1.0
1024.0 for larger arrays. Performance is

not highly dependent on φ, for example there are no dramatic changes when halving or
doubling φ. However, sampling is needed; with φ = 1, the algorithm falls behind the best
baseline. The data sets used are:

random: uniformly-distributed random floating-point numbers.
random01 : n

2 zeros and n
2 ones, shuffled randomly. This puts to test algorithms’ ability

to cope with many duplicates.

SEA 2017

24:10 Fast Deterministic Selection

Algorithm 8: QuickselectAdaptive.
Data: A, k with 0 ≤ k < |A|
Result: Puts kth smallest element of A in A[k]

and partitions A around it.

1 while true do
2 if |A| ≤ 16 then
3 p← HoarePartition(A, k);
4 else if 6k < |A| then
5 p←MedianOfMinima(A, k);
6 else if 6k > 5|A| then
7 p←MedianOfMaxima(A, k);
8 else
9 p←MedianOfNinthers(A);

10 end
11 if p = k then return;
12 if p > k then
13 A← A[0 : p];
14 else
15 i← k − p− 1;
16 A← A[p+ 1 : |A|];
17 end
18 end

m3killer : Musser’s “median-of-3-killer sequence” [25].
organpipe: numbers 0, 1, 2, . . . , n2 − 1, n2 − 1, . . . , 1, 0.
sorted: numbers 0, 1, 2, . . . , n− 1.
rotated: numbers 1, 2, . . . , n− 1, 0.
googlebooks: We complement artificial data sets with a real-world task – compute the
median frequency of 1-grams (words) in different languages in the Google Ngrams
corpus [24]. These data sets consist of between 5.4M and 20M 1-grams along with
their frequencies. Words have been grouped per year with summing of frequencies. The
part-of-speech annotations have been kept. The languages processed are English (eng),
Russian (rus), French (fre), German (ger), Italian (ita), and Spanish (spa).

The artificial data sizes increase exponentially from 10, 000 to 10, 000, 000 with step
√

10.
For baseline algorithms, we chose the pivot strategies most competitive and in prevalent

industrial use: MedianOf3Randomized (which chooses the pivot as the median of three
random array elements), Ninther (Tukey’s ninther deterministic), and GNUIntroselect,
GNU’s implementation of the C++ standard library function std::nth_element. (To avoid
clutter, we did not plot other heuristics that performed worse, such as single random pivot,
ninther randomized, and median of 3 and 5 elements.)

First, we benchmarked run times on a desktop computer (Intel Core i7 3.6 GHz) against
arrays of 64-bit floating point data. The compiler used was gcc version 5.4.0 invoked with
-O4 -DNDEBUG. We ran each experiment 102 times, eliminated the 2 longest measurements to
account for outliers caused by cache warmup and other additive noise, and took the average
of the remaining timings. For random data, the input was randomly shuffled before each run.

GNUIntroselect is our main baseline because it is an independent and mature im-
plementation that has received extensive use and scrutiny. All speed benchmarks plotted
are normalized such that GNUIntroselect has relative speed y = 1.0, so as to make it
easier to compare algorithms across widely different input sizes. Larger numbers are better,
e.g. y = 2.0 means twice the speed.

Figure 1 plots the run times of the algorithms tested for finding the median in arrays
of uniformly-distributed floating point numbers. (All run times are given in Appendix A.)
QuickselectAdaptive is faster by a large margin for all data sizes.

A. Alexandrescu 24:11

For the random01 data set (Figure 2), again the ranking puts QuickselectAdaptive
first (albeit by a smaller margin), followed by GNUIntroselect. There is no noticeable
difference between the performances of the two other algorithms.

The m3killer dataset (Figure 3) has GNUIntroselect as winner for most data sizes.
The reason is that the median-of-3-killer pattern was intended to cause quadratic behavior to
algorithms choosing the pivot as the median of A[0], A[|A|/2], and A[|A| − 1], but GNUIn-
troselect uses A[1] instead of A[0]. Therefore, the first pivot chosen by GNUIntroselect
is the median of |A|/2 + 1, 2, and |A|, which is exactly the upper median of the entire array.
Therefore, all other algorithms compete against one single pass through a highly optimized
implementation of HoarePartition.

The organpipe dataset (Figure 4) features Ninther and QuickselectAdaptive as best
performers. Ninther makes good median choices because its sample positions are close to
the actual median (which is at the 25th and 75th percentiles). QuickselectAdaptive’s
sampling strategy also finds the median with relative ease. The same pattern can be noted
on the sorted dataset (Figure 5).

Figure 6 shows one interesting pathological case: GNUIntroselect is up to 30x slower
than the other algorithms, and the gap grows with the size of the data set. This is surprising
because the rotated data set (essentially a sorted sequence with a small value at the end)
may plausibly occur in practice (e.g. a sorted array with one appended element).

Figure 7 compares performance for computing the median frequency of words in the
Google Ngrams corpus [24]. QuickselectAdaptive outperforms all baselines.

7.1 Measuring comparisons, swaps, and variance of run times
Next, we tested the hypothesis (made in the introduction) that QuickselectAdaptive has
lower variance than heuristics-based algorithms, by measuring and comparing the coefficient
of variation σ

µ (standard deviation divided by mean) of run times. (Comparing σ values
directly would not be appropriate because they characterize distributions with different
averages.) We also measured the number of comparisons and swaps. The worst-case number
of comparisons for computing the median has the lower bound C(n) = (2 + ε)n, where ε > 0
is a constant [11]. On random data, the expected number of swaps by an optimal median
selection algorithm is S(n) = n

4 (statistically half of the elements on either side of the median
need to be swapped).

For the algorithms tested, Figure 8 shows comparisons per element C(n)
n , Figure 9 shows

swaps per element S(n)
n , and Figure 12 shows the coefficient of variation σ

µ of the algorithms
tested for 100 trial runs against the random dataset (n = 10, 000, 000). Data has been
shuffled between runs.

The coefficient of variation σ
µ of run times of QuickselectAdaptive is one order of

magnitude smaller than that of the baselines for medium and large data sets. The results
for C(n) and S(n) indicate that QuickselectAdaptive makes a large reduction in the
gap between theory and practice. Figure 10 and 11 reveal that the improvements also apply
to real-world data. (Appendix A provides detailed numeric results.) Also, we speculate
that further improvements will likely be difficult. C(n) may still be improved significantly
because (2 + ε)n describes the worst, not average, case, but S(n) is virtually at its theoretical
optimum.

Acknowledgements. Thanks to Timon Gehr, Ivan Kazmenko, Scott Meyers, and Todd
Millstein who reviewed drafts of this document. Teppo Niinimäki provided support code.

SEA 2017

24:12 Fast Deterministic Selection

104 105 106 107

0

0.5

1

1.5

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 1 Speed relative to GNUIntroSelect (random dataset)

104 105 106 107

0

0.5

1

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 2 Speed relative to GNUIntroSelect (random01 dataset).

104 105 106 107

0

0.5

1

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 3 Speed relative to GNUIntroSelect (m3killer dataset).

104 105 106 107

0

1

2

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 4 Speed relative to GNUIntroSelect (organpipe dataset).

A. Alexandrescu 24:13

104 105 106 107

0

1

2

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 5 Speed relative to GNUIntroSelect (sorted dataset).

104 105 106 107

0

10

20

30

Input size

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 6 Speed relative to GNUIntroSelect (rotated dataset).

eng fre ger itarus spa
0

0.5

1

1.5

Corpus Language

R
el
at
iv
e
Sp

ee
d

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 7 Speed relative to GNUIntroSelect (googlebooks dataset).

104 105 106 107

0

1

2

3

Input size

C
om

pa
ris

on
s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 8 Comparisons per element (random dataset).

SEA 2017

24:14 Fast Deterministic Selection

104 105 106 107

0

0.2

0.4

0.6

Input size

Sw
ap

s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 9 Swaps per element (random dataset).

eng fre ger itarus spa
0

1

2

3

Corpus Language

C
om

pa
ris

on
s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 10 Comparisons per element (googlebooks dataset).

eng fre ger itarus spa
0

0.2

0.4

0.6

Corpus Language

Sw
ap

s/
el
em

en
t

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 11 Swaps per element (googlebooks dataset).

104 105 106 107

0

5 · 10−2

0.1

0.15

Input size

σ µ

GNUIntroselect Median3Randomized
Ninther QuickselectAdaptive

Figure 12 Coefficient of variation (random dataset).

A. Alexandrescu 24:15

References
1 Andrei Alexandrescu. Median of ninthers: code, data, and benchmarks. https://github.

com/andralex/MedianOfNinthers, 2017.
2 Sebastiano Battiato, Domenico Cantone, Dario Catalano, Gianluca Cincotti, and Micha

Hofri. An efficient algorithm for the approximate median selection problem. In Algorithms
and Complexity, pages 226–238. Springer, 2000.

3 Jon L Bentley and M Douglas McIlroy. Engineering a sort function. Software: Practice
and Experience, 23(11):1249–1265, 1993.

4 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–461, August 1973. doi:10.
1016/S0022-0000(73)80033-9.

5 Svante Carlsson and Mikael Sundström. Algorithms and Computations: 6th International
Symposium, ISAAC’95 Cairns, Australia, December 4–6, 1995 Proceedings, chapter Linear-
time in-place selection in less than 3n comparisons, pages 244–253. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1995. doi:10.1007/BFb0015429.

6 Ke Chen and Adrian Dumitrescu. Select with groups of 3 or 4. In Algorithms and Data
Structures: 14th International Symposium, WADS, 2015.

7 Derrick Coetzee. An efficient implementation of Blum, Floyd, Pratt, Rivest, and Tarjan’s
worst-case linear selection algorithm, 2004. URL: http://moonflare.com/code/select/
select.pdf.

8 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

9 Jean Daligault and Conrado Martínez. On the variance of quickselect. In Proceedings of the
Meeting on Analytic Algorithmics and Combinatorics, pages 205–210. Society for Industrial
and Applied Mathematics, 2006.

10 Kevin Dinkel and Andrew Zizzi. Fast median finding on digital images. In AIAA Regional
Student Paper Conference, 2012.

11 Dorit Dor and Uri Zwick. Median selection requires (2+ε)N comparisons. SIAM J. Discret.
Math., 14(3):312–325, March 2001. doi:10.1137/S0895480199353895.

12 Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. Commun.
ACM, 18(3):165–172, March 1975. doi:10.1145/360680.360691.

13 GNU Team. Implementation of std::nth_element, 2016. [Online; accessed 27-Nov-
2016]. URL: https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.
4/a01347.html.

14 Robin Griffin and K.A. Redish. Remark on algorithm 347 [m1]: An efficient algorithm for
sorting with minimal storage. Commun. ACM, 13(1):54–, January 1970. doi:10.1145/
361953.361993.

15 C.A.R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321–, July 1961. URL:
http://doi.acm.org/10.1145/366622.366642, doi:10.1145/366622.366642.

16 C.A.R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July 1961. doi:
10.1145/366622.366644.

17 C.A.R. Hoare. Algorithm 65: Find. Commun. ACM, 4(7):321–322, July 1961. doi:
10.1145/366622.366647.

18 Peter Kirschenhofer and Helmut Prodinger. Comparisons in Hoare’s find algorithm.
Combinatorics, Probability and Computing, 7:111–120, 3 1998. URL: http://journals.
cambridge.org/article_S0963548397003325, doi:null.

19 Krzysztof C. Kiwiel. On Floyd and Rivest’s SELECT Algorithm. Theor. Comput. Sci.,
347(1-2):214–238, November 2005. doi:10.1016/j.tcs.2005.06.032.

20 Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

SEA 2017

https://github.com/andralex/MedianOfNinthers
https://github.com/andralex/MedianOfNinthers
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/BFb0015429
http://moonflare.com/code/select/select.pdf
http://moonflare.com/code/select/select.pdf
http://dx.doi.org/10.1137/S0895480199353895
http://dx.doi.org/10.1145/360680.360691
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html
http://dx.doi.org/10.1145/361953.361993
http://dx.doi.org/10.1145/361953.361993
http://doi.acm.org/10.1145/366622.366642
http://dx.doi.org/10.1145/366622.366642
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/366622.366644
http://dx.doi.org/10.1145/366622.366647
http://dx.doi.org/10.1145/366622.366647
http://journals.cambridge.org/article_S0963548397003325
http://journals.cambridge.org/article_S0963548397003325
http://dx.doi.org/null
http://dx.doi.org/10.1016/j.tcs.2005.06.032

24:16 Fast Deterministic Selection

21 Tony W. Lai and Derick Wood. SWAT 88: 1st Scandinavian Workshop on Algorithm
Theory Halmstad, Sweden, July 5–8, 1988 Proceedings, chapter Implicit selection, pages 14–
23. Springer Berlin Heidelberg, Berlin, Heidelberg, 1988. doi:10.1007/3-540-19487-8_2.

22 Conrado Martínez, Daniel Panario, and Alfredo Viola. Mathematics and Computer Sci-
ence II: Algorithms, Trees, Combinatorics and Probabilities, chapter Analysis of Quickfind
with Small Subfiles, pages 329–340. Birkhäuser Basel, Basel, 2002. doi:10.1007/
978-3-0348-8211-8_20.

23 Conrado Martínez, Daniel Panario, and Alfredo Viola. Adaptive sampling strategies for
quickselect. ACM Trans. Algorithms, 6(3):53:1–53:45, July 2010. doi:10.1145/1798596.
1798606.

24 Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser Aiden, Adrian Veres, Matthew K Gray,
Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, et al. Quantitative
analysis of culture using millions of digitized books. science, 331(6014):176–182, 2011.

25 David R. Musser. Introspective sorting and selection algorithms. Software – Practice &
Experience, 27(8):983–993, 1997.

26 Himangi Saraogi. Median of medians algorithm, 2013. URL: http://himangi774.
blogspot.com/2013/09/median-of-medians.html.

27 Uwe Schöning. Mastering the master theorem. Bulletin of the EATCS, 71:165–166, 2000.
28 SciPy.org. Implementation of argpartition, 2017. [Online; accessed Feb 9, 2017]. URL:

https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.
html.

29 R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011. URL: https://books.
google.com/books?id=idUdqdDXqnAC.

30 Richard C. Singleton. Algorithm 347: An efficient algorithm for sorting with minimal
storage [m1]. Commun. ACM, 12(3):185–186, March 1969. doi:10.1145/362875.362901.

31 J.W. Tukey. The ninther, a technique for low-effort robust (resistant) location in large
samples. Contributions to Survey Sampling and Applied Statistics in Honor of HO Hartley,
Academic Press, New York, pages 251–258, 1978.

32 Wikipedia. Median of medians, 2016. [Online; accessed 25-Feb-2016]. URL: https://en.
wikipedia.org/wiki/Median_of_medians.

33 Andrew C. Yao and F. F. Yao. On the average-case complexity of selecting the k-th best.
Technical report, Stanford University, Stanford, CA, USA, 1979.

34 Chee K. Yap. New upper bounds for selection. Commun. ACM, 19(9):501–508, September
1976. doi:10.1145/360336.360339.

A Additional Measurement Results

Table 1 Run times in milliseconds (random dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 7.45·10−2 0.19 8.14·10−2 7.81·10−2 6.01·10−2

31, 620 0.22 0.61 0.25 0.25 0.18
100, 000 0.72 1.97 0.77 0.76 0.53
316, 220 2.15 6.19 2.48 2.47 1.61

1, 000, 000 6.99 19.74 7.90 7.96 4.96
3, 162, 280 23.11 62.86 25.73 25.52 15.75

10, 000, 000 71.67 198.41 80.74 79.84 48.57

http://dx.doi.org/10.1007/3-540-19487-8_2
http://dx.doi.org/10.1007/978-3-0348-8211-8_20
http://dx.doi.org/10.1007/978-3-0348-8211-8_20
http://dx.doi.org/10.1145/1798596.1798606
http://dx.doi.org/10.1145/1798596.1798606
http://himangi774.blogspot.com/2013/09/median-of-medians.html
http://himangi774.blogspot.com/2013/09/median-of-medians.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argpartition.html
https://books.google.com/books?id=idUdqdDXqnAC
https://books.google.com/books?id=idUdqdDXqnAC
http://dx.doi.org/10.1145/362875.362901
https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Median_of_medians
http://dx.doi.org/10.1145/360336.360339

A. Alexandrescu 24:17

Table 2 Run times in milliseconds (random01 dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 5.76·10−2 0.14 6.40·10−2 6.46·10−2 5.37·10−2

31, 620 0.17 0.44 0.20 0.21 0.16
100, 000 0.55 1.35 0.62 0.64 0.52
316, 220 1.71 4.19 1.97 2.02 1.44

1, 000, 000 5.50 13.31 6.33 6.47 5.12
3, 162, 280 17.92 43.54 20.13 20.70 16.26

10, 000, 000 57.47 142.78 64.48 65.96 50.66

Table 3 Run times in milliseconds (m3killer dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 8.58·10−3 0.11 1.88·10−2 2.01·10−2 1.61·10−2

31, 620 2.79·10−2 0.28 5.83·10−2 5.43·10−2 4.89·10−2

100, 000 8.65·10−2 1.05 0.18 0.16 0.16
316, 220 0.25 2.42 0.53 0.53 0.47

1, 000, 000 1.25 9.43 1.85 1.91 1.73
3, 162, 280 5.42 33.15 7.28 4.89 7.13

10, 000, 000 19.06 109.99 27.24 27.99 19.52

Table 4 Run times in milliseconds (organpipe dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 5.19·10−3 2.24·10−2 8.83·10−3 2.89·10−3 4.10·10−3

31, 620 1.60·10−2 6.24·10−2 2.71·10−2 1.01·10−2 1.24·10−2

100, 000 4.86·10−2 0.29 7.90·10−2 2.90·10−2 3.92·10−2

316, 220 0.15 0.74 0.24 9.60·10−2 0.10
1, 000, 000 0.47 2.61 0.74 0.27 0.32
3, 162, 280 2.33 10.00 2.92 1.16 1.27

10, 000, 000 8.37 37.28 9.61 3.71 4.13

Table 5 Run times in milliseconds (sorted dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 9.92·10−3 5.54·10−2 1.74·10−2 5.70·10−3 7.71·10−3

31, 620 3.12·10−2 0.14 4.82·10−2 1.73·10−2 2.32·10−2

100, 000 9.51·10−2 0.79 0.15 5.41·10−2 7.22·10−2

316, 220 0.30 1.60 0.47 0.17 0.20
1, 000, 000 1.40 5.84 1.81 0.74 0.88
3, 162, 280 4.93 20.28 5.94 2.50 2.51

10, 000, 000 17.10 81.60 19.67 7.66 7.77

SEA 2017

24:18 Fast Deterministic Selection

Table 6 Run times in milliseconds (rotated dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 9.45·10−2 5.29·10−2 1.73·10−2 1.08·10−2 1.17·10−2

31, 620 0.32 0.15 5.18·10−2 3.33·10−2 3.48·10−2

100, 000 1.12 0.59 0.16 0.10 0.11
316, 220 3.92 1.57 0.47 0.32 0.31

1, 000, 000 16.91 5.90 1.70 1.27 1.15
3, 162, 280 98.91 20.29 5.75 3.93 3.64

10, 000, 000 366.41 82.09 18.89 12.38 11.71

Table 7 Run times in milliseconds (Google Ngram dataset).

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 117.81 396.29 162.80 135.19 94.40
fre 49.69 169.70 70.12 70.14 43.21
ger 77.98 222.23 92.16 100.67 54.86
ita 37.96 106.29 43.49 33.15 27.98
rus 64.83 224.04 93.15 93.12 56.44
spa 50.01 134.70 55.74 54.52 39.07

Table 8 Comparisons per element (random dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 2.80 6.75 2.77 2.40 2.31
31, 620 2.81 6.91 2.70 2.43 2.26

100, 000 2.89 7.14 2.72 2.32 2.22
316, 220 2.72 7.21 2.77 2.47 2.07

1, 000, 000 2.74 7.30 2.77 2.47 2.04
3, 162, 280 2.89 7.33 2.77 2.52 2.03

10, 000, 000 2.80 7.34 2.75 2.44 2.02

Table 9 Comparisons per element (googlebooks dataset).

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 2.02 7.29 2.18 1.95 2.01
fre 2.58 7.45 3.14 2.29 2.03
ger 2.38 7.54 3.04 2.62 2.03
ita 2.19 7.58 2.19 1.95 2.06
rus 1.98 7.44 3.57 2.14 2.03
spa 2.19 7.38 2.27 2.09 2.09

A. Alexandrescu 24:19

Table 10 Swaps per element (random dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 0.55 3.28 0.55 0.53 0.33
31, 620 0.55 3.35 0.55 0.54 0.30

100, 000 0.57 3.46 0.54 0.52 0.29
316, 220 0.54 3.50 0.55 0.54 0.29

1, 000, 000 0.54 3.54 0.55 0.55 0.27
3, 162, 280 0.57 3.54 0.56 0.55 0.26

10, 000, 000 0.55 3.55 0.55 0.54 0.26

Table 11 Swaps per element (googlebooks dataset).

Corpus GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

eng 0.45 3.43 0.54 0.45 0.25
fre 0.48 3.50 0.55 0.55 0.27
ger 0.53 3.49 0.65 0.60 0.26
ita 0.52 3.55 0.48 0.43 0.28
rus 0.45 3.50 0.59 0.53 0.27
spa 0.54 3.44 0.54 0.52 0.31

Table 12 Coefficient of variation of run time (random dataset).

Size GNUIntroselect BFPRT Rnd3Pivot Ninther MedianOfNinthers

10, 000 0.13 0.11 0.13 0.13 0.11
31, 620 0.14 8.63·10−2 0.11 0.11 6.97·10−2

100, 000 0.11 2.57·10−2 0.14 9.80·10−2 5.05·10−2

316, 220 0.13 5.13·10−2 0.13 0.11 7.72·10−2

1, 000, 000 0.12 1.56·10−2 0.14 0.10 6.09·10−2

3, 162, 280 0.11 1.61·10−2 0.12 0.11 2.66·10−2

10, 000, 000 0.13 1.57·10−2 0.12 0.11 1.87·10−2

SEA 2017

Fast and Scalable Minimal Perfect Hashing for
Massive Key Sets∗

Antoine Limasset1, Guillaume Rizk2, Rayan Chikhi3, and
Pierre Peterlongo4

1 IRISA Inria Rennes Bretagne Atlantique, GenScale team, Rennes, France
2 IRISA Inria Rennes Bretagne Atlantique, GenScale team, Rennes, France
3 CNRS, CRIStAL, Université de Lille, Inria Lille – Nord Europe, Lille, France
4 IRISA Inria Rennes Bretagne Atlantique, GenScale team, Rennes, France

Abstract
Minimal perfect hash functions provide space-efficient and collision-free hashing on static sets.
Existing algorithms and implementations that build such functions have practical limitations on
the number of input elements they can process, due to high construction time, RAM or external
memory usage. We revisit a simple algorithm and show that it is highly competitive with the
state of the art, especially in terms of construction time and memory usage. We provide a
parallel C++ implementation called BBhash. It is capable of creating a minimal perfect hash
function of 1010 elements in less than 7 minutes using 8 threads and 5 GB of memory, and the
resulting function uses 3.7 bits/element. To the best of our knowledge, this is also the first
implementation that has been successfully tested on an input of cardinality 1012. Source code:
https://github.com/rizkg/BBHash.

1998 ACM Subject Classification H.3.1 Content Analysis and Indexing, E.2 Data Storage Rep-
resentations

Keywords and phrases Minimal Perfect Hash Functions, Algorithms, Data Structures, Big Data

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.25

1 Introduction

Given a set S of N elements (keys), a minimal perfect hash function (MPHF) is an injective
function that maps each key of S to an integer in the interval [1, N]. In other words, an
MPHF labels each key of S with integers in a collision-free manner, using the smallest possible
integer range. A remarkable property is the small space in which these functions can be
stored: only a couple of bits per key, independently of the size of the keys. Furthermore,
an MPHF query is done in constant time. While an MPHF could be easily obtained using a
key-value store (e.g. a hash table), such a representation would occupy an unreasonable
amount of space, with both the keys and the integer labels stored explicitly.

The theoretical minimum amount of space needed to represent an MPHF is known to
be log2(e)N ≈ 1.44N bits [10, 14]. In practice, for large key sets (billions of keys), many
implementations achieve less than 3N bits per key, regardless of the number of keys [2, 9].
However no implementation comes asymptotically close to the lower bound for large key sets.
Given that MPHFs are typically used to index huge sets of strings, e.g. in bioinformatics [6, 7, 8],
in network applications [12], or in databases [5], lowering the representation space is of interest.

∗ This work was funded by French ANR-12-BS02-0008 Colib’read project.

© Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 25; pp. 25:1–25:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/rizkg/BBHash
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

We observe that in many of these applications, MPHFs are actually used to construct static
dictionaries, i.e. key-value stores where the set of keys is fixed and never updated [6, 8].
Assuming that the user only queries the MPHF to get values corresponding to keys that are
guaranteed to be in the static set, the keys themselves do not necessarily need to be stored in
memory. However the associated values in the dictionary typically do need to be stored, and
they often dwarf the size of the MPHF. The representation of such dictionaries then consists of
two components: a space-efficient MPHF, and a relatively more space-expensive set of values.
In such applications, whether the MPHF occupies 1.44 bits or 3 bits per key is thus arguably
not a critical aspect.

In practice, a significant bottleneck for large-scale applications is the construction step of
MPHFs, both in terms of memory usage and computation time. Constructing MPHFs efficiently
is an active area of research. Many recent MPHF construction algorithms are based on efficient
peeling of hypergraphs [1, 3, 4, 11]. However, they require an order of magnitude more
space during construction than for the resulting data structure. For billions of keys, while
the MPHF itself can easily fit in main memory of a commodity computer, its construction
algorithm requires large-memory servers. To address this, Botelho and colleagues [4] propose
to divide the problem by building many smaller MPHFs, while Belazzougui et al. [1] propose
an external-memory algorithm for hypergraph peeling. Very recently, Genuzio et al. [11]
demonstrated practical improvements to the Gaussian elimination technique, that make
it competitive with [1] in terms of construction time, lookup time and space of the final
structure. These techniques are, to the best of our knowledge, the most scalable solutions
available. However, when evaluating existing implementations, the construction of MPHFs for
sets that significantly exceed a billion keys remains prohibitive in terms of time and space
usage.

A simple idea has been explored by previous works [6, 12, 16] for constructing PHFs
(Perfect Hash Functions, non minimal) or MPHFs using arrays of bits, or fingerprints. However,
it has received relatively less attention compared to other hypergraph-based methods, and
no implementation is publicly available in a stand-alone MPHF library. In this article we
revisit this idea, and introduce novel contributions: a careful analysis of space usage during
construction, and an efficient, parallel implementation along with an extensive evaluation
with respect to the state of the art. We show that it is possible to construct an MPHF using
almost as little memory as the space required by the final structure, without partitioning the
input. We propose a novel implementation called BBhash (“Basic Binary representAtion of
Successive Hashing”) with the following features:

construction space overhead is small compared to the space occupied by the MPHF,

multi-threaded,

scales up to to very large key sets (tested with up to 1 trillion keys).

To the best of our knowledge, there does not exist another usable implementation that
satisfies any two of the features above. Furthermore, the algorithm enables a time/memory
trade-off: faster construction and faster query times can be obtained at the expense of a
few more bits per element in the final structure and during construction. We created an
MPHF for ten billion keys in 6 minutes 47 seconds and less than 5 GB of working memory,
and an MPHF for a trillion keys in less than 36 hours and 637 GB memory. Overall, with
respect to other available MPHF construction approaches, our implementation is at least two
orders of magnitudes more space-efficient when considering internal and external memory
usage during construction, and at least one order of magnitude faster. The resulting MPHF
has slightly higher space usage and faster or comparable query times than other methods.

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:3

1

0

0

0

1

0

k6

k4,k2

k3

k1,k5

1

0

1

0

k5

k4,k2

k1

1

1 k4

k2
k1 k2 k3
k4 k5 k6

h0

A0 A1 A2

h1 h2

1 (1) 0 0 0 1 (2) 0 1 (3) 0 1 (4) 0 1 (5) 1 (6)

A0 A1 A2

A (rank	 of	 ’1’s	 are	 indicated	 in	 parenthesis)	

h0(k2) h1(k2) h2(k2)

F0

k1 k2
k4 k5

F1

k2
k4

F2

Figure 1 MPHF construction and query example. The input is a set F0 composed of N = 6 keys
(k1 to k6). All keys are hashed using a hash function h0 and are attempted to be placed in an array
A0 at positions given by the hash function. The keys k3 and k6 do not have collisions in the array,
thus the corresponding bits in A0 are set to ’1’. The other keys from F0 that are involved in collisions
are placed in a new set F1. In the second level, keys from F1 are hashed using a hash function h1.
Keys k1 and k5 are uniquely placed while k2 and k4 collide, thus they are then stored in the set
F2. With the hash function h2, the keys from F2 have no collision, and the process finishes. The
MPHF query operation is very similar to the construction algorithm. Let A be the the concatenation
of A0, A1, A2 (see bottom part of the figure). To query k2, the key is first hashed with h0. The
associated value in A0 is ’0’, so k2 is then hashed with h1. The value associated in A1 is again ’0’.
When finally hashed with h2, the value associated in A2 is ’1’ and thus the query stops here. The
index returned by the MPHF is the rank of this ’1’ (here, 5) in A. In this example, the MPHF values
returned when querying k1, k2, k3, k4, k5 and k6 are respectively 4,5,2,6,3, and 1.

2 Efficient construction of minimal perfect hash function

2.1 Method overview

Our MPHF construction procedure revisits previously published techniques [6, 12]. Given a set
F0 of keys, a classical hash function h0 maps keys to an integer in [1, |F0|]. A bit array A0 of
size |F0| is created such that there is a 1 at position i if and only if exactly one element of
F0 has a hash value of i. We say that there is a collision whenever two keys in F0 have the
same hash value. Keys from F0 that were involved in a collision are inserted into a new set
F1. The process repeats with F1 and a new hash function h1. A new bit array A1 of size
|F1| is created using the same procedure as for A0 (except that F1 is used instead of F0, and
h1 instead of h0). The process is repeated with F2, F3, . . . until one of these sets, Flast+1, is
empty.

We obtain an MPHF by concatenating the bit arrays A0, A1, . . . , Alast into an array A.
To perform a query, a key is hashed successively with hash functions h0, h1, . . . as long as
the value in Ai (i ≥ 0) at the position given by the hash function hi is 0. Eventually, by
construction, we reach a 1 at some position of A for some i = d. We say that the level of the
key is d. The index returned by the MPHF is the rank of this one in A. See Figure 1 for an
example.

SEA 2017

25:4 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

2.2 Algorithm details

2.2.1 Collision detection
During construction at each level d, collisions are detected using a temporary bit array Cd of
size |Ad|. Initially all Cd bits are set to ’0’. A bit of Cd[i] is set to ’1’ if two or more keys from
Fd have the same value i given by hash function hd. Finally, if Cd[i] = 1, then Ad[i] = 0.
Formally:

Cd[i] = 1⇒ Ad[i] = 0;
(hd[x] = i and Ad[i] = 0 and Cd[i] = 0)⇒ Ad[i] = 1 (and Cd[i] = 0) ;
(hd[x] = i and Ad[i] = 1 and Cd[i] = 0)⇒ Ad[i] = 0 and Cd[i] = 1.

2.2.2 Queries
A query of a key x is performed by finding the smallest d such that Ad[hd(x)] = 1. The (non
minimal) hash value of x is then (

∑
i<d |Fi|) + hd(x).

2.2.3 Minimality
To ensure that the image range of the function is [1, |F0|], we compute the cumulative rank
of each ’1’ in the bit arrays Ai. Suppose, that d is the smallest value such that Ad[hd(x)] = 1.
The minimal perfect hash value is given by

∑
i<d(weight(Ai) + rank(Ad[hd(x)]), where

weight(Ai) is the number of bits set to ’1’ in the Ai array, and rank(Ad[y]) is the number of
bits set to 1 in Ad within the interval [0, y], thus rank(Ad[y]) =

∑
j<y Ad[j]. This is a classic

method also used in other MPHFs [3].

2.2.4 Faster query and construction times (parameter γ)
The running time of the construction depends on the number of collisions on the Ad arrays,
at each level d. One way to reduce the number of collisions, hence to place more keys at each
level, is to use bit arrays (Ad and Cd) larger than |Fd|. We introduce a parameter γ ∈ R,
γ ≥ 1, such that |Cd| = |Ad| = γ|Fd|. With γ = 1, the size of A is minimal. With γ ≥ 2,
the number of collisions is significantly decreased and thus construction and query times are
reduced, at the cost of a larger MPHF structure size. The influence of γ is discussed in more
detail in the following analyses and results.

2.3 Analysis
Proofs of the following observations and lemma are given in the Appendix.

2.3.1 Size of the MPHF

The expected size of the structure can be determined using a simple argument, previously
made in [6]. When γ = 1, the expected number of keys which do not collide at level d is
|Ad|e−1, thus |Ad| = |Ad−1|(1 − e−1) = |A0|(1 − e−1)d. In total, the expected number of
bits required by the hashing scheme is

∑
d≥0 |Ad| = N

∑
d≥0(1− e−1)d = eN , with N being

the total number of input keys (N = |F0|). Note that consequently the image of the hash
function is also in [1, eN], before minimization using the rank technique. When γ ≥ 1, the
expected proportion of keys without collisions at each level d is |Ad|e−

1
γ . Since each Ad no

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:5

longer uses one bit per key but γ bits per key, the expected total number of bits required by
the MPHF is γe

1
γ N .

2.3.2 Space usage during construction
We analyze the disk space used during construction. Recall that during construction of level
d, a bit array Cd of size |Ad| is used to record collisions. Note that the Cd array is only
needed during the d-th level. It is deleted before level d + 1. The total memory required
during level d is

∑
i≤d(|Ai|) + |Cd| =

∑
i<d(|Ai|) + 2|Ad|.

I Lemma 1. For γ > 0, the space of our MPHF is S = γe
1
γ N bits. The maximal space during

construction is S when γ ≤ log(2)−1, and 2S bits otherwise.

A full proof of the Lemma is provided in the Appendix.

3 Implementation

We present BBhash, a C++ implementation available at http://github.com/rizkg/BBHash.
We describe in this section some design key choices and optimizations.

3.1 Rank structure
We use a classical technique to implement the rank operation: the ranks of a fraction of the
’1’s present in A are recorded, and the ranks in-between are computed dynamically using the
recorded ranks as checkpoints.

In practice 64 bit integers are used for counters, which is enough for realistic use of an
MPHF, and placed every 512 positions by default. These values were chosen as they offer
a good speed/memory trade-off, increasing the size of the MPHF by a factor 1.125 while
achieving good query performance. The total size of the MPHF is thus (1 + 64

512)γe
1
γ N .

3.2 Parallelization
Parallelization is achieved by partitioning keys over several threads. The algorithm presented
in Section 2 is executed on multiple threads concurrently, over the same memory space.
Built-in compiler functions (e.g. sync_fetch_and_or) are used for concurrent access in the
Ai arrays. The efficiency of this parallelization scheme is shown in the Results section, but
note that it is fundamentally limited by random memory accesses to the Ai arrays which
incur cache misses.

3.3 Hash functions
The MPHF construction requires classical hash functions. Other authors have observed that
common hash functions behave practically as well as fully random hash functions [2]. We
therefore choose to use xor-shift based hash functions [13] for their efficiency both in terms
of computation speed and distribution uniformity [15].

3.4 Disk usage
In the applications we consider, key sets are typically too big to fit in RAM. Thus we propose
to read them on the fly from disk. There are mainly two distinct strategies regarding the
disk usage during construction: 1/ during each level d, keys that are to be inserted in the set

SEA 2017

http://github.com/rizkg/BBHash

25:6 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

Fd+1 are written directly to disk. The set Fd+1 is then read during level d+ 1 and erased
before level d+ 2; or 2/ at each level all keys from the original input key file are read and
queried in order to determine which keys were already assigned to a level i < d, and which
would belong to Fd. When the key set becomes small enough (below user-defined threshold)
it is loaded in ram to avoid costly re-computation from scratch at each level.

The first strategy obviously provides faster construction at the cost of temporary disk usage.
At each level d > 0, two temporary key files are stored on disk: Fd and Fd+1. The highest disk
usage is thus achieved during level 1, i.e. by storing |F1|+|F2| = |F0|((1−e−1/γ)+(1−e−1/γ)2)
elements. With γ = 1, this represents ≈ 1.03N elements, thus the construction overhead on
disk is approximately the size of the input key file. Note that with γ = 2 (resp. γ = 5), this
overhead diminishes and becomes a ratio of ≈ 0.55 (resp. ≈ 0.21) the size of the input key
file.

The first strategy is the default strategy proposed in our implementation. The second
one has also been implemented and can be optionally switched on.

3.5 Termination
The expected number of unplaced keys decreases exponentially with the number of levels
but is not theoretically guaranteed to reach zero in a finite number of steps. To ensure
termination of the construction algorithm, in our implementation a maximal number D of
levels is fixed. Then, the remaining keys are inserted into a regular hash table. Value D is a
parameter, its default value is D = 25 for which the expected number of keys stored in this
hash table is ≈ 10−5N for γ = 1 and becomes in practice negligible for γ ≥ 2, allowing the
size overhead of the final hash table to be negligible regarding the final MPHF size.

4 Results

We evaluated the performance BBhash for the construction of large MPHFs. We generated
files containing various numbers of keys (from 1 million to 1 trillion keys). In our tests, a
key is a binary representation of a pseudo-random positive integer in [0; 264]. Within each
file, each key is unique. We also performed a test where input keys are strings (n-grams) to
ensure that using integers as keys does not bias results. Tests were performed on a cluster
node with a Intel© Xeon© CPU E5-2660 v3 2.60GH 20-core CPU, 256 GB of memory, and
a mechanical hard drive. Except for the experiment with 1012 keys, running times include
the time needed to read input keys from disk. Note that files containing key sets may be
cached in memory by the operating system, and all evaluated methods benefit from this
effect during MPHF construction. We refer to the Appendix for the specific commands and
parameters used in these experiments.

We first analyzed the influence of the γ value (the main parameter of BBhash), then
the effect of using multiple threads depending on the parallelization strategy. Second, we
compared BBhash with other state-of-the-art methods. Finally, we performed an MPHF
construction on 1012 elements.

4.1 Influence of the γ parameter
We report in Figure 2 (left) the construction times and the mean query times, as well as
the size of the produced MPHF, with respect to several γ values. The main observation is
that γ ≥ 2 drastically accelerates construction and query times. This is expected since large
γ values allow more elements to be placed in the first levels of the MPHF; thus limiting the

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:7

2 4 6 8 10

18
0

20
0

22
0

24
0

26
0

28
0

Gamma value

Q
ue

ry
 ti

m
e

(n
s)

●

●

●

●

●

●

●

●

●

●

M
P

H
F

 s
iz

e
(b

its
/k

ey
)

4

6

8

10

12
●

Average query time (ns)
MPHF size

2 4 6 8 10

15
0

25
0

35
0 Construction

time (s)

5 10 15 20

0
5

10
15

20

Number of cores

S
ee

du
p

Practical speedup
Best theoretical speedup

Figure 2 Left: Effects of the gamma parameter on the performance of BBhash when run on a set
composed of one billion keys, when executed on a single CPU thread. Times and MPHF size behave
accordingly to the theoretical analysis, respectively O(e(1/γ)), and O(γe(1/γ)). Right: Performance
of the BBhash construction time according to the number of cores, using γ = 2.

number of times each key is hashed to compute its level. In particular, for keys placed
in the very first level, the query time is limited to a single hashing and a memory access.
The average level of all keys is e(1/γ), we therefore expect construction and query times
to decrease when γ increases. However, larger γ values also incur larger MPHF sizes. One
observes that γ > 5 values seem to bring very little advantage at the price of higher space
requirements. A related work used γ = 1 in order to minimize the MPHF size [6]. Here, we
argue that using γ values larger than 1 has significant practical merits. In our tests, we often
used γ = 2 as it yields an attractive time/space trade-off during construction and queries.

4.2 Parallelization performance
We evaluated the capability of our implementation to make use of multiple CPU cores. In
Figure 2 (right), we report the construction times with respect to the number of threads.
We observe a near-ideal speed-up with respect to the number of threads with diminishing
returns when using more than 10 threads, which is likely due to cache misses that induce a
memory access bottleneck.

In addition to these results, we applied BBhash on a key set of 10 billion keys and on
a key set of 100 billion keys, again using default parameters and 8 threads. The memory
usage was respectively 4.96GB and 49.49GB, and the construction time was respectively 462
seconds and 8913 seconds, showing the scalability of BBhash.

4.3 Comparisons with state of the art methods
We compared BBhash with state-of-the-art MPHF methods. CHD (http://cmph.
sourceforge.net/) is an implementations of the compressed hash-and-displace algorithm [2].
EMPHF [1] is based on random hypergraph peeling, and the HEM [4] implementation in
EMPHF is based on partitioning the input data. Sux4J is a Java implementation of [11].
We did not include other methods cited earlier because they do not provide an implement-
ation [12, 16] or the software integrates a non-minimal perfect hash function that is not
stand-alone [6]. However single-threaded results presented in [16] show that construction
times and MPHF sizes are comparable to ours, query times are significantly longer, and no

SEA 2017

http://cmph.sourceforge.net/
http://cmph.sourceforge.net/

25:8 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

0
20

40
60

80

Number of keys

M
em

or
y

fo
ot

pr
in

t (
G

B
)

● ●
●

●

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

●

BBhash
CHD
EMPHF
EMPHF−HEM
Sux4J

0.
1

10
.0

10
00

.0

Number of keys

C
on

st
ru

ct
io

n
tim

e
(s

)

●

●

●

●

1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

Figure 3 Memory footprint and construction time with respect to the number of keys. All
libraries were run using default parameters, including γ = 2 for BBhash. For a fair comparison,
BBhash was executed on a single CPU thread. Except for Sux4J, missing data points correspond to
runs that exceeded the amount of available RAM. Sux4J limit comes from the disk usage, estimated
at approximately 4TB for 1011 keys.

indication is provided about the memory usage during construction. Our benchmark code is
available at https://github.com/rchikhi/benchmphf.

Figure 3 shows that all evaluated methods are able to construct MPHFs that contain a
billion elements, but only BBhash scales up to datasets that contain 1011 elements and more.
Overall, BBhash shows consistently better time and memory usage during construction.

We additionally compared the resulting MPHF size, i.e. the space of the data structure
returned by the construction algorithm, and the mean query time across all libraries on a
dataset consisting of a billion keys (Table 1). MPHFs produced by BBhash range from 2.89
bits/key (when γ = 1 and ranks are sampled every 1024 positions) to 6.9 bits/key (when γ = 5
and a rank sampling of 512). The 0-0.8 bits/key size difference between our implementation
and the theoretical space usage of the BBhash structure size is due to additional space
used by the rank structure. We believe that a reasonable compromise in terms of query
time and structure size is 3.7 bits/key with γ = 2 and a rank sampling of 512, which is
marginally larger than the MPHF sizes of other libraries (ranging from 2.6 to 3.5 bits/key). As
we argued in the Introduction, using one more bit per key seems to be a reasonable trade-off
for performance.

Construction times vary by one or two orders of magnitude across methods, BBhash
being the fastest. With default parameters (γ = 2, rank sampling of 512), BBhash has a

https://github.com/rchikhi/benchmphf

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:9

Table 1 Performance of different MPHF algorithms applied on a key set composed of 109 64-bits
random integers, of size 8GB. Each time result is the average value over three tests. The ’nodisk’ row
implements the second strategy described in Section 3.4, and the ’minirank’ row samples ranks every
1024 positions instead of 512 by default. ∗The column “Const. time” indicates the construction
time in seconds. In the case of BBhash, the first value is the construction time using eight CPU
threads and the second value in parenthesis is the one using one CPU thread. ∗∗The column “Const.
memory” indicates the RAM used during the MPHF construction, in bits/key and the total in MB in
parenthesis. † The memory usages of EMPHF and EMPHF HEM reflect the use of memory-mapped
files (mmap scheme).

Method Query
time (ns)

MPHF size
(bits/key)

Const.
time∗

(s)

Const.
memory∗∗

Disk.
usage
(GB)

BBhash γ = 1 271 3.1 60 (393) 3.2 (376) 8.23
BBhash γ = 1 minirank 279 2.9 61(401) 3.2 (376) 8.23
BBhash γ = 2 216 3.7 35 (229) 4.3 (516) 4.45
BBhash γ = 2 nodisk 216 3.7 80 (549) 6.2 (743) 0
BBhash γ = 5 179 6.9 25 (162) 10.7 (1,276) 1.52
EMPHF 246 2.9 2,642 247.1 (29,461)† 20.8
EMPHF HEM 581 3.5 489 258.4 (30,798)† 22.5
CHD 1037 2.6 1,146 176.0 (20,982) 0
Sux4J 252 3.3 1,418 18.10 (2,158) 40.1

construction memory footprint 40× to 60× smaller than other libraries except for Sux4j, for
which BBhash remains 4× smaller. Query times are roughly within an order of magnitude
(179 − 1037 ns) of each other across methods, with a slight advantage for BBhash when
γ ≥ 2. Sux4j achieves an attractive balance with low construction memory and query times,
but high disk usage. In our tests, the high disk usage of Sux4j was a limiting factor for the
construction of very large MPHFs.

Note that EMPHF, EMPHF HEM and Sux4j implement a disk partitioning strategy, that
could in principle also be applied to others methods, including ours. Instead of creating a
single large MPHF, they partition the set of input keys on disk and construct many small MPHFs
independently. In theory this technique allows to engineer the MPHF construction algorithm to
use parallelism and lower memory, at the expense of higher disk usage. In practice we observe
that the existing implementations that use this technique are not parallelized. While EMPHF
and EMPHF HEM used relatively high memory in our tests (around 30 GB for 1 billion
elements) due to memory-mapped files, they also completed the construction successfully on
another machine that had 16 GB of available memory. However, we observed what appears to
be limitations in the scalability of the scheme: we were unable to run EMPHF and EMPHF
HEM on an input of 10 billion elements using 256 GB of memory. Regardless, we view this
partitioning technique as promising but orthogonal to the design of efficient "monolithic"
MPHFs constructions such as BBhash.

4.4 Performance on an actual dataset
In order to ensure that using pseudo-random integers as keys does not bias results, we ran
BBhash using strings as keys. We used n-grams extracted from the Google Books Ngram
dataset1, version 20120701. On average the n-gram size is 18. We also generated random

1 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

SEA 2017

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

25:10 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

Table 2 Performance of BBhash (γ = 2, 8 threads) when using ASCII strings as keys.

Dataset Query time (ns) MPHF size
(bits/key)

Const. time
(s)

108 Random strings 325 3.7 35
108 Ngrams 296 3.7 37

words of size 18. As reported in Table 2, we obtained highly similar results to those obtained
with random integer keys.

4.5 Indexing a trillion keys
We performed a very large-scale test by creating an MPHF for 1012 keys. For this experiment,
we used a machine with 750 GB of RAM. Since storing that many keys would require 8 TB
of disk space, we instead used a procedure that deterministically generates a stream of 1012

pseudo-random integers in [0, 264 − 1]. We considered the streamed values as input keys
without writing them to disk. In addition, key sets of cardinality below 20 billion (2% of the
input) were stored in memory to avoid re-computation from scratch at each subsequent level.
Thus, the reported computation time should not be compared to previously presented results
as this experiment has no disk accesses. The test was performed using γ = 2, 24 threads.

Creating the MPHF took 35.4 hours and required 637 GB RAM. This memory footprint is
roughly separated between the bit arrays (≈ 459 GB) and the memory required for loading
20 billion keys in memory (≈ 178 GB). The final MPHF occupied 3.71 bits per key.

5 Conclusion

We have proposed a resource-efficient and highly scalable algorithm for constructing and
querying MPHFs. Our algorithmic choices were motivated by simplicity: the method only
relies on bit arrays and classical hash functions. While the idea of recording collisions in bit
arrays to create MPHFs is not novel [6, 12], to the best of our knowledge BBhash is the first
implementation that is competitive with the state of the art. The construction is particularly
time-efficient as it is parallelized and mainly consists in hashing keys and performing memory
accesses. Moreover, the additional data structures used during construction are provably
small enough to ensure a low memory overhead during construction. In other words, creating
the MPHF does not require much more space than the resulting MPHF itself. This aspect is
important when constructing MPHFs on large key sets in practice.

Experimental results show that BBhash generates MPHFs that are slightly larger to those
produced by other methods. However BBhash is by far the most efficient in terms of construc-
tion time, query time, memory and disk footprint for indexing large key sets (of cardinality
above 109 keys). The scalability of our approach was confirmed by constructing MPHFs for
sets as large as 1012 keys. To the best of our knowledge, no other MPHF implementation has
been tested on that many keys.

A time/space trade-off is achieved through the γ parameter. The value γ = 1 yields MPHFs
that occupy roughly 3N bits of space and have little memory overhead during construction.
Higher γ values use more space for the construction and the final structure size, but they
achieve faster construction and query times. Our results suggest that γ = 2 is a good
time-versus-space compromise, using 3.7 bits per key. With respect to hypergraph-based
methods [1, 3, 4, 11], BBhash offers significantly better construction performance, but the
resulting MPHF size is up to 1 bit/key larger. We however argue that the MPHF size, as long

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:11

as it is limited to a few bits per key, is generally not a bottleneck as many applications use
MPHFs to associate much larger values to keys. Thus, we believe that this work will unlock
many high performance computing applications where the possibility to index billions keys
and more is a huge step forward.

An interesting direction for future work is to obtain more space-efficient MPHFs using
our method. We believe that a way to achieve this goal is to slightly change the hashing
scheme. We would like to explore an idea inspired by the CHD algorithm for testing several
hash functions at each level and selecting (then storing) one that minimizes the number of
collisions. At the price of longer construction times, we anticipate that this approach could
significantly decrease the final structure size.

Acknowledgments. We thank the GenOuest BioInformatics Platform that provided the
computing resources necessary for benchmarking. We thank Djamal Belazzougui for helpful
discussions and pointers.

References

1 Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano
Vigna. Cache-oblivious peeling of random hypergraphs. In Data Compression Conference
(DCC), 2014, pages 352–361. IEEE, 2014.

2 Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and
compress. In European Symposium on Algorithms, pages 682–693. Springer, 2009.

3 Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient minimal
perfect hash functions. In Algorithms and Data Structures, pages 139–150. Springer, 2007.

4 Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Practical perfect hashing in nearly
optimal space. Information Systems, 38(1):108–131, 2013.

5 Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining association rules.
The Computer Journal, 48(2):168–179, 2005. doi:10.1093/comjnl/bxh074.

6 Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S.
Rokhsar. Meraculous: de novo genome assembly with short paired-end reads. PloS one,
6(8):e23501, 2011.

7 Yupeng Chen, Bertil Schmidt, and Douglas L Maskell. A hybrid short read mapping
accelerator. BMC Bioinformatics, 14(1):67, 2013. doi:10.1186/1471-2105-14-67.

8 Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics, 32(12):i201–i208, 2016.

9 Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Perfect hashing. Theoretical
Computer Science, 182(1):1–143, 1997.

10 Michael L. Fredman and János Komlós. On the size of separating systems and families of
perfect hash functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984.

11 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
(minimal perfect hash) functions. In V. Andrew Goldberg and S. Alexander Kulikov, editors,
Experimental Algorithms: 15th International Symposium, SEA 2016, St. Petersburg, Rus-
sia, June 5-8, 2016, Proceedings, pages 339–352. Springer International Publishing, Cham,
2016. doi:10.1007/978-3-319-38851-9_23.

12 Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network applications.
In 2006 IEEE International Symposium on Information Theory, pages 2774–2778. IEEE,
2006.

13 George Marsaglia et al. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 2003.

SEA 2017

http://dx.doi.org/10.1093/comjnl/bxh074
http://dx.doi.org/10.1186/1471-2105-14-67
http://dx.doi.org/10.1007/978-3-319-38851-9_23

25:12 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

14 Kurt Mehlhorn. On the program size of perfect and universal hash functions. In Foundations
of Computer Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 170–175. IEEE,
1982.

15 Michael Mitzenmacher and Salil Vadhan. Why simple hash functions work: exploiting the
entropy in a data stream. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 746–755. Society for Industrial and Applied Mathematics,
2008.

16 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and Perfect Hashing
Using Fingerprinting, pages 138–149. Springer International Publishing, Cham, 2014. doi:
10.1007/978-3-319-07959-2_12.

A Proofs of MPHF size and memory required for construction

MPHF size with γ = 1.∑
d≥0
|Ad| = N

∑
d≥0

(1− e−1)d

= N
1

1− (1− e−1) as lim
d→+∞

(1− e−1)d = 0

= eN J

MPHF size using any γ ≥ 1. With γ ≥ 1 : |Ad| = γ|Ad−1|(1− e
−1
γ) = γ|A0|(1− e

−1
γ)d =

γN(1− e
−1
γ)d. Thus,∑

d≥0
|Ad| = γN

∑
d≥0

(1− e
−1
γ)d .

Moreover, as limd→+∞(1− e
−1
γ)d = 0 since for γ > 0, 0 < 1− e

−1
γ < 1, on has:∑

d≥0
|Ad| = γN

1
1− (1− e

−1
γ)

= γe
1
γ N . J

Note that this proof stands for any γ value > 0, but that with γ < 1 the theoretical and
practical MPHF sizes increase exponentially as γ get close to zero.

Proof of Lemma 1. Let m(d) be memory required during level d and let R be the ratio
between the maximal memory needed during the MPHF construction and the MPHF total size
denoted by S. Formally,

R = maxd≥0(m(d))
S

= maxd≥0(m(d))
γe

1
γ N

.

First we prove that limd→∞
m(d)
S = 1.

m(d) =
∑
i<d

|Ai|+ 2|Ad| = γN

(
1− (1− e

−1
γ)d

e
−1
γ

+ 2(1− e
−1
γ)d

)

Since for γ > 0, 0 < 1− e
−1
γ < 1, then limd→∞m(d) = γe

1
γ N . Thus limd→∞

m(d)
S = 1.

http://dx.doi.org/10.1007/978-3-319-07959-2_12
http://dx.doi.org/10.1007/978-3-319-07959-2_12

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:13

Before going further, we need to compute m(d+ 1)−m(d):

m(d+ 1)−m(d) =
∑
i<d+1

|Ai|+ 2|Ad+1| −
∑
i<d

|Ai|+ 2|Ad|

= |Ad|+ 2|Ad+1| − 2|Ad| = 2|Ad+1| − |Ad|

= 2γN(1− e
−1
γ)d+1 − γN(1− e

−1
γ)d

= γN(1− e
−1
γ)d(2(1− e

−1
γ)− 1)

= γN(1− e
−1
γ)d(1− 2e

−1
γ)

We now prove R ≤ 1 when γ ≤ 1
log(2) and also, R < 2 when γ > 1

log(2) .
Case 1: γ ≤ 1

log(2) .
We have m(0)

S = 2e−
1
γ ≤ 2e− log(2) = 1.

Moreover, as m(d + 1) − m(d) = γN(1 − e
−1
γ)d(1 − 2e

−1
γ) and as, with γ ≤ 1

log(2) :
1 − e

−1
γ ≥ 0.5, and 1 − 2e

−1
γ ≥ 0 then m(d + 1) −m(d) ≥ 0, thus, m is an increasing

function.
To sum up, with γ ≤ 1

log(2) , we have 1/ that m(0)
S ≤ 1, 2/ that limd→∞

m(d)
S = 1, and 3/

that m is increasing, then R ≤ 1.
Case 2: γ > 1

log(2) .
We have m(0)

S = 2e−
1
γ . With γ > 1

log(2) , 1 < m(0)
S < 2. Moreover, m(d + 1) −m(d) =

γN(1 − e
−1
γ)d(1 − 2e

−1
γ) is negative as: 1 − e

−1
γ > 0 and 1 − 2e

−1
γ < 0 for γ > 1

log(2) .
Thus m is a decreasing function with d.
With γ > 1

log(2) , we have 1/ that m(0)
S < 2, /2 that limd→∞

m(d)
S = 1 and /3 that m is

decreasing. Thus R < 2. J

B Algorithms pseudo-codes

Algorithm 1: MPHF construction.
Data: F0 a set of N keys, integers γ and last
Result: array of bit arrays {A0, A1, . . . , Alast}, hash table H
i=0;
while Fi not empty and i ≤ last do

Ai = ArrayF ill(Fi, γ);
foreach key x of Fi do

h = hash(x) mod (γ ∗N);
if Ai[h] == 0 then

Fi+1.add(x)
i=i+1;

Construct H using remaining elements from Flast+1;
Return {A0, A1, . . . , Alast, H}

In practice Fi with i > 1 are stored on disk (see Section 3.4). The hash table H ensures that elements in
Flast+1 are mapped without collisions to integers in [|F0| − |Flast+1|+ 1, |F0|]

SEA 2017

25:14 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

Algorithm 2: ArrayF ill
Data: F array of N keys, integer γ
Result: bit array A
Zero-initialize A and C two bit arrays with γ ∗N elements;
foreach key x of F do

h = hash(x) mod (γ ∗N);
if A[h] == 0 and C[h] == 0 then

A[h] = 1;
if A[h] == 1 and C[h] == 0 then

A[h] = 0;
C[h] = 1;

if A[h] == 0 and C[h] == 1 then
Skip;

Delete C;
Return A;

Note that the case A[h] == 1 and C[h] == 1 never happens.

Algorithm 3: MPHF query
Data: bit arrays {A0, A1, . . . , Alast}, hash table H, key x
Result: integer index of x
i=0;
while i ≤ last do

h = hashi(x) mod Ai.size();
if Ai[h] == 1 then

return
∑
j<i |Aj |+ rank(Ai[h]) ;

i = i+ 1;
return H[x] ;

Note, when x is not an element from the key set of the MPHF, the algorithm may return a wrong integer
index.

C Commands

In this section we describe used commands for each presented result. Time and memory
usages where computed using “/usr/bin/time –verbatim” unix command. The disk usage
was computed thanks to a home made script measuring each 1/10 second the size of the
directory using the “du -sk” unix command, and recording the highest value. The BBhash
library and its Bootest tool are available from https://github.com/rizkg/BBHash.

C.1 Commands used for Section 4.1:
for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

Note that 1000000000 is the number of keys tested and 1 is the number of used cores.
Additional tests, with larger key set and 8 threads:

for ((gamma=1;gamma<11;gamma++)); do
./Bootest 1000000000 1 ${gamma} -bench
done

https://github.com/rizkg/BBHash

A. Limasset, G. Rizk, R. Chikhi, and P. Peterlongo 25:15

C.2 Commands used for Section 4.2:
for keys in 10000000000 100000000000; do
./Bootest ${keys} 8 2 -bench
done

C.3 Commands used for Section 4.3:
We remind that our benchmark code, testing EMPHF, EMPHF MEM, CHD, and Sux4J is
available at https://github.com/rchikhi/benchmphf.

BBhash commands:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./Bootest ${keys} 1 2 -bench
done

BBhash command with nodisk (Table 1) was
./Bootest 1000000000 1 2 -bench -nodisk
and
./Bootest 1000000000 8 2 -bench -nodisk
respectively for one and height threads. Other commands from Table 1 were deduced
from previously presented BBhash computations.
Commands EMPHF & EMPHF HEM:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -emphf
done
EMPHF (resp. EMPHF HEM) is tested by using the #define EMPHF_SCAN macro
(resp. #define EMPHF_HEM). In order to assess the disk size footprint, the line
“unlink(tmpl);” from file “emphf/mmap_memory_model.hpp” was commented.
Commands CHD:
for keys in 1000000 10000000 100000000 10000000000\
10000000000 100000000000; do

./benchmphf ${keys} -chd
done

Commands Sux4J:
for each size, the “Sux4J/slow/it/unimi/dsi/sux4j/mph/LargeLongCollection.java” was
modified indicating the used size.
./run-sux4j-mphf.sh

C.4 Commands used for Section 4.4:
As explained Section 4.4, the keyString.txt file is composed of n-grams extracted from the
Google Books Ngram dataset2, version 20120701.

./BootestFile keyStrings.txt 10 2

2 http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

SEA 2017

https://github.com/rchikhi/benchmphf

25:16 Fast and Scalable Minimal Perfect Hashing for Massive Key Sets

C.5 Commands used for Section 4.5:
BBhash command for indexing a trillion keys, with keys generated on the fly.

./Bootest 1000000000000 24 2 -onthefly

Generating Practical Random Hyperbolic Graphs
in Near-Linear Time and with Sub-Linear Memory∗

Manuel Penschuck

Goethe University, Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Abstract
Random graph models, originally conceived to study the structure of networks and the emergence
of their properties [8], have become an indispensable tool for experimental algorithmics. Amongst
them, hyperbolic random graphs form a well-accepted family, yielding realistic complex networks
while being both mathematically and algorithmically tractable. We introduce two generators
MemGen and HyperGen for the Gα,C(n)-model, which distributes n random points within
a hyperbolic plane and produces m = nd̄/2 undirected edges for all point pairs close by; the
expected average degree d̄ and exponent 2α+1 of the power-law degree distribution are controlled
by α>1/2 and C. Both algorithms emit a stream of edges which they do not have to store.
MemGen keeps O(n) items in internal memory and has a time complexity of O(n log logn+m),
which is optimal for networks with an average degree of d̄ = Ω(log logn). For realistic values of
d̄ = o(n/ log1/α(n)), HyperGen reduces the memory footprint to O([n1−αd̄α + logn] logn).

In an experimental evaluation, we compare HyperGen with four generators among which
it is consistently the fastest. For small d̄ = 10 we measure a speed-up of 4.0 compared to the
fastest publicly available generator increasing to 29.6 for d̄ = 1000. On commodity hardware,
HyperGen produces 3.7·108 edges per second for graphs with 106 ≤ m ≤ 1012 and α=1, utilising
less than 600 MB of RAM. We demonstrate nearly linear scalability on an Intel Xeon Phi.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Random hyperbolic graph generator, streaming algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.26

1 Introduction

Even though most practical algorithms aim for a good performance on real-world data,
artificial benchmarks are crucial for their development. Suited real-world datasets are
typically scarce, do not scale, may exhibit noise or have uncontrollable properties. Tunable
synthetic instances based on random models alleviate these issues. They are indispensable
for systematic experiments allowing to quantify an algorithm’s performance as a function of
controllable parameters. Selecting the right model depends on the use case:

Many real-world networks (e.g., communication or social networks) exhibit basic features,
such as a small diameter, a power-law degree distribution, and a non-vanishing local cluster
coefficient [2, 3, 21, 23]. Amongst suited models, geometric random networks seem most
natural. They explain the high local clustering of social networks1 by embedding the nodes
into a geometric space. Then the distance between any two nodes determines the probability
of an edge between them. While Euclidean space is appropriate for spatial networks (e.g., [13]),

∗ Partially supported by the DFG grant ME 2088/3-2.
1 I.e., a high triangle count expressing the intuition that two friends of a person are likely to acquaint too.

© Manuel Penschuck;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 26; pp. 26:1–26:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Generating Hyperbolic Random Graphs

it distorts complex networks, such as the internet graph, for which hyperbolic embedding
(cf. Section 1.3) performs well [7, 24].

The task of actually generating instances of hyperbolic random graphs has been approached
recently yielding generators that are either fast in practice [27] or optimal in theory [9]. We
target the generation of large instances whose set of nodes2 does not fit into memory. Space
requirements are crucial especially in the context of co-processors with small dedicated memory.
Another application of such a generator is the experimental evaluation of streaming [11, 20]
or external memory algorithms [1, 22]. Since our algorithm is typically faster than the time
it takes to write data to disk, one can connect it to the algorithm under testing without a
round-trip to secondary storage. In such a case, the generator should leave the majority of
memory to the main application in order to allow fast context switches.

1.1 Our contribution
We introduce two related generators MemGen (Section 2) and HyperGen (Section 3) for the
Gα,C(n)-model (Section 1.3) for large instances with n nodes and m = d̄n/2 edges where d̄ is
the expected average degree. Both generators target a streaming setting and are compatible
with the external memory model for practical instances. MemGen requires O(n) internal
memory and has a time complexity of O(n log logn+m), which is optimal for networks with
an average degree of d̄=Ω(log logn). For realistic values of d̄=o(n/ log1/α(n)), HyperGen
reduces the memory footprint to O([n1−αd̄α+logn] logn), where α>1/2 controls the exponent
2α+1 of the result’s power-law degree distribution. In an experimental evaluation (Section 5),
HyperGen consistently the previously fastest generators we are aware of.

In the quest for a smaller memory footprint, we increase the data locality leading to an
easily parallelisable algorithm. While we only explore shared memory parallelism, HyperGen
works in a distributed setting with constant communication.

1.2 Notation
Define [k] := {1, . . . , k} for k ∈ N>0. A graph G = (V,E) has n = |V | sequentially numbered
nodes V = {vi}i∈[n] and m = |E| edges. Unless stated differently, graphs are undirected,
unweighted, and have an average degree of d̄ = 2m/n. Let NG(v) ⊆ V be the neighbourhood
of node v in graph G, i.e. the set of adjacent nodes.

We mainly consider points (r, θ) in polar coordinates where r is the radius (i.e. distance
from the origin) and θ is the polar angle or azimuth. A point with radius r1 is said to be
above a point with radius r2 if r1 > r2 and below if r1 < r2. Let By(z) the ball of radius y
and centre at radius z, i.e. the set of all points with distance at most y from point3 z [12].
We apply standard set operations to balls where \, ∪, and ∩ denote set differences, union
and intersection accordingly.

Let µ(X) denote the probability mass of X. We denote a Binomial distribution over n
items with probability p as B(n, p). Also refer to Appendix A for a summary of definitions.

1.3 The hyperbolic random graph model Gα,C(n)
We consider the well-accepted Gα,C(n) model [12]. It follows the initial zero-temperature
model of Krioukov et al. [16], but removes a redundant curvature parameter by setting ζ=1.

2 Implementations typically use at least 80 byte/node (cf. Section 5.2).
3 We omit the azimuth of z as it is irrelevant in our analysis due to polar symmetry.

M. Penschuck 26:3

R
R/2

Neighbours

Candidates

∆θ(r, r)

Figure 1 Left: The Gα,C(n) model with n=150, α=1, C=−2. The area enclosed by each coloured
lobe corresponds to all points in distance at most R around its highlighted centre. Right: Band
model introduced by NkGen (not to scale). The partial blue lobe indicates the area in which
candidates can be found. The step-wise overestimation for candidate selection is shown in yellow.

I Definition 1 (Gugelmann et al. [12]). Let α > 1/2, n ∈ N>0, and C > −2 logn. The
random graph Gα,C(n) = (V,E) has the following properties (cf. Figure 1):

Each node vi ∈ V = {v1, . . . , vn} is modelled by a random point pi = (ri, θi) in the
hyperbolic plane.4 Its angular coordinate θi is drawn uniformly from [0, 2π] while its
radius 0 ≤ ri < R with R := 2 logn+C is governed by the density function

ρ(r) = α sinh(αr)
cosh(αR)− 1 . (1)

The distance d(pi, pj) between the two points pi and pj is given by

cosh(d(pi, pj)) = cosh(ri) cosh(rj)− sinh(ri) sinh(rj) cos(θi − θj). (2)

Two nodes vi, vj ∈ V are adjacent iff they have a small distance d(pi, pj) < R and i6=j.

Intuitively, the smaller α the more likely are points with small radial components, which are
expected to have a high number of neighbours. The parameter hence controls the skewness
of the resulting power-law degree distribution with an exponent of γ = 2α+1 > 2 [16]. We
assume α = O(1) since real networks typically exhibit 2 ≤ γ ≤ 4 (e.g., [10, 17]). Further,
while with high probability there exists a giant component of linear size for α < 1, networks
with α > 1 have components of sub-linear size [6]. The parameter C controls the average
degree d̄ of the graph which is governed as follows: [12]

E
[
d̄
]

= 2
π

(
α

α− 1/2

)2
e−C/2(1 + o(1)) (3)

1.4 Hyperbolic graph generators
A naïve generator for hyperbolic graphs checks all

(
n
2
)
pairwise distances and emits an edge

for each pair of points close enough. On the one hand, such an approach can be implemented
with constant memory overhead based on a pseudo-random hash function mapping node
ids to coordinates. On the other, it incurs a sequential runtime of Θ(n2) and is hence
prohibitively expensive for large n. Similarly, while it can be fully parallelised yielding a

4 We treat a node vi and its corresponding point pi as equivalent and use the terms interchangeably.
Similarly, the symbols ri and θi always refer to the radius and azimuth of point pi.

SEA 2017

26:4 Generating Hyperbolic Random Graphs

O(1) time computation on a Erew-Pram [14] with p = Θ(n2) processors, such a solution
requires Θ(n2) work and is infeasibly inefficient.

All sub-quadratic algorithms we are aware of rather rely on a two-step approach: For each
node v ∈ V , the generators firstly identify a set of candidates C(v) ⊆ V by some geometric
means (see below). Edges are then generated by computing only the distances between v
and C(v). In order to avoid false negatives, all neighbours N(v) have to be a subset of C(v).
Techniques include:

Looz et al. [26] project all points into the Poincaré disk model which allows neighbourhood
queries based on Euclidean disks. Candidates are selected using a polar quad-tree. The
authors bound the generator’s runtime to O((n3/2 +m) logn) with high probability.
Later, Looz et al. improve the runtime significantly by dropping the angular separation of
the quad-tree [27]. As sketched in Figure 1, their generator (which is the basis of our work
and to which we refer as NkGen5) decomposes the hyperbolic plane into k=Θ(logn)
bands, each covering the radial range [bj , bj+1) where bj = (1 − βj−1)R/(1 − βk) for
j ∈ [k+1] and a tuning parameter β≈0.9. In a preprocessing step, the points are randomly
scattered over the plane by inserting each point (r, θ) into the appropriate band j, where
bj ≤ r < bj+1. The points are then sorted by their angular coordinates independently for
each band.
In order to query the neighbour candidates of a point p=(r, θ) stored in band i, the
algorithm iterates over all bands i ≤ j ≤ k. For each band j, it computes the angular
range Aj = [θ −∆θ(r, bj), θ + ∆θ(r, bj)] where the maximal angular distance ∆θ(r, bj)
between p and any hypothetical point in band j is given by

∆θ(r, b) :=
{
π if r + b < R

acos
[
(cosh(r) cosh(b)− cosh(R))/(sinh(r) sinh(b))

]
otherwise

. (4)

The points within Aj constitute all candidates from band j. Since points are sorted by
their angular coordinates, the bounds of Aj can be identified using two binary searches
in time O(logn). The authors experimentally find a runtime of O(n logn+m).
Bringmann et al. [9] propose the Geometric Inhomogeneous Random Graph model (GIRG)
and show that Gα,C(n) is a special case of GIRG which can be generated with their
sampling algorithm in expected time O(n+m). Their sampling method for hyperbolic
graphs is similar to the quad-tree approach in the sense that it partitions the space
uniformly along the angular axis and exponentially in the radial direction. The resulting
cells roughly correspond to leaves in a quad-tree. However, the algorithm does not execute
fine-grained neighbourhood queries for each node; it rather tests all point pairs of two
related cells in a pessimistic and data-oblivious fashion. Despite its expected linear
runtime, the algorithm seems to suffer from high constants (cf. Section 5). Bläsius et
al. provide an implementation6 to which we refer as GirgGen [5].
Very recently and independently from this work S. Lamm proposed a communication-
agnostic distributed generator RHGen with a partitioning scheme similar to [9], although
with different radial limits [18]. Each band is split into disjoint buckets of equal angular
size. Their number is chosen such that each cell is expected to contain k points, where
k ≈ 4 is a tuning parameter. RHGen allows all processing units to compute the points
within any bucket independently, eliminating the need of communication. The author

5 A reference implementation is included in NetworKit [25], https://networkit.iti.kit.edu/.
6 https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

https://networkit.iti.kit.edu/
https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview

M. Penschuck 26:5

Algorithm 1: MemGen
Input :Number of nodes n, Radius of bounding circle R, Density α, Spacing β

1 ∆θ(a, b) := π if a+b < R else acos
[
(cosh(a) cosh(b)− cosh(R))/(sinh(a) sinh(b))

]
;

2 noBands← max(2, dβRe);
3 limits← [0, R/2, c+R/2, 2c+R/2, . . . , R−c,R] with c = R/2/(noBands− 1);
4 for i ∈ [1, . . . , n] do
5 r ← random radius from [0, R) with density ρ(r) = α sinh(αr)/(cosh(αR)− 1);
6 b← search band s.t. limits[b] ≤ r < limits[b+ 1];
7 θ ← next non-decreasing uniformly random polar angle;

// In case θ + 2∆θ(r, r) > 2π special treatment is necessary –
cf. text

8 bands [b].addPoint(Point(i, (r, (θ+∆θ(r, r)) mod 2π)));
9 b← max(2, b);

10 bands[b].addRequest(Request(i, [r, r+2∆θ(r,max(r, limits[b+1]))], (r, θ+∆θ(r, r))))
// Main Phase: Generation of Edges

11 foreach u, v ∈ bands[1].points with u < v do
12 emit edge {u.id, v.id};
13 reqsToAbove← [];
14 for b ∈ [2, . . . , noBands] do
15 sort bands [b].points by angle;
16 reqsFromBelow← sorted(reqsToAbove);
17 initialise empty reqsToAbove, candidates;
18 foreach pt ∈ bands[b].points do
19 remove all requests from candidates ending before pt.θ;
20 foreach req ∈ (bands[b].reqs ∪ reqsFromBelow) with req.rangeBegin ≥ pt.θ do
21 insert req into candidates if not existing;
22 insert req into reqsToAbove with updated range;
23 foreach req ∈ candidates do
24 if (req.r, req.id)≤lexico(pt.r, pt.id) ∧ dist(pt, req)≤R then
25 emit edge {pt.id, req.id};

shows an expected sequential runtime of O(n+m), bounds the generation time of the
distributed grid structure to O(P logn+ n/P), where P is the number of processors, and
empirically finds a time-complexity of O(n+m

P + P logn) for the parallel algorithm.

2 MemGen: a fast algorithm with linear memory usage

To simplify the description of HyperGen and present its main design, we start with a
sequential version MemGen (cf. Alg. 1) requiring O(n) memory. Most arguments regard-
ing the runtime of this algorithm will later translate into the space complexity bound of
HyperGen.

Geometrically, MemGen employs a band partitioning similar to the one introduced by
NkGen and illustrated in Figure 1. However, we alter their contents and access patterns,
and use different radial band limits: all bands except the lowest one have a constant
height x = R/2k, where k+1 is the number of bands and x = Θ(1) a tuning parameter

SEA 2017

26:6 Generating Hyperbolic Random Graphs

(typically x ∈ [1, 2]). Band 1 ≤ i ≤ k+1 covers a radial range of [li, li+1) with l1 = 0 and
li = [1 + (i−2)/k] ·R/2 for some k=Θ(R). It is not necessary to further divide the lowest
band since all points with radius r ≤ R/2 are forming a clique (cf. Figure 1) and can be
handled without vicinity tests.

Band b stores all points contained. For each point p within b or below it, the band
additionally maintains a so-called request reqb(p), storing the coordinates of p itself as well as
the angular range in which neighbours of p can lie in band b. Such requests effectively reduce
random accesses during the candidate selection and carry pre-computed values repeatedly
required for the distance calculations (cf. Section 4).

In fact, the algorithm chooses a request-centric view and randomly draws the beginnings
of each request range, computes its radius-dependent length, and then places a point at its
centre.7 We draw the polar components as sorted random numbers using the online technique
detailed in [4] requiring constant time per element. The generation process may yield requests
with a range [a, b] with b > 2π. To take the azimuthal 2π-period of the hyperbolic disk into
account, we split such queries into two separate ranges [0, b−2π] and [a, 2π] respectively and
mark the latter as a copy. Analogously, points with θ > 2π are remapped to θ − 2π. After
the generation phase, the points are sorted by their polar coordinate.

In the main phase, we iterate over the bands starting from the centre for which we simply
emit the clique of all nodes contained. For all higher bands, we scan through the points and
requests in lock-step and keep a separate list of candidates C(·). Since both streams are
sorted, we can efficiently update C(v) when moving from one point to the next.

Each time we reach a new unmarked request reqj(p), we propagate it to the next higher
band j+1 by adding reqj+1(p) to the appropriate insertion buffer. Here, it may be again
necessary to split a request due to the 2π-periodicity. Further observe that the range of
a request may shrink during the propagation. As a consequence, the insertion buffer has
to be sorted when switching to band j+1 (cf. Section 2.2) before it can be merged with
the requests generated in the preprocessing phase. In a last step, we compute the distance
between a point and all candidates in order to emit the edges.

The linear time generators we are aware of use discrete buckets along the angular axis
to avoid sorting [9, 18]. However, preliminary experiments with MemGen suggested that
a more involved candidate selection process is faster in practice (especially in the context
of vectorisation) and does incur only small theoretical penalties (cf. Theorem 7). Thus, we
maintain a data structure which keeps active candidates in a continuous array to facilitate
vectorisation efficiently (cf. Section 4). The array has an arbitrary order allowing to implement
deletions as moves of the array’s back. The data structure is further augmented with a search
tree to find the position of a candidate using its point id as key. We also keep a priority
queue with range-ends to quickly find and remove obsolete candidates.

2.1 Candidate selection is at worst a constant approximation
In this section, we establish all necessary facts to show that the candidate selection incurs a
non-substantial overhead. In Lemma 2, we will see that most points issue only a constant
number of requests.

Subsequently, we derive a high-probability bound on the number of candidates processed
for any node in two steps: Observe that a node has to process all requests from nodes below.
Lemma 3 bounds their number in terms of n and average degree d̄. Further, Lemma 4 states

7 While this is an arbitrary choice for MemGen, it will become a crucial ingredient for HyperGen.

M. Penschuck 26:7

that MemGen overestimates the probability mass during candidate selection by at most a
constant factor. Therefore, the bound on the number of neighbours from below carries over
to the number of candidates processed.

I Lemma 2. The expected number of bands E [Bi] a random node vi sends requests to is
E [Bi] = 1 + 1−e−αR/2

eα/2k−1 = O(1) where k+1 = Θ(R) is the number of bands used by MemGen.

Proof. Each point with radius r sends requests to its own band j with bj≤r<bj+1 as well as
to all above. Consequently, the probability of a random point pi contributing to band j is
governed by the mass function µ(Bbj+1(0)) as given by Eq. (21). Using indicator variables
for the reception of a request by band j, we obtain the claimed expectation value:

E [Bi] =
k∑
j=0

µ(Bbj+1(0)) =
k∑
j=0

eα[R2 (1+j/k)−R] = e−αR/2
k∑
j=0

(
eα

R
2k

)j
= 1 + 1− e−αR/2

eα/2k − 1
.J

I Lemma 3. Let Nj be the number of neighbours the point pj=(rj , θj) has from be-
low, i.e. neighbours with smaller radius. With high probability, there exist O(n/ log2 n)
points with Nj = O(n1−αd̄α log(n)) while the remainder of points with rj > R/2 has
Nj = O(n1−2α log2α(n)d̄2α) neighbours.

Proof. Let X1, . . . , Xn be indicator variables with Xi=1 if p and pi are adjacent. Due to
radial symmetry we directly obtain the expectation value of Xi conditioned on the radius pi:

E [Xi | ri= x] = P [Xi=1 | ri= x] =
{

1 if x < R− r
∆θ(x, r)/π otherwise

(5)

We remove the conditional using the Law of Total Expectation and equations (20) and (21):

E [Xi] =
R−r∫
0

ρ(x)dx + 1
π

r∫
R−r

ρ(x)∆θ(x,R)dx (6)

=
[
e−αr−e−αR

]
(1+o(1)) + 1

π

α

α− 1
2
e−αr

[
e(α− 1

2)(2r−R) − 1
]

(1±O(e−r)) (7)

Fix the radius rT = R− 2
α log logn with R/2 < rT (wlog) and consider three cases for r:

We ignore all points r ≤ R/2 as they belong to the central clique and are irrelevant here.
Observe that with high probability there exist O(n/ log2(n)) points below rT . Exploiting
the monotonicity of Eq. 7 in r, we maximise it by setting r = R/2, which cancels out
the second term. Linearity of the expectation value, substitution of R = 2 log(n) + C,
and Eq. (3) yield E [

∑
iXi] = O

[
n
(
d̄/n

)α]. Then, Chernoff’s bound gives
∑
iXi =

O(n1−αd̄α log(n)) with high probability.
For all points above rT , set r = rT yielding

∑
iXi = O(n1−2α log2α(n)d̄2α) with high

probability analogously. J

I Lemma 4. Consider a query point with radius r and a band with boundaries [a, b).
MemGen’s candidate selection overestimates the probability mass of the actual query range
by a factor of OE(b−a, α) where OE(x, α) := α−1/2

α
1−eαx

1−e(α−1/2)x .

Proof. If r < R−b, the requesting point covers the band completely which renders the
candidate selection process optimal. We now consider r ≥ R−a and omit the fringe case of
R−b < r < R−a which follows analogously (and by continuity between the two other cases).

SEA 2017

26:8 Generating Hyperbolic Random Graphs

Then, the probability mass µQ of the intersection of the actual query circle BR(r) with the
band Bb(0) \Ba(0) is given by

µQ := µ [(Bb(0)\Ba(0)) ∩BR(r)] (8)

= µ
[(
BR(0) ∩BR(r)

)
\Ba(0)

]
− µ

[(
BR(0) ∩BR(r)

)
\Bb(0)

]
(9)

(22)= 2αe− r2
π(α− 1

2)

[(
1+

α− 1
2

α+ 1
2
e−2αb

)
e(α− 1

2)(b−R)+
(

1+
α− 1

2
α+ 1

2
e−2αa

)
e(α− 1

2)(a−R)
]

(1+ε) (10)

= 2
π
e−

r
2−(α− 1

2)R
[

α

α− 1
2

(
e(α− 1

2)b − e(α− 1
2)a
)

+O
(
e−(α− 1

2)a
)]
, (11)

where ε substitutes the error term expanded in the last line (cf. Figure 1, blue cover of a
band).

MemGen overestimates the actual query range at the border and covers the mass µH
(see Figure 1, yellow cover of a band):

µH := 1
π

∆θ(r, a)
b∫
a

ρ(y)dy = 1
π
· 2e

R−a−r
2 (1 +O(eR−a−r)) · cosh(αb)− cosh(αa)

cosh(αR)− 1 (12)

= 2
π
e
R−a−r

2 (1 +O(eR−a−r)) ·
[
eα(b−R) − eα(a−R)

]
(1± o(1)) (13)

= 2
π
e−

r
2−(α− 1

2)R
[
eαb−a/2 − e(α− 1

2)a
]
·
(

1±O
(
e(1−α)(R−a)−r

))
(14)

The claim follows by the division of both mass functions µH/µQ. J

I Corollary 5. Given a constant band height, i.e. b−a = O(1), Lemma 4 implies a constant
overestimation for any α>1/2. In case of b−a = 1, we have OE(1, α) ≤

√
e ≈ 1.64 ∀α>1/2.

2.2 Nearly sorted points/request allow for faster sorting
MemGen’s scheme to update the candidate list requires the input streams of requests and
points to be increasing in their angular coordinate. Since we are not aware of a technique
that directly yields both in an ordered fashion, we have to sort them. Using naïve methods
this would amount to O(n log(n)) time (cf. Lemma 2). Since the number m = nd̄/2 of edges
generated constitutes a lower bound on the time complexity of any generator, this approach
is optimal for d̄ = Ω(logn).

Observe, however, that the points are calculated based on ordered requests and are
therefore already nearly sorted. Similarly, requests have to be sorted after being propagated
from ordered streams. In both cases, and with high probability, the change of rank of each
item is bounded to some ∆ = o(n).8 Such a ∆-ordered sequence can be sorted in time
O(n log ∆), e.g. using a sliding window coupled with a priority queue of size ∆.

The following Lemma gives a rough bound on the time complexity which suffices to show
that MemGen is optimal for d̄ = Ω(log log(n)) with high probability:

I Lemma 6. Sorting all points initially and requests after their propagation requires
O
(
nmin[log(d̄ logn), logn]

)
time.

8 Split requests and remapped points are sorted separately and merged in linear time.

M. Penschuck 26:9

Proof. It suffices to bound the claim for requests since every point contributes at least one
request and has a shorter lifetime. As stated in the introduction of the Lemma, we can rely
on classical sorting in time O(n logn) for the case of d̄ = Ω(logn). Thus assume d̄ = o(logn).

The proof consists then of two steps: We pick a radius rT , s.t. with high probability there
are only O(n/ log2(n)) points below rT . Since each point issues at most O(logn) requests,
we can classically sort their O(n/ log(n)) tokens in time O(n). For the remaining points, we
bound the number of overlapping requests from above and thereby also the maximal change
in rank that can occur during sorting.

The number nT of points below radius rT is governed by the Binomial distribution
B(n,BrT (0)) with BrT (0) = 1/ log2(n). Solving for rT yields rT = R− 2

α log logn and hence
nT = O[nBrT (0)] with high probability.

We now tend to the requests above rT and exploit the two following facts:
The number of bands above rT is constant since rT /R→ 1 as n→∞.
During sorting only those requests that overlap can change their relative position. There-
fore, we fix θ ∈ [0, 2π) and let nθ be the number of requests that include θ.

To maximise nθ, assume without loss of generality that all remaining requests lie at
radius rT . Then, nθ is binomially distributed around its mean nµ with9

nµ = n
∆θ(rT , rT)

π
= 2ne−R2 + 2

α log logn = O
(
d̄ log

2
α (n)

)
. (15)

With high probability only O
(
d̄ log

2
α (n)

)
requests overlap due to Chernoff’s inequality.

We thus can sort them in time O(n log(d̄ logn)). J

I Theorem 7. MemGen requires O(n) memory and has a runtime of O(n log logn + m)
with high probability.

Proof. The space complexity directly follows from Alg. 1: each of the n points is stored in
exactly one band, yields at most two requests, and requires O(1) space in the candidate list.
During the main phase, there further exists only one insertions buffer at a time to which a
point may contribute O(1) items. M

We bound MemGen’s time complexity by considering each component individually:
The preprocessing (until line 10) requires O(1) time per point making it non-substantial.
Handling of cliques is trivially bounded by O(m) since every iteration emits an edge.
The sorting steps (lines 15 and 16) require O(n log(d̄ logn)) = O(n log d̄ + n log logn)
time in total with high probability according to Lemma 6.10
By applying Lemma 3 and Cor. 5, the candidate selection requires O(n log d̄) time with
high probability.
All distance calculations require in total O(m) time since Cor. 5 bounds the fraction of
computations that do not yield an edge to O(1). J

3 HyperGen: reducing MemGen’s memory footprint

In the analysis of MemGen, we repeatedly exploited the facts that requests are generated
in increasing angular order and the majority affects only a small fraction of the hyperbolic

9 It can be improved to O(d̄ log logn) by replacing the assumption that all requests lay at rT with an
appropriate integral; we omit this non-substantial calculation in favour of simplicity.

10We consider only the first min-term: In case the second term becomes smaller, the theorem’s claim is
dominated by the O(m) where m = nd̄/2.

SEA 2017

26:10 Generating Hyperbolic Random Graphs

1
2

3
4

5
6

7
8

9

10

11

0
3

π

1
3

π
2
3

π

3
3

π

4
3

π
5
3

π

Clique

Global

Stream

main phase of
of segment

endgame of
segment 1

Figure 2 Left: HyperGen streams through each band consuming batches whose size is limited
by two factors: either due to a polar limit imposed by the underlying band (solid blue line) or
due to the limited number of requests a batch is allowed to have (dotted blue line). We traverse
the indicated tree in depth-first order. Right: The hyperbolic plane is partitioned along the polar
axis into p segments of equal size. Radially, there are two groups: the lower global bands which
are preprocessed and kept in memory, and the upper streaming bands. In the main phase, each
execution thread streams through its segment towards increasing polar angles (red arrow). Requests
overlapping into the next segment are then completed in the endgame.

plane. This is also the foundation of HyperGen, which strives to additionally reduce the
memory requirements of the generator. In order to do so, we do not draw all points globally
and insert them into their bands, but rather reverse the scheme.

HyperGen first computes how many points go into each band. It is then able to draw
points for each band independently. Due to the radial distribution function ρ(r), band i with
boundaries [li, li+1) carries a probability mass of µi = µ[Bli+1(0) \Bli(0)]. Consequently, the
numbers N = (n1, . . . , nk) of points per band with n =

∑
i ni are governed by a multinomial

distribution with µi as event probabilities. We sample N and build for each band i a stream
Si(ni, si) that outputs exactly ni requests with monotonously increasing angles as detailed in
Section 2. Storing the seed value si used to initialise the underlying pseudo-random number
generator enables HyperGen to replay the stream from the beginning.

Analogous to MemGen, each band maintains such a request stream Si, the current
candidates, and a small list of recently produced points. The generator starts with the
innermost band i = 1 (cf. optimisation in Section 3.1) and draws a batch of at most c requests
from its stream Si, computes the positions of their corresponding points, and finally sorts
the latter by their angle. Let θL be the beginning of the last request generated (θL=2π if
the batch is empty). We merge the newly generated points with those remaining from the
band’s last batch, update the set of candidates, and match points against them as described
for MemGen. Edges produced are pushed into the output stream.

Before we continue in the current band i, we first process all higher bands, hence limiting
the amount of requests in memory. HyperGen propagates the recently generated requests
to the band i+1. Observe that the request of a point (r, θ) is always centred around θ but
its range shrinks as it is moved to higher bands. As a direct consequence, the higher range is
completely enclosed by the lower one and no future request produced for band i will ever
start before θL. Therefore, we recurse to band i+1 but limit processing there to points with
θ < θL. In effect, HyperGen performs a depth-first traversal of the recursion tree illustrated
in Figure 2 in which every node corresponds to a batch.

Due to the processing limit imposed on higher bands, we make sure they have the same
information they would receive in MemGen. One subtle difference, however, concerns the
fact that MemGen splits requests and remaps points overlapping the 2π threshold to take
their angular periodicity into account. This is not possible in HyperGen since overlaps in
outer bands are only detectable quite late in a run.

M. Penschuck 26:11

We resolve this issue by ignoring it at first, i.e. we perform the main computation phase
exactly as described above. If there are still pending candidates or points after its completion,
we restart the request streams to handle the so-called endgame. During endgame, HyperGen
executes the same algorithm as before but only emits edges for pairs in which either the
point or the request originate from the main phase. Therefore, it can be stopped as soon as
all such old points and candidates have been processed. A single rewind suffices and thus
does not affect the asymptotic runtime since a request has a length of at most 2π rad and a
point can only be moved π rad in forward direction.

I Theorem 8. For c=O(1) HyperGen requires O([n1−αd̄α+ logn] logn) memory with high
probability, where d̄ is the expected average degree and n the number of nodes.

Proof. Each of the k = Θ(logn) bands requires auxiliary data structures of constant size.
Regarding the data contained, it again suffices to show the result for requests (cf. proof of
Lemma 6). The number of points NC with radius below R/2 is governed by a binomial
distribution B(n, µ(BR/2(0))). Thus, with high probability NC = O(n1−αd̄α + logn) where
the second term ensures concentration for small (d̄/n)α. Each such point contributes requests
to k = O(logn) bands; multiplication yields the claim.

According to Lemma 3 and Cor. 5 and for any fixed θ, there are with high probability
O(n1−αd̄α logn) points with radius r ≥ R/2 that have at least one request including θ. By
Lemma 2, they contribute to O(1) bands on average and thus are covered by the claim. J

I Corollary 9. In the external memory model with M = Ω([1 + n1−αd̄α] logn), HyperGen
only triggers I/Os to write out the resulting m edges in O(scan(m)) I/Os.

3.1 Accelerating the Endgame
A runtime/memory trade-off can be implemented to improve the runtime (especially in the
context of the parallel variant). Rather than starting the streaming approach introduced
above, we compute all bands with radii at most rG and store them as in MemGen in the
so-called global phase. This allows us to propagate split requests to the streaming bands
which in turn allows us to stop the endgame earlier.

Observe that a request of a point (rG, θ) has a length of at most 2∆θ(rG, rG). To restrict
the endgame to a fraction 1/f of the hyperbolic plane, we solve 2∆θ(rG, rG) = 2π/f for rG.
The number nG(f) of points generated in the global phase, which have to be kept in internal
memory, is thus binomially distributed around the mean of

E [nG(f)] = nµ(BrG(0)) = n

(
d̄f

2n

)α(
α− 1

2
α

)2α

= O
(
n1−αd̄αfα

)
. (16)

3.2 Parallelism
Similarly to NkGen, HyperGen can easily be parallelised by decomposing the hyperbolic
plane into p segments of equal size along the polar axis. As shown in Figure 2, we use a
global phase with f ≥ p to handle the nG requests spanning more than one segment. We
enqueue a copy of each such request into all segments it affects. For realistic settings, it
suffices to execute this phase sequentially; however, parallelism can be applied as in NkGen’s
implementation. The number of points in each segment (ν1, . . . , νp) with n− nG =

∑
i νi is

then sampled from a multinomial distribution in which each event is equally likely. Based on
this distribution, each band continues independently as described in the original formulation

SEA 2017

26:12 Generating Hyperbolic Random Graphs

of HyperGen. In the endgame, each segment retrieves the seed values of its successor’s
pseudo-random number generators and replays its streams.

In a distributed scenario the seed values can be computed using a pseudo-random hash
function mapping the segment id to a pseudo-random seed value. Further, the initial
distribution as well as the fast global phase can be computed repeatedly by each compute
node, yielding constant communication.

4 Implementation

The prototypical implementation is available at https://github.com/manpen/hypergen/.

4.1 Adjacency tests without trigonometric functions
In a preliminary study we found that NkGen’s runtime is dominated by trigonometric
computations during the calculation of distances between points and their neighbour candid-
ates. We approach this issue by introducing a new pre-computing scheme inspired by the
usage of the Poincaré disk model in [26]. We project the random points into the unit disk
causing additional work per point but simplifying all further distance computation. Thus,
the speed-up increases with the average degree.

Our implementation applies the transform only to the distance calculations and does
not change the candidate selection process. Let p=(rp, θp) and q=(rq, θq) be two points in
the hyperbolic space and p′ = (cdm(rp), θp) and q′ = (cdm(rq), θq) their counterparts in the
Poincaré disk model, where cdm(r) := [(1− r2)/(1 + r2)]1/2. Then p and q are adjacent if

R > d(p′, q′) = acosh
(

1 + 2 ||q − p||2

(1− ||p||2)(1− ||q||2)

)
(17)

⇔ cosh(R)− 1
2 >

||q − p||2

(1− ||p||2)(1− ||q||2) = (xp′ − xq′)2 + (yp′ − yq′)2

(1− r2
q′)(1− r2

q′)
(18)

=
(
(xp′ − xq′)2 + (yp′ − yq′)2) · γ(rp′) · γ(rq′), (19)

where xp′=rp′ sin(θp) and yp′=rp′ cos(θp) are the Cartesian coordinates of point p′ (analog-
ously for q′). We reduce a distance computation to three additions and four multiplications by
pre-computing xp′ , yp′ and γ(rp′) := 1/(1− r2

p′) for each point. The resulting expression can
be vectorised effectively and even allows to partially fuse operations (cf. FMA instructions).

Our implementation uses explicit vectorisation11 only during the distance computation.
For graphs with small average degree, a speed-up may be possible by vectorising per-point
computations such as the random number generation and geometric transformations.

4.2 Optimising NkGen for streaming
In addition to the default implementation of NkGen, we study a variant NkGenOpt to
which we apply the following optimisations:12

11Based on libVC – SIMD Vector Classes for C++ [15], https://github.com/VcDevel/Vc.
12 NkGen originally generates an adjacency-list-like internal-memory data-structure using the NetworKIT’s

GraphBuilder module. This limits the graph sizes and explains NkGen optimisation for smaller graphs.
Further, the removal of the GraphBuilder in this work shifts the implementation’s balance and leads to
the large optimisation potential demonstrated. Porting the optimisations back to NetworKIT showed
insignificant changes for typical instances which could be likely solved with an optimised GraphBuilder.

https://github.com/manpen/hypergen/
https://github.com/VcDevel/Vc

M. Penschuck 26:13

It avoids recalculations similar to Section 4.1, but does not rely on the Poincaré transform.
In NkGen’s case all additional data has to be kept in memory amounting to roughly
32 bytes per points. We expect that this increase is only significant for very sparse graphs
as NetworKit keeps the whole adjacency list in RAM.
The number of binary searches as well as their range13 is reduced. Further, the amount of
data copied is significantly decreased also resulting in less (de-)allocation operations. This
optimisation roughly compensates the increased footprint due to the pre-computations.
We removed several checks which are not required for the restricted case of GC,α(n).

HyperGen and NkGenOpt are verified against NkGen over a wide range of parameters.
Here, we observed only acceptable numerical discrepancies for large graphs affecting less than
one edge out of 105, caused by the different implementations of the distance computation.

5 Experimental evaluation

In this section, we compare six configurations: HyperGen on CPU / Xeon Phi (cf. Section 3),
NkGen [27], NkGenOpt (cf. Section 4.2), RHGen [18], and GirgGen [5]. They are
implemented in C++ and built as release versions using the same compiler. As an exception,
HyperGen has to use a hardware-specific compiler, links against Intel’s TBB malloc_proxy,
but otherwise has the same code basis as the CPU version.

To fully exploit HyperGen’s on-the-fly edge generation, none of the implementations
writes the edge list into memory. We rather simulate a very simplistic streaming algorithm
which consumes the edge stream and computes a fingerprint by summing all node indices
contained.14 This choice enforces that the generators have to compute and forward every edge
but does not impose memory restrictions. With the exception of GirgGen, all generators
support parallelism and are configured to use all available hardware threads. RHGen
employs a multi-process design using MPI allowing several compute nodes, while HyperGen,
NkGen and NkGenOpt use lightweight threads based on OpenMP.

The runtime benchmarks were conducted on one of the following systems:
Indicated by (Phi): Intel Xeon Phi 5120D (60 cores, 240 threads, 1.05GHz), 8 GB GDDR5
RAM Linux 2.6.38, ICC 17.0.0, Intel TBB malloc_proxy
Otherwise: Intel Xeon CPU E5-2630 v3 (8 cores, 16 threads, 2.40GHz) with AVX2/SSE4.2
support for 4-way double-precision vectorisation, 64 GB 2133 MHz RAM, Linux 4.8.1,
GCC 6.2.1, VC (8. Dec. 2016), MPICH 3.2-7

The number of repetitions per data point (with different random seeds) is denoted by S.
All plots show the median of repeated measurements and errorbars corresponding to the
unbiased estimation of the standard deviation. Due to its large runtime GirgGen typically
only includes one measurement per data point.

5.1 Runtime
We study the generators’ runtimes for a wide range of graph sizes. For each run, we fix
the number of nodes 105 ≤ n ≤ 109 as well as the average target degree d̄ ∈ {10, 1000},
which we consider as lower and upper limits of realistic inputs [3, 19, 21, 23]. In order

13By replacing ∆θ(r, bi) by ∆θ(r, r) when searching candidates for point (r, θ) in band i with bi ≤ r < bi+1.
14We removed the appropriate memory allocations and accesses from NkGen, RHGen, and GirgGen,

and added the streaming simulation. The patches are included in our repository.

SEA 2017

26:14 Generating Hyperbolic Random Graphs

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

101 102 103

Average degree d̄

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Nodes: 224, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 3 Runtime/edge generated for α=1 (power-law exp. γ=3) as a function of n and d̄. S=5.

to achieve compatible results, all implementations use values of R derived with NkGen’s
getTargetRadius-method. In case of HyperGen, we use two segments per thread to
balance load for large average degrees. For RHGen we chose an expected bucket size of four
which resulted in the best performance in preliminary tests.

As shown in Figures 3 and 6 (Appendix) and Table 1 (Appendix), HyperGen is
consistently the fastest generator, followed by NkGenOpt which outperforms NkGen.
GirgGen is always the slowest. If we assume perfect parallelisability and divide GirgGen’s
walltime by the number of cores, it is on par with NkGen for small degrees but remains up
to one order of magnitude slower for d̄ = 1000. For d̄ = 10 NkGen outperforms RHGen,
while for d̄ = 1000 and α = 1 the opposite is true.

All generators but HyperGen (Phi) exhibit an almost constant computation time per
edge for large n. The improvements of HyperGen (Phi) towards larger n can be attributed
to the very high number of threads (p = 240) which incur more overhead compared to runs
performed on a CPU. This overhead is amortised only for high values of n.

Based on Figure 6 (Appendix), we measure a speed-up of 4.0 for d̄=10 and 29.6 for
d̄=1000 when comparing HyperGen to NkGen for n ≥ 108 and α = 1. Similar results for
smaller n are included in Table 1 (Appendix). On (Phi), HyperGen is 2.3 times faster
(d̄=10) compared to the execution on the more modern CPU-based reference system. The
speed-up reduces to 1.2 for d̄=1000 which seems to be caused by a smaller cache per thread.

When using HyperGen to test a multi-pass streaming algorithm, it is virtually always
faster to repeatedly regenerate the graph than to buffer it in external memory.

5.2 Memory consumption

The memory consumption is measured for the same parameter settings as above. We consider
the maximal resident set size (i.e. the peak allocation of the generator) as reported by the
operating system. While all implementations seem to have potential for further savings,
Figures 4 and 7 (Appendix) show a clear trend: With the exception of HyperGen, all
generators seem to converge to a linear growth for large n requiring ≈ 80 byte per node.
RHGen exhibits higher constants which may be partially caused by overheads due to its MPI
architecture spawning independent processes rather than lightweight threads and preventing
cheap shared-memory utilisation.

Consistent with our analysis, HyperGen exhibits a sub-linear footprint rendering it
orders of magnitude cheaper for large n. As the number n of nodes increases (and hence R

M. Penschuck 26:15

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 4 Maximal memory allocated during execution as measured by time for α = 1.

0 50 100 150 200 250
Number p of threads

0

10

20

30

40

50

60

70

80

Sp
ee
d-
up

ov
er

se
qu

en
tia

le
xe
cu
tio

n

HyperGen(Phi)

Figure 5 Strong scaling of HyperGen on (Phi) for a graph with n=108 and d̄ = 10. S = 8.
Each vertical division marks a new level of HyperThreading.

for fixed d̄), more points lie in the outer bands. Thus, a smaller fraction of points has to be
handled (and stored) during the global phase. For the same reason, the memory footprint
decreases with increasing α. To support Theorem 8 and the analysis in Section 3.1, we
carried out additional runs up to n=1011 whose memory footprint is well within the noise
observed for n=108. We do not include measurements for (Phi) since the memory allocation
scheme adopted for the high number of threads does not yield meaningful set sizes.

5.3 Scalability
We measure HyperGen’s scalability using strong scaling experiments on (Phi). This
processor features 60 physical cores each offering four virtual threads (HyperThreading).
While fixing the graph instance to n=108 and d̄ = 10, we record the runtime for an increasing
number p of threads. As illustrated in Figure 5, the implementation exhibits a nearly linear
speed-up of 43.0±1.5 when utilising p = 58 threads. Surpassing this point, the computational
power provided by the hardware does not scale linearly any more. Thus, the additional
speed-up is less pronounced peaking at 71.4± 6 for p = 240.

Acknowledgments. The author thanks Ulrich Meyer, Kamil René König, Moritz von Looz
and Alexander Schickedanz for valuable discussions and suggestions, Sebastian Lamm for
providing the code and support for RHGen, Ivan Kisel and Egor Ovcharenko for their help

SEA 2017

26:16 Generating Hyperbolic Random Graphs

with the Xeon Phi, as well as the anonymous reviewers for their insightful comments and
recommendations.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9), pages 1116–1127, 1988.
2 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. CoRR,

cond-mat/0106096, 2001. doi:10.1103/RevModPhys.74.47.
3 Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four

degrees of separation. In Web Science 2012, WebSci’12, Evanston, IL, USA – June 22-24,
2012, pages 33–42, 2012. doi:10.1145/2380718.2380723.

4 Jon Louis Bentley and James B. Saxe. Generating sorted lists of random numbers. ACM
Trans. Math. Softw., 6(3):359–364, 1980. doi:10.1145/355900.355907.

5 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding
of scale-free graphs in the hyperbolic plane. In 24th Annual European Symposium on
Algorithms, ESA 2016, Aarhus, Denmark, 2016. doi:10.4230/LIPIcs.ESA.2016.16.

6 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the giant component of random
hyperbolic graphs, pages 425–429. Scuola Normale Superiore, Pisa, 2013. doi:10.1007/
978-88-7642-475-5_68.

7 Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet
with hyperbolic mapping. Nature Communications, Sep 2010. doi:10.1038/ncomms1063.

8 Béla Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2 edition, 2001. doi:10.1017/CBO9780511814068.

9 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. CoRR, abs/1511.00576, 2015. URL: http://arxiv.org/abs/1511.00576.

10 Sergei N Dorogovtsev and José FF Mendes. Evolution of networks: From biological nets to
the Internet and WWW. OUP Oxford, 2013.

11 Minos N. Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors. Data Stream Man-
agement – Processing High-Speed Data Streams. Data-Centric Systems and Applications.
Springer, 2016. doi:10.1007/978-3-540-28608-0.

12 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering – (extended abstract). In Automata, Languages, and Pro-
gramming – 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012,
Proceedings, Part II, pages 573–585, 2012. doi:10.1007/978-3-642-31585-5_51.

13 Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans. Inform-
ation Theory, 46(2):388–404, 2000. doi:10.1109/18.825799.

14 Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
15 Matthias Kretz. Extending C++ for explicit data-parallel programming via SIMD vector

types. PhD thesis, Goethe University Frankfurt am Main, 2015.
16 Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián

Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, Sep 2010.
doi:10.1103/PhysRevE.82.036106.

17 Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online
social networks. In Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages
611–617, 2006. doi:10.1145/1150402.1150476.

18 Sebastian Lamm. Communication efficient algorithms for generating massive networks.
Master’s thesis, Karlsruhe Institute of Technology, 2017. doi:10.5445/IR/1000068617.

19 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1145/2380718.2380723
http://dx.doi.org/10.1145/355900.355907
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.16
http://dx.doi.org/10.1007/978-88-7642-475-5_68
http://dx.doi.org/10.1007/978-88-7642-475-5_68
http://dx.doi.org/10.1038/ncomms1063
http://dx.doi.org/10.1017/CBO9780511814068
http://arxiv.org/abs/1511.00576
http://dx.doi.org/10.1007/978-3-540-28608-0
http://dx.doi.org/10.1007/978-3-642-31585-5_51
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1145/1150402.1150476
http://dx.doi.org/10.5445/IR/1000068617
http://snap.stanford.edu/data

M. Penschuck 26:17

20 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

21 Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure
in the web – revisited: a trick of the heavy tail. In 23rd International World Wide Web
Conference, WWW’14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume,
pages 427–432, 2014. doi:10.1145/2567948.2576928.

22 Ulrich Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for Memory Hierarch-
ies, Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002], volume 2625 of
Lecture Notes in Computer Science. Springer, 2003.

23 Seth A. Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy J. Lin. Information network
or social network?: the structure of the twitter follow graph. In 23rd International World
Wide Web Conference, Seoul, Republic of Korea, 2014. doi:10.1145/2567948.2576939.

24 Yuval Shavitt and Tomer Tankel. Hyperbolic embedding of internet graph for distance
estimation and overlay construction. IEEE/ACM Trans. Netw., 16(1):25–36, 2008. doi:
10.1145/1373452.1373455.

25 Christian Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/
nws.2016.20.

26 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyper-
bolic graphs in subquadratic time. In Algorithms and Computation – 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 467–
478, 2015. doi:10.1007/978-3-662-48971-0_40.

27 Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke. Generating
massive complex networks with hyperbolic geometry faster in practice. In 2016 IEEE High
Performance Extreme Computing Conference, HPEC 2016, Waltham, MA, USA, Septem-
ber 13-15, 2016, pages 1–6, 2016. doi:10.1109/HPEC.2016.7761644.

SEA 2017

http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1145/2567948.2576928
http://dx.doi.org/10.1145/2567948.2576939
http://dx.doi.org/10.1145/1373452.1373455
http://dx.doi.org/10.1145/1373452.1373455
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1017/nws.2016.20
http://dx.doi.org/10.1007/978-3-662-48971-0_40
http://dx.doi.org/10.1109/HPEC.2016.7761644

26:18 Generating Hyperbolic Random Graphs

A Definitions, useful identities and approximations

A.1 Hyperbolic functions

sinh(x) := 1
2
(
ex − e−x

)
asinh(y) = x ⇒ sinh(x) = y

cosh(x) := 1
2
(
ex + e−x

)
acosh(y) = x ⇒ cosh(x) = y

A.2 Geometry related definitions

ρ(r) := α
α sinh(αr)
cosh(αR) radial density, cf. Eq 1

µ(Br(0)) :=
∫ r

0
ρ(x)dx = cosh(αx)− 1

cosh(αR) radial cdf

∆θ(r, b) :=
{
π if r+b < R

acos
[cosh(r) cosh(b)−cosh(R)

sinh(r) sinh(b)
]

otherwise
cf. Eq. 4

A.3 Approximations
Gugelmann et al. derived the following approximations15 [12]:

∆θ(r, b) =
{
π if r + b < R

2e
R−r−y

2 (1 + Θ(eR−r−y)) if r + b ≥ R
(20)

µ(Br(0)) =
∫ r

0
ρ(x)dx = cosh(αr)

cosh(αR)− 1 = eα(r−R)(1 + o(1)) (21)

µ [(BR(r)∩BR(0))\Bx(0)] = 2
π

αe−r/2

α− 1
2
·1±O(e−(α− 1

2)r + e−r) if x < R−r[
1−(1+α− 1

2
α+ 1

2
e−2αx)e−(α− 1

2)(R−x)
]

(1±O(e−r+e−r−(α− 3
2)(R−x))) if x ≥ R−r

(22)

15We drop the (1 +O(·)) error terms in our calculations without further notice if they are either irrelevant
or dominated by other simplifications made

M. Penschuck 26:19

B Additional experimental results

Table 1 Comparison of generators for n = 226, α ∈ {0.55, 1}, and d̄ ∈ {10, 1000}. Comp refers
to the number of distance computations between two points. It does not include node pairs
that could be ruled out earlier (e.g., by comparing indices or radii). For HyperGen the value
is higher due to vectorisation which often prevents such early discarding. RSS is the maximal
resident set size (i.e. peak memory allocation) as reported by the operating system. In case of
RHGen it is the sum of RSS of all MPI processes yielding a higher overhead. GirgGen is a purely
sequential implementation and includes fewer data points due to the high runtime. We report the
standard deviation of the S measurements as uncertainty and apply statistical error propagation.

† Experiment was cancelled after a runtime of 105 s.

n=226, d̄=10, α=0.55, R=39.2 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 6 10.3± 0.4 7.5± 0.2 0.0± 0.0 11.8± 0.1 2.1± 0.1 34.0± 1.4 1 1 1
NkGen 6 9.8± 0.7 5.6± 0.3 4.6± 0.3 57.1± 3.0 1.7± 0.2 173± 22 0.8± 0.1 290± 22 4.8± 0.3
NkGenOpt 6 9.6± 0.4 5.3± 0.2 4.1± 0.0 36.0± 0.3 1.7± 0.1 111.7± 6.1 0.7± 0.0 263.5± 3.2 3.1± 0.0
RHGen 4 8.3± 0.1 7.9± 0.0 6.7± 0.6 110.0± 1.0 2.8± 0.0 395.8± 6.7 1.1± 0.0 428± 39 9.3± 0.1
GirgGen 3 10.0± 0.0 18.1± 0.0 3.9± 0.0 884.3± 0.8 5.4± 0.0 2635.5± 2.8 2.4± 0.1 248.1± 2.2 75.0± 0.5

n=226, d̄=10, α=1.00, R=33.3 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 9.7± 0.0 7.0± 0.0 0.0± 0.0 12.9± 0.1 2.1± 0.0 39.6± 0.3 1 1 1
NkGen 5 10.0± 0.0 5.5± 0.0 4.1± 0.0 54.9± 0.5 1.6± 0.0 163.5± 1.6 0.8± 0.0 602± 13 4.3± 0.1
NkGenOpt 5 10.0± 0.0 5.2± 0.0 4.1± 0.0 34.4± 0.2 1.6± 0.0 102.3± 0.8 0.8± 0.0 596± 12 2.7± 0.0
RHGen 5 10.0± 0.0 8.1± 0.0 7.5± 0.5 120.5± 0.4 2.4± 0.0 359.2± 1.2 1.2± 0.0 1100± 99 9.4± 0.1
GirgGen 3 10.0± 0.0 16.6± 0.0 3.9± 0.0 819.8± 7.1 5.0± 0.0 2443± 21 2.4± 0.0 566± 11 63.6± 1.0

n=226, d̄=1000, α=0.55, R=29.5 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 1052.2± 1.6 622.8± 1.2 0.2± 0.0 86.9± 0.4 1.8± 0.0 2.5± 0.0 1 1 1
NkGen 5 994.4± 3.3 456.2± 1.3 6.4± 0.3 955.5± 4.9 1.4± 0.0 28.6± 0.2 0.7± 0.0 27.2± 1.3 11.0± 0.1
NkGenOpt 5 991± 19 441.6± 7.8 4.2± 0.0 299.5± 5.1 1.3± 0.0 9.0± 0.3 0.7± 0.0 17.6± 0.3 3.4± 0.1
RHGen 5 889.1± 2.2 426.0± 1.1 23.9± 2.4 2205± 64 1.4± 0.0 73.9± 2.3 0.7± 0.0 101± 11 25.4± 0.9
GirgGen 1 1000.0 1160.6 3.8 55756.0 3.5 1661.6 1.9± 0.0 16.2± 0.1 641.5± 2.8

n=226, d̄=1000, α=1.00, R=24.1 in total per edge relative to HyperGen
Algo S Degree Comp. [108] RSS [GB] Time [s] Comp. Time [ns] Comp. RSS Time
HyperGen 5 1015.8± 1.3 616.2± 0.7 0.1± 0.0 84.3± 0.5 1.8± 0.0 2.5± 0.0 1 1 1
NkGen 5 999.9± 0.6 443.3± 0.3 4.4± 0.1 1878± 468 1.3± 0.0 56± 14 0.7± 0.0 43.7± 2.4 22.3± 5.7
NkGenOpt 5 999.7± 0.4 428.5± 0.2 4.2± 0.0 261.1± 6.7 1.3± 0.0 7.8± 0.2 0.7± 0.0 41.6± 1.1 3.1± 0.1
RHGen 5 999.1± 0.0 410.5± 0.0 8.1± 0.2 1234.8± 5.8 1.2± 0.0 36.8± 0.2 0.7± 0.0 79.8± 3.7 14.6± 0.2
GirgGen† 1 ≥ 105 ≥ 1150

SEA 2017

26:20 Generating Hyperbolic Random Graphs

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

104

t(
n

)
W
al
lti
m
e
[s]

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

106 107 108 109

Number m of edges

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

106 107 108 109

Number m of edges

10−2

10−1

100

101

102

103

t(
n

)
W
al
lti
m
e
[s]

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

106 107 108 109

Number m of edges

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

108 109 1010 1011

Number m of edges

10−1

100

101

102

103

104

105

t(
n

)
W
al
lti
m
e
[s]

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

108 109 1010 1011

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

108 109 1010 1011 1012

Number m of edges

10−1

100

101

102

103

104

105

106

t(
n

)
W
al
lti
m
e
[s]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

108 109 1010 1011 1012

Number m of edges

100

101

102

103

104

W
al
lti
m
e
[n
s]

pe
r
ed
ge

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen
HyperGen(Phi)

Figure 6 Runtime of generators as function of the number n of nodes.

M. Penschuck 26:21

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−2

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 10, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−3

10−2

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 10, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

100

101

102

103

104

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 2.1

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

101

102

103

104

105

M
ax

.
R
es
id
en
t
Se
t
Si
ze

[M
iB
]

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

105 106 107 108 109

Number n of nodes

10−1

100

101

102

103

M
ax

.
R
es
.
Se
t
Si
ze

[B
]p

er
no

de

Deg: 1000, Exp: 3.0

GirgGen
RHGen

NkGen
NkGenOpt

HyperGen

Figure 7 Max. memory allocation of generators as function of the number n of nodes.

SEA 2017

Incremental Low-High Orders of Directed Graphs
and Applications∗

Loukas Georgiadis1, Konstantinos Giannis2,
Aikaterini Karanasiou3, and Luigi Laura4

1 Department of Computer Science & Engineering, University of Ioannina,
Ioannina, Greece
loukas@cs.uoi.gr

2 Department of Computer Science & Engineering, University of Ioannina,
Ioannina, Greece
giannis_konstantinos@outlook.com

3 Università di Roma “Tor Vergata”, Rome, Italy
aikaranasiou@gmail.com

4 “Sapienza” Università di Roma, Rome, Italy
laura@dis.uniroma1.it

Abstract
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s. The dominator
tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all
paths from s to w include v. The dominator tree is a central tool in program optimization and
code generation, and has many applications in other diverse areas including constraint program-
ming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high
order of G is a preorder δ of D that certifies the correctness of D, and has further applications
in connectivity and path-determination problems.

In this paper we consider how to maintain efficiently a low-high order of a flow graph in-
crementally under edge insertions. We present algorithms that run in O(mn) total time for a
sequence of edge insertions in a flow graph with n vertices, where m is the total number of edges
after all insertions. These immediately provide the first incremental certifying algorithms for
maintaining the dominator tree in O(mn) total time, and also imply incremental algorithms for
other problems. Hence, we provide a substantial improvement over the O(m2) straightforward
algorithms, which recompute the solution from scratch after each edge insertion. Furthermore,
we provide efficient implementations of our algorithms and conduct an extensive experimental
study on real-world graphs taken from a variety of application areas. The experimental results
show that our algorithms perform very well in practice.

1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks, Lists, Stacks,
and Queues, Trees, G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases connectivity, directed graphs, dominators, dynamic algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.27

1 Introduction

A flow graph G = (V,E, s) is a directed graph (digraph) with a distinguished start vertex
s ∈ V . A vertex v is reachable in G if there is a path from s to v; v is unreachable if no

∗ A full version of the paper is available at http://arxiv.org/abs/1608.06462.

© Loukas Georgiadis, Konstantinos Giannis, Aikaterini Karanasiou, and Luigi Laura;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 27; pp. 27:1–27:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.27
http://arxiv.org/abs/1608.06462
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Incremental Low-High Orders of Directed Graphs and Applications

4

𝑠

𝑎 𝑏𝑐 𝑖

𝑔 ℎ𝑒𝑑 𝑓

𝐷

1

5

3

2

6 7

8

9

10

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵

1

9

10

5 7

3

8

2

6

4

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅

1

9

10

5 7

3

8

2

6

Figure 1 A flow graph G, its dominator tree D, and two strongly divergent spanning trees B

and R. The numbers correspond to a preorder numbering of D that is a low-high order of G.

such path exists. The dominator relation in G is defined for the set of reachable vertices
as follows. A vertex v is a dominator of a vertex w (v dominates w) if every path from s

to w contains v; v is a proper dominator of w if v dominates w and v 6= w. The dominator
relation in G can be represented by a tree rooted at s, the dominator tree D, such that v
dominates w if and only if v is an ancestor of w in D. If w 6= s is reachable, we denote by
d(w) the parent of w in D. Lengauer and Tarjan [34] presented an algorithm for computing
dominators in O(mα(m,n)) time for a flow graph with n vertices and m edges, where α is a
functional inverse of Ackermann’s function [44]. Subsequently, several linear-time algorithms
were discovered [3, 10, 15, 16]. The dominator tree is a central tool in program optimization
and code generation [12], and it has applications in other diverse areas including constraint
programming [40], circuit testing [5], theoretical biology [2], memory profiling [36], the analysis
of diffusion networks [28], and in connectivity problems [18, 19, 21, 20, 23, 29, 30, 31, 32].

A low-high order δ of G [25] is a preorder of the dominator tree D such for all reachable
vertices v 6= s, (d(v), v) ∈ E or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u
and w are reachable, u is less than v (u <δ v), v is less than w (v <δ w), and w is not a
descendant of v in D. See Figure 1. Every flow graph G has a low-high order, computable in
linear-time [25]. Low-high orders provide a correctness certificate for dominator trees that is
straightforward to verify [47]. By augmenting an algorithm that computes the dominator
tree D of a flow graph G so that it also computes a low-high order of G, one obtains a
certifying algorithm to compute D. (A certifying algorithm [37] outputs both the solution
and a correctness certificate, with the property that it is straightforward to use the certificate
to verify that the computed solution is correct.) Low-high orders also have applications in
path-determination problems [46] and in fault-tolerant network design [6, 7, 26].

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:3

𝑠

5

𝑐

𝐷′

1

𝑑

4

𝑎

𝑔3

2 𝑓

6

𝑒

7

𝑖

8

𝑏

ℎ

9

10

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐺′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝐵′

1

9

10

4 7

3

8

2

6

5

𝑠

𝑎 𝑏

𝑔 ℎ

𝑐

𝑓

𝑑 𝑒

𝑖

𝑅′

1

9

10

4 7

3

8

2

6

Figure 2 The flow graph of Figure 1 after the insertion of edge (g, d), and its updated dominator
tree D′ with a low-high order, and two strongly divergent spanning trees B′ and R′.

A notion closely related to low-high orders is that of divergent spanning trees [25]. Let
Vr be the set of reachable vertices, and let G[Vr] be the flow graph with start vertex s that
is induced by Vr. Two spanning trees B and R of G[Vr], rooted at s, are divergent if for all
v, the paths from s to v in B and R share only the dominators of v; B and R are strongly
divergent if for every pair of vertices v and w, either the path in B from s to v and the path
in R from s to w share only the common dominators of v and w, or the path in R from
s to v and the path in B from s to w share only the common dominators of v and w. In
order to simplify our notation, we will refer to B and R, with some abuse of terminology, as
strongly divergent spanning trees of G. Every flow graph has a pair of strongly divergent
spanning trees. Given a low-high order of G, it is straightforward to compute two strongly
divergent spanning trees of G in O(m) time [25]. Divergent spanning trees can be used in
data structures that compute pairs of vertex-disjoint s-t paths in 2-vertex connected digraphs
(for any two query vertices s and t) [18], in fast algorithms for approximating the smallest
2-vertex-connected spanning subgraph of a digraph [19], and in constructing sparse subgraphs
of a given digraph that maintain certain connectivity requirements [21, 31, 32].

In this paper we consider how to update a low-high order of a flow graph through a
sequence of edge insertions. See Figure 2. The difficulty in updating the dominator tree and a
low-high order is due to the following facts. An affected vertex can be arbitrarily far from the
inserted edge, and a single edge insertion may cause O(n) parent changes in D. Furthermore,
since a low-high order is a preorder of D, a single edge insertion may cause O(n) changes
in this order, even if there is only one vertex that is assigned a new parent in D after the
insertion. More generally, we note that the hardness of dynamic algorithms on digraphs

SEA 2017

27:4 Incremental Low-High Orders of Directed Graphs and Applications

has been recently supported also by conditional lower bounds [1]. Our first contribution is
to show that we can maintain a low-high order of a flow graph G with n vertices through
a sequence of edge insertions in O(mn) total time, where m is the total number of edges
after all insertions. Hence, we obtain a substantial improvement over the naive solution of
recomputing a low-high order from scratch after each edge insertion, which takes O(m2) total
time. Our result also implies the first incremental certifying algorithms [37] for computing
dominators in O(mn) total time, which answers an open question in [25]. We present two
algorithms that achieve this bound, a simple algorithm based on sparsification and a more
sophisticated algorithm. Both algorithms combine the incremental dominators algorithm
of [22] with the linear-time computation of two divergent spanning trees from [25]. Our
sophisticated algorithm also applies a slightly modified version of a static low-high algorithm
from [25] on an auxiliary graph. We remark that the incremental dominators problem arises
in various applications, such as incremental data flow analysis and compilation [11, 17, 41, 42],
distributed authorization [38], and in incremental algorithms for maintaining 2-connectivity
relations in directed graphs [23]. We present some applications of our result on incremental
low-high order maintenance to incremental connectivity problems in Appendix A.

We assess the merits of our algorithm in practical scenarios by conducting a thorough
experimental study with graphs taken from a variety of application areas. Although both the
sparsification algorithm and the sophisticated algorithm have the same worst-case running
time, our experimental results show that a carefully engineered implementation of the latter
is by far superior in practice.

For lack of space, some proofs are omitted from this extended abstract. They are provided
in the full version [24].

2 Preliminaries

Let G = (V,E, s) be a flow graph with start vertex s, and let D be the dominator tree of
G. A spanning tree T of G is a tree with root s that contains a path from s to v for all
reachable vertices v. We refer to a spanning subgraph F of T as a spanning forest of G.
Given a rooted tree T , we denote by T (v) the subtree of T rooted at v (we also view T (v) as
the set of descendants of v). Let T be a tree rooted at s with vertex set VT ⊆ V , and let t(v)
denote the parent of a vertex v ∈ VT in T . If v is an ancestor of w, T [v, w] is the path in T
from v to w. In particular, D[s, v] consists of the vertices that dominate v. If v is a proper
ancestor of w, T (v, w] is the path to w from the child of v that is an ancestor of w. Tree T is
flat if its root is the parent of every other vertex. Suppose now that the vertex set VT of T
consists of the vertices reachable from s. Tree T has the parent property if for all (v, w) ∈ E
with v and w reachable, v is a descendant of t(w) in T . If T has the parent property and
has a low-high order, then T = D [25]. For any vertex v ∈ V , we denote by C(v) the set of
children of v in D. A preorder of T is a total order of the vertices of T such that, for every
vertex v, the descendants of v are ordered consecutively, with v first. Let ζ be a preorder of
D. Consider a vertex v 6= s. We say that ζ is a low-high order for v in G, if (d(v), v) ∈ E
or there are two edges (u, v) ∈ E, (w, v) ∈ E such that u <ζ v and v <ζ w, and w is not a
descendant of v in D. Given a graph G = (V,E) and a set of edges S ⊆ V × V , we denote
by G ∪ S the graph obtained by inserting into G the edges of S.

3 Incremental low-high order

In this section we describe two algorithms to maintain a low-high order of a digraph through
a sequence of edge insertions. We first review some useful facts for updating a dominator

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:5

tree after an edge insertion [4, 22, 41]. Let (x, y) be the edge to be inserted. We consider
the effect of this insertion when both x and y are reachable. Let G′ be the flow graph that
results from G after inserting (x, y). Similarly, if D is the dominator tree of G before the
insertion, we let D′ be the dominator tree of G′. Also, for any function f on V , we let f ′
be the function after the update. We say that vertex v is affected by the update if d(v) (its
parent in D) changes, i.e., d′(v) 6= d(v). We let A denote the set of affected vertices. Note
that we can have D′[s, v] 6= D[s, v] even if v is not affected. We let nca(x, y) denote the
nearest common ancestor of x and y in the dominator tree D. We also denote by depth(v)
the depth of a reachable vertex v in D. There are affected vertices after the insertion of (x, y)
if and only if nca(x, y) is not a descendant of d(y) [41]. A characterization of the affected
vertices is provided by the following lemma, which is a refinement of a result in [4].

I Lemma 1 ([22]). Suppose x and y are reachable vertices in G. A vertex v is affected after
the insertion of edge (x, y) if and only if depth(nca(x, y)) < depth(d(v)) and there is a path
π in G from y to v such that depth(d(v)) < depth(w) for all w ∈ π. If v is affected, then it
becomes a child of nca(x, y) in D′, i.e., d′(v) = nca(x, y).

The algorithm (DBS) in [22] applies Lemma 1 to identify affected vertices by starting a
search from y (if y is not affected, then no other vertex is). To do this search for affected
vertices, it suffices to maintain the outgoing and incoming edges of each vertex. These sets
are organized as singly linked lists, so that a new edge can be inserted in O(1) time. The
dominator tree D is represented by the parent function d. We also maintain the depth in
D of each reachable vertex. We say that a vertex v is scanned, if the edges leaving v are
examined during the search for affected vertices, and that it is visited if there is a scanned
vertex u such that (u, v) is an edge in G. By Lemma 1, a visited vertex v is scanned if
depth(nca(x, y)) < depth(d(v)).

I Lemma 2 ([22]). Let v be a scanned vertex. Then v is a descendant of an affected vertex
in D.

3.1 Sparsification Algorithm
In this algorithm we maintain, after each insertion, a subgraph H = (V,EH) of G with O(n)
edges that has the same dominator tree as G. Then, we can compute a low-high order δ of
H in O(|EH |) = O(n) time. Note that by the definition of H, δ is also a valid low-high order
of G. An edge insertion is processed by the routine SparseInsertEdge, shown below. Subgraph
H is formed by the edges of two divergent spanning trees B and R of G. After the insertion
of an edge (x, y), where both x and y are reachable, we form a graph H ′ by inserting into H
a set of edges Last(A) found during the search for the set of affected vertices A. Specifically,
Last(A) contains edge (x, y) and, for each affected vertex v 6= y, the last edge on a path πyv
that satisfies Lemma 1. Then, we set H ′ = H ∪ Last(A). Finally, we compute a low-high
order and two divergent spanning trees of H ′, which are also valid for G′. We can show that
this algorithm runs in O(mn) total time.

3.2 Local Low-High Order Algorithm
Here we develop a more sophisticated and more practical algorithm that maintains a low-high
order δ of a flow graph G = (V,E, s) through a sequence of edge insertions. Our algorithm
uses the incremental dominators algorithm of [22] to update the dominator tree D of G after
each edge insertion. We describe a process to update δ based on the relation among vertices
in D that are affected by the insertion. This enables us to identify a subset of vertices for

SEA 2017

27:6 Incremental Low-High Orders of Directed Graphs and Applications

Algorithm 1: SparseInsertEdge(G,D, δ,B,R, e).
Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G, two

divergent spanning trees B and R of G, and a new edge e = (x, y).
Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high order

δ′ of G′, and two divergent spanning trees B′ and R′ of G′.
1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ, B,R)
3 else if y is unreachable in G then
4 Compute the dominator tree D′, two divergent spanning trees B′ and R′, and a

low-high order δ′ of G′.
5 return (G′, D′, δ′, B′, R′)
6 end
7 Let H = B ∪R.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected

vertices, and a list Last(A) of the last edge entering each v ∈ A in a path satisfying
Lemma 1.

9 Compute the subgraph H ′ = H ∪ Last(A) of G′.
10 Compute the dominator tree D′, two divergent spanning trees B′ and R′, and a

low-high order δ′ of H ′.
11 return (G′, D′, δ′, B′, R′)

which we can compute a “local” low-high order, that can be extended to a valid low-high
order of G after the update. We show that such a “local” low-high order can be computed
by a slightly modified version of an algorithm from [25]. We apply this algorithm on a
sufficiently small flow graph that is defined by the affected vertices, and is constructed using
the concept of derived edges [45].

3.2.1 Derived edges and derived flow graphs

Derived graphs, first defined in [45], reduce the problem of finding a low-high order to the
case of a flat dominator tree [25]. By the parent property of D, if (v, w) is an edge of G, the
parent d(w) of w is an ancestor of v in D. Let (v, w) be an edge of G, with w not an ancestor
of v in D. Then, the derived edge of (v, w) is the edge (v, w), where v = v if v = d(w), v is
the sibling of w that is an ancestor of v if v 6= d(w). If w is an ancestor of v in D, then the
derived edge of (v, w) is null. Note that a derived edge (v, w) may not be an original edge of
G. For any vertex w ∈ V such that C(w) 6= ∅, we define the derived flow graph of w, denoted
by Gw = (Vw, Ew, w), as the flow graph with start vertex w, vertex set Vw = C(w)∪{w}, and
edge set Ew = {(u, v) | v ∈ Vw and (u, v) is the non-null derived edge of some edge in E}.
By definition, Gw has flat dominator tree, that is, w is the only proper dominator of any
vertex v ∈ Vw \ {w}. We can compute a low-high order δ of G by computing a low-high
order δw in each derived flow graph Gw. Given these low-high orders δw, we can compute a
low-high order of G in O(n) time by a depth-first traversal of D. During this traversal, we
visit the children of each vertex w in their order in δw, and number the vertices from 1 to n
as they are visited. The resulting preorder of D is low-high on G. Our incremental algorithm
identifies, after each edge insertion, a specific derived flow graph Gw for which a low-high
order δw needs to be updated. Then, it uses δw to update the low-high order of the whole
flow graph G. Still, computing a low-high order of Gw can be too expensive to give us the

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:7

desired running time. Fortunately, we can overcome this obstacle by exploiting a relation
among the vertices that are affected by the insertion, as specified below. This allows us to
compute δw in a contracted version of Gw.

3.2.2 Affected vertices
Let (x, y) be the inserted vertex, where both x and y are reachable. Consider the execution of
algorithm DBS [22] that updates the dominator tree by applying Lemma 1. Suppose vertex
v is scanned, and let q be the nearest affected ancestor of v in D. Then, by Lemma 1, vertex
q is a child of nca(x, y) in D′, i.e., d′(q) = nca(x, y), and v remains a descendant of q in D′.

Our next lemma provides a key result about the relation of the affected vertices in D.

I Lemma 3. All vertices that are affected by the insertion of (x, y) are descendants of a
common child c of nca(x, y).

We shall apply Lemma 3 to construct a flow graph GA for the affected vertices. Then, we
shall use GA to compute a “local” low-high order that we extend to a valid low-high order of
G′.

3.2.3 Low-high order augmentation
Let δ be a low-high order of G, and let δ′ be a preorder of the dominator tree D′ of G′. We
say that δ′ agrees with δ if the following condition holds for any pair of siblings u, v in D that
are not affected by the insertion of (x, y): u <δ′ v if and only if u <δ v. We can show that
there is a low-high order δ′ of G′ that agrees with δ. Moreover, we have the following result:

I Lemma 4. Let δ′ be a preorder of D′ that agrees with δ. Let v be a vertex that is not a
child of nca(x, y) and is not affected by the insertion of (x, y). Then δ′ is a low-high order
for v in G′.

We can apply Lemmata 1 and 4 to show that in order to compute a low-high order of G′,
it suffices to compute a low-high order for the derived flow graph G′z, where z = nca(x, y).
Still, the computation of a low-high order of G′z is too expensive to give us the desired
running time. Fortunately, as we show next, we can limit these computations for a contracted
version of G′z, defined by the affected vertices.

Let δ be a low-high order of G before the insertion of (x, y). Also, let z = nca(x, y), and
let δz be a corresponding low-high order of the derived flow graph Gz. That is, δz is the
restriction of δ to z and its children in D. Consider the child c of z that, by Lemma 3, is
an ancestor of all the affected vertices. Let α and β, respectively, be the predecessor and
successor of c in δz. Note that α or β may be null. An augmentation of δz is an order δ′z of
C ′(z)∪{z} that results from δz by inserting the affected vertices arbitrarily around c, that is,
each affected vertex is placed in an arbitrary position between α and c or between c and β.

I Lemma 5. Let z = nca(x, y), and let δz be a low-high order of the derived flow graph Gz
before the insertion of (x, y). Also, let δ′z be an augmentation of δz, and let δ′ be a preorder
of D′ that extends δ′z. Then, for each child v of z in D, δ′ is a low-high order for v in G′.

3.2.4 Algorithm
Now we are ready to describe our incremental algorithm for maintaining a low-high order
δ of G. For each vertex v that is not a leaf in D, we maintain a list of its children C(v)
in D, ordered by δ. Also, for each vertex v 6= s, we keep two variables low(v) and high(v).

SEA 2017

27:8 Incremental Low-High Orders of Directed Graphs and Applications

Algorithm 2: LocalInsertEdge(G,D, δ,mark, low, high, e).
Input: Flow graph G = (V,E, s), its dominator tree D, a low-high order δ of G,

arrays mark, low and high, and a new edge e = (x, y).
Output: Flow graph G′ = (V,E ∪ (x, y), s), its dominator tree D′, a low-high order

δ′ of G′, and arrays mark ′, low′ and high′.
1 Insert e into G to obtain G′.
2 if x is unreachable in G then return (G′, D, δ,mark, low, high)
3 else if y is unreachable in G then
4 Compute the dominator tree D′ and a low-high order δ′ of G′, together with the

corresponding arrays mark ′, low′, and high′.
5 return (G′, D′, δ′,mark ′, low′, high′)
6 end
7 Compute the nearest common ancestor z of x and y in D.
8 Compute the updated dominator tree D′ of G′ and return a list A of the affected

vertices.
9 foreach vertex v ∈ A do mark ′(y)← false

10 if z = x then mark ′(y)← true
11 Compute a low-high order ζ of the derived affected flow graph GA.
12 Compute the updated low-high order δ′ of G′ by ordering the vertices in A ∪ {c}

according to ζ.
13 foreach vertex v ∈ A ∪ {c} do
14 find edges (u, v) and (w, v) such that u <δ′ v <δ′ w and w 6∈ D′(v)
15 set low′(v)← u and high′(v)← w

16 end
17 return (G′, D′, δ′,mark ′, low′, high′)

Variable low(v) stores an edge (u, v) such that u 6= d(v) and u <δ v; low(v) = null if no such
edge exists. Similarly, high(v) stores an edge (w, v) such that and v <δ w and w is not a
descendant of v in D; high(v) = null if no such edge exists. These variables are useful in
the applications that we mention in Appendix A. Finally, we mark each vertex v such that
(d(v), v) ∈ E. For simplicity, we assume that the vertices of G are numbered from 1 to n,
so we can store the above information in corresponding arrays low, high, and mark. Note
that for a reachable vertex v, we can have low(v) = null or high(v) = null (or both) only
if mark(v) = true. Before any edge insertion, all vertices are unmarked, and all entries in
arrays low and high are null. We initialize the algorithm and the associated data structures
by executing a linear-time algorithm to compute the dominator tree D of G [3, 10] and a
linear-time algorithm to compute a low-high order δ of G [25]. So, the initialization takes
O(m+ n) time for a digraph with n vertices and m edges.

Next, we describe the main routine, LocalInsertEdge, to handle an edge insertion. We
let (x, y) be the inserted edge. Also, if x and y are reachable before the insertion, we let
z = nca(x, y).

From Lemmata 4 and 5 it follows that our main task now is to order the affected
vertices according to a low-high order of D′. To do this, we use an auxiliary flow graph
GA = (VA, EA, z), with start vertex z, which we refer to as the derived affected flow graph.
Flow graph GA is essentially a contracted version of the derived flow graph G′z (i.e., the
derived graph of z after the insertion) as we explain later. The vertices of the derived affected
flow graph GA are z, the affected vertices of G, their common ancestor c in D that is a child

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:9

𝑠 = 𝑧

𝑐

𝐺𝐴

𝑑
𝛼∗ 𝑓 𝑒 𝛽∗

Figure 3 The derived affected flow graph GA that corresponds to the flow graph of Figure 1 after
the insertion of edge (g, d).

of z (from Lemma 3), and two auxiliary vertices α∗ and β∗. Vertex α∗ (resp., β∗) represents
vertices in C(z) with lower (resp., higher) order in δ than c. We include in GA the edges
(z, α∗) and (z, β∗). If c is marked then we include the edge (z, c) into GA, otherwise we add
the edges (α∗, c) and (β∗, c) into GA. Also, for each edge (u, c) such that u is a descendant
of an affected vertex v, we add in GA the edge (v, c). Now we specify the edges that enter
an affected vertex w in GA. We consider each edge (u,w) ∈ E entering w in G. We have the
following cases:
(a) If u is a descendant of an affected vertex v, we add in GA the edge (v, w).
(b) If u is a descendant of c but not a descendant of an affected vertex, then we add in GA

the edge (c, w).
(c) If u 6= z is not a descendant of c, then we add the edge (α∗, w) if u <δ c, or the edge

(β∗, w) if c <δ u.
(d) Finally, if u = z, then we add the edge (z, w). (In cases (c) and (d), u = x and w = y.)
Recall that α (resp., β) is the sibling of c in D immediately before (resp., after) c in δ, if
it exists. Then, we can obtain GA from G′z by contracting all vertices v with v <δ c into
α = α∗, and all vertices v with c <δ v into β = β∗.

I Lemma 6. The derived affected flow graph GA = (VA, EA, z) has flat dominator tree.

Proof. We claim that for any two distinct vertices v, w ∈ VA \ z, v does not dominate w.
The lemma follows immediately from this claim. The claim is obvious for w ∈ {α∗, β∗}, since
GA contains the edges (z, α∗) and (z, β∗). The same holds for w = c, since GA contains the
edge (z, c), or both the edges (α∗, c) and (β∗, c). Finally, suppose w ∈ VA \ {z, α∗, β∗}. Then,
by the construction of GA, vertex w is affected. By Lemma 3, w ∈ D(c), which implies that
there is a path in G from c to w that contains only vertices in D(c). Hence, by construction,
GA contains a path from c to w that avoids α∗ and β∗, so α∗ and β∗ do not dominate w. It
remains to show that w is not dominated in GA by c or another affected vertex v. Let (x, y)
be the inserted edge. Without loss of generality, assume that c <δ x. Since w is affected,
there is a path π in G from y to w that satisfies Lemma 1. Then π does not contain any
vertex in D[c, d(w)]. Also, by the construction of GA, π corresponds to a path πA in GA
from β∗ to y that avoids any vertex in A ∩D[c, d(w)]. Hence, w is not dominated by any
vertex in A ∩D[c, d(w)]. It remains to show that w is not dominated by any affected vertex
v in A \ D[c, d(w)]. Since both v and w are in D(c) and v is not an ancestor of w in D,
there is a path π′ in G from c to w that contains only vertices in D(c) \ {v}. Then, by the
construction of GA, π′ corresponds to a path π′A in GA from c to w that avoids v. Thus, v
does not dominate w in GA. J

SEA 2017

27:10 Incremental Low-High Orders of Directed Graphs and Applications

I Lemma 7. Let ν and µ, respectively, be the number of scanned vertices and their adjacent
edges. Then, the derived affected flow graph GA has ν + 4 vertices, at most µ+ 5 edges, and
can be constructed in O(ν + µ) time.

Proof. The bound on the number of vertices and edges in GA follows from the definition of
the derived affected flow graph. Next, we consider the construction time of GA. Consider
the edges entering the affected vertices. Let w be an affected vertex, and let (u,w) 6= (x, y)
be an edge of G′. Let q be nearest ancestor u in C ′(z). We distinguish two cases:

u is not scanned. In this case, we argue that q = c. Indeed, it follows from the parent
property of D and Lemma 3 that both u and w are descendants of c in D. Since u is not
scanned, no ancestor of u in D is affected, so u remains a descendant of c in D′. Thus,
q = c.
u is scanned. Then, by Lemma 2, q is the nearest affected ancestor of u in D.

So we can construct the edges entering the affected vertices in GA in two phases. In the first
phase we traverse the descendants of each affected vertex q in D′. At each descendant u of q,
we examine the edges leaving u. When we find an edge (u,w) with w affected, then we insert
into GA the edge (q, w). In the second phase we examine the edges entering each affected
vertex w. When we find an edge (u,w) with u not visited during the first phase (i.e., u was
not scanned during the update of D), we insert into GA the edge (c, w). Note that during
this construction we may insert the same edge multiple times, but this does not affect the
correctness or running time of our overall algorithm. Since the descendants of an affected
vertex are scanned, it follows that each phase runs in O(ν + µ) time.

Finally, we need to consider the inserted edge (x, y). Let f be the nearest ancestor of x
that is in C(z). Since y is affected, c 6= f . Hence, we insert into GA the edge (β∗, y) if c <δ f ,
and the edge (α∗, y) if f <δ c. Note that f is found during the computation of z = nca(x, y),
so this test takes constant time. J

Next, we order the vertices in C ′(z) according to a low-high order of ζ of GA as follows.
After computing GA, we construct two divergent spanning trees BA and RA of GA. For
each vertex v 6= z, if (z, v) is an edge of GA, we replace the parent of v in BA and in RA,
denoted by bA(v) and rA(v), respectively, by z. We can compute a low-high order ζ of GA
by applying a slightly modified version of a linear-time algorithm of [25, Section 6.1] to
compute a low-high order. Our modified version computes a low-high order ζ of GA that
is an augmentation of δz. To obtain such a low-high order, we need to assign to α∗ the
lowest number in ζ and to β∗ the highest number in ζ. The algorithm works as follows.
While GA contains at least four vertices, we choose a vertex v 6∈ {α∗, β∗} whose in-degree in
GA exceeds its number of children in BA plus its number of children in RA and remove it
from GA. (From this choice of v we also have that v 6= z.) Then we compute recursively a
low-high order for the resulting flow graph, and insert v in an appropriate location, defined
by bA(v) and rA(v).

The correctness of algorithm LocalInsertEdge follows from Lemmata 4, 5 and 6. Also, by
using Lemma 7, we can show that the total running time of the algorithm is bounded by
O(mn).

3.3 Representation of a low-high order
We consider two main options for representing a low-high order. The most straightforward
is to maintain it as a preorder numbering of D, by assigning a preorder number from 1
to n to each vertex. Another option is to use a data structure for the dynamic list order
problem [8, 14]. We experimented with various implementations of dynamic list order

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:11

Table 1 Real-world graphs with timestamped edges, from the Koblenz Network Collection [33].

Graph nodes reachable nodes edges avg. degree type
temporalGraph 2029 1281 5517 2.72 Democratic National Council emails
opsahl-ucsocial 1899 1854 20296 10.69 UC Irvine messages
chess 7301 6312 60046 8.22 Chess games
munmun_digg_reply 30398 13471 85247 2.8 Digg replies
elec 7115 2316 103617 14.56 Wikipedia elections
slashdot-threads 51083 18851 130370 2.55 Slashdot threads

data structures, and in our experiments the best performance was achieved by a two-level
numbering scheme that supports insertions, deletions and order queries in constant amortized
time [8]. We remark that these operations suffice in all applications of our incremental
algorithm that we mention in Appendix A.

Both of the above options suffices to have an implementation of the sparsification
algorithm and of the local low-high order algorithm that run in total O(mn) time. Since
the sparsification algorithm computes the complete low-high order of a sparse subgraph of
G after each update, there is no gain in using the more sophisticated numbering scheme
that the dynamic list order data structure applies. For our local low-high order algorithm,
however, the representation we choose is crucial for the practical performance of the algorithm.
Specifically, using a dynamic list order data structure allows us to update the low-high order
in amortized time proportional to the number of scanned vertices. The simple preorder
numbering scheme, on the other hand, may need to renumber O(n) vertices after a single
update. Indeed, our preliminary experimental results confirmed that that the implementation
that employs a dynamic list order data structure has superior performance.

3.4 Handling unreachable vertices

Now we provide some details on how our algorithms handle insertions of edges (x, y) when
x ∈ Vr and y 6∈ Vr, i.e., when only x is reachable from s before the insertion. In order to
achieve O(mn) total running time, we can simply recompute a low-high order from scratch
after each such an insertion. This follows from the fact that there are at most n− 1 such
insertions, and that we can recompute a low-high order in linear time when this type of an
insertion occurs.

An alternative method, that performs much better in practice, is to compute the dominator
tree and a low-high order for the vertices that were reachable from y but not from s before
the insertion. Specifically, let Y be this set of vertices, and let G[Y] be the flow graph with
start vertex y that is induced by Y . Then, to handle the insertion of (x, y) we execute the
following steps:
1. Compute the dominator tree DY of G[Y] and a low-high order of it.
2. Link the dominator tree D of G with DY by making y a child of x in D, and merge

appropriately the corresponding low-high orders.
3. Compute the set of edges EY from Y to Vr. Process each such edge as a regular insertion.
Note that after Step 2, D is the correct dominator tree for G \ EY and we also have a valid
low-high order of it. The insertion of the edges (u, v) ∈ EY is handled as a regular insertion
since both u and v are reachable from s after Step 2. In terms of running time, Steps 1 and
2 take O(m) time. Also, since in Step 3 we have regular insertions, the total running time
remains O(mn).

SEA 2017

27:12 Incremental Low-High Orders of Directed Graphs and Applications

Table 2 Real-world graphs used in the experiments, sorted by the file size of their largest strongly
connected component (SCC). In our experiments we used both the largest SCC and the some of the
2-vertex-connected subgraphs (2VCSs), found inside the largest SCC.

Graph Largest SCC 2VCSs Type
n m avg. degree n m avg. degree

rome99 3352 8855 2.64 2249 6467 2.88 road network [13]
twitter-higgs-retweet 13086 63537 4.86 1099 9290 8.45 twitter [35]
enron 8271 147353 17.82 4441 123527 27.82 enron mails [35]
web-NotreDame 48715 267647 5.49 1409 6856 4.87 web [35]

1462 7279 4.98
1416 13226 9.34

soc-Epinions1 32220 442768 13.74 17117 395183 23.09 trust network [35]
Amazon-302 241761 1131217 4.68 55414 241663 4.36 co-purchase [35]
WikiTalk 111878 1477665 13.21 49430 1254898 25.39 Wiki communications [35]
web-Stanford 150475 1576157 10.47 5179 129897 25.08 web [35]

10893 162295 14.90
web-Google 434818 3419124 7.86 77480 840829 10.85 web [35]
Amazon-601 395230 3301051 8.35 276049 2461072 8.92 co-purchase [35]
web-BerkStan 334857 4523232 13.51 1106 8206 7.42 web [35]

4927 28142 5.71
12795 347465 27.16
29145 439148 15.07

4 Empirical Analysis

We wrote our implementations in C++, using g++ v.4.6.4 with full optimization (flag -O3)
to compile the code. We report the running times on a GNU/Linux machine, with Ubuntu
(12.04LTS): a Dell PowerEdge R715 server 64-bit NUMA machine with four AMD Opteron
6376 processors and 128GB of RAM memory. Each processor has 8 cores sharing a 16MB L3
cache, and each core has a 2MB private L2 cache and 2300MHz speed. In our experiments
we did not use any parallelization, and each algorithm ran on a single core. We report CPU
times measured with the getrusage function, averaged over ten different runs. In Tables 1
and 2 we can see some statistics about the real-world graphs we used in our experimental
evaluation. In all test instances we select the first vertex of the graph as the start vertex.
(Choosing a random start vertex produces similar results.) Note that the graphs in Table 1
are not strongly connected so we also report the number of vertices that are reachable from
the start vertex.

The graphs in Table 1 have timestamps that indicate the moment that each edge was
inserted into the graph. Thus, in our experiments, the edges are inserted according to these
timestamps. The number of edges that are actually inserted is controlled by a parameter
i ∈ [0, 1] as follows. Let m be the total number of edges in the graph. Then the flow graph
initially has m − i ·m edges, and i ·m edges are inserted one at a time. The algorithms
compute (in static mode) the dominator tree and a low-high order for the first m − i ·m
edges in the original graph file and then they run in incremental mode. Note that during the
execution of the algorithms some vertices may be unreachable at first and become reachable
after some insertions.

We use the graphs in Table 2 to create different types of inputs by extracting their
largest strongly connected component and some large 2-vertex-connected subgraphs. (A
2-vertex-connected graph remains strongly connected after the deletion of any single vertex.)
We use strongly connected graphs to guarantee that all vertices are reachable from any
arbitrary start vertex. Also, the 2-vertex-connected graphs are interesting because they
have flat dominator trees, so inserting their edges may cause the incremental algorithms to

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:13

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5

SLT-NCA
SPARSIFICATION

LOCAL
DBS

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5 1+e6

SLT-NCA
SPARSIFICATION

LOCAL
DBS

0.001

0.01

0.1

1

10

100

1.000

1+e4 1+e5 1+e6

SLT-NCA
SPARSIFICATION

LOCAL
DBS

Figure 4 Incremental low-high order: timestamped graphs of Table 1 (top), random edge
permutation of 2-vertex-connected graphs of Table 2 (middle), and random edge insertion in strongly
connected graphs of Table 2 (bottom). Running times, in seconds, and number of edges both shown
in logarithmic scale. For each input graph and each algorithm, we show the running times for
inserting 5%, 10%, 20%, 40%, 80% and 100% of the edges.

perform a lot of work. We note that the graphs in Table 2 do not have timestamps, so we
consider two different methods to produce dynamic graphs.

Random permutation: We perform a random permutation of the edges and use the
resulting order as timestamps.
Random insertions: We insert i ·m random edges in the original graph. The endpoints
of each new edge are selected uniformly at random, and the edge is inserted if it is not a
loop and is not already present in the current graph. Hence, the final graph has m+ i ·m
edges.

We apply the first method to the 2-vertex-connected graphs, and the second method to the
strongly connected graphs of Table 2. Note that in the case of random insertions the graph is
strongly connected throughout the execution of the incremental algorithms. We do not apply
the random insertions method to 2-vertex-connected graphs, since any edge insertion in such
a graph has no effect on the dominator tree (so also the low-high order does not change).

We compare the performance of four algorithms. As a baseline, we use a static low-high
order algorithm from [25] based on an efficient implementation of the Lengauer-Tarjan
algorithm for computing dominators [34] from [27]. Our baseline algorithm, SLT-NCA,
constructs, as intermediary, two divergent spanning trees. After each insertion of an edge
(x, y), SLT-NCA tests if the insertion of (x, y) affects the dominator tree by computing the
nearest common ancestor of x and y. If this is the case, then it recomputes a low-high order.
The other two algorithms are the ones we presented in Section 3. For our sparsification

SEA 2017

27:14 Incremental Low-High Orders of Directed Graphs and Applications

Table 3 Running times of the plot shown in Figure 4 (top): timestamped graphs of Table 1.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
temporalGraph05 2029 5241 5517 0.04 0.012 0.004 0.004
temporalGraph10 2029 4965 5517 0.072 0.016 0.004 0.004
temporalGraph20 2029 4414 5517 0.14 0.04 0.004 0.004
temporalGraph40 2029 3310 5517 0.296 0.076 0.004 0.004
temporalGraph80 2029 1103 5517 0.504 0.132 0.004 0.004
temporalGraph100 2029 0 5517 0.524 0.136 0.004 0.004
opsahl-ucsocial05 1899 19281 20296 0.312 0.048 0.004 0.004
opsahl-ucsocial10 1899 18266 20296 0.48 0.08 0.004 0.004
opsahl-ucsocial20 1899 16237 20296 0.812 0.152 0.004 0.004
opsahl-ucsocial40 1899 12178 20296 1.64 0.36 0.004 0.004
opsahl-ucsocial80 1899 4059 20296 2.68 0.64 0.008 0.004
opsahl-ucsocial100 1899 0 20296 2.796 0.576 0.004 0.004
chess05 7301 57044 60046 2.304 0.668 0.012 0.008
chess10 7301 54041 60046 6.14 1.456 0.016 0.008
chess20 7301 48037 60046 12.984 3.244 0.016 0.008
chess40 7301 36028 60046 23.28 3.64 0.024 0.004
chess80 7301 12009 60046 32.956 8.376 0.024 0.004
chess100 7301 0 60046 35.744 9.336 0.032 0.004
munmun_digg_reply05 30398 80985 85247 10.428 3.436 0.032 0.008
munmun_digg_reply10 30398 76722 85247 22.048 7.508 0.032 0.016
munmun_digg_reply20 30398 68198 85247 41.928 14.048 0.032 0.008
munmun_digg_reply40 30398 51148 85247 72.28 25.408 0.048 0.012
munmun_digg_reply80 30398 17049 85247 100.56 21.964 0.072 0.012
munmun_digg_reply100 30398 0 85247 100.98 37.156 0.076 0.016
elec05 7115 98436 103617 1.408 0.124 0.012 0.008
elec10 7115 93255 103617 2.62 0.292 0.012 0.004
elec20 7115 82894 103617 4.732 0.508 0.008 0.008
elec40 7115 62170 103617 8.08 0.812 0.012 0.004
elec80 7115 20723 103617 11.52 1.364 0.02 0.008
elec100 7115 0 103617 12.068 1.096 0.02 0.004
slashdot-threads05 51083 123852 130370 29.412 3.2 0.056 0.02
slashdot-threads10 51083 117333 130370 56.112 10.184 0.06 0.02
slashdot-threads20 51083 104296 130370 106.772 20.144 0.06 0.02
slashdot-threads40 51083 78222 130370 189.712 37.996 0.064 0.016
slashdot-threads80 51083 26074 130370 287.912 62.66 0.092 0.02
slashdot-threads100 51083 0 130370 270.356 62.532 0.104 0.016

algorithm of Section 3.1, denoted as SPARSIFICATION, we extend the incremental dominators
algorithm DBS of [22] with the computation of two divergent spanning trees and a low-high
order. Algorithm SPARSIFICATION applies these computations on a sparse subgraph of the
input digraph that maintains the same dominators. Finally, we tested an implementation of
our more efficient algorithm of Section 3.2, denoted as LOCAL, that updates the low-high
order by computing a local low-high order of an auxiliary graph. We include also the original
DBS of [22] in the experiments, to provide a more complete picture of the effectiveness of
these approaches.

We compared the above incremental low-high order algorithms in three different field
tests, as mentioned above. The first one, shown in Figure 4 (top) and Table 3, compares the
running times of the algorithms against the dataset detailed in Table 1, i.e. the timestamped
graphs. The algorithms are well distinguished: our more efficient algorithm, LOCAL, performs
very well. Indeed, its running time is very close to DBS that only updates the dominator
tree. Algorithm SPARSIFICATION is not competitive with LOCAL, despite the fact that it
exhibits a substantial improvement over our baseline algorithm SLT-NCA.

The second experiment, shown in Figure 4 (middle) and Table 4, deals with the random
permutations of the edges of 2-vertex-connected graphs. (Refer to Table 2.) As with the
timestamped graphs, during the execution of the algorithms some vertices may be unreachable
at first, but here all vertices become reachable in the end. Also, at the end of all insertions,
the final graph has flat dominator tree. Here we can see that, as before, the algorithms are
still distinguished, but in this case the two couples SPARSIFICATION and SLT-NCA, and
LOCAL and DBS, are closer.

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:15

Table 4 Running times of the plot shown in Figure 4 (middle): random edge permutation of
2-vertex-connected graphs of Table 2.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
rome05 2249 6467 6790 0.224 0.06 0.004 0.004
rome10 2249 6467 7114 0.428 0.128 0.004 0.004
rome20 2249 6467 7760 0.784 0.292 0.004 0.004
rome40 2249 6467 9054 1.348 0.656 0.004 0.004
rome80 2249 6467 11641 1.868 0.896 0.008 0.004
rome100 2249 6467 12934 1.992 0.92 0.008 0.004
twitter05 1099 9290 9755 0.048 0.02 0.004 0.004
twitter10 1099 9290 10219 0.08 0.04 0.004 0.004
twitter20 1099 9290 11148 0.196 0.104 0.004 0.004
twitter40 1099 9290 13006 0.432 0.228 0.004 0.004
twitter80 1099 9290 16722 0.796 0.412 0.004 0.004
twitter100 1099 9290 18580 0.812 0.436 0.004 0.004
NotreDame05 1416 13226 13887 0.008 0.004 0.008 0.004
NotreDame10 1416 13226 14549 0.012 0.004 0.004 0.004
NotreDame20 1416 13226 15871 0.012 0.004 0.004 0.004
NotreDame40 1416 13226 18516 0.012 0.004 0.008 0.004
NotreDame80 1416 13226 23807 0.012 0.004 0.008 0.004
NotreDame100 1416 13226 26452 0.012 0.004 0.008 0.004
enron05 4441 123527 129703 0.808 0.188 0.016 0.012
enron10 4441 123527 135880 1.504 0.344 0.012 0.004
enron20 4441 123527 148232 3.744 0.748 0.016 0.008
enron40 4441 123527 172938 5.584 1.28 0.016 0.008
enron80 4441 123527 222349 14.744 3.836 0.028 0.008
enron100 4441 123527 247054 15.076 3.828 0.028 0.008
webStanford05 5179 129897 136392 0.856 0.212 0.016 0.008
webStanford10 5179 129897 142887 0.992 0.228 0.032 0.008
webStanford20 5179 129897 155876 0.964 0.24 0.036 0.016
webStanford40 5179 129897 181856 0.98 0.236 0.036 0.016
webStanford80 5179 129897 233815 0.968 0.244 0.036 0.016
webStanford100 5179 129897 259794 0.988 0.24 0.036 0.016
Amazon05 55414 241663 253746 24.528 14.592 0.268 0.032
Amazon10 55414 241663 265829 44.392 11.88 0.264 0.048
Amazon20 55414 241663 289996 44.356 14.704 0.272 0.052
Amazon40 55414 241663 338328 45.792 12.628 0.252 0.032
Amazon80 55414 241663 434993 24.22 11.82 0.272 0.052
Amazon100 55414 241663 483326 24.856 18.096 0.276 0.056
WikiTalk05 49430 1254898 1317643 91.808 16.344 0.144 0.188
WikiTalk10 49430 1254898 1380388 190.616 20.42 0.236 0.164
WikiTalk20 49430 1254898 1505878 374.292 73.252 0.116 0.08
WikiTalk40 49430 1254898 1756857 766.28 172.064 0.104 0.108
WikiTalk80 49430 1254898 2258816 2868.28 349.632 0.136 0.068
WikiTalk100 49430 1254898 2509796 > 3600 837.728 0.208 0.052

The last experiment, detailed in Figure 4 (bottom) and Table 5, concerns the random
edge insertion in strongly connected graphs of Table 2. The ranking of the algorithms does
not change, as we can see in Figure 4 (bottom), but the difference is bigger: we note a bigger
gap of more than two orders of magnitude, in particular, between LOCAL and the couple
SLT-NCA and SPARSIFICATION.

From all the above experimental results, it is evident that a careful implementation of
our efficient algorithm LOCAL has excellent performance in practice. Indeed, its running
time is very close to the running time of an efficient incremental algorithm for updating the
dominator tree.

SEA 2017

27:16 Incremental Low-High Orders of Directed Graphs and Applications

Table 5 Running times of the plot shown in Figure 4 (bottom): random edge insertion in strongly
connected graphs of Table 2.

Graph nodes starting edges final edges SLT-NCA SPARSIFICATION LOCAL DBS
rome05 3352 8855 9298 0.104 0.16 0.004 0.004
rome10 3352 8855 9741 0.352 0.296 0.004 0.004
rome20 3352 8855 10626 0.624 0.528 0.004 0.004
rome40 3352 8855 12397 0.98 0.78 0.004 0.004
rome80 3352 8855 15939 1.372 1 0.004 0.004
rome100 3352 8855 17710 1.48 1.088 0.004 0.004
twitter05 13086 63537 65444 9.252 8.74 0.028 0.008
twitter10 13086 63537 67344 25.716 16.452 0.016 0.012
twitter20 13086 63537 70544 44.148 27.124 0.012 0.012
twitter40 13086 63537 88952 72.732 57.828 0.024 0.012
twitter80 13086 63537 114367 116.452 68.1 0.064 0.016
twitter100 13086 63537 127074 119.152 54.624 0.056 0.012
enron05 8271 147353 154721 10.52 5.928 0.024 0.012
enron10 8271 147353 162088 26.512 4.712 0.028 0.012
enron20 8271 147353 176824 17.652 9.4 0.028 0.016
enron40 8271 147353 206294 33.724 10.044 0.028 0.016
enron80 8271 147353 265235 30.34 10.02 0.032 0.02
enron100 8271 147353 294706 34.496 10.012 0.036 0.024
NotreDame05 48715 267647 281029 409.072 169.168 0.104 0.032
NotreDame10 48715 267647 294412 550.444 259.42 0.144 0.028
NotreDame20 48715 267647 321176 1093.96 447.44 0.172 0.032
NotreDame40 48715 267647 374706 1575.83 356.588 0.192 0.048
NotreDame80 48715 267647 481765 1563.68 544.748 0.164 0.052
NotreDame100 48715 267647 535294 1753.4 597.776 0.208 0.048
Amazon05 241761 1131217 1187778 > 3600 3098.83 0.652 0.264
Amazon10 241761 1131217 1244339 > 3600 > 3600 0.732 0.284
Amazon20 241761 1131217 1357460 > 3600 > 3600 0.804 0.18
Amazon40 241761 1131217 1583704 > 3600 > 3600 0.936 0.2
Amazon80 241761 1131217 2036191 > 3600 > 3600 0.992 0.36
Amazon100 241761 1131217 2262434 > 3600 > 3600 1.032 0.368
WikiTalk05 111878 1477665 1551548 > 3600 1096.12 0.44 0.16
WikiTalk10 111878 1477665 1625432 > 3600 1619.04 0.28 0.264
WikiTalk20 111878 1477665 1773198 > 3600 1831.12 0.544 0.264
WikiTalk40 111878 1477665 2068731 > 3600 1932.21 0.36 0.304
WikiTalk80 111878 1477665 2659797 > 3600 1947 0.576 0.312
WikiTalk100 111878 1477665 2955330 > 3600 2207.42 0.62 0.212
webStanford05 150475 1576157 1654965 > 3600 2208.26 0.648 0.268
webStanford10 150475 1576157 1733773 > 3600 > 3600 0.676 0.356
webStanford20 150475 1576157 1891388 > 3600 > 3600 0.732 0.372
webStanford40 150475 1576157 2206620 > 3600 > 3600 0.768 0.404
webStanford80 150475 1576157 2837083 > 3600 > 3600 1.288 0.444
webStanford100 150475 1576157 3152314 > 3600 > 3600 1.324 0.464

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:17

References
1 A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong lower bounds for

dynamic problems. In Proc. 55th IEEE Symposium on Foundations of Computer Science,
FOCS, pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

2 S. Allesina and A. Bodini. Who dominates whom in the ecosystem? Energy flow bottlenecks
and cascading extinctions. Journal of Theoretical Biology, 230(3):351–358, 2004.

3 S. Alstrup, D. Harel, P.W. Lauridsen, and M. Thorup. Dominators in linear time. SIAM
Journal on Computing, 28(6):2117–32, 1999.

4 S. Alstrup and P.W. Lauridsen. A simple dynamic algorithm for maintaining a dominator
tree. Technical Report 96-3, Department of Computer Science, University of Copenhagen,
1996.

5 M.E. Amyeen, W.K. Fuchs, I. Pomeranz, and V. Boppana. Fault equivalence identification
using redundancy information and static and dynamic extraction. In Proceedings of the 19th
IEEE VLSI Test Symposium, March 2001.

6 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability for directed
graphs. In Yoram Moses, editor, Distributed Computing, volume 9363 of Lecture Notes
in Computer Science, pages 528–543. Springer Berlin Heidelberg, 2015. doi:10.1007/
978-3-662-48653-5_35.

7 S. Baswana, K. Choudhary, and L. Roditty. Fault tolerant reachability subgraph: Generic
and optimal. In Proc. 48th ACM Symp. on Theory of Computing, pages 509–518, 2016.
doi:10.1145/2897518.2897648.

8 M.A. Bender, R. Cole, E.D. Demaine, M. Farach-Colton, and J. Zito. Two simplified al-
gorithms for maintaining order in a list. In Proceedings of the 10th Annual European Sym-
posium on Algorithms, pages 152–164, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-45749-6_17.

9 M.A. Bender, J. T. Fineman, S. Gilbert, and R.E. Tarjan. A new approach to incremental
cycle detection and related problems. ACM Transactions on Algorithms, 12(2):14:1–14:22,
December 2015. doi:10.1145/2756553.

10 A.L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J.R. Westbrook.
Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal
on Computing, 38(4):1533–1573, 2008.

11 S. Cicerone, D. Frigioni, U. Nanni, and F. Pugliese. A uniform approach to semi-dynamic
problems on digraphs. Theor. Comput. Sci., 203:69–90, August 1998.

12 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991. doi:10.1145/115372.115320.

13 C. Demetrescu, A.V. Goldberg, and D. S. Johnson. 9th DIMACS Implementation Chal-
lenge: Shortest Paths. 2007. URL: http://www.diag.uniroma1.it/challenge9/.

14 P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In Proc. 19th ACM
Symp. on Theory of Computing, pages 365–372, 1987.

15 W. Fraczak, L. Georgiadis, A. Miller, and R.E. Tarjan. Finding dominators via disjoint set
union. Journal of Discrete Algorithms, 23:2–20, 2013. doi:http://dx.doi.org/10.1016/
j.jda.2013.10.003.

16 H.N. Gabow. The minset-poset approach to representations of graph connectivity. ACM
Transactions on Algorithms, 12(2):24:1–24:73, February 2016. doi:10.1145/2764909.

17 K. Gargi. A sparse algorithm for predicated global value numbering. SIGPLAN Not.,
37(5):45–56, May 2002. doi:10.1145/543552.512536.

18 L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t
paths in digraphs. In Proc. 37th Int’l. Coll. on Automata, Languages, and Programming,
pages 738–749, 2010.

SEA 2017

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1007/978-3-662-48653-5_35
http://dx.doi.org/10.1145/2897518.2897648
http://dx.doi.org/10.1007/3-540-45749-6_17
http://dx.doi.org/10.1145/2756553
http://dx.doi.org/10.1145/115372.115320
http://www.diag.uniroma1.it/challenge9/
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2013.10.003
http://dx.doi.org/10.1145/2764909
http://dx.doi.org/10.1145/543552.512536

27:18 Incremental Low-High Orders of Directed Graphs and Applications

19 L. Georgiadis. Approximating the smallest 2-vertex connected spanning subgraph of a
directed graph. In Proc. 19th European Symposium on Algorithms, pages 13–24, 2011.

20 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in directed
graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming, pages 605–
616, 2015. doi:10.1007/978-3-662-47672-7_49.

21 L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2edgee connectivity in directed
graphs. ACM Trans. Algorithms, 13(1):9:1–9:24, October 2016. doi:10.1145/2968448.

22 L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental study of dynamic
dominators. In Proc. 20th European Symposium on Algorithms, pages 491–502, 2012. Full
version: CoRR, abs/1604.02711.

23 L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental 2-edge-connectivity in directed
graphs. In Proc. 43rd Int’l. Coll. on Automata, Languages, and Programming, pages 49:1–
49:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.49.

24 L. Georgiadis, A. Karanasiou, G. Konstantinos, and L. Laura. On low-high orders of
directed graphs: Incremental algorithms and applications. CoRR, abs/1608.06462, 2016.
URL: http://arxiv.org/abs/1608.06462.

25 L. Georgiadis and R.E. Tarjan. Dominator tree certification and divergent spanning
trees. ACM Transactions on Algorithms, 12(1):11:1–11:42, November 2015. doi:10.1145/
2764913.

26 L. Georgiadis and R.E. Tarjan. Addendum to “Dominator tree certification and divergent
spanning trees”. ACM Transactions on Algorithms, 12(4):56:1–56:3, August 2016. doi:
10.1145/2928271.

27 L. Georgiadis, R. E. Tarjan, and R.F. Werneck. Finding dominators in practice. Journal
of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

28 M. Gomez-Rodriguez and B. Schölkopf. Influence maximization in continuous time diffusion
networks. In 29th International Conference on Machine Learning (ICML), 2012.

29 M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly
connected components in quadratic time. In Proc. 42nd Int’l. Coll. on Automata, Lan-
guages, and Programming, pages 713–724, 2015. doi:10.1007/978-3-662-47672-7_58.

30 G.F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012. doi:10.1016/j.tcs.
2011.11.011.

31 R. Jaberi. Computing the 2-blocks of directed graphs. RAIRO-Theor. Inf. Appl., 49(2):93–
119, 2015. doi:10.1051/ita/2015001.

32 R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016. doi:10.1016/j.dam.2015.10.001.

33 J. Kunegis. KONECT: the Koblenz network collection. In 22nd International World Wide
Web Conference, WWW’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion Volume,
pages 1343–1350, 2013.

34 T. Lengauer and R.E. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–41, 1979.

35 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection, June
2014. URL: http://snap.stanford.edu/data.

36 E.K. Maxwell, G. Back, and N. Ramakrishnan. Diagnosing memory leaks using graph
mining on heap dumps. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD’10, pages 115–124, 2010.

37 R.M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Com-
puter Science Review, 5(2):119–161, 2011.

http://dx.doi.org/10.1007/978-3-662-47672-7_49
http://dx.doi.org/10.1145/2968448
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.49
http://arxiv.org/abs/1608.06462
http://dx.doi.org/10.1145/2764913
http://dx.doi.org/10.1145/2764913
http://dx.doi.org/10.1145/2928271
http://dx.doi.org/10.1145/2928271
http://dx.doi.org/10.1007/978-3-662-47672-7_58
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1051/ita/2015001
http://dx.doi.org/10.1016/j.dam.2015.10.001
http://snap.stanford.edu/data

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:19

38 M. Mowbray and A. Lain. Dominator-tree analysis for distributed authorization. In Pro-
ceedings of the Third ACM SIGPLAN Workshop on Programming Languages and Ana-
lysis for Security, PLAS’08, pages 101–112, New York, NY, USA, 2008. ACM. doi:
10.1145/1375696.1375709.

39 H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7:583–596, 1992.

40 L. Quesada, P. Van Roy, Y. Deville, and R. Collet. Using dominators for solving constrained
path problems. In Proc. 8th International Conference on Practical Aspects of Declarative
Languages, pages 73–87, 2006.

41 G. Ramalingam and T. Reps. An incremental algorithm for maintaining the dominator
tree of a reducible flowgraph. In Proc. 21st ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 287–296, 1994.

42 V.C. Sreedhar, G.R. Gao, and Y. Lee. Incremental computation of dominator trees. ACM
Transactions on Programming Languages and Systems, 19:239–252, 1997.

43 R.E. Tarjan. Finding dominators in directed graphs. SIAM Journal on Computing, 3(1):62–
89, 1974.

44 R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM,
22(2):215–225, 1975.

45 R.E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594–
614, 1981.

46 T. Tholey. Linear time algorithms for two disjoint paths problems on directed acyclic graphs.
Theoretical Computer Science, 465:35–48, 2012. doi:10.1016/j.tcs.2012.09.025.

47 J. Zhao and S. Zdancewic. Mechanized verification of computing dominators for formalizing
compilers. In Proc. 2nd International Conference on Certified Programs and Proofs, pages
27–42. Springer, 2012. doi:10.1007/978-3-642-35308-6_6.

A Applications of incremental low-high orders

In this section we show how our result on incremental low-high order maintenance implies
the following incremental algorithms that also run in O(mn) total time for a sequence of m
edge insertions.

First, we give an algorithm that maintains, after each edge insertion, two strongly
divergent spanning trees of G, and answers the following queries in constant time: (i) For
any two query vertices v and w, find a path πsv from s to v and a path πsw from s to w,
such that πsv and πsw share only the common dominators of v and w. We can output
these paths in O(|πsv|+ |πsw|) time. (ii) For any two query vertices v and w, find a path
πsv from s to v that avoids w, if such a path exists. We can output this path in O(|πsv|)
time.
Then we provide an algorithm for an incremental version of the fault-tolerant reachability
problem [6, 7]. We maintain a flow graph G = (V,E, s) with n vertices through a sequence
of m edge insertions, so that we can answer the following query in O(n) time. Given a
spanning forest F = (V,EF) of G rooted at s, find a set of edges E′ ⊆ E \EF of minimum
cardinality, such that the subgraph G′ = (V,EF ∪E′, s) of G has the same dominators as
G.
Finally, given a digraph G, we consider how to maintain incrementally a spanning
subgraph of G with O(n) edges that preserves the 2-edge-connectivity relations in G.

SEA 2017

http://dx.doi.org/10.1145/1375696.1375709
http://dx.doi.org/10.1145/1375696.1375709
http://dx.doi.org/10.1016/j.tcs.2012.09.025
http://dx.doi.org/10.1007/978-3-642-35308-6_6

27:20 Incremental Low-High Orders of Directed Graphs and Applications

A.1 Strongly divergent spanning trees and path queries

We can use the arrays mark, low, and high to maintain a pair of strongly divergent spanning
trees, B and R, of G after each update. Recall that B and R are strongly divergent if for every
pair of vertices v and w, we have B[s, v] ∩R[s, w] = D[s, v] ∩D[s, w] or R[s, v] ∩B[s, w] =
D[s, v] ∩D[s, w]. Moreover, we can construct B and R so that they are also edge-disjoint
except for the bridges of G. A bridge of G is an edge (u, v) that is contained in every path
from s to v. Let b(v) (resp., r(v)) denote the parent of a vertex v in B (resp., R). To update
B and R after the insertion of an edge (x, y), we only need to update b(v) and r(v) for the
affected vertices v, and possibly for their common ancestor c that is a child of z = nca(x, y)
from Lemma 3. We can update b(v) and r(v) of each vertex v ∈ A ∪ {c} as follows: set
b(v) ← d(v) if low(v) = null, b(v) ← low(v) otherwise; set r(v) ← d(v) if high(v) = null,
r(v) ← high(v) otherwise. If the insertion of (x, y) does not affect y, then A = ∅ but we
may still need to update b(y) and r(y) if x 6∈ D(y) in order to make B and R maximally
edge-disjoint. Note that in this case z = d(y), so we only need to check if both low(y) and
high(y) are null. If they are, then we set low(y)← x if x <δ y, and set high(y)← x otherwise.
Then, we can update b(y) and r(y) as above.

Now consider a query that, given two vertices v and w, asks for two maximally vertex-
disjoint paths, πsv and πsw, from s to v and from s to w, respectively. Such queries were
used in [46] to give a linear-time algorithm for the 2-disjoint paths problem on a directed
acyclic graph. If v <δ w, then we select πsv ← B[s, v] and πsw ← R[s, w]; otherwise, we
select πsv ← R[s, v] and πsw ← B[s, w]. Therefore, we can find such paths in constant time,
and output them in O(|πsv|+ |πsw|) time. Similarly, for any two query vertices v and w, we
can report a path πsv from s to v that avoids w. Such a path exists if and only if w does
not dominate v, which we can test in constant time using the ancestor-descendant relation
in D [43]. If w does not dominate v, then we select πsv ← B[s, v] if v <δ w, and select
πsv ← R[s, v] if w <δ v.

A.2 Fault tolerant reachability

Baswana et al. [6] study the following reachability problem. We are given a flow graph
G = (V,E, s) and a spanning tree T = (V,ET) rooted at s. We call a set of edges E′ valid if
the subgraph G′ = (V,ET ∪E′, s) of G has the same dominators as G. The goal is to find a
valid set of minimum cardinality. As shown in [26], we can compute a minimum-size valid set
in O(m) time, given the dominator tree D and a low-high order of δ of it. We can combine
the above construction with our incremental low-high algorithm to solve the incremental
version of the fault tolerant reachability problem, where G is modified by edge insertions
and we wish to compute efficiently a valid set for any query spanning tree T . Let t(v) be the
parent of v in T . Our algorithm maintains, after each edge insertion, a low-high order δ of
G, together with the mark, low, and high arrays. Given a query spanning tree T = (V,ET),
we can compute a valid set of minimum cardinality E′ as follows. For each vertex v 6= s, we
apply the appropriate one of the following cases: (a) If t(v) = d(v) then we do not insert into
E′ any edge entering v. (b) If t(v) 6= d(v) and v is marked then we insert (d(v), v) into E′.
(c) If v is not marked then we consider the following subcases: If t(v) >δ v, then we insert
into E′ the edge (x, v) with x = low(v). Otherwise, if t(v) <δ v, then we insert into E′ the
edge (x, v) with x = high(v). Hence, can update the minimum valid set in O(mn) total time.

We note that the above construction can be easily generalized for the case where T is
forest, i.e., when ET is a subset of the edges of some spanning tree of G. In this case, t(v)
can be null for some vertices v 6= s. To answer a query for such a T , we apply the previous

L. Georgiadis, K. Giannis, A. Karanasiou, and L. Laura 27:21

construction with the following modification when t(v) is null. If v is marked then we insert
(d(v), v) into E′, as in case (b). Otherwise, we insert both edges entering v from low(v)
and high(v). In particular, when ET = ∅, we compute a subgraph G′ = (V,E′, s) of G with
minimum number of edges that has the same dominators as G. This corresponds to the case
k = 1 in [7].

A.3 Sparse certificate for 2-edge-connectivity
Let G = (V,E) be a strongly connected digraph. We say that vertices u, v ∈ V are 2-edge-
connected if there are two edge-disjoint directed paths from u to v and two edge-disjoint
directed paths from v to u. (A path from u to v and a path from v to u need not be
edge-disjoint.) A 2-edge-connected block of a digraph G = (V,E) is defined as a maximal
subset B ⊆ V such that every two vertices in B are 2-edge-connected. If G is not strongly
connected, then its 2-edge-connected blocks are the 2-edge-connected blocks of each strongly
connected component of G. A sparse certificate for the 2-edge-connected blocks of G is a
spanning subgraph C(G) of G that has O(n) edges and maintains the same 2-edge-connected
blocks as G. Sparse certificates of this kind allow us to speed up computations, such as
finding the actual edge-disjoint paths that connect a pair of vertices (see, e.g., [39]). The
2-edge-connected blocks and a corresponding sparse certificate can be computed in O(m+ n)
time [21]. An incremental algorithm for maintaining the 2-edge-connected blocks is presented
in [23]. This algorithm maintains the dominator tree of G, with respect to an arbitrary
start vertex s, and of its reversal GR, together with the auxiliary components of G and GR,
defined next.

Recall that an edge (u, v) is a bridge of a flow graph G with start vertex s if all paths
from s to v include (u, v). After deleting from the dominator tree D the bridges of G, we
obtain the bridge decomposition of D into a forest D. For each root r of a tree in the bridge
decomposition D we define the auxiliary graph Gr = (Vr, Er) of r as follows. The vertex
set Vr of Gr consists of all the vertices in Dr. The edge set Er contains all the edges of G
among the vertices of Vr, referred to as ordinary edges, and a set of auxiliary edges, which
are obtained by contracting vertices in V \ Vr, as follows. Let v be a vertex in Vr that has a
child w in V \ Vr. Note that w is a root in the bridge decomposition D of D. For each such
child w of v, we contract w and all its descendants in D into v. The auxiliary components of
G are the strongly connected components of each auxiliary graph Gr.

We sketch how to extend the incremental algorithm of [23] so that it also maintains a
sparse certificate C(G) for the 2-edge-connected components of G, in O(mn) total time. It
suffices to maintain the auxiliary components in G and GR, and two maximally edge-disjoint
divergent spanning trees for each of G and GR. We can maintain these divergent spanning
trees as described in Section A.1. To identify the auxiliary components, the algorithm of [23]
uses, for each auxiliary graph, an incremental algorithm for maintaining strongly connected
components [9]. It is easy to extend this algorithm so that it also computes O(n) edges that
define these strongly connected components. The union of these edges and of the edges in
the divergent spanning trees are the edges of C(G).

SEA 2017

Jdrasil: A Modular Library for Computing Tree
Decompositions
Max Bannach1, Sebastian Berndt2, and Thorsten Ehlers3

1 Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck,
Germany
bannach@tcs.uni-luebeck.de

2 Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck,
Germany
berndt@tcs.uni-luebeck.de

3 Department of Computer Science, Kiel University, Kiel, Germany
the@informatik.uni-kiel.de

Abstract
While the theoretical aspects concerning the computation of tree width – one of the most impor-
tant graph parameters – are well understood, it is not clear how it can be computed practically.
We present the open source Java library Jdrasil that implements several different state of the
art algorithms for this task. By experimentally comparing these algorithms, we show that the
default choices made in Jdrasil lead to an competitive implementation (it took the third place in
the first PACE challenge) while also being easy to use and easy to extend.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases tree width, algorithmic library, experimental evaluation

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.28

1 Introduction

The concept of the tree width of a graph – the similarity of the graph to a tree – has seen
an enormous amount of research in the last few years due to its theoretical and pratical
importance. Google Scholar1 lists more than 6.000 papers concerning this subject written in
the last five years and more than 16.000 papers in total. More than half of the papers in the
proceedings of the 10th International Symposium on Parameterized and Exact Computation
(IPEC 2015) mention this important graph notion [25]. Tree width as a measure of the
complexity of a graph has shown to be helpful in a wide range of applications ranging from
the analysis of genome structure (e. g. [32]) to the learning of probablistic network from
a given dataset (e. g. [27]). It has also been shown to be very useful for the theoretical
investigation of the computational complexity of several graph problems, as many problems
that are intractable (i. e. NP-hard) become efficiently solvable on graphs with bounded tree
width. Due to this fact, tree width plays a major part in the development of fixed-parameter
algorithms in the field of parameterized complexity.

A wide range of algorithms is known to compute tree decompositions, ranging from
experimental heuristics over to exact exponential-time algorithms. However, they usually
suffer from at least one of the following problems:

1 https://scholar.google.com

© Max Bannach, Sebastian Berndt, and Thorsten Ehlers;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
https://scholar.google.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Jdrasil: A Modular Library for Computing Tree Decompositions

1. The running time of the algorithm is too high even for medium-sized instances (e. g. graphs
with n ≈ 100 vertices) that arise in typical applications;

2. The value of the computed solution may be arbitrarily bad compared to the value of an
optimal solution;

3. The algorithm itself may be quite complicated, which prevents an useful implementation
of the algorithm.

Due to this problems, the first Parameterized Algorithms and Computational Experiments
(PACE) challenge [28, 21] decided to choose the fast computation of tree decompositions as
one of its tracks. The organizers wrote2:

The ambition of this track is to turn tree width, a concept that has been tremendously
successful in theoretical work, into a practically useful tool. Many algorithms in
parameterized complexity rely on the existence of tree decompositions of small width,
and yet in practice we don’t have a good understanding for how to actually compute
such a decomposition. This has to change.

This lack of practicality hinders research in theoretical and in practical investigations:
Case Example A: A researcher in bioinformatics has used very sophisticated algorithms to

learn the causal graph describing the behaviour of the norovirus. This graphs consists of
roughly 600 vertices. To speed up the following combinatorically complex algorithms,
she would like to have an optimal tree decomposition of this graph. Unfortunately, the
graph is to big to find an optimal decomposition with simple algorithms, and she tries,
unsuccessfully, to find implementation of the more advanced algorithms on the internet.

Case Example B: A professor in parameterized complexity has developed a new algorithm
that solves the graph 3-coloring problem using tree decompositions. He is aware of the
classic algorithm by Arnborg and Proskurowski [2], but believes that his algorithm is
practically more feasible. In order to evaluate his claim, he wishes to give out a bachelor
thesis to a promising student, who should implement and compare both algorithms.
However, the first step of these algorithms — computing a tree decomposition -– almost
busts the scale of bachelor thesis, and the new algorithm ends up added to the fast
growing list of never implemented algorithms.

Case Example C: A Ph.D. student has developed a new parallel algorithm to compute
optimal tree decompositions, and she now wishes to implement and test this algorithm.
However, before she can actually start with the “real” implementation, she has to take
care of a lot of other things: data structures for graphs, and more involved ones for tree
decompositions. She also has to implement all kinds of difficult graph parameters used
by her new algorithm. Finally, in order to be competitive, she also has to implement all
the known pre- and post-processing algorithms for tree width. Before she can actually
start, a long time has passed.

1.1 Our Contributions
In this work, we aim to provide solutions for these use cases, and to broaden the understanding
of the behaviour of several different approaches for the computation of tree width.
1. We provide the Java library Jdrasil that implements several different tree width algorithms

(exact and heuristic). This library is designed to be both easy to use and easy to extend.

2 https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/

https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/

M. Bannach, S. Berndt, and T. Ehlers 28:3

2. We compare several different algorithms on a wide range of graphs. The results of these
comparisons were used to create a competitor for the first PACE challenge, where it
scored third place in the exact sequential track and third place in the heuristic parallel
track.

3. We show that two quite different practical algorithmic approaches – SAT solvers and
FPT algorithms – work very well together for a wide range of instances. We thus propose
to stimulate the exchange of techniques between those fields.

In Section 2, we give two equivalent formulations of tree width that we will use within this
work. In the next section – Section 3 – we look at different algorithmic paradigms (constraint
satisfaction problems, exact exponential algorithms, heuristics, and FPT algorithms) and
compare several algorithms within those paradigms. We compare those algorithms on a
wide range of different graphs and combine the best of them. The combined algorithm
was submitted to the first PACE challenge, where it took the third place. Experimental
comparison between the winners of the PACE challenge on almost 2.000 graphs are presented
in Section 4. The results show that the developed approach is competitive. The appendix
contains a compact overview on the graph sets used in our experimental comparisons.

1.2 Experimental Comparisons
Our experimental comparisons were designed in such a way that a global overview on the
behaviour of the different algorithms is given. Our plots thus show trends that we have
observed in our computational experiments. For example, a single algorithm may always
beat another algorithm, two algorithms are largely incomparable, or an algorithm either
terminates within a few seconds or never. While Jdrasil contains implementation of all of the
discussed algorithms, this global overviews allowed us to decide upon a standard behaviour of
the library. More detailed experiments on specific algorithms and their concrete evaluations
can be found in the referenced papers.

2 Preliminaries

In this paper all graphs are undirected, simple, and connected unless stated otherwise. A tree
decomposition of a graph G is a pair (T, ι) consisting of a tree T and a mapping ι from the
nodes of T to subsets of vertices of G (called bags), such that (1) for every edge {u, v} ∈ E(G)
there is a node x ∈ V (T) with {u, v} ⊆ ι(x), and (2) for all nodes x, y, z ∈ V (T) we have
ι(y) ⊆ ι(x) ∩ ι(z) whenever y lies on the unique path between x and z in T .

The width of a tree decomposition is the maximum size of its bags minus 1, i. e.,
width(T, ι) = maxx{ |ι(x)| − 1 }. The tree width of a graph G is the smallest width of
any tree decomposition of G and is denoted as tw(G). Deciding whether a given graph G
has tree width at most k is an NP-complete problem [1].

Note that the above definition of tree width does not immediately give rise to an algorithm
that computes the optimal tree decomposition. It is, hence, useful to look at alternative
characterizations of this concept:

An elimination ordering π of a graph G = (V,E) is a bijection π : V → {1, 2, . . . , |V |}.
The filled graph Gπ = (V,Eπ) of the elimination ordering π is a directed graph with edges
Eπ that are constructed via the following process:

The first edge set E0
π simply equals E, where the edges are directed from the “lower”

vertex (according to π) to the “higher” vertex, i. e.,

E0
π = { (u, v) | π(u) < π(v) ∧ {u, v} ∈ E } .

SEA 2017

28:4 Jdrasil: A Modular Library for Computing Tree Decompositions

1

2

3

4 5 6

7 8 32 1 4 5 6 7 8

tw

Figure 1 An example of a graph G and the corresponding filled graph Gπ for the elimination
ordering π = 2, 3, 1, 4, 5, 6, 7, 8. Here, the solid edges represent the edges of the original graph, while
the dashed edges are the edges created by eliminating vertex 2.

The next edge set Ei+1
π is generated by connecting all vertices u, v with π(u) > i and

π(v) > i if both u and v are connected with the vertex π−1(i), i. e.,

Eiπ = Ei−1
π ∪ { (u, v) | π(v) > π(u) > i ∧ (π−1(i), u) ∈ Ei−1

π ∧ (π−1(i), v) ∈ Ei−1
π }.

Finally, Eπ is equal to E|V |π . Figure 1 shows an example of a graphG and the corresponding
filled graph Gπ.

The width of an elimination ordering π is the largest number of direct successors of a
vertex in Gπ, i. e., width(π) = maxi{ |{(ui, v) ∈ Eπ}| }. The (optimal) width of the example
on the right hand side is 3, as there exist three outgoing arcs from vertex 5.

The following fact is well known and allows us to characterize the tree width of a graph
either via a suitable tree decomposition or via an elimination ordering.

I Fact 1 (e. g. [14]). tw(G) = maxπ{width(π)}.

3 Computing Tree Decompositions

3.1 Point of View: Constraint Satisfaction Problem
A very common (theoretical and practical) approach to solve intractable problems is to first
represent them as constraint satisfaction problems (CSP) and then solve those problems via
specialized solvers. The most widely used solvers are SAT solvers that work on Boolean
formulas or ILP solvers that work on linear inequalities. As it is typically not clear from
the problem alone, which of those approaches leads to a better result, the next subsection
compares experimental evaluations of both approaches on a certain formulation for the
elimination ordering problem. The formulation we will use is based on the work of Berg and
Järvisalo [7], which in turn is an improved version of a formulation of Samer and Veith [30].

3.1.1 The CSP formulation
If G = (V,E) is a graph on |V | = n vertices, our CSP first contains n(n − 1)/2 variables
ordi,j for each i ∈ {1, . . . , n} and each j > i, indicating that the vertex vi appears before vj
in the elimination ordering. To simplify notation, for two integers i and j, let ord∗i,j be either
ordi,j if i < j or ¬ordj,i if j < i. To ensure that these variables encode a linear ordering of
the vertices, it is sufficient to enforce the transitivity: For all distinct i, j, k ∈ {1, . . . , n}, we
need to ensure that if ord∗i,j and ord∗j,k are true, ord∗i,k is also true.

To encode the directed edges of the filled graph Gπ, another n2 variables arci,j are
introduced. As all original edges of G are present in Gπ, for each {vi, vj} ∈ E, either arci,j
or arcj,i must be set. To be consistent with the ordering implied by ordi,j , we need to enforce
that ord∗i,j implies that arcj,i is not set.

M. Bannach, S. Berndt, and T. Ehlers 28:5

To describe the elimination process, note that if vi and vk are adjacent and vi and vj
are adjacent with π(i) < π(j) and π(i) < π(k), the filled graph Gπ contains either the arc
(vj , vk) or the arc (vk, vj). Hence, if arci,j and arci,k are set and ord∗j,k is also set, we need
to set arcj,k as well. To ensure that the width of the produced elimination does not exceed a
value t ∈ N, we also need to make sure that for each vi, at most t edges (vi, vj) exist in Gπ.

∀i, j, k ∈ {1, . . . , n} SAT formulation ILP formulation

i 6= j, i 6= k, j 6= k ord∗
i,j ∧ ord∗

j,k =⇒ ord∗
i,k ord∗

i,k − ord∗
i,j − ord∗

j,k ≥ −1
{vi, vj} ∈ E arci,j ∨ arcj,i arci,j + arcj,i ≥ 1

i 6= j ord∗
i,j =⇒ ¬arcj,i ord∗

i,j + arcj,i ≤ 2
i 6= j, i 6= k, j 6= k ord∗

j,k ∧ arci,j ∧ arci,k =⇒ arcj,k ord∗
j,k + arci,j + arci,k − arcj,k ≤ 2∑n

j=1 arci,j ≤ t
∑n

j=1 arci,j ≤ t
arci,j , ordi,j ∈ {0, 1}

We extend this formulation by a trick observed in [12]: If C ⊆ V is a clique in G = (V,E),
then there is an optimal elimination order π that eliminates C at last. Therefore, if we know
a clique C, we can fix it at the end of the permutation. Of course, finding a clique of large
cardinality is a difficult problem as well. We find them either with a CSP formulation as
well, or, if this it not feasible, with a greedy heuristic. We noticed, however, that CSP solver
performed very well on finding maximal cliques in graphs of small tree with – this is not
surprising, as the cardinality of the largest clique is bounded by tree width of the graph.
Given the clique C, we can extend the formulation as shown in the following table.

∀i, j ∈ {1, . . . , n} SAT ILP

i ∈ V \ C, j ∈ C ord∗
i,j ord∗

i,j

vi ∈ C, vj ∈ C ord∗
i,j ord∗

i,j

The SAT formulation ϕ(t) encodes a fixed value t ∈ N. In order to determine tw(G), the
above encoding would be used for t = n, n−1, . . . until the system does not have any solution,
while the ILP would be able to minimize this quantity directly. We make use of the iterative
abilities of modern SAT solvers that allows to add clauses to an already solved formula and
thus does not require resets between the calls – this technique was also recommended by
Berg and Järvisalo [7]. The SAT solver is thus able to reuse some of its already computed
knowledge. We can thus solve ϕ(n), add the constraints

∑n
j=1 arci,j ≤ n − 1 for each i,

solve this new formula (which is equivalent to ϕ(n− 1), and repeat this process until ϕ(t) is
not satisfiable. Note that the last formula of the SAT formulation is a so called cardinality
constraint and can be expressed, e. g., via sequential counters or sorting networks. See [4] for
a discussion about this topic.

3.1.2 Experimental Evaluations
In order to determine whether a SAT solver or an ILP solver is more suited for finding the
solution of our CSP, we performed a number of experimental evaluations. To solve the SAT
formula, we made use of the SAT solver lingeling by Biere [8]. To solve the ILP, we used
CPLEX of IBM [26]. Our test set was the set of 50 easy instances provided by the PACE
challenge [28, 21]. The experimental results with a timeout of 5 minutes for each graph were
very clear: While lingeling was able to solve 47 of the 50 instances within 14 seconds, CPLEX
only managed to solve 23 of the graphs within 5 minutes. Furthermore, lingeling was faster
on all of the provided graphs. A graphical representation of the experimental results can be
found in Figure 2, where the graphs are sorted by the increasing running time of CPLEX.
Here, the running time is shown on the y-axis in seconds.

SEA 2017

28:6 Jdrasil: A Modular Library for Computing Tree Decompositions

0

50

100

150

200

250

300

se
co

nd
s

CPLEX
lingeling

Figure 2 Comparing CPLEX and lingeling on the 50 easy instances of the PACE challenge with a
timeout of 5 minutes.

3.2 Point of View: Exact Exponential Algorithms
One of the first algorithms to compute tree decompositions was presented by Arnborg et al.
and is based on a nO(tw(G)) brute-force search [1]. Note that this algorithm is polynomial
for constant tree width, but uses O∗(2n) time3 and memory for non-constant tree width.
A similar result can be achieved by combing a result of Seymour and Thomas [31], who
have showed a connection of the tree width of the graph and a cops-and-robber search
game, together with an algorithm by Berarducci and Intrigila [6], who provided an nO(tw(G))

algorithm to evaluate such games.
The characterization of tree width over elimination orders, as shown in the preliminaries,

actually provides a much more rough brute-force approach: simply check all n! possible
permutations. It turns out that this strategy, combined with dynamic programming and some
heuristics, can lead to O∗(2n) branch-and-bound algorithms. An example is QuickBB [24].

Finally, Bodlaender et al. have introduced a collection of Held-Karp like dynamic programs
to compute optimal tree decompositions [12]. The practical feasible algorithms of this kind
have time and space complexity O∗(2n) as well.

In the design of Jdrasil, it was interesting to study exact exponential time algorithms
for two reasons: (1) to evaluate how competitive the SAT approach is against more direct
approaches, and (2) to improve the SAT approach on certain instances. As usual for NP-hard
problems, we can design instances on which certain algorithms do fail horribly. In our case,
we noticed that the SAT approach fails on very symmetric instances. For example, it was
not feasible to solve the McGee graph, which has only 24 vertices. We have implemented
three different exact algorithms: A version of the cops-and-robber game, a QuickBB inspired
branch-and-bound algorithm, and the dynamic program of [12]. Figure 3 shows the running
time of one of the algorithms (from left to right: cops-and-robber (CAR), branch-and-bound
(BAB), dynamic program (DP)) in blue, against the running time of a SAT solver (its time is
shown in orange). The graphs are sorted by the running time of the SAT solver, therefore
we see a phase transition in the orange plot (from feasible to unsolved within the time limit
of 100 seconds). As we wish to improve the SAT approach, we are interested in the blue plot
after the phase transition, i. e., in instances where the SAT solver fails. One can see in the
very right plot that the dynamic program does not solve any of these instances and is thus
not really useful for us. On the other hand, the cops-and-robber game (plot on the very left)
and the branch-and-bound algorithm (center plot) do solve some instances on which the SAT

3 The O∗ notation does not only suppress constants, but also polynomial factors.

M. Bannach, S. Berndt, and T. Ehlers 28:7

0
20
40
60
80

100
se

co
nd

s
CAR
SAT

0
20
40
60
80

100
BAB
SAT

0
20
40
60
80

100
DP

SAT

Figure 3 Comparison of cops-and-robber, branch-and-bound, and the dynamic program against
the SAT solver on the 193 medium instances of the PACE challenge with a timeout of 100 seconds.
The graphs are sorted by the running time of the SAT solver.

solver fails (whenever there is a blue peek after the phase transition). But on the down site,
there are also a lot of instances where these algorithm fail, but SAT succeeds (blue peeks
before the phase transition).

We conclude the following from the above experiment: First of all, the SAT approach is
competitive, as it solves a couple of instances which are unsolved by all other algorithms.
Second, there are instances that can be solved much quicker by the cops-and-robber game or
the branch-and-bound algorithm and we face, therefore, the new problem of deciding when
to use which algorithm.

3.3 Point of View: Upper and Lower Bounds
Research on heuristics for tree width is long standing and multi-faceted, including many
different upper and lower bound algorithms. For an overview, we refer to the detailed survey
papers by Bodleander and Koster [14, 15].

3.3.1 Upper bounds
The characterization of tree width over elimination orderings gives access to very simple, but
still powerful, heuristics running in low-order polynomial running time (ranging from O(n2)
to O(n4) depending on the concrete heuristic). Recall that for graph G = (V,E), every
permutation πV of V corresponds to a tree decomposition of G, and there is always one
corresponding to an optimal decomposition. Many heuristics try to find such a permutation
greedily: let πS be a permutation of S ⊆ V , i. e., a partial permutation of V ; the greedy
algorithm selects a vertex v ∈ V \ S that minimize some value function γ(v) in the current
graph H = (V,EπS

) and appends v to the partial permutation πS obtaining an updated
permutation πS∪{v}. While many value functions γ are possible, an overview of six reasonable
ones is given in [14]. They are summarized in Table 1, where ψH(v) = |{ {u,w} | {v, u} ∈
E(H), {v, w} ∈ E(H), {u,w} 6∈ E(H) }| equals the number of so called fillin edges and δH(v)
is the degree of v in H.

We have implemented all of them to compare their quality. In the following plots, we
sorted the graphs by their tree width (shown in orange), and have plotted the upper bounds
produced by the heuristics in black. On the left picture of Figure 4, the heuristics with the
six value functions from [14] are shown. We have omitted a labeling, because the message of
this plot is not that a certain heuristic a is better on some instance x, but rather that they
are all solid and that there is a lot of noise about which heuristic is better on which instance.

We used the result of the experiment to derive the heuristic that we now actually use.
Note that, if we greedily select a vertex v that minimizes γ(v), we may end up in a situation

SEA 2017

28:8 Jdrasil: A Modular Library for Computing Tree Decompositions

Table 1 Value functions used by the upper bounds.

Name γ(v)

Degree δH(v)
FillIn ψH(v)
Degree+FillIn δH(v) + ψH(v)
SparsestSubgraph ψH(v)− δH(v)
FillInDegree δH(v) + ψH(v)/n2

DegreeFillIn δH(v) + ψH(v)/n

10

20

30

40

50

va
lu

e
of

tr
ee

de
co

m
po

sit
io

n tw
heuristics

10

20

30

40

50 tw
comb. heuristic

Figure 4 Comparison of the six upper bound heuristics against the optimal tree width on the
193 medium instances of the PACE challenge. The graphs are sorted by their tree width.

where we have a tie of more then one vertex. By breaking these ties randomly, we obtain
a randomized algorithm. Already on very small test sets one can observe that the quality
of this algorithm improves if we run it multiple times. On the other hand, if we repeat
the algorithm multiple times, we do not have to fix a function γ. We have obtained very
good results by running the heuristic O(

√
n) times and by selecting the value function γ in

each run at random (from the pool of the six functions). An further improvement we did
is a look-ahead: instead of choosing the vertex that minimizes γ, we take the vertex that
minimizes the sum over the next c choices (for a constant c). With this extension (already
for c = 2) we obtain the right plot from above. Note that of the 193 graphs of the test set,
there are only 3 graphs on which the heuristic did not find the optimum.

3.3.2 Lower Bounds

There are a couple of very different approaches to compute lower bounds for the tree width
of a graph. We refer to the second paper of Bodleander and Koster for an overview [15].
A promising approach is based on the fact that the tree width of every minor of a graph
is bounded by the tree width of the host graph. Gogate and Dechter have developed a
lower bound algorithm that greedily tries to find a minor with high tree width [24]. It
repeatedly chooses a vertices v of minimum degree and one of its neighbors w and contracts
the edge {v, w}. The largest minimum degree encountered in this process then yields a lower
bound on the tree width. This algorithm can be used with different strategies concerning
the greedy selection of the neighbour w that minimizes the value function γv(w) in the
current contracted graph H [15]. They are summarized in Table 2, where NH(v) denotes the
neighbourhood of v in H.

M. Bannach, S. Berndt, and T. Ehlers 28:9

Table 2 Value functions used by the lower bounds.

Name γv(w)

min-d δH(w)
max-d −δH(w)
least-c |NH(v) ∩NH(w)|

10

20

30

40

50

va
lu

e
of

tr
ee

de
co

m
po

sit
io

n tw
heuristics

10

20

30

40

50 tw
comb. heuristic

Figure 5 Comparison of the three lower bound heuristics against the optimal tree width on the
193 medium instances of the PACE challenge. The graphs are sorted by their tree width.

We have implemented the algorithm with the three strategies discussed in [15]. The
results are shown in the following plots in Figure 5. The graphs are sorted by their tree
width, which is plotted in orange. In the left plot, the lower bounds produced by the heuristic
with the three different strategies is shown. We again omit the labels, as we wish to show
the trend. One can see that the lower bounds have less quality then the upper bounds and
that one strategy – least-c – actually dominates the others.

In [15] it is surveyed how the performance of a lower bound algorithm A can be boosted.
The key idea is to work in the k-neighbor improved graph, which is obtained from the input
graph by adding edges between all vertices that share k common neighbors. Starting with
k = low, where low is the lower bound produced by A on the input graph G, we obtain a
new graph G′. Then we can run A on this graph and eventually increase low allowing us
to compute a new neighbor improved graph. Combined with the contraction idea of the
algorithm of Gogate and Dechter, this yield a powerful lower bound algorithm (in [15] it is
called LBN+). The quality of the produced lower bounds can be seen in the right plot above.

3.4 Point of View: Parameterized Complexity

The concept of tree width plays a central role in the field of parameterized complexity theory
and has thus obtained a lot of attention in this area. While we typically model problems
as languages L ⊆ Σ∗ over some fixed alphabet Σ, we define a parameterized problem as a
tuple (Q, κ) with Q ⊆ Σ∗ and κ : Σ∗ → N. The intuition is that the language Q models, as
before, the problem, while κ (the parameter) highlights some special property of the instance.
One can now analyze the running time of an algorithm for (Q, κ) with respect to both, the
instance size and its parameter. We say a parameterized problem (Q, κ) is fixed-parameter
tractable if there is an algorithm that decides for every w ∈ Σ∗ whether or not w ∈ Q holds
in time f(κ(w)) · poly(|w|), where f : N → N is some computable function. Note that we

SEA 2017

28:10 Jdrasil: A Modular Library for Computing Tree Decompositions

can parameterize a problem in many different ways (number of vertices, maximum degree,
solution size, girth, . . .), and that some of the resulting parameterized problems may be
fixed-parameter tractable while others may not.

Many NP- or even PSPACE-hard graph problems are fixed-parameter tractable with
respect to the parameter tree width. A prime example is Courcell’s Theorem [19], which
states that all problems definable in monadic second-order logic can be solved in linear
time, if a small tree decomposition is presented together with the input. This leads to the
requirement of an algorithm that, given a graph G = (V,E) with small tree width, computes
an optimal tree decomposition of G. Such an algorithm was found by Bodlaender [9] and
runs in time f(tw(G)) · n. Although this algorithms solves the problem theoretically, it
can not be used in practice due to its huge constants [14]. Therefore, the parameterized
complexity community has continued its search for a fast algorithm.

An important concept in parameterized complexity is preprocessing. Given an instance w
of a parameterized problem (Q, κ), we wish to reduce it in polynomial time to a new instance
w′ with |w′| ≤ h(κ(w)) for a computable function h. That is, we wish to reduce the problems
to its hard core (the kernel), whose size may only depend on the parameter. This process is
called kernelization. A positive result is that every fixed-parameter tractable problem has
such a kernelization [18], and so does tree width. On the other hand, there are problems
which probably do not have a kernel of polynomial size. Unfortunately, tree width is one of
these problems [10]. The seek for good kernelization algorithms for tree width has lead to
very efficient heuristic reduction rules, which safely reduce the graph but do not give any
guarantees on their effectiveness [16]. A refined analysis of these reduction rules can be used
to find polynomial kernels for tree width with respect to other parameters such as the vertex
cover number or the size of a feedback vertex set [13].

Beside the effort of introducing good preprocessing algorithms, the parameterized com-
plexity community has complemented the theoretically fast algorithm by Bodlaender [9] with
actual fast constant size approximation algorithms. The first 4k+ 3 approximation algorithm
running in time O(33k · n2) was introduced by Robertson and Seymour during their quest
to prove the graph minor theorem [29]. This was constantly improved by various authors
(see [11] for an survey). The latest result is a 5k + 4 algorithm running in time 2O(k) · n.

For an implementation that should compute an optimal tree decomposition, an approx-
imation algorithm as the one by Robertson and Seymour can be interesting in two ways: it
produces lower and upper bounds at the same time. We have implemented an algorithm
that is inspired by the one of Robertson and Seymour (see the textbook [20] for details), and
have analyzed its practical running time and the quality of the produced lower and upper
bounds. The following two plots in Figure 6 show the results of our experiments. On the
left, we have plotted the running time (in seconds) of the approximation algorithm in blue
against the running time of the SAT approach in orange. Here, the graphs are again sorted
by the running time of the SAT solver and, hence, we have a phase transition in the orange
plot from feasible to not feasible. The algorithm performs quite well and, in particular, does
only fail on very few instances that can be handled by the SAT solver. The plot on the right
shows the computed lower and upper bounds (in blue) against the exact tree width of the
graphs (in orange). Here, the graphs are sorted by their tree width. While these bounds are
reasonable – as expected from an approximation algorithm – they come short in comparison
to the lower and upper bounds described in the last section.

From the experiments we conclude that the approximation algorithm delivers, besides its
theoretically beauty, a practical access to the computation of tree decompositions. However,
it falls short against the other algorithms in our tool box and is thus not used in our final
version.

M. Bannach, S. Berndt, and T. Ehlers 28:11

0

50

100
ru

nn
in

g
tim

e
in

se
co

nd
s Approx.

SAT

0

50

100

w
id

th

Approx. upper bound
Approx. lower bound

tw

Figure 6 Comparison of the approximation algorithm and the SAT solver on the 193 medium
instances of the PACE challenge with a timeout of 100 seconds. On the left, the graphs are sorted
by the running time of the SAT solver and by their tree width on the right.

3.5 Cherry-Pick the Best from each World

While Jdrasil is designed as library and provides access to all implemented algorithms
mentioned above, we have do decide which of these we actually wish to use if we want to
compute an exact tree decomposition. The core of our algorithm is the SAT approach and
we try to use it whenever possible. It is known that different SAT solvers behave differently
on specific formulas and we, thus, tested different solvers on our formulas. It turned out that
the SAT solver glucose of Audemard and Simon [3] – based on the classical solver MiniSat by
Eén and Sörensson [23] – outperforms lingeling in our setting. We thus chose this solver for
use in our final version.

We use the preprocessing techniques developed by the FPT community as reducing the
instance almost always makes sense. This is in particular important from the view point of
using a SAT solver, as the SAT solver does handle a huge tree in the same way it handles
every other graph. The parameterized point of view also influenced the design of the formula,
which uses many cardinality constraints. These constraints are usually implemented at the
cost of O(n logn) auxiliary variables. However, we can also implement them using O(kn)
auxiliary variables, where k is the tree width of the graph, i. e., we craft the formula with
respect to a parameter.

We use the lower and upper bound heuristics presented to prune the search space and to
reduce the number of formulas that we have to consider. From the different exact exponential
time algorithms, we choose to use the cops-and-robber game and the SAT approach. While
the cops-and-robber game always runs in time nO(tw(G)), the behaviour of the SAT solver
is much more diverse. While it is able to solve contiki_lpp_send_probe.gr – a graph
containing 92 vertices – within 54 seconds, it is not able solve the McGee graph containing
24 vertices. In contrast to this, the cops-and-robber game solve the McGee graph within a
second. Our computational experiments showed that the cops-and-robber outperformed the
other approaches for those graphs with treewidth at most 8 or at most 25 vertices. We thus
use the cops-and-robber game, if our computed upper bound is at most 8 or if the graph has
at most 25 vertices. On the other graphs, we use the SAT solver. Note that, of course, this
decision is made after preprocessing, i. e., depending on the size of the “hard core” of the
graph. The performance of the complete algorithm is analyzed in the next section.

SEA 2017

28:12 Jdrasil: A Modular Library for Computing Tree Decompositions

4 Experimental Results

4.1 PACE 2016
As noted in the introduction, the Parameterized Algorithms and Computational Experiments
(PACE) challenge was started in 2016 to “investigate the applicability of algorithmic ideas
studied and developed in the subfields of multivariate, fine-grained, parameterized, or fixed-
parameter tractable algorithms” [28, 21]. The challenge consisted of two tracks: one for tree
width and one for feedback vertex set. We submitted the algorithm described in Section 3.5
to the the exact sequential competition of the tree width track (i. e. algorithms needed to
output the optimal tree decomposition without the use of parallelism). The programs were
given 200 graphs with predetermined timeouts ranging between 100 seconds an 3600 seconds.
Our program (Jdrasil [5]) took the third place and solved 166 of the graphs. The second
place was awarded to the program BZTreewidth [17] of Hans Bodlaender and Tom van der
Zanden that solved 173 instances. They used a combination of dynamic programming and
balanced separators. Finally, the first place was awarded to the program Exact treewidth [33]
by Hisao Tamaki that solved 199 instances and used an improved version of the algorithm of
Arnborg et al. [1].

4.2 Graph Benchmarks
The authors of this work later found a subtle bug in script configuring their implementation
of Jdrasil that scheduled all simultaneously running instance of Jdrasil on the same processor.
To test the feasibility of our approach, we ran the three winners of the PACE challenge on a
benchmark set of 1813 graphs with a timeout of 300 seconds on each graph. Note that these
experiments were performed in order to test the feasibility of our cherry-picking approach
on a wide range of graphs within a reasonable time frame. They are not intended to be
a replacement of the experiments determining the winner of the PACE challenge (where
sophisticated voting rules were used to determine the winner). This yielded the following
results:

number of solved instances average running time

Jdrasil [5] 1188 5,48 seconds
BZTreewidth [17] 1004 7,83 seconds

Exact treewidth [33] 1307 4,53 seconds

In order to understand the different behaviours of the algorithms, we have also looked at
all combinations (p1, p2) of programs and the instances they were not able to solve. In the
following table, an entry x/y/z in the row labeled with p1 and in the column labeled with p2
denotes that the number of instances that p1 and p2 did both not solve was x, the number
of instances that p1 did not solve, but p2 did, was y, and the number of instances that p2
did not solve, but p1 did, was z. For example, the colored entry shows that there were 505
instances, which neither Jdrasil nor BZTreewidth solved, only 30 instances that Jdrasil did not
solve, but BZTreewidth solved, and 188 instances that Jdrasil solved, but BZTreewidth did
not.

Jdrasil BZTreewidth Exact treewidth

Jdrasil – 505/30/188 329/206/96
BZTreewidth 505/188/30 – 397/296/28

Exact treewidth 329/96/209 397/28/296 –

M. Bannach, S. Berndt, and T. Ehlers 28:13

Besided the average running time of the programs, another important aspect is the
number of graphs where p1 was faster than p2. In the following table, an entry x/y/z in
the row labeled with p1 and in the column labeled with p2 denotes that p1 was faster than
p2 on x graphs, while p1 was faster than p2 on y graphs, and z denotes the seconds p1 was
faster, minus the seconds p2 was faster, i. e., if it is positive, p1 was faster in total. This
is an important information: It could be the case that p1 is a second faster on half of the
instances, but that p2 is multiple minutes faster on a quarter of the remaining instances.
While p1 would outperform p2 concerning the number of instances it solved faster, p2 is clearly
preferable. For example, the colored entry shows that Jdrasil was faster than BZTreewidth
on 280 instances, while BZTreewidth outperformed Jdrasil on 236 instances. In total, Jdrasil
outperformed BZTreewidth by 10231 seconds.

Jdrasil BZTreewidth Exact treewidth

Jdrasil – 280/236/10231 16/590/− 6077
BZTreewidth 236/280/− 10231 – 15/387/− 12214

Exact treewidth 590/16/6077 387/15/12214 –

In summary, we believe that the results of this section show that the “cherry-picking”-
approach described in the last section is competitive even to very specialized implementations.
Our program Jdrasil solved more instances than the second place winner BZTreewidth and is
substantially faster in total.

5 Handle the Use Cases

Case Example A: In order to compute the tree width of the causal graph, the researcher
downloads Jdrasil from its homepage [5] and enters the command $./gradlew exact to
build the scripts tw-exact (for Unix) or tw-exact.bat (for Windows). If her graph
is stored in the file graph.gr (either in the PACE format [28, 21] or in the DIMACS
graph format [22]), she can compute an optimal tree decomposition with the following
command: $./tw-exact < graph.gr

Case Example B: The professor tells the student to look into the Jdrasil manual, which
can be generated by the command $./gradlew manual that produces the manual in the
directory build/docs/manual. After careful reading, he writes the following Java code
that uses Jdrasil to compute an exact tree decomposition:

import jdrasil . algorithms . ExactDecomposer ;
import jdrasil .graph.Graph;
import jdrasil .graph. TreeDecomposition ;

public class Algorithm {
public int computeFirstAlgorithm (Graph <Integer > g) {

TreeDecomposition <Integer > decomposition = null;
try {

ExactDecomposer <Integer > ex = new ExactDecomposer <>(g);
decomposition = ex.call ();

}
. . .

He can compile and run this code by including the file Jdrasil.jar produced by
$./gradlew jar which can be found in the directory build/jars.

SEA 2017

28:14 Jdrasil: A Modular Library for Computing Tree Decompositions

Case Example C: The Ph.D. student looks at the documentation of the java code gen-
erated by $./gradlew javadoc and finds the generated HTML files in the directory
build/docs/javadoc. After considering which classes she needs, she decides to make use
of the class graph.Graph (to use an efficient implementation of the underlying graph), the
class algorithms.lowerbounds.MinorMinWidthLowerbound (to compute a lower bound)
and the class algorithms.preprocessing.GraphReducer (to reduce the graph by using
the reduction rules of [16]).

6 Conclusion

In this paper we have presented our Java library Jdrasil for the computation of tree decom-
positions. The goals we have achieved with the library are threefold: first of all we hope
that the library gives algorithmic engineers, who wish to work on tree decompositions, an
easy access to these complex graph theoretic structures (Section 5). On the other hand,
Jdrasil implements a broad range of tools that can be used by theorists or engineers that
wish to implement new algorithms for computing tree decompositions (Section 3). Our
computational results imply that different algorithms are needed for different graphs and we
show that combining several of those algorithms allows us to be competitive against other
optimized implementations (Section 4). This “cherry-picking” can be done easily due to the
highly modular design of Jdrasil.

All together, we hope that Jdrasil will be helpful for studying tree decompositions both in
a theoretical and practical domain; and we look towards to further improve and extend the
implementation.

References

1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of Finding
Embeddings in a k-Tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, 1987. doi:
10.1137/0608024.

2 Stefan Arnborg and Andrzej Proskurowski. Linear Time Algorithms for NP-hard Problems
Restricted to Partial k-Trees. Discrete applied mathematics, 23(1):11–24, 1989. doi:10.
1016/0166-218X(89)90031-0.

3 Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in Modern SAT
Solvers. In Proc. IJCAI, pages 399–404, 2009.

4 Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Con-
straints. In Proc. CP, pages 108–122. Springer, 2003. doi:10.1007/978-3-540-45193-8_
8.

5 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil, 2016. URL: https://
github.com/maxbannach/Jdrasil.

6 Alessandro Berarducci and Benedetto Intrigila. On the Cop Number of a Graph. Advances
in Applied Mathematics, 14(4):389–403, 1993. doi:10.1006/aama.1993.1019.

7 Jeremias Berg and Matti Järvisalo. SAT-Based Approaches to Treewidth Computation:
An Evaluation. In Proc. ICTAI, pages 328–335. IEEE Computer Society, 2014. doi:
10.1109/ICTAI.2014.57.

8 Armin Biere. Lingeling, Plingeling, Picosat and Precosat at SAT Race 2010. FMV Report
Series Technical Report, 10(1), 2010.

9 Hans L. Bodlaender. A Linear Time Algorithm for Finding Tree-Decompositions of Small
Treewidth. In Proc. STOC, pages 226–234. ACM, 1993. doi:10.1145/167088.167161.

http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/0166-218X(89)90031-0
http://dx.doi.org/10.1016/0166-218X(89)90031-0
http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://dx.doi.org/10.1007/978-3-540-45193-8_8
https://github.com/maxbannach/Jdrasil
https://github.com/maxbannach/Jdrasil
http://dx.doi.org/10.1006/aama.1993.1019
http://dx.doi.org/10.1109/ICTAI.2014.57
http://dx.doi.org/10.1109/ICTAI.2014.57
http://dx.doi.org/10.1145/167088.167161

M. Bannach, S. Berndt, and T. Ehlers 28:15

10 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.
On Problems Without Polynomial Kernels. Journal of Computer and System Sciences,
75(8):423–434, 2009. doi:10.1016/j.jcss.2009.04.001.

11 Hans L. Bodlaender, Pal Gronas Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. An O(ckn) 5-Approximation Algorithm for Treewidth. In
Proc. FOCS, pages 499–508, Oct 2013. doi:10.1109/FOCS.2013.60.

12 Hans L. Bodlaender, Fedor V. Fomin, Arie M.C.A. Koster, Dieter Kratsch, and Di-
mitrios M. Thilikos. On Exact Algorithms for Treewidth. ACM Trans. Algorithms,
9(1):12:1–12:23, 2012. doi:10.1145/2390176.2390188.

13 Hans L. Bodlaender, Bart M.P. Jansen, and Stefan Kratsch. Preprocessing for Treewidth:
A Combinatorial Analysis through Kernelization. In Proc. ICALP, volume 6755 of Lecture
Notes in Computer Science, pages 437–448. Springer, 2011. doi:10.1137/120903518.

14 Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth Computations I. Upper bounds.
Information and Computation, 208(3):259–275, 2010. doi:10.1016/j.ic.2009.03.008.

15 Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computations II. Lower Bounds.
Information and Computation, 209(7):1103–1119, 2011. doi:10.1016/j.ic.2011.04.003.

16 Hans L. Bodlaender, Arie M.C.A. Koster, and Frank van den Eijkhof. Pre-Processing for
Triangulation of Probabilistic Networks. Computational Intelligence, 21(3):286–305, 2005.
doi:10.1111/j.1467-8640.2005.00274.x.

17 Hans L. Bodlaender and Tom van der Zanden. BZTreewidth, 2016. URL: https://github.
com/TomvdZanden/BZTreewidth.

18 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice Classes of
Parameterized Tractability. Ann. Pure Appl. Logic, 84(1):119–138, 1997. doi:10.1016/
S0168-0072(95)00020-8.

19 Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In Formal Models
and Semantics, volume B of Handbook of Theoretical Computer Science, pages 193–242.
Elsevier, Amsterdam, Netherlands and MIT Press, Cambridge, Massachusetts, 1990. doi:
10.1016/B978-0-444-88074-1.50010-X.

20 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Mar-
cin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer
Publishing Company, Incorporated, 1st edition, 2015.

21 Holger Dell, Thore Husfeldt, Bart M.P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The First Parameterized Algorithms and Computational Experi-
ments Challenge. In 11th International Symposium on Parameterized and Exact Compu-
tation (IPEC 2016), volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.30.

22 DIMACS Graph Format. Accessed: 2017-01-26. URL: http://prolland.free.fr/works/
research/dsat/dimacs.html.

23 Niklas Eén and Niklas Sörensson. An Extensible SAT-Solver. In Proc. SAT, volume
2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2003. doi:10.1007/
978-3-540-24605-3_37.

24 Vibhav Gogate and Rina Dechter. A Complete Anytime Algorithm for Treewidth. In Proc.
UAI, pages 201–208. AUAI Press, 2004.

25 Thore Husfeldt and Iyad A. Kanj, editors. Proc. IPEC, volume 43 of LIPIcs. Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015.

26 IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual. URL:
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.
help/pdf/usrcplex.pdf.

27 David R. Karger and Nathan Srebro. Learning Markov Networks: Maximum Bounded
Tree-Width Graphs. In Proc. SODA, pages 392–401. ACM/SIAM, 2001.

SEA 2017

http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1109/FOCS.2013.60
http://dx.doi.org/10.1145/2390176.2390188
http://dx.doi.org/10.1137/120903518
http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1016/j.ic.2011.04.003
http://dx.doi.org/10.1111/j.1467-8640.2005.00274.x
https://github.com/TomvdZanden/BZTreewidth
https://github.com/TomvdZanden/BZTreewidth
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1016/B978-0-444-88074-1.50010-X
http://dx.doi.org/10.1016/B978-0-444-88074-1.50010-X
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://prolland.free.fr/works/research/dsat/dimacs.html
http://prolland.free.fr/works/research/dsat/dimacs.html
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf

28:16 Jdrasil: A Modular Library for Computing Tree Decompositions

28 The Parameterized Algorithms and Computational Experiments Challenge (PACE). Ac-
cessed: 2017-01-26. URL: https://pacechallenge.wordpress.com/.

29 Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, 63(1):65–110, 1995. doi:10.1007/978-3-540-24605-3_
37.

30 Marko Samer and Helmut Veith. Encoding Treewidth into SAT. In Proc. SAT, volume
5584 of Lecture Notes in Computer Science, pages 45–50. Springer, 2009. doi:10.1007/
978-3-642-02777-2_6.

31 Paul D. Seymour and Robin Thomas. Graph Searching and a Min-Max Theorem for Tree-
Width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/jctb.
1993.1027.

32 Yinglei Song, Chunmei Liu, Russell L. Malmberg, Fangfang Pan, and Liming Cai. Tree
Decomposition Based Fast Search of RNA Structures Including Pseudoknots in Genomes.
In Proc. CSB, pages 223–234. IEEE Computer Society, 2005.

33 Hisao Tamaki. Exact treewidth, 2016. URL: https://github.com/TCS-Meiji/
treewidth-exact.

A Graph Benchmarks

The 50 easy instances used in Section 3.1 are taken from the easy instances provided by the
PACE challenge. The notation (n/m/t) means that the graph has n vertices, m edges and
tree width t.

BalancedTree_3,5.gr (364/363/1)
contiki_collect_send_next_packet.gr (26/25/1)
contiki_ctk_ctk_menu_add.gr (25/27/2)
contiki_cxmac_input_packet.gr (90/97/3)
contiki_dhcpc_dhcpc_init.gr (34/34/2)
contiki_dhcpc_dhcpc_request.gr (27/27/2)
contiki_httpd-cfs_send_file.gr (44/48/3)
contiki_ifft_ifft.gr (172/180/2)
contiki_ircc_list_channel.gr (70/76/3)
contiki_lpp_send_packet.gr (116/120/2)
contiki_nullrdc_packet_input.gr (28/30/3)
contiki_polite-announcement_send_timer.gr (31/31/2)
contiki_powertrace_add_stats.gr (46/47/2)
contiki_powertrace_powertrace_print.gr (323/323/2)
contiki_profile_profile_episode_start.gr (31/32/2)
contiki_psock_psock_generator_send.gr (61/68/4)
contiki_ringbuf_ringbuf_put.gr (29/29/2)
contiki_rudolph0_send_nack.gr (27/26/1)
contiki_rudolph1_rudolph1_send.gr (30/29/1)
contiki_runicast_runicast_open.gr (24/23/1)
contiki_shell-collect-view_process_thread_collect_view_data_process.gr (61/62/2)
contiki_shell-rime-ping_recv_mesh.gr (47/47/2)
contiki_shell-rime_recv_collect.gr (62/64/2)
contiki_shell-text_process_thread_shell_echo_process.gr (25/25/2)
contiki_shell_shell_register_command.gr (42/45/2)
contiki_tcpip_eventhandler.gr (98/112/2)
contiki_uip-neighbor_uip_neighbor_add.gr (67/71/3)
contiki_uip-over-mesh_recv_data.gr (85/88/2)
contiki_uip_uip_init.gr (26/27/2)
contiki_webclient_senddata.gr (108/109/2)

https://pacechallenge.wordpress.com/
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-642-02777-2_6
http://dx.doi.org/10.1007/978-3-642-02777-2_6
http://dx.doi.org/10.1006/jctb.1993.1027
http://dx.doi.org/10.1006/jctb.1993.1027
https://github.com/TCS-Meiji/treewidth-exact
https://github.com/TCS-Meiji/treewidth-exact

M. Bannach, S. Berndt, and T. Ehlers 28:17

fuzix_clock_settime_clock_settime.gr (20/21/2)
fuzix_devf_fd_transfer.gr (119/129/3)
fuzix_devio_bfind.gr (27/29/3)
fuzix_devio_kprintf.gr (69/78/3)
fuzix_difftime_difftime.gr (74/73/1)
fuzix_fgets_fgets.gr (53/58/3)
fuzix_filesys_filename.gr (45/48/3)
fuzix_filesys_getinode.gr (52/57/3)
fuzix_filesys_i_open.gr (129/143/3)
fuzix_filesys_newfstab.gr (20/21/2)
fuzix_getpass__gets.gr (31/35/3)
fuzix_malloc___insert_chunk.gr (104/116/3)
fuzix_process_getproc.gr (32/35/2)
fuzix_ran_rand.gr (46/48/2)
fuzix_regexp_regcomp.gr (118/129/2)
fuzix_se_ycomp.gr (83/96/3)
fuzix_stat_statfix.gr (52/51/1)
fuzix_syscall_fs2_chown_op.gr (27/28/2)
fuzix_tty_tty_read.gr (123/137/4)

The 193 instances used in Section 3.2, Section 3.3, and in Section 3.4 are taken from the 100
second instances of the PACE challenge. The notation (n/m) means that the graph has n
vertices and m edges.

AhrensSzekeresGeneralizedQuadrangleGraph_3.gr (27/135)
BalancedTree_3,5.gr (364/363)
BlanusaSecondSnarkGraph.gr (18/27)
ChvatalGraph.gr (12/24)
ClebschGraph.gr (16/40)
CycleGraph_100.gr (100/100)
DesarguesGraph.gr (20/30)
DodecahedralGraph.gr (20/30)
DorogovtsevGoltsevMendesGraph.gr (3282/6561)
DoubleStarSnark.gr (30/45)
DyckGraph.gr (32/48)
ErreraGraph.gr (17/45)
FibonacciTree_10.gr (143/142)
FlowerSnark.gr (20/30)
FolkmanGraph.gr (20/40)
FriendshipGraph_10.gr (21/30)
GNP_20_10_0.gr (20/28)
GNP_20_10_1.gr (20/24)
GNP_20_20_0.gr (20/46)
GNP_20_20_1.gr (20/48)
GNP_20_30_0.gr (20/56)
GNP_20_30_1.gr (20/63)
GNP_20_40_0.gr (20/78)
GNP_20_40_1.gr (20/71)
GNP_20_50_0.gr (20/91)
GNP_20_50_1.gr (20/106)
GeneralizedPetersenGraph_10_4.gr (20/30)
GoethalsSeidelGraph_2_3.gr (16/72)
GoldnerHararyGraph.gr (11/27)
GrayGraph.gr (54/81)
GrotzschGraph.gr (11/20)

SEA 2017

28:18 Jdrasil: A Modular Library for Computing Tree Decompositions

HararyGraph_6_15.gr (15/45)
HeawoodGraph.gr (14/21)
HoffmanGraph.gr (16/32)
HyperStarGraph_10_2.gr (45/72)
IcosahedralGraph.gr (12/30)
KneserGraph_10_2.gr (45/630)
LadderGraph_20.gr (40/58)
MarkstroemGraph.gr (24/36)
McGeeGraph.gr (24/36)
MeredithGraph.gr (70/140)
NauruGraph.gr (24/36)
NonisotropicOrthogonalPolarGraph_3_5.gr (15/60)
NonisotropicUnitaryPolarGraph_3_3.gr (63/1008)
OddGraph_4.gr (35/70)
OrthogonalArrayBlockGraph_4_3.gr (9/36)
PaleyGraph_17.gr (17/68)
PappusGraph.gr (18/27)
PoussinGraph.gr (15/39)
RKT_20_40_10_0.gr (20/87)
RKT_20_40_10_1.gr (20/87)
RKT_20_50_10_0.gr (20/73)
RKT_20_50_10_1.gr (20/73)
RKT_20_60_10_0.gr (20/58)
RKT_20_60_10_1.gr (20/58)
RKT_20_70_10_0.gr (20/44)
RKT_20_70_10_1.gr (20/44)
RKT_20_80_10_0.gr (20/29)
RKT_20_80_10_1.gr (20/29)
RandomBarabasiAlbert_100_2.gr (100/196)
RandomBipartite_10_50_3.gr (60/138)
RandomGNM_100_100.gr (100/100)
RingedTree_6.gr (63/123)
SchlaefliGraph.gr (27/216)
ShrikhandeGraph.gr (16/48)
SierpinskiGasketGraph_3.gr (15/27)
SquaredSkewHadamardMatrixGraph_2.gr (49/588)
StarGraph_100.gr (101/100)
SylvesterGraph.gr (36/90)
SzekeresSnarkGraph.gr (50/75)
TaylorTwographDescendantSRG_3.gr (27/135)
TaylorTwographSRG_3.gr (28/210)
Toroidal6RegularGrid2dGraph_4_6.gr (24/72)
WheelGraph_100.gr (100/198)
WorldMap.gr (166/323)
contiki_calc_input_to_operand1.gr (31/33)
contiki_collect_enqueue_dummy_packet.gr (46/46)
contiki_collect_received_announcement.gr (52/59)
contiki_collect_send_ack.gr (53/52)
contiki_collect_send_next_packet.gr (26/25)
contiki_collect_send_queued_packet.gr (95/99)
contiki_contikimac_input_packet.gr (116/127)
contiki_contikimac_powercycle.gr (166/194)
contiki_ctk_ctk_menu_add.gr (25/27)
contiki_cxmac_input_packet.gr (90/97)
contiki_dhcpc_dhcpc_init.gr (34/34)

M. Bannach, S. Berndt, and T. Ehlers 28:19

contiki_dhcpc_dhcpc_request.gr (27/27)
contiki_dhcpc_handle_dhcp.gr (276/313)
contiki_httpd-cfs_send_file.gr (44/48)
contiki_httpd-cfs_send_headers.gr (106/116)
contiki_ifft_ifft.gr (172/180)
contiki_ircc_handle_connection.gr (138/161)
contiki_ircc_list_channel.gr (70/76)
contiki_lpp_dutycycle.gr (102/114)
contiki_lpp_init.gr (22/21)
contiki_lpp_send_packet.gr (116/120)
contiki_lpp_send_probe.gr (92/94)
contiki_nullrdc_packet_input.gr (28/30)
contiki_polite-announcement_send_timer.gr (31/31)
contiki_powertrace_add_stats.gr (46/47)
contiki_powertrace_powertrace_print.gr (323/323)
contiki_process_exit_process.gr (72/82)
contiki_profile_profile_episode_start.gr (31/32)
contiki_psock_psock_generator_send.gr (61/68)
contiki_psock_psock_readto.gr (56/61)
contiki_ringbuf_ringbuf_put.gr (29/29)
contiki_route-discovery_route_discovery_discover.gr (20/20)
contiki_rudolph1_rudolph1_open.gr (27/26)
contiki_rudolph1_write_data.gr (35/36)
contiki_serial-line_process_thread_serial_line_process.gr (72/81)
contiki_shell-base64_base64_add_char.gr (70/74)
contiki_shell-collect-view_process_thread_collect_view_data_process.gr (61/62)
contiki_shell-netperf_memcpy_misaligned.gr (30/32)
contiki_shell-ps_process_thread_shell_ps_process.gr (45/46)
contiki_shell-rime-debug_recv_broadcast.gr (24/23)
contiki_shell-rime-ping_recv_mesh.gr (47/47)
contiki_shell-rime_process_thread_shell_send_process.gr (89/95)
contiki_shell-rime_recv_collect.gr (62/64)
contiki_shell-sendtest_read_chunk.gr (30/32)
contiki_shell-text_process_thread_shell_echo_process.gr (25/25)
contiki_shell_process_thread_shell_server_process.gr (76/85)
contiki_shell_shell_register_command.gr (42/45)
contiki_tcpip_eventhandler.gr (98/112)
contiki_uip-neighbor_uip_neighbor_add.gr (67/71)
contiki_uip-neighbor_uip_neighbor_periodic.gr (20/21)
contiki_uip-over-mesh_recv_data.gr (85/88)
contiki_uip_uip_connect.gr (111/120)
contiki_uip_uip_init.gr (26/27)
contiki_uip_uip_unlisten.gr (19/20)
contiki_webclient_senddata.gr (108/109)
contiki_webclient_webclient_appcall.gr (98/111)
dimacs_anna.gr (138/260)
dimacs_fpsol2.i.3.gr (206/2645)
dimacs_inithx.i.2.gr (299/5162)
dimacs_inithx.i.2-pp.gr (220/4165)
dimacs_inithx.i.3-pp.gr (196/2185)
dimacs_jean.gr (77/184)
dimacs_miles1000.gr (128/1594)
dimacs_miles250.gr (125/241)
dimacs_miles750.gr (128/1252)
dimacs_mulsol.i.1.gr (100/1725)

SEA 2017

28:20 Jdrasil: A Modular Library for Computing Tree Decompositions

dimacs_mulsol.i.2.gr (101/1233)
dimacs_mulsol.i.3.gr (102/1233)
dimacs_mulsol.i.4-pp.gr (78/1062)
dimacs_mulsol.i.5.gr (102/1224)
dimacs_mulsol.i.5-pp.gr (77/974)
dimacs_myciel5.gr (46/139)
dimacs_queen5_5.gr (25/106)
dimacs_queen6_6.gr (36/217)
dimacs_queen7_7.gr (49/388)
dimacs_zeroin.i.2.gr (85/951)
dimacs_zeroin.i.3.gr (83/917)
dimacs_zeroin.i.3-pp.gr (49/651)
fuzix_abort_abort.gr (21/20)
fuzix_bankfixe_pagemap_alloc.gr (21/22)
fuzix_clock_gettime_clock_gettime.gr (39/40)
fuzix_clock_gettime_div10quickm.gr (30/29)
fuzix_clock_settime_clock_settime.gr (20/21)
fuzix_devf_fd_transfer.gr (119/129)
fuzix_devio_bfind.gr (27/29)
fuzix_devio_kprintf.gr (69/78)
fuzix_difftime_difftime.gr (74/73)
fuzix_fgets_fgets.gr (53/58)
fuzix_filesys_filename.gr (45/48)
fuzix_filesys_getinode.gr (52/57)
fuzix_filesys_i_open.gr (129/143)
fuzix_filesys_newfstab.gr (20/21)
fuzix_filesys_srch_mt.gr (31/33)
fuzix_gethostname_gethostname.gr (30/31)
fuzix_getpass__gets.gr (31/35)
fuzix_inode_rwsetup.gr (77/83)
fuzix_malloc___insert_chunk.gr (104/116)
fuzix_nanosleep_clock_nanosleep.gr (110/121)
fuzix_process_getproc.gr (32/35)
fuzix_qsort__lqsort.gr (89/94)
fuzix_ran_rand.gr (46/48)
fuzix_readdir_readdir.gr (60/65)
fuzix_regexp_regcomp.gr (118/129)
fuzix_se_ycomp.gr (83/96)
fuzix_setbuffer_setbuffer.gr (43/44)
fuzix_setenv_setenv.gr (122/131)
fuzix_stat_statfix.gr (52/51)
fuzix_syscall_fs2__fchdir.gr (22/22)
fuzix_syscall_fs2_chown_op.gr (27/28)
fuzix_syscall_proc__time.gr (48/49)
fuzix_sysconf_sysconf.gr (142/162)
fuzix_tty_tty_read.gr (123/137)
fuzix_usermem_ugets.gr (24/25)
fuzix_vfscanf_vfscanf.gr (587/668)
stdlib_gmtime.gr (117/123)
stdlib_mktime.gr (93/97)
stdlib_print_format.gr (544/609)
stdlib_sincoshf.gr (110/117)

M. Bannach, S. Berndt, and T. Ehlers 28:21

The 1813 graphs used in Section 4 come from a wide range of sources: All of the graphs
(exact and heuristic) from the PACE challenge, randomly generated partial k-trees, large
grids, coloring instances4, and classical test instances for tree width5.

B Technical Specifications

All of the experiments were performed on a machine with 64 cores, where each core is a 2.1
Gigahertz processor. Note that we only used a single core for all experiments in order to
prevent parallel programs from having an unfair advantage. The machine has 128 Gigabyte
RAM and runs openSUSE 13.1 (Bottle) with kernel 3.11.10-29-desktop.

4 Found at http://mat.gsia.cmu.edu/COLOR/instances.html.
5 Found at https://github.com/FrankvH/BooleanWidth/tree/master/Graphs/tw-lib.

SEA 2017

http://mat.gsia.cmu.edu/COLOR/instances.html
https://github.com/FrankvH/BooleanWidth/tree/master/Graphs/tw-lib

On the Separation of Topology-Free Rank
Inequalities for the Max Stable Set Problem
Stefano Coniglio1 and Stefano Gualandi2

1 Department of Mathematical Sciences, University of Southampton,
Southampton, UK
s.coniglio@soton.ac.uk

2 Department of Mathematics, University of Pavia, Pavia, Italy
stefano.gualandi@unipv.it

Abstract
In the context of finding the largest stable set of a graph, rank inequalities prescribe that a stable
set can contain, from any induced subgraph of the original graph, at most as many vertices as the
stability number of the former. Although these inequalities subsume many of the valid inequalities
known for the problem, their exact separation has only been investigated in few special cases
obtained by restricting the induced subgraph to a specific topology.

In this work, we propose a different approach in which, rather than imposing topological
restrictions on the induced subgraph, we assume the right-hand side of the inequality to be
fixed to a given (but arbitrary) constant. We then study the arising separation problem, which
corresponds to the problem of finding a maximum weight subgraph with a bounded stability
number. After proving its hardness and giving some insights on its polyhedral structure, we
propose an exact branch-and-cut method for its solution. Computational results show that the
separation of topology-free rank inequalities with a fixed right-hand side yields a substantial
improvement over the bound provided by the fractional clique polytope (which is obtained with
rank inequalities where the induced subgraph is restricted to a clique), often better than that
obtained with Lovász’s Theta function via semidefinite programming.

1998 ACM Subject Classification G.1.6 [Optimization] Integer Programming

Keywords and phrases Maximum stable set problem, rank inequalities, cutting planes, integer
programming, combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.29

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E, and let n := |V |.
Given G as input, the Maximum Stable Set (MSS) problem calls for the computation of the
size of the largest stable set of G (a subset of V with no pair of vertices sharing an edge).
Letting STAB(G) be the set of all characteristic vectors of stable sets in G, i.e., of binary
vectors x ∈ {0, 1}n where, given a stable set S ⊆ V and for all nodes i ∈ V , xi = 1 if and only
if i ∈ S, solving MSS boils down to computing α(G) := max

{∑
i∈V xi : x ∈ STAB(G)

}
,

where α(G) is the so-called stability number of the graph.
MSS is one of Karp’s 21 NP-hard problems [15] and it cannot be approximated in

polynomial time to within O(n1−ε) for any ε > 0 unless P = NP [14]. To date, it is,
arguably, among the most challenging “fundamental” problems in combinatorial optimization
to tackle with integer programming techniques.

Introduced by Chvàtal in [6], Rank Inequalities (RIs) prescribe that, for any subgraph
G[U] induced by U ⊆ V , at most α(G[U]) of its vertices can be part of a stable set of G:

© Stefano Coniglio and Stefano Gualandi;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

I Definition 1. The set of all RIs is:
∑
i∈U xi ≤ α(G[U]), for all U ⊆ V .

From a combinatorial perspective, RIs are all the inequalities with binary left-hand side
(LHS) coefficients which are valid for STAB(G).1 These inequalities are very general, as
many families of valid inequalities known for STAB(G) are obtained as a special case of RIs
when restricting the induced subgraph G[U] to specific topologies (such as cliques, holes,
wheels, webs, and antiwebs).

In this work, we propose a novel approach for the separation of RIs where, rather than
imposing topological restrictions on the induced subgraph G[U], we assume the right-hand
side (RHS) of the inequalities to be fixed to a given (but arbitrary) constant.

To our knowledge, the only methodology that has been developed to separate RIs without
topological restrictions is the one proposed [19], which relies on the edge projection operator
introduced in [16]. Although the method in [19] allows for the generation of RIs without a
specific topological restriction, it is heuristic in nature and it can halt before all the violated
RIs have been found. See [18] for a study on the impact of those and other (heuristically
separated) cuts when solving MSS via branch-and-cut. Recent work on integer programming
methods for MSS, partially belonging to the same stream of works, can be found in [9, 10].

The paper is organized as follows. In Section 2, after discussing on the nature of RIs and
their separation problem, topology-free RIs with a given RHS are introduced. Our method
for their separation is described in Section 3, where we also investigate the polyhedral nature
of the corresponding separation problem. Section 4 outlines the main algorithmical aspects
of our techniques. Computational results are reported and illustrated in Section 5, while
Section 6 draws some concluding remarks.

2 Rank inequalities and topology-free rank inequalities with a fixed
right-hand side

Let RSTAB(G) :=
{
x ∈ Rn+ :

∑
i∈U xi ≤ α(G[U]),∀U ⊆ V

}
be the closure of RIs. As it is

easy to see, optimizing over this set is, as for MSS, both NP-hard and inapproximable in
polynomial time to within O(n1−ε) for any ε > 0. This is because, for U = V , the set of RIs
contains the inequality

∑
i∈V xi ≤ α(G), whose sole introduction into any relaxation of MSS

suffices to obtain α(G).
Due to the equivalence between optimization and separation established in [12], it follows

that, given a point x∗, the separation problem of RIs, calling for a subset U of vertices such
that

∑
i∈U x

∗
i > α(G[U]), or for a proof that no such subset exists, is also NP-hard.

In integer programming, the NP-hardness of a separation problem is, usually, not an
issue per se.2 There are many cases of computationally affordable algorithms in which
NP-hard separation problems are routinely solved, often by solving an instance of the very
optimization problem being tackled, albeit of smaller size. See, for instance, the pioneering
work in [8].

In the context of RIs, the situation is even worse. Indeed, not only separating a RI is
NP-hard, but even verifying whether a given inequality is a RI is a difficult problem. First,
let us define the decision version of MSS (MSS-d) which, given an integer L, asks whether G
contains a stable set of size ≥ L, i.e., whether α(G) ≥ L. The following holds:

1 Indeed, πx ≤ π0 is valid for some P ⊆ Rn if and only if π0 ≥ max{πx : x ∈ P}. When restricting to π
to {0, 1}n and P = STAB(G), the definition of RIs follows.

2 Due to the equivalence between optimization and separation, an NP-hard optimization problem always
has at least one family of valid inequalities which is NP-hard to separate.

S. Coniglio and S. Gualandi 29:3

I Observation 2. Given a graph G = (V,E) and a vector (π, π0) ∈ Rn+1, it it strongly
NP-hard to decide whether πx ≤ π0 is a RI.

Proof. We can easily establish a Cook-reduction from MSS-d (with input L and G) to the
problem of verifying whether πx ≤ π0 is a RI. Indeed, it suffices to call, for all π0 ∈ {L, . . . , n}
(thus, n− L+ 1 times), a routine which solves the problem of membership to the class of
RIs with input G and the inequality πx ≤ π0, with πi = 1 for all i ∈ V . Since, for the given
π, πx ≤ π0 is a RI if and only if π0 = α(G), as soon as the routine returns answer YES for
some π0, we conclude π0 = α(G), thus providing answer YES to MSS-d. If the membership
routine returns answer NO for all values of π0, we conclude that MSS-d has answer NO. J

From a cutting plane perspective, especially when cut generation is embedded within
a branch-and-cut algorithm, one would arguably look for a small number of inequalities
which, jointly, yield the largest bound improvement over the initial relaxation (see [7] for
a cutting plane algorithm designed to achieve this via bilevel programming, and [1, 2] for
a method which employs cut diversity). With RIs, as we mentioned, the single inequality∑
i∈V xi ≤ α(G) always suffices to bring the bound obtained with any relaxation of MSS

down to α(G). It is thus clear that, if we aim at a practical method relying on the separation
of RIs within an efficient algorithm, some restrictions must be introduced.

The restriction that we consider in this paper is not a topological one. Rather, we
investigate the problem of separating RIs when their RHS is fixed to an (arbitrary, small)
constant k ∈ N. We refer to such set of RIs as RIks.

I Definition 3. The set of all RIks is:
∑
i∈U xi ≤ k, for all U ⊆ V : α(G[U]) = k.

Note that we can optimize over RSTAB(G) by separating RIks for all values of k ∈ {1, . . . , n},
a feature which cannot be achieved with traditional approaches where topological restrictions
are introduced. The assumption on a small k with (in particular) k � α(G) is made so as to
arrive at a separation problem which is not too hard to solve in practice, as we will better
see in the next sections.

From a combinatorial perspective, the following holds:

I Observation 4. For any given k ∈ N, the LHS of a RIk is the incidence vector of a
subgraph G[U] with a Kk+1-free complement.

Proof. By definition,
∑
i∈U xi ≤ k is a RIk if and only if k = α(G[U]). If the complement

of G[U] is not Kk+1-free, then G[U] contains k + 1 completely disconnected vertices. Thus
α(G[U]) ≥ k + 1 > k and

∑
i∈U xi ≤ k is not a RIk. J

The observation shows that, given any RIk with vertex set U , G[U] has a K2-free complement
for k = 1, a K3-free complement for k = 2, a K4-free complement for k = 3, and so on. See
Figure 1 for an illustration.

3 Separation of topology-free rank inequalities

For a given k ∈ N, let RSTABk(G) be the closure of all RIks, i.e., of all RIs with a RHS
equal to k. Throughout the paper, our aim is:

I Aim. Given a (reasonably small) upper bound k̄ on k, optimize over
⋂k̄
k=1RSTABk(G).

The idea is of investigating the tightness of the bound given by
⋂k̄
k=1RSTABk(G) within

a pure cutting plane method which, at each iteration, looks for a violated RIk for each

SEA 2017

29:4 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

1

2

3

4 5

6

7

1

2

3

4 5

6

7

1

2

3

4 5

6

7

∑
i∈U

xi ≤ 1
∑
i∈U

xi ≤ 2
∑
i∈U

xi ≤ 3

(a) (b) (c)

Figure 1 Three induced subgraphs G[U] of the complete graph G = K8 with three RIks with
k = 1, 2, 3, with the corresponding maximum stable set highlighted in gray: (a) an induced subgraph
with a K2-free complement (a clique) and α(G[U]) = 1, (b) an induced subgraph with a K3-free
complement and α(G[U]) = 2, (c) an induced subgraph with a K4-free complement and α(G[U]) = 3.

k ∈ {1, . . . , k̄}. The overall goal is of assessing whether, even with small values of k̄, the
bound provided by

⋂k̄
k=1RSTABk(G) is stronger than that obtained by computing Lovász’s

Theta function with semidefinite programming.

3.1 Different separation problems
Given k ∈ N, the separation problem (in its optimization version) of RIks corresponds to the
following combinatorial optimization problem:

I Problem 1 (Maximum Weighted Subgraph with Given Stability Number (MWS-GSN)). Given
a graph G = (V,E), a weight vector x∗ ∈ Rn, and an integer k, find a subset of vertices
U ⊆ V of maximum weight inducing a subgraph G[U] with stability number equal to k.

The restriction of RIs to a given RHS does not yield an easier separation problem, at least
not from a theoretical perspective:

I Observation 5. MWS-GSN is strongly NP-hard.

Proof. Consider the decision version of MWS-GSN, which asks whether G contains an
induced subgraph G[U] of weight ≥M and α(G[U]) = k. Letting M = 0 and x∗ ∈ Rn+, the
problem has answer YES/NO if and only if MSS-d with input L = k and G has answer
YES/NO. J

For computational ease but without loss of generality, we introduce an alternative way to
optimize over

⋂k̄
k=1RSTABk(G), which only requires to solve a relaxation of MWS-GSN.

Consider the following inequalities, which we refer to as RI≤k s:

I Definition 6. The set of all RI≤k s is:
∑
i∈U xi ≤ k, for all U ⊆ V : α(G[U]) ≤ k.

The relationship between RIks and RI≤k s is as follows:

I Proposition 7. For any k ∈ N, a RI≤k is either a RIk or it is dominated by a RI≤k′ for
some k′ < k.

Proof. Let
∑
i∈U xi ≤ k be a RI≤k . If α(G[U]) = k, it is a RIk. If α(G[U]) < k, the

inequality
∑
i∈U xi ≤ k′ is a RIk′ with k′ = α(G[U]) < k. It also dominates

∑
i∈U xi ≤ k:

the two inequalities have the same left-hand side, while the second one has a strictly smaller
right-hand side. J

S. Coniglio and S. Gualandi 29:5

Proposition 7, when applied recursively, implies that, by iteratively separating RI≤k s in lieu
of RIks for increasing values of k ∈ {1, . . . , k̄}, the only inequalities that will be generated
are RIks, thus showing that the adoption of RI≤k is without loss of generality.

The separation problem (in optimization version) for RI≤k s is:

I Problem 2 (Maximum Weighted Subgraph with Bounded Stability Number (MWS-BSN)).
Given a graph G = (V,E), a weight vector x∗ ∈ Rn, and an integer k, find a subset of vertices
U ⊆ V of maximum weight inducing a subgraph G[U] with stability number smaller than or
equal to k.

Observe that MWS-BSN is a relaxation of MWS-GSN.

3.2 MWS-BSN: the separation problem of RI≤k s
We will now investigate the separation problem for RI≤k s: MWS-BSN. Previous work on a
closely related problem can be found in [3, 4].

The aim of this section is to show how MWS-BSN can be solved via branch-and-cut. For
the purpose, we will introduce a set of inequalities which are necessary to correctly formulate
it in the vertex-space. We remark that those inequalities are valid for MWS-BSN only, and
not for MSS.

Observe that, for any U ⊆ V , α(G[U]) ≤ k if and only if, for all stable sets S of G with
|S| = k + 1, |S ∩ U | ≤ k. We deduce that, letting u ∈ {0, 1}n be the characteristic vector of
U , the following constraints are both necessary and sufficient for u to be a feasible solution
to MWS-BSN. We refer to them as Cover Inequalities (CIs) (as they play the same role as
cover inequalities for the 0-1 knapsack problem):

I Definition 8. Let S=k+1 be the collection of all stable sets of G of cardinality equal to
k + 1. The set of CIs is:

∑
i∈S ui ≤ k, for all S ∈ S=k+1.

Note that, as much as RIks for k > 1 can be seen as a generalization of clique inequalities,
CIs can be regarded as a generalization of edge inequalities which, in the separation problem
of clique inequalities (the max clique problem), prevent the presence of stable sets of size 2
in the induced subgraph.

From a polyhedral perspective, the following holds:

I Proposition 9. CIs are not facet defining for MWS-BSN.

Proof. Consider a CI
∑
i∈S ui ≤ k. If S is not an inclusion-wise maximal stable set, there is

a larger stable set S′ containing it. It follows that the inequality
∑
i∈S′ ui ≤ k dominates∑

i∈S ui ≤ k, as it is obtained from the latter by lifting each variable uj with j ∈ S′ \ S with
a unit coefficient. J

Consider now the following constraints, which we call Lifted Cover Inequalities (LCIs):

I Definition 10. Let S≥k+1
M be the collection of maximal stable sets of G of cardinality

≥ k + 1. The set of LCIs is:
∑
i∈S ui ≤ k, for all S ∈ S

≥k+1
M .

LCIs can be shown to be facet defining for MWS-BSN. For the purpose, we first introduce
the following lemma:

I Lemma 11. Let S ∈ S≥k+1
M . LCIs are facet defining for MWS-BSN when restricted to

G[S], i.e., to the subspace where ui = 0 for all i ∈ V \ S.

SEA 2017

29:6 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

Proof. Since G[S] is a stable set, any subset S′ ⊆ S of at most k vertices yields a feasible
solution to MWS-BSN. The convex hull of such solutions is thus given by three groups of
constraints:

∑
i∈S ui ≤ k; ui ≥ 0 for all i ∈ S; and ui ≤ 1 for all i ∈ S. Together, they

form a totally unimodular system. Since, by definition of LCIs, |S| ≥ k + 1, the inequality∑
i∈S ui ≤ k is not implied nor dominated by any of the constraints in the other two groups

and, thus, it is facet defining. J

The following can now be established:

I Theorem 12. LCIs are facet defining for MWS-BSN.

Proof. Let j1, . . . , j|V \S| be an ordering of V \ S. Let M be the set of integer solutions to
MWS-BSN and letM ` be the subset ofM restricted to ujk

= 0 for all k ∈ {`+1, . . . , |V \S|},
where {`+ 1, . . . , |V \ S|} is considered equal to ∅ if `+ 1 > |V \ S|. We employ a sequential
lifting argument. Starting from the inequality

∑
i∈S ui ≤ k which, as of Lemma 11, is facet

defining for conv(M0), at each lifting iteration ` we obtain a facet of conv(M `) and, for
` = |V \ S|, a facet of conv(M).

At iteration `, given the lifted inequality
∑
i∈S ui +

∑
k∈{1,...,`−1} λjk

ujk
≤ k, valid for

conv(M `−1) for some λj1 , . . . , λj`−1 ∈ R+, we compute the (largest) coefficient λj`
for which

the new inequality
∑
i∈S ui+

∑
k∈{1,...,`−1} λjk

ujk
+λj`

uj`
≤ k is valid for conv(M `∩{uj`

=
1}) (and thus for conv(M `)). This lifting problem reads:

Λ` = max
u∈{0,1}n

∑
i∈S

ui +
∑

k∈{1,...,`−1}

λjk
ujk

(1a)

s.t. uj`
= 1 (1b)

ujk
= 0 ∀k ∈ {`+ 1, . . . , |V \ S|} (1c)

α(G[{i ∈ V : ui = 1}]) ≤ k. (1d)

Since S is maximal by definition of LCIs and j` /∈ S, ∃i ∈ S : {i, j`} ∈ E. Let then S′

be a subset of S containing vertex i, of cardinality |S′| = k. Since S′ is a stable set and
{i, j`} ∈ E, α(G[S′ ∪ {j`}]) = α(G[S′]) = |S′| = k. By letting uj`

= 1 and ui = 1 for all
i ∈ S′ we thus obtain a feasible solution to the lifting problem of value k. This shows that
Λ` ≥ k. Since the lifted inequality is valid if and only if Λ` + λj`

≤ k, we deduce λj`
≤ 0.

To show that λj`
= 0 for all ` ∈ {1, . . . , |V \ S|}, first note that, if λjk

= 0 for all
k ∈ {1, . . . , ` − 1}, then Λ` ≤ k. Due to the previous argument, this implies Λ` = k and,
hence, λj`

= 0. Also note that, for ` = 1, no terms λjk
ujk

appear in the objective function
and, hence, λj1 = 0. The claim then follows by induction (if λj1 , . . . , λj`−1 = 0, then λj`

= 0),
proving that, at the end of the lifting procedure, any LCI is lifted back to itself, and, therefore,
is facet defining. J

Letting u∗ ∈ [0, 1]n (corresponding to a, possibly infeasible, solution to MWS-BSN), the
separation problem for LCIs (in search version) reads:

I Problem 3 (SEParation problem for LCIs (LCI-SEP)). Given a graph G = (V,E), a vector
of vertex weights u∗ ∈ Rn, and an integer k, find a maximal stable set S of G with both
weight and cardinality greater than or equal to k + 1, or prove that none exists.

Not surprisingly, the following holds:

I Proposition 13. LCI-SEP is NP-hard.

S. Coniglio and S. Gualandi 29:7

Algorithm 1: Exact algorithm for the optimization over
⋂k̄
k=1RSTABk(G).

Solve the (current) relaxation of MSS; let x∗ be its solution;
Let k := 1;
while k ≤ k̄ do

solve MWS-BSN via branch-and-cut, separating LCIs;
if the corresponding RI≤k is violated then

add it to the relaxation of MSS;
let k := 1;

else
let k := k + 1;

end
end

Proof. MSS-d with input L and G has answer YES if and only if LCI-SEP with input
k = L− 1 admits a feasible solution. J

Note that, due to the equivalence between optimization and separation [11], the facet-
definingness of LCIs and their NP-hardness imply, en passant, the NP-hardness of MWS-
BSN.

We remark that, since CIs are necessary to formulate MWS-BSN in the vertex space and
there is an exponential number of them, solving MWS-BSN in that space via branch-and-
bound requires a cut generation procedure.

4 Algorithmic aspects

In this section, we provide an outline of our algorithm for optimizing over
⋂k̄
k=1RSTABk(G)

and then discuss a few of its aspects.

4.1 Algorithm outline
The overall algorithm by which the function

∑
i∈V xi is maximized over RSTABk(G) can

be summarized as follows:

4.2 Domination aspects of RIs: connectedness of G[U]
An easy condition under which a RI is dominated is the following one:

I Observation 14. Any RI corresponding to a disconnected G[U] is dominated.

Proof. Assuming that G[U] contains ` connected components G[U1], . . . , G[U`], α(G[U]) =∑`
j=1 α(G[U`]). Hence,

∑
i∈U xi ≤ α(G[U]) is the linear combination with unit weights of

the ` inequalities
∑
i∈Uj

xi ≤ α(G[Uj]), for j ∈ {1, . . . , `}. J

To prevent the introduction of RIks with a disconnected G[U], we identify (in linear time)
the connected components G[U1], . . . , G[Uk] of G[U] after each RIk is generated. We then
introduce a RI for each component, in lieu of the original one. For that, we recompute
the RHS of each new inequality as α(G[Uj]) (which is an easy task, provided that |U | is
reasonably small). Note that, since, for all j ∈ {1, . . . , k}, α(G[Uj]) ≤ α(G[U]) = k, all the

SEA 2017

29:8 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

inequalities obtained after the decomposition of G[U] are RIk′s with k′ < k, thus being in⋂k̄
k=1RSTABk(G).

4.3 Practical separation of LCIs

First, we note that, in the context of a branch-and-cut algorithm for MWS-BSN, LCIs can
be separated on the incumbent solution. This allows to consider only the case where u is
a binary vector. If this is the case, LCI-SEP becomes exactly an instance of MSS-d with
L = k+1 due to the weight of the stable set becoming equal to its cardinality. Note also that,
conveniently, LCIs can be obtained by separating CIs and, then, making the corresponding
stable set maximal a posteriori via a greedy algorithm, in O(n2).

We remark that the separation of RI≤k s for the MSS problem entails, via the separation
of CIs/LCIs, the solution of, yet again, MSS. Two things must be noted though: 1) the
separation problem for CIs/LCIs can be solved on the subgraph induced by the incumbent
solution u of MWS-BSN, which is much smaller, in practice, than G; 2) assuming k � α(G)
for a sufficiently small k, finding a stable set of size k is, in practice, a computationally more
affordable task than computing α(G).

In our computations, we will carry out the separation of CIs/LCIs with the exact solver
Cliquer [17], which implements a combinatorial branch-and-bound algorithm not relying on
mathematical programming relaxations.

4.4 Separating RI≤k s on the support of x∗

We will restrict ourselves to the subgraph induced by the solution vector being separated,
x∗ in this case, also when solving MWS-BSN. For this problem, a simple argument also
allows to fix ui = 0 for all i ∈ V where x∗i = 1. This is because, if x∗i = 1, assuming that
the LP relaxation of MSS contains, at least, all edge inequalities (which is always the case
in our implementation), we have that, for all j ∈ V : {i, j} ∈ E, x∗j = 0. As a consequence,
when the aforementioned restriction is in place, vertex i is isolated. Since we are looking for
inequalities where G[U] is connected, node i can thus be safely discarded.

4.5 Heuristic procedure

To speedup the cutting plane algorithm for RIks, we also introduce a simple greedy heuristic
for their separation. After sorting the vertices of V in nonincreasing order of x∗, we add them
to U one at a time, until a maximal clique is formed (this way, only stable sets of cardinality
1 are introduced). Then, we add, in the previously found order, the next k − 1 nodes. After
this operation, the stability number of G[U] is, at most, k. Then, for each vertex currently
not in of U , we add it to U only if it does not form a stable set of cardinality k + 1. If it
does, we skip it and continue to the next vertex.

The algorithm runs in O(n logn+nk+1), where O(n logn) accounts for sorting and O(nk)
is the number of operations needed to check whether a new vertex increases the stability
number of the current subgraph past the upper bound of k. The latter operations are
executed O(n) times. Note that, by construction, any solution found by this heuristic is
maximal. If, after the exploration of a given amount of nodes, the heuristic terminates
without finding a violated inequality (the amount is set to 2 millions in our experiments), we
resort to branch-and-cut.

S. Coniglio and S. Gualandi 29:9

5 Computational study

We now report on a set of results obtained with the algorithm that we described in the
previous sections for the separation of topology-free RIs with a given RHS.

We remark that computational efficiency is not our primary concern here. Rather, we focus
on assessing the quality of the bounds obtained with

⋂k̄
k=1RSTABk(G) for increasing values

of k̄. We will compare those bounds to those obtained when optimizing over QSTAB(G) (the
relaxation containing all clique inequalities) and when employing Lovász’s Theta function
ϑ(G), which yields one of the tightest upper bounds to MSS known in the literature (always
at least as tight as that obtained with QSTAB(G)). We refer to the latter two bounds as
αQSTAB(G) and αϑ(G). Throughout our experiments, we adopt QSTAB(G) as the initial
relaxation of MSS. Given an upper bound UB, we will measure its quality in terms of the
fraction of gap that it closes w.r.t. αQSTAB(G). Formally, we define the closed gap as:

Closed Gap % :=
(

1− UB − α(G)
αQSTAB(G)− α(G)

)
100.

5.1 Instances
We consider three groups of instances, all corresponding to sparse graphs (we recall that
sparse graphs are usually much harder to solve than dense ones):
1. The first group contains uniform random graphs, generated with rudy [20]. They have

60, 70, and 80 vertices and an edge density between 5% and 25%. Those instances are
particularly useful to measure the impact of RIs≤k with k̄ > 3.

2. The second group is a subset of the largest instances among those used in [13] to solve
MSS via SDP techniques. They are very sparse, with a density between 1% and 5%.

3. The third group is a small subset of sparse graphs taken from the DIMACS challenge on
the max clique problem. All the instances for which either αQSTAB(G) = α(G) or for
which αQSTAB(G) cannot be computed exactly within the time limit are discarded.

5.2 Implementation details
Our algorithm is coded in C, using Gurobi 7.0 as MILP solver. We adopt the parallel
setting, with 8 threads and default parameters. In all the separation problems, we set
solutionlimit=1, imposing a violation cutoff of 0.01. For the separation of LCIs, we use
Cliquer 1.21. The value ϑ(G) is obtained with DSDP 5.8. All the results are produced
within a time limit of 7200 seconds (two hours) on an Intel i7-3770 CPU @ 3.40GHz desktop
computer with 8 cores, with 16GB RAM.

5.3 A small example: the Chvàtal graph
As an illustrative example, we report the results obtained over the Chvàtal graph, the smallest
triangle free 4-colorable 4-regular graph, see [5].

Figure 2 shows 11 RIs with k̄ = 3 generated by our topology free cutting plane algorithm,
assuming QSTAB(G) as the initial relaxation. Apart from the fourth inequality, which is
isomorphic to the web inequality W (8, 3), none of the remaining RIs corresponds to any
of the valid inequalities with a given topology that are known in the literature. While the
bound obtained with QSTAB(G) is αQSTAB(G) = 6 (corresponding to the solution xi = 1

2
for all i ∈ V) and that obtained with Lovász’s Theta function is αϑ(G) = 4.895, with RIsks
and k = 3 we obtain a better bound equal to 4.5.

SEA 2017

29:10 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

Figure 2 The set of the 11 RIks which are obtained when optimizing over RSTABk(G) with k = 3
on the Chvàtal graph. They yield a bound of 4.5, as opposed to αQST AB(G) = 6 and ϑ(G) = 4.895.

5.4 Computational Results

Figure 3 reports the percentage of closed gap plotted against the running time for instance
r-70-10 in group 1, obtained when executing Algorithm 1 with k̄ = 5. This plot clearly
shows that, in the very first iterations of the algorithm, RIs are already able to close a large
percentage of the gap, closing 90% of it in only 40 seconds. After 250 seconds, nearly 100% of
the gap is closed. The additional 250 seconds are only necessary to prove (computationally)
that the upper bound that has been obtained cannot be improved any further. The plot in
the figure illustrates a behaviour which can be observed in all the results that we will discuss
in the next paragraph.

The results obtained on the three groups of instances are summarized in Table 1. For
each value of k̄ = {2, 3, 4, 5}, we report the Upper Bound (UB) that has been found, the
running time in seconds (Time), and the number of cuts that were generated (Cuts). We
also report the average closed gap (Avg ClGap), as computed over the instances belonging
to each group.

On the first group of instances, our algorithm manages to close, on average, more than
50% of the open gap already with k̄ = 2. Larger values of k̄ yield a larger closed gap, up to
more than 80% with k̄ = 5. Note though that this result is counterbalanced by an increase
of running time as, for k̄ = 5, most instances hit the time limit of 2 hours.

We remark that, in the first two groups of instances, RIks with k̄ = 3 suffice to obtain
stronger bounds than those achieved with Lovász’s Theta function ϑ(G). On the instances
in group 1 we register, on average, 67.7% of gap closed with RIk, as opposed to 67.6% with
ϑ(G), a value which increases to 73.2% for group 2 as opposed, for that group, to the 65.8%
obtained with ϑ(G).

The improvement w.r.t. ϑ(G) further increases when considering k̄ = 4 and k̄ = 5. The
quality of the bound improvement becomes hard to assess though on the third group of

S. Coniglio and S. Gualandi 29:11

●

●
●

●

●

●

●

●

●●

●●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●●
●
●●●
●●●
●●
●●●●●●●●

●●●●●
●●●●
●●●

●●●●
●●●●●●●

●●●
●●●
●
●●●

●

●●
●●
●●●●●●●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●● ●●●●● ●
●●●●●●●●●●

●●●●●
●●●● ●

●●●●●●●●
●●●

●● ●●●● ● ●●●● ●●●●
● ●●● ●

●● ●● ●●● ●● ●● ● ● ●●

●
●●
●

●
●

●

●

●●
●●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●●
●●●
●●●●●●●●
●●
●●●●●●●●●
●●●
●●●●●
●●●●●●
●●●●●●

●●●
●●
●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●● ●●●● ●

●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●● ●● ●● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●●

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300 350 400 450
Running Time (seconds)

C
lo

se
 G

ap
 %

Instance r−70−10: Closed Gap vs. Running Time

Figure 3 Percentage of closed gap plotted against the running time for instance r-70-10 in group
1, obtained when executing Algorithm 1 with k̄ = 5.

instances where, already with k̄ = 2, our algorithm hits the time limit in three cases out of
seven.

We remark that the cuts that we generate are quite sparse. As an example, consider
instance r-70-10 from group 1 (containing 70 nodes). On average, we generate inequalities
with |U | (corresponding to the number of nonzeros in the LHS) equal to 5.2 for k = 2, 8.01
for k = 3, 10.7 for k = 4, and 12.9 for k = 5.

To conclude, we highlight the results on the instance hamming6-4: with only 11 cuts with
k̄ = 2, generated on top of those in QSTAB(G), our algorithm achieves the optimal bound
equal to 4, while both QSTAB(G) and ϑ(G) yield a larger upper bound equal to 5.33.

6 Concluding remarks

We have addressed the separation of topology-free rank inequalities with a fixed (arbitrary)
right-hand side (RIks). We have proposed a methodology to optimize over the closure of
RIks for all k ∈ {1, . . . , k̄}, investigating the arising separation problem and its polyhedral
structure. For its solution, we have proposed a branch-and-cut method which separates facet
defining inequalities belonging to an exponentially large family of inequalities that are needed
to correctly model the problem.

Overall, RIks with a small right-hand side k � α(G) yield a substantial bound improve-
ment over the bound provided by the fractional clique polytope QSTAB(G). In a number
of cases, such bound is also tighter than ϑ(G), the bound obtained with Lovász’s Theta
function via semidefinite programming.

Future work includes the development of ad hoc algorithms for the separation of RIks
with a small right-hand side k. Due to the bound improvement that, in our experiments, RIs
have shown to yield, the effectiveness of such algorithms could allow to add RIks with k = 2
and k = 3 to the set of cutting planes that are routinely generated to solve the maximum
stable set problem to optimality.

SEA 2017

29:12 Separation of Topology-Free Rank Inequalities for the Max Stable Set Problem

Ta
bl
e
1
B
ou

nd
s
(U

B
)
ob

ta
in
ed

w
ith

R
I k
s
w
ith

k
∈
{2
,3
,4
,5
},

co
m
pa

re
d
to
α

(G
),
α

Q
S

T
A

B
(G

),
an

d
ϑ

(G
).

C
om

pu
tin

g
tim

es
in

se
co
nd

s
(T

im
e)

an
d
to
ta
l

nu
m
be

r
of

ge
ne

ra
te
d
cu
tt
in
g
pl
an

es
(C

ut
s)

ar
e
al
so

re
po

rt
ed

.
B
ou

nd
s
w
hi
ch

ar
e
tig

ht
er

th
an

th
os
e
ob

ta
in
ed

w
ith

ϑ
(G

)
ar
e
hi
gh

lig
ht
ed

in
bo

ld
.
C
lo
se
d
G
ap

,
av
er
ag

ed
in

ge
om

et
ric

m
ea
n
(A

vg
C
lG

ap
),
is
re
po

rt
ed

fo
r
th
e
th
re
e
cl
as
se
s
of

in
st
an

ce
s
al
so

co
ns
id
er
in
g
in
st
an

ce
s
fo
r
w
hi
ch

th
e
tim

e
lim

it
is
m
et
:
sm

al
lu

ni
fo
rm

ra
nd

om
gr
ap

hs
ge
ne

ra
te
d
w
ith

ru
dy

,l
ar
ge

un
ifo

rm
ra
nd

om
gr
ap

hs
ta
ke
n
fr
om

[1
3]
,a

nd
st
ru
ct
ur
ed

in
st
an

ce
s
fr
om

th
e
D
IM

A
C
S
ch
al
le
ng

e.

R
I k

w
it

h
k̄

=
2

R
I k

w
it

h
k̄

=
{2
,3
}

R
I k

w
it

h
k̄

=
{2
,3
,4
}

R
I k

w
it

h
k̄

=
{2
,3
,4
,5
}

α
(G

)
α

Q
(G

)
ϑ

(G
)

C
ut

s
U

B
T

im
e

C
ut

s
U

B
T

im
e

C
ut

s
U

B
T

im
e

C
ut

s
U

B
T

im
e

r-
60
-5

31
31
.5
0

31
.0
7

5
31

.0
0

0
5

31
.0

0
0

5
31

.0
0

0
5

31
.0

0
0

r-
60
-1
0

23
25
.6
3

23
.6
7

42
23
.4
7

1
96

23
.1
4

28
12
4

23
.0

0
77

12
4

23
.0

0
77

r-
60
-1
5

18
21
.2
0

19
.5
4

70
19
.7
0

2
18
9

19
.1
9

77
31
5

18
.9
7

52
1

45
5

18
.8

1
20
90

r-
60
-2
0

7
9.
25

7.
5

43
7

8.
15

12
54

94
6

7.
79

tli
m

94
6

7.
79

tli
m

94
7

7.
47

tli
m

r-
60
-2
5

14
16
.5
0

14
.6
7

11
2

15
.2
4

12
34
8

14
.7
0

41
3

56
9

14
.3
8

28
14

75
6

14
.1

3
tli
m

r-
70
-5

35
36
.0
0

35
.5
3

5
35
.5
0

0
6

35
.5
0

0
6

35
.5
0

0
8

35
.0

0
0

r-
70
-1
0

26
28
.6
6

26
.8
6

63
26
.7
8

2
13
9

26
.2
9

72
23
0

26
.0
1

41
7

23
6

26
.0

0
45
9

r-
70
-1
5

21
23
.8
2

21
.9
1

10
3

22
.1
6

8
26
5

21
.6
3

28
9

42
3

21
.3
7

21
99

55
0

21
.2

2
tli
m

r-
70
-2
0

17
20
.5
2

18
.2
3

11
9

19
.1
8

30
33
7

18
.4
6

98
5

51
0

18
.1
6

tli
m

51
0

18
.1

5
tli
m

r-
70
-2
5

14
18
.1
3

15
.7
2

14
4

16
.6
6

39
42
1

16
.0
4

20
39

60
7

15
.7
1

tli
m

60
7

15
.6

4
tli
m

r-
80
-5

39
39
.5
0

39
.0
2

3
39

.0
0

0
3

39
.0

0
0

3
39

.0
0

0
3

39
.0

0
0

r-
80
-1
0

27
30
.5
0

28
.5
5

69
29
.0
2

8
19
4

28
.3
8

39
9

35
0

27
.9
5

42
20

39
9

27
.7

6
tli
m

r-
80
-1
5

22
26
.7
4

23
.6
5

12
0

24
.7
6

26
32
8

23
.9
7

18
74

44
8

23
.6
7

tli
m

44
8

23
.5

9
tli
m

r-
80
-2
0

18
22
.7
8

20
.0
5

14
5

21
.0
6

41
42
2

20
.4
0

33
35

51
2

20
.2
2

tli
m

51
2

20
.0

7
tli
m

r-
80
-2
5

16
19
.8
5

17
.0
7

17
8

18
.1
9

85
47
7

17
.6
1

tli
m

47
8

17
.6
1

tli
m

47
8

17
.5

5
tli
m

A
vg

C
lG

ap
67

.6
%

53
.0

%
67

.7
%

73
.4

%
80

.3
%

g1
50
.4

59
67
.0
0

61
.8

99
62
.0
9

50
25
0

60
.8
0

tli
m

25
0

60
.8
0

tli
m

25
0

60
.6

7
tli
m

g1
50
.5

55
64
.0
0

58
.7
3

15
2

58
.5
6

72
30
4

57
.7
5

tli
m

30
4

57
.7
5

tli
m

30
4

57
.6

7
tli
m

g1
70
.3

71
78
.5
0

73
.3
4

76
73
.5
3

44
18
1

72
.1
6

68
61

18
2

72
.1
5

74
15

18
2

72
.1

4
tli
m

g2
00
.2

96
10
0.
00

97
.1
7

21
97
.0
0

11
46

96
.0

0
37
8

49
96

.0
0

43
7

50
96

.0
0

43
9

g2
00
.3

83
94
.5
0

86
.5
2

12
3

86
.6
1

22
1

20
2

85
.2
1

tli
m

20
2

85
.2
1

tli
m

20
2

85
.0

2
tli
m

g3
00
.2

12
2

14
1.
00

12
9.
47

14
4

13
0.
43

86
1

16
9

13
0.

07
tli
m

16
9

13
0.

07
tli
m

16
9

13
0.

07
tli
m

g3
50
.2

13
3

16
1.
00

14
3.
43

27
3

14
6.
11

49
96

27
4

14
5.
99

tli
m

27
4

14
5.
99

tli
m

27
4

14
5.

87
tli
m

g4
00
.1

19
1

20
1.
00

19
4.
79

33
19
5.
50

13
1

60
19

3.
73

tli
m

60
19

3.
73

tli
m

60
19

3.
73

tli
m

A
vg

C
lG

ap
65

.8
%

61
.6

%
73

.2
%

73
.2

%
73

.3
%

br
oc
k2

00
_
1

21
38
.0
2

27
.4
6

26
7

35
.5
9

tli
m

26
7

35
.5
9

tli
m

26
7

35
.5
9

tli
m

26
7

35
.5
9

tli
m

C
12
5.
9

34
43
.0
6

37
.8
1

18
8

39
.7
5

40
9.
2

32
2

39
.2
0

tli
m

32
0

39
.2
1

tli
m

32
2

39
.2
1

tli
m

C
25
0.
9

44
71
.3
7

56
.2
4

37
5

66
.0
5

tli
m

37
5

66
.0
5

tli
m

37
5

66
.0
5

tli
m

37
5

66
.0
5

tli
m

ha
m
m
in
g6
-4

4
5.
33

5.
33

11
4.

00
1.
5

11
4.

00
1.
5

11
4.

00
1.
5

11
4.

00
1.
5

ke
lle

r4
11

14
.8
3

14
.0
1

31
4

13
.8

0
tli
m

31
8

13
.8

0
tli
m

31
4

13
.8

0
tli
m

31
4

13
.8

0
tli
m

M
A
N
N
_
a9

16
18
.0
0

17
.4
8

1
18
.0
0

0.
1

1
18
.0
0

0.
7

1
18
.0
0

2.
7

1
18
.0
0

13
.1

sa
nr
20
0_

0.
9

45
59
.8
2

49
.2
7

36
6

55
.1
4

tli
m

36
6

55
.1
3

tli
m

36
6

55
.1
4

tli
m

36
6

55
.1
4

tli
m

A
vg

C
lG

ap
26

.5
%

19
.5

%
19

.9
%

19
.9

%
19

.9
%

S. Coniglio and S. Gualandi 29:13

References
1 Edoardo Amaldi, Stefano Coniglio, and Stefano Gualandi. Improving cutting plane genera-

tion with 0-1 inequalities by bi-criteria separation. Experimental Algorithms, pages 266–275,
2010.

2 Edoardo Amaldi, Stefano Coniglio, and Stefano Gualandi. Coordinated cutting plane gen-
eration via multi-objective separation. Mathematical Programming, 143(1-2):87–110, 2014.

3 Chitra Balasubramaniam and Sergiy Butenko. The maximum s-stable cluster problem. In
INFORMS 2015 Annual Meeting. INFORMS, 2015.

4 Chitra Balasubramaniam and Sergiy Butenko. The maximum s-stable cluster problem.
Working paper, 2017.

5 Václav Chvátal. The smallest triangle-free 4-chromatic 4-regular graph. Journal of Com-
binatorial Theory, 9(1):93–94, 1970.

6 Vašek Chvátal. On certain polytopes associated with graphs. Journal of Combinatorial
Theory, Series B, 18(2):138–154, 1975.

7 Stefano Coniglio and Martin Tieves. On the generation of cutting planes which maximize
the bound improvement. In Experimental Algorithms (14th International Symposium, SEA
2015, Paris, France, June 29 – July 1, 2015, Proceedings), volume 9125, pages 97–109.
Springer International Publishing, 2015.

8 Harlan Crowder, Ellis L. Johnson, and Manfred Padberg. Solving large-scale zero-one linear
programming problems. Operations Research, 31(5):803–834, 1983.

9 Monia Giandomenico, Adam N Letchford, Fabrizio Rossi, and Stefano Smriglio. Ellipsoidal
relaxations of the stable set problem: theory and algorithms. SIAM Journal on Optimiza-
tion, 25(3):1944–1963, 2015.

10 Monia Giandomenico, Fabrizio Rossi, and Stefano Smriglio. Strong lift-and-project cutting
planes for the stable set problem. Mathematical Programming, 141(1-2):165–192, 2013.

11 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

12 Martin Grötschel, Laszlo Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, 1988.

13 Gerald Gruber and Franz Rendl. Computational experience with stable set relaxations.
SIAM Journal on Optimization, 13(4):1014–1028, 2003.

14 J. Hastad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142,
1999.

15 Richard M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Proceedings of a Symposium on the Complexity of Computer Computations, The
IBM Research Symposia Series. Plenum Press, 1972.

16 Carlo Mannino and Antonio Sassano. Edge projection and the maximum cardinality stable
set problem. DIMACS series in discrete mathematics and theoretical computer science,
26:205–219, 1996.

17 Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied
Mathematics, 120(1):197–207, 2002.

18 Steffen Rebennack, Marcus Oswald, Dirk Oliver Theis, Hanna Seitz, Gerhard Reinelt, and
Panos M. Pardalos. A branch and cut solver for the maximum stable set problem. Journal
of combinatorial optimization, 21(4):434–457, 2011.

19 Fabrizio Rossi and Stefano Smriglio. A branch-and-cut algorithm for the maximum cardin-
ality stable set problem. Operations Research Letters, 28(2):63–74, 2001.

20 Yinyu Ye. Rudy random graph generator. http://web.stanford.edu/~yyye/yyye/Gset.

SEA 2017

http://web.stanford.edu/~yyye/yyye/Gset

Graph Partitioning with Acyclicity Constraints
Orlando Moreira1, Merten Popp2, and Christian Schulz3

1 Intel Corporation, Eindhoven, The Netherlands
orlando.moreira@intel.com

2 Intel Corporation, Eindhoven, The Netherlands
merten.popp@intel.com

3 Karlsruhe Institute of Technology, Karlsruhe, Germany; and
University of Vienna, Vienna, Austria
christian.schulz@{kit.edu, univie.ac.at}

Abstract
Graphs are widely used to model execution dependencies in applications. In particular, the
NP-complete problem of partitioning a graph under constraints receives enormous attention by
researchers because of its applicability in multiprocessor scheduling. We identified the additional
constraint of acyclic dependencies between blocks when mapping streaming applications to a
heterogeneous embedded multiprocessor. Existing algorithms and heuristics do not address this
requirement and deliver results that are not applicable for our use-case. In this work, we show
that this more constrained version of the graph partitioning problem is NP-complete and present
heuristics that achieve a close approximation of the optimal solution found by an exhaustive
search for small problem instances and much better scalability for larger instances. In addition,
we can show a positive impact on the schedule of a real imaging application that improves
communication volume and execution time.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Graph Partitioning, Computer Vision and Imaging Applications

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.30

1 Practical Motivation

The context of this research is the development of computer vision and imaging applications
at Intel Corporation. These applications have high demands for computational power but
often need to run on embedded devices with severely limited compute resources and a tight
thermal budget. Our target platform is a heterogeneous multiprocessor for advanced imaging
and computer vision and is currently used in Intel processors. It is designed for low power
and has small local program and data memories. To cope with the memory constraints,
the application developer currently has to manually break the application, which is given
as a directed dataflow graph, into smaller blocks that are executed one after another. The
quality of this partitioning has a strong impact on communication volume and performance.
However, for large graphs this is a non-trivial task that requires detailed knowledge of the
hardware. Hence, the task should be handled by a well-designed algorithm instead.

There are many existing heuristics for partitioning graphs into blocks of nodes of roughly
equal size. However, our platform has the requirement that there must not be a cycle in the
dependencies between the blocks because they have to be executed one after another.

The contributions of this work are the identification of a new variation of the graph
partitioning problem, proofs it is NP-complete and hard to approximate, as well as the
implementation and evaluation of heuristics that address this problem. First, we present

© Orlando Moreira, Merten Popp, and Christian Schulz;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 30; pp. 30:1–30:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Graph Partitioning with Acyclicity Constraints

input
image

800x600

virtual
image

400x300

(a) OpenVX graph (b) SDF graph

filter 1
 2 KB

virtual
image

800x600

virtual
image

400x300

virtual
image

400x300

output
image

800x600

virtual
image

800x600

filter 2
 2 KB

filter 3
 2 KB

filter 4
 2 KB

filter 5
 2 KB

filter 1
 2 KB

filter 2
 2 KB

filter 3
 2 KB

filter 4
 2 KB

filter 5
 1 KB

120000 120000 120000

480000 480000

(c) SDF graph with invalid partitioning

filter 1
 2 KB

filter 2
 2 KB

filter 3
 2 KB

filter 4
 2 KB

filter 5
 1 KB

120000 120000

480000 480000 120000

(d) SDF graph with valid partitioning

filter 1
 2 KB

filter 2
 2 KB

filter 3
 2 KB

filter 4
 2 KB

filter 5
 2 KB

120000 120000 120000

480000 480000

Figure 1 Depiction of an imaging application graph. The nodes represent processing kernels
and are annotated with the size of the program binaries. The OpenVX graph as specified by the
developer using the API standard is shown in (a), virtual images are intermediate data. The initial
SDF representation is shown in (b) where the edges are annotated with the buffer size, (c) shows
an invalid partition with minimal edge cut, but a bidirectional connection between blocks and thus
a cycle in the quotient graph. A valid partitioning with minimal edge cut is shown in (d).

all necessary background information on the application graph and hardware and explain
our additional constraint in Section 2. We then continue to briefly introduce all basic
concepts and related work in Section 3. We have not been able to identify works that
address the aforementioned constraint of our problem variant, which originates from the
hardware platform and disallows cycles between blocks. The proofs are found in Section 4
and the proposed heuristic algorithms in Section 5. We perform a number of experiments in
Section 6, where we use small graphs to compare our heuristics against an optimal algorithm
that uses exhaustive search. We then evaluate our heuristics for larger graphs in the context
of a real-world imaging application and estimate the impact on the application. In addition,
we demonstrate the scalability of our heuristics with a set of large graphs. Finally, we
conclude in Section 7.

2 Background

Computer vision and imaging applications can often be expressed as stream graphs where
nodes represent tasks that process the stream data and edges denote the direction of the
dataflow. The widely-accepted industry standard OpenVX [11] released in 2014 by the
Khronos group uses a graph-based execution model. With the OpenVX API the developer
can specify the data flow of the application as a graph independent of hardware constraints.
The hardware vendor on the other hand can provide an API implementation that uses
advanced optimizations [21] like specialized hardware, parallelized and pipelined node exe-
cution, overlapped computation and data transfers and aggregated data transfers to avoid
a round trip to external memory.

The application is specified as a Directed Acyclic Graph (DAG) in OpenVX. The nodes
of the DAG are either kernels (small, self-contained functions) or data objects. Edges denote
data dependencies and always connect exactly one kernel with one data object. No cycles
or feedback loops are allowed [11]. The need of some imaging algorithms to access previous
data (e.g. video stabilization) is addressed by special OpenVX delay objects that hold data of
previous graph executions. Our existing tool flow converts the OpenVX graph in linear time
into an Synchronous Dataflow (SDF) graph. SDF is a model of computation that abstracts
from functionality and enables several prevalent analysis and scheduling techniques [15].
In this representation, nodes represent processing and the directed edges represent FIFO

O. Moreira, M. Popp, and C. Schulz 30:3

buffers. The SDF nodes are annotated with the program size for each kernel in the OpenVX
graph. If two kernels are linked by a data object in the OpenVX graph, the SDF nodes
are connected by a directed edge annotated with the size of the data object. The resulting
graph is a DAG. An example of this conversion is shown in Figure 1a and 1b.

In this work, we address a graph partitioning problem that arises when mapping the
nodes of a DAG to the processing elements of a heterogeneous embedded multiprocessor. The
processing elements (PEs) of this platform have a private local data memory and a separate
program memory. A direct memory access controller is used to transfer data between the
local memories and the external DDR memory of the system. The data memories have a size
in the order of hundreds of kilobytes and can thus only store a small portion of the image.
Therefore the input image is divided into tiles. The mode of operation of this hardware
usually is that the nodes in the application graph are assigned to PEs and process the tiles
one after the other. In most cases this can be pipelined such that while the PEs process the
current tile, the direct memory access controller concurrently loads the next tile to the local
memories and writes the processed tile from the previous iteration back to main memory.

However, this is only possible if the program memory size of the PEs is sufficient to
store all kernel implementations. For the hardware platform under consideration it was
found that this is not the case for more complex applications such as a Local Laplacian
filter [18]. Therefore a gang scheduling [7] approach is used where the kernels are divided
into groups of kernels (referred to as gangs) that do not violate memory constraints. Gangs
are executed one after another on the target platform. After each execution, the kernels
of the next gang are loaded. At no time any two kernels of different gangs are loaded in
the program memories of the processors at the same time. Thus all intermediate data that
is produced by the current gang but is needed by a kernel in a later gang needs to be
transferred to external memory.

Since memory transfers, especially to external memories, are expensive in terms of power,
the assignment of nodes to gangs is crucially important. There are many graph partitioning
algorithms for the problem of dividing a graph into blocks of nodes under certain condi-
tions [5]. However, in this case we require a strict ordering of gangs. Data objects may only
be consumed in the same gang where they were produced and in gangs that are scheduled
later. If this does not hold, there is no valid order in which the gangs can be executed
on the platform. A valid order is a topological ordering of the graph that represents data
dependencies between gangs. This graph can be created by taking the original DAG of the
application and contracting all nodes that are assigned to the same gang into a single node.
In order for a valid gang execution order to exist, the resulting graph therefore must be a
DAG itself. An example for an incorrect assignment is shown in Figure 1c and a correct
assignment in Figure 1d.

3 Preliminaries

In this section, we introduce the mathematical notation used throughout this paper, give the
formal definition of the graph partitioning problem and show its relation to multiprocessor
scheduling as a whole.

3.1 Basic Concepts
Let G = (V = {0, . . . , n− 1}, E, c, ω) be an directed graph with edge weights ω : E → R>0,
node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets, i.e.,
c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e). We are looking for blocks of nodes V1,. . . ,Vk

SEA 2017

30:4 Graph Partitioning with Acyclicity Constraints

that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. We call a block Vi

underloaded [overloaded] if c(Vi) < Lmax [if c(Vi) > Lmax]. If a node v has a neighbor in
a block different of its own block then both nodes are called boundary nodes. An abstract
view of the partitioned graph is the so-called quotient graph, in which nodes represent blocks
and edges are induced by connectivity between blocks. The weighted version of the quotient
graph has node weights which are set to the weight of the corresponding block and edge
weights which are equal to the weight of the edges that run between the respective blocks.

3.2 Problem Definition
The partitions that we are looking for have to satisfy two constraints: a balancing constraint
and a acyclicity constraint. The balancing constraint demands that ∀i ∈ {1..k} : c(Vi) ≤
Lmax := (1 + ε)d c(V)

k e for some imbalance parameter ε ≥ 0. The acyclicity constraint
mandates that the quotient graph is acyclic. The objective is to minimize the total cut∑

i,j w(Eij) where Eij := {(u, v) ∈ E : u ∈ Vi, v ∈ Vj}. The directed graph partitioning
problem with acyclic quotient graph (DGPAQ) is then defined as finding a partition Π :=
{V1, . . . , Vk} that satisfies both constraints while minimizing the objective function.

3.3 Relation to Scheduling
The balancing constraint ensures that the size of the programs in a scheduling gang does
not exceed the program memory size of the platform and thus is an important constraint
for scheduling. Reducing the edge cut reduces the amount of data transfers between gangs
and thus improves the memory bandwidth requirements of the application. Note that an
application is either compute-limited (processors are always occupied) or bandwidth-limited
(processors wait for data). Thus a minimization of transfers does not guarantee an optimal
schedule. However, especially in embedded systems, the memory bandwidth is often the
bottleneck and a schedule requiring a large amount of transfers will neither yield a good
throughput nor good energy efficiency [17]. Therefore, we address the problem of minimizing
the edge cut under the given constraints in isolation and do not solve a scheduling problem
in this work. We provide linear-time heuristics that can later be employed as subroutines
in broader scheduling algorithms to reduce data transfers.

3.4 Related Work
There has been a vast amount of research on graph partitioning so that we refer the reader
to [23, 4, 5] for most of the material. Here, we focus on issues closely related to our main
contributions. All general-purpose methods that are able to obtain good partitions for large
real-world graphs are based on the multilevel principle. The basic idea can be traced back to
multigrid solvers for systems of linear equations [24] but more recent practical methods are
based on mostly graph theoretical aspects, in particular edge contraction and local search.
There are many ways to create graph hierarchies such as matching-based schemes [27, 14, 19]
or variations thereof [1] and techniques similar to algebraic multigrid, e.g. [16]. We refer the
interested reader to the respective papers for more details. Well-known software packages
based on this approach include Jostle [27], KaHIP [22], Metis [14] and Scotch [6]. However,
none of these tools can partition directed graphs under the constraint that the quotient
graph is a DAG. We are not aware of any related work that is able to satisfy this constraint.

Gang scheduling was originally introduced to efficiently schedule parallel programs with
fine-grained interactions [7]. In recent work, this concept has been applied to schedule par-
allel applications on virtual machines in cloud computing [25] and extended to include hard

O. Moreira, M. Popp, and C. Schulz 30:5

V1=S

ts

V2=V \ S

v5

v1

v2

v3

v4

Figure 2 Reduction: subset sum problem is reduced to DGPAQ by creating a node for each ai

(the nodes in the center) and adding a source and sink node with edges as shown.

real-time tasks [10]. An important difference to our work is that in gang scheduling all tasks
that exchange data with each other are assigned to the same gang, thus there is no commu-
nication between gangs. In our work, the limited program memory of embedded platforms
does not allow to assign all kernels to the same gang. Therefore, there is communication
between gangs which we aim to minimize by employing graph partitioning methods.

4 Hardness Results

In this section, we show that the problem under consideration is NP-complete when restricted
to the case k = 2 and ε = 0, and also hard to approximate with a finite approximation
factor for k ≥ 3. A given solution for an instance of DGPAQ can be verified in linear
time by constructing the quotient graph Q, checking the balance constraint and checking
Q for acyclicity. The last task can be done in linear time in the size of Q using Kahn’s
algorithm [13]. We now reduce the subset sum problem to our problem. The proof is
inspired by the reduction used in [20] which shows that the most balanced minimum cut
problem is NP-complete.

I Theorem 1. The DGPAQ problem is NP-complete for the bi-partitioning case with ε = 0.

Proof. We reduce the NP-complete [9] subset sum problem to DGPAQ. The decision version
of the subset problem is stated as follows: Given a set of integers {a1, . . . , an}, is there a
non-empty subset I ⊆ {1, . . . , n} such that

∑
i∈I ai =

∑
i 6∈I ai holds? The construction of

an equivalent instance of DGPAQ is as follows: We construct a DAG G = (V,E, c) with
nodes s, t ∈ V as well as a node vi ∈ V for each i ∈ {1, . . . , n}. Then we set A :=

∑
i 2ai and

define the node weights as c(s), c(t) := A, c(vi) := 2ai. Afterwards, we insert edges (s, vi) ∀i
and (vi, t) ∀i. The graph is a DAG – an example topological ordering puts s first, t last and
the remaining nodes at arbitrary positions in between. Figure 2 illustrates the construction.
By definition, Lmax = 3A/2 for this instance of DGPAQ. Note that by construction A is
divisible by 2. The construction can be done in polynomial time. Note that all balanced
partitions (S, V \S) cut n edges, and due to the balance constraint s and t can never be in
the same block. This ensures that there cannot be any edge (u, v) with u ∈ V \S and v ∈ S
and hence the quotient graph is acyclic. If the subset sum instance is a yes instance, then
there is perfectly balanced bipartition and vice versa. J

The following theorem shows that it is not possible to find a finite factor approximation
algorithm for our general problem where k is not a constant. The proof is a modification

SEA 2017

30:6 Graph Partitioning with Acyclicity Constraints

of the proof by Andreev and Räcke [2] which shows this for the classical graph partition-
ing problem, i.e. no acyclicity constraint and for undirected inputs. Hence, we follow the
proof of [2] closely with the difference being that the inputs that we construct are DAGs.

I Theorem 2. The directed graph partitioning problem with acyclic quotient graph has no
polynomial time approximation algorithm with a finite approximation factor for ε = 0, k ≥ 3
unless P = NP .

Proof. The 3-Partition problem is defined as follows. Given n = 3k integers a1, . . . , an

and a threshold A such that A/4 < ai < A/2 and
∑

i ai = kA, decide whether the num-
bers can be partitioned into triples such that each triple adds up to A. This problem is
strongly NP-complete [9], i.e. the problem remains NP-complete if all numbers ai and A are
polynomially bounded.

Now suppose we have an approximation algorithm for the directed graph partitioning
problem with acyclic quotient graph for ε = 0. We can use this algorithm to decide the
3-Partition problem with polynomially bounded numbers. To do so, we construct a graph G
that contains n subgraphs. Subgraph i has ai nodes. All weights are set to 1. We make
each of the subgraphs a directed clique, i.e. all edges (u, v) with u < v are inserted into
the subgraph. By construction G is a DAG. This is the main difference to [2] in which
the subgraphs are undirected cliques. Also since all numbers are polynomially bounded, the
construction takes polynomial time.

Now, if the 3-Partition instance can be solved, the k-DGPAQ problem in G can be solved
without cutting any edge. Note that this solution also fulfills the acyclicity constraint. If the
3-Partition instance cannot be solved, then the optimum solution to the k-DGPAQ problem
will cut at least one edge. An approximation algorithm with finite approximation factor has
to differentiate between these two cases. Hence, it can solve the 3-Partition problem. J

5 Heuristic Algorithms

In this section we present simple yet effective construction and local search heuristics to
tackle the problem. Our general approach is as follows: First create an initial solution
based on a topological ordering of the input graph and then apply a local search strategy
to improve the objective of the solution while maintaining both constraints. We start the
section with the construction algorithm and then present different local search heuristics.

5.1 Construction Algorithm
All of our local search heuristics start with an initial partitioning that fulfills both con-
straints, i.e. the quotient graph is acyclic and the balance constraint is satisfied. Our algo-
rithm does this by computing a random topological ordering of the nodes using a modified
version of Kahn’s algorithm with randomized tie-breaking. More precisely, the algorithm
initializes a list S with all nodes that have indegree zero and an empty list T. It then repeats
the following steps until the list S is empty: Select a node from S uniformly at random
and remove it from the list. Add the node to the tail of T. Remove all outgoing edges
of the node. If this reduces the indegree of another node to zero, add it to S. When the
algorithm terminates, the list T is a topological ordering of all nodes unless the graph has
a cycle. Using list T, we can now derive initial solutions by dividing the graph into blocks
of consecutive nodes w.r.t. the ordering. Due to the properties of the topological ordering
there is no node in a block Vj that has an outgoing edge ending in a block Vi with i < j.
Hence, the quotient graph of our solution is cycle-free. In addition, the blocks are chosen

O. Moreira, M. Popp, and C. Schulz 30:7

vV1 V2

V3

t

s

Figure 3 A DAG divided into three blocks. Internal edges are solid, external edges are dashed.
Node v is a node that has non-zero internal and external cost for both Cin and Cout. Because of
(s, v) ∈ E ⇒ Cin(v, 2) > 0, the node cannot be moved to V1. Because of (v, t) ∈ E ⇒ Cout(v, 2) > 0,
the node cannot be moved to V3 either.

such that the balance constraint is fulfilled. There is obviously a large number of possible
divisions. Our algorithm generates a balanced initial partitioning by dividing the ordering
into blocks of size b c(V)

k c or d
c(V)

k e uniformly at random. Since the construction algorithm
is randomized, we run the heuristics ` times with different initial partitionings and pick the
best solution afterwards.

5.2 Local Search Algorithms

Our local search heuristics take a given initial solution and move nodes between the blocks
in order to decrease the edge cut. The reduction of the edge cut after a move is called the
gain of the move. To compute the gain when moving node v, we define two functions:

Cin(v, i) := ω({(u, v) ∈ E : u ∈ Vi})
Cout(v, i) := ω({(v, u) ∈ E : u ∈ Vi})

Roughly speaking, Cin is the combined weight for all edges that start in nodes of block
Vi and end in v. Analogously, Cout is the combined weight of all edges that start in v and
connect to nodes in the block Vi. If v ∈ Vi, these costs are the weights of internal edges.
These edges will become external edges and increase the objective if we move v to a different
block. If v ∈ Vj , j 6= i, then these costs are weights of external edges, which will become
internal and thus reduce the edge cut if v is moved to Vi. Figure 3 shows an example of
internal and external edges.

We have multiple local search heuristics that differ in the size of the local search neigh-
borhood: Simple Moves, Advanced Moves, Global Moves as well as FM moves. We found
that the heuristics can often yield better results with a different initial partitioning. In order
to compare the different heuristics, we will give each heuristic the same time budget and
will restart the heuristics for different initial partitionings until it is exhausted.

5.2.1 Simple Moves (SM)

Simple moves start by picking a node v and moving it to a different block if this does not
violate the constraints and improves the objective. Our simple move heuristic only considers
to move a node v ∈ Vi to adjacent blocks Vi−1 and Vi+1. This is because there is a fast
algorithm to check the acyclicity constraint. Assuming that the given solution is feasible
with respect to both constraints, it is sufficient to check whether Cout(v, i) = 0 in the case
that we want to move v to Vi+1 and Cin(v, i) = 0 in the case that we want to move v to

SEA 2017

30:8 Graph Partitioning with Acyclicity Constraints

Vi−1. The gain of a node movement depends on the block and is calculated as:{
Cin(v, i− 1)− Cout(v, i) when moving v to Vi−1

Cout(v, i+ 1)− Cin(v, i) when moving v to Vi+1.

A block is eligible if the move does not create a cycle and does not overload the block. In
addition, the gain has to be positive or zero but the balance of the partitioning is improved.
If there is such a block, we move v to it. In the case that both blocks are eligible for the
move and have the same gain, the heuristic selects one uniformly at random.

We repeat the process for all nodes. Our heuristic stops if there is no node with positive
gain or balance cannot be improved. Hence, our heuristic terminates when a local minimum
is found with respect to the local search neighborhood defined above. Note that even though
the edge cut is not strictly monotonically decreasing, the combination of edge cut and
difference in block weight is. In one pass, the heuristic considers the in- and outgoing edges
of all nodes. Thus, each edge is considered exactly twice to calculate the gain for all nodes
and the complexity of the heuristic is O(m) per round.

5.2.2 Advanced Moves (AM)
This algorithm increases the local search neighborhood of the Simple Moves algorithm by
considering more target blocks for a move. For the node v ∈ Vi under consideration, all
incoming edges are checked to find the node u ∈ VA where A is maximal. Also all outgoing
edges are checked to find the node w ∈ VB where B is minimal. Since the original partition
was obtained from a topological ordering, A ≤ i ≤ B must hold, otherwise there would be
back edges in the ordering and thus it would not be a topological ordering. If A = i = B,
then the node v has in- and outgoing edges in its own block and cannot be moved. If A < i,
then the node can be moved to blocks preceding Vi up to and including VA in the topological
ordering without creating a cycle. This is because all incoming edges of the node will either
be internal to block VA or are forward edges starting from blocks preceding VA. Therefore
it is still a topological ordering. However, when the node is moved to a block preceding VA,
the edge starting in this block becomes a back edge and the ordering is not a topological
ordering anymore. Similar, if i < B, the node can be moved to blocks succeeding Vi up to
and including VB . Thus moving the node to Vj with j ∈ {A, . . . , B} \ {i} will preserve the
topological ordering of blocks. This is a sufficient condition to ensure the acyclicity constraint
and is not computationally expensive to check. However, since it is not a necessary condition,
it might prevent the heuristic from testing some possible moves. The Global Moves heuristic
does not have this limitation, but has a higher computational complexity.

The gain of the moves to all allowed Vj is computed with the cost functions described in
the previous section as Cin(v, j) − Cout(v, i) + Cout(v, j) − Cin(v, i). In each iteration, the
move with the largest gain such that the constraints are maintained is selected. Tie-breaking
and gains of zero are handled in the same way as in Simple Moves.

This heuristic considers each edge exactly twice in order to calculate the gain when
moving the node to any other block. Afterwards, a block yielding maximal gain is selected,
which can be done in time proportional to the degree of a node. Thus, the complexity of
this heuristic is O(m).

5.2.3 Global Moves (GM)
With this algorithm, we increase the local search neighborhood even further by considering
all other blocks. Starting from the initial partition, the algorithm computes the adjacency

O. Moreira, M. Popp, and C. Schulz 30:9

lists of the quotient graph. Throughout the algorithm the quotient graph is kept up-to-date.
When moving a node we update the adjacency information of the quotient graph and record
whether a new edge has been created. If this is the case we check the quotient graph for
acyclicity by using Kahn’s algorithm and undo the last movement if it created a cycle.

The calculation of the gain values can be done in O(m) as for the other heuristics. For a
node, the heuristic needs to check the acyclicity constraint for all considered moves/blocks
in the worst case. Since Kahn’s algorithm checks the quotient graph for acyclicity, the total
complexity of this heuristic is O(m(mQ+k)) wheremQ is the number of edges in the quotient
graph. If the quotient graph is sparse, i.e. mQ is O(k), we get a complexity of O(km).

5.2.4 FM Moves (FM)
This heuristic combines the quick check for acyclicity of the Advanced Moves heuristic with
an adapted Fiduccia-Mattheyses algorithm [8] which gives the heuristic the ability to climb
out of a local minimum. The initial partitioning is improved by exchanging nodes between
a pair of blocks even if the gain is negative. The partition with the best objective that was
seen during the pass will be returned. A pass starts with two blocks A and B, where A
precedes B in the topological ordering of blocks. The algorithm will then calculate the gain
for moving enabled boundary nodes to the other block. Using the same criterion to guarantee
acyclicity as the Advanced Moves heuristic, we say that a boundary node is enabled if it is
in A and does not have outgoing edges to nodes that precede B or it is in B and does not
have incoming edges from nodes that follow A. The candidate moves, consisting of a gain
and a node identifier, are inserted into a priority queue. The queue is a binary heap where
the total order on the elements is implemented by comparing the gain of the moves and, if
the gain is the same, a random number that is generated upon insertion.

In a loop that runs until the priority queue is depleted, the first move is extracted from
the queue. If the selected move would overload the target block or is not enabled because
it was disabled in a previous loop iteration, the heuristic continues with the next iteration.
Otherwise, the move will be committed even if the gain is negative. The node is then locked,
i.e. it cannot be moved again during this pass. This prevents thrashing and guarantees the
termination of the algorithm. Unlike the Fiduccia-Mattheyses algorithm, a move in this
scenario does not change the gain, it disables and enables other moves. For example, if
a node w is moved from A to B, the heuristic will disable all nodes v in block B with
(w, v) ∈ E since they do not fulfill the condition for acyclicity anymore and moving any of
them to A would introduce a back edge in the topological ordering of blocks. This does not
necessarily mean that the quotient graph would become cyclic, however, assuring this would
require a more expensive check like Kahn’s algorithm. Note that the gain of the moves does
not need to be re-calculated since w was locked and thus all nodes v will not be enabled
again in this pass. On the other hand, moving w enables nodes in A if they are connected
with an outgoing edge to w and if after the move they do not have other outgoing edges
to blocks preceding B. The heuristic will calculate the gain for these nodes, enable and
insert them into the priority queue. A move from B to A will enable and disable moves
correspondingly. The loop will continue to move nodes between the blocks until the priority
queue is depleted, which occurs when all nodes are either disabled or locked. Since the
number of loop iterations is hard to predict due to the reinsertion of moves, it is limited to
2n/k which did not have a measurable impact on the quality of obtained partitionings. The
best objective that was achieved in the pass is recorded. In the final step, the last moves
are undone if required to reach the corresponding partitioning. This terminates the inner
pass of the heuristic.

SEA 2017

30:10 Graph Partitioning with Acyclicity Constraints

The outer pass of the heuristic will repeat the inner pass for randomly chosen pairs of
blocks. At least one of these blocks has to be “active”. Initially, all blocks are marked as
“active”. If and only if the inner pass results in movement of nodes, the two blocks will be
marked as active for the next iteration. The heuristic stops if there are no more active blocks.

The overall time to compute gain values is O(m). We now analyze the running time for
a pair of blocks. In the worst case, all nodes of both blocks are enabled in the beginning and
initializing the priority queue with 2n/k nodes requires O(n

k) time. Note that we cannot
use a bucket priority queue, since the weights associated with the edges can be more or less
arbitrarily distributed. Removing a node with the best gain from the queue takes O(log n

k)
time. If a move is committed in an iteration, the heuristic needs to calculate the gain of
adjacent nodes. However, the heuristic will never calculate the gain of a move twice during
a pass. Thus the total complexity of the inner pass is O(n

k log n
k). Note that the inner pass

needs to be performed for all pairs of blocks which yields overall time O(m + mQ
n
k log n

k)
per round of the algorithm, or O(m+ n log n

k) if the quotient graph is sparse.

6 Experimental Evaluation

In this section we evaluate the performance of our algorithms. We start by presenting
methodology and the systems we use for the evaluation. Then we evaluate the solution
quality on small instances by comparing with the optimal solutions and evaluate our algo-
rithms on complex imaging filters. We finish with testing the scalability of our algorithms.

Methodology. We have implemented the algorithms described above using C++. All
programs have been compiled using g++ 4.8.0 and 32 bit index data types. The system
we use is equipped with two Intel Xeon X5670 Hexa-Core processors (Westmere) running
at a clock speed of 2.93 GHz. The machine has 128GB main memory, 12MB L3-Cache and
6×256KB L2-Cache. All instances described in this section will be made available on request.

Comparison with Optimal Solutions. This section compares the results of our heuristics
against the optimal solution obtained by a non-polynomial time algorithm that performs an
exhaustive search. We create a set of random graphs that are close to instances from typical
applications. Our generation algorithm works by consecutively adding new graph levels with
a random number of nodes. Each of the new nodes is connected to a random number of
nodes in previous levels. Because the application domain of this work is imaging, we use a
small number of input and output nodes (between one and three) which is typically the case
for imaging and vision kernels (compare library of OpenVX vision functions [12]). Since the
weight of nodes is representing the program size, we select a random value between the size
of the smallest and the largest kernel in an implementation of the Local Laplacian filter for
our target platform. The weight of edges is uniformly chosen between 1 and 100 to account
for different sizes for intermediate buffers between the functions.

Because the following parameters have a major impact on the structure of the graph,
we use two different values for each and generate 25 graphs for each of the eight resulting
parameter combinations:

The maximum size of a graph level is either set to a high value (
√
n) which results in

a graph that can in extreme cases have
√
n levels with about

√
n nodes each, meaning

that there is a high amount of data parallelism, and low values (4
√
n) such that the graph

resembles more a long chain of nodes and thus represents the classical imaging pipeline
with low data parallelism on kernel level.

O. Moreira, M. Popp, and C. Schulz 30:11

Table 1 Each cell shows the averaged result of the heuristic for the current combination of block
count k and imbalance ε. The value is the increase in cost compared to the optimal solution.

k ε SM AM GM FM

2

20 % 3.41 % 3.41 % 3.41 % 0.26 %
30 % 11.94 % 11.91 % 11.90 % 0.33 %
40 % 14.71 % 14.78 % 14.58 % 1.29 %
50 % 23.32 % 23.36 % 23.04 % 1.21 %

4

20 % 1.89 % 1.27 % 1.33 % 0.74 %
30 % 4.03 % 3.22 % 3.25 % 0.67 %
40 % 5.09 % 3.65 % 3.69 % 0.44 %
50 % 6.50 % 4.04 % 4.19 % 0.31 %

Table 2 Table comparing the results of the manual implementation with the solution found by
the heuristic.

man. SM AM GM FM

number programs 20 22 16 16 17
number gangs 5 7 4 4 6
1-level edge cut 11,4 10,9 8,8 8,9 10,4
2-level edge cut 8,9 6,2 5,0 4,7 6,1
relative execution time 1,00 1,09 0,89 1,04 1,31

The maximum number of edges is either set to the lowest number that ensures that inner
nodes have at least one incoming and one outgoing edge and that the graph is connected
or to

√
n per node such that the number of edges scales with the problem size. This

reflects applications with few and many data dependencies between functions.
The maximum distance in terms of node indices, over which new nodes are connected
to preceding nodes in the graph, is either set to a low value that results in a graph
where nodes only have incoming edges from the closest preceding levels or it is set to n
which means that there is no restriction on where edges can start. The first case models
application where data is short-lived and only needed for the next step in a pipeline while
the second case represents scenarios with a long data lifetime.

These 200 different problems instances were generated for problem sizes in the range
of n ∈ [10, . . . , 20] nodes each. Table 1 shows the averaged approximation factor of the
four heuristics when using a time budget of 10 milliseconds. The results show a good
approximation of the optimal solution. The quality of SM, AM and GM degrades with large
ε since they can get trapped in a local minimum, FM moves on the other hand shows a close
and consistent approximation. The heuristics generally perform better on graphs that were
created with more, unconstrained edges, presumably because there are more legal moves
available of which the heuristic can pick the best one. We also found that the running time
for a single pass of the heuristics is consistent across the instances while it varies drastically
between milliseconds and several days for the exhaustive search. This emphasizes the need
for a heuristic.

Local Laplacian Filter. The Local Laplacian filter is an edge-aware image processing filter.
A detailed description of the algorithm and theoretical background is given in [18].

The algorithm uses concepts of Gaussian pyramids and Laplacian pyramids as well as
a point-wise remapping function in order to enhance image details without creating arti-

SEA 2017

30:12 Graph Partitioning with Acyclicity Constraints

facts. We model the data flow of the filter as a DAG where nodes represent simple function
primitives, e.g. upsampling, downsampling and gaussian filtering for both image dimensions
for each level of the pyramid generation. If there is a direct data dependency between two
nodes, they are connected by an edge with a weight of the number of pixels of the corre-
sponding buffer. The node weight is set to the program memory used by the primitive. The
DAG has 72 nodes and 93 edges in total in our configuration. In an existing implemen-
tation, the primitives were grouped in a functional way (e.g. pyramid generation) by the
developer into programs and then assigned to a total of five scheduling gangs. To evaluate
the heuristics, we use a first pass with Lmax set to the size of the program memory to find
a good composition of function primitives into programs. The resulting quotient graph is
then used in a second pass where Lmax is set to the total number of PEs in order to find
scheduling gangs that minimize external memory transfers. In this second step the acyclicity
constraint is crucially important. In both passes, empty blocks were explicitly permitted to
allow the heuristics to reduce the number of gangs. The time budget given to each heuristic
is one minute. We also found that due to (desired) compiler optimizations, the final program
memory size of a program can be smaller than the sum of its primitives. Since the entire
process of partitioning, code generation and compilation is automated, we took advantage
of this by slowly increasing ε until the programs became too large. The results are shown in
Table 2. The 1-level edge cut shows the amount of communication between programs, the
2-level edge cut between gangs, both in megapixels.

If our heuristics are able to reduce bandwidth requirements of the application, the exe-
cution time will improve on all platforms where bandwidth is the limiting factor. Although
this is the case for the majority of embedded platforms, we wanted to know what happens
if we take bandwidth out of the equation. We obtained cycle counts for each program with
a cycle-true compiled simulator of the hardware platform. Since context switching is syn-
chronized, the longest execution time of a program in a gang equals the gang execution
time assuming the programs never have to wait for data from external memories. The ta-
ble shows the sum of this optimistic execution time for all gangs relative to the manual
implementation.

All heuristics improve the edge cut by at least 30%, thus the schedule will be superior
on all platforms where the manual implementation is bandwidth-limited. In addition, by
reducing edge cut, the AM and GM heuristics find partitionings that require fewer gangs.
For AM, this improves execution time, so the schedule will be superior even if bandwidth is
not the limiting factor. For GM, the heuristic makes an additional choice that reduces edge
cut even further, but does not balance compute-intensive programs well and thus execution
time is not improved. In conclusion, we see a strong improvement in bandwidth demand
and at the same time, with the exception of FM, an execution time that is on a par with
or better than a manual implementation even if bandwidth is not a concern. We conclude
that our pure edge cut reducing heuristics are a good starting point for the development of
gang scheduling algorithms.

Random Geometric Graphs. We now look at the scalability of our heuristics. We do this
on random geometric graphs where nodes represent random points in the unit square and
edges connect nodes whose Euclidean distance is below 0.55

√
lnn/n. This threshold was

chosen in order to ensure that the graph is almost connected. These graphs were taken
from [3] and were initially undirected. We convert them into DAGs by directing edges from
smaller to larger node ids. The graph rggX has 2X nodes. We vary X ∈ [15, . . . , 22]. The
allowed imbalance was set to 3% since this is one of the values used in [26]. Figure 4 shows

O. Moreira, M. Popp, and C. Schulz 30:13

0 1 2 3 4
·106

0

0.2

0.4

0.6

0.8

1

1.2
·104

nodes

tim
e
[s]

SM
AM
GM
FM

(a) execution time averaged over 100 passes

15 16 17 18 19 20 21 22
0

0.1

0.2

0.3

0.4

0.5

exponent X
re
la
tiv

e
ed
ge

cu
t
re
du

ct
io
n AM

GM
FM

(b) edge cut relative to Simple Moves

Figure 4 Graph showing the execution time of each heuristic and the relative edge cut on directed
random geometric graphs rggX.

the averaged time required for 100 passes of each heuristic and the relative improvement in
edge cut that was found for k = 8 by the more advanced heuristics in comparison to the
Simple Moves heuristic. The figure shows a linear growth in running time of our heuristics
respective to number of nodes. The worst case complexity of FM moves was shown to be
superlinear since it had to be assumed that all nodes are boundary nodes, which is not the
case here. In fact, that FM only considers boundary nodes appears to improve the execution
time compared to the other heuristics. We conclude that our algorithms scale well to large
problems.

In another small experiment, we evaluated the quality of the solution found by the initial
partitioning only. As expected, the best edge cut is always a fair amount larger than the one
found by the heuristics, for example 29% compared to SM for the largest random geometric
graph.

7 Conclusion

In this work we designed, implemented and evaluated new heuristics that partition streaming
application graphs under constraints that are important for multiprocessor scheduling. It
was shown that the constrained problem is NP-complete and that the heuristics yield good
approximations of the optimal solution for small problem instances and have a linear growth
for larger instances. In a simulation we could show the positive impact on communication
volume of a real application for all heuristics and in one case even a reduction of execution
time when bandwidth is not the limiting factor due to a reduction in number of scheduling
gangs. The running time of the heuristics w.r.t. problem size is sufficient for this application
domain, especially since the algorithms only need to run at compile-time. Also the commu-
nication volume was reduced by an extent that suggests that for future work it will be more
rewarding to introduce additional objectives that help to improve gang execution time by
better balancing compute-intensive kernels.

SEA 2017

30:14 Graph Partitioning with Acyclicity Constraints

References
1 A. Abou-Rjeili and G. Karypis. Multilevel Algorithms for Partitioning Power-Law Graphs.

In Proc. of 20th IPDPS, 2006.
2 K. Andreev and H. Räcke. Balanced Graph Partitioning. Theory of Computing Systems,

39(6):929–939, 2006.
3 D.A. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and D. Wagner. Bench-

marking for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis
and Mining, to appear.

4 C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
5 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph

Partitioning. In Algorithm Engineering – Selected Topics, to app., ArXiv:1311.3144, 2014.
6 C. Chevalier and F. Pellegrini. PT-Scotch. Parallel Computing, 34(6-8):318–331, 2008.

doi:10.1016/j.parco.2007.12.001.
7 D.G. Feitelson and L. Rudolph. Gang scheduling performance benefits for fine-grain syn-

chronization. Journal of Parallel and distributed Computing, 16(4):306–318, 1992.
8 C.M. Fiduccia and R.M. Mattheyses. A Linear-Time Heuristic for Improving Network

Partitions. In Proceedings of the 19th Conference on Design Automation, pages 175–181,
1982.

9 M.R. Gary and D. S. Johnson. Computers and intractability: A guide to the theory of
np-completeness, 1979.

10 J. Goossens and P. Richard. Optimal scheduling of periodic gang tasks. Leibniz transactions
on embedded systems, 3(1):04–1, 2016.

11 Khronos Group. The OpenVX API. https://www.khronos.org/openvx/.
12 Khronos Group. The OpenVX Specification: Vision Functions. https://www.khronos.

org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.
html.

13 A.B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–
562, 1962.

14 G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

15 E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

16 H. Meyerhenke, B. Monien, and S. Schamberger. Accelerating Shape Optimizing Load
Balancing for Parallel FEM Simulations by Algebraic Multigrid. In Proc. of 20th IPDPS,
2006.

17 P.R. Panda, F. Catthoor, N.D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A. Van-
dercappelle, and P.G. Kjeldsberg. Data and memory optimization techniques for embed-
ded systems. ACM Transactions on Design Automation of Electronic Systems (TODAES),
6(2):149–206, 2001.

18 S. Paris, S.W. Hasinoff, and J. Kautz. Local laplacian filters: edge-aware image processing
with a laplacian pyramid. ACM Trans. Graph., 30(4):68, 2011.

19 F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.
20 J.C. Picard and M. Queyranne. On the Structure of All Minimum Cuts in a Network and

Applications. Mathematical Programming Studies, 13:8–16, 1980.
21 E. Rainey, J. Villarreal, G. Dedeoglu, K. Pulli, T. Lepley, and F. Brill. Addressing system-

level optimization with openvx graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pages 644–649, 2014.

22 P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proc.
of the 19th European Symp. on Algorithms, volume 6942 of LNCS, pages 469–480. Springer,
2011.

http://dx.doi.org/10.1016/j.parco.2007.12.001
https://www.khronos.org/openvx/
https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html
https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html
https://www.khronos.org/registry/OpenVX/specs/1.0/html/da/db6/group__group__vision__functions.html
http://www. labri.fr/pelegrin/scotch

O. Moreira, M. Popp, and C. Schulz 30:15

23 K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Scien-
tific Simulations. In The Sourcebook of Parallel Computing, pages 491–541, 2003.

24 R.V. Southwell. Stress-Calculation in Frameworks by the Method of “Systematic Relax-
ation of Constraints”. Proc. of the Royal Society of London, 151(872):56–95, 1935.

25 G.L. Stavrinides and H.D. Karatza. Scheduling different types of applications in a saas
cloud. In Proceedings of the 6th International Symposium on Business Modeling and Soft-
ware Design (BMSD’16), pages 144–151, 2016.

26 C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement
Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

27 C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An
Overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, pages
27–58. American Mathematical Society, 2007.

SEA 2017

Bilevel Programming Approaches to the
Computation of Optimistic and Pessimistic
Single-Leader-Multi-Follower Equilibria
Nicola Basilico1, Stefano Coniglio2, Nicola Gatti3, and
Alberto Marchesi4

1 Dipartimento di Informatica, University of Milan, Milano, Italy
nicola.basilico@unimi.it

2 Department of Mathematical Sciences, University of Southampton,
Southampton, UK
s.coniglio@soton.ac.uk

3 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Milano, Italy
nicola.gatti@polimi.it

4 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano, Milano, Italy
alberto.marchesi@polimi.it

Abstract
We study the problem of computing an equilibrium in leader-follower games with a single leader
and multiple followers where, after the leader’s commitment to a mixed strategy, the followers
play simultaneously in a noncooperative way, reaching a Nash equilibrium. We tackle the problem
from a bilevel programming perspective. Since, given the leader’s strategy, the followers’ subgame
may admit multiple Nash equilibria, we consider the cases where the followers play either the best
(optimistic) or the worst (pessimistic) Nash equilibrium in terms of the leader’s utility. For the
optimistic case, we propose three formulations which cast the problem into a single level mixed-
integer nonconvex program. For the pessimistic case, which, as we show, may admit a supremum
but not a maximum, we develop an ad hoc branch-and-bound algorithm. Computational results
are reported and illustrated.

1998 ACM Subject Classification G.1.6 [Optimization] Nonlinear programming

Keywords and phrases Stackelberg games, Nash equilibria, Game theory, Bilevel and nonlinear
programming, Branch-and-bound

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.31

1 Introduction

In recent years, leader-follower (or Stackelberg) games have attracted a growing interest
not just in game theory, but also in areas such as transportation science, security science,
and combinatorial optimization. Such games model the interaction between rational agents
(or players) in the context of sequential decision making. Considering, for simplicity, the
two-player case, these games address situations where one agent plays first (the leader) and
the other agent (the follower) plays second, after observing the mixed strategy the leader has
committed to (a probability distribution over his/her actions). The algorithmic task is to
compute an equilibrium (often called solution to the game), that is, a set of mixed strategies,

© Nicola Basilico, Stefano Coniglio, Nicola Gatti, and Alberto Marchesi;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

one per player, with the property that no player could obtain a larger utility by deviating
from the equilibrium, provided that the other players act as the equilibrium prescribes.

In game theory, rich applications can be found in, among others, the security domain [2, 9].
A defender, whose aim is to protect a set of valuable targets from the attackers, plays first,
as leader, while the attackers, acting as followers, observe the leader’s defensive strategy
and play second. Among different applications in combinatorial optimization, we mention
interdiction problems [5, 13], toll setting problems [10], and network routing problems [1].

Most of the game-theoretical investigations on leader-follower games have, to the best of
our knowledge, chiefly addressed the case of a single-follower. In that setting, it is known
that the single follower can play, w.l.o.g., only a pure strategy (a probability distribution
where a single action is played with probability 1), i.e., that there is always a pure strategy
by which he/she can maximize his/her utility, and that computing an equilibrium is easy
with complete information [17], while it becomes NP-hard for Bayesian games [7]. Algorithms
are proposed in [7]. For what concerns games with more than two players, some works have
investigated the case with multiple leaders and a single follower, see [11]. For the problem
involving a single leader and multiple followers (the one on which we focus in this paper),
only few results are available. It is known, for instance, that an equilibrium can be found in
polynomial time if the followers play a correlated equilibrium [6], whereas the problem is
NP-hard [7] if they play sequentially one at a time.

In this paper, we focus on the single-leader multi-follower case where the followers play
simultaneously and noncooperatively, thus reaching a Nash Equilibrium (NE). We refer to an
equilibrium in such games as to a Single-Leader-Multi-Follower Nash Equilibrium (SLMFNE).
Computing such an equilibrium naturally amounts to solving a bilevel programming problem.
Since, for a given mixed strategy of the leader, multiple NE might arise in the followers’
subgame, we consider two cases: the optimistic one, where the followers play a NE which
maximizes the leader’s utility, and the pessimistic case, where the followers play a NE which
minimizes it. Solving these two problems allows us to compute the tightest range of values
the leader’s utility can take independently of which NE is selected. We remark that, although
the concept of SLMFNE has already been considered in the literature from a theoretical
perspective, see, in particular, [17], no algorithmic methods to compute such an equilibrium
are known.

The paper is organized as follows. The definition of the problem, its bilevel programming
nature, and some of its properties are described in Section 2. We tackle the optimistic
case in Section 3, where we construct three exact mixed-integer nonconvex mathematical
programming formulations for it. The pessimistic case is addressed in Section 4, where we
propose an ad hoc branch-and-bound method for its solution. Computational results are
illustrated in Section 5, while Section 6 draws some concluding remarks.1

2 The problem

Consider a game with n players, with index set N = {1, . . . , n}. For each p ∈ N , let Ap
be his/her set of actions, with mp := |Ap|, and let the vector xp ∈ [0, 1]mp , subject to∑
a∈Ap

xap = 1, be the player’s strategy vector (or strategy, for short). For each player p ∈ N ,
each component xap of xp corresponds to the probability by which action a ∈ Ap is played.
We call xp a vector of pure strategies if xp ∈ {0, 1}mp , or of mixed strategies if xp ∈ [0, 1]mp .
Throughout the paper, if not stated otherwise, we assume that all strategies are mixed. We

1 An extended abstract of a preliminary version of this work appeared in [4].

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:3

also denote the collection of strategies of the different players, which forms a so-called strategy
profile, by x = (x1, . . . , xn).

We consider normal form games (a reference can be found in [16]). They are characterized
by, for each p ∈ N , a multidimensional utility (or payoff) matrix Up ∈ Qm1×...×mn , whose
components Ua1,...,an

p correspond to the utility obtained by player p when all the players play
actions a1, . . . , an. For a strategy profile x = (x1, . . . , xn), the expected utility of player p is
the multilinear function:

up(x1, . . . , xn) =
∑
a1∈A1

. . .
∑

an∈An

Ua1,...,an
p xa1

1 . . . xan
n .

With n players, this is an nth-degree polynomial.
According to the standard definition, a strategy profile x = (x1, . . . , xn) is a Nash

Equilibrium (NE) if, for each player p ∈ N and for each strategy profile x′ with x′q = xq for
all q ∈ N \ {p} with, possibly, x′p 6= xp, the following inequality holds:

up(x1, . . . , xn) ≥ up(x′1, . . . , x′n).

Intuitively, this is the same as imposing that, for each p ∈ N and assuming the other players
in N \{p} played as prescribed by the strategy profile x, player p would be unable to improve
his/her utility when deviating from xp by playing any other strategy x′p 6= xp.

In the remainder of the paper and for ease of notation, we consider the case of two
followers (thus, with n = 3), assuming, w.l.o.g., m1 = m2 = m3 = m. The nth player
(player 3) takes the role of leader. The extension to the case of any n > 3 is, although
notationally more involved, not difficult.

2.1 Problem definition
Computing a SLMFNE amounts to solving a so-called bilevel programming problem with two
followers. Let, for each p ∈ N :

∆p := {xp ∈ [0, 1]m :
∑
a∈Ap

xap = 1}.

In the Optimistic case, we can compute a SLMFNE (O-SLMFNE) by solving:

(O-SLMFNE) max
(x1,x2,x3)∈
∆1×∆2×∆3

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 xi1x
j
2x
k
3 (1a)

s.t. x1 ∈ argmax
x1∈∆1

{ ∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 xi1x
j
2x
k
3

}
(1b)

x2 ∈ argmax
x2∈∆2

{ ∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 xi1x
j
2x
k
3

}
. (1c)

Due to Constraints (1b)–(1c), the second level problems call for a pair (x1, x2) of followers’
strategies forming a NE in the followers’ subgame induced by the x3 ∈ ∆3 chosen by the
leader in the first level. Observe that, due to the definition of NE, the pair (x1, x2) is a
NE for the given x3 if and only if, at the same time, x1 maximizes player 1’s utility when
assuming that player 2 would play x2, and x2 maximizes player 2’s utility when assuming
that player 1 would play x1. Subject to those constraints, the first level calls for a triple
(x1, x2, x3) maximizing the leader’s utility.

SEA 2017

31:4 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

The problem is optimistic as, assuming that the second level admits many NE (x1, x2)
for the chosen x3, it calls for a pair (x1, x2) which, together with x3, maximizes the leader’s
utility. Notice that, while any triple (x1, x2, x3) ∈ ∆1×∆2×∆3 is a feasible solution to the
problem as long as the pair (x1, x2) is a NE in the subgame induced by x3, Problem (1a)–(1c)
calls for a triple (x1, x2, x3) which is optimal—as, if not, the leader would prefer to change
his/her strategy and (x1, x2, x3) would not be a SLMFNE.

In the Pessimistic case, computing a SLMFNE (P-SLMFNE) calls for a solution to the
following problem:

(P-SLMFNE) max
(x1,x2,x3)∈
∆1×∆2×∆3

min
(x1,x2)∈
∆1×∆2

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 xi1x
j
2x
k
3 (2a)

s.t. Constraints (1b), (1c). (2b)

This problem differs from its optimistic counterpart as, due to the assumption of pessimism,
the leader here maximizes the minimum value taken by his/her utility over all pairs (x1, x2)
which are NE in the followers’ subgame induced by x3.

2.2 Some properties of the problem
We observe that, as it is often the case in bilevel problems, the difference in leader’s utility
between an optimistic and a pessimistic SLMFNE can be arbitrarily large. Consider, for
some λ > 0, a game with n = 3, A1 = {i1, i2}, A2 = {j1, j2}, A3 = {k1}, and utilities:

j1 j2

i1 1,1,λ 0,0,0

i2 0,0,0 1,1,0

k1

The unique O-SLMFNE in this game is (i1, j1, k1), corresponding to a leader’s utility of λ,
while the unique P-SLMFNE is (i2, j2, k1), with a leader’s utility of 0. It follows that, for
λ→∞, their difference in terms of leader’s utility tends to ∞.

Differently from the O-SLMFNE case, where, as shown in [17], an equilibrium is always
guaranteed to exist, this is not the case for P-SLMFNE—a behavior which can be observed
in many pessimistic bilevel problems [18]. Consider a game with n = 3, A1 = {i1, i2},
A2 = {j1, j2}, A3 = {k1, k2}. The matrices reported in the following are the utility matrices
for, respectively, the case where the leader plays action k1 with probability 1, action k2 with
probability 1, or the strategy vector x3 = (1− ρ, ρ) for some ρ ∈ (0, 1) (the latter matrix is
the convex combination of the first two with weights x3):

j1 j2

i1 1,1,0 2,2,5

i2
1
2 ,

1
2 ,1 1,1,0

k1

j1 j2

i1 0,0,0 2,2,10

i2
1
2 ,

1
2 ,1 0,0,0

k2

j1 j2

i1 1−ρ,1−ρ,0 2,2,5+5ρ

i2
1
2 ,

1
2 ,1 1−ρ,1−ρ,0

x3 = (1 − ρ, ρ)

In the optimistic case, (i1, j2, k2) is the unique SLMFNE (it is the only pure one and, as
it achieves the leader’s largest utility in U3, mixed strategies cannot yield a better utility).

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:5

In the pessimistic case, if the leader played k2, the followers would respond, among the two
NE (i2, j1) and (i1, j2), with (i2, j1) (so to minimize the leader’s utility). If the leader played
x3 = (1− ρ, ρ), we would obtain the subgame in the third matrix. For ρ < 1

2 , (i1, j2) is the
unique NE, giving the leader a utility of 5 + 5ρ. For ρ ≥ 1

2 , we have again the two NE (i1, j2)
and (i2, j1), with a utility of, respectively, 5 + 5ρ and 1. Since the latter is selected in the
pessimistic case, we conclude that the game admits no pessimistic SLMFNE. This is because
the leader’s utility (and the optimization problem), when written as a function of ρ, achieves
a supremum at ρ = 1

2 , but not a maximum. See the following graph for an illustration.

1
2

1

5

5 + 5
2

ρ

u3

From a combinatorial perspective, the hardness and inapproximability (in polynomial
time, up to within a constant factor) of the problem of computing a SLMFNE is a direct
consequence of the NP-hardness and inapproximability of computing, in a two-player game,
a NE which maximizes the sum of the players’ utilities [8]. Indeed, the latter problem is
directly reduced to the computation of a SLMFNE for the case where the leader has a single
action and his/her utility is equal to plus (in the optimistic case) or minus (in the pessimistic
case) the sum of the utilities of the followers.

3 Optimistic case

We propose three Mixed-Integer NonLinear Programming (MINLP) formulations to compute
a SLMFNE in the optimistic case.

3.1 MINLP-I
To obtain a first single level formulation for the problem, we proceed as follows, applying a
standard reformulation [16] involving complementarity constraints.

Let, for all i ∈ A1 and j ∈ A2, Ũ ij1 :=
∑
k∈A3

U ijk1 xk3 and Ũ ij2 =
∑
k∈A3

U ijk2 xk3 be the
matrices of the followers’ subgame, parameterized by x3. For (x1, x2) to be a NE, x1 must
be an optimal solution to the Linear Program (LP):

max
x1∈∆1

{ ∑
i∈A1

∑
j∈A2

Ũ ij1 x
i
1x
j
2

}
,

where Ũ ij1 xi1x
j
2 is a linear function of x1. Since the LP is feasible and bounded for any

x2 ∈ ∆2, we have, by complementary slackness, that x1 ∈ ∆1 is optimal if and only if there
is a scalar v1 such that, for all i ∈ A1:(

v1 −
∑
j∈A2

Ũ ij1 x
j
2
)
xi1 = 0

v1 ≥
∑
j∈A2

Ũ ij1 x
j
2.

SEA 2017

31:6 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

Applying a similar reasoning to x2, we obtain that x2 ∈ ∆2 is optimal if and only if there is
a scalar v2 such that, for all j ∈ A2:(

v2 −
∑
i∈A1

Ũ ij2 x
i
1
)
xj2 = 0

v2 ≥
∑
i∈A1

Ũ ij2 x
i
1.

We conclude that (x1, x2) is a NE if and only if there are v1, v2 ≥ 0 such that x1 and x2
simultaneously satisfy these four conditions.

After substituting for Ũ1 and Ũ2 their linear expressions in x3, we obtain, for player 1
and for all i ∈ A1, constraints:(

v1 −
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3

)
xi1 = 0

v1 ≥
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3

and, for player 2 and for all j ∈ A2, constraints:(
v2 −

∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3

)
xj2 = 0

v2 ≥
∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3 .

By imposing them in lieu of the two second level argmax constraints of Problem (1), that
is, Constraints (1b)–(1c), we obtain a continuous single level formulation with nonconvex
trilinear terms.23

3.2 MINLP-II
What we propose now is aimed at achieving a formulation which can be solved more efficiently.

Since each term of the complementarity constraints we introduced is bounded, we can
apply a simple reformulation. Letting s1 ∈ {0, 1}m and s2 ∈ {0, 1}m be the antisupport
vectors of x1 and x2, it suffices to impose, for all i ∈ A1:

xi1 ≤ 1− si1

v1 −
∑
j∈A2

∑
k∈A3

U ijk1 xj2x
k
3 ≤Msi1

and, for all j ∈ A2:

xj2 ≤ 1− sj2

v2 −
∑
i∈A1

∑
k∈A3

U ijk2 xi1x
k
3 ≤Msj2,

where M is an upper bound on the entries of U1, U2. This way, while still retaining the
original trilinear objective function, only bilinear constraints are needed.

2 Note that strong duality can be employed in place of complementary slackness. Preliminary experiments,
though, suggest that the second option is computationally preferable.

3 We remark that, in this form, the problem correspond to a Mathematical Program with Equilibrium
Constraints (MPEC). The interested reader can find more references to this type of problems in [12].

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:7

3.3 MINLP-III
Ultimately, we aim to solve the problem with spatial branch-and-bound techniques, such as
those implemented in SCIP. The main strategy of such methods to handle nonlinearities is
to isolate “simple” nonlinear terms (bilinear or trilinear in our case) by shifting them into a
new (so-called defining) constraint to which convex envelopes are applied.

We propose to anticipate this reformulation, so to be able to derive some valid constraints.
First, we introduce:
(i) variable yjk23 and constraint yjk23 = xj2x

k
3 for all j ∈ A2, k ∈ A3,

(ii) variable yik13 and constraint yik13 = xi1x
k
3 for all i ∈ A1, k ∈ A3,

(iii) variable zijk and constraint zijk = xi1y
jk
23 for all i ∈ A1, j ∈ A2, k ∈ A3.

Then, by substituting each bilinear and trilinear term with the newly introduced variables,
we obtain a formulation which is linear everywhere, except for the defining constraints.

We now observe that, by definition, the matrix {yjk23}jk∈A2×A3 is the outer product of
the stochastic vectors x2 and x3 and, as such, is a stochastic matrix itself. The same holds
for the tensor {zijk}ijk∈A1×A2×A3 , which is the outer product of the vectors x1, x2, x3 and,
as such, is a stochastic tensor. This implies the validity of the following three constraints:∑

i∈A1

∑
k∈A3

yik13 = 1

∑
j∈A2

∑
k∈A3

yjk23 = 1

∑
i∈A1

∑
j∈A2

∑
k∈A3

zijk = 1.

The final single level mixed-integer nonconvex formulation that we propose for O-SLMFNE
thus reads:

max
∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 zijk

s.t. v1 −
∑
j∈A2

∑
k∈A3

U ijk1 yjk23 ≤Msi1 ∀i ∈ A1

v2 −
∑
i∈A1

∑
k∈A3

U ijk2 yjk13 ≤Msj2 ∀j ∈ A2

xi1 ≤ 1− si1 ∀i ∈ A1

xj2 ≤ 1− sj2 ∀j ∈ A2

v1 ≥
∑
j∈A2

∑
k∈A3

U ijk1 yjk23 ∀i ∈ A1

v2 ≥
∑
i∈A1

∑
k∈A3

U ijk2 yik13 ∀j ∈ A2

yik13 = xi1x
k
3 ∀(i, k) ∈ A1×A3

yjk23 = xj2x
k
3 ∀(j, k) ∈ A2×A3

zijk = xi1y
jk
23 ∀(i, j, k) ∈ A1×A2×A3

∑
i∈A1

∑
k∈A3

yik13 = 1

∑
j∈A2

∑
k∈A3

yjk23 = 1

∑
i∈A1

∑
j∈A2

∑
k∈A3

zijk = 1

(x1, x2, x3) ∈ ∆1×∆2×∆3

y13, y23 ∈ [0, 1]m×m

z ∈ [0, 1]m×m×m

s1, s2 ∈ {0, 1}m

v1, v2 free.

4 Pessimistic case

For P-SLMFNE, we introduce an ad hoc method based on branch-and-bound. For simplicity,
we first describe it for the case where the followers are restricted to pure strategies, with the
extension to the mixed case following next.

SEA 2017

31:8 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

4.1 Basic enumerative idea and outcome configurations

The key ingredient of the method is what we call outcome configuration. Given a strategy
vector x3 ∈ ∆3, we call a pair (S+, S−), with S+ ⊆ A1 × A2 and S− = A1 × A2 \ S+,
outcome configuration if, for the given x3, it satisfies two constraints:
(i) all pairs of actions in S+ correspond to a NE in the followers’ subgame;
(ii) all pairs in S− do not.
Given a pair (S+, S−), a strategy vector x3 ∈ ∆3 such that i) and ii) are satisfied guarantees
that, if the leader played x3, the set of NE in the followers’ subgame would coincide with S+.
Since, given an outcome configuration (S+, S−), the leader’s utility at each NE in S+ is a
(linear) function of x3, we must then look (due to the pessimistic setting) for an x3 which iii)
maximizes the smallest value taken by the leader’s utility over S+.

By constructing (we will propose a more efficient method later on) all the pairs (S+, S−)
in 2A1×A2 and computing (if it exists) the corresponding x3, a P-SLMFNE (if it exists) is
obtained by choosing the triple (S+, S−, x3) which gives the leader the largest utility (and,
then, selecting the NE in S+ which minimizes the leader’s utility).

Let us discuss how to compute x3 for a given (S+, S−). By definition of NE, constraints i)
can be expressed as the following set of inequalities, which are linear in x3:

∑
k∈A3

U ijk1 xk3 ≥
∑
k∈A3

U i
′jk

1 xk3 ∀(i, j) ∈ S+, i′ ∈ A1 \ {i} (3a)

∑
k∈A3

U ijk2 xk3 ≥
∑
k∈A3

U ij
′k

2 xk3 ∀(i, j) ∈ S+, j′ ∈ A2 \ {j}. (3b)

Given some sufficiently small ε > 0, Constraints ii) can be (approximately) written as the
following disjunction:

∨
i′∈A1\{i}

(∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U i
′jk

1 xk3

) ∨
∨

j′∈A2\{j}

(∑
k∈A3

U ijk2 xk3 + ε ≤
∑
k∈A3

U ij
′k

2 xk3

)
∀(i, j) ∈ S−. (4)

For every (i, j) ∈ S−, the disjunction imposes the existence of an action i′ of player 1 giving
him/her a utility larger than that obtained when playing i by, at least, some ε > 0, assuming
the other player played j (or vice versa for player 2 and an action j′).

Note that each term of the disjunction should be strict, as the disjunction represents
the complement of a polytope. The approximation with ε has the role of preventing x3
from reaching one of the breakpoints of the leader’s utility function (see the illustration in
Section 2), where the pessimistic problem always achieves a supremum but not a maximum.

We can cast Constraints (4) in terms of Mixed-Integer Linear Programming (MILP) by
introducing a binary variable per term of the disjunction, with a constraint requiring its
sum to be 1.4 After introducing the binary variables yiji′ ∈ {0, 1}, for i′ ∈ A1 \ {i}, and

4 Due to considering polytopes, the extended LP formulation of Balas [3] could be used. Nevertheless, we
have found the MILP approach computationally affordable.

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:9

yijj′ ∈ {0, 1}, for j′ ∈ A2 \ {j}, the reformulation reads:∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U i
′jk

1 xk3 +M(1− yiji′) ∀i′ ∈ A1 \ {i} (5a)

∑
k∈A3

U ijk1 xk3 + ε ≤
∑
k∈A3

U ij
′k

2 xk3 +M(1− yijj′) ∀j′ ∈ A2 \ {j} (5b)

∑
i′∈A1\{i}

yiji′ +
∑

j′∈A2\{j}

yijj′ = 1, (5c)

where M is a (previously introduced) upper bound on the entries of U1, U2.
A solution satisfying i) and ii) which is also optimal in the sense of iii) is then found by

solving the following MILP subproblem:

max
η free
x3∈∆3

 η : η ≤
∑
k∈A3

U ijk3 xk3 ∀(i, j) ∈ S+

Constraints (3), (4).

 (6)

4.2 Branch-and-Bound approach
We now propose an alternative method which does not require to carry out the complete
enumeration of the elements of 2A1×A2 .

Given a strategy vector x3 ∈ ∆3, we call a pair (S+, S−) relaxed outcome configuration if
S− ⊆ (A1 ×A2) \ S+, differently from the previous definition where S− = (A1 ×A2) \ S+.

Notice that, when S− ⊂ (A1 ×A2) \ S+, it is not always the case that, when the leader
plays a solution x3 to Subproblem (6), the only NE in the followers’ subgame are those
in S+. Indeed, due to S+ ∪ S− ⊂ A1 ×A2, the followers’ subgame may admit another NE
(i′, j′) ∈ A1×A2 \S+ \S− which provides the leader with a strictly smaller utility than that
he/she would receive from the pairs of NE in S+. Since, whenever this is the case, (i′, j′)
would be part of the P-SLMFNE corresponding to x3, the correctness of the method would
be lost.

To verify whether this is the case, i.e., whether one such (i′, j′) exists, it suffices to carry
out an operation which we refer to as feasibility check. We solve the followers’ subgame (in
the pessimistic sense) for the given x3, and compare the NE (i′, j′) thus found to the worst
one in S+ (when working with pure strategies only, this check can be done in O(m2)). If
(i′, j′) /∈ S+, we resort to branching. More precisely, to account for the case where (i′, j′) is
a NE, we introduce a left node (S+

L , S
−
L) with S+

L := S+ ∪ {(i′, j′)} and S−L := S−, whereas,
to account for the case where (i′, j′) is not a NE, we introduce a right node (S+

R , S
−
R) with

S+
R := S+ and S−R := S− ∪ {(i′, j′)}.
We remark that, as a consequence of S− ⊆ (A1 × A2) \ S+, optimal solutions to

Subproblem (6) always yield an upper bound on the utility the leader would obtain with a
strategy x3 by which all pairs of followers’ actions in S+ constitute a NE, while all pairs in
S− do not.

At the root node, we solve the optimistic problem, obtaining a triple (x1 = ei, x2 = ej , x3).
If, by feasibility check, we find a pair (i′, j′) = (i, j) (or a different one, but yielding
the same utility), the problem is solved. If not, we create two nodes: (S+

L , S
−
L) with

S+
L = {(i′, j′)}, S−L = ∅, and (S+

R , S
−
R) with S+

R = ∅, S−R = {(i′, j′)}. Since Subproblem (6)
is not well–defined for (S+

R , S
−
R) as, in it, S+

R = ∅, whenever S+ = ∅ in a (S+, S−) pair, we
solve, in lieu of Subproblem (6), one of the formulations we proposed for O-SLMFNE with
the further addition of Constraints (4) for all pairs in S−. This way, we can find an upper
bound also for the case where S+ is empty.

SEA 2017

31:10 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

4.3 Extension to the unrestricted case

To extend the method to the unrestricted mixed case, assume now that the components of
each pair (S+, S−) are, rather than pairs of actions, disjoint sets of pairs of strategy vectors
(x̄1, x̄2) of the followers, with (x̄1, x̄2) ∈ ∆1 ×∆2.

Constraints i) should now impose all strategy vectors in (x̄1, x̄2) ∈ S+ to be NE. Since
the utility obtained with any strategy vector xp is a convex combination with weights xp
of those obtained with pure strategies, it suffices to impose, for each follower, that (x̄1, x̄2)
should yield a utility at least as large as that obtained with any pure strategy. We arrive at
the following linear (in x3) inequalities:∑

i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 x̄i1x̄
j
2x
k
3 ≥

∑
j∈A2

∑
k∈A3

U i
′jk

1 x̄j2x
k
3 ∀(x̄1, x̄2) ∈ S+, i′ ∈ A1 (7a)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 x̄i1x̄
j
2x
k
3 ≥

∑
i∈A1

∑
k∈A3

U ij
′k

2 x̄i1x
k
3 ∀(x̄1, x̄2) ∈ S+, j′ ∈ A2. (7b)

We can apply a similar argument when stating constraints ii) which, in the mixed case,
impose that all strategy vectors in S− are not NE. Indeed, it suffices to require the existence
of an action i′ ∈ A1 or of an action j′ ∈ A2 providing the respective player with a strict
improvement to his/her utility. Let π(xp) := {a} if xap = 1, ∅ otherwise. For a given,
sufficiently small, ε > 0, the constraints can be (approximately) written as the following
disjunction:

∨
i′∈A1\π(x̄1)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk1 x̄i1x̄
j
2x
k
3 + ε ≤

∑
j∈A2

∑
k∈A3

U i
′jk

1 x̄j2x
k
3

 ∨
∨

j′∈A2\π(x̄2)

∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk2 x̄i1x̄
j
2x
k
3 + ε ≤

∑
i∈A1

∑
k∈A3

U ij
′k

2 x̄i1x
k
3

 ∀(x̄1, x̄2)∈S−, (8)

which can be rewritten as a MILP as previously discussed for the restricted case.
A strategy vector x3 satisfying the previous constraints which is also optimal in the sense

of iii) is found by solving the following MILP:

max
η free
x3∈∆3

 η : η ≤
∑
i∈A1

∑
j∈A2

∑
k∈A3

U ijk3 x̄i1x̄
j
2x
k
3 ∀(x̄1, x̄2) ∈ S+

Constraints (7), (8)

 . (9)

The initialization of the search tree and the solution of nodes with S+ = ∅ can be carried
out as for the restricted case. Differently from that case though, we cannot perform feasibility
check in O(m2) by inspection. For it, we resort to solving one of the formulations we gave
for O-SLMFNE with a given, fixed x3, after changing the sign of the objective function into
a minus (so to consider the pessimistic case).

We observe that, differently from the restricted case, the search tree might not be
finite when mixed strategies are considered. This is due to fact that a game may contain
uncountably many triples (x1, x2, x3) where (x1, x2) is a NE in the followers’ subgame. As
a consequence, the branch-and-bound algorithm might not terminate. Note, though, that,
by halting the method after any finite amount of iteration of computing time, one would
nevertheless be able to obtain a lower and an upper bound to the problem.

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:11

Table 1 Results obtained when computing an O-SLMFNE with the three proposed MINLP
formulations.

MINLP–I MINLP–II MINLP–III
m Time Gap UB LB Sol Time Gap UB LB Sol Time Gap UB LB Sol
4 3600 46.5 100 53.5 80 3600 11.0 100 89.0 100 1 0.0 91.4 91.4 100
6 3600 93.2 100 6.8 10 3600 53.0 100 47.0 80 413 10.7 92.8 82.9 90
8 3600 91.0 100 9.0 10 3600 53.8 100 46.2 70 987 0.7 96.8 96.1 100
10 3600 99.0 100 1.0 0 3600 55.0 100 45.0 70 2147 22.1 99.0 77.1 80
12 3600 99.0 100 1.0 0 3600 64.7 100 35.3 60 3242 7.7 99.7 92.0 100
14 3600 99.0 100 1.0 0 3600 62.3 100 37.7 50 3240 11.8 99.8 88.1 100
16 3600 99.0 100 1.0 0 3600 92.3 100 7.7 10 3243 18.3 99.9 81.6 100
18 3600 99.0 100 1.0 0 3600 93.1 100 6.9 10 2887 7.1 99.9 92.8 100
20 3600 99.0 100 1.0 0 3600 79.2 100 20.8 30 3265 15.2 99.9 84.8 100
25 3600 99.0 100 1.0 0 3600 84.3 100 15.7 40 3600 15.7 100.0 84.3 100
30 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 14.5 100.0 85.5 100
35 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 16.7 100.0 83.3 100
40 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3400 14.4 100.0 85.6 100
45 3600 99.0 100 1.0 0 3600 99.0 100 1.0 0 3600 22.9 100.0 77.1 90

Avg 3600 94.3 100 5.7 7 3600 74.6 100 25.4 37 2659 12.7 98.5 85.9 97

5 Computational results

We consider a testbed of instances constructed with GAMUT, a widely adopted suite
of game generators [14], of class Uniform Random Games. We assume the same number
of actions m for each agent, with U1, U2, U3 ∈ [1, 100]m×m×m, and construct 10 dif-
ferent instances per value of m. We experiment on games with n = 3 players, with
m = 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45 actions. In the upcoming Tables 1 and 2, we
report, for each value of m and on average over the 10 corresponding game instances, the
following four values:
1. computing time (Time), also including instances for which the time limit is reached,
2. optimality gap (Gap, defined as UB−LB

UB 100%),
3. upper bound (UB),
4. lower bound (LB),
plus a fifth value which, rather than an average, reports, for a given value of m, the:
5. percentage of games for which a feasible solution is found (Sol).
The experiments are run on a UNIX machine with a total of 32 cores working at 2.3 GHz,
equipped with 128 GB of RAM, within a time limit of 3600 seconds per game, on a single
thread. We assume, throughout the section, that leader and followers are entitled to mixed
strategies, both in the optimistic and pessimistic cases.

5.1 Optimistic case
We experiment with the three MINLP formulations we proposed in Section 3, solving them
with the spatial branch-and-bound solver SCIP 3.2.1. The results are reported in Table 1.

The results confirm that reformulating the complementarity constraints via binary vari-
ables yields (as expected) a considerable improvement, reducing the gap from 94.3% (MINLP-
I) to 74.6% (MINLP-II), on average. The reformulation with additional constraints carried
out to obtain MINLP-III allows for a very substantial improvement, bringing the gap down to
12.7%, on average. Although the UB is not substantially improved by MINLP-III, reaching

SEA 2017

31:12 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

Table 2 Results obtained when computing a P-SLMFNE with the proposed branch-and-bound
algorithm, for ε = 0.1, 1, 5.

ε = 0.1 ε = 1 ε = 5
m Time Gap UB LB Sol Time Gap UB LB Sol Time Gap UB LB Sol
4 2525 25.9 88.5 65.6 100 362 0.0 83.0 83.0 100 37 5.6 84.9 80.2 100
6 3600 41.6 89.9 52.5 100 3281 34.2 88.2 58.0 90 2247 11.5 85.7 75.8 100
8 3600 49.3 96.2 48.8 100 3600 42.7 95.4 54.6 100 3600 28.8 90.1 64.1 100
10 3600 56.9 98.3 42.4 100 3600 51.1 97.5 47.7 100 3600 46.1 94.9 51.1 100
12 3600 58.8 97.9 40.3 90 3600 60.0 97.3 38.9 80 3600 53.2 96.2 45.1 90
14 3600 58.1 98.2 41.1 100 3600 53.1 98.1 46.0 100 3600 52.6 97.6 46.3 100
16 3600 70.5 98.1 28.9 70 3600 65.5 97.7 33.7 80 3600 70.2 97.3 29.0 70

Avg 3446 51.6 95.3 45.7 94 3092 43.8 93.9 51.7 93 2898 38.3 92.4 56.0 94

an average of 98.5 (as opposed to 100 with both MINLP-I and MINLP-II), MINLP-III yields
LBs of substantially better quality. MINLP-I yields an average LB of 5.7, with feasible
solutions found only for 7% of the instances. MINLP-II achieves an average LB of 25.4, with
feasible solutions found for 37% of the instances. With MINLP-III, we arrive at a much
larger average LB of 85.9 (remember that, due to the way the games are constructed, the
leader’s utility is upper bounded by 100), with feasible solutions found in 97% of the cases.

5.2 Pessimistic case
For the experiments with our branch-and-bound algorithm, we use GUROBI 6.5.1 for the
solution of the MILP Subproblem (9), while employing SCIP 3.2.1 for the solution of nodes
(S+, S−) with S+ = ∅ and to perform the feasibility check. The tree search procedure is
implemented in Python. To select the next node to process, we adopt a “worst bound” policy.
This leads to always exploring a sequence of nodes (S+, S−) with S− = ∅ until a leaf node is
reached, thus quickly obtaining a feasible solution. The results are reported in Table 2 for
games with up to m = 16 actions, obtained with different values of ε, namely, ε = 0.1, 1, 5.5

The table shows that the algorithm finds solutions of better quality for larger values of ε,
in spite of the fact that, the larger ε, the poorer the solution should be, as a consequence of
larger portions of the leader’s feasible region ∆3 being discarded after a branching operation.
This result is due to the fact that, with a larger ε, fewer nodes are created and, thus, leaf
nodes are reached much faster, resulting in more feasible solutions being found in the time
limit. Note that, as the size of the games increases and the algorithm becomes less effective,
the method seems to be less affected by the choice of ε.

From a gap of, on average, 51.6% obtained with ε = 0.1, we achieve one of 43.8% with
ε = 1, and one of 38.3% with ε = 5. While the UB is not much affected by ε, we register a
larger improvement in the LB, which goes from, on average, 45.7 with ε = 0.1 to 51.7 with
ε = 1 to 56.0 with ε = 5. As the table shows, the problem becomes much harder to solve
for larger values of m, with an average gap which, from the 65.5%-70.5% range for m = 16,
considering the three values of ε, reaches 99% for m = 18 (not shown in the table).

Notwithstanding the problem being a nonconvex pessimistic bilevel program, we remark
that the branch-and-bound algorithm we proposed manages to find, with ε = 5, solutions
in 70% of the cases with an average (approximate, due to ε) gap of ∼70% for games with

5 We omit the results for larger values of m as, for them, the algorithm often fails to find a feasible
solution.

N. Basilico, S. Coniglio, N. Gatti, and A. Marchesi 31:13

m = 16 actions (4096 payoffs in each of the n = 3 matrices U1, U2, U3). Such games are not
much smaller, in terms of the number of outcomes, than those solved in papers concerned
with the computation of an optimal NE in the single level case, see [15], which is a special
case of the problem of computing a SLMFNE obtained when x3 is restricted to a constant.

6 Concluding remarks

We have considered the problem of computing leader-follower equilibria in games with two
or more followers, assuming that, after witnessing the leader’s commitment to a mixed
strategy, the followers play a mixed-strategy Nash equilibrium. We have proposed three
mixed-integer nonconvex mathematical programming formulations for the optimistic case,
and an ad hoc branch-and-bound method for the pessimistic one. Computational experiments
have revealed that, with the last of the three formulations for the optimistic case, we can
obtain average gaps smaller than 13% for games with up to 45 actions per player while, with
our branch-and-bound algorithm for the pessimistic case, we obtain average (approximate)
gaps below 70% for games with up to 16 actions. Future work includes the design of primal
heuristics to be embedded in the branch-and-bound algorithm for the pessimistic problem,
as well as the construction of dual bounds via the adoption of relaxed optimality conditions.

References
1 E. Amaldi, A. Capone, S. Coniglio, and L. G. Gianoli. Network optimization problems

subject to max-min fair flow allocation. IEEE COMMUN LETT, 17(7):1463–1466, 2013.
2 B. An, J. Pita, E. Shieh, M. Tambe, C. Kiekintveld, and J. Marecki. Guards and Protect:

Next generation applications of security games. ACM SIGecom Exchanges, 10(1):31–34,
2011.

3 E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. DIS-
CRETE APPL MATH, 89(1):3–44, 1998.

4 N. Basilico, S. Coniglio, and N. Gatti. Methods for Finding Leader-Follower Equilibria
with Multiple Followers: (Extended Abstract). In Proc. of AAMAS, pages 1363–1364.
International Foundation for Autonomous Agents and Multiagent Systems, 2016.

5 A. Caprara, M. Carvalho, A. Lodi, and G.J. Woeginger. Bilevel knapsack with interdiction
constraints. INFORMS J COMPUT, 28(2):319–333, 2016.

6 V. Conitzer and D. Korzhyk. Commitment to correlated strategies. In Proc. of AAAI,
2011.

7 V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. In ACM
EC, pages 82–90, 2006.

8 V. Conitzer and T. Sandholm. New complexity results about nash equilibria. GAME
ECON BEHAV, 63(2):621–641, 2008.

9 C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing optimal
randomized resource allocations for massive security games. In Proc. of AAMAS, pages
689–696, 2009.

10 M. Labbé and A. Violin. Bilevel programming and price setting problems. ANN OPER
RES, 240(1):141–169, 2016.

11 S. Leyffer and T. Munson. Solving multi-leader–common-follower games. OPTIM
METHOD SOFTW, 25(4):601–623, 2010.

12 Z.-Q. Luo, J.-S. Pang, and D. Ralph. Mathematical programs with equilibrium constraints.
Cambridge University Press, 1996.

13 J. Matuschke, S.T. McCormick, G. Oriolo, B. Peis, and M. Skutella. Protection of flows
under targeted attacks. OPER RES LETT, 45(1):53–59, 2017.

SEA 2017

31:14 Bilevel Programming for Single-Leader-Multi-Follower Equilibria

14 E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run the GAMUT: A
comprehensive approach to evaluating game-theoretic algorithms. In Proc. of AAMAS,
pages 880–887. IEEE Computer Society, 2004.

15 T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-Integer Programming Methods for Finding
Nash Equilibria. In Proc. of AAAI, pages 495–501, 2005.

16 Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game Theoretic and
Logical Foundations. Cambridge University Press, 2008.

17 B. von Stengel and S. Zamir. Leadership games with convex strategy sets. GAME ECON
BEHAV, 69:446–457, 2010.

18 A.B. Zemkoho. Solving ill-posed bilevel programs. SET-VALUED ANAL, 24(3):423–448,
2016.

The Impact of Landscape Sparsification on
Modelling and Analysis of the Invasion Process∗†

Daniyah A. Aloqalaa1, Jenny A. Hodgson2, and
Prudence W. H. Wong3

1 Department of Computer Science, University of Liverpool, Liverpool, UK
d.a.aloqalaa@liverpool.ac.uk

2 Department of Evolution, Ecology and Behaviour, University of Liverpool,
Liverpool, UK
jenny.hodgson@liverpool.ac.uk

3 Department of Computer Science, University of Liverpool, Liverpool, UK
pwong@liverpool.ac.uk

Abstract
Climate change is a major threat to species, unless their populations are able to invade and
colonise new landscapes of more suitable environment. In this paper, we propose a new model of
the invasion process using a tool of landscape network sparsification to efficiently estimate a dur-
ation of the process. More specifically, we aim to simplify the structure of large landscapes using
the concept of sparsification in order to substantially decrease the time required to compute a
good estimate of the invasion time in these landscapes. For this purpose, two different simulation
methods have been compared: full and R-local simulations, which are based on the concept of
dense and sparse networks, respectively. These two methods are applied to real heterogeneous
landscapes in the United Kingdom to compute the total estimated time to invade landscapes.
We examine how the duration of the invasion process is affected by different factors, such as dis-
persal coefficient, landscape quality and landscape size. Extensive evaluations have been carried
out, showing that the R-local method approximates the duration of the invasion process to high
accuracy using a substantially reduced computation time.

1998 ACM Subject Classification E. [Data] Graphs and Networks, G.3 Probability and Statist-
ics, J.3 [Life and Medical Sciences] Biology and genetics

Keywords and phrases Landscape sparsification, invasion process, network sparsification, dense
and sparse networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.32

1 Introduction

Climate change and land use change are two threats that cause the extinction of numerous
species [4, 7, 12, 17]. It was observed that species are responding to climate change by
shifting their geographical area [1, 16], however the ability of their population to shift depends
on the availability of suitable habitat to shift and colonise [4, 6, 12, 13]. Species become
under a high risk of extinction if they are shifting very slowly or do not have the ability to
shift [15]. Therefore, to maintain the functioning of an ecosystem and services in a changing

∗ The source codes and data used are available at https://github.com/Aloqalaa/
Landscape-Sparsification-on-Modelling-Invasion-Process.

† Jenny A. Hodgson acknowledges support from NERC grant ref NE/L002787/1.

© Daniyah A. Aloqalaa, Jenny A. Hodgson, and Prudence W.H. Wong;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 32; pp. 32:1–32:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.32
https://www.dropbox.com/sh/yu37cc8aftr5nox/AACW5Orvb8gCDSdO0JFiEDlua?dl=0
https://www.dropbox.com/sh/yu37cc8aftr5nox/AACW5Orvb8gCDSdO0JFiEDlua?dl=0
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Landscape Sparsification on Modelling Invasion Process

climate, it becomes an important need to facilitate the adaptation of species, especially by
enabling them to shift to new locations with more suitable climate [5]. It is an urgent need
for policymakers and nature conservation organisations to find out whether and how they
can facilitate range shifts [5]. A number of empirical and theoretical studies have shown that
spatial arrangement of habitats is an important factor that affects the speed of advance to
new landscapes with more suitable climate [3, 5, 17]. Hodgson et al. [5] found the evidence of
the benefits of using different tools such as habitat corridors and stepping stones to speed up
shifting. However, it is still difficult for conservationists to make decisions that can facilitate
range shifts in large landscapes, therefore there is a need for a tool efficiently computing
the invasion time of the original and modified landscapes. Minimising computation time
is especially important because the ultimate aim is for a decision-making tool that can
tune the arrangement of the modified landscape to find scenarios where a small addition of
habitat leads to a large decrease in invasion time. Running many scenarios with different
permutations of habitat could require excessive computation times even with moderately-sized
landscapes. Furthermore, planning for climate change requires the consideration of large
landscapes (e.g., temperature isoclines are expected to shift at several km per decade).

In this study, our focus is to build a new sparse computational model for the invasion
process using the network modelling approach. To model invasion process in a given landscape,
we create a landscape network, where each vertex represents a patch of habitat (henceforth
patch) in the landscape. We distinguish two sets of patches: the source patches represent
initially populated patches in which species are located, and the target patches represent
the target locations for the invasion process. The invasion process is to populate (some)
target patches and we aim to estimate the time needed for achieving this. A stochastic model
from [5] has been implemented in the simulation, which is based on the probability of a
patch to be invaded expressed by a formula depending on various characteristics (distance,
quality of patch, etc.) of all other patches in the network. Such simulation is computationally
expensive, especially when the number of patches is large.

In this paper we propose to approximate the computed invasion time by exploiting
network sparsification. We call the original approach in [5] the full invasion simulation
method. In the protocol implementing full invasion method, in each round of the invasion
process each populated patch tries to populate (independently) all other unpopulated patches
in the landscape. On the other hand, we propose the R-local invasion method, and associated
protocol, such that in each round, every patch only tries to populate other unpopulated
patches within a local distance R. The full invasion protocol can be seen as an R-local
invasion protocol with R equal to the diameter of the landscape. With a smaller value of R,
the R-local invasion process is expected to take less time in each round of computation,
while it may take more rounds to populate the target patches. If the local distance R is
chosen properly, the R-local invasion protocol can compute a comparable (to the full method)
duration of invasion process, while the computation time can be substantially reduced. That
means our proposed method is much more efficient (less computational time) than the
existing model. One important characteristics to consider when computing the total time
of experiment is also the number of simulations needed for the (average) invasion time to
stabilise on the outputted duration of invasion. In this paper, we illustrate how to determine
the local distance R systematically to reach a good trade-off between quality of estimate and
computation time.

In both full and R-local protocols, we investigate the effect of three factors: species’ mean
dispersal distance, landscape quality and landscape size, on the invasion duration. We apply
the full and R-local protocols to real heterogeneous landscapes in the United Kingdom. An

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:3

Table 1 Aggregate classes [10].

Aggregate class
number Aggregate class Aggregate class

number Aggregate class

1 Broadleaf woodland 6 Mountain, heath, bog
2 Coniferous woodland 7 Saltwater
3 Arable 8 Freshwater
4 Improved grassland 9 Coastal
5 Semi-natural grassland 10 Built-up areas and gardens

extensive experimental evaluation with real data illustrates the effectiveness and accurateness
of the proposed R-local protocol in estimating the duration of invasion process in large
landscapes in a relatively short time, with respect to the previously used full method.

Technically speaking, the work presented in this paper combines ideas from probability
and random processes [2, 8, 9] with some use of network/graph foundations [11].

2 Materials and methods

2.1 Notation and technical preliminaries
We are given a 2-dimensional rectangular grid landscape as an input, which we represent
as a landscape graph G = (V,E). Denote by n = |V | the number of vertices/patches in the
landscape graph, and by m = |E| the total number of edges between patches. Let q(v) denote
the quality of a patch v, where the quality is a number between zero and one given as an input.
We distinguish two sets of patches, S and T , where S denotes the set of populated source
patches that are non-zeros in quality and T denotes the set of unpopulated target patches
that are also non-zeros in quality. In addition, we define the maximum and minimum quality
as qmax = max{q(v) : v ∈ V } and qmin = min{q(v) > 0 : v ∈ V }, respectively. We define the
height H as the difference in y-coordinates of any top and bottom patch in the landscape
graph G and the width W as the difference in x-coordinates of any left patch in the source
set and right patch in the target set. We also define R-local graph Loc(G,R) = (V ′, E′) as a
subgraph of G that contains all the vertices of the landscape graph G (i.e., V ′ = V) and a set
of edges E′ ⊆ E such that for any (u, v) ∈ E, (u, v) ∈ E′ if the Euclidean distance between
vertices v and u is at most R. For a defined R-local graph Loc(G,R), we define dmin as
the minimum distance d such that Loc(G, d) connects S to T , i.e., dmin is the minimum
distance d such that every node in T is reachable from some node in S in graph Loc(G, d).

2.2 The studied landscape
For evaluation purposes, the dataset of the 1km resolution raster version of the Land Cover
Map 2007 (LCM2007) for Great Britain [14] is used.

To examine the proposed methods, different sized landscapes from different maps of
the aggregate classes are extracted. The aggregate classes data contain one tiff file for
each land use class as in Table 1. Each map consists of 1300 rows/height (pixels) and 700
columns/width (pixels) and each 1km pixel provides the percentage cover of a particular land
cover at LCM2007 Class level [10]. We consider the percentage cover at each patch in such an
extracted landscape as the quality of each patch. For examination purposes, from percentage
values we formed three groups of landscape qualities, namely: low quality, medium quality
and high quality to represent the quality of the extracted landscape. If the average of all

SEA 2017

32:4 Landscape Sparsification on Modelling Invasion Process

(a) Landscape of size 5 × 300 and of low quality.

(b) Landscape of size 5 × 300 and of medium quality.

(c) Landscape of size 5 × 300 and of high quality.

Figure 1 The studied landscapes; three landscapes of size 5 × 300 and of low, medium and
high quality extracted from LCM2007 UK (aggregate classes) maps. In each landscapes, the
colour corresponds to the quality of each patch; black, blue, green, and red corresponds to zero,
low (0.01-0.05), medium (0.05-0.25), and high quality (0.25-1), respectively.

patches qualities in such an extracted landscape is between 0% and 5%, 5% and 25%, 25%
and 100%, then the extracted landscape is of low quality, medium quality, and high quality,
respectively. For each quality type, we extract a rectangular landscape that consists of 5 rows
and 300 columns. Landscapes of low and medium qualities were extracted from semi-natural
grassland UK map, while the one of high quality from an improved grassland UK map. On
these extracted rectangular landscapes, we assume that all patches at the first column of
each landscape are occupied and the goal is to populate patches at the target columns (col.
10, 20, 30, etc.). Each landscape is extracted according to the following criteria:

1. The qualities of all source occupied patches are non-zeros.
2. At each target column, at least one of the patches is non-zero in quality.
Figure 1 shows real landscapes used which are extracted from two LCM2007 UK (aggregate
classes) maps.

2.3 New formulas estimating duration of the invasion process
For a given landscape graph G, we use the formula of colonisation probability proposed by
Hodgson et al. [5] to define the transition probability between patches v and u as p(v, u) =
q(v) · exp(−αd(v,u))

(2π
α2)−1

, where α > 0 is the dispersal coefficient assumed to be the same for all
patches and d(v, u) is the Euclidean distance between patches v and u.

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:5

For a given landscape graph G, source S and target T , we define “all non-zero target
patches” as the total number of target patches that are non-zeros in quality, and “majority
of all non-zero target patches” as the number of patches being more than half of the total
number of non-zero quality target patches. In this work, we consider three types of invasions,
namely: first success, majority success and all successes invasion. The first success invasion
measures the estimated time to populate any of the non-zero target patches. Therefore, the
first success is defined as the estimated time needed until the first non-zero target patch
becomes populated. The majority success is the estimated time to populate the majority
(more than 50%) of all non-zero target patches. Finally, all successes is defined as the
estimated time to populate all non-zero target patches.

Based on the formula of the transition probability, we propose three new estimating times
of invasions in such a landscape. For a given landscape graph G, in order to hop from
source S to target T , we need to find a path that contains at most H+W

dmin(G) hops. According
to the formula of transition probability between patches, the probability of a single hop in
the landscape graph G is at least qmin(G) · exp(−α·dmin(G))

(2π
α2)−1

. Thus, the expected time for

each hop is the inverse of its probability, i.e., (2π
α2)−1

qmin(G)·exp(−α·dmin(G)) . Since the number of
hops that are needed in such a path to connect source S with target T is H+W

dmin(G) , the total
expected time of invasion for the first success is at most

H +W

dmin(G) ·
(2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) · c ,

where c is a small constant to be determined by simulation. Consequently, the total expected
time of invasion for the majority success is at most[

H +W

dmin(G) ·
(2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) +
(
H

2 − 1
)
·

(2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G))

]
· c ,

where
(
H
2 − 1

)
is an upper bound on the total number of majority of target patches decreased

by one and c is again a small constant to be interpolated by simulation. Therefore, the total
expected time of invasion for all successes is at most[

H +W

dmin(G) ·
(2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G)) + (H − 1) ·
(2π
α2

)
− 1

qmin(G) · exp (−α · dmin(G))

]
· c ,

where (H − 1) is an upper bound on the total number of all target patches decreased by one
and c is a small constant to be interpolated by simulation.

2.4 The R-local simulation method
We simulate the behaviour of the invasion process by building a simulator that uses the
R-local method to compute the number of rounds needed for invasion. The inputs to the
simulator are: a two-dimensional array that represents a given real landscape and stores
qualities of patches, a source vector containing indices of populated patches, a target vector
containing indices of unpopulated target patches, and dispersal coefficient α (in Algorithm 1
initialised to 0.25). For a given landscape, the simulator constructs a two-dimensional array of
a size equal to the one of the given landscape. Each cell in the constructed array corresponds
to a patch in the landscape and can take only two values, zero or one, where zero means
the cell is unpopulated while one means it is populated. At the beginning of the invasion
process, only source populated patches take value of one and others take value of zero. The

SEA 2017

32:6 Landscape Sparsification on Modelling Invasion Process

simulator returns an estimated duration needed (number of rounds) to invade targets by the
use of real probabilities for each pair of patches v, u, in which v is populated and u is not.
We use transition probabilities between patches v and u to decide whether patch v populates
patch u or not.

More formal description of Algorithm 1 provides the structure of the R-local method.
The generic structure of the R-local method contains inputs (as mentioned above), outputs,
and Count rounds function. The Count rounds function counts the number of rounds
required for first, majority and all successes and to compute the real time execution for each
simulation. The function includes nested loops of three levels. The main loop (lines 12–37)
counts the number of rounds to populate target patches. The second level loop (lines 14–36)
is for all populated patches that are trying to populate unpopulated patches. The inner
level loop (lines 17–33) is for all unpopulated patches. Each unpopulated patch becomes
populated if the transition probability between the populated and unpopulated patches is
greater than a random generated number between zero and one (lines 22-25). We consider
only populating a patch with non-zero quality. Each time when an unpopulated target patch
becomes populated, the algorithm checks if the total number of non-zero patches at target
is equal to one or majority or all targets’ number, and the number of rounds is recorded
accordingly. The Count rounds function terminates when all non-zero target patches
become populated and returns the number of rounds needed for each type of successful
invasions as well as the execution time of simulation.

Recall that in the full invasion method, each populated patch in the landscape tries to
populate every other unpopulated patch in the whole landscape, while in the R-local invasion
method each populated patch in the landscape only tries to populate every other unpopulated
patch within a local distance R around the populated patch. Thus, parameter R in the full
method takes the whole size (diameter) of the landscape (i.e., R = H + W), while in the
R-local method we propose an equation to compute the local distance R. In addition, the
inner level loop in Count rounds function runs for all unpopulated patches in the whole
landscape (from 0 to H + W) in the full method, while runs only for unpopulated patches
that are of distance at most R from the populated patch (from populated patch to R) in the
R-local method (lines 17 and 18 in Algorithm 1).

It is expected that the number of rounds required for the R-local method is larger. In
our simulation, we aim to find the local distance R that allows the following accuracy:

FULL
R-LOCAL = average number of rounds using the full method

average number of rounds using the R-local method ≥ 90% .

As a starting point, we run simulation using both full and R-local methods with some
expected local distances R. It has been observed that the required local distance R for the
FULL/R-LOCAL ratio to be at least 90% in the first success is greater than or equal to
the needed local distance R for majority and all successes. Based on this observation, we
propose an equation that computes the local distance R for a given landscape graph G based
on the total expected time of invasion for the first success. Observe that the probability of a
single hop in a given landscape graph G is less than the inverse of the total expected time of
the invasion process for the first success:

qmin(G) · exp (−α · dmin(G))(2π
α2

)
− 1

� 1
total expected time of invasion for first success .

Therefore, the following holds:

qmax(G) · exp (−α ·R(G))(2π
α2

)
− 1

� dmin(G)
H +W

· qmin(G) · exp (−α · dmin(G))(2π
α2

)
− 1

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:7

−α (R(G)− dmin(G)) < ln
(
dmin(G) · q̄(G)

H +W

)
.

Finally, we get the best (smallest) local distance R needed to create a landscape sub-
graph Loc(G,R), for a given landscape graph G, and guarantees the FULL/R-LOCAL
accuracy is:

R(G) ≈
[

1
α
· ln
(

H +W

dmin(G) · q̄(G)

)
+ dmin(G)

]
· c , (1)

where q̄(G) = qmin(G)
qmax(G) and c is a small constant to be determined by simulation.

2.4.1 Interpolating constant c in Equation (1)
We use the following three objective functions in order to interpolate constant c in Equation (1).
We use terminology “approx R” and “opt R” to express the local distance R using Equation (1)
and simulation such that it is the smallest distance satisfies the FULL/R-LOCAL accuracy,
respectively. We call it opt R because this value of R fulfills our goal of accuracy.

1. The Euclidean distance objective function (ED) chooses the constant c such that it
minimises the sum over all prefixes z of the square difference between the approx R and
opt R:

cED = argmin
c∈R+

z∑
j=1

(approxRj · c− optRj)2

 .

2. The absolute objective function (AB) chooses the constant c such that it minimises the
sum over all prefixes z of the absolute difference between the approx R and opt R:

cAB = argmin
c∈R+

z∑
j=1
|approxRj · c− optRj |

 .

3. The min-max (MM) objective function chooses the constant c such that it minimises the
approx R to be greater than or equal to opt R for all prefixes z:

cMM = argmin
c∈R+

{
max

1≤j≤z
(approxRj · c− optRj) ≥ 0

}
.

2.5 Simulation
2.5.1 Main simulation
The simulation is directed at four goals. The first is to monitor the behaviour of full and
R-local methods and compare results obtained by each method. The second is to investigate
what values of local distance R would allow the FULL/R-LOCAL accuracy. Based on the
results obtained from the simulation, the third goal is to predict an equation for the local
distance R, depending on landscape size, dispersal coefficient α and landscape quality. Finally,
we aim to combine results from simulation and the predicted equation to compare them and
conduct an independent validation based on the value obtained from the proposed equation
on the local distance R.

For each prefix 5 × 10, 5 × 20, 5 × 30, ..., 5 × 300 in each of the extracted rectangular
landscapes in Figure 1, we run the full simulation and, simultaneously, the R-local simulation

SEA 2017

32:8 Landscape Sparsification on Modelling Invasion Process

Algorithm 1 Modelling Invasion Process using R-local Method.
1: Inputs:

2-dimensional array G, which stores qualities of patches in a real landscape
Source: vector S contains indices of initial populated patches
Target: vector T contains indices of unpopulated target patches
α← 0.25

2: Outputs:
Number of rounds needed for first, majority and all successful invasions
Execution time of simulation

3: function Count rounds(G,S, T, α)
4: SimulationStartTime ← record start time of simulation
5: R ← Use Equation (1)
6: Create 2-dimensional array B having size equal to array G ← 0
7: for each index of populated patch in vector S do
8: B(index)← 1
9: end for

10: Counter ← 0 . counter to count rounds for successful invasions
11: StartTime ← Record start time of rounds
12: while any of target patch in T is unpopulated do
13: Counter ← Counter+1
14: for i← 0 to number of rows in array G do . loop for all populated patches (1)
15: for j ← 0 to number of columns in array G do
16: if patch B(i, j) is populated then
17: for k ← i−R to i+R do . loop for all unpopulated patches (0)
18: for l← j −R to j +R do
19: if patch B(k, l) is unpopulated and its quality 6= 0 then
20: distance ← Euclidean distance between B(i, j) and B(k, l)
21: if 0 < distance ≤ R then
22: p ← Transition probability between B(i, j) and B(k, l)
23: w ← Generate a random number between 0 and 1
24: if w < p then
25: Populate patch B(k, l)
26: if populated patch B(k, l) is at target column then
27: Check the invasion type first or majority or all
28: end if
29: end if
30: end if
31: end if
32: end for
33: end for
34: end if
35: end for
36: end for
37: end while
38: SimulationEndTime ← Record end time of simulation
39: SimulationTimeExecution ← SimulationEndTime−SimulationStartTime
40: return Counter, SimulationTimeExecution
41: end function

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:9

with some predicted distances; ideally, one of these R gives the FULL/R-LOCAL accuracy,
while the local distance R decreased by one does not satisfy it. We consider four values
for the dispersal coefficient α: 0.25, 0.5, 1 and 2. For each prefix and for each dispersal
coefficient α, we run full and R-local simulation 100 times and compute the average number
of rounds for first, majority, and all successes.

2.5.2 Validation of the R-local simulation method
We are interested in the most convenient time for stopping or cutting simulation and determine
the stabilisation time (ST) of simulation. For that purpose we define the stabilisation
time (ST) for a given landscape as the time t such that the change in average number of
rounds for all successes (AFAS) between t and 2t is less than or equal to 2%: ∀τ ∈ (t, 2t],

|AFAS(τ)−AFAS(t)| ≤ 0.02 ·AFAS(t), where AFAS(τ) =
∑τ

j=1
AS(j)
τ and AS(j) is the

number of rounds needed for the all successes at experiment j.
To test the robustness of our method, we have used different sizes from the sizes used in

deriving R. We apply it to four different sizes of landscapes: 5× 50, 10× 50, 15× 50 and
20× 50, as in the following steps.

1. Extract randomly three landscapes of each size from different LCM2007 UK (aggregate
classes) maps for each quality low, medium, and high.

2. On these extracted landscapes and for each considered value of the dispersal coefficient α:

a. Run full simulation, stop simulation at the ST and record the results.
b. Compute the average number of rounds for first, majority and all successes, and the

average of the execution times of full simulation.
c. Compute the minimum quality qmin, the maximum quality qmax and the minimum

distance dmin.
d. Compute three local distances R using Equation (1) with the constants in Table 3

which are calculated as in Section 2.5.1 with the data in Section 2.4.1 (see Section 3).
e. Run R-local simulation with each value of the three computed local distances R (based

on cED, cAB , and cMM constants), stop simulation at the ST and record the results.
f. Compute the average number of rounds for first, majority and all successes, and the

average of the execution times of R-local simulation.
g. For all three types of successful invasions and all local distances R computed in

(d), compute the FULL/R-LOCAL accuracy. Then, check all accuracies if they are
guaranteed.

h. Specify which of the computed local distance R is the opt, where the opt one is the
smallest distance that gives the FULL/R-LOCAL accuracy to be at least 90%.

i. Compute the ratio between the average of the execution times (AETS) of full and
R-local simulation methods.

3 Results

3.1 Main simulation
The estimated time of invasion (i.e., average number of rounds over 100 independent ex-
periments) has been computed for each prefix 5 × 10, 5 × 20, 5 × 30, . . ., 5 × 300 in each
landscape of low, medium, and high quality using full and R-local simulation methods. In
order to investigate the local distance R that allows FULL/R-LOCAL accuracy in each
prefix in each of the extracted landscapes we use some predicted local distances R to run

SEA 2017

32:10 Landscape Sparsification on Modelling Invasion Process

(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 2 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of low
quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

R-local simulation; ideally, one of the predicted distances is the opt that guarantees the
FULL/R-LOCAL accuracy, while decreasing the opt local distance R by one does not satisfy
it. The simulation results show that the FULL/R-LOCAL accuracy of at least 90% is satisfied
in all scenarios, as shown in Figures 2-4. On these landscapes, the opt local distances R used
for simulations and guaranteeing the FULL/R-LOCAL accuracy are provided in Figure 5a,
while Figure 5b shows the approx local distances R using Equation (1). From the opt local
distances R in Figure 5a, we observe that the dispersal coefficient α is the most important
parameter in both simulation methods. In all qualities, it has been investigated that a larger
local distance R is required when the dispersal coefficient α equals to 0.25, while for 0.5, 1
and 2 a smaller local distance R is sufficient. Therefore, the local distance R that ensures the
FULL/R-LOCAL accuracy depends on the dispersal coefficient α, and hence with decreasing
mean dispersal distance: R decreases with the increase in α. Furthermore, a logarithmic
growth has been observed in the local distance R with the growth of landscape size. On the
other hand, the difference in the landscape quality has not caused a significant difference in
the local distance R.

Comparison of the obtained results based on the proposed equation with simulation
results demonstrates that the proposed equation (Equation (1)) gives a good estimate of the
local distance R. We define the error rate between the approx and opt local distances R as:

z∑
j=1

(approxRj − optRj)

z∑
j=1

optRj

.

Table 2 gives the error rates between the approx and opt local distances R for each 5× 300
landscape of low, medium, and high quality. All error rates in Table 2 are high, which means
that we need to find the best constant c such that it minimises the error for various dispersal
coefficients α and different qualities. Table 3 presents the interpolated constants c based on
the objective functions ED, AB and MM for each 5× 300 landscape of low, medium, and
high quality. These constants are affected by the opt local distances R for all prefixes in each
landscape of different quality.

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:11

(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 3 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of
medium quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

Table 2 Error rate between approx (when constant c = 1) and opt local distances R for each
5 × 300 landscape of low, medium and high quality when the dispersal coefficient α = 0.25, 0.5, 1, 2.

Landscape quality α=0.25 α=0.5 α=1 α=2
Low quality 0.81 0.74 0.73 0.57
Medium quality 0.83 0.86 0.90 1.01
High quality 0.89 0.75 0.56 0.63

In addition, we define the following three error rates, which correspond to constant c
produced by each objective function:

1. error rate(cED) =

√
z∑
j=1

(approxRj ·cED−optRj)2

z∑
j=1

optRj

,

2. error rate(cAB) =

z∑
j=1

|approxRj ·cAB−optRj |

z∑
j=1

optRj

, and

3. error rate(cMM) =

z∑
j=1

(approxRj ·cMM−optRj)

z∑
j=1

optRj

.

Observe that the error rate gives a measure of how well the constant c interpolated by the
corresponding objective function minimises the error rate between the approx and opt local
distances R, for a given landscape. When the approx local distance R is very close or equal
to the opt local distance R, the error will be small or zero. Table 4 provides the computed
error rates between the approx and opt local distances R for each 5 × 300 landscape of
low, medium and high quality, when the constant c is equal to the interpolated cED, cAB,
and cMM (constants in Table 3). As can be seen in Table 4, all error rates are between 0.01

SEA 2017

32:12 Landscape Sparsification on Modelling Invasion Process

(a) α = 0.25 (b) α = 0.5

(c) α = 1 (d) α = 2

Figure 4 The FULL/R-LOCAL accuracy for each prefix in landscape of size 5 × 300 and of high
quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2.

Table 3 The computed constant c by the objective functions ED, AB and MM for each 5 × 300
landscape of low, medium and high quality when the dispersal coefficient α = 0.25, 0.5, 1, 2.

Landscape quality Parameters Constant c α=0.25 α=0.5 α=1 α=2

Low quality
qmin = 0.01 cED 0.55 0.55 0.6 0.65
qmax = 0.64 cAB 0.55 0.55 0.55 0.65
dmin = 2 cMM 0.6 0.65 0.7 0.75

Medium quality
qmin = 0.01 cED 0.55 0.55 0.55 0.5
qmax = 0.96 cAB 0.55 0.55 0.5 0.5
dmin = 3 cMM 0.6 0.6 0.65 0.7

High quality
qmin = 0.01 cED 0.55 0.55 0.65 0.6
qmax = 0.99 cAB 0.55 0.6 0.65 0.65
dmin = 3 cMM 0.6 0.65 0.75 0.75

and 0.4. While cED and cAB produce error rates smaller than cMM , constant cMM is the
best among the three. One of the reasons could be that constant cMM in all landscapes
reduces the approx local distance R to be greater than or equal to the opt local distance R.
On the other hand, in some cases cED and cAB decrease the approx local distance R to be
less than the opt local distance R, and that means they give an estimated local distance R
which does not allow the sought FULL/R-LOCAL accuracy.

3.2 Validation
We performed validation on 36 different landscapes. The 36 landscapes are divided into
groups of nine landscapes and the four groups each has size: 5× 50, 10× 50, 15× 50, and
20× 50, respectively. For each landscape size, the nine landscapes are further divided into
subgroups of three and each group has associated low, medium and high quality, respectively.
All landscapes are extracted randomly from different LCM2007 UK (aggregate classes) maps
(i.e., aggregate classes in Table 1). On those landscapes, we run full and R-local simulations
independently as described in Section 2.5.2 in order to get the averages of the estimated time

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:13

(a) Opt local distances R computed by
simulations

(b) Approx local distances R computed by
Equation (1)

Figure 5 The local distance R for each prefix in landscape of size 5 × 300 and of low, medium,
and high quality when the dispersal coefficient α takes values of 0.25, 0.5, 1 and 2. (a)The opt
local distances R that allows the FULL/R-LOCAL accuracy and computed by simulations. (b)The
computed local distances R by the proposed formula (Equation (1), when constant c = 1).

of invasion for first, majority and all successes as well as the averages of the execution times
of simulations. Running full and R-local simulations on those landscapes, using constants in
Table 3, gives a good result as the FULL/R-LOCAL accuracy has been achieved as presented
in Figure 6. It has been illustrated by the validation experiments that the MM objective
function is the best function to be used among the three objective functions because it gives
constant cMM such that it reduces the approx local distance R to be greater than or equal
to the opt for all 36 landscapes.

Furthermore, the validation experiments demonstrate that the total time (TT) of simula-
tion execution, where TT = ST · AETS, needed to compute the estimated duration of the
invasion process is substantially reduced by the R-local simulation method for all landscapes
of different qualities. Figure 7 illustrates how much the R-local method is faster than the
full method for all three qualities. For many cases, the full method takes 5-10 times longer
to compute and this ratio can become as high as 75 for low quality landscape. We note

SEA 2017

32:14 Landscape Sparsification on Modelling Invasion Process

Table 4 The error rate between approx and opt local distances R, when c = cED, cAB , cMM , for
each 5 × 300 landscape of low, medium and high quality when α = 0.25, 0.5, 1, 2.

Landscape quality Parameters Error rate α=0.25 α=0.5 α=1 α=2

Low quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.01 0.01
qmax = 0.64 Error rate (cAB) 0.04 0.05 0.06 0.05
dmin = 2 Error rate (cMM) 0.08 0.12 0.21 0.17

Medium quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.01 0.02
qmax = 0.96 Error rate (cAB) 0.04 0.04 0.05 0.11
dmin = 3 Error rate (cMM) 0.1 0.11 0.23 0.40

High quality
qmin = 0.01 Error rate (cED) 0.01 0.01 0.02 0.03
qmax = 0.99 Error rate (cAB) 0.05 0.05 0.08 0.12
dmin = 3 Error rate (cMM) 0.13 0.13 0.17 0.22

(a) Landscapes of size 5 × 50 (b) Landscapes of size 10 × 50

(c) Landscapes of size 15 × 50 (d) Landscapes of size 20 × 50

Figure 6 The average of FULL/R-LOCAL accuracy over the three landscapes in each subgroup
with same size and same landscape quality; the R-LOCAL is with R = approxR for c = cMM . This
is done for different values of dispersal coefficients α.

that in general, for a given landscape size, the speedup of the R-local method increases as
the dispersal coefficient α increases. On the other hand, in most cases, when the dispersal
coefficient α is fixed, the speedup increases as the size of landscape increases.

In more details, in the landscape of size 20× 50 and of low quality, the average execution
time of full simulation is 176.9 seconds while only 2.5 seconds in the R-local simulation. That
means the full method takes around 70 times longer to compute. We could envisage that
when we are running full simulation in very large landscapes e.g., landscape of size 500× 500,
the computation time will be substantially reduced from maybe weeks/days to hours.

4 Conclusion

This study was prompted by a desire to construct the R-local model that visualises the
invasion process based on the landscape network sparsification tool to efficiently estimate
a duration of the process. The capability of our model is to reduce the time needed to
compute the estimated duration of the invasion process on large landscapes while maintaining
a comparable duration of the invasion.

D.A. Aloqalaa, J. A. Hodgson, and P.W.H. Wong 32:15

(a) Landscapes of low quality (b) Landscapes of medium quality

(c) Landscapes of high quality

Figure 7 In each landscape quality (low, medium, high), the ratio between the stabilisation
time (ST) of full and R-local simulations; the ratio between the average of the execution times
(AETS) of full and R-local simulations; and the ratio between the total time (TT) of full and R-local
simulations; the R-LOCAL is with R = approxR for c = cMM . This is done in four different sizes of
landscapes 5 × 50, 10 × 50, 15 × 50 and 20 × 50 and for different values of dispersal coefficients α.

The simulations demonstrate how the local distance R depends on two factors: the
dispersal coefficient α and the landscape quality. A small dispersal coefficient α requires a
large local distance R in all types of quality, while a small R is sufficient for a large α. The
difference in landscape quality does not cause a significant difference in the needed value
of the local distance R. Indeed, the tool of landscape network sparsification illustrates its
efficiency in computing the invasion time especially for large landscapes. Even when the size
of landscape is increased, the local distance R does not grow significantly (see Figure 5).
This implies a sparser landscape networks for large landscapes, and therefore the time needed
to compute the invasion duration decreases substantially.

As for future work, we aim to study how to improve/spoil the invasion process, e.g.,
to increase/decrease the speed of invasion by modifying landscapes. (Note that in some
applications decreasing the speed of invasion could be more desirable, e.g., in epidemics.) This
would require the computation of the invasion duration many times to verify the effectiveness
of landscape modification, and therefore our work improving the speed up of the computation
would be beneficial.

Acknowledgments. The authors would like to thank Dariusz Kowalski (University of
Liverpool) for fruitful discussions and comments on the content of this paper.

SEA 2017

32:16 Landscape Sparsification on Modelling Invasion Process

References
1 I. Chen, J.K. Hill, R. Ohlemüller, D.B. Roy, and C.D. Thomas. Rapid range shifts of

species associated with high levels of climate warming. Science, 333:1024–1026, 2011.
2 G. Grimmett and D. Stirzaker. Probability and random processes. Oxford university press,

2001.
3 J.A. Hodgson, A. Moilanen, B.A. Wintle, and C.D. Thomas. Habitat area, quality and

connectivity: striking the balance for efficient conservation. Journal of Applied Ecology,
48(1):148–152, 2011.

4 J.A. Hodgson, C.D. Thomas, S. Cinderby, H. Cambridge, P. Evans, and J.K. Hill. Habitat
recreation strategies for promoting adaptation of species to climate change. Conservation
Letters, 4:289–297, 2011.

5 J.A. Hodgson, C.D. Thomas, C. Dytham, J.M. J. Travis, and S. J. Cornell. The speed of
range shifts in fragmented landscapes. PLoS ONE, 7:e47141, 2012.

6 O. Honnay, K. Verheyen, J. Butaye, H. Jacquemyn, B. Bossuyt, and M. Hermy. Possible
effects of habitat fragmentation and climate change on the range of forest plant species.
Ecol Lett, 5:525–530, 2002.

7 B. Huntley, Y.C. Collingham, S.G. Willis, and R.E. Green. Potential impacts of climatic
change on European breeding birds. PLoS ONE, 3:e1439, 2008.

8 V.G. Kulkarni. Modeling and analysis of stochastic systems. CRC Press, 2016.
9 M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and

probabilistic analysis. Cambridge university press, 2005.
10 D. Morton, C. Rowland, C. Wood, L. Meek, C. Marston, G. Smith, R. Wadsworth, and

I. Simpson. Final report for lcm2007-the new uk land cover map. Countryside Survey
Technical Report No 11/07, 2011.

11 M. Newman. Networks: An Introduction. Oxford University Press, 2010.
12 S. J. Phillips, P. Williams, G. Midgley, and A. Archer. Optimizing dispersal corridors for

the cape proteaceae using network flow. Ecological Applications, 18:1200–1211, 2008.
13 F. Skov and J.C. Svenning. Potential impact of climatic change on the distribution of

forest herbs in europe. Ecography, 27:366–380, 2004.
14 The Centre of Ecology and Hydrology Information Gateway. Land cover map 2007 (1km

percentage aggregate class, gb) v1.2.
15 C.D. Thomas, A. Cameron, R. E. Green, et al. Extinction risk from climate change. Nature,

427:145–148, 2004.
16 G.R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. Beebee, J.M. Fromentin,

O. Hoegh-Guldberg, and F. Bairlein. Ecological responses to recent climate change. Nature,
416(6879):389–395, 2002.

17 M.S. Warren, J.K. Hill, J. A. Thomas, et al. Rapid responses of british butterflies to
opposing forces of climate and habitat change. Nature, 414:65–69, 2001.

Ad-Hoc Affectance-Selective Families for Layer
Dissemination
Harshita Kudaravalli1 and Miguel A. Mosteiro2

1 Pace University, Computer Science Department, New York, NY, USA
hk21040n@pace.edu

2 Pace University, Computer Science Department, New York, NY, USA
mmosteiro@pace.edu

Abstract
Information dissemination protocols for ad-hoc wireless networks frequently use a minimal sub-
set of the available communication links, defining a rooted “broadcast” tree. In this work, we
focus on the core challenge of disseminating from one layer to the next one of such tree. We call
this problem Layer Dissemination. We study Layer Dissemination under a generalized model of
interference, called affectance. The affectance model subsumes previous models, such as Radio
Network and Signal to Inteference-plus-Noise Ratio. We present randomized and deterministic
protocols for Layer Dissemination. These protocols are based on a combinatorial object that we
call Affectance-selective Families. Our approach combines an engineering solution with theoret-
ical guarantees. That is, we provide a method to characterize the network with a global measure
of affectance based on measurements of interference in the specific deployment area. Then, our
protocols distributedly produce an ad-hoc transmissions schedule for dissemination. In the ran-
domized protocol only the network characterization is needed, whereas the deterministic protocol
requires full knowledge of affectance. Our theoretical analysis provides guarantees on schedule
length. We also present simulations of a real network-deployment area contrasting the perform-
ance of our randomized protocol, which takes into account affectance, against previous work for
interference models that ignore some physical constraints. The striking improvement in perform-
ance shown by our simulations show the importance of utilizing a more physically-accurate model
of interference that takes into account other effects beyond distance to transmitters.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, C.2.2 Network
Protocols

Keywords and phrases Wireless Networks, Broadcast Protocols, Affectance, SINR

Digital Object Identifier 10.4230/LIPIcs.SEA.2017.33

1 Introduction

The problem of disseminating information in ad-hoc wireless communication networks (for
instance, embedded in the Internet of Things) has been studied in theory and practice. To
reduce traffic, dissemination protocols often use a minimal subset of the available communic-
ation links, call it T . Given that nodes communicate through radio broadcast, nodes may
still receive through other links, but to provide performance guarantees only T is assumed to
be available, albeit taking into account the interference of the rest of the links.

When the dissemination task involves delivery to all nodes, T defines a tree topology
(since all nodes must be reachable but the set is minimal). Either because there is a single
source node (e.g. [13, 14]), or because packets are first aggregated at a single node for later
dissemination (e.g. [12, 15]), the problem reduces to disseminate from a root to all other

© Harshita Kudaravalli and Miguel A. Mosteiro;
licensed under Creative Commons License CC-BY

16th International Symposium on Experimental Algorithms (SEA 2017).
Editors: Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SEA.2017.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Ad-Hoc Affectance-Selective Families for Layer Dissemination

nodes through a Broadcast Tree. Moreover, as we observed in [13, 14], when packets are
disseminated from layer to layer in a BFS fashion, the bottleneck for fast dissemination on
broadcast trees occurs at layers with high interference. Indeed, we have shown in [13, 14] that
in the long run throughput is a function of maximum layer interference, and it is independent
of interference in paths where packets can be easily pipelined. This phenomenon has also
been observed in other works, such as in the following fragment in [7].

In fact, if one has a fast way of transmitting one or more messages from one layer to
the next, repeating this and using pipelining would yield a fast broadcast algorithm.
Thus, the crux of the broadcast problem lies in how fast can this task be solved in
bipartite graphs.

Thus, in this work, we focus on the core challenge of dissemination through one layer of
a broadcast tree. We model such layer as a bipartite graph G = (V, W, E) where V (the
transmitters) and W (the receivers) are sets of nodes and E is the set of links from V to W .
We study the Layer Dissemination problem in G assuming that initially all the transmitters
have an identical piece of information, called message or packet indistinctively. To complete
the task, all the nodes in W have to receive the message.

We do not assume any underlying communication infrastructure. That is, transmitters
attempt to deliver the message by radio broadcast but, if two or more nodes transmit at the
same time, mutual interference may prevent reception of the message. To take into account
this phenomenon, we study Layer Dissemination under a general model of interference called
affectance. As in [13, 14] we parameterize affectance with a real value 0 ≤ a(u, (v, w)) ≤ 1
that represents the affectance of each transmitter u on each link (v, w). An affectance model
of interference from links on links was introduced by Kesselheim [10] in the context of link
scheduling. Affectance is a general model of interference in the sense that comprises other
particular models studied before (cf. [14]). Moreover, previous models do not accurately
represent the physical constraints in real-world deployments. For instance, in the Radio
Network model [2] interference from non-neighboring nodes is neglected, and Signal to
Inteference-plus-Noise Ratio (SINR) [8, 19] is a simplified model because other constraints,
such as obstacles, are not taken into account.

Layer Dissemination is closely related to the combinatorial problem of computing selective
families. The notion of selective families was introduced in [3] as a generalization of the
dissemination problem in the Radio Network model to a combinatorial problem. Later
in [4], Clementi et al. showed how to compute selective families ad-hoc, that is, for a given
input family. The results are applicable to dissemination under the Radio Network model of
interference when the topology is known.

In this work, we follow-up on [3] and [4] introducing the concept of Affectance-selective
Families. That is, we generalize the dissemination problem in bipartite graphs also to a
combinatorial problem, but taking into account the specific conditions to achieve a successful
transmission under our generalized model of interference. Under certain conditions, we show
the existence of families of subsets of [n] that are affectance-selective for a given family of
subsets of [n]. We also present randomized and deterministic distributed protocols for Layer
Dissemination based on those affectance-selective families, and we provide running time
theoretical guarantees.

Our approach combines an engineering solution with theoretical guarantees. That is, we
provide a method to characterize the network with a global measure of affectance based
on measurements of interference in the specific deployment area. Then, our protocols
distributedly produce an ad-hoc transmissions schedule for dissemination. The randomized
protocol only requires knowledge of the network characterization (which could be hardwired),

H. Kudaravalli and M. A. Mosteiro 33:3

whereas the deterministic protocol requires full knowledge of the affectance values and it is
computationally intensive. Similar approaches have been explored in practice, e.g. Conflict
Maps (CMAP) [20], where nodes probe the network to build a map of conflicting transmissions.

In order to show the impact of a more accurate model of interference, we run simulations
for a real-world deployment area. We compare the performance of our randomized protocol
with previous protocols designed for the Radio Network and SINR models. Our experimental
results expose a striking improvement in running time. Notably, this improvement does
not come from algorithmic novelty, since all three protocols rely on transmitting with some
probability, but from the careful choice of this probability as a function of the interference
measured experimentally.

Roadmap

In Section 2 we overview previous related work. In Section 3 we specify the details of
our models and the relation between affectance-selective families and dissemination in
bipartite graphs. In Section 4 we specify the results obtained highlighting the novelty of our
contribution. Section 5 contains our analysis and the protocols presented, and in Section 6
we present our simulation results.

2 Related Work

The literature on information dissemination in ad-hoc radio networks is vast, including
a variety of models and assumptions. A lot of this work is heuristic and/or applying
optimization techniques (e.g. [6, 5]) or for other models (e.g. [16, 17]). A full overview of
such literature is out of the scope of this paper. We include below an overview of the most
closely related work.

Before our work in [13, 14], the generalized affectance model was introduced and used
only in the context of one-hop communication, more specifically, to link scheduling by
Kesselheim [10, 11]. He also showed how to use it for dynamic link scheduling in batches.
This model was inspired by the affectance parameter introduced in the more restricted SINR
setting [8]. They give a characteristic of a set of links, based on affectance, that influence the
time of successful scheduling these links under the SINR model. In [13, 14], we generalized
this characteristic, called the maximum average tree-layer affectance, to be applicable to
multi-hop communication tasks such as broadcast, together with another characteristic,
called the maximum path affectance.

Layer Dissemination is closely related to the combinatorial problem of computing selective
families ad-hoc for a given family of sets. The notion of selective families was introduced
in [3] and it is defined as follows. Given any set of items U , a family F of subsets of U is
called k-selective for the set U if and only if for any X ⊆ U , such that |X| ≤ k, there is a
set Y ∈ F satisfying |X ∩ Y | = 1. Here, we introduce the concept of affectance-selective
families, taking into account the specific conditions to achieve a successful transmission under
affectance.

With respect to selective families, our work can be seen as an extension of [4] to affectance.
Indeed, in [4], Clementi et al. showed how to compute selective families ad-hoc for a given
family. That is, their algorithm can be used for dissemination under the Radio Network
model. For instance, the input families can be seen as the different subsets of nodes that
may be active at a given time, or as in Layer Dissemination as the subsets of transmitters
connected to each receiver. Here, we revisit this problem under affectance, that is, we show
the existence of affectance-selective families (the precise notion is defined in Section 3), we

SEA 2017

33:4 Ad-Hoc Affectance-Selective Families for Layer Dissemination

present randomized and deterministic protocols to solve Layer Dissemination based on the
affectance-selective families, and we analyze their performance.

3 Model and Problem

We model the network topology as a bipartite graph G = (V, W, E), where V is the set of
transmitters, W is the set of receivers, |V | = |W | = n, and E is the set of links from V to W .
That is, for every (v, w) ∈ E, we have v ∈ V and w ∈ W . For each w ∈ W , we denote by
Ew the set of links incoming to receiver w, and by Fw the set of transmitters of those links.

Following [14], we model the interference among transmissions with an affectance
matrix

A =
[
a(u, (v, w))

]
u∈V

(v,w)∈E

,

where a(u, (v, w)) is a real number in [0, 1] quantifying the interference that the transmitter
u introduces to the communication through link (v, w). We denote aV ′((v, w)) as the total
affectance of a set of transmitters V ′ ⊆ V on a link (v, w) (i.e., the sum of affectances on
(v, w) over all nodes in V ′), and further, aV ′(E′) as the total affectance of a set of transmitters
V ′ ⊆ V on a set of links E′ ⊆ E (i.e., the sum of affectances of V ′ over all links in E′). We
do not restrict the affectance function, as long as its effect is additive; that is,

aV ′((v, w)) =
∑

u∈V ′

a(u, (v, w)) , and

aV ′(E′) =
∑

(v,w)∈E′

aV ′((v, w)) .

Without loss of generality we assume that time is slotted. Then, under the above
affectance model, a successful transmission in a time slot t is defined as follows. For any
link (v, w) ∈ E, a transmission from v is received at w in time slot t if and only if:

v transmits in time slot t, and
aT (t)((v, w)) < 1, where T (t) ⊆ V is the set of nodes transmitting in time slot t.

The event of a non-successful transmission, that is, when the affectance is at least 1, is called
a collision. We assume that a node listening to the channel cannot distinguish between a
collision and background noise present in the channel in absence of transmissions; in other
words, the model is without collision detection.

Under the model above, the Layer Dissemination problem is defined as follows: for
each node w ∈W , w must receive a successful transmission from some node in Fw.

We define affectance-selective families as a purely combinatorial problem on a family
of subsets of integers and a matrix of real numbers. (Refer to Section 2 for a definition of
classic selective families.) The relation with Layer Dissemination is the following. For each
receiver w ∈ W , consider the set Fw ⊆ V of transmitters connected to w. These sets of
transmitters define a family F of subsets of nodes in V . On the other hand, for a given
Layer Dissemination protocol, the schedule of transmissions from nodes in V can also be
viewed as a family S of subsets of nodes. Specifically, for each time slot t, the subset of
nodes in V transmitting in t is a member of S. In the Radio Network model, the family S is
called selective on the family F if and only if for any Fw ∈ F there is some St ∈ S such that
|St ∩ Fw| = 1. This is because w successfully receives a message if and only if exactly one
node in Fw transmits. Given an integer n > 0, consider a family F = {F1, F2, . . . , Fn} of
subsets of integers in [n]. Let A be a matrix of real numbers in [0, 1] defined on F in such

H. Kudaravalli and M. A. Mosteiro 33:5

a way that for each u ∈ [n] there is a corresponding row, and for each w ∈ [n] and each
v ∈ Fw there is a column in A corresponding to the pair (v, w). Then, we say that a family
S = {S1, S2, . . . , Ss} of subsets of [n] is affectance-selective on the family F if for each
w ∈ [n] there exists j ∈ [s] such that:

|Fw ∩ Sj | ≥ 1, and

for some v ∈ (Fw ∩ Sj) it is
∑

u∈Sj
a(u, (v, w)) < 1.

We say that the family S has length s, and that each w is affectance-selected, or simply
selected for short.

In terms of Layer Dissemination, labeling the transmitters as well as the receivers with
consecutive integers in [n], each Fw ∈ F is the subset of transmitters connected to receiver
w, A is the affectance matrix, and each value a(u, (v, w)) in A corresponds to the affectance
of node u on link (v, w). Then, the family S is a solution for Layer Dissemination setting
each node in set St ∈ S to transmit in time slot t, for each t ∈ [s].

4 Our Results

In this work, for a given family F = {F1, F2, . . . , Fn} of subsets of integers in [n] and a
given affectance matrix A, we first show the existence of a family S of subsets of [n] that is
affectance-selective on F . Under certain conditions on the relation between F and A, the
family S is proved to have a number of sets that is in O(1 + log n log A). That is, at most
logarithmic on n and logarithmic on the maximum average affectance A. The latter is
a characterization based on F and A. Specifically,

A = max
w∈[n]

max
F⊆Fw

∑
v∈F

∑
u∈[n]

a(u, (v, w))/|F |.

The condition assumed is that the maximum average affectance is not more than an a
constant factor larger than the maximum degree. This is a fair assumption for multi-hop
radio networks given that interference is a local restriction rather than local.

The proof of that bound is existential because it is based on the probabilistic method (as
in [4]). Nevertheless, it provides a method to derive algorithms for Layer Dissemination. We
present two Layer Dissemination distributed protocols, one randomized and one deterministic.
We show that both protocols have the same running time guarantee, which is asymptotically
the same as the size of the affectance-selective family shown. That is, O(1 + log n log A).
The randomized protocol is Monte Carlo, it is very simple (a version of Decay [1]), and only
requires knowledge of n, A, and two constants. The deterministic protocol (inspired on [4])
provides worst-case guarantees, but nodes need to know the topology and the affectance
matrix A, and its computational complexity is exponential.

We also include simulations to evaluate the impact of using a more accurate model
of interference. We compare our randomized protocol with previous work for the Radio
Network and SINR models. Our experimental results show a striking improvement in
performance because the Radio Network protocol neglects interference from non-neighboring
nodes, whereas SINR protocols do not take advantage of low interference from nodes that,
although located at a short distance, are blocked by obstacles. Our results also show that for
the particular inputs tested our randomized protocol performs better than predicted by our
theoretical analysis.

SEA 2017

33:6 Ad-Hoc Affectance-Selective Families for Layer Dissemination

Algorithm 1: Randomized Layer Dissemination protocol for each node v ∈
V . A = maxw∈W Aw, is the maximum average affectance, where Aw =
maxF⊆Fw

∑
v∈F

∑
u∈V a(u, (v, w))/|F | is the maximum average affectance on w,

d < 1 is a constant as computed in the proof of Theorem 1, and c > 1 is the constant
bounding Aw ≤ c|Fw| for each receiver w.

1 b← 1 + 1/(2c)
2 m← d2 log1/d ne
3 for i = 0, 1, 2, . . . , max{dlogb(2A)e, 0} do
4 for m times do
5 transmit with probability 1/bi

5 Analysis

5.1 Existence of an Affectance-selective Family of Polylogarithmic Size
The proof of the following theorem, based on the probabilistic method, is left to the Appendix.

I Theorem 1. For any n > 0, consider a family F = {F1, F2, . . . , Fn} of subsets of
integers in [n] and any affectance matrix A defined on F . For each w ∈ [n], let Aw =
maxF⊆Fw

∑
v∈F

∑
u∈[n] a(u, (v, w))/|F | be the maximum average affectance on w. If there

exists a constant c > 1 such that Aw ≤ c|Fw| for all w ∈ [n], then, there exists a family
S = {S1, S2, . . . , Ss} that is affectance-selective on F , and its size s satisfies

s ∈ O
(
1 + log n log A

)
,

where A = maxw∈[n] Aw is the maximum average affectance.

The bound shown matches the O(1 + log ∆ log |F|) bound for the Radio Network model
in [4], because in our setting the number of subsets to select is |F| = n, and in the Radio
Network model it is A = ∆− 1.

5.2 Randomized Layer Dissemination Protocol
The proof of Theorem 1, showing the existence of an affectance-selective family, yields a Monte
Carlo distributed randomized protocol for Layer Dissemination applicable to settings where
the conditions of the theorem hold. I.e., there exists a constant c bounding Aw ≤ c|Fw| for
each receiver w. The protocol requires that all transmitters have knowledge of the maximum
average affectance A, the constant c, the number of transmitters n, and the constant d < 1
computed in the proof of Theorem 1. The protocol, detailed in Algorithm 1, is a version of
the Decay protocol [1] extended to the affectance model. Its correctness and running time
are established in the following theorem.

I Theorem 2. Consider a layer of a Radio Network with affectance matrix A and topology
G = (V, W, E), where |V | = |W | = n, where for each receiver w ∈ W there is at least
one transmitter v ∈ V such that (v, w) ∈ E. Then, if there exists a constant c > 1 such
that Aw ≤ c|Fw| for all w ∈ W , where Aw = maxF⊆Fw

∑
v∈F

∑
u∈V a(u, (v, w))/|F | is the

maximum average affectance on w, Algorithm 1 solves the Layer Dissemination problem with
high probability 1, and the running time is in O(1 + log n log A), where A = maxw∈W Aw is
the maximum average affectance.

1 We say that an event occurs with high probability if it occurs with probability at least 1 − 1/nκ, for
some constant κ > 0.

H. Kudaravalli and M. A. Mosteiro 33:7

Proof. The first claim follows from the proof of Theorem 1, together with computing the
value m that makes Pr (∃w ∈ [n] : Zw = 0) ≤ ndm ≤ 1/n. The running time follows from
the number of iterations in Algorithm 1. J

For settings where only n and c are known to the transmitters, we can run the loop in
Line 3 of Algorithm 1 for dlogb(2(n− 1))e times, since we know that Aw ≤ (n− 1) for any
w ∈W . The running time in that case would be 1 + O(log2 n) steps.

5.3 Deterministic Layer Dissemination Protocol
Algorithm 1 is simple and it is easily distributed because only requires knowledge of a few
global parameters (namely A, c, and n), and also does not require intensive computations at
each node. However, the running time guarantee is only stochastic. In this section we present
a deterministic algorithm that provides the same running time guarantee but worst-case,
although to implement it distributedly knowledge of the graph G and the affectance matrix
A is required.

The ideas of algorithm greedyMSF (∆) [4] can be re-used here to compute a transmission
schedule that solves Layer Dissemination, but greedyMSF (∆) cannot be used as-is because
it does not cope with affectance or families of sets with different sizes. So, building upon
the ideas of greedyMSF (∆), we present in this section an algorithm for Layer Dissemination
under the affectance model. That is, the transmission schedule is computed to cope with
affectance, and without assuming anything about the number of neighbors of each receiver.
We specify such protocol in Algorithm 2 and an explanation of the details follow.

The receivers pending to be selected (initially all) are partitioned in subsets so that, for
each receiver w, it is

w ∈
{

W ′
0 if Aw ≤ 1/(2b)

W ′
r if br−1/2 < Aw ≤ br/2, for r = 0, 1, . . . , m.

The expectations in Lines 12 and 13 of the protocol correspond to the following. Recall
that we assume the transmitters to be labeled by consecutive integers. That is, the set of
transmitters is V = {1, 2, . . . , n}. Then, in Algorithm 2, for each time slot t, we keep track
of whether each node in V transmits or not in an array of booleans V ′, where index i of
the array is true if i transmits in t and false otherwise. The array is filled incrementally
for i = 1, 2, . . . , n as follows. For each index i, let V>i = {i + 1, . . . , n} if i < n, or V>i = ∅
otherwise. Likewise, let V<i = {1, . . . , i− 1} if i > 1, or V<i = ∅ otherwise.

Then, for each value of r = 0, 1, . . . , taking into account the action of transmitters in V<i

that was already decided, we decide whether transmitter i transmits or not in t computing
the expected number of receivers from a given subset that will be affectance-selected, if i

transmits and the actions of transmitters in V>i is chosen at random with probability b−r

(Line 12). We do the same for the case that transmitter i does not transmit (Line 13). The
expectations are taken over the random choice of transmitters in V>i. Such computation
is feasible given that every transmitter v ∈ V is assumed to know G = (V, W, E) and the
affectance matrix A. The specific computation of expectations is the following.

The calculation corresponds to the ith iteration of the inner loop (Line 11) and probability
p = b−r for some r. Let Xv,i be an indicator variable defined as follows. The variable Xv,i

is random if v ∈ V>i, and deterministic otherwise. For each v ∈ V<i, Xv,i = 1 if and only
if V ′[v] = true. For each v ∈ V>i, Xv,i = 1 with probability p or Xv,i = 0 with probability
1 − p. Finally, it is Xi,i = 1 to compute the expectation Etrue (Line 12) or Xi,i = 0 to

SEA 2017

33:8 Ad-Hoc Affectance-Selective Families for Layer Dissemination

Algorithm 2: Deterministic Layer Dissemination protocol for each node v ∈
V . A = maxw∈W Aw, is the maximum average affectance, where Aw =
maxF⊆Fw

∑
v∈F

∑
u∈V a(u, (v, w))/|F | is the maximum average affectance on w,

and c > 1 is the constant bounding Aw ≤ c|Fw| for each w.
// Initialization

1 p← 0
2 b← 1 + 1/(2c)
3 m← max{dlogb(2A)e, 0}
4 W ′

0 ← {w ∈W : Aw ≤ 1/2}
5 for r = 1, . . . , m do W ′

r ← {w ∈W : br−1/2 < Aw ≤ br/2}

// Protocol
6 for each time slot while ∃r = 0, 1, . . . , m : W ′

r 6= ∅ do
7 if p ≤ 1/(2bA) then
8 p← 1
9 r ← 0

10 set V ′[1 . . . n] array of booleans // V ′[i] ≡ i transmits
11 for i = 1, 2, . . . , n do
12 Etrue ← EV ′[i+1...n]

(
selected in W ′

r

∣∣V ′[i] = true
)

13 Efalse ← EV ′[i+1...n]
(
selected in W ′

r

∣∣V ′[i] = false
)

14 V ′[i]← Etrue > Efalse

15 if V ′[v] then transmit
16 W ′

r ←W ′
r \
{

w
∣∣w was selected

}
17 p← p/b

18 r ← r + 1

compute the expectation Efalse (Line 13). Also, let Zw,i be a random variable indicating
whether receiver w is selected or not.

Then, it is

EV ′[i+1...n]
(
selected in W ′

r

∣∣V ′[i] = true
)

=
∑

w∈W ′
r

Zw,iPr(Zw,i = 1|Xi,i = 1)

EV ′[i+1...n]
(
selected in W ′

r

∣∣V ′[i] = false
)

=
∑

w∈W ′
r

Zw,iPr(Zw,i = 1|Xi,i = 0).

Where,

Pr(Zw,i = 1) = Pr

(∑
v∈Fw

Xv,i ≥ 1 and ∃v ∈ Fw :
∑
u∈V

∑
v∈Fw

a(u, (v, w))Xu,iXv,i < 1
)

.

In the following theorem, we prove that each time the probability p is updated to 1
(Line 8), at least a constant fraction of receivers is selected, solving Layer Dissemination in a
logarithmic number of steps. The proof is left to the appendix.

I Theorem 3. Consider a layer of a Radio Network with affectance matrix A and topology
G = (V, W, E), where |V | = |W | = n, where for each receiver w ∈ W there is at least
one transmitter v ∈ V such that (v, w) ∈ E. Then, if there exists a constant c > 1 such
that Aw ≤ c|Fw| for all w ∈ W , where Aw = maxF⊆Fw

∑
v∈F

∑
u∈V a(u, (v, w))/|F | is the

maximum average affectance on w, Algorithm 2 solves the Layer Dissemination problem, and
the running time is in O(1 + log n log A), where A = maxw∈W Aw is the maximum average
affectance.

H. Kudaravalli and M. A. Mosteiro 33:9

(a) Seidenberg School of CSIS floor plan. (b) A layer of the network grid.

(c) The network topology. (d) Example of affectance.

Figure 1 Illustration of network deployment.

6 Simulations

In this section we present our simulations, developed to evaluate the impact of a more
accurate model of interference on Layer Dissemination. For that purpose, we run simulations
for a real-world deployment area, comparing the performance of our randomized protocol
with previous protocols designed for the Radio Network and SINR models. The details
follow.

We used as a model of a network deployment area the floor plan of the Seidenberg School
of Computer Science and Information Systems at Pace University, considering nodes installed
in the intersections of each square of four ceiling panels (see Figure 1a). To evaluate Layer
Dissemination, we focused on one layer of this network going across various offices (see
Figure 1b). For simplicity, to evaluate performance as n grows, we replicated the same office
multiple times in a layer.

The walls of these offices have a metallic structure. Hence, each office behaves as a
Faraday cage blocking radio transmissions (specially millimeter wave). Consequently, most
of the radio waves propagate through doors (which are not metallic). We fixed the radio
transmission power to be large enough to reach five grid cells, so that transmissions from
layer to layer are possible. So, given the offices dimensions, transmitters within an office
are connected to all receivers. On the other hand, the interference to other offices in the
same layer is approximated by adding ten grid cells for each office of distance. The resulting

SEA 2017

33:10 Ad-Hoc Affectance-Selective Families for Layer Dissemination

Algorithm 3: Decay protocol [1] for each transmitter v ∈ V . ∆ is the maximum
in-degree of the network.

1 rounds← 0
2 counter ← 0
3 while ∃w ∈W : w did not receive do
4 rounds + +
5 if counter = 0 then transmit← true

6 if transmit = true then
7 v transmits the message
8 with probability 1/2 set transmit← false

9 counter + +
10 if counter = 2dlog ∆e then counter ← 0
11 return rounds

topology can be seen in Figure 1c, whereas the reason why affectance is more accurate than
interference based on Euclidean distance is illustrated in Figure 1d. For instance, it can be
seen that transmitters that are close to a wall in one office have low affectance on links that
are close to other side of that wall in the contiguous office, even though they are separated
by only one grid-cell in Euclidean distance.

Using the network topology and the resulting affectance matrix described above as input,
and for n = 6, 9, 12, . . . , 42, we simulated our randomized protocol in Algorithm 1, which
requires knowledge of only global variables n, c, and A. (Refer to Algorithm 1 for further
details.) For comparison, we also simulated protocols designed for the Radio Network and
SINR models of interference on the same inputs, but considering a transmission successful
under the affectance model constraints, as defined in Section 3. We did not simulate our
deterministic protocol in Algorithm 2 because the schedule computation has exponential
complexity.

For the Radio Network model of interference, we simulated the classic Decay [1] protocol,
whereas for SINR we simulated the Broadcast protocol in Algorithm 1 in [9]. (Most of the
work for SINR is oriented to link scheduling, which cannot be accurately mapped to Layer
Dissemination or Broadcast.) The former requires knowledge of global variable ∆, which
is the maximum in-degree in the network, whereas the latter requires knowledge of global
variables density and dilution, as defined in [9]. All three protocols provide guarantees on
the number of rounds of communication needed to complete Broadcast, but running them
for that fixed time would not provide any performance comparison. Instead, for each of the
protocols we measured the number of rounds of communication passed until all receivers
have received the message. In Algorithms 3 and 4 we specify how we adapted the Radio
Network and SINR protocols respectively for our simulations. The Java code of our simulator
can be found at http://csis.pace.edu/~mmosteiro/pub/sourceLayerDiss/. The results
of the simulations are plotted in Figure 2 and analyzed in the following section.

7 Discussion

As seen in the plot of Figure 2, our experimental results show a striking improvement in
performance of our protocol with respect to Algorithms 3 and 4. Indeed, the running times of
Algorithms 3 and 4 grow exponentially with n (the scale of the y axis is logarithmic), whereas
our algorithm’s running time grows exponentiallly slower. Moreover, the plot shows also the

http://csis.pace.edu/~mmosteiro/pub/sourceLayerDiss/
http://csis.pace.edu/~mmosteiro/pub/sourceLayerDiss/

H. Kudaravalli and M. A. Mosteiro 33:11

Algorithm 4: Algorithm 1 in [9] for each transmitter v ∈ V . density and dilution

are parameters of the network as defined in [9].
1 rounds← 0
2 while ∃w ∈W : w did not receive do
3 rounds + +
4 if rounds ≡ v mod dilution then
5 with probability 1/density, v transmits the message
6 return rounds

Figure 2 Simulation results.

theoretical upper bound proved in Theorem 2. It can be seen that in these simulations our
protocol performs better than the theoretical guarantees. This difference in performance
could be due to an algorithmic improvement. However, at their core, all three algorithms
are based on iteratively choosing to transmit with some probability. Thus, we conclude that
the improvement is due to a careful choice of such transmission probability, making it a
function of the network characteristic derived from the interference measured experimentally,
rather than due to algorithmic novelty. This conclusion should not come as a surprise, given
that Algorithm 3 was designed neglecting interference from non-neighboring nodes, whereas
Algorithm 4 does not take advantage of low interference from nodes that, although located
at a short distance, are blocked by obstacles. Therefore, the results of our experimental
evaluation show the importance of studying information dissemination under more accurate
models of interference.

Acknowledgements. The authors want to thank Dariusz R. Kowalski for seminal ideas and
thorough discussions that led to the development of this work.

SEA 2017

33:12 Ad-Hoc Affectance-Selective Families for Layer Dissemination

References
1 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast

in multi-hop radio networks: An exponential gap between determinism and randomization.
Journal of Computer and System Sciences, 45(1):104–126, 1992.

2 Imrich Chlamtac and Shay Kutten. Tree-based broadcasting in multihop radio networks.
IEEE Trans. Computers, 36(10):1209–1223, 1987.

3 Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.
Deterministic broadcasting in ad hoc radio networks. Distributed Computing, 15(1):27–38,
2002. doi:10.1007/s446-002-8028-1.

4 Andrea EF Clementi, Pilu Crescenzi, Angelo Monti, Paolo Penna, and Riccardo Silvestri.
On computing ad-hoc selective families. In Proc. of the 4th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems and 5th International
Workshop on Randomization and Approximation Techniques in Computer Science, volume
2129 of Lecture Notes in Computer Science, pages 211–222, 2001.

5 Fabio D’Andreagiovanni, Carlo Mannino, and Antonio Sassano. GUB covers and power-
indexed formulations for wireless network design. Management Science, 59(1):142–156,
2013. doi:10.1287/mnsc.1120.1571.

6 Peter Dely, Fabio D’Andreagiovanni, and Andreas Kassler. Fair optimization of mesh-
connected WLAN hotspots. Wireless Communications and Mobile Computing, 15(5):924–
946, 2015. doi:10.1002/wcm.2393.

7 Mohsen Ghaffari, Bernhard Haeupler, and Majid Khabbazian. The complexity of multi-
message broadcast in radio networks with known topology. CoRR, abs/1205.7014, 2012.

8 Magnús M. Halldórsson and Roger Wattenhofer. Wireless communication is in apx. In Proc.
of the 36th International Colloquium on Automata, Languages and Programming, Part I,
pages 525–536, 2009.

9 Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rozanski, and Grzegorz Stachowiak. Dis-
tributed randomized broadcasting in wireless networks under the sinr model. In Yehuda
Afek, editor, DISC, volume 8205 of Lecture Notes in Computer Science, pages 373–387.
Springer, 2013.

10 Thomas Kesselheim. Dynamic packet scheduling in wireless networks. In Proc. of the 31st
Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages
281–290, 2012.

11 Thomas Kesselheim and Berthold Vöcking. Distributed contention resolution in wireless
networks. In Proc. of the 24th International Symposium on Distributed Computing, volume
6343 of Lecture Notes in Computer Science, pages 163–178. Springer-Verlag, Berlin, 2010.

12 Majid Khabbazian and Dariusz R. Kowalski. Time-efficient randomized multiple-message
broadcast in radio networks. In Cyril Gavoille and Pierre Fraigniaud, editors, PODC, pages
373–380. ACM, 2011.

13 Dariusz R. Kowalski, Miguel A. Mosteiro, and Tevin Rouse. Dynamic multiple-message
broadcast: bounding throughput in the affectance model. In 10th ACM International Work-
shop on Foundations of Mobile Computing, FOMC 2014, Philadelphia, PA, USA, August
11, 2014, pages 39–46, 2014.

14 Dariusz R. Kowalski, Miguel A. Mosteiro, and Kevin Zaki. Dynamic multiple-message
broadcast: Bounding throughput in the affectance model. CoRR, abs/1512.00540, 2015.
URL: http://arxiv.org/abs/1512.00540.

15 Fredrik Manne and Qin Xin. Optimal gossiping with unit size messages in known topology
radio networks. In Workshop on Combinatorial and Algorithmic Aspects of Networking,
pages 125–134. Springer, 2006.

16 Gianluca De Marco and Dariusz R. Kowalski. Towards power-sensitive communication
on a multiple-access channel. In 2010 International Conference on Distributed Computing

http://dx.doi.org/10.1007/s446-002-8028-1
http://dx.doi.org/10.1287/mnsc.1120.1571
http://dx.doi.org/10.1002/wcm.2393
http://arxiv.org/abs/1512.00540

H. Kudaravalli and M. A. Mosteiro 33:13

Systems, ICDCS 2010, Genova, Italy, June 21-25, 2010, pages 728–735, 2010. doi:10.
1109/ICDCS.2010.50.

17 Gianluca De Marco and Dariusz R. Kowalski. Fast nonadaptive deterministic algorithm for
conflict resolution in a dynamic multiple-access channel. SIAM J. Comput., 44(3):868–888,
2015. doi:10.1137/140982763.

18 Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University
Press, 2005.

19 Christian Scheideler, Andréa W. Richa, and Paolo Santi. An o(log n) dominating set
protocol for wireless ad-hoc networks under the physical interference model. In Proceedings
of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pages 91–100. ACM, 2008.

20 Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan. Harnessing exposed terminals
in wireless networks. In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, pages 59–72, 2008.

A Appendix

A.1 Proof of Theorem 1

Proof. We prove the claim using the probabilistic method. That is, we show a randomly
generated family S such that the probability that S does not select some set in F is strictly
less than one.

Let S be a subset of [n] defined as follows. For each v ∈ [n], independently include v in S

with some probability p (we will discuss the best choice for p later). Let Xv be a random
variable indicating whether v is in S or not. Let Zw be a random variable indicating whether
w ∈ [n] is selected or not. The probability that w is not selected given that some v ∈ Fw is
in S is

Pr

(
Zw = 0

∣∣∣∣ ∑
v∈Fw

Xv ≥ 1
)
≤ Pr

∑
u∈[n]

∑
v∈Fw

a(u, (v, w))XuXv ≥
∑

v∈Fw

Xv

 .

The above inequality is true because, for w not to be selected, the affectance in all pairs
(v, w) such that v ∈ Fw and Xv = 1 has to be at least one. The inequality is due to the
right-hand side possibly including events where some pairs have affectance less than one, but
others have affectance larger than one so that the overall sum is still larger than

∑
v∈Fw

Xv.
This right-hand side can be bounded as follows using a Markov-type inequality that can be
proved as in [18].

Pr

∑
u∈[n]

∑
v∈Fw

a(u, (v, w))XuXv ≥
∑

v∈Fw

Xv

 ≤ E

(∑
u∈[n]

∑
v∈Fw

a(u, (v, w))XuXv∑
v∈Fw

Xv

)
.

Replacing

Aw = max
F⊆Fw

∑
v∈F

∑
u∈[n]

a(u, (v, w))/|F | ≥
∑

v∈F ′

∑
u∈[n]

a(u, (v, w))/|F ′| ,

SEA 2017

http://dx.doi.org/10.1109/ICDCS.2010.50
http://dx.doi.org/10.1109/ICDCS.2010.50
http://dx.doi.org/10.1137/140982763

33:14 Ad-Hoc Affectance-Selective Families for Layer Dissemination

for any F ′ ⊆ Fw, we get the following bound.

Pr

(
Zw = 0

∣∣∣∣ ∑
v∈Fw

Xv ≥ 1
)
≤ E

(∑
u∈[n]

∑
v∈Fw

a(u, (v, w))XuXv∑
v∈Fw

Xv

)

= E

∑
u∈[n]

∑
v∈Fw

a(u, (v, w))Xv∑
z∈Fw

Xz
Xu

≤ Awp .

Then, we have that

Pr (Zw = 0) = Pr

(
Zw = 0

∣∣∣∣ ∑
i∈Fw

Xi ≥ 1
)

Pr

(∑
i∈Fw

Xi ≥ 1
)

+ Pr

(
Zw = 0

∣∣∣∣ ∑
i∈Fw

Xi = 0
)

Pr

(∑
i∈Fw

Xi = 0
)

= Pr

(
Zw = 0

∣∣∣∣ ∑
i∈Fw

Xi ≥ 1
)

(1− (1− p)|Fw|) + (1− p)|Fw|

≤ Awp(1− (1− p)|Fw|) + (1− p)|Fw| (1)

= Awp + (1−Awp)(1− p)|Fw|.

Consider now a family S = {Si} of subsets of [n] where Si is obtained including each
v ∈ [n] independently with probability p = 1/bi for i = 0, 1, 2, . . . , max{dlogb(2A)e, 0} and
b = 1 + 1/(2c). If Aw ≤ 1/(2b), replacing in Equation 1 we have that Pr (Zw = 0) ≤ 1/(2b)
for p = 1, which is strictly smaller than 1. Otherwise, if Aw > 1/(2b), we know that, for
some i, it is 1/(2bAw) < p ≤ 1/(2Aw). Replacing,

Pr (Zw = 0) ≤ 1
2 +

(
1− 1

2b

)(
1− 1

2bAw

)|Fw|

.

Using that Aw ≤ c|Fw| for some constant c > 1, we obtain

Pr (Zw = 0) ≤ 1
2 +

(
1− 1

2b

)(
1− 1

2bc|Fw|

)|Fw|

, using that 2bc|Fw| > 1,

≤ 1
2 +

(
1− 1

2b

)(
1
e

)1/(2bc)
.

Replacing c = 1/(2(b− 1)) we get

Pr (Zw = 0) ≤ 1
2 +

(
1− 1

2b

)(
1
e

)(b−1)/b

.

To show that there is a positive probability that w is selected, we show that for each constant

H. Kudaravalli and M. A. Mosteiro 33:15

c there is a constant b = 1 + 1/(2c) such that the latter is strictly smaller than 1 as follows.

1
2 +

(
1− 1

2b

)(
1
e

)(b−1)/b

< 1(
1− 1

2b

)(
1
e

)(b−1)/b

<
1
2

1− 1
2b

<
1
2e(b−1)/b

1− 1
2e(b−1)/b <

1
2b

2b− be(b−1)/b < 1.

The left hand side is equal to 1 for b = 1 and monotonically decreasing for any b such that
1 < b < 1.5, which is the range of b = 1 + 1/(2c) for any c > 1.

Having proved that that there is a positive probability that w is selected, we add a
multiplicity m on the sets Si to show that the probability that some w ∈ [n] is not selected
is small, as follows.

We redefine S as the family {Si,j} of subsets of [n] where the set Si,j is obtained
including each v ∈ [n] in Si,j independently with probability p = 1/bi, for each i =
0, 1, 2, . . . , max{dlogb(2A)e, 0} and each j = 1, 2, . . . , m.

Then, the probability that a given w is not selected is Pr (Zw = 0) ≤ dm, where d < 1 is
some constant as shown above. Using the union bound, the probability that some w ∈ [n] is
not selected is Pr (∃w ∈ [n] : Zw = 0) ≤ ndm, which is smaller than 1 for some m ∈ Θ(log n),
showing the existence of an affectance-selective family S of size O(1 + log n log A). J

A.2 Proof of Theorem 3

Proof. Algorithm 2 is correct as long as it terminates, as it does not stop until W ′ = ∅
(Line 6). Then, to prove the claim, it is enough to prove the upper bound on the running
time, which we do as follows.

Consider the execution divided in stages, where a new stage starts each time that p is
set to 1 (Line 1 and Line 8). Moreover, consider each stage divided in rounds according to
the value of r. That is, starting from round r = 0 when p = 1, a new round starts each
time that p and r are updated in Lines 17 and 18. Thus, each stage is composed by rounds
0, 1, 2, . . . , m when p = 1, b−1, b−2, . . . , b−m respectively, and when p becomes smaller or
equal than 1/(2bA), a new stage begins and p is reset to 1 in Line 8.

We show now that, in any given round r, a constant fraction of receivers in W ′
r is selected.

Thus, a constant fraction of receivers is selected in each stage, which yields O(log n) stages,
each of O(log A) rounds, proving the claimed running time.

Fix any given round r when p = b−r. We focus then on showing that a constant fraction
of receivers in W ′

r is selected, knowing that, for each receiver w ∈W ′
r, if r = 0 it is Aw ≤ 1/2,

and if r > 0 it is br−1/2 < Aw ≤ br/2.
We showed in the proof of Theorem 1 that, for any w ∈ [n], if a subset S ⊆ [n] is chosen

including each v ∈ [n] with a probability b−i, for i such that 1/(2bAw) < b−i ≤ 1/(2Aw),
the probability of selecting w with S is a positive constant q. The specific bound on q is
dependent on whether Aw ≤ 1/(2b) or not, but still a constant for both cases. This bound
applies to round r for any receiver w ∈W ′

r and S a subset of transmitters, each chosen with
probability b−r. Thus, the expected number of receivers selected by S from W ′

r would be qW ′
r,

SEA 2017

33:16 Ad-Hoc Affectance-Selective Families for Layer Dissemination

that is, a constant fraction q. Let this expectation be denoted as EX[1...n](# selected in W ′
r),

where each X[i] indicates whether i ∈ S.
Then, to complete the proof, now we show that the expected number of receivers selected

from W ′
r by the set of transmitters defined by the array V ′ after completing the loop in

Lines 11-14 (which indeed is the actual number because no random choice is made in
the last iteration) is at least EX[1...n](# selected in W ′

r). Indeed, we prove the stronger
claim that max{Etrue,Efalse} ≥ EX[1...n](# selected in W ′

r) for each iteration of the loop,
which we show by induction on the iteration index i = 1, 2, . . . , n. For clarity, we denote
E•(# selected in W ′

r) as E•(#). For i = 1, we have that

Etrue = EV ′[2...n]
(
#
∣∣V ′[1] = true

)
= EX[2...n]

(
#
∣∣X[1] = true

)
,

Efalse = EV ′[2...n]
(
#
∣∣V ′[1] = false

)
= EX[2...n]

(
#
∣∣X[1] = false

)
.

Given that EX[1...n] (#) = pEX[2...n]
(
#
∣∣X[1] = true

)
+(1−p)EX[2...n]

(
#
∣∣X[1] = false

)
, the

claim is true. Now, assuming that the claim is true for iteration i− 1, we want to prove that
max{Etrue,Efalse} ≥ EX[1...n] (#) for iteration i, where

Etrue = EV ′[i+1...n]
(
#
∣∣V ′[i] = true

)
Efalse = EV ′[i+1...n]

(
#
∣∣V ′[i] = false

)
.

By inductive hypothesis we know that

max{EV ′[i...n]
(
#
∣∣V ′[i− 1] = true

)
,EV ′[i...n]

(
#
∣∣V ′[i− 1] = false

)
} ≥ EX[1...n] (#) . (2)

Call EV ′[i...n] (#) the expected number of receivers selected after we fix the value of V ′[i− 1]
in Line 14. That is,

EV ′[i...n] (#) = max{EV ′[i...n]
(
#
∣∣V ′[i− 1] = true

)
,EV ′[i...n]

(
#
∣∣V ′[i− 1] = false

)
}.

Replacing in Equation 2, we have that

EV ′[i...n] (#) ≥ EX[1...n] (#) . (3)

We also have that

EV ′[i...n] (#) = pEV ′[i+1...n]
(
#
∣∣V ′[i] = true

)
+ (1− p)EV ′[i+1...n]

(
#
∣∣V ′[i] = false

)
≤ max{EV ′[i+1...n]

(
#
∣∣V ′[i] = true

)
,EV ′[i+1...n]

(
#
∣∣V ′[i] = false

)
}. (4)

Combining inequalities 4 and 3, the claim follows. J

	p000-frontmatter
	Contents
	Preface
	Program Committee
	External Reviewers

	p001-Baltean-Lugojan
	p002-Farach-Colton
	p003-Cormode
	p004-Schulz
	Introduction
	Preliminaries
	Rank Reordering Algorithms
	Initial Solutions
	Faster Swapping
	Alternative Local Search Spaces
	Miscellanea

	Experiments
	Sparse Quadratic Assignment Problem
	Speed-Up of Local Search
	Local Search Neighborhoods
	Initial Heuristics and Their Scaling Behaviour

	Conclusion
	Benchmark Instance Properties

	p005-Liberti
	Introduction
	A very short history of DG
	The Isomap method in Distance Geometry
	Isomap and the EDMCP
	Isomap and the EDGP

	Isomap heuristics
	Post-processing using a local NLP solver (IsoNLP)
	Spanning tree realization heuristic (SPT)
	Euclidean distance SDP objective (SDP)
	Barvinok's result (Barvinok)
	Moré-Wu's dgsol algorithm

	Computational assessment
	Small to large sizes
	Very large sizes

	Conclusion

	p006-Gottwald
	Introduction
	Parallelization in SCIP
	Concurrent SCIP
	FiberSCIP

	Distributed domain propagation
	Computational results
	Concluding Remarks

	p007-Agarwal
	Introduction
	3D RMS is NP-Complete
	Coreset-based Approximation
	Regret Approximation using Hitting Sets
	Approximation Algorithms

	Experiments
	Related Work
	Affine transformation of polytope Pi
	Proof of Lemma 8

	p008-Becker
	Introduction
	Overview
	Preliminaries

	PTAS for TSP
	Engineering Considerations
	Experimental Results
	Linear Runtime
	Quality
	The Effects of Parameters on Performance

	Computing a Lower Bound on the Traveling-Salesman Tour
	The Mathematical Program
	Approximation Scheme
	Dynamic Algorithm for Min-Weight Cut in Planar Graphs
	Experiments

	Discussion
	Experiments with lower-bound procedure

	p009-Georgiadis
	Introduction
	Preliminaries
	A linear-time 2-approximation algorithm
	A 3/2-approximation algorithm
	Empirical Analysis
	Implemented Algorithms
	Experimental Results

	p010-Huang
	Introduction
	Algorithm
	Basic Definitions
	Micali-Vazirani Algorithm
	Key Concepts
	Algorithm Description

	Past Work
	Greedy matching initialization
	Order of bridge processing
	Blossom formation

	Preliminary Results
	Algorithmic contribution
	Motivation
	Termination conditions

	Experiments
	Variants/Implementations
	Graphs

	Results
	Random Graphs
	Grid graphs
	One-connected Triangles
	Three-connected Triangles
	Real World Graphs

	Discussion
	Runtime
	Worst Case Graph

	Conclusion
	Appendix
	Additional Results: Graphs
	Additional Results: Tables
	Micali-Vazirani Algorithm with Extended Phases
	Lemmas
	Additional Discussion

	p011-Prezza
	Introduction
	The DYNAMIC library
	The Core: Searchable Partial Sums with Inserts
	Theoretical Guarantees

	Plug and Play with Dynamic Structures
	Gap-Encoded Bitvectors
	Succinct Bitvectors and Entropy-Compressed Strings
	Run-Length Encoded Strings
	Dynamic FM Indexes

	Experimental Evaluation
	Benchmarks: Succinct and Gap-Encoded Bitvectors
	An Application: Space-Efficient Compression Algorithms

	p012-Baumstark
	Introduction
	Previous Work
	An Optimized Recursive Solution
	Experimental Evaluation
	Conclusion

	p013-Dinklage
	Introduction
	Related Work
	Our Results/Approach

	Description of the tudocomp Framework
	Example Implementation of a Compressor
	Specific Features

	New Compression Algorithms
	Theoretical Background
	lcpcomp
	Decompression
	Implementation Improvements

	LZ78U

	Practical Evaluation
	Conclusions
	Cycle-Free Lemma of lcpcomp
	LZ78U Offline Algorithm
	LZ78U Code Snippet
	More Evaluation
	LZ78U Pseudo Codes

	p014-Lim
	Introduction
	New algorithm for APSP matching
	Preprocessing step
	Matching step
	Output step
	Implementation options

	Experiments
	Conclusion

	p015-Baumstark
	Introduction
	Related Work
	Quantile Filtering
	Preliminaries
	Basic Framework
	Succinct Self-Index

	Index Details
	Singletons and the Vector H
	Construction
	Using Offset Encoding to Compress DOC

	Experiments
	Choosing the Index Parameters
	Query Times

	Conclusion and Future Work

	p016-Fonseca
	Introduction
	The Wavelet Tree
	WT construction
	WT construction with known alphabet
	WT construction with unknown alphabet

	Related work
	Experimental analysis
	Time experiments
	Memory experiments

	Discussion
	Availability

	p017-Karkkainen
	Introduction
	Basic Data Structures
	Basic Algorithms
	EM-SPhi Algorithm
	EM-SI Algorithm

	Parallelization
	Parallelizing EM-SPhi
	Parallelizing EM-SI

	In-Place Computation
	Compact Encoding of LCP Values
	Partitioning
	Final Steps

	Experimental Results

	p018-Funke
	Introduction
	Related Work
	Contribution

	Contraction Hierarchies (CH) with an LP-Oracle
	Conventional Contraction Hierarchies
	Shortcut Insertion Oracles
	Compacting Edges for Query Answering

	Adaptive Approximation Guarantees
	Two Greedy Strategies
	Bounding the Relative Approximation Error
	Query Answering with an Approximation Guarantee

	Experimental Results
	Benchmark
	LP-based Contraction Hierarchy
	Preprocessing
	Query Answering

	Adaptive Approximation via Vector Ordering

	Conclusions and Future Work

	p019-Baum
	Introduction
	Model, Query Variants, and Basic Algorithms
	On the Complexity of Profiles
	Energy-Optimal Routes with Charging Stops
	Experiments
	Conclusion

	p020-Briem
	Introduction
	Related Work

	Preliminaries
	Perceived Arrival Time (PAT)
	Our Approach
	Perceived Arrival Time Computation
	Assignment
	Cycle Elimination
	Parallelization

	Evaluation
	Instance
	Experiments

	Conclusion and Future Work

	p021-Schlag
	Introduction
	Preliminaries
	Community-aware Coarsening
	Experimental Evaluation
	Conclusions and Future Work
	Performance Plots of Edge Weighting Schemes
	Excluded Test Instances

	p022-Focke
	Introduction
	Introduction of Algorithms and Theoretical Comparison
	Comparing the Deterministic Algorithms
	Comparing Randomized and Deterministic Algorithms
	Variance of OPT

	Preprocessing
	Instances Solved by the Preprocessing

	Experimental Data
	Experimental Algorithm Analysis
	The Optimal Solution
	Comparing Deterministic and Randomized Algorithms
	Comparing the Deterministic Algorithms
	Variance in Performance
	Worst-Case Instances
	Comparing the Distributions
	Interval Size
	Running Time

	p023-Bergamini
	Introduction
	Preliminaries
	Notation
	Related Work

	Brandes's algorithm (BA)
	Dynamic augmented APSP
	Algorithm by Kourtellis et al. (KDB)
	Algorithm by Kas et al. (KWCC)
	Faster augmented APSP update

	Dynamic dependency accumulation
	Algorithm by Kourtellis et al. (KDB)
	Algorithm by Kas et al. (KWCC)
	Faster betweenness update

	Time complexity
	Experimental Results
	Conclusions and future work

	p024-Alexandrescu
	Introduction
	Related Work
	Background: Quickselect, MedianOfMedians, and RepeatedStep
	Partitioning During Pivot Computation
	Sampling Without Compromising Linearity
	Adaptation: MedianOfExtrema
	Choosing Strategy Dynamically: QuickselectAdaptive

	Experiments and Results
	Measuring comparisons, swaps, and variance of run times

	Additional Measurement Results

	p025-Limasset
	Introduction
	Efficient construction of minimal perfect hash function
	Method overview
	Algorithm details
	Collision detection
	Queries
	Minimality
	Faster query and construction times (parameter gamma)

	Analysis
	Size of the MPHF
	Space usage during construction

	Implementation
	Rank structure
	Parallelization
	Hash functions
	Disk usage
	Termination

	Results
	Influence of the gamma parameter
	Parallelization performance
	Comparisons with state of the art methods
	Performance on an actual dataset
	Indexing a trillion keys

	Conclusion
	Proofs of MPHF size and memory required for construction
	Algorithms pseudo-codes
	Commands
	Commands used for Section 4.1:
	Commands used for Section 4.2:
	Commands used for Section 4.3:
	Commands used for Section 4.4:
	Commands used for Section 4.5:

	p026-Penschuck
	Introduction
	Our contribution
	Notation
	The hyperbolic random graph model G-(alpha,C)(n)
	Hyperbolic graph generators

	MemGen: a fast algorithm with linear memory usage
	Candidate selection is at worst a constant approximation
	Nearly sorted points/request allow for faster sorting

	HyperGen: reducing MemGen's memory footprint
	Accelerating the Endgame
	Parallelism

	Implementation
	Adjacency tests without trigonometric functions
	Optimising NkGen for streaming

	Experimental evaluation
	Runtime
	Memory consumption
	Scalability

	Definitions, useful identities and approximations
	Hyperbolic functions
	Geometry related definitions
	Approximations

	Additional experimental results

	p027-Georgiadis
	Introduction
	Preliminaries
	Incremental low-high order
	Sparsification Algorithm
	Local Low-High Order Algorithm
	Derived edges and derived flow graphs
	Affected vertices
	Low-high order augmentation
	Algorithm

	Representation of a low-high order
	Handling unreachable vertices

	Empirical Analysis
	Applications of incremental low-high orders
	Strongly divergent spanning trees and path queries
	Fault tolerant reachability
	Sparse certificate for 2-edge-connectivity

	p028-Bannach
	Introduction
	Our Contributions
	Experimental Comparisons

	Preliminaries
	Computing Tree Decompositions
	Point of View: Constraint Satisfaction Problem
	The CSP formulation
	Experimental Evaluations

	Point of View: Exact Exponential Algorithms
	Point of View: Upper and Lower Bounds
	Upper bounds
	Lower Bounds

	Point of View: Parameterized Complexity
	Cherry-Pick the Best from each World

	Experimental Results
	PACE 2016
	Graph Benchmarks

	Handle the Use Cases
	Conclusion
	Graph Benchmarks
	Technical Specifications

	p029-Coniglio
	Introduction
	Rank inequalities and topology-free rank inequalities with a fixed right-hand side
	Separation of topology-free rank inequalities
	Different separation problems
	MWS-BSN: the separation problem of RI-k-<=s

	Algorithmic aspects
	Algorithm outline
	Domination aspects of RIs: connectedness of G[U]
	Practical separation of LCIs
	Separating RI-k-<=s on the support of x-*
	Heuristic procedure

	Computational study
	Instances
	Implementation details
	A small example: the Chvàtal graph
	Computational Results

	Concluding remarks

	p030-Moreira
	Practical Motivation
	Background
	Preliminaries
	Basic Concepts
	Problem Definition
	Relation to Scheduling
	Related Work

	Hardness Results
	Heuristic Algorithms
	Construction Algorithm
	Local Search Algorithms
	Simple Moves (SM)
	Advanced Moves (AM)
	Global Moves (GM)
	FM Moves (FM)

	Experimental Evaluation
	Conclusion

	p031-Basilico
	Introduction
	The problem
	Problem definition
	Some properties of the problem

	Optimistic case
	MINLP-I
	MINLP-II
	MINLP-III

	Pessimistic case
	Basic enumerative idea and outcome configurations
	Branch-and-Bound approach
	Extension to the unrestricted case

	Computational results
	Optimistic case
	Pessimistic case

	Concluding remarks

	p032-Aloqalaa
	Introduction
	Materials and methods
	Notation and technical preliminaries
	The studied landscape
	New formulas estimating duration of the invasion process
	The R-local simulation method
	Interpolating constant c in Equation (1)

	Simulation
	Main simulation
	Validation of the R-local simulation method

	Results
	Main simulation
	Validation

	Conclusion

	p033-Kudaravalli
	Introduction
	Related Work
	Model and Problem
	Our Results
	Analysis
	Existence of an Affectance-selective Family of Polylogarithmic Size
	Randomized Layer Dissemination Protocol
	Deterministic Layer Dissemination Protocol

	Simulations
	Discussion
	Appendix
	Proof of Theorem 1
	Proof of Theorem 3

