
Improved Set-Based Symbolic Algorithms for
Parity Games∗†

Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger3,
and Veronika Loitzenbauer4

1 IST, Klosterneuburg, Austria
2 TU Wien, Vienna, Austria; and

University of Vienna, Vienna, Austria
3 University of Vienna, Vienna, Austria
4 Bar-Ilan University, Ramat Gan, Israel; and

University of Vienna, Vienna, Austria

Abstract
Graph games with ω-regular winning conditions provide a mathematical framework to analyze a
wide range of problems in the analysis of reactive systems and programs (such as the synthesis
of reactive systems, program repair, and the verification of branching time properties). Parity
conditions are canonical forms to specify ω-regular winning conditions. Graph games with parity
conditions are equivalent to µ-calculus model checking, and thus a very important algorithmic
problem. Symbolic algorithms are of great significance because they provide scalable algorithms
for the analysis of large finite-state systems, as well as algorithms for the analysis of infinite-state
systems with finite quotient. A set-based symbolic algorithm uses the basic set operations and the
one-step predecessor operators. We consider graph games with n vertices and parity conditions
with c priorities (equivalently, a µ-calculus formula with c alternations of least and greatest fixed
points). While many explicit algorithms exist for graph games with parity conditions, for set-
based symbolic algorithms there are only two algorithms (notice that we use space to refer to
the number of sets stored by a symbolic algorithm):
(a) the basic algorithm that requires O(nc) symbolic operations and linear space; and (b) an

improved algorithm that requires O(nc/2+1) symbolic operations but also O(nc/2+1) space
(i.e., exponential space). In this work we present two set-based symbolic algorithms for
parity games:

(b) our first algorithm requires O(nc/2+1) symbolic operations and only requires linear space;
and (b) developing on our first algorithm, we present an algorithm that requires O(nc/3+1)
symbolic operations and only linear space.

We also present the first linear space set-based symbolic algorithm for parity games that requires
at most a sub-exponential number of symbolic operations.
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1 Introduction

In this work we present improved set-based symbolic algorithms for solving graph games
with parity winning conditions, which is equivalent to modal µ-calculus model-checking.

Graph games. Two-player graph games provide the mathematical framework to analyze
several important problems in computer science, especially in formal methods for the analysis
of reactive systems. Graph games are games that proceed for an infinite number of rounds,
where the two players take turns to move a token along the edges of the graph to form an
infinite sequence of vertices (which is called a play or a trace). The desired set of plays is
described as an ω-regular winning condition. A strategy for a player is a recipe that describes
how the player chooses to move tokens to extend plays, and a winning strategy ensures the
desired set of plays against all strategies of the opponent. Some classical examples of graph
games in formal methods are as follows:
(a) If the vertices and edges of a graph represent the states and transitions of a reactive sys-

tem, resp., then the synthesis problem (Church’s problem [14]) asks for the construction
of a winning strategy in a graph game [8, 36, 35, 33, 34].

(b) The problems of
(i) verification of a branching-time property of a reactive system [19], where one player

models the existential quantifiers and the opponent models the universal quantifiers;
as well as

(ii) verification of open systems [2], where one player represents the controller and the
opponent represents the environment;

are naturally modeled as graph games, where the winning strategies represent the choices
of the existential player and the controller, respectively.

Moreover, game-theoretic formulations have been used for refinement [25], compatibility
checking [17] of reactive systems, program repair [28], and synthesis of programs [11]. Graph
games with parity winning conditions are particularly important since all ω-regular winning
conditions (such as safety, reachability, liveness, fairness) as well as all Linear-time Temporal
Logic (LTL) winning conditions can be translated to parity conditions [37, 38], and parity
games are equivalent to modal µ-calculus model checking [19]. In a parity winning condition,
every vertex is assigned a non-negative integer priority from {0, 1, . . . , c − 1}, and a play
is winning if the highest priority visited infinitely often is even. Graph games with parity
conditions can model all the applications mentioned above, and there is a rich literature on
the algorithmic study of finite-state parity games [19, 6, 40, 29, 43, 31, 39].

Explicit vs. symbolic algorithms. The algorithms for parity games can be classified broadly
as explicit algorithms, where the algorithms operate on the explicit representation of the
graph game, and implicit or symbolic algorithms, where the algorithms only use a set of
predefined operations and do not explicitly access the graph game. Symbolic algorithms are
of great significance for the following reasons:
(a) first, symbolic algorithms are required for large finite-state systems that can be succinctly

represented implicitly (e.g., programs with Boolean variables) and symbolic algorithms
are scalable, whereas explicit algorithms do not scale; and

(b) second, for infinite-state systems (e.g., real-time systems modeled as timed automata,
or hybrid systems, or programs with integer domains) only symbolic algorithms are
applicable, rather than explicit algorithms. Hence for the analysis of large systems or
infinite-state systems symbolic algorithms are necessary.
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Significance of set-based symbolic algorithms. The most significant class of symbolic
algorithms for parity games are based on set operations, where the allowed symbolic operations
are:
(a) basic set operations such as union, intersection, complement, and inclusion; and
(b) one step predecessor (Pre) operations.
Note that the basic set operations (that only involve state variables) are much cheaper as
compared to the predecessor operations (that involve both variables of the current and of the
next state). Thus in our analysis we will distinguish between the basic set operations and
the predecessor operations. We refer to the number of sets stored by a set-based symbolic
algorithm as its space. The significance of set-based symbolic algorithms is as follows:
(a) First, in several domains of the analysis of both infinite-state systems (e.g., games over

timed automata or hybrid systems) as well as large finite-state systems (e.g., programs
with many Boolean variables, or bounded integer variables), the desired model-checking
question is specified as a µ-calculus formula with the above set operations [18, 16]. Thus
an algorithm with the above set operations provides a symbolic algorithm that is directly
applicable to the formal analysis of such systems.

(b) Second, in other domains such as in program analysis, the one-step predecessor operators
are routinely used (namely, with the weakest-precondition as a predicate transformer).
A symbolic algorithm based only on the above operations thus can easily be developed
on top of the existing implementations. Moreover, recent work [4] shows how efficient
procedures (such as constraint-based approaches using SMTs) can be used for the
computation of the above operations in infinite-state games. This highlights that
symbolic one-step operations can be applied to a large class of problems.

(c) Finally, if a symbolic algorithm is described with the above very basic set of operations,
then any practical improvement to these operations in a particular domain would
translate to a symbolic algorithm that is faster in practice for the respective domain.
Thus the problem is practically relevant, and understanding the symbolic complexity of

parity games is an interesting and important problem.

Previous results. We summarize the main previous results for finite-state game graphs with
parity conditions. Consider a parity game with n vertices, m edges, and c priorities (which is
equivalent to µ-calculus model-checking of transitions systems with n states, m transitions,
and a µ-calculus formula of alternation depth c). In the interest of concise presentation,
in the following discussion, we ignore denominators in c in the running time bounds, see
Theorems 7 and 8, and the references for precise bounds.

Let us first consider set-based symbolic algorithms. Recall that we use space to refer to
the number of sets stored by a symbolic algorithm. The basic set-based symbolic algorithm
(based on the direct evaluation of the nested fixed point of the µ-calculus formula) for parity
games requires O(nc) symbolic operations and space linear in c [20]. In a breakthrough
result [6], a new set-based symbolic algorithm was presented that requires O(nc/2+1) symbolic
operations, but also requires O(nc/2+1) many sets, i.e., exponential space as compared to the
linear space of the basic algorithm. A simplification of the result of [6] was presented in [40].

Now consider explicit algorithms for parity games. The classical algorithm requires
O(nc−1m) time and can be implemented in quasi-linear space [44, 34], which was then
improved to the small-progress measure algorithm that requires O(nc/2m) time and space
to store O(c · n) integer counters [29]. The small-progress measure algorithm, which is
an explicit algorithm, uses an involved domain of the product of integer priorities and lift
operations (which is a lexicographic max and min in the involved domain). The algorithm
shows that the fixed point of the lift operation computes the solution of the parity game.

CSL 2017



18:4 Improved Set-Based Symbolic Algorithms for Parity Games

The lift operation can be encoded with algebraic binary decision diagrams [9] but this does
not provide a set-based symbolic algorithm. Other notable explicit algorithms for parity
games are as follows:
(a) a strategy improvement algorithm [43], which in the worst-case is exponential [22];
(b) a dominion-based algorithm [31] that requires nO(

√
n) time and a randomized nO(

√
n/ logn)

algorithm [5] (both algorithms are sub-exponential, but inherently explicit algorithms);
and, combining the small-progress measure and the dominion-based algorithm,

(c) an O(nc/3m) time algorithm [39] and its improvement for dense graphs with c sub-
polynomial in n to an O(nc/3n4/3) time algorithm [13] (both bounds are simplified).

A recent breakthrough result [10] shows that parity games can be solved in O(nlog c) time,
i.e., quasi-polynomial time. Follow-up work [30, 21] reduced the space requirements from
quasi-polynomial to O(n logn log c), i.e., to quasi-linear, space.

While the above algorithms are specified for finite-state graphs, the symbolic algorithms
also apply to infinite-state graphs with a finite bi-simulation quotient (such as timed-games,
or rectangular hybrid games), and then n represents the size of the finite quotient.

Our contributions. Our results for game graphs with n vertices and parity objectives with
c priorities are as follows.
1. First, we present a set-based symbolic algorithm that requires O(nc/2+1) symbolic op-

erations and linear space (i.e., a linear number of sets). Thus it matches the symbolic
operations bound of [6, 40] and brings the space requirements down to a linear number
of sets as in the classical algorithm (albeit linear in n and not in c).

2. Second, developing on our first algorithm, we present a set-based symbolic algorithm
that requires O(nc/3+1) symbolic operations (simplified bound) and linear space. Thus it
improves the symbolic operations of [6, 40] while achieving an exponential improvement
in the space requirement. We also present a modification of our algorithm that requires
nO(
√
n) symbolic operations and at most linear space. This is the first linear-space

set-based symbolic algorithm that requires at most a sub-exponential number of symbolic
operations.

In the results above the number of symbolic operations mentioned is the number of
predecessor operations, and in all cases the number of required basic set operations (which
are usually cheaper) is at most a factor of O(n) more. Our main results and comparison
with previous set-based symbolic algorithms are presented in the table below.

reference symbolic operations space

[20, 44] O(nc) O(c)
[6, 40] O(nc/2+1) O(nc/2+1)
Thm. 7 O(nc/2+1) O(n)
Thm. 8 min{nO(

√
n),O(nc/3+1)} O(n)

Our technical contributions are as follows. We provide a symbolic version of the progress
measure algorithm. The main challenge is to succinctly encode the numerical domain of
the progress measure as sets. More precisely, the challenge is to represent Θ(nc/2) many
numerical values with O(n) many sets, such that they can still be efficiently processed by
a set-based symbolic algorithm. For the sake of efficiency our algorithms consider sets Sr
storing all vertices with progress measure at least r. However, there are Θ(nc/2) many such
sets Sr and thus, to reduce the space requirements to a linear number of sets, we use a
succinct representation that encodes all the sets Sr with just O(n) many sets, such that we
can restore a set Sr efficiently whenever it is processed by the algorithm.
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Figure 1 A parity game with 5 priorities. Circles denote player E vertices, squares denote player O
vertices. The numeric label of a vertex gives its priority, e.g., a is an E-vertex with priority 1. The
set of solid vertices, i.e., the set {d, e, f, g}, is a player-E dominion and the union of this E-dominion
with the vertices c and h is the winning set of player E in this game. The solid edges indicate a
winning strategy for player E .

2 Preliminaries and Previous Results

2.1 Parity Games
We consider games on graphs played by two adversarial players, denoted by E (for even) and
O (for odd). We use z to denote one of the players of {E ,O} and z to denote its opponent.
We denote by (V,E) a directed graph with n = |V | vertices and m = |E| edges, where V is
the vertex set and E is the edge set. A game graph G = ((V,E), (VE , VO)) is a directed graph
(V,E) with a partition of the vertices into player-E vertices VE and player-O vertices VO. For
a vertex u ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor vertices of u.
As a standard convention (for technical simplicity) we consider that every vertex has at least
one outgoing edge, i.e., Out(u) is non-empty for all vertices u.

A game is initialized by placing a token on a vertex. Then the two players form an
infinite path, called play, in the game graph by moving the token along the edges. Whenever
the token is on a vertex of Vz, player z moves the token along one of the outgoing edges
of the vertex. Formally, a play is an infinite sequence 〈v0, v1, v2, . . .〉 of vertices such that
(vj , vj+1) ∈ E for all j ≥ 0.

A parity game P = (G, α) with c priorities consists of a game graph G = ((V,E), (VE , VO))
and a priority function α : V → [c] that assigns an integer from the set [c] = {0, . . . , c− 1}
to each vertex (see Figure 1 for an example). Player E (resp. player O) wins a play of the
parity game if the highest priority occurring infinitely often in the play is even (resp. odd).
We denote by Pi the set of vertices with priority i, i.e., Pi = {v ∈ V | α(v) = i}. Note that if
Pi is empty for 0 < i < c− 1, then the priorities > i can be decreased by 2 without changing
the parity condition, and when Pc−1 is empty, we simply have a parity game with a priority
less; thus we assume w.l.o.g. Pi 6= ∅ for 0 < i < c.

A strategy of a player z ∈ {E ,O} is a function that, given a finite prefix of a play ending
at v ∈ Vz, selects a vertex from Out(v) to extend the finite prefix. Memoryless strategies
depend only on the last vertex of the finite prefix. That is, a memoryless strategy of player z
is a function σ : Vz → V such that for all v ∈ Vz we have σ(v) ∈ Out(v). It is well-known
that for parity games it is sufficient to consider memoryless strategies [19, 34]. Therefore
we only consider memoryless strategies from now on. A start vertex v, a strategy σ for E ,
and a strategy π for O describe a unique play ω(v, σ, π) = 〈v0, v1, v2, . . .〉, which is defined
as follows: v0 = v and for all i ≥ 0, if vi ∈ VE , then σ(vi) = vi+1, and if vi ∈ VO, then
π(vi) = vi+1.

A strategy σ is winning for player E at start vertex v iff for all strategies π of player O
we have that the play ω(v, σ, π) satisfies the parity condition, and analogously for winning
strategies for player O. A vertex v belongs to the winning set Wz of player z if player z has
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a winning strategy from start vertex v. Every vertex is winning for exactly one of the two
players. The algorithmic problem we study for parity games is to compute the winning sets
of the two players. A non-empty set of vertices D is a player-z dominion if player z has a
winning strategy from every vertex of D that also ensures only vertices of D are visited.

2.2 Set-based Symbolic Operations
Symbolic algorithms operate on sets of vertices, which are usually described by Binary
Decision Diagrams (BDD) [32, 1]. For the symbolic algorithms for parity games we consider
the most basic form of symbolic operations, namely, set-based symbolic operations. More
precisely, we only allow the following operations:
Basic set operations. First, we allow basic set operations like ∪, ∩, \, ⊆, and =.
One-step operations. Second, we allow the following symbolic one-step operations:
(a) the one-step predecessor operator Pre(B) = {v ∈ V | ∃u ∈ B : (v, u) ∈ E}; and
(b) the one-step controllable predecessor operator CPrez(B) = {v ∈ Vz | Out(v) ∩B 6= ∅} ∪
{v ∈ Vz | Out(v) ⊆ B} ; i.e., the CPrez operator computes all vertices from which z can
ensure that in the next step the successor belongs to the given set B. Moreover, the
CPrez operator can be defined using the Pre operator and basic set operations as follows:
CPrez(B) = Pre(B) \ (Vz ∩ Pre(V \B)).
Algorithms that use only the above operations are called set-based symbolic algorithms.

Additionally, successor operations can be allowed but are not needed for our algorithms. The
above symbolic operations correspond to primitive operations in standard symbolic packages
like CuDD [41].

Typically, the basic set operations are cheaper (as they encode relationships between state
variables) as compared to the one-step symbolic operations (which encode the transitions
and thus the relationship between the variables of the present and of the next state). Thus
in our analysis we distinguish between these two types of operations.

For the space requirements of set-based symbolic algorithms, as per standard convention [6,
9], we consider that a set is stored in constant space (e.g., a set can be represented symbolically
as one BDD [7]). We thus consider the space requirement of a symbolic algorithm to be the
maximal number of sets that the algorithm has to store.

2.3 Progress Measure Algorithm
We first provide basic intuition for the progress measure [29] and then provide the formal
definitions. Solving parity games can be reduced to computing the progress measure [29]. In
Section 3 we present a set-based symbolic algorithm to compute the progress measure.

High-level intuition. Towards a high-level intuition behind the progress measure, consider
an E-dominion D, i.e., player E wins on all vertices of D without leaving D. Fix a play
started at a vertex u ∈ D in which player E follows her winning strategy on D. In the play
from some point on the highest priority visited by the play, say α∗, has to be even. Let v∗
be the vertex after which the highest visited priority is α∗ (recall that memoryless strategies
are sufficient for parity games). Before v∗ is visited, the play might have visited vertices
with odd priority higher than α∗ but the number of these vertices has to be less than n. The
progress measure is based on a so-called lexicographic ranking function that assigns a rank to
each vertex v, where the rank is a “vector of counters” for the number of times player O
can force a play to visit an odd priority vertex before a vertex with higher even priority is
reached. If player O can ensure a counter value of at least n, then she can ensure that a
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cycle with highest priority odd is reached from v and therefore player E cannot win from the
vertex v. Conversely, if player O can reach a cycle with highest priority odd before reaching
a higher even priority, then she can also force a play to visit an odd priority n times (thus a
counter value of n) before reaching a higher even priority. In other words, a vertex u is in
the E-dominion D if and only if player O cannot force any counter value to reach n from u.
When a vertex u is classified as winning for player O, it is marked with the rank > and
whenever O has a strategy for some vertex v to reach a >-ranked vertex, it is also winning
for player O and thus ranked >. Computing the progress measure is done by updating the
rank of a vertex according to the ranks of its successors and is equal to computing the least
simultaneous fixed point for all vertices with respect to “ranking functions”.

An additional property of the progress measure is that the ranks assigned to the vertices
of the E-dominion provide a certificate for a winning strategy of player E within the dominion,
namely, player E can follow edges that lead to vertices with “lower or equal” rank with
respect to a specific ordering of the ranks.

Formal definitions. We next provide formal definitions of rank, the ranking function, the
ordering on the ranks, the lift-operators, and finally the progress measure (see also [29]).

We start with the progress measure domain M∞G and consider parity games with n vertices
and priorities [c]. Let ni be the number of vertices with priority i for odd i (i.e., ni = |Pi|), let
ni = 0 for even i, and let Ni = [ni+1] for 0 ≤ i < c. LetMG = (N0×N1×· · ·×Nc−2×Nc−1)
be the product domain where every even index is 0 and every odd index i is a number between
0 and ni. The progress measure domain is M∞G = MG ∪ {>}, where > is a special element
called the top element. Then we have |M∞G | = 1 +

∏bc/2c
i=1 (n2i−1 + 1) = O

((
n
bc/2c

)bc/2c) [29]
(this bound uses that w.l.o.g. |Pi| > 0 for each priority i > 0).

A ranking function ρ : V → M∞G assigns to each vertex a rank r that is either one of
the c dimensional vectors in MG or the top element >. Note that a rank has at most bc/2c
non-zero entries. Informally, we call the entries of a rank with an odd index i a “counter”
because as long as the top element is not reached, it counts (with “carry”, i.e., if ni is reached,
the next highest counter is increased by one and the counter at index i is reset to zero) the
number of times a vertex of priority i is reached before a vertex of higher priority is reached
(from some specific start vertex). The co-domain of ρ is M∞G = MG ∪ {>} and we index the
elements of the vectors from 0 to c− 1.

We use the lexicographic comparison operator < of the ranks assigned by ρ: the vectors
are considered in the lexicographical order, where the left most entry is the least significant
one and the right most entry is the most significant one, and > is the maximum element
of the ordering. We write 0̄ to refer to the all zero vector (i.e., the minimal element of the
ordering) and N̄ to refer to the maximal vector (n0, n1, . . . , nc−1) (i.e., the second largest
element, after >, in the ordering).

Next we introduce the lexicographic increment and decrement operations. Given a rank r,
i.e., either a vector or >, we refer to the successor in the ordering < by inc(r) (with
inc(>) = >), and to the predecessor in the ordering < by dec(r) (with dec(0̄) = 0̄). We
also consider restrictions of inc and dec to fewer dimensions, which are described below.
Given a vector x = (x0, x1, x2, . . . , xc−1), we denote by 〈x〉` (for 0 ≤ ` < c) the vector
(0, 0, . . . , 0, x`, . . . , xc−1), where we set all elements with index less than ` to 0; in particular
x = 〈x〉0. Intuitively, we use the notation 〈x〉` to “reset the counters” for priorities lower
than ` when a vertex of priority ` is reached (as long as we have not counted up to the top
element). Moreover, we also generalize the ordering to a family of orderings <` where x <` y
for two vectors x and y iff 〈x〉` < 〈y〉`; the top element > is the maximum element of each
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ordering. In particular, x <0 y iff x < y and in our setting also x <1 y iff x < y. We further
have restricted versions inc` and dec` of inc and dec; note that dec` is a partial function and
that ` will be the priority of the vertex v for which we want to update its rank and x will be
the rank of one of its neighbors in the game graph.

inc`(x): For x = > we have inc`(>) = >; Otherwise inc`(x) = 〈x〉` if ` is even and
inc`(x) = min{y ∈M∞G | y >` x} if ` is odd.
dec`(x) : dec`(x) = 0̄ if 〈x〉` = 0̄; Otherwise if 〈x〉` > 0̄ then dec`(x) = min{y ∈MG | x =
inc`(y)}.

For 0̄ < 〈x〉` < > we have inc`(dec`(x)) = dec`(inc`(x)) = 〈x〉` while for > we only have
inc`(dec`(>)) = > and for 〈x〉` = 0̄ only dec`(inc`(x)) = 0̄. By the restriction of inc by the
priority ` of v, for both even and odd priorities the counters for lower (odd) priorities are
reset to zero as long as the top element is not reached. For an odd ` additionally the counter
for ` is increased or, if the counter for ` has already been at n`, then one of the higher
counters is increased while the counter for ` is reset to zero as well; if no higher counter can
be increased any more, then the rank of v is set to >.

Recall the interpretation of the progress measure as a witness for a player-E winning
strategy on an E-dominion, where player E wants to follow a path of non-increasing rank.
The function best we define next reflects the ability of player E to choose the edge leading
to the lowest rank when he owns the vertex, while for player-O vertices all edges need to
lead to non-increasing ranks if player E can win from this vertex. The function best for each
vertex v and ranking function ρ is given by

best(ρ, v) =
{

min{ρ(w) | (v, w) ∈ E} if v ∈ VE ,
max{ρ(w) | (v, w) ∈ E} if v ∈ VO .

Finally, the lift operation implements the incrementing of the rank of a vertex v according
to its priority and the ranks of its neighbors:

Lift(ρ, v)(u) =
{

incα(v)(best(ρ, v)) if u = v ,

ρ(u) otherwise .

The Lift(., v)-operators are monotone and the progress measure for a parity game is defined
as the least simultaneous fixed point of all Lift(., v)-operators. The progress measure can be
computed by starting with the ranking function equal to the all-zero function and iteratively
applying the Lift(., v)-operators in an arbitrary order [29]. Note that in this case the Lift(., v)-
operator assigns only rank vectors r with r = 〈r〉α(v) to v. See [29] for a worst-case example
for any lifting algorithm. By [29], the winning set of player E can be obtained from the
progress measure by selecting those vertices whose rank is a vector, i.e., smaller than >.

I Lemma 1 ([29]). For a given parity game and the progress measure ρ with co-domain
M∞G , the set of vertices with ρ(v) < > is exactly the winning set of player E.

This implies that to solve parity games it is sufficient to provide an algorithm that
computes the least simultaneous fixed point of all Lift(., v)-operators. The Lift operation can
be computed explicitly in O(m) time, which gives the SmallProgressMeasure algorithm
of [29]. The SmallProgressMeasure algorithm is an explicit algorithm that requires
O(m · |M∞G |) = O

(
m ·
(

n
bc/2c

)bc/2c) time and O(n · c) space (assuming constant size integers).
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3 Set-based Symbolic Progress Measure Algorithm for Parity Games

In this section we present a set-based symbolic algorithm for parity games, with n vertices
and c priorities, by showing how to compute a progress measure (see Section 2.3) using only
set-based symbolic operations (see Section 2.2). All proofs are provided in Appendix A.
We mention the key differences of Algorithm SymbolicParityDominion and the explicit
progress-measure algorithm ([29], see Section 2.3).
1. The main challenge for an efficient set-based symbolic algorithm similar to the Small-

ProgressMeasure algorithm is to represent Θ(nc/2) many numerical values succinctly
with O(n) many sets, such that they can still be efficiently processed by a symbolic
algorithm.

2. To exploit the power of symbolic operations, in each iteration of the algorithm we compute
all vertices whose rank can be increased to a certain value r. This is in sharp contrast to
the explicit progress-measure algorithm, where vertices are considered one by one and
the rank is increased to the maximal possible value.

Key concepts. Recall that the progress measure for parity games is defined as the least
simultaneous fixed point of the Lift(ρ, v)-operators on a ranking function ρ : V → M∞G .
There are two key aspects of our algorithm:
1. Symbolic encoding of numerical domain. In our symbolic algorithm we cannot directly

deal with the ranking function but have to use sets of vertices to encode it. We first
formulate our algorithm with sets Sr for r ∈M∞G that contain all vertices that have rank
r or higher; that is, given a function ρ, the corresponding sets are Sr = {v | ρ(v) ≥ r}.
On the other hand, given a family of sets {Sr}r, the corresponding ranking function
ρ{Sr}r

is given by ρ{Sr}r
(v) = max{r ∈ M∞G | v ∈ Sr}. This formulation encodes the

numerical domain with sets but uses exponential in c many sets.
2. Space efficiency. We refine the algorithm to directly encode the ranks with one set for

each possible index-value pair. This reduces the required number of sets to linear at
the cost of increasing the number of set operations only by a factor of n; the number of
one-step symbolic operations does not increase.

We first present the variant that uses an exponential number of sets and then show how to
reduce the number of sets to linear.

The above ideas yield a set-based symbolic algorithm, but since we now deal with sets of
vertices, as compared to individual vertices, the correctness needs to be established. The
non-trivial aspect of the proof is to identify appropriate invariants on sets (which we call
symbolic invariants, see Invariant 3) and use them to establish the correctness.

3.1 The Set-based Symbolic Progress Measure Algorithm
The codomain M∞

h . We formulate our algorithm such that it cannot only compute the
winning sets of the players but also E-dominions of size at most h+ 1. (For O-dominions
add one to each priority and exchange the roles of the two players.) The only change needed
for this is to use the codomain M∞h , instead of M∞G , for the inc and dec operations. The
codomain M∞h contains all ranks of M∞G whose entries sum up to at most h.

The sets Sr and the ranking function ρ{Sr}r
. The algorithm implicitly maintains a rank

for each vertex. A vertex is contained in a set Sr only if its maintained rank is at least r.
Each set Sr is monotonically increasing throughout the algorithm. The rank of a vertex v is
the highest r such that v ∈ Sr. In other words, the family of sets {Sr}r defines the ranking
function ρ{Sr}r

(v) = max{r ∈ M∞h | v ∈ Sr}. When the rank of a vertex is increased,
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Algorithm SymbolicParityDominion: Symbolic Progress Measure Algorithm
Input : parity game P = (G, α), with game graph G = ((V,E), (VE , VO)),

priority function α : V → [c], and parameter h ∈ [0, n] ∩ N
Output : Set containing all E-dominions of size ≤ h+ 1, which is an E-dominion or empty.

1 S0̄ ← V ; Sr ← ∅ for r ∈M∞h \ {0̄};
2 r ← inc(0̄);
3 while true do
4 if r 6= > then
5 Let ` be maximal such that r = 〈r〉`;
6 Sr ← Sr ∪

⋃
1≤k≤(`+1)/2

(
CPreO(Sdec2k−1(r)) ∩ P2k−1

)
;

7 repeat
8 Sr ← Sr ∪

(
CPreO(Sr) \

⋃
`<k<c

Pk

)
9 until a fixed-point for Sr is reached;

10 else if r = > then
11 S> ← S> ∪

⋃
1≤k≤bc/2c

(
CPreO(Sdec2k−1(>)) ∩ P2k−1

)
;

12 repeat
13 S> ← S> ∪ (CPreO(S>))
14 until a fixed-point for S> is reached;
15 r′ ← dec(r);
16 if Sr′ ⊇ Sr and r < > then
17 r ← inc(r)
18 else if Sr′ ⊇ Sr and r = > then
19 break
20 else
21 repeat
22 Sr′ ← Sr′ ∪ Sr;
23 r′ ← dec(r′);
24 until Sr′ ⊇ Sr;
25 r ← inc(r′);

26 return V \ S>

this information has to be propagated to its predecessors. This is achieved efficiently by
maintaining anti-monotonicity among the sets, i.e., we have Sr′ ⊇ Sr for all r and all r′ < r

before and after each iteration. Anti-monotonicity together with defining the sets Sr′ to
contain vertices with rank at least r′ instead of exactly r′ enables us to decide whether the
rank of a vertex v can be increased to r by only considering one set Sr′ .

Structure of the algorithm. The set S0̄ is initialized with the set of all vertices V , while
all other sets Sr for r > 0̄ are initially empty, i.e., the ranks of all vertices are initialized with
the zero vector. The variable r is initially set to the second lowest rank inc(0̄) that is one at
index 1 and zero otherwise. In the while-loop the set Sr is updated for the value of r at the
beginning of the iteration (see below). After the update of Sr, it is checked whether the set
corresponding to the next lowest rank already contains the vertices newly added to Sr, i.e.,
whether the anti-monotonicity is preserved. If the anti-monotonicity is preserved despite
the update of Sr, then for r < > the value of r is increased to the next highest rank and for
r = > the algorithm terminates. Otherwise the vertices newly added to Sr are also added to
all sets with r′ < r that do not already contain them; the variable r is then updated to the
lowest r′ for which a new vertex is added to Sr′ in this iteration.

Update of set Sr. To reach a simultaneous fixed point of the lift-operators, the rank of a
vertex v has to be increased to Lift(ρ{Sr}r

, v)(v) whenever the value of Lift(ρ{Sr}r
, v)(v) is

strictly higher than ρ{Sr}r
(v) for the current ranking function ρ{Sr}r

. Now consider a fixed
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iteration of the while-loop and let r be as at the beginning of the while-loop. Let ρ{Sr}r

be denoted by ρ for short. In this update of the set Sr we want to add to Sr all vertices v
with ρ(v) < r and Lift(ρ, v)(v) ≥ r under the condition that the priority of v allows v to be
assigned the rank r, i.e., r = 〈r〉α(v). Note that by the anti-monotonicity property the set Sr
already contains all vertices with ρ(v) ≥ r.
1. We first consider the case r < >. Let ` be maximal such that r = 〈r〉`, i.e., the first `

entries with indices 0 to `− 1 of r are 0 and the entry with index ` is larger than 0. Note
that ` is odd. We have that only the Lift(., v)-operators with α(v) ≤ ` can increase the
rank of a vertex to r as all the others would set the element with index ` to 0.
Recall that Lift(ρ, v)(v) = incα(v)(best(ρ, v)). The function best is implemented by the
CPreO operator: For a player-E vertex the value of best increases only if the ranks of all
successor have increased, for a player-O vertex it increases as soon as the maximum rank
among the successor vertices has increased. The function incα(v)(x) for x < > behaves
differently for odd and even α(v) (see Section 2.3): If α(v) is odd, then incα(v)(x) is
the smallest rank y in M∞h such that y >α(v) x, i.e., y is larger than x w.r.t. indices
≥ α(v). If α(v) is even, then incα(v)(x) is equal to x with the indices lower than α(v) set
to 0.
(i) First, consider a Lift(ρ, v) operation with odd α(v) ≤ `, i.e., let α(v) = 2k − 1 for

some 1 ≤ k ≤ (`+1)/2. Then Lift(ρ, v)(v) ≥ r only if (a) v ∈ VE and all successors w
have ρ(w) ≥ dec2k−1(r), or (b) v ∈ VO and one successor w has ρ(w) ≥ dec2k−1(r).
That is, Lift(ρ, v)(v) ≥ r only if v ∈ CPreO(Sdec2k−1(r)). Vice versa, we have that if
v ∈ CPreO(Sdec2k−1(r)) then by ρ = ρ{Sr}r

also Lift(ρ, v)(v) ≥ r. This observation is
implemented in SymbolicParityDominion in line 6, where such vertices v are added
to Sr.

(ii) Now, consider a Lift(ρ, v) operation with even α(v) ≤ `, i.e., let α(v) = 2k for some
1 ≤ k ≤ `/2. Then Lift(ρ, v)(v) ≥ r only if
(a) v ∈ VE and all successors w have ρ(w) ≥ r, or
(b) v ∈ VO and one successor w has ρ(w) ≥ r.
That is, Lift(ρ, v)(v) ≥ r only if v ∈ CPreO(Sr). Vice versa, we have that if
v ∈ CPreO(Sr) then Lift(ρ, v)(v) ≥ r. In SymbolicParityDominion these vertices
are added iteratively in line 8 until a fixed point is reached. The algorithm also
adds vertices v with odd priority to Sr, but due do the above argument we have
Lift(ρ, v)(v) > r and thus they can be included in Sr.

2. The case r = > works similarly except that (a) every vertex is a possible candidate for
being assigned the rank >, independent of its priority (line 11), and (b) whenever x is
equal to >, incα(v)(x) assigns the rank > independently of α(v) (line 13).

I Example 2. In this example we apply Algorithm SymbolicParityDominion to the parity
game in Figure 1. We have n1 = 3 and n3 = 1 and thus we have to consider ranks in the
co-domain M∞G = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1),>} (we ignore entires
of ranks that are always zero in this notation).
The algorithm initializes the set S(0,0) to {a, b, c, d, e, f, g, h} and r to (1, 0). All the other
sets Sr are initialized as the empty set. It then proceeds as follows:
1. In the first iteration of the while-loop it processes r = (1, 0). We have ` = 1 and thus

the only possible value of k in line 6 is k = 1. That is, line 6 adds the vertices in
CPreO(S0,0) ∩ P1 = {a, c, h} to S(1,0) and then in line 8 also b is added. We obtain
S(1,0) = {a, b, c, h} and as S(1,0) ⊆ S(0,0), the rank r is increased to (2, 0).

2. In the second iteration it processes r = (2, 0) and the vertex a is added to S(2,0) in line 6
and the vertex b is added to S(2,0) in line 8, i.e., S(2,0) = {a, b}, and r is set to (3, 0).
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3. When processing r = (3, 0) the set S(3,0) is updated to {a, b} and r is increased to (0, 1).
4. Now the algorithm processes the rank (0, 1) the first time. We have ` = 3 and thus the

possible values for k are 1 and 2. The vertex a is added to S(0,1) because it is contained
in CPreO(S3,0)∩P1 and the vertex e is added because it is contained in CPreO(S0,0)∩P3
in line 6. Finally, also b and g are added in line 8. That is, we have S(0,1) = {a, b, e, g}.
Now as S(3,0) 6⊆ S(0,1), S(2,0) 6⊆ S(0,1) and S(1,0) 6⊆ S(0,1), we have to decrease r to (1, 0),
and also to modify the other sets with smaller rank as follows: S(1,0) = {a, b, c, e, g, h};
and S(2,0) = S(3,0) = {a, b, e, g}.

5. The algorithm considers r = (1, 0) again, makes no changes to S(1,0) and sets r to (2, 0).
6. Now considering r = (2, 0), the vertex h is added to the set S(2,0) in line 6, i.e., S(2,0) =
{a, b, e, g, h}, and, as h is already contained in S(1,0), r is increased to (3, 0).

7. The set S(3,0) is not changed and r is increased to (0, 1).
8. The set S(0,1) is not changed and r is increased to (1, 1).
9. The vertex a is added to S(1,1) in line 6 and the vertex b is added to S(1,1) in line 8, i.e.,

S(1,1) = {a, b}, and r is increased to (2, 1).
10. The vertices a, b are added to S(2,1), i.e., S(2,1) = {a, b}, and r is increased to (3, 1).
11. The vertices a, b are added to S(3,1), i.e., S(3,1) = {a, b}, and r is increased to >.
12. The vertex a is added to S> in line 11 and b is added to S> in line 13, i.e., S> = {a, b}.

Now as S(3,1) ⊆ S>, the algorithm terminates.

Finally we have that S(0,0) = {a, b, c, d, e, f, g, h}, S(1,0) = {a, b, c, e, g, h}, S(2,0) =
{a, b, e, g, h}, S(3,0) = S(0,1) = {a, b, e, g}, and S(1,1) = S(2,1) = S(3,1) = S> = {a, b},
That is, the algorithm returns {c, d, e, f, g, h} as the winning set of player E . The final sets of
the algorithm correspond to the progress measure ρ with ρ(f) = ρ(d) = (0, 0), ρ(c) = (1, 0),
ρ(h) = (2, 0), ρ(e) = ρ(g) = (0, 1), and ρ(a) = ρ(b) = >.

Sketch of bound on number of symbolic operations. Observe that each rank r is consid-
ered in at least one iteration of the while-loop but is only reconsidered in a later iteration
if at least one vertex was added to the set Sr since the last time r was considered; in this
case O(c) one-step operations are performed. Thus the number of symbolic operations per
set Sr is of the same order as the number of times a vertex is added to the set. Hence the
algorithm can be implemented with O(c · n · |M∞h |) symbolic operations. For the co-domain
M∞G the bound O(c · n · |M∞G |) is analogous.

Outline correctness proof. In the following proof we show that when Algorithm Symbolic-
ParityDominion terminates, the ranking function ρ{Sr}r

is equal to the progress measure for
the given parity game and the co-domainM∞h . The same proof applies to the co-domainM∞G .
The algorithm returns the set of vertices that are assigned a rank < > when the algorithm
terminates. By [39] this set is an E-dominion that contains all E-dominions of size at most
h+ 1 when the co-domain M∞h is used, and by Lemma 1 this set is equal to the winning set
of player E when the co-domain M∞G is used. Thus it remains to show that ρ{Sr}r

equals
the progress measure for the given co-domain when the algorithm terminates. We show that
maintaining the following invariants over all iteration of the algorithm is sufficient for this
and then prove that the invariants are maintained. All proofs are in Appendix A and are
described for the co-domain M∞h .

I Invariant 3 (Symbolic invariants). In Algorithm SymbolicParityDominion the following
three invariants hold. Every rank is from the co-domain M∞h and the Lift(., v)-operators are
defined w.r.t. the co-domain. Let ρ̃ be the progress measure of the given parity game and let
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ρ{Sr}r
(v) = max{r ∈M∞h | v ∈ Sr} be the ranking function with respect to the sets Sr that

are maintained by the algorithm.
1. Before and after each iteration of the while-loop we have that if a vertex v is in a set Sr1

then it is also in Sr2 for all r2 < r1 (anti-monotonicity).
2. Throughout Algorithm SymbolicParityDominion we have ρ̃(v) ≥ ρ{Sr}r

(v) for all v ∈ V .
3. Before and after each iteration of the while-loop we have for the rank stored in r and

all vertices v either Lift(ρ{Sr}r
, v)(v) ≥ r or Lift(ρ{Sr}r

, v)(v) = ρ{Sr}r
(v). (b) After the

update of Sr and before the update of r we additionally have v ∈ Sr for all vertices v with
Lift(ρ{Sr}r

, v)(v) = r (closure property).

The intution behind the invariants is as follows. Invariant 3(1) ensures that the definition
of the sets Sr and the ranking function ρ{Sr}r

is sound; Invariant 3(2) guarantees that
ρ{Sr}r

is a lower bound on ρ̃ throughout the algorithm; and Invariant 3(3) shows that when
the algorithm terminates, a fixed point of the ranking function ρ{Sr}r

with respect to the
Lift(., v)-operators is reached. Together these three properties guarantee that when the
algorithm terminates the function ρ{Sr}r

corresponds to the progress measure, i.e., to the
least simultaneous fixed point of the Lift(., v)-operators. We prove the invariants by induction
over the iterations of the while-loop. In particular, Invariant 3(1) is ensured by adding
vertices newly added to a set Sr also to sets Sr′ with r′ < r that do not already contain them
at the end of each iteration of the while-loop. For Invariant 3(2) we show that whenever
ρ{Sr}r

(v) is increased, i.e., v is added to the set Sr, then no fixed point of the lift-operator
for v was reached yet and thus also the progress measure for v has to be at least as high
as the new value of ρ{Sr}r

(v). The intuition for the proof of Invariant 3(3) is as follows:
We first show that Lift(ρ{Sr}r

, v)(v) = ρ{Sr}r
(v) remains to hold for all vertices v for which

the value of ρ{Sr}r
(v) is less than the smallest value r′ for which Sr′ was updated in the

considered iteration. In iterations in which the value of the variable r is not increased, this
is already sufficient to show part (a) of the invariant. If r is increased, we additionally use
part (b) to show part (a). For part (b) we prove by case analysis that, before the update of
the variable r, a vertex with Lift(ρ{Sr}r

, v)(v) = r is included in Sr. The correctness of the
algorithm then follows from the invariants as outlined above.

3.2 Reducing Space to Linear

Algorithm SymbolicParityDominion requires |M∞G | many sets Sr, which is drastically beyond
the space requirement of the progress measure algorithm for explicitly represented graphs.
Thus we aim to reduce the space requirement to O(n) many sets in a way that still allows to
restore the sets Sr efficiently. For the sake of readability, we assume for this part that c is
even. The main idea to reduce the space requirement is as follows.
1. Instead of storing sets Sr corresponding to a specific rank, we encode the value of each

coordinate of the rank r separately. That is, we define the sets Ci0, Ci1 . . . , Cini
for each

odd priority i. Intuitively, a vertex is in the set Cix iff the i-th coordinate of the rank of v
is x. Given these O(c+ n) ∈ O(n) sets, we have encoded the exact rank vector r of each
vertex with r < >. To also cover vertices with rank >, we additionally store the set S>.

2. Whenever the algorithm needs to process a set Sr, we reconstruct it from the stored sets,
using a linear number of set operations. Algorithm SymbolicParityDominion has to be
adapted as follows. First, at the beginning of each iteration we have to compute the set
Sr and up to c/2 sets Sr′ that correspond to some predecessor r′ of r. Second, at the
end of each iteration we have to update the sets Cix to incorporate the updated set Sr.
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Computing a set Sr from the sets Ci
x. Let ri denote the i-th entry of r. To obtain the

set S=
r of vertices with rank exactly r (for r < >), one can simply compute the intersection⋂

1≤k≤c/2 C
2k−1
r2k−1

of the corresponding sets Cix. However, in the algorithm we need the
sets Sr containing all vertices v with a rank at least r and computing all sets S=

r′ with
r′ ≥ r is not efficient. Towards a more efficient method to compute Sr, recall that a rank
r′ < > is higher than r if either (a) the right most odd element of r′ is larger than the
corresponding element in in r, i.e., r′c−1 > rc−1, or (b) if r and r′ coincide on the i right most
odd elements, i.e., r′c−2k+1 = rc−2k+1 for 1 ≤ k ≤ i, and r′c−2i−1 > rc−2i−1. In case (a) we
can compute the corresponding vertices by S0

r =
⋃
rc−1<x≤nc−1

Cc−1
x while in case (b) we can

compute the corresponding vertices by Sir =
⋂

1≤k≤i C
c−2k+1
rc−2k+1

∩
⋃
rc−2i−1<x≤nc−2i−1

Cc−2i−1
x

for 1 ≤ i ≤ c/2 − 1. That is, we can reconstruct the set Sr by the following union of the
above sets Sir, the set S=

r of vertices with rank r, and the set S> of vertices with rank >:

Sr = S> ∪ S=
r ∪

c/2−1⋃
i=0

Sir

Hence, a set Sr can be computed with O(c+n) ∈ O(n) many ∪ and O(c) many ∩ operations;
for the latter bound we use an additional set to store the set

⋂
1≤k≤i C

c−2k+1
rc−2k+1

for the current
value of i, such that for each set Sir we just need two ∩ operations. This implies the following
lemma.

I Lemma 4. Given the sets Cix as defined above, we can compute the set Sr that contains all
vertices with rank at least r with O(n) many symbolic set operations. No symbolic one-step
operation is needed.

Updating a set Sr. Now consider we have updated a set Sr during the iteration of the
while-loop, and now we want to store the updated set Sr within the sets Cix. That is, we
have already computed the fixed-point for Sr and are now in line 15 of the Algorithm. To
this end, let Sold

r be the set as stored in Cix and Snew
r the updated set, which is a superset of

the old one. First, one computes the difference Sdiff
r between the two sets Sdiff

r = Snew
r \ Sold

r ;
intuitively, the set Sdiff

r contains the vertices for which the algorithm has increased the rank.
Now for the vertices of Sdiff

r we have to
(i) delete their old values by updating Cix to Cix \ Sdiff

r for each i ∈ {1, 3, . . . , c − 1} and
each x ∈ {0, . . . , ni} and

(ii) store the new values by updating Cix to Cix ∪ Sdiff
r for i ∈ {1, 3, . . . , c− 1} and x = ri.

In total we have O(c) many ∪ and O(n) many \ operations.
Notice that the update operation for a set Sr, as described above, also updates all sets Sr′

for r′ < r. Thus, when using the more succinct representation via the sets Cix and executing
SymbolicParityDominion literally, the computation of the maximal rank r′ s.t. Sr′ ⊇ Sr
would fail because of the earlier update of Sr. Hence, we have to postpone the update of Sr
till the end of the iteration and adjust the computation of r′ as follows. We do not update
the set S′r, and first compute the final value for r′ by decrementing r′ until Sr′ ⊇ Sr and
then update Sr to Snew

r and thus implicitly also update the sets Sr̃ to Sr̃ ∪ Sr for r′ < r̃ < r.
This gives the following lemma.

I Lemma 5. In each iteration of SymbolicParityDominion only O(n) symbolic set operations
are needed to update the sets Cix, and no symbolic one-step operation is needed.

Number of Set Operations. To sum up, when introducing the succinct representation of
the sets Sr, we only need additional ∪, ∩, and \ operations, while the number of CPrez
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operations is unchanged. We show in Appendix A that whenever the algorithm computes
or updates a set Sr, then we can charge a CPrez operation for it, and each CPrez operation
is only charged for a constant number of set computations and updates. Hence, as both
computing a set Sr and updating the sets Cix can be done with O(n) set operations, the
number of the additional set operations in SymbolicParityDominion is in O(n ·#CPre), for
#CPre being the number of CPrez operations in the algorithm.

Putting Things Together. We presented a set-based symbolic implementation of the
progress measure that uses O(n) sets, O(c · n · |M∞h |) symbolic one-step operations and at
most a factor of n more symbolic set operations. Using that |M∞h | ≤

(
h+bc/2c

h

)
+ 1 we obtain

the following key lemma that summarizes the result for computing dominions.

I Key Lemma 6. For a parity game with n vertices and c priorities, and h ∈ [1, n − 1],
SymbolicParityDominion computes a player-E dominion that contains all E-dominions with
at most h+ 1 vertices and can be implemented with O

(
c · n ·

(
h+bc/2c

h

))
symbolic one-step

operations, O
(
c · n2 ·

(
h+bc/2c

h

))
symbolic set operations, and O(n) many sets.

To solve parity games directly with Algorithm SymbolicParityDominion, we use the
co-domain M∞G instead of M∞h . Recall that we have |M∞G | ∈ O

((
n
bc/2c

)bc/2c) [29].
I Theorem 7. Let ξ(n, c) =

(
n
bc/2c

)bc/2c. Algorithm SymbolicParityDominion computes the
winning sets of parity games and can be implemented with O

(
c · n · ξ(n, c)

)
symbolic one-step

operations, O
(
c · n2 · ξ(n, c)

)
symbolic set operations, and O(n) many sets.

See the full version [12] for how to construct winning strategies within the same bounds.

4 Extensions and Conclusion

Big-Step Algorithm. We presented a set-based symbolic algorithm for computing a progress
measure that solves parity games. Since the progress measure algorithm can also compute
dominions of bounded size, it can be combined with the big step approach of [39] to improve
the number of symbolic steps as stated in the following theorem.

I Theorem 8. Let γ(c) = c/3+1/2−4/(c2−1) for odd c and γ(c) = c/3+1/2−1/(3c)−4/c2
for even c. There is a symbolic Big Step Algorithm that computes the winning sets for parity
games and with the minimum of O(n ·(κ ·n/c)γ(c)), for some constant κ, and nO(

√
n) symbolic

one-step operations and stores only O(n) many sets.

Concluding Remarks. In this work we presented improved set-based symbolic algorithms
for parity games, and equivalently modal µ-calculus model checking. Our main contribution
improves the symbolic algorithmic complexity of one of the most fundamental problems
in the analysis of program logics, with numerous applications in program analysis and
reactive synthesis. There are several practical approaches to solve parity games, such as,
[15, 23, 27, 26, 3] and [42]. A practical direction of future work would be to explore whether
our algorithmic ideas can be complemented with engineering efforts to obtain scalable symbolic
algorithms for reactive synthesis of systems. An interesting theoretical direction of future work
is to obtain set-based symbolic algorithms for parity games with quasi-polynomial complexity.
The breakthrough result of [10] (see also [24]) relies on alternating poly-logarithmic space
Turing machines. The follow-up papers of [30] and [21] that slightly improve the running
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time and reduce the space complexity from quasi-polynomial to quasi-linear rely on succinct
notions of progress measures. All these algorithms are non-symbolic, and symbolic versions
of these algorithms are an open question, in particular encoding the novel succinct progress
measures in the symbolic setting when storing at most a linear number of sets.
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A Technical Appendix: Details for Section 3

Correctness. The correctness of Algorithm SymbolicParityDominion, stated in the following
lemma, follows from combining Lemma 10 with Lemmata 11–13, which we prove below.

I Lemma 9 (Correctness). Algorithm SymbolicParityDominion computes the progress measure
for a given parity game (with n vertices) and a given set of possible ranks M∞h (for some
integer h ∈ [1, n− 1]).
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I Lemma 10. Assuming that Invariant 3 holds, the ranking function ρ{Sr}r
induced by the

family of sets {Sr}r at termination of Algorithm SymbolicParityDominion is equal to the
progress measure for the given parity game and the co-domain M∞h .

Proof. Recall that the progress measure is the least simultaneous fixed point of all Lift(., v)-
operators for the given parity game (where inc, dec, and the ordering of ranks are w.r.t. the
given co-domain) and let the progress measure be denoted by ρ̃. Let {Sr}r be the sets in
the algorithm at termination. For all v ∈ V the ranking function ρ{Sr}r

(v) is defined as
max{r ∈M∞h | v ∈ Sr}. By Invariant 3(2) we have ρ{Sr}r

(v) ≤ ρ̃(v) for all v ∈ V .
When the algorithm terminates, with r = >, we have by Invariant 3(3) Lift(ρ{Sr}r

, v)(v) =
ρ{Sr}r

(v) for each vertex v and thus ρ{Sr}r
is a simultaneous fixed point of the Lift(., v)-

operators. Now, as ρ̃ is the least simultaneous fixed point of all Lift(., v)-operators, we obtain
ρ{Sr}r

(v) ≥ ρ̃(v) for all v ∈ V . Hence we have ρ{Sr}r
(v) = ρ̃(v) for all v ∈ V . J

I Lemma 11. Before and after each iteration of the while-loop in Alg. SymbolicParityDo-
minion we have Sr1 ⊇ Sr2 for all r1 ≤ r2 with r1, r2 ∈M∞h , i.e., Invariant 3(1) holds.

Proof. The proof is by induction over the iterations of the while-loop. The claim is satisfied
when we first enter the while-loop and only S0̄ is non-empty. It remains to show that when
the claim is valid at the beginning of a iteration then the claim also hold afterwards. By
the induction hypothesis, the sets Sr′ for r′ < r are monotonically decreasing. Thus it is
sufficient to find the lowest rank r∗ such that for all r∗ ≤ r′ < r we have Sr 6⊆ Sr′ and add
the vertices newly added to Sr to the sets Sr′ with r∗ ≤ r′ < r, which is done in lines 16–25
of the while-loop. J

I Lemma 12. Let ρ̃ be the progress measure of the given parity game and let ρ{Sr}r
(v) =

max{r ∈M∞h | v ∈ Sr} be the ranking function with respect to the family of sets {Sr}r that
is maintained by the algorithm. Throughout Algorithm SymbolicParityDominion we have
ρ̃(v) ≥ ρ{Sr}r

(v) for all v ∈ V , i.e., Invariant 3(2) holds.

Proof. We show the lemma by induction over the iterations of the while-loop. Before the
first iteration of the while-loop only S0̄ is non-empty, thus the claim holds by ρ̃ ≥ 0̄.

Assume we have ρ{Sr}r
(v) ≤ ρ̃(v) for all v ∈ V before an iteration of the while-loop. We

show that ρ{Sr}r
(v) ≤ ρ̃(v) also holds during and after the iteration of the while-loop. As

the update of Sr′ in line 22 does not change ρ{Sr}r
, we only have to show that the invariant

is maintained by the update of Sr in lines 4–14. Further ρ{Sr}r
(v) only changes for vertices

newly added to Sr, thus we only have to take these vertices into account.
Let ` be the maximal index such that r = 〈r〉` or the highest odd priority if r = >.

Assume r < >, the argument for r = > is analogous. The algorithm adds vertices to Sr in (1)
line 6 and (2) line 8. In case (1) we add the vertices

⋃
1≤k≤(`+1)/2(CPreO(Sdec2k−1(r))∩P2k−1)

to Sr. Let v ∈ CPreO (Sdec2k−1(r)) ∩ P2k−1 for some 1 ≤ k ≤ (`+ 1)/2.
If v ∈ VE ∩ P2k−1, then all successors w of v are in Sdec2k−1(r) and thus, by the induction
hypothesis, have ρ̃(w) ≥ dec2k−1(r). Now as v ∈ P2k−1, it has rank ρ̃(v) at least
inc2k−1(dec2k−1(r)) = r.
If v ∈ VO ∩ P2k−1, at least one successors w of v is in Sdec2k−1(r) and thus, by the
induction hypothesis, has ρ̃(w) ≥ dec2k−1(r). Now as v ∈ P2k−1, it has rank ρ̃(v) at least
inc2k−1(dec2k−1(r)) = r.

For case (2) consider a vertex v ∈ CPreO(Sr) \
⋃
`<k≤d Pk added in line 8.

If v ∈ VE , all successors w of v are in Sr and thus, by the induction hypothesis, have
ρ̃(w) ≥ r. Since the priority of v is ≤ `, we have ρ̃(v) ≥ 〈r〉` = r.
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If v ∈ VO, at least one successors w of v is in Sr and thus, by the induction hypothesis,
has ρ̃(w) ≥ r. Since the priority of v is ≤ `, we have ρ̃(v) ≥ 〈r〉` = r. J

I Lemma 13. Before and after each iteration of the while loop we have for the rank stored
in r and all vertices v either Lift(ρ{Sr}r

, v)(v) ≥ r or Lift(ρ{Sr}r
, v)(v) = ρ{Sr}r

(v). At
line 15 of the algorithm we additionally have v ∈ Sr for all vertices v for which the value of
Lift(ρ{Sr}r

, v)(v) is equal to r. Thus Invariant 3(3) holds.

Proof. We show the claim by induction over the iterations of the while-loop. Before we
first enter the loop, we have r = inc(0̄) and S0̄ = V and thus the claim is satisfied. For the
inductive step, let rold be the value of r and ρold the ranking function ρ{Sr}r

before a fixed
iteration of the while-loop and assume we have for all v ∈ V either Lift(ρold, v)(v) ≥ rold or
Lift(ρold, v)(v) = ρold(v) before the iteration of the while-loop. Let rnew be the value of r
and ρnew the ranking function ρ{Sr}r

after the iteration. We have three cases for the value
of rnew:
1. rnew = inc(rold) (line 16),
2. rnew = rold = > (line 18), or
3. rnew < rold, i.e., the rank is decreased in lines 21–25 to maintain anti-monotonicity.

We show in Claim 14 that, in all three cases, if a set Sr′ , for some r′ < rold, is not changed
in the considered iteration of the while-loop then for all v ∈ V with Lift(ρnew, v)(v) ≤ r′ we
have that Lift(ρnew, v)(v) = ρnew(v).

Given Claim 14, we prove the first part of the invariant as follows. In the case (1) the lowest
(and only) rank for which the set is updated is rold, thus it remains to show Lift(ρnew, v)(v) =
ρnew(v) for vertices with Lift(ρnew, v)(v) = rold, which is done by showing the second part of
the invariant, namely that v ∈ Srold for all vertices v with Lift(ρ{Sr}r

, v)(v) = rold after the
update of the set Srold in lines 4–14; for case (1) we have ρnew = ρ{Sr}r

at this point.
In the cases (2) and (3) we have that the lowest rank for which the set is updated in the

iteration is equal to rnew, thus Claim 14 implies that the invariant Lift(ρnew, v)(v) ≥ rnew or
Lift(ρnew, v)(v) = ρnew(v) holds for all v ∈ V after the while-loop.

I Claim 14. Let r∗ ≤ rold be a rank with the guarantee that no set corresponding to a lower
rank than r∗ is changed in this iteration of the while-loop. Then we have for all v ∈ V either
Lift(ρnew, v)(v) ≥ r∗ or Lift(ρnew, v)(v) = ρnew(v) after the iteration of the while-loop.

To prove the claim, note that since each set Sr is monotonically non-decreasing over
the algorithm, we have ρnew(v) ≥ ρold(v) and Lift(ρnew, v)(v) ≥ ρnew(v). Assume by
contradiction that there is a vertex v with Lift(ρnew, v)(v) > ρnew(v) and Lift(ρnew, v)(v) < r∗.
The latter implies best(ρnew, v) < r∗. By the induction hypothesis for r∗ ≤ rold we have
Lift(ρold, v)(v) = ρold(v). By ρnew(v) ≥ ρold(v) and the definition of the lift-operator this
implies best(ρnew, v) > best(ρold, v), i.e., the rank assigned to at least one vertex w with
(v, w) ∈ E is increased. By best(ρnew, v) < r∗ this implies that a set Sr′ with r′ < r∗ is
changed in this iteration, a contradiction to the definition of r∗. Hence, the claim holds.

It remains to show that v ∈ Srold for all vertices v with Lift(ρ{Sr}r
, v)(v) = rold after the

update of the set Srold in lines 4–14. Towards a contradiction assume that there is a v 6∈ Srold

such that Lift(ρ{Sr}r
, v)(v) = rold. Assume v ∈ VE , the argument for v ∈ VO is analogous.

Let ` be maximal such that rold =
〈
rold

〉
`
for rold < > and let ` be the highest odd priority in

the parity game for rold = >. Notice that α(v) can be at most ` for Lift(ρ{Sr}r
, v)(v) = rold

to hold. We now distinguish two cases depending on whether α(v) is odd or even.
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If α(v) is odd, i.e., α(v) = 2k− 1 for some k ≤ (`+ 1)/2, then we have that all successors
w of v have ρ{Sr}r

(w) ≥ dec2k−1(rold) and thus, by Lemma 11, w ∈ Sdec2k−1(rold). But
then v would have being included in Srold in line 6, a contradiction.
If α(v) is even, i.e., α(v) = 2k for some k ≤ `/2, then we have that all successors w of
v have ρ{Sr}r

(w) ≥ rold. Then by the definition of ρ{Sr}r
it must be that w ∈ Sr′ for

some r′ ≥ rold and by Lemma 11 it must be that w ∈ Srold . But then v would have being
included in Srold in line 8, a contradiction.

Thus, after the update of the set Srold we have that v ∈ Srold for all vertices v with
Lift(ρ{Sr}r

, v)(v) = rold. Together we the above observations this proves the lemma. J

Number of symbolic operations. We address next the number of symbolic operations of
Algorithm SymbolicParityDominion when using the sets Sr directly. We analyze the number
of symbolic operations when using a linear number of sets below. The main idea is that a set
Sr is only reconsidered if at least one new vertex was added to Sr.

I Lemma 15. For parity games with n vertices and c priorities Algorithm SymbolicPari-
tyDominion takes O(c · n · |M∞h |) many symbolic operations and uses O(|M∞h |) many sets,
where h is some integer in [1, n− 1].

Proof. In the algorithm we use one set Sr for each r ∈M∞h and thus |M∞h | many sets. We
first consider the number of symbolic operations needed to compute the sets Sr in lines 4–14,
and then the number of symbolic operations to compute the new value of r in lines 15–25.

1. Whenever we consider a set Sr, we first initialize the set with O(c) many symbolic
operations (lines 6 & 11). After that we do a fixed-point computation that needs symbolic
operations proportional to the number of added vertices. Now fix a set Sr and consider
all the fixed-point computations for Sr over the whole algorithm. As only O(n) many
vertices can be added to Sr, all these fixed-points can be computed in O(n+#r) symbolic
operations, where #r is the number of times the set Sr is considered (the algorithm
needs a constant number of symbolic operations to realize that a fixed-point was already
reached). Each set Sr is considered at least once and only reconsidered when some new
vertices are added to the set, i.e., it is considered at most n times. Thus for each set Sr we
have O(c ·n) many operations, which gives a total number of operations of O(c ·n · |M∞h |).

2. Now consider the computation of the new value of r in lines 15–25. Lines 15–19 take a
constant number of operations. It remains to count the iterations of the repeat-until loop
in lines 20–25, which we bound by the number of iterations of the while-loop as follows.
Whenever a set Sr′ is considered as the left side argument in line 24, then the new value
for r is less or equal to inc(r′) and thus there will be another iteration of the while-loop
considering inc(r′). As there are only O(n · |M∞h |) many iterations of the while-loop over
the whole algorithm, there are only O(n · |M∞h |) many iterations of the repeat-until loop
in total. In each iteration a constant number of operations is performed.

By 1. and 2. we have that Algorithm SymbolicParityDominion takes O(c · n · |M∞h |) many
symbolic operations. J

Number of set operations in linear space algorithm. For the proof of Lemma 6 and thus
of Theorem 7 it remains to show that whenever the algorithm computes or updates a set Sr
using the succinct representation with the sets Cix introduced in Section 3.2, then we can
charge a CPrez operation for it, and each CPrez operation is only charged for a constant
number of set computations and updates. The argument is as follows.
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(a) Whenever the algorithm computes a set Sr in line 6 or 11, at least one CPrez computation
with this set is done.

(b) Now consider the computation of the new value of r. The subset tests in lines 16 and 18
are between a set that was already computed in line 6 or 11 and the set computed in
line 8 or 13 and thus, if we store these sets, we do not require additional operations.
Whenever a set Sr′ is considered as the left side argument in line 24, then the new value
of r is less or equal to inc(r′) and thus there will be another iteration of the while-loop
considering inc(r′). Hence, we can charge the additional operations needed for the
comparison to the CPrez operations of the next iteration that processes the rank inc(r′).

(c) Finally, we only need to update the sets Cix once per iteration and in each iteration we
perform at least one CPrez computation that we can charge for the update.
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